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iii.

ABSTRACT

Despite growing crime rates, and increased computerisation of crime
data within the police force, surprisingly little attention has been
payed to techniques of analysis that could be applied to this data.
This thesis investigates spatial analytical and statistical techniques
which may be used for this task, and proposes a Bayesian
forecasting technique, allowing the objective pattern detection
mechanisms supplied by the quantitative examination of past data to
be combined with the subjective knowledge of police officers. This
method, along with others, is incorporated into a software package
which may be run at a police station (Subdivision). Finally the

software package is evaluated by members of the police force.



CHAPTER 1

INTRODUCTION

1.1 Perspectives On Crime Pattern Analysis

The increasing availability of crime incidence data as a result of various
database building projects raises important questions as to how such data
might best be used for practical policing purposes. Traditionally, only a
small amount of capital (in terms of money and resources) outlayed for
the collation of these crime statistics has been allocated to management
information tasks. All over Britain, police resource managers from
subdivisional to force-wide levels have had to function without fully

exploiting their comprehensive data resources.

The term Crime Pattern Analysis (CPA) has been used in policing for
many years. Originally, because of the low number of incidents it was
possible for beat policemen or detectives to identify patterns evolving in
crimes reported based on personal memory, and to implement action
accordingly. However, the large increase in the incidence of reported
crimes in the 1970's and 1980s rendered informal Crime Pattern Analysis
of this kind infeasible. A common response was to dedicate one police
officer to identify patterns and draw them to the attention of police
managers. However, eventually even this approach had serious
shortcomings. The volume of data to be analysed is now too great for

one officer within each subdivision to manage. A typical subdivision in



the Northumbria Police Force will have an annual crime load of 8,000 -

10,000 crimes per year.

The task of the analyst is to identify patterns in these crimes, perhaps
identifying groups of related crimes of only a small number (perhaps as
low as two or three), and there is no way of determining how many of
these crimes are part of some pattern, and how many are merely

"one-off" and of no predictive consequence.

It is obvious, therefore, that an individual officer carrying out Crime
Pattern Analysis will require some tool to assist in handling the data.
Thus, recently interest has been shown in computer-based systems,
particularly using software for database management, and also in the
potential utility of Geographical Information Systems (GIS). The latter
are becoming widely adopted to manage map-related data, but like many
of the tools currently available, they only offer limited analytical power.
Mainly they present and manage the data, and the operators (in this
case Crime Pattern Analysts) are left to identify the patterns
themselves. A Police Foundation experiment involving an SIA developed
GIS system (DataMap) based around an ordnance survey digital
cartographic database for South Tyneside was found not to be
particularly useful for crime pattern analysis. Although capable of
flexible geographic data manipulation and display was possible, the
analysis of this information was still entirely left to manual pattern

detecting techniques.



However, computers are capable of far more than the input and selective
output of raw data. Given the increasing richness of crime related data
bases, with geographical referencing, it seems reasonable that more
sophisticated tools be developed, to cope with the present and future

needs of both the Police resource managers and Crime Pattern Analysts.

The objectives for the design of such techniques can be stated in terms
of the development of computer models capable of predicting the
incidence of crime in as much temporal and spatial details as is
considered suitable. Ideally, such a system should run in real time,
making use of crime report data as soon as it is collated, and be able to
differentiate between essentially random events and those which appear

to exhibit some regularity on either a time or space basis.

In order to achieve the above, techniques will need to be employed
which analyse past crime data to identify such patterns. In addition to
this, however, certain phenomena may influence crime rates on a
short-term scale which may not be adequately captured in the data set.
In making crime predictions, analysts will not rely solely on the data,
but make use of other, more subjective knowledge in combination with
this. For example, if it is known that an offender, say a burglar, who
has been active in a particular area has recently been arrested, then it
seems reasonable to assume that burglary rates in that area will drop in
the near future. It would not be evident only from the inspection of
past crime rates in the region (which would be high due to the burglars

activity) that this sudden drop was about to happen. Thus, in addition



to the pattern analysis of the type described previously, some channels

of input from the human analyst must still be left open.

It is noted that the tasks set out above are not easy, and to be
executed successfully will require use of highly sophisticated methods
with very specialised levels of expertise, and there is great conflict
between the amount of work required to implement these methods and the
availability of police research and development resources. Without work
of this type, however, the alternative is to rely on simple methods that
often fail to work well, and are justified only on the grounds of their
simplicity. It is as a result of this conflict that this collaborative

award between the ESRC and Northumbria Police has been granted.

There are theoretical and practical contributions that may be made from
a wide range of fields, that can be applied to the problems stated here.
These fields include probability theory, spatial analysis, management
science and computer science. However, the problem may not be
addressed by simply importing techniques developed elsewhere to the
police data environment. Many of the standard techniques have never
been applied in combination before, and there will be new techniques to
be developed in addition to these. Also, it is to be remembered that the
methods must be adapted to be suitable for wuse within a Police
environment (rather than within a university or an operations research

department of a large company).

The latter point is particularly important when complex statistical and

probabilistic models are proposed for general police use. The "user



interface" has to be specially designed, made robust, and carefully
developed to have the following characteristics; ease of use, and the
provision of output that can be understood and communicated in police
terms. Neither of these requirements preclude the wuse of complex
methods, but do impose high standards on the "packaging" of these
methods. The system must be designed to supply the required crime
pattern analysis information and forecasts in terms relevant to the police
user. From the users view the conceptually simple task of crime
forecasting is being performed; although internally, sophisticated pattern

analysis may be used to actually obtain the forecasts.

It is also important that the crime pattern questions that the system can
answer are thought to be relevant, and so thought must be given to
establishing what tasks are performed by the analyst. It is essential,
therefore, to work in collaboration with the police, and to develop the
system with some experience of the police environment. While the system
requirements and interface design come from this environment, the
knowledge to implement it is clearly interdisciplinary. It is hoped that

over the study period the two components evolve together.

This introductory chapter will now go on to summarise the various
aspects of this study, firstly by identifying the task of the crime
pattern analyst, and then by considering particular issues in the

implementation of the computerised system.



1.2 What Does a Crime Pattern Analyst Do?

In this section, a typical crime pattern analysis example will be given.
The intention is to identify the skills that are used, and discover the
strong and weak points. After this, models can be developed that may
either replace those skills better suited to an automated approach, or
provide backup to skills that human analysts are better at providing. A
better understanding of what is involved can be gained by examining a

hypothetical example of a crime pattern analysis task.

A list of crime incidents are given in figure 1.1. At the time of
recording of the first incident, no pattern is discernible. Over a period
of time more incidents accumulate incidents there is a possible link
between three of them (A C D). The common features are that all of
these crimes occurred overnight on terraced dwellings, by forcing a rear
window. The analyst may now suspect a pattern. After three more
offences, a similar pattern evolves in beat T5. There is also a pattern
of days, in that all of the offences occur in the early hours of mid-week
days. A further incident is on a semi-detached property, but the
analyst is aware that this property has a rear yard, in common with the
other properties. This suits the method of entry well. Also, in this
pattern, if items of little or no value are stolen, another offence occurs
quite soon after. In the case of more valuable items taken, a longer

period between offences occurs.

It is also noted that offences on the east side of the major road in the

locality involve theft of small items, whilst those on the west side involve



Figure 1.1
Crime Incident Reports

Crime Code A B C D E F
Beat V3 V3 V3 V3 V3 V3
Date 4 5 5 6 11 10
Day Tue Wed Wed Thu Tue Mon
Times Tpm 4am-6pm 10pm-6am 12am-3am -- lam
Dwelling Type Terrace Semi Terrace Terrace Terrace Ter.
Place Of Entry Rear Rear Rear Rear Rear Rear
Point Of Entry Window Door Window  Window  Door Window
Means Of Entry Force Force Insecure Force Drill Drill
Stolen (pounds) 5 420 0 0 400 60
Comments Disturbed

Crime Code G H I

Beat V3 T5 T5

Date 12 13 14

Day Wed Thu Fri

Times 5pm-7am 1lpm-8am 4pm-7am

Dwelling Type Terrace Terrace Terrace

Place Of Entry Rear Rear Rear

Point Of Entry Window  Door Window
Means Of Entry Force Force Insecure
Stolen (pounds) 50 0 300

Comments Video Taken



large items not simply concealed. The offender may therefore be based
near here. The criminal intelligence officer may possibly be able to
identify a suspect from this, but certainly a resource manager could be
warned to deploy resources for the next mid-week period in the areas
concerned.

This brief example highlights the type of skills applied by the crime
pattern analyst. Some of these pertain to modelling the time and space
constraints of offenders, while others involve detecting patterns in
modus operandi and items stolen. In addition to this, a certain amount

of intuitive input is required.

1.3 _A "Smart" Computer Crime Incidence Forecaster

It is clear from the above example that simple GIS-based techniques
largely fail to provide the lateral linkages that form a powerful part of
the analysts work. There are two ways that this could be improved
upon; (1) building a rules-based expert system (see, for example,
Luger and Stubblefield, 1989); (2) developing a statistical system
designed to work in parallel with the analyst. Option (1) lies some
distance in the future, and suffers from the problem that to some extent
crime risk is a random process, so imposing a deterministic model will
yield unrealistically definite predictions (ie. no wvariability of outcome

could be modelled).

This leaves option (2), using statistical forecasting, and pattern spotting
techniques. In addition to this, however, there is the subjective

knowledge factor described earlier. It seems essential to incorporate



this in some form into the prediction model. The aim of the computer
package proposed here is to aid the analyst in the more mechanistic part
of their job. However, if this is done in a closed system, it will be of
very little use. Predictions should not be made solely on space time
pattern analysis, and any method only allowing information of this sort
to enter will be inadequate. Thus, in the statistical model, some means

of entering subjective beliefs must also be incorporated.

Finally, if such a facility may be provided, a further refinement will be
necessary. If human user's are to enter their own predictions for crime
rates into the system, or modify those from the space-time models, some
form of performance rating must be carried out, to weight the influence
that these alterations may have. While it is reasonable to acknowledge
there are some aspects of pattern analysis where the human analyst is
better, to allow complete override could, with an over-enthusiastic user,
simply lead back to the pre-analytical situation, with the human user's
predictions being the only output. Therefore some decision should be
made as to how much influence the subjective input should have, and
this is most reasonably done in terms of past performance. In this way,
at times when spatial pattern is the predominant characteristic, more
weight will be given to the statistical model, but under more unusual

circumstances (eg. sudden weather change, arrival of a carnival etc.)

the human analyst is given control.
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1.4 A Bavyesian Approach

Given the objective of combining evidence in the data with a set of
"prior" beliefs in a statistical framework, "classical" statistical models
cannot be easily employed. These base inferential, estimative and
predictive methodologies entirely on the analysis of the data,
corresponding to the closed systems discussed in the previous sections.
Instead of these the Bayesian approach is proposed (see for example
Barnett, 1982). This is an alternative system of statistical inference, in
which the analyst of a give data set supplies prior beliefs, and modifies
these in the light of the data, into "posterior beliefs". Thus,

information may be fed into the system by another channel than that of

data collection.

Above, the Bayesian principle is stated in inferential terms; however a
predictive interpretation can be made. From these "posterior beliefs"
predictions may be made about future data values. This can further be
extended to a dynamic scenario, where as data arrives, posterior beliefs
are modified and updated predictions are made. Also, these posterior
beliefs could be modified by the analyst if, at any time, they receive

informal evidence that may cause them to modify their expectations for

future events.

1.4.1 Statistical Methods

Most forecasting systems do not take geographical aspects of the model
into account. They tend more to work entirely on time series based
methodologies, such as exponential smoothing or Box Jenkins methods

(Box and Jenkins, 1976). Since a major objective of the study here is
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beat by beat crime prediction, spatial effects cannot be ignored. It is
likely that, for example, a good indicator of forthcoming crime rates in a
given beat will be based on present data not only for that beat, but on

the surrounding beats crime rate data also.

In addition to this, for purposes of pattern identification, it is likely
(see example) that some geographical patterns will take place on a much
smaller scale even than this. Hence, techniques applied here should not
only forecast on a beat by beat scale, but also be able to "flag"
important developments on an individual scale, to warn of important
patterns evolving. Techniques based, for example, on Knox testing
(Knox 1964) on epidemiological technique for identifying epidemics of

disease in space and time, might be applied to "spates" of crime, (say

burglary) in a given area.

In this study it is proposed, firstly, to apply spatial statistical
techniques to some crime data in order to identify the types of spatial,
probabilistic models that could be used as the basis for crime prediction
and pattern analysis, in space and time. After this task has been
completed it then follows to build these models in the context of the

Bayesian system described in the last section.

If this is attained, a system capable of using space-time modelling
techniques to formulate predictions will have been developed. However,
in addition to this, the system will be capable of combining the results
of this type of pattern analysis with the extra information that may be

supplied by the experienced analyst.
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1.4.2 The Combination of Forecasts

In both of the previous sections, a need to combine the forecasts of both
the human and statistical methods has been outlined. Fortunately, one
has been proposed by Morris (Morris, 1974). Experts (man or machine)
are required to state their beliefs about future crime rates, in the form
of probability distributions (this is always the case in a Bayesian
framework), and a mathematical framework for combining these is set
out. The principal may be used in the context of combining predictive
distributions from the spatial analysis model with those supplied by

police users.

An added bonus of the approach given by Morris is that the prior
beliefs supplied may be "calibrated" against past performance, so that,
for example, the expectations of an expert with a tendency to
underpredict crime rates would have their supplied figures shifted
upwards to allow for this. In addition to this, more sophisticated
calibrations may be performed, so that, for instance, the variance of
past performance of expert advice can also be used as a criterion for

weighted combination of man and machine forecasts.

An attempt will be made in this project to apply the theoretical
framework put forward to a practical means of forecasting crime viewed

as a geographical phenomena.
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1.5 Software Design

As suggested in the previous sections, many statistical methods may be
deployed in the prediction of crime forecasting and pattern analysis, and
some of these will be of a high level of complexity. However, it is
important to remember that the end users, although experts in the
analysis of crime patterns, may not have the training to directly apply
these statistical methods, or interpret their output. It is therefore
essential that the computer software written for this system "hides" the
internal statistical analyses, and presents results in terms of output
more meaningful to police managers or crime pattern analysts. Also,
bearing in mind the Bayesian approach of the system, police users will
be required to feed in data about subjective beliefs. As mentioned
previously, this should be supplied as a probability distribution: clearly,
for an expert without statistical training, this is not reasonable. As

with the output, the user must be asked for this information in a format

they can easily understand.

Bearing both of these in mind, the prototype software package is to be
designed in close communication with members of the Police Force. For
example, a survey of police officer reports to different mapped output
formats will be carried out. From this, the optimal types of map data

display to be incorporated into the package may be discovered.

In addition to this, the software prototype must be designed so that if it

is evaluated in a police environment, it will not be accidentally sent into
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error status. An important factor in the success of a system of this
type is ease of use, and the more secure a system is, in terms of

"crash" avoidance, the more confident its users will be.

1.6 Evaluation

After the design of the forecasting software, and the operational
software has been completed, the system as a whole will need to be
evaluated. This evaluation should be carried out either on site, or, if
this proves difficult to implement, at the research site, but with the
co-operation of a police officer who will operate the system as though it

were used on site. This police officer should have experience of crime

pattern analysis.

The purposes of this analysis will be two-fold. Firstly, the accuracy of
the forecasts will be monitored, and strong and weak points of the
forecasting system will be identified. Secondly, the ease of use of the
syster;l will also be monitored, with comments from the police users. It
is hoped that the second type of evaluation will identify areas in which
the user interface could be improved, and also new methods of crime

pattern analysis might be suggested for implementation into the system at

a later date.

The aim of this study is an evaluation of the implementation of
quantitative geographical techniques for crime pattern analysis. Clearly,
part of this is to develop and evaluate a working prototype, but a

second, equally important aspect 1is to suggest additions and
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modifications to a successful prototype, in order to progress from this

stage to a fully operational system.

1.7 Objectives

The main purpose of this PhD is to anticipate the availability of
geographically referenced crime incidence data by developing the spatial
forecasting methods in advance of crime database developments. The aim
is to create and evaluate an automated crime pattern analysis system.
As a system of this sort will be required to function on the basis of data
that may be easily collated on site, emphasis will be placed on empirical
means of pattern spotting, rather than on theories of criminology.
Although the latter may provide insight into the processes leading to the

committing of crimes, they do not directly identify notable quantitative

traits in the data.

The forecasting system should be capable of integrating "intuitive"
knowledge of police officers with forecasts of crime rates based on
statistical techniques, to allow for events affecting crime rates that may
not be detectable on past data alone. As the system will have to
interact with the police officers in order to do this, careful design of
the user-related input and output sections will be necessary. Indeed,
throughout the study contact should be maintained with the Northumbria
Police force, the intended "end users". It is also emphasised that this
PhD is not meant to be a substantive investigation of any spatial
patterns that may exist in crime incidence data for an arbitrary study

region, instead it is concerned with more general methodological issues.
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There has previously been a lack of in depth spatial statistical analysis

of small area geographically referenced crime data, and this study

intends to rectify this omission.

The system developed should provide the crime pattern analyst with a
tool that will release their time currently spent on "mechanistic" pattern
analysis, allowing them to apply more "humanistic" or intuitive skills to
emerging patterns. One officer estimated that with non-analytical,
database management software, 10% of the analyst's time is saved. With
an analytical package of the type discussed here, this proportion will
become about 40%. The extra 30% of time saved will allow the analyst to
attain better subjective understanding of the patterns, and this may be

fed back into the system via the Bayesian mechanism.
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CHAPTER 2

CRIME DATA : REQUIREMENTS AND CAPTURE TECHNIQUES

2.1 Introduction

In order to design and calibrate a crime pattern analysis system of the
type proposed in the previous chapter, a clear idea of the structure of
the readily available data on site is necessary. Further to this, if a
prototype is to be constructed, a sample dataset will be needed. In
this chapter, then, consideration will be given firstly to the nature of
data that is suitable for crime pattern analysis, and also readily
available to users of the system. After this, the methodology of data
capture will be outlined. This methodology will exploit, in part, an
anonymous manual crime report filing system already available in some

subdivisions, to which the Northumbria Police force have allowed

access for research purposes.

2.2 Sources of Crime-Related Data

The possible sources of data available to a crime pattern analysis
system can be broadly divided into two main types: data relating
directly to crime incidents, and data relating to variables that are
thought likely to affect crime rates. In each case, methods of data

recording will be considered, together with any related difficulties.
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Subsequently, suitability of the data for incorporation into the methods
proposed in this thesis will be evaluated. Obviously, data that is
reliable is still of little use here if it cannot aid substantially in the

prediction of crime rates on a week-by-week basis.

2.2.1 Data on Crime Incidence

On a large geographical scale (ie Police Force Divisions), yearly
numbers of crimes are reported by the Home Office (Criminal Statistics
in England and Wales Supplementary Tables Volume 3, from 1980
onwards) . These are based on force wide figures, on a
month-by-month basis. There are however obvious difficulties with
this data source. The scale of aggregation at which crime figures are
recorded in this secondary source is far larger than that required for
this study. Clearly, if beat by beat, week by week predictions are to
be made, and patterns identified at this scale of time and space, more
detailed statistics over a smaller study area will be required. Thus,

more local data sources must be considered, with a greater level of

spatial identification.

On a more local scale it is likely that data compilation may have to be
performed by the end user. Two main sources of such data would be
by accessing records of prosecutions from Civil Court data or from
police records of reported crimes. The first option is not suitable,
since this data only relates to prosecution and so records of
undetected crime will not appear. In addition to this, special formal

channels of communication would have to be implemented, with
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additional strain on the resources of both legal and police manpower.

Clearly this would not be the case with the second option.

This leaves the option of collecting crime report data directly from the
subdivision. This will provide data from a sufficiently local basis, and
a framework for collecting information of some sort is already
implemented in the crime clerk's office of subdivisions. A description
of some type is required with every crime reported. From this,
information about geographical location, date of event other details may
be gained. In fact, certain subdivisions have manual filing and
database systems implemented using the information from crime reports,

which are used as simple crime pattern analysis tools.

For the needs of this pilot study, a subdivision which has employed a
manual system such as that described above will provide a useful
source of data. In addition, when a final computerised analysis
system is completed, the data collection methods already implemented in
the crime clerks office could be integrated into the data input
procedure for the computer program without a great deal of

modification.

Thus, in terms of data availability, and of geographical scope and
resolution , the optimum information source for data directly relating
to crimes would be those obtained directly at subdivision level. This
argument applies to the final source of data on a fully operational

system, and since the pilot study is intended to examine the feasibility
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of such a system, must indeed also apply to the source of a test data

set.

A further justification for this data source is that, in the future, a
centralised, computerised crime incidence reporting system is
envisaged, which will be able to supply electronic data of the type
described above to subdivision. This is likely to contain similar

information to that of the type currently manually reported in the

crime clerks office.

2.2.2 Problems in the Collection of Crime Data

Consider crime related data from secondary sources, as set out
above. The data will have been previously compiled in some format
before being transferred into the database to be used for the pilot
study. It is therefore relevant to give some thought to the initial
recording process, and identify any problems associated with the
database, and its contents, attempt to assess their effects, and

suggest any remedial action that could be taken.

The major source of problems in crime databases relates to the
non-reporting of some offences (Walker, 1983). Crimes will only

become registered if they are either witnessed by a Police Officer, or

reported by a civilian. There are several circumstances in which

crimes would not be reported; Morrison, (1897) points out that crimes

will often only be reported if they are actually perceived as crimes by
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members of the public, or if members of the public approve of the

legislation defining the criminal offences.

In more recent times Walker, (1983) has identified six major causes of

non-reporting crime. These are now briefly outlined, and their effect

will then be considered in a geographical context.

(1)

(2)

(3)

(4)

(5)

No-one except the offender(s) are aware that the crime has

occurred. This chiefly occurs in the cases of murder, or fraud.

The victim is afraid of repercussion if they report the crime.

This may be due to threats on the part of the offender.

In the case of sex offences, the victim may be unwilling to give

evidence to the Police or appear in court at a future date.

The victim may feel that there is little the Police can do to help
them, and may either not wish to appear in court or feel that
reporting the crime would be a "waste of time". This may
happen, for example in the case of household burglaries if the
property is not insured, or alternatively if the victim feels there

is little chance of detecting the offender in an assault or robbery

case.

The crime committed was considered to be trivial by the victim

and it was not thought that it merited reporting. For example,

theft of milk bottles from doorsteps.
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(6) Among some immigrant communities, there is a reluctance to make
contact with the Police. To quote McCulloch et al (1974) "There
is evidence to indicate that many Asians do not take steps to
have offences investigated due to fear of Police, difficulties of

communication, mistrust of alien ways and ignorance".

In the first type of non-reporting, the frequency of types of crime to
which this phenomenon is usually linked is low or the nature of the
crime is not strongly geographically referenced so that crime pattern
analysis of the type suggested in the first chapter is unlikely to be
required. This is also the case with the second type of crime; it is
not particularly easy to analyse crimes involving, say, blackmail using
a system of this sort, firstly due to their rarity, and secondly due to
the vagueness of their geographical referencing. It may be possible
that a small proportion of the types of crime that could be easily
analysed in a system of this type (the identification of which will be
left to later in the Chapter), have their reporting censored in this
way, but it is expected that the relative frequency of these to

reported events will be small.

The major causes of censoring liable to have some geographical nature
are those set out in examples 4 and 6. It is perhaps more likely that
residents will have their properties insured, and are therefore more
likely to report burglary offences. it is hoped, however, that
although there may be greater likelihood of non-reporting in more
deprived areas, this will be combated in some cases by the

introduction of neighbourhood watch schemes. Again, in example 6,
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there may be certain area having a higher concentration of immigrant

communities, from which crimes are less likely to be reported than on

average.

In both of these cases, the geographical aspect of the problem of
non-reporting is that the wunder-representation of crime rates in
various regions will not be uniform. Thus, the relative risks of some
regions with respect to others may not be truly represented by
analysis of this dataset. The effects discussed in the past paragraph
may be confined to small neighbourhoods, so that the "loss rate" of
crimes occurring but not being reported may vary within subdivisions.
Thus there is a danger of some degree of distortion in the

geographical patterns of crimes perceived by the analyst.

Perhaps this highlights the nature of the main problem of this thesis.
Although in some regions, and perhaps over most time periods, the
data will provide reasonable clues as to the possible future variation in
potential crime patterns, future variation in potential crime patterns,
there may be some aspects that data analysis is unable to pick up.
Thus, a system requires some further means of input, perhaps from a

human expert, which may be combined with the results of ordinary

data analysis.

In addition to the distortions between crimes actually committed and
those not reported, a further proportion may eventually be revealed
not to be criminal offences. Perhaps for the purposes of this study

this may not be too severe a problem. In the case of some incidents,
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although no criminal offence is committed, there may be times when
police officers are still called upon, for example to mediate in domestic
disputes. If part of the purpose of the pattern analysis system is to
forecast the manpower requirement for short-term horizons, then it is
perhaps reasonable to incorporate a certain amount of non-criminal

incidents, since these will certainly contribute to the total workload.

2.2.3 Data on Variables Which may Relate to Crime

In this section, data other than that directly relating to crime
incidence, but which may be of use in the analysis of patterns or the
prediction of future crime rates will be discussed. There will be two
major headings here: Firstly, data concerning variables that are liable
to be correlated with crime rates - possibly with some time-lagged
effect, will be considered. If data of this sort may be collected on a
week-by-week basis, this could be incorporated into a crime pattern
analysis system, and used by prediction methods.The second type of
data is that relating to local geography. This refers to digitised beat
boundary outlines, together with various other cartographic detail.
This will need to be converted to electronic format if the crime

prediction system is to perform spatial modelling, or present mapped

information on VDU to analysts.

Firstly consider those variables that could be correlated to crime
rates. Obviously, many such variables could be speculated. For
example, it may be possible to model crime risks in terms of numbers

of potential offenders in the locality. This requires two assumptions:
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firstly that journey-to-crime figures for most criminals relatively small,
and secondly that some characteristics of a "typical" offender are
known. In these cases, if the characteristics are based on say
demographic or employment variables, an estimate of the number of
people in whose category a larger number of "potential offenders" lie
could be used as a means of assessing risk. Clearly, there are
several tenuous links here; not all offenders are "typical" and a wide
range of offender characteristics with a high degree of variance would
mean that any "potential offender" category would be very large, in
order to contain a reasonable proportion of the distribution of

offenders. Furthermore, there is the "nearness to crime" assumption.

However, it is possible that, in a statistical sense, some variables of
the form above may explain a reasonable percentage of variance. If
this is the case, although in explanatory terms the analysis may not be

particularly powerful, in predictive terms it may be of some use.

The main source of such data is that from the most recent population
census. This will give counts of the population broken down by age,
or sex or various other categories for census enumeration districts.
These could relate for example to identifying age range or employment
status or a combination of both of these associated with high risks of
burglary. The enumeration districts, however, are an independent set
of areal wunits to police foot beats. This implies that the census
variables used in any analysis of this type would have to be estimated,
by some means, for foot beats. The typical area of an urban ED is

about 0.05 Km2, and that of a foot beat is about 0.3 Km2, so that
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since areas are of similar magnitude, the proportion of EDs that are
split over beat boundaries will not be negligible. Suppose some sort
of allocation algorithm is employed, where if an ED is contained
completely its entire popula;cion is attributed to the appropriate foot
beat, but if it is straddled across beats, it is pro-rated to all relevant
beats. Then, since a great proportion of beats are contained in the
second, overflowing, category the implementation of the algorithm will
be computationally expensive, and will also lead to fairly error-prone

estimates (as the pro-rating is not an exact process).

In addition to this, the main purpose of the final crime prediction and
analysis system is that of short-term forecasts. This implies that
short-term crime phenomena of a few days span will need to be
predicted. However, the census variables are only updated on a ten
year basis. In comparison to the weekly updated crime count data,
they will be virtually static. Also, in the ten year period, the
neighbourhood or population characteristics that the census data
attempts to measure may change drastically. New housing may be
built, or areas may drop in affluence due, for example to the running
down of a dominant local industry. Thus, the time-scale over which

census variables are updated makes them infeasible for the task in

hand.

On another level, they may be able to predict "base level" or average
crime rates in foot beats, which one may expect to be relatively
constant oyer time. However, given that the principal aim is

prediction, rather than a causal analysis (which census data may not
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aid with anyhow, due to problems in finding good proxy variables for
any hypothesised processes) these base levels could more easily be
calibrated by analysis of crime rates themselves on a beat by beat
basis, over a long period of time. This would by-pass the areal unit
reassignment problem, as crimes are systematically assigned to foot
beats in the police force's data collection process. In addition to this,
the burglary rate data will be more recent than census data;
particularly for this study, where at the time of analysis the census is
eight years behind the most recent crime data. Finally, in a working
system, the crime data would be collated as a matter of course,
whereas the census data would require extra resources, in terms of
both cost and manpower, firstly to obtain the data, and then to
process it, and present it in a form useful to the foot beat based
system. Thus, due to the low frequency of wupdate, and the

inaccuracies of pro-rating data, census data would not seem viable in a

working system.

The implications of this are that, while some type of exploratory
analysis of census-based explanatory variables against crime rates as a
response may be of interest to shed light on crime rates in an initial
study, perhaps to relate crime rates to some variable known to cluster
geographically, and hence gain some idea for modelling crime rates as
a geographical process, they are not recommended for incorporation
into a working system for the reasons stated above. Thus, any
prototype system designed in this PhD will function on the basis of

other variables than those from this source.
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2.2.4 Cartographic Data

From the last section it would seem that there is little basis for using
explanatory variable models to predict short term crime rates on an
ongoing basis. The only variables that might be used for this purpose
are the past crime rates themselves, as they are already collected at a
suitable level of geographical resolution, and at a sufficiently high
frequency. This would suggest that a spatial autoregressive model
might be appropriate, since using recent levels in crime rates in
neighbouring areas to predict those in a given area. In models of this
sort, high levels of crime in some area are thought to be predictors of
crime nearby, either due to the presence of the crime itself (ie. an
offender may become familiar with an area, and return to it in the
future) or due to some underlying phenomena that is also a process
evolving in space and time. Note that the time sales discussed here
are in the order of one or two weeks, not necessarily long term
trends. Models of this type will be discussed in detail in Chapter 4.
However, that it is clear that, since these methods involve considering
crimes in the context of space , data relating to the nature of the
space will be required in analysis, as well as that related to the crimes
themselves. If crime rates are to be treated as a spatial process,
nearness of foot beats to each other, and locations of population for
example, may be important. In addition to this, digitised beat
boundary information will be required in order to display mapped
information on a VDU. Furthermore, it is required to assign spatially

referenced crime cases to beats, using a point-in-polygon related
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technique, and in order to do this, digital cartographic information

relating to the beat boundaries will be needed.

Therefore, three main types of cartographic data will be required; a
set of beat boundaries, which may be used for mapping purposes, a
description of beat contiguity and a set of beat centroids of some
description, which will be used as the basis for an autoregressive
model, in which nearness between beats is a major factor in

determining future rates.

The Northumbria Police force has copies of each subdivisional map of
foot beat areas, drawn to a 1:10000 scale. These have been loaned to
the author for research purposes, and for the use of this PhD, they
may be digitised on university equipment, for whichever subdivisions
are required for the purposes of this study. From these, centroids of
beats, in a purely geometrical sense may be computed, wusing
Geographical Information System (GIS) techniques. Similarly, the
topology of the beats may be deduced. Thus, information will be
available relating to the shape of a beat, which beats it is adjacent to,
and how distant it is from other beats, based on a distance matrix
between centroids. In addition to this, housing concentration
centroids may also be obtained, since the maps supplied give locations
of land plots, both private and commercial, in addition to beat
boundaries. These maps also contain details of roads in the
subdivision. Although not initially of use, it is possible that, at some

future date, they may be incorporated into a mapping system.
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All of this data, at least for one subdivision will be collected for the
pilot study. However, in a final, operational system in police
subdivisions there may be some need of a data updating and
management system. This data would remain constant over reasonably
long periods of time, although the building of new housing, new roads
or the re-designation of foot beat boundaries may occasionally require
some of the information to change. This would possibly be done at
force level, with a periodic review of changes in local cartographic

features, such as the roads on buildings mentioned above.

This should be relatively simple to implement, as police require
up-to-date manual maps, and all the relevant information will be
available in these. These situation may improve further still in coming
years, with the adoption of Geographical Information System packages,
which will store data of the type required electronically. This could
then be transferred directly to crime pattern analysis software. It is
likely that, with the advent of such equipment, map data
"housekeeping" will be a formalised function of Force Headquarters,

possibly by civilian staff, so that the burden of maintaining data will

be shifted from the crime pattern analysis.

2.3 Data Set for Pilot Study : An Overview

At this stage, various sources of data have been identified, and
evaluated for quality and relevance to the project under development.
The major sources of data will be from subdivisional crime reports, in

a dynamic sense, and in a more static background sense, from
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digitised beat boundaries. Having considered these sources, selection

of specific data required from these sources will now be considered in

greater detail.

2.3.1 Current Manual Datasets : An Example

In this section some decisions must be made as to which data is to be
collected. Certain types of crime will not be viable for analysis,
either due to their rarity or due to their vagueness of geographical
location (if, indeed, a geographical context exists at all). Even after
identifying a suitable crime type, thought must be given to the

particular recorded variables that will be of relevance to pattern

analysis.

In order to do this, an example of a manual pattern analysis system
will be considered. This will be of use in two ways. In the first
case, it shows what function the crime pattern analyst has to perform,
and which data is relevant to them. In the second instance, if this
particular system is selected for examination, the actual data contained
which will be used as a pilot crime data set, is set out in a format

that facilitates easy, error free transcription.

2.3.2 The Databox System

This system was initially implemented in South Gosforth subdivision of
the Northumbria police force. It was developed in the early 1980s by

Inspector Jim ULillie. It was decided not to compile data on all
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categories of crime, only those which patterns were thought to be

relevant. The four classes of crime which were decided upon for

analysis were:

(1) Burglary or Dwelling House
(2) Burglary of Other Building
(3) Theft of Motor Vehicles

(4) Theft from Motor Vehicles

For each of the above categories there is one box (this is literally the
"Data Box"), and each box contains a folder for each police foot beat
(There are 32 beats in South Gosforth). Within each of these folders,
one sheet of paper is kept for each month. On that sheet is a matrix
of crime records; the rows refer to individual crime reports, while the
columns refer to attributes of each recorded case. These will be items
such as time of day, location of event, date of event and several other

items, based on items taken (as these are all based on thefts) and

details of how the offence was committed.

The format of these sheets vary slightly between the four boxes, since
details of importance are not the identical for all the types of crime,
but an example sheet is reproduced in figure 2.1, for household
burglary. There is information regarding the address of the offence,
time of day, a crime reference number, point of entry was gained
through a door, a window or another means. In addition to this, a

list of items stolen is also included.
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The information is presented in the Databox system in order to allow
the analyst to manually identify space- or time related patterns, and
also to note any patterns in the methods used, or items taken by the
offenders. The major aim here is to automate the detection of space
and time patterns, although the information relating to methods used
and items stolen may also be of interest, for example in categorising

"typical" burglary types.

2.4 Selecting a Type of Crime for Analysis

Eventually, it is hoped that crime pattern analysis algorithms may be
applied to all of the four categories of crime suggested by the "Data
Box" system. However, it must be borne in mind that, in order to
construct a pilot system, data must be transcribed from the manual
system into electronic format. In addition to this, if techniques are
developed for the analysis of a single type of crime, based on
space-time pattern detection, it seems reasonable that, with only a
small amount of modification, these may be extended to the other three
types, since all of these may be thought of as phenomena constrained
by space and time. It seems reasonable, therefore, to limit the pilot

study to an analysis of a single crime type.

A reasonable type selection for this study is "Household Burglaries".
The recording of the data for these is spatially well referenced (by an
address), and there is little room for uncertainty in locating the event
geographically. This may not be the case, for example, in a theft

from a car where the owner (or even the offender) may be unable to
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note the exact place at which theft occurred, since it was not noticed
until some time later, during which the car had been moved six
factors. Thus, the data set of crimes proposed for the pilot study
will be, for a given period, the household burglary data from the

"Data Box" system at South Gosforth subdivision.

2.5 Attaching Postcodes

On a typical "Data Box" record of a household burglary, the address
of the victim's dwelling will be recorded. This is not, in itself, a
useable format for a quantitative analysis technique. In order to map,
and process this data, the location of the even must be supplied as a
pair of coordinates. Thus, some method of converting verbal
information into locational coordinates is required. This is a fairly
difficult problem; the address, as a character string, must be matched
on a look-up table of coordinates. However, there are several formats
that the address may take. Firstly, there is the distinction between,
say "St" and "Street" etc. In addition to this, sometimes addresses
omit town names, or parts of names (ie. "South Newtown" becomes
"Newtown". Because of this, if addressed are entered in an informal
way, there will be a large proportion of unmatched strings. Because
of the above effect, address to coordinate look-up systems would

usually require a rigorously defined format for addresses to be

entered. This would lead to difficulties in implementation.

A more viable alternative would be to use post codes . A look up

table is available from the Post Office giving a coordinate pair (and
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other information) for all postcodes in the UK (at time of release - the
tape is regularly updated to remove postcodes of demolished areas, and
to add new codes). Subsets of this lookup table relevant to the
subdivision of interest could be stored in disc format on micros, and

used to provide coordinate references for post-codes entered.

Postcodes are not accurate to the exact household, typically they
contain about 15 or 16 houses. Thus, some compromise on specificity
is made. However, if the postcode of an area is known, it can easily
be converted to a format suitable for matching on a look-up table.

Hence, in compensation for a slight loss in accuracy, a much larger

proportion of crimes entered into the system will be matched to

coordinates.

There are various other advantages in adopting a post-coded reference
system. On a technical 1level, the storage overheads of a
postcode-coordinate look-up table will be considerably less than that of
an address-coordinate equivalent. This is because the size of a
postcode string is only 8 characters, while the text of an address will
greatly exceed this, and also since postcodes cover several houses,

fewer postcode zones will cover a given region than house land plots.

In addition to this, data that is not spatially referenced to an
individual household cannot be matched to a householder, so that
anonymity is preserved. This data will then not require registration

under the Data Protection Act (1984), which may otherwise prove
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problematic. Thus, in some interpretations, the lack of specificity of

postcodes may be seen as advantageous.

Also, currently large databases of varying kinds are being compiled
that are geographically referenced. For example, Superprofiles
(Charlton et al, 1985) a neighbourhood classification database. On
the recommendation of the Chorley Report (Chorley 1987). Many of
these are referenced using postcoding. Thus, crime data that is
postcoded may be matched geographically to other datasets, using
relational database technology of some point in the future. Thus, data
compiled on crime incidence at a local scale, to be used initially as
part of a crime pattern analysis system could later be passed on to
research and development departments, for example, where its
relationship with other neighbourhood referenced data could be

studied.

Finally, in the Northumbria Police Force, who have agreed to supply
pilot data, it is likely that in the next few years postcoding will be
adopted on all crime reports, and that computerised records of all
reports will exist, with postcodes included. Thus, if the pilot dataset
includes postcode information the anticipated scenario in the near

future will be simulated.

2.6 Data Capture

The problem of obtaining the data must now be addressed. The

main issues are converting the format of data in the "Data Box" system
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into a computer file format which may be analysed, the problem of post
coding the address data, and finally that of means of transferring data
from the data boxes in the subdivisional crime clerk's office onto the

mainframe computer installation at the site of research.

2.6.1 Format for the Recording of Data

The data to be recorded is that presented in the "Data Box"
corresponding to household burglary. However, certain aspects of the
recording in the data box system are handled on an informal basis,
whereas a more strict coding system will be required for this analysis.
Certain items are required to be binary state variables (eg. is crime

detected) and others are qualitative, requiring a categorical variable.

Finally, the items stolen will be encoded in list format, with code
numbers corresponding to the type of item stolen. Eventually, this
may be converted to a set of binary wvariables (ie. one variable
corresponding to each type of article, with a "stolen"/"not stolen"
indicator) however, it was felt by the author that for data coding, the
first format was less likely to lead to transcription error, resembling
the "Data Box" format more closely. It is possible that the binary
format may be more convenient for analysis, but conversion to this

format might be performed by computer at a later stage.

The proposed format of the prototype data set that is to be collected
is given in table 2.1. This gives areas where data currently collectable

may be stored, as well as areas where derived data will also be
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BEAT
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Table 2.1

Format Of The Household Burglary Data Set

Column(s)
1

6-13
14-15

16

17

18

Description Of Variable
Day Of week Of Burglary
1=Sunday .. 7=Saturday

Month of Burglary 1..12
Date Of Burglary
Postcode Of Burglary
Local Foot Beat Code

Method of Entry
F=Forced
B=Break In
I=Insecure Building
D=Drilling
0=0ther

Point of Entry
D=Door
W=Window
0=0ther

Direction of Entry
F=Front
S=Side
B=Back
R=Roof
O0=0ther
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Table 2.1
Continued
Variable Name Column(s) Description Of Variable
STOLEN 19-24 Items Stolen

Up to six out of

= Colour Tv

= Hi-Fi

= B/W Tv
Jewellery
Video Recorder
Electrical Goods
Cash

Food

Cheques

Drink

Clothes
Personal Goods
Furniture
Ornaments
Camera

Tools

= Other

= Attempt

(No items Stolen)

I

OHZToOMroXIRMEBEIGI IO
"

o
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o>
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stored. This derived data will consist of the results of running the
look-up table software from postcodes to grid coordinates, and also of
converting dates from a month-and-date format to a single
day-of-year. These numbers are directly subtracted, and therefore

more convenient for computer analysis.

Having decided to use postcoding to geographically represent the data,
handwritten addresses in the "Data Box" system must be post-coded.
This will be done using the Area Postcode Directory. Certain missing
values may occur, either due to incorrect address recording, or due to
burglaries occurring at address that did not exist at the last time of
compilation of the directory. However, in the collected data set the
proportion of these was about 8%, which did not cause major

difficulties.

In compiling this dataset, going through addresses one-by-one and
manually postcoding is clearly a time consuming exercise. However, it
must be borne in mind that eventually this will be carried out as a
matter of course as crimes are entered into the system, possibly with

the victims being able to supply their own postal codes.

2.6.2 Data Transference

All of the data required for the pilot dataset is stored in the
subdivisional crime clerk's office, and it is required to transfer this
onto a computer file at the research site, but the original copy of the

data must not leave the crime clerks office. Therefore, the only
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means of collecting the data is by regular visits (say two mornings a
week) to the subdivision, recording the data on site. Permission has
been granted to do this by the Northumbria Police Force. However,
the task may be speeded up considerably by employing a portable
computer as the data capture tool. The pilot data file may be entered
into the machine (in this case an Epson PX-80) using a text editor
program, and then, using file transfer software available on the
mainframe, this data may be transferred. Without this technology,
data would have to be copied by hand from police records to paper,
and this would then have to be entered into the mainframe computer.
Thus, using the portable computer method described above, the data
need only be entered once, whereas otherwise it has to be transcribed
and then typed. In the manual case, then, roughly twice the
resources would be required, and there are two sources of human

error (in transcription and in typing).

2.6.3 Data Collected

The "Data Box" system has been operational in the study subdivision
since 1984, and using this as source one years worth of detailed
records will be captured. Any period of less than one year could lead
to problems of seasonal bias in the study data set when carrying out
various types of analysis; Thus, one years worth of data is to be
collected, and the Northumbria Police Force have allocated the author
office space within the subdivision over a one year period for this

purpose. However, there may be some types of analysis that require
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more than one years data; for example if seasonal effects are to be
considered, the rates of crime for more than one year should be
recorded if periodicity is to be checked. For periods of longer than
one year, beat by beat crime counts will be tabulated on a weekly
basis. This allows seasonal rates, and spatial modelling on a foot beat
level of resolution, to be carried out over longer time spans than a
single year. These tables will be compiled until January 1987; since
this only involves the transcription of crosstabulations, this is to be

done on an informal basis without the allocation of special office space.

2.7 Conclusions

The content of this chapter may best be summarised by the table 2.2 .
This identifies each dataset that will be required for analysis, in terms
of its contents, and the source of the data. The methods of collecting
the data described here apply only to the pilot study. It is hoped
that if the eventual crime prediction software becomes operational, the
data collection will become formalised. The data here serves the
purposes of exploring, evaluating and calibration of the types of
models that might be used in such software eventually. At a later
point in the study, when a working prototype is to be evaluated, some
software for direct input of data to the system will be considered.
The main purpose of the data here is to provide a basis for the
following two chapters, whose subject matter will be the exploratory
analysis of crime pattern data, and then the building of specific
space-time models for the prediction of household burglaries. The data

used has to be of a form likely to be generally available to all police
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forces throughout the 1990s, and the pilot data gathered here meets

this requirement.
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CHAPTER 3

EXPLORATORY DATA ANALYSIS

3.1 Introduction

In the previous chapter, the methodology for gathering a pilot data set
for the analysis of crime patterns was set down. Having obtained such
a data set, the aim of this chapter is to perform various trial analyses
on this data, and gain some insight into the uses that quantitative
techniques may be put to analyse crime patterns. The consideration of
crime as a spatial process is separated from this chapter, as it is
thought to be an area of sufficient importance with respect to the aims
of chapter 1 as to merit a chapter of its own. Thus, exploratory
analysis of crime as a geographical pattern is incorporated in chapter 4.
Here, certain other aspects of crime pattern analysis must also be
considered, since although not directly connected with space, they may
have some bearing on the final crime pattern analysis system. For
example, analysis of characteristics of the method of burglary employed
are clearly important to police officers attempting to infer facts about

phenomena leading to a large incidence of crime in a particular area.

Other aspects, such as the seasonal variations in crime rate are also of
importance in explaining local crime patterns, and it is possible that they

may be of use in some prediction methodology.
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Hence, before undertaking to synthesise a general spatial process model
central to a crime prediction system, some preliminary investigation of
the data is necessary. In this chapter, three such investigations are to
be carried out. Firstly, as suggested above, seasonal aspects of the
data will be analysed. After this, consideration will be given to the time
of day of crimes. This information is incorporated in the data collected
and is more conveniently available for crime reports - ie, all 999 calls -
with a greater degree of reliability. However, it is important to
investigate how useful this data is. The times are generally given as
intervals - often because the witness is only able to specify the event in
this way, and it is debatable whether they are of sufficient accuracy to
incorporate in a prediction system. Even if they are not, they may be
of interest in their own right. Finally, the subjective information about
the burglaries will be examined. This relates to the methodologies used
by offenders, and also to the items stolen. This type of information,
although not essentially geographical, may be usefully combined with the
spatial information by users of a crime pattern analysis system, as

suggested previously.

3.2 Time of Day of Crime Incidence

An important aspect of patterns of crime is the time of day of incidence.
At certain times of day, particular types of crime may be more likely to
occur, and if police resource managers are aware of information of this
type, appropriate allocation of reserve manpower can be made. In
addition to this, it will provide officers on foot or car beat patrol with

useful information. It is expected that the distribution of crime rates
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over the day will vary between types of crime, and may be unique to
different geographical areas. For example, in terms of "defensible
space" models, (Newman, 1972) certain areas within neighbourhoods may
become less visible as night falls. This may provide better opportunities
for household burglary, and possibly cause the likelihood of such events
to rise in the locality. The time of day that such an event may happen
would depend on local architecture, and on the time of day of sunset.
Both of these factors will vary geographically, the second also having a

seasonal component.

Thus, it may not be particularly helpful to consider the distribution of
crimes throughout the day on a national basis. It may, however, be
possible to consider data collected locally, and, at subdivisional level
evaluate intra-daily changes in crime risk. This could be done for all
data aggregated over the entire subdivision, or broken down by
individual foot beats. The first option, although less informative, may
be a more suitable compromise, since the scarcity of numbers of
incidents for individual beats may lead to problems in estimating

distributions.

It may also be of interest to compare the patterns observed during
working days to those at weekends. This may affect the times of day
that potential criminals come into contact with opportunities of committing
offences. Thus, a local analysis of time of day of crime risks taking
into account the covariates of season, foot beat area and time of week
may provide useful information for police resource administration and for

direct policing.
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In line with the rest of this PhD, a pilot study here will be carried out
on household burglaries. The arguments presented in chapter 2
concerning the well defined geographical referencing of household
burglaries, and the fact that they provide a reasonably large database

apply equally here as in the other studies.
Thus, the problem here may be stated in the following stages:

i) Methodology specification - data collection

- analysis technique
ii) Data Evaluation
iii) Data Analysis

iv) Conclusions

The data evaluation will be interrelated to the analysis. As suggested
previously, the level of sophistication of the data analysis will depend on
the amount, and the quality, of the data supplied. The conclusions
should be considered in terms of the feasibility of installing this type of
analysis at a subdivisional level throughout the entire force, as well as

in respect of interpreting the local patterns observed.

3.2.1 Data Collection

There is an initial problem in the non-reporting of certain crimes
(Walker, 1983 or Sparks et al, 1977). Not all household burglaries
occurring will be reported to the police, and police records of call-outs

provide the most plentiful and easily obtainable database of the sort



49

required for this study. It is hoped, however, that generally this will
not effect conclusions. Particularly, it will be assumed that the risk of

a given crime not being reported is uniform throughout the day.

The major problem with data of this type is that the occupiers of houses
are often out when household burglaries occur. Thus, the exact time of
burglary is unknown. This may also be the case if the occupiers are
in, but are unaware of a theft taking place (for example, during the
night). Thus, rather than an exact time of burglary being known, an
upper and lower limit is the maximum information that is available to the
victim, or to the police. This limitation has been considered by the
police; when recording data of this type an upper and lower boundary
on time of event must always be entered, even when the crime was

witnessed. In the latter case, a one or two minute gap is entered.

Hence, the database is to be compiled from these records, noting upper
and lower limits of time of incident, and also calendar information, giving
day of week, and week in year. In order to compare each season, an
entire year of day is the minimum requirement. Given the manual nature
of data collection in this study (the crime incidence records in which the
time of day is noted are not yet computerised) the pilot study will be
restricted to a single year. This data will then be coded and analysed

statistically by computer.

Unfortunately, at this stage, information relating to foot beat areas is
not stored on record, so that this part of the analysis may not be

performed in the pilot study.
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3.2.2 Method of Analysis

In the last section, the special nature of the data was considered.
There is no point indicator of time of day available, only an internal
estimate. For point estimates, there are many methods of obtaining
models of probability distributions. In crudest form, simple histograms
could be constructed, say on an hour-by-hour basis, giving direct

visual information about the distribution of risk throughout the day.

On a more sophisticated level, Kernel estimation techniques (chapter 3
and Silverman, 1976) could be used to gain an approximated probability
density function for daily crime variation, or parametric models of cyclic
pattern in variation, (such as Fourier analysis) could be wused.
However, in all of these approaches, the introduction of internal data
gives rise to technical complications, some of which have not yet been

addressed.

Statistical aspects of distribution estimation will now be considered, with
the special case of interval data. Firstly consider a maximum likelihood,
non-parametric approach. In this case estimates of the cumulative
distribution must be made of an unspecified function F, (which may or
may not be continuous) but this cannot be gathered from a finite sample
of intervals; however, F may be estimated for a finite set of ordinates.
\\i.) i= 1,n.
A "
Then F(}h.), F(J.“i) may be considered. Denote these F‘M, Fa- The

Suppose the sample of upper and lower intervals is (111 x

probability of X falling between X, and X; is ﬁgﬂc.Thus, the likelihood

of the entire dataset is given by

L (P, Xl = j__‘ (Fui-Fd)
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~
Also, as F is a cumulative

distribution function, 13F(®2 F(y)) O & X2V¥- Thus, to maXimise
L(F\&dﬂt@)‘the problem is identical to
MK :’E(‘ (Fui, _FLE)
subject to
F o> FY
( subject to > ‘j)

although this can be solved, the solution is not always easy to interpret.

Suppose the set of Fu's and Fuoi's are ordered according to
corresponding X.i's and Xux‘ﬁ . Then, the lowest element will be XLi'
Clearly, this must equal zero, otherwise (F\,L-Fu) will not be maximised,
if all other X's are given. Also, however, if E1>F°\, FL‘L must also
be zero, maximising Foz.' Foe o \f the next highest ordinate is also an

upper limit, Fy_, then, given the constraint F>F¢,, and the fact that

Fyy must maximise (Fy, - F ), we have Fgq = Fg..

Thus, pr (le(F\’l’ Fui)) = 0. Therefore, often, the maximum likelihood
density estimate has regions of zero probability. In an interactive

appreciation of the substantive issue, this does not seem satisfactory.

Parametric approaches are problematic in a different sense; in this case,
the density is modelled as f(X;§), and a maximum likelihood estimate of

is given by

n - ST
max |\ 5 €L 0)dx
e (:—_\ o T
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often the optimisation problem becomes computationally expensive,
particularly if the integral may not be expressed algebraically for some

given f.

This leaves the option of a modification of the Kernel estimation
technique which may be applied to interval estimates. A reasonable
approach may be to use the method of Kernel estimation for point data,
based in the centres of intervals, and widening the bandwidths of the
Kernel distributions in proportion to the size of interval. Thus, for

example,

\ e = Olul ~X(W) /2
‘:K (1)2 _h_zt"'sk K (Xui =) )

the simplest of these would be
\
(0= 1 29

where

Juony = (Olot- )
if  ~xe (X, Ao

=QO

otherwise (1)

(1) is the equivalent to assigning a rectangular distribution between
upper and lower limits, for each pair, and then averaging over all of
these . Assuming these rectangular distributions hold, or at Ileast
represent victim knowledge of the time of crime, the resultant average

distribution of the time of day of an event generated first by selecting a
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past record at random, and then assigning time of day according to the

rectangular distribution corresponding to that choice.

This method, though theoretically less appealing than the others
suggested has the advantage of being relatively easy to calculate, and
also of not having "pockets" of zero probability. It also directly
synthesises a density function, rather than a cumulative function for the
approximate distribution. Thus, the resultant may be easily interpreted

as a "risk profile" of household burglaries throughout the day.

A further requirement has to be made for analysis in terms of time of
day: for intervals including midnight, a modulo-based interval estimator
must be used, so that g; is added from (. to midnight, and then from
midnight to . This is particularly important in analyses where the day

of week is taken into account.

Another problem is that of extremely large intervals. In certain cases,
for example when the occupiers of the burgled property have been away
for several days on holiday, there is an extremely long interval between
the upper and lower time boundaries. In terms of the day-profile, the
rectangula'r distribution is vwvirtually uniform throughout the how
period. This has the effect of "flattening" the average distribution.
Effectively, there are two main factors in the data that effect the
interval-based estimator. Firstly, centres of intervals tend to build up
a histogram-based model of the distribution, but this interacts with the
interval size. The peaks that centroids may produce will be "smoothed"

by larger intervals. When the interval size gets large, the smoothing
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effect affects the entire distribution estimate. It may therefore be
appropriate to "downweight" contributions of rectangular distributions
with larger interval sizes. It seems reasonable, furthermore, that any

intervals exceeding 24 hours should be zero weighted.

Thus, the final formula may appear as
S Lo (Xue — X Go-34d)
L

Z il Xe-Ew

[ &)

Cr () =

(X= oL+ X)lz)

where w is a weighting function, such that
W (24) = 0 if X, XKcocalibrated in hours

w(x) is monotone decreasing if X>Q
The simplest w(>) would be

wen =1 if XK

=0 otherwise.

This simply cuts out all observations when the interval exceeds some

given value. For the pilot study, this method will be employed.

3.2.2 Data Evaluation

In the last section, a method of estimating the distribution of household
burglary occurrences throughout the day was proposed. This method

may be applied to interval data concerning the time of day of household
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burglaries. It was also suggested that those pairs of limits spanning
beyond some reasonable amount of time be excluded. It will be an
important problem to determine a suitable exclusion limit. In the
interests of avoiding "over-smoothing" the limit must not be too high.
However, exclusion of too many cases leads to reduction in sample size,
and this will lead to "over-spikiness" in the estimates, as they will be
based on only a few observations. It is therefore important to examine
the numbers of records, and also the distribution of interval lengths in

these records. There are 2025 observations in total.

The upper tail of interval distribution shows a slight peak,
corresponding to those offences that occurred while the property was
unoccupied for several days (or possibly several weeks). The effect of
the upper tail is that the distribution mean exceeds the median. In the
context of choosing cut-off points, the median and other quantiles are of
more importance than moments of the distribution, since they allow a
direct link to be made between proportions of cases lost and the interval

lengths.

The median here is 6 hours, thus a cut off point of k=6 (see last
section) would result in exclusion of 50% of cases, that is 1012 cases.
Although removal of 50% of cases may seem large, it must be recalled
that intervals of much larger times than this will distort the reasonable
information given by the data in the lower half of the distribution.
However, for kernel-based techniques, 1012 cases will still provide a
good estimate of the generating distribution. Many studies have been

based on considerably smaller samples than this.
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The second issue here concerns the splitting of the data by a
week /weekend division, and a seasonal division. Clearly, in the case of
considering the data as a whole, a cut-off interval of 6 hours is
appropriate. However, if the data is sub-divided, so that separate
distribution estimates are considered for each division, then each
estimate will be based on a smaller number of observations, with the

corresponding loss of reliability.

It is possible that one data analysis may be performed when splitting by
season, and another by week/weekend division, allowing the two effects
to be assessed independently, but that splitting by both in the same
analysis, allowing interaction to be considered, will require too many

subdivisions, leading to an unacceptable reduction in the number of

observations in each class.

Frequency counts are shown in table 3.1, giving counts and average
lengths of intervals in each subcategory. Firstly, data are categorised
for single data points. Thus, this allows checking of feasibility for
independent analysis. After this, if the above is feasible, it may then
be possible to carry out an interaction effect analysis. To test for this

the crosstabulation may be analysed.

In the case of the full crosstabulation, if the cutoff of 6 hours is still
applied, the smallest category contains 48 cases. This, although giving
patchy coverage in some of the smaller data sets, may still be reasonable
for examining risk profiles, particularly if those results gained from

very small data sets are viewed cautiously.
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Table 3.1

Occurence of crime by Time Of Year and Time Of week

Winter Spring

Week 236 147
2.292 2.214

Weekend 68 55
2.728 2.555

Total 304 202
2.390 2.307

(Upper figures denote incedent counts,

Summer

157
2.029

48
2.615

205
2.166

Lower figure the average

uncertainty in time of day of occurrence.)

Winter

176
2.497

71
2.296

247
2.429

Total

716
2.269

242
2.539

958
2.439
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When considering divisions by each factor in turn, there are reasonably
sized samples for each category, so that, although interaction analysis of
the two factors may not be reasonable, in all cases, separate seasonal

and week/weekend analyses will be feasible.

3.2.4 Results of Analysis

A computer program to carry out the analysis proposed in the second
section was written (in Prospero FORTRAN 77 running under MS-DOS).
This is shown in listing 3.1. A minor change from the theoretical
method has been made, in that a day has been divided into 48 half
hourly intervals, rather than treated as continuous time. This speeds

up computation and aids on-screen graphical representation.

The results for all incidents (table 3.2) incidents divided by
week/weekend (table 3.3), divided by season (table 3.4) and by both
week/weekend and season (table 3.5) are listed. Corresponding

graphical representations are given in figures 3.1-3.4.

The problems of small samples are reflected in the "patchiness" of the
graphs obtained from some of the two-way split datasets. However,
these reflect to some extent patterns which may be more strongly

identified in the single dimensional splits.

Firstly, consider the week/weekend splitting. On weekdays, risk peaks
in the early to mid afternoon and again in the evening, at around 21.00

hours. A lower peak also occurs at about 2.00 hours. The least risk



59

Table 3.2
Time Of Day Distribution Of Household Burglaries : All Times

Time Percent Time Percent Time Percent
00:00 1.717 00:30 1.647 01:00 1.567
01:30 1.927 02:00 2.32% 02:30 1.347
03:00 2.11% 03:30 1.702 04:00 1.237
04:30 1.207% 05:00 0.847 05:30 0.68%
06:00 0.66% 06:30 0.877% 07:00 0.707
07:30 0.64% 08:00 0.507% 08:30 0.66%
09:00 0.847 09:30 1.13% 10:00 1.15%
10:30 1.587 11:00 1.957 11:30 1.85%
12:00 2.137 12:30 2.697 13:00 2.26%
13:30 2.747 14:00 3.007 14:30 3.427
15:00 3.59% 15:30 3.187% 16:00 2.93%
16:30 2.77% 17:00 2.01% 17:30 1.72%
18:00 1.947 18:30 2.447 19:00 2.92%
19:30 3.53% 20:00 4.127% 20:30 4,177
21:00 3.67% 21:30 3.627% 22:00 3.527
22:30 2.687 23:00 2.29% 23:30 1.887
Average gap = 2.337 Hrs.

Events used = 958
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Time Of Dav Distribution Of Household Burglaries

Percent

2.269 Hrs.

716

Percent

2.539 Hrs.

242

1.547
1.567%
2.217%
1.047
0.687%
0.647
0.967%
1.847
2.507
3.437
4.357%
2.97%
1.817%
3.327
3.327
2.117

2.227%
2.987%
1.817%
1.68%
0.61%
.62%
. 487
.827
.017
.70%
.347
.18%
.307
147

ENNMNFHRF O OOO

Table 3.3
Weekdays
Time Percent
00:30 1.157%
02:00 2.33%
03:30 1.37%
05:00 0.727
06:30 0.81%
08:00 0.50%
09:30 1.247
11:00 2.27%
12:30 3.047
14:00 3.56%
15:30 3.797
17:00 1.977
18:30 2.437%
20:00 3.907%
21:30 3.017
23:00 1.78%
Weekends
Time Percent
00:30 3.087%
02:00 2.287
03:30 2.697
05:00 1.217
06:30 1.02%
08:00 0.487%
09:30 0.817
11:00 1.017%
12:30 1.677%
14:00 1.317
15:30 1.382%
17:00 2.11%
18:30 2.487
20:00 4.77%
21:30 5.46%
23:00 3.787%

Time

01:00
02:30
04:00
05:30
07:00
08:30
10:00
11:30
13:00
14:30
16:00
17:30
19:00
20:30
22:00
23:30

Time

01:00
02:30
04:00
05:30
07:00
08:30
10:00
11:30
13:00
14:30
16:00
17:30
19:00
20:30
22:00
23:30

Percent
1.067
1.277
1.047%
0.727%
0.707
0.71%
1.277%
2.10%
2.627
4,127
3.367%
1.72%
2.817%
3.707
3.067%
1.567

Percent
3.067
1.557%
1.807
0.57%
0.687
0.507
0.77%
1.127%
1.19%
1.367
1.667
1.70%
3.247
5.572
4.887
2.807%
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Table 3.4
Time Of Day Distribution Of Household Burglaries

Winter

Time Percent Time Percent Time Percent
00:00 1.91% 00:30 1.272 01:00 0.69%
01:30 1.527% 02:00 1.617 02:30 0.707
03:00 1.447 03:30 0.997 04:00 0.737
04:30 1.027 05:00 0.717 05:30 0.932
06:00 0.777% 06:30 0.937 07:00 0.722%
07:30 0.35% 08:00 0.437 08:30 0.657
09:00 1.067 09:30 0.89% 10:00 1.49%
10:30 1.37% 11:00 2.40% 11:30 2.247
12:00 2.307 12:30 2.217 13:00 2.717%
13:30 2.287% 14:00 2.727 14:30 2.69%
15:00 3.547% 15:30 2.687 16:00 3.37%
16:30 3.74% 17:00 2.567% 17:30 2.66%
18:00 2.407% 18:30 3.107 19:00 4.297
19:30 4.29% 20:00 4,427 20:30 3.91%
21:00 3.68% 21:30 3.827 22:00 3.30%
22:30 2.907% 23:00 1.967% 23:30 1.667

Average gap = 2.390 Hrs.

Items used = 304

Spring

Time Percent Time Percent Time Percent
00:00 1.33% 00:30 1.747 01:00 0.657%
01:30 1.697% 02:00 1.547 02:30 1.362
03:00 2.847% 03:30 2.057 04:00 1.037%
04:30 1.25% 05:00 1.247 05:30 0.76%
06:00 0.717 06:30 0.967 07:00 1.16%
07:30 1.087% 08:00 0.497 08:30 0.45%
09:00 0.667% 09:30 1.927% 10:00 0.897%
10:30 1.617% 11:00 0.627% 11:30 0.95%
12:00 2.337% 12:30 3.012 13:00 1.697%
13:30 3.53% 14:00 3.297 14:30 3.587%
15:00 3.867% 15:30 3.367 16:00 2.27%
16:30 2.30% 17:00 1.40% 17:30 1.217
18:00 1.487 18:30 1.60% 19:00 2.28%
19:30 4.077 20:00 4.647 20:30 5.08%
21:00 4.647 21:30 3.63%2 22:00 3.86%
22:30 3.17% 23:00 2.677 23:30 2.087%

Average gap = 2.307 Hrs.

Items used = 202
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00:00
01:30
03:00
04:30
06:00
07:30
09:00
10:30
12:00
13:30
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16:30
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19:30
21:00
22:30

Average gap
Items used

Time

00:00
01:30
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04:30
06:00
07:30
09:00
10:30
12:00
13:30
15:00
16:30
18:00
19:30
21:00
22:30

Average gap
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Table 3.4 (continued)

Percent

2.166 Hrs.

= 205

Percent

2.439 Hrs.

247

1.707
3.06%
3.15%
2.03%
0.497%
0.807%
1.017
1.67%
2.387%
3.037%
3.537%
1.837
1.152
1.45%
2.987%
2.447

1.797
1.657%
1.477
0.707
0.64%
0.497
0.58%
1.737
1.537
2.427
3.487%
2.752
2.397
3.88%
3.447
2.22%

Summer
Time Percent
00:30 2.33%
02:00 3.30%
03:30 1.38%
05:00 0.94%
06:30 0.46%
08:00 0.69%
09:30 1.40%
11:00 3.11%
12:30 3.30%
14:00 2.777%
15:30 2.90%
17:00 1.447%
18:30 1.76%
20:00 2.74%
21:30 3.65%
23:00 3.05%
Autumn
Time Percent
00:30 1.447
02:00 3.00%
03:30 2.56%
95:00 0.59%
06:30 1.047%
08:00 0.42%
09:30 0.57%
11:00 1.547%7
12:30 2.527
14:00 3.28%
15:30 3.88%
17:00 2.29%
18:30 2.88%
20:00 4,467
21:30 3.367
23:00 1.74%

Time

01:00
02:30
04:00
05:30
07:00
08:30
10:00
11:30
13:00
14:30
16:00
17:30
19:00
20:30
22:00
23:30

Time

01:00
02:30
04:00
05:30
07:00
08:30
10:00
11:30
13:00
14:30
16:00
17:30
19:00
20:30
22:00
23:30

Percent
3.077
1.55%
1.3372
0.507
0.477
1.097
0.807
2.187%
2.147
4.717%
2.977
0.937%
1.39%
3.307%
3.427
2.257

Percent
2.147
1.947
1.95%
0.467%
0.497
0.497
1.237%
1.857%
2.277%
3.117%
2.907%
1.647
3.027%
4,487
3.607
1.68%



00:
01:
03:
04:
06:
07:
09:
10:
12:
13:
15:
16:
18:
19:
21:
22:

00
30
00
30
00
30
00
30
00
30
00
30
00
30
00
30

Average gap
Items used

00:00
01:30
03:00
04:30
06:00
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22:30

Average gap
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2.292 Hrs.

236

2.728 Hrs.

68
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Table 3.5
Time Of Day Distribution Of Household Burglaries

.567%
.917
.367%
.867
.86%
.327
.147
.617%
.55%
.707%
$24%
.897%
.29%2
.86%
.37%
.55%

NDWWNWENNMNHEMEHEFOOOKMHOLR

3.13%
3.667%
1.737%
1.607
0.467%
0.467
0.787%
0.507
1.447
0.837
1.127
3.25%
2.802
5.78%
4.74%7
4.10%

Weekdays Winter

00:
02:
03:
05:
06:
08:
09:
11:
12:
14:
15:
17:

18

20:
21:
23:

30
00
30
00
30
00
30
00
30
00
30
00
:30
00
30
00

0.867
1.457
0.787%
0.867%
1.077
0.437
0.927%
2.787
2.547
2.84%
3.07Z
2.72%
3.147
4.00%
3.567%
1.337%

Weekends Winter

00
02

03:
05:
06:
08:
09:
11:
12:
14:
15:
17:
18:
20:
21:

23

:30
: 00
30
00
30
00
30
00
30
00
30
00
30
00
30
: 00

2.707
2.197
1.737%
0.217%
0.467%
0.467%
0.787%
1.077%
1.07%
2.307%
1.3372
2.037%
2.957%
5.907%
4.747
4.137

01:00
02:30
04:00
05:30
07:00
08:30
10:00
11:30
13:00
14:30
16:00
17:30
19:00
20:30
22:00
23:30

01:00
02:30
04:00
05:30
07:00
08:30
10:00
11:30
13:00
14:30
16:00
17:30
19:00
20:30
22:00
23:30

0.60%
0.737
0.867%
1.077%
0.797%
0.617
1.77%
2.477%
3.187%
3.18%
3.937
2.717
3.667%
3.727%
2.937%
1.407

0.98%
0.59%
0.267%
0.467
0.467%
0.78%
0.507
1.447
1.097%
1.007%
1.417
2.467
6.477
4.587
4.567%
2.557%
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Figure 3.5 (continued)
Time Of Day Distribution Of Household Burglaries

Weekdays Spring

00:00 1.217% 00:30 1.75% 01:00 0.337
01:30 1.837% 02:00 1.08% 02:30 1.337
03:00 2.697 03:30 1.39% 04:00 0.567
04:30 0.707% 05:00 0.697% 05:30 0.697
06:00 0.697 06:30 1.037 07:00 1.30%
07:30 1.307% 08:00 0.61% 08:30 0.627
09:00 0.84% 09:30 1.907% 10:00 0.497
10:30 1.487% 11:00 0.807 11:30 1.117%
12:00 2.607% 12:30 3.477% 13:00 1.93%
13:30 4.45% 14:00 4.267 14:30 4.217
15:00 4.657% 15:30 4.037 16:00 2.547
16:30 2.487% 17:00 1.247 17:30 1.04%
18:00 1.37% 18:30 1.70% 19:00 2.737%
19:30 3.877% 20:00 4.927 20:30 4.227
21:00 4.54% 21:30 3.11% 22:00 3.50%
22:30 2.667 23:00 2.29% 23:30 1.807

Average gap = 2.214 Hrs.

Items used = 147

Weekends Spring

00:00 1.667% 00:30 1.73% 01:00 1.50%
01:30 1.347% 02:00 2.79% 02:30 1.437
03:00 3.257% 03:30 3.847% 04:00 2.28%
04:30 2.73% 05:00 2.73% 05:30 0.987%
06:00 0.77% 06:30 0.77% 07:00 0.77%
07:30 0.52% 08:00 0.157 08:30 0.007%
09:00 0.157% 09:30 1.977 10:00 1.977%
10:30 1.977 11:00 0.15% 11:30 0.527%
12:00 1.637 12:30 1.787 13:00 1.05%
13:30 1.057 14:00 0.697% 14:30 1.907
15:00 1.757% 15:30 1.55% 16:00 1.55%
16:30 1.817% 17:00 1.817 17:30 1.65%
18:00 1.777 18:30 1.35% 19:00 1.05%
19:30 4.58% 20:00 3.887 20:30 7.397
21:00 4.897% 21:30 5.03% 22:00 4.837
22:30 4.537 23:00 3.67%2 23:30 2.837

Average gap = 2.555 Hrs.

Items used = 55
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Figure 3.5 (continued)

Time Of Day Distribution Of Household Burglaries

Weekdays Summer

00:00 1.62% 00:30 1.56% 01:00 1.937
01:30 2.847% 02:00 3.797% 02:30 0.937
03:00 3.66% 03:30 0.727 04:00 1.367
04:30 1.937% 05:00 0.57% 05:30 0.327
06:00 0.38% 06:30 0.34% 07:00 0.237
07:30 0.67% 08:00 0.627 08:30 1.20%
09:00 1.107% 09:30 1.747 10:00 0.957%
10:30 2.197 11:00 3.42% 11:30 2.21%
12:00 3.027% 12:30 4,227 13:00 2.717
13:30 3.87% 14:00 3.52% 14:30 5.997
15:00 4.32% 15:30 3.587 16:00 3.52%
16:30 1.977% 17:00 1.457 17:30 0.927
18:00 1.16% 18:30 1.18% 19:00 1.127%
19:30 1.072 20:00 2.60% 20:30 3.38%
21:00 2.587% 21:30 2.697% 22:00 2.387%
22:30 2.13% 23:00 2.367 23:30 1.96%

Average gap = 2.029 Hrs.

Items used = 157

Weekends Summer

00:00 1.972Z 00:30 4.83% 01:00 6.83%
01:30 3.76% 02:00 1.68% 02:30 3.57%
03:00 1.497 03:30 3.527 04:00 1.23%
04:30 2.367% 05:00 2.137 05:30 1.087%
06:00 0.85% 06:30 0.85% 07:00 1.22%
07:30 1.222 08:00 0.927 08:30 0.71%
09:00 0.717 09:30 0.307 10:00 0.30%
10:30 0.00% 11:00 2.08% 11:30 2.08%
12:00 0.30% 12:30 0.30% 13:00 0.30%
13:30 0.307 14:00 0.307 14:30 0.53%
15:00 0.95% 15:30 0.65% 16:00 1.17%
16:30 1.407 17:00 1.407 17:30 0.987%
18:00 1.09Z 18:30 3.667 19:00 2.26%
19:30 2.66% 20:00 3.19% 20:30 3.04%7
21:00 4.307 21:30 6.807 22:00 6.80%
22:30 3.467% 23:00 5.317% 23:30 3.17%

Average gap = 2.615 Hrs.

Items used = 48
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Fipgure 3.5 (continued)
Time Of Day Distribution Of Household Burglaries

Weekdays Autumn

00:00 1.737% 00:30 0.707 01:00 1.50%
01:30 1.087% 02:00 3.257 02:30 2.237
03:00 1.667% 03:30 2.717 04:00 1.407%
04:30 0.79% 05:00 0.697 05:30 0.65%
06:00 0.71% 06:30 0.71% 07:00 0.50%
07:30 0.507 08:00 0.407% 08:30 0.49%
09:00 0.707% 09:30 0.697% 10:00 1.55%
10:30 2.127% 11:00 1.80% 11:30 2.357
12:00 1.90% 12:30 2.297 13:00 2.387
13:30 3.16% 14:00 3.99% 14:30 3.627
15:00 4.28% 15:30 4.72% 16:00 3.147
16:30 3.06% 17:00 2.042 17:30 1.697
18:00 2.137% 18:30 3.20% 19:00 3.23%
19:30 4.14% 20:00 4.06% 20:30 3.537%
21:00 2.887 21:30 2.477% 22:00 3.477
22:30 1.02% 23:00 1.447 23:30 1.247

Average gap = 2.497 Hrs.

Items used = 176

Weekends Autumn

00:00 1.947 00:30 3.307% 01:00 3.717
01:30 3.087% 02:00 2.38% 02:30 1.207
03:00 1.007% 03:30 2.187% 04:00 3.31%
04:30 0.497 05:00 0.35% 05:30 0.00%
06:00 0.47% 06:30 1.887 07:00 0.47%
07:30 0.47% 08:00 0.477% 08:30 0.477
09:00 0.28% 09:30 0.287 10:00 0.427
10:30 0.777% 11:00 0.90% 11:30 0.62%
12:00 0.627% 12:30 3.09% 13:00 2.00%
13:30 0.597% 14:00 1.53% 14:30 1.857
15:00 1.497 15:30 1.817% 16:00 2.307
16:30 1.97% 17:00 2.927 17:30 1.517%
18:00 3.05% 18:30 2.10% 19:00 2.50%
19:30 3.22% 20:00 5.45% 20:30 6.827
21:00 4.84% 21:30 5.57% 22:00 3.917%
22:30 5.19% 23:00 2.497 23:30 2.767%

Average gap = 2.296 Hrs.

Items used = 71
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Figure 3.1
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Figure 3.2a
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Figure 3.2b
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Figure 3

.3a
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Figure 3.3b
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Figure 3.3c
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Figure 3.3d
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Figure 3.4a
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Figure 3.4p
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Figure 3.4c
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Figure 3.4d
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Figure 3.4e
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Figure 3.4f
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Figure 3.4g
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Figure 3.4h
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times of day appear to be between 7.00 and 9.00 hours, and again
between 17.00 and about 19.00 hours. These times seem to correspond
to times when households are most likely to be at home. This suggests
that likelihood of entering a house when some of its occupiers are

present may be some form of deterrent to burglars.

This idea is given further support from the weekends-only data. Here,
the peak times are similar to the weekday times, except there is no peak
risk in the afternoon. Clearly a typical working household is more likely
to be in on weekend afternoons than on weekdays. It is certainly
possible that whether the householder actually is more likely to be in
during the day at weekends or not, the burglar perceives the risk of

being seen to be higher at these times.

The seasonal effects are perhaps less marked, although the afternoon
peak appears later in winter and autumn than in spring or summer.
This may perhaps be explained by the extra cover that darkness

provides in those seasons, is the later part of the afternoon.

When the doubly split data sets are examined, allowing for the
difficulties of small sample size, the results seem to suggest an
overlaying of the two individual effects, rather than any interactive

phenomena, where a particular pair of circumstances totally alters the

pattern.

A final problem must be considered concerning the filtering out of

observations with intervals exceeding a given time limit. It has already
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been observed that large intervals tend to "smooth" the risk profile, and
alternate the effects of peaks and troughs. It is possible, however,
that the expected lengths of these intervals may not be uniform
throughout the twenty-four hour period. The effect of this may be to
reduce the "peakedness" of some high and low risk points. In particular,
the early morning (2.00) peak may be reduced in effect, as occupiers
may only discover burglaries on rising, without being able to specify the

point during the night at which they occurred.

An associated effect is that by filtering out intervals over a certain
length, when length is non-uniform on average throughout the day, more
information will be lost at certain times of day than on others. The
study would not be complete without considering the effect of this on the

current dataset.

This will be done using time methods. Firstly, the average interval
length will be computed, with the day being split into three 8-hour
periods. After this, the effect on the overall shape of the risk profile

will be considered when the maximum interval cut-off time is considered.

The first method will now be considered. Clearly, exact time of incident
is not known, so that this will be estimated as mid-interval here, and
then classified into one of three categories, (midnight to 8am, 8am to
4pm, 4pm to midnight) and average length of these considered. The

results are given in table 3.6.



Table 3.6
Length Of Uncertainty Interval By Time Of Day

Time Of Day Average Length
Midnight to 0800 6.74
0800 to 1600 5.67

1600 to Midnight 6.24
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In fact, there is not a great deal of variation between the average
interval length for the three day-time categories. This suggests that,

although greatly varying interval lengths throughout the day may cause

problems, this does not happen here.

The second technique, of interval cut off wvariation is illustrated in
figure 3.5. Four cut-off points are shown, at 4, 6, 8 and 10 hours.
As the results of the last test might imply, again there is little
difference between the four graphs, except that when the cut-off point
is made more restrictive, the sample is reduced and "spikeyness" of the
graph is emphasised. Thus, it seems reasonable to conclude that the
original data analysis, with its associated risk profiles may be considered

accurate, without the "smoothing" distortion mentioned earlier.

3.2.5 Discussion

The results of this study may be considered in two contexts: firstly as a
study in its own right, and secondly from the viewpoint of the PhD as a
whole. As a stand alone study, some of the results are interesting.
They seem to support two ideas often put forward by police officers,
and criminologists. Firstly, that burglaries mostly happen to houses
when they are empty; the times of day when burglary least occurs
appears to be when occupiers are most likely to be in: breakfast and
supper times during the week and daytime at weekends. The second
idea supported is that of "defensible space”: in autumn and winter,
afternoon burglaries peak later on, when it is dark, and parts of

neighbourhood generally visible to residents in the daytime are no longer
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Figure 3.5a
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Figure 3.5b
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Figure 3.5c
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Figure 3.5d
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exposed. In general policing terms, these results are also useful.
Clearly it is of benefit for foot beat officers (and car patrols) to be

aware of high risk times for household burglary, when on street patrol.

In the wider context of the overall crime pattern analysis system,
however, attention has to be given to the generally wide nature of the
intervals. In the case of the data analysis here, if there is an interval
exceeding 6 hours, the item of data is discarded. This results in losing
50% of the sample. However, in the data were also subdivided by foot
beats, this would result in very low item counts in each category.
Thus, it is unlikely that analysis of this sort could be applied on a
beat-by-beat basis. It also seems unlikely that it could be used in a
predictive model, again due to the large degree of uncertainty of exact

time of burglary in much of the data.

It may be possible, however, to use the program developed here as part
of an overall crime pattern analysis system, running on a separate,
subdivision wide database. Thus, although unable to identify intra-beat
variation in risks during the day a general impression of risk throughout
the area may be gained. Also, the software could, at some later stage,

be extended.

For example, in addition to recording the time interval during which the
burglary was thought to occur, the time that the event was reported is
also stored. This allows Kernel estimators of crime report frequencies to

be built up, in addition to the frequencies of the crimes themselves.
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This may have implications for responsive, rather than preventative

policing.

The relationship between time of occurrence, and time of reporting of
crimes might also be examined. For example, several crimes occurring at
different times in the night might all be reported at a similar time in the
morning, when they are discovered. In the daytime, when householders
are out for shorter periods, however, reporting may be more evenly

spread.

Thus, although the analytical techniques here may not by reasonably
incorporated into a subdivisional software system in a geographical
context, they may justify inclusion in their own right, for the
management of the sub-division as a whole. At divisional level, of
course, intra-subdivisional geographical variations could be analysed,
which may yield some useful information for resource management at a

larger scale of resolution.

3.3 Examination of Seasonal Variation in Household Counts

In addition to geographical factors affecting rates of crime within a
subdivisional level, some variation may also be accounted for by season
effects. For example, increase in the hours of darkness may bring
about increased risk of household burglaries. Alternatively, some crime
may depend on the weather - potential burglars may decide against
activity in adverse conditions. As well as general effects such as these,

there are some more specific seasonal phenomena leading to increased
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likelihood of crime. Certain public holidays occur regularly on a yearly
basis, such as Christmas and Easter, during which people may
customarily leave their homes for a number of days. This may leave the

houses vulnerable to household burglary.

Thus, several arguments suggest that there should be a certain amount
of seasonal pattern in crime rates. It is also possible that these
seasonal patterns may vary geographically. Weather conditions and
hours of darkness vary over space, and although certain public holidays
may be fixed nationally, other local events may exist, bringing

householders away from their houses.

From this, it may be argued firstly that if regular seasonal patterns are
discovered in crime counts, then presenting this information to Police
officers would help in short term planning of resource management, and
also aid the prediction of crime in the near future. Secondly, it may
also be argued that, since these patterns are liable to vary
geographically, any seasonal variation analysis presented to officers
working in a given subdivision should be based on data from that
subdivision, and not, for example, from National or even Force-wide

data.

The intention of such an analysis would be mainly descriptive. If
weekly crime counts are compiled, a weekly seasonal average may be
computed, and plotted on a computer display, for example. Police
officers with a knowledge of the locality may then be able to identify

causes for particular effects. However, even if regular patterns occur
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without explanation the identification of the patterns will be of use, in a
predictive sense. It is also possible that identification of certain
seasonal effects may lead to investigation and insight into certain crime

patterns that had previously gone unnoticed.

In this exploratory analysis, then, it is proposed to examine the
household burglary data discussed in Chapter 2, to discover any
seasonal patterns that may exist. The exploratory examination may also
yield some results that may be carried through into the crime prediction
method that is one of the principal aims of this PhD. Also, in order to
analyse this data, some discussion arises as to how results may be
presented. Both the means of presentation, and the results of the

analysis are to be considered here.

3.3.1 Presentation of Data

There are two main uses for this type of data: firstly to identify any
regular patterns that occur from year to year, and secondly to compare
a given year with the previous year. In the first case, regularly
occurring peaks or troughs are to be identified. In the second case, at
any given week the previous years cumulative total up to that week is to
be compared with the current year. This can be thought of as using
the past years cumulative crime counts as "target" levels and to attempt
to keep counts for the current year below these levels. Since figures
here are cumulative, after a particularly bad month, a response in the

following month may bring figures back down to the target. however,
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failing to compensate would leave cumulative figures still above this

target.

In both the cases of the cumulative and non-cumulative analyses, it is
clear that some visual indication of how weekly rates compare with their
neighbours in time is important. In the cumulative case, attempts to
keep crime rates down from the previous year need to be examined over
time, and in the non-cumulative instance, peaks and troughs of incidence
require measurement. This suggests that data needs to be represented
in graphical, rather than tabular form. For each case, the needs of

graphical representation will now be considered in turn.

Firstly, consider the simple seasonal rate graph. This could take the
form of a bar graph, with a single bar for each week over a 52 week
period. However, as it is important to compare the seasonal patterns
over a period of several years, some means of rapidly switching between
yearly bar graphs is required, or some means of overlaying. For
printed output this is relatively simple; on a VDU reasonably fast
refresh of a screen display is necessary, (or a facility to "overlay" new

data on old).

For the cumulative analysis, two years rates are overlaid. It is
important to demonstrate, in a visual display, whether this years results
exceed the previous years, or are exceeded by then. Colour-coding of
the display seems a reasonable means of doing this. The data will be
displayed in the form of cumulative bar graph when the current years

total exceeds the previous years, the discrepancy will be shaded red; if
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the converse holds, the shading will be in blue. A computer program to
display this data is given in listing 3.2, making use of the graphics

characters available on an IBM PC in text mode.

3.3.2 Analysis of Data

The three-year beat-by-week matrix of household burglary data for
1984-86, as described in chapter 2 was used as a trial dataset for the
seasonal analysis. Thermal wax copies of the output screens obtained
when running the programs are given in figure 3.6. Firstly, consider
the non-cumulative data. For the second and third years, the pattern is
fairly similar. A certain amount of week-to-week variation occurs, and
their seems to be a lower average level of weekly crimes in the mid part
of the year. In absolute terms the number of crimes occurring seems
not to alter greatly, being around fifty in the winter, and slightly lower
in summer. In contrast to this, the first year's pattern is somewhat
different. Although there is a drop over the later summer months, as
experienced in the other years, there is an extreme increase in crime
between April and May. The household burglary counts for the
subdivision here are over 100, altogether larger than for any counts in

the following two years.

Examining the cumulative curves reflects this discrepancy of the first
year of study. For most of the second year, the cumulative total falls

well below that of the first, due to the two "spikes" in April and
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Figure 3

6a
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Figure 3

6b
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Figure 3

6c
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November in the first year. Comparing the second and third years
throws up nothing as dramatic as this. Until later on in the year, both
cumulative graphics barely differ, until in the closing months the second

year slightly exceeds the third.

3.3.3 Results

An important observation to be made here concerns the discrepancy of
the first year with the other two. If, for example, predictions had been
made for the second year based solely on the first, extremely poor
results would have been obtained, with crime rates for April and
November being greatly over-anticipated. Officers would be expecting a
massive increase in household burglaries which simply did not occur.
Even in the third year, if forecasts were made based on averaging the
first two years, the effect of the "spikes" in year one would still be

noticeable.

The problem here is that, although certain seasonal patterns do occur in
the data, some phenomena are not seasonal. In this case, it would seem
that the rates in certain parts of the first year of study were something
of a "one-off". This highlights the importance of the ideas put forward
in the introductory chapter. In order to predict crimes successfully,
another input is required to work alongside the analysis of past data

patterns.

The implication here, in terms of prediction method is that the

incorporation of seasonal variation into a prediction model may be of
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dubious benefit. Since there are currently only three years of data
available, accurate seasonal average levels are currently hard to
measure. As discussed earlier, a spurious high level on a given week
may have to much leverage. If data were available over a longer time
period, then this may be less of a problem. In this case, it may also be

possible to decompose the pattern in the frequency domain.

In addition to this, there are certain seasonal effects that, although
roughly occurring at the same time each year, do not exactly match
week-for~week. For example, Easter varies within a six week period.
It may be better to incorporate such phenomena into the prediction
system via the human interface, rather than by time series analysis of

past data.

The findings of this research suggest that, due to the large datasets
required for calibration, and also the unreliability of certain seasonal
models, seasonal analysis is not of great benefit to a crime prediction
system. This is not to say, however, that there is no benefit at all in
performing analysis of this sort. As a historical pattern analysing
technique in its own right, use may be made. For example, it has been
identified here that in 1984, in April to May, a surprisingly large
number of household burglaries occurred. This may draw attention to
some phenomena that happened around this time, or lead police officers

to examine crime records from around this time.

From consideration of this, some phenomena causing a massive increase

in household burglaries may be identified by police officers. Having
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been made aware of this, their subjective input into the system may be
used next time similar phenomena occurs. Thus, although examination of
time series may not directly contribute to the predictor techniques, it

may be of use in a "second order" sense.

In addition to identifying the "outlying periods" as times when crime
patterns may be of interest, in a subjective sense, the effects that the
summer months have on burglary rates have been informally identified.
A possible explanation for the general tendency for counts to be lower
over the mid-summer period may be found in terms of theories of
defensible space (Newman, 1972) or opportunist models (Mayhew, 1974).
There are clearly greater hours of daylight during these months, and a
a consequence of this, areas of some neighbourhoods that may be badly
illuminated in winter are more visible to the inhabitants. This may
provide less opportunities for potential burglars during the lighter

months.

Finally, the "crime count target" idea must not be ignored, as a tool for
monitoring the success of crime prevention (in this case household
burglary) over the current year. In summary, although seasonal
analysis of the crime counts has not proved to be a very powerful tool
when used in the context of automated crime prediction there are other
aspects of the analysis of crime patterns, to which this explanatory

analysis has drawn attention, which are aided by this type of technique.
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3.4 Cluster Analysis of Modus Operandi Data

Until this point, consideration of household burglary data has been
mainly in the context of space or time. These are important factors,
both in the identification of areas at risk, and of forecasting, but it may
be of wuse to classify household burglaries in terms of other
characteristics, in particular the methods used, and items taken. This
may lead to some evidence relating to modes of behaviour by offenders;
it may even identify the characteristic work of individual offenders, or
of gangs, if the analysis is carried out at a sufficiently high level of
geographical resolution. Classification may be performed in this way
using methods of Cluster Analysis (Everitt, 1984). Multivariate data
from several individual cases is examined, and patterns are sought. The
end result is a classification of each individual item into a group, or
cluster, all of whose elements share common characteristics. In this
section, then, a pilot cluster analysis is to be performed on the crime
data described in chapter 2. Since the analysis is intended to classify
according to the activities of the offenders only, wvariables relating to
space and time will be ignored. The list of variables is given in table

3.7.

3.4.1 Method

Any review of cluster analysis techniques (for example Everitt, 1984)
will list a wide variety of options. Before any analysis is actually
performed on this data, a suitable algorithm must be selected. It is
important to note here that all of the variables to describe each burglary
are qualitative, and hence non-numeric. Thus, any splitting technique

should not be of the form (X>avs X<&). It may be useful also if
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Table 3.7

Format Of The Household Burglary Data Subset
Used in Cluster Analysis

Variable Name Column(s) Description Of Variable
ME 16 Method of Entry
F=Forced
B=Break In
I=Insecure Building
D=Drilling
O0=0Other

PE 17 Point of Entry
D=Door
W=Window
0=Other

DE 18 Direction of Entry
F=Front
S=Side
B=Back
R=Roof
O=0Other

STOLEN 19-24 Items Stolen
Up to six out of
= Colour Tv
= Hi-Fi
= B/W Tv
= Jewellery
= Video Recorder
= Electrical Goods
= Cash
Food
Cheques
Drink
Clothes
Personal Goods
Furniture
Ornaments
= Camera
= Tools
= QOther
= Attempt
(No items Stolen)

ORHZOQOUEPOXHRECG IO
I
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division is performed hinging on single variables (monothetic division).
In this way, if an algorithm is used that performs the "most important"
split first, and then the next most powerful, and so on, then noting on
which variable each split is made leads to substantive interpretation, in
the sense that the major variational components in the characteristics of
household burglary may be stated as occurrence or non-occurrence of

particular behavioural traits of offenders.

Thus, the clustering algorithm should be based on discrete, non-ordered
variables, and on a monothetic division technique. At this point,
another problem has to be taken into account. Clustering algorithms of
this sort often do not specify a "stopping rule". That is, no formal
mechanism exists determining when categorisations are sufficiently
homogenous to justify no further subdivision. If such a rule is not
applied, there is danger of imposing spurious structure on the data.
However their is usually some measure of "goodness of split" index
available, and an arbitrary limit could be attached to this since the
splitting is performed on a "strongest division first" basis, when the
splitting only causes small changes in the index, there is little point in
further divisions. Alternatively, the size of group could be monitored,

until categories become reasonably small.

One suitable algorithm would be based on the information gain statistic:

241 = 1(“\“11"1‘1
where  To= Maleynp) ~Zpleghig « ek loglorhp)

“P = Sne <} Austes~ P
. Vo = . Ao
‘_“: zx‘é X‘S o/l \(\of§

Le



107

This measures the overall increase in homogeneity when considered in
terms of two separate sets split by a given variable, as opposed to one
set containing both wvariables. Firstly, the entire data set is split two
ways, according to scoring highest on the above scale defined above.
After this, one of the subsets is split. The subset to be split offers
the greatest gain in information. This process continues until either the
information gain falls below a given limit, or the size of the categories
becomes small. Note also that, after the first division, divisions do not
necessarily apply across the entire dataset. Thus, after the dataset has
had its initial division performed performed, each of its subsets will be

further subdivided independently.

Although this type of analysis is useful, and simple to interpret, since
divisions are always made on the basis of a single variable, it is subject
to certain problems. Since the categorisation structure is essentially
tree-based, all later categorisations will depend on the outcome of earlier
ones. Thus, if a spurious effect occurs early on in the analysis, the
errors due to this are propagated through all subsequent
categorisations. To overcome this, other categorisation methods exist,
based on the concept of dynamic reallocations (Everitt, 1984). In this
instance, observations at any stage of analysis mayv be moved from one
category into any other, in order to optimise some "goodness of
categorisation" parameter. In this case, early mistakes may be remedied
later on, since any categorisation made at some point has some chance of
being re-categorised. It is generally thought that this type of analysis
is less susceptible to distortion due to outliers, or unusual observations,

within the dataset.
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However, this does not come without a price. The categorisations no
longer have the simple definitions obtained with monothetic division, and
are considerably harder to interpret substantively. They are also
considerably harder to assign new cases to when attempting a
classification of subsequent data based on the results of the initial

studies.

It is therefore proposed to perform a two-tier analysis here. Firstly,
the more easily interpretable monothetic division technique (based on
entropy maximisation) will be performed. The results of this will then
be compared to those of a dynamic reallocation algorithm. This acts as a
form of "verification" clearly similar results in both cases suggest that
the interpretation of the first analysis in substantive terms is reasonable
(assuming the reliability of the second level). However, widely differing
results suggest that the first, monothetic method, may have greatly

distorted categorisation early on due to a spurious observation.

3.4.2 Implementation

Methods of cluster analysis have been proposed in the previous section,
but, as yet little consideration has been given to practical aspects.
Firstly, consider the computing aspects of the problem. There exists a
package, CLUSTAN, which is specifically designed to perform cluster
analysis as required in this study. It is capable of analysing either
categorical or ordered data. In the case of categorical variables, these
must be coded as binary. Thus, in the case of categorical variables

with more than two classes, dummy variable encoding must be performed.
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Thus, the variables in table 3.7 are re-expressed in the variable set
given in table 3.8. In particular, the original list of items taken must
be recorded as a set of binary variables of the form " Colour TV taken"
etc. These variables begin at number 14, dividing the variable set into
two main categories, "means of entry" and "items taken". Note that as
variables (1-3), (4-7) and (8-12) are dummy variable interpretations of
the variables 1, 2 and 3 in table 3.7. Since only one of each of the
sets (1-3), (4-7) and (8-12) can be assigned a logical "true" value, and
the remaining elements must be '"false" there is a certain amount of
correlation arising by design. However, if this is identified at the

outset, effects due to it may be allowed for when interpreting results.

Finally, a dataset size constraint is applied by the CLUSTAN package.
Owing to the memory addressing and time constraints at the time the
package was written, CLUSTAN is restricted to datasets not exceeding
999 cases. The full year of detailed data available, containing
information about modus operandi, consists of about 1800 observations.
Thus, a random selection of 999 cases must be made from the original
database before cluster analysis is performed. In summary, then, the
original dataset must be narrowed down to 999 items by random selection
and these items must then be recoded in dummy binary variables format.
At this stage, the CLUSTAN package may be used to perform both
monothetic division classification, and dynamic reallocation based

methods.
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Table 3.8

Dataset For Cluster Analvsis Expressed As Binary Variables

Variable Number Variable Name
1 Entry By Force ?
2 Entry by breaking in ?
3 Entry due to insecurity ?
4 Entry by drilling ?
5 Entry by Other Means ?
6 Entry through door ?
7 Entry through Window ?
8 Entry by other means ?
9 Entry at front ?
10 Entry at side ?
11 Entry from rear ?
12 Entry from roof ?
13 Entry from another point ?
14 Colour Tv Stolen ?
15 HiFi Stolen ?
16 B/W Tv Stolen ?
17 Jewellery Stolen ?
18 Attempted burglary ?
19 Video Recorder Stolen ?
20 Electrical Goods Stolen ?
21 Cash Stolen ?
22 Food Stolen ?
23 Cheques Taken ?
24 Drink Taken ?
25 Clothes Taken ?
26 Personal goods taken ?
27 Furniture Taken ?
28 Ornaments Taken ?
29 Camera Taken ?
30 Tools Taken ?

31 Other Items Taken ?
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3.4.3 Results

The results of the monothetic division algorithm are given in table 3.9.
After four levels of subdivision, the group sizes were between 20 and 40
with a few larger ones, which seems reasonable. Due to some
observations having missing values for some of the variables, the final
number of items processed is slightly less than 999. The first division
was made on variable 6, which indicates whether entry was through a
door or by some other means. Note that, in the case of the "other
means" subdivisions the first division here is by wvariable 7, "entry
through window".In all of the divisions carried out to the third level,
the variables have come from the "means of entry" category as opposed

to the "items taken".

The results of the reallocation based clustering technique are listed in
table 3.10. Again, missing values slightly reduce the final total of
cases processed. In this case, the conditions for membership of each
class are considerably more complex, and harder to interpret than those
of the monothetic technique. There is no obvious structure in the
classification. Although, eventually, there are roughly the same number
of categories in each case, and the range of sizes of observations in the
category are roughly equivalent, the classification from the first
algorithm is done on the basis of four binary divisions, whilst in the

second case, as many as 25 binary variables need to be considered.

However, it may still be noted that those binary variables concerned

with method of burglary rather than items stolen appear most frequently.
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Table 3.9

Of Monothetic Division Cluster Analysis

Group No.

CoOoO~NOUPEWNKF

Since group 13 and the original 14 were small,

with each other.
neighbours.

Splitting Variables

“+7 = true

+6 +1
+6 +1
+6 +1
+6 +1
+6 -1
+6 -1
+6 -1
+6 -1
-6 +7
-6 +7
-6 +7
-6 +7
-6 -7
-6 -7
-6 -7

r_-

+9
+9
-9
-9
+9
+9
-9
-9
+9
+9
-9
-9
+5
-5
-5

In terms of splitting,

= false

+14
-14
+21
=21
+2
-2
+21
-21
+19
-19
+2
-2
(+/-13)
+4
-4

Size Of Group

35
136
22
55
24
86
29
67
46
143
44
167
37
23
41

they have been merged

the groups are nearest
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Table 3.10
Results Of Reallocation Algorithm Cluster Analysis
Group no. Splitting Variables Size Of
“+7 = true -7 = false Group
1 +18 -19 -23 ~-21 -4 -25 -10 38
-7 =17 -11 =20 -12 -22 =27
-24 -28 -26 -30 -3 =29 -14
-31 -15 -16 -24
2 +5 +7 -1 -12 -30 -8 -11 46
-10 -22 -18 -6 -2 -4 -3
3 +14 -7 -3 -18 -4 ~-26 -10 77
-2 -8 -11 -12 =24 -23
4 +7 +14% -1- -4 -3 -24 -12 72
-8 ~26 -11 -22 -30 -6 -18
-16
5 +5 -10 =24 -23 -11 -25 -1 36
-30 -7 -29 -4 -2 -3 -22
6 +1 +6 +9 -12 -18 -7 -5 119
-13 -2 -11 -8 ~-14 -4 -10
-3
7 +2 +6 -24 -26 -8 -7 -10 50
-3 -12 -18 -4 -1 -11 -5
-22
8 +7 -24 -3 -5 -10 -18 -12 116
-9 -4 -8 -30 -6 -14 -22
9 -10 =24 -11 -18 =27 -12 -29 65
-22 -7 -1 -6
10 +7 +9 -18 -13 -11 -12 -10 122
-30 -8 -14 -4 -6 -3 -5
=22
11 +18 +7 -2 -22 -26 -8 -20 44
-4 =24 -10 =17 -11 -19 -12
=21 =27 -23 -28 =25 -30 -6

12 +6 -4 -11 -9 -7 -18 -10 76
-30 -22 -2 -8 ~24
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The main variable seen to be having greater influence here than in the
first analysis is that of "no items stolen" in the category of "outcome"
variables. This appears in nine out of the twelve categories generated

by this analysis.

3.4.4. Discussion

Firstly, some attempt must be made to explain the categories obtained by
the initial monothetic analysis. For each class in table 3.9, a verbal
description is given in table 3.11. As noted earlier, most of the
distinctions are based on methods of entry rather than items stolen.
This is perhaps a reasonable outcome: although potential offenders have
control over their modus operandi, except in a few cases they are
unlikely to be aware of the exact contents of a dwelling. Thus, definite
patterns in means of entry, perhaps due to local trends or even to traits
of particular individuals may become evident in the analysis. However,
since the items taken are more likely to vary randomly according to the
internal layout, and obviously the contents of households, it is less
likely that there will be strong patterns in this type of data. A few
items likely to be found in several houses, possibly in easily predictable
positions, may be deliberately sought out. This may explain the
appearance of a few items in the classification (ie. wvideo recorders,

cash).

The results of the reallocation algorithm analysis will now be considered
in a similar manner. The categories from this analysis are described

verbally in table 3.12. The descriptions here are more complex, and do
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Table 3.11

Descriptions of Monothetic Division Groupings

N =

10
11
12
i3

14

15

Force front door, take Tv.

Force front door, no Tv taken.
Force door other than front,

take cash.

Force door other than front,

dont take cash.

Break glass on front door.
Insecure front door.

Other means than force through
non-frontal door. Take cash.

Other means than force through
non-frontal door. Dont take cash.
Front window entry taking video.
Front window entry not taking video.
Non-frontal window break-in
Non-frontal window, not breaking in.
Entry not through door or window
not by drilling breaking or force.
Drill entry not through window or
door.

Break-in or force, mnot through
window or door.
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Table 3.12
Descriptions Of Reallocation Algorithm Groupings

Attempt, Not through window

Front window entry, not by force, drilling or breaking

Colour Tv taken, but no personal goods. Forced door entry.

Colour Tv taken via forced or broken front window.

Front or roof entry, not by drilling , force or breaking.

Force front door. No Colour Tv taken.

Break front door. No food or drink taken.

Force or break front or rear window.

not by door or window.

Front or rear entry,
drink or tools stolen.

No force. No furniture,

Force or break front window. No food or tools stolen.

Attempt via window

Forced or inseecure door entry from roof. No food or drinks

taken.
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not fully reflect the binary attribute classifications defining each class.
However, there is a reasonable correspondence between the outcome of
each of the two analyses. There is a similar range in size and similar
number of classes. Also, method of entry variables are prominent, in
the definition of classes. Thus, the simpler classifications arrived at in
the first analysis seem reasonable. Given this, there is another factor
evident in this analysis that does not occur in the former. The outcome
of having no items stolen - ie., the burglary being classified as an

attempt only, appears in the categorisation frequently.

This may be an important factor. This split could represent the level of
security to which homes are protected. An unsuccessful burglary may
be the product of fitting window locks (in the case of category 11) or
secure doors (Category 1). Also, this sheds some light onto other
categories, such as number 12, in which an insecure point of entry was

used as the means of entrance.

In conclusion, this analysis has identified some important characteristics
of household burglaries, which may be used to provide a classification.
Clearly, the simpler option offered by the monothetic algorithm seems
preferable to the more complex reallocated result; it is easier to
interpret, and would be simpler to implement on a computer-based

classification program to be applied to future data.

However, the second analysis identified the attempt/successful burglary
criterion as also being of importance. It is therefore recommended that

any classification of burglaries have categories corresponding to those
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from the monothetic division algorithm, but with the addition of two
further categories, "attempt through window" and "attempt through

door" added to the analysis.

3.5 Conclusion of Chapter

At the start of this chapter it was pointed out that it was not
necessarily intended to incorporate the methods used here directly into
any final crime pattern analysis system and that the purpose of these
investigators were mainly exploratory. Certain conclusions have been
drawn from each of the three studies. In particular, the time-of-day
study not only yielded interesting results, particularly with the
difference in daily patterns, but also gave a new quantitative technique,
which was required as a result of the nature of the data presented for
analysis. It is also hoped that some insight into criminal behaviour may
have been gained from these analyses. Certain patterns discovered here
may enable some empirically-based inferences to be made about the
experience of criminals. Another "by product" is that certain analyses
performed here were in the form of microcomputer programs of the type
that were suggested for the crime pattern analysis software proposed in
chapter one. Thus, although the techniques here would not become part
of the "mainstream" system, they could be included as subsidiary facets

of the final system.

Finally, then, it is hoped that this exploratory chapter in crime pattern
analysis techniques, although not yielding results that may directly be

incorporated into a prediction system or mapping system, may have



119

provided some insight into the processes behind the data, and may be of

subsidiary value when building the main model of the study. In addition

to this, they also strengthen the original belief that any operational

crime forecasting system should be based on the most basic space and

time data.
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LISTINGS FOR CHAPTER 3
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PROGRAM TMRISK 121

xxxxxxxx Listing 3.1 *****x

Kernel Estimator For Police Interval Data

QOO0

REAL*4 CUT

INTEGER*4 N, TCKSUM, ITEMS, ITCUT

INTEGER*4 DVEC1(2100), DVEC2(2100), DVEC3(2100), DVEC4(2100)
INTEGER*4 WEEK(2100), DAY(2100)

CHARACTER CSTR*60, INFILE*12

LOGICAL PLOT, NOCUT, SEASDV, WEEKDV

COMMON /STOR/ DVEC1, DVEC2, DVEC3, DVEC4, WEEK, DAY, ITEMS,
1 ITCUT, NOCUT, PLOT

N=20

TCKSUM = 0

Read the command string
CALL GETCOM(CSTR)

Check for seasonal and week / weekend divides

SEASDV = (INDEX(CSTR,'SEASONS') .NE. 0)
WEEKDV = (INDEX(CSTR,'WEEKENDS') .NE. 0)
PLOT = (INDEX(CSTR, 'PLOT"') .NE. 0)

Check for cutoff points

NOCUT = ( INDEX(CSTR,'CUT') .EQ. 0 )
IF (.NOT. NOCUT) THEN
WRITE (6,'(21H&Enter cutoff time > } ')
READ (5,*) CUT
CUT = CUT * 2
ITCUT = INT(CUT)
WRITE (6,*)
END IF

Assign the data file to unit 4.

IND1 = INDEX(CSTR,'S$')

IF (IND1 .EQ. 0) THEN
WRITE (6,'(A)') ' Improper control string -- no data file'
STOP 1

END IF

IND2 = INDEX(CSTR(IND1l:),' ')

INFILE = CSTR(IND1+1:IND2)

QOPEN(4, FILE=INFILE)

Read everything in

WRITE (6,*) ' Data entry in progress ... '
WRITE (6,*) ' Reading formatted file ... '
WRITE (6,*)
ITEMS = 1
91 READ (4,'(I12,11,T4,212,T13,1I3,1I2)"',END=90)
1WEEK (ITEMS), DAY (ITEMS),
2DVEC1 (ITEMS), DVEC2(ITEMS), DVEC3(ITEMS), DVEC4(ITEMS)
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C Convert day of week to weekday/weekend indicator
C
IF (DAY(ITEMS) .LE. 5) THEN
DAY (ITEMS) =1
ELSE
DAY (ITEMS) = 2
END IF
o
C Convert week counter to seasonal indicator l=winter --> 4=autumn
C
IF (WEEK(ITEMS) .GT. 8) THEN
WEEK (ITEMS) = (WEEK(ITEMS)-8)/13 + 2
IF (WEEK(ITEMS) .EQ. 5) WEEK(ITEMS) =1
ELSE
WEEK(ITEMS) =1
END IF
IF (MOD(ITEMS,100) .EQ. 0)
1 WRITE (6,'('"+At record '',I4)"') ITEMS
ITEMS = ITEMS + 1
GO TO 91
90 ITEMS = ITEMS - 1
WRITE (6,*)
C
C Split up as appropriate
C
IF (SEASDV) THEN
IF (WEEKDV) THEN
CALL KERNL(1l, 1, ‘'Weekdays Winter')
CALL KERNL(2, 1, 'Weekends Winter')
CALL KERNL(1, 2, 'Weekdays Spring')
CALL KERNL(2, 2, 'Weekends Spring')
CALL KERNL(1, 3, 'Weekdays Summer')
CALL KERNL(2, 3, 'Weekends Summer')
CALL KERNL(1, 4, 'Weekdays Autumn')
CALL KERNL(2, 4, 'Weekends Autumn')
ELSE
CALL KERNL(0, 1, ' Winter')
CALL KERNL(0, 2, ' Spring')
CALL KERNL(0, 3, ' Summer')
CALL KERNL(0, 4, ' Autumn')
END IF
ELSE
IF (WEEKDV) THEN
CALL KERNL(1,0,' Weekdays')
CALL KERNL(2,0,' Weekends')
ELSE
CALL KERNL(0,0,' All")
END IF
END IF
STOP
END
C

Chrrkkkkhhkkhkkhhhkkkhkhkhkhhhkkhkhhkkhkkkkkkkhkkkhkhkkkkhhkhkkhoxkhkkkkkkkhkkkkkkkk

C

SUBROUTINE KERNL(SPLIT1, SPLIT2, TITLE)
C

C Kernel estimation subroutine
C

CHARACTER* (*) TITLE
REAL*4 KERNEL(0:47), ICRMNT, IGRAL, MAXKRN
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INTEGER*4 FTICK, ITICK, HRFND, MNFND, HRINT, MNINT, HOUR, MIN
INTEGER*4 TIME, TCKSUM, LEN, ITzZMS, ITCUT

INTEGER*4 DVEC1(2100), DVEC2(2100), DVEC3(2100), DVEC4(2100)
INTEGER*4 USED, WEEK(2100), DAY(2100), SPLIT1, SPLIT2
CHARACTEZR CSTR*60, INFORM*12, INFILE*12, DUMMY*4(

LOGICAL PLOT, NOCUT

COMMON /STOR/ DVEC1, DVEC2, DVEC3, DVEC4, WEEK, DAY, ITEMS,

1 ITCUT, NOCUT, PLOT

Empty the kernel estimator

QOO

DO 100 I = 0, 47
100 KERNEL(I) = 0.0

C
C The Kernel is empty -- Start to build it
C
USED = 0
TCKSUM = 0
WRITE (6,*) ' Building Kernel estimate ...'
WRITE (6, %*)

DO 110 ITEM = 1, ITEMS
120 HREND = DVECI1 (ITEM)

MNEND = DVEC2 (ITEM)
HRINT = DVEC3(ITEM)
MNINT = DVEC4 (ITEM)

[ N ep]

Convert into 48-unit day : called 'ticks'.

FTICK = HREND*2 + MNFND/30
ITICK = HRINT*2 + MNINT/30
IF (SPLIT1.EQ.0 .OR. SPLIT1.EQ.DAY(ITEM)) THEN
IF (SPLIT2.EQ.0 .OR. SPLIT2.EQ.WEEK(ITEM)) THEN
IF (ITICK.LT.ITCUT .OR. NOCUT) THEN

We now have how long before found, and when found
Make this into start of interval + length

oNeNPR P

FTICK = FTICK - ITICK
40 IF (FTICK .LT. 0) THEN
FTICK = FTICK + 48
GO TO 40
END IF

«

Add the kernel to the overall estimate

TCKSUM = TCKSUM + ITICK

ICRMNT 1.0/FLOAT (1+ITICK)

DO 130 TIME = 0, ITICK

IDX = MOD(FTICK + TIME, 48)
130 KERNEL (IDX) = KERNEL(IDX) + ICRMNT
USED = USED + 1
END IF
END IF
END IF

C

C Report the status every 100 items --- stops 'long silences' on VDU
C
IF (MOD(ITEM,100).EQ.0)
1 WRITE(6,'(11H+At record ,I4,12H Cases used ,F4.1,1H%)")
2 1ITEM, 100.0 * FLOAT(USED)/ITEM
110 CONTINUE '
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C Re-scale so that 48-element kernel array sums to unity.
C
IGRAL = 0.0
DO 200 I = 0, 47
200 IGRAL = IGRAL + KERNEL(I)
MAXKRN = 0.0
DO 210 I = 0, 47
KERNEL(I) = 100.0 * KERNEL(I)/IGRAL
IF (KERNEL(I) .GT. MAXKRN) MAXKRN = KERNEL(I)
210 CONTINUE

C
C 48 - point kernel Estimator lies in array KERNEL
C
HOUR = 0
MIN =0
C
C Graph or tabulate kernel estimator
C
IF (PLOT) THEN
C
C Graph option
C
CALL GRAPH (KERNEL, MAXKRN)
WRITE (DUMMY, ' (''Number Of Cases = '!',74)') USED
CALL PUTTXT(21,1,DUMMY)
WRITE (DUMMY,'(''Average Interval (Hours) = "1, F7.3)")
1  FLOAT(TCKSUM)/ (USED * 2)
CALL PUTTXT(21,2,DUMMY)
CALL PUTTXT ((80-LEN(TITLE))/2, 0, TITLE)
ELSE
C
C Table option

WRITE (6,'(A)') TITLE

WRITE (6,'(1H )"')

DO 140 I = 0, 47

WRITE (6,'(1H&,I12.2,1H:,12.2,4%X,F6.2,1H%,4H Y
1 HOUR, MIN, KERNEL(I)

IF (MOD(I+2 1,3) .EQ. 0) WRITE(6,'(1H )')

MIN = MIN + 30

IF (MIN .EQ. 60) THEN

MIN = 0
HOUR = HOUR + 1
END IF
140 CONTINUE

WRITE (6,'(15H Average gap
1 FLOAT (TCKSUM)/ (USED * 2)
WRITE (6,'(15H Items used
END IF
CALL KEY
CALL MODE(3)
RETURN
END

,F7.3,5H Hrs.)")

,I3)') USED

C

Chhkkkkkkkkhkhkkhkhkkkkkkhkdkhkkkkkhhhkkkxkhhkkhkkhkkhhhkrhkkkhkkkkkhkkkkxk

C

SUBROUTINE GRAPH (KERNEL,MAXKRN)
¢

C Draw bar graph of kernel estimate on screen
¢
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REAL*4 KERNEL(0:47), MAXKRN

INTEGER HEIGHT
CHARACTER*4 LABEL
CALL MODE(16)

Underline Bar Graph

DO 100 I = 16, 63

100 CALL CPUT(I, 21, 223, 15)
DO 105 J = 3, 21

105 CALL CPUT(15, J, 196, 13)

Enter the axes

CALL PUTTXT (34,24, 'Hour of Day')
CALL PUTTXT (1,7, 'Percentage’)
CALL PUTTXT(1,8,' of all ')
CALL PUTTXT(1,9, 'Household ')
CALL PUTTXT(1,10,'Burglaries’)
DO 110 I = 16, 34, 2
CALL CPUT(I, 22, 48, 7)
110  CALL CPUT(I, 23, 48+(I-16)/2 , 7)
DO 120 I = 36, 54, 2
CALL CPUT(I, 22, 49, 7)
120 CALL CPUT(I, 23, 48+(I-36)/2, 7)
DO 130 I = 56, 62, 2
CALL CPUT(I, 22, 50, 7)
130  CALL CPUT(I, 23, 48+(I-56)/2, 7)

Now for the hard stuff

First, sort out a "clean" scale

IF (MAXKRN .GT. 10) THEN

MAXKRN = INT (MAXKRN) /10

MAXKRN = 10.0 * (MAXKRN + 1)
ELSE

MAXKRN = 1.0 + INT(MAXKRN)
END IF

WRITE (LABEL,'(F4.1)') MAXKRN
CALL PUTTXT(11,3,LABEL)

WRITE (LABEL,'(F4.1)') MAXKRN/2
CALL PUTTXT(11,12,LABEL)

CALL PUTTXT(11,21,' 0.0')

Now plot it
DO 140 I = 0, 47
IMAP = INT((KERNEL(I) / MAXKRN) * 36.0 + 0.49)
HEIGHT = IMAP / 2
ICOL = $Al
IF (MOD(I,2) .EQ. 0) ICOL = $92
ICOL =1

IF (I.GT.12.AND.I.LT.40) ICOL = 14
IF (MOD(IMAP, 2) .EQ. 1)
1 CALL CPUT(16+I, 20-HEIGHT, 220, ICOL)
IF (HEIGHT .GE. 1) THEN
DO 150 J = 1, HEIGHT
150 CALL CPUT(16+I, 21-J, 219, ICOL)
END IF
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RETURN

END
C
c***************************************t*********i*z**k*******i********
C

SUBROUTINE CPUT(XTL, YTL, CHAR, ATTR)
C
¢ Put a character on the screen with given attribute
C

INTEGER*4 XTL, YTL, CHAR, ATTR

INCLUDE 'A:SYSREG.FOR'

AH = 2

BH = 0

DL XTL

DH YTL

CALL SYS2(16,SYSREG)

AH = 9

AL CHAR

BL ATTR

cx=1

CALL SYS2(16,SYSREG)

RETURN

END

nono

¢
CHAKK KKK KKK KKK A A KKK I KKK KKK E KKK KKK KKK AKX K KKK KA KKK KKK K KKK KKK KKK KKKk
C

SUBROUTINE KEY

C
¢ Wait for a key to be pressed
C
INCLUDE 'A:SYSREG.FOR'
AH = 7
CALL SYS1(SYSREG)
RETURN

END
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Seasonal analysis of crime rates --- draws crime rate gragas
and cumulative graphs overlaid year by year
INTEGER COUNT(52), CHOICE, MaxXMUM, HEIGHT, LCOUNT(52)
INTEGER HGHT1, HGHT2
CHARACTER INFILE*3(0, DUMMY*6
Attach the data file to unit 4
CALL GETCOM(INFILE)
OPEN (4, FILE=INFILE)
Empty the screen -- menu up for Cumulative/Simple display
CALL MODE (3)
CALL PUTTXT (25, 2,'Seasonal Crime Rate Analysis')
CALL PUTTXT (25, 6,'Select display mode :-')
CALL PUTTXT(26,10,'l == Simple Seasonal Curve')
CALL PUTTXT(26,12,'2 == Cumulative Comparison')
100 CALL KEYGET (CHOICE)
IF (CHOICE .NE. 49 .AND. CHOICE .NE. 50) GO TO 100
Choice is now made -- now put the approriate graph on VDU
IF (CHOICE .EQ. 49%) THEN
Simple seasonal curve
160 CALL MODE(3)
Get the count rates
MAXMUM = 0
DO 105 1 =1, 52
READ (4,*,END=170) COUNT(I)
IF (COUNT(I) .GT. MAXMUM) MAXMUM = COUNT (I)
105 CONTINUE
Now get a 'good' scale
CALL RESCAL (MAXMUM)
Plot it
DO 110 I =1, 52
HEIGHT = 20* (COUNT (I) /FLOAT (MAXMUM))
DO 120 J = 22 - HEIGHT, 22
CALL CPUT(I+14, J, 178, 13)
120 CONTINUE
110  CONTINUE
Plot the axis
DO 130 I = 15, 66
130 CALL CPUT(I, 22, 205, 14)

PROGRAM SEASON 127

DO 140 I = 2, 22



140 CALL CPUT(14,I, 196, 7) 128

C

C Plot the labelling

C
CALL PUTTXT(15,23,

1 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec')

WRITE (DUMMY,'(I6)') MAXMUM
CALL PUTTXT (4,2, DUMMY)
WRITE (DUMMY,'(I6)') MAXMUM / 2
CALL PUTTXT(4,12,DUMMY)
CALL PUTTXT(11l,1, 'Weekly Counts')
CALL PUTTXT(21,0, 'Seasonal Household Burglary Variation')

@ Ne]

Put up further menu options on bottom line

CALL PUTTXT(15,24, 'Further Options 1 = Next Year 2 = Quit')

«

Get new menu choice

150 CALL KEYGET (CHOICE)
IF (CHOICE .NE. 49 .AND. CHOICE .NE. 50) GO TO 150

IF (CHOICE .EQ. 49) GO TO 160
ELSE

Cumulative data analysis -- overlays two years worth of data

First get the data

OO0

DO 200 I =1, 52
READ (4,*,END=170) LCOUNT(I)
200 CONTINUE
370 DO 210 I =1, 52
READ (4,*,END=170) COUNT(I)
210  CONTINUE

(@]

Now make it cumulative

DO 220 I = 2, 52
LCOUNT (I) = LCOUNT(I-1) + LCOUNT(I)
220 COUNT(I) = COUNT(I-1) + COUNT(I)
IF (LCOUNT(52) .GT. COUNT(52)) THEN
MAXMUM = LCOUNT (52)
ELSE
MAXMUM = COUNT(52)
END IF

a O

Plot it

CALL RESCAL (MAXMUM)
CALL MODE (3)
DO 230 I =1, 52
HGHT1 = 20 * (LCOUNT(I) / FLOAT (MAXMUM))
HGHT2 = 20 * ( COUNT(I) / FLOAT (MAXMUM))
IF (HGHT1 .GE. HGHT2) THEN
DO 240 J = 22-HGHT1, 22-HGHT2
240 CALL CPUT(14+I, J, 178, 7)
DO 250 J = 22-HGHT2, 22
250 CALL CPUT(14+I, J, 219, 7)
ELSE
DO 260 J = 22-HGHT2, 22-HGHT1
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260 CALL CPUT(14+1, J, 176, 7)
DO 270 J = 22-HGHT1, 22
270 CALL CPUT(14+I, J, 219, 7)
END IF
230 CONTINUE
C
C Plot labels
C

CALL PUTTXT(15,23,
1 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec')
WRITE (DUMMY, '(I6)"') MAXMUM
CALL PUTTXT(4,2,DUMMY)
WRITE (DUMMY,'(I6)') MAXMUM / 2
CALL PUTTXT(4,12,DUMMY)
CALL PUTTXT (22,0, 'Cumulative Household Burglary Counts')
CALL PUTTXT(25,1,' = This Year = Last Year')
CALL CPUT(25,1,176,7)
CALL CpUT(41,1,178,7)

C
C Plot axes
C
DO 340 I = 15, 66
340 CALL CPUT(I, 22, 205, 14)
DO 350 I = 2, 22
350 CALL CPUT(14,I, 196, 7)
C
C Put up further menu options on bottom line
C
CALL PUTTXT (15,24, ‘'Further Options 1 = Next Year 2 = Quit')
C
C Get new menu choice
C

365 CALL KEYGET (CHOICE)
IF (CHOICE .NE. 49 .AND. CHOICE .NE. 50) GO TO 285
IF (CHOICE .EQ. 49) THEN

C
C Roll on another year --- reconvert to non-cumulative
C
DO 360 I = 52, 2, -1
360 LCOUNT(I) = COUNT(I) - COUNT(I-1)
LCOUNT (1) = COUNT(1)
GO TO 370
END IF
END IF
GO TO 180
C

C Exeption Handling : leave program if no further data Is available
C
170 CALL MODE(3)
CALL PUTTXT(18,13, 'No further data : Press any key to continue')
CALL KEYGET (CHOICE)
180 STOP
END
C
c***********************************************************************
C

SUBROUTINE RESCAL (MAXMUM)
C

C Subroutine to rescale graph to a 'nice' number ie 10, 20, 50 etc
C

INTEGER SCALE, MULT, DIV, MAXMUM
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SCALE =1
MULT = 2
DIV =1
100 IF (SCALE .LT. MAXMUM) THEN
SCALE = SCALE * MULT
SCALE = SCALE / DIV
IF (MULT .EQ. 2) THEN
MULT = 5
DIV = 2
ELSE
IF (MULT .EQ. 5) THEN
MULT = 4
DIV = 2
ELSE
IF (MULT .EQ. 4) THEN
MULT = 2
DIV =1
END IF
END IF
END IF
GO TO 100
END IF
MAXMUM = SCALE
RETURN
END
¢
C***********‘k*******************‘k**************-k************************
C
SUBROUTINE KEYGET (CODE)
¢
C Wait for a key to be pressed -- Return its code
C
INTEGER CODE
INCLUDE 'A:SYSREG.FOR'
AH =7
CALL SYS1(SYSREG)
CODE = AL
RETURN
END
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CHAPTER 4

ANALYSIS OF SPACE-TIME PATTERNS IN CRIME DATA

4.1 Introduction

The need to perform spatial analysis to predict spatial pattern has
already been identified, both in terms of police manpower management
and also in terms of local scale information for beat police officers.
In order to measure, draw inference from and forecast using these
patterns, some theoretical background describing the processes
generating them should be considered. In addition to  this,
consideration must be given to crime patterns as a specific phenomena
rather than modelling in terms of a general spatial process, and to the
particular needs of the crime pattern analyst, so that the final model
describes this particular phenomena  well, and is capable of
producing output in a format that will be easily understood by people
working in this field. If this target is attained, it is hoped that
reliable forecasting, and spatial pattern spotting techniques, will be

achieved.

An important concept in defining stochastic processes over space is that
of interaction. A spatial process in which the value of a
realisation at any given point in space is unaffected by the values that

it takes at any other point would be a trivial one. Such a process
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would require no knowledge of the state of any other point in space to
make predictions about a particular point. However, most real life
situations are not well described by a model such as this. For
example, fields with a high annual yield within a particular
farming area might tend to cluster in space, due to soil properties
overlapping field boundaries. Similarly, parallels may be found in many
other areas of study. The factor connecting all of these processes
is that, given a value of some observation at a point in space P, the
expected value at points near to P will be altered (cf Tobler, 1970).

This is the phenomena of spatial interaction, or spatial autocorrelation.

In describing spatial probabilistic processes modelling  the
occurrence of crimes, it is important to determine whether the
phenomena of autocorrelation in space should be allowed for. Ideally,
some form of non-parametric, exploratory testing should be carried out
before explicitly modelling the occurrence of crime in space with

probability distributions.

Such problems will be considered in this chapter, together with the
problems of finding probabilistic models which suitably describe the
observed data on household ©burglaries, whose collection is
described in chapter 2. Further thought will be given to the ways of
expressing the crimes as spatial data, together with the parallel
stochastic mathematical models of the process. The crimes may be
expressed both as points in space (by considering the grid references
of households, or at least of their postcodes ) or may be aggregated

by regions, such as foot beats or grid squares. In the first
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instance, data consists of a list of two dimensional points, and the
hypothesis of autocorrelation under test is that existence of events at
certain points in space does not affect the probability that events occur

at other points nearby.

In the latter occurrence, the set of aggregated crime counts, or
their densities in terms of the numbers of households within the zone
of aggregation, are associated with a matrix of similarities for the set
of regions. These similarities are often in terms of distance,
although they need not necessarily be so. Tests are then made to see
if observations for the regions correlate, and if so then to
examine whether correlations correspond to the distance based similarity

measures.

For predictive purposes, the second type of model may be of
greater use, as it is not really possible to predict where crime will
occur to the point level of resolution. Furthermore, the foot beat
region is a useful administrative unit for police resource management. It
is felt, however, that failure to examine point patterns could lead to
certain spatial processes going undetected; Aggregated data may
detect interaction on a scale as large as (and also larger than) the
sizes of the foot beat region, but some processes may be wholly
contained within foot beats. In the latter case, aggregation would
result in the 1loss of all information about the process. The
methodology, then, is to examine point processes first, and then,
bearing in mind that the aggregate processes will be related to these,

formulate the corresponding models. It is worth remembering that
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although some clustering in space takes place entirely within the foot
beat regions, other clusters are likely to occur on the same

scale, but displaced so as to overlap zonal borderlines.

Thus in an aggregate analysis lack of apparent autocorrelation
could be attributed to the fact that no clusters in a particular study
sample crossed any borders. This could lead to predictive
difficulty, which could be avoided if pointwise analysis were possible.
Also, in the final prediction system, pointwise analysis could also
be available for past data, as it may identify 'clusters' which may then
be investigated for further pattern, in terms of mode-of-entry or
other non-spatial data. Thus while beatwise analysis gives an overview
of the system as a whole, and is useful for prediction, for individual
police beat officers who may wish to investigate in greater detail
smaller clusters of phenomena within there patrol area, pointwise
analysis of past data may be of more use. In addition to considering
crime occurrence as a process having spatial interaction and
correlation, thought should also be given to the time dimension. Not
only does one expect that events near in space are correlated, but
also those that are close in time will interact. In order to model the
process completely, a full space-time stochastic process must be
considered. This may be done in several ways. Firstly an analysis of
spatial interaction over several time periods may be carried out. It is
possible that over different time periods, differing
time-aggregated spatial patterns may become apparent. After this,

more sophisticated models may be developed, with both space and time
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autocorrelation, and interaction between the two aspects. These might
be considered as a time series of vectors in the case of aggregated
data analysis. These refinements add realism to the model, as
probabilities of events are affected not only by the outcomes close by in
space, but also those that have occurred recently in time.
Ultimately, models such as those described above can be used as a
framework for a statistical prediction system. Thus, the main aim
of the chapter 1is to investigate space and space-time modelling and
analysis procedures, applying firstly exploratory and then calibratory
methods to the data on reported household burglary incidence in
chapter 2 in the hope of deriving a specific space-time model, (which
may oOr may not be based on existing models) to describe crime
patterns. As yet, no work on making models of this type to explain
crime patterns has been carried out, so a fairly comprehensive

investigation will prove necessary.

4.2 Exploratory Examination of the Data

One of the initial purposes of examining the household burglary data
is to identify and measure any patterns in time or space that may
occur. Initially, space is to be considered in isolation. Maps of
the distribution of crime incidence are first examined, and then
various statistical tests are performed to shed some Ilight on
possible explanation of the spatial variations within these maps, and
on the probabilistic processes which may be used to model geographical
crime data such as  this. After this, the time dimension is

analysed, in order to discover seasonal, and temporally correlated



136

behaviour exhibited by the process. Finally both space and time
are examined together, to see whether spatial processes are independent
of time, or whether the process is one in which time and space
interact. The tests and techniques used will be described in detail in

each section.

4.2.1 The Spatial Distribution Of Burglary

In this section, various techniques are used to analyse the crime
incidence in a purely geographical, or spatial sense. Initially, data
for a single year will be considered. The spatial information
information in the data set is specified to two differing levels of
resolution. Firstly, and to the greatest degree of accuracy, there is a
hundred metre total national grid square reference, based on the
centroid of the postcode unit for the address at which the crime was
recorded. Secondly, at a larger scale of aggregation, the code for
the police foot beat region is also recorded. The Ilatter could be
deduced from the former, if point-in-polygon (Aldred, 1971)
searching techniques were applied, but this could be time consuming
computationally if it were to be done at every beatwise analysis,
so it is better, given that the storage overheads are not unreasonable,
to store both items of data. Although postcodes are in fact aggregate
regions, rather than points in space, the level of resolution that they
offer within the area of the subdivision under examination allows them
to be treated as such. There are 1200 postcodes within the
subdivision, but only 32 beats. An important implication of this

is that point techniques designed for point spatial data may be
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applied here, although at times it may be important to consider
the aggregate nature of the data, for example when several events
occur on the same street, giving the appearance of occurrence at
identical points in space. The crimes reported over the first year
are mapped in figure 4.1. Examination of this map suggests that there
is marked heterogeneity within the spatial distribution of household
burglary incidence, with certain areas being relatively free of crime,
while others are "black spots". This observation in itself may not be
regarded as particularly informative, from the viewpoint of analysing
the process. It may only be of value if considered in conjunction
with other geographically varying factors. For example, nothing has
yet been said about the variation in housing density over the
subdivision. It may be that these "black spots" simply correspond to
areas of dense housing, but apart from allowing for the
"population at risk" in this way, risk of burglary does not notably
differ from house to house. Also, risk may be related to various
social and economic variables which can be spatially referenced within
the subdivisional area. However, although absolute figures in
themselves may not be particularly helpful in this kind of analysis,
they are of relevance to the police force resource management, since
it is actual numbers of reported crimes that are most directly
related to manpower demands, and maps of the spatial
distribution of household burglaries that illustrate which areas require
most attention. Also, a certain amount of analysis of the first
type, in terms of burglaries per unit risk, may be carried out

informally by police officers inspecting maps such as figure 4.1, who
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Figure/: Household Burglaries by foot beat
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view the area in the light of social, environmental and other

geographical knowledge gained from working in the area.

4.2.2 Point Process Estimation: Techniques

Given the points considered above, it seems reasonable to consider the
data both as a point pattern in its own right, and also in relation
to other variables. As a point process, it may be useful to estimate
a spatial probability distribution of the chance that a burglary occurs
at each point within the subdivision from the year long point estimate
crime sample. This may be visualised as a surface in  three
dimensional space, with x and y directions being used to cover the
local geographical region, and the z direction being used to represent
probability density. This could yield two useful statistics. i)
Identification of regions where the probability density exceeds a
certain level (high risk regions). ii) Beatwise averaged risks
(obtained by integrating the surface over the beats in question). In
order to do this, the method of Kernel estimation is applied (See eg
Silverman, 1978a or 1978b). This is basically a technique wused for
obtaining an estimate of the probability density function from a set
of point realisations of some process. To obtain the estimate, an

expression of the form
()= — I 9
- wa 3 “

is used, where k is a smoothing constant, n is the number of

points observed, and g is itself a probability density function, which is
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normally symmetric. The effect of g is to create a "bump" centred on
each point where an observation occurs, locally smoothing the
distribution function estimate. Note that as g 1is a probability
density function, then so is f. Various methods have been put forward
for choosing k, but one of the best established is by informal trials at
various values. Too low a wvalue for k tends to vresult in
under-smoothing, so that the estimate appears spikey, whilst too large
a value tends to oversmooth, towards uniformity over the entire range

of observed values. Note that although the equations shown here refer

to the one-dimensional case, the same procedure may  be
extended logically to several dimensions. The two dimensional -case
gives

= o -¢ =S
s;U‘.S):' KV\KT(L Z:—‘k . ’H\ﬁ)

The multidimensional extension to the kernel function g usually has
symmetry in all directions (isotropy) and has a single mode at zero.
Often, also, kl1=k2. This seems reasonable as it assumes that if an
observed event occurs at some point P in space, although it gives
some information that points are likely to have these events occur
near to it, it does not suggest anything about which directions in the
locality are most at risk. Other methods of distribution estimation
also exist. Some of these resemble the kernel method, perhaps allowing
k to vary over the sampling space. Others base density estimates
at a point on the distance to its jth nearest neighbour in the set

of observed values (Discussed in Silverman 1978a). Distance is
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assumed to vary inversely with density. However estimates of this
type do not return true probability density function estimates,
since as x tends to infinity, the density will vary as > , and the
integral of the density will not converge. Thus, estimates of this
type, although of some use in examining behaviour in the locality of
certain points, are not of use in estimating global density
functions which will be required for mapping purposes. Also, this
method requires ranking the observed value set from each point
where an estimate is required by distasnce. This could be
computationally expensive, particularly in two or more dimensions,
where a sort would be required for every point at which an estimate
was required. Methods using bandwidth wvariation could also be used,
but again, for the purposes of exploratory examination, may prove
computationally expensive. Thus, initially, a simple kernel estimator
will be used for this study. Some choice should now be made for the
form that g takes. One possibility is to take the normal

distribution function,

“AX\/

{
Q8 = oo <

This is not without problems. If a function for g is chosen which
will not become uniformly zero beyond a certain x-value, then for

all observed x-values every single point at which f(x) is to be
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estimated will be affected. If for example, the probability density
function is to be evaluated on some grid with m elements, then nm
evaluations of g would be necessary. However when some grid point is
not particularly close to an observed point, g will be almost
zero. Thus, several evaluations of g will have virtually no effect on
the estimate. Thus it seems reasonable to choose some g
having a finite nonzero domain, that is, having some value a for
which mod(x) > a implies g(x) = 0. It is also reasonable that
g should lead to a smooth estimate, possibly no other reason than that
most 3d graphics packages that could be used to represent this
data will not handle discontinuities in any predictable or sensible way.

Thus, cylindrical functions, such as

Qo = L/¢me?y \x1 < r

- O 2 e

should also be avoided. If this is not the case, computations of high
risk regions could also prove difficult, as these are most likely based
on contouring methods, which like the 3d packages discussed above
also work  well only with continuous data. Therefore a
continuous two-dimensional distribution is required, having finite
nonzero domain. Epanechnikov (1969) has shown that functions of the

form
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with optimal bandwidth, approximately minimises the mean square
error between the estimate of the probability density function and
the true probability density function over the possibility space of
x. This quantity may ©be used as a measure of "goodness of
approximation”. This form of g, then, provides the least biased
Kernel estimation surface (in an overall sense), if the bandwidth is
well chosen. Bearing this in mind, an investigation using the
dataset described in chapter 2 and kernel estimation using g as set out
above will be carried out. A FORTRAN77 program is shown in listing
4.1. The program reads in points from the data set, and a
bandwidth from the terminal input channel. From these it generates a
kernel estimate of the probability surface over a square whose corners
are given by the 8-digit national grid references 41805650 to
43005770, using the Epanechnikov kernels. The output of this will be
a regularly spaced grid of density estimates, which may be fed as
input to a contouring or surface drawing package, allowing visual

representation of the surface.

4.2.3 Point Process Estimation: Results

The results of the kernel estimation using various bandwidths are given
in figures 4.2 - 4.4. These surfaces were generated using the
UNIRAS mapping and graphics software. As suggested earlier,
lower bandwidth values give estimates that are sensitive to individual
point values, whilst at very high bandwidths oversmoothing occurs, and
the estimate takes on the shape of the kernel function with a high

variance, with all observations when viewed on this scale appearing
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clumped near the central mode. This type of behaviour is usual with
kernel estimation. The most useful descriptive information is found
from intermediate bandwidths. From such bandwidths it may be
seen that the highest risk regions are those to the south of
the subdivision, close to the edge of the central urban region. In
the northern regions of the beat, where housing is less dense,
virtually no burglaries occur. Discussion with police officers working
in this subdivision supports this result. A further offshoot of
discussion with  these  officers, when  showing them  various
graphical representations of the spatial distributions of crime in
the subdivision, is that the surfaces are capable of conveying more
visual impact, and information, than either scatter diagrams, or
three dimensional histograms or block diagrams, when examining data
such as this for general spatial trends. For example, there are
local modes in the density estimate, which could be identified by either
a surface plot or contour diagram, and then referenced to the local
geography if a map of relevant local features is superimposed. This
benefit perhaps justifies this sometimes Ilengthy and strongly
mathematical approach to spatial analysis as an alternative to simply
producing  scatterplots or histograms. Further quantitative
analysis may be obtained from the kernel estimates by not only
attempting to identify the modes of the distribution, but also
those regions where the probability exceeds some chosen level. These
may be thought of as "High Risk Zones". Of course, the
boundaries of such zones can only be approximate, firstly because the
kernel estimates themselves do not exactly specify the distribution (a

finite set of points of data could not entirely specify a surface
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function, if nothing at all is known about its functional form) and
secondly because there is no objective and numerically precise definition
of the boundary probability between "high risk" and "low risk".
However, some arbitrary cut-point can be put set down, vyielding a
result that when mapped provides some useful insight into local

geographic crime patterns at the exploratory stage of analysis.

Such a map is shown in figure 4.5. Here the value delineating the
high risk zones from elsewhere is P=0.975. This value 1is chosen
because the volume contained within the contour and the surface is
approximately 5% of the total volume integrated over the subdivision.
This calculation is demonstrated in appendix 1. This is equivalent to a
5% upper tail region in two dimensions, defined so that the risk of
burglary at any point within the region exceeds that of any point

outside of it.

In figure 4.6, the beat boundaries are shown superimposed over the
high risk areas. Clearly, there is an overlap between the beats of the
high risk areas. Thus, to some extent, it seems likely that any risk
factors assigned to whole beats, in the form of some aggregated

statistic, will exhibited noticeable spatial autocorrelation.

4.2.4 Housing Density

A very important factor, and one not yet investigated, is that of
housing density. A useful though informal investigation of the

relationship between housing density and risk of burglary is proposed



149

4180 4200 4220 4240 4260 4280 4300

5770 5770
5760 5760
5750 5750
5740 5740
5730 5730
Crime
- 5720 - 5720
Probability

5710 5710
5700 5700
5690 5690
5680 5680
5670 5670

B w130 )
_- 0.0- 130 5660 5660
5650 T 1 5650

x1000/ Sq. Mtr. 4180 4200 4220 4240 4260 4280 4300

Figure 4.5






151

here. Using the mapping and graphics package UNIRAS again, a
smoothed surface model of housing density may be created from a set
of (x,y,z) triplets. Here x and y are the easting and narthing of
1981 census EDs and z is the household count for the
corresponding ED. These triplets are interpolated using a routine
supplied with the package, allowing an estimated grid-based model
of housing density to be fed into a 3-D graphics algorithm. Further to
this, contours for crime risk may be superimposed wupon this
surface, allowing a visual comparison. If housing density alone can
explain expected household burglary risk, one would expect to see
similarly shaped contour line patterns, with high risk of crime
corresponding to high density housing. An inherent problem with
this approach is the reliability of the data. Since the most recent
census data applies to 1981, it is possible that housing patterns may
have changed to some extent between the time of the census and the
time of the crime data survey. This is not too great a problem, as in a
local area if there are notable discrepancies between housing
densities and risks, it may be easy to check if housing has been
developed or demolished in the intervening period in the areas in
question. However, were this method to be carried into an automated
system, perhaps over several subdivisions, such subjective checks
would not be possible. This is a major caveat to adoption of a wider

range of census variables on the prototype system.

An alternative graphical method can also be used. If the grid
estimates for both the housing and burglary variables as densities

are on grids of the same dimensions, a third variable may be created,
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by computing the ratio of the first variable to the second. If burglary
risk is proportional to housing density, one should expect a reasonably
flat surface for this variable, as it varies over space. Both of
these methods are illustrated in figures 4.7 and 4.8 respectively. It
may be seen that, although there are areas peaking in absolute
crime frequency also have dense housing, other areas of similar
housing density do not exhibit such high burglary rates. These appear
as "pot holes" on the second format of 3-D display. It appears that
although housing density does contribute in some way to the
likelihood of burglaries occurring in certain regions, it cannot
be the only relevant factor. This is supported by the observed
changeability of household burglary risk between regions of similar

housing density in the study area.

4.2.35 Aggregate Spatial Analysis: Techniques

Having considered burglary as a point probabilistic process, where
events appear as random points within two-dimensional space, the
process will now be considered as being counts of crimes associated
with the different police foot beat areas. It is necessary to
understand the aggregated processes when predictions are to be carried
out, since forecasting techniques capable of predicting exact points
where crimes will occur do not exist. On the other hand, aggregated
counts or rates of burglaries could be treated as a time or space-time
series, and analysed in this framework for prediction purposes,
since techniques for this type of data have been reasonably

well established.
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An initial analysis can be done by modelling the crime counts as a
Poisson process. Firstly, to allow for seasonal variation, yearly crime
counts will be considered. In the -collected data, as well as
individually coded events for the first year, there exist cross
tabulated counts of crimes per beat per week for the following three
years. As an initial overview, it may be worth considering the yearly
crime rate as a Poisson process with a hazard function (Kalbfleisch

and Prentice 1980) 7((:) , where lamda is a function of period one

year.

Thus, the probability of a crime occurring in the interval {t, t+d} is
if t is calibrated in yearly units. Thus, for each yearly count, the

distribution will be poisson(k) where

.
K= e- §5 xte)

\ Ke  ndefendeny o) Past K |

and the three yearly observations will be  distributed
independently. The maximum likelihood estimator of k will be the mean
value over the three years for each beat. For each beat k is
tabulated in table 4.1 and mapped in choropleth format in figure 4.9.
It may be seen that the three high risk areas to the south of
the subdivision are still highlighted, event after spatial aggregation to
the beat 1level. These mean values can then be regressed against

various social, economic and demographic variables estimated from the
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Table 4.1

Yearly Burglary Rates By Police Beat

Beat Average Rate

T1 73.67
T2 35.67
T3 38.33
T4 33.00
T5 51.33
T6 34.67
U1l 42.00
U2 49.33
U3 127.67
U4 74.33
Us 53.66
Ué 1.00
V1 47.33
V2 52.33
V3 57.67
V4 31.00
w1 37.67
w2 41.00
w3 71.67
w4 41.00
X1 30.67
X2 119.00
X3 105.33
Y1 34.00
Y2 77.00
Y3 108.00
Y4 87.67
Y5 53.33
Z1 75.67
Z2 124.33
Z3 94.67

Z4 2.00
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1981 census, if some investigation into geographical patterns link

with household burglary incidence in the long term is sought.

If the model is to be applied strictly, then the regressions should be
based on Poisson likelihood functions, as specified by a Poisson linear

model of the form

Burm\c.\r'\es ~ Porsson € f-\\
where po= ?{ (£ o)

X = Q‘ﬁp\mc\'er \Jo.nc;\o\es'

Often the function phi is chosen to be the log function (See eg
Bishop et al, 1975). However, in this case, the counts of observations
are perhaps best converted into crime per household figures, and it
may be more appropriate to apply the transformation m to the
count as a dependent variable, which which will then become
approximately Normal, with a fixed wvariance of 0.5 (Andscomb, 1948).
If significance testing of the linear predictor variables is to be
carried out, it must be borne in mind that each mean is based on three
separate observations, supposed at this stage in the analysis to
be independent, so that each observation is weighted three times.
This cancels out any inaccuracy of significance testing or confidence
limit estimation that may have been caused by assuming a sample of

size n (where n is the number of beats) against the true value 3n.
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Some important data that is needed in order to compute beatwise
household burglary density is the household counts within each beat.
Unfortunately these cannot be obtained exactly, since the smallest
level of spatial resolution that such information available 1is the
Census Enumeration District, and the boundaries of these zones do not
necessarily coincide with those of the beats. However the counts may

be approximated in the following way.

The centroid of each ED is available (although it is not clearly defined
as to how it is computed), so that a simple estimator may be achieved
by assigning each ED to the police foot beat containing its centroid
using a point-in-polygon technique, and assigning its count of
households to that beat. Summing over all of the EDs in a given beat
will lead to the estimated household count for that beat. As long
as the areas of the EDs are smaller than those of the beats by a
reasonable amount, errors should not be too great since several EDs
will be wholly contained in a foot beat. It is only those overlaying

beat boundaries that could contribute to error.

This technique can also be applied to other census count
variables that are tabulated to the ED level of spatial resolution,
allowing regression modelling as an attempt to discover which
aggregate beat characteristics best predict long run crime rates in
those beats. Again at this point attention should be drawn to the
problems raised earlier in the chapter when attempting this type of
analysis. Firstly, there is a time lag between the census variables

and the crime figures. In addition to this, measurement is being made
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at an aggregate level, so the analysis is subject to the Modifiable
Areal Unit Problem (Openshaw, 1984), and if the spatial patterns in the
variables do not coincide well with the ©Dbeat delineations, their

effect may go unnoticed.

Notwithstanding all of these difficulties, there is still some value in
carrying out the analysis. Certain patterns may become
apparent, if sizes of fluctuations in space are sufficiently large
scale to be detected in a set of beatwise aggregations. Also it may
throw some light on characteristics of local geodemographics likely to
influence crime incidence, and perhaps give certain clues about any
spatial interdependence that might need to be incorporated into a
stochastic spatial crime prediction model. For example, if the
presence in a region of certain age ranges tends to correlate to
higher crime rates, might this not suggest that neighbouring areas to
those having large populations in this range are also at vrisk, if

journey-to-crime routes cross the boundaries of adjacent beats?

Prediction of this type would not be feasible for a final model,
however, since the independent variables could not be measured easily
on a week by week |Tbasis, which would be necessary in a
real-time short-term crime forecasting  situation. In conclusion
then, while this is reasonable at the exploratory analysis stage in
order to provide ideas for a working model, the multivariate approach
would not translate directly to such a system, due to the
problems encountered in monitoring all of these variables on a weekly

basis.
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Up to this point, the analyses in this section relating to
aggregate data methodologies have not allowed for spatial
autocorrelation in the response variable. For example the previous
regression based methodology although informally acknowledging that
the processes are spatially linked, does not allow for this in the
formal mathematical model. In fact, each beat is treated as an
independently distributed variable, completely uncorrelated to its
adjacent beats. This 1is justifiable to some extent, since the
independent variables used to predict crime rates are also likely to be
autocorrelated, and it is hoped that this will explain the
autocorrelation in the response variable to some degree. However,
given all of the pitfalls discussed above, and also given that the
final prediction model will be required to predict future values for
beats solely on the basis of past crime data, it will be of greater
value to investigate the spatial correlation of crime counts, viewed as

a realisation of a spatially interdependent probabilistic process.

This may be done in a number of ways. Two commonly used models for

spatially autocorrelated processes, due to Moran (1950) are

EQZe\ 25,020 = MY Z G- ()
Nor (.EL\\t;J,:Si‘O =0*

(Conditional Autoregressive Model)
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Where 2L
Cij

crime count at beat L,

matrix of similarities between beats

alternatively, one could use

Eos Ny 20 (- )t &
o~ N, ) \nAe?eném\’\:s-

( Simultaneous Autoregressive Model)

Both of these models can be used to express eguivalent processes (see
Ripley, 1979). In each case the error is normally distributed with
mean zero and variance e} L This is not unreasonable if the
crime counts are poisson distributed, and thus m is approximately
normal. Moran (1950) proposed a measure of spatial

autocorrelation to be

1= L nZwyy W - (Xy- iﬂ/[(zng\ Ex-%"]

Similarly, Geary suggested

C = L0 2wy (-1 Ta 2wy (-7

The coefficients of ‘a/ were initially assumed to be 0/1
adjacency indicator variables, although CIlff and Ord (1973) proposed

that these could be generalised to any matrix, as a continuous
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similarity measure. The coefficients I and C can both be thought of

as tests of f0=0 in the hypotheses

X= M +PWIE-pYt+ &
£~ N(e, o) mdePﬁr\er\\'\Q '

In this test W is assumed to be known, leading to some difficulty.
Alternative possibilities for W could be
1) A simple dij matrix of contiguity
2) Some monotone decreasing function of distance between beats
3) Some monotone increasing function of common boundary
distance of beats
4) Some measure of social similarity (a "distance" between
aggregate census variables.)

5) Some combination of any of the above.

Consideration of this problem is given in Clff and Ord (1973) and
Hagget et al (1977). Bartels (1979) suggests that the simple
contiguity matrix has proved to be as adequate as other, more
sophisticated postulated matrix coefficient models. However, this may
not be the case here, where there is a great deal of wvariation in the
size of the foot beat areas. Thus, parts of the large north western
beat (see eg. figure 4.9) are up to 10km from the nearest
neighbouring beat, whilst in certain urban beats, no point within the
boundaries is more than about 3km from the nearest beat. In the
simple contiguity model, the crime rates for each pair of adjacent

beats would be represented as being equally correlated, which is
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unlikely to be the case, particularly if in the situation of rural beats

where the centres of population are not near to the coincident borders.

Adopting a matrix based on common boundary lengths also seems
problematic, again due to the variation in beat areas. Large rural
beats like that to the north west of the study region have long
boundaries in common with other neighbouring beats, which would
imply strong correlation wusing this model. In addition, the
smaller inner city beats would have relatively small correlations
implied, whereas journey to crime discussions (Pyle, 1974 or
Evans, 1980) would suggest that these beats, in zones of similar high
housing density, are more likely to interact. It would seem that
there is some danger of the common boundary criteria
discriminating between likely and wunlikely correlates in the opposite

direction to that of a desirable target model.

This leaves distance based metrics, in purely space-time based
systems, or possibly some combination in these and social, housing and
economic measures. A reasonable purely distance-based measure
might be the distance between the centres of population for each
beat-pair. These could be estimated using ED-based counts: For
each ED whose centroid lies within a given beat, if P(i) is the
population of the ith ED within the beat, and X N is its centroid

(expressed as a vector) then the centre of population could be defined

A
2. Py Xy
t=i

Z- Pw)

|

as
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Clearly, one source of error here will occur when the EDs
straddle beat edges. Thus, such a matrix will be subject to a
sensitivity  test, by reassigning edge-coincidence EDs to the
neighbouring beat. Figure 4.10 shows the initial set of centroids, and
figure 4.11 shows those for which some edge EDs have been reassigned
to adjacent beats, after random selection with a 50% probability of
reassignment. No large wvariation in centres of population has
occurred. Thus it is perhaps not unreasonable to consider the
weighting matrix wusing this method. In addition to this, it is also
possible to consider a similar distance measure, based upon centroids

weighted by household counts.

Given the problems with census variables due to time-lags and
spatial registration, it may be as well not to use these as a basis for
measurement in any great amount. Thus it would seem wise to
consider mainly distance-based matrices. To this end, four possible
matrices will be considered. Firstly the simple 0/1 contiguity
matrix, then the housing and population centroid distance matrices,
and finally one based on beat area centroids, defined as
(X, 3) whee X ond % oge  Cenbroids ot
X and Yy \emenys oy o veder  Jdekahen OF bedr okl

the simplest form of distance-based model. If the difference
between the simple models and the more complex, although
more carefully designed models is slight, considerable computation time

may be saved by adopting these in the prediction system. However,
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Figure 4.10
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Figure 4.11
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it is necessary to examine the more complex systems initially to see
if this is 1in fact the case. The aim of this part of the analysis will
then be to discover which, if any of the proposed matrices might be
used to model a space-time series used to predict short term crime

densities.

4.2.6. Aggregate Process Analysis : Results

Firstly, the regression model is considered. The wvariables to be
incorporated in this model are listed in table 4.2. Certain variables
are liable to be correlated, and so a crosstabulation of the Pearson
correlation coefficient is given in table 4.3. In each cell in this
table, the first quantity is the estimate of the coefficient, and the
second, in brackets, in the significance level of this value against a
null hypothesis of no correlation. The table suggests that, at least in
terms of prediction, if not in those of substantively explaining the
processes occurring, not all variables need be incorporated in the model
since there are certain clear cases of high correlation between predictor
variables. A stepwise or back-substitution technique could be used to

eliminate superfluous variables.

Initially, the simple correlation between each variable and the crime
rates are examined (table 4.4). Many of the census variables

exhibit strong correlation with the crime rates.
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Table 4.2
Proposed Independent Variables For
Crime Risk Model

Description Variable Name Census Derivation

Population POPN €937

No. Households HOUSES C929

Proportion "Young" YOUNG 10000 * (C71 + C78 +C85 +C92 +C99)

DIV C50

Propn. LA Housed COUNCIL 10000 * C983 DIV C929

Propn. Male UE MALEUN 10000 * C860 DIV C720

Propn. Youth UE YOUNGUN 10000 * (C865 + C870 + C875) DIV

(C725 + C730 + C735)

Bus Journey To Work BUSJTW 10000 * C4731 DIV (C4411 + C4412)
Overcrowding OVERCRWD 10000 * C945 DIV C929

3 Cars or more THREECAR 10000 * C1174 DIV C1170

Owner Occupied OWNOCC 10000 * C967 DIV C929

Furnished Rental FURNRENT 10000 * C1063 DIV C929

Retired Persons RETIRED 10000 * C1669 DIV C1629

Single Households SINGLEH 10000 * C1360 DIV C1351

The C-codes refer to census variable names.



POPN

HOUSES

YOUNG

COUNCIL

MALEUN

YOUNGUN

BUSJTW

OVERCRWD

THREECAR

OWNOCC

FURNRENT

RETIRED

SINGLEH

POPN

1.00000
0.0000

0.96290
0.0001

0.22040
0.2419

-0.00903
0.9622

-0.09205
0.6285

-0.29825
0.1094

0.14481
0.4452

-0.05443
0.7751

-0.27651
0.1391

0.06342
0.7392

0.00252
0.9895

-0.28463
0.1274

-0.27478
0.1417
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Table 4.3

Pearson Corrzlation Coefficients

HOUSES

0.96290
0.0001

1.00000
0.0000

0.20160
0.2854

-0.11339
0.5508

-0.13620
0.4730

-0.34957
0.0583

0.07943
0.6765

-0.10205
0.5915

-0.30032
0.1069

0.06035
0.7514

0.18549
0.3264

-0.14350
0.4493

-0.03732
0.8448

YCUNG

0.22040
0.2419

0.20160
0.2854

1.66000
0.C000

0.47135
0.0086

0.66901
0.0001

0.56029
0.0013

0.56154
0.0013

0.56754
0.0011

-0.37732
0.0398

-0.53585
0.0023

0.23311
0.2151

-0.62178
0.0002

0.15103
0.4257

COUNCIL

-0.00903
0.9622

-0.11339
0.5508

0.47135
0.0086

1.00000
0.0000

0.81417
0.0001

0.74935
0.0001

0.76656
0.0001

0.64028
0.0001

-0.59468
0.0005

-0.85114
0.0001

-0.51490
0.0036

-0.20030
0.2886

-0.15832
0.4034

MALEUN

-0.09205
0.6285

-0.13620
0.4730

0.66901
0.0001

0.81417
0.0001

1.00000
0.0000

0.94345
0.0001

0.84326
0.0001

0.85867
0.0001

-0.56442
0.0012

-0.82839
0.0001

-0.17267
0.3615

-0.20710
0.2722

0.08752
0.6456

YOUNGUN

-0.29825
0.1094

-0.34957
0.0583

0.56029
0.0013

0.74935
0.0001

0.94345
0.0001

1.00000
0.0000

0.72321
0.0001

G.79963
0.0001

-0.36465
0.0476

-0.72846
0.0001

-0.16742
0.3765

-0.22690
0.2279

0.06272
0.7419



BUSJTW OVERCRWD THREECAR

POPN
HOUSES 0.07943
YOUNG 0.56154
0.0013
COUNCIL 0.76656
0.0001
MALEUN 0.84326
0.0001
YOUNGUN 0.72321
0.0001
BUSJTW 1.00000
0.0000
OVERCRWD 0.75034
0.0001
THREECAR-0.71113
0.0001
OWNOCC -0.75062
0.0001

FURNRENT-0.21765
0.2479

RETIRED -0.15014
0.4284

SINGLEH 0.01238

0.9482
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Table 4.3 (continued)

0.4452

-0.10205
0.6765

0.56754
0.0011

0.64028
0.0001

0.85867
0.0001

0.79963
0.0001

0.75034
0.0001

1.00000
0.0000

-0.37816
0.0393

-0.67931
0.0001

-0.05669
0.7661

0.14481 -0.05443 -0.27651

6.7751

-0.30032
0.5915

-0.37732
0.0398

-0.59468
0.0005

-0.56442
0.0012

-0.36465
0.0476

-0.71113
0.0001

-0.37816
0.0393

1.00000
0.0000

0.65238
0.0001

0.13942
0.4625

OWNOCC FURNRENT RETIRED SINGLEH

0.06342
0.1391

0.06035
0.1069

-0.53585
0.0023

-0.85114
0.0001

-0.82839
0.0001

-0.72846
0.0001

-0.75062
0.0001

-0.67931
0.0001

0.65238
0.0001

1.00000
0.0000

0.13746
0.4689

-0.12345 -0.10687 -0.02820

0.5157

0.01211
0.9493

0.5741

0.8824

-0.19220 -0.22877

0.3089

0.2240

0.00252
0.7392

0.18549
0.7514

0.23311
0.2151

~0.51490
0.0036

-0.17267
0.3615

-0.16742
0.3765

-0.21765
0.2479

-0.05669
0.7661

0.13942
0.4625

0.13746
0.4689

1.00000
0.0000

0.05058
0.7907

0.59348
0.0006

The upper figures refer to correlation coefficients,
figures to their significance.

-0.28463
0.9895

~0.14350
0.3264

-0.62178
0.0002

-0.20030
0.2886

-0.20710
0.2722

-0.22690
0.2279

-0.15014
0.4284

-0.12345
0.5157

-0.10687
0.5741

-0.02820
0.8824

0.05058
0.7907

1.00000
0.0000

0.33892
0.0669

-0.27478
0.1274

-0.03732
0.4493

0.15103
0.4257

-0.15832
0.4034

0.08752
0.6456

0.06272
0.7419

0.01238
0.9482

0.01211
0.9493

-0.19220
0.3089

-0.22877
0.2240

0.59348
0.0006

0.33892
0.0669

1.00000
0.0000

and the lower
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Table 4.4

Correlation Of Explanatory Variables With Crime Rates

Variable Coefficient

POPN 0.53803
0.0022

HOUSES 0.51794
0.0034

YOUNG 0.74778
0.0001

COUNCIL 0.37611
0.0405

MALEUN 0.60580
0.0004

YOUNGUN 0.46088
0.0104

BUSJTW 0.59051
0.0006

OVERCRWD 0.55223
0.0016

THREECAR -0.45124
0.0123

OWNOCC -0.41009
0.0244

FURNRENT 0.16145
0.3940

RETIRED -0.50738
0.0042

SINGLEH 0.05038
0.7915
Lower figure represents significance of difference of
coefficient from zero.
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A stepwise regression model is now run. The purpose of this is not
so much to see which variables are eventually to be included
(Indeed, variation of the significance levels for entering and dropping
variables can lead to variation in this final set of wvariables) but to
discover what level of between beat variation can in fact be explained

by a model of this sort.

The results are tabulated in table 4.5. It may be observed that 82% of
variation may be accounted for in this manner. Variables relating
to  unemployment figure highly, as do models relating to
demographic age profiles of the beats. It is hard to interpret
whether these variables are reflecting characteristics making people
likely to commit crimes, or likely to be victims, or some mixture of
both of these effects. Note that the house crowding indicator is also a
strong predictor. This is perhaps not surprising, as it may be a
proxy for the types of housing characterising the area as a whole.
Theories such as those of defensible space (Newman 1972, 1976) suggest

that certain types of housing are at greater risk.

Concluding this analysis, it is important to recall that a final system
cannot be expected to have all of these variables constantly
monitored in any formal way, and interpretation of this must be done
in terms of how one might expect a process involving only crime rates
themselves to behave. One conclusion is that if certain age groups
are more likely to commit crime than others, then given there may also
be transport constraints limiting journey to crime distances, areas

nearer to housing with high concentration of these age groups will be
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Table 4.5

Results Of Stepwise Regression

VARIABLE NUMBER PARTIAL MODEL

STEP ENTERED REMOVED IN R**2 R**2
1 YOUNG 1 0.5592 0.5592

2 POPN 2 0.1464 0.7056

3 YOUNGUN 3 0.0861 0.7917

4 COUNCIL 4 0.0331 0.8248
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at greater risk. More generally, if position in space does effect
risk of burglary, a certain degree of spatial autocorrelation is bound to
occur in the observed rates. Further evidence supporting this
suggestion can be based on the theories linking housing design and
risk of crime. For example, in more modern housing schemes in
which houses are similarly styled, possibly with security being taken
into account in the design process, then a reasonably sized cluster
of housing will have similar low risks of burglary. The converse
may apply to an older area. Thus, one expects risk to be
spatially correlated over regions of similar housing, from house to
house, possibly street to street, and over entire estates. All of
these arguments lead to the idea that the data for crime rates alone
should exhibit spatial autocorrelation, which will now be investigated in

its own right.

At this stage, it seems appropriate to examine the degree of
spatial correlation between the beats, and to attempt to model the
structure of this correlation. The results of this, unlike those
above, may be directly incorporated into a model of a stochastic
process that may be used directly in a system to predict the crime

rates.

As discussed earlier in the section on technigues, various
systems of autocorrelation may be modelled (based on the W-matrix),

and tested as an alternative hypothesis to a system of
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independently distributed zones, showing no spatial interaction. As
put forward in the techniques discussion, four basic models will be
used. Firstly a simple contiguity matrix, and then three distance
matrices, for distances between housing centroids, population
centroids and areal centroids (mean centres) for beat pairs. It 1is
suspected that the similarity measure for the weighting matrix should
be a monotone decreasing function of the distances. A reasonable
model might be to have Wij = C}‘LJ where dij is the distance between
beats 1 and j using one of the above definitions, and a is a positive
real number. Initially, values for a of 1 and 2 will be considered.
Some consideration will then be given to estimating a maximum
likelihood estimate of a. However, the initial models will be fitted

using a=1 or a=2.

For any of these test methods, the Morans-I coefficient may be used
as a test of the hypothesis rho=0 in the equation above. The
Geary's-C coefficient may also be wused, but CLff and Ord (1973)
demonstrated that I is preferable to C in simulation studies, and by
showing that the relative efficiency of I to C is always greater than or
equal to unity. Note that, although an I-statistic may be computed for
each different hypothesis (with respect to each of the W-matrices)

significance tests will not be independent.

Tests were carried out for each of the matrices, using the
recommended procedure by CILff and Ord (1973) for approximating the
upper tail of the distribution of the I-statistic. As usual the

X-variates were the square root based transformations of the crime
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density per household, due to the approximate normal
distribution of this quantity under a Poisson crime count assumption.
The results are listed in table 4.6. As can be seen, the only
formulation for the W-matrix that did not prove significant is the
contiguity based model. It could be that as beats do vary greatly in
area, and in their internal population geography and housing
geography, that simple contiguity is wunhelpful in explaining
interdependence. This is particularly likely if the effects of one or two
large rural beats are weighted beyond their importance in their

effect on adjacent, possibly equally large and remote beats.
It is apparent here that more significant results are obtained when
a=2 than when a-=1. It may be wuseful to find a Dbetter

approximation of a, perhaps based on maximum likelihood estimation.

For the CAR model the log-likelihood of the scheme is given by

S0 aened) + Bl - o (-RY B (2

where
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Table 4.6

Moran’s I-Coefficient For Differing Spatial Weighting

Matrices
Characteristics Results
Exponent Correction for Distance Moran’s 1 Significance
no. Houses Metric
- Y Contiguity 0/1 -0.0718 0.6122 NS
- N Contiguity 0/1 0.5730 0.2513 NS
1 Y Household Centre 0.0576 0.0125 *
1 Y Population Centre 0.0678 0.0063 **
2 Y Household Centre 0.4441 0.0000 *%*
2 Y Population Centre 0.5507 0.0000 =**
1 N Household Centre 0.0388 0.0482 *
1 N Population Centre 0.0387 0.0525 NS
2 N Household Centre 0.1498 0.0849 NS
2 N Population Centre 0.1663 0.0925 NS
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Note that the coefficient a would appear in several terms of the
determinant of B, which could prove problematic. However, this may
be overcome if Pseudo-likelihood estimation is carried out

(Besag, 1975,1977). The Pseudo-likelihood is defined as

PL-= T( Pe( 2 ZS,:)-#L)

which is to be maximised to estimate a, sigma and c. For a CAR

process, .

A (PLY = n (2Fo) - 7o W -0 (2 -

Minimising this reduces to finding 0" as the mean square of the
residuals (& - Q\ - a(i— MY s and choosing 6 to
minimise o (Ripley, 1979). However, this process has been
found to be problematic, since it requires the repeated evaluation of a
32-dimensional determinant, in order to iteratively maximise the above
expression. This, and possible difficulties with rounding error in a
computation of this size, suggest that the integer trial values alone

should be included in the study. These show reasonasble correlation in

any case, if a reasonable choice of distance metric is used.

Thus, a reasonable estimate of a spatial process for crime rates is
given by a CAR model with Wij = o\xE‘l- This may be used in

simulations or calculations for predicting crime rates in this region.
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4.3 Time Series Analysis

Having gained some wunderstanding of the household burglary data
when considered as a realisation of a spatial stochastic process, the
next major step is to analyse the data in the time dimension. This is
essential for short-term forecasting techniques could not be made
without an understanding of how future crime rates are linked to those
in the past, in some regular way. It is expected that some
autocorrelation in time should occur, since informal conversation with
police officers suggests that burglaries in particular areas occur in
temporal clusters (ie offenders show a tendency to return to the
same area and repeat offences over short lengths of time), and this
may also be the case for other types of crime. It is also possible, in
some instances, that this correlation may be negative. Consider, for
example, a situation where a large number of burglaries in an area may
lead to increased police presence, which may in turn then lead to a
reduction in criminal activity. However, although  this
autocorrelation has been conjectured, it remains to examine the data
for empirical evidence. Also, little is known about the length of
time over which correlation might occur. This second fact is of great
relevance, as it answers the question "how far back in time must past
crime counts be stored in order to obtain reliable predictions of the
coming weeks values?". The following section deals with the statistical

methodology used to investigate these questions.
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4.3.1 Methodology

Initially, the total number of crimes each week within the entire
subdivision will be considered as a single time series, but eventually
this should be expanded to allow for differing predictions to be made
for different localities. The purpose of initially examining at this
large scale is to obtain some idea of the time scales that the
stochastic process work in, without the added complication of how
this interacts within space. Some of the results in time at this
scale may then be used as a point of departure for modelling the more
complex space and time process in the final model building stage. A
further defence of the aggregate analysis approach, at least
initially, is that summed data of this type is more nearly Normally
distributed, and although some non-parametric techniques exist for
time series analysis, the main bulk of the subject lies in parametric
models involving Normality. Eventually, of course, smaller scale
beatwise systems must be considered, but early hypothesis tests,

based on parametric Normal models, can be made at this larger scale.

A review of literature on time series analysis suggests (eg Glass et
al, 1975) that two main streams of analysis procedure exist: That
based on the frequency domain, and that ©based in the time
domain. The former attempts to account for the variance of a variate
evolving in time by partitioning it into components associated with
oscillations at various frequencies, whilst the latter views a the
same process by relating the current value of the variate to those

observed in the past, and to other time-referenced random processes.
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The second type of analysis seems more appropriate for the crime
prediction application. Past weekly crime counts are easily extractable
from the database, and these could then be used for predictive

algorithms in the crime pattern analysis system.

In contrast to analysis in a spatial framework, well established methods
of time series -classification and identification already exist. One
of the most common is that given by Box and Jenkins (1970),
which has already had wide application in the field of economics
and several other areas. It proposes a family of stochastic processes,
which is sufficiently general to cover a diverse range of situations.
For example, one of its members yields the model for a time series
used to derive the exponential smoothing technique, but another gives
rise to the naive technique. Many much  more sophisticated
schemes can also be attained. The authors suggest a methodology
for identifying which member of this family applies to the data under
study, and then to calibrate the specific coefficients relevant to

this model.

One useful substantive spin off from this method is that the
number of weeks over which autocorrelation effects are still apparent
will be found in the model identification stage. This could have an
interpretation in terms of offender behaviour when viewed as a

phenomena constrained by time and space.
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Stage 1 involves find suitable p, d, q values. A common way of doing
this is by estimating autocorrelations at various lags, and seeing
how the values change as lag increases. The autocorrelation at lag k is

defined as

Covarance UZ¢, Ze-n)
\IOJ'\OACQ, th\

and the sample estimate of this is

N K .

Z;_ (It_ Z) (2‘7‘*»(‘}*)
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ﬁ(»{h

for each k. It can be shown that in the case where p=0 (purely
moving average processes) then P/\(K) = 0 for all k>q. This will
clearly not hold exactly for the sample estimate, but a significance
test may be performed, since asymptotically p\ (K) ~ N(0,1/n).
Similarly, a test may be performed on sample partial autocorrelation
estimates (based on the residual at lag k when other values have been
allowed for). This decays exponentially (or is a sine wave whose
amplitude decays) beyond lag q in the Moving average -case.
The converse holds for purely autoregressive models - the
partial autocorrelation becomes zero if k>p and the ordinary
autocorrelation decays. Finally, if p and q are both nonzero, both
coefficients will eventually decay. Given this knowledge, sample

autocorrelations and partial autocorrelations should yield some clues



185

as to p and q. It can also be shown that if d>0, autocorrelation will
not tend to zero as Kk 1Increases, as a deterministic trend will

always contribute to correlation.

Therefore, inspection of these curves leaves the analyst with
reasonable guesses as to p d and gq. Next, consider the second stage
of the process, where values of the regression coefficients are to be
estimated. Several methods exist to do this, one of which is the
conditional least squares method (BMDP manual 1985). In this
technique the regression coefficients and the mean level are chosen to
minimise

La] A~
Z &
L=t
~A A
LWho€ 6 v - B‘ Et~\ 'tz,e - (\‘C\‘\h“ ‘{'C‘\‘ (2&-‘)\

At this point, significance tests to see if any ais or bis should not have
been included may be performed. Also, as estimated residuals now
exist, it may be worth checking these for autocorrelation. If the model
is good, there should be little evidence of this, as residuals should be
independent. This constitutes the third stage of analysis, where the
model arrived at is checked. From this, ideas as to p, d and q may
be modified, and the sequence of stages repeated until a workable
compromise is met. This should not usually take many cycles, perhaps
two or three. At this point, the performance of competing models

should not differ enough to merit further examination.
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A methodology such as this is well established, and deserves
consideration clearly, but there are some shortcomings. Firstly, it is
based on the assumption of a stable relationship between the
variable at time t and the wvalues at t-1, t-2 and so on. The
regression coefficients are fixed with respect to time. Possible
changes in circumstance may occur in the study area, however,
and these may cause changes at some point in the coefficients.
Such changes may not be modelled in the basic Box-Jenkins
approach. Secondly, parametric assumptions are made in the model,
with respect the the error terms. These are assumed to be Normal,
but this may not be the case. A non-parametric test may be a useful
back wup to the Box-Jenkins approach. Such a test is now
proposed. A nonparametric test of autocorrelation can be based on a
test of the null hypothesis that x(t-1) and x(t) are indepedently
distributed with the same distribution function F. Define the

statistic s(t) as

1 if x(t)<x(t-1) and x(t)<x(t+1)
1 if x(t)>x(t-1) and x(t)>x(t+1) for t=2 ... n-1

0 otherwise

The sum from t=2 to n-1 of S(t) can be thought of as a count of
peaks and troughs in the data, viewed as a sequence in time. It may
be shown, (appendix 4.2), that if n is sufficiently large, this sum
(call it U say) has an approximately Normal distribution with mean
sn 29
— - ——

Thus a test of the null
\g a0

2/3(n-2) and wvariance
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hypothesis of temporal independence may be carried out if U is
computed. A lower-tail value of U is evidence of either a trend
or positive correlation, whilst a large U corresponds to excessive
peaking and troughing probably brought about by negative

correlation or oscillations.

A final test is also proposed to check against the first phenomena of
changes in the Box-Jenkins coefficients over time. To do this, the
fairly crude technique of splitting the three years worth of data into
single yearly subsets and analysing each in turn will be carried out.
the results should be fairly consistent if the model 1is stable over
time. However, if this does not appear to be the case, a more

adaptable forecasting technique than Box-Jenkins should be used.

4.3.2 Results

Firstly, consider Box - Jenkins analysis applied to the entire time
span of the data set. Figure 4.12 illustrates the autocorrelation
function, whilst figure 4.13 shows partial autocorrelation. Notice that
although the autocorrelation function is not significantly greater
than zero after the first lag, the function appears to die out
exponentially, at least until random noise dominates the high order
lag estimates. Similarly, the partial autocorrelation, also
significant only at lag one, appears to vary randomly beyond lag two

or three, say. Given that a parsimonious solution is preferable, and
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Figure 4.12
Correlogram for Household Burglary
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Figure 4.13
Partial Correlogram For Household Burglary
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that any effects beyond where the correlogram estimates are swamped in
white noise cannot be detected, it seems a reasonable first guess to

model the process as as AR(1). This will be the point of departure in

the Box-Jenkins modelling procedure.

At the next stage, three models will be fitted to the data.
Firstly, an ARIMA(0,0,1), then (1,0,1) and finally (0,0,2). These can
be seen as testing the model suggested above, and then testing the
effect of adding either a second autoregressive term or a new moving
average term to this model. The results are shown in table 4.7.
Clearly, the moving average term is not necessary, and the second
autoregressive term has only a minor effect. Therefore adoption of
the  initial model thrown up from correlation analysis seems
reasonable. A final check may be to examine the residuals of the fit
of this model for autocorrelation. If there seems to be none, it

would suggest that these residuals are independent, as there are

supposed to be in the model.

After this, the nonparametric test is carried out. Using the
formula set out in appendix 2, as n=156, we have that (2/3)(n-2) =
105.67 as the expected value of peaks and troughs under a null
hypothesis of independence. We also have that the the variance is
43.01 using the formula if n=156. This leads to a standard
error of 6.6. The confidence limits are then 105.67+/- 1.96x6.6,
roughly (92.7,118.86). The observed count is 87. This falls below
the lower confidence limit of a two-tailed 5% significance test, and

suggests the tendency for the data to peak or trough 1is less
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Table 4.7

Box Jenkins Model Estimation: Conditional Least Squares Method

Model Estimates Variances T-ratio
ARIMA(1,0,0) AR(1)=0.9806 0.0163 60.25
ARIMA(1,0,1) AR(1)=0.9864 0.0141 60.25

MA(1)=0.1542 0.0816 1.89
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than one would expect under an assumption of independence.
This suggests either positive autocorrelation in the data,
or a positive trend. Thus, the non-parametric results seem to add
support to the conclusions based on Box-Jenkins analysis in the last

paragraph.

Lastly, consider Box-Jenkins analysis on the data split into three
separate years. Here the ARIMA(1,0,0) model is fitted to each year
in turn. Estimates for the autoregression coefficient and the mean
level are given in table 4.8. Simple significance tests may be carried
out, between pairs of coefficient estimates, given asymptotic Normality
of the eétimation process. These must be considered fairly informally

for two reasons.

1) Tests on different coefficients and for different time periods

are not independent.

2) The estimates themselves are part of a time series related to

the one used to model the data set.

They do, however, give some indication of consistency, or lack of it,
between the coefficients when viewed as time progresses. It seems
reasonable to compare the first and last year, as estimates based on
these two years are least likely to exhibit correlation. If al for 1984
is estimated as 0.9955 with S.E. 0.0407 and al for 1986

estimated as 0.9963 then the difference between the estimates for the
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Table 4.8

Consistency Of Box-Jenkins Model Over Time

Year AR(1) Coefficient Variance
1 0.9955 0.0407
2 0.9851 0.0229

3 0.9963 0.0149
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two years will be distributed approximately Normally with mean 0 and

S.E

) \
JSE\I ‘rSE:: whese SE, and SE, ore sWA.Errs
oF ecach eshmake .

under the hypothesis that there is no difference between them, and
assuming approximate independence of the two estimates. Since
al986-a1984 = 0.0008 and the combination of the standard errors using
the formula above gives 0.0443, the standardised Normal test variate
is 0.1806. This is not significantly different from zero at the 5%
level of significance (for a two-tailed test the lowest significant value is
1.96). Thus, evidence here suggests that a simple autoregressive
prediction scheme should work adequately with the subdivisionally

aggregated data.

4.4 Space-Time Models

Until this stage, the model for crime rate variation has been considered
either as a process in space aggregated over time, or as one evolving
in time but totalled over space. While analysis of the data from each
of these two perspectives is informative, greater realism may be
achieved if the ©process 1is considered to be simultaneously
referenced in both space and time. If it can be stated that relatively
little work has been applied to the problem of spatial stochastic
processes, then the scarcely of work in space-time processes is
an order ‘of magnitude greater. Various techniques do exist in
terms of multivariate time-series analysis, treating each beat as a

time-series interacting with all of the other time series in the system.
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Such a view of the system is reasonable, but there is a danger of
ignoring the geographical aspects of the process. The crime rates of
certain beats may correlate highly to those of others for spatial
reasons (ie there will be a tendency for adjacent beats to have
correlated rates), and modelling  should allow for this. It
therefore seems appropriate to attempt some specific analysis of

space-time dependency before fitting multivariate time series models.

In the <case of household burglaries, there is strong informal
evidence that incidents occur in ‘'epidemics' or 'clusters'. In more
detail, the likelihood of a burglary occurring at a given address at a
given time is thought to increase if addresses in the locality have
recently experienced burglary. Although based on different causal
assumptions, similar quantitative models may be applied to infectious
disease epidemics, and several statistical tests for 'epidemicity'
exist. The purpose of these tests is to determine whether space-time
dependency of the kind described above exists, and if it does, to what
scale of time and distance. Therefore, as an initial stage of
space-time analysis, tests of this sort will be applied to the
household burglary data. The results of these tests may then be used
as input to the building of multivariate time series models whose
correlation structure properly reflects the local geography of crime

incidence.

After this stage, the consideration of several possible
space-time series models will take place, allowing a decision to be

made as which is the best predictor. Each model will be calibrated on a
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training data set, and then applied to further data, allowing the
quality of its performance to be assessed. The conclusion of this
study should vyield a model suitable for incorporation into the crime

pattern analysis system.

4.4.1 Analysis Of Space-Time Interdependence :

The 'Epidemic' Effect.

As mentioned above, tests have been developed for space-time
interaction, so that processes in which an 'Epidemic' effect occurs
may be identified. The most conceptually simple test of such
clustering is that initially proposed by Knox (1964) which the
number of event pairs that are close in both space and time are
counted, and the significance of this count is tested against the
distribution of such a count under the null hypothesis that the
distributions for spatial and temporal referencing of events are
independent. Closeness in space and time are defined by the
experimenter, usually in terms of Euclidean distance and absolute time
difference. When the both the distance and elapsed time between an
event pair do not exceed certain values set by the experimenter,
(termed the critical time and critical distance) the pair is said to be
'close', and the test statistic is defined as the count of all close

pairs in the data set.
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Knox suggested using a Poisson approximation for the distribution of
this statistic, which works well if the proportions of space-close and
time-close events are small. However in the case of the crime
data, when Dburglaries have been reported for several adjacent
postcode units and on most days of the year, relevant definitions of
closeness may well give larger proportions than would be suitable for
this sort of approximation. Thus, an additional strategy will be
adopted. Under the hypothesis that spatial and temporal distributions
are not related, any permutation of grid reference-day of year
pairings are equally likely. Thus, if each possible Knox count for
each permutation is evaluated and these are sorted, the observed
count may be compared against this list. Since each value is
equally likely, the ranked list of possible values of counts gives a list
of n-tiles of the null randomisation distribution, so significance
testing may be carried out. However this would require n!
evaluations of the Knox statistic, and the computation time required
would be impractical. Thus 99 permutations will be generated randomly
and the test statistic compared against this. It may be shown that

the exact significance of the statistic is its rank when added to the 99

simulated results (Hope, 1968). This ©practice is known as

Monte-Carlo testing.

Knox test provides a test of the hypothesis stated below:

hO : f(space,time) = fl(space)f2(time)
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where f f1, f2 are probability density functions and t is the time of an

event, x is the position of the event, expressed as a two

dimensional vector. Tests of this hypothesis may be generalised by

introducing the test statistic

2 Xg e

Y

P
~
-

where X = f(d;_J-)

and Y = g(t-‘,j)

Here, Knox's test is obtained by putting
f(x) =1.0ifd <c,

0 otherwise

g(x) 1.0if t <ecp

= 0 otherwise
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However, wusing these ©particular f and g values excludes any
evidence of clustering at scales exceeding the critical time and
distance. This could be thought of as reducing the power of the test
- a bad specification on the part of the experimenter may stop only a
slightly = weaker clustering process from being detected, since
weighting of any close events exceeding the critical time and distance is
zero. Mantel (1967) proposes tests in which f and g are monotone

decreasing decay functions, rather than abrupt step cutoff functions.

An earlier idea of Mantels was to use ZEL"\ALS itself. In this
case, testing for clusters would take place in the lower tail of the
distribution of the test statistic. @However, this was thought to be
problematic, as the greatest weighting would be given to events
least close in space and time, which are wunlikely to exhibit
correlation even if some space-time clustering does occur. (It might,
however, be a good statistic for 'repulsive' clustering, when an event
occurring at a certain (X,t) point inhibits similar events near to it
for a time period, although even this may be inhibited if the data
covers a very large expanse of space and time, on a much larger scale
than the scale of space-time repulsion.) Thus, the result in this case
would be a reduction in sensitivity to cluster detection, or a loss of
power in the testing procedure. This leads to the decision to use
monotone decreasing f- and g- functions. Previous simulations have

shown that functions of the form
. -\
F(&‘C)) = kA‘\_) *0{3
-\
9 (ky) = (kyy +B)
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are most sensitive (Siemiatycki, 1978). It is therefore proposed
to run further Monte Carlo tests using the above statistic, in addition
to the Knox tests. Here, a = 100 and b = 1. 1In order to
reduce computing time, beyond certain day-gaps (over 7 days) the
weighting will be uniformly zero, although it decays smoothly up to
this point. However, all levels of distance will be non-zero weighted.
Since the type of clusters being sought are less than weekly

gaps, this is unlikely to cause problems.

4.4.2 Accuracy Of Spatial Referencing

Another aspect of this kind of test is connected to the precision of the
spatial referencing. For the post-coded household burglary data,
8-digit grid referencing is used. This specifies easting and
northing to the nearest 100m. In the vector notation, each element of
X

is coded to 4 significant digits. It is possible that Knox testing will be
carried out for critical distances of this order of magnitude (say
between 100-500m). Since there will be an associated uncertainty of
+/- 50m to each reference (assuming grid references are rounded), the
effect of 'wobbling' the grid centroids should be examined, to
discover to what extent the Knox statistic and its Monte Carlo

significance will be affected.

It may also be important, particularly in rural areas, to

consider the effect of spatially referencing events by postcodes. In
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less densely populated regions inter-household distances may be large,
and a single postcode could cover quite a large region. This may tend
to pull spatially dispersed phenomena together, or at least give this

appearance in the database. This effect may also be analysed.

Turning attention initially to the former of the two problems,
simulation again seems to be the only reasonable course to take.
Several estimates of Knox's statistics may be computed from several
'wobbled' data sets. The procedure consists of adding a uniformly
distributed distance in the range [-50,50] metres to each easting and
northing in the data set, and then computing Knoxs' statistic. This
process 1is repeated several times (say 100). Thus each 'wobbled'
dataset could have produced the final, rounded data set that is
actually recorded in the data base. Each simulated data set may be
thought of as having been drawn from an infinite pool of possible
exact data sets, and each of these datasets as having an associated
Knox statistic. Thus, from modelling the uncertainty in the true
dataset, the uncertainty in the Knox statistic can be investigated. A
sample of Knox statistic values can be generated and from this
approximate confidence limits can be computed. This process need only
be done for critical distances near to the 100m level, as for higher

distances the relative effect of rounding will be small.

Ideally, in addition to gaining an approximate distribution for the
Knox statistic it might be useful to perform a randomisation test on
each of the 'wobbled' data sets, to see if there is any uncertainty in

the significance results obtained on the rounded data. However it is
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feared that if this is done on all 100 simulated sets, the cost in
computing time will be too great, requiring 100x100 computations of
Knox statistics. More informally, however, it will be possible to

examine the test results for a handful of 'wobbled' sets.

The problems associated with errors due to spatial referencing by
nearest postcode centroid will now be considered. In urban regions,
nearer to the city centre, it may be noted that the distance between
postcode centroids is near to 100m, so that every possible 100m
rounded point is used. In these cases, the effects of wobbling may be
regarded as similar to postcode rounding. Problems arise, however, in
remote areas. For example, in beat W3 a few addresses are of isolated
houses sharing postcodes with their nearest mneighbours, but the
distance between these neighbours greatly exceeds 100m. A possible
means of addressing this problem is to run further simulations
allowing greater variations for certain postcodes. A simple way of
achieving this is to allow different levels of wuncertainty for each
postcode sector, based on mean distances between households within the
sector. These mean distances will be based on square roots of mean
areas occupied by individual houses. Since approximations of the

number of houses and the areas of postcode sectors exist, these

figures may be computed.
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4.4.3 Results

The results of the Knox tests are listed in table 4.9. These are based
on the 100m grid references from postcode centroids. Four main tests
are carried out. The first of these is for a critical time of 1 day, at
a critical distance of 200m. This is designed to be sensitive to
short-term time clusters, separated by about two postcode units.
Thus, almost daily epidemics at a 'within neighbouring streets' level
of separation is Dbeing investigated. Then the distance is increased
to 3km, which is roughly the average beat separation distance
based on household centroids. These two critical distances are then
applied in turn with a critical ‘time of one week, this being the
anticipated horizon for forecasting in a working system. Clearly, the
observed figures are all highly significant, showing a much larger
tendency for events close in time and space to occur than could be
attributed to chance. In addition to this, Mantel-type statistics are
computed as specified in 4.4.2. The results are listed in table

4.10. Again, results appear highly significant.

Having carried out these tests, the 'wobble' test results must now
be considered. The initial simulation, investigating the
variation of the knox statistic under rounding, is summarised in table
4.11. Note that the count of space-time close events for wobbled
data has a marked tendency to exceed that of the rounded data for
critical distance 200m. This appears to occur also with Mantels

statistic.
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Table 4.9

Results Of Knox Tests

——-—- Poisson Model --- -——— Randomisation ---- Closeness
k E (k) SD(k) Sig. E(k) SD(k) Sig. Days Dist.
460 222 7.73 0.000 222 7.72 0.000 1 200m
1505 1092 14.91 0.000 1092 15.39 0.000 7 200m
10407 10211 33.04 0.000 10204 37.30 0.000 1 3km
51294 50516 101.05 0.000 50163 80.40 0.000 7 3km

N.B. k is the number of events close in both space and time as set out
in the "closeness" columns.

Table 4.10

Results Of Mantel Test

Under randomisation:
Observed Mean Value St. Dev. Signif.

1625.41 1378.71 11.08 0.000
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Table 4.11

Sensitivity Of Knox Tests To Variability Of Spatial Referencing

Closeness Distribution of k under "wobbling"
Days Distance True k Mean S.D. Min Max
1 200m 460 532.6 8.65 510 554
7 200m 1505 1840.0 25.58 1779 1907
1 3km 10407 10450.1 10.70 10422 10479
7 3km 50516 51468.0 33.07 51359 51559

N.B. k defined as in table 4.10

Table 4.12

Sensitivity Of Mantel Tests To Variability Of Spatial Referencing

Mantels Statistic : Variation under "wobbled" data
True Val Mean S.D. Minimum Maximum

1625.41 1547.44 2.62 1540.92 1553.45
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It seems that results provide sufficiently extreme evidence in favour of
clustering that the extra uncertainty in wobbled data cannot
detract from this. In all of the wobbled cases, the reduction in Knox's
statistic due to rounding applies equally to true and randomised
data sets, so that ranking is virtually unaffected, and significance

levels remain stable.

Finally, the above techniques are applied to Mantels test. Due to
the increased computational overheads in computing mantels test, only
9 simulations are carried out. However, as may be seen in table 4.12,

similar conclusions may be drawn.

4.4.4 Conclusions

Firstly, there is strong statistical evidence from the tests applied
to this data that space-time 'epidemics' in this data do occur.
This effect is apparent at both a day-to-day neighbourhood level,
and on a week-by-week inter beat Dbasis. Both of these
conclusions may be put to good use in a crime pattern analysis system.
The former could be used to interpret past data; those cases which are
within critical time and distance of each other could be highlighted on
a VDU graphics map, indicating potential clusters. If the crime
records for the highlighted points are consulted, subjective analysis of
incidence descriptions and modus operandi might lead to patterns

being identified.
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On a predictive basis, beatwise crime rates tabulated by week may be
used in a space-time autoregression (STAR) model or similar. The
larger scale spatial scale of aggregation is required here to reduce
computational tasks when making predictions: analysis accurate to
postal code units means forecasting requires the analysis of some 1200
spatially autocorrelated time series, which would be a daunting task
for currently available hardware, to say the least! However, the
previous analysis indicates that there is sufficient space-time
interaction between beats on a week to week level of separation to
suggest that beatwise time series STAR predictors (or similar) will

produce fruitful results.

Consider mnow the results of the 'wobbling' simulations. As
discussed, the result of 'wobbling' has the effect of increasing Knox
scores. A possible explanation for this is that rounding has the
effect of forcing the spatial referencing onto a lattice whose points are
allocated at 100m easting and northing intervals. Thus, a
'repulsion' effect is introduced detracting from the spatial
autocorrelation effect. This effect becomes negligible for larger
distances, as the interval of the lattice becomes relatively small,
making it virtually 'cover' the region under examination. However,

for critical distances close to 100m, -the effect is notable.

The above argument applies mainly to rounding errors, but errors due
to assignment to nearest postcodes must also be thought of. The
simulations applied to this problem yield similar results to those

purely based on rounding. This is most likely explained by the fact
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that the majority of postcodes are within 100m of each other,
providing a similar partitioning of the study region to the 'rounding
zones'. The relatively small number of rural postcodes do not
strongly affect the overall measure of clustering. However, since
assignment inaccuracy of this type is more likely to distort rural
data, a cautious conclusion to be drawn from the 'epidemic' tests
might be that there is evidence for this type of clustering in wurban

regions (or more formally, in densely populated areas).

When considering both of the above effects with specific regard to
Knox's statistic, it is relatively easy to understand the effects. As
the contribution to Knox score is constant (for fixed time
intervals) for all distances below the critical, and uniformly =zero
above this, a pair of close events could be separated by rounding
error (if each one lies on opposing sides of a rounding zone border)
reducing their effect on the overall statistic to zero. If they are
brought closer together (ie onto the same rounding lattice point) this
would not alter their Knox score contribution as they are already
close. Thus, the overall effect of rounding is to reduce the
statistic. A converse effect could also occur for rural events which
may not be close, but are brought together by mapping onto the
same postcode unit centroid. However, for this data, the incidence of
this is low, so this effect will be superseded by the former. Thus it
is reasonable to conclude for this data set that greater accuracy in the
spatial referencing of events may lead to even more significant

results than those obtained here.
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4.4.5 A Space-Time Prediction Model

In the last section, tests have led to the conclusion that the spatial
distribution of household burglaries in the study area interacts
strongly with their distribution in time. Events of up to a week in
the past have some effect on the likelihood of events occurring
in the present. Clearly, then, there is a reasonable basis for the
short-term forecasting of the geographical distribution of household
burglary rates into the future, using this data. The aim of this
section is to devise a model, linking the geographical
distribution of past data to that of the following week; that is, to
model the data as a space-time series. As discussed previously, to
limit computational overheads it will be best to analyse data
aggregated to foot beats. However, it is hoped that any space-time
models wused will be general to any areal unit, so that at some point
in the future, should advances in computer hardware permit, the
method may be implemented to a scale of greater resolution, for
example to post code wunit areas. Thus, it is required to develop a
stochastic model of crime rates in each beat on a week-by-week basis.
This may be achieved by borrowing from both the spatially
autocorrelated model of Moran and from Box-Jenkins style time series

modelling.

It has already been noted that relatively little work has been done in
the area of space-time modelling, and some of the model fitting
techniques may appear to be 'ad hoc' in nature. One of the principal

aims of the PhD. is to create a prototype predicting system for
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evaluation, so that it seems important to have some form of fitted
model, perhaps only as a first approximation, rather than to get side
tracked into a parallel problem. However, the design philosophy of
the final system is modular, so that any model calibration
improvements to be discovered in other research could eventually

replace my initial efforts.

4.4.6 Model Specification

Several prototypes for space-time models exists, and in
particular a family of space-time models analogous to the Box-Jenkins
framework for time series modelling may be put forward. To simplify
matters, the moving average component could be dropped to give
models of the form

o

X -8 2 Cm(Xe o B v E

E/v N(O)C')

In these models, space-time stationarity must be assumed. This is

defined by Reane¥tv , \Q3Q.

This makes it necessary to standardise each element of X by
subtracting its mean wvalue. The (k,j)th element of the matrix

reflects the influence that Xy\ has on )(:) bt In a process such as
x /
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this, in which spatial autocorrelation is expected to occur, the
specification of the elements of A should reflect the spatial
structure of the areal units. It seems reasonable to fit a distance

decay function to the elements of A, thus:

C‘ = Q& Q(di}\

where dij is a distance measure between beats j and k (Choices of
distance measure have been discussed in 4.2), and f is a monotone
decreasing function, such as an inverse power or negative exponential
function. Considerable computing time will also be saved if the
effects of second-order adjacencies, and orders beyond these are
ignored. This 1is reasonable, when considering the investigation for

the purely spatial model earlier in this chapter.

The model can be further simplified if the term in Xt is dropped from
the right hand side of the equation. This effectively makes the
elements in Xt conditionally independent, given the value of Xt-1.
This will simplify the model calibration, and in a final predictive
application will obviate the need to solve simultaneous linear
equations in order to determine the forecasted values. An assessment
of the loss in accuracy due to this simplification will be carried out,
and if this loss is not great, predictions will take this form, to

further the cause of obtaining a parsimonious predictive model.
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4.3.7 Coefficient Estimation

Attention will now be turned to calibrating models of the kind
discussed above. Firstly consider the calibration problem in which
each term is independently distributed. Suppose that the usual square
root transformation has been applied to the burglaries per
household figures, and that further to this, they have been
standardised about their respective means. Then, the conditional

likelihood of an observed vector X at time t is

LRPLIX-p= CCY - IACK-M =X, -pD)
Then the likelihood of an entire crosstabulation table of beats by
weeks (conditional on the values observed at week one) is given by
L Cetterem = T LOYC (XY

= ;’El Ko"erpl (Xi-Cxi )T CXp-CXeadd
and so

- nm
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Now suppose A is parametrised by a parameter vector t. Then, the
value of t maximising Q, that is, the maximum likelihood estimate of t,

satisfies

?_&\,\ =0 D Z (KL-C(Q))_(;‘_,\T(XL‘ ((-é\)_l((,) =0
00 \®
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Thus t minimises the least squares error of Axt-1 when viewed as a
predictor of xt. Note that once this value, from now on referred to as
SS, has been computed, it can be shown that

sS

n m™m

5

Suppose, for example that a model of the form
_&t = C.&&-| t é

-
e Cry s ocdy
is proposed, then the MLEs of c and alpha would be given by

o min Z \ ZS& - C-)—(—t-,-\\.‘-

X

Note that this problem cannot be solved explicitly, and that often
least squares problems require iteratively. However, several
numerical algorithm libraries exist enabling numerical solutions to be

computed.

Finally, it may also be noted that likelihood ratio tests may be perform
on the curve (fits, to test null hypotheses referring to
simplifications of the parametric form of A. For example, to test
whether separate values of C;should be given for each beat in a model

of the form

-
Cy; = <t dy
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then

L\, v
—akn (S dlf;h ~ K

LCX\ Qv

where k is the difference in degrees of freedom of the two

models.

The more complicated case occurs when the term in X is no longer
assumed to be independent. In this case, the multiplicative model for
the likelihood of a given realisation is no longer correct, as the
deviations about the the means for each beat are now correlated. One
possible solution approach to estimation in this case is to use
'pseudo-likelihoods’. In the purely spatial case, these have been
used by Besag (1975) to estimate parameters in an autoregressive

model. In the purely spatial case, pseudo-likelihood is defined as

# beals

T‘_ POx \ Xsri . 9)

sy
where  J/L  Adeackes the Ser of r\ega\n\x:u-s of asea (.
Thus, true likelihoods of each event are replaced by the products of
the conditional likelihoods of each observed beat rate given the rates of

its neighbours, and spatial autocorrelation in these conditional
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distributions. In this space-time model it is proposed to extend this

jdea into the time dimension thus :-

_{gt T:Y\ P Xi,;,\ XE/L'} R 6“4')“)
with, for example,

X.‘:.S ~ Neemal \x\.) \ xo“/i.j, XJ/‘- aYy @

Then, given the Normal distribution model, the pseudo-likelihood of

the entire beat by week crosstabulation will be given by

Aheds  Hoveds

TU 7T exe (l?_()(;;\" ;,‘;‘*X\Q‘Z .\’“XQ'S/C’A)
S o We&ri

and again this is minimised by a least squares fit, but
regressing the values of a beats' neighbours onto itself in addition to
the values lagged by one or more weeks. When forecasting is being
carried out, this leaves a simultaneous equation in the predicted

values to be solved:-

EL 2_(_:_\.,\\ = AE(X_;&\\ Al BZ&J

whereas exclusion of unlagged autocorrelation yields predictions
directly as a linear transformation of the observed lagged crime

rates.
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4.4.8 Choosing Models To Be Fitted

Until now, the fitting of STAR models has been considered only for
the general case of parametrising the regression matrices Ai. In this
section, a set of specific parametrisations will be proposed. All of
these are intended to reflect the spatial and temporal structure
which examination of the data wup to now has suggested occurs.
Some of the models specified will be relatively simplistic, just having
a general power law relating the inter-beat distance with the
regression  coefficients, while other will be more complex,
allowing for different beats having different sensitivity to phenomena in

surrounding beats, also allowing for non-lagged autocorrelation.

A)

i) = 2 (AT CXG) Xy

KeS/{

Here, no spatial autocorrelation at lag zero is assumed, and all beats

are assumed equally sensitive to neighbouring crime rates.
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B)

EXw) = 2. (&LQQCLZI“) X CL:Q&-’

Kedlc

In this case, sensitivity to adjacent beats varies throughout the

subdivision, but no allowance for lag zero correlation is made.

C)

E QXL“S*\ = 2-:' (,C)s‘uzx ((—\1\‘3 * CZXK;H\ -Q-J.:(.“_\'\ 1 Q‘\"X“A‘“‘

Kedri

As A) but considering events at time lags of two weeks also.

D E(xu = 2 (A (CXer G Yt Ay

Ked/L

As A) but allowing for zero lag correlation.

E)

E Q XLS*J = Z ( C)J»:&(Qoi,lﬁﬂ* Q\ll\(\‘h}

Ked/l
+ A XG
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As D), but allowing sensitivities to vary from beat to beat.

4.4.9 Results

For each of the five models suggested in the last section, coefficients
are estimated using the least squares technique. The crime count
variables are subject to the usual correction for household density and
square root transforms. The goodness of fit results are listed in table
4.13. These are fitted to data with the mean levels extracted, so that
the number of parameters refers only to those in the autoregression
formulae. A notable change in least squares fit occurs when moving
from the base model (ie when only mean values for each beat are fitted)
to the simplest correlated model (model A). A second notable jump
occurs when terms for zero lag spatial autocorrelation are incorporated

(models D and E).

In addition to simply measuring the descriptive index of least squares
fit, some likelihood ratio tests may be carried out. These allow
significance testing of some relevant hypotheses. Using the likelihood

ratio formula set out in the last section, it can be shown that for
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Table 4.13

Goodness-0f-Fit Of Space-Time Autoregression Models

Model Code (see Text) Sum Of Squares No. Parameters
A 1.2432 2
B 1.2275 31
C 1.2320 3
D 1.1793 4
E 1.1778 61
Table 4.14

Hypothesis
Base vs A
A vs B
Avs C

Likelihood Ratio Tests

Likelihood Ratio D.F. 997 Point
420.25 2 9.21
59.47 29 49.6

42.35 1 6.63
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models A-C, and for the base model, ratio test statistics for pairs of

models as competing hypotheses take the form

Mode\ 1 (A, Porumerersy Vs Model 2 (b, Pammeles)

La L
which are asymptotically distributed astln (IR X«,nlwhere W.and M.

are the number of parameters in each model. Clearly, and without
loss of generality, model 1 must be taken to be that with the greater
number of parameters. Models D and E cannot be subject to testing of
this sort, unfortunately, since they are not calibrated in maximum

likelihood terms.

Test results are listed in table 4.14. There is clearly strong evidence
for some autocorrelated model against the base model, since the test
statistic is about 200 times the mean of its null distribution!

In addition to this, both models B and C outperform A. The drop in
sums of squared error in model D suggests that this is notably
different from these models also. However, the marginal improvement

of E on D suggests that E does not notably outperform D.

These results suggest once again that there is a significant space-time
effect in the occurrence of household burglaries. It appears that the
best models are those capable of incorporating the effects of both
lagged spatial autocorrelation effects and synchronous effects at the
time over which burglary rates are to be predicted. It must be borne

in mind, however, that these results are eventually destined to be



221

part of a desktop micro forecasting system, and therefore the
complexity of the synchronous correlation may prove difficult and time
consuming to evaluate in a working system (this is discussed in the
light of the final Bayesian prediction model in the following chapter).
However, the best performing of the remaining models offers a
significant improvement on the base level model, and should provide a
relatively easily programmable solution to the problem of crime

prediction which is reasonably effective.

4.5 Conclusions

A recurrent result in all of the fitting of spatial probabilistic models in
this chapter is that there is a strong space and time interaction effect
in the data, and that due to the autocorrelation effect of this,
records of space and time referenced household burglaries provide
useful information when predicting future crime rates over several
regions. In fact, latter results suggest that these alone can be the
basis of a prediction system. This is strong evidence for the feasibility
of an automated crime forecasting and analysis system that may be
implemented at subdivisional level. As suggested in chapter 2, data
consisting of spatially and temporally referenced crimes would be readily
available in the everyday workings of a police station, so that the
"housekeeping" of the data set on a day by day basis could be easily

implemented.
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Another important point is that some of the analysis techniques covered
in the earlier parts of the chapter may also be applied to this data;
namely the kernel estimation and Knox testing procedures. As recorded
earlier, one police officer, on seeing the surfaces obtained from
kernel estimation found the representation more readily interpretable
than say, scatter plots or bar histograms of the data. Another found
the Knox testing idea particularly relevant, pointing out that their
personal method of crime pattern analysis was to look out for clusters
of events that were close in space and time. Thus, these methods
yield helpful methods of past data presentation which may also be of aid
to crime pattern analysis. Since the data required for these techniques
will already be fed into the system for predictive purposes, it would
clearly be beneficial to incorporate the techniques as options in the

prototype system.
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LISTINGS FOR CHAPTER 4
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C
C *hkkkkhkkk Listing 4,] **kkkkkkkkkkkk
o
C
C Kernel Estimation Program in two dimensions ----
cC Written for police crime incidence data ------
C Automatically attaches files
C
C Channels 1 = CRIMESPOTS (point locations of crimes)
C 2 = KERNMAT (3030 Kernel estimation of PDF)
C
C

REAL*4 KERNEL(30,30), X, Y, K, BANDWT

INTEGER I, J

DO 50 T =1, 30

DO 50 J =1, 30
50 KERNEL (I,J) = 0.0

C
C Define the Kernel Size
C

WRITE (6,'(13H&Enter Bandwidth > ) ')

READ (5,*) BANDWT

K = BANDWT * BANDWT

BANDWT = BANDWT / 4.0
C

C Attach Relevent
‘ CALL SETLIO(1
CALL SETLIO(Z
g Begin the main 1
- 110 READ (1,'(T3,

C
C Convert to array parameters
C
X = (X - 418C.0)/4.0
Y = (Y - 5650.0)/4.0
IMIN = INT(X - BANDWT)
IMAX = INT(X + BANDWT + 1)
JMIN = INT(Y - BANDWT)
JMAX = INT(Y + BANDWT + 1)
IF (IMIN .LT. 1) IMIN =1
IF (IMAX .GT.30) IMAX = 30
IF (JMIN .LT. 1) JMIN =1
IF (JMAX .GT.30) JMAX = 30
C
C Fit the kernel
C
DO 100 I = IMIN, IMAX
DO 100 J = JMIN, JMAX
HUMP = 1 - ((X-FLOAT(I)-0.5)**2 + (Y-FLOAT(J)-0.5)**2)/K
IF (HUMP .GT. 0.0) KERNEL(I,J) = KERNEL(I,J) + HUMP
100 CONTINUE
GO TO 110
120 CONTINUE
SUM = 0.0
DO 130 I =1, 30
DO 130 J =1, 30
130 SUM = SUM + KERNEL(I,J)

Files

, 'CRIMESPOTS ')
, '"KERNMAT ')

oop

2F4.0)',END=120) X, Y



C Make it a distribution 225
C

DO 140 I =

DO 140 J

140 KERNEL (
C

C Output Coordinates

C

, 30
1, 30
,J) = KERNEL(I,J) / SUM

[ T | B

DO 150 J = 30, 1, -1
DO 150 I = 1, 30
150 WRITE (2,*) 1I*4+4182.0, J*4+5652.0, KERNEL(I,J)
STOP
END
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Appendix 4.1

Calculation of Approximate Confidence Regions

Consider an approximate 57 confidence region R such that

F)> ) Vv xeR, 4¢R

Although an exact functional form for f does exist, mnamely the kernel
estimate as an algebraic expression (see main part of chapter), a
faster method would be to calculate values of this function on an n x m
grid of arguements and multiply each by the grid square area. This will
only approximate the integral over a set of square, but should be
adequate if F is reasonably smooth. When such an array of values has
been computed, it may then be sorted in descending order. Denote the
kth element in the one-dimensional representation of this array as Ay
and let i(n) and j(n) be the original coordinates of the element in the
m x n grid before sorting. Then find K Swch Yhatr

" =
f_;x,L >o0-0S 'Z—_‘Dtcéo‘og

=

=t
The set of grid squares such that

i"QJ)JLO < v, JQQ

are then an approximation of the required area . Alternatively

e SRS j“""?

ma y also be considered as an approximation, as a lower limit. From
these, either F could be estimated as the value:)iwﬁivided by the grid
square area, and this could be given to a contour drawing program, or
the squares themselves could be coded and fed to a raster based program
to map the relevant zone.
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Appendix 4.2

The Peak Count Test Statistic

Consider a data set (X} with n observations, with each X independently
and identically distributed (IID). For k = 2 to n-1, 1etik be defined

as

1 '\L (IK > A, and XK>1~(~th oc ( XXk and Xu<-xx-)

0O oterwise

Then, the peak count statistic is
2 =P
K
and thus

E(P)= T EW) = «»-ELD

but

—

t({'K)= Pr(i.y(: \) < 3:;
LEW) = 30

If XA, A« K and are IID, then any ordering of these is equally likely.
Al

Replacing by ranks, there are 4 arrangements out of a possible 6for
which (= j.: See below
3
Xy | \ % 2 3
{
Aw L 3 ' 3 2
3(_;(& \ 3 9\ 3 ‘ \ 1

LK O | \ { (@) \
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Also,

Var (P) = Z Vor (ud ¢

T Cov iy, )
.3

3 ER

(1)

If {)-x\> 2 then (oV((‘{,;‘kK):qz), because no element of il)_‘p(‘-,,ij*&

is correlated with any of § Xy, X, Xy .

Now  ar L)z E (L) - LEWSY

ECL) - EWY

il
w(ﬂ

md Cov Clun, L = B Clenld - E G ECLO
E(d= EWW= ?‘3

E Cynli) = P (== 1) ®
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The probability (3) is the probability that a pair of consecutive peaks
in a sequence of four numbers

appear. This is computed by direct
enumeration:
‘f\ 4.\. =24 CoM\)tM‘O)‘\&

1o SnSh We condhon.
3

. . . <

“ PF(LK-l-'LK-' |) -

——

Yo
. \ T
.- Ccov ( ('K, \.vl*u\ = %—: - 'i) = -

Finally (v (\[_\(*1, 'LK> = £ QK*?.LA - E (L»(ﬂBE LLK)
E (kN = E;

EC L‘(d\-“» = Cr k:\rkn.: i—w = 1)
As above, direct enumeration is used .

tn S\ =1\20 COMB\wu\\onS, 54 5&\\5% e condihon.

P L = = = S4 :_CL
¢ L=z D 12z¢ | 20

. VOika (= 3 - (X\* .
Co (Lv\z,(.v(\ 2% 1) vy

but from (1) and (2) since

(OV (L'A'lo [‘_J).‘. ¥ V(\)
Cov Ciy, L5)= BV

vas© (‘\'3) o(\/d
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Var(Peak Count) = (n-2)ed =+ 'le\-'S)P + 2n-4NY
o \ \
= g - 5n-3) « %CA—QA
= Sn _ L=
' Ao

So, we have the mean and variance of the peak count statistic, under
the hypothesis that {X} is IID. The Central Limit Theorem may be used
to show that, if n is sufficiently large, the sum of the peak
indicator variates is approximately Normal. This allows hypothesis

testing to take place.
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CHAPTER 5

A BAYESIAN APPROACH TO CRIME PATTERN ANALYSIS

5.1 A Brief Outline of Bayesianism

The Bayesian interpretation of statistical inference and measurement

differs fundamentally from the classical in several ways. The most basic

of these differences is in the definition of probability. Classically, the
probability of an event is defined in terms of relative frequency (See eg

Kyberg and Smokler, 1983). The probability of a particular outcome of

an experiment or process is the limit of the proportion of times that this
particular outcome occurs as the experiment is repeated indefinitely. An
important corollary of this is that classical probabilities are only defined
for infinitely repeated events. In Bayesian terms, a probability is

defined in terms of "degree of belief". Before an event occurs, it is a

measure of the Ilikelihood of particular outcomes occurring. This

definition is more generally applicable, and in this framework unique or

finitely reproducible events may also have probabilities.

In terms of inference, the Bayesian model combines prior beliefs about

some hypothesis with experimental evidence (ie. data) to produce

"posterior beliefs". Given the Bayesian definition of probability, the
prior and posterior beliefs are specified by probabilities and are related

by Bayes' theorem:
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Px1A) PA)
PCXIA) P(AY + POORIPARY

PCaLx) =
(1)

where is the hypothesis

A is the negation of the hypothesis
% is the observed data

) is the notation for probability

Here  (A) is the prior belief
p(p‘”\)is the posterior belief
PR\S) is the notation for the probability of E given S)

Thus, to perform a Bayesian hypothesis test, a prior belief is needed,

together with a probability model for the observed data given the

hypothesis and its negation.

Surprisingly, the Bayesian method of parameter estimation is identical to

this. If the hypothesis A is now treated is an infinite set hypothesis of

the form B = K

- -

| POARYPLEY,
PLOIY) = Zpxd Pe)

in the discrete case

(2)

P ™ P(X\Q)P(Q)l@:u(
(B\X) = ]

(%

P

or PLx\e) ﬂ-@\(k@_ in the continuous case

Here, the probability of a hypothesis is replaced by a probability

distribution (or density function) of the parameters.

.

This approach to data analysis offers several advantages over the

classical. Firstly, input of knowledge prior to the experiment is
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allowed. This can be an attempt to represent subjective beliefs, or
perhaps results from some past experimentation. In the event of no
prior knowledge, the concept of a "non-informative prior" is introduced.
For example, in the hypothesis testing case (R~ PAY = V/2 represents
equal prior evidence both for and against A. Non-informative prior

formulations for parameter estimation are considered in Box and Tiao

(1973).

Secondly, there is a conceptually simpler measure of experimental
evidence. The Bayesian probability P(M’i\ is a direct probability of the
hypothesis. A classical significance level for hypothesis testing is a
statement about the testing process. It is the classical probability of
wrongly rejecting A if A is in fact true, viewed in terms of the
probability space of X. Similarly, for parameter estimation, classical
confidence limits are defined in terms of probability of containing Q s

given the sampling probabilities of X, whilst Bayesian analysis provides

a distribution for the value of _Q .

Lastly, sequential testing is more naturally provided for in Bayesian
theory. In the hypothesis testing case, given a set of independent
observations €2(,.... X3

, at any integerk <. n , P(ALX, ...oL3 is simply defined in
equation (1). Thus, viewing the experiment as a process evolving in
time, a measure of evidence is easily evaluated at each intermediate data
collection point. Sequential hypothesis testing in classical analysis is

considerably more complicated; see for example (Wald, 1947).
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A further feature of this Bayesian property is considered below. At
point W ,

P P Ko XaA)
PR P, . At PR, ... \A)

PA\X, ... =) =

and, at point K+l

P LAy P(=, ... S0 P (e \\9)

PCRLI - Xred)

= PALX,... D) POl \A)

P PO, S P~ AR + TLAY PO A POl A)

PCA) P - S Pl 1A) + PR POL SO PO 1B)

Thus, the prior of the observation of Ak« is the posterior after X .

This seems intuitively reasonable. However, in the Bayesian framework,

this allows for  modification of ©priors in the instance of
extra-experimental evidence, at time KA\ . Thus, not only may degree
of belief be monitored during the experiment, but it may be modified, all
within the theoretical framework of Bayesianism. All of the above may
also be applied to parameter estimation also, by starting the above

mathematical reasoning applying equation (2) at point K .

All of the above may be applied in a predictive context. In this case,
the outcome of a future event ¥, is considered in terms of known data,

X and a parameter being estimated, © . Firstly, @(R\x) is obtained

using (2), and then

PLyIX) = Sg Py, gAY Ab
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= SQ PLYVE, X PLEXY A8

= SQP(y\Q) P(e\x)4d8

(In the continuous case)

As time evolves, updated versions of Plelwill be derived, and the
predictions will be based on better informed posterior distributions for

@ . Again, any new subjective information, or results from external
attempts to measure © may be used to update P(Q))‘) at any time. The

Bayesian forecasting model may be set out as in Figure 1 (Fyldes, 1984).

5.2 Bayesian Forecasting Applied to Crime Pattern Analysis

In the last section, it was outlined how Bayesian analysis may generally
be applied to forecasting, given past data. The methodology will now be
considered in the particular context of crime forecasting. Clearly there

are features that may be exploited in this situation.

Now, collection of data on household burglaries may be possible, and the
analysis of the last chapter showed that, due to certain degree of
space-time epidemicity, past crime patterns can often provide strong
clues as to future evolution of geographical pattern; but there are other
pieces of information which could improve predictions, but which may not
easily be incorporated into the formal database. Such information may,
for example, consist of the knowledge that a known repetitive offender
has returned to an area, or conversely that a criminal active in a certain
region has recently been convicted. Data such as this may provide

rates may rise or drop, despite differing evidence suggested by spatial
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Figure 5.1
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patterns in past rates. The Bavesian scheme of figure 5.1 incorporates
this type of information, and would allow the combination of human prior
knowledge with quantitative pattern analysis techniques allowing both

aspects of crime pattern analysis to be incorporated into a prediction

model.

5.2.1 Spatial Aspects

The results of chapter three may also be incorporated into the scheme of
figure 5.1. The expectation of spatial structure within the beatwise
rates in each week may be quantitatively expressed in terms of an
initial prior distribution for parameters governing rates: ie. as "prior

knowledge of the system" in the diagram.

They may also be expressed in the likelihood function of the data. It
should be noted at this point that, as in the last chapter, the prediction
is applied to a multidimensional system within a subdivision. Thus,
autocorrelation structures will be the medium through which perceptions

of spatial structure are expressed in the prior distribution.

Typically, the stochastic models proposed in the last chapter may be
applied in the Bayesian context, expressing certain degrees of initial
belief in the distributional paraders for crime rates at week n, given
those for week A-\ , "as prior knowledge of the system". Clearly, for
example one expects P(a<0)>P@>0) and due to clustering | P(c>c)> P(Cc0)

in a process described by

pios QAT T e, =BG, A v Nk

Sesn
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5.3 The Human Computer Interface

So far, a forecasting model has been considered in terms of a Bayesian
framework, requiring various multivariate probability distributions, as
well as data, as an input, and yielding a further multivariate probability
distribution as an output. These are reasonable ways of expressing
degrees of belief to a user of the system who is familiar with the concept
of multivariate distributions, and therefore capable of drawing
interpretations from inputs and outputs of the system in its purest form.
However, generally one does not expect a target user a system such as
this to be familiar with these concepts. It is unlikely that police officers
will undergo an intensive training course in Bayesian probability theory

in order to use this system!

It seems more reasonable to devise means in which prior subjective
beliefs, and posterior crime production distributions may be handled in
more familiar formats, and in which some form of interface will convert
these formats into the type of information required by the prediction

system.

The output distribution function will be considered first. Generally, to
summarise a Bayesian distribution, some forms of descriptive statistics

will be computed.

Thus, for example, the mean, median or the mode of a distribution may
be used for point estimation. In the predictive case, these will provide

point forecasts for the coming weeks crime rates. For interval estimates
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in the one dimensional case, a Bayesian analogue of confidence intervals
is used. An interval (a\) having certain properties is evaluated, under
the condition that 5: P8 1X)de=cfor some prescribed =¢. Here « is {(a<®d<h)
This does not uniquely specify < , and another condition has to be
imposed. Commonly it is specified that P(eca =P (® >5)=-‘:U-d)., or
alternatively P(©)> P¢#) for all 6€(4b) and all #¢@ bd . These intervals

may be extended to regions for the multivariate case.

In the case of point estimates, mapping the predicted values onto a beat
map of the police subdivision may be an easily interpreted method of
posterior prediction distribution representation. This may be done
either using proportional symbol mapping, choropleth mapping or directly
labelling beats on a map with the predicted crime rates. A survey to
discover which of these is the most successful representation is

considered in greater detail in chapter 7.

A problem of dimensionality is encountered when dealing with interval or
region estimations. However, some information of this type should
perhaps be incorporated into the system. This attaches a measure of
certainty to the predictions. Effectively, a beat whose predicted value
has a wide interval is more likely to deviate from its predicted value.
Also, given that the prediction distribution is multivariate, those beat
pairs having high convenience should also be considered. It therefore
seems reasonable that the task of a map-based output is to convey the
first and second moments of the predictive distribution in a format

interpretable by police officer users.
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The solution for the first moment has already been considered. A
possible solution for the second moment may be to offer two further
maps: one highlighting "least predictable beats", the other "highly
related beats" if the respective variance and correlation figures become
sufficiently large. It may be possible that some users may prefer to
ignore the more detailed information, and use the basic forecasted map
pattern; however, the second moment related maps may be offered as

options, to be studied if the user requires further information.

Next, the input of subjective information will be considered. To some
extent, if a human operator is aware of the "epidemic effects”, one
would expect their predictions to tie in with that of the predictor in the
system. It is more important that the user supplies extra information,
of courses of crime pattern not detectable in past data of crime rates.
One way of gaining this information may be to display the predictions
obtainable when only using the posterior distributions from the spate
time stochastic model, and asking if there is any way in which the user

disagrees with this prediction.

If the space-time pattern analysis, and the operators knowledge agree on
predictions, they remain unaltered. However, any knowledge unique to
the human analyst may now be given an opportunity to enter the system.
As stated before, it would be unreasonable to ask for a probability
distribution at this point. A simple menu-based modification of the
forecasts will be more simply visualised by the operator. It may also be

suggested again that some information as regards second moments could
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be input. This may be done by a dialogue between the user and the

machine asking

(1) "How variable do you feel this forecast is?"

and (2) "Do you think a change in forecast in this beat would affect

any other beats?”

The first of the responses could be used to readjust variances in the

covariance matrix, and the second to alter the non-diagonal elements.

5.4 The Introduction of Advanced Bayesian Techniques

In the above sections it has been outlined, a way of adapting a basic
Bayesian forecasting scheme for Police use. Some more advanced aspects
of Bayesian theory will now be considered, and it will be discussed how
these aspects may be used to improve the outlined forecasting system.
The advancements will include a formal specification for combining
Bayesian priors, in this case formulating a means of combining police
operator prior beliefs with those based on analysis of past data. Also, a
method of calibrating priors based on past performance of their source
will be considered. This introduces a property of "adaptability" into the
prediction model: consistently poor forecasters will tend to become "down
weighted" in the predictions, whilst good performers will have

increasingly greater leverage on predictions.
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In addition to the above improvements, the concept of multi-state
modelling will be considered. In this approach, the possibility of sudden
possibly spurious changes in process is considered. For example, a
particular beat may incur a spuriously high number of household
burglaries in a given week, but then return to normal, or the arrest of
an offender particularly active in an area may cause the overall level in
that region to drop suddenly. There are several ways in which
Bayesian probabilistic models may cope with such phenomena, and this

will also be discussed.

5.4.1 The Calibration of Bavesian Prior Probability

Distributions

As discussed previously, the formal method of inputting prior knowledge
about the values of some parameter into a Bayesian system is by
specification of a probability distribution, but a major difficulty with this
approach is that experts in fields not concerning probability may
experience difficulty in expressing their uncertainties in probabilistic
terms. However, in a Bayesian framework, if some method of assessing
the experts' ability to quantify probabilities exists, this may be used to

modify his prior distributions.
A means of doing this (due to Morris, 1974) is outlined briefly below:
Suppose, for a series of exchangeable events (see Kyberg and Smokler,

1963), the expert has provided a prior distribution relating to some

prediction or parameter. Subsequently the true value became revealed,
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in each case. Then, the cumulative probability of each parameter from
the prior distributions can be used as a scale-invariant performance

indicator. A value close to zero suggests underprediction, and one close

to one, an unnecessarily high prediction. Also, a value of 0.5 would

indicate a good prior, whose median was in fact the true value.

It seems reasonable, then, to extend the idea of a performance indicator
for a specific prediction to a distribution of performance indicators,
applied to all predictions made by the human analyst. When the user
specifies a prior for any given event, there are then two distributions to
consider: the prior itself, and a distribution related to the general
performance of priors supplied by this user. Adopting an algebraic

notation for these quantities, we have

PY(®)

prior supplied by the user for

(in a general context)

cumulative probability, given ©=0,

n

@ = f@"?(e)de

Te
(performance indicator)

2.aL o &

pee)

\

P(e) prior supplied for a specific problem
Then PlelP)must now be evaluated, (ie. the distribution of © if the

distribution of }5 is given). Define

quo= $,PEede
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Then, as Q must be a monotone increasing function,

Pe €B.\ Py = PP <QB)
(CA
- [ p(mag

Now, the calibrated distribution, ("(e) is the derivative of the above

expression with respect to e

{ (:' P*(eVde
S QLe)

@) d g
QEy
> Prey - L) Pg] = PEE)L e

= p ey Pe)
Thus, the eventual calibration is of the form P(Q,)((Q)where ClB)is a

e.

calibration term, defined by 50( j_o, P(o)cle), ie a function of cumulative
probability of g . Thus, given a probability density function capable
of describing the performance of the user, a "correction factor" may be

added to the priors that the user supplies.

It is interesting to note that the descriptive powers of the df are
fairly versatile. Morris (1977) gives examples of curves for
indicating overstatement of precision of knowledge, and understatement
of this. In addition to this, curves may be given to represent

consistent under- or over-estimation.
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5.4.2 Estimation of the Performance Distribution

So far, a means of recalibrating a distribution has been given in terms
of the performance indicator distribution. However, the task of
evaluating such a distribution has not yet been considered. In order to
keep strictly to the Bayesian definition of this distribution, it should be
evaluated in terms of performance indicators applied to a set of mutually
unrelated incidents. In practice, this type of calibration is difficult. In
terms of Police officers in the context here, the time and resource
overheads lost in performing some sort of experiment to do this may well
be prohibitively large. A compromise will have to be reached, where
calibration is actually performed on the week-by-week priors given by
police officers for their input into the crime prediction Bayesian scheme.
This data will be input anyhow, so no extra resource costs will have to

be incurred. This also gives an opportunity for an adaptive system.

The accumulation of information about the shape of }ﬂ will evolve as a
process in time. Initially, nothing will be known about f}, after a few
weeks, a fuzzy 5/ may have evolved: after some time quite an accurate
estimate for )0 may have been built up. However, it is possible that ¢
may itself change with time. The most obvious reason for this may the
replacement of the main system user with a new operator, the nature of
whose prediction abilities differs from the first user. In this case, a
method of estimating W may be able to adapt to a new shape of curve if
the observed values suddenly appear to behave differently from the
current estimate of sﬂ : for example, in a weekly sample, a goodness of
fit test to be carried out between the observed/@ for each beat and /W
This technique could be flawed, however, as ,ﬂ values in a small

geographical region over a single week are not likely to be independent.
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Empirically, this could be countered by raising the threshold of the
deviance from fit of the model. Generally, if observations are
correlated, likelihood of deviation is increased, as a few spurious cases

may affect others, which would not occur in an independent model.

Another modification may also be proposed; instead of having a single P
distribution function extend the concept to one of spatial variation: for
each beat allow a separate ﬂ . This would be equivalent to a model in
which the human predictors performance in prior specification varies in
space. This is a reasonable assumption: it is possible that, as a police
officer, the user may be particularly familiar with some beats in the
subdivision, and be a more competent forecaster for these beats than for

others.

In this case, the goodness-of-fit, monitoring for fundamental changes in
could not be carried out. However, some form of exponential smoothing
technique might be applied to the ?estimates, diminishing the effect of
values from the distant past. This loss of "fast adaptive response" may
possibly be more than outweighed by incorporating a geographical

dimension into the performance indicator distribution.

Another important advantage of this type of system is that it is
effectively evaluating the priors supplied, rather than the user in
person. In a system such as this, wherein prior probability
distributions have to be synthesised, a certain amount of unreliability
will be introduced into the prior by the synthesis. However, the method

proposed here will calibrate the prior in terms of all unreliability,
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including that due to the synthesis process. Thus, with enough
training data, the system will be able to correct for any design

compromises that have to be made in the prior specification routine.

5.4.3 The Combination of Bavyesian Prior Distributions

A means of specifying the input prior beliefs of a human user has been
discussed in the last section. In addition to this information, there are
the prior distributions brought about by the statistical analysis of
household burglaries. Thus, some way of integrating these two sources
of information becomes necessary, in order to make forecasts, based on

both of these factors.

The problem may be tackled with a further application of Bayes'

Theorems (Morris 1974, 1977).

It may be seen that, from the position of the forecasting system as a
whole, there is a set of beliefs native to the system about the coming
week's crime rate, and also a set of beliefs from the external human
monitor. In addition to this, native to this system 1is an
observation-based set of beliefs about the external user's performance.

Write these as

V(0
puo)

P, (&)

system prior to ©

performance distribution for external user

external's uncalibrated prior for 6
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For any given 0, say B, ,Bayes theorems gives

P LB PeB = K P P (6)Pe (8) B (B

But, this is just multiplying the assessment of the system by the
recalibrated prior. Thus, combination of the two sets of beliefs is a
simple multiplicative operation, so long as the nature system has an

assessment of the external user's performance in specifying priors.

So far, the case of only one external expert has been considered.
However, certain scenarios may occur in which several experts may be
entering subjective information. In this case, it would be necessary to

specify a method of combining several external priors.

If their beliefs are independent, it can be shown that the multiplicative

effect can be logically extended; giving an overall distribution of the

form n

for n opinions, represented by ﬂ(e) and
calibrated by (;(®). However, the independence assumption is unlikely
to be true in practice, particularly in the police user situation. Possibly
several officers using the system would discuss recent criminal events in
the subdivision, and influence each others views. In this case, the
multivariate distribution for performance indicators could mnot be
expressed as a product of individual distributions, but would have to

reflect the correlations between performances of the external users.
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In this case, it may be shown (Morris 1977) that the prior is of the form

Cwy by Lao)

where (I is a joint calibration function. If fo(?.’)is the joint probability
density function of the performance vector, then &(&)- P(FlB))where ©

is the vector of cumulative prior distributions, ie.

F (&)= J (L) do

-

This leads to much greater difficulty in estimating the calibration

function. Two main problems are then incurred.

(1) The estimation itself becomes more complex, as a multivariate

distribution must now be estimated.

(2) There will be a resultant loss in accuracy of estimation. If several
users are inputting data, then for a given amount of data, or a
given number of weekly predictions, each individual assessment
would be based on fewer points. The situation is worsened by the
fact that in addition to estimating each individual performance on a
relative lack of information, the interrelation between performances

must also be measured.

It seems more feasible then, for the input of knowledge to come from a
single crime pattern analyst, rather than a set of several officers. It is

possible, of course, that different officers might alternatively use the
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input facilities. If this were to happen, the calibration applied would
not reflect performance of a single human predictor, but of a process
involving several officers generating a single prior. In this case, the
prior could be recalibrated. However, it is expected that variability in
performance of a multi-user generated prior could considerably exceed
that of a single user prior, particularly if some users have strongly
contrasting views to others. The net result of this would be a general
downweighting of the subjective input. For example, if one user had a
tendency to over-estimate and another to under-estimate, the system
could compensate either of these if they provided sole input. However,
mixing together the two users would lead, from the systems viewpoint to
an erratic predictor. This would lead to a flat ‘70 function and so to a
flat (I: multiplying almost by a constant. Unless the system had
information as to which user supplied the prior, it would be unsure
whether to compensate upwardly or downwardly, and be more likely to
virtually ignore input. Given this, it is recommended that the system be

defined for a single user.
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5.5 Detection of Changes of State and Atypical Phenomena

A further aspect applied to Bayesian modelling may now be considered.
The likelihood part of the posterior specification is assumed known for
the data used in the forecasting technique. There are times, however
when data may deviate notably from this model. As discussed earlier
this could occur spuriously, for a single week, or might occur on a long

term basis.

In the first case, the effect is something similar to an "outlier". In the
second case, it may suggest a more fundamental change in the stochastic

model of the process.

An example of the second case could be that, in a particular beat, some
houses are demolished. If these were particularly prone to household
burglaries (perhaps not being very secure, or having poor protection
from intruders in a context of defensible space eg Newman 1972) then
their removal may lead to a drop in the average household burglary rate
in that beat. If the mean levels for the beat were prescribed from past
data analysis, predictions after the point of demolition would be biased
above the true rates, and the bias would remain unless the model were

re-specified.

Two ways of monitoring for changes in the model are presented here.
The first of these allows for the possibility of other models than that

most commonly applied to be in force occasionally. The second monitors
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performance of posterior beliefs in terms of "surprise". , A surprising
result is effectively one to which little probability was assigned to by
the prior. The first of these to be considered will be the multi-state

model:

5.5.2 Multi-State Model

In this model, there are several probabilistic processes that could
generate the data: there is the most usual one, which is used in the
prediction process as the normal likelihood function. There is also
another possibility, in which a spurious high or low rate is observed.
This will be identical to the first model, except that its variance will be
very much larger. There is also then a third model, in which other
parameters change, and which will subsequently remain changed. The
three possibilities are shown for a simple distribution about a mean value

in figure 5.2. Refer to these models as M M2 and M3 and suppose

1’
there may be prior probabilities attached to each of these, as to which is
most likely to occur. One would expect M1 to apply most often, and

very occasionally M2 or M, would apply. A reasonable set of

3
probabilities may be

P(M() - Oq(r
4CINE JUNERS) ©3

In true Bayesian fashion, on seeing a particular item of data, these

probabilities will be modified accordingly. According to Bayes theorem

gy = POXIMD) PINL)
SCHL = POXML) POMy)
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Figure 5.2a : Normal Data Pattern
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Figure 5.2b : Data Yith Transient Noise
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Figure 5.3c : Data With Permanent Shift
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where X is the observed data. There are then two alternatives:

(1) From the set of possible models choose the one most likely to have

applied in the light of the data observation. Base forecasting in

the most likely model.

(2) Base forecasts on the information relating to all of the models,

including the probability that each one has occurred.

A method based on (2) is given by Harrison & Stevens (1971).
Unfortunately, the prior obtained in this way is a "mixture" of several
distributions, and in turn, after two stages we obtain a "mixture of
mixtures" and so on. To avoid this, their approach approximates the
distribution at each stage by a normal approximation agree to the first
and second moments. The author feels that the extra work put into
developing a more accurate model by incorporating relative likelihoods of
each model may be lost by the last approximation. Perhaps it may be

more parsimonious to adopt the first approach.

5.3.3 Atypically Monitoring

An alternative method of checking model performance is outlined here.
In this method, the posterior probability prediction distribution in a
Bayesian sense, is thought of as a representation of belief as to what

will be the outcome of a future event. When the actual outcome is
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known, a surprising result could be thought of as one for which the
probability in this distribution was low. For example a constant value
and could be chosen, and an outcome x defined as "surprising'" if P 00¢(
It may be more informative, though, to define surprise in terms of the
probabilities of x values. Thus result x, is "more surprising" than X.
it P(x)c¢ P(Y). From this premise, an "index of atypicality" can be
constructed, as
1-= SRR
(XILP(X,)

That is, I 1is the probability of
getting an outcome at least as surprising as X. In the case of
symmetric, unimodal distributions the value of I is the sum of the upper

and lower tail probabilities of PU‘)-

Here, surprise may be defined as the event 1 £« - Thus, this may be
used to flag a spurious event. Repeated surprise may be used to test

whether the model is in need of recalibration.

The methodology behind the decision process for this type of modelling
is more ad hoc, perhaps, in its approach to identifying changes in the
structure of the likelihood model. Despite this, it has other advantages:
it only required the specification and calibration of a single model, and
also does not require the supply of relative probabilities of the differing

models.

This problem accelerates ja the multivariate case.ln the atypicality index

method , modification is fairly simple conceptually. The direct extension
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would be to define the atypicality index relating to the entire subdivision

as

TR | fe)dy

Q:P(©)<P(e")

However, identification of the region over which the integral is to be
performed may prove complicated, and beyond this, evaluation of a
multi-dimensional integral would have to be performed. An alternative is
proposed here, in which the atypicality of each beat in turn is

considered: define

Tion = ( PONB)AD:
L(BL\ %‘.?\GSLPLBO ’w -
that is, consSAer

the conditional distribution of ©¢ given the other observed values of & .
A value of D, close to that of its neighbours even if high, would not
necessarily by surprising. However, if the mean level of the beat ¢

suddenly altered, given that it is deviations about the mean that are
considered as correlated in the likelihood models specified in chapter 4,
one would expect to get repeated surprising results for that specific
beat, given its neighbours values. If the system is then called to

intervene, the offending beat mean may undergo recalibration.

In the multi-state model, however, dimensional.\l brings great
complications. It is now possible that each beat may have been in any
of the three states. Considering "compound models” to be models in
which the states of each beat are considered as a single model, there are

3 possible compound models, each of which would require a prior
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probability assignment. This could be simplified by assuming the states
to occur independently in each beat (ie. probability of state i in beat j
is independent of states of any other beats) but in a spatial process this
is unlikely. Spurious high rates in neighbouring beats are fairly likely
to have affect across boundary lines. In the atypicality model, unless
there is a sudden change across several beats all having common
boundaries, a certain amount of conditional atypicality would be
observed. Suppose, for example the dark shaded beats in figure 5.3
had surprisingly high rates. Although the adjacency of, say 1 & 2 may
reduce the conditional surprise index slightly, the effects of (3, 9, 8)

on 1 and (5, 6, 7, 8) on 2 should still make conditional surprise fairly

high.

Thus, in the multivariate case, as in here, a mechanism for determining
spurious high or local rates, or when the model may need to be

recalibrated, would be most practically based on atypicality monitoring.

5.5.4 Practical Example

In this section, to help evaluate the practical aspects of both methods,
they are compared for a simple univariate example. This should help to
illustrate how the principles discussed in the last section are put into
practice. In implementing a one dimensional model, and facing some
fundamental problems concerning the method generally, it is hoped that
the more sophisticated multi-dimensional system may be approached with
greater initial understanding. It also gives a means of comparing the

atypicality monitoring and more theoretically sound multi-state models, to
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assess any losses possibly incurred by adopting the former of the

multidimensional model.

The Problem
The problem here is simplistic. A process is defined as normally
distributed whike noise about a mean Ma, having variance ga .
However, occasionally there is a spurious observation having mean Mo but

. o . . .
variance O] . Also, occasionally, a jump occurs in the system, and Mo

is replaced by /\)~<,_+S , where § ~ W,00).

The task here is to evaluate M , and identify points in time when
spurious high variance noise occurs, and points in time at which a jump

occurs. At this point, the previous estimate of N«should be discarded.

The process is actually defined thus

Pea =10

Ja =05
a, = &0
0c =30

State space

P (normal observation) = 040
f (high variance) . 00S
0.-0¢

£ (Gump) =
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5.5.4.1 Multi-State Approach

Assume that the probabilities for each state is given. Then the

likelihood, given an observation X , for the normal state is given by

0qQNDF( Ma, T '
OYNDF (N, 02) + 005 NOF (e, 50) +0-0SWF(Mat'S, )

likelihood for the alternative state are given by

0-9S NDF(N&U{)

and
O - 05 WDF (Petd, &)

O ANDF ey Uz) + 0-0SNPF(Pe, &) + 0 CTNPF(Partd, Oc)

if it is wished to decide which of the three models generated X_, this

should be done by selecting the one giving the largest value in (3).

These estimations however, assume perfect knowledge of 0u, 0y, Cc and Me.
It is more likely however, that some of these will be unknown, or be
expressed as priors. In this case,

PUX MY
should be replaced with

Plamy, pe ) PO

Suppose in this case that reasonable knowledge from past data exists for

the O~ values, but not for M .

Then the prior for N«has to be built up as knowledge of X increases.

This is done in the usual way, by multiplying the prior by the likelihood
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of the event, and normalising. However, although the true likelihood of
the event is the mixture,
Z PO PLRAM P
, to avoid complication, the most probable state
likelihood will be considered as the likelihood function. Ifit is suspected
that a change of state has occurred, however, the prior for Mwill be
reset to the non-informative prior. This is actually an "improper prior"

(Barnett, 1982). This will also be the prior initially.

At each stage of reading in an X value, an estimate of Muwill be
output. This will be in terms of the mean of the current posterior for
(incidentally as this will be a normal distribution, the estimate could
identically be defined as either the median or mode of the distribution).
In addition to this, it will be flagged if either the jump or spurious state

is thought to have occurred.

5.5.4.2 Atypically Index Solution

Again, it is assumed that variances are given, but not the mean value
Thus, a prior distribution for Ma must be supplied. In the initial state,
no prior knowledge about A exists, so the constant non-informative

prior is assumed. After the first observation, the posterior in Mais

NDE( e, 0=)
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So the posterior is normal, with a mean of X. This represents belief as
to the next likely value. A surprising result occurs in t‘ , when Xew is
revealed next time, if
POLAXY € k. e Seme = y
e femtQumtey e (g ) dpi <

This is also based on a normal distribution since this distribution is
symmetric and unimodal, a surprising result P(‘ﬂl\‘(‘), is equivalent to
a result XZL\(\OP \4.,_>X2 where K, and \Al are the upper and lower 02./1

tails of the distribution.

In this case, choose surprise at 5%. Then it is necessary to monitor for

X2 KX X))
X-\.{‘ K\(X\n A‘\)

If this occurs once, it is first considered to be a spurious result. If,
however, the surprise recurs (in the same tail) this may give the

impression that a jump has occurred.

In the instance that an initial spurious result is thought to have
occurred, the posterior belief is not modified (as it is not thought that
the likelihood function generally used to model applies in this case).
If a second "surprising" result occurs, again the result is not used to

modify the prior. On the third instance, it is assumed that a jump has
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occurred. Then, the prior distribution for is reset to the

non-informative prior, and re-calibration begins.

5.5.5 Results of Simulation

The system described in the last section was simulated using usual
methods of random number generation for Gaussian variates (see eg
Newman and Odell, 1971). The points at which a random spurious
observation occurred, and the points at which a jump occurred were
noted, together with the actual series generated. This data was then
fed into the two algorithms proposed in the last section. Their
performance is shown in figures 5.5 (multi-state model) and 5.6
(surprise model). The simulated series is shown in figure 5.4. At each
incidence of a spurious high wvariance observation, both methods were
capable of flagging the event. The multi-state model flagged most cases
of spurious variation, although often flagged jump-states as spurious

variation.

In the surprise model, there was no facility to flag jumps immediately.
However, the "repeated surprise" parameter appeared more effective in
some ways. Although the multi-state model was capable of rejecting the
"normal" model, it was often unable to identify jumps, erroneously
flagging a spurious observation. This often happened on several
consecutive data item inputs. It seems that the time-dimension in jump

detection, although empirical here, plays an important role.
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In this simulation, then, both models were relatively effective, although
time dimension considerations made the "surprise” model more effective at

jump detection.

Another important point to consider is that whilst the multi-state model
exploited information about alternative states to the usual, in the form of
alternative probability models, the surprise model did not require this,
but was able to detect jumps (albeit fairly large ones) using information

about the main distribution alone.

It also may be of importance to consider how capable of detecting
relatively minor jumps both of these systems are. In each case, a
certain amount of re-calibration may be required. For the multi-state
case, new details about the "jump parameters” would have to be input.
For the "surprise" model, and could be lowered to allow the possibility

of jumps to be detected with more sensitivity .

If, as is likely to be the case in order to constrain computing
overheads, tests for "jumps" or "spurious effects" are likely to be
performed independently between beats, it appears that the conceptually
simpler surprise test would be the most applicable. Certainly, from the
results of this simulation, they seem to perform similarly, with, if

anything, slightly more powerful results from the "surprise" method.
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5.6 Review of System Design

At this stage of the study, the typical Bayesian forecasting system
suggested in 5.1 could now be revised. In the past sections, a means
of calibrating input priors has been proposed, as a means of combining
the priors of the forecasting system, obtained from data analysis, and

those of the human user.

Finally, some thought has been given to detection of sudden changes in
the Ilikelihood model, and how these may be incorporated into a
prediction system. The possibility of several human users giving input

has also been considered, although this was not eventually recommended.

The incorporation of these extra techniques seems reasonable, so that
the scheme may now be expanded, giving the revised system in figure
5.7. It is this scheme that is to be proposed for the model of a
prediction system in the prototype. In the next section, development of

the individual parts of the system will be considered in detail.

5.7.1 Application of Bayesian Analysis Techniques to a

Computer Crime Forecasting System

In this chapter so far, various techniques of Bayesian analysis have
been considered. Attention has also been given to multivariate spatial
aspects of these techniques. These will now be combined in a specific
context, based on the analysis of household burglary incidents as a

space time process given in chapter 4. The forecasting system can then
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be thought of as a multivariate prediction method combining prior
knowledge of the spatial and temporal structure of the process, evidence
from beatwise data collected on household burglaries from the past, and
human expert knowledge of beats at risk, due to circumstances
undetectable in data. The design of the system will be based on the
diagram in figure 5.7. Each aspect of this will now be considered in

term.

5.7.2. A Space-Time Series Model

As evident in Chapter 3, the process may be stochastically modelled as a
space-time process. Results implied that, given a vector of household
burglary densities suitably transformed by a square root transformation,

Ke could be modelled as being related to Xi,using a space-time

autoregressive formula.

Xew- M= ACX -M) v BX-MY4 &
éNN(O,U’)

Thus, ).(e..could be modelled as a random vector, whose conditional

probability on X_ could be expressed as

P(Xt*\\ﬁ.&» = X exp {-(Xtu ‘M*)-‘—{L(Xe:ﬂ'ﬂ‘)lls
ISR YN YN

Clearly, if X, is conditionally independent on all LL,_\(,, , K>\, as
suggested in chapter 4 (there was little improvement in the model when a

term in _)&,:_]_ was entered), then the series { X}has a Markov property:

P(-Ee*l\Xg,Xb-! ZE-K\= F().(H.\Xe\
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Given a series of weekly household burglary vectors, _X\ - Xb we have

[}

PO %) = PO X o X )P LK, - X) - P

PR ) POX L\ X ) PCX)

U

If X, is taken as fixed

PCL\_ .\éb \Xl) = P(_Xt\lt_be(\geq\i\:_l\ ~ - P(Xl\l.\

Thus, if X , is known (which it will be), then the likelihood of the
remaining data will just be the product of the conditional likelihood if

each weeks observation, given the previous weeks.

Thus

t
PLEXA3IXY = TUwerp €= xe-pOYA (X-p1Y 3
- K" e&?(—-:‘;L}

where & <
T Ls OG- pYA K- B
= Zt' (Xi- AXga cA-T) B_)T_A_Q(Q-Al(t-. +(A-DN)
(expanding)

e\’ Z X
© e (X~ T2 o REEYA (Y- B < AER)

+ Xams tzkc,\odm%\l \wv= (A-1) ’\\)

" n-1
If £ is sufficiently large, wehave i\( = N
y larg ;X@, LT B, 4

L= Ce-1)Qy - (.'I-A)E_«)TJ\.(Y‘(I‘A\@)
= G- ep - AN R) CATS (T-ATAU-AY
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If it is only necessary to estimate M, so that A and /\_are assumed
known, and initially adopt a non-informative prior for ﬂ\ , then the
above expression is proportional to the posterior for AA , given the data
set. Thus: Ma NLQ’;N » This is an intuitively sensible
expression. If M remains fixed, and t->%, then the variance tends to

-~
zero, and A/‘ , the running mean vector of fXJtends to ﬁ

If predictions were to be based on this posterior distribution, then the

density of _X_b‘would be given by

= ) PR EA)
PUxNTED) = ), P\ FIEAD A
Pk L\ R) PURVERQ) = =nP L)

New

whee L= -0 - [U\\J\—*(N‘ -R)
Al “—en M\ AQea- M\)‘(_A_kae«\ h\‘\ A(\LH“ M\)

=% V- "—f;‘ v - “G (XH\‘Nie\)Y—A—
(y- 'Lé-\ Y - l(:' (Lb*l‘Axt\\ +

(bu_\) :{_"LV + K- AXO) A (X - ALY
- WA

T VAU - 28 (XL-ax VAV -
T e AXD) T (R = AXD

integrating out the expression in V= (A-l)ﬂ, we have

P( ‘/\I:-r(\{&) s txf’(‘L‘-f’LS
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= e e AR - (Bea- AL B - )

Thus ¥ | EXS ~ NCR e A= A)) (-1 AT)

-1
Again, this is intuitively appealing if ﬁ is fixed, then as t>¢, (\-‘;) >1

from above, and I\:\l,-bﬁ, so that, asymptotically

X X , the predictive distribution for ¥YX¢ , tends to the
e\ 24

stochastic model for X,,\X, , when p,/is known.

In particular, a point prediction for burglary rates at week l(\_,,can be
obtained from AQX&'&‘)‘& , where A‘kis the vector of running mean rates.
This, however, assumes that A is a fixed quantity. Also, if
confidence limits are required, ./L is required also, and again, at this

stage A is a fixed quantity.

It is possible to incorporate estimators of A and A into the Bayesian

modelling system, thus returning a posterior distribution of the form:

?(A)—A-, &\{&\S) This, however, would be problematic if all of the
elements of and were to be estimated, albeit in a symmetric format,
there would now be, for an n-beat system, n«nin-t) = n* variable
parameters to estimate, as opposed to n . Thege are also not all

normally distributed. We have, for example,

P('A") AI M\ il&) = K \J\'\n I( exe u”( li'f—*‘(f\je-r#\\-‘-d—( XL‘#“(AXH'A)

is non-normal in A.. @lso for predictive distributions an integral over

A_and Ais now required. The dimensional complexity may be reduced on
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the basis of results in chapter 4. A uniform autoregression coefficient
for all neighbouring beats will provide good results in relation to
allowing each coefficient to vary. In the case of models A-E from section

§ in chapter 4, it could be put

A’a\A*

wWhere A:) =0 if beats are not adjacent and
-t
ch‘s if they are.
In this case, the only unknown parameter is &, . Allowing also for

regression effects of the same beat on the previous week, then

A: Q.I“ Q, A‘

This reduces the number of parameters to

two for A .
*
similarly, put A= LT $bA
Then, there are only nil parameters.

Consider first the instance where @, is known as are L and b. Then

we have

Fla., ] €3, a,,%0, b))t exp(-L)

where
£ X CEXe | pex
L-ten (v - 22 « AEZe) A (V- 5+ AR
~—— 2. MG -+ Mb A-A.A M‘ + Z L::‘ P\T_A_Axt_‘

-

=2

T -\ E - s <
- ?- i.Z:‘LLt“ AT"A’-Lb
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and, the marginal distribution for a, if A:0¢A’ is obtained by

integrating out the terms of V , giving

( Z(E(-\‘&o\TA*lA.LEL-g) , — ) _
G~ N 2 (e - RYATAN (X e~ M) L*")ZLKC‘N\A*EN‘(K‘&@

incorporating a, yields similar results, with a bivariate normal

distribution in Oiand Q,.

However, the predictive distribution for _X, becomes considerably more

complex.

The predictive distribution is no longer normal. Asymptotically,
however, this will be the case: it can be shown (Box and Tiao, 1973)
that PCxen \ EXD) = PXew ”*'c’*)

as k> . Thus, the distribution should tend

to normality if O_(;S is a sufficiently large sample.

However, problems will still be encountered when employing models in
which is not diagonal. In combining the predictive distribution for Xb
with that of the user prior, the resultant distribution will be of the

form:
. '(-Xb-l\' —-) —4-(& ST ),’L
4 (;(ien\ < # B
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Suppose, for example, &u«:tbis a normal function, then the combined

distribution is a multivariate normal, with variance - covariance matrix

(,/\_‘\1_/\:;)*, and mean vector (A4 AN (AL Xeo, '\-J\_L:h

where the u_ denotes parameters for the user's distribution. Thus, a
matrix conversion will be necessary; in the case of a subdivision of
beats, a new conversion will be necessary. When " is typically between
30 and 40 beats, this will lead to computational difficulties on currently
available micros. Thus, a compromise must be reached, in which A is a
diagonal matrix. This is equivalent to a space-time series in which,
although the effect of adjacent beats is considered at a lag effect, the
expected deviations from the predicted values are modelled as being
independent. This corresponds to models A, B, and C in section 4 of
chapter 4. The best performing model in this set is C, so this will be

adopted.

Finally, again considering computational simplicity, the coefficients

and could be estimated from a training data set. may still be
estimated using "live" data. It 1is possible, that if atypicality
monitoring, as proposed in section , 1s employved, then after several
"deviant" predictions are obtained, the spatial model could be

re-calibrated using a new training data set.

5.7.3 Morris Type Calibration of User Predictions

Having discussed Morris's method of re-calibrated user supplied prior

distributions, a means to implement this numerically must now be
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proposed. As discussed, it is necessary to obtain a "performance
function™ which is a probability distribution of the cumulative probability
of events occurring, as specified by the users prior. This can be

calibrated once outcomes (in this case crime counts) are known.

In this model, the square roots of crime counts are approximately
normally distributed (see chapter 4, section 2 ), so that normal priors
will combine with these to give normal posterior distributions. Thus, if
the user supplies a mean and a standard deviation for each beat (,', (Nc,\)})

the cumulative probability of obtaining a rate (after square root

X-pMe . .
’t ) where § is the cumulative normal

transformation) is  ®( =

distribution function

This may be obtained using Hastings' approximation (Ambramowitz and

Stegun, 1972).

From a set of such §-values for each beat, a performance function can
be built up. This may be done in several ways. Firstly, the method of
Kernel estimators could be used (see chapter 4, Section 2 , or chapter
3 section 2 ). This builds up a model of a distribution of a variable X>

given an observed set of X values < %... Xa3,

However, this may be inapropriate here, since it gives equal weighting
to all observed § values. A more adaptive technique would give a

higher weighting to recent wvalues; it is possible that a users
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performance may wvary with time. Therefore, a method of modelling the
performance function which "forgets" results in the distant past, based
for example on exponential smoothing, is proposed. For example, if each
observation's contribution is defined as a Beta distribution on (0,}), then

the performance function ¥ may be estimated as

Fele) = dFald) + Qo) Q-p) ™ P2 /Bla,-a)

where (\is chosen to maximise C l-X)NSLc‘ =\ }_( 1_:1'33
[oNd

\
and B(Q,\-a) = 30(\_)Q\'°~)(_o\ c)DL

A problem with this type of estimator, however, is that even if

repeatedly takes the same value, the variance of f(P) will not decrease,
-\

since F;L(’) will tend to (\-p) qfo‘/ﬁ(c\,a-«}. Thus, another solution may

be a multiplicative estimator.

TR T
TP = « F,(p)LO-p) P

WK is chosen to normalise e (P) KRQis used to determine the rate at which

the variance decreases if similar performances occur repeatedly.

Here, if § repeated takes the same value,

Fe P) > d’((’-é) where § is the Dirac delta function

(see, eg Wiley and Barrett, 1982 or Queen, 1980).

Having obtained an estimation for R((’), it is now necessary to obtain

the corrected predictive distribution for the user, from that supplied.
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Again if it is assumed that the distribution is normal, then the corrected

distribution is

| (_—L. (-§ K);;d—rfio)) e~ 1 (_}‘;Z‘:Fr)l

,ﬁn v

For prediction purposes, for each beat the mean and variance of this

distribution is required. These are defined by the integrals

© \ 1=EPL
X X - Pe -3 )
1y  Mean = -S-ua Jane? Fe (B ('?r?_) B T
i_ﬂ L
v 8 -, - L ( -—__—-f)
e X- P s
2) VNoront = j e = e S5 o
_qa',l“c.Pl.
—(mecm)"
These may be evaluated using a Gauss - Hermite Formula (Atkinson,

1978).
These give approximations of the form
w T "
-X . P
j-mgu)e 6‘1 - éw;{:( g)
A -M
in formulae (1) and (2), put \5 = ( I o

{ v -
Then mean = & S_a (f‘le*- ELYA 3) fe ('Q(E\S“ e'g. A\‘j

and variance = J{—? j‘: klu\e+ﬁ‘0}5)7- Ft(&(ﬁ-‘g)) 6‘3A3

Clearly, if Ft (§(ﬁfp)can be evaluated, these expressions are of the

correct form for Gauss-Hermite approximation.
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If F; is stored as an array of point estimates at regularly spaced
intervals, then, using interpolation techniques, Fe(p)can be approximated
for arbitrary p-values. In this case, for the mean, the approximation

formula is

n

—YF%‘— Z Wi (PP + 1\\@6‘!’) F(XQ

":\

where  §(x:)= F.;(& & X¢)) - A similar formula may be obtained for
the variance. Thus, a mean and variance for a modified user prior can
be approximated. In the initial state, put F:(f):‘l_ . In this case, in
the light of no experience of the users predictive performance, the users

prior remains unmodified. Thus, the algorithm for the users' prior is

(1) Initialise fe(p)to 1 at all points

(2) Read prediction

(3) Modify prediction using Fe (p)
approximate mean and S.D. using Gauss-Hermite.

(4) Read actual crime count

(5) Modify R(p\ by evaluating § from actual crime count and
user's prediction.

(6) Return to step 2.

These are incorporated into the listing of the prototype system. A simple
trial of the multiplicative and exponential smoothing methods is shown in
figure 5.8. The solid line indicates a simulated series with a deliberate

jump included, and the dotted lines indicate upper and lower 5%
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Figure%8b: Multiplicative Model Correction
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credibility bounds. The performance of the exponential smoothing model
seems more desirable than that of the multiplicative model, since
although at times the exponential model gives a smaller -credibility
interval, ©bias introduced when a state change occurs in the model
effects the mean predicted level adversely for an undesirably long

period.

5.7.4 Combining User and Machine Predictions

At this state, machine predictions using space-time autoregressive models
are available, as are user predictions. The machine predictions for

future rates of crimes ﬁ(_ based on 2((_ , are given by

ElXea)= B+AX -4 YertXe)=((- e 1)

where Eis a running mean estimate for M , over L time periods. If A is
assumed diagonal, then the prediction can be interpreted as a set of
independent priors for each beat, with mean ]Ac, and variance )-(\,; (l- i)_‘
If atypicality correction is employed, the variance would become X‘tt(( J/CS

A
where h; is the number of time periods to over which {P\‘has been

estimated , since the last change in value was implemented.

Using the estimates of mean and variance for the corrected user priors
for each beat, an overall mean, variance pair may be computed.
Multiplying the two normal probability functions together gives a further
normal distribution, with mean

o—-ml Nu + G—;‘- &P
T v 0
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. -\
and variance ( o sts o)

(see, for example Barnett 1982).

where the suffix m denotes parameters supplied by machine,and u for
user. Thus, there is a weighted mean combination of both predictions

which may be used to obtain an overall prediction.

If the variances are used as a measure of "confidence" then the

weighting favours the most "confident" forecast.

5.8 Conclusions

In this chapter, the principles of Bayesian inference have been outlined,
and in particular applied to certain problems of forecasting. This
approach has been extended to the calibration of user's prior belief
specifications, in order to correct tendency to over or under predict,
and also to allow for these tendencies to vary spatially. Provision has
then been made to incorporate this type of prediction with a forecast
based on past data patterns as laid out in chapter 4. Finally, the
problem was applied to the specific problem of crime prediction using a
micro. Although current micro technology may restrict some or the more
complex space-time autoregressive models, an effective model from
chapter 4 has ©been implemented. This allows an adaptive,
self-calibrating prediction model, incorporating the spatial and temporal
nature of the crime data to be implemented on a micro, for eventual use

in police subdivisions.
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CHAPTER 6

THE IMPLEMENTATION OF A BAYESIAN CRIME PREDICTION

SYSTEM ON A MICROCOMPUTER

6.1 Introduction

Having chosen a Bayesian approach to crime prediction, and identified
the needs of a crime prediction system to be used by police forces, it
now follows to operationalise these results by implementing a Bayesian
prediction system on a micro, to be used on site. The aim of this
chapter is to set about this task, paying close attention to the ease of
use of such a system. In a Bayesian crime prediction package, there is
a need for a database to be built up, and also for the subjective beliefs
of expert police users to be input in some way, resulting in a prior
probability distribution. If the 'man-machine interface' in such a system
is poor, not only would there be an increase chance of entering
incorrect crime reports into the database, but also incorrect prior belief
representations may result. Thus, carefully worded and easily corrected
requests for input from users are essential for the reliable running of

the system.

Thus, in this chapter, design of an informative, user friendly software
system will be attempted. Also important is the method of extracting
prior beliefs from operators, to produce Bavesian prior probability
distributions. Clearly, it is not reasonable to expect the operator to

specify an algebraic representation of their prior distribution outright,
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thus methods for building prior distributions by asking the operator to
specify levels of crime risk in a local geographical sense will also be

investigated.

The above paragraphs refer to the design of the software for a Bayesian
crime prediction systems. In addition to this, this chapter aims to
choose a hardware configuration, and realise the algorithms attained in
the design section in some programming language. Thus, the ultimate
aim is to create a working crime prediction system, which may then be
used for "on site" testing of a crime prediction system in subdivisions of

a Police Force.

6.2 Design Specifications of Program

Since the program will be required to offer several options to the
operator, some control of the program at run time must be offered.
This could be done either with a command language or by displaying
several screens of menus, and asking the user to make selections from
these. In this case the menu driven approach will be adopted. This
may be justified since menu driven software has been found to be used
more efficiently by non-expert users, and even for expert users, this
may minimise the number of keystrokes required to access different parts

of the system (Savage and Habinek, 1984).

The menu-based input/output routines should be easily modifiable so that
future extension of the system can easily be carried out. Ideally, the

operating system of the computer should be accessible from within a



284

program. Thus, a particular section of the system could be selected
from menus, and the menu-calling program could then initiate the
program to perform the selected task. The menu program could be
controlled by a 'menu control file', consisting of the text for each of the
menu items, a program name to be run if selected (or possibly another

menu to be called up), and possibly some help screens.

The idea of such a system is that if new features were to be
incorporated in the future, this could be done by writing a new
program, and editing the control files without breaking into existing
software. In fact, new parts of the system could be implemented in a
different language to the existing software since each feature would be a
separate module held together by the operating system, accessed from

the menu program.

The means of communicating between these programs will be achieved
through standard format data files. The main data required by the
system will be records of past crimes (which must be updated regularly)
digitised boundaries for maps, used in graphical display of past data,
and information relating to the performance of the users' prior beliefs,
which are necessary in a Bayesian forecasting set-up. While the
information about past crimes and performance of prior beliefs will be
dynamic, changing with time, the boundaries of police beats for map
drawing are more static. A higher level of admittance to data editing

would be required to modify these files.
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Also, some form of security must be implemented in this system.
Confidential information is being processed, and furthermore only those
with permission should be allowed to enter data into the system. Thus,
certain parts of the system should be protected by asking the operator
for a password. Again, this password may be stored in the menu
program control file, but to preserve confidentiality, should be in
encrypted form. As with the digitised map updating software, the
setting of passwords should be done by a user with a higher level of

access rather than an everyday user.

Certain programs will offer graphics facilities: maps of the subdivision,
highlighting risk areas, showing beatwise crime predictions and so on.
The derivation of these programs will be covered in the sections
concerning graphics design. Finally, other programs will carry out the
mathematics required to make predictions (using Bayesian analysis).
The design of software concerning the input and output of information
will be discussed here, but not that of performing the analysis. This
software follows naturally from the chapter concerned with developing
the final prediction model to be used. The development of the system
here is merely a direct translation from the mathematical formulae arrived
at in the last chapter. The input software for Bayesian prior beliefs
must be considered carefully, however, as must the software for output
of past data as they may all be considered as links in the chain of
communicating knowledge to the operator, and feeding his reaction to
this back to the Bayesian inferential computation process. Serious flaws

in either aspect will lead to poor performance in the predictor.
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Having considered the design requirements of the svstem, it now follows

to take each of the above aspects in turn and create algorithms to attain

the specified objectives.

As outlined above, tasks performed by the software are best controlled
via a system of menus. These are wused more efficiently by
inexperienced users (possibly foot beat constables who only denote a
small proportion of their time to entering crimes into the database). The
way this is to be achieved is by having a 'father' program, which
displays menus on the VDU, which will initiate other 'child' programs
residing on disk when these are chosen from the menu. When these are

runnin the 'father' program is frozen, to re-start when execution of
s p ’

the 'child' has terminated.

When running, the program will require information about the menus to
be displayed. Principally, it will need to know the text describing each
option on the menu, together with instructions on what to do if a choice
is made. Also, since security will be important, information as to
whether the instruction may only be carried out on correct entry of a
password, together with the password, may be stored. Finally, a line of
explanatory text, stating in simple terms the action carried out by each
menu choice, will improve 'user-friendliness' and hopefully reduce the
frequency of errors made in the system. All of these pieces of
information will be required for every choice on the menu. In addition
to this, a menu header, giving a title to the set of choices being offered
(ie. 'Future Crime Rate Prediction Display'), only one of which is

required per menu, could be added.
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A possible framework for achieving this is a wvirtual ‘'operating
environment' that sits inside the main operating system. If possible,
this environment could be initiated when the micro is switched on, as
part of a starting-up procedure. A flow diagram of the control program

is given in figure 6.1

A suggested layout for the menu is given in figure 6.2. Full use is
made of the screen area, and choices on the menu are double spaced.
Provision is given for a menu title, and room for an explanatory line for
each option is provided. This layout implies guidelines for the maximum

length of titles, and menu choice text lines.

6.2.1 Modules for the Control Program

In the past sections, a "control program" has been specified. This
program has the ability to call other programs written to perform specific
tasks. It now follows to consider the options that should be offered in
order to specify the collection of programs to be accessible in the
prototype system. Clearly, to operationalise the Bayesian system
proposed in chapter 4, it is necessary to include a prediction module,
allowing analysis of data and incorporation of the subjective advice of
police officers. This module will also allow results of Bayesian prediction
analysis to be displayed on the VDU. It is convenient to keep both of
these tasks in the same module:- part of the user prediction input
depends on the display of data from the machine prediction, so that it is

convenient to switch between both of these without leaving the module.
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Figure 6.1
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1. Enter crime incident

2. Examine Past Crime Records

3. Predict Future Crime Patterns
4. System Calibration

5. Exit to Systenm

Press the key corresponding to menu choice

Figure 6.2
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Also, for this module and any other analysis module, there needs to be
some means of inputting data. Thus, a module dedicated to management
of the database needs to be created. This module should be capable of
reading in new data items, and expanding database files accordingly.
These database files will then be used by other modules. As with the
control program a user friendly data input and error checking system is
important to ensure thorough and reliable data input. It is possible at
some point in the future that this module may be replaced by a
communications module, which will be able to read data from a force-wide
database in the central headquarters, acting as a file server to several
crime prediction and analysis systems of various subdivisions. However,
although a certain amount of crime detail is currently centrally recorded
within the Northumbria police force, insufficient geographical detail
within subdivisions is stored, and networking software capable of
transmitting data for this type of analysis is not present on the central
system. This implies that, at least on a prototype system, local
database building techniques must be used, although at some future

point they may be superseded.

This serves as an example of the modular philosophy behind the design
of this system. Provided a communications based data reader maintains
the local database in exactly the same format as the local data input
system, it is only required to alter menu descriptor files, and remove
the old data program, replacing it with the new. No access to the

control software, or any other modules, will be necessary.
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Arising from chapter 4, it is notable that many methods of mapping the
past data help to shed some light on spatial processes taking place. It
therefore seems important to include methods of mapping past data into
other modules. A beatwise choropleth mapping module would be useful,
for example, when considering the allocation of resources to beats.
Also, if past records of "surprisingly high" beats, as set out in chapter
4, are kept, these may also be mapped. It would be advantageous here,
as with the menu systems, if the display was coloured. Differing
intensities of one colour could provide the basic choropleth information

(say light blue) and a different colour used to highlight the "surprising

beats".

In addition to beatwise mapping, which may be wuseful to resource
management, it would be helpful to officers operating on specific beats to
give pointwise information of past data. Indeed, the knox tests given in
chapter 4, in a mapped form, may provide useful analytical output to

identify locations of burglary "epidemics" at a sub-footbeat level.

In addition to providing greater detail, this type of mapping may
identify "crime clusters" straddled across beat borders. The aggregated

choropleth maps, however, may fail to identify such phenomena

(Openshaw, 1984).

Finally, another section of chapter 4 dealt with kernel estimation
(Silverman, 1978 a or b). Whilst Knox testing (Knox, 1964) identifies
clusters in space and time for burglaries, the approach for Kkernel

estimation works purely in a spatial sense. A I'risk surface" is
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constructed over the region served by the subdivisional force officers,

the height of which signifies the risk per unit area of household

burglary.

The surface may then be contoured, and those points of highest attitude
shaded, and projected onto a map of the subdivision. This then gives a
map of "high risk" regions for household burglaries. Clearly, the
technique may eventually be applied to any spatially referenced crime
incident (eg. violent assault, public disorder, etc). The map may be
periodically revised. Again this gives information in terms of manpower
deployment, as well as presenting spatial aspects of crime risks. High
risk regions overlapping beat boundaries may be identified, so officers
on adjacent beats including the same high risk regions may be notified.
If, eventually, risk surfaces for all combined crime incidents are
generated, they may provide useful evidence for the reorganisation of
beat boundaries. Thus, this type of mapping of past data together with
choropleth and point mapping all have useful applications which merit
their inclusion into the system as modules. Also, it seems useful at
times to be able to output the cross-tabulated beatwise data in text
form. This conveys the same information as the choropleth maps, but in
a non-spatial format. However, in the format of the printed page the

information may be photocopied and circulated around the subdivision.

Finally, in the initial analysis of the data, some other techniques were
considered, for example to analyse seasonal aspects of the data (Chapter
2) or to examine relative risk to household burglaries at various times of

day (also Chapter 2). Some of these techniques may be reliant on a
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database other than the main database, and, at least in the prototype
stage, difficult to integrate fully into the system. However, if separate,
static databases are maintained to service these routines, they may at
least be run from the control program, although at present updating may
be done by conventional file handling techniques within the operating
system. These modules may appear peripheral to the main system, but
some of the techniques discussed and developed in the earlier part of
this thesis, although not central, may be useful for certain aspects of
crime pattern analysis. It therefore seems reasonable to include them in

some form within a prototype system, to allow their assessment in an

operational environment.

It is possible that this set of modules could exist on a separate menu,
distinguishing them from the "mainstream" features, and when
implementing the prototype make clear that these features are at a
considerably less developed stage than some of the other features, in
terms of their database management. If it is speculated after evaluation
that any of these may provide useful information, further development
will be justified. If these features were excluded from a prototype,
opportunities of identifying new areas of statistical and mapping crime

pattern analysis software may be missed.
6.2.2 Equipment Configuration
In this section, a microcomputer system on which to implement the

system will be proposed. Up until now, although consideration has been

given to the specification of methodology for the forecasting and display
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of geographical crime patterns, little thought has been given to the
practicalities of implementing such methodologies in a working
environment. Clearly, a particular model of microcomputer has to be
programmed to perform the specified tasks, and choice of an appropriate
programming language and machine is of considerable importance.
Although the choice of programming language may be invisible to the end
user (a police officer operating the resultant software), this is of
importance when the package is being developed. Any language used
must allow access to data of the type required by the prediction
methods, flexible means of interactive communication with the user, and
also have the capability to compile heavily mathematical algorithms of the
sort yielded in chapters 3, 4 and 5. The hardware itself must have
colour graphics capabilities enabling mapping of the geographical data to
a high enough standard to allow spatial information to be conveyed
effectively.  Finally, thought must also be given to the operating
system. The "control program" discussed earlier will be required to
"freeze" and run other programs, and then restart on their termination;
obviously the operating system under which the control program and its
"child" programs are run must allow this to occur. Thus, choices must
be given for the operating system, the machine to be used and the
language for writing the software. Each of these will now be considered

in greater detail.

6.2.3 Hardware Configuration

Firstly, the requirements of the application must be taken into account.

As discussed above, coloured graphics and text are considered to be of
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importance, in communicating spatial information and for more user
friendly control menu systems. It is easier, when using multicoloured
displays to draw attention to particular information, by highlighting it.
Also disk space must be considered. Given the average space required
to store data and programs, and the format in which they are stored, is

it preferable to adopt a system with hard disk storage capability?

Another important factor is portability. If several different computer
systems capable of running the same software are available, it is possible
to develop software on one machine, but then run it on a different
system. If the software is developed on a machine that is compatible
with a wide range of alternative machines, then final choice of hardware
is left with the wuser. Thus, according to budget constraints, and
durability requirements and other factors (ie. some users may require
portability of machine) the user may purchase one of a large range of
suitable machines. It is also possible that, due to the ability of
machines in a large family of "compatibles" to run a wide range of
interchangeable software and to mutually exchange data files, such
machines have already been purchased in a large organisation such as

the police force.

Thus, considering the factors of video display capabilities and software
compatibility, a reasonable choice for a micro to implement the software
on would be either an IBM PC or compatible, on the condition that it has
EGA (Enhanced Graphics Adapter) circuitry fitted. This machine will
make a suitable candidate for a prototype system, since PC compatible

machines are already widespread within Northumbria police force and
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available as research tools within this university; thus software may be
developed on machines in the research environment, and evaluated on
machines in the work environment, without need of transporting any

hardware other than the disks on which the program is stored.

Provided the system is fitted with an EGA facility, it is possible to
obtain a screen having a resolution of 640 x 350 pixels, in up to 16
colours. The detail of mapping in this format is of reasonable standard,
certainly capable of accurately displaying the information required here
(see figures 6.3, 6.4 and 6.5). Again, many PC compatible machines

are equipped with EGA graphics facilities.

A further justification for this type of machine is that, due to the wide
range of software already available and adopted by a large range of
users, there is some incentive to make future models of computer
"downwardly compatible" so that they also run the software which will
run on the current PC compatibles, although possibly faster due to
hardware developments. Thus, any crime pattern analysis software
developed in this hardware environment should run on future machines
for some time. Hence, it is unlikely that software developed here will
have to be drastically adapted to run on a different graphics hardware
or a different operating system if, at a future point the prototype

system is to be implemented as fully working.

Having decided on the type of machine, the configuration of disks, and
memory must be selected. There are two types of disk drives generally

available with PC compatible machines: 5.25" disks, 3.5" disks and hard
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disk drives. Generally, their capacity in terms of amount of data in
KBytes is listed in table 6.1. The hard disks, as well as containing
much larger data reserves, are resident in the machine, and generally
faster to access. However, these features considerably add to the cost
of hardware. Although it is unlikely to be possible to implement the
analysis system on a machine having only 5.25 inch disks (A single
module often contains about 50K of code, and in addition to all modules
some operating system code must be fitted on this software disk), it may
be possible to do so on a 3.5" disk. It may also be possible to
implement the system on two 5.25 inch disks, with one disk containing a
mixture of data and code, but this would be awkward to implement -

requiring code to be copied onto data disks - and deflating the "ease of

use" objective.

It seems reasonable to keep the database on a removable disk. This
allows greater security as the disks may be Kkept under lock and key
when not in use, and also portability allowing the same data to be
analysed at different sites if necessary. Thus, two main alternatives
exist. Firstly, control software and modules on a hard disk, and data
on a removable disk, or both on 3.5" removable disks. The 3.5" option
is cheaper to implement, but it is possible that the combined size of all
of the software modules may still exceed the capacity of the disk, or at
least constrain the performance of the more data-intensive algorithms
which may be slowed down by the relatively slow access time for floppy

disks.
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Table 6.1
Capacities Of Disk Storage Media

Disk Type Capacity
5.25" Floppy 360 KBytes
3.5" Floppy 720 KBytes
Hard Disk Between 10 and 70

MBytes
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It is therefore intended to develop software on a hard-disk machine, but
to bear in mind the option of a 3.5" disk implementation which will
possibly have fewer options. Again, the modular design together with
the menu descriptor file concept are useful here. By modifying the MDF
on the 3.5 inch disk version, a restricted menu of options can be
implemented without major alterations to any of the system software,

apart from non-inclusion of some of the peripheral modules.

Another option offered with the PC compatible range is the inclusion of a
hardware floating-point chip. This is an integrated circuit extending
the instruction set of the CPU to include floating-point mathematical
operations. When these are performed directly, as opposed to
synthesised using bit manipulation techniques in machine code, speed of
execution is increased considerably. Also, more compact code is
produced, as fairly complex routines are replaced by single CPU
operations. This is particularly important in a package such as this,
employing several algorithms which are heavily reliant on floating point
operations. Again, the cost of the extra hardware may rule out this
option, but provision should be made for possibility of inclusion. This
is a point that also should be considered when choosing a language to
write the software. Different codes will be produced when compiling
programs under the assumption of a floating point hardware facility, and

this code will not run on machines without this facility.

Finally, peripheral hardware may be given consideration. As discussed
earlier in the chapter, printout of tabular data may be required.

Generally, if the output is required to contain only standard ASCII
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characters, provided the hardware has a standard output port (ie. an
RS232 compatible serial outlet) most commercially available printers may
be driven. Also, although this would incur greater cost than the rest
of the system, graphical devices such as thermal wax plotters may also
be connected to such a standard port, to give a hard copy of screen
dump. The sample maps (figures 6.3, 6.4 and 6.5) seen here are
generated in this way, using a thermal wax plotter, with a supplied
routine to copy EGA screens. Since this routine is of the "terminate but
stay resident" (Duncan, 1986) nature, the crime prediction software may

be temporarily "frozen" to allow EGA screen dumps, and then re-started.

6.2.4 Programming Language and Operating System

These two headings are considered together since in this application,
interaction between the two is expected to be fundamental to the
operation of the system. As has been discussed earlier, "freezing" of
programs to transfer control to "child" programs will have to take place,
as will interaction between the user and the menu and graphic displays.
Generally, programming languages are designed to be
system-independent, while operating systems are designed to control
particular hardware configurations. Thus, unless the programming
language 1is capable of directly accessing certain routines in the
operating system, problems of implementation will ensue. It seems
necessary, therefore, to consider both the requirements of the operating
system and the ability of the programming language to access the

particular system under the same heading.
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Firstly, consider the operating system. Given the choice of hardware

specified earlier in this section, one choice to be considered is MS-DOS.

This is command driven (rather than menu driven) and has facilities for
"freezing" programs, as described above. The lack of a menu based
front end is not likely to present problems in this context, as the crime
prediction software is intended to provide this facility, with certain
extra utilities specifically designed for this application, such as password

protection for certain parts of the system.

MS-DOS may be accessed from within other programs by means of system
interrupts, allowing direct access to input/output routines, and other
system management code. In PC compatible machines, a similar set of
interrupts allow access to graphics routines. Thus MS DOS is capable of
interacting with the crime prediction software from within the routines.
A further advantage of this system is that it is generally supplied as
standard with most PC compatible machines (and recommended as a
system for the PC itself) thus the crime prediction software can be
installed directly onto the hardware system as bought, whereas, for
example if a mouse or menu based operating system were to be used,
this would have to be purchased on top of the basic system, before the

prediction package could be run.

If it is decided, then, to write application software which will run on a
system with MS DOS implemented, it is now important to choose a
language to develop and write the software. As stated before, the

language chosen should be capable of expressing fairly complex algebraic
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algorithms in a reasonable format, and also have the ability to access the
operating system. Further requirements also need to be considered.
The schematic diagram for the forecasting system in chapter 4 suggests
that certain algorithms used will be complicated in structure. Thus, a
well structured programming language  offering IF-THEN-ELSE,
REPEAT-UNTIL and other similar constructs will be helpful. A language
with these constructs should provide easily readable programs, which
will allow translation of algorithms tc code with a reduced error rate,
and also enable faster trapping of erroneous code when it does occur.
Programs of this sort are also more easily understood by other
programmers, or by the author if they need to modify the code at some

future point (Wirth, 1973 or Djikstra, Dahl and Hoare, 1972).

For its mathematical capabilities, FORTRAN appears to be a good choice,
particularly as the standard includes an exponentiation operator, '*',
This is not provided in the standard definitions of Pascal or C.
Although this is also offered in BASIC, this language can be rejected on
other grounds, most versions are interpreted rather than compiled, so
that execution speeds are poor. Also, named subroutines having

arguments passed are not defined.

A major problem with FORTRAN 66 is its lack of program control
structure. All decision based algorithms have to be specified in terms of
"go to" statements. This has a tendency to make programs hard to
follow, and certainly hard to modify. FORTRAN 77 goes some way to
counter this: the IF-THEN-ELSE structure is included. Also FORTRAN

77 allows character manipulation and character operations in a more
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natural format than the 1966 standard. In the latter, characters are
stored in memory designated for some other type of variable, such as
LOGICAL, and operated on by subroutine calls. Given that a certain
amount of string processing occurs in the control program, and in the
map drawing modules, it seems reasonable to demand that a more natural
string processing method is implemented, again to reduce programming

error, and to make error checking easier when problems do arise.

FORTRAN 77 has facilities to handle strings and algebraic expressions
which exceed those of either Pascal or C. However, in terms of control
structures, the latter languages offer better facilities, giving
"DO-WHILE"™ "REPEAT UNTIL" and "CASE" structures. It is possible,
however, to simulate both of these in FORTRAN 77 in a reasonably
readable format (see table 6.2). If it is specified that, except under
exceptional circumstances, the only use of GO TO statements will occur

in these constructs, then readable, easily modifiable FORTRAN 77

programs should follow.

The final requirement of the language adopted for this project is that of
relatively easy interaction with the operating system. Generally, this is
a property of particular implementations of the language than of the
standard definition. Clearly, the standard must be defined irrespective
of the operating system, since such definitions are intended to be
universal. However, some implementations of FORTRAN come equipped
with library functions which interact with MS-DOS. One such
mplementation is that supplied by PROSPERO. In this version of

FORTRAN 77, the standard syntax is adhered to, but a library of
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Table 6.2
Implementation Of Program Structures In FORTRAN 77

Structure (as In Pascal) FORTRAN code
IF x THEN y; IF (x) THEN
y
END IF
IF x THEN y ELSE z; IF (x) THEN
y
ELSE
z
END IF
WHILE x DO y; 100 IF (x) THEN
y
GO TO 100
REPEAT y UNTIL x; 100 y

IF (NOT.x) GO TO 100

CASE w OF IF (w .EQ. wl) THEN
wl: ylj yl
w2: y2; END IF
. IF (w .EQ. w2) THEN
. y2
. END IF
END CASE;

The last structure may also be represented in FORTRAN if w is an
ordinal set of integers by GO TO (101, 102, ...), w with the label
numbers referring to each case. Each statement should then be followed
by GO TO 999, where 999 follws the last y-statement.

In addition, a “menu” structure can be more efficiently implemented
by a case structure combined with a repeat loop: the test at the top of
the loop involves polling the user to make a menu selection, and often
takes the form of several lines of code.

Note : y, yl, y2 and z refer to statements (in their FORTRAN or Pascal

form), x a logical expression, and w is a variable of general type,
with specific values wl and w2.
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subroutines interacting with MS-DOS is supplied. Descriptions of the
most useful subroutines in this library are listed in table 6.3. Provision
is made for operating system interrupts, reading text from the calling
command line in MS-DOS and "freezing" while other programs run. With
this library it is possible to interact with the graphics hardware, and

build a menu-based control program as set out in section 6.2.

Thus, a system has been established, in which a microcomputer
configuration with graphics facilities has been specified, together with an
operating system, and a language to write the appropriate software. In
addition to this, the mainframe computing facility at this university, an
Amdahl 58/60 running the Michigan Terminal System (MTS) operating
system, has a powerful interactive debugging facility for FORTRAN 77,
so that, at least those parts of the software that do not rely on the
operating system or the graphics interrupts can be developed on the
mainframe using the debugging facilities, and then downloaded onto the
micro. A stage has been reached, then, where the computer hardware

and software development tools have been specified. It now follows to

define the system itself.

6.3 System Specification

The design of the package will now be considered in more detail.
Firstly, it must be decided exactly what facilities the system is to offer.

The main aspects to be incorporated into the software are as below:-

1) Menu-Based Controlling Program
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Table 6.3
Useful Library Routines In Prospero FORTRAN 77

GETCOM(character*(*)) Reads the MS-DOS command line and returns

all of it excluding the program name,
in a character variable.

EXEC(character#® (%)) Causes the calling program to be frozen,
the program whose name is in the character
variable to be executed
SYSREG(array, int) Causes interrupts to be generated.
Interrupt number is in int, and array
maps onto the registers of the CPU.
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2) Displaying of Past Data
3) Prediction of future crime rates
4) Input of Incidence Data

5) Incorporation of "peripheral" software

Under heading 2), three sub-categories exist

2a) Choropleth Mapping of past data

2b) Point Mapping on past data

2c¢) Surface Mapping of past data

Also, under category 5) there are currently two sub-categories

5a) Time of Day of Burglary

5b) Seasonal Variations in burglary rates

However, results of any other "spin-off" research may be incorporated
into this list of sub-headings. Clearly, heading 1) ties all of the other
headings together, allowing the user to select from the remaining items

on the list. Each of the headings will now be considered in turn.

6.3.1 The Menu-Based Controlling Program

This program provides the "front end" for the package. It is intended
to make this as flexible as possible, so that new items may be added into
the menu system or removed from it with relative ease. It is also

important to make this software as robust as possible. In the case of an
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error, control should not be given to the operating system, which the
user may not be familiar with, but should return the user to the most
recent menu screen. Also, the software should be robust to the user
inputting incorrect menu responses. For example, if there are four
items to choose from on the menu, corresponding to keys "1" to "4", the
system should ignore any other key press, for example "+" or "k". In
addition to these requirements security must also be considered. Certain
parts of the system must be password protected. The intention to
protect certain menus or programs could be conveyed in the menu

descriptor files.

One record could consist of a single character, say "+" or "-", to decide

whether password protection is required, and the remainder of the line

used to store the password.

Some form of encryption should be used, otherwise it may be a relatively
simple task for an unauthorised user to list the MDF and discover
passwords. In this prototype, a relatively simple encryption method will
be used - development of a powerful and secure encryption method is a

research topic in itself - but in the future, a more complex method may

be substituted.

6.3.2 Menu Descriptor File - Format

Consideration of the requirements of a menu descriptor file now leaves
us in the position to define the format for such a file of data. This is

shown in table 6.4. The "menu name" will be printed on top of the
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Table 6.4
Format Of Menu Descriptor Files

Description

Title Of Menu
Title Of Menu Option
Help Line (Extra Information)

Password Line
(If Preceded by + in field 1)

Action
Preceded by a single letter
M = Another menu
E = Execute Program
e = Execute and return
to same menu
S = Go to system

Field Size

58

30

58

30
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VDU, as a header. Then, for each item on the menu, a three-line
descriptor follows. On the first line, the name of the program to be
executed if the corresponding choice on the menu is made is given.
Alternatively, the name of a new menu descriptor file may be given.
This is chosen by the first character on the line. "M" implies that a
new menu is to be referred to, "E" an executable code. A final option,
"S", returns the user to the system. On the next line, the description
of the program or menu is given. This will be the text printed on the
VDU for the corresponding menu choice. The third line deals with
password security. A minus sign indicates that no password is
necessary. A plus sign indicates that a password is required: the
encrypted password then follows. Thus, each menu item is stored in the
menu descriptor file, and items may be added or removed using a text
editor. The only problem now is the entry of encrypted passwords.
Clearly, it would be useful to enter the non-encrypted version, and
have the machine encrypt this automatically. In order to do this, one
extra program, called "ENCRYPT" is written. This operates on the
menu descriptor file, leaving all text alone except when it encounters a
password record beginning with the symbol "*"., This indicates a
non-encrypted password follows. The menu descriptor file is then edited
to give the previously specified format, ie. '+' followed by the encrypted
text. This allows initial input of passwords in non-encrypted form, and

encryption to follow this.

An example of a menu descriptor file is now given. In order to produce

a menu of the form below:
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Crime Pattern Analysis

1. Input Data Item
2. Examine Past Data
3. Predict Future Crime Rates

4. Exit to system

In which item 1 executes a program called "update", and items 2 and 3
display further menus, descriptor files called "Past. MDF" and
"Pred.MDF" respectively, and in which no password protection is

required, the menu description file given below should be used:

CRIME PATTERN ANALYSIS
UPDATE

Input Data Item

MPAST .MDF

Examine Past Data

MPRED.MDF

Predict Future Crime Rates
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S

Exit to System

6.3.3 Operationalisation

The operationalisation of the menu system must now be considered.
When the control program "boots up" the main menu should be displayed.
Thus, some means of conveying this information to the control program
is necessary. This may be done on the MS DOS command line. Any
program in MS DOS is initiated by typing in its name as though it were
a command: Thus if the control program were called "Menu", simply
typing "menu" would initiate it. However, in the Ilibrary for the
particular version of FORTRAN 77 supplied, a routine for reading
further text from the command line exists, called GETCOM.

"CALL GETCOM(X)" returns the remaining text on the command line into
the character variable X. Thus, if the main menu descriptor file is
called "MAIN.MDF", the command to initiate the menu program could be
entered as "MENU MAIN.MDF" and "MAIN.MDF" could be transferred to a

character variable and used as a filename within the program.

Another problem is how to "freeze" the control program and execute
another program following the "E" on the MDF record. Again, in the
supplied library, a routine EXEC performs this task: "CALL EXEC
("PROGX") would execute a program called "PROGX", and freeze the

calling program, retain all of the current values of variables, and



317

positions of stacks. After "PROGX" had executed, execution of the
calling program resumes. If "PROGX" returns an error, then instead of
returning to MS DOS, control is returned to the calling program,
together with a return code. An error message will be printed on the
VDU. In this instance, should this happen, the control program will
print a "press any key to continue" message, allowing the user to view
the error message, before returning to the previous menu. Although
the user may not be able to interpret this, it may be passed on to

someone with a knowledge of the system.

Under some circumstances, it may be useful to return to the menu
from which the program was selected (ie. when interacting between
viewing past data and predicting ahead in a Bayesian framework), while
under others, it may be more useful to return to the main 'root' menu.
These could be controlled in the menu descriptor file, possibly by
distinguishing between an upper or lower case 'e' in the first character
of the action specifier. If, during the execution of a program, an error
is encountered this should also be handled by the menu control program.
It is possible that subtle bugs may occur in any item of software after a
long period of time since the system is implemented. These should
ideally not cause a crash to the main operating system, since this may
cause problems to the user inexperienced in this aspect of computer
message should be displayed, which may be of use to an expert
consultant, but then, after waiting for a key to be pressed, the calling

menu screen should return.
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If the choice represents displaying a new menu, this is achieved by
simply looping back to the menu display routine in the menu control

program, re-loading the menu information from a new menu descriptor.

Finally, the option of returning to the operating system should be dealt
with. This should normally be done only via a password option, to
avoid accidental 'bombing out' into the operating system, and then the
user being unable to restart the program, or worse, possibly destroying

data files in an attempt to do so.

6.3.4 Security

In this section, some thought will be given to the implementation of a
password system. As discussed above, it is important to encrypt
passwords in the menu descriptor files. There are several ways by
which encryption could be carried out. A relatively simple method will
be implemented here, although beyond the prototyping stage more
sophisticated methods will be adopted. Clearly, the final encryption
technique could hardly be published here, if security of the data is of

genuine concern!

Therefore, the method employed here will be relatively simple.
FORTRAN 77 stores characters as 8-bit codes, which can also be
interpreted as integers between -128 and 127. A pair of 8-bit codes may
also represent an integer between -32768 and 32767. Some form of

transformation of this larger integer onto another integer in the same
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range would provide an encryption from one pair of characters to
another. Clearly, this is considerably more powerful than a mapping of
individual characters. The former would require only 26 mappings (36 if
digits also incorporated) to be discovered, but using 16-bit integers, 262
(or 362) mappings must now be discovered. A requirement of this
mapping is that it must either be reversible providing a unique code for
each password or at least wunique for any password character
combination. Otherwise, encrypting both the true password and the

guess may lead to correct matches even if the two are not the same.

In fact, it may be shown that a mapping which transforms the set of
integers between -32768 and 32768 (or indeed any other set) onto itself,
and does this uniquely (so that if the mappings of x and y are
equivalent, then X and y are equivalent) must be reversible (see eg

Birkhoff and Maclean, 1967).

Another important factor to consider here is how "recognisable" the
encryption is from the original. For example, a transformation from
merely swapping pairs of characters would meet the definition above, but
hardly be of use. One possible approach may be to adopt a "bit
scrambling" technique, in which a permutation of the 16 bits are
returned after encryption. If there is a reasonable level of scrambling,
encrypted data would be hard to decode. Alternatively, additive or
multiplicative transformations of the 16 bit integers may be used (taking
care not to cause overflow of variables, which may crash the program).
The latter is more easily implemented in FORTRAN, working on a similar

principle to a linear congruential random number generator (Hammersley



320

16

b

and Handscomb, 1964). The multiplier must be relatively prime to 2
to ensure the reversibility property (Knuth, 1968), but given this, a
multiplicative encoding scheme may be used. This method is proposed
here, because of its ease of implementation in FORTRAN. Obviously,
integer multiplication is readily available, and FORTRAN also offers the
option of addressing fixed memory cells as though they simultaneously

contained data in both integer and character format.

Experimenting with various options lead to the conclusion that, at least
for the prototype, a multiplier of 255 worked satisfactorily. This
number is prime, and therefore relatively prime to any integer, and
provides bit-shifting of a least six bits in the left-hand direction.
Thus, this method will be employed. The code of the encryption

program is given in listing 6.1.

Another aspect of security is making the control program crash-proof.
Since access to the operating system allows the user to alter menu
descriptor files, and possibly damage data files, it is important to
protect against accidental (or deliberate!) crashes. These could occur

for two reasons.

1)  Errors in coding of the programs

2) User generated interrupts from the break key

In the case of programs run from the control program via "EXECPG" this
is not a problem, as control is returned directly to the calling program.

If there is an error in the calling program, this can be handled by a
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routine QBREAK which causes control to resume elsewhere in the
program, thus the user is not left in MS DOS command mode. Also, the
routine SBREAK causes, after its execution, all kKeyboard interrupts to
be ignored. If both of these facilities are used, and are called as the
first tasks in the control program, then a reasonable degree of "crash

proofing" will have been achieved.

6.3.5 Control Program: Conclusions

The specification for a control program has now been given, together
with methods of implementing various features considered to be
necessary. The code for the main control program code is given in
listing 6.2. The remaining issue with the control program is the actual
structure of the menu system to be employed in the prototype system.
This will be based on the recommendations in section 6.1. The basic
structure will be a tree structure, with one option on each menu to
return to its calling menu. This option is important, as unless it is
implemented, the user is forced into executing some form of program
eventually, and is unable to undo the consequences of a mistaken menu

choice.

The tree is structured as in figure 6.6. The root node is the initial
menu. The end nodes represent program execution, and the

intermediate nodes represent transition from one menu to another.
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Figure 6.6

Structure Of Menu system

—Enter Incident
—Examine Past Records
—Predict Future Rates

—System Calibration—

—Exit To System

—Table
—Choropleth Map
—Point Map
—Risk Surface

—Time Of Day

L Seasonal Variation

Kernel Parameter

Knox Parameter
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6.4 Data Input Program:

This program is incorporated to allow reported household burglary data
to be entered into the database. There are two main issues under this
heading: the format of the data input screens and the format of data
storage. The first is important, since if the user us unable to enter
particular formats, or more likely to make errors inputting data, then
the database upon which the pattern analysis depends is flawed, making
any such analysis unreliable. The second issue is also of importance, as
it is of consequence to all of the analysis programs that will be required

to have access to the data. Both of these will be considered in detail.

6.4.1 Format of Data Input Screen

In a similar way to the menu based system, some flexibility must be
introduced into the software for data input. Initially, the system will be
used for the analysis of household burglary data. However, this may
not be the only type of crime for which this sort of analysis is
appropriate. Many of the techniques considered in this study may be
applied to other spatially referenced crimes, such as car theft or
vandalism for example. If this were applied to such crime types, it
would be useful to be able to modify the data input program in some

simple way, and allow this new type of data to be stored.

The format of the input screen could be similar to that of the menu
screens, but taking the appearance of a form that has to be filled in.
The "dotted lines" of a conventional form could be mimicked, with the
user typing text over appropriate places on the screen. Care should be

taken to ensure that it is not possible to type text outside of these
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windows, since this would obscure part of the information on the form,
and probably lead to confusion and errors from the person typing the

data into the machine.

It is proposed to control the data input from an "input descriptor file"
(IDF) in a similar way to the "Menu Descriptor Files" of the last section.
These files give information of the data to be input on the screen, the
text to be printed and the storage of this data. The format of the IDF
will reflect the format of the input screen, consisting of the text on the

input screen together with an "Image" of the data to be input.

It is also important to be able to correct data that has been incorrectly
entered on the screen. Thus, provision to backspace on each "dotted
line" must be provided, as well as a means of viewing the entire data
screen, and verifying that this crime record as a whole may be

committed to the database.
Before considering the specific format of the input screen, it is
important to discuss the contents of the database, as these will govern

the data items to be input onto the screen.

6.4.2 Storage of Data Relating to Crimes

In this section, it is proposed to specify exactly what data is required
to be stored in the central database for this crime pattern analysis
software, and in what format it is to be stored. Finally, the

requirement of the analysis software are to be considered. This
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software requires two main types of spatial data about crime: beatwise
and pointwise. DPointwise data can be aggregated into beatwise data
using point-in polygon techniques (Aldred, 1971). However, this is not
a fast process, and it seems more practical to store data in both
formats. If in a subdivision, the average crime count for household
burglaries is approximately 40 per week, details of only 640 crimes will
need to be stored over a 16 week period, and the file storage overheads
of keep two separate files, one beatwise, the other pointwise, is

virtually negligible.

It is also important to remember that, although the phrase pointwise is
used here, the points are actually centroids of postcode units. The
analytical effects of this have been addressed in Chapter 4, but on a
level of data storage formats, is it best to store co-ordinates or
postcodes. When a postcode is entered, it will be an 8-character code.
Either this could be stored directly into the database, or converted via a
look-up table into a grid reference. If conversion is not performed
during storage, this must be done when the crime pattern analysis
software is being run. It is felt that, in terms of ease of use, it is
better to perform conversion at time of entry into the database. Some of
the analytical software may already require large execution time, due to
the floating point operations in heavily quantitative algorithms, and it
seems more reasonable to spread the total delay time evenly over input
and analysis, otherwise the operation of the analysis software will appear

very lengthy.
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Also, if conversion is performed at time of storage, it need only be
performed once for each incident. Run time conversion would require
each case to be converted from postcode to grid format every time an

analysis was performed.

Thus, a need has been identified in the data input software to process
the entries before storage on file, in terms of spatial referencing. Time
referencing will be considered next. For predictive purposes, a weekly
reference needs to be given to each crime for point pattern analysis,
and for Knox testing (Chapter 4) each crime needs a daily reference
needs to be given, since a certain amount of manipulation of date
referencing is necessary, a character representation alone will not be
satisfactory. Each event needs an integer reference for the date,
allowing dates to be subtracted (to find days between events) or sorted
into weekly classifications, or compaired wusing ".NE." or similar
FORTRAN operators to base decisions on the chronological order of

events. Such a mapping is provided by

< 36S weos ¥ dare + A Lmonta-1) + gk (Lyeer-N/4)
(X ) —ink \?z_ (in¥(LC %Cw-l)/(oo\‘—\)) (month§2)

A= 36S Yeor Aare + 2 (month -1) = ink (0 menkh 12.3)

- 3 1)
+ tab Cyeor 4)- i ZUak (gfc»r/lw:\mo“m >2)

which, given a year, month and date returns a single integer wvalue

(see, for example, Texas Instruments TI59 instruction book).

Thus, information for each event referring to time and space have been
defined. This information will be sufficient for any of the methods given
in chapters 3, 4 or 5, at least in terms of data referring to crimes.

The only task remaining is to collate this data into two formats, one for
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beatwise aggregated analysis packages, and one for grid referenced

techniques.

Firstly consider the problem of storing count information for each beat
on a weekly basis. If a look-up table is to be compiled for postcodes to
grid references, this could also contain beat codes. Thus, when a
postcode is entered, its beat code is also determined. This would also
allow error trapping, since undefined postcodes, or those not in the
subdivision, would be eliminated at this stage. The look-up table would
need updating regularly with new postcodes. Eventually this could be
done locally. Having found the beat, the week could also be
determined, from the day number. This would be given by the nearest
Saturday (or other day) before the date of the event. If the week at
the oldest end of the database began on a day numbered x, and the day
number of the Saturday closest before the event is y, then event is in

week

‘a b ‘\‘\

if the oldest week is numbered 16, and the most recent week is 1.
Clearly, from the beat and week references, a count can be kept in a
beat-by-beat crosstabulation file, which may be updated for each newly

entered crime.

The point references may be stored on a similar week-by-week basis,

with a list of x and y coordinates for each week. Along with this list of
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coordinates, the day codes will also be provided to allow Knox-type

analysis to take place.

This space-time referencing provides the analysis programs with
sufficient information to run, but it may be helpful to provide extra
verbal information for human users. This may then be referenced after
computer analysis, to look for patterns in modus operandi and so on. If
a crime reference number for each crime is also recorded in the lists of
points and day codes, links will be possible between the crimes stored in
the database, and any verbal information also referenced in this way.
In the prototype, a single line record will be given to verbal description

and stored in a third file.

This file may then be accessed by the pointwise program for analysing

past data.

6.4.3 Data Input Revisited

It is now known which information about household burglary incidence is
required for the database. The Input Descriptor Files can now be
defined. Given a particular screen layout, there are four requirements

for data input:

1) The postcode of the household
2) The date of the burglary
3) The reference number

4) Comments, etc.
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Thus, the descriptor file could be made to look identical to the display
screen, with some symbols to describe where each of these data items
are to be input. The image provided could be plotted on screen with a
boarder, to match the menu system, and then the data items
interactively edited into the image. When the image is completed, the
user can press the return key, to attempt to commit the record to file.
If it fails, an error message will be printed. The types of error that

may occur are:

1) Postcode error - either postcode incorrectly formed, or not in
study area.
2) Numerical error - year, month or date of reference number

contains a letter.

These will be reported, giving the user a renewed chance to enter the
data item. An option to abandon is also required, to allow the user to

exit the data input program if it was entered by mistake.

The symbols used to describe the input data in the image descriptor file
may be combinations of letters or characters unlikely to be encountered
in text on screen. Thus, the month section of the date, for example,
could be symbolised by "$M". Likewise, the year and date parts could
be symbolised by "$Y" and "$D". This leaves the postcode, "$P", the
descriptive text "$T", and the crime reference number "$N". The
default widths for each of these fields is set out in table 6.5. If any of
the variables are not contained in the Input Descriptor File, the input

program will be forced to exit, giving an error return code, while
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Table 6.5
Default Widths In Data Input Screen

Symbol For Item In IDF Description Field Width
$D Date 2
$M Month 2
$Y Year 2
$P Postcode 8
3T Description Text 60
$N Reference No. 4
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printing a message. This will cause the control program to apply its
error handling code, rather than cause a subsequent crash, by some
program attempting to access part of the database that the input

program was unable to compile.

The program to manage the input screen, INPUT, is shown in listing
6.3. Note that the name of the Input descriptor file is communicated to
the program using GETCOM, as is the case with the control programs

access to the root menu file.

6.4.4 Data Input: Conclusions

A simple data input system has now been created. This is relatively
flexible, so that, for example re-wording of the input screen is possible,
if certain wording is difficult to understand, or if it is desired to alter
the data base to one of spatial references to other types of crime.
There are commercially available database management tools which may
perform these tasks, but in order to reduce costs in the prototyping
stage, the approach here will be used. Due to the modular design of
the system, it may be possible to incorporate a commercially available
data input program into the system, provided it can store data in a
format easily and efficiently accessed by the prediction software. This
may be convenient if the operators already have training in this
package. Finally, as considered earlier, it may be that data collation is
centralised to force headquarters,and that this program may in fact be
replaced by software to poll data from central file serving equipment.

However, the development of the small here program makes it possible to
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operationalise the prediction an pattern analysis software at this research

stage of the process.

6.5 Display and Analysis of Past Data

Under this heading, most of the mapping techniques incorporated into
the pattern analysis system will be introduced. As set out in section
6.2, these will be required to display choropleth maps, point maps and
contour-based maps relating to household burglary incidence. The data
input related to crime incidence will be from the files as set out in the
previous section: a list of points and dates, split by weeks for each
reported occurrence, and a crosstabulation of counts on a week-by-week
beat basis. However, in order for mapping to take place, further
cartographic information is required. Some sort of file containing
descriptions of the shape of the foot beat areas is necessary to allow
mapping using the graphics facilities of the hardware. This first section
discusses methods of encoding this information, and of plotting it onto
the screen. Subsequent sections then deal with the specific problems of
overlaying point, choropleth or contour information in conjunction with

this.

6.5.1 Storage and Display of Cartographic Information

As seen in chapter 4, map display visualisation is helped by a certain
amount of information of local geography being displayed. In the case of
police beat officers, the indication of foot beat boundaries proved useful.

Since these often ran along the paths of main roads, and individual
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officers were familiar with the beats they had been patrolling,
particularly in relation to road patterns, these proved valuable

geographical reference objects.

In early map study, the GIMMS mapping package on a mainframe
computer was used to produce various crime map formats, which police
officers were asked to assess. However, this method of map production
will not be available on the prototype system. Although a micro version
of the package is available, maps produced in this way are not
"interactive". For example, in the prediction software, the user is
asked to modify prediction maps with subjective predictions; also it is
desired to allow the user to interactively identify Knox clusters, and
high risk beats. Given that the maps are so heavily interconnected with
the analysis software, it is justifiable to write a set of map drawing
subroutines to enter these features at points required in analysis. Also
the transference of data, and entry/exit procedures required to
frequently transfer control to and from the separate analysis and

mapping packages may prove time-consuming.

This approach will provide a cost-effective and relatively fast means of

map display.

Given this, some form of storing and plotting geographical data must now
be devised. Their are two basic formats in which areal data may be
stored. These are called vector and raster formats (Burrough, 1986).
Briefly, in vector format, data to describe an area consists of a

sequence of grid coordinates, which define its perimeter. A set of
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sequences like this define a region, divided into areal units. In raster
format, the region under study is divided into a grid, consisting of
relatively very small cells. Each cell is assigned a value according to

which region it is part of.

There are various advantages and disadvantages of both types of
storage. The accuracy to which each area can be defined in a raster
based system is dependent on the size of the grid squares. Thus,
precision has a quadratic relationship with storage. In vector based
systems however, increasing the frequency of points need only be
linearly related to precision of definition. However, overlapping areas,
or areas not fully covering the study area may arise due to errors in
the specification of vector-based files. Also, point-in-polygon
techniques, while being complicated geometrical algorithms in wvector
based systems (particularly if areas contain holes, or are not fully
connected - eg. a system of islands) are simply two-dimensional look-up

tables in raster based systems.

Generally, it is important to consider the input and output requirements
of the mapping systems. Vector-based systems are very efficient at
inputting digitised data, since this is virtually in vector format.
Conversion using vector point-in-polygon algorithms must be carried out
to obtain raster files. However, on raster based display devices (such
as the EGA), raster storage is obviously more efficient at data display.
Each line segment in a vector list must be converted to a raster line
(usually by Bresenhan's algorithm, Bresenham 1965 or Wilton 1987)

before display. Given that vector lists often contain several hundred
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line segments, this could be time-consuming compared to the direct

cell-by-cell copying to pixels offered by the raster based solution.

Given that, iIn this application, the maps will only need storing once (at
least until beat boundaries are altered) but need to be displayed several
times in a week, the rasterised storage option is proposed. This should
be on a basis where each grid cell in the raster database corresponds
exactly to a pixel on the VDU. Extra precision would be unnecessary,
since it could not affect the display, and lower precision would give poor
results: generally, "staircase" effects, where edges of grids appeared in

detail, showing the inaccuracy of areal definition.

In mode 16 of EGA (Wilton, 1987) the entire screen is given by a grid of
350 X 640 points. A large "window" in this will be set aside for map
plotting, the remaining screen used for interaction with the user, key

display and other relevant information.

In its naive form, therefore, a raster storage format could be costly in
terms of file space. However, a ""packing" scheme is now proposed

which should overcome this problem.

6.5.2 Packing of Raster Files

Raster data specifying area units may be stored in an m by n array,
where each element contains an integer which is used to indicate which
zone that particular grid element is contained in. Generally, however,

several adjacent grid cells will be in the same zone. Thus, the data in
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a contiguous row could be replaced by two pieces of information: the
zone code and another integer indicating how many times this code is
repeated. If this format were generally adopted, a more space-efficient
storage technique should follow: for good map definition, the size of the
grid cells should be considerably less than that of the average zone
size, so most cells would be expected to be in a contiguous row with
respect to zonal classification. The computing overheads in doing this
will be only a small increase on that of a direct grid-to-pixel mapping,

only requiring the occasional initialisation of loops.

Also, since in these applications it may aid data organisation if the data
for each foot beat zone were Kkept separate, a further modification may
be made. Instead of treating the aggregation of all zones in a single
file, each zone will have its own record. In this case, no zone number
will be required in storage. In each record, the counts refer only to
presence or absence of the zone related to the particular record. After
an initial true/false specification, counts will be given for the number of
continuous cells in a row in that state. The next number refers to the
next contiguous count, of cells not in that state, and so on, until all
relevant cells in that row have been considered, and the next row
begins. The code for this could be, for example, -1, as this could not
represent a count of cells. If the top right-hand corner cell is given,
then an area could be defined as a list of the form above, being

terminated by a pair of consecutive -1 values.

Thus, for each zone, the method continues the search through a window

containing this zone. For each row a code is given to state whether the
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leftmost cell is contained or not. Finally, when the rightmost cell within
the zone to be defined has been given, a -1 code follows. This

continues until the end of the zone, when a pair of -1 codes follow.

However, this algorithm, if given the data for an entire area, would plot
a solid shape. There are times when only borders to areas will be
required, for example when plotting point maps. Given the original n
by m matrix, border detection is relatively easy. However, when using
packed data, edge detection is more difficult, as there is no easy way of
examining a cell's relationship to its upper or lower neighbours. This
suggests that those pixels lying on areal boundaries should be identified
when the packed file is being compiled from the full matrix, and be
stored themselves in another packed file. The boundary of a zone may
itself be thought of as a zone, of width one cell. Again, packed storage
here will be compact, as boundaries will consist of either Ilarge
consecutive runs of logical "trues" (on horizontal parts) or consecutive
runs of "falses" (in the "hollow" parts of the boundary, ie. within the
solid zone). Also, the same piece of software code may then be used to

draw the solid areas and their boundaries.

The boundary cell detection rule, as put forward in the paragraph
above, is relatively simple for matrix format data. Any cell contains an
integer area code. If it is on a boundary, at least one of its four
nearest neighbours will not contain the same area code as itself. Thus,
it will be on the perimeter of the zone whose code it contains. In this
case, however, double thickness boundaries would be plotted, since any

pair of adjacent cells which were not in the same zone would both be
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classified as perimeter cells. A better solution would be to only define
as perimeter cells those cells whose index is greater than or equal to all
of its neighbours. In this case, for each pair of adjacent boundary cells
(according to the former definition), only one would be classified as a
perimeter cell. This may give slightly inaccurate results when several
layers of areas one cell thick arise (if the central layer codes do not
exceed those sandwiching) but in terms of visual display, these effects
will only occur at a resolution of one Pixel, which should be small

compared to the overall scale of the map.

For each zone, perimeter cells are stored in packed format. Note that,
if plotting an individual zone perimeter, the entire zone may not be
enclosed (due to the "greater than or equal" formulation above) but if
all zones are plotted from this file, all boundaries will be displayed.
The zone-by-zone format merely ensures compatibility with the solid zone

packed files.

Some thought must now be given to the conversion of vector files, from
digitised output, to packed raster files. This is best done in two
stages: firstly from digitised output into the raster matrix, and secondly
from raster matrix into packed raster format. The first is relatively
simple. For each grid cell, an assignment rule to an area must be
specified. Here, the grid cell centroid will be tested to see which
polygon it lies in, using point in polygon techniques. If it lies in none,

it is assigned zero, otherwise an integer code.
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At this stage, a second matrix is created, and its elements represent
perimeter cells for each area, as outlined previously. Both of these
matrices may then be packed, by scanning row by row for continuous
runs of cells, and outputting the run length data as specified above,
for each area code in turn. The code to carry out this procedure is

given in listing 6.4.

Initially the file containing packed data will be in text format. This is
because at first the conversion from vector to packed raster data takes
place on the mainframe computer installed at the research site. This
text file may be downloaded to a micro, and converted into binary data.
As binary files may not take the same format on both mainframe and
micro, it is important to postpone text-to-binary conversion until after
transfer. The initial conversion takes place on the mainframe for two
reasons. Firstly, in the intermediate raster matrix stage, storage
overheads may be higher than practical for the current micro, also the
perimeter cell detection may be expensive in CPU time for a micro.
Secondly, the vector data exist on GIMMS dump files (Waugh, 1981)

which are resident on the mainframe, and thus more easily accessed.

Listing 6.5 gives the code to convert the output of this conversion
program into a binary file; and listing 6.6 gives a subroutine to plot a
file containing a collection of areas onto the screen. This calls two
other subroutines, MODE which initialises the screen in a given graphics
mode, and DOT (I, J, K) which sets a Pixel with coordinates I and J to
colour K (NB colour 15 is white). Finally, figure 6.7 gives a thermal

wax screen copy of the display given by the subroutine.



Figure 6.7
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6.5.3 Choropleth Mapping

Having devised a method of mapping beat areas or their boundaries,
methods of combining these with the data must now be considered.
Firstly, choropleth mapping techniques will be considered. In this
technique, an aggregate value for an entire zone is represented by the
shading pattern for that zone. Already an algorithm exists (algorithm
6.1) to shade a solid area uniformly in one colour. This could already
be used to shade areas in terms of past crime rates, simply by filling
solid areas out in different colours. In EGA mode 16, there are 16
colours available. However there is no obvious ordinality in the set of
colours offered, so using this technique directly would not produce an
intuitively informative map. It would be better to classify all of the
beats by shading in the same colour, but distinguishing different rates
by wusing hatching of different pitch. There is easily recognisable
ordinality in this, if pitch is ordered in the same way as crime rate.
This is done here by modifying the method set out in algorithm 6.1; the
"dot" routine is called selectively according to a condition on the sum of

the x and y pixel coordinates. This condition is that
X +y ‘0 mod K,

ie. X + y is a multiple of k. The higher the value of K, the greater the
pitch of the hatching is. Since this rule directly relates to pixel
positions as integers, this does not result in the jagged edges and
rounding errors characteristic of hatching based on real numbered

pitches. It also provides a faster algorithm than vector based hatching
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algorithms, only adding a single filter to the block fill routine to decide

whether pixels should be plotted.

The full plotting subroutine is given in listing 6.7. This allows colour
and pitch to be adjusted for each beat. The change of colour will be
required to highlight beats having surprisingly high rates, given the

values of their neighbours.

Thus, the basic tools for the beatwise map of past data have been
created. These building blocks may now be joined to provide an
interactive program. There are options to view choropleth maps for
single week periods over the past 16 weeks, from the current week.
Also options to view the data aggregated over 4, 8 and 16 weeks are
offered. Finally, records will also be kept for beats which had
"surprisingly" high beat rates (see chapter 5 section 4). An option will
exist to view these by highlighting in a different colour. Initially pitch
shading will be light blue, with "surprising" beats marked in red. A
listing of the complete choropleth mapping program for past data is given

in listing 6.8.

6.5.4 Point Mapping

The aim of point mapping of past data is to overlay point markers
showing the locations of household burglaries onto beat boundary
outlines. This is to be done on a week-by-week basis. It may also be

useful to overlay the points for several weeks, to build up point
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patterns over a longer period of time. Finally, it will also be of use to

identify clusters that are close in both space and time.

Point plotting is relatively simple. Assuming data is read from a file of
past point estimates as described in the input program section, the
coordinates are linearly transformed to pixel coordinates. These are
then plotted on the VDU. Early experimentation of point plotting
programs drew attention to two difficulties. Illumination of single pixels
did not prove to be a good means of displaying the data, as they were
difficult to discern, particularly near to borders. It was therefore
decided to mark points with crosses, built out of five pixels, as shown
in figure 6.8. The second problem encountered was that of
overprinting. Given the resolution offered by the VDU, and the fact
that houses are postcode referenced, with several houses per post-code,
several houses per postcode, several household burglaries may be
allocated to the same point on the screen. This gives the appearance
that only one incident has occurred, when in fact several have done so.
The result of this could be that certain crime patterns may be obscured.
To counter this, when a point is initially plotted, it is done so in red.
A second overlay is in magenta, and three or more in yellow. Thus the
use of the colour display may be used here to compensate for

shortcomings of resolution.

Next, a means of identifying Knox clusters on the display is proposed.
The intention is to highlight burglaries that have occurred within a
certain distance of their nearest neighbour, and also within a certain

time of their most recent temporal neighbour. Choice of distance and



time limits were considered in chapter 3. Reasonable limits are within
200m and 1 day. When identification of knox clusters is requested, for
“n
the week on display it is intended for each crime record to search all
other records on the day associated with that record, and the previous
day, for other events within 200m. On the first day of the week, the
previous days records are to be found in the database for the previous
week. Also, for the final day of the week, (if it is not the most recent
week), a search will be carried out on the first day of the next week.

Burglaries of this sort may be part of a cluster overlapping weekly

boundaries, and it would be dangerous to systematically exclude them.

Thus, events that are components of this type of cluster will be
identified by the algorithm. These will in turn be plotted on the VDU,
in another colour from the colour coding discussed above, over the point
incidence data. To further emphasise these points they will not be
plotted with the shape given in figure 6.8, but the larger shape of

figure 6.9.

Finally comes the problem of overlaying points, to gain several weeks of
data on the same map. The approach taken here is to overlay these
again using colour codeing for duplicate pixels. When the option
"overlay" is selected, stepping back in time on the graph causes the
past data to be plotted on top of current data, rather than having
current data erased. If the mode is switched off, data is erased when
the user steps back and forth in time, as before. The listing of the
pointwise program is given as listing 6.9, and a thermal wax copy of

the screen is given in figure 6.4.
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Figure 6.8
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Figure 6.9
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6.5.5 High Risk Area Identification

In Chapter 4, it was seen that, using kernel estimation techniques, a
"risk surface" could be built up over a geographical study area, given a
set of coordinates for the incidence of spatially referenced crimes. The
points at which this surface exceeded certain values could then be
thought of as high risk areas. Clearly, this would be a further useful
method of representing past data. Indeed, in the map perception survey
in chapter 7, a notable proportion of those surveyed rated this form of
display highly, some commenting that it identified areas of high crime

incidence that crossed beat boundaries.

A method of this sort could be implemented on the prototype system,
when some constraints have been considered. The full Kernel estimator
system, as implemented in chapter 4, would be difficult to code in a way
that did not require very large run times: this is due to the large
computing overheads required for floating point operations, several of
which would have to be computed for each crime incidence point.
Basically, if an incident occurred at a point ¥, then a kernel
distribution function of the form
i X -k
a9
‘
would need to be computed at several points on a lattice surrounding x.
The process could be speeded up, however, by noting that this function
is the same for all x, only depending on the distance between x, and a

point on the lattice k. In this case, the function need only be computed



once, for various radius values. If each location of crime is rounded to
the nearest pixel integer coordinates, and each grid point at which the
surface value is to be computed also corresponds to a pixel, there is
only a small number of distances for which the value of g need be
computed. They correspond to the kernel function evaluated on a
regularly spaced grid at which the reported crime is the origin. By
symmetry, only the first quadrant of the grid need be considered.
Also, beyond a certain radius, the wvalue becomes negligible (NB, the
spacing of the grid corresponds to 32m in the x direction and 40 in the
y). Thus, at some point, this matrix of values can be stored on file,
and referred to during the kernel estimation program. Execution may be
further speeded up by storing these values as integers, say between 0
and 100; this allows the adding up of contributions at grid squares from
several crime points to be speeded up, by performing no floating point

operations.

Eventually each cell will have a risk "score". The file containing the
kernel estimation matrix will be created externally to the running of the
day-to-day system. A program to do this, in listing 6.10, is supplied.
This allows several different shapes of kernel estimator, with choice of
bandwidth (see Chapter 4) to be generated. This program may not be
directly accessed from the menu, but could be run separately from
MS-DOS, as part of an initiation process when setting up the system.
Alternatively, it could be accessible from a password protected section
of the menu, so that accidentally changing the values of the Kernel

array elements is unlikely.
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The graphical display of risk surfaces is relatively easy, when areal
representation is raster-based. In a matrix, the risk scores for each
pixel (corresponding to a rectangle of ground of dimension 32 x 40m) are
stored. Pixels below a certain level will be plotted as green, and those
exceeding it will be plotted as red. Thus, high risk areas will be
indicated as red. In a similar manner to the hatching, the DOT routine
is modified to colour pixels according to this score. In fact, a
three-scale shading is employed, with yellow representing a medium

score.

As in chapter 4, there is no simple way to decide the crossover scores
from medium to high, or low to medium. Initial values have been
decided on a trial and error basis, where high risk zones have been
calibrated to cover areas which, on the opinion of some consulted police
officers, are of a reasonable size to allow police manpower resources to

respond. With the methodology set out as before, it is now possible to
write code to perform the above tasks. This is given in listing 6.11.
In addition to those requirements above, it was also decided to allow
beat boundaries to be drawn either obscured by or superimposed on the
risk area shading, which allows the user to identify areas of overspill
between beats, by firstly considering maps without beat boundaries, and

then overlaying these boundaries.

6.6 Prediction Software

So far, the software concerned with the display and analysis of past

crime data has been considered. However, an important part of the
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system is concerned with beatwise prediction of crime rates in the short
term. In this section, the quantitative algorithms concerned with
Bayesian forecasting will not be considered, as the operationalisation of
the Bayesian system was considered in chapter 5. It will be assumed
here that subroutines exist to perform this, directly translated from the
algebraic expressions arrived at in that chapter. The main task of this
program is to provide an interface between the human user and the
Bayesian system, capable of translating between the probability based
requirements of the system with the users beliefs relating to crime rates
and their knowledge of policing the area, which are intrinsically

expressible as formal probabilities.

In addition to this, the program will be required to output maps of
predictions made, based on the human user predictions combined with
the computer based predictions. Since these maps are also based on
probability distributions, some conveying of uncertainty must also be
incorporated into the maps. Beats may have point predictions based on
mean values for the relevant variables in the posterior distribution (see
Chapter 4) but it may also be informative to display the variances in
some form. This should not be a direct map of variance for each beat,
since this may prove difficult to interpret for some officers (Chapter 2)
but could, for example, highlight those beats whose prediction
distribution variance exceeds some limit as "less predictable beats".
Also, lines can be drawn between beat centroids (stored in a "local
information file") when beats are strongly correlated in the predictive

distribution.
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Firstly, the input of subjective knowledge from police officers will be
considered. It was stated in chapter 5 that it may be helpful to show
officers an initial prediction, and allow them to adjust this. This is
reasonable as it allows adjustments of mean values of the predictive
distributions to be made. However, it may also be useful to discover
the degree of certainty that the officers place on their predictions.
Again, it would not be reasonable to ask this in a statistical manner,
such as requesting the input of standard deviations; therefore a
three-way multiple choice question is asked; "How surprised would you
be if next week's rate differed from this?" with options "not very”,
medium", "very". These can then be translated into variance figures.

These figures can then be converted into normal distributions by using
the number input as the mean and then choosing the standard deviation
to reflect the answer to the second question. In the prototype, the
following values will be used: for the response "not very" the standard
deviation will be two times the mean, for "medium" equal to it and for
"very", half of it. These details will then be fed to the prediction

subroutine.

As suggested earlier, high variance in the prediction distributions could
be indicated in a similar way to "surprising" beats on the past data
choropleth program. The predictions could be shown as a single colour
hatched choropleth map, and if it is requested to show "unpredictable"
beats, these could be highlighted in another colour. Beats whose
predictions are correlated could also be shown, by joining their centroids

with lines. These lines, unlike hatching, would require Bresenham's
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algorithm (Bresenham, 1965) to draw them. Thus, in addition to the

straightforward choropleth map, there will be three options:

Firstly, an option to enter subjective beliefs. Secondly, an option to
highlight beats with high variance in their predictive distributions, and
thirdly to highlight strongly associated beats (ie. those beats whose
predicted crime rates are strongly correlated in the Bayesian forecasting

distribution).

The prediction program is shown in listing 6.12. It was also decided to
incorporate a list form of beatwise forecasts, on the user modification
option. This may be screen dumped, to get hard copy text output to
circulate among police officers who may be concerned. A companion
program to this wupdates the performance evaluation function of the
human forecaster (see Chapter 5). This is called when a new weeks
data is loaded onto the database by the Data Input Program. This is

given in listing 6.13.

6.7 Miscellaneous Other Options

In addition to the main data input, mapping and prediction software,
some other software is also to be incorporated into the package. As
discussed earlier, this will not be considered as "mainstream" to the
application, and will initially require data from files that are not
dynamically updated using the data input program. However, they may
be uéeful on an on-site evaluation by police officers to identify further

development directions. Two such options are included. The first
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relates to the "time of day"” study in Chapter 3. The method reads in
data in the format specified in that chapter, and from this deduces those
times of day at which household burglaries are most likely to occur.
The program specified called DAYTM, carries out this analysis, and data
is coded by day also, and the program offers the further option of
working out risk profiles for single days of the week, and also for week

ends and week days separately.

The secand option allows the total number of household burglaries in the
subdivision to be analysed as a weekly time series. It is not the
intention hevre to facilitate Box Jenkins analysis, or other complex
techrigues to be applied to the data. It is simply to provide seasonal
pattern analysis. In previous studies this has often been found useful
for medium term planning (ie. with a horizon of say three or four
months). Two options will be offered here: a simple bar graph of
weekly crime rates over the past year, and also a cumulative graph. In
the cumunlative graph, the option of comparing this year with the
previous year is incorporated, to allow the current years performance in
crime prevention to be assessed. At the end of each month, a "target"
could be given to keep the years cumulative total no worse than that of

the previous year.

6.8 File Structure

Now that all of the software in the system has been designed, and the
structure of this software has been given in terms of the menu system,

it may now be useful to consider the interaction of this software with the
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data files. These are often the means of communication between separate
programs, and it is important to consider firstly what files will be
necessary and secondly which software writes to and reads from the

files. The structure is best illustrated in table 6.6.

There are two stages. In the initiation stage, most of the data files are
set up. These are listed in table 6.7. They include data about beat
boundaries, name of subdivision continuity of beats, beat centroids and
inter-centroid distances. It is expected that once they have been set
up, they will not need to be altered in day to day running.
Occasionally one may need to be altered by someone with access to the

system, for example if a beat boundary is altered.

Secondly, there is the structure of day to day running. In this set up,
the files set up in the initiation are not altered; they are only used for
reading data. There are, however several dynamic files. These include
point and tabular crime rate data, and data referring to the Bayesian
prior distributions, which are modified as further data evidence is
gathered. Generally, the data input program writes to these files, but
other programs read them. The exception to this is the prediction
program, where users prior predictions are output, so that there is a

running record of their performance.
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Table 6.6
File Interdependance

File Number
1111
123 4567890123%#4%

=
(O ]
o 0 ]
~ -
[o

Input Crime Incident * Kk ok k%

Point Data Mapping * * k Kk K

Risk Surface Mapping * * * *

Choropleth Mapping * * k%

Prediction * * * * % k %k % *
Kernel Function Setting *

User/Machine Corrector * * * * *

File Numbers
MDF

IDF
TABCRM
SPTCRM
POSTCODE. SQZ
TXTCRM
KNOX.BIN
BEATS
BORDERS
10 KERNEL.BIN
11 COMP.MON
12 DISTS

13 ADJLST

14 HHOLDS

15 STAR

16 BTMEAN

17 COMP.PRD
18 USER.PRD
19 USER.PER
20 CENTS

[YoT¢ JEN TN« NG, B0 - VLI B o

Menu Descriptor File

Input Descriptor File

Beatwise Crime Dataset

Pointwise Crime Dataset

Postcode to Foot Beat Lookup

Text crime description

Definition of Knox Clusters

Beat zone descriptions for map drawing
Beat Border descriptions for map drawing
Kernel Function For Risk Surface Evaluation
Monitor of Computer Predictions
Distances Between Beat Centroids
Adjacency List

Beatwise Household Counts

Space Time Autoregression Coefficients
Beat Mean Levels Of Crime Estimates
Computer Predictions

User Predictions

Performance Of User Predictions
Centroids Of Beats

*

O =
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Table 6.7

Files Requiring Injtiatiation Before System is Installed

MDF

IDF
KNOX.BIN
BEATS
BORDERS
KERNEL.BIN
DISTS
ADJLST
HHOLDS
STAR
CENTS

Menu Descriptor File

Input Descriptor File

Definition of Knox Clusters

Beat zone descriptions for map drawing

Beat Border descriptions for map drawing
Kernel Function For Risk Surface Evaluation
Distances Between Beat Centroids

Adjacency List

Beatwise Household Counts

Space Time Autoregression Coefficients
Centroids Of Beats
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6.9 Conclusions

In this chapter, a set of requirements for a microcomputer crime pattern
analysis system has been drawn up. Following this, an implementation
has been proposed, and software to perform the specified tasks has been
written. This software has been tested for errors by the author at the
research site. However, it is possible that further flaws may become
evident when this prototype is tested in a working situation. it is also
possible that certain aspects of design, although perhaps implemented
with the intention of being easy to use and relevant, may in practise
prove not be so. At this stage, it is therefore necessary to set up an
end-user based trial, with the software to be evaluated by members of
the police force. In this way, the intended users are given an
opportunity to change certain aspects of design in the development
stage. In the following chapter, the methodology, implementation and

results of such a trial will be discussed.
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LISTINGS FOR_ CHAPTER 6




PROGRAM ECRYPT 359

o

C xkkkk Listing 6.] *kxkkxxxk

C

C Encrypt passwords in an MDF

C

C
CHARACTER*30 CHOICE(8), PASSWD (8), TNAME(8), NMDF
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER

C

C Attach menu descriptor file

C
CALL GETCOM(NMDF')
OPEN(1,FILE=NMDF)

C

C Read its contents

C

I=1
READ (1,1) HEADER
FORMAT (1X,A58)
4 READ (1,5,END=3) CHOICE(I)
5 FORMAT (1X,A30)
READ (1,1,END=6) EXPLAN (I)
READ (1,2,END=6) PWTYPE (I), PASSWD(I)
2 FORMAT (Al,A30)
READ (1,2,END=6) TTYPE(I), TNAME(I)
I=1I+1
GO TO 4
3ITEMS =1 -1
CLOSE (1)

—

Now encode the passwords

PNeoN@]

DO 100 I = 1, ITEMS
100 CALL ENCRPT(PASSWD(I))

And output the result

[PNeNe

QPEN (1,FILE=NMDF)
WRITE (1,1) HEADER
DO 200 I = 1, ITEMS
WRITE (1,5) CHOICE(I)
WRITE (1,1) EXPLAN(I)
WRITE (1,2) PWTYPE(I), PASSWD(I)
WRITE (1,2) TTYPE(I), TNAME(I)
200 CONTINUE
STOP
o
C Error trap for badly formed menu descriptor file ...
C
6 WRITE (6,*) 'Unexpected end on menu descriptor file ',NMDF
STOP
END
C
C*******************************************************************
C
SUBROUTINE ENCRPT (PW)
C
C Password encryptor. Currently crude, for prototype
C



CHARACTER*30 PW 360
INTEGER*2 PWINT (15)

EQUIVALENCE (PWINT, PW)

DO 100 T = 1, 15

C
Get 4 byte representation of the 2 byte section

2

J = PWINT(I)
¢
¢ Encrypt it
C
100 PWINT(I) = MOD(J*255, 32768)
RETURN

END
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PROGRAM MASTER 361

dkkkkkkkk Listing 6.2 kkkkkkkkk

Control program for police software. This program displays menus,
and then, having recieved a choice from the menu, it either
runs a selected piece of software or displays a new menu.

INPUTS ~-- Menu Descriptor File on Channel 1
-- Keyboard (via MS/DOS)

QUTPUT -- VDU (Via MS/DOS)

EXTERN -- Loads 'Child' Programs (Via MS/DOS)

(Names specified in menu file)

*xx  MS/DOS compatible only - Also some 'Child' programs require
*** EGA graphics board in IBM/PC compatible machines.

Subroutines Called -- GETKEY waits for a keystroke and returns it
-- MENU draws menu on screen
-- CHOICE makes menu selection

EXECPG Dos 'Child' initiator

GETCOM gets initiating command line from Dos

CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), IMENU, CMENU, PWDEC
CHARACTER*1 PWTYPE(8], TTYPE(8)
CHARACTER*58 EXPLAN{8), HEADER
INTEGER*4 ITEMS, ICHCE, ERCODE
LOGICAL OK
INCLUDE ‘'A:SYSREG.FOR'
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,
1 TTYPE, EXPLAN, HEADER, ITEMS
Pisable break for security
CALL SBREAK
Find the root menu

CALL GETCOM (IMENU)
CMENU = IMENU

Display it =--- Main Menu Loop
100 CALL  MENU (CMENU)
Make selection

CALL CHOOSE (ITEMS, ICHCE)
Help line required

IF (ICHCE .EQ. 0) THEN
CALL HELP
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GO TO 100 362
END IF

GO to new menu

IF (TTYPE(ICHCE) .EQ. 'M') THEN
CALL SECURE (ICHCE, OK)
IF (OK) CMENU = TNAME (ICHCE)
GO TO 100

END IF

Execute a program

IF (TTYPE(ICHCE) .EQ. 'E') THEN
CALL SECURE (ICHCE, OK)
IF (OK) CALL EXECPG(TNAME (ICHCE), ERCODE)

Check it ran ok

IF (ERCCDE .NE. 0) THEN
WRITE(6,*) 'Press any key to continue ... '
AH = $08
CALL SYS1(SYSREG)

END IF

CMENU = IMENU

GO TO 100

END IF

Run a program but do not go back to root menu

IF (TTYPE(ICHCE) .EQ. 'e') THEN
CALL SECURE (ICHCE, OK)
IF (OK) CALL EXECPG(TNAME (ICHCE), ERCODE)

Error check

IF (ERCCDE .NE. 0) THEN
WRITE(6,*) 'Press any key to continue ... '
AH = $08
CALL SYS1(SYSREG)

END IF

GO TO 100

Exit to system

END IF

IF (TTYPE(ICHCE) .EQ. 'S') THEN
CALL SECURE (ICHCE, OK)
IF (OK) THEN

Reset break interrupt to normal and stop program
CALL RBREAK
STOP
END IF
GO TO 100
END IF
Error in MDF

WRITE (6,*) 'Non standard action specifier in ‘',CMENU
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WRITE (6,*) ‘'causes a return to MS/DOS . '

STOP

END
C
C**k***********t***************************************t**t**********
C

SUBROUTINE MENU (NMDF)

Display menu on screen

NP Ne]

INTEGER*1 ESC, TOPBAR(70), BOTBAR(70), MIDBAR(70), FRAME(2)
INTEGER*1 SPACES (68)
CHARACTER*30 CHOICE(8), PASSWD(8), TNAME (8), NMDF
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER*4 ITEMS
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,
1 TTYPE, EXPLAN, HEADER, ITEMS
DATA TOPBAR/-55,68*-51,-69/
DATA BOTBAR/-56,68*-51,-68/
DATA MIDBAR/-52,68*-51,~-71/
DATA FRAME /-70,-70/
DATA SPACES /68%*32/
ESC = 27
C
C Attach menu descriptor file
C
OPEN (1, FILE=NMDF)

Fead its contents

(e NoNe]

I=1

READ (1,1) HEADER
1 FORMAT (1%,A58)
READ (1,5,END=3) CHOICE(I)
5 FORMAT (1X,A30)

=3

READ (1,1,END=6) EXPLAN (I)
READ (1,2,END=6) PWTYPE (1), PASSWD(I)
2 FORMAT (Al1,A30)
READ (1,2,END=6) TTYPE(I), TNAME(I)
I=1+1
GO TO 4
3 ITEMS =1 -1

Clear the screen

oNeNe]

WRITE (6,100) ESC, ESC
100 FORMAT (1H&,Al, '[40m',Al,'[2J")
50 WRITE (6,101) ESC
101 FORMAT(1H&,Al,'[36;40m')
C
C Set up the frame and the menu text
C
WRITE (6,110) TOPBAR
110 FORMAT( 5X,70A1)
WRITE (6,110) FRAME(1l), SPACES, FRAME(2)
WRITE (6,110) MIDBAR
DO 120 1= 1, 18
120 WRITE (6,110) FRAME(1l), SPACES, FRAME(2)
WRITE (6,110) MIDBAR
WRITE (6,110) FRAME(l), SPACES, FRAME(2)
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WRITE (6,110) BOTBAR
WRITE (6,201) ESC, ESC, HEADER
201 FORMAT (1X,Al,'[2;11H',Al,'([37;40m',A58)
WRITE (6,202) ESC, ESC, CHOICE(1)
202 FORMAT (1X,Al,‘'[5;20H',Al,'[32;40ml1. ',A30)
DO 300 I = 2, ITEMS
WRITE (6,203) ESC, ESC, I, CHOICE(I)
203 FORMAT (1H&,Al,'([34D',Al,'(2B',I1,'. ',A30)
300 CONTINUE
WRITE (6,204) ESC, ESC, ESC
204 FORMAT (1H&,Al,'[21;19H',Al,'[2;34;47m"',
1'Press the key corresponding to menu choice',Al, '[37;40m")
WRITE (6,205) ESC
205 FORMAT (1H&,Al,'[23;7H',
1'Press H then corresponding key for more details on menu item.')

CLOSE (1)
RETURN
C
C Error trap for badly formed menu descriptor file ...
C
6 WRITE (6,*) '‘Unexpected end on menu descriptor file ',NMDF
STOP
END
C

R R R Rt I I
C
SUBRQUTINE CHOQOQOSE (ITEMS, CHCE)

Get choice from menu

QOO0

INTEGER*4 ITEMS, CHCE
INCLUDE 'A:SYSREG.FOR'
100 AH = $08
CALL SYS1{SYSREG)
IF (AL .EQ. 72) THEN
CHCE = O
ELSE
CHCE = AL - 48
END IF
IF (CHCE .LT. 0 .OR. CHCE .GT. ITEMS) GO TO 100
RETURN
END
C
c****************************‘k***‘k*******************‘k***************
C
SUBROUTINE HELP
C
C Display the help line
C
INTEGER*1 ESC
CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), NMDF
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER*4 ITEMS
INCLUDE 'SYSREG.FOR'
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,
1 TTYPE, EXPLAN, HEADER, ITEMS
ESC = 27
100 CALL CHOOSE (ITEMS, ICHCE)
IF (ICHCE .EQ. 0) GO TO 100
WRITE (6,110) ESC, EXPLAN (ICHCE)
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110 FORMAT (1H&,Al,*'[23;7H',A58," ')
WRITE (6,120) ESC
120 FORMAT (1H&,Al,'([24;23H',
1'Press SPACE to return to main menu')
130 AH = $08
CALL SYS1(SYSREG)
IF (AL .NE. 32) GO TO 130
RETURN
END
C
c********************************************************************
C
SUBROUTINE SECURE (ICHCE, OK)

C
C Security check
C
LOGICAL OK
INTEGER*]1 ESC
CHARACTER*30 CHOICE(8), PASSWD(B8), TNAME(8), NMDF, GUESS
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER*4 ITEMS
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,
1 TTYPE, EXPLAN, HEADER, ITEMS
ESC = 27
IF (PWTYPE(ICHCE) .EQ. '~') THEN
C
C If no password required then all is OX
C
OK = .TRUE.
ELSE
C
C Otherwise ask for password
C

WRITE (6, 100) ESC

100 FORMAT (1H&,Al,'[23;7H',

10 ')

WRITE (6,110) ESC, ESC

110 FORMAT (1H&,Al,'[23;7H', ‘Enter password > ',Al,'[32;42m")
READ (5,'(A)') GUESS
CALL ENCRPT (GUESS)
IF (GUESS .EQ. PASSWD(ICHCE)) THEN

Password correct

eNeNe]

0K = .TRUE.
WRITE (6,140) ESC
140 FORMAT (1H&,Al,'[37;40m')
ELSE

Password wrong

OO0

WRITE (6,120) ESC, ESC
120 FORMAT (1H&,Al,'[23;7H',Al,'([31;47m',
1! NO ACCESS ')
OK = .FALSE.
DO 130 T =1, 300000
130 CONTINUE
END IF
END IF
RETURN



END
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PROGRAM INPUT

kkkkhkhkkkk Listing 6_3 khkkkkkkkhkkkxk

Data input program for crime pattern analysis system ---
Reads a screen decription from the file in IDF; Prints this screen
(an input form for a single crime record) and reads in the data.
Stores this data onto the table of beatwise crime rates, and also
the table of pointwise rates, in as binary files.

Files : IDF - Input Descriptor File =-- Channel 1
SPTCRM - Pointwise Crime Data -- Channel 2
TABCRM - Tabular Crime Data =-- Channel 3

Other Channels
- Keyed Input Of Data -- Channel 5
-~ Output of text to VDU -- Channel 6

CCCCCCCCLCCCLLreeeeeceeeceecceeeeeceeeceecceeeeceeecececeecccececceecccecceccece

CHARACTER IDF*20, TEMPLT*76, VERBAL*60, POST*8, INCHAR*{0,
1 SPCS*1, VARMKR*2, BLNK*78, TEXT*60

INTEGER  INPOSN(6,2), WIDTH(6)

LOGICAL GIVEN(6), ALLIN, OK

LOGICAL*1 LEAVE

INTEGER*1 ESC, TR, BR, TL, BL, UL, AL

DIMENSION TEMPLT (20), VARMKR(6), SPCS(78)

Above variables refer to characters to display form on VDU,
and to widths, codes and cursor postion for input data items.
QBREAK() is a test for ctrl-C --- abandon entry.

INTEGER  DATEV, MONTH, YEAR, CRIME, DN, DF1l, DF2, WEEK
INTEGER  DT1, DT2, MT1l, MT2, YR1l, YR2, BEAT

INTEGER DA(16), MA(l6), YA(l6), CRA(16,32), DAYNUM
INTEGER  REFNUM(16,100), NCRIMS(16), DAYNOT(16,100)
REAL CREAST(16,100), CRNORT(16,100)

Above variables refer to dates, beats etc. for database of crime
incidents

EQUIVALENCE (SPCS{1), BLNK)

DATA SPCS/78*' '/ , VARMKR/'SD','$M','S$y','S$p','$T*Y, SN/
DATA ESC/27/, WIDTH/2, 2, 2, 8, 60, 4/

DATA TR/-65/, BR/-39/, TL/-38/, BL/-64/, UL/-77/, AL/-60/

The above data statements initialise some of the constant data items

CCCCCCCCCCCCCCC The Program CCCCCCCCCCCCCCCCCCCCCCCCccececececccceecece

Disable the break key
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CALL SBREAK

C
¢ First, read in the Input Descriptor File into TEMPLT
C
CALL GETCOM(IDF)
OPEN(1, FILE=IDF)
DO 100 I =1, 20
100 TEMPLT (I) = BLNK
I=1
120 READ (1,'(A)', END=110) TEMPLT(I)
I=I+1
IF (I.LT. 21) GO TO 120
110 CONTINUE

CLOSE (1)
C
C Now check that all of the variables required have positions given
C for input on the screen ... If not then halt the program.
C
DO 130 I =1, 6
GIVEN(I) = .FALSE.
J=1
135 INPOSN(I,1) = INDEX(TEMPLT(J), VARMKR(I))

IF (INPOSN(I,1).NE.Q) THEN
INPOSN(I,2) = J
GIVEN(I) = .TRUE.
END IF
J=J+1
IF ((.NOT.GIVEN(I)).AND.(J .LT. 21)) GO TO 135
130 CONTINUE
ALLIN = .TRUE.
DO 140 I =1, 6
140 ALLIN = ALLIN .AND. GIVEN(I)
IF (.NOT. ALLIN) THEN
WRITE (6,'(A)') ' Error -- Not all variables specified in IDF'
STOP 1
END IF

Modify the input screen by putting dotted lines for variables

a0

DO 150 I =1, 6
J = INPOSN(I,1)
K = INPOSN(I,2)
DO 150 L = 0, WIDTH(I)

1
150 TEMPLT (K) (J+L:J+L) !

Modify the input coordinates to allow for border

QOO

DO 154 I =1, 6
INPOSN(I,1) = INPOSN(I,1) + 1
INPOSN(I,2) = INPOSN(I,2) + 1
154 CONTINUE
o
C Read in the postcode centroid and beat information
C
CALL SETUP
C .
C Now put the menu on the screen
C

260 WRITE (6,180) ESC, ESC
180 FORMAT (1X,Al,'[40m',Al,'[2J")
WRITE (6,'(2X,78A1)') TL,(AL, I =1, 76), TR
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C

170

369
DO 170 I =1, 20

WRITE (6,'(2X,Al,A76,Al1)') UL, TEMPLT(I), UL
WRITE (6,'(2X,78A1)') BL,(AL, I =1, 76), BR

Next get the data from the user

Firstly get the date, month, and year.

200

210

220

CALL GETTXT(INPOSN(1,1), INPOSN(1,2), WIDTH(1l), TEXT)
IF (LEAVE()) GO TO 999

CALL CHECK(TEXT(1:2), 1, 31, DATEV, OK)

IF (.NOT. OK) THEN

CALL PUTTXT(22,24, 'Error in date entry: press any key')

CALL GETKEY
CALL PUTTXT(22,24,'
END IF
IF (.NOT.OK) GO TO 200
CALL GETTXT(INPOSN(2,1), INPOSN(2,2), WIDTH(Z), TEXT)
IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:2), 1, 12, MONTH, OK)
IF (.NOT. OK) THEN

CALL PUTTXT(22,24, 'Error in month entry: press any key')

CALL GETKEY
CALL PUTTXT (22,24,
END IF
IF (.NOT. OK) GO TO 210
CALL GETTXT (INPOSN(3,1), INPOSN(3,2), WIDTH(3), TEXT)
IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:2), 0, 99, YEAR, OK)
IF {(.NOT. OK) THEN

)

CALL PUTTXT(22,24,'Error in year entry: press any key')

CALL GETKEY

CALL PUTTXT(22,24,"'
END IF
IF (.NOT. OK) GO TO 220

C Now get the postcode and see if it is a real one

C

QOO

oNeNe@]

230

CALL GETTXT (INPOSN (4,1), INPOSN(4,2), WIDTH(4), TEXT)

IF (LEAVE()) GO TO 999

POST = TEXT(1:8)

CALL LOOKUP (POST, BEAT, XREF, YREF)
IF (BEAT .EQ. 0) THEN

CALL PUTTXT (22,24, 'Post code error: Press any key')

CALL GETKEY
CALL PUTTXT(22,24,'
END IF
IF (BEAT .EQ. 0) GO TO 230

Now the description

CALL GETTXT (INPOSN(5,1), INPOSN(5,2), WIDTH(S), TEXT)
IF (LEAVE()) GO TO 999
VERBAL = TEXT(1:60)

Now the crime number

240 CALL GETTXT (INPOSN(6,1), INPOSN(6,2), WIDTH(6), TEXT)

IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:4), 0, 9999, CRIME, OK)

')



IF (.NOT. OK) THEN 370
CALL PUTTXT (22,24, 'Error in crime number: press any key')
CALL GETKEY
CALL PUTTXT(22,24," ")
END IF
IF (.NOT. OK) GO TO 240

C
¢ Everything is now ready ... Allow user to verify the reccrd
C

CALL PUTTXT (22,24, 'Is the above record correct (Y/N)')

250 CALL GETTXT(56,24,1,TEXT)
IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) THEN
CALL PUTTXT (22,24, 'Please enter Y or N ')

END IF

IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) GO TO 250

IF (TEXT(1:1) .EQ. 'N' .OR. TEXT(1l:1) .EQ. 'n') GO TO 260
C

C Now process the data. First make the date into a number
C
DN = DAYNUM (DATEV, MONTH, YEAR+1900)

¢
C See if it it is sensible -- ie not in the future
¢
CALL DATE(YR2, MT2, DT2)
DF2 = DAYNUM(DT2, MT2, YR2)
IF (DN .GT. DF2) THEN
C
C Trap for future dates
C
CALL PUTTXT (15,24, 'Error: Your crime is in the future!:Press any
1 Key')
CALL GETKEY
CALL PUTTXT (15,24, "
1 ")
GO TO 999
END IF
C
C Now attach tabular file, and find most recent date
C
OPEN (3,FILE="TABCRM', FORM="UNFORMATTED ")
READ (3) YR1l, MT1, DT1
DF1 = DAYNUM(DT1, MT1, YR1)
C
C If date is after last saturday on file, roll on a week
C

IF (DF2 .GT. DF1) THEN
DO 270 I =1, 32
270 CRA(1,I) = 0
CALL DAMOYR((DF2/7)*7 + 7, DA(1), MA(l), YA(1l))
DF1 = DAYNUM(DA(1), MA(1), YA(1))

DA(2) = DT1
MA(2) = MT1
YA(2) = ¥YR1

READ (3) (CRA(2,J), J =1, 32)
DO 280 I = 3, 16
READ (3) YA(I), MA(I), DA(I)

280 READ (3) (CRA(I,J), J =1, 32)
ELSE
YA(1l) = YR1
MA(1) = MT1

DA(1) DT1
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371
Do this if otherwise

READ (3) (CRA(1,J), J =1, 32)
DO 290 I = 2, 16
READ (3) YA(I), MA(I), DA(I)
290 READ (3) (CRA(I, J), J =1, 32)
END IF

Update the tabular records

WEEK = (DF1 - DN) / 7 +1
IF (WEEK .LE. 16) CRA(WEEK,BEAT) = CRA(WEEK,BEAT) + 1

Overwrite the old file

CLOSE (3)
CALL CMND('COPY TABCRM EMERG.TAB >X')
CALL CMND ('ERASE TABCRM!')
OPEN(3, FILE = 'TABCRM', FORM = 'UNFORMATTED')
DO 300 I =1, 16
WRITE (3) YA(I), MA(I), DA(I)
300 WRITE (3) (CRA(I, J), J =1, 32)

CLOSE (3)

Now update the points file -- Re read YR1, MT1l, DT1 to skip on file
OPEN (2, FILE = 'SPTCRM', FORM = 'UNFORMATTED')
READ (2) YR1, MT1, DT1
DF1 = DAYNUM(DT1, MT1, YR1)

If todays date exceeds last saturday, roll it on a week

DF2 already known from Tabular data
IF (DF2 .GT. DF1l) THEN

NCRIMS (1) = 0
CALL DAMOYR((DF2/7)*7 + 7, DA(1l), MA(1l), YA(1l))
DF1 = DAYNUM(DA(1), MA(1l), YA(l))
DA(2) = DT1
MA(2) = MT1
YA(2) = YR1
READ (2) NCRIMS(2)
READ (2) (CREAST(2,J), J=1, 100)
READ (2) (CRNORT(2,J), J=1, 100)
READ (2) (DAYNOT(2,J), J=1, 100)
READ (2) (REFNUM(2,J), J=1, 100)
DO 330 I =3, 16
READ (2) YA(I), MA(I), DA(I)
READ (2) NCRIMS(I)
READ (2) (CREAST(I,J), J=1, 100)
READ (2) (CRNORT(I,J), J=1, 100)
READ (2) (DAYNOT(I,J), J=1, 100)
330 READ (2) (REFNUM(I,J), J=1, 100)
ELSE
YA (1) = ¥YR1
MA(1l) = MT1
DA(1l) = DT1

READ (2) NCRIMS (1)

READ (2) (CREAST(1,J), J=1, 100)
READ (2) (CRNORT(1,J), J=1, 100)
READ (2) (DAYNOT(1,J), J=1, 100)
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END IF
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(REFNUM(1,J), J=1, 100)
2, 16

YA(I), MA(I), DA(I)
NCRIMS (I)

(CREAST (I,J), J=1, 100)
(CRNORT (I,J), J=1, 100)
(DAYNOT (I,J), J=1, 100)
(REFNUM(I,J), J=1, 100)

Update point-based records

WEEK = (DF1 - DN) / 7 + 1
IF (WEEK .LE. 16) THEN
NCRIMS (WEEK) = NCRIMS (WEEK) + 1

CREAST (WEEK, NCRIMS(WEEK)) = XREF / 100.0
CRNORT (WEEK, NCRIMS(WEEK)) = YREF / 100.0
DAYNOT (WEEK, NCRIMS (WEEK)) = DN

REFNUM (WEEK, NCRIMS (WEEK)) = CRIME

END IF

Qverwrite the old file

350

CLOSE (2)

CALL CMND{'COPY SPTCRM EMERG.SPT >X')

CALL CMND('ERASE SPTCRM')

OPEN (2, FILE='SPTCRM', FORM = 'UNFORMATTED')
=1, 16

WRITE (2)
WRITE (2)
WRITE (2)
WRITE (2)
WRITE (2)
WRITE (2)

DO 350 I

CLOSE (2)

YA(I), MA(I), DA(I)
NCRIMS (I)

(CREAST (I,J), J=1, 100)
(CRNORT (I,J), J=1, 100)
(DAYNOT (I,J), J=1, 100)
(REFNUM(I,J), J=1, 100)

Check performance against machine prediction

CALL EXECPG('MONITOR', IFAULT)

Download text and crime record number

Go

999
310

OPEN (8, FILE='APPREC')
WRITE (8,'(I8,A60)"') CRIME, VERBAL

CLOSE (8)

CALL CMND('COPY TXTCRM+APPREC >x')
CALL CMND ('ERASE APPREC')

round again if needed

CALL PUTTXT (22,24, 'Do you have any further crime records? (Y/N)')

CALL GETTXT(74,24,1,TEXT)
IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) THEN
CALL PUTTXT (22,24, 'Please enter Y or N

END IF

IF (INDEX('YNyn',TEXT(1l:1)) .EQ. 0) GO TO 310
IF (TEXT(1l:1) .EQ. 'Y' .OR. TEXT(1:1) .EQ. 'y') GO TO 260
CALL RBREAK

STOP
END

")
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C*****************************************************'k**********‘k***

C

PN Ne] o EeNe! oNoNeoNoNeoNe Kol

(]

O

SUBROUTINE GETTXT (XCR, YCR, WIDTH,
INTEGER*4 XCR, YCR, WIDTH, POSN
CHARACTER* (*) TEXT

CHARACTER*1 LETTER

TEXT)

INTEGER*1 SYSREG(20), AL, AH, BL, BH, CL, CH, DL, DH

LOGICAL*1 2F, CF

INTEGER*2 BP, SI, DI, DS, ES, AX, BX, CX, DX

EQUIVALENCE (2ZF, SYSREG(1)), (CF,
(BP, SYSREG(3)),
(SI, SYSREG(5)), (DI,
(DS, SYSREG(8)), (ES,
(AX, AL, SYSREG(13)),
(BX, BL, SYSREG(15)),
(CX, CL, SYSREG(17)),
(DX, DL, SYSREG(19)),

EQUIVALENCE (LETTER, AL)

~N oYU W N

SYSREG(2)),

SYSREG(7)),
SYSREG(11)),
(AH, SYSREG(14)),
(BH, SYSREG(16)
(CH, SYSREG(18

) s
))
(DH, SYSREG(20))

Subroutine to put a cursor onto a given point on the vdu

and read a string of width WIDTH.

Initially the text to return is filled with spaces

DO 100 I = 1, WIDTH
100 TEXT(I:I) = ' !

Put the cursor in position
AH = 2
BH = 0
DL = XCR
DH = YCR
CALL SYS2(16,SYSREG)
Now read the input ... do not allow cursor off pro-forma
POSN =1
110 AH = 8
CALL SYS1(SYSREG)
IF (AL .GE. 32) THEN

Non - control character handling

IF (POSN .LE. WIDTH) THEN
WRITE (6,'(1H&,Al)') LETTER
TEXT (POSN:POSN) = LETTER
POSN = POSN + 1
END IF
ELSE
Special characters --- return, backspace, forespace
IF (AL .EQ. 8 .OR. AL .EQ. 11) THEN
Backspace

IF (POSN .GT. 1) THEN
POSN = POSN - 1

WRITE (6,'(1H&,Al)') LETTER

END IF
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IF (AL .EQ. 26) THEN
C Forespace
IF (POSN .LT. WIDTH) THEN
WRITE (6,'(1H&,Al)') LETTER
POSN = POSN + 1

END IF
END IF

C
C End of loop --- re-loop if return has not been pressed
C

END IF

IF (AL .NE. 13) GO TO 110

RETURN

END
¢

C*******t**************************************x***********t**t*******

¢
SUBROUTINE CHECK(STRING, LOWER, UPPER, NUMBER, FLAG)

Subroutine to detect errors in strings of numbers

STRING Text string to be scanned

UPPER Upper bound for number

LOWER Lower bound for number

NUMBER value returned if number good

FLAG Logical test of whether number good

oNoNe NN RN NN NP

CHARACTER* (*) STRING
CHARACTER*4 ARGMNT

INTEGER*4 UPPER, LOWER, NUMBER
LOGICAL FLAG

(@

Ensure ARGMNT has four characters

IF (LEN(STRING) .LT. 4) THEN
ARGMNT = ' '//STRING

ELSE
ARGMNT = STRING

END IF

(@

Try to read the string as a number. If OK check range

READ (ARGMNT, '(I4)',ERR=100) NUMBER
FLAG = NUMBER .GE. LOWER .AND. NUMBER .LE. UPPER
RETURN

«

If program gets here, text was not a number

QO

100 FLAG = .FALSE.
RETURN
END
C
C********************************************************i**********
C .
SUBROUTINE PUTTXT(XTL, YTL, TEXT)
C
C Subroutine to write text on screen
C
C XTL X Text Location
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C YTL Y Text Location
C TEXT The text
C

INTEGER*4 XTL, YTL

CHARACTER* (*) TEXT

INTEGER*1 SYSREG(20), AL, AH, BL, BH, CL, CH, DL, DH
LOGICAL*1 ZF, CF

INTEGER*2 BP, SI, DI, DS, ES, AX, BX, CX, DX
EQUIVALENCE (ZF, SYSREG(1l)), (CF, SYSREG(2)),

1 (BP, SYSREG(3)),

2 (SI, SYSREG(5)), (DI, SYSREG(7)),

3 (DS, SYSREG(8)), (ES, SYSREG(11)),

4 (AX, AL, SYSREG(13)), (AH, SYSREG(14)),
5 (BX, BL, SYSREG(15)), (BH, SYSREG(16)),
6 (CX, CL, SYSREG(17)), (CH, SYSREG(18)),
7 (DX, DL, SYSREG(19)), (DH, SYSREG(20))
AH = 2

BH = 0

DL = XTL

DH = YTL

CALL SYS2(16,SYSREG)

WRITE (6, '(1H&,A)') TEXT

RETURN

END
C
Rt E R R e R AR e et
C

SUBROUTINE GETKEY

o
C Wait for a key to be pressed
C
INTEGER*1 SYSREG(20), AL, AH, BL, BH, CL, CH, DL, DH
LOGICAL*1 ZF, CF
INTEGER*2 BP, SI, DI, DS, ES, AX, BX, CX, DX
EQUIVALENCE (2F, SYSREG(l)), (CF, SYSREG(2)),
1 (BP, SYSREG(3)),
2 (SI, SYSREG(5)), (DI, SYSREG(7)),
3 (DS, SYSREG(8)), (ES, SYSREG(1l)),
4 (AX, AL, SYSREG(13)), (AH, SYSREG(14)),
5 (BX, BL, SYSREG(15)), (BH, SYSREG(1l6)),
6 (CX, CL, SYSREG(17)), (CH, SYSREG(18)),
7 (DX, DL, SYSREG(19)), (DH, SYSREG(20))
AH = 8
CALL SYS1(SYSREG)
RETURN
END
o

CARARR KKK AR KR AR IR K AR KA AR AR R KRR KK AR R AR KRR A AR KRk kAR KR KA KRR KAk kAR Kk &
c

SUBROUTINE LOQCKUP (POST, BEAT, XREF, YREF)

CHARACTER*8 POST, SQUASH

INTEGER*4 BEAT, INDEX1, INDEX2

REAL*4 XREF, YREF

Lookup table from Postcode to coordinates and beat
POST Postcode

BEAT Integer beat code
XREF, YREF 10 metre grid coordinates

oo N NP NP Ne]
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C First, remove spaces from postcode

¢
SQUASH = ' !
INDEX2 = 1
DO 100 INDEX1 = 1, 8
IF (POST(INDEX1:INDEX1l) .NE. ' ') THEN

SQUASH (INDEX2 :INDEX2) = POST (INDEX1:INDEX1)
INDEX2 = INDEX2 + 1
END IF
100 CONTINUE
CALL BINLUT(SQUASH(1:7), BEAT, XREF, YREF)
RETURN
END
C
CrA*EEKK KKK KKK KA KA A KKK KKK KKK A KA KRR KK XX KK KK ARRKAK KRR KRR KA AR K KKKk &
C
INTEGER*4 FUNCTION DAYNUM(DATE, MCNTH, YEAR)

Gives an integer corresponding to the date
allowing dates to be subtracted etc.

OO0

INTEGER*4 YEAR, MONTH, DATE
IF (MONTH .LT. 3) THEN

DAYNUM = 365*YEAR + DATE + 31* (MONTH - 1) + (YEAR - 1)/4
INT(0.75*((YEAR - 1)/130) + 1)

1
ELSE
DAYNUM 365*YEAR + DATE + 31* (MONTH - 1) - INT(0.4*MONTH + 2.3)

YEAR/4 - INT(0.75* (YEAR/100) + 1)

1

END IF
RETURN
END

+

C

C*t************************************k***************t*************

C
SUBROUTINE DAMOYR(NUMBER, DATE, MCNTH, YEAR)

C
C Opposite of DAYNUM --- given the number gives date, month, year
C
INTEGER*4 NUMBER, DATE, MONTH, YEAR, GUESS, TEST
C
C Initial quess at the year -- normally correct
C
YEAR = NUMBER / 365.24
GUESS = NUMBER - 365*YEAR - (YEAR - 1)/4 + 15
C
C 1If incorrect, the previous year will work
C
IF (GUESS .LE. 0) THEN
YEAR = YEAR -1
GUESS = NUMBER - 365*YEAR - (YEAR - 1)/4 + 15
END IF
C
C Now find the month -- Jan & Feb first, then the rest
C
IF (GUESS .LT. 32) THEN
DATE = GUESS
MONTH = 1
RETURN
END IF

IF (GUESS .LT. 60) THEN
DATE = GUESS - 31
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MONTH = 2
IF (DATE .EQ. 29) THEN
IF ((YEAR/4)*4 .NE, YEAR) THEN
MONTH = 3
DATE = 1
END IF
END IF
RETURN
END IF
IF (GUESS .GE. 60) THEN
MONTH 2
100 MONTH = MONTH + 1
TEST = GUESS - 31*(MONTH - 1) + (0.4*MONTH + 2.3)
IF (TEST .GT. 0) GO TO 100
END IF
MONTH = MONTH - 1

C

C What remains gives the data of the month

C
DATE = GUESS - 31*(MONTH - 1) + (0.4*MONTH + 2.3)
RETURN
END

C

C**********************************************************************

C
SUBROUTINE SETUP

C
C The Initialiser for the Look-Up table routine
C
CHARACTER*7 CODE (1564)
INTEGER*4 BEAT(1564)
REAL X(1564), Y(1564)
COMMON /LOOK/ CODE, BEAT, X, Y
OPEN(4,FILE='B:POSTCOD.SQZ"', FORM="'UNFORMATTED"')
READ (4) CODE
READ (4) BEAT
READ (4) X
READ (4) Y
RETURN
END
C

Crrkkkakhkkhdhhkhkhhkkkkhhhkhkkhkkhhhkkkhkkkkkhkhk kX kxkkkkkkkkhkkkkkkkkk%

C
SUBROUTINE BINLUT (CODE, BEAT, X, Y)

C
C The Action Routine for the lookup table
C
CHARACTER CODE*7
CHARACTER*7 TCODE (1564)
INTEGER*4 TBEAT(1564), BEAT
REAL TX(1564), TY{(1564), X, Y
INTEGER LOOKH, LOOKL, LOOKM, GAP, LGAP
LOGICAL FOUND, LLT
COMMON /LOOK/ TCODE, TBEAT, TX, TY
C
C Start the search by initialising the parameters
C
LOOKH = 1564
LOOKL =1
FOUND = .FALSE.

LGAP = 2* (LOOKH - LOOKL)
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GAP = LOOKH - LOOKL
C
C Main loop of a binary division search
C
100 IF ((GAP .NE. LGAP).AND.(.NOT.FOUND)) THEN
LOOKM = (LOOKH + LOOKL) / 2
FOUND = TCODE (LOOKM) .EQ.CODE
IF (.NOT.FOUND) THEN
IF (LLT(TCODE (LOOKM),CODE)) THEN
LOOKL = LOOKM
ELSE
LOOKH = LOOKM
END IF

OOKH - LOOKL
END IF
GO TO 100
END IF
C
C Result of search may now be transferred
C
IF (FOUND) THEN
X = TX(LOOKM)
Y = TY(LOOKM)
BEAT = TBEAT (LOOKM)
ELSE
BEAT = 0
END IF
RETURN
END
o
C******************************************************k'k*************
o
LOGICAL*1 FUNCTION LEAVE()
LOGICAL*]1 QBREAK
CHARACTER*1 TEXT
c
C Device to handle user interrupts to exit record

LEAVE = QBREAK({)

Get verification of this

PN Ne]

IF (LEAVE) THEN
CALL PUTTXT (21,24, 'Request to exit record -- Verify (Y/N)')
100 CALL GETTXT(65,24,1,TEXT)
CALL PUTTXT(21,24,' "
IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) THEN
CALL PUTTXT (22,24, 'Please enter Y or N "
GO TO 100
END IF
LEAVE = (TEXT(1l:1) .EQ. 'Y' .OR. TEXT(1l:1) .EQ. 'y")
END IF
RETURN
END
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xxxxxxxxxx [isting 6.4 ***xxkkkkkk

Rasterising Program - turns a GIMMS
outline into a crushed raster code

Uses a point in polygon routine
Channels 1= Gimms Outline

2= Rasterised output
5= Limits of map

o EoloReNoNoEeoEoNePEPELNONoNeNe Ne Ne Ne)

INTEGER*2 GRID(375,300), LAST, COUNT, GR2(375,300)
REAL*4 XOUTL(400), YOUTL(400), XTOP, XBTM, YTOP, YBTM
REAL*4 XLT, XLB, YLT, YLB, XSTEP, YSTEP

INTEGER*4 SIZE, IL, IH, JL, JH, DELTX, DELTY

INTEGER*4 LIMS (4,32)

INTEGER*2 MINSCN

CHARACTER*4 BEAT

LOGICAL WITHIN

(ep]

Input the limit points of the map from file

READ (5,'(4F7.0)') XBTM, XTOP, YBTM, YTOP

2

Compute the steps for centroids of pixels (in terms of National grid)

XSTEP (XTOP - XBTM) / 375.0

YSTEP (YTOP - YBTM) / 300.0

DO 887 I =1, 375

DO 887 J =1, 300
887 GRID(I,J) =0

o
C Read the beats in from GIMMS area dump file
C

DO 888 IBT =1, 32

READ (1, '(T10,A4)') BEAT

READ (1,'(T10,I4)') SIZE

READ (1,'(10F7.0)'") (XOUTL(I), YOUTL(I), I = 1, SIZE)
WRITE (6,'(2X,A4)') BEAT

C
C Compute the x and y limits for each zone
C

XLT = XOUTL(1)

XLB = XOUTL(1)

YLT = YOUTL(1)

YLB = YOUTL(1)

DO 100 I = 2, SIZE

IF (XLT. LT. XOUTL(I)) XLT = XOUTL(I)
IF (XLB. GT. XOUTL(I)) XLB = XOUTL(I)
IF (YLT. LT. YOUTL(I)) YLT = YOUTL(I)
IF (YLB. GT. YOUTL(I)) YLB = YQUTL(I)
100 CONTINUE
IL = INT((XLB - XBTM)/XSTEP) - 2
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JL = INT((YLB - YBTM)/YSTEP) - 2

JH = INT((YLT - YBTM)/YSTEP) + 2

LIMS (1,IBT) = IL

LIMS (2, IBT) = IH

LIMS (3,IBT) = JL

LIMS (4, IBT) = JH

IF (IL .LE. 0) IL =1
IF (IH .GE. 375) IH = 375
IF (JL .LE. 0) JL =1
IF (IL .GE. 300) JH = 300
o
C Check, for each zone, whether centroid is inside, foe each
C centroid in the x and y limit square
C
DO 110 I = IL, IH
DO 110 J = JL, JH
CALL INSIDE(XOUTL, YOUTL, SIZE,
1 XBTM + (I - 0.5)*XSTEP, YBTM + (J - 0.5) *YSTEP,
2 WITHIN)
IF (WITHIN) GRID(I,J) = IBT
110 CONTINUE
C
C Output it in run-length encoded form (see text)
C
CALL CRUNCH(GRID,IL,JL,IH,JH,IBT)
888 CONTINUE
C
C Now do edge detection; for finding borders
C
DO 889 IBRT =1, 32
IL = LIMS({(1,IBT)
IH = LIMS(2,IBT)
JL = LIMS(3,IBT)
JH = LIMS (4, IBT)
DO 8% I=IL+1, IH-1
DO 890 J =JL +1, JgH -1
C
C Look around each pixel for neighbours of a different zone code
C When one is found less than zone code of zone whose borders are
C being detected, then the pixel is a border. Otherwise not.
o
o
IF (GRID(I,J) .EQ. IBT) THEN
MINSCN = 32000
IF (GRID(I ,J-1).LT.MINSCN) MINSCN = GRID(I ,J-1)
IF (GRID(I-1,J ).LT.MINSCN) MINSCN = GRID(I-1,J )
IF (GRID(I+1,J ).LT.MINSCN) MINSCN = GRID(I+1,J )
IF (GRID(I ,J+1).LT.MINSCN) MINSCN = GRID(I ,J+1)
IF (MINSCN .LT. GRID(I,J)) THEN
GR2(I,J) =1
ELSE
GR2(I,J) = 0
END IF
ELSE
"GR2(1,J) =0
END IF
890 CONTINUE
WRITE (6,'(2a)") "+++++++++4+++++++H++"T
C

C Run length encode the border pixels in the same way as the area ones



C
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CALL CRUNCH(GRZ2,IL+1,JL+1,IH-1,JH-1,1)

889  CONTINUE

STOP
END

C******************************t**t********t****************************

C

o NeNeNe]

(o]

(@]

¢

SUBROUTINE INSIDE (XOUTL,YOUTL,LEN, XREF, YREF,WITHIN)

Subroutine taken from Baxter, 1976 (see refs) to detect
whether a point lies inside a vector defined polygon

INTEGER*4 LEN, COUNT, PTR

REAL*4 XOUTL (LEN) , YOUTL(LEN), XREF, YREF
LOGICAL*4 WITHIN

J=20

WITHIN = .TRUE.

Code from here taken directly from text : no structuring!
DO 11 I=2, LEN
M=20
IF ((YOUTL(I-1)-YREF)* (YREF-YOUTL(I))) 11, 5, 9
5 IF (YOUTL(I-1)-YOUTL(I)) 8, 6, 7
6 IF ((XOUTL(I-1)-XREF)* (XREF-XOUTL(I))) 11, 12, 12
TM=M-2
8§ M=M-1
I M=M+ 2
IF ((YREF-YOUTL(I-1)) *(XOUTL(I)~XOUTL(I-1))/
1 (YOUTL(I)-YOUTL(I-1))+XOUTL(I-1) - XREF) 11, 12, 10
10 J=J+M
11 CONTINUE
Final test result
WITHIN = J/4*4.NE.J
12 RETURN
END

Crrkxkkkkkkkhkkkkkhhdhkkdkhkhkhhhkhkhdhhkhhkhhkkrhkdkhhkhhkhhkhhrkkkkkkkk

c

oo NeEeRe!

a O

C
C
C

C

SUBROUTINE CRUNCH{(GRID,IL,JL,IH,JH,IRT)
Run length encode the data in matrix grid
Find number of zeroes, number of ones etc .. until end of
horizontal line
INTEGER*2 GRID(375,300), COUNT
Top left hand corner of zone coordinates on screen (Mode 16 EGA)
WRITE (6,*) IL, JL

Scan horizontal line

DO 130 J = JL, JH

C Does it start inside or outside of zone

C

IF (GRID(IL,J).EQ.IBT) THEN
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ELSE

INIBT = 0
END IF

WRITE (6,*) INIRT
o
C Scan along run until state of inside/cutside changes
C

LAST = INIBT

COUNT =1

DO 140 I = IL+l, IH

IF (GRID(I,J) .EQ.IBT) THEN

INIBT =1
ELSE

INIBT = 0
END IF

IF (INIBT.EQ.LAST) THEN
COUNT = COUNT + 1
ELSE
WRITE (6,*) COUNT
COUNT =1
LAST =1 - LAST
END IF
140 CONTINUE
C
C end of line / end of scan information
C
IF (LAST .EQ. 1) WRITE (6,*) COUNT
IF (J.NE.JH) WRITE (6,%*) 0
IF (J.EQ.JH) WRITE (6,%*) -1
130 CONTINUE
RETURN
END
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xxxxxxxx Listing 6.5 **kkxxxx

Takes the ASCII run length encoded map description file
generated by MTS (Listing 6.4) and converts it to a binary
file readable by MS-DOS, which is faster to access from the
graphics programs

CHARACTER NAME*4, DFILE*30
INTEGER*2 ARRAY(1800)
INTEGER*4 NPTS
LOGICAL BORDER
What file is the data in?
CALL GETCOM(DFILE)
Is it a border file (in thise case filenane contains a + )
ILOC = INDEX(DFILE, '+")
IF (ILOC .NE. 0) THEN
BORDER = .TRUE.
DFILE(ILOC:ILOC) = ' !
ELSE
BORDER = .FALSE.
END IF
Access the file to put the binary data into
OPEN (1, FILE=DFILE,FORM='UNFORMATTED')
Main crunching loop
120 CONTINUE
Report zone name (= BORD for a border file)

IF (BORDER) THEN

NAME = 'BORD'
ELSE

READ (5,'(2X,A4)', END =110) NAME
END IF

Get the zone info (as in Listing 6.4)

NPTS = 3
READ (5,*,END = 110) ARRAY(1l), ARRAY(2)
100 READ (5,*) ARRAY(NPTS)
NPTS = NPTS + 1
IF (ARRAY(NPTS - 1) .NE. -1) GO TO 100
NPTS = NPTS - 1

Output it in binary form
WRITE (1) NAME,NPTS, (ARRAY(K), K = 1, NPTS)
WRITE (6,"'(A)') ' Zone '//NAME//' crunched.'
GO TO 120

Loop ends here



110 CLOSE (1) 384
STOP
END
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oNeoNeoEPEO NN N

SUBROUTINE ZONE (ZARRAY, COL, PITCH)

Subroutine to shade a compacted zone array with given
COLour and PITCH

oNeoNeoN @]

INTEGER*2 ZARRAY (800)
INTEGER*4 COL, PITCH, I, J, EDGEX, APTR, STATE, MOVE
EDGEX = ZARRAY(1)

(@]

Convert to screen coordinates

@ Ne]

J = 341 - ZARRAY(2)
I = EDGEX
APTR = 2
130 APTR = APTR + 1
STATE = ZARRAY (APTR)
120 APTR = APTR + 1
MOVE = ZARRAY (APTR)

hon

Scan through each horizontal line of data, using MOD and the PITCH
value to see if each pixel is supposed to be illuminated

If a run length for scan of less than zero is encountered

then exit loop

NP EPNeNeN @]

IF (MOVE .LE. 0) GO TO 100
IF (STATE .EQ. 0) THEN

I =1+ MOVE
STATE = 1 - STATE
ELSE

DO 110 K =1I, I + MOVE -1
MASK = 1 - MIN(MOD(K+J,PITCH),1)
110 CALL DOT (K, J,MASK*COL)
I =1+ MOVE
STATE = 1 - STATE
END IF
GO TO 120
C
C On a second -1 jump out of zone drawing routine
C
100 IF (MOVE .EQ. -1) RETURN
EDGEX
J-1
TO 130

I
J
GO

END
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SUBROUTINE MAP(REGION,PVALS,C7VALS,NZONES)

Draws a map given a region file (see text) and two arrays
for Pitch, and colour of the region (PVALS & CVALS)

PN eNeNe

CHARACTER* (*) REGION

INTEGER*4 PTR, PITCH, COL, NZCNES, PVALS{(NZONES), CVALS(NZONES)
INTEGER*2 SHAPE (1800)

CHARACTER*4 NAME

Open a region file (a set of ZONES to shade)

(e

OPEN (1, FILE=REGION, FORM='UNFORMATTED')

«

Shade each zone in turn

O

DO 100 IBT = 1, NZONES
READ (1) NAME,PTR, (SHAPE(I),I=1,PTR)
PITCH = PVALS (IBT)
COL = CVALS (IBT)
IF (PITCH .NE. 0) CALL ZONE (SHAPE, COL, PITCH)
100 CONTINUE
CLOSE (1)
RETURN
END
¢
C****t***************************************************************
C
SUBROUTINE ZONF (ZARRAY, COL, PITCH)
¢
C Subroutine to shade a compacted zcne array with given
C COLour and PITCH
C
INTEGER*2 ZARRAY (800)
INTEGER*4 COL, PITCH, I, J, EDGEX, APTR, STATE, MOVE
EDGEX = ZARRAY (1)
C
C Convert to screen coordinates

J = 341 - ZARRAY(2)
I = EDGEX
APTR = 2
130 APTR = APTR + 1
STATE = ZARRAY (APTR)
120 APTR = APTR + 1
MOVE ZARRRY (APTR)

Scan through each horizontal line of data, using MOD and the PITCH
value to see if each pixel is supposed to be illuminated

If a run length for scan of less than zero is encountered

then exit loop

vReoNeoNeNeNe]

IF (MOVE .LE. 0) GO TO 100
IF (STATE .EQ. 0) THEN

I =1+ MOVE

STATE = 1 - STATE
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DO 110 K=1I, I + MOVE -1
MASK = 1 - MIN(MOD(K+J,PITCH),1)
110 CALL DOT(K,J,MASK*COL)
I =1+ MOVE
STATE = 1 - STATE
END IF
GO TO 120
C
C On a second -1 jump out of zone drawing routine
C
100 IF (MOVE .EQ. -1) RETURN
I EDGEX
J J -1
GO TO 130
END

C
CHrKAhhhkhkkk kA AR KX KKK A A KA KA AR KA KKK KKKKARRKK KA KKK KRR KA AR KAk KK A Kk %
C

SUBROUTINE MODE (N)

C

C Set graphics mode

C
INCLUDE 'A:SYSREG.FOR'
AH =0
AL = N
CALL SYS2(16, SYSREG)
RETURN
END

C

C***********************************************i*****************k****

C

SUBROUTINE DOT(I, J, COL)
C
C Plot a pixel at I,J of colour COL
C

INCLUDE 'A:SYSREG.FOR'

INTEGER COL

AH $0C

BH 0

CX I

DX J

AL = COL

CALL SYS2(16,SYSREG)

RETURN

END

o
C********************************************************************
C

SUBROUTINE PUTTXT (XTL, YTL, TEXT)
C
C Put TEXT at position XTL, YTL
o

INTEGER*4 XTL, YTL

CHARACTER* (*) TEXT

INCLUDE 'A:SYSREG.FOR'

Al = 2
BH = 0
DL = XTL
DH = YTL

CALL SYS2(16,SYSREG)



WRITE (6,'(1H&,A)') TEXT 388
RETURN
END

C

C*****************'k**************'k************************************

C
SUBROUTINE BOXES (COL)

INTEGER*4 COL

C
¢ Draw boxes on screen for crime mapping system
C
DO 100 I = 0, 639
CALL DOT(I,0,COL)
100 CALL DOT(I,349,COL)
DO 110 J = 1, 348
CALL DOT(0,J,COL)
CALL DOT(639,J,COL)
110 CALL DOT (455,J,C0L)
RETURN
END
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C
o Choropleth mapping of past data
C
C
INTEGER*4 PVALS(32), CVALS(32), CRIMES(16,32),
1 YR(16), MO(16), DA(1l6), WK, MARRAY(32)
CHARACTER*1 DUMMY
CHARACTER*8 PERIOD
CHARACTER*10 DATETX
REAL*4 CVEC(32), UPPER(32), PRED(32)
INCLUDE 'A:SYSREG.FOR'
C
C Access the data file for beatwise crime counts
C
OPEN (3,FILE='TABCRM',FORM='UNFORMATTED")
DO 50 I =1, 16
READ (3) YR(I), MO(I), DA(I)
50 READ (3) (CRIMES(I,J), J =1, 32)
CLOSE (3)
C
C Put up map title and control panel
o
WK =1
PERIOD = ' 7 Days '
WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)
CALL MODE(16)
CALL BOXES (15)
DO 99 I =1, 32
99 MARRAY (I) = CRIMES (WK, I)
CALL PUTTXT (20,1, 'South Gosforth Subdivision')
CALL PUTTXT (22,2, 'Household Burglaries')
CALL CHKEY (1)
CALL CHKEY (2)
CALL PUTTXT (58, 2,' Menu :-'")
CALL PUTTXT(58, 4,'<+> = advance 1 wk')
CALL PUTTXT (58, 6,'<-> = go back 1 wk')
CALL PUTTXT (58, 8,'<4> = 4 weeks data')
CALL PUTTXT (58,10,'<8> = 8 weeks data')
CALL PUTTXT (58,12, '</> =16 weeks data')
CALL PUTTXT (58,14, '<H> = High Risk ")
CALL PUTTXT (58,16, '<E> = Exit to Menu')
51 CALL PUTTXT(19, 3,PERIOD//'Ending '//DATETX)
C
C Overlay blank maps
C

DO 105 I =1, 32
105 CVALS(I) = 16
CALL MAP('BEATS',PVALS,CVALS, 32)
C
C Now overlay final maps: code zones according to count in
C current time period

C
DO 100 I = 1, 32
CVALS(I) =1
IPVAL = MARRAY (I)
PVALS(I) =1

IF (IPVAL .LT. 8) PVALS(I)
IF (IPVAL .LT. 6) PVALS(I)

> N
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IF (IPVAL .LT. 4) PVALS(I)
IF (IPVAL .LT. 2) PVALS(I)

100 CONTINUE

8 390
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CALL MAP ('BEATS',PVALS,CVALS, 32)

Insert the border values and plot borders

CVALS(I)
PVALS (I)
110  CONTINUE

DO 110 I =1, 32

CALL MAP ('BORDERS',PVALS,CVALS, 32)

Main menu loop

500 AH = $08
CALL SYS1 (SYSREG)
ICHCE = AL
IF (ICHCE .EQ. 43) THEN

Go back one week and draw map (on pressing -)

WK = WK -1
IF (WK .EQ. 0) WK =1
DO 510 I =1, 32

510 MARRAY (I) = CRIMES (WK,
PERIOD = ' 7 Days '

WRITE (DATETX,'(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)

GO TO 51
END IF
IF (ICHCE .EQ. 45) THEN

I)

Go forward one week and draw map (On pressing +)

WK = WK +1
IF (WK .EQ. 17) WK = 16
DO 520 I =1, 32

520 MARRAY (I) = CRIMES (WK,
PERIOD = ' 7 Days '

WRITE (DATETX,'(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)

I)

GO TO 51
END IF
IF (ICHCE .EQ. 52) THEN
Change map to drawing over a 4-week period (on pressing 4)
PERIOD = '4 Weeks '
WRITE (DATETX,'(I2,1H/,12,1H/,I4)') DA(1l), MO(1l), YR(1)
DO 530 I =1, 32
MARRAY (I) = CRIMES(1,I) + CRIMES(2,I) + CRIMES(3,I)
MARRAY (I) = MARRAY(I) + CRIMES (4,1)
530 MARRAY (I) = MARRAY(I) / 4.0
GO TO 51
END IF
IF (ICHCE .EQ. 56) THEN
Change map to an 8-week period (on pressing 8)

PERIOD = '8 Weeks !

WRITE (DATETX,'(I2,1H/,I12,1H/,I4)"') DA(1l), MO(1l), YR(1)

DO 540 I =1, 32
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DO 550 J = 1, 8

550 MARRAY (I) = MARRAY(I) + CRIMES(J,I)
540 MARRAY (I) = MARRAY(I) / 8.0
GO TO 51
END IF
IF (ICHCE .EQ. 56) THEN
C
C Change map to a 16 week period (on pressing /)
C
PERIOD = '16 Week '
WRITE (DATETX,'(I2,1H/,12,1H/,1I4)') DA(1l), MO(1l), YR(1)
DO 560 I =1, 32
MARRAY (I) = 0
DO 570 J =1, 16
570 MARRAY(I) = MARRAY(I) + CRIMES(J,I)
560 MARRAY(I) = MARRAY(I) / 16.0
GO TO 51
END IF
IF (ICHCE .EQ. 72) THEN
C

C Highlight 'High Risk beats' (on pressing H)
C

DO 600 I =1, 32
600 CVEC(I) = CRIMES (WK, I)
CALL RISK(CVEC, CVALS, 32)
CALL MAP ('BEATS',PVALS,CVALS, 32)
DO 620 I =1, 32

620 CVALS(I) = 15
CALL MAP ('C:BORDERS',PVALS,CVALS, 32)
GO TO 500
END IF

IF (ICHCE .NE. 69) GO TO 500
C
C If keypress is not E then re-loop; else exit menu
C

CALL MODE (3)

STOP

END
C
C********************************************x************************
C

SUBROUTINE CHKEY (NKEY)

C
C Key routine for choropleth maps
C
IF (NKEY .EQ. 1) THEN
CALL KEYBOX(45, 5,'0 -< 2',1, 0)
CALL KEYBOX(45, 7,'2 -< 4',1, 8)
CALL KEYBOX(45, 9,'4 -< 6',1, 4)
CALL KEYBOX(45,11,'6 -< 8',1, 2)
CALL KEYROX(45,13,'8 < 1',1, 1)
CALL PUTTXT (40,18, 'Crimes per Week')
END IF
IF (NKEY .EQ. 2) THEN
CALL KEYBOX (45,16, 'High Risk',12, 1)
END IF
RETURN
END
C

Chrhkkkokdkdkkhhkkhkkkkkhhkkhkhkkkhhkhhkkkkkkkkkkkkkkkkkkhkhkkhkkkhkhkhkkkkkkkhkk
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SUBROUTINE KEYBOX(XTL, YTL, TEXT, COL, PITCH)

Draw box of a given pitch and colour next to text at point
XTL, YTL on mode 16 EGA.

100

110

120

INTEGER*4 XTL, YTL, COL, PITCH, GTX, GTY, PCOL
CHARACTER* (*) TEXT

GTX = XTL*8 - 20

GTY = YTL*14 - 4

IF (PITCH .NE. 0) THEN

DO 100 I = GTX, GIX + 15
DO 100 J = GTY, GTY + 21
IF (MOD(I+J,PITCH) .EQ. 0) THEN

PCOL = COL
ELSE
PCOL = 0
END IF
CALL DOT(I,J,PCOL)
CONTINUE

END IF
DO 110 I = GTX, GTX + 15

CALL DOT(I,GTY,15)

CALL DOT (I,GTY+21,15)

DO 120 J = GTY, GTY + 21

CALL DOT (GTX, J, 15)

CALL DOT (GTX+15,J,15)
CALL PUTTXT(XTL, YTL, TEXT)
RETURN
END

C*******‘k**************‘k*****************‘k***********X***************

C

NN NP

oNeNe!

o Nel

SUBROUTINE RISK(CVEC, CVALS, NZONES)

Subroutine to identify high risk beats (ie those exceeding
predicted values

INTEGER*4 CVEC (NZONES), CVALS(NZONES), FLAG(32)

Set all colours to blank initially

100

PO 100 I = 1, NZONES
CVALS(I) =0

Use MONITOR to find high risk beats

110

OPEN (10, FILE='COMP.MON')
READ (10) FLAG
CLOSE (10)
DO 110 I = 1, NZONES
IF (FLAG .NE. 0) CVALS(I) = 12
CONTINUE
RETURN
END
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PROGRAM PNTMAP

x*kxxxx [isting 6.9 *kkkkk

Program to plot point incidence of crime

INTEGER*4 DIDS(16,100), YR(16), MO(16), C2(16), WK, NPTS(16)
INTEGER*4 PVALS (32), CVALS(32), ENDWK, CINTV, REFNUM(16,100)

Data required includes standard crime datakbase (pointwise section)
and area/boundary data for the subdivision

REAL*4 XPTS(16,100), YPTS(16,100)
CHARACTER*1 DUMMY
CHARACTER*10 DATETX, BDATE
LOGICAL OVRLAY, PLOTTD(100)
INCLUDE 'A:SYSREG.FOR'
Initialise variables

DATA PVALS/32*1/
DATA CVALS/32*16/
OVRLAY = .FALSE.
Get defaults for Knox cluster definition (Critical time and distance)
OPEN (8,FILE="KNOX.BIN',FORM='UNFORMATTED")
READ (8) CDIST, CINTV
CDIST = (CDIST/100.0) ** 2
CLOSE (8)
Open the crime database (for Points)
OPEN (18, FILE='‘SPTCRM', FORM='UNFORMATTEZ')
For past 16 weeks
DO 50 I =1, 16
Find date for end of week
READ (18) YR(I), MO(I), DA(I)
Number of incidents in week
READ (18) NPTS(I)
and day, grid ref., and police ref no. of each incident
READ (18) (XpTS(I,J),J=1,100)
READ (18) (YPTS(I,J),Jd=1,100)

READ (18) (DIDS(I,J),J=1,100)
50 READ (18) (REFNUM(I,J),J=1,100)

CLOSE (18)
WK =1
ENDWK = 1

Now put up the control display surrounding the map
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WRITE (DATETX, '(I2,1H/,12,1H/,14)") DA (WK), MO(WK), YR(WK)
CALL MODE(16)

CALL BOXES(15)

CALL PUTTXT (20,1, 'South Gosforth Subdivision')
CALL PUTTXT(22,2, 'Household Burglaries')

CALL PUTTXT (58, 2,' Menu :-')

CALL PUTTXT(58, 4,'<+> = advance 1 wk')

CALL PUTTXT(58, 6,'<-> = go back 1 wk')

CALL PUTTXT (58, 8,'<0> = Qverlay On ')

CALL PUTTXT (58,10, '<C> Clusters ")

CALL PUTTXT (58,12, '<S> Select Event')

CALL PUTTXT (58,14, '<E> Exit to Menu')

CALL PTKEY

Start of main menu loop : repeat until E is pressed

51 CONTINUE
IF (OVRLAY) THEN
CALL PUTTXT(20,3,BDATE//' to '//DATETX)
ELSE
CALL PUTTXT(20,3,'7 Days Ending '//DATETX)

END IF

When not in OVERLAY mode, erase the currents points on VDU
if there are any

IF (.NOT.OVRLAY) THEN
DO 52 I =1, 16
DO 53 J = 1, NPTS(I)
53 CALL POINT(XPTS(I,J),¥YPTS(I,J),4180.,5650.,120.,120.,8)
52 CONTINUE

Then plot the map borders, if they got damaged above

DO 110 I =1, 32

CVALS (I) = 15
PVALS(I) =1
110 CONTINUE
CALL MAP ('C:BORDERS',PVALS,CVALS, 32)
END IF

Plot the current weeks data

DO 100 I = 1, NPTS(WK)
CALL POINT(XPTS(WK,I), YPTS(WK,I), 4180., 5650., 120., 120., 2)

100 CONTINUE
Main Menu Loop ... Get Key

500 AH = $08
CALL SYS1 (SYSREG)
ICHCE = AL

Go forward a week ( After pressing + )

IF (ICHCE .EQ. 43) THEN
IF (.NOT. OVRLAY) THEN
WK = WK - 1
IF (WK .EQ. 0) WK = 1
WRITE (DATETX,'(I2,1H/,12,1H/,14)') DA(WK), MO(WK), YR(WK)
GO TO 51
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END IF
GO TO 500
END IF

C Go back a week ( After pressing - )

C

OO0

a0On

OO0

oNeoNeNe]

Te

Sc

93
92

75

900

910

Se

If

If

IF (ICHCE .EQ. 45) THEN
WK = WK + 1
IF (WK .EQ. 17) WK = 16
IF (OVRLAY) THEN
WRITE (BDATE ,'(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR (WK)
ELSE
WRITE (DATETX,'(I2,1H/,12,1H/,14)') DA(WK), MO(WK), YR (WK)
END IF
GO TO 51
END IF

ggle switch on OVERLAY mode ( After pressing O )

IF (ICHCE .EQ. 79) THEN
OVRLAY = .NOT. OQVRLAY
IF (OVRLAY) THEN
CALL PUTTXT(71, 8,' Off")
ELSE
CALL PUTTXT(71, 8,"' On ')
END IF
END IF

an for Knox clusters ( After pressing C )

IF (ICHCE .EQ. 67 .AND. NPTS(WK) .GT. 1) THEN
IF (.NOT. OVRLAY) THEN
DO 92 1 =1, 16
DO 93 J =1, NPTS(I) -1

CALL POINT(XPTS(I,J),YPTS(I,J),4180.,5650.,120.,120.,8)
CONTINUE
DO 75 I =1, 32
CVALS(I) = 15
PVALS(I) =1
CONTINUE
CALL MAP('C:BORDERS',PVALS,CVALS, 32)
END IF
DO 900 I = 1, NPTS (WK)
PLOTTD (I) = .FALSE.
DO 910 I = 1, NPTS(WK)
IF (.NOT.PLOTTD(I))
1 CALL SCAN(I, NPTS, XPTS, YPTS, DIDS, PLOTTD, WK,CDIST,CINTV,
2 PLOTTD)
CONTINUE
END IF
lect a point to view comment text ( After pressing S )

IF (ICHCE .EQ. 83) THEN
CALL SELECT(NPTS, XPTS, YPTS, REFNUM, WK,
1 4180., 5650., 120., 120.)
END IF

E not pressed then default (do nothing)

E pressed then exit the case structure
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C
IF (ICHCE .NE. 69) GO TO 500
CALL MODE(3)
STOP
END
C

C********************************************************************

C
SUBROUTINE PTKEY

o
C Print the key to the point map on the VDU
C
o
CALL KEYPNT (45, 9,'l Event',12,2)
CALL KEYPNT(45,11,'2 Events',13,2)
CALL KEYPNT(45,13,'3+',14,2)
CALL KEYPNT (45,15, 'Cluster',10,4)
CALL PUTTXT (40,18, 'Crime Locations')
RETURN
END
o

C*********************************************************************

C
SUBROUTINE KEYPNT (XTL, YTL, TEXT, COL, SYMTYP)
INTEGER*4 XTL, YTL, COL, GTX, GTY, PCOL, SYMTYP

C
C Print the text next to the key on the map
C
CHARACTER* (*) TEXT
GTX = XTL*8 - 8
GTY = YTL*14 + 7
CALL MARK (GTX, GTY, COL, SYMTYP)
CALL PUTTXT(XTL, YTL, TEXT)
RETURN
END
C

C*********************************************************************

C
SUBROUTINE POINT (X,Y,XTL,YTL, XWD, YWD, SYMTYP)

Put a point on the map, given the National Grid cornerpoints
and the point coordinates in National Grid scale.

QOO0

REAL*4 X, Y, XTL, YTL, XWD, YWD
INTEGER*4 I, J, COL, SYMTYP, BLKSYM

Convert to 'screen coordinates' in EGA mode 16

QOO0

I
J
J

INT(((X - XTL) / XWD) * 375.0)
INT(((Y - YTL) / YWD) * 300.0)
341 - J

Plot it with an appropriate symbol

oNeoNe!

IF (SYMTYP .LE. 4) THEN

Cumulative colouring for multiple occurrence of same pixel

Q0O

CALL GDOT(I, J, COL)
IF (COL .EQ. 0 .OR. COL .EQ. 15) CALL MARK(I, J, 12, SYMTYP)
IF (COL .EQ. 12) CALL MARK(I, J, 13, SYMTYP)
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IF (COL .EQ. 13) CALL MARK(I, J, 14, SYMTYP)
END IF

IF (SYMTYP .GT. 4 .AND. SYMTYP .LE. 8) THEN

Blackout : for clearing points

OO0

BLKSYM = SYMTYP - 4

CALL MARK(I, J, 16, BLKSYM)
END IF
IF (SYMTYP .GT. 8) THEN

For cluster symbol

QOO0

BLKSYM = SYMTYP - 8
CALL MARK(I, J,10, SYMIYP)

END IF

RETURN

END
C
c********************************************************************
C

SUBROUTINE GDOT(I, J, COL)
C
C Find out what COLour dat at position I,J is
C

INCLUDE 'A:SYSREG.FOR'

INTEGER COL
= $0D
BH =0
CX =1

=Jd

CALL SYS2(16,SYSREG)
COL = AL
RETURN
END

&

C

khkkkkhkhkkkdkhhkkhdhhkhkkhkkkhkhkhkhkkhkkkkkhhkkhkhhkkhkhkkhkhhkkhkhkkdkkkkhkkhkkkkkhkkkx
C

SUBROUTINE MARK(I, J, COL, SYMTYP)
INTEGER I, J, COL, SYMTYP

Plot the marker symbol

QOO

CALL DOT(I, J, COL)
IF (SYMTYP.NE.1l) THEN
IF (SYMTYP.NE.3) THEN

Cross - shaped for crime incidence

QOO

CALL DOT(I-1,J,COL)
CALL DOT(I+1,J,COL)
CALL DOT(I,J-1,COL)
CALL DOT(I,J+1,COL)
END IF
IF (SYMTYP.NE.2) THEN

Square shaped for Cluster identification

OO

CALL DOT(I-1,J-1,COL)
CALL DOT(I+1,J-1,COL)
CALL DOT(I-1,J+1,COL)
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END IF
END IF
RETURN
END
SUBROUTINE SCAN(I, NPTS, XPTS, YPTS, DIDS, PLCTTD,WK,CDIST, CINTV,
1 PLOTTD)
C
C Scan for Knox clusters
C
INTEGER*4 NPTS(16), DIDS(16,100), WK, WKPTR, DAYGAP, CINTV
REAL*4 XPTS(16,100), YPTS(16,.00), DIST, CTIST
LOGICAL PLOTTD(100)
C
C Scan through previous week (if available) : plct if necessary
C
WKPTR = WK + 1
IF (WKPTR .LT. 17 .AND. NPTS(WKPZR) .GT. 0) THEN
J=1
100 DAYGAP = IABS(DIDS (WKPTR,J) - DIDS(WK, I))
IF (DAYGAP .LE. CINTV) THEN
DIST = (XPTS(WKPTR,J)-XPTS (WK, I))**2 +
1 (YPTS (WKPTR, J) -YPTS (WK, I)) **2
IF (DIST .LE. CDIST) THEN
CALL POINT (XPTS (WK, I),YPTS(WK,I),4180.,5650.,120.,120.,12)
PLOTTD(I) = .TRUE.
RETURN
END IF
END IF
J=J+1
IF (J .LE. NPTS(WKPTR)) GO TC 100
END IF
C
C Scan through this week : plot if necessary
C
J=1+1

110 IF (.NOT.PLOTTD(J)) THEN
DAYGAP = IABS(DIDS(WK,J) - DIDS (WK, I))
IF (DAYGAP .LE. CINTV) THEN
DIST = (XPTS{WK,J)-XPTS(WK,I))**2 +
1 (YPTS (WK, J) -YPTS (WK, I}) **2
IF (DIST .LE. CDIST) THEN
CALL POINT(XPTS(WK,I),YPTS(®K,I),4180.,5650.,120.,120.,12)
PLOTTD(I) = .TRUE.
RETURN
END IF
END IF
J=J+1
IF (J .LE. NPTS(WK)) GO TO 110
END IF
C
C Scan through next week (if there is one) : plot if necessary
C
WKPTR = WK - 1
IF (WKPTR .GT. 0 .AND. NPTS(WKPTR) .GT. 0) THEN
J=1
120 DAYGAP = IABS(DIDS(WKPTR,J) - DIDS (WK, I))
IF (DAYGAP .LE. CINTV) THEN
DIST = (XPTS(WKPTR,J)-XPTS(WK,I))**2 +
1 (YPTS {(WKPTR, J) ~YPTS (WK, I) ) **2
IF (DIST .LE. CDIST) THEN
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CALL POINT(XPTS (WK,I),YPTS(WK,I),4180.,5650.,120.,120.,12)
PLOTTD(I) = .TRUE.
RETURN
END IF
END IF
J=J+1
IF (J .LE. NPTS(WKPTR)) GO TO 120
END IF
RETURN
END

C********************‘k****************'k************t******t*t********

C

C

SUBROUTINE SELECT (NPTS, XPTS, YPTS,REFNUM, WK, XTL, YTL, XWD, YWD)

C Select an incident =--- try to find verbal description

C

C

REAL*4 XPTS(16,100), YPTS(16,100), XTL, YTL, XWD, YWD
CHARACTER CNTEXT*4, DESCR*60

INTEGER NPTS(16), REFNUM(16,100), WK, CNUM, ENV(12), CCREF
LOGICAL DISTBD

INCLUDE 'SYSREG.FOR'

CNUM = 1

DISTBD = .FALSE.

WRITE (CNTEXT,'(I4)') REFNUM (WK,CNUM)

CALL OUTLIN(ENV, XPTS (WK,CNUM), YPTS (WK,CNUM),
1 XTL, YTL, XWD, YWD)

C Menu of options

C

C

100

IF (NPTS(WK) .GT. 0) THEN
CALL PUTTXT (58,21, 'Ref. No: '//CNTEXT)
CALL PUTTXT(58,16,'<Z> Select last')
CALL PUTTXT (58,17, '<X> Select next')
CALL PUTTXT(58,18, '<V> View Comment')
CALL PUTTXT(58,19,'<M> Main Map')
AH = 508
CALL SYS1(SYSREG)
ICHCE = AL

C If border frame on screen disturbed, then set it right again

C

C
C
C

[eNe]

105

107

Go

IF (DISTBD) THEN
CALL PUTTXT (10,24,
1 1 l)
DO 105 I =0, 639
CALL DOT(I, 349, 15)
DO 107 I = 334, 348
CALL DOT (455, I, 15)
DISTBD = .FALSE.
END IF
CALL RESTOR(ENV, XPTS(WK,CNUM), YPTS (WK,CNUM),
1 XTL, YTL, XWD, YWD)

back one crime incidence (if key pressed is Z )
IF (ICHCE .EQ. 90) THEN

CNUM = CNUM - 1
IF (CNUM .EQ. 0) CNUM =1

Mark current incident on map
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C
CALL OUTLIN(ENV, XPTS (WK,CNUM), YPTS (WK,CNUM),
1 XTL, YTL, XWD, YWD)
WRITE (CNTEXT,'(I4)') REFNUM(WK,CNUM)
CALL PUTTXT(58,21,'Ref. No: '//CNTEXT)
END IF
C
C Go Forward one crime incidence (if key pressed is ¥ )
C
IF (ICHCE .EQ. 88) THEN
CNUM = CNUM + 1
IF (CNUM .GT. NPTS(WK)) CNUM = NPTS (WK)
C
C Mark current incidence on map
C
CALL OUTLIN(ENV, XPTS(WK,CNUM), YPTS (WK,CNUM),
1 XTL, YTL, XWD, YWD)
WRITE (CNTEXT, '(I4)') REFNUM(WK,CNUM)
CALL PUTTXT (58,21, 'Ref. No: '//CNTEXT)
END IF
IF (ICHCE .EQ. 86) THEN
C
C View the comment from the database ( If V key pressed )
C
OPEN (8, FILE="TXTCRM')
C
C Find the reference number in the text file
C
120 READ (8,'(I8,A60)"') CCREF, DESCR
IF (CCREF .NE.REFNUM(WK,CNUM)) GO TO 120
CALL PUTTXT(10,24,DESCR)
CALL QUTLIN(ENV, XPTS(WK,CNUM), YPTS (WK,CNUM),
1 XTL, YTL, XWD, YWD)
WRITE (CNTEXT, '(I4)') REFNUM(WK,CNUM)
CALL PUTTXT (58,21,'Ref. No: '//CNTEXT)
CLOSE (8)
DISTBD = .TRUE.
END IF
IF (ICHCE .NE. 77) GO TO 100
C
C If M not pressed (for return to map) then loop to menu read
C Otherwise exit
o
CALL PUTTXT (58,16, ")
CALL PUTTXT(58,17,' !
CALL PUTTXT(58,18," ')
CALL PUTTXT(58,19," )
CALL PUTTXT(58,21,"' ")
ELSE
C

C If no crimes occur in the selected time period
C
CALL PUTTXT (58,16, 'No items')
CALL PUTTXT (58,17, 'Press SPACE ')
110 aH = $08
CALL SYS1(SYSREG)
ICHCE = AL
IF (ICHCE .NE. 32) GO TO 110
CALL PUTTXT(58,16," )
CALL PUTTXT(58,17," )
END IF



C*********************************************************************

RETURN
END

401

c
c
SUBROUTINE OUTLIN(ENV, X, Y, XTL, YTL, XWD, YWD)
REAL*4 X, Y, XTL, XWD, YTL, YWD
INTEGER ENV(12)
C
C Put an outline around the selected point at x,y
C
C
C Find the pixel equivalent of x, y (call it i,j)
C
I = INT(((X - XTL) / XWD) * 375.0)
J = INT(((Y - YTL) / YWD) * 300.0)
J =341 - g
C
C Store what is currently there
C

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CBLL
CALL
CALL
CALL
C

GDOT (I-1,J ,ENV({1))
GDOT (I-1,J+1,ENV(2))
GDOT(I ,J+1,ENV(3))
GDOT (141, J+1,ENV(4))
GDOT (I+1,J ,ENV(5))
GDOT (I+1,J-1,ENV(6))
GDOT(I ,J-1,ENV(7))
GDOT (I-1,J-1,ENV (8))
GDOT (I-2,J ,ENV(9))
GDOT (I+42,J ,ENV(10))
GDOT(I ,J+2,ENV(11))
GDOT(I ,J-2,ENV(12))

C Put a ring around it

C
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DOT(I-1,J ,11)
DOT (I-1,J+1,11)
DOT(I ,J+1,11)
DOT (I+1,J+1,11)
DOT (I+1,J ,11)
DOT (I+1,J-1,11)
DOT(I ,J-1,11)
DOT(I-1,J-1,11)
DOT(I-2,J ,11)
DOT (I+2,d ,11)
DOT(I ,J+2,11)
DOT(I ,J-2,11)

RETURN

END
C

C***********************************************************‘k********

C

SUBROUTINE RESTOR(ENV,
REAL*4 X, Y, XTL, XWD,

INTEGER ENV(12)

OO0

Find the pixel equivalent

X, Y, XTL, YTL, XWD, YWD)
YTL, YWD

Remove outline around the selected point at x,y

of x, y (call it i,3j)



C

I
J
J

C Put back the old contents

C

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DOT(I-1,J ,ENV(1))
DOT(I-1,J+1,ENV(2))
DOT(I ,J+1,ENV(3))
DOT (I+1,J+1,ENV(4))
DOT(I+1,J ,ENV(5))
DOT (I+1,J-1,ENV(6))
DOT(I ,J-1,ENV(7))
DOT (I-1,J-1,ENV(8))
DOT(I-2,J ,ENV(9))
DOT(I+2,J ,ENV(10))
DOT(I ,J+2,ENV(11))
DOT(I ,J-2,ENV(12))

RETURN

END

INT(((X = XTL) / XWD) * 375.0)
INT(((Y - YTL) / YWD)
341 - 7

* 300.0)

402
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PROGRAM GFUNCT

skxxxkkxx [isting 6.10 *xxxkxxxxkxk

create the kernel function for listing 6.11 as a grid of point
estimates

OOOQOO0O00

INTEGER*2 GFUN(0:10,0:8), YORD, LORD, COL
CHARACTER*1 ANS

Display shapes of kernel that are offered

QOO0

1 CALL MODE (16)
CALL PUTTXT (31,2, 'Select Kernel Type')
CALL PUTTXT(25,5,'1. Conic')
CALL PUTTXT(25,9,'2. Parabolic')
CALL PUTTXT(25,13,'3. Exponential')
CALL PUTTXT(25,17,'4. Gaussian')
DO 100 I = 0, 41
CALL DOT(336,266-I,15)
CALL DOT(336,210-I,15)
CALL DOT(336,154-1,15)
CALL DOT (336, 98-I,15)
100 CONTINUE
DO 110 I = 0, 47
CALL DOT(33641,266,15)
CALL DOT(336+1,210,15)
CALL DOT(336+I,154,15)
CALL DOT(336+1I, 98,15)
110 CONTINUE
o
C Linear curve
C
LORD = 41
DO 120 I =1, 47
YORD = 41.0 - (I*1.3)
IF (YORD.GT.0) THEN
DO 130 J = YORD, LORD
CALL DOT(336+I, 98-J,11)
130 CONTINUE
END IF
LORD = YCRD
120 CONTINUE
C
C Parabolic curve
C
LORD = 41
DO 140 I =1, 47
YORD = 41.0 - (I*I*0.033)
IF (YORD.GT.0) THEN
DO 150 J = YORD, LORD
CALL DOT(336+4I,154-J,12)
150 CONTINUE
END IF
LORD = YORD
140 CONTINUE
LORD = 41
C
C Exponential curve
C



C
C
C

c
C

OO0

oNeNe] e NeNe]

oo Ne]

DO 160 I = 1, 47 404
YORD = 41.0 * EXP(-I/10.0)
IF (YORD.GT.0) THEN
DO 170 J = YORD, LORD
CALL DOT(336+I,210-J,13)
170 CONTINUE
END IF
LORD = YORD
160 CONTINUE

Gaussian curve

LORD = 41
DO 180 I =1, 47
YORD = 41.0 * EXP(-I*I/350.0)
IF (YORD.GT.0) THEN
DO 190 J = YORD, LORD
CALL DOT(336+I,266-J,14)
190 CONTINUE
END IF
LORD = YORD
180 CONTINUE

Choose kernel shape and bandwidth

CALL PUTTXT (30,20, 'Kernel Code (1-4) > ")
READ (5,*) KSHAPE

CALL PUTTXT (30,22, 'Enter Bandwidth > ')
READ (5,*) BW

BW = BW / 8.0

CALL PUTTXT (30,24, 'Please Wait ..... )

Assign distances to grid points in first quadrant (rest are done
in kernel program by symmetry

IF (KSHAPE .EQ. 1) THEN
Conic surface (from linear decay)

A =150.0 / BW
DO 200 I =0, 10
DO 200 g =0, 8
DIST = I*I*16 + J*J*25
200 GFUN(I,J) = IFIX(100.0 - A*SQRT(DIST))
END IF
IF (KSHAPE .EQ. 2) THEN

Parabolic Surface

A = 50.0 / BW**2
DO 210 I = 0, 10
DO 210 g =0, 8
DIST = I*I*16 + J*J*25
210 GFUN(I,J) = IFIX(100.0 - A*DIST)
END IF
IF (KSHAPE .EQ. 3) THEN

Exponential surface

A = 0.693147 / BW
DO 220 I =0, 10
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DO 220 J =0, 8
DIST = I*I*16 + J*J*25
220 GFUN(I,J) = IFIX(100.0*EXP (-A*SQRT(DIST)))
END IF
IF (KSHAPE .EQ. 4) THEN
C
C Gaussian surface
C
A = 0.693147 / BW**2
DO 230 I =0, 10
DO 230 g =0, 8
DIST = I*I*16 + J*J*25
230 GFUN(I,J) = IFIX(100.0*EXP (-A*DIST))
END IF
DO 240 I = 0, 10
DO 240 J =0, 8
IF (GFUN(I,J).LT.0) GFUN(I,J) =0
240 CONTZINUE
o
C Draw a colour coded picture to show what shape GFUN is
C
CALL MODZ(16)
CALL PUTTXT (22,2, 'Kernel Function Around Single Point')
DO 250 I = 0, 10
DO 250 J =0, 8
COL GFUN(I,J) / 10
COL CoL +1
DO 260 IX =0, 9
DO 260 1Y =0, 9
CALL DOT(315+I*10+IX,171+3*10+1IY,COL)
IF (I.GT.0) THEN
CALL DOT(315-1*10+I1X,17.+J*10+IY,COL)
IF (J.GT.0) THEN
CALL DOT(315-1*10+IX,.71-J*10+1Y,COL)
END IF
END IF
IF (J.GT.0) THEN
CALL DOT(315+I*10+1IX,171-J*10+1IY,COL)
END IF
260 CONTINUE
250 CONTINUE
C
C Draw a scale for the picture just drawn
C

DO 270 I = 0, 109
COL=1I/10+1
DO 270 J = 269, 278
CALL DOT(260+I, J, COL)
270 CONTINUE
CALL PUTTXT (23,19, 'Low Risk'")
CALL PUTTXT (48,19, '"High Risk')
CALL PUTTXT (36,20, 'Scale')
C
C If user likes this, enter it on the file
C If not - compute a new GFUN
o
C
CALL PUTTXT (25,22, 'Commit this to file (Y/N) 2 >')
READ (5,'(A)') ANS
IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') THEN
OPEN(7,FILE="KERNEL.BIN',FORM="UNFORMATTED")



WRITE (7) GFUN
ELSE

GO TO 1
END IF
CALL MODE (3)
STOP
END

406
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PROGRAM KERMAP

kK kkkk Listing 6.11 ***kkxx

Kernel estimation program. Draws shaded contour map on screen.

INTEGER*4 DIDS(16,100), YR(16), MO(16), DA(16), WK, NPTS(16)
INTEGER*4 PVALS(32), CVALS(32), ENDWK, GVALS(32), REFNUM(16,100)

Accesses crime database (point section): Builds up
a matrix of risks in KERN, with Kernel function GFUN

INTEGER*2 KERN(-2:378,-2:303), GFUN(0:10,0:8)
REAL*4 XPTS(16,100), YPTS(16,100)
CHARACTER*1 DUMMY

CHARACTER*10 DATETX, BDATE

LOGICAL OVRLAY, PLOTTD(100)

INCLUDE 'A:SYSREG.FOR'

Initialise values

DATA PVALS/32*1/
DATA CVALS/32*15/

DATA

GVALS/32*2/

Access point crime database

CPEN

(2, FILE='SPTCRM', FORM='UNFORMATTED')

DO 50 I =1, 16
READ (2) YR(I), MO(I), DA(I)
READ (2) NPTS(I)
READ (2) (XPTS(I,J),Jd=1,100)
READ (2) (YPTS(I,J),Jd=1,100)
READ (2) (DIDS(I,J),J=1,100)
50 READ (2) (REFNUM(I,J),J=1,100)

Variables are as in listing 6.9

Access the binary matrix representation of the Kernel function

OPEN
READ

(7,FILE="KERNEL.BIN', FORM="'UNFORMATTED")
(7) GFUN

Set up the display

WK =

1

ENDWK = 1
WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

MODE (16)

BOXES (15)

PUTTXT (20, 1, 'South Gosforth Subdivision')
PUTTXT (21, 2, 'Household Burglary Risk')
PUTTXT (58, 8,'<B> = Beat Zones ')

PUTTXT (58,10, '<Z> Risk Zones ')

PUTTXT (58,12, '<E> Exit to Menu')

KEYBOX (45, 7,' Low Risk',2,1)

KEYBOX (45,10, ' Med. Risk',14,1)

KEYBOX (45,13, ' High Risk',4,1)



’ ) 408
Main Menu Loop begins here

a0

51 CONTINUE
CALL PUTTXT(20,3,'16 Wks Ending '//DATETX)

Initialise the kernel estimate by setting to zero:

It might be slow, so put a 'Please Weight' message

PNoNONPN@!

CALL PUTTXT(15,7,'Data Analysis : Stage 1')
CALL KWIPE (KERN)

Begin the estimation process : put up a second 'Please Wait'

QOO0

CALL PUTTXT (15,7, 'Data Analysis : Stage 2')
DO 100 WK = 1, 16
DO 100 I = 1, NPTS(WK)
CALL KREG(XPTS(WK,I), YPTS(WK,I),
1 4180., 5650., 120., 120.,KERN,GFUN)
100 CONTINUE

CALL PUTTXT(15,7,"' ')
C
C Display the result as a 3 - colour contour map
C
CALL MAP('B:BEATS',PVALS,GVALS, 32)
CALL MAP('B:BORDERS',PVALS,CVALS, 32)
CALL CMAP ('B:BEATS',KERN, 32)
C
C Await keypress
C
500 AH = 508
CALL SYS1(SYSREG)
ICHCE = AL
C
C Overlay beat boundaries (On pressing B)
C
IF (ICHCE .EQ. 66) THEN
CALL MAP ('B:BORDERS',PVALS,CVALS, 32)
GO TO 500
END IF
IF (ICHCE .EQ. 90) THEN
C
C Overlay risk zones (ie Contours) (On pressing 2)
C
CALL CMAP('B:BEATS',KERN, 32)
GO TO 500
END IF
IF (ICHCE .NE. 69) GO TO 500
C
C If E not pressed await next keystroke
C
C
C Otherwise exit menu section
C
CALL MODE(3)
STOP
END
C

Crhkhdkkkhkhhkhrkhkkhkhhhkkdhhkkhdhhhkhhhkthhkkkkhkkkkrdkkkkkkkkhhkkkk*

C
SUBROUTINE KREG(X,Y,XTL,YTL,XWD, YWD, KERN, GFUN)



oNeNe] NN NP]

oNoNeNONe!

C
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C
C

C
C

o

130 APTR

120 APTR

409

Updates the kernel estimator (in screen coordinates) when given

a new point (in National Grid coordinates)
REAL*4 X, Y, XTL, YTL, XWD, YWD
INTEGER*4 I, J, COL, IG, JG, XTARG, YTARG
INTEGER*2 KERN(-2:378,-2:303), GFUN(0:10,0:8)

Perform the conversion to screen coordinates

I
J

INT(((X - XTL) / XWD) * 375.0)
INT(((Y - YTL) / YWD) * 300.0)

Update the kernel estimator. Use 4 way symmetry to reduce
storage overheads. Also note that kernel is in integer form
to speed up computation

DO 100 IG
DO 100 J

XTARG
YTARG =
IF (XTARG.LE.375.AND.YTARG.LE.300)

1 KERN (XTARG, YTARG) = KERN (XTARG, YTARG) + GFUN(IG,JG)
XTARG = I - IG
IF (XTARG.GT.0.AND.YTARG.LE.300.AND.IG.GT.0)

1 KERN (XTARG, YTARG) = KERN (XTARG, YTARG) + GFUN(IG, JG)
YTARG = J - JG
IF (XTARG.GT.(0.AND.YTARG.GT.0.AND.IG.GT.0.AND.JG.GT.0)

1 KERN (XTARG, YTARG) = KERN(XTARG, YTARG) + GFUN(IG,JG)
XTARG = I + IG
IF (XTARG.LE.375.AND.YTARG.GT.0.AND.JG.GT.0)

1 KERN (XTARG, YTARG) = KERN (XTARG, YTARG) + GFUN(IG,JG)

10

e

0,
I+ 1IG
J + JG

100 CONTINUE

RETURN
END

SUBROUTINE CZONE (ZARRAY, KERN)
Similar to ZONE but plots contours within zones

INTEGER*2 ZARRAY(800), KERN{-2:378,-2:303)
INTEGER*4 COL, PITCH, I, J, EDGEX, APTR, STATE, MOVE
EDGEX = ZARRAY(1)
J = 341 - ZARRAY(2)
I = EDGEX
APTR = 2
APTR + 1
STATE = ZARRAY (APTR)
APTR + 1
MOVE = ZARRAY(APTR)
IF (MOVE .LE. 0) GO TO 100
IF (STATE .EQ. 0) THEN
I =1+ MOVE
STATE = 1 - STATE
ELSE
DO 110 K=1I, I + MOVE ~ 1

C Instead of the usual filter using MOD here, a 3-stage
C classification of the value in the kernel grid controls



4i0
C which colour the pixel is illuminated.
C Red = High Yellow = Medium Green = Low Risk
C
IF (KERN(K,341-J).GT. 30) CALL DOT(X,J,14)
IF (KERN(K,341-J).GT.150) CALL DOT(X,J,4)
110 CONTINUE
I =1+ MOVE
STATE = 1 - STATE
END IF
GO TO 120
100 IF (MOVE .EQ. -1) RETURN
I EDGEX
J J -1
GO TO 130
END

C

c**********************t********************t**t*********************

C
SUBROUTINE CMAP (REGION,KERN,NZONES)

Provides a contour map for each record (corresponding to a zone)
in the file REGION

oNoNeoNe]

CHARACTER* (*) REGION

INTEGER*4 PTR, PITCH, COL, NZONES
INTEGER*2 SHAPE (1800), KERN(-2:303,-2:378)
CHARACTER*4 NAME

Attach region file

Qoo

OPEN (1, FILE=REGION, FORM='UNFORMATTED')

Output a contoured zone for each region

[oNeNe!

DO 100 IBT = 1, NZONES
READ (1) NAME,PTR, (SHAPE(I),I=1,PTR)
CALL CZONE (SHAPE, KERN)
100 CONTINUE
CLOSE (1)
RETURN
END
C
C*********************************************************************
C
SUBROUTINE KWIPE (KERN)
C
C Set kernel estimation matrix to all zero
C
INTEGER*2 KERN(-2:378,-2:303)
DO 100 I = -2, 378
Do 100 J = -2, 303
100 KERN(I,J) = 0
RETURN
END
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PROGRAM PRDMAP

Akhkkkkkkkxk Listing 6.12 **kkkhkkhkk

Bayesian Prediction program

INTEGER*4 PVALS(32), CVALS(32), CRIMES(16,32), PY, PM, PD,

1 YR(16), MO(16), DA(1l6), WK

Accesses crime database (tabular form) and user prediction

monitoring file
CHARACTER*1 DUMMY
CHARACTER*8 PERIOD
CHARACTER*10 DATETX

Machine and user predictions: Means and Variances

REAL*4 UPRED(32), LWK(32), MARRAY(32), MPRED(32), UVAR(32)

REAL*4 MVAR(32), PRED(32)
INCLUDE 'A:SYSREG.FOR'

At-ach beatwise tabular database for past 16 weeks

OPEN (3,FILE='TABCRM', FORM="'UNFORMATTED"')
DO 50 I =1, 16

Week ending for each weekly record
READ (3) YR(I), MO(I), DA(I)
Beztwise crime array for each record

50 READ (3) (CRIMES(I,J), J =1, 32)
CLOSE (3)

Machine makes its prediction

DO 98 I =1, 32
MARRAY(I) = FLOAT(CRIMES(1,1I))
98 LWK(I) = FLOAT (CRIMES (2,1I))
CALL MPPR (MARRAY, LWK, MPRED, MVAR, 32)

Initial map is of machine'prediction

WK =1
PERIOD = ' 7 Days '

Week ending of next week

CALL DT2NM(YR(1), MO(1l), DA(1l), NDAT)

NDAT = NDAT + 7

CALL NM2DT(PY, PM, PD, NDAT)

WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') PD, PM, PY

Beginning of iterative user modification loop

66 CALL MODE(16)
CALL BOXES(15)
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CALL PUTTXT(20,1, 'South Gosforth Subdivision')
CALL PUTTXT (22,2, 'Household Burglaries')

CALL CHKEY

CALL PUTTXT (58, 2,° Menu :-')

CALL PUTTXT (58, 4,'<T> = Tables ')
CALL PUTTXT (58, 6, <V> = Variability ')
CALL PUTTXT (58, 8, <A> = Association ')

CALL PUTTXT (58,10, '<E> = Exit to Menu')
CALL PUTTXT(19,3,PERIOD//'Ending '//DATETX)
51 CONTINUE

C
C Shade in the beats
C
DO 100 I =1, 32
CVALS(I) = 11
IPVAL = INT(PRED(I) + 0.5)
PVALS(I) = 1

IF (IPVAL .LT. 8) PVALS(I)
IF (IPVAL .LT. 6) PVALS(I)
IF (IPVAL .LT. 4) PVALS(I)
IF (IPVAL .LT. 2) PVALS(I)
100  CONTINUE
CALL MAP ('BEATS',PVALS, CVALS, 32)
DO 110 I = 1, 32
CVALS(I) = 15
PVALS(I) = 1
110  CONTINUE
CALL MAP ('BORDERS',PVALS,CVALS, 32)

o onon
o o RN

(@)

Begin the Main Menu Loop for prediction

a o

500 CALL GETKEY (ICHCE)

Find associated beats (if key A is pressed)

aQaaOon

IF (ICHCE .EQ. 65) THEN
CALL ASSOC
END IF

Find beats with most variance (if Key V is pressed)

[N NP

IF (ICHCE .EQ. 86) THEN
CALL VARBT (MVAR, UVAR, CVALS, 32)
CALL MAP ('BEATS',PVALS,CVALS, 32)
END IF

Put tables up ( if key T is pressed)

oNeoNe]

IF (ICHCE .EQ. 84) THEN
DO 600 I = 1, 32
UPRED(I) = 0.375 + MPRED (I)
600 UVAR(I) SQRT (UPRED (I))

Draw tables of predictions

o NN

CALL TABLES (UPRED,UVAR, 32)

Initiate past user prior performance assessment routine

QOO0

CALL USRCAL (UPRED,UVAR)



C Merge the combination 413

C
CALL MERGE (UPRED,UVAR,MPRED,MVAR, PRED)
GO TO 66
END IF

C
C If E not pressed, return to menu; else exit menu loop
o

IF (ICHCE .NE. 69) GO TO 500

CALL MODE (3)

STOP

END
C
C*****************************************************‘k***************
C

SUBROUTINE CHKEY
C
C Prints the key for the prediction map
C

CALL KEYBOX(45, 5,'0 -< 2',11,0)

CALL KEYBOX (45, 7,'2 -< 4',11,8)

CALL KEYBOX (45, 9,'4 -< 6',11,4)

CALL KEYBOX(45,11,'6 -< 8',11,2)

CALL KEYBOX(45,13,'8 < *,11,1)

CALL PUTTXT(40,17,"' Forecasted ')

CALL PUTTXT (40,18, 'Crimes per Week')

RETURN

END
C
C************************‘k**************‘k****************************
C

SUBROUTINE MPPR{(CRIMES, LWK, PRED, VAR, N)

Machine Prediction PRocedure (Hence MPPR)

OO0

REAL*4 CRIMES(N), MEANS(50), DIST(50,50), ALPHA, NEWMN, CMETRC
REAL*4 HHOLDS (50), UPPER(N), VRNCE(50), ACORR, LWK(32), PRED(N)
REAL*4 VAR(N), BTMEAN(32), SHAPE(33), VFAC

INTEGER ADJLST(9,50), SIDES, BTCOUN(32)

DATA VFAC /0.007/

Read in the adjacency lists, the inverse distances and the data ...

oo Ne]

OPEN (11,FILE='DISTS'")

OPEN (14,FILE='ADJLST')

OPEN (15,FILE="HHOLDS', FORM='UNFORMATTED')

DO 110 I =1, N

READ (14,100) ADJLST(1,I), (ADJLST(J,I),J=2,ADJLST(1,I) + 1)

100 FORMAT (5012)
110 CONTINUE

READ (15) (HHOLDS(I), I =1, N)

Compute transformed means and distances (after Bartlett, 1948)
and compensation for household densities

oNeoNeNe]

DO 120 I =1, N
VRNCE(I) = 1.0 / (4.0*HHOLDS(I))
120 MEANS(I) = SQRT (CRIMES(I)/HHOLDS (I))



DO 130 I =1, N 414
130 READ (11,*) (DIST(J,I),J=1,N)

CLOSE (14)
CLOSE (15)
CLOSE (11)
c
C Get the Space-Time Autoregression characteristics
C
OPEN (14, FILE='STAR')
READ (14,* ) SHAPE
CLOSE (14)
C
C Now perform the prediction : read in the mean level estimates
¢ and the counts of how many observations they are based on
C

OPEN (15, FILE='BTMEAN', FORM='UNFORMATTED')
READ (15) BTMEAN
READ (15) BTCOUN

CLOSE (15)
DO 160 I =1, 32
PRED(I) = (MEANS(I) - BTMEAN(I)) *SHAPE(33)

DO 150 J = 1, ADJLST(1, I)
K = ADJLST(J+1,1I)
150 PRED(I) = PRED(I) + (MEANS(K) - BTMEAN(K))*SHAPE(I)/DIST(I,K)
PRED (I) = PRED(I) + BTMEAN(I)
VAR(I) = (1.0 + 1.0/BTCOUN(I)) * VFAC
160 CONTINUE

C
C Save results for calibration
C
OPEN (20, FILE= ‘COMP.PRD', FORM='UNFORMATTED')
WRITE (20, PRED)
WRITE (20, VAR)
C
C Transform the estimates back to numbers of crimes
C
DO 1901 =1, N
PRED(I) = (PRED(I))**2 * HHOLDS(I)
190 VAR(I) = VAR(I) ** 2 * HHOLDS(I) * 2.0
RETURN
END
C
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C
SUBROUTINE TABLES (PRED,UVAR,N)
C
C Prints tables of past prediction: Also controls user prediction
C
REAL*4 PRED(N), UVAR(N)
CHARACTER*4 BEAT(50)
CHARACTER*5 NEWVAL
CHARACTER*5 YEL, CYAN
CHARACTER*8 REDONW, WHOB
CHARACTER*52 STEXT
INTEGER*1 ESC
C
C Screen control codes
C
DATA ESC/27/
WRITE (YEL "(ALl,A)"') ESC, '[33m'
WRITE (CYAN ,'(Al,RA)') ESC,'[36m'



C
C
C

C
C
C

C
C
C

c

(@]

O

QO

415

WRITE (REDONW,'(Al,RA)"') ESC,'(31;47m'
WRITE (WHOB ,'(Al,A)'") ESC,'[37;40m'

Read beat names

OPEN (1,FILE='BEATS', FORM='UNFORMATTED')
DO 100 I =1, N

100 READ (1) BEAT(I)

CLOSE (1)
Clear screen and print table

CALL MODE (3)
CALL PUTTXT (23,2, 'Predicted Burglaries for Next Week')
DO 110 I =1,8
WRITE (STEXT,'(4(A,2X,F5.1,2H |))")
1 (BEAT(I+J),PRED(I+J), J =0, 24, 8)
CALL PUTTXT(14,7+4I,YEL//STEXT//WHOB)

110 CONTINUE

CALL PUTTXT(14, 17, CYAN//'<R> = Return to map')
CALL PUTTXT(14, 19, '<M> = Modify Forecast'//WHOB)

Menu loop for prediction adjustment

150 CALL GETKEY (ICHCE)

Modify the machine predictions (ie adjust user prior if M pressed)
IF (ICHCE .EQ. 77) THEN
Set up menu for beat modification
CALL PUTTXT(15, 20, ‘'Use <Z> and <X> to point at beats')

CALL PUTTXT (15, 21, 'Use <R> to return to map')
CALL PUTTXT(15, 22, 'Use <B> to select a beat to modify')

IBPTR =1
IXPTR = 13
IYPTR = 8

120 CALL PUTTXT(IXPTR, IYPTR, ' ')

IXPTR = ((IBPTR - 1) /8)*13 + 18
IYPTR = MOD(IBPTR - 1, 8) + 8
CALL PUTTXT(IXPTR, IYPTR, REDONW//'<'//WHOB)

Menu for Beat Modification
CALL GETKEY (ICHCEZ2)
Indicate last beat if Z pressed

IF (ICHCEZ.EQ. 90) THEN
IBPTR = IBPTR -~ 1
IF (IBPTR .EQ. 0) IBPTR = 32
GO TO 120

END IF

Indicate next beat if X pressed

IF (ICHCE2.EQ. 88) THEN
IBPTR = IBPTR + 1
IF (IBPTR .EQ. 33) IBPTIR =1
GO TO 120
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END IF

Select

indicated beat for modification if B pressed

IF (ICHCE2.EQ. 66) THEN

New submenu loop : adjust prediction level

141

CALL PUTTXT (03,23, '"Make forecast 1) Much larger ')
CALL PUTTXT(43,23,'2) Slightly larger’)

CALL PUTTXT (03,24, 3) Slightly less')
CALL PUTTXT (43,24, '4) Much less')

CALL PUTTXT (59,24, '5) Correct')

CALL GETKEY {ICHCE3)

ICHCE3 = ICHCE3 - 48

Numeric case statement

210

220

230

240

140

GOTO (210, 220, 230, 240, 242), ICHCE3
GO TO 141
PRED (IBPTR)
GO TO 140
PRED (IBPTR)
GO TO 140
PRED (IBPTR)
GO TO 140
PRED (IBPTR) (PRED (IBPTR) - 1.0)/2.0

IF (PRED(IBPTR) .LT. 0.0) PRED(IBPTR) = 0.0

GO TO 140

WRITE (NEWVAL,'(F5.1)') PRED (IBPTR)

CALL PUTTXT(IXPTR+2, IYPTR, REDONW//NEWVAL//WHOB)
GO TO 141

PRED (IBPTR) *2.0 + 1.0

PRED (IBPTR) *1.25

PRED (IBPTR) /1.25

Clean up after previous menu

242

CALL PUTTXT(03,23," ')
CALL PUTTXT(43,23," ')

CALL PUTTXT(03,24," ")
CALL PUTTXT(43,24," ")

CALL PUTTXT(S9,24," ")

Now similar menu to obtain variance of user prior

244

Direct

CALL PUTTXT(3,23," How certain is the prediction ?
CALL PUTTXT(45,23,"'" 1) Very Certain ")
CALL PUTTXT(3,24," 2) Within usual variability
CALL PUTTXT(45,24,' 3) Likely to vary a lot ")
CALL GETKEY(ICHCE4)

conversion to an integer

ICHCE4 = ICHCE4 - 48

IF (ICHCE4 .LT. 1 .OR. ICHCE4 .GT. 3) GO TO 244
IF (ICHCE4 .EQ. 1) UVAR(IBPTR)
IF (ICHCE4 .EQ. 2) UVAR(IBPTR)
IF (ICHCE4 .EQ. 3) UVAR(IBPTR)
CALL PUTTXT(5,23,"

SORT (PRED (IBPTR) )

CALL PUTTXT (45,23," Y)
CALL PUTTXT(5,24,"
CALL PUTTXT (45,24, ')

GO TO 120

SQRT (PRED (IBPTR) ) /2.0

SQORT (PRED (IBPTR) ) *1.5

')
')

')
')
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END IF
C
C Set up an exit if R (for Return) is pressed
C
IF (ICHCE2 .EQ. 82) ICHCE = 82
IF (ICHCE2 .NE. 82) GO TO 120
END IF
C
C Set up an exit from main user prior menu
C
IF (ICHCE .NE. 82) GO TO 150
C
C Save the predictions for future assessment
C
OPEN(17, FILE='USER.PRD', FORM='UNFORMATTED')
WRITE (17) SPMEAN, SPDEV
CLOSE (17)
RETURN
END
C

c*********************************************************************

C
SUBROUTINE USRCAL (SPMEAN, SPDEV)

C

C User calibration routine

C Uses a Gaussian integration technique and interpolation to

C evaluate the performance function convolution (which adjusts

C the user prior

C
INTEGER BEAT
REAL*4 F(0:40,32), IGRAL, K, X, XL, INC, FMODIF(10)
REAL*4 SPMEAN (32), SPDEV(32), ACTUAL, NORMAL, IGRAL2, IGRALO
REAL*4 ABSCIS(10), W(10), SQR2, ROOTPI, HHOLDS(32)

C

C Gaussian 10-point rule constants

C

DATA ABSCIS/

+ -3.436158289955701,

+ -2.532731063278602,

+ -1.756683225546651,

+ -1.036610579734708,

+ -0.3429012445078736,

+ 0.3429012445078770,

+ 1.036610579734711,

+ 1.756683225546650,

+ 2.532731063278606,

+ 3.436158289955692 /
DATA W/

+ 0.7640431012181091E-05,
+ 0.1343645422662423E-02,
+ 0.3387438628418394E-01,
+ 0.2401385531552589 ’
+ 0.6108624863809554 .
+ 0.6108624863809539 ,
+ 0.2401385531552572 ,
+ 0.3387438628418407E-01,
+ 0.1343645422662396E-02,
+ 0.7640431012181565E-05 /

DATA SQR2 /1.414213562/
DATA ROOTPI/0.564189584/
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C Cbtain performance function of cumulants

C
OPEN(14, FILE='USER.PER', FORM='UNFCRMATTED')
DO 100 BEAT =1, 32
READ (14) (F(J,BEAT), J = 0, 40)
100 CONTINUE
CLOSE (14)
C
C Data to transform between crime counts and normalised data
C
OPEN(15, FILE='HHOLDS', FORM='UNFORMATTED')
READ (15) HHOLDS
CLOSE (15)
DO 105 BEAT =1, 32
SPDEV (BEAT) = SPDEV(BEAT)/SQRT (SPMEAN (BEAT) )
SPDEV(BEAT) = SPDEV(BEAT)/SQRT (HHOLDS (REAT))
105 SPMEAN (BEAT) = SQRT (SPMEAN (BEAT) /HHOLDS (BEAT) )
DO 900 BEAT =1, 32
IGRALO = 0.0
IGRAL = 0.0
IGRALZ = 0.0
DO 200 I =1, 10
C
C Interpolate the performance function of the cumulant
C
XL = NORMAL(ABSCIS(I)*SQR2)
NEARPT = INT (40.0*XL)
INC = XL - FLOAT(NEARPT) *0.025
XL = F(NEARPT,BEAT) + INC*(F(NEARPT+1,BEAT)-F (NEARPT,BEAT))
FMODIF(I) = XL
C
C Estimate the Zeroth, First and Second moments of the modified
C Prior using Gauss-Hermite approximation for integral of
C f(x)*exp(-x**2) over the real line.
C
C
IGRALO = IGRALO + FMODIF (I)*W(I)
IGRAL = IGRAL +
1 FMODIF (I) *W(I)* (SPMEAN (BEAT) + SPDEV(BEAT) *SQR2*ABSCIS(I))
IGRAL2 = IGRAL2 +
1 FMODIF (I) *W(I)* (SPMEAN (BEAT) + SPDEV(BEAT) *SQR2*ABSCIS(I))**2
200 CONTINUE
C
C From these, deduce the mean and standard deviations of the modified
C distributions....
C
IGRAL = IGRAL/IGRALQ
IGRAL2 = IGRAL2/IGRALQO - IGRAL**2
SPMEAN (BEAT) = IGRAL
SPDEV (BEAT) = SQRT (IGRAL2)
900 CONTINUE
DO 910 BEAT =1, 32
SPMEAN (BEAT) = SPMEAN (BEAT) **2*HHOLDS (BEAT)
SPDEV(BEAT) = 2.0*SPDEV (BEAT) **2*HHOLDS (BEAT)
910 CONTINUE
RETURN
END
C

Chrrkhdkkkkhhkhkkhkkhkkhkhkkhk kA kkkkkkkhkkhkkh Ak hkkkkkkhkkhkkkkhkkkkkhkkkkkk*

C
FUNCTION NORMAL (Z)
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REAL*4 X, T, B(5), P, F, SQ2PI, NORMAL, 2
LOGICAL LOWER

Hastings approximation for area under the normal curve

Error < 1.5E-7

loNeoNeNeNe]

DATA B /0.254829592,

-0.284496736,
.421413741,
-1.453152027,
1.061405429/
DATA P /0.23164189/
X =72
LOWER = (X .LT. 0.0)
IF (LOWER) X = -X

1.0 / (1.0 + P*X)

- VI Iy ]
=

100 F = F*T + B(6-I)
VALUE = 0.5*T*F*EXP (-X**2/2.0)
IF {LOWER) THEN
NORMAL = VALUE
ELSE
NORMAL = 1.0 - VALUE
END IF
RETURN
END
C
C*******************************************************************
C
SUBROUTINE MERGE (UPRED, UVAR, MPRED, MVAR, PRED)
C
C Combine user and machine priors
C
REAL*4 UPRED(32), UVAR(32), MPRED(32), MVAR(32), PRED(32)
INTEGER BEAT

Weighted mean merge (assummes no correlation for simulataneous
future events --- see text in Chapter 5.

[ NeNe N

DO 100 BEAT =1, 32

PRED (BEAT) = MPRED (BEAT) *UVAR (BEAT) + UPRED (BEAT) *MVAR (BEAT)
PRED (BEAT) = PRED (BEAT)/(UVAR (BEAT) + MVAR(BEAT))
100 CONTINUE
RETURN
END

C
R L Ty T Ty e
C

SUBROUTINE ASSOC

Joins most associated beats together with lines
Currently does this entirely on fixed Space-Time Autoregression
model ....

QOO0 M

INTEGER ADJLST(9,50)
REAL SHAPE(33), CENX(32), CENY(32), DIST(32,32)
OPEN (14, ADJLST)

aQo,

Get adjacencies
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DO 110 I =1, N
READ (14,100) ADJLST(1,I), (ADJLST(J,I),J=2,ADJLST(1,I) + 1)
100 FORMAT (50I2)
110 CONTINUE

C
C Get space-time autoregression model
C
OPEN (13, FILE='STAR')
READ (13,* ) SHAPE
CLOSE (13)
C
C Get distances
C

OPEN (11, FILE='HHOLDS')
DO 130 I =1, 32
130 READ (11,%*) (DIST(J,I),Jd=1,32)

C Get centroids

C
OPEN (10, FILE='CENTS',FORM='UNFORMATTED')

READ (10) CENX
READ (10) CENY
CLOSE (10)

Scan for sufficient association

(@’

DO 160 I =1, 32
DO 150 J = 1, ADJLST(1, I)
K = ADJLST(J+1,1I)

Join associated zones with a line

(@

IF (SHAPE (K) *SHAPE (I) /DIST(I,K) .GT. 0.25) THEN
150 CALL LINE({(CENX(I), CENY(I), CENX(K), CENY(K))
160  CONTINUE
RETURN
END
c
C********************************************************************
C
SUBROUTINE VARBT (UVAR, MVAR, CVALS, NZONES)

C

C Subroutine to highlight most variable beats, in terms

C of predictor distribution

C
REAL*4 UVAR(NZONES), MVAR(NZONES), CVALS(NZONES)
REAL*4 OVAR(50), SOVAR

C

C Combine variances

C

DO 100 I = 1, NZONES
100 OVAR(I) = 1.0/(1.0/MVAR(I) + 1.0/UVAR(I))

Highlight the top quarter

QOO0

CALL SORT(OVAR, SOVAR, NZONES)
DO 110 I = 1, NZONES
IF (OVAR(I) .GT. SOVAR(24)) CVALS(I) = 13
110 CONTINUE
RETURN
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PROGRAM MONTOR

kxxxxx 1igting 6.13 ***xx

Monitor the performance of the running mean estimator in the
predictor and set it to re-estimate If continuous bad performance
is observed --- also calibrate the user performance function

INTEGER*4 FLAG(32), BTCOUN(32), CCTUNT(32), HH(32), D1, D2, D3
REAL BTMEAN (32), MPRED(32), MvAR(32), HHF(32)

REAL UPRED (32), UVAR(32)

REAL*4 F(0:40,32), IGRAL, K, X, XL, INC, FMODIF (10)

REAL*4 NORMAL, IGRAL2, IGRALO, ALFPE=A

REAL*4 ABSCIS(10), W(10), SQR2

INTEGER BEAT

DATA ALPHA /0.6/

Read in the exception monitor (see Chapter 5)

OPEN (1, FILE='COMP.MON', FORM='UXNFORMATTED')
READ (1) FLAG
CLOSE (1)

Read in the machines predictions

OPEN (2, FILE='COMP.PRD',FORM='UNZORMATTED')
READ (2) MPRED

READ (2) MVAR

CLOSE (2)

Read in the current mean estimates

OPEN (3, FILE='BTMEAN', FORM='UNECJRMATTED')
READ (3) BTMEAN, BTCOUN
CLOSE (3)

Read in the household counts

OPEN (4, FILE='HHOLDS', FORM='UNECRMATTED')
READ (4) HH
DO 100 I =1, 32
100 HHF (I) = FLOAT(HH(I))
CLOSE (4)

Read in the actual figures

OPEN (7, FILE='TABCRM', FORM='UNFORMATTED')
READ (7), D1, D2, D3

READ (7) COUNT

CLOSE (7)

Read in user predictions

OPEN (8, FILE = 'USER.PRD', FORM="'UNFORMATTED')
READ (8) UPRED

READ (8) UVAR

CLOSE (8)

Read in performance function for user

OPEN (9, FILE='USER.PER', FORM='UNFORMATTED')
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DO 160 BEAT = 1, 32

WRITE (9) (F(I,BEAT), I = 0, 40)
CLOSE(9)

C Monitor for outstanding values of machine predictions

C

C
C

C

QOO0
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DO 110 I =1, 32
IF (SQRT(COUNT(I)/HH(I)) .GT. MPRED(I) + 1.96*MVAR(I)) THEN

Outlier : increment warning flag and update estimator
C if required

FLAG(I) = FLAG(I) + 1
IF (FLAG(I) .EQ. 2) THEN

BTMEAN(I) = SQRT (COUNT (I)/HH(I))
BTCOUN(I) =1
END IF
ELSE
Normal observation : increment posterior mean (see Chapter 5)
FLAG(I) = 0
BTMEAN(I) = BTMEAN(I) * BTCOUN(I) + COUNT(I)
BTCOUN(I) = BTCOUN(I) + 1
BTMEAN(I) = BTMEAN(I) / BTCOUN(I)
END IF
110 CONTINUE

DO 115 BEAT =1, 32

Numerical Implimentation of the Morris calibration

SPMHH
SPHH
ACTHH
PROB

UPRED (BEAT) / HH (BEAT)

SORT (UVAR (BEAT) ) ) / (2. 0*HH (BEAT) )

SORT ( (COUNT (BEAT) + 0.375)/ HH(BEAT))
NORMAL ( (ACTHH - SPMHH ) /SPHH )

Beta(A,1) distribution for PROB --- update estimator

DO 120 I = 0, 40
X = FLOAT(I) / 40.0

Avoid division by zero!

120

IF (PROB .LT. 0.2) PROB=0.2

IF (PROB.GT.0.8) PROB=0.8

A = PROB/ (1-PROB)

F(I,BEAT) = F(I,BEAT)+(X**A*(1-X))**ALPHA

Make it integrate to unity

130

140

IGRAL = 0.0
DO 130 I =1, 39
IGRAL = IGRAL + F(I,BEAT)
IGRAL = IGRAL*2.0 + F(0,BEAT) + F(40,BEAT)
IGRAL = IGRAL * 0.0125
DO 140 I = 0, 40
F(I,BEAT) = F(I,BEAT) / IGRAL

Get next probability

115

CONTINUE
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Write out the exception monitor (see Chapter 5)

OPEN (1, FILE='COMP.MON')
WRITE (1) FLAG
CLOSE (1)

Write out the running mean estimates

OPEN (3, FILE='BTMEAN')
WRITE (3) BTMEAN

WRITE (3) BTCOUN

CLOSE (3)

Write out the user performance function

OPEN (9, FILE='USER.PER', FORM='UNFORMATTED')
DO 150 BEAT =1, 32
150 WRITE (9) (F(I,BEAT), I = 0, 40)
CLOSE (9)
STOP
END

STOP

END

FUNCTION NORMAL(Z)

REAL*4 X, T, B{(5), P, F, SQ2PI, NORMAL, 2
LOGICAL LOWER

Hastings approximation for area under the normal curve

Error < 1.5E-7

DATA B /0.254829592,
-0.284496736,
1.421413741,
-1.453152027,
1.061405429/
DATA P /0.23164189/
X =2
LOWER = (X .LT. 0.0)
IF (LOWER) X = =X
1.0 / (1.0 + P*X)
B(5)
0100I =2,5
100 F = F*T + B(6-I)
VALUE = 0.5*T*F*EXP (-X**2/2.,0)
IF (LOWER) THEN
NORMAL = VALUE
ELSE
NORMAL
END IF
RETURN
END

= w N

T
F
D

1.0 - VALUE
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CHAPTER 7

THE USERS VIEWPOINT

7.1 Introduction

It is surprising that although great advances have recently been made in
computerised cartographic and geographical information systems, as yet
little attention has been focused on the man-machine interface of such
software. However, the maps produced are basically a means of
communicating information, there is a message, and if the correct
impressions are to be given then careful thought must be given to
providing acceptable map display formats. In addition to mapping
aspects, consideration of ease of use of other aspects of software
designed in this study is necessary. Clearly, a system such as this, in
its working environment will be wused frequently. Difficulties in
operation may lead to erroneous data being entered into the system, and
may discourage potential users from accessing the information (in terms

of predictions, map patterns, and so on) that the system has to offer.

This is particularly important in the case of Bayesian systems such as
this. Since predictions of crime rates are based at least partly on input
from police users, it is important that they have a fluent dialogue with
the machine. Badly presented data or control options will affect the

operators understanding of the system, which will in turn alter the

predictions obtained.
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Thus, in this chapter, investigation into police user interaction with the
crime pattern analysis system is to be carried out. This is proposed on
two levels. Firstly, a study of map visualisation will be carried out,
using a sample of all of the police officers in a subdivision. This will
take the form of a questionnaire survey, the subjects being shown
several different map formats and asked to objectively evaluate them.
The purpose of this is to gain a general overview of the map formats
that are preferred, and are thought to convey relevant information in an
easily assimilated manner. Secondly, an individual user will be allowed
to operate the prototype system, and enter data corresponding to crimes
occurring over a two-month period. After this, the user will be
interviewed, and comments about the "look and feel" of the system will
be considered. Clearly, this will be a more subjective evaluation of the

system.

The second study should serve two purposes. Firstly, it is impossible
to design a system "from the drawingboard" to be without errors.
Certain problems and limitations may not occur to the designer, but will
only become apparent when the system is put into use. A trial usage of
this kind should identify some of the major omissions or design flaws
before the system is installed in a "live" environment. Viewed in
another way, it allows a second person to comment on system design,
and engage in a dialogue with the initial designer. The second purpose
that this trial serves is to allow the performance of the system to be
assessed in a working environment. Different features of the system can
be compared for effectiveness when real crime data is input to the

system.
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The aim of the chapter may be summarised as an evaluation of the

R

interaction of human users with gecgraphical anaiysis sofiware, and in

particular with the system developed in this PhD.

7.2 A Map Visualisation Study

The objective of this study is firstly to identify a set of possible map
formats that may be used to convey information about crime rates, and
having done this carry out a survey of responses of police officers to
these different formats. The survey is to be carried out at a
subdivision of the Northumbria Police, using data of archived household

burglary reports occurring within that subdivision.

7.2.1 Possible Map Formats

Before designing a survey on response to mapped representation of
crime data, it is necessary to outline the set of options for such map
displays. First, the general types of map which may be used will be

considered. These may be split into three main categories.

1) Maps based on point data representation.
ii) Maps based on data aggregated to areas.
iii) Isopleth maps for estimated density of occurrence,

based on point data.
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In all cases, the data being referred to are the grid references to
the incidences of reported household burglaries over a given period of
time. In format i) these grid references are plotted directly
onto a map of the subdivision, giving a pin-map format, as in figure
7.2. Alternatively, the point data can be analysed to give an
estimated 'density surface' over the region of study, and contour maps
in the format of type iii) can be compiled as in figure 7.1. At the
subdivisional headguarters where this survey is based, data for
incidence counts aggregated over foot beat areas is kept on a weekly
basis. This data may be used to produce maps of type ii). In addition
to this choice, the amount of boundary information shown on maps
could be varied. In addition to showing the outline of the entire
subdivision, foot beat boundaries may also be added. If they
are, then beat-related decision making and forecasting may be aided,
but a geographical analysis based on other areal units may be

confused by the inclusion of this extra visual information.

Similarly, there is the question of whether text labels for place
names, and local geographical features should be included on the maps.
In favour of this, police officers may find that maps are easier to
interpret in terms of the spatial relation between crime occurrence
and named local areas and landmarks, rather than in terms of
the more abstract notions of beat boundaries and subdivisional
borders. Against, as in the previous point, inclusion of further

information on maps can lead to confused, cluttered displays. It was
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eventually decided, after informal conversations with senior police
officers, that the number of maps required to show each format with
varying degrees of extra label information would be inoperably large, so
that maps with a fixed amount of label information would be used. It is
hoped that a desire for more or less detial of this type will then be

picked up in the 'comment' section of the questionaires.

7.2.2 Method Of Map Production

The maps that will be used in this survey will be produced using the
GIMMS package, excepting the contour maps. GIMMS can produce
point-pattern and areally aggregated maps, with or without beat
boundaries, and also offers the option of text labelling on the maps it
draws. The formats of maps that GIMMS may produce will now be

considered in greater detail:-

i) Spatially Aggregated Maps

GIMMS offers several options for map display of spatially aggregated
data. These are accessed via the *MAP command. The main types
under consideration are LABEL, POINT, and AREA. In a LABELed
map, each beat region is annotated by the actual value associated
with it in the data file. The size of the text used to write this value
may either vary in proportion to the value, or be fixed. This is
controlled by the *SYMBOLISM command, issued earlier in the GIMMS

control deck. In a POINT map, a symbol is drawn at the centroid of
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each beat. The size of this symbol varies in proportion to the number
of crimes aggregated to each Dbeat. The type of symbol could be a
square, a circle or other options, and may be shaded in various ways.
As before, all of these factors are controlled using the *SYMBOLISM
command. Note that it is distances on the symbols, and not areas, that

vary in proportion to the crime counts.

Finally, an AREA map is simply a choropleth map, where the shading of
each beat shows into which category of crime incidence count it falls.
The shading styles for different classes are selected by *SYMBOLISM

once more.

ii) Point Pattern Maps

In addition to the above, GIMMS also offers an option for plotting
point patterns onto maps, as follows. Grid references are stored in a
POINT type file, which may then be drawn using the drawmap
command with the CROSS option. This may be overdrawn onto a file
containing the subdivisional outline and beat boundaries, of type
AREA or SEGMENT, providing a crime incidence map over a given time

period.

As well as the above formats offered by GIMMS, some form of contour
mapping will also be required. The package SURFACE2 allows
contour maps to be produced reasonably simply, and so will be
used here. Unfortunately this package has no facilities for text

labelling on the maps it produces, but on the operating system
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that the software is implemented  plotters are not accessed
immediately, but driven by a control file produced by the software,
and this may be modified to include text after the contouring

job is completed.

Given a set of coordinates for household burglary incidences,
SURFACE2 can build up a set of contours for estimated 'household
burglary density' over the subdivisional area, using two dimensional
extrapolation methods. It should be Dborne in mind that such an
extrapolation fits a model to an infinite number of points (a surface)
from a finite sample, which could lead to strange sets of contours on
occasion, particularly if the set of sample points 1is small or locally
sparse. Thus, contour representation is probably most useful in
regions of high crime incidence, and spurious contours in areas of low

risk should be treated with caution.

Bearing this danger in  mind, a better way of mapping
density-based interpretations of the data would be to only plot contours
of a single value, and draw these as boundaries to 'high-risk' areas.
This avoids the pitfall of misinterpreting contours occurring in regions
of low crimes. Both of the options, complete contouring and

'high risk area' indication, will be considered.

Enough options have now been discussed to decide which maps are
to be included in the survey. Discussions between  Police

Inspectors at the subdivision chosen for the survey and myself
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lead to some conclusions about the maps before the survey was
designed. Firstly, it seems unlikely that coloured maps would be
feasible on the target system, due to prohibitive costs for the
equipment, so it would be difficult to justify their inclusion in this
survey. Secondly, it was felt that beat boundaries and place
names were essential on these maps, as they provide a geographical
frame of reference for people using them. Therefore, the
principal object of this survey is to investigate how the actual crime
incidence data can best be overlaid on a map of the area of

pre-specified format.

A total of seven map formats were chosen for the survey eventually.
This set of maps covers all of the types of spatial data representation
discussed above. Each of these 1is described below, and all seven

are illustrated in figures 7.1-7.7.

Map Format A, Contour Map.
This map was produced using GIMMS and SURFACE2 output edited

together.

Map Format B, Incidence Map.
This map was produced using grid references of household
burglaries over a period of one week, plotting them on a

subdivisional map using GIMMS, as described above.

Map Format C, Numbers of Crimes, aggregated by beat.

This was produced using MAPTYPE = LABEL in GIMMS.
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Map Format D, Proportional Circles and Map Format E, Proportional
Squares.
These were both produced using POINT symbolism in GIMMS, to

show the same data as that in C, but using proportional symbols

to label the beats.

Map Format F, High Risk Regions.
Part of the information from the contour map is re-digitised as
a GIMMS area file, highlighting higher crime risk regions in

the subdivision, as was discussed above.

Map Format G, Choropleth Map.
This is a simple choropleth map of reported burglaries in each beat
during the week before the map was created. High crime rate is

related with high risk, and darker shading represents higher

crime risk in a beat than lighter shading.

Thus there is now a set of definitions for the seven maps that will be
used in the survey. Although they were generated using output from
the packages GIMMS and SURFACE2, similar maps could be created on
a micro without recourse to these packages, and the results of this
survey should point the way for future decisions for
implementing graphics routines in the final crime prediction
package. In addition, many micros will offer the option of colour

graphics, which will enhance the display of information.
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Figure 7.5
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7.2.3 Survey Design

The main factor to be examined in the survey is ease of use of the
maps. A good map is one that is unlikely to be wrongly interpreted.
Thus, the main object of the survey is to determine which of
the maps is easiest to wunderstand. The most significant part of the
survey should therefore consist of the interviewee's reaction to each of
the map formats. For statistical analysis, these reactions should be

quantified in some way.

There are two ways of doing this: firstly, the interviewee could be
asked to rank each map in terms of 'ease of interpretation', or
alternatively he or she could be asked to score each map out of ten for
the same criterion. Scoring has the disadvantage that it forces
interviewees to calibrate, albeit implicitly, a scale of measurement for
the qualitative concept of ‘'ease of wuse'; and some individuals
will calibrate differently to others. Thus, to some people a score of
5/10 may mean 'fair', when to others it may suggest 'poor'. This
problem is avoided when ranking is used, but while scoring allows
each map to be considered on its own merit, ranking requires evaluation
of each map in relation to all others. While this is easy for two or
three maps, for larger quantities it is thought that this may be

confusing for the interviewee.

It was decided, then, that scoring is the best form of evaluation, as it
is a conceptually simpler task than ranking when there are seven
different maps. The varying calibration effect could cause problems,
but this can be overcome either by analysing scores using two-way

ANOVA techniques, which compensate for effects of one factor when
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assessing the effect of a second factor, or by replacing the scores by
their ranks. In the latter approach, an identical analysis could be
performed to that if the gquestionnaires had asked for ranks, but this
approach avoids the need for interviewees to perform the ranking
themselves.

In addition to the scoring section of the questionnaire, it was decided
to include a comments section. This is partly a device to check for any
reaction to the maps which could not be expressed in the scoring
section discussed in the last paragraph. It is also useful to pick up
suggestions for ways of mapping the data which may have been
overlooked in the survey. If a significant number of suggestions of
this type are made, this would indicate the need for further

research into this subject, probably at a different subdivision.

It also was thought that rank of police officers should be included as
a variable in the questionnaire. When the complete system is
implemented, it may be that one particular rank of police officer makes
use of it considerably more than any other. For example, its operation
may generally be allocated to the duty roster of sergeants in each
subdivision, and in this case the reaction of sergeants is of specific
interest. Also, although other ranks of officer may not have access to
the system, they may require output, and if the demand for output is
noted to come from one rank in particular, again the reaction of

only that rank will be of interest.

The final questionnaire design is shown in figure 7.8. Note that

the appendices referred to on this questionnaire correspond to
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Questionaire Used To Carry Out Survey Of Police
Officer Visualisation Of Crime Incidence Mapping.

Figure 7.8

CRIME MAPPING QUESTIONNAIRE

PART 1

NAME i i i ittt e e
RANEK T Ceeeeraarnae
DUTIES et eec s et et aec et

LENGTE CF SERVICE ... ... ..ttt ernennannnas

PART 2

Please examine the attached Appendices and assign s score to each one
betwveen O and 10 depending on how effective you consider that type of
presentation to be.

For example, if you consider that Appendix A the Contour Map is easy
to understand then give it a high score but if you find it confusing
give it a low score.

Baving decided on the score for each map complete the questions below
and return the form to your Sub-Divisional Administration.

Appendix A. Contour Map SCore ........... ?
\ppendix B Incidence Hdap score .......... .?
\ppendix C Crimes per Beat score ........... ?
\ppendix D Proportional Circles score ........... ?
ippendix E Proportional Squares score ........... ?
ppendix F High Risk Regions score ........... ?
ppendix G Shaded Bests by Risk score ........... ?
'ART 3

OMMENTS

Enter bere any comments you may wish to make about any of the maps or
lternative ways of presenting the information).



figures 7.1-7.7, discussed earlier. A questionnaire was sent to
every police officer in the subdivisional headquarters, 112 in all,
together with a covering letter explaining the purpose of the
survey, and thanking them for their cooperation.

It was hoped that officers' familiarity with the project (the author had
worked in the subdivisional headquarters collecting data on several
occasions in the past), and the brevity of the questionnaire would

result in a good rate of response.

The questionnaires were sent from Northumbria Police Force
Headquarters, together with a covering letter, to the
administration office for the subdivisional headquarters. From there
they were distributed to all officers in the subdivision, who were asked
to return the completed forms. After a four week period the
returned questionnaires were collected from the same office. After a
further two week period, the office was visited once more, to collect
any forms handed in later than the initial period. Finally, after a
further two weeks the office was visited once more, to collect a final
batch of forms. In fact, on this final visit no more forms had been
received, and it was decided that those forms collected already were

likely to constitute the full response to the survey.

7.2.4 Analysis Of Results

There were 91 responders to this survey, out of a maximum of 112,

giving a response rate of 82.7% . Of the non-responders, one had
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retired since the list of police officers in the subdivision had been
compiled, and one was on sick leave for the duration of the survey
response period. The extent to which individual calibration of scoring
differs is examined initially. For each individual, the average
score over all maps is calculated. This 1is illustrated in histogram
format in figure 7.9. It can be seen that there is a large spread in
the mean score given by individuals, which suggests that
individual calibration effects must be allowed for when assessing
response to the maps. If this were not done, there is a danger that
some linkage between 'generosity' and preference for a particular
map may result in a misleading conclusion. The compensation may
be achieved by performing a two-way analysis of variance on the
score data, with effects of individual bias in scoring, and underlying
assessment of the maps being estimated. Another approach, as
already mentioned, is to replace the scores given by individuals with

the ranks of those scores. Both of these approaches will be adopted

here.

The results of the two-way ANOVA are shown in table 7.1. Clearly
there is statistically significant (p<0.0001) evidence for both differing
levels of scoring between individuals and between maps. The fitted
scoring levels for each map after correcting for individual calibration
effects are listed in table 7.2 and shown as a histogram in figure

7.10. Clearly, map format C is the most popular.

A rank-based analysis is also performed. For each individual, the

scores given to each map are replaced by their rank (7 for the highest
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Table 7.1

Analysis Of Variance For Map Scores

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR > F
MODEL 96 2113.16 22.01 4.70 0.0001
ERROR 540 2527.19 4.68
CORRECTED TOTAL 636 4640.36
MODEL Term
SOURCE
DF ANOVA SS F VALUE PR > F
INDIVIDUAL BIAS 90 1115.22 2.65 0.0001
MAP SCORE 6 997.64 35.54 0.0001
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Table 7.2

Corrected Scores For Maps

Map Format Score
A 3.540
B 6.265
C 7.870
D 5.408
E 5.188
F 6.694
G 6.035

NB. ANOVA model is GRAND MEAN + MAP EFFECT + INDIVIDUAL BIAS

Corrected score is GRAND MEAN + MAP EFFECT.
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score down to 1 for the lowest). Having done this, a Friedman test
(1) may be performed. This is a non-parametric equivalent to a two-way
ANOVA, used to test whether the rankings of the maps differ
significantly between individuals. The results of this test are shown
in table 7.3, together with the mean rank for each map. Again,

the result is a highly significant (p<0.0001) 'between maps' effect.

The above analyses apply to all ranks of police officer. However, it
is also required that an analysis of the data split by rank be
performed. For each rank, table 7.4 shows mean score ranks for
each map, and the significance level for the Friedman test as described
above. The number of responders of each rank of officer is also
listed. For the lower ranks of Constable and Sergeant, the most
popular map format is C. Note that for some of the higher ranks,

there were not enough officers to carry out a Friedman test.

7.2.5 Conclusions

When analysing the entire data set, pooling all ranks of police officer,
both the two-way ANOVA and the Friedman tests suggested that
there were differences in the responses to each of the maps.
When assessing the performances of different map formats in terms of
ease of wuse, both the corrected mean scores of maps (table 7.2)
and the mean rankings (table 7.4) showed that the most popular map
format was C, followed by F and B respectively. This is an
interesting result, as these three maps cover the three generic map

types discussed in section two. This would suggest that all three
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Table 7.3
Friedman Test and Mean Rank For Map Formats

Map Format Mean Rank
A 2.16
B 4.14
o 5.85
D 3.65
E 3.40
F 4,71
G 4.09

Result Of Friedman Test

CASES , CHI-SQUARE | D.F. | SIGNIFICANCE

91 | 152.4311 l 6 | .0000
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Table 7.4

Friedman Tests Split Bv Rank Cf Police Officers

Rank Of Mean Rank Of Map Format No. Of| Signif-
Officer A | B c D E F G |Cases icance

Constable |2.35[4.20(5.70{3.513.34(4.75(4.16 61 0.0000

Sergeant 1.75|3.7916.21|4.4314.11|4.25(4.16 14 0.0000

Inspector |1.92(4.50|5.83(|3.17(3.17|4.75|4.67 6 0.0385

NB. For other ranks of police officer there were

insufficient cases to perform a Friedman test.
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types of maps are of some use, and that the main distinction made in

the scoring was between good and bad formats of each type.

An inspection of the comments given on the questionnaires suggests
that clarity of data presentation is an important factor. The less
cluttered appearance of map F, the high risk area map, was preferred
to the more complicated contour map from which it was derived.
Some officers seemed to have difficulty with the concept of crime
density contours (or crime risk contours), but most found the idea of

high risk areas unambiguous.

Symbolic maps, using varying sizes of squares or circles also proved
unpopular. A few users preferred point-based mapping techniques to
beat-related representations, some commenting that this highlighted
significant pockets of crime crossing borders. It is important to note
that all of the three main headings for data representations (beatwise,
pointwise and by 'risk surface') all had support in some form,
suggesting that a system should represent all of these techniques to

improve ease of use for the widest base of users.

When considering the analysis of the data which has been split by
rank in the Police Force, it can be seen that for the most common rank
in the sample, (Constable) the order of preference for the map
formats agrees exactly with that for the pooled ranks analysis. For the
next most common rank (Sergeant) there are differences in the order of

preference. Although map C is still the highest scoring, map F comes
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third, and map B fifth in the rankings. However, it should be noted
that the sample size for this category is very much smaller that the
other samples considered above, and that variability of results as a
consequence of this greatly reduces the reliability of the analysis.
For other ranks of police officers, there are so few cases in
each of the categories, and Friedman testing will not prove very
powerful. Thus, there is insufficient information to draw any useful
conclusions for these ranks.

One of the objectives of the final working system is that it will be of
aid not only to relatively highly ranked police resource managers but
also to lower ranking police officers, who will use this information 'on
the beat', and thus the reactions of constables and sergeants are of
considerable importance. Both of these ranks have displayed a
preference for map type C, and thus it is apparent that a
graphical routine producing maps of this format should be
incorporated. Although sergeants did not appear to respond well to the
point pattern or high risk area maps, constables who are likely to be
the principal users of the mapped output from the system showed
enthusiasm, and this justifies the inclusion of facilities to draw such

maps in the software also.

7.3 An Individual Interaction Study

In this study the working prototype crime system, as specified in
Chapter 6, is to be given a "hands on" trial. The purpose of this is to

evaluate the design ergonomics and ease of use of the system, as well as
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observing the performance of the working system. To best reproduce
the conditions of the workplace, a Police Officer who has gained
experience in crime pattern analysis has been selected to act as the
human user in this trial. Therefore, as the user has a strong concept
of the type of tasks that the system has to perform in a practical
situation, they will be in a position to make comments relevant to further
refinements that could be made to the system, in the transition between

prototype and full implementation.

7.3.1 Procedure for Trial

The setup for this trial will now be considered. Since the trial police
user will be expected to comment on all aspects of system implementation
a situation must be created in which a set of data is to be entered into
the system and then analysed. In addition to this, the officer is
expected to be relatively familiar with the area for which data is being
analysed. For this reason, they were issued with a set of reported
household burglaries over a two month period, spatially referenced, and
maps of the area. In fact, the officer who agreed to participate in the
study had worked in this area some years previously, so that this
familiarisation process perhaps took the form more of a "memory
refresher” and an assimilation of changes that had occurred in the

subdivision since their period of experience of policing the area.

After the familiarisation period, the user was then expected to enter the
data into the system. At any time during the entry, they were able to

inspect the data using any of the available mapping or tabulation
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options. Before actually operating the system, a demonstration was
given by the author, showing the user each aspect of the system. In
case this was not sufficient to allow fluent operation of the system, the
user was then allowed to operate the system using a dummy data set.
In this way, they would gain experience of commonly used options for

map display and analysis before entering the data.

After this stage, the entry of data was performed. Initially the author
supervised the input of data items, in order to explain the operation of
the data input system to the novice user. This continued until the user
felt confident to continue unaided. After this, the author maintained

only a background presence, to handle any major problems or software

faults encountered.

Once the data was entered for the two month period, and the user
relatively familiar with the ecrime characterics, the prediction facilities
were used, and evaluated against the true crime counts for two weeks
following the trail period. This concluded the trial of the system.
Throughout the trial the officer was provided with a notepad to write
down any comments, either critical or identifying good aspects of the
system. At the end of the trial, the user was interviewed, using these

comments as a basis for discussion.

7.3.2.1 User Reaction to the Svystem

In this section, the users' comments about ease of use, and suggests as

to improvements which may be made in the system are considered. The
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interview with the user raised certain points about the design of the
system, and the main conclusions reached between the user and the

author are outlined in the following sections.

7.7.3.2 Crimes External to the Subdivision

When crimes are entered into the system database, they are spatially
referenced by postcode. The postcode is then converted into a grid
reference by a look-up table. Clearly, as the crimes are only recorded
over the extent of the subdivision, look-up values are only provided for
postcodes falling within the subdivision. If a crime has a postcode that
is not in the list then it cannot be analysed, and so is not recorded in

the database.

During the system trial, however, it was found that some members of the
public reported household burglaries occurring just outside the
subdivision, or just on its borderline. This is hardly surprising since
the borderlines delimiting the areas served by subdivisions are not
generally known. As a result of this, however, some crimes could not
be entered into the database. Although these crimes would not feature
in a tabulation of crimes by beats, they may be of use when detecting

Knox clusters (see Chapter 4) or when examining point patterns.

It was felt by the user that, rather than excluding this type of
observation, they should be included in the database. This an important
point: in chapter 4 (section 2) it was discovered that clusters of crimes

often straddled beat boundaries, and that only examining processes on
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one side of these boundaries may obscure detection of some patterns.

This must also be the case with subdivisional boundaries, which are

equally artificial.

A suitable response to this would be to buffer the area of the
subdivision, by about 1lkm, and to store lookup values for all postcodes
within the expanded regions. In this way, occurrences just outside of
the subdivision may be stored in the database, plotted onto visual map

displays, and used for analytical purposes.

7.3.2.3 Batch Input of Data

The current software for the entry of data into the system presents the
user with a full-screen form, with boxes into which data may be typed.
Although this was thought easy to use, it was felt that after a while,
when the user was familiar with this type of input, that this method of
data entry was too slow. It was thought that there would be times when
several data items would need to be entered in a block. Currently, each
item requires a full screen form-type entry. During input, error
checking, postcode verification and data collation takes place. A result
of this is that there is a delay between data items being entered, and
during this period the officer entering the data is "held captive". It
was thought that, particularly when a large number of incidents had to
be entered at a single sitting, this would be time-consuming and
discourage the user. It was felt also that if the user were discouraged
from data entry, their enthusiasm for using the analytical and mapping

aspects of the system may also be diminished.
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A proposed solution to this problem may be to allow the user to compile
a "block" of data entries, using a screen editor, without verification,
which may then be fed into the database as a batch job. As each record
is read, it may then be checked, and a list of records failing to qualify
for database entry could be provided, allowing user modification later
on. In this method of entry, once the text file has been compiled, the
batch entry of data could be executed without supervision. Thus the

manpower overhead would be reduced.

It is hoped that eventually data will be read from a communication link
with a forcewide central database (see chapters 6 & 8) in which case,
local data input will not be required at all. However, in the interim
period the above method of batch data entry may prove more practical

than the initially proposed form-filling procedure.

7.3.2.4 Rolling Prediction Horizons

The system currently forms its predictions on a Saturday-to-Saturday
basis, allowing a prediction to be obtained once a week, at the beginning
of a week. However, it was thought that police resource managers may

require forecasts at other times during the week, in addition to this.

It was thought helpful, therefore, if the system were able to make
predictions for the period of seven days beyond the current date. This
may provide difficult to implement, although it could either be done by
pro-rating the remaining part of the current week's prediction, and the

complimentary part of the subsequent week, or by re-forming the
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week-by-beat cross-tabulations on each working day, so that the weekly
categories are based on seven day intervals terminating exactly at the
current date; from a table of this format a rolling, seven days ahead

prediction may be made.

7.3.2.5 Postcode Entry Correction

The problem here relates again to the post-code verification routine.
When an erroneous postcode is entered, and fails to be found in the
look-up table, then an error message is displayed and the user given an
opportunity to re-enter the postcode. This method is effective when a
correct postcode is mis-typed, but if the postcode is correct, but refers
to an event just outside of the study area, then no correction can be
applied. In this case the user would become stuck in an infinite loop,
unless they wuse the escape sequence. This was felt not to be
sufficiently user friendly. A remedy for this may be to set up an option
for the operator to abandon a record after, say, two unsuccessful

attempts to input a postcode.

7.3.2.6 The Comment Option on the Point Map

This was the only criticism aimed at data presentation rather than input.
When displaying past data as a point-mapped option, one of the facilities
available is to display comments associated with individual crimes, which
have been entered as a part of the household burglary input procedure.
This was found to be useful for linking up subjective data about the

burglaries with their spatial patterns.
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The current means of accessing this information is by firstly positioning
a small cursor over the crime in question, and then pressing a further
button to obtain the comment text. The cursor is not moved in the
usual up, down, left and right control key format, but jumps between
the crime points in reference number order. The means of moving the
cursor was found to be useful (mainly because crime pattern analysts are
used to thinking in terms of the crime reference number), but it was
felt that, rather than having to press a key after identifying the crime
to examine, it would be better if the text wee displayed automatically.
Thus, as the cursor moved from point to point on the map, the text
window would simultaneously change its comment. In this way, users
could either be seen through crimes in a spatial sense, by watching the
map, or scan through the comments, looking for key words or phrases,

and then identify the events spatially.

7.3.2.7 The Menu Based System

Having discussed the criticisms of the system precipitated in the trial,
some consideration will now be given to points that were found
praiseworthy in the system. The principal of these is the menu system.
The officer involved in the trial commented that they felt "confident" and
"in control" of the software, after having tried to deliberately press key
options not offered on a menu screen. Having tried this, they felt that
it was unlikely to damage data, or the system hardware, by wrong key

presses, and therefore felt encouraged to experiment with the system

and explore its facilities.
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7.3.2.8 The Choice of Analysis and Display Formats

A final, and general point made by the officer involved in the trial was
that they felt that the large choice of map display format, and analysis
method was an important positive factor. They felt that personally, they
found the forecasting, and Knox cluster options most useful, but that

other crime pattern analysts may prefer, for example the identification of

high risk areas, using kernel estimators (see chapters 4, 6).

The important point is that several options are on offer, allowing users
to develop personal methodologies for examining crime. Some analysts
perceive pattern information in different ways to others, and if all are to
gain useful output from the system, and take appropriate corrective

action, then a wide variety of techniques should be available on the

menu system.

There is a parallel between the above, viewed as a subjective
observation, and the map visualisation study earlier in the chapter,
where several formats of geographical data map types all had significant

support from the police officers in the questionnaire survey.

7.4 System Performance

Before considering the prediction stage of the trial, in terms of user
interaction with the machine, the purely data-based prediction results
will be considered. A typical week of predicted values of weekly crime

counts for the period during May 1984 is listed in table 7.5. The
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Table 7.5
Predictions Of First Week After Bi-Monthly Learning Period

(————Prediction————l

Beat Code Police Machine Outcome
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predictions are based entirely on the stochastic model of chapter 4, and
exclude the subjective, Bayesian type of input as described in chapter
5. It is noted that generally the predictions perform reasonably well
(usually out by only 1 crime) except when there are particularly large

crime counts in individual beats (say 5 or more).

It might be thought that the statistical model manages to explain the
"background" process, but that occasionally a surprisingly high amount
of burglaries occur in a particular area: this cannot be foreseen in past
data. This was also felt to be a reasonable model by the police crime
pattern analyst user. Often, there will be substantive explanations for
the sudden "crime waves" occurring, but these may not be detectable in

the past data.

It is difficult to evaluate the effectiveness of the Bayesian element in the
system, outside of the full model implementation, since it is difficult to
simulate the local knowledge of the crime pattern analyst at the time that
the archived events were occurring. However, using maps, and also
examining modus operandi details from this past data, the analyst
attempted to use the Bayesian prediction facility of the model as though
the analysis was occurring in real time, and the analyst had the

corresponding subjective knowledge.

Using this technique, a set of modified predictions were obtained, which
are shown in table 7.6. These illustrate certain situations where the

human analyst was able to spot certain patterns which the past data
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Table 7.6
Combined Predictions

Beat Code Combined Prediction
T1

T2
T3
T4
T5
T6
Ul
U2
U3
U4
Us
U6
V1
V2
V3
V4
Wl
W2
W3
Wa
X1
X2
X3
Y1
Y2
Y3
Ya
Y5
Z1
Z2
Z3
Z4

R M~MOOOKHOOOO
NN WOWONDNDNDYO

.

. . . e .
NOAOVONYWULNOODODUNONNNOUNNDNNDYOR

.
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alone was unable to detect (such as, in one beat when a number of

similar crimes occurred in the latter part of the week).

7.5 Conclusions

The intended users of this system have been considered in this chapter.
Firstly, a large scale survey (over a subdivision) gave some insight into
the types of data representation that are most effective at communicating
spatial information relating to crime patterns. It was found that there
was notable support for each of the three main map types identified in
section 2. In the crime prediction and analysis system all of these
formats are offered; it is hoped that this flexibility will allow diverse

analysts in various subdivisions, to tailor the system to their own needs.

The results of the single user trial identified that most of the aspects of
operation that required alteration were in terms of data input. There
was only one criticism relating to map format; in fact the crime pattern
analyst remarked that they found interactive map analysis options both
easy to understand, and simple to use. Ultimately, data input will not
be problematic as the system will be fed from an external database, but
in the mean time, the suggested improvements may be relatively easily

effected.

On a final and more general note, it was stated in the introduction to
this thesis that computerised crime pattern analysis was to be
investigated, with a view to a practical implementation. This cannot be

claimed unless, in addition to the mathematical modelling and computer
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implementation aspects, the end result is a system which may be easily
used by those police officers requiring the information it has to offer.
It has now been demonstrated that a police officer experienced in crime
pattern analysis is capable of operating the system without major
difficulty, and therefore, it is reasonable to expect the concept of a

subdivisional based computer system aiding in the analysis of crime

patterns to become a reality.
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CHAPTER 8

CONCLUSIONS AND POINTS OF DEPARTURE

8.1 The Introduction of Automated Analysis to Crime Data

It was stated initially that a principal aim of this thesis was to
investigate methods of spatial pattern analysis that may be applied to
local crime data. In chapters 4 and 35, statistical techniques were
considered which may be applied to the occurrence of crime as a
geographical process. In the exploratory analysis of chapter 3, other
non-geographical techniques were also introduced. All of these could be
applied to local crime data which may be routinely recorded at a police
subdivisional level, and so provide a means of analysis that may be
easily realised. In Chapter 6, methods of implementing such technigues

on a micro were proposed.

It is important to note that while the ultimate goal of chapter 5 was a
crime prediction system, the preliminary spatial statistical tests that were
used to analyse patterns in the data vielded wuseful techniques in
themselves. For example, the knox tests in chapter 4 can be made to
highlight local "clusters" of household burglaries, which may then be
mapped. Considering the viewpoint of the crime pattern analyst, as
described in the introductory chapter, an important group of household
burglaries may be identified automatically. In the manual case, or even

the case where the analyst has access to database software, the
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detection of pattern has to be based on inspection of raw data. In this

case, the likelihood of error is high, and the task is time-consuming.

The above example is based on identifying the individual crimes thought
to be important. In addition to this, Kernel estimation techniques enable
regions at high risk from crime over a long period of time to be
identified. As the technique is based on point referenced data rather
than areal units of aggregation, areas of high risk straddling beats may
also be identified. Again, for the analyst this is important: foot beat
officers assigned to a particular beat often may not observe events in
adjacent beats, and part of the task of the analyst is to identify

patterns of this kind.

In addition to the application of the spatial techniques, the analysis of
the time-of-day data is also of use: deployment of police resources at
different times of day (or seasons of the year) may depend on areas in
the locality being subject to differing risks. For example, burglary
would appear to occur only extremely rarely on households between
5.00am and 9.00am. In this case, foot patrol officers may be briefed to

concentrate on other crimes more likely to occur during these hours.

Thus, spatial analytical and other techniques could contribute to the set
of tools available to the crime pattern analyst, performing the repetitive,
pattern scanning tasks and allowing them to concentrate on intelligent,
but more subjective analysis of the emergent patterns. Finally, using
the Bayesian techniques set out in chapter 5, the results of these

analyses could be re-combined with the statistical pattern projection.
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8.2 Realising a Full Working System

A prototype crime prediction and pattern analysis system has been
created from the work of this study and such a system has been found
to be useful by crime pattern analysts. It must now be considered how

such a system could eventually be implemented as a full working system.

8.2.1 Hardware

From a hardware viewpoint, implementation is not particularly
problematic. The pilot system has been developed to run on an IBM PC
compatible computer, and this has become a widespread de facto standard
for personal computers (see chapter 6). It is possible, however, that
additional hardware may eventually be required after purchasing a basic
model. This will be to accommodate the increased graphical detail
required if the system is linked to a geographical information system
(see 8.2.2 & 8.2.3), and also to accommodate possible increases in data
storage requirements, either for the above reasons or for other software
enhancements to be proposed later in the chapter. It may also be
preferred if the final working system can drive a plotting device of some
type, for the production of hard copy of maps of crime patterns,

predictions and so on.

8.2.2 An External Data Source

At the time of designing the prototype, although centralised recording of

incident reporting had been established in the Northumbria Police Force,
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the central database facility did not store the postcodes of incidents.
However, improvements in this are currently being developed, and it is
expected that a postcode recording system will be implemented by 1992.
In addition to this, the system will consist of a central file server,
which will download requested data to micros at subdivisional level. It
is also proposed that this data will be readable by other software

packages.

The prototype system developed on this study required its own data
entry system, mainly as the postcoding of data (necessary for spatially
referencing) was otherwise not recorded. In the future, however, as
this data will now become centrally available, it seems reasonable to read
data into the analysis system from the file server. This obviates the
need for data to be entered twice, and allows more sophisticated filtering
of the data for analysis, which may be performed by the central
database software currently being developed in SQL (Structured Query

Language - a database definition language).

Since the system has been designed on a modular, menu-based model,
adaption to this should not be difficult. The current data entry
program could be replaced with a program capable of communicating with
the central file server, and reading in appropriate data for analysis
using the techniques already implemented. Once this has been done,
alteration of the menu descriptor files to allow for this could replace the
new data reading module in the place of the original user data entry

module in the overall system.
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8.2.3 Linkage to Geographical Information Systems

Another direction in which the system may be expanded is in its
graphical and cartographic output. The prototype system gives
fixed-scale mapping showing beat boundaries as background data, onto
which choropleth shading, risk contours or point data may be overlayed.
However, output of this type may be fed as data into a Geographical
Information System package, after analysis has been performed. This
allows the results to be examined in a more informative geographical
context. Added to the background information could be OS maps, and
positional data relating to  various police specific attributes
neighbourhood watch areas, for example. With most GIS packages, the

facility to "zoom in" on particular sections of the map is also available.

Thus, in the case of, say, the Knox cluster detection, a detailed view of
a street were several burglaries have occurred could be obtained. This
may show relative positioning of houses, location of back allies and other
access points, and further features, allowing the analyst to look for
further connections and similarities in the crime patterns. As in the last
section, certain modules in the system could be altered to output results

into a GIS rather than directly onto the screen.

A further advantage of this type of approach is that, since the crime
pattern analysis system becomes less hardware specific, possibly
communicating with a GIS in a standard format (possibly ASCII), if the

main hardware were to be altered at a future date, to implement a faster
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or larger system, then if the software is written in a standard

programming language there should be little difficulty in loading it onto

the new hardware.

8.3 Further Development of Analytical Techniques

In addition to the software extension discussed above, some of the
central analytical techniques may also be taken in further directions.
Although the system as it stands provides the crime pattern analyst with
a set of tools, there are ways in which some techniques may be adapted
to be used in different situations, and, with the advent of GIS systems,
there are techniques which may allow crime pattern analysis as described

here to be combined with map data to provide further geographically

oriented descriptions of crime data.

8.3.1 Space Time Prediction Models on A Force-Wide Scale

The space-time autoregression methodology used for forecasting weekly
crime rates on a foot beat scale of aggregation may also be applied to
geographical data on a larger scale. In this context, the analysis could
be used at force headquarters level as a management means of allocating
resources between subdivisions over, say, Yyearly periods. In this
context, predictions could not be made in a Bayesian framework (since
the type of local knowledge that beat police officers could apply to small
scale crime patterns would not be available here). However, space-time
autoregression models may be calibrated in a more orthodox sense, and

may be used as a basis for prediction.
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8.3.2 Extention of the Concept of "Risk Surfaces" to a

GIS Environment

The technique of Kernel estimation described in chapter 4 (Silverman,
1983) provides an estimate of a function of two-dimensional space,
mapping grid co-ordinates onto a crime "risk surface". As illustrated in
that chapter, and also in the implementation of the prototype system,
these provide a useful mapping facility. Incorporating the ideas of
multivariate calculus (see for example Kolman and Trench, 1971) into this

framework, many other useful geographical descriptive methods may be

derived.

If the surface is thought of as risk density, then, for an arbitrary area
within the subdivision, the crime risk inside the area can be thought of
as the volume beneath the risk surface if this area is extended upwards

(see figure 8.1). This may be represented by the volume integral

jJA O, W) c}\xc\s

where 1 (1,\3) is the risk density function, and A is the area over which
X and \\j vary. For an arbitrary area, this integral could not be
evaluated analytically. However, numerical approximation techniques

could be applied if the value of was given over a grid of and
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3= f(s,y)

Figure 8.1
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values. This could be used in a GIS context. The total crime risk
could be evaluated for an arbitrary polygon drawn over an OS map on a
VDU using a mouse. This allows the extension of the idea of identifying
high risk areas to that of giving the risk associated with an arbitrary
region. This could be expressed either as an absolute quantity, or
standardised to unit area. This may prove to be helpful if a particular
estate, or part of a locality was believed to be a "problem area". As
with the other techniques in the system, the concept of area integrals
would be hidden in the software, and the front end would present the

problem in terms of local crime geography.

As well as area integrals, line integrals could also be applied. A line
integral would evaluate the total risk along a single dimensional path

within the subdivision, if the path were parametred as (), ‘ALU)

then the integral would be

€
j, rOxce), AN AL
t

as before this could be approximated numerically, given the path as a
list of vertices, and either known values of at these vertices, or a
grid of wvalues allowing interpolation. Integrals of this type could be
used, for example, to measure the risk of particular streets within the
subdivision. This would allow a GIS to identify and map the "most

susceptible streets", possibly producing a "league table".
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Another interesting application of this might be in terms of beat
boundaries. In chapter 4, the problem of high risk areas overlapping
beat borders was identified. This technique may be used to select and
map those beat boundaries with the highest integrated risk factors. It
seems reasonable that those boundaries having high risk may cut

through two-dimensional regions of high risk.

The lack of speed at which micros are able to perform computations of
the type proposed here may currently be prohibitive, but it is important
to note that recently available floating hardware will be of aid here. As
an example, Intels recently announced i860 cpu may be used as a second
processor, and is capable of performing 3D graphics computations as of
its basic instruction set. (see Personal Computer World, July 1989).
These are primarily intended for CAD applications, but surface
interpolation related instructions could be adapted to computations

required here.

This also delivers further opportunities to improve risk surface
estimation techniques. For example, fault lines could be included, so
that risk surfaces could have discontinuity, possibly for household
burglary on differing sides of a railway line, or motorway. Initially
computation would be performed with user-specified fault lines, although
at a later stage edge-detection techniques could be employed to find

these automatically.
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8.3.3 Improvement of Space-Time Models

The advent of improved floating point hardware may have implications in
the prediction software also. In chapter 5, it was stated that certain
correlations had to be excluded from prediction models, since this would
require the inversion of large matrices. This predominantly affects the
predictive distributions supplied for future weeks. However, if
hardware speed is significantly improved, it seems reasonable to
investigate numerical matrix inversion techniques which may be used in
conjunction with this hardware, to give an overall improvement in the

space-time modelling used as a basis for prediction.

Alternatively, improvements in the model could be made by increasing
the geographical detail. For example, instead of forecasting on a foot
beat areal unit system, it may be possible to work in terms of postcode
sectors at some point in the future. As suggested earlier, this is not
currently feasible, but as above, the advent of faster hardware may

provide the potential to do this.

8§.3.4 Bavesian Prior Construction

It is important to incorporate subjective prior knowledge into a crime
prediction system. However, as discussed in the introductory chapter,
and also in the implementation chapter, although the Bayesian framework

requires the input of subjective prior beliefs to be represented as a
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probability distribution, it is unreasonable to expect crime pattern
analysts, whose expertise does not lie in the field of statistics, to
supply information in this form. Thus, methods were considered for
"hiding" the mathematical aspects, by asking questions about the risk of
each beat, and then asking users to supply a degree of certainty that
could be applied to their subjective forecast. However in future
developments, firstly the number of areal units may increase, and also
the complexity of the forecasting model may increase. If this occurs,
whereas previously specifying beatwise risk priors may have easily been
carried out by directly selecting individually, this may not be practical
with small units, such as postcode sectors. In this case, more
sophisticated means of constructing prior belief distributors over a set of

spatial units may be required.

This could be done using an exXpert system to ask questions and,
possibly by linking local area and street names with point references,
build spatial distributions. Some of the ideas behind diagnostic systems
such as MYCIN (Barr and Feigenbaum, 1982) could be used to identify
areas that were though to be of high risk. Questions could be asked in

terms of odds, or betting.

An alternative approach may be to use a mouse interface, and ask the
user to identify areas thought to be at risk, and then to return to text
questioning to find out degrees of confidence, again perhaps in terms of
betting odds. Obviously, the amount of risk aversion will vary between
users, but if calibration of the priors supplied takes place, this may be

compensated.
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8.3.5 Incorporation of Bayesian Methodology Into Risk
Surface Estimation

It has already been illustrated that the risk surface techniques may be
useful in a GIS context. However, in many cases, the empirical
determination of these surfaces will only be as reliable as the data that
they are based on. In this case, non-reportal of crimes may distort the
data base, so that estimates of risk surfaces may be unrepresentitively
low in some areas. it is also possible, given the hypothesised causes of
non-reportal of crime (Walker, 1983), that under representation may be
concentrated in certain areas. Attitudes towards the police and crime
reporting may vary between neighbourhoods, and in certain communities

non-reporting of crime may be considerably more common than in others.

Despite the fact that crime data itself may not provide a full description,
it is possible that in conjunction with local subjective knowledge, a fuller
picture may be obtained. As with the prediction problem, a Bayesian
technique may provide help. A technique could be developed in which
prior knowledge of the chances of an occurrent crime being reported, as
a function of area, may be combined with point referenced incidence data
to yield a risk surface (Lo, 1984). The prior distribution could either
be derived on a subjective basis, using methods set out in 8.3.3, or an
empirical estimate of non-reportal probabilities could be derived from a
questionnaire of local communities. Other factors effecting this, such as

investigating which areas have neighbourhood watch schemes, and how
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successful these schemes have been, could also be incorporated into the

prior distribution.

8.3.6 Controlling For Response

An interesting problem arises if the system is implemented in some
subdivision and successfully identies problem areas. If police resources
are targetted successfully at these regions, and potential crimes are
prevented, this may then cause the predictions to become wrong!
Clearly, these may have repercussions at some stage in a
self-regulating system. Two possible methods of combating this are
possible. Firstly, when monitoring predictions for success, weighting
of penalties for under-prediction could exceed those for overprediction.
Thus the kind of error described above could be allowed for, and not
seen as requiring as much attention as an underprediction.
Alternatively, if there were some means of manpower resource
monitoring over space, this could act as a geographical control variable,
so that the measure of crime risk would then become successful crimes
per man-hour of policing in a region. If this were the case, then
predictions could be made in terms of areas requiring more resources,

rather than areas likely to have high crime risks.

However, an option of this sort would have to be offered alongside that
of the risk identification and cluster analysis options, as the system
should be informative not only to police resource managers, but also to

beat policemen. The latter would still find the identification of hogh
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risk areas and 'suspicious' crime clusters in there own beats to be

important information.

8.4 Concluding Remarks

In this study, the purpose was not to derive criminlogical or behavioural
explanations of crime processes, but to derive quantitative methods
which may be used to examine empirical crime patterns on data which is
readily available to the police force at subdivisional level. This work is
necessary for a crime pattern analyst since before considering the causes
of the patterns, these patterns must be identified. Taking this one
stage further, the aim was then to use these empirically examined
regularities as a basis for short-term forecasting. It was found that
this could be done, but that the method could be further improved if

knowledge beyond the scope of the database could also be assessed.

Although the prediction model may be viewed a an ultimate goal in the
project, the analysis of the data both in the initial, non-geographical
exploratory context, and then in exploratory analysis of the data as a
realisation of a random process in space and time yielded other useful
techniques. These may also be incorporated into crime pattern analysis

software; for example, time of day profiles for crime are useful

information for subdivisional resource managers.

Other "spin-off" techniques such as the Knox-test type of analysis and
the Kernel estimations of crime risk were also found to be useful tools.

These techniques analyse spatially referenced data and their outputs are
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essentially geographical data entities. Thus, they may be input into GIS
software, and users may view the results in the context of local
geography. Given the applicability of these techniques (perhaps not
only in terms of crime), and the recent advances in GIS technology, the

further analysis of these may be an important point of departure.

The techniques used have also proved to be relatively easily expressed
in non-mathematical terms, although their operation is essentially
mathematical. Thus, the police officer may treat them as a "black box"
asking and answering questions in terms of crime patterns, rather than
mathematical or probabilistic theory. Results may therefore be more
easily interpreted in terms of police manpower management and
phenomena  relevant to local policing. Linked with other,
non-geographical data, they provide the crime pattern analyst with
information which they may use to identify and interpret incoming crime

data more reliably, and faster, than would otherwise be possible.
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