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ABSTRACT

Despite growing crime rates, and increased computerisation of crime

data within the police force, surprisingly little attention has been

payed to techniques of analysis that could be applied to this data.

This thesis investigates spatial analytical and statistical techniques

which may be used for this task, and proposes a Bayesian

forecasting technique, allowing the objective pattern detection

mechanisms supplied by the quantitative examination of past data to

be combined with the subjective knowledge of police officers. This

method, along with others, is incorporated into a software package

which may be run at a police station (Subdivision). Finally the

software package is evaluated by members of the police force.
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CHAPTER 1

INTRODUCTION

1.1 Perspectives On Crime Pattern Analysis

The increasing availability of crime incidence data as a result of various

database building projects raises important questions as to how such data

might best be used for practical policing purposes. Traditionally, only a

small amount of capital (in terms of money and resources) outlayed for

the collation of these crime statistics has been allocated to management

information tasks. All over Britain, police resource managers from

subdivisional to force-wide levels have had to function without fully

exploiting their comprehensive data resources.

The term Crime Pattern Analysis (CPA) has been used in policing for

many years. Originally, because of the low number of incidents it was

possible for beat policemen or detectives to identify patterns evolving in

crimes reported based on personal memory, and to implement action

accordingly. However, the large increase in the incidence of reported

crimes in the 1970's and 1980s rendered informal Crime Pattern Analysis

of this kind infeasible. A common response was to dedicate one police

officer to identify patterns and draw them to the attention of police

managers. However, eventually even this approach had serious

shortcomings. The volume of data to be analysed is now too great for

one officer within each subdivision to manage. A typical subdivision in
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the Northumbria Police Force will have an annual crime load of 8,000 -

10,000 crimes per year.

The task of the analyst is to identify patterns in these crimes, perhaps

identifying groups of related crimes of only a small number (perhaps as

low as two or three), and there is no way of determining how many of

these crimes are part of some pattern, and how many are merely

" one-off" and of no predictive consequence.

It is obvious, therefore, that an individual officer carrying out Crime

Pattern Analysis will require some tool to assist in handling the data.

Thus, recently interest has been shown in computer-based systems,

particularly using software for database management, and also in the

potential utility of Geographical Information Systems (GIS). The latter

are becoming widely adopted to manage map-related data, but like many

of the tools currently available, they only offer limited analytical power.

Mainly they present and manage the data, and the operators (in this

case Crime Pattern Analysts) are left to identify the patterns

themselves. A Police Foundation experiment involving an SIA developed

GIS system (DataMap) based around an ordnance survey digital

cartographic database for South Tyneside was found not to be

particularly useful for crime pattern analysis. Although capable of

flexible geographic data manipulation and display was possible, the

analysis of this information was still entirely left to manual pattern

detecting techniques.
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However, computers are capable of far more than the input and selective

output of raw data. Given the increasing richness of crime related data

bases, with geographical referencing, it seems reasonable that more

sophisticated tools be developed, to cope with the present and future

needs of both the Police resource managers and Crime Pattern Analysts.

The objectives for the design of such techniques can be stated in terms

of the development of computer models capable of predicting the

incidence of crime in as much temporal and spatial details as is

considered suitable. Ideally, such a system should run in real time,

making use of crime report data as soon as it is collated, and be able to

differentiate between essentially random events and those which appear

to exhibit some regularity on either a time or space basis.

In order to achieve the above, techniques will need to be employed

which analyse past crime data to identify such patterns. In addition to

this, however, certain phenomena may influence crime rates on a

short-term scale which may not be adequately captured in the data set.

In making crime predictions, analysts will not rely solely on the data,

but make use of other, more subjective knowledge in combination with

this. For example, if it is known that an offender, say a burglar, who

has been active in a particular area has recently been arrested, then it

seems reasonable to assume that burglary rates in that area will drop in

the near future. It would not be evident only from the inspection of

past crime rates in the region (which would be high due to the burglars

activity) that this sudden drop was about to happen. Thus, in addition
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to the pattern analysis of the type described previously, some channels

of input from the human analyst must still be left open.

It is noted that the tasks set out above are not easy, and to be

executed successfully will require use of highly sophisticated methods

with very specialised levels of expertise, and there is great conflict

between the amount of work required to implement these methods and the

availability of police research and development resources. Without work

of this type, however, the alternative is to rely on simple methods that

often fail to work well, and are justified only on the grounds of their

simplicity. It is as a result of this conflict that this collaborative

award between the ESRC and Northumbria Police has been granted.

There are theoretical and practical contributions that may be made from

a wide range of fields, that can be applied to the problems stated here.

These fields include probability theory, spatial analysis, management

science and computer science. However, the problem may not be

addressed by simply importing techniques developed elsewhere to the

police data environment. Many of the standard techniques have never

been applied in combination before, and there will be new techniques to

be developed in addition to these. Also, it is to be remembered that the

methods must be adapted to be suitable for use within a Police

environment (rather than within a university or an operations research

department of a large company).

The latter point is particularly important when complex statistical and

probabilistic models are proposed for general police use. The "user
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interface" has to be specially designed, made robust, and carefully

developed to have the following characteristics; ease of use, and the

provision of output that can be understood and communicated in police

terms. Neither of these requirements preclude the use of complex

methods, but do impose high standards on the "packaging" of these

methods. The system must be designed to supply the required crime

pattern analysis information and forecasts in terms relevant to the police

user. From the users view the conceptually simple task of crime

forecasting is being performed; although internally, sophisticated pattern

analysis may be used to actually obtain the forecasts.

It is also important that the crime pattern questions that the system can

answer are thought to be relevant, and so thought must be given to

establishing what tasks are performed by the analyst. It is essential,

therefore, to work in collaboration with the police, and to develop the

system with some experience of the police environment. While the system

requirements and interface design come from this environment, the

knowledge to implement it is clearly interdisciplinary. It is hoped that

over the study period the two components evolve together.

This introductory chapter will now go on to summarise the various

aspects of this study, firstly by identifying the task of the crime

pattern analyst, and then by considering particular issues in the

implementation of the computerised system.
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1.2 What Does a Crime Pattern Analyst Do?

In this section, a typical crime pattern analysis example will be given.

The intention is to identify the skills that are used, and discover the

strong and weak points. After this, models can be developed that may

either replace those skills better suited to an automated approach, or

provide backup to skills that human analysts are better at providing. A

better understanding of what is involved can be gained by examining a

hypothetical example of a crime pattern analysis task.

A list of crime incidents are given in figure 1.1. At the time of

recording of the first incident, no pattern is discernible. Over a period

of time more incidents accumulate incidents there is a possible link

between three of them (A C D). The common features are that all of

these crimes occurred overnight on terraced dwellings, by forcing a rear

window. The analyst may now suspect a pattern After three more

offences, a similar pattern evolves in beat T5. There is also a pattern

of days, in that all of the offences occur in the early hours of mid-week

days. A further incident is on a semi-detached property, but the

analyst is aware that this property has a rear yard, in common with the

other properties. This suits the method of entry well. Also, in this

pattern, if items of little or no value are stolen, another offence occurs

quite soon after. In the case of more valuable items taken, a longer

period between offences occurs.

It is also noted that offences on the east side of the major road in the

locality involve theft of small items, whilst those on the west side involve
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Figure 1.1 
Crime Incident Reports

Crime Code	 A B C D E F

Beat	 V3 V3 V3 V3 V3 V3

Date	 4 5 5 6 11 10

Day	 Tue Wed Wed Thu Tue Mon

Times	 7pm 4am-6pm lOpm-6am 12am-3am lam

Dwelling Type	 Terrace Semi Terrace Terrace Terrace Ter.

Place Of Entry Rear Rear Rear Rear Rear Rear

Point Of Entry Window Door Window Window Door Window

Means Of Entry	 Force	 Force	 Insecure Force	 Drill Drill

Stolen (pounds)	 5	 420	 0	 0	 400	 60

Comments	 Disturbed

Crime Code	 G	 H	 I

Beat	 V3	 T5	 T5

Date	 12	 13	 14

Day	 Wed	 Thu	 Fri

Times	 5pm-7am 11pm-8am 4pm-7am

Dwelling Type Terrace Terrace Terrace

Place Of Entry Rear	 Rear	 Rear

Point Of Entry Window Door 	 Window

Means Of Entry	 Force	 Force	 Insecure

Stolen (pounds)	 50	 0	 300

Comments	 Video Taken
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large items not simply concealed. The offender may therefore be based

near here. The criminal intelligence officer may possibly be able to

identify a suspect from this, but certainly a resource manager could be

warned to deploy resources for the next mid-week period in the areas

concerned.

This brief example highlights the type of skills applied by the crime

pattern analyst. Some of these pertain to modelling the time and space

constraints of offenders, while others involve detecting patterns in

modus operandi and items stolen. In addition to this, a certain amount

of intuitive input is required.

1.3 A "Smart" Computer Crime Incidence Forecaster

It is clear from the above example that simple GIS-based techniques

largely fail to provide the lateral linkages that form a powerful part of

the analysts work. There are two ways that this could be improved

upon; (1) building a rules-based expert system (see, for example,

Luger and Stubblefield, 1989); (2) developing a statistical system

designed to work in parallel with the analyst. Option (1) lies some

distance in the future, and suffers from the problem that to some extent

crime risk is a random process, so imposing a deterministic model will

yield unrealistically definite predictions (ie. no variability of outcome

could be modelled).

This leaves option (2), using statistical forecasting, and pattern spotting

techniques. In addition to this, however, there is the subjective

knowledge factor described earlier. It seems essential to incorporate
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this in some form into the prediction model. The aim of the computer

package proposed here is to aid the analyst in the more mechanistic part

of their job. However, if this is done in a closed system, it will be of

very little use. Predictions should not be made solely on space time

pattern analysis, and any method only allowing information of this sort

to enter will be inadequate. Thus, in the statistical model, some means

of entering subjective beliefs must also be incorporated.

Finally, if such a facility may be provided, a further refinement will be

necessary. If human user's are to enter their own predictions for crime

rates into the system, or modify those from the space-time models, some

form of performance rating must be carried out, to weight the influence

that these alterations may have. While it is reasonable to acknowledge

there are some aspects of pattern analysis where the human analyst is

better, to allow complete override could, with an over-enthusiastic user,

simply lead back to the pre-analytical situation, with the human user's

predictions being the only output. Therefore some decision should be

made as to how much influence the subjective input should have, and

this is most reasonably done in terms of past performance. In this way,

at times when spatial pattern is the predominant characteristic, more

weight will be given to the statistical model, but under more unusual

circumstances (eg. sudden weather change, arrival of a carnival etc.)

the human analyst is given control.
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1.4 A Bayesian Approach

Given the objective of combining evidence in the data with a set of

"prior" beliefs in a statistical framework, "classical" statistical models

cannot be easily employed. These base inferential, estimative and

predictive methodologies entirely on the analysis of the data,

corresponding to the closed systems discussed in the previous sections.

Instead of these the Bayesian approach is proposed (see for example

Barnett, 1982). This is an alternative system of statistical inference, in

which the analyst of a give data set supplies prior beliefs, and modifies

these in the light of the data, into "posterior beliefs". Thus,

information may be fed into the system by another channel than that of

data collection.

Above, the Bayesian principle is stated in inferential terms; however a

predictive interpretation can be made. From these "posterior beliefs"

predictions may be made about future data values. This can further be

extended to a dynamic scenario, where as data arrives, posterior beliefs

are modified and updated predictions are made. Also, these posterior

beliefs could be modified by the analyst if, at any time, they receive

informal evidence that may cause them to modify their expectations for

future events.

1.4.1	 Statistical Methods

Most forecasting systems do not take geographical aspects of the model

into account. They tend more to work entirely on time series based

methodologies, such as exponential smoothing or Box Jenkins methods

(Box and Jenkins, 1976). Since a major objective of the study here is
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beat by beat crime prediction, spatial effects cannot be ignored. It is

likely that, for example, a good indicator of forthcoming crime rates in a

given beat will be based on present data not only for that beat, but on

the surrounding beats crime rate data also.

In addition to this, for purposes of pattern identification, it is likely

(see example) that some geographical patterns will take place on a much

smaller scale even than this. Hence, techniques applied here should not

only forecast on a beat by beat scale, but also be able to "flag"

important developments on an individual scale, to warn of important

patterns evolving. Techniques based, for example, on Knox testing

(Knox 1964) on epidemiological technique for identifying epidemics of

disease in space and time, might be applied to "spates" of crime, (say

burglary) in a given area.

In this study it is proposed, firstly, to apply spatial statistical

techniques to some crime data in order to identify the types of spatial,

probabilistic models that could be used as the basis for crime prediction

and pattern analysis, in space and time. After this task has been

completed it then follows to build these models in the context of the

Bayesian system described in the last section.

If this is attained, a system capable of using space-time modelling

techniques to formulate predictions will have been developed. However,

in addition to this, the system will be capable of combining the results

of this type of pattern analysis with the extra information that may be

supplied by the experienced analyst.
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1.4.2	 The Combination of Forecasts

In both of the previous sections, a need to combine the forecasts of both

the human and statistical methods has been outlined. Fortunately, one

has been proposed by Morris (Morris, 1974). Experts (man or machine)

are required to state their beliefs about future crime rates, in the form

of probability distributions (this is always the case in a Bayesian

framework), and a mathematical framework for combining these is set

out. The principal may be used in the context of combining predictive

distributions from the spatial analysis model with those supplied by

police users.

An added bonus of the approach given by Morris is that the prior

beliefs supplied may be "calibrated" against past performance, so that,

for example, the expectations of an expert with a tendency to

underpredict crime rates would have their supplied figures shifted

upwards to allow for this. In addition to this, more sophisticated

calibrations may be performed, so that, for instance, the variance of

past performance of expert advice can also be used as a criterion for

weighted combination of man and machine forecasts.

An attempt will be made in this project to apply the theoretical

framework put forward to a practical means of forecasting crime viewed

as a geographical phenomena.
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1.5 Software Design

As suggested in the previous sections, many statistical methods may be

deployed in the prediction of crime forecasting and pattern analysis, and

some of these will be of a high level of complexity. However, it is

important to remember that the end users, although experts in the

analysis of crime patterns, may not have the training to directly apply

these statistical methods, or interpret their output. It is therefore

essential that the computer software written for this system "hides" the

internal statistical analyses, and presents results in terms of output

more meaningful to police managers or crime pattern analysts. Also,

bearing in mind the Bayesian approach of the system, police users will

be required to feed in data about subjective beliefs. As mentioned

previously, this should be supplied as a probability distribution: clearly,

for an expert without statistical training, this is not reasonable. As

with the output, the user must be asked for this information in a format

they can easily understand.

Bearing both of these in mind, the prototype software package is to be

designed in close communication with members of the Police Force. For

example, a survey of police officer reports to different mapped output

formats will be carried out. From this, the optimal types of map data

display to be incorporated into the package may be discovered.

In addition to this, the software prototype must be designed so that if it

is evaluated in a police environment, it will not be accidentally sent into
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error status. An important factor in the success of a system of this

type is ease of use, and the more secure a system is, in terms of

" crash" avoidance, the more confident its users will be.

1 . 6 Evaluation

After the design of the forecasting software, and the operational

software has been completed, the system as a whole will need to be

evaluated. This evaluation should be carried out either on site, or, if

this proves difficult to implement, at the research site, but with the

co-operation of a police officer who will operate the system as though it

were used on site. This police officer should have experience of crime

pattern analysis.

The purposes of this analysis will be two-fold. Firstly, the accuracy of

the forecasts will be monitored, and strong and weak points of the

forecasting system will be identified. Secondly, the ease of use of the

system will also be monitored, with comments from the police users. It

is hoped that the second type of evaluation will identify areas in which

the user interface could be improved, and also new methods of crime

pattern analysis might be suggested for implementation into the system at

a later date.

The aim of this study is an evaluation of the implementation of

quantitative geographical techniques for crime pattern analysis. Clearly,

part of this is to develop and evaluate a working prototype, but a

second, equally important aspect is to suggest additions and
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modifications to a successful prototype, in order to progress from this

stage to a fully operational system.

1 . 7 Objectives

The main purpose of this PhD is to anticipate the availability of

geographically referenced crime incidence data by developing the spatial

forecasting methods in advance of crime database developments. The aim

is to create and evaluate an automated crime pattern analysis system.

As a system of this sort will be required to function on the basis of data

that may be easily collated on site, emphasis will be placed on empirical

means of pattern spotting, rather than on theories of criminology.

Although the latter may provide insight into the processes leading to the

committing of crimes, they do not directly identify notable quantitative

traits in the data.

The forecasting system should be capable of integrating "intuitive"

knowledge of police officers with forecasts of crime rates based on

statistical techniques, to allow for events affecting crime rates that may

not be detectable on past data alone. As the system will have to

interact with the police officers in order to do this, careful design of

the user-related input and output sections will be necessary. Indeed,

throughout the study contact should be maintained with the Northumbria

Police force, the intended "end users". It is also emphasised that this

PhD is not meant to be a substantive investigation of any spatial

patterns that may exist in crime incidence data for an arbitrary study

region, instead it is concerned with more general methodological issues.
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There has previously been a lack of in depth spatial statistical analysis

of small area geographically referenced crime data, and this study

intends to rectify this omission.

The system developed should provide the crime pattern analyst with a

tool that will release their time currently spent on "mechanistic" pattern

analysis, allowing them to apply more "humanistic" or intuitive skills to

emerging patterns. One officer estimated that with non-analytical,

database management software, 10% of the analyst's time is saved. With

an analytical package of the type discussed here, this proportion will

become about 40%. The extra 30% of time saved will allow the analyst to

attain better subjective understanding of the patterns, and this may be

fed back into the system via the Bayesian mechanism.
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CHAPTER 2

CRIME DATA : REQUIREMENTS AND CAPTURE TECHNIQUES 

2.1 Introduction

In order to design and calibrate a crime pattern analysis system of the

type proposed in the previous chapter, a clear idea of the structure of

the readily available data on site is necessary. Further to this, if a

prototype is to be constructed, a sample dataset will be needed. In

this chapter, then, consideration will be given firstly to the nature of

data that is suitable for crime pattern analysis, and also readily

available to users of the system. After this, the methodology of data

capture will be outlined. This methodology will exploit, in part, an

anonymous manual crime report filing system already available in some

subdivisions, to which the Northumbria Police force have allowed

access for research purposes.

2.2 Sources of Crime-Related Data

The possible sources of data available to a crime pattern analysis

system can be broadly divided into two main types: data relating

directly to crime incidents, and data relating to variables that are

thought likely to affect crime rates. In each case, methods of data

recording will be considered, together with any related difficulties.
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Subsequently, suitability of the data for incorporation into the methods

proposed in this thesis will be evaluated. Obviously, data that is

reliable is still of little use here if it cannot aid substantially in the

prediction of crime rates on a week-by-week basis.

2.2.1	 Data on Crime Incidence

On a large geographical scale (ie Police Force Divisions), yearly

numbers of crimes are reported by the Home Office (Criminal Statistics

in England and Wales Supplementary Tables Volume 3, from 1980

onwards). These are based on force wide figures, on a

month-by-month basis. There are however obvious difficulties with

this data source. The scale of aggregation at which crime figures are

recorded in this secondary source is far larger than that required for

this study. Clearly, if beat by beat, week by week predictions are to

be made, and patterns identified at this scale of time and space, more

detailed statistics over a smaller study area will be required. Thus,

more local data sources must be considered, with a greater level of

spatial identification.

On a more local scale it is likely that data compilation may have to be

performed by the end user. Two main sources of such data would be

by accessing records of prosecutions from Civil Court data or from

police records of reported crimes. The first option is not suitable,

since this data only relates to prosecution and so records of

undetected crime will not appear. In addition to this, special formal

channels of communication would have to be implemented, with
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additional strain on the resources of both legal and police manpower.

Clearly this would not be the case with the second option.

This leaves the option of collecting crime report data directly from the

subdivision. This will provide data from a sufficiently local basis, and

a framework for collecting information of some sort is already

implemented in the crime clerk's office of subdivisions. A description

of some type is required with every crime reported. From this,

information about geographical location, date of event other details may

be gained. In fact, certain subdivisions have manual filing and

database systems implemented using the information from crime reports,

which are used as simple crime pattern analysis tools.

For the needs of this pilot study, a subdivision which has employed a

manual system such as that described above will provide a useful

source of data. In addition, when a final computerised analysis

system is completed, the data collection methods already implemented in

the crime clerks office could be integrated into the data input

procedure for the computer program without a great deal of

modification.

Thus, in terms of data availability, and of geographical scope and

resolution , the optimum information source for data directly relating

to crimes would be those obtained directly at subdivision level. This

argument applies to the final source of data on a fully operational

system, and since the pilot study is intended to examine the feasibility



20

of such a system, must indeed also apply to the source of a test data

set.

A further justification for this data source is that, in the future, a

centralised, computerised crime incidence reporting system is

envisaged, which will be able to supply electronic data of the type

described above to subdivision. This is likely to contain similar

information to that of the type currently manually reported in the

crime clerks office.

2.2.2	 Problems in the Collection of Crime Data

Consider crime related data from secondary sources, as set out

above. The data will have been previously compiled in some format

before being transferred into the database to be used for the pilot

study. It is therefore relevant to give some thought to the initial

recording process, and identify any problems associated with the

database, and its contents, attempt to assess their effects, and

suggest any remedial action that could be taken.

The major source of problems in crime databases relates to the

non-reporting of some offences (Walker, 1983) . Crimes will only

become registered if they are either witnessed by a Police Officer, or

reported by a civilian. There are several circumstances in which

crimes would not be reported; Morrison, (1897) points out that crimes

will often only be reported if they are actually perceived as crimes by
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members of the public, or if members of the public approve of the

legislation defining the criminal offences.

In more recent times Walker, (1983) has identified six major causes of

non-reporting crime. These are now briefly outlined, and their effect

will then be considered in a geographical context.

(1) No-one except the offender(s) are aware that the crime has

occurred. This chiefly occurs in the cases of murder, or fraud.

(2) The victim is afraid of repercussion if they report the crime.

This may be due to threats on the part of the offender.

(3) In the case of sex offences, the victim may be unwilling to give

evidence to the Police or appear in court at a future date.

(4) The victim may feel that there is little the Police can do to help

them, and may either not wish to appear in court or feel that

reporting the crime would be a "waste of time". This may

happen, for example in the case of household burglaries if the

property is not insured, or alternatively if the victim feels there

is little chance of detecting the offender in an assault or robbery

case.

(5) The crime committed was considered to be trivial by the victim

and it was not thought that it merited reporting. For example,

theft of milk bottles from doorsteps.
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(6) Among some immigrant communities, there is a reluctance to make

contact with the Police. To quote McCulloch et al (1974) "There

is evidence to indicate that many Asians do not take steps to

have offences investigated due to fear of Police, difficulties of

communication, mistrust of alien ways and ignorance".

In the first type of non-reporting, the frequency of types of crime to

which this phenomenon is usually linked is low or the nature of the

crime is not strongly geographically referenced so that crime pattern

analysis of the type suggested in the first chapter is unlikely to be

required. This is also the case with the second type of crime; it is

not particularly easy to analyse crimes involving, say, blackmail using

a system of this sort, firstly due to their rarity, and secondly due to

the vagueness of their geographical referencing. It may be possible

that a small proportion of the types of crime that could be easily

analysed in a system of this type (the identification of which will be

left to later in the Chapter), have their reporting censored in this

way, but it is expected that the relative frequency of these to

reported events will be small.

The major causes of censoring liable to have some geographical nature

are those set out in examples 4 and 6. It is perhaps more likely that

residents will have their properties insured, and are therefore more

likely to report burglary offences. it is hoped, however, that

although there may be greater likelihood of non-reporting in more

deprived areas, this will be combated in some cases by the

introduction of neighbourhood watch schemes. Again, in example 6,
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there may be certain area having a higher concentration of immigrant

communities, from which crimes are less likely to be reported than on

average.

In both of these cases, the geographical aspect of the problem of

non-reporting is that the under-representation of crime rates in

various regions will not be uniform. Thus, the relative risks of some

regions with respect to others may not be truly represented by

analysis of this dataset. The effects discussed in the past paragraph

may be confined to small neighbourhoods, so that the "loss rate" of

crimes occurring but not being reported may vary within subdivisions.

Thus there is a danger of some degree of distortion in the

geographical patterns of crimes perceived by the analyst.

Perhaps this highlights the nature of the main problem of this thesis.

Although in some regions, and perhaps over most time periods, the

data will provide reasonable clues as to the possible future variation in

potential crime patterns, future variation in potential crime patterns,

there may be some aspects that data analysis is unable to pick up.

Thus, a system requires some further means of input, perhaps from a

human expert, which may be combined with the results of ordinary

data analysis.

In addition to the distortions between crimes actually committed and

those not reported, a further proportion may eventually be revealed

not to be criminal offences. Perhaps for the purposes of this study

this may not be too severe a problem. In the case of some incidents,
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although no criminal offence is committed, there may be times when

police officers are still called upon, for example to mediate in domestic

disputes. If part of the purpose of the pattern analysis system is to

forecast the manpower requirement for short-term horizons, then it is

perhaps reasonable to incorporate a certain amount of non-criminal

incidents, since these will certainly contribute to the total workload.

2.2.3	 Data on Variables Which may Relate to Crime

In this section, data other than that directly relating to crime

incidence, but which may be of use in the analysis of patterns or the

prediction of future crime rates will be discussed. There will be two

major headings here : Firstly, data concerning variables that are liable

to be correlated with crime rates - possibly with some time-lagged

effect, will be considered. If data of this sort may be collected on a

week-by-week basis, this could be incorporated into a crime pattern

analysis system, and used by prediction methods . The second type of

data is that relating to local geography. This refers to digitised beat

boundary outlines, together with various other cartographic detail.

This will need to be converted to electronic format if the crime

prediction system is to perform spatial modelling, or present mapped

information on VDU to analysts.

Firstly consider those variables that could be correlated to crime

rates. Obviously, many such variables could be speculated. For

example, it may be possible to model crime risks in terms of numbers

of potential offenders in the locality. This requires two assumptions :
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firstly that journey-to-crime figures for most criminals relatively small,

and secondly that some characteristics of a "typical" offender are

known. In these cases, if the characteristics are based on say

demographic or employment variables, an estimate of the number of

people in whose category a larger number of "potential offenders" lie

could be used as a means of assessing risk. Clearly, there are

several tenuous links here; not all offenders are "typical" and a wide

range of offender characteristics with a high degree of variance would

mean that any "potential offender" category would be very large, in

order to contain a reasonable proportion of the distribution of

offenders. Furthermore, there is the "nearness to crime" assumption.

However, it is possible that, in a statistical sense, some variables of

the form above may explain a reasonable percentage of variance. If

this is the case, although in explanatory terms the analysis may not be

particularly powerful, in predictive terms it may be of some use.

The main source of such data is that from the most recent population

census. This will give counts of the population broken down by age,

or sex or various other categories for census enumeration districts.

These could relate for example to identifying age range or employment

status or a combination of both of these associated with high risks of

burglary. The enumeration districts, however, are an independent set

of areal units to police foot beats. This implies that the census

variables used in any analysis of this type would have to be estimated,

by some means, for foot beats. The typical area of an urban ED is

about 0.05 Km 2 , and that of a foot beat is about 0.3 Km 2 , so that
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since areas are of similar magnitude, the proportion of EDs that are

split over beat boundaries will not be negligible. Suppose some sort

of allocation algorithm is employed, where if an ED is contained

completely its entire population is attributed to the appropriate foot

beat, but if it is straddled across beats, it is pro-rated to all relevant

beats. Then, since a great proportion of beats are contained in the

second, overflowing, category the implementation of the algorithm will

be computationally expensive, and will also lead to fairly error-prone

estimates (as the pro-rating is not an exact process).

In addition to this, the main purpose of the final crime prediction and

analysis system is that of short-term forecasts. This implies that

short-term crime phenomena of a few days span will need to be

predicted. However, the census variables are only updated on a ten

year basis. In comparison to the weekly updated crime count data,

they will be virtually static. Also, in the ten year period, the

neighbourhood or population characteristics that the census data

attempts to measure may change drastically. New housing may be

built, or areas may drop in affluence due, for example to the running

down of a dominant local industry. Thus, the time-scale over which

census variables are updated makes them infeasible for the task in

hand.

On another level, they may be able to predict "base level" or average

crime rates in foot beats, which one may expect to be relatively

constant over time. However, given that the principal aim is

prediction, rather than a causal analysis (which census data may not
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aid with anyhow, due to problems in finding good proxy variables for

any hypothesised processes) these base levels could more easily be

calibrated by analysis of crime rates themselves on a beat by beat

basis, over a long period of time. This would by-pass the areal unit

reassignment problem, as crimes are systematically assigned to foot

beats in the police force's data collection process. In addition to this,

the burglary rate data will be more recent than census data;

particularly for this study, where at the time of analysis the census is

eight years behind the most recent crime data. Finally, in a working

system, the crime data would be collated as a matter of course,

whereas the census data would require extra resources, in terms of

both cost and manpower, firstly to obtain the data, and then to

process it, and present it in a form useful to the foot beat based

system. Thus, due to the low frequency of update, and the

inaccuracies of pro-rating data, census data would not seem viable in a

working system.

The implications of this are that, while some type of exploratory

analysis of census-based explanatory variables against crime rates as a

response may be of interest to shed light on crime rates in an initial

study, perhaps to relate crime rates to some variable known to cluster

geographically, and hence gain some idea for modelling crime rates as

a geographical process, they are not recommended for incorporation

into a working system for the reasons stated above. Thus, any

prototype system designed in this PhD will function on the basis of

other variables than those from this source.



28

2.2.4	 Cartographic Data

From the last section it would seem that there is little basis for using

explanatory variable models to predict short term crime rates on an

ongoing basis. The only variables that might be used for this purpose

are the past crime rates themselves, as they are already collected at a

suitable level of geographical resolution, and at a sufficiently high

frequency. This would suggest that a spatial autoregressive model

might be appropriate, since using recent levels in crime rates in

neighbouring areas to predict those in a given area. In models of this

sort, high levels of crime in some area are thought to be predictors of

crime nearby, either due to the presence of the crime itself (ie. an

offender may become familiar with an area, and return to it in the

future) or due to some underlying phenomena that is also a process

evolving in space and time. Note that the time sales discussed here

are in the order of one or two weeks, not necessarily long term

trends. Models of this type will be discussed in detail in Chapter 4.

However, that it is clear that, since these methods involve considering

crimes in the context of space , data relating to the nature of the

space will be required in analysis, as well as that related to the crimes

themselves. If crime rates are to be treated as a spatial process,

nearness of foot beats to each other, and locations of population for

example, may be important. In addition to this, digitised beat

boundary information will be required in order to display mapped

information on a VDU. Furthermore, it is required to assign spatially

referenced crime cases to beats, using a point-in-polygon related
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technique, and in order to do this, digital cartographic information

relating to the beat boundaries will be needed.

Therefore, three main types of cartographic data will be required; a

set of beat boundaries, which may be used for mapping purposes, a

description of beat contiguity and a set of beat centroids of some

description, which will be used as the basis for an autoregressive

model, in which nearness between beats is a major factor in

determining future rates.

The Northumbria Police force has copies of each subdivisional map of

foot beat areas, drawn to a 1:10000 scale. These have been loaned to

the author for research purposes, and for the use of this PhD, they

may be digitised on university equipment, for whichever subdivisions

are required for the purposes of this study. From these, centroids of

beats, in a purely geometrical sense may be computed, using

Geographical Information System (GIS) techniques. Similarly, the

topology of the beats may be deduced. Thus, information will be

available relating to the shape of a beat, which beats it is adjacent to,

and how distant it is from other beats, based on a distance matrix

between centroids. In addition to this, housing concentration

centroids may also be obtained, since the maps supplied give locations

of land plots, both private and commercial, in addition to beat

boundaries. These maps also contain details of roads in the

subdivision. Although not initially of use, it is possible that, at some

future date, they may be incorporated into a mapping system.
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All of this data, at least for one subdivision will be collected for the

pilot study. However, in a final, operational system in police

subdivisions there may be some need of a data updating and

management system. This data would remain constant over reasonably

long periods of time, although the building of new housing, new roads

or the re-designation of foot beat boundaries may occasionally require

some of the information to change. This would possibly be done at

force level, with a periodic review of changes in local cartographic

features, such as the roads on buildings mentioned above.

This should be relatively simple to implement, as police require

up-to-date manual maps, and all the relevant information will be

available in these. These situation may improve further still in coming

years, with the adoption of Geographical Information System packages,

which will store data of the type required electronically. This could

then be transferred directly to crime pattern analysis software. It is

likely that, with the advent of such equipment, map data

"housekeeping" will be a formalised function of Force Headquarters,

possibly by civilian staff, so that the burden of maintaining data will

be shifted from the crime pattern analysis.

2.3 Data Set for Pilot Study : An Overview

At this stage, various sources of data have been identified, and

evaluated for quality and relevance to the project under development.

The major sources of data will be from subdivisional crime reports, in

a dynamic sense, and in a more static background sense, from
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digitised beat boundaries. Having considered these sources, selection

of specific data required from these sources will now be considered in

greater detail.

2.3.1	 Current Manual Datasets : An Example

In this section some decisions must be made as to which data is to be

collected. Certain types of crime will not be viable for analysis,

either due to their rarity or due to their vagueness of geographical

location (if, indeed, a geographical context exists at all) . Even after

identifying a suitable crime type, thought must be given to the

particular recorded variables that will be of relevance to pattern

analysis.

In order to do this, an example of a manual pattern analysis system

will be considered. This will be of use in two ways. In the first

case, it shows what function the crime pattern analyst has to perform,

and which data is relevant to them. In the second instance, if this

particular system is selected for examination, the actual data contained

which will be used as a pilot crime data set, is set out in a format

that facilitates easy, error free transcription.

2.3.2	 The Databox System

This system was initially implemented in South Gosforth subdivision of

the Northumbria police force. It was developed in the early 1980s by

Inspector Jim Lillie. It was decided not to compile data on all
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categories of crime, only those which patterns were thought to be

relevant. The four classes of crime which were decided upon for

analysis were:

(1) Burglary or Dwelling House

(2) Burglary of Other Building

(3) Theft of Motor Vehicles

(4) Theft from Motor Vehicles

For each of the above categories there is one box (this is literally the

"Data Box"), and each box contains a folder for each police foot beat

(There are 32 beats in South Gosforth). Within each of these folders,

one sheet of paper is kept for each month. On that sheet is a matrix

of crime records; the rows refer to individual crime reports, while the

columns refer to attributes of each recorded case. These will be items

such as time of day, location of event, date of event and several other

items, based on items taken (as these are all based on thefts) and

details of how the offence was committed.

The format of these sheets vary slightly between the four boxes, since

details of importance are not the identical for all the types of crime,

but an example sheet is reproduced in figure 2.1, for household

burglary. There is information regarding the address of the offence,

time of day, a crime reference number, point of entry was gained

through a door, a window or another means. In addition to this, a

list of items stolen is also included.
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Figure 2.1
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The information is presented in the Databox system in order to allow

the analyst to manually identify space- or time related patterns, and

also to note any patterns in the methods used, or items taken by the

offenders. The major aim here is to automate the detection of space

and time patterns, although the information relating to methods used

and items stolen may also be of interest, for example in categorising

"typical" burglary types.

2.4 Selecting a Type of Crime for Analysis

Eventually, it is hoped that crime pattern analysis algorithms may be

applied to all of the four categories of crime suggested by the "Data

Box" system. However, it must be borne in mind that, in order to

construct a pilot system, data must be transcribed from the manual

system into electronic format. In addition to this, if techniques are

developed for the analysis of a single type of crime, based on

space-time pattern detection, it seems reasonable that, with only a

small amount of modification, these may be extended to the other three

types, since all of these may be thought of as phenomena constrained

by space and time. It seems reasonable, therefore, to limit the pilot

study to an analysis of a single crime type.

A reasonable type selection for this study is "Household Burglaries".

The recording of the data for these is spatially well referenced (by an

address), and there is little room for uncertainty in locating the event

geographically. This may not be the case, for example, in a theft

from a car where the owner (or even the offender) may be unable to
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note the exact place at which theft occurred, since it was not noticed

until some time later, during which the car had been moved six

factors. Thus, the data set of crimes proposed for the pilot study

will be, for a given period, the household burglary data from the

"Data Box" system at South Gosforth subdivision.

2.5 Attaching Postcodes

On a typical "Data Box" record of a household burglary, the address

of the victim's dwelling will be recorded. This is not, in itself, a

useable format for a quantitative analysis technique. In order to map,

and process this data, the location of the even must be supplied as a

pair of coordinates. Thus, some method of converting verbal

information into locational coordinates is required. This is a fairly

difficult problem; the address, as a character string, must be matched

on a look-up table of coordinates. However, there are several formats

that the address may take. Firstly, there is the distinction between,

say "St" and "Street" etc. In addition to this, sometimes addresses

omit town names, or parts of names (le. "South Newtown" becomes

"Newtown". Because of this, if addressed are entered in an informal

way, there will be a large proportion of unmatched strings. Because

of the above effect, address to coordinate look-up systems would

usually require a rigorously defined format for addresses to be

entered. This would lead to difficulties in implementation.

A more viable alternative would be to use post codes . A look up

table is available from the Post Office giving a coordinate pair (and
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other information) for all postcodes in the UK (at time of release - the

tape is regularly updated to remove postcodes of demolished areas, and

to add new codes). Subsets of this lookup table relevant to the

subdivision of interest could be stored in disc format on micros, and

used to provide coordinate references for post-codes entered.

Postcodes are not accurate to the exact household, typically they

contain about 15 or 16 houses. Thus, some compromise on specificity

is made. However, if the postcode of an area is known, it can easily

be converted to a format suitable for matching on a look-up table.

Hence, in compensation for a slight loss in accuracy, a much larger

proportion of crimes entered into the system will be matched to

coordinates.

There are various other advantages in adopting a post-coded reference

system. On a technical level, the storage overheads of a

postcode-coordinate look-up table will be considerably less than that of

an address-coordinate equivalent. This is because the size of a

postcode string is only 8 characters, while the text of an address will

greatly exceed this, and also since postcodes cover several houses,

fewer postcode zones will cover a given region than house land plots.

In addition to this, data that is not spatially referenced to an

individual household cannot be matched to a householder, so that

anonymity is preserved. This data will then not require registration

under the Data Protection Act (1984), which may otherwise prove
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problematic. Thus, in some interpretations, the lack of specificity of

postcodes may be seen as advantageous.

Also, currently large databases of varying kinds are being compiled

that are geographically referenced.	 For example, Superprofiles

( Charlton et al, 1985) a neighbourhood classification database. On

the recommendation of the Chorley Report ( Chorley 1987) . Many of

these are referenced using postcoding. Thus, crime data that is

postcoded may be matched geographically to other datasets , using

relational database technology of some point in the future. Thus, data

compiled on crime incidence at a local scale, to be used initially as

part of a crime pattern analysis system could later be passed on to

research and development departments, for example, where its

relationship with other neighbourhood referenced data could be

studied.

Finally, in the Northumbria Police Force, who have agreed to supply

pilot data, it is likely that in the next few years postcoding will be

adopted on all crime reports, and that computerised records of all

reports will exist, with postcodes included. Thus, if the pilot dataset

includes postcode information the anticipated scenario in the near

future will be simulated.

2 . 6 Data Capture

The problem of obtaining the data must now be addressed. The

main issues are converting the format of data in the "Data Box" system
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into a computer file format which may be analysed, the problem of post

coding the address data, and finally that of means of transferring data

from the data boxes in the subdivisional crime clerk's office onto the

mainframe computer installation at the site of research.

2.6.1	 Format for the Recording of Data

The data to be recorded is that presented in the "Data Box"

corresponding to household burglary. However, certain aspects of the

recording in the data box system are handled on an informal basis,

whereas a more strict coding system will be required for this analysis.

Certain items are required to be binary state variables (eg. is crime

detected) and others are qualitative, requiring a categorical variable.

Finally, the items stolen will be encoded in list format, with code

numbers corresponding to the type of item stolen. Eventually, this

may be converted to a set of binary variables (ie. one variable

corresponding to each type of article, with a "stolen"/"not stolen"

indicator) however, it was felt by the author that for data coding, the

first format was less likely to lead to transcription error, resembling

the "Data Box" format more closely. It is possible that the binary

format may be more convenient for analysis, but conversion to this

format might be performed by computer at a later stage.

The proposed format of the prototype data set that is to be collected

is given in table 2.1. This gives areas where data currently collectable

may be stored, as well as areas where derived data will also be
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Table 2.1 

Format Of The Household Burglary Data Set

	Variable Name
	

Column(s)	 Description Of Variable

	

DAY
	

1	 Day Of week Of Burglary
1=Sunday .. 7=Saturday

	

MONTH	 2-3	 Month of Burglary 1..12

	

DATE	 4-5	 Date Of Burglary

	

POSTCODE	 6-13	 Postcode Of Burglary

	

BEAT	 14-15	 Local Foot Beat Code

	

ME	 16	 Method of Entry
F=Forced
B=Break In
I=Insecure Building
D=Drilling
0=Other

	

PE
	

17	 Point of Entry
D=Door
W=Window
0=Other

	

DE
	

18	 Direction of Entry
F=Front
S=Side
B= Back
R=Roof
0=Other
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Table 2.1
Continued

Variable Name
	

Column(s)	 Description Of Variable

STOLEN	 19-24	 Items Stolen
Up to six out of
C = Colour Tv
H = Hi-Fi
B = B/W Tv
J = Jewellery
V = Video Recorder
E = Electrical Goods
K = Cash
F = Food
X = Cheques
D = Drink
L = Clothes
P = Personal Goods
G = Furniture
0 = Ornaments
M = Camera
T = Tools
Q = Other

Or A = Attempt
(No items Stolen)
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stored. This derived data will consist of the results of running the

look-up table software from postcodes to grid coordinates, and also of

converting dates from a month-and-date format to a single

day-of-year. These numbers are directly subtracted, and therefore

more convenient for computer analysis.

Having decided to use postcoding to geographically represent the data,

handwritten addresses in the "Data Box" system must be post-coded.

This will be done using the Area Postcode Directory. Certain missing

values may occur, either due to incorrect address recording, or due to

burglaries occurring at address that did not exist at the last time of

compilation of the directory. However, in the collected data set the

proportion of these was about 8%, which did not cause major

difficulties.

In compiling this dataset, going through addresses one-by-one and

manually postcoding is clearly a time consuming exercise. However, it

must be borne in mind that eventually this will be carried out as a

matter of course as crimes are entered into the system, possibly with

the victims being able to supply their own postal codes.

2.6.2	 Data Transference

All of the data required for the pilot dataset is stored in the

subdivisional crime clerk's office, and it is required to transfer this

onto a computer file at the research site, but the original copy of the

data must not leave the crime clerks office. Therefore, the only
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means of collecting the data is by regular visits ( sa v tv.-o mornings a

week) to the subdivision, recording the data on site. Permission has

been granted to do this by the Northumbria Police Force. However,

the task may be speeded up considerably by employing a portable

computer as the data capture tool. The pilot data file may be entered

into the machine (in this case an Epson PX-80) using a text editor

program, and then, using file transfer software available on the

mainframe, this data may be transferred. Without this technology,

data would have to be copied by hand from police records to paper,

and this would then have to be entered into the mainframe computer.

Thus, using the portable computer method described above, the data

need only be entered once, whereas otherwise it has to be transcribed

and then typed. In the manual case, then, roughly twice the

resources would be required, and there are two sources of human

error (in transcription and in typing) .

2.6.3  Data Collected

The "Data Box" system has been operational in the study subdivision

since 1984,  and using this as source one years worth of detailed

records will be captured. Any period of less than one year could lead

to problems of seasonal bias in the study data set when carrying out

various types of analysis ; Thus, one years worth of data is to be

collected, and the Northumbria Police Force have allocated the author

office space within the subdivision over a one year period for this

purpose. However, there may be some types of analysis that require
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more than one years data; for example if seasonal effects are to be

considered, the rates of crime for more than one year should be

recorded if periodicity is to be checked. For periods of longer than

one year, beat by beat crime counts will be tabulated on a weekly

basis. This allows seasonal rates, and spatial modelling on a foot beat

level of resolution, to be carried out over longer time spans than a

single year. These tables will be compiled until January 1987; since

this only involves the transcription of crosstabulations, this is to be

done on an informal basis without the allocation of special office space.

2.7 Conclusions

The content of this chapter may best be summarised by the table 2.2 .

This identifies each dataset that will be required for analysis, in terms

of its contents, and the source of the data. The methods of collecting

the data described here apply only to the pilot study. It is hoped

that if the eventual crime prediction software becomes operational, the

data collection will become formalised. The data here serves the

purposes of exploring, evaluating and calibration of the types of

models that might be used in such software eventually. At a later

point in the study, when a working prototype is to be evaluated, some

software for direct input of data to the system will be considered.

The main purpose of the data here is to provide a basis for the

following two chapters, whose subject matter will be the exploratory

analysis of crime pattern data, and then the building of specific

space-time models for the prediction of household burglaries. The data

used has to be of a form likely to be generally available to all police
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forces throughout the 1990s, and the pilot data gathered here meets

this requirement.
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CHAPTER 3

EXPLORATORY DATA ANALYSIS

3.1 Introduction

In the previous chapter, the methodology for gathering a pilot data set

for the analysis of crime patterns was set down. Having obtained such

a data set, the aim of this chapter is to perform various trial analyses

on this data, and gain some insight into the uses that quantitative

techniques may be put to analyse crime patterns. The consideration of

crime as a spatial process is separated from this chapter, as it is

thought to be an area of sufficient importance with respect to the aims

of chapter 1 as to merit a chapter of its own. Thus, exploratory

analysis of crime as a geographical pattern is incorporated in chapter 4.

Here, certain other aspects of crime pattern analysis must also be

considered, since although not directly connected with space, they may

have some bearing on the final crime pattern analysis system. For

example, analysis of characteristics of the method of burglary employed

are clearly important to police officers attempting to infer facts about

phenomena leading to a large incidence of crime in a particular area.

Other aspects, such as the seasonal variations in crime rate are also of

importance in explaining local crime patterns, and it is possible that they

may be of use in some prediction methodology.
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Hence, before undertaking to synthesise a general spatial process model

central to a crime prediction system, some preliminary investigation of

the data is necessary. In this chapter, three such investigations are to

be carried out. Firstly, as suggested above, seasonal aspects of the

data will be analysed. After this, consideration will be given to the time

of day of crimes. This information is incorporated in the data collected

and is more conveniently available for crime reports - ie, all 999 calls -

with a greater degree of reliability. However, it is important to

investigate how useful this data is. The times are generally given as

intervals - often because the witness is only able to specify the event in

this way, and it is debatable whether they are of sufficient accuracy to

incorporate in a prediction system. Even if they are not, they may be

of interest in their own right. Finally, the subjective information about

the burglaries will be examined. This relates to the methodologies used

by offenders, and also to the items stolen. This type of information,

although not essentially geographical, may be usefully combined with the

spatial information by users of a crime pattern analysis system, as

suggested previously.

3.2 Time of Day of Crime Incidence

An important aspect of patterns of crime is the time of day of incidence.

At certain times of day, particular types of crime may be more likely to

occur, and if police resource managers are aware of information of this

type, appropriate allocation of reserve manpower can be made. In

addition to this, it will provide officers on foot or car beat patrol with

useful information. It is expected that the distribution of crime rates
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over the day will vary between types of crime, and may be unique to

different geographical areas. For example, in terms of "defensible

space" models, (Newman, 1972) certain areas within neighbourhoods may

become less visible as night falls. This may provide better opportunities

for household burglary, and possibly cause the likelihood of such events

to rise in the locality. The time of day that such an event may happen

would depend on local architecture, and on the time of day of sunset.

Both of these factors will vary geographically, the second also having a

seasonal component.

Thus, it may not be particularly helpful to consider the distribution of

crimes throughout the day on a national basis. It may, however, be

possible to consider data collected locally, and, at subdivisional level

evaluate intra-daily changes in crime risk. This could be done for all

data aggregated over the entire subdivision, or broken down by

individual foot beats. The first option, although less informative, may

be a more suitable compromise, since the scarcity of numbers of

incidents for individual beats may lead to problems in estimating

distributions.

It may also be of interest to compare the patterns observed during

working days to those at weekends. This may affect the times of day

that potential criminals come into contact with opportunities of committing

offences. Thus, a local analysis of time of day of crime risks taking

into account the covariates of season, foot beat area and time of week

may provide useful information for police resource administration and for

direct policing.
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In line with the rest of this PhD, a pilot study here will

on household burglaries. The arguments presented

concerning the well defined geographical referencing

burglaries, and the fact that they provide a reasonably

apply equally here as in the other studies.

be carried out

in chapter 2

of household

large database

Thus, the problem here may be stated in the following stages:

i)	 Methodology specification - data collection

- analysis technique

if) Data Evaluation

iii) Data Analysis

iv) Conclusions

The data evaluation will be interrelated to the analysis. As suggested

previously, the level of sophistication of the data analysis will depend on

the amount, and the quality, of the data supplied. The conclusions

should be considered in terms of the feasibility of installing this type of

analysis at a subdivisional level throughout the entire force, as well as

in respect of interpreting the local patterns observed.

3.2.1	 Data Collection

There is an initial problem in the non-reporting of certain crimes

(Walker, 1983 or Sparks et al, 1977). Not all household burglaries

occurring will be reported to the police, and police records of call-outs

provide the most plentiful and easily obtainable database of the sort
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required for this study. It is hoped, however, that generally this will

not effect conclusions. Particularly, it will be assumed that the risk of

a given crime not being reported is uniform throughout the day.

The major problem with data of this type is that the occupiers of houses

are often out when household burglaries occur. Thus, the exact time of

burglary is unknown. This may also be the case if the occupiers are

in, but are unaware of a theft taking place (for example, during the

night). Thus, rather than an exact time of burglary being known, an

upper and lower limit is the maximum information that is available to the

victim, or to the police. This limitation has been considered by the

police; when recording data of this type an upper and lower boundary

on time of event must always be entered, even when the crime was

witnessed. In the latter case, a one or two minute gap is entered.

Hence, the database is to be compiled from these records, noting upper

and lower limits of time of incident, and also calendar information, giving

day of week, and week in year. In order to compare each season, an

entire year of day is the minimum requirement. Given the manual nature

of data collection in this study (the crime incidence records in which the

time of day is noted are not yet computerised) the pilot study will be

restricted to a single year. This data will then be coded and analysed

statistically by computer.

Unfortunately, at this stage, information relating to foot beat areas is

not stored on record, so that this part of the analysis may not be

performed in the pilot study.
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3.2.2	 Method of Analysis

In the last section, the special nature of the data was considered.

There is no point indicator of time of day available, only an internal

estimate. For point estimates, there are many methods of obtaining

models of probability distributions. In crudest form, simple histograms

could be constructed, say on an hour-by-hour basis, giving direct

visual information about the distribution of risk throughout the day.

On a more sophisticated level, Kernel estimation techniques ( chapter 3

and Silverman, 1976) could be used to gain an approximated probability

density function for daily crime variation, or parametric models of cyclic

pattern in variation, (such as Fourier analysis) could be used.

However, in all of these approaches, the introduction of internal data

gives rise to technical complications, some of which have not yet been

addressed.

Statistical aspects of distribution estimation will now be considered, with

the special case of interval data. Firstly consider a maximum likelihood,

non-parametric approach. In this case estimates of the cumulative

distribution must be made of an unspecified function F, (which may or

may not be continuous ) but this cannot be gathered from a finite sample

of intervals ; however, F may be estimated for a finite set of ordinates.

Suppose the sample of upper and lower intervals is (): X ) i = 1, n.ii
^

Then F ("Id , 'F'‘(_Itti) may be considered. Denote these FL, F. The

probability of Y- falling between L. and J. (41. is it;,- L.Thus, the likelihood

of the entire dataset is given by
0

L (F t t xua ,_1.-t,l) = Tv (Ft6.- FcL)
i...,
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a cumulative

	

Also,	 as	 F	 is

	

distribution function, 4F()(-) F(y)>, 0 4. 	 Thus, to maximise

L (F1Exu, the problem is identical to

ma).	 \ OA,	 LL
=

subject to

(1) EC)

( subject to

although this can be solved, the solution is not always easy to interpret.

cu..% a.Suppose the set of	 F V L's are ordered according to

corresponding Xa'S and
	 Then, the lowest element will be XLi.

Clearly, this must equal zero, otherwise ( Fut: FLA) will not be maximised,

if all other X's are given. Also, however, if	 .2> , VL must also

be zero, maximising if the next highest ordinate is also an

upper limit, Fu-,, then, given the constraint F,„ 1,›.- F0, and the fact that

F L, A. must maximise (Fu L - FL1 ), we have Ft = F.

Thus, pr Fu.t)) = 0. Therefore, often, the maximum likelihood

density estimate has regions of zero probability. In an interactive

appreciation of the substantive issue, this does not seem satisfactory.

Parametric approaches are problematic in a different sense; in this case,

the density is modelled as f(X;e), and a maximum likelihood estimate of
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_

often the optimisation problem becomes computationally expensive,

particularly if the integral may not be expressed algebraically for some

given f.

This leaves the option of a modification of the Kernel estimation

technique which may be applied to interval estimates. A reasonable

approach may be to use the method of Kernel estimation for point data,

based in the centres of intervals, and widening the bandwidths of the

Kernel distributions in proportion to the size of interval. Thus, for

example,
)(._ (>cu:.	 )

Cx) = * Z- 3	 K (.,.,_;. - --L-1, )

the simplest of these would be

C ,( ( .70 = ‘Ti Z

where

'''. ("-) =	
(DL uL - .1-4-)--t

if	 _X_ e ( Li_ , XuL)

-,... 0

otherwise	 (1)

(1) is the equivalent to assigning a rectangular distribution between

upper and lower limits, for each pair, and then averaging over all of

these . Assuming these rectangular distributions hold, or at least

represent victim knowledge of the time of crime, the resultant average

distribution of the time of day of an event generated first by selecting a
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past record at random, and then assigning time of day according to the

rectangular distribution corresponding to that choice.

This method, though theoretically less appealing than the others

suggested has the advantage of being relatively easy to calculate, and

also of not having "pockets" of zero probability. It also directly

synthesises a density function, rather than a cumulative function for the

approximate distribution. Thus, the resultant may be easily interpreted

as a "risk profile" of household burglaries throughout the day.

A further requirement has to be made for analysis in terms of time of

day: for intervals including midnight, a modulo-based interval estimator

must be used, so that gi is added from ---CLLto midnight, and then from

midnight to t. This is particularly important in analyses where the day

of week is taken into account.

Another problem is that of extremely large intervals. In certain cases,

for example when the occupiers of the burgled property have been away

for several days on holiday, there is an extremely long interval between

the upper and lower time boundaries. In terms of the day-profile, the

rectangular distribution is virtually uniform throughout the how

period. This has the effect of "flattening" the average distribution.

Effectively, there are two main factors in the data that effect the

interval-based estimator. Firstly, centres of intervals tend to build up

a histogram-based model of the distribution, but this interacts with the

interval size. The peaks that centroids may produce will be "smoothed"

by larger intervals. When the interval size gets large, the smoothing
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effect affects the entire distribution estimate. It may therefore be

appropriate to "downweight" contributions of rectangular distributions

with larger interval sizes. It seems reasonable, furthermore, that any

intervals exceeding 24 hours should be zero weighted.

Thus, the final formula may appear as

c.	 - 5-)/	 1-(-)-1

(	 =	 C-c-..-)/

where w is a weighting function, such that

W(24) = 0 if	 Y1/4.e:calibrated in hours

w(x) is monotone decreasing if

The simplest w(t) would be

w (I) = 1 if

= 0	 otherwise.

This simply cuts out all observations when the interval exceeds some

given value. For the pilot study, this method will be employed.

3.2.2	 Data Evaluation

In the last section, a method of estimating the distribution of household

burglary occurrences throughout the day was proposed. This method

may be applied to interval data concerning the time of day of household
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burglaries. It was also suggested that those pairs of limits spanning

beyond some reasonable amount of time be excluded. It will be an

important problem to determine a suitable exclusion limit. In the

interests of avoiding "over-smoothing" the limit must not be too high.

However, exclusion of too many cases leads to reduction in sample size,

and this will lead to "over-spikiness" in the estimates, as they will be

based on only a few observations. It is therefore important to examine

the numbers of records, and also the distribution of interval lengths in

these records. There are 2025 observations in total.

The upper tail of interval distribution shows a slight peak,

corresponding to those offences that occurred while the property was

unoccupied for several days (or possibly several weeks). The effect of

the upper tail is that the distribution mean exceeds the median. In the

context of choosing cut-off points, the median and other quantiles are of

more importance than moments of the distribution, since they allow a

direct link to be made between proportions of cases lost and the interval

lengths.

The median here is 6 hours, thus a cut off point of k=6 (see last

section) would result in exclusion of 50% of cases, that is 1012 cases.

Although removal of 50% of cases may seem large, it must be recalled

that intervals of much larger times than this will distort the reasonable

information given by the data in the lower half of the distribution.

However, for kernel-based techniques, 1012 cases will still provide a

good estimate of the generating distribution. Many studies have been

based on considerably smaller samples than this.
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The second issue here concerns the splitting of the data by a

week/weekend division, and a seasonal division. Clearly, in the case of

considering the data as a whole, a cut-off interval of 6 hours is

appropriate. However, if the data is sub-divided, so that separate

distribution estimates are considered for each division, then each

estimate will be based on a smaller number of observations, with the

corresponding loss of reliability.

It is possible that one data analysis may be performed when splitting by

season, and another by week/weekend division, allowing the two effects

to be assessed independently, but that splitting by both in the same

analysis, allowing interaction to be considered, will require too many

subdivisions, leading to an unacceptable reduction in the number of

observations in each class.

Frequency counts are shown in table 3.1, giving counts and average

lengths of intervals in each subcategory. Firstly, data are categorised

for single data points. Thus, this allows checking of feasibility for

independent analysis. After this, if the above is feasible, it may then

be possible to carry out an interaction effect analysis. To test for this

the crosstabulation may be analysed.

In the case of the full crosstabulation, if the cutoff of 6 hours is still

applied, the smallest category contains 48 cases. This, although giving

patchy coverage in some of the smaller data sets, may still be reasonable

for examining risk profiles, particularly if those results gained from

very small data sets are viewed cautiously.
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Table 3.1
Occurence of crime by Time Of Year and Time Of week

Winter Spring Summer Winter Total

Week 236 147 157 176 716
2.292 2.214 2.029 2.497 2.269

Weekend 68 55 48 71 242
2.728 2.555 2.615 2.296 2.539

Total 304 202 205 247 958
2.390 2.307 2.166 2.429 2.439

(Upper figures denote incedent counts, Lower figure the average
uncertainty in time of day of occurrence.)
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When considering divisions by each factor in turn, there are reasonably

sized samples for each category, so that, although interaction analysis of

the two factors may not be reasonable, in all cases, separate seasonal

and week/weekend analyses will be feasible.

3.2.4	 Results of Analysis

A computer program to carry out the analysis proposed in the second

section was written (in Prospero FORTRAN 77 running under MS-DOS ) .

This is shown in listing 3. 1. A minor change from the theoretical

method has been made, in that a day has been divided into 48 half

hourly intervals, rather than treated as continuous time. This speeds

up computation and aids on-screen graphical representation.

The results for all incidents (table 3 . 2) incidents divided by

week/weekend (table 3 . 3) , divided by season ( table 3.4) and by both

week/weekend and season ( table 3.5) are listed. Corresponding

graphical representations are given in figures 3 .1-3 .4 .

The problems of small samples are reflected in the "patchiness" of the

graphs obtained from some of the two-way split datasets . However,

these reflect to some extent patterns which may be more strongly

identified in the single dimensional splits.

Firstly, consider the week/weekend splitting. On weekdays, risk peaks

in the early to mid afternoon and again in the evening, at around 21 . 00

hours. A lower peak also occurs at about 2.00  hours . The least risk



59

Time Of Day Distribution
Table 3.2

:	 All TimesOf Household Burg,laries

Time	 Percent	 Time Percent	 Time Percent

00:00 1.71% 00:30 1.64% 01:00 1.56%
01:30 1.92% 02:00 2.32% 02:30 1.34%
03:00 2.11% 03:30 1.70% 04:00 1.23%
04:30 1.20% 05:00 0.84% 05:30 0.68%
06:00 0.66% 06:30 0.87% 07:00 0.70%
07:30 0.64% 08:00 0.50% 08:30 0.66%
09:00 0.84% 09:30 1.13% 10:00 1.15%
10:30 1.58% 11:00 1.95% 11:30 1.85%
12:00 2.13% 12:30 2.69% 13:00 2.26%
13:30 2.74% 14:00 3.00% 14:30 3.42%
15:00 3.59% 15:30 3.18% 16:00 2.93%
16:30 2.77% 17:00 2.01% 17:30 1.72%
18:00 1.94% 18:30 2.44% 19:00 2.92%
19:30 3.53% 20:00 4.12% 20:30 4.17%
21:00 3.67% 21:30 3.62% 22:00 3.52%
22:30 2.68% 23:00 2.29% 23:30 1.88%

Average gap =	 2.337 Hrs.
Events used = 958
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Table 3.3 
Time Of Day Distribution Of Household Burglaries

Weekdays
Time Percent	 Time Percent	 Time Percent
00:00 1.54% 00:30 1.15% 01:00 1.06%
01:30 1.56% 02:00 2.33% 02:30 1.27%
03:00 2.21% 03:30 1.37% 04:00 1.04%
04:30 1.04% 05:00 0.72% 05:30 0.72%
06:00 0.68% 06:30 0.81% 07:00 0.70%
07:30 0.64% 08:00 0.50% 08:30 0.71%
09:00 0.96% 09:30 1.24% 10:00 1.27%
10:30 1.84% 11:00 2.27% 11:30 2.10%
12:00 2.50% 12:30 3.04% 13:00 2.62%
13:30 3.43% 14:00 3.56% 14:30 4.12%
15:00 4.35% 15:30 3.79% 16:00 3.36%
16:30 2.97% 17:00 1.97% 17:30 1.72%
18:00 1.81% 18:30 2.43% 19:00 2.81%
19:30 3.32% 20:00 3.90% 20:30 3.70%
21:00 3.32% 21:30 3.01% 22:00 3.06%
22:30 2.11% 23:00 1.78% 23:30 1.56%

Average gap =	 2.269 Hrs.
Items used = 716

Weekends
Time Percent	 Time	 Percent	 Time Percent
00:00 2.22% 00:30 3.08% 01:00 3.06%
01:30 2.98% 02:00 2.28% 02:30 1.55%
03:00 1.81% 03:30 2.69% 04:00 1.80%
04:30 1.68% 05:00 1.21% 05:30 0.57%
06:00 0.61% 06:30 1.02% 07:00 0.68%
07:30 0.62% 08:00 0.48% 08:30 0.50%
09:00 0.48% 09:30 0.81% 10:00 0.77%
10:30 0.82% 11:00 1.01% 11:30 1.12%
12:00 1.01% 12:30 1.67% 13:00 1.19%
13:30 0.70% 14:00 1.31% 14:30 1.36%
15:00 1.34% 15:30 1.38% 16:00 1.66%
16:30 2.18% 17:00 2.11% 17:30 1.70%
18:00 2.30% 18:30 2.48% 19:00 3.24%
19:30 4.14% 20:00 4.77% 20:30 5.57%
21:00 4.72% 21:30 5.46% 22:00 4.88%
22:30 4.39% 23:00 3.78% 23:30 2.80%

Average gap =	 2.539 Hrs.
Items used = 242
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Table 3.4
Time Of Day Distribution Of Household Burglaries 

Time
Winter

Percent	 Time Percent	 Time Percent

00:00 1.91% 00:30 1.27% 01:00 0.69%
01:30 1.52% 02:00 1.61% 02:30 0.70%
03:00 1.44% 03:30 0.99% 04:00 0.73%
04:30 1.02% 05:00 0.71% 05:30 0.93%
06:00 0.77% 06:30 0.93% 07:00 0.72%
07:30 0.35% 08:00 0.43% 08:30 0.65%
09:00 1.06% 09:30 0.89% 10:00 1.49%
10:30 1.37% 11:00 2.40% 11:30 2.24%
12:00 2.30% 12:30 2.21% 13:00 2.71%
13:30 2.28% 14:00 2.72% 14:30 2.69%
15:00 3.54% 15:30 2.68% 16:00 3.37%
16:30 3.74% 17:00 2.56% 17:30 2.66%
18:00 2.40% 18:30 3.10% 19:00 4.29%
19:30 4.29% 20:00 4.42% 20:30 3.91%
21:00 3.68% 21:30 3.82% 22:00 3.30%
22:30 2.90% 23:00 1.96% 23:30 1.66%

Average gap =	 2.390 Hrs.
Items used	 = 304

Time
Spring

Percent	 Time Percent	 Time Percent
00:00 1.33% 00:30 1.74% 01:00 0.65%
01:30 1.69% 02:00 1.54% 02:30 1.36%
03:00 2.84% 03:30 2.05% 04:00 1.03%
04:30 1.25% 05:00 1.24% 05:30 0.76%
06:00 0.71% 06:30 0.96% 07:00 1.16%
07:30 1.08% 08:00 0.49% 08:30 0.45%
09:00 0.66% 09:30 1.92% 10:00 0.897.
10:30 1.61% 11:00 0.62% 11:30 0.95%
12:00 2.33% 12:30 3.01% 13:00 1.69%
13:30 3.53% 14:00 3.29% 14:30 3.58%
15:00 3.86% 15:30 3.36% 16:00 2.27%
16:30 2.30% 17:00 1.40% 17:30 1.21%
18:00 1.48% 18:30 1.60% 19:00 2.28%
19:30 4.07% 20:00 4.64% 20:30 5.08%
21:00 4.64% 21:30 3.63% 22:00 3.86%
22:30 3.17% 23:00 2.67% 23:30 2.08%

Average gap =	 2.307 Hrs.
Items used = 202
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Table 3.4 (continued) 
Time Of Day Distribution Of Household Burglaries

Summer
Time	 Percent	 Time	 Percent	 Time	 Percent
00:00 1.70% 00:30 2.337 01:00 3.07%
01:30 3.06% 02:00 3.307 02:30 1.55%
03:00 3.15% 03:30 1.38,7 04:00 1.33%
04:30 2.03% 05:00 0.94% 05:30 0.50%
06:00 0.49% 06:30 0.467 07:00 0.47%
07:30 0.80% 08:00 0.697 08:30 1.09%
09:00 1.01% 09:30 1.40% 10:00 0.80%
10:30 1.67% 11:00 3.117 11:30 2.18%
12:00 2.38% 12:30 3.30% 13:00 2.14%
13:30 3.03% 14:00 2.77% 14:30 4.71%
15:00 3.53% 15:30 2.907 16:00 2.97%
16:30 1.83% 17:00 1.44% 17:30 0.93%
18:00 1.15% 18:30 1.76% 19:00 1.39%
19:30 1.45% 20:00 2.747 20:30 3.30%
21:00 2.98% 21:30 3.657 22:00 3.42%
22:30 2.44% 23:00 3.05% 23:30 2.25%

Average gap =	 2.166 Hrs.
Items used	 = 205

Time
Autumn

Percent	 Time Percent	 Time Percent
00:00 1.79% 00:30 1.44% 01:00 2.14%
01:30 1.65% 02:00 3.00% 02:30 1.94%
03:00 1.47% 03:30 2.567 04:00 1.95%
04:30 0.70% 05:00 0.59% 05:30 0.46%
06:00 0.64% 06:30 1.047 07:00 0.49%
07:30 0.49% 08:00 0.42% 08:30 0.49%
09:00 0.58% 09:30 0.57% 10:00 1.23%
10:30 1.73% 11:00 1.547 11:30 1.85%
12:00 1.53% 12:30 2.52% 13:00 2.27%
13:30 2.42% 14:00 3.28% 14:30 3.11%
15:00 3.48% 15:30 3.88,7 16:00 2.90%
16:30 2.75% 17:00 2.297: 17:30 1.64%
18:00 2.39% 18:30 2.88% 19:00 3.02%
19:30 3.88% 20:00 4.46% 20:30 4.48%
21:00 3.44% 21:30 3.36% 22:00 3.60%
22:30 2.22% 23:00 1.74% 23:30 1.68%

Average gap =	 2.439 Hrs.
Items used = 247
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Table 3.5
Time Of Day Distribution Of Household Burglaries 

Weekdays Winter

00:00 1.56% 00:30 0.86% 01:00 0.60%
01:30 0.91% 02:00 1.45% 02:30 0.73%
03:00 1.36% 03:30 0.78% 04:00 0.86%
04:30 0.86% 05:00 0.86% 05:30 1.07%
06:00 0.86% 06:30 1.07% 07:00 0.79%
07:30 0.32% 08:00 0.43% 08:30 0.61%
09:00 1.14% 09:30 0.92% 10:00 1.77%
10:30 1.61% 11:00 2.78% 11:30 2.47%
12:00 2.55% 12:30 2.54% 13:00 3.18%
13:30 2.70% 14:00 2.84% 14:30 3.18%
15:00 4.24% 15:30 3.07% 16:00 3.93%
16:30 3.89% 17:00 2.72% 17:30 2.71%
18:00 2.29% 18:30 3.14% 19:00 3.66%
19:30 3.86% 20:00 4.00% 20:30 3.72%
21:00 3.37% 21:30 3.56% 22:00 2.93%
22:30 2.55% 23:00 1.33% 23:30 1.40%

Average gap =
Items used	 = 236

2.292 Hrs.

Weekends Winter

00:00 3.13% 00:30 2.70% 01:00 0.98%
01:30 3.66% 02:00 2.19% 02:30 0.59%
03:00 1.73% 03:30 1.73% 04:00 0.26%
04:30 1.60% 05:00 0.21% 05:30 0.46%
06:00 0.46% 06:30 0.46% 07:00 0.46%
07:30 0.46% 08:00 0.46% 08:30 0.78%
09:00 0.78% 09:30 0.78% 10:00 0.50%
10:30 0.507. 11:00 1.07% 11:30 1.44%
12:00 1.44% 12:30 1.07% 13:00 1.09%
13:30 0.83% 14:00 2.30% 14:30 1.00%
15:00 1.12% 15:30 1.33% 16:00 1.41%
16:30 3.25% 17:00 2.03% 17:30 2.46%
18:00 2.80% 18:30 2.95% 19:00 6.47%
19:30 5.78% 20:00 5.90% 20:30 4.58%
21:00 4.74% 21:30 4.74% 22:00 4.56%
22:30 4.10% 23:00 4.13% 23:30 2.55%

Average gap =	 2.728 Hrs.
Items used = 68
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Time Of Day Distribution
Figure 3.5 (continued)

Of Household Burglaries

Weekdays Spring

00:00 1.21% 00:30 1.75% 01:00 0.33%
01:30 1.83% 02:00 1.08% 02:30 1.33%
03:00 2.69% 03:30 1.39% 04:00 0.56%
04:30 0.70% 05:00 0.69% 05:30 0.69%
06:00 0.69% 06:30 1.03% 07:00 1.30%
07:30 1.30% 08:00 0.61% 08:30 0.62%
09:00 0.84% 09:30 1.90% 10:00 0.49%
10:30 1.48% 11:00 0.80% 11:30 1.11%
12:00 2.60% 12:30 3.47% 13:00 1.93%
13:30 4.45% 14:00 4.26% 14:30 4.21%
15:00 4.65% 15:30 4.03% 16:00 2.54%
16:30 2.48% 17:00 1.24% 17:30 1.04%
18:00 1.37% 18:30 1.70% 19:00 2.73%
19:30 3.87% 20:00 4.92% 20:30 4.22%
21:00 4.54% 21:30 3.11% 22:00 3.50%
22:30 2.66% 23:00 2.29% 23:30 1.80%

Average gap =
Items used	 =

2.214 Hrs.
147

Weekends Spring

00:00 1.66% 00:30 1.73% 01:00 1.50%
01:30 1.34% 02:00 2.79% 02:30 1.43%
03:00 3.25% 03:30 3.84% 04:00 2.28%
04:30 2.73% 05:00 2.73% 05:30 0.98%
06:00 0.77% 06:30 0.77% 07:00 0.77%
07:30 0.52% 08:00 0.15% 08:30 0.00%
09:00 0.15% 09:30 1.97% 10:00 1.97%
10:30 1.97% 11:00 0.15% 11:30 0.52%
12:00 1.63% 12:30 1.78% 13:00 1.05%
13:30 1.05% 14:00 0.69% 14:30 1.90%
15:00 1.75% 15:30 1.55% 16:00 1.55%
16:30 1.81% 17:00 1.81% 17:30 1.65%
18:00 1.77% 18:30 1.35% 19:00 1.05%
19:30 4.58% 20:00 3.88% 20:30 7.39%
21:00 4.89% 21:30 5.03% 22:00 4.83%
22:30 4.53% 23:00 3.67% 23:30 2.83%

Average gap =	 2.555 Hrs.
Items used = 55
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Figure 3.5 (continued) 

Time Of Day Distribution Of Household Burglaries 

Weekdays Summer

00:00 1.62% 00:30 1.56% 01:00 1.93%
01:30 2.84% 02:00 3.79% 02:30 0.93%
03:00 3.66% 03:30 0.72% 04:00 1.36%
04:30 1.93% 05:00 0.57% 05:30 0.32%
06:00 0.38% 06:30 0.34% 07:00 0.23%
07:30 0.67% 08:00 0.62% 08:30 1.20%
09:00 1.10% 09:30 1.74% 10:00 0.95%
10:30 2.19% 11:00 3.42% 11:30 2.21%
12:00 3.02% 12:30 4.22% 13:00 2.71%
13:30 3.87% 14:00 3.52% 14:30 5.99%
15:00 4.32% 15:30 3.58% 16:00 3.52%
16:30 1.97% 17:00 1.45% 17:30 0.92%
18:00 1.16% 18:30 1.18% 19:00 1.12%
19:30 1.07% 20:00 2.60% 20:30 3.38%
21:00 2.58% 21:30 2.69% 22:00 2.38%
22:30 2.13% 23:00 2.36% 23:30 1.96%

Average gap =
Items used	 = 157

2.029 Hrs.

Weekends Summer

00:00 1.97% 00:30 4.83% 01:00 6.83%
01:30 3.76% 02:00 1.68% 02:30 3.57%
03:00 1.49% 03:30 3.52% 04:00 1.23%
04:30 2.36% 05:00 2.13% 05:30 1.08%
06:00 0.85% 06:30 0.85% 07:00 1.22%
07:30 1.22% 08:00 0.92% 08:30 0.71%
09:00 0.71% 09:30 0.30% 10:00 0.30%
10:30 0.00% 11:00 2.08% 11:30 2.08%
12:00 0.30% 12:30 0.30% 13:00 0.30%
13:30 0.30% 14:00 0.30% 14:30 0.53%
15:00 0.95% 15:30 0.65% 16:00 1.17%
16:30 1.40% 17:00 1.40% 17:30 0.98%
18:00 1.09% 18:30 3.66% 19:00 2.26%
19:30 2.66% 20:00 3.19% 20:30 3.04%
21:00 4.30% 21:30 6.80% 22:00 6.80%
22:30 3.46% 23:00 5.31% 23:30 3.17%

Average gap =	 2.615 Hrs.
Items used = 48
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Figure 3.5 (continued)
Time Of Day Distribution Of Household Burzlaries

Weekdays Autumn

00:00 1.73% 00:30 0.70% 01:00 1.50%
01:30 1.08% 02:00 3.25% 02:30 2.23%
03:00 1.66% 03:30 2.71% 04:00 1.40%
04:30 0.79% 05:00 0.69% 05:30 0.65%
06:00 0.71% 06:30 0.71% 07:00 0.50%
07:30 0.50% 08:00 0.40% 08:30 0.49%
09:00 0.70% 09:30 0.69% 10:00 1.55%
10:30 2.12% 11:00 1.80% 11:30 2.35%
12:00 1.90% 12:30 2.29% 13:00 2.38%
13:30 3.16% 14:00 3.99% 14:30 3.62%
15:00 4.28% 15:30 4.72% 16:00 3.14%
16:30 3.06% 17:00 2.04% 17:30 1.69%
18:00 2.13% 18:30 3.20% 19:00 3.23%
19:30 4.14% 20:00 4.06% 20:30 3.53%
21:00 2.88% 21:30 2.47% 22:00 3.47%
22:30 1.02% 23:00 1.44% 23:30 1.24%

Average gap =
Items used	 =

2.497 Hrs.
176

Weekends Autumn

00:00 1.94% 00:30 3.30% 01:00 3.71%
01:30 3.08% 02:00 2.387 02:30 1.20%
03:00 1.00% 03:30 2.18% 04:00 3.31%
04:30 0.49% 05:00 0.35% 05:30 0.00%
06:00 0.47% 06:30 1.88% 07:00 0.47%
07:30 0.47% 08:00 0.47% 08:30 0.47%
09:00 0.28% 09:30 0.28% 10:00 0.42%
10:30 0.77% 11:00 0.90% 11:30 0.62%
12:00 0.62% 12:30 3.09% 13:00 2.00%
13:30 0.59% 14:00 1.53% 14:30 1.85%
15:00 1.49% 15:30 1.81% 16:00 2.30%
16:30 1.97% 17:00 2.92% 17:30 1.51%
18:00 3.05% 18:30 2.10% 19:00 2.50%
19:30 3.22% 20:00 5.457 20:30 6.82%
21:00 4.84% 21:30 5.57% 22:00 3.91%
22:30 5.19% 23:00 2.49% 23:30 2.76%

Average gap =	 2.296 Hrs.
Items used = 71
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times of day appear to be between 7.00 and 9.00 hours, and again

between 17.00 and about 19.00 hours. These times seem to correspond

to times when households are most likely to be at home. This suggests

that likelihood of entering a house when some of its occupiers are

present may be some form of deterrent to burglars.

This idea is given further support from the weekends-only data. Here,

the peak times are similar to the weekday times, except there is no peak

risk in the afternoon. Clearly a typical working household is more likely

to be in on weekend afternoons than on weekdays. It is certainly

possible that whether the householder actually is more likely to be in

during the day at weekends or not, the burglar perceives the risk of

being seen to be higher at these times.

The seasonal effects are perhaps less marked, although the afternoon

peak appears later in winter and autumn than in spring or summer.

This may perhaps be explained by the extra cover that darkness

provides in those seasons, is the later part of the afternoon.

When the doubly split data sets are examined, allowing for the

difficulties of small sample size, the results seem to suggest an

overlaying of the two individual effects, rather than any interactive

phenomena, where a particular pair of circumstances totally alters the

pattern.

A final problem must be considered concerning the filtering out of

observations with intervals exceeding a given time limit. It has already
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been observed that large intervals tend to "smooth" the risk profile, and

alternate the effects of peaks and troughs. It is possible, however,

that the expected lengths of these intervals may not be uniform

throughout the twenty-four hour period. The effect of this may be to

reduce the "peakedness" of some high and low risk points. In particular,

the early morning (2.00) peak may be reduced in effect, as occupiers

may only discover burglaries on rising, without being able to specify the

point during the night at which they occurred.

An associated effect is that by filtering out intervals over a certain

length, when length is non-uniform on average throughout the day, more

information will be lost at certain times of day than on others. The

study would not be complete without considering the effect of this on the

current dataset.

This will be done using time methods. Firstly, the average interval

length will be computed, with the day being split into three 8-hour

periods. After this, the effect on the overall shape of the risk profile

will be considered when the maximum interval cut-off time is considered.

The first method will now be considered. Clearly, exact time of incident

is not known, so that this will be estimated as mid-interval here, and

then classified into one of three categories, (midnight to 8am, 8am to

4pm, 4pm to midnight) and average length of these considered. The

results are given in table 3.6.
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Table 3.6 
Length Of Uncertainty Interval By Time Of Day

Time Of Day	 Average Length

Midnight to 0800 6.74
0800 to 1600 5.67

1600 to Midnight 6.24
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In fact, there is not a great deal of variation between the average

interval length for the three day-time categories. This suggests that,

although greatly varying interval lengths throughout the day may cause

problems, this does not happen here.

The second technique, of interval cut off variation is illustrated in

figure 3.5. Four cut-off points are shown, at 4, 6, 8 and 10 hours.

As the results of the last test might imply, again there is little

difference between the four graphs, except that when the cut-off point

is made more restrictive, the sample is reduced and "spikeyness" of the

graph is emphasised. Thus, it seems reasonable to conclude that the

original data analysis, with its associated risk profiles may be considered

accurate, without the "smoothing" distortion mentioned earlier.

3.2.5	 Discussion

The results of this study may be considered in two contexts: firstly as a

study in its own right, and secondly from the viewpoint of the PhD as a

whole. As a stand alone study, some of the results are interesting.

They seem to support two ideas often put forward by police officers,

and criminologists. Firstly, that burglaries mostly happen to houses

when they are empty; the times of day when burglary least occurs

appears to be when occupiers are most likely to be in: breakfast and

supper times during the week and daytime at weekends. The second

idea supported is that of "defensible space": in autumn and winter,

afternoon burglaries peak later on, when it is dark, and parts of

neighbourhood generally visible to residents in the daytime are no longer



86

I	 I	 I	 I	 I	 I	 I	 I	 I	 I



87



-

88

:

-
LL7

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I



89

-

:_.•

•

• -	 :,•-=7- •



90

exposed. In general policing terms, these results are also useful.

Clearly it is of benefit for foot beat officers (and car patrols) to be

aware of high risk times for household burglary, when on street patrol.

In the wider context of the overall crime pattern analysis system,

however, attention has to be given to the generally wide nature of the

intervals. In the case of the data analysis here, if there is an interval

exceeding 6 hours, the item of data is discarded. This results in losing

50% of the sample. However, in the data were also subdivided by foot

beats, this would result in very low item counts in each category.

Thus, it is unlikely that analysis of this sort could be applied on a

beat-by-beat basis. It also seems unlikely that it could be used in a

predictive model, again due to the large degree of uncertainty of exact

time of burglary in much of the data.

It may be possible, however, to use the program developed here as part

of an overall crime pattern analysis system, running on a separate,

subdivision wide database. Thus, although unable to identify intra-beat

variation in risks during the day a general impression of risk throughout

the area may be gained. Also, the software could, at some later stage,

be extended.

For example, in addition to recording the time interval during which the

burglary was thought to occur, the time that the event was reported is

also stored. This allows Kernel estimators of crime report frequencies to

be built up, in addition to the frequencies of the crimes themselves.
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This may have implications for responsive, rather than preventative

policing.

The relationship between time of occurrence, and time of reporting of

crimes might also be examined. For example, several crimes occurring at

different times in the night might all be reported at a similar time in the

morning, when they are discovered. In the daytime, when householders

are out for shorter periods, however, reporting may be more evenly

spread.

Thus, although the analytical techniques here may not by reasonably

incorporated into a subdivisional software system in a geographical

context, they may justify inclusion in their own right, for the

management of the sub-division as a whole. At divisional level, of

course, intra-subdivisional geographical variations could be analysed,

which may yield some useful information for resource management at a

larger scale of resolution.

3.3 Examination of Seasonal Variation in Household Counts

In addition to geographical factors affecting rates of crime within a

subdivisional level, some variation may also be accounted for by season

effects. For example, increase in the hours of darkness may bring

about increased risk of household burglaries. Alternatively, some crime

may depend on the weather - potential burglars may decide against

activity in adverse conditions. As well as general effects such as these,

there are some more specific seasonal phenomena leading to increased
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likelihood of crime. Certain public holidays occur regularly on a yearly

basis, such as Christmas and Easter, during which people may

customarily leave their homes for a number of days. This may leave the

houses vulnerable to household burglary.

Thus, several arguments suggest that there should be a certain amount

of seasonal pattern in crime rates. It is also possible that these

seasonal patterns may vary geographically. Weather conditions and

hours of darkness vary over space, and although certain public holidays

may be fixed nationally, other local events may exist, bringing

householders away from their houses.

From this, it may be argued firstly that if regular seasonal patterns are

discovered in crime counts, then presenting this information to Police

officers would help in short term planning of resource management, and

also aid the prediction of crime in the near future. Secondly, it may

also be argued that, since these patterns are liable to vary

geographically, any seasonal variation analysis presented to officers

working in a given subdivision should be based on data from that

subdivision, and not, for example, from National or even Force-wide

data.

The intention of such an analysis would be mainly descriptive. If

weekly crime counts are compiled, a weekly seasonal average may be

computed, and plotted on a computer display, for example. Police

officers with a knowledge of the locality may then be able to identify

causes for particular effects. However, even if regular patterns occur
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without explanation the identification of the patterns will be of use, in a

predictive sense. It is also possible that identification of certain

seasonal effects may lead to investigation and insight into certain crime

patterns that had previously gone unnoticed.

In this exploratory analysis, then, it is proposed to examine the

household burglary data discussed in Chapter 2, to discover any

seasonal patterns that may exist The exploratory examination may also

yield some results that may be carried through into the crime prediction

method that is one of the principal aims of this PhD. Also, in order to

analyse this data, some discussion arises as to how results may be

presented. Both the means of presentation, and the results of the

analysis are to be considered here.

3.3.1	 Presentation of Data

There are two main uses for this type of data: firstly to identify any

regular patterns that occur from year to year, and secondly to compare

a given year with the previous year. In the first case, regularly

occurring peaks or troughs are to be identified. In the second case, at

any given week the previous years cumulative total up to that week is to

be compared with the current year. This can be thought of as using

the past years cumulative crime counts as "target" levels and to attempt

to keep counts for the current year below these levels. Since figures

here are cumulative, after a particularly bad month, a response in the

following month may bring figures back down to the target. however,
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failing to compensate would leave cumulative figures still above this

target.

In both the cases of the cumulative and non-cumulative analyses, it is

clear that some visual indication of how weekly rates compare with their

neighbours in time is important. In the cumulative case, attempts to

keep crime rates down from the previous year need to be examined over

time, and in the non-cumulative instance, peaks and troughs of incidence

require measurement. This suggests that data needs to be represented

in graphical, rather than tabular form. For each case, the needs of

graphical representation will now be considered in turn.

Firstly, consider the simple seasonal rate graph. This could take the

form of a bar graph, with a single bar for each week over a 52 week

period. However, as it is important to compare the seasonal patterns

over a period of several years, some means of rapidly switching between

yearly bar graphs is required, or some means of overlaying. For

printed output this is relatively simple; on a VDU reasonably fast

refresh of a screen display is necessary, (or a facility to ', overlay" new

data on old).

For the cumulative analysis, two years rates are overlaid. It is

important to demonstrate, in a visual display, whether this years results

exceed the previous years, or are exceeded by then. Colour-coding of

the display seems a reasonable means of doing this. The data will be

displayed in the form of cumulative bar graph when the current years

total exceeds the previous years, the discrepancy will be shaded red; if
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the converse holds, the shading will be in blue. A computer program to

display this data is given in listing 3.2, making use of the graphics

characters available on an IBM PC in text mode.

3.3.2	 Analysis of Data

The three-year beat-by-week matrix of household burglary data for

1984-86, as described in chapter 2 was used as a trial dataset for the

seasonal analysis. Thermal wax copies of the output screens obtained

when running the programs are given in figure 3.6. Firstly, consider

the non-cumulative data. For the second and third years, the pattern is

fairly similar. A certain amount of week-to-week variation occurs, and

their seems to be a lower average level of weekly crimes in the mid part

of the year. In absolute terms the number of crimes occurring seems

not to alter greatly, being around fifty in the winter, and slightly lower

in summer. In contrast to this, the first year's pattern is somewhat

different. Although there is a drop over the later summer months, as

experienced in the other years, there is an extreme increase in crime

between April and May. The household burglary counts for the

subdivision here are over 100, altogether larger than for any counts in

the following two years.

Examining the cumulative curves reflects this discrepancy of the first

year of study. For most of the second year, the cumulative total falls

well below that of the first, due to the two "spikes" in April and



96

-



97



98

-



99

r-777



•

1 00

-

7:1

fa2



101

November in the first year. Comparing the second and third years

throws up nothing as dramatic as this. Until later on in the year, both

cumulative graphics barely differ, until in the closing months the second

year slightly exceeds the third.

3.3.3	 Results

An important observation to be made here concerns the discrepancy of

the first year with the other two. If, for example, predictions had been

made for the second year based solely on the first, extremely poor

results would have been obtained, with crime rates for April and

November being greatly over-anticipated. Officers would be expecting a

massive increase in household burglaries which simply did not occur.

Even in the third year, if forecasts were made based on averaging the

first two years, the effect of the "spikes" in year one would still be

noticeable.

The problem here is that, although certain seasonal patterns do occur in

the data, some phenomena are not seasonal. In this case, it would seem

that the rates in certain parts of the first year of study were something

of a "one-off" . This highlights the importance of the ideas put forward

in the introductory chapter. In order to predict crimes successfully,

another input is required to work alongside the analysis of past data

patterns.

The implication here, in terms of prediction method is that the

incorporation of seasonal variation into a prediction model may be of
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dubious benefit. Since there are currently only three years of data

available, accurate seasonal average levels are currently hard to

measure. As discussed earlier, a spurious high level on a given week

may have to much leverage. If data were available over a longer time

period, then this may be less of a problem. In this case, it may also be

possible to decompose the pattern in the frequency domain.

In addition to this, there are certain seasonal effects that, although

roughly occurring at the same time each year, do not exactly match

week-for-week. For example, Easter varies within a six week period.

It may be better to incorporate such phenomena into the prediction

system via the human interface, rather than by time series analysis of

past data.

The findings of this research suggest that, due to the large datasets

required for calibration, and also the unreliability of certain seasonal

models, seasonal analysis is not of great benefit to a crime prediction

system. This is not to say, however, that there is no benefit at all in

performing analysis of this sort. As a historical pattern analysing

technique in its own right, use may be made. For example, it has been

identified here that in 1984, in April to May, a surprisingly large

number of household burglaries occurred. This may draw attention to

some phenomena that happened around this time, or lead police officers

to examine crime records from around this time.

From consideration of this, some phenomena causing a massive increase

in household burglaries may be identified by police officers. Having

A
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been made aware of this, their subjective input into the system may be

used next time similar phenomena occurs. Thus, although examination of

time series may not directly contribute to the predictor techniques, it

may be of use in a "second order" sense.

In addition to identifying the "outlying periods" as times when crime

patterns may be of interest, in a subjective sense, the effects that the

summer months have on burglary rates have been informally identified.

A possible explanation for the general tendency for counts to be lower

over the mid-summer period may be found in terms of theories of

defensible space (Newman, 1972) or opportunist models (Mayhew, 1974).

There are clearly greater hours of daylight during these months, and a

a consequence of this, areas of some neighbourhoods that may be badly

illuminated in winter are more visible to the inhabitants This may

provide less opportunities for potential burglars during the lighter

months.

Finally, the "crime count target" idea must not be ignored, as a tool for

monitoring the success of crime prevention (in this case household

burglary) over the current year. In summary, although seasonal

analysis of the crime counts has not proved to be a very powerful tool

when used in the context of automated crime prediction there are other

aspects of the analysis of crime patterns, to which this explanatory

analysis has drawn attention, which are aided by this type of technique.
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3.4 Cluster Analysis of Modus Operandi Data

Until this point, consideration of household burglary data has been

mainly in the context of space or time. These are important factors,

both in the identification of areas at risk, and of forecasting, but it may

be of use to classify household burglaries in terms of other

characteristics, in particular the methods used, and items taken. This

may lead to some evidence relating to modes of behaviour by offenders;

it may even identify the characteristic work of individual offenders, Or

of gangs, if the analysis is carried out at a sufficiently high level of

geographical resolution. Classification may be performed in this way

using methods of Cluster Analysis (Everitt, 1984). Multivariate data

from several individual cases is examined, and patterns are sought. The

end result is a classification of each individual item into a group, or

cluster, all of whose elements share common characteristics. In this

section, then, a pilot cluster analysis is to be performed on the crime

data described in chapter 2. Since the analysis is intended to classify

according to the activities of the offenders only, variables relating to

space and time will be ignored. The list of variables is given in table

3 .7.

3.4.1	 Method

Any review of cluster analysis techniques (for example Everitt, 1984)

will list a wide variety of options. Before any analysis is actually

performed on this data, a suitable algorithm must be selected. It is

important to note here that all of the variables to describe each burglary

are qualitative, and hence non-numeric. Thus, any splitting technique

should not be of the form ( ,X>0.- vs _X.C..a.). It may be useful also if
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Table 3 . 7

Format Of The Household Burglary Data Subset
Used in Cluster Analysis

Variable Name
ME

	

Column(s)	 Description Of Variable

	

16	 Method of Entry
F=Forced
B=Break In
I=Insecure Building
D=Drilling
0=Other

	

PE
	

17	 Point of Entry
D=Door
W=Window
0=Other

	

DE
	

18	 Direction of Entry
F=Front
S=Side
B=Back
R=Roof
0=Other

	

STOLEN	 19-24	 Items Stolen
Up to six out of
C = Colour Tv
H = Hi-Fi
B = B/W Tv
J = Jewellery
V = Video Recorder
E = Electrical Goods
K = Cash
F = Food
X = Cheques
D = Drink
L = Clothes
P = Personal Goods
G = Furniture
0 = Ornaments
M = Camera
T = Tools
Q = Other

Or A = Attempt
(No items Stolen)
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division is performed hinging on single variables (monothetic division).

In this way, if an algorithm is used that performs the "most important"

split first, and then the next most powerful, and so on, then noting on

which variable each split is made leads to substantive interpretation, in

the sense that the major variational components in the characteristics of

household burglary may be stated as occurrence or non-occurrence of

particular behavioural traits of offenders.

Thus, the clustering algorithm should be based on discrete, non-ordered

variables, and on a monothetic division technique. At this point,

another problem has to be taken into account. Clustering algorithms of

this sort often do not specify a "stopping rule". That is, no formal

mechanism exists determining when categorisations are sufficiently

homogenous to justify no further subdivision. If such a rule is not

applied, there is danger of imposing spurious structure on the data.

However their is usually some measure of "goodness of split" index

available, and an arbitrary limit could be attached to this since the

splitting is performed on a "strongest division first" basis, when the

splitting only causes small changes in the index, there is little point in

further divisions. Alternatively, the size of group could be monitored,

until categories become reasonably small.

One suitable algorithm would be based on the information gain statistic:
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This measures the overall increase in homogeneity when considered in

terms of two separate sets split by a given variable, as opposed to one

set containing both variables. Firstly, the entire data set is split two

ways, according to scoring highest on the above scale defined above.

After this, one of the subsets is split. The subset to be split offers

the greatest gain in information. This process continues until either the

information gain falls below a given limit, or the size of the categories

becomes small. Note also that, after the first division, divisions do not

necessarily apply across the entire dataset. Thus, after the dataset has

had its initial division performed performed, each of its subsets will be

further subdivided independently.

Although this type of analysis is useful, and simple to interpret, since

divisions are always made on the basis of a single variable, it is subject

to certain problems. Since the categorisation structure is essentially

tree-based, all later categorisations will depend on the outcome of earlier

ones. Thus, if a spurious effect occurs early on in the analysis, the

errors due to this are propagated through all subsequent

categorisations. To overcome this, other categorisation methods exist,

based on the concept of dynamic reallocations (Everitt, 1984). In this

instance, observations at any stage of analysis may be moved from one

category into any other, in order to optimise some "goodness of

categorisation" parameter. In this case, early mistakes may be remedied

later on, since any categorisation made at some point has some chance of

being re-categorised. It is generally thought that this type of analysis

is less susceptible to distortion due to outliers, or unusual observations,

within the dataset.
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However, this does not come without a price. The categorisations no

longer have the simple definitions obtained with monothetic division, and

are considerably harder to interpret substantively. They are also

considerably harder to assign new cases to when attempting a

classification of subsequent data based on the results of the initial

studies.

It is therefore proposed to perform a two-tier analysis here. Firstly,

the more easily interpretable monothetic division technique (based on

entropy maximisation) will be performed. The results of this will then

be compared to those of a dynamic reallocation algorithm. This acts as a

form of "verification" clearly similar results in both cases suggest that

the interpretation of the first analysis in substantive terms is reasonable

(assuming the reliability of the second level). However, widely differing

results suggest that the first, monothetic method, may have greatly

distorted categorisation early on due to a spurious observation.

3.4.2	 Implementation

Methods of cluster analysis have been proposed in the previous section,

but, as yet little consideration has been given to practical aspects.

Firstly, consider the computing aspects of the problem. There exists a

package, CLUSTAN, which is specifically designed to perform cluster

analysis as required in this study. It is capable of analysing either

categorical or ordered data. In the case of categorical variables, these

must be coded as binary. Thus, in the case of categorical variables

with more than two classes, dummy variable encoding must be performed.
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Thus, the variables in table 3.7 are re-expressed in the variable set

given in table 3.8. In particular, the original list of items taken must

be recorded as a set of binary variables of the form " Colour TV taken"

etc. These variables begin at number 14, dividing the variable set into

two main categories, ', means of entry" and "items taken". Note that as

variables (1-3), (4-7) and (8-12) are dummy variable interpretations of

the variables 1, 2 and 3 in table 3.7. Since only one of each of the

sets (1-3), (4-7) and (8-12) can be assigned a logical "true" value, and

the remaining elements must be "false" there is a certain amount of

correlation arising by design. However, if this is identified at the

outset, effects due to it may be allowed for when interpreting results.

Finally, a dataset size constraint is applied by the CLUSTAN package.

Owing to the memory addressing and time constraints at the time the

package was written, CLUSTAN is restricted to datasets not exceeding

999 cases. The full year of detailed data available, containing

information about modus operandi, consists of about 1800 observations.

Thus, a random selection of 999 cases must be made from the original

database before cluster analysis is performed. In summary, then, the

original dataset must be narrowed down to 999 items by random selection

and these items must then be recoded in dummy binary variables format.

At this stage, the CLUSTAN package may be used to perform both

monothetic division classification, and dynamic reallocation based

methods.
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Table 3.8

Dataset For Cluster Analysis Expressed As Binary Variables 

Variable Number	 Variable Name

	

1	 Entry By Force ?

	

2	 Entry by breaking in ?

	

3	 Entry due to insecurity ?

	

4	 Entry by drilling ?

	

5	 Entry by Other Means ?

	

6	 Entry through door ?

	

7	 Entry through Window ?

	

8	 Entry by other means ?

	

9	 Entry at front ?

	

10	 Entry at side ?

	

11	 Entry from rear ?

	

12	 Entry from roof ?

	

13	 Entry from another point ?

	

14	 Colour Tv Stolen ?

	

15	 HiFi Stolen ?

	

16	 B/W Ty Stolen ?

	

17	 Jewellery Stolen ?

	

18	 Attempted burglary ?

	

19	 Video Recorder Stolen ?

	

20	 Electrical Goods Stolen ?

	

21	 Cash Stolen ?

	

22	 Food Stolen ?

	

23	 Cheques Taken ?

	

24	 Drink Taken ?

	

25	 Clothes Taken ?

	

26	 Personal goods taken ?

	

27	 Furniture Taken ?

	

28	 Ornaments Taken ?

	

29	 Camera Taken ?

	

30	 Tools Taken ?

	

31	 Other Items Taken ?
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3.4.3	 Results

The results of the monothetic division algorithm are given in table 3.9.

After four levels of subdivision, the group sizes were between 20 and 40

with a few larger ones, which seems reasonable. Due to some

observations having missing values for some of the variables, the final

number of items processed is slightly less than 999. The first division

was made on variable 6, which indicates whether entry was through a

door or by some other means. Note that, in the case of the "other

means" subdivisions the first division here is by variable 7, "entry

through window".In all of the divisions carried out to the third level,

the variables have come from the "means of entry" category as opposed

to the "items taken".

The results of the reallocation based clustering technique are listed in

table 3.10. Again, missing values slightly reduce the final total of

cases processed. In this case, the conditions for membership of each

class are considerably more complex, and harder to interpret than those

of the monothetic technique. There is no obvious structure in the

classification. Although, eventually, there are roughly the same number

of categories in each case, and the range of sizes of observations in the

category are roughly equivalent, the classification from the first

algorithm is done on the basis of four binary divisions, whilst in the

second case, as many as 25 binary variables need to be considered.

However, it may still be noted that those binary variables concerned

with method of burglary rather than items stolen appear most frequently.
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Table 3.9
Results Of Monothetic Division Cluster Analysis 

Group No. Splitting Variables
= true	 '-' = false

Size Of Group

1 +6 +1 +9 +14 35
2 +6 +1 +9 -14 136
3 +6 +1 -9 +21 22
4 +6 +1 -9 -21 55
5 +6 -1 +9 +2 24
6 +6 -1 +9 -2 86
7 +6 -1 -9 +21 29
8 +6 -1 -9 -21 67
9 -6 +7 +9 +19 46

10 -6 +7 +9 -19 143
11 -6 +7 -9 +2 44
12 -6 +7 -9 -2 167
13 -6 -7 +5 (+/-13) 37
14 -6 -7 -5 +4 23
15 -6 -7 -5 -4 41

Since group 13 and the original 14 were small, they have been merged
with each other. In terms of splitting, the groups are nearest
neighbours.
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Table 3.10 
Results Of Reallocation Algorithm Cluster Analysis 

Group no.
'+'

Splitting Variables
= true	 '-' = false

Size Of
Group

1 +18 -19 -23 -21 -4 -25 -10 38
-7 -17 -11 -20 -12 -22 -27

-24 -28 -26 -30 -3 -29 -14
-31 -15 -16 -24

2 +5 +7 -1 -12 -30 -8 -11 46
-10 -22 -18 -6 -2 -4 -3

3 +14 -7 -3 -18 -4 -26 -10 77
-2 -8 -11 -12 -24 -23

4 +7 +14 -1- -4 -3 -24 -12 72
-8 -26 -11 -22 -30 -6 -18

-16

5 +5 -10 -24 -23 -11 -25 -1 36
-30 -7 -29 -4 -2 -3 -22

6 +1 +6 +9 -12 -18 -7 -5 119
-13 -2 -11 -8 -14 -4 -10
-3

7 +2 +6 -24 -26 -8 -7 -10 50
-3 -12 -18 -4 -1 -11 -5

-22

8 +7 -24 -3 -5 -10 -18 -12 116
-9 -4 -8 -30 -6 -14 -22

9 -10 -24 -11 -18 -27 -12 -29 65
-22 -7 -1 -6

10 +7 +9 -18 -13 -11 -12 -10 122
-30 -8 -14 -4 -6 -3 -5
-22

11 +18 +7 -2 -22 -26 -8 -20 44
-4 -24 -10 -17 -11 -19 -12

-21 -27 -23 -28 -25 -30 -6
-3 -29 -14 -31 -15 -16

12 +6 -4 -11 -9 -7 -18 -10 76
-30 -22 -2 -8 -24
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The main variable seen to be having greater influence here than in the

first analysis is that of "no items stolen" in the category of "outcome"

variables. This appears in nine out of the twelve categories generated

by this analysis.

3.4.4.	 Discussion

Firstly, some attempt must be made to explain the categories obtained by

the initial monothetic analysis. For each class in table 3.9, a verbal

description is given in table 3.11. As noted earlier, most of the

distinctions are based on methods of entry rather than items stolen.

This is perhaps a reasonable outcome: although potential offenders have

control over their modus operandi, except in a few cases they are

unlikely to be aware of the exact contents of a dwelling. Thus, definite

patterns in means of entry, perhaps due to local trends or even to traits

of particular individuals may become evident in the analysis. However,

since the items taken are more likely to vary randomly according to the

internal layout, and obviously the contents of households, it is less

likely that there will be strong patterns in this type of data. A few

items likely to be found in several houses, possibly in easily predictable

positions, may be deliberately sought out. This may explain the

appearance of a few items in the classification (ie. video recorders,

cash).

The results of the reallocation algorithm analysis will now be considered

in a similar manner. The categories from this analysis are described

verbally in table 3.12. The descriptions here are more complex, and do



Table 3.11

Descriptions of Monothetic Division Groupings

1	 Force front door, take Tv.
2	 Force front door, no Tv taken.
3	 Force door other than front,

take cash.
4	 Force door other than front,

dont take cash.
5	 Break glass on front door.
6	 Insecure front door.
7	 Other means than force through

non-frontal door. Take cash.
8	 Other means than force through

non-frontal door. Dont take cash.
9	 Front window entry taking video.
10	 Front window entry not taking video.
11	 Non-frontal window break-in
12	 Non-frontal window, not breaking in.
13	 Entry not through door or window

not by drilling breaking or force.
14	 Drill entry not through window or

door.
15	 Break-in or force, not through

window or door.
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Table 3.12 
Descriptions Of Reallocation Algorithm Groupings 

1	 Attempt, Not through window

2	 Front window entry, not by force, drilling or breaking

3	 Colour Tv taken, but no personal goods. Forced door entry.

4	 Colour Tv taken via forced or broken front window.

5	 Front or roof entry, not by drilling , force or breaking.

6	 Force front door. No Colour Tv taken.

7	 Break front door. No food or drink taken.

8	 Force or break front or rear window.

9	 Front or rear entry, not by door or window.
No force. No furniture, drink or tools stolen.

10	 Force or break front window. No food or tools stolen.

11 Attempt via window

12	 Forced or inseecure door entry from roof. No food or drinks taken.
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not fully reflect the binary attribute classifications defining each class.

However, there is a reasonable correspondence between the outcome of

each of the two analyses. There is a similar range in size and similar

number of classes. Also, method of entry variables are prominent, in

the definition of classes. Thus, the simpler classifications arrived at in

the first analysis seem reasonable. Given this, there is another factor

evident in this analysis that does not occur in the former. The outcome

of having no items stolen - ie. , the burglary being classified as an

attempt only, appears in the categorisation frequently.

This may be an important factor. This split could represent the level of

security to which homes are protected. An unsuccessful burglary may

be the product of fitting window locks (in the case of category 11) or

secure doors (Category 1). Also, this sheds some light onto other

categories, such as number 12, in which an insecure point of entry was

used as the means of entrance.

In conclusion, this analysis has identified some important characteristics

of household burglaries, which may be used to provide a classification.

Clearly, the simpler option offered by the monothetic algorithm seems

preferable to the more complex reallocated result; it is easier to

interpret, and would be simpler to implement on a computer-based

classification program to be applied to future data.

However, the second analysis identified the attempt/successful burglary

criterion as also being of importance. It is therefore recommended that

any classification of burglaries have categories corresponding to those
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from the monothetic division algorithm, but with the addition of two

further categories, "attempt through window" and "attempt through

door" added to the analysis.

3.5 Conclusion of Chapter

At the start of this chapter it was pointed out that it was not

necessarily intended to incorporate the methods used here directly into

any final crime pattern analysis system and that the purpose of these

investigators were mainly exploratory. Certain conclusions have been

drawn from each of the three studies. In particular, the time-of-day

study not only yielded interesting results, particularly with the

difference in daily patterns, but also gave a new quantitative technique,

which was required as a result of the nature of the data presented for

analysis. It is also hoped that some insight into criminal behaviour may

have been gained from these analyses. Certain patterns discovered here

may enable some empirically-based inferences to be made about the

experience of criminals. Another "by product" is that certain analyses

performed here were in the form of microcomputer programs of the type

that were suggested for the crime pattern analysis software proposed in

chapter one. Thus, although the techniques here would not become part

of the "mainstream" system, they could be included as subsidiary facets

of the final system.

Finally, then, it is hoped that this exploratory chapter in crime pattern

analysis techniques, although not yielding results that may directly be

incorporated into a prediction system or mapping system, may have
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provided some insight into the processes behind the data, and may be of

subsidiary value when building the main model of the study. In addition

to this, they also strengthen the original belief that any operational

crime forecasting system should be based on the most basic space and

time data.
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LISTINGS FOR CHAPTER 3



PROGRAM TMRISK
	 121

******** Listing 3.1 ******

	

C Kernel Estimator For Police Interval Data	 C

REAL*4 CUT
INTEGER*4 N, TCKSUM, ITEMS, ITCUT
INTEGER*4 DVEC1(2100), DVEC2(2100), DVEC3(2100), DVEC4(2100)
INTEGER*4 WEEK(2100), DAY(2100)
CHARACTER CSTR*60, INFILE*12
LOGICAL PLOT, NOCUT, SEASDV, WEEKDV
COMMON /STOR/ DVEC1, DVEC2, DVEC3, DVEC4, WEEK, DAY, ITEMS,

1	 ITCUT, NOCUT, PLOT
N= 0
TCKSUM = 0

C Read the command string

CALL GETCOM(CSTR)

C Check for seasonal and week / weekend divides

SEASDV = (INDEX(CSTR,'SEASONS')	 .NE. 0)
WEEKDV = (INDEX(CSTR,'WEEKENDS') .NE. 0)
PLOT	 = (INDEX(CSTR,'PLOT')	 .NE. 0)

C Check for cutoff points

NOCUT = ( INDEX(CSTR,'CUT') .EQ. 0 )
IF (.NOT. NOCUT) THEN
WRITE (6,'(21H&Enter cutoff time > )')
READ (5,*) CUT
CUT = CUT * 2
1TCUT = INT(CUT)
WRITE (6,*)

END IF

C Assign the data file to unit 4.

IND1 = INDEX(CSTR,'$')
IF (IND1 .EQ. 0) THEN
WRITE (6,'(A)') ' Improper control string -- no data file'
STOP 1

END IF
IND2 = INDEX(CSTR(IND1:),' ')
INFILE = CSTR(IND1+1:IND2)
OPEN (4, FILE=INFILE)

C Read everything in

WRITE (6,*) ' Data entry in progress ... '
WRITE (6,*) ' Reading formatted file ... '
WRITE (6,*)
ITEMS = 1

91 READ (4,'(12,I1,T4,212,T13,13,12)',END=90)
1WEEK(ITEMS), DAY(ITEMS),
2DvEC1(ITEMS), DVEC2(ITEMS), DVEC3(ITEMS), DVEC4(ITEMS)
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C Convert day of week to weekday/weekend indicator

IF (DAY(ITEMS) .LE. 5) THEN
DAY(ITEMS) = 1

ELSE
DAY(ITEMS) = 2

END IF

Convert week counter to seasonal indicator 1=winter --> 4=autumn

IF (WEEK(ITEMS) .GT. 8) THEN
WEEK(ITEMS) = (WEEK(ITEMS)-8)/13 + 2
IF (WEEK(ITEMS) .EQ. 5) WEEK(ITEMS) = 1

ELSE
WEEK(ITEMS) = 1

END IF
IF (MOD(ITEMS,100) .EQ. 0)
1 WRITE (6,'("+At record '',I4) 1 ) ITEMS
ITEMS = ITEMS + 1
GO TO 91

90 ITEMS = ITEMS - 1
WRITE (6,*)

C	 Split up as appropriate

IF (SEASDV)	 THEN
IF (WEEKDV) THEN

CALL KERNL(1, 1, 'Weekdays Winter')
CALL KERNL(2, 1, 'Weekends Winter')
CALL KERNL(1, 2, 'Weekdays Spring')
CALL KERNL(2, 2, 'Weekends Spring')
CALL KERNL(1, 3, 'Weekdays Summer')
CALL KERNL(2, 3, 'Weekends Summer')
CALL KERNL(1, 4, 'Weekdays Autumn')
CALL KERNL(2, 4, 'Weekends Autumn')

ELSE
CALL
CALL
CALL
CALL

KERNL(0,
KERNL(0,
KERNL(0,
KERNL(0,

1,
2,
3,
4,

'	 Winter')
'	 Spring')
'	 Summer')
' Autumn')

END IF
ELSE

IF (WEEKDV) THEN
CALL KERNL(1,0,
CALL KERNL(2,0,

ELSE
CALL KERNL(0,0,

END IF
END IF
STOP
END

c*****************************************************x*****************

SUBROUTINE KERNL(SPLIT1, SPLIT2, TITLE)

Kernel estimation subroutine

CHARACTER*(*) TITLE
REAL*4 KERNEL(0:47), ICRMNT, IGRAL, MAXKRN



INTEGER*4 FTICK, ITICK, HRFND, MNFND, HRINT, MNINT, HOUR, MIN
INTEGER*4 TIME, TCKSUM, LEN, ITEMS, ITCUT
INTEGER*4 DVEC1(2100), DVEC2(2100), DVEC3(2100), DVEC4(2100)
INTEGER*4 USED, WEEK(2100), DAY(2100), SPLIT1, SPLIT2
CHARACTER CSTR*60, INFORM*12, INFILE*12, DUMMY*40
LOGICAL PLOT, NOCUT
COMMON /STOR/ DVEC1, DVEC2, DVEC3, DVEC4, WEEK, DAY, ITEMS,

1	 ITCUT, NOCUT, PLOT

C Empty the kernel estimator

DO 100 I = 0, 47
100	 KERNEL(I) = 0.0

C The Kernel is empty -- Start to build it

USED = 0
TCKSUM = 0
WRITE (6,*) ' Building Kernel estimate
WRITE (6,*)
DO 110 ITEM = 1, ITEMS

120 HRFND = DVEC1(ITEM)
MNFND = DVEC2(ITEM)
HRINT = DVEC3(ITEM)
MNINT = DVEC4(ITEM)

C Convert into 48-unit day : called 'ticks'

FTICK = HRFND*2 + mNFND/30
ITICK = HRINT*2 + mNINT/30
IF (SPLIT1.EQ.0 .0R. SPLIT1.EQ.DAY(ITEM)) THEN

•	 IF (SPLIT2.EQ.0 .0R. SPLIT2.EQ.WEEK(ITEM)) THEN
IF (ITICK.LT.ITCUT .0R. NOCUT) THEN

C We now have how long before found, and when found
C Make this into start of interval + length

FTICK = FTICK - ITICK
40	 IF (FTICK .LT. 0) THEN

FTICK = FTICK + 48
GO TO 40

END IF

C Add the kernel to the overall estimate

TCKSUM = TCKSUM + ITICK
ICRMNT = 1.0/FLOAT(1+ITICK)
DO 130 TIME = 0, ITICK

IDX = MOD(FTICK + TIME, 48)
130	 KERNEL(IDX) = KERNEL(IDX) + ICRMNT

USED = USED + 1
END IF

END IF
END IF

C Report the status every 100 items --- stops 'long silences' on VDU

IF (MOD(ITEM,100).EQ.0)
1 WRITE(6,'(11H+At record ,I4,12H Cases used ,F4.1,1H%)')
2 ITEM, 100.0 * FLOAT(USED)/ITEM

110 CONTINUE
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C Re-scale so that 48-element kernel array sums to unity.

IGRAL = 0.0
DO 200 I = 0, 47

200	 IGRAL = IGRAL + KERNEL(1)
MAXKRN = 0.0
DO 210 I = 0, 47

KERNEL(I) = 100.0 * KERNEL(I)/IGRAL
IF (KERNEL (I) .GT. MAXKRN) MAXKRN = KERNEL (I)

210 CONTINUE

C 48 - point kernel Estimator lies in array KERNEL

HOUR = 0
MIN = 0

C Graph or tabulate kernel estimator

IF (PLOT) THEN

C Graph option

CALL GRAPH(KERNEL,MAXKRN)
WRITE (DUMMY,'("Number Of Cases
CALL PUTTXT(21,1,DUMMY)
WRITE (DUMMY,'("Average Interval (Hours)

1	 FLOAT(TCKSUM)/(USED * 2)
CALL PUTTXT(21,2,DUMMY)
CALL PUTTXT((80-LEN(TITLE))/2, 0, TITLE)

ELSE

C Table option

WRITE (6,'(A)') TITLE
WRITE (6,'(1H )')
DO 140 I = 0, 47
WRITE (6,'(1H&,12.2,1H:,12 2,4X,F6.2,1H%,4H

1	 HOUR, MIN, KERNEL(I)
IF (MOD(I+2 1,3) .EQ. 0) WRITE(6,'(1H )')
MIN = MIN + 30
IF (MIN .EQ. 60) THEN
MIN = 0
HOUR = HOUR + 1

END IF
140 CONTINUE

WRITE (6,'(15H Average gap = ,F7.3,5H Hrs.)')
1 FLOAT(TCKSUM)/(USED * 2)
WRITE (6,'(15H Items used = ,I3)') USED
END IF
CALL KEY
CALL MODE(3)
RETURN
END

C**** ** ********** ** *** ** *********** ** ******************* ****** ***** ** ***

SUBROUTINE GRAPH(KERNEL,MAXKRN)

C Draw bar graph of kernel estimate on screen
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REAL*4 KERNEL(0:47), MAXKRN
INTEGER HEIGHT
CHARACTER*4 LABEL
CALL MODE(16)

C Underline Bar Graph

DO 100 I = 16,	 63
100 CALL CPUT(I, 21,

DO 105 J = 3, 21
223, 15)

105 CALL CPUT(15, J, 196, 13)

C Enter the axes

CALL PUTTXT(34,24,'Hour of Day')
CALL PUTTXT(1,7,'Percentage')
CALL PUTTXT(1,8,' of all ')
CALL PUTTXT(1,9,'Household ')
CALL PUTTXT(1,10,'Burglaries')

110

120

130

DO 110 I = 16,
CALL CPUT(I,
CALL CPUT(I,

DO 120 I = 36,
CALL CPUT(I,
CALL CPUT(I,

DO 130 I = 56,
CALL CPUT(I,
CALL CPUT(I,

34,
22,
23,
54,
22,
23,
62,
22,
23,

2
48,	 7)
48+(I-16)/2	 ,
2
49,	 7)
48+(I-36)12,
2
50,	 7)
48+(I-56)/2,

7)

7)

7)

C Now for the hard stuff

C First, sort out a "clean" scale

IF (MAXKRN .GT. 10) THEN
MAXKRN = INT(MAXKRN)/10
MAXKRN = 10.0 * (NUDIBN + 1)

ELSE
MAXKRN = 1.0 + INT(MAXKRN)

END IF
WRITE (LABEL,'(F4.1)') MAXKRN
CALL PUTTXT(11,3,LABEL)
WRITE (LABEL,'(F4.1)') MAXKRN/2
CALL PUTTXT(11,12,LABEL)
CALL PUTTXT(11,21,' 0.0')

C Now plot it

DO 140 I = 0, 47
IMAP = INT((KERNEL(I) / MAXERN) * 36.0 + 0.49)
HEIGHT = 'HAP / 2
ICOL = $A1
IF (MOD(I,2) .EQ. 0) ICOL = $92
ICOL = 1
IF (I.GT.12.AND.I.LT.40) ICOL = 14
IF (MOD(IMAP, 2) .EQ. 1)

1	 CALL CPUT(16+I, 20-HEIGHT, 220, ICOL)
IF (HEIGHT .GE. 1) THEN
DO 150 J = 1, HEIGHT

150	 CALL CPUT(16+I, 21-J, 219, ICOL)
END IF



140 CONTINUE
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RETURN
END

C
c***********************************************************************

C

SUBROUTINE CPUT(XTL, YTL, CHAR, ATTR)
C

C Put a character on the screen with given attribute
C

INTEGER*4 XTL, YTL, CHAR, ATTR
INCLUDE IA:SYSREG.FOR1
AR = 2
BH = 0
DL = XTL
DH = YTL
CALL SYS2(16,SYSREG)
AR = 9
AL = CHAR
BL = ATTR
CX = 1
CALL SYS2(16,SYSREG)
RETURN
END

C
c***********************************************************************

C

SUBROUTINE KEY
C

C Wait for a key to be pressed
C

INCLUDE 'A:SYSREG.FORT
AR = 7
CALL SYS1(SYSREG)
RETURN
END



	

PROGRAM SEASON
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********* Listing 3.2 **********

C Seasonal analysis of crime rates --- draws crime rate graphs
C and cumulative graphs overlaid year by year

INTEGER COUNT(52), CHOICE, MAXMUM, HEIGHT, LCOUNT(52)
INTEGER HGHT1, HGHT2
CHARACTER INFILE*30, DUMMY*6

C Attach the data file to unit 4

CALL GETCOM(INFILE)
OPEN (4, FILE=INFILE)

C Empty the screen -- menu up for Cumulative/Simple display

CALL MODE(3)
CALL PUTTXT(25, 2,'Seasonal Crime Rate Analysis')
CALL PUTTXT(25, 6,'Select display mode :-')
CALL PUTTXT(26,10,'1 == Simple Seasonal Curve')
CALL PUTTXT(26,12,'2 == Cumulative Comparison')

100 CALL KEYGET(CHOICE)
IF (CHOICE .NE. 49 .AND. CHOICE .NE. 50) GO TO 100

C Choice is now made -- now put the approriate graph on VDU

IF (CHOICE .EQ. 49) THEN

C Simple seasonal curve

160	 CALL MODE(3)

C Get the count rates

MAXMUM = 0
DO 105 I = 1, 52

READ (4,*,END=170) COUNT(I)
IF (COUNT(I) .GT. MAXMUM) MAXMUM = COUNT(I)

105 CONTINUE

C Now get a 'good' scale

CALL RESCAL(MAXMUM)

C Plot it

DO 110 I = 1, 52
HEIGHT = 20*(COUNT(I)/FLOAT(MAXNUM))
DO 120 J = 22 - HEIGHT, 22

CALL CPUT(I+14, J, 178, 13)
120	 CONTINUE
110 CONTINUE

C Plot the axis

DO 130 I = 15, 66
130	 CALL CPUT(I, 22, 205, 14)

DO 140 I = 2, 22



140	 CALL CPUT(14,I, 196, 7)
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C Plot the labelling

CALL PUTTXT(15,23,
1	 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec')

WRITE (DUMNY, I (I6) 1 ) MAXMUM
CALL PUTTXT(4,2,DUMMY)
WRITE (DUMMY, '(16)') MAXMUM / 2
CALL PUTTXT(4,12,DUMMY)
CALL PUTTXT(11,1,'Weekly Counts')
CALL PUTTXT(21,0,'Seasonal Household Burglary Variation')

C Put up further menu options on bottom line

CALL PUTTXT(15,24,'Further Options 	 1 = Next Year 2 = Quit')

C Get new menu choice

150	 CALL KEYGET(CHOICE)
IF (CHOICE .NE. 49 .AND. CHOICE .NE. 50) GO TO 150
IF (CHOICE .EQ. 49) GO TO 160

ELSE

C Cumulative data analysis	 overlays two years worth of data

C First get the data

DO 200 I = 1, 52
READ (4,*,END=170) LCOUNT(I)

200 CONTINUE
370	 DO 210 I = 1, 52

READ (4,*,END=170) COUNT(I)
210	 CONTINUE

C Now make it cumulative

DO 220 I = 2, 52
LCOUNT(I) = LCOUNT(I-1) + LCOUNT(I)

220	 COUNT(I) = COUNT(I-1) + COUNT(I)
IF (LCOUNT(52) .GT. COUNT(52)) THEN
MAXMUM = LCOUNT(52)

ELSE
MAXMUM = COUNT(52)

END IF

C Plot it

CALL RESCAL(MAXMUM)
CALL MODE (3)
DO 230 I = 1, 52

HGHT1 = 20 * (LCOUNT(I) / FLOAT(MAXMUM))
HGHT2 = 20 * ( COUNT(I) / FLOAT(MAXMUM))
IF (HGHT1 .GE. HGHT2) THEN
DO 240 J = 22-HGHT1, 22-HGHT2

240	 CALL CPUT(14+I, J, 178, 7)
DO 250 J = 22-HGHT2, 22

250	 CALL CPUT(14+I, J, 219, 7)
ELSE
DO 260 J = 22-HGHT2, 22-HGHT1
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260	 CALL CPUT(14+i, J, 176, 7)

DO 270 J = 22-HGHT1, 22
270	 CALL CPUT(14+I, J, 219, 7)

END IF
230 CONTINUE

C Plot labels

CALL PUTTXT(15,23,
1	 'Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec')

WRITE (DUMMY, '(16)') MAXMUM
CALL PUTTXT(4,2,DUMMY)
WRITE (DUMMY, '(16)') MAXMUM / 2
CALL PUTTXT(4,12,DUMMY)
CALL PUTTXT(22,0,'Cumulative Household Burglary Counts')
CALL PUTTXT(25,1,' = This Year	 = Last Year')
CALL CPUT(25,1,176,7)
CALL CPUT(41,1,178,7)

C Plot axes

DO 340 I = 15, 66
340	 CALL CPUT(I, 22, 205, 14)

DO 350 I = 2, 22
350	 CALL CPUT(14,I, 196, 7)

C Put up further menu options on bottom line

CALL PUTTXT(15,24,'Further Options 	 1 = Next Year 2 = Quit')

C Get new menu choice

365 CALL KEYGET(CHOICE)
IF (CHOICE .NE. 49 .AND. CHOICE .NE. 50) GO TO 365
IF (CHOICE .EQ. 49) THEN

C Roll on another year --- reconvert to non-cumulative

DO 360 I = 52, 2, -1
360	 LCOUNT(I) = COUNT (I) - COUNT (I-1)

LCOUNT(1) = COUNT (1)
GO TO 370

END IF
END IF
GO TO 180

C Exeption Handling : leave program if no further data is available

170 CALL MODE(3)
CALL PUTTXT(18,13,'No further data : Press any key to continue')
CALL KEYGET(CHOICE)

180 STOP
END

C******** ************************************************************ ***

SUBROUTINE RESCAL(MAXMUM)

C Subroutine to rescale graph to a 'nice' number ie 10, 20, 50 etc

INTEGER SCALE, MULT, DIV, MAXMUM



SCALE = 1
MULT = 2
DIV = 1

100 IF (SCALE .LT. MAXMUM) THEN
SCALE = SCALE * MULT
SCALE = SCALE / DIV
IF (MULT .EQ. 2) THEN
MULT = 5
DIV = 2

ELSE
IF (MULT .EQ. 5) THEN
MULT = 4
DIV = 2

ELSE
IF (MULT .EQ. 4) THEN
MOLT = 2
DIV = 1

END IF
END IF

END IF
GO TO 100

END IF
MAXMUM = SCALE
RETURN
END

C* **********************************************************************

SUBROUTINE KEYGET(CODE)

C Wait for a key to be pressed	 Return its code

INTEGER CODE
INCLUDE 'A:SYSREG.FOR'
AH = 7
CALL SYS1(SYSREG)
CODE = AL
RETURN
END
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CHAPTER 4

ANALYSIS OF SPACE-TIME PATTERNS IN CRIME DATA

4.1 Introduction

The need to perform spatial analysis to predict spatial pattern has

already been identified, both in terms of police manpower management

and also in terms of local scale information for beat police officers.

In order to measure, draw inference from and forecast using these

patterns, some theoretical background describing the processes

generating them should be considered. In addition to this,

consideration must be given to crime patterns as a specific phenomena

rather than modelling in terms of a general spatial process, and to the

particular needs of the crime pattern analyst, so that the final model

describes this particular phenomena well, and is capable of

producing output in a format that will be easily understood by people

working in this field. If this target is attained, it is hoped that

reliable forecasting, and spatial pattern spotting techniques, will be

achieved.

An important concept in defining stochastic processes over space is that

of interaction. A spatial process in which the value of a

realisation at any given point in space is unaffected by the values that

it takes at any other point would be a trivial one. Such a process
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would require no knowledge of the state of any other point in space to

make predictions about a particular point. However, most real life

situations are not well described by a model such as this. For

example, fields with a high annual yield within a particular

farming area might tend to cluster in space, due to soil properties

overlapping field boundaries. Similarly, parallels may be found in many

other areas of study. The factor connecting all of these processes

is that, given a value of some observation at a point in space P, the

expected value at points near to P will be altered (cf Tobler, 1970).

This is the phenomena of spatial interaction, or spatial autocorrelation.

In describing spatial probabilistic processes modelling the

occurrence of crimes, it is important to deterMine whether the

phenomena of autocorrelation in space should be allowed for. Ideally,

some form of non-parametric, exploratory testing should be carried out

before explicitly modelling the occurrence of crime in space with

probability distributions.

Such problems will be considered in this chapter, together with the

problems of finding probabilistic models which suitably describe the

observed data on household burglaries, whose collection is

described in chapter 2. Further thought will be given to the ways of

expressing the crimes as spatial data, together with the parallel

stochastic mathematical models of the process. The crimes may be

expressed both as points in space (by considering the grid references

of households, or at least of their postcodes ) or may be aggregated

by regions, such as foot beats or grid squares. 	 In the first
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instance, data consists of a list of two dimensional points, and the

hypothesis of autocorrelation under test is that existence of events at

certain points in space does not affect the probability that events occur

at other points nearby.

In the latter occurrence, the set of aggregated crime counts, or

their densities in terms of the numbers of households within the zone

of aggregation, are associated with a matrix of similarities for the set

of regions. These similarities are often in terms of distance,

although they need not necessarily be so. Tests are then made to see

if observations for the regions correlate, and if so then to

examine whether correlations correspond to the distance based similarity

measures.

For predictive purposes, the second type of model may be of

greater use, as it is not really possible to predict where crime will

occur to the point level of resolution. Furthermore, the foot beat

region is a useful administrative unit for police resource management. It

is felt, however, that failure to examine point patterns could lead to

certain spatial processes going undetected; Aggregated data may

detect interaction on a scale as large as (and also larger than) the

sizes of the foot beat region, but some processes may be wholly

contained within foot beats. In the latter case, aggregation would

result in the loss of all information about the process. The

methodology, then, is to examine point processes first, and then,

bearing in mind that the aggregate processes will be related to these,

formulate the corresponding models.	 It is worth remembering that
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although some clustering in space takes place entirely within the foot

beat regions, other clusters are likely to occur on the same

scale, but displaced so as to overlap zonal borderlines.

Thus in an aggregate analysis lack of apparent autocorrelation

could be attributed to the fact that no clusters in a particular study

sample crossed any borders. This could lead to predictive

difficulty, which could be avoided if pointwise analysis were possible.

Also, in the final prediction system, pointwise analysis could also

be available for past data, as it may identify 'clusters' which may then

be investigated for further pattern, in terms of mode-of-entry or

other non-spatial data. Thus while beatwise analysis gives an overview

of the system as a whole, and is useful for prediction, for individual

police beat officers who may wish to investigate in greater detail

smaller clusters of phenomena within there patrol area, pointwise

analysis of past data may be of more use. In addition to considering

crime occurrence as a process having spatial interaction and

correlation, thought should also be given to the time dimension. Not

only does one expect that events near in space are correlated, but

also those that are close in time will interact. In order to model the

process completely, a full space-time stochastic process must be

considered. This may be done in several ways. Firstly an analysis of

spatial interaction over several time periods may be carried out. It is

possible that over different time periods, differing

time-aggregated spatial patterns may become apparent. After this,

more sophisticated models may be developed, with both space and time
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autocorrelation , and interaction between the two aspects. These might

be considered as a time series of vectors in the case of aggregated

data analysis. These refinements add realism to the model, as

probabilities of events are affected not only by the outcomes close by in

space, but also those that have occurred recently in time.

Ultimately, models such as those described above can be used as a

framework for a statistical prediction system. Thus, the main aim

of the chapter is to investigate space and space-time modelling and

analysis procedures, applying firstly exploratory and then calibratory

methods to the data on reported household burglary incidence in

chapter 2 in the hope of deriving a specific space-time model, (which

may or may not be based on existing models) to describe crime

patterns. As yet, no work on making models of this type to explain

crime patterns has been carried out, so a fairly comprehensive

investigation will prove necessary.

4 . 2	 Exploratory Examination of the Data

One of the initial purposes of examining the household burglary data

is to identify and measure any patterns in time or space that may

occur. Initially, space is to be considered in isolation. Maps of

the distribution of crime incidence are first examined, and then

various statistical tests are performed to shed some light on

possible explanation of the spatial variations within these maps, and

on the probabilistic processes which may be used to model geographical

crime data such as this. 	 After this, the time dimension is

analysed, in order to discover seasonal, and temporally correlated
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behaviour exhibited by the process. Finally both space and time

are examined together, to see whether spatial processes are independent

of time, or whether the process is one in which time and space

interact.	 The tests and techniques used will be described in detail in

each section.

4.2.1	 The Spatial Distribution Of Burglary

In this section, various techniques are used to analyse the crime

incidence in a purely geographical, or spatial sense. Initially, data

for a single year will be considered. The spatial information

information in the data set is specified to two differing levels of

resolution. Firstly, and to the greatest degree of accuracy, there is a

hundred metre total national grid square reference, based on the

centroid of the postcode unit for the address at which the crime was

recorded. Secondly, at a larger scale of aggregation, the code for

the police foot beat region is also recorded. The latter could be

deduced from the former, if point-in-polygon (Aldred, 1971)

searching techniques were applied, but this could be time consuming

computationally if it were to be done at every beatwise analysis,

so it is better, given that the storage overheads are not unreasonable,

to store both items of data. Although postcodes are in fact aggregate

regions, rather than points in space, the level of resolution that they

offer within the area of the subdivision under examination allows them

to be treated as such.	 There are 1200 postcodes within the

subdivision, but only 32 beats.	 An important implication of this

is that point techniques designed for point spatial data may be
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applied here, although at times it may be important to consider

the aggregate nature of the data, for example when several events

occur on the same street, giving the appearance of occurrence at

identical points in space. The crimes reported over the first year

are mapped in figure 4.1. Examination of this map suggests that there

is marked heterogeneity within the spatial distribution of household

burglary incidence, with certain areas being relatively free of crime,

while others are "black spots". This observation in itself may not be

regarded as particularly informative, from the viewpoint of analysing

the process. It may only be of value if considered in conjunction

with other geographically varying factors. For example, nothing has

yet been said about the variation in housing density over the

subdivision. It may be that these "black spots" simply correspond to

areas of dense housing, but	 apart from allowing for the

"population at risk" in this way, risk of burglary does not notably

differ from house to house. 	 Also, risk may be related to various

social and economic variables which can be spatially referenced within

the subdivisional area. However, although absolute figures in

themselves may not be particularly helpful in this kind of analysis,

they are of relevance to the police force resource management, since

it is actual numbers of reported crimes that are most directly

related to manpower demands, and maps of the spatial

distribution of household burglaries that illustrate which areas require

most attention. Also, a certain amount of analysis of the first

type, in terms of burglaries per unit risk, may be carried out

informally by police officers inspecting maps such as figure 4.1, who
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Figure4 I: Houeehold Burglariea by foot beat
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view the area in the light of social, environmental and other

geographical knowledge gained from working in the area.

4.2. 2	 Point Process Estimation: Techniques

Given the points considered above, it seems reasonable to consider the

data both as a point pattern in its own right, and also in relation

to other variables. As a point process, it may be useful to estimate

a spatial probability distribution of the chance that a burglary occurs

at each point within the subdivision from the year long point estimate

crime sample. This may be visualised as a surface in three

dimensional space, with x and y directions being used to cover the

local geographical region, and the z direction being used to represent

probability density. This could yield two useful statistics.	 i)

Identification of regions where the probability density exceeds a

certain level (high risk regions). ii) Beatwise averaged risks

(obtained by integrating the surface over the beats in question). In

order to do this, the method of Kernel estimation is applied (See eg

Silverman, 1978a or 1978b). This is basically a technique used for

obtaining an estimate of the probability density function from a set

of point realisations of some process. To obtain the estimate, an

expression of the form

fuA)-= v:t, Eil 3 e'?)

is used, where k is a smoothing constant, n is the number of

points observed, and g is itself a probability density function, which is



140

normally symmetric. The effect of g is to create a "bump" centred on

each point where an observation occurs, locally smoothing the

distribution function estimate. Note that as g is a probability

density function, then so is f. Various methods have been put forward

for choosing k, but one of the best established is by informal trials at

various values. Too low a value for k tends to result in

under-smoothing, so that the estimate appears spikey, whilst too large

a value tends to oversmooth, towards uniformity over the entire range

of observed values. Note that although the equations shown here refer

to the one-dimensional case, the same procedure may be

extended logically to several dimensions. The two dimensional case

gives

(r) S)	 A KA -L.
	 v.

The multidimensional extension to the kernel function g usually has

symmetry in all directions (isotropy) and has a single mode at zero.

Often, also, kl=k2. This seems reasonable as it assumes that if an

observed event occurs at some point P in space, although it gives

some information that points are likely to have these events occur

near to it, it does not suggest anything about which directions in the

locality are most at risk. Other methods of distribution estimation

also exist. Some of these resemble the kernel method, perhaps allowing

k to vary over the sampling space. Others base density estimates

at a point on the distance to its jth nearest neighbour in the set

of observed values (Discussed in Silverman 1978a). 	 Distance is
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assumed to vary inversely with density. However estimates of this

type do not return true probability density function estimates,

since as x tends to infinity, the density will vary as X-i , and the

integral of the density will not converge. Thus, estimates of this

type, although of some use in examining behaviour in the locality of

certain points, are not of use in estimating global density

functions which will be required for mapping purposes. Also, this

method requires ranking the observed value set from each point

where an estimate is required by distasnce. This could be

computationally expensive, particularly in two or more dimensions,

where a sort would be required for every point at which an estimate

was required. Methods using bandwidth variation could also be used,

but again, for the purposes of exploratory examination, may prove

computationally expensive. Thus, initially, a simple kernel estimator

will be used for this study. Some choice should now be made for the

form that g takes.	 One possibility is	 to	 take the normal

distribution function,

M = hii

This isis not without problems. If a function for g is chosen which

will not become uniformly zero beyond a certain x-value, then for

all observed x-values every single point at which f(x) is to be
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estimated will be affected. If for example, the probability density

function is to be evaluated on some grid with m elements, then nm

evaluations of g would be necessary. However when some grid point is

not particularly close to	 an observed point, g will be almost

zero.	 Thus, several evaluations of g will have virtually no effect on

the estimate.	 Thus it seems reasonable to choose some g

having a finite nonzero domain, that is, having some value a for

which mod(x) > a implies g(x) = 0. It is also reasonable that

g should lead to a smooth estimate, possibly no other reason than that

most 3d graphics packages that could be used to represent this

data will not handle discontinuities in any predictable or sensible way.

Thus, cylindrical functions, such as

()0 = tArren	 Ix% < r

=

should alsoalso be avoided. If this is not the case, computations of high

risk regions could also prove difficult, as these are most likely based

on contouring methods, which like the 3d packages discussed above

also work well only with continuous data. Therefore a

continuous two-dimensional distribution is required, having finite

nonzero domain. Epanechnikov (1969) has shown that functions of the

form

yat c<- 1 — 111.1) r'- V-X1(r

=
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with optimal bandwidth, approximately minimises the mean square

error between the estimate of the probability density function and

the true probability density function over the possibility space of

x . This quantity may be used as a measure of "goodness of

approximation". This form of g, then, provides the least biased

Kernel estimation surface (in an overall sense) , if the bandwidth is

well chosen. Bearing this in mind, an investigation using the

dataset described in chapter 2 and kernel estimation using g as set out

above will be carried out. A FORTRAN77 program is shown in listing

4.1. The program reads in points from the data set, and a

bandwidth from the terminal input channel. From these it generates a

kernel estimate of the probability surface over a square whose corners

are given by the 8-digit national grid references 41805650 to

43005770, using the Epanechnikov kernels. The output of this will be

a regularly spaced grid of density estimates, which may be fed as

input to a contouring or surface drawing package, allowing visual

representation of the surface.

4.2 . 3	 Point Process Estimation: Results

The results of the kernel estimation using various bandwidths are given

in figures 4.2 - 4.4.	 These surfaces were generated using the

UNIRAS mapping and graphics software. As suggested earlier,

lower bandwidth values give estimates that are sensitive to individual

point values, whilst at very high bandwidths oversmoothing occurs, and

the estimate takes on the shape of the kernel function with a high

variance, with all observations when viewed on this scale appearing
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clumped near the central mode. This type of behaviour is usual with

kernel estimation. The most useful descriptive information is found

from intermediate bandwidths. From such bandwidths it may be

seen that the highest risk regions are those to the south of

the subdivision, close to the edge of the central urban region. In

the northern regions of the beat, where housing is less dense,

virtually no burglaries occur. Discussion with police officers working

in this subdivision supports this result. A further offshoot of

discussion with these officers, when showing them various

graphical representations of the spatial distributions of crime in

the subdivision, is that the surfaces are capable of conveying more

visual impact, and information, than either scatter diagrams, or

three dimensional histograms or block diagrams, when examining data

such as this for general spatial trends. For example, there are

local modes in the density estimate, which could be identified by either

a surface plot or contour diagram, and then referenced to the local

geography if a map of relevant local features is superimposed. This

benefit perhaps justifies this sometimes lengthy and strongly

mathematical approach to spatial analysis as an alternative to simply

producing scatterplots or histograms. Further quantitative

analysis may be obtained from the kernel estimates by not only

attempting to identify the modes of the distribution, but also

those regions where the probability exceeds some chosen level. These

may be thought of as "High Risk Zones". Of course, the

boundaries of such zones can only be approximate, firstly because the

kernel estimates themselves do not exactly specify the distribution (a

finite set of points of data could not entirely specify a surface
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function, if nothing at all is known about its functional form) and

secondly because there is no objective and numerically precise definition

of the boundary probability between "high risk" and "low risk".

However, some arbitrary cut-point can be put set down, yielding a

result that when mapped provides some useful insight into local

geographic crime patterns at the exploratory stage of analysis.

Such a map is shown in figure 4.5. Here the value delineating the

high risk zones from elsewhere is P=0.975. This value is chosen

because the volume contained within the contour and the surface is

approximately 5% of the total volume integrated over the subdivision.

This calculation is demonstrated in appendix 1. This is equivalent to a

5% upper tail region in two dimensions, defined so that the risk of

burglary at any point within the region exceeds that of any point

outside of it.

In figure 4.6, the beat boundaries are shown superimposed over the

high risk areas. Clearly, there is an overlap between the beats of the

high risk areas. Thus, to some extent, it seems likely that any risk

factors assigned to whole beats, in the form of some aggregated

statistic, will exhibited noticeable spatial autocorrelation.

4.2.4	 Housing Density

A very important factor, and one not yet investigated, is that of

housing density. A useful though informal investigation of the

relationship between housing density and risk of burglary is proposed
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Figure 4.6
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here. Using the mapping and graphics package UNIRAS again, a

smoothed surface model of housing density may be created from a set

of (x,y,z) triplets. Here x and y are the easting and northing of

1981 census EDs and z is the household count for the

corresponding ED. These triplets are interpolated using a routine

supplied with the package, allowing an estimated grid-based model

of housing density to be fed into a 3-D graphics algorithm. Further to

this, contours for crime risk may be superimposed upon this

surface, allowing a visual comparison. If housing density alone can

explain expected household burglary risk, one would expect to see

similarly shaped contour line patterns, with high risk of crime

corresponding to high density housing. An inherent problem with

this approach is the reliability of the data. Since the most recent

census data applies to 1981, it is possible that housing patterns may

have changed to some extent between the time of the census and the

time of the crime data survey. This is not too great a problem, as in a

local area if there are notable discrepancies between housing

densities and risks, it may be easy to check if housing has been

developed or demolished in the intervening period in the areas in

question. However, were this method to be carried into an automated

system, perhaps over several subdivisions, such subjective checks

would not be possible. This is a major caveat to adoption of a wider

range of census variables on the prototype system.

An alternative graphical method can also be used. If the grid

estimates for both the housing and burglary variables as densities

are on grids of the same dimensions, a third variable may be created,
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by computing the ratio of the first variable to the second. If burglary

risk is proportional to housing density, one should expect a reasonably

flat surface for this variable, as it varies over space. Both of

these methods are illustrated in figures 4.7 and 4.8 respectively. It

may be seen that, although there are areas peaking in absolute

crime frequency also have dense housing, other areas of similar

housing density do not exhibit such high burglary rates. These appear

as "pot holes" on the second format of 3-D display. It appears that

although housing density does contribute in some way to the

likelihood of burglaries occurring in certain regions, it cannot

be the only relevant factor. This is supported by the observed

changeability of household burglary risk between regions of similar

housing density in the study area.

4.2.5	 Aggregate Siaatial Analysis: Techniques

Having considered burglary as a point probabilistic process, where

events appear as random points within two-dimensional space, the

process will now be considered as being counts of crimes associated

with the different police foot beat areas. It is necessary to

understand the aggregated processes when predictions are to be carried

out, since forecasting techniques capable of predicting exact points

where crimes will occur do not exist. On the other hand, aggregated

counts or rates of burglaries could be treated as a time or space-time

series, and analysed in this framework for prediction purposes,

since techniques for this type of data have been reasonably

well established.
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An initial analysis can be done by modelling the crime counts as a

Poisson process. Firstly, to allow for seasonal variation, yearly crime

counts will be considered. In the collected data, as well as

individually coded events for the first year, there exist cross

tabulated counts of crimes per beat per week for the following three

years. As an initial overview, it may be worth considering the yearly

crime rate as a Poisson process with a hazard function (Kalbfleisch

and Prentice 1980) —Re) , where lamda is a function of period one

year.

Thus, the probability of a crime occurring in the interval (t, t+d) is

if t is calibrated in yearly units. Thus, for each yearly count, the

distribution will be poisson(k) where

K ---- e_
- S

'' 
)( co

,c_	 K t 	 tAckei7enagAv TA- pc.0.-- v,

and the three yearly observations will be distributed

independently. The maximum likelihood estimator of k will be the mean

value over the three years for each beat. For each beat k is

tabulated in table 4.1 and mapped in choropleth format in figure 4.9.

It may be seen that the three high risk areas to the south of

the subdivision are still highlighted, event after spatial aggregation to

the beat level. These mean values can then be regressed against

various social, economic and demographic variables estimated from the
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Table 4 . 1

Yearly Burglary Rates By Police Beat

Beat	 Average Rate
Ti 73.67
T2 35.67
T3 38.33
T4 33.00
T5 51.33
T6 34.67
Ul 42.00
U2 49.33
U3 127.67
U4 74.33
U5 53.66
U6 1.00
V1 47.33
V2 52.33
V3 57.67
V4 31.00
W1 37.67
W2 41.00
W3 71.67
W4 41.00
X1 30.67
X2 119.00
X3 105.33
Y1 34.00
Y2 77.00
Y3 108.00
Y4 87.67
Y5 53.33
Z1 75.67
Z2 124.33
Z3 94.67
Z4 2.00
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Figure 4.9: Household Burglaries (Yearly Mean)
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1981 census, if some investigation into geographical patterns link

with household burglary incidence in the long term is sought.

If the model is to be applied strictly, then the regressions should be

based on Poisson likelihood functions, as specified by a Poisson linear

model of the form

g %.) .-V.• C13"%e S. i1./	 e ot SSo A C. /4-

u-*ere_ p- = 94 ( 2.:11 4:C1...X0
t	 L=t

= elLp\c-v.c. iror	 NiartokkeS ,

Often the function phi is chosen to be the log function (See eg

Bishop et al, 1975). However, in this case, the counts of observations

are perhaps best converted into crime per household figures, and it

may be more appropriate to apply the transformation ft-757s1 to the

count as a dependent variable, which which will then become

approximately Normal, with a fixed variance of 0.5 (Andscomb, 1948).

If significance testing of the linear predictor variables is to be

carried out, it must be borne in mind that each mean is based on three

separate observations, supposed at this stage in the analysis to

be independent, so that each observation is weighted three times.

This cancels out any inaccuracy of significance testing or confidence

limit estimation that may have been caused by assuming a sample of

size n (where n is the number of beats) against the true value 3n.

i
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Some important data that is needed in order to compute beatwise

household burglary density is the household counts within each beat.

Unfortunately these cannot be obtained exactly, since the smallest

level of spatial resolution that such information available is the

Census Enumeration District, and the boundaries of these zones do not

necessarily coincide with those of the beats. However the counts may

be approximated in the following way.

The centroid of each ED is available (although it is not clearly defined

as to how it is computed), so that a simple estimator may be achieved

by assigning each ED to the police foot beat containing its centroid

using a point-in-polygon technique, and assigning its count of

households to that beat. Summing over all of the EDs in a given beat

will lead to the estimated household count for that beat.	 As long

as the areas of the EDs are smaller than those of the beats by a

reasonable amount, errors should not be too great since several EDs

will be wholly contained in a foot beat. It is only those overlaying

beat boundaries that could contribute to error.

This technique can also be applied to other census count

variables that are tabulated to the ED level of spatial resolution,

allowing regression modelling as an attempt to discover which

aggregate beat characteristics best predict long run crime rates in

those beats. Again at this point attention should be drawn to the

problems raised earlier in the chapter when attempting this type of

analysis.	 Firstly, there is a time lag between the census variables

and the crime figures. In addition to this, measurement is being made
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at an aggregate level, so the analysis is subject to the Modifiable

Areal Unit Problem (Openshaw, 1984), and if the spatial patterns in the

variables do not coincide well with the beat delineations, their

effect may go unnoticed.

Notwithstanding all of these difficulties, there is still some value in

carrying out the analysis. Certain patterns may become

apparent, if sizes of fluctuations in space are sufficiently large

scale to be detected in a set of beatwise aggregations. Also it may

throw some light on characteristics of local geodemog-raphics likely to

influence crime incidence, and perhaps give certain clues about any

spatial interdependence that might need to be incorporated into a

stochastic spatial crime prediction model. For example, if the

presence in a region of certain age ranges tends to correlate to

higher crime rates, might this not suggest that neighbouring areas to

those having large populations in this range are also at risk, if

journey-to-crime routes cross the boundaries of adjacent beats?

Prediction of this type would not be feasible for a final model,

however, since the independent variables could not be measured easily

on a week by week basis, which would be necessary in a

real-time short-term crime forecasting situation. In conclusion

then, while this is reasonable at the exploratory analysis stage in

order to provide ideas for a working model, the multivariate approach

would not translate directly to such a system, due to the

problems encountered in monitoring all of these variables on a weekly

basis.
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Up to this point, the analyses in this section relating to

aggregate data methodologies have not allowed for spatial

autocorrelation in the response variable. For example the previous

regression based methodology although informally acknowledging that

the processes are spatially linked, does not allow for this in the

formal mathematical model. In fact, each beat is treated as an

independently distributed variable, completely uncorrelated to its

adjacent beats This is justifiable to some extent, since the

independent variables used to predict crime rates are also likely to be

autocorrelated, and it is hoped that this will explain the

autocorrelation in the response variable to some degree. However,

given all of the pitfalls discussed above, and also given that the

final prediction model will be required to predict future values for

beats solely on the basis of past crime data, it will be of greater

value to investigate the spatial correlation of crime counts, viewed as

a realisation of a spatially interdependent probabilistic process.

This may be done in a number of ways. Two commonly used models for

spatially autocorrelated processes, due to Moran (1950) are

E C".c 17_3 ,2)	 = I1/41"L *	 C;.3	 /1.3)

*4- C-1-1.1-t:),0 -z• C7-1.

(Conditional Autoregressive Model)



162

Where	 = crime count at beat ,

= matrix of similarities between beats

alternatively, one could use

+ EC	 -	 t *L.

NI CO )	 tnaeRvaxie_a\-1_.

(Simultaneous Autoregressive Model)

Both of these models can be used to express equivalent processes (see

Ripley, 1979) . In each case the error is normally distributed with

mean zero and variance Cr-L • This is not unreasonable if the

crime counts are poisson distributed, and thus n.FR is approximately

normal.	 Moran	 (1950)	 proposed	 a	 measure of spatial

autocorrelation to be

—	 nc.x4:1 k.x -	 aS1A(EL.3.,3)Z.(x4-ati

Similarly, Geary suggested

c	 tcr\-0 Ewz.s (x.,--)q-2/tt-LLL..4slys.jAc-j)13

The coefficients of \41 were initially assumed to be 0/1

adjacency indicator variables, although Cliff and Ord (1973) proposed

that these could be generalised to any matrix, as a continuous
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similarity measure. The coefficients I and C can both be thought of

as tests of p =0 in the hypotheses

X -- f\L	 p w ( I— tA) 1-

E "- N (.o, o-1)	 t-na,ePeraen\--

In this test W is assumed to be known, leading to some difficulty.

Alternative possibilities for W could be

1) A simple dij matrix of contiguity

2) Some monotone decreasing function of distance between beats

3) Some monotone increasing function of common boundary

distance of beats

4) Some measure of social similarity (a "distance" between

aggregate census variables. )

5) Some combination of any of the above.

Consideration of this problem is given in Cliff and Ord (1973) and

Hagget et al (1977) . Bartels (1979) suggests that the simple

contiguity matrix has proved to be as adequate as other, more

sophisticated postulated matrix coefficient models. However, this may

not be the case here, where there is a great deal of variation in the

size of the foot beat areas. Thus, parts of the large north western

beat (see eg. figure 4.9) are up to 10km from the nearest

neighbouring beat, whilst in certain urban beats, no point within the

boundaries is more than about 3km from the nearest beat. In the

simple contiguity model, the crime rates for each pair of adjacent

beats would be represented as being equally correlated, which is
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unlikely to be the case, particularly if in the situation of rural beats

where the centres of population are not near to the coincident borders.

Adopting a matrix based on common boundary lengths also seems

problematic, again due to the variation in beat areas. Large rural

beats like that to the north west of the study region have long

boundaries in common with other neighbouring beats, which would

imply strong correlation using this model. In addition, the

smaller inner city beats would have relatively small correlations

implied, whereas journey to crime discussions (Pyle, 1974 or

Evans, 1980) would suggest that these beats, in zones of similar high

housing density, are more likely to interact.	 It would seem that

there is some danger of the common boundary criteria

discriminating between likely and unlikely correlates in the opposite

direction to that of a desirable target model.

This leaves distance based metrics, in purely space-time based

systems, or possibly some combination in these and social, housing and

economic measures. A reasonable purely distance-based measure

might be the distance between the centres of population for each

beat-pair. These could be estimated using ED-based counts: For

each ED whose centroid lies within a given beat, if P(i) is the

population of the ith ED within the beat, and X c is its centroid

(expressed as a vector) then the centre of population could be defined

as	 n
E Pco )(1.
Ezi

Pcc,)
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Clearly, one source of error here will occur when the EDs

straddle beat edges. Thus, such a matrix will be subject to a

sensitivity test, by reassigning edge-coincidence EDs to the

neighbouring beat. Figure 4.10 shows the initial set of centroids, and

figure 4.11 shows those for which some edge EDs have been reassigned

to adjacent beats, after random selection with a 50% probability of

reassignment. No large variation in centres of population has

occurred. Thus it is perhaps not unreasonable to consider the

weighting matrix using this method. In addition to this, it is also

possible to consider a similar distance measure, based upon centroids

weighted by household counts.

Given the problems with census variables due to time-lags and

spatial registration, it may be as well not to use these as a basis for

measurement in any great amount. Thus it would seem wise to

consider mainly distance-based matrices. To this end, four possible

matrices will be considered. Firstly the simple 0/1 contiguity

matrix, then the housing and population centroid distance matrices,

and finally one based on beat area centroids, defined as
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the simplest form of distance-based model. If the difference

between the simple models and the more complex, although

more carefully designed models is slight, considerable computation time

may be saved by adopting these in the prediction system. However,
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Figure 4.10
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Figure 4.11
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it is necessary to examine the more complex systems initially to see

if this is in fact the case. The aim of this part of the analysis will

then be to discover which, if any of the proposed matrices might be

used to model a space-time series used to predict short term crime

densities.

4.2.6.	 AEaregate Process Analysis : Results

Firstly, the regression model is considered. The variables to be

incorporated in this model are listed in table 4.2. Certain variables

are liable to be correlated, and so a crosstabulation of the Pearson

correlation coefficient is given in table 4.3. In each cell in this

table, the first quantity is the estimate of the coefficient, and the

second, in brackets, in the significance level of this value against a

null hypothesis of no correlation. The table suggests that, at least in

terms of prediction, if not in those of substantively explaining the

processes occurring, not all variables need be incorporated in the model

since there are certain clear cases of high correlation between predictor

variables. A stepwise or back-substitution technique could be used to

eliminate superfluous variables.

Initially, the simple correlation between each variable and the crime

rates are examined (table 4.4). Many of the census variables

exhibit strong correlation with the crime rates.
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Table 4.2
Proposed Independent Variables For

Description	 Variable

Population
No. Households

Crime Risk Model

Name

POPN
HOUSES

Census Derivation

C937
C929

Proportion "Young" YOUNG 10000 * (C71 + C78 +C85 +C92 +C99)
DIV C50

Propn. LA Housed COUNCIL 10000 * C983 DIV C929
Propn. Male UE MALEUN 10000 * C860 DIV C720
Propn. Youth UE YOUNGUN 10000 * (C865 + C870 + C875) DIV

(C725 + C730 + C735)
Bus Journey To Work BUSJTW 10000 * C4731 DIV (C4411 + C4412)
Overcrowding OVERCRWD 10000 * C945 DIV C929
3 Cars or more THREECAR 10000 * C1174 DIV C1170
Owner Occupied OWNOCC 10000 * C967 DIV C929
Furnished Rental FURNRENT 10000 * C1063 DIV C929
Retired Persons RETIRED 10000 * C1669 DIV C1629
Single Households SINGLEH 10000 * C1360 DIV C1351

The C-codes refer to census variable names.
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Table 4.3 

Pearson Correlation Coefficients

POPN HOUSES YOUNG COUNCIL MALEUN YOUNGUN

POPN	 1.00000 0.96290 0.22040 -0.00903 -0.09205 -0.29825
0.0000 0.0001 0.2419 0.9622 0.6285 0.1094

HOUSES	 0.96290 1.00000 0.20160 -0.11339 -0.13620 -0.34957
0.0001 0.0000 0.2854 0.5508 0.4730 0.0583

YOUNG	 0.22040 0.20160 1.00000 0.47135 0.66901 0.56029
0.2419 0.2854 0.0000 0.0086 0.0001 0.0013

COUNCIL	 -0.00903 -0.11339 0.47135 1.00000 0.81417 0.74935
0.9622 0.5508 0.0086 0.0000 0.0001 0.0001

MALEUN	 -0.09205 -0.13620 0.66901 0.81417 1.00000 0.94345
0.6285 0.4730 0.0001 0.0001 0.0000 0.0001

YOUNGUN	 -0.29825 -0.34957 0.56029 0.74935 0.94345 1.00000
0.1094 0.0583 0.0013 0.0001 0.0001 0.0000

BUSJTW	 0.14481 0.07943 0.56154 0.76656 0.84326 0.72321
0.4452 0.6765 0.0013 0.0001 0.0001 0.0001

OVERCRWD -0.05443 -0.10205 0.56754 0.64028 0.85867 C.79963
0.7751 0.5915 0.0011 0.0001 0.0001 0.0001

THREECAR -0.27651 -0.30032 -0.37732 -0.59468 -0.56442 -0.36465
0.1391 0.1069 0.0398 0.0005 0.0012 0.0476

OWNOCC	 0.06342 0.06035 -0.53585 -0.85114 -0.82839 -0.72846
0.7392 0.7514 0.0023 0.0001 0.0001 0.0001

FURNRENT	 0.00252 0.18549 0.23311 -0.51490 -0.17267 -0.16742
0.9895 0.3264 0.2151 0.0036 0.3615 0.3765

RETIRED	 -0.28463 -0.14350 -0.62178 -0.20030 -0.20710 -0.22690
0.1274 0.4493 0.0002 0.2886 0.2722 0.2279

SINGLEH	 -0.27478 -0.03732 0.15103 -0.15832 0.08752 0.06272
0.1417 0.8448 0.4257 0.4034 0.6456 0.7419



171

Table 4.3 (continued)

RETIRED SINGLEHBUSJTW OVERCRWD THREECAR OWNOCC FURNRENT

POPN	 0.14481 -0.05443 -0.27651 0.06342 0.00252 -0.28463 -0.27478
0.4452 0.7751 0.1391 0.7392 0.9895 0.1274

HOUSES	 0.07943 -0.10205 -0.30032 0.06035 0.18549 -0.14350 -0.03732
0.6765 0.5915 0.1069 0.7514 0.3264 0.4493

YOUNG	 0.56154	 0.56754 -0.37732 -0.53585 0.23311 -0.62178 0.15103
0.0013	 0.0011 0.0398 0.0023 0.2151 0.0002 0.4257

COUNCIL	 0.76656	 0.64028 -0.59468 -0.85114 -0.51490 -0.20030 -0.15832
0.0001	 0.0001 0.0005 0.0001 0.0036 0.2886 0.4034

MALEUN	 0.84326	 0.85867 -0.56442 -0.82839 -0.17267 -0.20710 0.08752
0.0001	 0.0001 0.0012 0.0001 0.3615 0.2722 0.6456

YOUNGUN	 0.72321	 0.79963 -0.36465 -0.72846 -0.16742 -0.22690 0.06272
0.0001	 0.0001 0.0476 0.0001 0.3765 0.2279 0.7419

BUSJTW	 1.00000	 0.75034 -0.71113 -0.75062 -0.21765 -0.15014 0.01238
0.0000	 0.0001 0.0001 0.0001 0.2479 0.4284 0.9482

OVERCRWD 0.75034	 1.00000 -0.37816 -0.67931 -0.05669 -0.12345 0.01211
0.0001	 0.0000 0.0393 0.0001 0.7661 0.5157 0.9493

THREECAR-0.71113 -0.37816 1.00000 0.65238 0.13942 -0.10687 -0.19220
0.0001	 0.0393 0.0000 0.0001 0.4625 0.5741 0.3089

OWNOCC	 -0.75062 -0.67931 0.65238 1.00000 0.13746 -0.02820 -0.22877
0.0001	 0.0001 0.0001 0.0000 0.4689 0.8824 0.2240

FURNRENT-0.21765 -0.05669 0.13942 0.13746 1.00000 0.05058 0.59348
0.2479	 0.7661 0.4625 0.4689 0.0000 0.7907 0.0006

RETIRED -0.15014 -0.12345 -0.10687 -0.02820 0.05058 1.00000 0.33892
0.4284	 0.5157 0.5741 0.8824 0.7907 0.0000 0.0669

SINGLEH	 0.01238	 0.01211 -0.19220 -0.22877 0.59348 0.33892 1.00000
0.9482	 0.9493 0.3089 0.2240 0.0006 0.0669 0.0000

The upper figures refer to correlation coefficients, and the lower
figures to their significance.
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Table 4.4

Correlation Of Explanatory Variables With Crime Rates 

Variable Coefficient

POPN	 0.53803
0.0022

HOUSES	 0.51794
0.0034

YOUNG	 0.74778
0.0001

COUNCIL	 0.37611
0.0405

MALEUN	 0.60580
0.0004

YOUNGUN	 0.46088
0.0104

BUSJTW	 0.59051
0.0006

OVERCRWD 0.55223
0.0016

THREECAR -0.45124
0.0123

OWNOCC	 -0.41009
0.0244

FURNRENT 0.16145
0.3940

RETIRED -0.50738
0.0042

SINGLEH	 0.05038
0.7915

Lower figure represents significance of difference of
coefficient from zero.
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A stepwise regression model is now run. The purpose of this is not

so much to see which variables are eventually to be included

(Indeed, variation of the significance levels for entering and dropping

variables can lead to variation in this final set of variables) but to

discover what level of between beat variation can in fact be explained

by a model of this sort.

The results are tabulated in table 4.5. It may be observed that 82% of

variation may be accounted for in this manner. Variables relating

to unemployment	 figure	 highly,	 as do models relating to

demographic age profiles of the beats. It is hard to interpret

whether these variables are reflecting characteristics making people

likely to commit crimes, or likely to be victims, or some mixture of

both of these effects. Note that the house crowding indicator is also a

strong predictor. This is perhaps not surprising, as it may be a

proxy for the types of housing characterising the area as a whole.

Theories such as those of defensible space (Newman 1972, 1976) suggest

that certain types of housing are at greater risk.

Concluding this analysis, it is important to recall that a final system

cannot be expected to have all of these variables constantly

monitored in any formal way, and interpretation of this must be done

in terms of how one might expect a process involving only crime rates

themselves to behave. One conclusion is that if certain age groups

are more likely to commit crime than others, then given there may also

be transport constraints limiting journey to crime distances, areas

nearer to housing with high concentration of these age groups will be
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Table 4.5

Results Of Stepwise Regression

VARIABLE	 NUMBER	 PARTIAL	 MODEL
STEP ENTERED REMOVED	 IN	 R**2	 R**2

1	 YOUNG	 1	 0.5592	 0.5592
2	 POPN	 2	 0.1464	 0.7056
3	 YOUNGUN	 3	 0.0861	 0.7917
4	 COUNCIL	 4	 0.0331	 0.8248
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at greater risk. More generally, if position in space does effect

risk of burglary, a certain degree of spatial autocorrelation is bound to

occur in the observed rates. Further evidence supporting this

suggestion can be based on the theories linking housing design and

risk of crime. For example, in more modern housing schemes in

which houses are similarly styled, possibly with security being taken

into account in the design process, then a reasonably sized cluster

of housing will have similar low risks of burglary.	 The converse

may apply to an older area. Thus, one expects risk to be

spatially correlated over regions of similar housing, from house to

house, possibly street to street, and over entire estates. All of

these arguments lead to the idea that the data for crime rates alone

should exhibit spatial autocorrelation, which will now be investigated in

its own right.

At this stage, it seems appropriate to examine the degree of

spatial correlation between the beats, and to attempt to model the

structure of this correlation. The results of this, unlike those

above, may be directly incorporated into a model of a stochastic

process that may be used directly in a system to predict the crime

rates.

As discussed earlier in the section on techniques, various

systems of autocorrelation may be modelled (based on the W-matrix),

and tested as an alternative hypothesis to a system of
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independently distributed zones, showing no spatial interaction. As

put forward in the techniques discussion, four basic models will be

used. Firstly a simple contiguity matrix, and then three distance

matrices,	 for	 distances between housing centroids, population

centroids and areal centroids (mean centres) for beat pairs. 	 It is

suspected that the similarity measure for the weighting matrix should

be a monotone decreasing function of the distances. 	 A reasonable

model might be to have Wij =	 where dij is the distance between

beats i and j using one of the above definitions, and a is a positive

real number.	 Initially, values for a of 1 and 2 will be considered.

Some consideration will then be given to estimating a maximum

likelihood estimate of a. However, the initial models will be fitted

using a=1 or a=2.

For any of these test methods, the Morans-I coefficient may be used

as a test of the hypothesis rho =0 in the equation above. The

Geary's-C coefficient may also be used, but Cliff and Ord (1973)

demonstrated that I is preferable to C in simulation studies, and by

showing that the relative efficiency of I to C is always greater than or

equal to unity. Note that, although an I-statistic may be computed for

each different hypothesis (with respect to each of the W-matrices)

significance tests will not be independent.

Tests were carried out for each of the matrices, using the

recommended procedure by Cliff and Ord (1973) for approximating the

upper tail of the distribution of the 1-statistic. As usual the

X-variates were the square root based transformations of the crime
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density	 per	 household,	 due to the approximate normal

distribution of this quantity under a Poisson crime count assumption.

The results are listed in table 4.6. As can be seen, the only

formulation for the W-matrix that did not prove significant is the

contiguity based model. It could be that as beats do vary greatly in

area, and in their internal population geography and housing

geography, that simple contiguity is unhelpful in explaining

interdependence. This is particularly likely if the effects of one or two

large rural beats are weighted beyond their importance in their

effect on adjacent, possibly equally large and remote beats.

It is apparent here that more significant results are obtained when

a=2 than when a=1. It may be useful to find a better

approximation of a, perhaps based on maximum likelihood estimation.

For the CAR model the log-likelihood of the scheme is given by

2.-11 Crt) # ji- 6 1 B1 - ,2_10_ (1- )1 IS (7 -4

where
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Table 4.6

Moran's I-Coefficient For Differing Spatial Weighting
Matrices 

Exponent	 Correction

Characteristics

for	 Distance
no. Houses	 Metric

Results

Moran's I	 Significance

- Y Contiguity 0/1 -0.0718 0.6122 NS
- N Contiguity 0/1 0.5730 0.2513 NS
1 Y Household Centre 0.0576 0.0125 *
1 Y Population Centre 0.0678 0.0063 **
2 Y Household Centre 0.4441 0.0000 **
2 Y Population Centre 0.5507 0.0000 **
1 N Household Centre 0.0388 0.0482 *
1 N Population Centre 0.0387 0.0525 NS
2 N Household Centre 0.1498 0.0849 NS
2 N Population Centre 0.1663 0.0925 NS
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Note that the coefficient a would appear in several terms of the

determinant of B, which could prove problematic. However, this may

be overcome if Pseudo-likelihood estimation is carried out

(Besag, 1975,1977). The Pseudo-likelihood is defined as

FL	 IT Pc(. �L I Zi )3-iL)

which is to be maximised to estimate a, sigma and c. For a CAR

process,	 ..

LI LPL) = - DE 6 0-1r01) -CI-0 (1-11

Minimising this reduces to finding 	 0-1- as the mean square of the
_...k, -4-

residuals	 L -1 -	 - .. CI— k.)	 ,	 and	 choosing C to

minimise cr-L (Ripley, 1979). However, this process has been

found to be problematic, since it requires the repeated evaluation of a

32-dimensional determinant, in order to iteratively maximise the above

expression. This, and possible difficulties with rounding error in a

computation of this size, suggest that the integer trial values alone

should be included in the study. These show reasonasble correlation in

any case, if a reasonable choice of distance metric is used.

Thus, a reasonable estimate of a spatial process for crime rates is

given by a CAR model with Wij = aq-..11- . This may be used in

simulations or calculations for predicting crime rates in this region.



180

4.3 Time Series Analysis

Having gained some understanding of the household burglary data

when considered as a realisation of a spatial stochastic process, the

next major step is to analyse the data in the time dimension. This is

essential for short-term forecasting techniques could not be made

without an understanding of how future crime rates are linked to those

in the past, in some regular way. It is expected that some

autocorrelation in time should occur, since informal conversation with

police officers suggests that burglaries in particular areas occur in

temporal clusters (ie offenders show a tendency to return to the

same area and repeat offences over short lengths of time), and this

may also be the case for other types of crime. It is also possible, in

some instances, that this correlation may be negative. Consider, for

example, a situation where a large number of burglaries in an area may

lead to increased police presence, which may in turn then lead to a

reduction	 in	 criminal	 activity.	 However,	 although this

autocorrelation has been conjectured, it remains to examine the data

for empirical evidence. Also, little is known about the length of

time over which correlation might occur. This second fact is of great

relevance, as it answers the question "how far back in time must past

crime counts be stored in order to obtain reliable predictions of the

coming weeks values?". The following section deals with the statistical

methodology used to investigate these questions.
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4.3.1	 Methodology

Initially, the total number of crimes each week within the entire

subdivision will be considered as a single time series, but eventually

this should be expanded to allow for differing predictions to be made

for different localities. The purpose of initially examining at this

large scale is to obtain some idea of the time scales that the

stochastic process work in, without the added complication of how

this interacts within space. Some of the results in time at this

scale may then be used as a point of departure for modelling the more

complex space and time process in the final model building stage. A

further defence of the aggregate analysis approach, at least

initially, is that summed data of this type is more nearly Normally

distributed, and although some non-parametric techniques exist for

time series analysis, the main bulk of the subject lies in parametric

models involving Normality. Eventually, of course, smaller scale

beatwise systems must be considered, but early hypothesis tests,

based on parametric Normal models, can be made at this larger scale.

A review of literature on time series analysis suggests (eg Glass et

al, 1975) that two main streams of analysis procedure exist: That

based on the frequency domain, and that based in the time

domain. The former attempts to account for the variance of a variate

evolving in time by partitioning it into components associated with

oscillations at various frequencies, whilst the latter views a the

same process by relating the current value of the variate to those

observed in the past, and to other time-referenced random processes.
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The second type of analysis seems more appropriate for the crime

prediction application. Past weekly crime counts are easily extractable

from the database, and these could then be used for predictive

algorithms in the crime pattern analysis system.

In contrast to analysis in a spatial framework, well established methods

of time series classification and identification already exist. One

of the most common is that given by Box and Jenkins (1970),

which has already had wide application in the field of economics

and several other areas. It proposes a family of stochastic processes,

which is sufficiently general to cover a diverse range of situations.

For example, one of its members yields the model for a time series

used to derive the exponential smoothing technique, but another gives

rise to the naive technique. Many much more sophisticated

schemes can also be attained. The authors suggest a methodology

for identifying which member of this family applies to the data under

study, and then to calibrate the specific coefficients relevant to

this model.

One useful substantive spin off from this method is that the

number of weeks over which autocorrelation effects are still apparent

will be found in the model identification stage. This could have an

interpretation in terms of offender behaviour when viewed as a

phenomena constrained by time and space.
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Stage 1 involves find suitable p, d, q values. A common way of doing

this is by estimating autocorrelations at various lags, and seeing

how the values change as lag increases. The autocorrelation at lag k is

defined as

C_ c nJor- tcu-.0	 7-t	 -

as-- to.A

and the sample estimate of this is

cvo =
L

t=

e

for each k. It can be shown that in the case where p=0 (purely
,

moving average processes) then	 p ci.4) = 0 for all k>q.	 This will

clearly not hold exactly for the sample estimate, but a significance
A

test may be performed, since asymptotically 	 p cio	 N(0,1/n).

Similarly, a test may be performed on sample partial autocorrelation

estimates (based on the residual at lag k when other values have been

allowed for). This decays exponentially (or is a sine wave whose

amplitude decays) beyond lag q in the Moving average case.

The converse	 holds	 for	 purely autoregressive models - the

partial autocorrelation becomes zero if k>p and the 	 ordinary

autocorrelation decays. 	 Finally, if p and q are both nonzero, both

coefficients will eventually decay.	 Given this knowledge, sample

autocorrelations and partial autocorrelations should yield some clues
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as to p and q. It can also be shown that if d>0, autocorrelation will

not tend to zero as k increases, as a deterministic trend will

always contribute to correlation.

Therefore, inspection of these curves leaves the analyst with

reasonable guesses as to p d and q. Next, consider the second stage

of the process, where values of the regression coefficients are to be

estimated. Several methods exist to do this, one of which is the

conditional least squares method (BMDP manual 1985). In this

technique the regression coefficients and the mean level are chosen to

minimise

1 -4-e - Ck - c%Nl-E - i
	

C (--t---"

At this point, significance tests to see if any ais or bis should not have

been included may be performed. Also, as estimated residuals now

exist, it may be worth checking these for autocorrelation. If the model

is good, there should be little evidence of this, as residuals should be

independent. This constitutes the third stage of analysis, where the

model arrived at is checked. From this, ideas as to p, d and q may

be modified, and the sequence of stages repeated until a workable

compromise is met. This should not usually take many cycles, perhaps

two or three. At this point, the performance of competing models

should not differ enough to merit further examination.
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A methodology such as this is well established, and deserves

consideration clearly, but there are some shortcomings. Firstly, it is

based on the assumption of a stable relationship between the

variable at time t and the values at t-1, t-2 and so on. The

regression coefficients are fixed with respect to time. Possible

changes in circumstance may occur in the study area, however,

and these may cause changes at some point in the coefficients.

Such changes may not be modelled in the basic Box-Jenkins

approach. Secondly, parametric assumptions are made in the model,

with respect the the error terms. These are assumed to be Normal,

but this may not be the case. A non-parametric test may be a useful

back up to the Box-Jenkins approach. Such a test is now

proposed. A nonparametric test of autocorrelation can be based on a

test of the null hypothesis that x(t-1) and x(t) are indepedently

distributed with the same distribution function F. 	 Define the

statistic s(t) as

1 if x(t)<x(t-1) and x(t)<x(t+1)

1 if x(t)>x(t-1) and x(t)>x(t+1)	 for t=2 ... n-1

0 otherwise

The sum from t=2 to n-1 of S(t) can be thought of as a count of

peaks and troughs in the data, viewed as a sequence in time. It may

be shown, (appendix 4.2), that if n is sufficiently large, this sum

(call it U say) has an approximately Normal distribution with mean

	

Sr\	 2cl2/3(n-2) and variance	 _	 . Thus a test of the null

	

t g 	 GIO
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hypothesis of temporal independence may be carried out if U is

computed. A lower-tail value of U is evidence of either a trend

or positive correlation, whilst a large U corresponds to excessive

peaking and troughing probably brought about 	 by	 negative

correlation	 or oscillations.

A final test is also proposed to check against the first phenomena of

changes in the Box-Jenkins coefficients over time. To do this, the

fairly crude technique of splitting the three years worth of data into

single yearly subsets and analysing each in turn will be carried out.

the results should be fairly consistent if the model is stable over

time. However, if this does not appear to be the case, a more

adaptable forecasting technique than Box-Jenkins should be used.

4 .3. 2	 Results

Firstly, consider Box - Jenkins analysis applied to the entire time

span of the data set. Figure 4.12 illustrates the autocorrelation

function, whilst figure 4.13 shows partial autocorrelation. Notice that

although the autocorrelation function is not significantly greater

than zero after the first lag, the function appears to die out

exponentially, at least until random noise dominates the high order

lag estimates. Similarly, the partial autocorrelation, also

significant only at lag one, appears to vary randomly beyond lag two

or three, say. Given that a parsimonious solution is preferable, and
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that any effects beyond where the correlogram estimates are swamped in

white noise cannot be detected, it seems a reasonable first guess to

model the process as as AR (1 ) . This will be the point of departure in

the Box-Jenkins modelling procedure.

At the next stage, three models will be fitted to the data.

Firstly, an ARIMA( 0,0,1 ) , then (1,0,1) and finally (0,0,2) . These can

be seen as testing the model suggested above, and then testing the

effect of adding either a second autoregressive term or a new moving

average term to this model. The results are shown in table 4.7.

Clearly, the moving average term is not necessary, and the second

autoregressive term has only a minor effect. Therefore adoption of

the initial model thrown up from correlation analysis seems

reasonable. A final check may be to examine the residuals of the fit

of this model for autocorrelation . If there seems to be none, it

would suggest that these residuals are independent, as there are

supposed to be in the model.

After this, the nonparametric test is carried out. Using the

formula set out in appendix 2, as n=156, we have that (2/3) (n-2) =

105.67 as the expected value of peaks and troughs under a null

hypothesis of independence. We also have that the the variance is

43.01 using the formula if n=156. This leads to a standard

error of 6.6. The confidence limits are then 105.67+!- 1.96x6.6,

roughly (92.7,118.6) . The observed count is 87. This falls below

the lower confidence limit of a two-tailed 5% significance test, and

suggests the tendency for the data to peak or trough is less
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Table 4.7

Box Jenkins Model Estimation: Conditional Least Squares Method

Model Estimates Variances T-ratio

ARIMA(1,0,0) AR(1)=0.9806 0.0163 60.25

ARIMA(1,0,1) AR(1)=0.9864 0.0141 60.25
MA(1)=0.1542 0.0816 1.89
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than one would expect under an assumption	 of	 independence.

This	 suggests	 either	 positive autocorrelation	 in the data,

or a positive trend. Thus, the non-parametric results seem to add

support to the conclusions based on Box-Jenkins analysis in the last

paragraph.

Lastly, consider Box-Jenkins analysis on the data split into three

separate years. Here the ARIMA (1,0,0) model is fitted to each year

in turn. Estimates for the autoregression coefficient and the mean

level are given in table 4.8. Simple significance tests may be carried

out, between pairs of coefficient estimates, given asymptotic Normality

of the estimation process. These must be considered fairly informally

for two reasons.

1) Tests on different coefficients and for different time periods

are not independent.

2) The estimates themselves are part of a time series related to

the one used to model the data set.

They do, however, give some indication of consistency, or lack of it,

between the coefficients when viewed as time progresses. It seems

reasonable to compare the first and last year, as estimates based on

these two years are least likely to exhibit correlation. 	 If al for 1984

is estimated as 0.9955 with S . E.	 0.0407 and al for 1986

estimated as 0.9963 then the difference between the estimates for the
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Table 4.8

Consistency Of Box-Jenkins Model Over Time

Year
	

AR(1) Coefficient
	

Variance

1 0.9955 0.0407
2 0.9851 0.0229
3 0.9963 0.0149
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two years will be distributed approximately Normally with mean 0 and

S .E.
	 -,4 SE,1- Lonnese SE, 0..Ack SE, use A-a. Errs

to ‘.- ec...ct, e 4‘renaVe .

under the hypothesis that there is no difference between them, and

assuming approximate independence of the two estimates. Since

a1986-a1984 = 0.0008 and the combination of the standard errors using

the formula above gives 0.0443, the standardised Normal test variate

is 0.1806. This is not significantly different from zero at the 5%

level of significance (for a two-tailed test the lowest significant value is

1.96). Thus, evidence here suggests that a simple autoregressive

prediction scheme should work adequately with the subdivisionally

aggregated data.

4 .4 Space-Time Models

Until this stage, the model for crime rate variation has been considered

either as a process in space aggregated over time, or as one evolving

in time but totalled over space. While analysis of the data from each

of these two perspectives is informative, greater realism may be

achieved if the process is considered to be simultaneously

referenced in both space and time. If it can be stated that relatively

little work has been applied to the problem of spatial stochastic

processes, then the scarcely of work in space-time processes is

an order of magnitude greater. Various techniques do exist in

terms of multivariate time-series analysis, treating each beat as a

time-series interacting with all of the other time series in the system.
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Such a view of the system is reasonable, but there is a danger of

ignoring the geographical aspects of the process. The crime rates of

certain beats may correlate highly to those of others for spatial

reasons (ie there will be a tendency for adjacent beats to have

correlated rates), and modelling should allow for this. It

therefore seems appropriate to attempt some specific analysis of

space-time dependency before fitting multivariate time series models.

In the case of household burglaries, there is strong informal

evidence that incidents occur in 'epidemics' or 'clusters'. In more

detail, the likelihood of a burglary occurring at a given address at a

given time is thought to increase if addresses in the locality have

recently experienced burglary. Although based on different causal

assumptions, similar quantitative models may be applied to infectious

disease epidemics, and several statistical tests for 'epidemicity'

exist. The purpose of these tests is to determine whether space-time

dependency of the kind described above exists, and if it does, to what

scale of time and distance. Therefore, as an initial stage of

space-time analysis, tests of this sort will be applied to the

household burglary data. The results of these tests may then be used

as input to the building of multivariate time series models whose

correlation structure properly reflects the local geography of crime

incidence.

After this stage, the consideration of several possible

space-time series models will take place, allowing a decision to be

made as which is the best predictor. Each model will be calibrated on a
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training data set, and then applied to further data, allowing the

quality of its performance to be assessed. The conclusion of this

study should yield a model suitable for incorporation into the crime

pattern analysis system.

4.4.1	 Analysis Of Space-Time Interdependence 

The 'Epidemic' Effect. 

As mentioned above, tests have been developed for space-time

interaction, so that processes in which an 'Epidemic' effect occurs

may be identified. The most conceptually simple test of such

clustering is that initially proposed by Knox (1964) which the

number of event pairs that are close in both space and time are

counted, and the significance of this count is tested against the

distribution of such a count under the null hypothesis that the

distributions for spatial and temporal referencing of events are

independent. Closeness in space and time are defined by the

experimenter, usually in terms of Euclidean distance and absolute time

difference. When the both the distance and elapsed time between an

event pair do not exceed certain values set by the experimenter,

(termed the critical time and critical distance) the pair is said to be

'close', and the test statistic is defined as the count of all close

pairs in the data set.
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Knox suggested using a Poisson approximation for the distribution of

this statistic, which works well if the proportions of space-close and

time-close events are small. However in the case of the crime

data, when burglaries have been reported for several adjacent

postcode units and on most days of the year, relevant definitions of

closeness may well give larger proportions than would be suitable for

this sort of approximation. Thus, an additional strategy will be

adopted. Under the hypothesis that spatial and temporal distributions

are not related, any permutation of grid reference-day of year

pairings are equally likely. Thus, if each possible Knox count for

each permutation is evaluated and these are sorted, the observed

count may be compared against this list. Since each value is

equally likely, the ranked list of possible values of counts gives a list

of n-tiles of the null randomisation distribution, so significance

testing may be carried out. However this would require n!

evaluations of the Knox statistic, and the computation time required

would be impractical. Thus 99 permutations will be generated randomly

and the test statistic compared against this. It may be shown that

the exact significance of the statistic is its rank when added to the 99

simulated	 results	 (Hope, 1968). This practice is known as

Monte-Carlo testing.

Knox test provides a test of the hypothesis stated below:

h0 : f(space,time) = fl(space)f2(time)
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where f , f1, f2 are probability density functions and t is the time of an

event, x is the position of the event, expressed as a two

dimensional vector. Tests of this hypothesis may be generalised by

introducing the test statistic

2_ xc . lcL,,:, 	 i

where X = f(d . )

Y = g(t.. )L3

Here, Knox's test is obtained by putting

f(x) = 1.0 if d	 < cok

= 0 otherwise

g(x) = 1.0 if t	 < c L.;

= 0 otherwise

and
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However, using these particular f and g values excludes any

evidence of clustering at scales exceeding the critical time and

distance.	 This could be thought of as reducing the power of the test

- a bad specification on the part of the experimenter may stop only a

slightly weaker clustering process from being detected, since

weighting of any close events exceeding the critical time and distance is

zero. Mantel (1967) proposes tests in which f and g are monotone

decreasing decay functions, rather than abrupt step cutoff functions.

An earlier idea of Mantels was to use Lqtiat.-3 itself. In this

case, testing for clusters would take place in the lower tail of the

distribution of the test statistic. However, this was thought to be

problematic, as the greatest weighting would be given to events

least close in space and time, which are unlikely to exhibit

correlation even if some space-time clustering does occur. (It might,

however, be a good statistic for 'repulsive' clustering, when an event

occurring at a certain (x,t) point inhibits similar events near to it

for a time period, although even this may be inhibited if the data

covers a very large expanse of space and time, on a much larger scale

than the scale of space-time repulsion.) Thus, the result in this case

would be a reduction in sensitivity to cluster detection, or a loss of

power in the testing procedure. This leads to the decision to use

monotone decreasing f- and g- functions. 	 Previous simulations have

shown that functions of the form

•Cdu,

3 (AO -7-
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are most sensitive (Siemiatycki, 1978).	 It is therefore proposed

to run further Monte Carlo tests using the above statistic, in addition

to the Knox tests. Here, a = 100 and b = 1. In order to

reduce computing time, beyond certain day-gaps (over 7 days) the

weighting will be uniformly zero, although it decays smoothly up to

this point. However, all levels of distance will be non-zero weighted.

Since the type of clusters being sought are less than weekly

gaps, this is unlikely to cause problems.

4.4.2	 Accuracy Of Spatial Referencing

Another aspect of this kind of test is connected to the precision of the

spatial referencing.	 For the post-coded household burglary data,

8-digit grid referencing is used. This specifies easting and

northing to the nearest 100m. In the vector notation, each element of

x

is coded to 4 significant digits. It is possible that Knox testing will be

carried out for critical distances of this order of magnitude (say

between 100-500m). Since there will be an associated uncertainty of

+/- 50m to each reference (assuming grid references are rounded), the

effect of 'wobbling' the grid centroids should be examined, to

discover to what extent the Knox statistic and its Monte Carlo

significance will be affected.

It may also be important, particularly in rural areas, to

consider the effect of spatially referencing events by postcodes.	 In
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less densely populated regions inter-household distances may be large,

and a single postcode could cover quite a large region. This may tend

to pull spatially dispersed phenomena together, or at least give this

appearance in the database. This effect may also be analysed.

Turning attention initially to the former of the two problems,

simulation again seems to be the only reasonable course to take.

Several estimates of Knox's statistics may be computed from several

'wobbled' data sets. The procedure consists of adding a uniformly

distributed distance in the range [-50,50] metres to each easting and

northing in the data set, and then computing Knoxs' statistic. This

process is repeated several times (say 100). Thus each 'wobbled'

dataset could have produced the final, rounded data set that is

actually recorded in the data base. Each simulated data set may be

thought of as having been drawn from an infinite pool of possible

exact data sets, and each of these datasets as having an associated

Knox statistic. Thus, from modelling the uncertainty in the true

dataset, the uncertainty in the Knox statistic can be investigated. A

sample of Knox statistic values can be generated and from this

approximate confidence limits can be computed. This process need only

be done for critical distances near to the 100m level, as for higher

distances the relative effect of rounding will be small.

Ideally, in addition to gaining an approximate distribution for the

Knox statistic it might be useful to perform a randomisation test on

each of the 'wobbled' data sets, to see if there is any uncertainty in

the significance results obtained on the rounded data. However it is
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feared that if this is done on all 100 simulated sets, the cost in

computing time will be too great, requiring 100x100 computations of

Knox statistics. More informally, however, it will be possible to

examine the test results for a handful of 'wobbled' sets.

The problems associated with errors due to spatial referencing by

nearest postcode centroid will now be considered. In urban regions,

nearer to the city centre, it may be noted that the distance between

postcode centroids is near to 100m, so that every possible 100m

rounded point is used. In these cases, the effects of wobbling may be

regarded as similar to postcode rounding. Problems arise, however, in

remote areas. For example, in beat W3 a few addresses are of isolated

houses sharing postcodes with their nearest neighbours, but the

distance between these neighbours greatly exceeds 100m. A possible

means of addressing this problem is to run further simulations

allowing greater variations for certain postcodes. A simple way of

achieving this is to allow different levels of uncertainty for each

postcode sector, based on mean distances between households within the

sector. These mean distances will be based on square roots of mean

areas occupied by individual houses. Since approximations of the

number of houses and the areas of postcode sectors exist, these

figures may be computed.



203

4.4.3	 Results

The results of the Knox tests are listed in table 4.9. These are based

on the 100m grid references from postcode centroids. Four main tests

are carried out. The first of these is for a critical time of 1 day, at

a critical distance of 200m. This is designed to be sensitive to

short-term time clusters, separated by about two postcode units.

Thus, almost daily epidemics at a 'within neighbouring streets' level

of separation is being investigated. Then the distance is increased

to 3km, which is roughly the average beat separation distance

based on household centroids. These two critical distances are then

applied in turn with a critical time of one week, this being the

anticipated horizon for forecasting in a working system. Clearly, the

observed figures are all highly significant, showing a much larger

tendency for events close in time and space to occur than could be

attributed to chance. In addition to this, Mantel-type statistics are

computed as specified in 4.4.2. 	 The results are listed in table

4.10.	 Again, results appear highly significant.

Having carried out these tests, the 'wobble' test results must now

be considered. The initial simulation, investigating the

variation of the knox statistic under rounding, is summarised in table

4.11. Note that the count of space-time close events for wobbled

data has a marked tendency to exceed that of the rounded data for

critical distance 200m. This appears to occur also with Mantels

statistic.
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Table 4.9

Results Of Knox Tests 

---- Poisson Model ---	 ---- Randomisation ---- Closeness
E(k)	 SD(k)	 Sig.	 E(k)	 SD(k)	 Sig.	 Days Dist.

460 222 7.73 0.000 222 7.72 0.000 1 200m
1505 1092 14.91 0.000 1092 15.39 0.000 7 200m

10407 10211 33.04 0.000 10204 37.30 0.000 1 3km
51294 50516 101.05 0.000 50163 80.40 0.000 7 3km

N.B. k is the number of events close in both space and time as set out
in the "closeness" columns.

Table 4.10

Results Of Mantel Test

Under randomisation:
Observed	 Mean Value	 St. Dev.	 Signif.

1625.41	 1378.71
	

11.08	 0.000
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Table 4.11

Sensitivity Of Knox Tests To Variability Of Spatial Referencing

Closeness	 Distribution of k under "wobbling"
Days	 Distance	 True k	 Mean	 S.D.	 Min	 Max

1 200m 460 532.6 8.65 510 554
7 200m 1505 1840.0 25.58 1779 1907
1 3km 10407 10450.1 10.70 10422 10479
7 3km 50516 51468.0 33.07 51359 51559

N.B. k defined as in table 4.10

Table 4.12

Sensitivity Of Mantel Tests To Variability Of Spatial Referencing

Mantels Statistic : Variation under "wobbled" data

True Val
	

Mean	 S.D.	 Minimum	 Maximum

1625.41
	

1547.44	 2.62
	

1540.92	 1553.45
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It seems that results provide sufficiently extreme evidence in favour of

clustering that the extra uncertainty in wobbled data cannot

detract from this. In all of the wobbled cases, the reduction in Knox's

statistic due to rounding applies equally to true and randomised

data sets, so that ranking is virtually unaffected, and significance

levels remain stable.

Finally, the above techniques are applied to Mantels test. Due to

the increased computational overheads in computing mantels test, only

9 simulations are carried out. However, as may be seen in table 4.12,

similar conclusions may be drawn.

4.4.4	 Conclusions

Firstly, there is strong statistical evidence from the tests applied

to this data that space-time 'epidemics' in this data do occur.

This effect is apparent at both a day-to-day neighbourhood level,

and on a week-by-week inter beat basis. Both of these

conclusions may be put to good use in a crime pattern analysis system.

The former could be used to interpret past data; those cases which are

within critical time and distance of each other could be highlighted on

a VDU graphics map, indicating potential clusters. If the crime

records for the highlighted points are consulted, subjective analysis of

incidence descriptions and modus operandi might lead to patterns

being identified.
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On a predictive basis, beatwise crime rates tabulated by week may be

used in a space-time autoregression (STAR) model or similar. The

larger scale spatial scale of aggregation is required here to reduce

computational tasks when making predictions: analysis accurate to

postal code units means forecasting requires the analysis of some 1200

spatially autocorrelated time series, which would be a daunting task

for currently available hardware, to say the least! However, the

previous analysis indicates that there is sufficient space-time

interaction between beats on a week to week level of separation to

suggest that beatwise time series STAR predictors (or similar) will

produce fruitful results.

Consider now the results of the 'wobbling' simulations. As

discussed, the result of 'wobbling' has the effect of increasing Knox

scores. A possible explanation for this is that rounding has the

effect of forcing the spatial referencing onto a lattice whose points are

allocated at 100m easting and northing intervals. 	 Thus, a

'repulsion' effect is introduced detracting	 from	 the	 spatial

autocorrelation effect. This effect becomes negligible for larger

distances, as the interval of the lattice becomes relatively small,

making it virtually 'cover' the region under examination. However,

for critical distances close to 100m, -the effect is notable.

The above argument applies mainly to rounding errors, but errors due

to assignment to nearest postcodes must also be thought of. The

simulations applied to this problem yield similar results to those

purely based on rounding. This is most likely explained by the fact
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that the majority of postcodes are within 100m of each other,

providing a similar partitioning of the study region to the 'rounding

zones'. The relatively small number of rural postcodes do not

strongly affect the overall measure of clustering. However, since

assignment inaccuracy of this type is more likely to distort rural

data, a cautious conclusion to be drawn from the 'epidemic' tests

might be that there is evidence for this type of clustering in urban

regions (or more formally, in densely populated areas).

When considering both of the above effects with specific regard to

Knox's statistic, it is relatively easy to understand the effects. As

the contribution to Knox score is constant (for fixed time

intervals) for all distances below the critical, and uniformly zero

above this, a pair of close events could be separated by rounding

error (if each one lies on opposing sides of a rounding zone border)

reducing their effect on the overall statistic to zero. If they are

brought closer together (ie onto the same rounding lattice point) this

would not alter their Knox score contribution as they are already

close. Thus, the overall effect of rounding is to reduce the

statistic. A converse effect could also occur for rural events which

may not be close, but are brought together by mapping onto the

same postcode unit centroid. However, for this data, the incidence of

this is low, so this effect will be superseded by the former. Thus it

is reasonable to conclude for this data set that greater accuracy in the

spatial referencing of events may lead to even more significant

results than those obtained here.
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4.4.5	 A Snace-Time Prediction Model

In the last section, tests have led to the conclusion that the spatial

distribution of household burglaries in the study area interacts

strongly with their distribution in time. Events of up to a week in

the past have some effect on the likelihood of events occurring

in the present. Clearly, then, there is a reasonable basis for the

short-term forecasting of the geographical distribution of household

burglary rates into the future, using this data. The aim of this

section is to devise a model, linking the geographical

distribution of past data to that of the following week; that is, to

model the data as a space-time series. As discussed previously, to

limit computational overheads it will be best to analyse data

aggregated to foot beats. However, it is hoped that any space-time

models used will be general to any areal unit, so that at some point

in the future, should advances in computer hardware permit, the

method may be implemented to a scale of greater resolution, for

example to post code unit areas. Thus, it is required to develop a

stochastic model of crime rates in each beat on a week-by-week basis.

This may be achieved by borrowing from both the spatially

autocorrelated model of Moran and from Box-Jenkins style time series

modelling.

It has already been noted that relatively little work has been done in

the area of space-time modelling, and some of the model fitting

techniques may appear to be 'ad hoc' in nature. One of the principal

aims of the PhD. is to create a prototype predicting system for
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evaluation, so that it seems important to have some form of fitted

model, perhaps only as a first approximation, rather than to get side

tracked into a parallel problem. However, the design philosophy of

the final system is modular, so that any model calibration

improvements to be discovered in other research could eventually

replace my initial efforts.

4.4.6	 Model Specification

Several prototypes for space-time models exists, and in

particular a family of space-time models analogous to the Box-Jenkins

framework for time series modelling may be put forward. To simplify

matters, the moving average component could be dropped to give

models of the form

E ,,, N(0)0-)

In these models, space-time stationarity must be assumed. This is

defined by C3enneVA- , \(=t4.

This makes it necessary to standardise each element of X by

subtracting its mean value. The (k,j)th element of the matrix

reflects the influence that X has on.X ,	 In a process such as
ICA-	 JA-t• I 
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this, in which spatial autocorrelation is expected to occur, the

specification of the elements of A should reflect the spatial

structure of the areal units. It seems reasonable to fit a distance

decay function to the elements of A, thus:

c,,,i , 
ck. CAl.')

where dij is a distance measure between beats j and k (Choices of

distance measure have been discussed in 4.2), and f is a monotone

decreasing function, such as an inverse power or negative exponential

function. Considerable computing time will also be saved if the

effects of second-order adjacencies, and orders beyond these are

ignored.	 This is reasonable, when considering the investigation for

the purely spatial model earlier in this chapter.

The model can be further simplified if the term in Xt is dropped from

the right hand side of the equation. This effectively makes the

elements in Xt conditionally independent, given the value of Xt-1.

This will simplify the model calibration, and in a final predictive

application will obviate the need to solve simultaneous linear

equations in order to determine the forecasted values. An assessment

of the loss in accuracy due to this simplification will be carried out,

and if this loss is not great, predictions will take this form, to

further the cause of obtaining a parsimonious predictive model.
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4.3.7	 Coefficient Estimation

Attention will now be turned to calibrating models of the kind

discussed above. Firstly consider the calibration problem in which

each term is independently distributed. Suppose that the usual square

root transformation has been applied to the burglaries per

household figures, and that further to this, they have been

standardised about their respective means. Then, the conditional

likelihood of an observed vector X at time t is

e_ ?( t( x _o- C	 ( -1 - fr)15.11_0-m-c(c-,--6

Then the likelihood of an entire crosstabulation table of beats by

weeks (conditional on the values observed at week one) is given by

L	 (1) =	 l_t	 KL-.)

--	 y o n in er. pt.(KL-cc.-1) 7 	L-c Kt_10
and so

	

c-"e x PICA	 (2_11 T (	 -C

--.• t C KL(C) 01=1,-,CL<0} nrn-	 c <1.1(Xi -c )11)/zo-/

9 t 	 _)
a2 1

Now suppose A is parametrised by a parameter vector t. Then, the

value of t maximising (, that is, the maximum likelihood estimate of t,

satisfies

1

\-n 	 can kt _ i )	 CC6)A) =0

"e
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Thus t minimises the least squares error of Axt-1 when viewed as a

predictor of xt . Note that once this value, from now on referred to as

SS, has been computed, it can be shown that

re\

Suppose, for example that a model of the form

X	 C )(
- ok

k-ket	 C

is proposed, then the MLEs of c and alpha would be given by

-
cx.1-\cyn 	 X -CX—	 - I

c )0( t

Note that this problem cannot be solved explicitly, and that often

least squares problems require iteratively. However, several

numerical algorithm libraries exist enabling numerical solutions to be

computed.

Finally, it may also be noted that likelihood ratio tests may be perform

on the curve fits, to test null hypotheses referring to

simplifications of the parametric form of A. For example, to test

whether separate values of CL should be given for each beat in a model

of the form
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then

LCIK,c4) 

k c. ‘ vi.304

where k is the difference in degrees of freedom of the two

models.

The more complicated case occurs when the term in X is no longer

assumed to be independent. In this case, the multiplicative model for

the likelihood of a given realisation is no longer correct, as the

deviations about the the means for each beat are now correlated. One

possible solution approach to estimation in this case is to use

'pseudo-likelihoods'. In the purely spatial case, these have been

used by Besag (1975) to estimate parameters in an autoregressive

model. In the purely spatial case, pseudo-likelihood is defined as

betai5
P (	 k)<ccit,

tx*ere %oca
cken.th-es VIne s.e.1- 	 L

Thus, true likelihoods of each event are replaced by the products of

the conditional likelihoods of each observed beat rate given the rates of

its neighbours,	 and spatial autocorrelation in these conditional
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distributions. In this space-time model it is proposed to extend this

idea into the time dimension thus :-

(	 \	 C(, , A d-ri, •)--)J

with, for example,

)(c3	t•\ orrA0A k. \A -L:3 \ Xc3 j, X (SA	 e)

Then, given the Normal distribution model, the pseudo-likelihood of

the entire beat by week crosstabulation will be given by

* ktec/6 	 kks	
/

I	 e	

(

( C°	 1)Q,\
-	 KtZti.

L =t	 ra

and again this is minimised by a least squares fit, but

regressing the values of a beats neighbours onto itself in addition to

the values lagged by one or more weeks. When forecasting is being

carried out, this leaves a simultaneous equation in the predicted

values to be solved: -

= AE.	 )__C

whereas exclusion of unlagged autocorrelation yields predictions

directly as a linear transformation of the observed lagged crime

rates.
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4.4.8	 Choosing Models To Be Fitted

Until now, the fitting of STAR models has been considered only for

the general case of parametrising the regression matrices Al. In this

section, a set of specific parametrisations will be proposed. All of

these are intended to reflect the spatial and temporal structure

which examination of the data up to now has suggested occurs.

Some of the models specified will be relatively simplistic, just having

a general power law relating the inter-beat distance with the

regression coefficients, while other will be more complex,

allowing for different beats having different sensitivity to phenomena in

surrounding beats, also allowing for non-lagged autocorrelation.

A)

__	 _..c
E(% , . )= 2_ axs, c ?(Ksp-,.,...,„	 'A

Here, no spatial autocorrelation at lag zero is assumed, and all beats

are assumed equally sensitive to neighbouring crime rates.
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B)

C	 =	 ( 	 01/4.

E4SY

In this case, sensitivity to adjacent beats varies throughout the

subdivision, but no allowance for lag zero correlation is made.

C)

-be
E	 (C_vit

KEZ(

As A) but considering events at time lags of two weeks also.

D) E )(;.,.„)	 ckS:s C.	 C,	 ))-t

As A) but allowing for zero lag correlation.

E)

E ( x L;,)	 )2(I-eg L (	 C-	 COL()))

Okn-‘,
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As D) , but allowing sensitivities to vary from beat to beat.

4.4.9	 Results

For each of the five models suggested in the last section, coefficients

are estimated using the least squares technique. The crime count

variables are subject to the usual correction for household density and

square root transforms. The goodness of fit results are listed in table

4.13. These are fitted to data with the mean levels extracted, so that

the number of parameters refers only to those in the autoregression

formulae. A notable change in least squares fit occurs when moving

from the base model (ie when only mean values for each beat are fitted)

to the simplest correlated model (model A). A second notable jump

occurs when terms for zero lag spatial autocorrelation are incorporated

(models D and E).

In addition to simply measuring the descriptive index of least squares

fit, some likelihood ratio tests may be carried out. These allow

significance testing of some relevant hypotheses. Using the likelihood

ratio formula set out in the last section, it can be shown that for
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Table 4.13

Goodness-Of-Fit Of Space-Time Autoregression Models 

Model Code (see Text) Sum Of Squares No. Parameters

A 1.2432 2

B 1.2275 31

C 1.2320 3

D 1.1793 4

E 1.1778 61

Table 4.14

Likelihood Ratio Tests 

Hypothesis Likelihood Ratio D.F. 99% Point
Base vs A 420.25 2 9.21

A vs B 59.47 29 49.6
A vs C 42.35 1 6.63
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models A-C , and for the base model, ratio test statistics for pairs of

models as competing hypotheses take the form

K ock e 1 1	 c.. c 1 it:.-1-0-rn e\-e_rs)	 V s	 tAcAla\ 2 (A t ecxrc,m6erS)

i La.\	 —,-)—
which are asymptotically distributed as-a- ^ \ Lit" &nr n twhere V), and AI.

are the number of parameters in each model. Clearly, and without

loss of generality, model 1 must be taken to be that with the greater

number of parameters. Models D and E cannot be subject to testing of

this sort, unfortunately, since they are not calibrated in maximum

likelihood terms.

Test results are listed in table 4.14. There is clearly strong evidence

for some autocorrelated model against the base model, since the test

statistic is about 200 times the mean of its null distribution!

In addition to this, both models B and C outperform A. The drop in

sums of squared error in model D suggests that this is notably

different from these models also. However, the marginal improvement

of E on D suggests that E does not notably outperform D.

These results suggest once again that there is a significant space-time

effect in the occurrence of household burglaries. It appears that the

best models are those capable of incorporating the effects of both

lagged spatial autocorrelation effects and synchronous effects at the

time over which burglary rates are to be predicted. It must be borne

in mind, however, that these results are eventually destined to be
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part of a desktop micro forecasting system, and therefore the

complexity of the synchronous correlation may prove difficult and time

consuming to evaluate in a working system (this is discussed in the

light of the final Bayesian prediction model in the following chapter).

However, the best performing of the remaining models offers a

significant improvement on the base level model, and should provide a

relatively easily programmable solution to the problem of crime

prediction which is reasonably effective.

4.5 Conclusions

A recurrent result in all of the fitting of spatial probabilistic models in

this chapter is that there is a strong space and time interaction effect

in the data, and that due to the autocorrelation effect of this,

records of space and time referenced household burglaries provide

useful information when predicting future crime rates over several

regions. In fact, latter results suggest that these alone can be the

basis of a prediction system. This is strong evidence for the feasibility

of an automated crime forecasting and analysis system that may be

implemented at subdivisional level. As suggested in chapter 2, data

consisting of spatially and temporally referenced crimes would be readily

available in the everyday workings of a police station, so that the

"housekeeping" of the data set on a day by day basis could be easily

implemented.
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Another important point is that some of the analysis techniques covered

in the earlier parts of the chapter may also be applied to this data;

namely the kernel estimation and Knox testing procedures. As recorded

earlier, one police officer, on seeing the surfaces obtained from

kernel estimation found the representation more readily interpretable

than say, scatter plots or bar histograms of the data. Another found

the Knox testing idea particularly relevant, pointing out that their

personal method of crime pattern analysis was to look out for clusters

of events that were close in space and time. Thus, these methods

yield helpful methods of past data presentation which may also be of aid

to crime pattern analysis. Since the data required for these techniques

will already be fed into the system for predictive purposes, it would

clearly be beneficial to incorporate the techniques as options in the

prototype system.
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LISTINGS FOR CHAPTER 4
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********* Listing 4.1 **************

Kernel Estimation Program in two dimensions ----
C	 Written for police crime incidence data 	

Automatically attaches files

Channels 1 = CRIMESPOTS (point locations of crimes)
2 = KERNMAT	 (30x30 Kernel estimation of PDF)

REAL*4 KERNEL(30,30), X, Y, K, BANDWT
INTEGER I, J
DO 50 I = 1, 30

DO 50 J = 1, 30
50	 KERNEL(I,J) = 0.0

C Define the Kernel Size

WRITE (6,'(19H&Enter Bandwidth > )')
READ (5,*) BANDWT
K = BANDWT * BANDWT
BANDWT = BANDWT / 4.0

C Attach Relevent Files

CALL SETLIO(1,'CRIMESPOTS ')
CALL SETLIO(2,'KERNMAT ')

C Begin the main loop

110 READ (1,'(T3,2F4.0)',END=120) X, Y

C Convert to array parameters

X = (X - 418C.0)/4.0
Y = (Y - 5650.0)/4.0
IMIN = INT(X - BANDWT)
IMAX = INT(X + BANDWT + 1)
JMIN = INT(Y - BANDWT)
JMAX = INT(Y + BANDWT + 1)
IF (IMIN .LT.	 1) IMIN = 1
IF (IMAX .GT.30) IMAX = 30
IF (JMIN .LT.	 1) JMIN = 1
IF (JMAX .GT.30) JMAX = 30

C Fit the kernel

DO 100 I = IMIN, IMAX
DO 100 J = JMIN, JMAX

HUMP = 1 - ((X-FLOAT(I)-0.5)**2 + (Y-FLOAT(J)-0.5)**2)/K
IF (HUMP .GT. 0.0) KERNEL(I,J) = KERNEL(I,J) + HUMP

100	 CONTINUE
GO TO 110

120 CONTINUE
SUM = 0.0
DO 130 I = 1, 30
DO 130 J = 1, 30

130	 SUM = SUM + KERNEL(I,J)
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DO 140 I = 1, 30
DO 140 J = 1, 30

140	 KERNEL(I,J) = KERNEL(I,J) / SUM

C Output Coordinates

DO 150 J = 30, 1, -1
DO 150 I = 1, 30

150	 WRITE (2,*) I*4+4182.0, J*4+5652.0, KERNEL(I,J)
STOP
END
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Appendix 4.1

Calculation of Approximate Confidence Regions 

Consider an approximate 5% confidence region R such that

(x) > -C	 V pc E. , y R
Although an exact functional form for f does exist, namely the kernel
estimate as an algebraic expression (see main part of chapter), a
faster method would be to calculate values of this function on an n x m
grid of arguements and multiply each by the grid square area. This will
only approximate the integral over a set of square, but should be
adequate if F is reasonably smooth. When such an array of values has
been computed, it may then be sorted in descending order. Denote the
kth element in the one-dimensional representation of this array as 7.CK
and let i(n) and j(n) be the original coordinates of the element in the
m x n grid before sorting. Then find K s,ch \-160,1-

(4..%
A

> 0 os	 e., -oS

The set of grid squares such that

Dr-L c].) ,Jco
are then an approximation of the required area 	 . Alternatively

tz,X,

ma y also be considered as an approximation, as a lower limit. From
these, either F could be estimated as the value. divided by the grid
square area, and this could be given to a contour drawing program, or
the squares themselves could be coded and fed to a raster based program
to map the relevant zone.
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Appendix 4.2

The Peak Count Test Statistic

Consider a data set (X) with n observations, with each X independently

and identically distributed (IID). For k = 2 to n-1, let C k be defined

as

0.11a	 D( )X) o r	 <-11C-1 C440 	 b4.4-1K.1)

0	 OVilerujise_

Then, the peak count statistic is

and thus

E (1D )	 E CiK) =	 E Ci.„)

EU)

If :i3(,(,..Ixand are IID, then any ordering of these is equally likely.,i

Replacing by ranks, there are 4 arrangements out of a possible 6for

which Lk= 1: See	 below

2	 S	 7:5

0

DC-K--%

,c

OCL4 k

I, V.

I

2.

3

0

i

3

ii.

1

3
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(1)

Now

and

Also,

Var CP) = i. vorCi.<) *
MC

f_ coy (i.K:v.)

.., kvk

If 1,j-- K1) 2... then CoNI CL,:) , 'L icyck2) , because no element of 	 3.-i-„(..J • =(:1 i A

is correlated with any of	 ...‘(_.1 , D(..K , .X. *<*t 'S .

q0ki- ( L() ---: G ( C,-,) — lE U.,())1-

= EL) — CE(14.1-

-_-.
3	 Ct	 Cli

Co V C LK0 ) Cv() = E: (4;+ILK) - E ci,.<, E(LK)

E (L<f) -z E (14) -r- 13

E(Lisil i-i() = fr (((-1-7-tk --: s)	 (3)
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The probability (3) is the probability that a pair of consecutive peaks

in a sequence of four numbers appear. This is computed by direct

enumeration:

I n 4 k.. = 4	 corn‘) .AcA‘on& ,	 o sc-A,C1-Vt co r0 tVI .

. Pr (	 L.:- I)

(1 4<,	 )-L=	 31-612-

Finally coy	 = E c („< * ti.„() - E. (i„(,)E

C LA) =7=-i

E	 =	 r Lk41. = L-

As above, direct enumeration is used

In	 5	 0_0	 S,
	 S4	 s
	

1-kese ten-hj, tnI

Pr CLk._/. .. C,(=	 =

Co C LK-7_,	 = 7.÷-0

but from (1) and (2) since

s 4 - 9
au 2o

co y CLa,

co y	L:1).: A \;/,'1

yar
-_-	 d
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Var(Peak Count) =
	

(A-7_,)ct -k- 1._Cr\-I)tr 	 2(11-4).25.

q_	 1 ,
71" 90

Sol _

g	 o

So, we have the mean and variance of the peak count statistic, under

the hypothesis that CX} is IID. The Central Limit Theorem may be used

to show that,	 if n is sufficiently large, 	 the sum of the peak

indicator variates is approximately Normal. This allows hypothesis

testing to take place.
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CHAPTER	 5

A BAYESIAN APPROACH TO CRIME PATTERN ANALYSIS

5.1 A Brief Outline of Bayesianism

The Bayesian interpretation of statistical inference and measurement

differs fundamentally from the classical in several ways. The most basic

of these differences is in the definition of probability. Classically, the

probability of an event is defined in terms of relative frequency (See eg

Kyberg and Smokler, 1963). The probability of a particular outcome of

an experiment or process is the limit of the proportion of times that this

particular outcome occurs as the experiment is repeated indefinitely. An

important corollary of this is that classical probabilities are only defined

for infinitely repeated events. In Bayesian terms, a probability is

defined in terms of "degree of belief". Before an event occurs, it is a

measure of the likelihood of particular outcomes occurring. This

definition is more generally applicable, and in this framework unique or

finitely reproducible events may also have probabilities.

In terms of inference, the Bayesian model combines prior beliefs about

some hypothesis with experimental evidence (ie. data) to produce

"posterior beliefs". Given the Bayesian definition of probability, the

prior and posterior beliefs are specified by probabilities and are related

by Bayes' theorem:
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(2)

pcem=
or

232

P(o pk) PA

P(Aw 	
1-00A) PA ?(x \cal,A) (1)

where B is the hypothesis
7?-,.‘ is the negation of the hypothesis
x is the observed data
pc.) is the notation for probability

Here the prior belief
the posterior belief

is the notation for the probability of E given S)

Thus, to perform a Bayesian hypothesis test, a prior belief is needed,

together with a probability model for the observed data given the

hypothesis and its negation.

Surprisingly, the Bayesian method of parameter estimation is identical to

this. If the hypothesis A is now treated is an infinite set hypothesis of

the form	 0 --= K- _ 1

Pk_e2lx)
PoonFtqa,,,. 

Efule) P(9_
g

p(ximptoti<
fpukle) Mcle in the continuous case0 -	 - -

Here, the probability of a hypothesis is replaced by a probability

distribution (or density function) of the parameters.

This approach to data analysis offers several advantages over the

classical. Firstly, input of knowledge prior to the experiment is
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allowed. This can be an attempt to represent subjective beliefs, or

perhaps results from some past experimentation. In the event of no

prior knowledge, the concept of a "non-informative prior" is introduced.

For example, in the hypothesis testing case f (A)---- eci:i 1 =-- 1 /7. represents

equal prior evidence both for and against A. Non-informative prior

formulations for parameter estimation are considered in Box and Tiao

(1973) .

Secondly, there is a conceptually simpler measure of experimental

evidence. The Bayesian probability P(1) is a direct probability of the

hypothesis. A classical significance level for hypothesis testing is a

statement about the testing process. It is the classical probability of

wrongly rejecting A if A is in fact true, viewed in terms of the

probability space of X. Similarly, for parameter estimation, classical

confidence limits are defined in terms of probability of containing e ,
given the sampling probabilities of X, whilst Bayesian analysis provides

a distribution for the value of 9 ._

Lastly, sequential testing is more naturally provided for in Bayesian

theory. In the hypothesis testing case, given a set of independent

observations
	

t pc, _ ...	 A's

, at any integer( ‹.... fl	 is simply defined in

equation (1) . Thus, viewing the experiment as a process evolving in

time, a measure of evidence is easily evaluated at each intermediate data

collection point. Sequential hypothesis testing in classical analysis is

considerably more complicated; see for example (Wald, 1947) .
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A further feature of this Bayesian property is considered below. At

point 1/4.< ,

Ptil)	 c-(11=1)

CCM Po) P(=it. . c.,\fot ('ook)bc1...t.A1-4)

and, at point

p cA)	 .	 cxyt, ,\A

Put)I -3(-1 	 -01-11)
	

P(A) ?(X.	 ?	 (A,..A,3?

(R1 	 v�t) 	
?(A)	 1c0 e (xi ._x,c)f(x n i-))

Thus, the prior of the observation of L-( KA n is the posterior after i.tt •

This seems intuitively reasonable. However, in the Bayesian framework,

this allows for modification of priors in the instance of

extra-experimental evidence, at time X4 . Thus, not only may degree

of belief be monitored during the experiment, but it may be modified, all

within the theoretical framework of Bayesianism. All of the above may

also be applied to parameter estimation also, by starting the above

mathematical reasoning applying equation (2) at point K .

All of the above may be applied in a pre d I ctive context. In this case,

the outcome of a future event y , is considered in terms of known data,

X and a parameter being estimated, e . Firstly, ?(A)1)() is obtained

using (2) , and then

Pkylx\ = _Cp. Ft?) t2 NO db
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-Set)(‘M,X)i).1-0\X)3,0

CJe PC Y tG) f(P-\)1‘)& (In the continuous case)

As time evolves, updated versions of Pcg nt)will be derived, and the

predictions will be based on better informed posterior distributions for

. Again, any new subjective information, or results from external

attempts to measure e may be used to update 1(9)$) at any time. The

Bayesian forecasting model may be set out as in Figure 1 (Fyldes , 1984 ) .

5.2	 Bayesian Forecasting Applied to Crime Pattern Analysis

In the last section, it was outlined how Bayesian analysis may generally

be applied to forecasting, given past data. The methodology will now be

considered in the particular context of crime forecasting. Clearly there

are features that may be exploited in this situation.

Now, collection of data on household burglaries may be possible, and the

analysis of the last chapter showed that, due to certain degree of

space-time epidemicity, past crime patterns can often provide strong

clues as to future evolution of geographical pattern; but there are other

pieces of information which could improve predictions, but which may not

easily be incorporated into the formal database. Such information may,

for example, consist of the knowledge that a known repetitive offender

has returned to an area, or conversely that a criminal active in a certain

region has recently been convicted. Data such as this may provide

rates may rise or drop, despite differing evidence suggested by spatial
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patterns in past rates. The Bavesian scheme of figure 5.1 incorporates

this type of information, and would allow the combination of human prior

knowledge with quantitative pattern analysis techniques allowing both

aspects of crime pattern analysis to be incorporated into a prediction

model.

5 . 2.1 Spatial Aspects

The results of chapter three may also be incorporated into the scheme of

figure 5.1. The expectation of spatial structure within the beatwise

rates in each week may be quantitatively expressed in terms of an

initial prior distribution for parameters governing rates : ie . as "prior

knowledge of the system" in the diagram.

They may also be expressed in the likelihood function of the data. It

should be noted at this point that, as in the last chapter, the prediction

is applied to a multidimensional system within a subdivision. Thus,

autocorrelation structures will be the medium through which perceptions

of spatial structure are expressed in the prior distribution.

Typically, the stochastic models proposed in the last chapter may be

applied in the Bayesian context, expressing certain degrees of initial

belief in the distributional paraders for crime rates at week n, given

those for week A-1 , "as prior knowledge of the system". Clearly, for

example one expects P (a.< 0)) PC,:t >0) and due to clustering f (c>c), p co)

in a process described by

z-
	 2_	

,	
= C	 ,	 t•IL/A)cr')



238

5.3 The Human Com-Duter Interface

So far, a forecasting model has been considered in terms of a Bayesian

framework, requiring various multivariate probability distributions, as

well as data, as an input, and yielding a further multivariate probability

distribution as an output. These are reasonable ways of expressing

degrees of belief to a user of the system who is familiar with the concept

of multivariate distributions, and therefore capable of drawing

interpretations from inputs and outputs of the system in its purest form.

However, generally one does not expect a target user a system such as

this to be familiar with these concepts. It is unlikely that police officers

will undergo an intensive training course in Bayesian probability theory

in order to use this system!

It seems more reasonable to devise means in which prior subjective

beliefs, and posterior crime production distributions may be handled in

more familiar formats, and in which some form of interface will convert

these formats into the type of information required by the prediction

system.

The output distribution function will be considered first. Generally, to

summarise a Bayesian distribution, some forms of descriptive statistics

will be computed.

Thus, for example, the mean, median or the mode of a distribution may

be used for point estimation. In the predictive case, these will provide

point forecasts for the coming weeks crime rates. For interval estimates
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in the one dimensional case, a Bayesian analogue of confidence intervals

is used. An interval (a,.,) having certain properties is evaluated, under
c ka

the condition that j_ PMY:)ckb =c,tfor some prescribed .:.. Here oe is r(0,CO-CO

This does not uniquely specify .c.. , and another condition has to be

imposed.	 Commonly it is specified that P( Oc g ) = P( 	 Ic)) =it, —d) 1 or

alternatively f( ()) fCP) for all 6 E( 90 and all 5 (a ) b) . These intervals

may be extended to regions for the multivariate case.

In the case of point estimates, mapping the predicted values onto a beat

map of the police subdivision may be an easily interpreted method of

posterior prediction distribution representation. This may be done

either using proportional symbol mapping, choropleth mapping or directly

labelling beats on a map with the predicted crime rates. A survey to

discover which of these is the most successful representation is

considered in greater detail in chapter 7.

A problem of dimensionality is encountered when dealing with interval or

region estimations. However, some information of this type should

perhaps be incorporated into the system. This attaches a measure of

certainty to the predictions. Effectively, a beat whose predicted value

has a wide interval is more likely to deviate from its predicted value.

Also, given that the prediction distribution is multivariate, those beat

pairs having high convenience should also be considered. It therefore

seems reasonable that the task of a map-based output is to convey the

first and second moments of the predictive distribution in a format

interpretable by police officer users.
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The solution for the first moment has already been considered. A

possible solution for the second moment may be to offer two further

maps: one highlighting "least predictable beats", the other "highly

related beats" if the respective variance and correlation figures become

sufficiently large. It may be possible that some users may prefer to

ignore the more detailed information, and use the basic forecasted map

pattern; however, the second moment related maps may be offered as

options, to be studied if the user requires further information.

Next, the input of subjective information will be considered. To some

extent, if a human operator is aware of the "epidemic effects", one

would expect their predictions to tie in with that of the predictor in the

system. It is more important that the user supplies extra information,

of courses of crime pattern not detectable in past data of crime rates.

One way of gaining this information may be to display the predictions

obtainable when only using the posterior distributions from the spate

time stochastic model, and asking if there is any way in which the user

disagrees with this prediction.

If the space-time pattern analysis, and the operators knowledge agree on

predictions, they remain unaltered. However, any knowledge unique to

the human analyst may now be given an opportunity to enter the system.

As stated before, it would be unreasonable to ask for a probability

distribution at this point. A simple menu-based modification of the

forecasts will be more simply visualised by the operator. It may also be

suggested again that some information as regards second moments could
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be input. This may be done by a dialogue between the user and the

machine asking

(1) "How variable do you feel this forecast is?"

and (2) "Do you think a change in forecast in this beat would affect

any other beats?"

The first of the responses could be used to readjust variances in the

covariance matrix, and the second to alter the non-diagonal elements.

5.4 The Introduction of Advanced Bayesian Techniques

In the above sections it has been outlined, a way of adapting a basic

Bayesian forecasting scheme for Police use. Some more advanced aspects

of Bayesian theory will now be considered, and it will be discussed how

these aspects may be used to improve the outlined forecasting system.

The advancements will include a formal specification for combining

Bayesian priors, in this case formulating a means of combining police

operator prior beliefs with those based on analysis of past data. Also, a

method of calibrating priors based on past performance of their source

will be considered. This introduces a property of "adaptability" into the

prediction model: consistently poor forecasters will tend to become "down

weighted" in the predictions, whilst good performers will have

increasingly greater leverage on predictions.
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In addition to the above improvements, the concept of multi-state

modelling will be considered. In this approach, the possibility of sudden

possibly spurious changes in process is considered. For example, a

particular beat may incur a spuriously high number of household

burglaries in a given week, but then return to normal, or the arrest of

an offender particularly active in an area may cause the overall level in

that region to drop suddenly. There are several ways in which

Bayesian probabilistic models may cope with such phenomena, and this

will also be discussed.

5.4 . 1	 The Calibration of Bayesian Prior Probability

Distributions

As discussed previously, the formal method of inputting prior knowledge

about the values of some parameter into a Bayesian system is by

specification of a probability distribution, but a major difficulty with this

approach is that experts in fields not concerning probability may

experience difficulty in expressing their uncertainties in probabilistic

terms. However, in a Bayesian framework, if some method of assessing

the experts' ability to quantify probabilities exists, this may be used to

modify his prior distributions.

A means of doing this (due to Morris, 1974) is outlined briefly below :

Suppose, for a series of exchangeable events (see Kyberg and Smokier,

1963) , the expert has provided a prior distribution relating to some

prediction or parameter. Subsequently the true value became revealed,
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in each case. Then, the cumulative probability of each parameter from

the prior distributions can be used as a scale-invariant performance

indicator. A value close to zero suggests underprediction, and one close

to one, an unnecessarily high prediction. Also, a value of 0.5 would

indicate a good prior, whose median was in fact the true value.

It seems reasonable, then, to extend the idea of a performance indicator

for a specific prediction to a distribution of performance indicators,

applied to all predictions made by the human analyst. When the user

specifies a prior for any given event, there are then two distributions to

consider: the prior itself, and a distribution related to the general

performance of priors supplied by this user. Adopting an algebraic

notation for these quantities, we have

=
	 prior supplied by the user for

(in a general context)

( 99.

9 = J P(e)cle =	 cumulative probability, given e = 0,,

(performance indicator)

	

I" ) =

	 f- Gt.( 0 \- 0

	

P (e) =
	 prior supplied for a specific problem

	

Then Relp)must	 now be evaluated, (ie. the distribution of 0 if the

distribution of 7 is given) . Define
r"x.

Q (x) = L 0, P te) 3.tt
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Then, as Q must be a monotone increasing function,

	

Pce D Q 5,0) = P	 (04

s
Q(0)

	

c,	 P( Ocifi

Now, the calibrated distribution, flo is the derivative of the above

expression with respect to 0,

(3 ' r(e)d e
QUI) _

F ( (4) ct%Jo
r

1" ( 0) =	 LJ	 (p)cd = P(Q C94 4(o.)

= '(Q( 	 P(G)

Thus, the eventual calibration is of the form RD,..)(01,) where CM) is a
e..

calibration term, defined by iokj e(g)jp), ie a function of cumulative

probability of 9 . Thus, given a probability density function capable

of describing the performance of the user, a "correction factor" may be

added to the priors that the user supplies.

It is interesting to note that the descriptive powers of the pm_ are

fairly versatile. Morris (1977) gives examples of curves for

indicating overstatement of precision of knowledge, and understatement

of this.	 In addition to this, curves may be given to represent

consistent under- or over-estimation.
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5.4.2	 Estimation of the Performance Distribution

So far, a means of recalibrating a distribution has been given in terms

of the performance indicator distribution. However, the task of

evaluating such a distribution has not yet been considered. In order to

keep strictly to the Bayesian definition of this distribution, it should be

evaluated in terms of performance indicators applied to a set of mutually

unrelated incidents. In practice, this type of calibration is difficult. In

terms of Police officers in the context here, the time and resource

overheads lost in performing some sort of experiment to do this may well

be prohibitively large. A compromise will have to be reached, where

calibration is actually performed on the week-by-week priors given by

police officers for their input into the crime prediction Bayesian scheme.

This data will be input anyhow, so no extra resource costs will have to

be incurred. This also gives an opportunity for an adaptive system.

The accumulation of information about the shape of will evolve as a

process in time. Initially, nothing will be known about Fe9 , after a few

weeks, a fuzzy iD may have evolved: after some time quite an accurate

estimate for yo may have been built up. However, it is possible that p

may itself change with time. The most obvious reason for this may the

replacement of the main system user with a new operator, the nature of

whose prediction abilities differs from the first user. In this case, a

method of estimating	 may be able to adapt to a new shape of curve if

the observed values suddenly appear to behave differently from the

current estimate of : for example, in a weekly sample, a goodness of

fit test to be carried out between the observed 7 for each beat and p.
This technique could be flawed, however, as )0 values in a small

geographical region over a single week are not likely to be independent.
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Empirically, this could be countered by raising the threshold of the

deviance from fit of the model. Generally, if observations are

correlated, likelihood of deviation is increased, as a few spurious cases

may affect others, which would not occur in an independent model.

Another modification may also be proposed; instead of having a single p
distribution function extend the concept to one of spatial variation: for

each beat allow a separate Pc: . This would be equivalent to a model in

which the human predictors performance in prior specification varies in

space. This is a reasonable assumption: it is possible that, as a police

officer, the user may be particularly familiar with some beats in the

subdivision, and be a more competent forecaster for these beats than for

others.

In this case, the goodness-of-fit, monitoring for fundamental changes in

could not be carried out. However, some form of exponential smoothing

technique might be applied to the F estimates, diminishing the effect of

values from the distant past. This loss of "fast adaptive response" may

possibly be more than outweighed by incorporating a geographical

dimension into the performance indicator distribution.

Another important advantage of this type of system is that it is

effectively evaluating the priors supplied, rather than the user in

person. In a system such as this, wherein prior probability

distributions have to be synthesised, a certain amount of unreliability

will be introduced into the prior by the synthesis. However, the method

proposed here will calibrate the prior in terms of all unreliability,
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including that due to the synthesis process. Thus, with enough

training data, the system will be able to correct for any design

compromises that have to be made in the prior specification routine.

5.4.3	 The Combination of Bayesian Prior Distributions

A means of specifying the input prior beliefs of a human user has been

discussed in the last section. In addition to this information, there are

the prior distributions brought about by the statistical analysis of

household burglaries. Thus, some way of integrating these two sources

of information becomes necessary, in order to make forecasts, based on

both of these factors.

The problem may be tackled with a further application of Bayes'

Theorems (Morris 1974, 1977).

It may be seen that, from the position of the forecasting system as a

whole, there is a set of beliefs native to the system about the coming

week's crime rate, and also a set of beliefs from the external human

monitor. In addition to this, native to this system is an

observation-based set of beliefs about the external user's performance.

Write these as

eM(0) = system prior to o
P(0
	 = performance distribution for external user

GOD) = external's uncalibrated prior for 0
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For any given 0 , say e„Bayes theorems gives

lo (t ee G c) = X GA( fe LeNV't ( s..) em t °G)

But, this is just multiplying the assessment of the system by the

recalibrated prior. Thus, combination of the two sets of beliefs is a

simple multiplicative operation, so long as the nature system has an

assessment of the external user's performance in specifying priors.

So far, the case of only one external expert has been considered.

However, certain scenarios may occur in which several experts may be

entering subjective information. In this case, it would be necessary to

specify a method of combining several external priors.

If their beliefs are independent, it can be shown that the multiplicative

effect can be logically extended; giving an overall distribution of the

form	 A

It zli 
Pc ( 0) c to
i-vr n opinions, represented by ft to and

calibrated by ((e). However, the independence assumption is unlikely

to be true in practice, particularly in the police user situation. Possibly

several officers using the system would discuss recent criminal events in

the subdivision, and influence each others views. In this case, the

multivariate distribution for performance indicators could not be

expressed as a product of individual distributions, but would have to

reflect the correlations between performances of the external users.
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In this case, it may be shown (Morris 1977) that the prior is of the form

(C(D ,(9) - 	 Aes)

where 1 is a joint calibration function. If n. 410 is the joint probability

density function of the performance vector, then 4..( 0= r(FLOwhere 0

is the vector of cumulative prior distributions, ie .

i, (--, (8 ) AOe°

This leads to much greater difficulty in estimating the calibration

function. Two main problems are then incurred.

(1) The estimation itself becomes more complex, as a multivariate

distribution must now be estimated.

(2) There will be a resultant loss in accuracy of estimation. If several

users are inputting data, then for a given amount of data, or a

given number of weekly predictions, each individual assessment

would be based on fewer points. The situation is worsened by the

fact that in addition to estimating each individual performance on a

relative lack of information, the interrelation between performances

must also be measured.

It seems more feasible then, for the input of knowledge to come from a

single crime pattern analyst, rather than a set of several officers. It is

possible, of course, that different officers might alternatively use the
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input facilities. If this were to happen, the calibration applied would

not reflect performance of a single human predictor, but of a process

involving several officers generating a single prior. In this case, the

prior could be recalibrated. However, it is expected that variability in

performance of a multi-user generated prior could considerably exceed

that of a single user prior, particularly if some users have strongly

contrasting views to others. The net result of this would be a general

downweighting of the subjective input. For example, if one user had a

tendency to over-estimate and another to under-estimate, the system

could compensate either of these if they provided sole input. However,

mixing together the two users would lead, from the systems viewpoint to

an erratic predictor. This would lead to a flat kip function and so to a

flat E multiplying almost by a constant. Unless the system had

information as to which user supplied the prior, it would be unsure

whether to compensate upwardly or downwardly, and be more likely to

virtually ignore input. Given this, it is recommended that the system be

defined for a single user.
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5.5 Detection of Changes of State and Atypical Phenomena

A further aspect applied to Bayesian modelling may now be considered.

The likelihood part of the posterior specification is assumed known for

the data used in the forecasting technique. There are times, however

when data may deviate notably from this model. As discussed earlier

this could occur spuriously, for a single week, or might occur on a long

term basis.

In the first case, the effect is something similar to an "outlier". In the

second case, it may suggest a more fundamental change in the stochastic

model of the process.

An example of the second case could be that, in a particular beat, some

houses are demolished. If these were particularly prone to household

burglaries (perhaps not being very secure, or having poor protection

from intruders in a context of defensible space eg Newman 1972) then

their removal may lead to a drop in the average household burglary rate

in that beat. If the mean levels for the beat were prescribed from past

data analysis, predictions after the point of demolition would be biased

above the true rates, and the bias would remain unless the model were

re-specified.

Two ways of monitoring for changes in the model are presented here.

The first of these allows for the possibility of other models than that

most commonly applied to be in force occasionally. The second monitors
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performance of posterior beliefs in terms of "surprise". , A surprising

result is effectively one to which little probability was assigned to by

the prior. The first of these to be considered will be the multi-state

model:

5.5.2	 Multi-State Model

In this model, there are several probabilistic processes that could

generate the data: there is the most usual one, which is used in the

prediction process as the normal likelihood function. There is also

another possibility, in which a spurious high or low rate is observed.

This win be identical to the first model, except that its variance will be

very much larger. There is also then a third model, in which other

parameters change, and which will subsequently remain changed. The

three possibilities are shown for a simple distribution about a mean value

in figure 5.2. Refer to these models as M 1 , M2 and M3 and suppose

there may be prior probabilities attached to each of these, as to which is

most likely to occur. One would expect M / to apply most often, and

very occasionally M2 or M3 would apply. A reasonable set of

probabilities may be

19(tli)
	

Or

e 1'40 pm) 0 °3

In true Bayesian fashion, on seeing a particular item of data, these

probabilities will be modified accordingly. According to Bayes theorem

Po( F CrAd
fOotIZ.)eull
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Figure 5.2a : Normal Data Pattern
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where x is the observed data. There are then two alternatives:

(1) From the set of possible models choose the one most likely to have

applied in the light of the data observation. Base forecasting in

the most likely model.

(2) Base forecasts on the information relating to all of the models,

including the probability that each one has occurred.

A method based on (2) is given by Harrison & Stevens (1971).

Unfortunately, the prior obtained in this way is a "mixture" of several

distributions, and in turn, after two stages we obtain a "mixture of

mixtures" and so on. To avoid this, their approach approximates the

distribution at each stage by a normal approximation agree to the first

and second moments. The author feels that the extra work put into

developing a more accurate model by incorporating relative likelihoods of

each model may be lost by the last approximation. Perhaps it may be

more parsimonious to adopt the first approach.

5.3.3	 Atypically Monitoring

An alternative method of checking model performance is outlined here.

In this method, the posterior probability prediction distribution in a

Bayesian sense, is thought of as a representation of belief as to what

will be the outcome of a future event. When the actual outcome is



170e04. r( x2)

255

known, a surprising result could be thought of as one for which the

probability in this distribution was low. For example a constant value

and could be chosen, and an outcome x defined as "surprising" if p 004.

It may be more informative, though, to define surprise in terms of the

probabilities of x values. Thus result x, is "more surprising" than

if P(XL)C. poi). From this premise, an "index of atypicality" can be

constructed, as

That is, I is the probability of

getting an outcome at least as surprising as X. In the case of

symmetric, unimodal distributions the value of I is the sum of the upper

and lower tail probabilities of

Here, surprise may be defined as the event <,<• Thus, this may be

used to flag a spurious event. Repeated surprise may be used to test

whether the model is in need of recalibration.

The methodology behind the decision process for this type of modelling

is more ad hoc, perhaps, in its approach to identifying changes in the

structure of the likelihood model. Despite this, it has other advantages:

it only required the specification and calibration of a single model, and

also does not require the supply of relative probabilities of the differing

models.

This problem accelerates in the multivariate case In the atypicality index

method , modification is fairly simple conceptually. The direct extension
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would be to define the atypicality index relating to the entire subdivision

as

=	 f(0_14b-

9_ eco< e(et-)

However, identification of the region over which the integral is to be

performed may prove complicated, and beyond this, evaluation of a

multi-dimensional integral would have to be performed. An alternative is

proposed here, in which the atypicality of each beat in turn is

considered: define

7(oL)= S PCet\ eER)aLne3
that is, ConStae...r

the conditional distribution of OL given the other observed values of 8 .
A value of OL close to that of its neighbours even if high, would not

necessarily by surprising. However, if the mean level of the beat c

suddenly altered, given that it is deviations about the mean that are

considered as correlated in the likelihood models specified in chapter 4,

one would expect to get repeated surprising results for that specific

beat, given its neighbours values. If the system is then called to

intervene, the offending beat mean may undergo recalibration.

In the multi-state model, however, dimensional,1 brings great

complications. It is now possible that each beat may have been in any

of the three states. Considering "compound models" to be models in

which the states of each beat are considered as a single model, there are

3	 possible compound models, each of which would require a prior
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probability assignment. This could be simplified by assuming the states

to occur independently in each beat (ie. probability of state i in beat j

is independent of states of any other beats) but in a spatial process this

is unlikely. Spurious high rates in neighbouring beats are fairly likely

to have affect across boundary lines. In the atypicality model, unless

there is a sudden change across several beats all having common

boundaries, a certain amount of conditional atypicality would be

observed. Suppose, for example the dark shaded beats in figure 5.3

had surprisingly high rates. Although the adjacency of, say 1 & 2 may

reduce the conditional surprise index slightly, the effects of (3, 9, 8)

on 1 and (5, 6, 7, 8) on 2 should still make conditional surprise fairly

high.

Thus, in the multivariate case, as in here, a mechanism for determining

spurious high or local rates, or when the model may need to be

recalibrated, would be most practically based on atypicality monitoring.

5.5. 4	 Practical Example

In this section, to help evaluate the practical aspects of both methods,

they are compared for a simple univariate example. This should help to

illustrate how the principles discussed in the last section are put into

practice. In implementing a one dimensional model, and facing some

fundamental problems concerning the method generally, it is hoped that

the more sophisticated multi-dimensional system may be approached with

greater initial understanding. It also gives a means of comparing the

atypicality monitoring and more theoretically sound multi-state models, to



258

Figure 5-3
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assess any losses possibly incurred by adopting the former of the

multidimensional model.

The Problem

The problem here is simplistic. A process is defined as normally

distributed white noise about a mean 	 having variance Cf .. .

However, occasionally there is a spurious observation having mean /A.- but

variance 0r6.1" . Also, occasionally, a jump occurs in the system, and /0,0-

is replaced by /1X0- ,S. , where

The task here is to evaluate Axc, , and identify points in time when

spurious high variance noise occurs, and points in time at which a jump

occurs. At this point, the previous estimate of 1A0,c...should be discarded.

The process is actually defined thus

p,ct = t.0

O-0. = 0•5

C5'c = 10

State space

P (normal observation) = 0 .%)

9 (high variance)	 =	 o.os

e (jump)	 = 0.oc
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5.5.4.1	 Multi-State Approach

Assume that the probabilities for each state is given. Then the

likelihood, given an observation X , for the normal state is given by

t4Dfi

O•c(11-3)F(144,0-2,)* 0 . 0S t4-W(0.„,(37,) 4-0.05ckF(tA.--k=cs,(3Z)

likelihood for the alternative state are given by

IDS RIC ( c.
0 IA DF	 c5;-)	 'CSK-1)fl. 	 -4 0 '0 C	 6; CI)

and
0.135 tAlif kAkc,44-, Ca) 

6 • tt.15:›F lti\c,,C1)	 0-ostADFCR,Jf:3;) 0 . c	 F(tao,i-S, C",_)

if' it is wished to decide which of the three models generated L, this

should be done by selecting the one giving the largest value in (3).

These estimations however, assume perfect knowledge of 6-..,Crt Cri. and

It is more likely however, that some of these will be unknown, or be

expressed as priors. In this case,

()C U'V)

should be replaced with

Suppose in this case that reasonable knowledge from past data exists for

the Cr values, but not for t.kc, .

Then the prior for IVA has to be built up as knowledge of 3C increases.

This is done in the usual way, by multiplying the prior by the likelihood
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of the event, and normalising. However, although the true likelihood of

the event is the mixture s

Z PCRO f Cik l Mc ) tnXc)

, to avoid complication, the most probable state

likelihood will be considered as the likelihood function. IV it is suspected

that a change of state has occurred, however, the prior for is4A will be

reset to the non-informative prior. This is actually an "improper prior"

(Barnett, 1982) . This will also be the prior initially.

At each stage of reading in an it. value, an estimate of )4k cA. will be

output. This will be in terms of the mean of the current posterior for

(incidentally as this will be a normal distribution, the estimate could

identically be defined as either the median or mode of the distribution) .

In addition to this, it will be flagged if either the jump or spurious state

is thought to have occurred.

5.5.4.2	 Atypically Index Solution

Again, it is assumed that variances are given, but not the mean value

Thus, a prior distribution for /44“ must be supplied. In the initial state,

no prior knowledge about Akc, exists, so the constant non-informative

prior is assumed. After the first observation, the posterior in i ttc.N is

tn12 . FC tk.c.,(5-,-)
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So the posterior is normal, with a mean of -X X. This represents belief as

to the next likely value. A surprising result occurs in e , when Xe..1 is

revealed next time, if

P(?(7A DC.)	 Gk.	 Ft.c- Some_ c=t

le	 •S c-t("`2-f‘nt-	 Utt-4c4) dikk<e 7-

This is also based on a normal distribution since this distribution is

symmetric and unimodal, a surprising result PC)( 2.1X, is equivalent to

a result `A-4(....Vnlor K.,>X2. where kr<, and lnC are the upper and lower 01../

tails of the distribution.

In this case, choose surprise at 5%. Then it is necessary to monitor for

koc.. -)c)

)cçv<,(X,-- Art)

If this occurs once, it is first considered to be a spurious result. If,

however, the surprise recurs (in the same tail) this may give the

impression that a jump has occurred.

In the instance that an initial spurious result is thought to have

occurred, the posterior belief is not modified (as it is not thought that

the likelihood function generally used to model applies in this case).

If a second "surprising" result occurs, again the result is not used to

modify the prior. On the third instance, it is assumed that a jump has
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occurred.	 Then, the prior distribution for 	 is reset to the

non-informative prior, and re-calibration begins.

5.5.5	 Results of Simulation

The system described in the last section was simulated using usual

methods of random number generation for Gaussian variates ( see eg

Newman and Odell, 1971) . The points at which a random spurious

observation occurred, and the points at which a jump occurred were

noted, together with the actual series generated. This data was then

fed into the two algorithms proposed in the last section. Their

performance is shown in figures 5.5 (multi-state model) and 5.6

(surprise model) . The simulated series is shown in figure 5.4. At each

incidence of a spurious high variance observation, both methods were

capable of flagging the event. The multi-state model flagged most cases

of spurious variation, although often flagged jump-states as spurious

variation.

In the surprise model, there was no facility to flag jumps immediately.

However, the "repeated surprise" parameter appeared more effective in

some ways. Although the multi-state model was capable of rejecting the

" normal" model, it was often unable to identify jumps, erroneously

flagging a spurious observation. This often happened on several

consecutive data item inputs. It seems that the time-dimension in jump

detection, although empirical here, plays an important role.
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Figure 5.4 : Simulated Data Series

Figure 5.5 : Multi—State Predictor
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In this simulation, then, both models were relatively effective, although

time dimension considerations made the "surprise" model more effective at

jump detection.

Another important point to consider is that whilst the multi-state model

exploited information about alternative states to the usual, in the form of

alternative probability models, the surprise model did not require this,

but was able to detect jumps (albeit fairly large ones) using information

about the main distribution alone.

It also may be of importance to consider how capable of detecting

relatively minor jumps both of these systems are. In each case, a

certain amount of re-calibration ma y be required. For the multi-state

case, new details about the "jump parameters" would have to be input.

For the "surprise" model, and could be lowered to allow the possibility

of jumps to be detected with more sensitivity .

If, as is likely to be the case in order to constrain computing

overheads, tests for "jumps" or "spurious effects" are likely to be

performed independently between beats, it appears that the conceptually

simpler surprise test would be the most applicable. Certainly, from the

results of this simulation, they seem to perform similarly, with, if

anything, slightly more powerful results from the "surprise" method.
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5.6 Review of System Design

At this stage of the study, the typical Bayesian forecasting system

suggested in 5.1 could now be revised. In the past sections, a means

of calibrating input priors has been proposed, as a means of combining

the priors of the forecasting system, obtained from data analysis, and

those of the human user.

Finally, some thought has been given to detection of sudden changes in

the likelihood model, and how these may be incorporated into a

prediction system. The possibility of several human users giving input

has also been considered, although this was not eventually recommended.

The incorporation of these extra techniques seems reasonable, so that

the scheme may now be expanded, giving the revised system in figure

5.7. It is this scheme that is to be proposed for the model of a

prediction system in the prototype. In the next section, development of

the individual parts of the system will be considered in detail.

5.7.1	 Application of Bayesian Analysis Techniques to a

Computer Crime Forecasting System

In this chapter so far, various techniques of Bayesian analysis have

been considered. Attention has also been given to multivariate spatial

aspects of these techniques. These will now be combined in a specific

context, based on the analysis of household burglary incidents as a

space time process given in chapter 4. The forecasting system can then
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be thought of as a multivariate prediction method combining prior

knowledge of the spatial and temporal structure of the process, evidence

from beatwise data collected on household burglaries from the past, and

human expert knowledge of beats at risk, due to circumstances

undetectable in data. The design of the system will be based on the

diagram in figure 5.7. Each aspect of this will now be considered in

term.

5.7.2.	 A Space-Time Series Model

As evident in Chapter 3, the process may be stochastically modelled as a

space-time process. Results implied that, given a vector of household

burglary densities suitably transformed by a square root transformation,

could be modelled as being related to X E*I using a space-time

autoregressive formula.

tk = MX- fk)

c WO, 0- )

Thus, X b,,could be modelled as a random vector, whose conditional

probability on	 could be expressed as

	

Poc4,1)1\._,)	 ey.? t

	

A*	 AQ-0

Clearly, if X is conditionally independent on all X , K>t , as

suggested in chapter 4 (there was little improvement in the model when a

term in )C..1. was entered), then the series ()(has a Markov property:

Poc. +1 1\k, , N6_,



269

Given a series of weekly household burglary vectors, 	 e we have

Pc& 

=	 ecl)

If X i , is taken as fixed

PcIlkY1)

Thus, if Y. is known (which it will be), then the likelihood of the

remaining data will just be the product of the conditional likelihood if

each weeks observation, given the previous weeks.

Thus

FC€X,1. \,)	 v<ex-19 ()S._‘-W)TA (XL -WV/i

K 114 Ql(f(-i_L-)

where	
L =	 (	 Wr_A_	 -

	

=	 ( XL-	 .fl-TL')	 - xt.., i(A-1)P)

(expanding)

(NI
k &V.A. Lv _ Etc

e-	
A E1C-)

-	 e-i
tAtms eiLc_1)ckwkcV	 — I) tk)

If t is sufficiently large, wehave 	
-

—	 (3:-A4)

L0.4‘41.	 (P-
	 (—&
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If it is only necessary to estimate , so that A and_A_are assumed

known, and initially adopt a non-informative prior for 0 , then the

above expression is proportional to the posterior for AK , given the data

set. Thus: g 1.1 .1V-1-1/t4 This is an intuitively sensible

expression. If Pk remains fixed, and L'-'°"), then the variance tends to

zero, and fi- , the running mean vector of bc-ilten.ds to

If predictions were to be based on this posterior distribution, then the

density of X E., I would be given by

= Se ç ( 	 t&\)c),p,

P c_&4,	 fcrm 11)	 4z- Y-P c-4-(2)

L= (b--1) co. -12_,)-tte (R.

	

+ ((4 4 ,- t,A - Acx„	 -	 0))

	

= cv - 6--E-1 V -	 e*, - fklEV-4-

tv- k-E-L	 -

cx, t ,- A VA- C)( + A Y t\
- &-t)t

	

—	 A

CU4t- A2(0	 - kX)

integrating out the expression in v cA	 , we have

P( •Ab-tt	 e(- i2)

where

C k - 20	 AXYA-	 AX) •—•

(2.(	 A	 _A_ C) 4 tx.roAc AoSf 1ALLA 1.1 _1( L-4

(‘	 )(L_	 An	 Ub4,-b-
s. .2)(0 va,	 y_,
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"7--- Cl - -1j) O•v, - A4 -r-A- LL41--1\-- g) .4)

Thus	 - N Ca + PCX,4), CI - )Er-A-1

Again, this is intuitively appealing if ia is fixed, then as taco , Q -04-)i

from above, and ,a,...0 , so that, asymptotically

1(c.,, t )(.4" , the predictive distribution for 'Y	 , tends to the

stochastic model for -X,c+iq e , when u is known.

In particular, a point prediction for burglary rates at week 1C., can be
A A	 A

obtained from Acc-k). 0 , where fr. is the vector of running mean rates.

This, however, assumes that A is a fixed quantity. Also, if

confidence limits are required, 4 is required also, and again, at this

stage_A_ is a fixed quantity.

It is possible to incorporate estimators of A and A. into the Bayesian

modelling system, thus returning a posterior distribution of the form:

-p (A,A, n tm This, however, would be problematic if all of the

elements of and were to be estimated, albeit in a symmetric format,

there would now be, for an n-beat system, n 4 ncri _i) :-. Al- variable

parameters to estimate, as opposed to n . These are also not all

normally distributed. We have, for example,

Pc-it., A, V\ .)k kl) -:: %k v.A_r ,-r. eK? 7-1L( IL- 0. -CRIC_ L - te--4-( X.,.- 0 -(A.K4-6

is non-normal in A... Also for predictive distributions an integral over

..A... and A is now required. The dimensional complexity may be reduced on
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the basis of results in chapter 4. A uniform autoregression coefficient

for all neighbouring beats will provide good results in relation to

allowing each coefficient to vary. In the case of models A- E from section

S in chapter 4, it could be put

A = ck.
tilLNe.r
	 0	 if beats are not adjacent and

AC.;
	

if they are.

In this case, the only unknown parameter is G. . Allowing also for

regression effects of the same beat on the previous week, then

A -- 0 1 4 CA I

This reduces the number of parameters to

two for A .

similarly, put	 _A.. --- 61	 6, A4

Then, there are only Nal,. parameters.

Consider first the instance where G 1 is known as are t) , and	 Then

we have

r (a., 01 tx ) 0,„1).,V)) c=,t e(p C-

where

L-	
Z1,6

— 2 al -A_ A E.‘,

-+ El")T 	 - E "̀. -+e -L

AA_ IN 0. 4_ Z	 Kr-A- X
L

I
_ 2_
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A

,...z

A f
and, the marginal distribution for a., if /Vaal is obtained by

integrating out the terms of V , giving

Z os,_, -	 CIL - A)
IN1	 _ o‘cvAlc-r_A. f (E	 zcic-ft.11A4IKV.4

incorporating a l yields similar results, with a bivariate normal

distribution in	 and	 .

However, the predictive distribution for _X , becomes considerably more

complex.

The predictive distribution is no longer normal. 	 Asymptotically,

however, this will be the case: it can be shown (Box and Tiao, 1973)

that
	

F( Np:	 1(3)?(1	 1 19- ' 0-)

as ->o . Thus, the distribution should tend

to normality if EV, is a sufficiently large sample.

However, problems will still be encountered when employing models in

which	 is not diagonal. In combining the predictive distribution for

with that of the user prior, the resultant distribution will be of the

form:
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Suppose, for example, C(Y . is a normal function, then the combined

distribution is a multivariate normal, with variance - covariance matrix

( ,A 1 4 .A. IA.‘ ) I, and mean vector	 A: L A n1\--- ICk) -I- C A 4 ‘1(	 -+	 \IS_ ‘‘ )

where the u,_ denotes parameters for the user's distribution. Thus, a

matrix conversion will be necessary; in the case of a subdivision of IA

beats, a new conversion will be necessary. When n is typically between

30 and 40 beats, this will lead to computational difficulties on currently

available micros. Thus, a compromise must be reached, in which A is a

diagonal matrix. This is equivalent to a space-time series in which,

although the effect of adjacent beats is considered at a lag effect, the

expected deviations from the predicted values are modelled as being

independent. This corresponds to models A, B, and C in section 4 of

chapter 4. The best performing model in this set is C, so this will be

adopted.

Finally, again considering computational simplicity, the coefficients

and	 could be estimated from a training data set.	 may still be

estimated using "live" data. 	 It is possible, that if atypicality

monitoring, as proposed in section , is employed, then after several

"deviant" predictions are obtained, the spatial model could be

re-calibrated using a new training data set.

5.7. 3	 Morris Type Calibration of User Predictions

Having discussed Morris's method of re-calibrated user supplied prior

distributions, a means to implement this numerically must now be



275

proposed. As discussed, it is necessary to obtain a "performance

function" which is a probability distribution of the cumulative probability

of events occurring, as specified by the users prior. This can be

calibrated once outcomes (in this case crime counts) are known.

In this model, the square roots of crime counts are approximately

normally distributed (see chapter 4, section 2 ), so that normal priors

will combine with these to give normal posterior distributions. Thus, if

the user supplies a mean and a standard deviation for each beat 1. (tAeltri)

the cumulative probability of obtaining a rate	 (after square root

transformation) is	
Crc 

) where I is the cumulative normal

distribution function

214-17-tit Q-LUL------b1CX,C.

This may be obtained using Hastings' approximation (Ambramowitz and

Steg-un, 1972).

From a set of such t-values for each beat, a performance function can

be built up. This may be done in several ways. Firstly, the method of

Kernel estimators could be used (see chapter 4, Section 2 , or chapter

3 section 2 ). This builds up a model of a distribution of a variable x,

given an observed set of x values

However, this may be inapropriate here, since it gives equal weighting

to all observed 1 values. A more adaptive technique would give a

higher weighting to recent values; it is possible that a users
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performance may vary with time. Therefore, a method of modelling the

performance function which "forgets" results in the distant past, based

for example on exponential smoothing, is proposed. For example, if each

observation's contribution is defined as a Beta distribution on (OM, then

the performance function F may be estimated as

ci•FCf) (1 --ca\ 19)1-c P`VP(c1)%-a)

where cis chosen to maximise

ci-nc), 	 13(	 % -c. ) -	 (,_) '"`"	 33c

A problem with this type of estimator, however, is that even if

repeatedly takes the same value, the variance of F(:(r) will not decrease,

since Feu) will tend to	 c. ‘	 r	 13(..,1-9.. Thus, another solution may

be a multiplicative estimator.

Cf) = K	 (FAO	 ec'3 e.`

V is chosen to normalise C-1 CO oZis used to determine the rate at which

the variance decreases if similar performances occur repeatedly.

Here, if repeated takes the same value,

E(-f)--' cs-ce-4)
	

where j- is the Dirac delta function

(see, eg Wiley and Barrett, 1982 or Queen, 1980).

Having obtained an estimation for E('), it is now necessary to obtain

the corrected predictive distribution for the user, from that supplied.
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Again if it is assumed that the distribution is normal, then the corrected

distribution is

	 ,	 (7, )
IT-1"	 t"	 crr

For prediction purposes, for each beat the mean and variance of this

distribution is required. These are defined by the integrals

..-
(‘'k ea.A =	 G (I CI'Ll e- -'i elL(41ck(1)	 j2.-ricr;,.	 cTe	 -)k

) t7:,	 1. r i it )_(..:-p\\ e-
—	

11.-. (I' ---1-cl')1c") e C6( 2 )	 \icAr v o.in 62.. 7,	
'DC.

---,	 ,.. Fe- k.	 ‘ 1/4. C I i
- O' 1 2.1‘ tire

— (ten € all )1-

These may be evaluated using a Gauss - Hermite Formula (Atkinson,

1978) .

These give approximations of the form

VIc
_n_ E 0,4 cx-,)

Ca)e

in formulae (1) and (2) , put 	-sp

Then mean C

„Fro J- Qi ( 1aP 	 cr, G	 e.A.

Clearly, ifif	 Cf(TiPcan be evaluated, these expressions are of the

correct form for Gauss-Hermite approximation.
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If f-&- is stored as an array of point estimates at regularly spaced

intervals, then, using interpolation techniques, VZ(r)can be approximated

for arbitrary p-values. In this case, for the mean, the approximation

formula is

i	
n5.- 1.° L tik P 4"	

(Tr) (xi)

where f(Xz. ) .z. Ft. c 1 (57.2.1 )( 6) , A similar formula may be obtained for

the variance. Thus, a mean and variance for a modified user prior can

be approximated. In the initial state, put ram. In this case, in

the light of no experience of the users predictive performance, the users

prior remains unmodified. Thus, the algorithm for the users' prior is

(1) Initialise C;(e)to 1 at all points

(2) Read prediction

(3) Modify prediction using F, cm

approximate mean and S.D. using Gauss-Hermite.

(4) Read actual crime count

(5) Modify FJp \ by evaluating I from actual crime count and

user's prediction.

(6) Return to step 2.

These are incorporated into the listing of the prototype system. A simple

trial of the multiplicative and exponential smoothing methods is shown in

figure 5.8. The solid line indicates a simulated series with a deliberate

jump included, and the dotted lines indicate upper and lower 5%
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credibility bounds. The performance of the exponential smoothing model

seems more desirable than that of the multiplicative model, since

although at times the exponential model gives a smaller credibility

interval, bias introduced when a state change occurs in the model

effects the mean predicted level adversely for an undesirably long

period.

5.7.4	 Combining User and Machine Predictions

At this state, machine predictions using space-time autoregressive models

are available, as are user predictions. The machine predictions for

future rates of crimes	 based on	 , are given by

E C x6,	 CXL	 "Ickr-()-(k-4,)=	 — r—A-1

where k is a running mean estimate for kn , over 17 time periods. If A is

assumed diagonal, then the prediction can be interpreted as a set of

independent priors for each beat, with mean /Az, and variance Ac i. (t- i) •

(If atypicality correction is employed, the variance would become	 ic,1 -1/t
where E L is the number of time periods to over which e•isi has been

estimated , since the last change in value was implemented.

Using the estimates of mean and variance for the corrected user priors

for each beat, an overall mean, variance pair may be computed.

Multiplying the two normal probability functions together gives a further

normal distribution, with mean
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and variance
1--z

ix,..-. 1 4- a-,, )

(see, for example Barnett 1982).

where the suffix m denotes parameters supplied by machine,and u for

user. Thus, there is a weighted mean combination of both predictions

which may be used to obtain an overall prediction.

If the variances are used as a measure of "confidence" then the

weighting favours the most "confident" forecast.

5.8 Conclusions

In this chapter, the principles of Bayesian inference have been outlined,

and in particular applied to certain problems of forecasting. This

approach has been extended to the calibration of user's prior belief

specifications, in order to correct tendency to over or under predict,

and also to allow for these tendencies to vary spatially. Provision has

then been made to incorporate this type of prediction with a forecast

based on past data patterns as laid out in chapter 4. Finally, the

problem was applied to the specific problem of crime prediction using a

micro. Although current micro technology may restrict some or the more

complex space-time autoregressive models, an effective model from

chapter 4 has been implemented. This allows an adaptive,

self-calibrating prediction model, incorporating the spatial and temporal

nature of the crime data to be implemented on a micro, for eventual use

in police subdivisions.
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CHAPTER	 6

THE IMPLEMENTATION OF A BAYESIAN CRIME PREDICTION

SYSTEM ON A MICROCOMPUTER

6.1 Introduction

Having chosen a Bayesian approach to crime prediction, and identified

the needs of a crime prediction system to be used by police forces, it

now follows to operationalise these results by implementing a Ba., .-esian

prediction system on a micro, to be used on site. The aim of this

chapter is to set about this task, paying close attention to the ease of

use of such a system. In a Bayesian crime prediction package, there is

a need for a database to be built up, and also for the subjective beliefs

of expert police users to be input in some way, resulting in a prior

probability distribution. If the 'man-machine interface' in such a system

is poor, not only would there be an increased chance of entering

incorrect crime reports into the database, but also incorrect prior belief

representations may result. Thus, carefully worded and easily corrected

requests for input from users are essential for the reliable running of

the system.

Thus, in this chapter, design of an informative, user friendly software

system will be attempted. Also important is the method of extracting

prior beliefs from operators, to produce Bayesian prior probability

distributions. Clearly, it is not reasonable to expect the operator to

specify an algebraic representation of their prior distribution outright,
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thus methods for building prior distributions by asking the operator to

specify levels of crime risk in a local geographical sense will also be

investigated.

The above paragraphs refer to the design of the software for a Bayesian

crime prediction systems. In addition to this, this chapter aims to

choose a hardware configuration, and realise the algorithms attained in

the design section in some programming language. Thus, the ultimate

aim is to create a working crime prediction system, which may then be

used for "on site" testing of a crime prediction system in subdivisions of

a Police Force.

6.2 Design Specifications of Program

Since the program will be required to offer several options to the

operator, some control of the program at run time must be offered.

This could be done either with a command language or by displaying

several screens of menus, and asking the user to make selections from

these. In this case the menu driven approach will be adopted. This

may be justified since menu driven software has been found to be used

more efficiently by non-expert users, and even for expert users, this

may minimise the number of keystrokes required to access different parts

of the system (Savage and Habinek, 1984).

The menu-based input/output routines should be easily modifiable so that

future extension of the system can easily be carried out. Ideally, the

operating system of the computer should be accessible from within a
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program. Thus, a particular section of the system could be selected

from menus, and the menu-calling program could then initiate the

program to perform the selected task. The menu program could be

controlled by a 'menu control file', consisting of the text for each of the

menu items, a program name to be run if selected (or possibly another

menu to be called up), and possibly some help screens.

The idea of such a system is that if new features were to be

incorporated in the future, this could be done by writing a new

program, and editing the control files without breaking into existing

software. In fact, new parts of the system could be implemented in a

different language to the existing software since each feature would be a

separate module held together by the operating system, accessed from

the menu program.

The means of communicating between these programs will be achieved

through standard format data files. The main data required by the

system will be records of past crimes (which must be updated regularly)

digitised boundaries for maps, used in graphical display of past data,

and information relating to the performance of the users' prior beliefs,

which are necessary in a Bayesian forecasting set-up. While the

information about past crimes and performance of prior beliefs will be

dynamic, changing with time, the boundaries of police beats for map

drawing are more static. A higher level of admittance to data editing

would be required to modify these files.
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Also, some form of security must be implemented in this system.

Confidential information is being processed, and furthermore only those

with permission should be allowed to enter data into the system. Thus,

certain parts of the system should be protected by asking the operator

for a password. Again, this password may be stored in the menu

program control file, but to preserve confidentiality, should be in

encrypted form. As with the digitised map updating software, the

setting of passwords should be done by a user with a higher level of

access rather than an everyday user.

Certain programs will offer graphics facilities: maps of the subdivision,

highlighting risk areas, showing beatwise crime predictions and so on.

The derivation of these programs will be covered in the sections

concerning graphics design. Finally, other programs will carry out the

mathematics required to make predictions (using Bayesian analysis).

The design of software concerning the input and output of information

will be discussed here, but not that of performing the analysis. This

software follows naturally from the chapter concerned with developing

the final prediction model to be used. The development of the system

here is merely a direct translation from the mathematical formulae arrived

at in the last chapter. The input software for Bayesian prior beliefs

must be considered carefully, however, as must the software for output

of past data as they may all be considered as links in the chain of

communicating knowledge to the operator, and feeding his reaction to

this back to the Bayesian inferential computation process. Serious flaws

in either aspect will lead to poor performance in the predictor.
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Having considered the design requirements of the system, it now follows

to take each of the above aspects in turn and create algorithms to attain

the specified objectives.

As outlined above, tasks performed by the software are best controlled

via a system of menus. These are used more efficiently by

inexperienced users (possibly foot beat constables who only denote a

small proportion of their time to entering crimes into the database). The

way this is to be achieved is by having a 'father' program, which

displays menus on the VDU, which will initiate other 'child' programs

residing on disk when these are chosen from the menu. When these are

running, the 'father' program is frozen, to re-start when execution of

the 'child' has terminated.

When running, the program will require information about the menus to

be displayed. Principally, it will need to know the text describing each

option on the menu, together with instructions on what to do if a choice

is made. Also, since security will be important, information as to

whether the instruction may only be carried out on correct entry of a

password, together with the password, may be stored. Finally, a line of

explanatory text, stating in simple terms the action carried out by each

menu choice, will improve 'user-friendliness' and hopefully reduce the

frequency of errors made in the system. All of these pieces of

information will be required for every choice on the menu. In addition

to this, a menu header, giving a title to the set of choices being offered

(ie. 'Future Crime Rate Prediction Display'), only one of which is

required per menu, could be added.
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A possible framework for achieving this is a virtual 'operating

environment' that sits inside the main operating system. If possible,

this environment could be initiated when the micro is switched on, as

part of a starting-up procedure. A flow diagram of the control program

is given in figure 6 . 1

A suggested layout for the menu is given in figure 6 . 2 . Full use is

made of the screen area, and choices on the menu are double spaced.

Provision is given for a menu title, and room for an explanatory line for

each option is provided. This layout implies guidelines for the maximum

length of titles, and menu choice text lines.

6.2.1	 Modules for the Control Program

In the past sections, a "control program" has been specified. This

program has the ability to call other programs written to perform specific

tasks. It now follows to consider the options that should be offered in

order to specify the collection of programs to be accessible in the

prototype system. Clearly, to operationalise the Bayesian system

proposed in chapter 4, it is necessary to include a prediction module,

allowing analysis of data and incorporation of the subjective advice of'

police officers. This module will also allow results of Bayesian prediction

analysis to be displayed on the VDU. It is convenient to keep both of

these tasks in the same module : - part of the user prediction input

depends on the display of data from the machine prediction, so that it is

convenient to switch between both of these without leaving the module.
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Figure 6.1
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Also, for this module and any other analysis module, there needs to be

some means of inputting data. Thus, a module dedicated to management

of the database needs to be created. This module should be capable of

reading in new data items, and expanding database files accordingly.

These database files will then be used by other modules. As with the

control program a user friendly data input and error checking system is

important to ensure thorough and reliable data input. It is possible at

some point in the future that this module may be replaced by a

communications module, which will be able to read data from a force-wide

database in the central headquarters, acting as a file server to several

crime prediction and analysis systems of various subdivisions. However,

although a certain amount of crime detail is currently centrally recorded

within the Northumbria police force, insufficient geographical detail

within subdivisions is stored, and networking software capable of

transmitting data for this type of analysis is not present on the central

system. This implies that, at least on a prototype system, local

database building techniques must be used, although at some future

point they may be superseded.

This serves as an example of the modular philosophy behind the design

of this system. Provided a communications based data reader maintains

the local database in exactly the same format as the local data input

system, it is only required to alter menu descriptor files, and remove

the old data program, replacing it with the new. No access to the

control software, or any other modules, will be necessary.
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Arising from chapter 4, it is notable that many methods of mapping the

past data help to shed some light on spatial processes taking place. It

therefore seems important to include methods of mapping past data into

other modules. A beatwise choropleth mapping module would be useful,

for example, when considering the allocation of resources to beats.

Also, if past records of "surprisingly high" beats, as set out in chapter

4, are kept, these may also be mapped. It would be advantageous here,

as with the menu systems, if the display was coloured. Differing

intensities of one colour could provide the basic choropleth information

(say light blue) and a different colour used to highlight the "surprising

beats".

In addition to beatwise mapping, which may be useful to resource

management, it would be helpful to officers operating on specific beats to

give pointwise information of past data. Indeed, the knox tests given in

chapter 4, in a mapped form, may provide useful analytical output to

identify locations of burglary "epidemics" at a sub-footbeat level.

In addition to providing greater detail, this type of mapping may

identify "crime clusters" straddled across beat borders. The aggregated

choropleth maps, however, may fail to identify such phenomena

(Openshaw, 1984).

Finally, another section of chapter 4 dealt with kernel estimation

(Silverman, 1978 a or b). Whilst Knox testing (Knox, 1964) identifies

clusters in space and time for burglaries, the approach for kernel

estimation works purely in a spatial sense.	 A "risk surface" is



292

constructed over the region served by the subdivisional force officers,

the height of which signifies the risk per unit area of household

burglary.

The surface may then be contoured, and those points of highest attitude

shaded, and projected onto a map of the subdivision. This then gives a

map of "high risk" regions for household burglaries. Clearly, the

technique may eventually be applied to any spatially referenced crime

incident (eg. violent assault, public disorder, etc). The map may be

periodically revised. Again this gives information in terms of manpower

deployment, as well as presenting spatial aspects of crime risks. High

risk regions overlapping beat boundaries may be identified, so officers

on adjacent beats including the same high risk regions may be notified.

If, eventually, risk surfaces for all combined crime incidents are

generated, they may provide useful evidence for the reorganisation of

beat boundaries. Thus, this type of mapping of past data together with

choropleth and point mapping all have useful applications which merit

their inclusion into the system as modules. Also, it seems useful at

times to be able to output the cross-tabulated beatwise data in text

form. This conveys the same information as the choropleth maps, but in

a non-spatial format. However, in the format of the printed page the

information may be photocopied and circulated around the subdivision.

Finally, in the initial analysis of the data, some other techniques were

considered, for example to analyse seasonal aspects of the data (Chapter

2) or to examine relative risk to household burglaries at various times of

day (also Chapter 2). Some of these techniques may be reliant on a
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database other than the main database, and, at least in the prototype

stage, difficult to integrate fully into the system. However, if separate,

static databases are maintained to service these routines, they may at

least be run from the control program, although at present updating may

be done by conventional file handling techniques within the operating

system. These modules may appear peripheral to the main system, but

some of the techniques discussed and developed in the earlier part of

this thesis, although not central, may be useful for certain aspects of

crime pattern analysis. It therefore seems reasonable to include them in

some form within a prototype system, to allow their assessment in an

operational environment.

It is possible that this set of modules could exist on a separate menu,

distinguishing them from the "mainstream" features, and when

implementing the prototype make clear that these features are at a

considerably less developed stage than some of the other features, in

terms of their database management. If it is speculated after evaluation

that any of these may provide useful information, further development

will be justified. If these features were excluded from a prototype,

opportunities of identifying new areas of statistical and mapping crime

pattern analysis software may be missed.

6.2.2	 Equipment Configuration

In this section, a microcomputer system on which to implement the

system will be proposed. Up until now, although consideration has been

given to the specification of methodology for the forecasting and display
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of geographical crime patterns, little thought has been given to the

practicalities of implementing such methodologies in a working

environment. Clearly, a particular model of microcomputer has to be

programmed to perform the specified tasks, and choice of an appropriate

programming language and machine is of considerable importance.

Although the choice of programming language may be invisible to the end

user (a police officer operating the resultant software) , this is of

importance when the package is being developed. Any language used

must allow access to data of the type required by the prediction

methods, flexible means of interactive communication with the user, and

also have the capability to compile heavily mathematical algorithms of the

sort yielded in chapters 3, 4 and 5. The hardware itself must have

colour graphics capabilities enabling mapping of the geographical data to

a high enough standard to allow spatial information to be conveyed

effectively. Finally, thought must also be given to the operating

system. The "control program" discussed earlier will be required to

"freeze" and run other programs, and then restart on their termination;

obviously the operating system under which the control program and its

"child" programs are run must allow this to occur. Thus, choices must

be given for the operating system, the machine to be used and the

language for writing the software. Each of these will now be considered

in greater detail.

6.2 . 3	 Hardware Configuration

Firstly, the requirements of the application must be taken into account.

As discussed above, coloured graphics and text are considered to be of
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importance, in communicating spatial information and for more user

friendly control menu systems. It is easier, when using multicoloured

displays to draw attention to particular information, by highlighting it.

Also disk space must be considered. Given the average space required

to store data and programs, and the format in which they are stored, is

it preferable to adopt a system with hard disk storage capability?

Another important factor is portability. If several different computer

systems capable of running the same software are available, it is possible

to develop software on one machine, but then run it on a different

system. If the software is developed on a machine that is compatible

with a wide range of alternative machines, then final choice of hardware

is left with the user. Thus, according to budget constraints, and

durability requirements and other factors (ie. some users may require

portability of machine) the user may purchase one of a large range of

suitable machines. It is also possible that, due to the ability of

machines in a large family of "compatibles" to run a wide range of

interchangeable software and to mutually exchange data files, such

machines have already been purchased in a large organisation such as

the police force.

Thus, considering the factors of video display capabilities and software

compatibility, a reasonable choice for a micro to implement the software

on would be either an IBM PC or compatible, on the condition that it has

EGA (Enhanced Graphics Adapter) circuitry fitted. This machine will

make a suitable candidate for a prototype system, since PC compatible

machines are already widespread within Northumbria police force and
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available as research tools within this university; thus software may be

developed on machines in the research environment, and evaluated on

machines in the work environment, without need of transporting any

hardware other than the disks on which the program is stored.

Provided the system is fitted with an EGA facility, it is possible to

obtain a screen having a resolution of 640 x 350 pixels, in up to 16

colours. The detail of mapping in this format is of reasonable standard,

certainly capable of accurately displaying the information required here

(see figures 6.3 , 6.4 and 6.5 ) . Again, many PC compatible machines

are equipped with EGA graphics facilities.

A further justification for this type of machine is that, due to the wide

range of software already available and adopted by a large range of

users, there is some incentive to make future models of computer

"downwardly compatible" so that they also run the software which will

run on the current PC compatibles, although possibly faster due to

hardware developments. Thus, any crime pattern analysis software

developed in this hardware environment should run on future machines

for some time. Hence, it is unlikely that software developed here will

have to be drastically adapted to run on a different graphics hardware

or a different operating system if, at a future point the prototype

system is to be implemented as fully working.

Having decided on the type of machine, the configuration of disks, and

memory must be selected. There are two types of disk drives generally

available with PC compatible machines : 5.25" disks, 3.5" disks and hard
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disk drives. Generally, their capacity in terms of amount of data in

KBytes is listed in table 6 .1 . The hard disks, as well as containing

much larger data reserves, are resident in the machine, and generally

faster to access. However, these features considerably add to the cost

of hardware. Although it is unlikely to be possible to implement the

analysis system on a machine having only 5.25  inch disks (A single

module often contains about 50K of code, and in addition to all modules

some operating system code must be fitted on this software disk) , it may

be possible to do so on a 3.5" disk. It may also be possible to

implement the system on two 5 . 25 inch disks, with one disk containing a

mixture of data and code, but this would be awkward to implement -

requiring code to be copied onto data disks - and deflating the "ease of

use" objective.

It seems reasonable to keep the database on a removable disk. This

allows greater security as the disks may be kept under lock and key

when not in use, and also portability allowing the same data to be

analysed at different sites if necessary. Thus, two main alternatives

exist. Firstly, control software and modules on a hard disk, and data

on a removable disk, or both on 3 . 5" removable disks. The 3.5" option

is cheaper to implement, but it is possible that the combined size of all

of the software modules may still exceed the capacity of the disk, or at

least constrain the performance of the more data-intensive algorithms

which may be slowed down by the relatively slow access time for floppy

disks.
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Table 6.1 
Capacities Of Disk Storage Media

	Disk Type	 Capacity

	

5.25" Floppy	 360 KBytes

	

3.5" Floppy	 720 KBytes

Hard Disk	 Between 10 and 70
MBytes
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It is therefore intended to develop software on a hard-disk machine, but

to bear in mind the option of a 3.5" disk implementation which will

possibly have fewer options. Again, the modular design together with

the menu descriptor file concept are useful here. By modifying the MDF

on the 3.5 inch disk version, a restricted menu of options can be

implemented without major alterations to any of the system software,

apart from non-inclusion of some of the peripheral modules.

Another option offered with the PC compatible range is the inclusion of a

hardware floating-point chip. This is an integrated circuit extending

the instruction set of the CPU to include floating-point mathematical

operations. When these are performed directly, as opposed to

synthesised using bit manipulation techniques in machine code, speed of

execution is increased considerably. Also, more compact code is

produced, as fairly complex routines are replaced by single CPU

operations. This is particularly important in a package such as this,

employing several algorithms which are heavily reliant on floating point

operations. Again, the cost of the extra hardware may rule out this

option, but provision should be made for possibility of inclusion. This

is a point that also should be considered when choosing a language to

write the software. Different codes will be produced when compiling

programs under the assumption of a floating point hardware facility, and

this code will not run on machines without this facility.

Finally, peripheral hardware may be given consideration. As discussed

earlier in the chapter, printout of tabular data may be required.

Generally, if the output is required to contain only standard ASCII
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characters, provided the hardware has a standard output port (ie. an

RS232 compatible serial outlet) most commercially available printers may

be driven. Also, although this would incur greater cost than the rest

of the system, graphical devices such as thermal wax plotters may also

be connected to such a standard port, to give a hard copy of screen

dump. The sample maps (figures 6.3, 6.4 and 6.5) seen here are

generated in this way, using a thermal wax plotter, with a supplied

routine to copy EGA screens. Since this routine is of the "terminate but

stay resident" (Duncan, 1986) nature, the crime prediction software may

be temporarily "frozen" to allow EGA screen dumps, and then re-started.

6.2.4	 Programming Language and Operating System

These two headings are considered together since in this application,

interaction between the two is expected to be fundamental to the

operation of the system. As has been discussed earlier, "freezing" of

programs to transfer control to "child" programs will have to take place,

as will interaction between the user and the menu and graphic displays.

Generally, programming languages are designed to be

system-independent, while operating systems are designed to control

particular hardware configurations. Thus, unless the programming

language is capable of directly accessing certain routines in the

operating system, problems of implementation will ensue. It seems

necessary, therefore, to consider both the requirements of the operating

system and the ability of the programming language to access the

particular system under the same heading.
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Firstly, consider the operating system. Given the choice of hardware

specified earlier in this section, one choice to be considered is MS-DOS.

This is command driven (rather than menu driven) and has facilities for

"freezing" programs, as described above. The lack of a menu based

front end is not likely to present problems in this context, as the crime

prediction software is intended to provide this facility, with certain

extra utilities specifically designed for this application, such as password

protection for certain parts of the system.

MS-DOS may be accessed from within other programs by means of system

interrupts, allowing direct access to input/output routines, and other

system management code. In PC compatible machines, a similar set of

interrupts allow access to graphics routines. Thus MS DOS is capable of

interacting with the crime prediction software from within the routines.

A further advantage of this system is that it is generally supplied as

standard with most PC compatible machines (and recommended as a

system for the PC itself) thus the crime prediction software can be

installed directly onto the hardware system as bought, whereas, for

example if a mouse or menu based operating system were to be used,

this would have to be purchased on top of the basic system, before the

prediction package could be run.

If it is decided, then, to write application software which will run on a

system with MS DOS implemented, it is now important to choose a

language to develop and write the software. As stated before, the

language chosen should be capable of expressing fairly complex algebraic
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algorithms in a reasonable format, and also have the ability to access the

operating system. Further requirements also need to be considered.

The schematic diagram for the forecasting system in chapter 4 suggests

that certain algorithms used will be complicated in structure. Thus, a

well structured programming language offering IF-THEN-ELSE,

REPEAT-UNTIL and other similar constructs will be helpful. A language

with these constructs should provide easily readable programs, which

will allow translation of algorithms to code with a reduced error rate,

and also enable faster trapping of erroneous code when it does occur.

Programs of this sort are also more easily understood by other

programmers, or by the author if they need to modify the code at some

future point (Wirth, 1973 or Djikstra, Dahl and Hoare, 1972).

For its mathematical capabilities, FORTRAN appears to be a good choice,

particularly as the standard includes an exponentiation operator, '**'.

This is not provided in the standard definitions of Pascal or C.

Although this is also offered in BASIC, this language can be rejected on

other grounds, most versions are interpreted rather than compiled, so

that execution speeds are poor. Also, named subroutines having

arguments passed are not defined.

A major problem with FORTRAN 66 is its lack of program control

structure. All decision based algorithms have to be specified in terms of

" go to" statements. This has a tendency to make programs hard to

follow, and certainly hard to modify. FORTRAN 77 goes some way to

counter this: the IF-THEN-ELSE structure is included. Also FORTRAN

77 allows character manipulation and character operations in a more
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natural format than the 1966 standard. In the latter, characters are

stored in memory designated for some other type of variable, such as

LOGICAL, and operated on by subroutine calls. Given that a certain

amount of string processing occurs in the control program, and in the

map drawing modules, it seems reasonable to demand that a more natural

string processing method is implemented, again to reduce programming

error, and to make error checking easier when problems do arise.

FORTRAN 77 has facilities to handle strings and algebraic expressions

which exceed those of either Pascal or C. However, in terms of control

structures, the latter languages offer better facilities, giving

"DO-WHILE" "REPEAT UNTIL" and "CASE" structures. It is possible,

however, to simulate both of these in FORTRAN 77 in a reasonably

readable format (see table 6.2). If it is specified that, except under

exceptional circumstances, the only use of GO TO statements will occur

in these constructs, then readable, easily modifiable FORTRAN 77

programs should follow.

The final requirement of the language adopted for this project is that of

relatively easy interaction with the operating system. Generally, this is

a property of particular implementations of the language than of the

standard definition. Clearly, the standard must be defined irrespective

of the operating system, since such definitions are intended to be

universal. However, some implementations of FORTRAN come equipped

with library functions which interact with MS-DOS. One such

mplementation is that supplied by PROSPERO. In this version of

FORTRAN 77, the standard syntax is adhered to, but a library of
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Table 6.2 
Implementation Of Program Structures In FORTRAN 77 

Structure (as In Pascal) 	 FORTRAN code

IF x THEN y;	 IF (x) THEN

END IF

IF x THEN y ELSE z;
	

IF (x) THEN

ELSE

END IF

WHILE x DO y;	 100 IF (x) THEN

GO TO 100

REPEAT y UNTIL x;	 100 y
IF (NOT.x) GO TO 100

CASE w OF	 IF (w .EQ. wl) THEN
wl: yl;	 yl
w2: y2;	 END IF

• IF (w •EQ. w2) THEN

• y2
END IF

END CASE;

The last structure may also be represented in FORTRAN if w is an
ordinal set of integers by GO TO (101, 102, •..), w with the label
numbers referring to each case. Each statement should then be followed
by GO TO 999, where 999 follws the last y-statement.

In addition, a 'menu structure can be more efficiently implemented
by a case structure combined with a repeat loop: the test at the top of
the loop involves polling the user to make a menu selection, and often
takes the form of several lines of code.

Note : y, yl, y2 and z refer to statements (in their FORTRAN or Pascal
form), x a logical expression, and w is a variable of general type,
with specific values wl and w2.
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subroutines interacting with MS-DOS is supplied. Descriptions of the

most useful subroutines in this library are listed in table 6.3. Provision

is made for operating system interrupts, reading text from the calling

command line in MS-DOS and "freezing" while other programs run. With

this library it is possible to interact with the graphics hardware, and

build a menu-based control program as set out in section 6.2.

Thus, a system has been established, in which a microcomputer

configuration with graphics facilities has been specified, together with an

operating system, and a language to write the appropriate software. In

addition to this, the mainframe computing facility at this university, an

Amdahl 58/60 running the Michigan Terminal System (MTS) operating

system, has a powerful interactive debugging facility for FORTRAN 77,

so that, at least those parts of the software that do not rely on the

operating system or the graphics interrupts can be developed on the

mainframe using the debugging facilities, and then downloaded onto the

micro. A stage has been reached, then, where the computer hardware

and software development tools have been specified. It now follows to

define the system itself.

6.3 System Specification

The design of the package will now be considered in more detail.

Firstly, it must be decided exactly what facilities the system is to offer.

The main aspects to be incorporated into the software are as below:-

Menu-Based Controlling Program
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Table 6.3 
Useful Library Routines In Prospero FORTRAN 77 

GETCOM(character*(*))

EXEC(character*(*))

SYSREG(array, int)

Reads the MS-DOS command line and returns
all of it excluding the program name,
in a character variable.

Causes the calling program to be frozen,
the program whose name is in the character
variable to be executed

Causes interrupts to be generated.
Interrupt number is in int, and array
maps onto the registers of the CPU.
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2) Displaying of Past Data

3) Prediction of future crime rates

4) Input of Incidence Data

5) Incorporation of "peripheral" software

Under heading 2), three sub-categories exist

2a) Choropleth Mapping of past data

2b) Point Mapping on past data

2c) Surface Mapping of past data

Also, under category 5) there are currently two sub-categories

5a) Time of Day of Burglary

5b) Seasonal Variations in burglary rates

However, results of any other "spin-off" research may be incorporated

into this list of sub-headings. Clearly, heading 1) ties all of the other

headings together, allowing the user to select from the remaining items

on the list. Each of the headings will now be considered in turn.

6.3.1	 The Menu-Based Controlling Program

This program provides the "front end" for the package. It is intended

to make this as flexible as possible, so that new items may be added into

the menu system or removed from it with relative ease. It is also

important to make this software as robust as possible. In the case of an
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error, control should not be given to the operating system, which the

user may not be familiar with, but should return the user to the most

recent menu screen. Also, the software should be robust to the user

inputting incorrect menu responses. For example, if there are four

items to choose from on the menu, corresponding to keys "1" to "4", the

system should ignore any other key press, for example II +r, or ,,,,,K . In

addition to these requirements security must also be considered. Certain

parts of the system must be password protected. The intention to

protect certain menus or programs could be conveyed in the menu

descriptor files.

One record could consist of a single character, say "+" or " -" , to decide

whether password protection is required, and the remainder of the line

used to store the password.

Some form of encryption should be used, otherwise it may be a relatively

simple task for an unauthorised user to list the MDF and discover

passwords. In this prototype, a relatively simple encryption method will

be used - development of a powerful and secure encryption method is a

research topic in itself - but in the future, a more complex method may

be substituted.

6.3.2	 Menu Descriptor File - Format

Consideration of the requirements of a menu descriptor file now leaves

us in the position to define the format for such a file of data. This is

shown in table 6.4. The " menu name" will be printed on top of the
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1

2

3

4
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Table 6.4
Format Of Menu Descriptor Files 

5

Description	 Field Size

Title Of Menu
	

58

Title Of Menu Option
	

30

Help Line (Extra Information)
	

58

Password Line	 8
(If Preceded by + in field 1)

Action
	

30
Preceded by a single letter

M = Another menu
E = Execute Program
e = Execute and return

to same menu
S = Go to system
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VDU, as a header. Then, for each item on the menu, a three-line

descriptor follows. On the first line, the name of the program to be

executed if the corresponding choice on the menu is made is given.

Alternatively, the name of a new menu descriptor file may be given.

This is chosen by the first character on the line. "M" implies that a

new menu is to be referred to, "E" an executable code. A final option,

"S", returns the user to the system. On the next line, the description

of the program or menu is given. This will be the text printed on the

VDU for the corresponding menu choice. The third line deals with

password security. A minus sign indicates that no password is

necessary. A plus sign indicates that a password is required: the

encrypted password then follows. Thus, each menu item is stored in the

menu descriptor file, and items may be added or removed using a text

editor. The only problem now is the entry of encrypted passwords.

Clearly, it would be useful to enter the non-encrypted version, and

have the machine encrypt this automatically. In order to do this, one

extra program, called "ENCRYPT" is written. This operates on the

menu descriptor file, leaving all text alone except when it encounters a

password record beginning with the symbol "*". This indicates a

non-encrypted password follows. The menu descriptor file is then edited

to give the previously specified format, ie. '+' followed by the encrypted

text. This allows initial input of passwords in non-encrypted form, and

encryption to follow this.

An example of a menu descriptor file is now given. In order to produce

a menu of the form below:
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Crime Pattern Analysis

1. Input Data Item

2. Examine Past Data

3. Predict Future Crime Rates

4. Exit to system

In which item 1 executes a program called "update", and items 2 and 3

display further menus, descriptor files called "Past. MDF" and

"Pred.MDF" respectively, and in which no password protection is

required, the menu description file given below should be used:

CRIME PATTERN ANALYSIS

UPDATE

Input Data Item

_

MPAST.MDF

Examine Past Data

MPRED.MDF

Predict Future Crime Rates
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S

Exit to System

6.3.3	 Operationalisation

The operationalisation of the menu system must now be considered.

When the control program "boots up" the main menu should be displayed.

Thus, some means of conveying this information to the control program

is necessary. This may be done on the MS DOS command line. Any

program in MS DOS is initiated by typing in its name as though it were

a command: Thus if the control program were called "Menu", simply

typing "menu" would initiate it. However, in the library for the

particular version of FORTRAN 77 supplied, a routine for reading

further text from the command line exists, called GETCOM.

"CALL GETCOM(X)" returns the remaining text on the command line into

the character variable X. Thus, if the main menu descriptor file is

called "MAIN.MDF", the command to initiate the menu program could be

entered as "MENU MAIN.MDF" and "MAIN.MDF" could be transferred to a

character variable and used as a filename within the program.

Another problem is how to "freeze" the control program and execute

another program following the "E" on the MDF record. Again, in the

supplied library, a routine EXEC performs this task: "CALL EXEC

("PROGX") would execute a program called "PROGX", and freeze the

calling program, retain all of the current values of variables, and
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positions of stacks. After "PROGX" had executed, execution of the

calling program resumes. If "PROGX" returns an error, then instead of

returning to MS DOS, control is returned to the calling program,

together with a return code. An error message will be printed on the

VDU. In this instance, should this happen, the control program will

print a "press any key to continue" message, allowing the user to view

the error message, before returning to the previous menu. Although

the user may not be able to interpret this, it may be passed on to

someone with a knowledge of the system.

Under some circumstances, it may be useful to return to the menu

from which the program was selected (ie. when interacting between

viewing past data and predicting ahead in a Bayesian framework), while

under others, it may be more useful to return to the main 'root' menu.

These could be controlled in the menu descriptor file, possibly by

distinguishing between an upper or lower case 'e' in the first character

of the action specifier. If, during the execution of a program, an error

is encountered this should also be handled by the menu control program.

It is possible that subtle bugs may occur in any item of software after a

long period of time since the system is implemented. These should

ideally not cause a crash to the main operating system, since this may

cause problems to the user inexperienced in this aspect of computer

message should be displayed, which may be of use to an expert

consultant, but then, after waiting for a key to be pressed, the calling

menu screen should return.
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If the choice represents displaying a new menu, this is achieved by

simply looping back to the menu display routine in the menu control

program, re-loading the menu information from a new menu descriptor.

Finally, the option of returning to the operating system should be dealt

with. This should normally be done only via a password option, to

avoid accidental 'bombing out' into the operating system, and then the

user being unable to restart the program, or worse, possibly destroying

data files in an attempt to do so.

6.3.4	 Security

In this section, some thought will be given to the implementation of a

password system. As discussed above, it is important to encrypt

passwords in the menu descriptor files. There are several ways by

which encryption could be carried out. A relatively simple method will

be implemented here, although beyond the prototyping stage more

sophisticated methods will be adopted. Clearly, the final encryption

technique could hardly be published here, if security of the data is of

genuine concern !

Therefore, the method employed here will be relatively simple.

FORTRAN 77 stores characters as 8-bit codes, which can also be

interpreted as integers between -128 and 127. A pair of 8-bit codes may

also represent an integer between -32768 and 32767. Some form of

transformation of this larger integer onto another integer in the same
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range would provide an encryption from one pair of characters to

another. Clearly, this is considerably more powerful than a mapping of

individual characters. The former would require only 26 mappings (36 if

digits also incorporated) to be discovered, but using 16-bit integers, 26 2

(or 36 2 ) mappings must now be discovered. A requirement of this

mapping is that it must either be reversible providing a unique code for

each password or at least unique for any password character

combination. Otherwise, encrypting both the true password and the

guess may lead to correct matches even if the two are not the same.

In fact, it may be shown that a mapping which transforms the set of

integers between -32768 and 32768 (or indeed any other set) onto itself,

and does this uniquely (so that if the mappings of x and y are

equivalent, then x and y are equivalent) must be reversible (see eg

Birkhoff and Maclean, 1967).

Another important factor to consider here is how "recognisable" the

encryption is from the original. For example, a transformation from

merely swapping pairs of characters would meet the definition above, but

hardly be of use. One possible approach may be to adopt a "bit

scrambling" technique, in which a permutation of the 16 bits are

returned after encryption. If there is a reasonable level of scrambling,

encrypted data would be hard to decode. Alternatively, additive or

multiplicative transformations of the 16 bit integers may be used (taking

care not to cause overflow of variables, which may crash the program).

The latter is more easily implemented in FORTRAN, working on a similar

principle to a linear congruential random number generator (Hammersley
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and Handscomb, 1964). The multiplier must be relatively prime to 216,

to ensure the reversibility property (Knuth, 1968), but given this, a

multiplicative encoding scheme may be used. This method is proposed

here, because of its ease of implementation in FORTRAN. Obviously,

integer multiplication is readily available, and FORTRAN also offers the

option of addressing fixed memory cells as though they simultaneously

contained data in both integer and character format.

Experimenting with various options lead to the conclusion that, at least

for the prototype, a multiplier of 255 worked satisfactorily. This

number is prime, and therefore relatively prime to any integer, and

provides bit-shifting of a least six bits in the left-hand direction.

Thus, this method will be employed. The code of the encryption

program is given in listing 6.1.

Another aspect of security is making the control program crash-proof.

Since access to the operating system allows the user to alter menu

descriptor files, and possibly damage data files, it is important to

protect against accidental (or deliberate!) crashes. These could occur

for two reasons.

1) Errors in coding of the programs

2) User generated interrupts from the break key

In the case of programs run from the control program via "EXECPG" this

is not a problem, as control is returned directly to the calling program.

If there is an error in the calling program, this can be handled by a
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routine QBREAK which causes control to resume elsewhere in the

program, thus the user is not left in MS DOS command mode. Also, the

routine SBREAK causes, after its execution, all keyboard interrupts to

be ignored. If both of these facilities are used, and are called as the

first tasks in the control program, then a reasonable degree of "crash

proofing" will have been achieved.

6.3.5	 Control Program: Conclusions

The specification for a control program has now been given, together

with methods of implementing various features considered to be

necessary. The code for the main control program code is given in

listing 6.2. The remaining issue with the control program is the actual

structure of the menu system to be employed in the prototype system.

This will be based on the recommendations in section 6.1. The basic

structure will be a tree structure, with one option on each menu to

return to its calling menu. This option is important, as unless it is

implemented, the user is forced into executing some form of program

eventually, and is unable to undo the consequences of a mistaken menu

choice.

The tree is structured as in figure 6.6. The root node is the initial

menu. The end nodes represent program execution, and the

intermediate nodes represent transition from one menu to another.



Figure 6.6
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6.4 Data Input Program:

This program is incorporated to allow reported household burglary data

to be entered into the database. There are two main issues under this

heading: the format of the data input screens and the format of data

storage. The first is important, since if the user us unable to enter

particular formats, or more likely to make errors inputting data, then

the database upon which the pattern analysis depends is flawed, making

any such analysis unreliable. The second issue is also of importance, as

it is of consequence to all of the analysis programs that will be required

to have access to the data. Both of these will be considered in detail.

6.4 .1	 Format of Data Input Screen

In a similar way to the menu based system, some flexibility must be

introduced into the software for data input. Initially, the system will be

used for the analysis of household burglary data. However, this may

not be the only type of crime for which this sort of analysis is

appropriate. Many of the techniques considered in this study may be

applied to other spatially referenced crimes, such as car theft or

vandalism for example. If this were applied to such crime types, it

would be useful to be able to modify the data input program in some

simple way, and allow this new type of data to be stored.

The format of the input screen could be similar to that of the menu

screens, but taking the appearance of a form that has to be filled in.

The "dotted lines" of a conventional form could be mimicked, with the

user typing text over appropriate places on the screen. Care should be

taken to ensure that it is not possible to type text outside of these
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windows, since this would obscure part of the information on the form,

and probably lead to confusion and errors from the person typing the

data into the machine.

It is proposed to control the data input from an "input descriptor file"

(IDF) in a similar way to the "Menu Descriptor Files" of the last section.

These files give information of the data to be input on the screen, the

text to be printed and the storage of this data. The format of the IDF

will reflect the format of the input screen, consisting of the text on the

input screen together with an "Image" of the data to be input.

It is also important to be able to correct data that has been incorrectly

entered on the screen. Thus, provision to backspace on each "dotted

line" must be provided, as well as a means of viewing the entire data

screen, and verifying that this crime record as a whole may be

committed to the database.

Before considering the specific format of the input screen, it is

important to discuss the contents of the database, as these will govern

the data items to be input onto the screen.

6.4.2	 Storage of Data Relating to Crimes

In this section, it is proposed to specify exactly what data is required

to be stored in the central database for this crime pattern analysis

software, and in what format it is to be stored. Finally, the

requirement of the analysis software are to be considered. This
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software requires two main types of spatial data about crime: beatwise

and pointwise. Pointwise data can be aggregated into beatwise data

using point-in polygon techniques (Aldred, 1971). However, this is not

a fast process, and it seems more practical to store data in both

formats. If in a subdivision, the average crime count for household

burglaries is approximately 40 per week, details of only 640 crimes will

need to be stored over a 16 week period, and the file storage overheads

of keep two separate files, one beatwise, the other pointwise, is

virtually negligible.

It is also important to remember that, although the phrase pointwise is

used here, the points are actually centroids of postcode units. The

analytical effects of this have been addressed in Chapter 4, but on a

level of data storage formats, is it best to store co-ordinates or

postcodes. When a postcode is entered, it will be an 8-character code.

Either this could be stored directly into the database, or converted via a

look-up table into a grid reference. If conversion is not performed

during storage, this must be done when the crime pattern analysis

software is being run. It is felt that, in terms of ease of use, it is

better to perform conversion at time of entry into the database. Some of

the analytical software may already require large execution time, due to

the floating point operations in heavily quantitative algorithms, and it

seems more reasonable to spread the total delay time evenly over input

and analysis, otherwise the operation of the analysis software will appear

very lengthy.
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Also, if conversion is performed at time of storage, it need only be

performed once for each incident. Run time conversion would require

each case to be converted from postcode to grid format every time an

analysis was performed.

Thus, a need has been identified in the data input software to process

the entries before storage on file, in terms of spatial referencing. Time

referencing will be considered next. For predictive purposes, a weekly

reference needs to be given to each crime for point pattern analysis,

and for Knox testing (Chapter 4) each crime needs a daily reference

needs to be given, since a certain amount of manipulation of date

referencing is necessary, a character representation alone will not be

satisfactory. Each event needs an integer reference for the date,

allowing dates to be subtracted (to find days between events) or sorted

into weekly classifications, or compaired using " . NE . " or similar

FORTRAN operators to base decisions on the chronological order of

Such a mapping is provided by

36s teos ascAVe -tr "1k ("DAVI" -t) k to- (Eyck; - t)(4)

I-	 r0- yu- -0/(00)A-0) (notIVIIV.)

ck 	 aGs-	 akcire *	 (Mort.V4-n - — 1%4- (OA. KorIVA‘ -I

vOr VcAr / 4 - ( V (1.((rtl- (. 1.cd-l(c2o) + I))
(ntoniAft >1-.)

which, given a year, month and date returns a single integer value

(see, for example, Texas Instruments TI59 instruction book) .

Thus, information for each event referring to time and space have been

defined. This information will be sufficient for any of the methods given

in chapters 3, 4 or 5, at least in terms of data referring to crimes.

The only task remaining is to collate this data into two formats, one for

events.



327

beatwise aggregated analysis packages, and one for grid referenced

techniques.

Firstly consider the problem of storing count information for each beat

on a weekly basis. If a look-up table is to be compiled for postcodes to

grid references, this could also contain beat codes. Thus, when a

postcode is entered, its beat code is also determined. This would also

allow error trapping, since undefined postcodes, or those not in the

subdivision, would be eliminated at this stage. The look-up table would

need updating regularly with new postcodes. Eventually this could be

done locally. Having found the beat, the week could also be

determined, from the day number. This would be given by the nearest

Saturday (or other day) before the date of the event. If the week at

the oldest end of the database began on a day numbered x, and the day

number of the Saturday closest before the event is y, then event is in

week

if the oldest week is numbered 16, and the most recent week is 1.

Clearly, from the beat and week references, a count can be kept in a

beat-by-beat crosstabulation file, which may be updated for each newly

entered crime.

The point references may be stored on a similar week-by-week basis,

with a list of x and y coordinates for each week. Along with this list of
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coordinates, the day codes will also be provided to allow Knox-type

analysis to take place.

This space-time referencing provides the analysis programs with

sufficient information to run, but it may be helpful to provide extra

verbal information for human users. This may then be referenced after

computer analysis, to look for patterns in modus operandi and so on. If

a crime reference number for each crime is also recorded in the lists of

points and day codes, links will be possible between the crimes stored in

the database, and any verbal information also referenced in this way.

In the prototype, a single line record will be given to verbal description

and stored in a third file.

This file may then be accessed by the pointwise program for analysing

past data.

6.4.3	 Data Input Revisited

It is now known which information about household burglary incidence is

required for the database. The Input Descriptor Files can now be

defined. Given a particular screen layout, there are four requirements

for data input:

1) The postcode of the household

2) The date of the burglary

3) The reference number

4) Comments, etc.
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Thus, the descriptor file could be made to look identical to the display

screen, with some symbols to describe where each of these data items

are to be input. The image provided could be plotted on screen with a

boarder, to match the menu system, and then the data items

interactively edited into the image. When the image is completed, the

user can press the return key, to attempt to commit the record to file.

If it fails, an error message will be printed. The types of error that

may occur are:

1) Postcode error - either postcode incorrectly formed, or not in

study area.

2) Numerical error - year, month or date of reference number

contains a letter.

These will be reported, giving the user a renewed chance to enter the

data item. An option to abandon is also required, to allow the user to

exit the data input program if it was entered by mistake.

The symbols used to describe the input data in the image descriptor file

may be combinations of letters or characters unlikely to be encountered

in text on screen. Thus, the month section of the date, for example,

could be symbolised by "FM". Likewise, the year and date parts could

be symbolised by "$Y" and "V". This leaves the postcode, "0", the

descriptive text "$T", and the crime reference number "$N". The

default widths for each of these fields is set out in table 6.5. If any of

the variables are not contained in the Input Descriptor File, the input

program will be forced to exit, giving an error return code, while
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Table 6.5
Default Widths In Data Input Screen

Symbol For Item In IDF
	

Description	 Field Width

$D	 Date	 2
$M	 Month	 2
$Y	 Year	 2
$P	 Postcode	 8
$T	 Description Text	 60
$N	 Reference No.	 4
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printing a message. This will cause the control program to apply its

error handling code, rather than cause a subsequent crash, by some

program attempting to access part of the database that the input

program was unable to compile.

The program to manage the input screen, INPUT, is shown in listing

6.3. Note that the name of the Input descriptor file is communicated to

the program using GETCOM, as is the case with the control programs

access to the root menu file.

6.4.4	 Data Input: Conclusions

A simple data input system has now been created. This is relatively

flexible, so that, for example re-wording of the input screen is possible,

if certain wording is difficult to understand, or if it is desired to alter

the data base to one of spatial references to other types of crime.

There are commercially available database management tools which may

perform these tasks, but in order to reduce costs in the prototyping

stage, the approach here will be used. Due to the modular design of

the system, it may be possible to incorporate a commercially available

data input program into the system, provided it can store data in a

format easily and efficiently accessed by the prediction software. This

may be convenient if the operators already have training in this

package. Finally, as considered earlier, it may be that data collation is

centralised to force headquarters,and that this program may in fact be

replaced by software to poll data from central file serving equipment.

However, the development of the small here program makes it possible to
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operationalise the prediction an pattern analysis software at this research

stage of the process.

6.5 Display and Analysis of Past Data

Under this heading, most of the mapping techniques incorporated into

the pattern analysis system will be introduced. As set out in section

6.2, these will be required to display choropleth maps, point maps and

contour-based maps relating to household burglary incidence. The data

input related to crime incidence will be from the files as set out in the

previous section: a list of points and dates, split by weeks for each

reported occurrence, and a crosstabulation of counts on a week-by-week

beat basis. However, in order for mapping to take place, further

cartographic information is required. Some sort of file containing

descriptions of the shape of the foot beat areas is necessary to allow

mapping using the graphics facilities of the hardware. This first section

discusses methods of encoding this information, and of plotting it onto

the screen. Subsequent sections then deal with the specific problems of

overlaying point, choropleth or contour information in conjunction with

this.

6.5.1	 Storage and Display of Cartographic Information

As seen in chapter 4, map display visualisation is helped by a certain

amount of information of local geography being displayed. In the case of

police beat officers, the indication of foot beat boundaries proved useful.

Since these often ran along the paths of main roads, and individual
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officers were familiar with the beats they had been patrolling,

particularly in relation to road patterns, these proved valuable

geographical reference objects.

In early map study, the GIMMS mapping package on a mainframe

computer was used to produce various crime map formats, which police

officers were asked to assess. However, this method of map production

will not be available on the prototype system. Although a micro version

of the package is available, maps produced in this way are not

"interactive". For example, in the prediction software, the user is

asked to modify prediction maps with subjective predictions; also it is

desired to allow the user to interactively identify Knox clusters, and

high risk beats. Given that the maps are so heavily interconnected with

the analysis software, it is justifiable to write a set of map drawing

subroutines to enter these features at points required in analysis. Also

the transference of data, and entry/exit procedures required to

frequently transfer control to and from the separate analysis and

mapping packages may prove time-consuming.

This approach will provide a cost-effective and relatively fast means of

map display.

Given this, some form of storing and plotting geographical data must now

be devised. Their are two basic formats in which areal data may be

stored. These are called vector and raster formats (Burrough, 1986).

Briefly, in vector format, data to describe an area consists of a

sequence of grid coordinates, which define its perimeter. A set of
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sequences like this define a region, divided into areal units. In raster

format, the region under study is divided into a grid, consisting of

relatively very small cells. Each cell is assigned a value according to

which region it is part of.

There are various advantages and disadvantages of both types of

storage. The accuracy to which each area can be defined in a raster

based system is dependent on the size of the grid squares. Thus,

precision has a quadratic relationship with storage. In vector based

systems however, increasing the frequency of points need only be

linearly related to precision of definition. However, overlapping areas,

or areas not fully covering the study area may arise due to errors in

the specification of vector-based files. Also, point-in-polygon

techniques, while being complicated geometrical algorithms in vector

based systems (particularly if' areas contain holes, or are not fully

connected - eg. a system of islands) are simply two-dimensional look-up

tables in raster based systems.

Generally, it is important to consider the input and output requirements

of the mapping systems. Vector-based systems are very efficient at

inputting digitised data, since this is virtually in vector format.

Conversion using vector point-in-polygon algorithms must be carried out

to obtain raster files. However, on raster based display devices (such

as the EGA), raster storage is obviously more efficient at data display.

Each line segment in a vector list must be converted to a raster line

(usually by Bresenhan's algorithm, Bresenham 1965 or Wilton 1987)

before display. Given that vector lists often contain several hundred
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line segments, this could be time-consuming compared to the direct

cell-by-cell copying to pixels offered by the raster based solution.

Given that, in this application, the maps will only need storing once (at

least until beat boundaries are altered) but need to be displayed several

times in a week, the rasterised storage option is proposed. This should

be on a basis where each grid cell in the raster database corresponds

exactly to a pixel on the VDU. Extra precision would be unnecessary,

since it could not affect the display, and lower precision would give poor

results: generally, "staircase" effects, where edges of grids appeared in

detail, showing the inaccuracy of areal definition.

In mode 16 of EGA (Wilton, 1987) the entire screen is given by a grid of

350 x 640 points. A large "window" in this will be set aside for map

plotting, the remaining screen used for interaction with the user, key

display and other relevant information.

In its naive form, therefore, a raster storage format could be costly in

terms of file space. However, a "packing" scheme is now proposed

which should overcome this problem.

6.5. 2	 Packing of Raster Files

Raster data specifying area units may be stored in an m by n array,

where each element contains an integer which is used to indicate which

zone that particular grid element is contained in. Generally, however,

several adjacent grid cells will be in the same zone. Thus, the data in
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a contiguous row could be replaced by two pieces of information: the

zone code and another integer indicating how many times this code is

repeated. If this format were generally adopted, a more space-efficient

storage technique should follow: for good map definition, the size of the

grid cells should be considerably less than that of the average zone

size, so most cells would be expected to be in a contiguous row with

respect to zonal classification. The computing overheads in doing this

will be only a small increase on that of a direct grid-to-pixel mapping,

only requiring the occasional initialisation of loops.

Also, since in these applications it may aid data organisation if the data

for each foot beat zone were kept separate, a further modification may

be made. Instead of treating the aggregation of all zones in a single

file, each zone will have its own record. In this case, no zone number

will be required in storage. In each record, the counts refer only to

presence or absence of the zone related to the particular record. After

an initial true/false specification, counts will be given for the number of

continuous cells in a row in that state. The next number refers to the

next contiguous count, of cells not in that state, and so on, until all

relevant cells in that row have been considered, and the next row

begins. The code for this could be, for example, -1, as this could not

represent a count of cells. If the top right-hand corner cell is given,

then an area could be defined as a list of the form above, being

terminated by a pair of consecutive -1 values.

Thus, for each zone, the method continues the search through a window

containing this zone. For each row a code is given to state whether the
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leftmost cell is contained or not. Finally, when the rightmost cell within

the zone to be defined has been given, a -1 code follows. This

continues until the end of the zone, when a pair of -1 codes follow.

However, this algorithm, if given the data for an entire area, would plot

a solid shape. There are times when only borders to areas will be

required, for example when plotting point maps. Given the original n

by m matrix, border detection is relatively easy. However, when using

packed data, edge detection is more difficult, as there is no easy way of

examining a cell's relationship to its upper or lower neighbours. This

suggests that those pixels lying on areal boundaries should be identified

when the packed file is being compiled from the full matrix, and be

stored themselves in another packed file. The boundary of a zone may

itself be thought of as a zone, of width one cell. Again, packed storage

here will be compact, as boundaries will consist of either large

consecutive runs of logical "trues" (on horizontal parts) or consecutive

runs of "falses" (in the "hollow" parts of the boundary, ie. within the

solid zone). Also, the same piece of software code may then be used to

draw the solid areas and their boundaries.

The boundary cell detection rule, as put forward in the paragraph

above, is relatively simple for matrix format data. Any cell contains an

integer area code. If it is on a boundary, at least one of its four

nearest neighbours will not contain the same area code as itself. Thus,

it will be on the perimeter of the zone whose code it contains. In this

case, however, double thickness boundaries would be plotted, since any

pair of adjacent cells which were not in the same zone would both be
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classified as perimeter cells. A better solution would be to only define

as perimeter cells those cells whose index is greater than or equal to all

of its neighbours. In this case, for each pair of adjacent boundary cells

(according to the former definition), only one would be classified as a

perimeter cell. This may give slightly inaccurate results when several

layers of areas one cell thick arise (if the central layer codes do not

exceed those sandwiching) but in terms of visual display, these effects

will only occur at a resolution of one Pixel, which should be small

compared to the overall scale of the map.

For each zone, perimeter cells are stored in packed format. Note that,

if plotting an individual zone perimeter, the entire zone may not be

enclosed (due to the "greater than or equal" formulation above) but if

all zones are plotted from this file, all boundaries will be displayed.

The zone-by-zone format merely ensures compatibility with the solid zone

packed files.

Some thought must now be given to the conversion of vector files, from

digitised output, to packed raster files. This is best done in two

stages: firstly from digitised output into the raster matrix, and secondly

from raster matrix into packed raster format. The first is relatively

simple. For each grid cell, an assignment rule to an area must be

specified. Here, the grid cell centroid will be tested to see which

polygon it lies in, using point in polygon techniques. If it lies in none,

it is assigned zero, otherwise an integer code.
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At this stage, a second matrix is created, and its elements represent

perimeter cells for each area, as outlined previously. Both of these

matrices may then be packed, by scanning row by row for continuous

runs of cells, and outputting the run length data as specified above,

for each area code in turn. The code to carry out this procedure is

given in listing 6.4.

Initially the file containing packed data will be in text format. This is

because at first the conversion from vector to packed raster data takes

place on the mainframe computer installed at the research site. This

text file may be downloaded to a micro, and converted into binary data.

As binary files may not take the same format on both mainframe and

micro, it is important to postpone text-to-binary conversion until after

transfer. The initial conversion takes place on the mainframe for two

reasons. Firstly, in the intermediate raster matrix stage, storage

overheads may be higher than practical for the current micro, also the

perimeter cell detection may be expensive in CPU time for a micro.

Secondly, the vector data exist on GIMMS dump files (Waugh, 1981)

which are resident on the mainframe, and thus more easily accessed.

Listing 6.5 gives the code to convert the output of this conversion

program into a binary file; and listing 6.6 gives a subroutine to plot a

file containing a collection of areas onto the screen. This calls two

other subroutines, MODE which initialises the screen in a given graphics

mode, and DOT (I, J, K) which sets a Pixel with coordinates I and J to

colour K (NB colour 15 is white). Finally, figure 6.7 gives a thermal

wax screen copy of the display given by the subroutine.



Figure 6.7
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6.5.3	 Choropleth Mapping

Having devised a method of mapping beat areas or their boundaries,

methods of combining these with the data must now be considered.

Firstly, choropleth mapping techniques will be considered. In this

technique, an aggregate value for an entire zone is represented by the

shading pattern for that zone. Already an algorithm exists (algorithm

6.1) to shade a solid area uniformly in one colour. This could already

be used to shade areas in terms of past crime rates, simply by filling

solid areas out in different colours. In EGA mode 16, there are 16

colours available. However there is no obvious ordinality in the set of

colours offered, so using this technique directly would not produce an

intuitively informative map. It would be better to classify all of the

beats by shading in the same colour, but distinguishing different rates

by using hatching of different pitch. There is easily recognisable

ordinality in this, if pitch is ordered in the same way as crime rate.

This is done here by modifying the method set out in algorithm 6.1; the

"dot" routine is called selectively according to a condition on the sum of

the x and y pixel coordinates. This condition is that

x + y 10 mod K,

ie. X + y is a multiple of k. The higher the value of K, the greater the

pitch of the hatching is. Since this rule directly relates to pixel

positions as integers, this does not result in the jagged edges and

rounding errors characteristic of hatching based on real numbered

pitches. It also provides a faster algorithm than vector based hatching
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algorithms, only adding a single filter to the block fill routine to decide

whether pixels should be plotted.

The full plotting subroutine is given in listing 6.7. This allows colour

and pitch to be adjusted for each beat. The change of colour will be

required to highlight beats having surprisingly high rates, given the

values of their neighbours.

Thus, the basic tools for the beatwise map of past data have been

created. These building blocks may now be joined to provide an

interactive program. There are options to view choropleth maps for

single week periods over the past 16 weeks, from the current week.

Also options to view the data aggregated over 4, 8 and 16 weeks are

offered. Finally, records will also be kept for beats which had

"surprisingly" high beat rates (see chapter 5 section 4). An option will

exist to view these by highlighting in a different colour. Initially pitch

shading will be light blue, with "surprising" beats marked in red. A

listing of the complete choropleth mapping program for past data is given

in listing 6.8.

6.5.4	 Point Mapping

The aim of point mapping of past data is to overlay point markers

showing the locations of household burglaries onto beat boundary

outlines. This is to be done on a week-by-week basis. It may also be

useful to overlay the points for several weeks, to build up point
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patterns over a longer period of time. Finally, it will also be of use to

identify clusters that are close in both space and time.

Point plotting is relatively simple. Assuming data is read from a file of

past point estimates as described in the input program section, the

coordinates are linearly transformed to pixel coordinates. These are

then plotted on the VDU. Early experimentation of point plotting

programs drew attention to two difficulties. Illumination of single pixels

did not prove to be a good means of displaying the data, as they were

difficult to discern, particularly near to borders. It was therefore

decided to mark points with crosses, built out of five pixels, as shown

in figure 6.8. The second problem encountered was that of

overprinting. Given the resolution offered by the VDU, and the fact

that houses are postcode referenced, with several houses per post-code,

several houses per postcode, several household burglaries may be

allocated to the same point on the screen. This gives the appearance

that only one incident has occurred, when in fact several have done so.

The result of this could be that certain crime patterns may be obscured.

To counter this, when a point is initially plotted, it is done so in red.

A second overlay is in magenta, and three or more in yellow. Thus the

use of the colour display may be used here to compensate for

shortcomings of resolution.

Next, a means of identifying Knox clusters on the display is proposed.

The intention is to highlight burglaries that have occurred within a

certain distance of their nearest neighbour, and also within a certain

time of their most recent temporal neighbour. Choice of distance and



time limits were considered in chapter 3. Reasonable limits are within

200m and 1 day. When identification of knox clusters is requested, for
%

the week on display it is intended for each crime record to search all

other records on the day associated with that record, and the previous

day, for other events within 200m. On the first day of the week, the

previous days records are to be found in the database for the previous

week. Also, for the final day of the week, (if it is not the most recent

week), a search will be carried out on the first day of the next week.

Burglaries of this sort may be part of a cluster overlapping weekly

boundaries, and it would be dangerous to systematically exclude them.

Thus, events that are components of this type of cluster will be

identified by the algorithm. These will in turn be plotted on the VDU,

in another colour from the colour coding discussed above, over the point

incidence data. To further emphasise these points they will not be

plotted with the shape given in figure 6.8, but the larger shape of

figure 6.9.

Finally comes the problem of overlaying points, to gain several weeks of

data on the same map. The approach taken here is to overlay these

again using colour codeing for duplicate pixels. When the option

", overlay" is selected, stepping back in time on the graph causes the

past data to be plotted on top of current data, rather than having

current data erased. If the mode is switched off, data is erased when

the user steps back and forth in time, as before. The listing of the

pointwise program is given as listing 6.9, and a thermal wax copy of

the screen is given in figure 6.4.
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Figure 6.8
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Figure 6.9
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6.5.5	 High Risk Area Identification

In Chapter 4, it was seen that, using kernel estimation techniques, a

"risk surface" could be built up over a geographical study area, given a

set of coordinates for the incidence of spatially referenced crimes The

points at which this surface exceeded certain values could then be

thought of as high risk areas. Clearly, this would be a further useful

method of representing past data. Indeed, in the map perception survey

in chapter 7, a notable proportion of those surveyed rated this form of

display highly, some commenting that it identified areas of high crime

incidence that crossed beat boundaries.

A method of this sort could be implemented on the prototype system,

when some constraints have been considered. The full Kernel estimator

system, as implemented in chapter 4, would be difficult to code in a way

that did not require very large run times: this is due to the large

computing overheads required for floating point operations, several of

which would have to be computed for each crime incidence point.

Basically, if an incident occurred at a point xi, then a kernel

distribution function of the form

IN4, L.--4
( .3-'--= -'-̀ )r,

would need to be computed at several points on a lattice surrounding x.

The process could be speeded up, however, by noting that this function

is the same for all x, only depending on the distance between x, and a

point on the lattice k. In this case, the function need only be computed
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the nearest pixel integer coordinates, and each grid point at which the

surface value is to be computed also corresponds to a pixel, there is

only a small number of distances for which the value of g need be

computed. They correspond to the kernel function evaluated on a

regularly spaced grid at which the reported crime is the origin. By

symmetry, only the first quadrant of the grid need be considered.

Also, beyond a certain radius, the value becomes negligible (NB, the

spacing of the grid corresponds to 32m in the x direction and 40 in the

37)- Thus, at some point, this matrix of values can be stored on file,

and referred to during the kernel estimation program. Execution may be

further speeded up by storing these values as integers, say between 0

and 100; this allows the adding up of contributions at grid squares from

several crime points to be speeded up, by performing no floating point

operations.

Eventually each cell will have a risk "score". The file containing the

kernel estimation matrix will be created externally to the running of the

day-to-day system. A program to do this, in listing 6.10, is supplied.

This allows several different shapes of kernel estimator, with choice of

bandwidth (see Chapter 4) to be generated. This program may not be

directly accessed from the menu, but could be run separately from

MS-DOS, as part of an initiation process when setting up the system.

Alternatively, it could be accessible from a password protected section

of the menu, so that accidentally changing the values of the Kernel

array elements is unlikely.
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The graphical display of risk surfaces is relatively easy, when areal

representation is raster-based. In a matrix, the risk scores for each

pixel (corresponding to a rectangle of ground of dimension 32 x 40m) are

stored. Pixels below a certain level will be plotted as green, and those

exceeding it will be plotted as red. Thus, high risk areas will be

indicated as red. In a similar manner to the hatching, the DOT routine

is modified to colour pixels according to this score. In fact, a

three-scale shading is employed, with yellow representing a medium

score.

As in chapter 4, there is no simple way to decide the crossover scores

from medium to high, or low to medium. Initial values have been

decided on a trial and error basis, where high risk zones have been

calibrated to cover areas which, on the opinion of some consulted police

officers, are of a reasonable size to allow police manpower resources to

respond. With the methodology set out as before, it is now possible to

write code to perform the above tasks. This is given in listing 6.11.

In addition to those requirements above, it was also decided to allow

beat boundaries to be drawn either obscured by or superimposed on the

risk area shading, which allows the user to identify areas of overspill

between beats, by firstly considering maps without beat boundaries, and

then overlaying these boundaries.

6.6 Prediction Software

So far, the software concerned with the display and analysis of past

crime data has been considered. However, an important part of the
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system is concerned with beatwise prediction of crime rates in the short

term. In this section, the quantitative algorithms concerned with

Bayesian forecasting will not be considered, as the operationalisation of

the Bayesian system was considered in chapter 5. It will be assumed

here that subroutines exist to perform this, directly translated from the

algebraic expressions arrived at in that chapter. The main task of this

program is to provide an interface between the human user and the

Bayesian system, capable of translating between the probability based

requirements of the system with the users beliefs relating to crime rates

and their knowledge of policing the area, which are intrinsically

expressible as formal probabilities.

In addition to this, the program will be required to output maps of

predictions made, based on the human user predictions combined with

the computer based predictions. Since these maps are also based on

probability distributions, some conveying of uncertainty must also be

incorporated into the maps. Beats may have point predictions based on

mean values for the relevant variables in the posterior distribution (see

Chapter 4) but it may also be informative to display the variances in

some form. This should not be a direct map of variance for each beat,

since this may prove difficult to interpret for some officers (Chapter 2)

but could, for example, highlight those beats whose prediction

distribution variance exceeds some limit as "less predictable beats".

Also, lines can be drawn between beat centroids (stored in a "local

information file") when beats are strongly correlated in the predictive

distribution.
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Firstly, the input of subjective knowledge from police officers will be

considered. It was stated in chapter 5 that it may be helpful to show

officers an initial prediction, and allow them to adjust this. This is

reasonable as it allows adjustments of mean values of the predictive

distributions to be made. However, it may also be useful to discover

the degree of certainty that the officers place on their predictions.

Again, it would not be reasonable to ask this in a statistical manner,

such as requesting the input of standard deviations; therefore a

three-way multiple choice question is asked; "How surprised would you

be if next week's rate differed from this?" with options "not very",

medium", "very". These can then be translated into variance figures.

These figures can then be converted into normal distributions by using

the number input as the mean and then choosing the standard deviation

to reflect the answer to the second question. In the prototype, the

following values will be used: for the response "not very" the standard

deviation will be two times the mean, for "medium" equal to it and for

" very", half of it. These details will then be fed to the prediction

subroutine.

As suggested earlier, high variance in the prediction distributions could

be indicated in a similar way to "surprising" beats on the past data

choropleth program. The predictions could be shown as a single colour

hatched choropleth map, and if it is requested to show "unpredictable"

beats, these could be highlighted in another colour. Beats whose

predictions are correlated could also be shown, by joining their centroids

with lines. These lines, unlike hatching, would require Bresenham's
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algorithm (Bresenham, 1965) to draw them. Thus, in addition to the

straightforward choropleth map, there will be three options:

Firstly, an option to enter subjective beliefs. Secondly, an option to

highlight beats with high variance in their predictive distributions, and

thirdly to highlight strongly associated beats (ie. those beats whose

predicted crime rates are strongly correlated in the Bayesian forecasting

distribution).

The prediction program is shown in listing 6.12. It was also decided to

incorporate a list form of beatwise forecasts, on the user modification

option. This may be screen dumped, to get hard copy text output to

circulate among police officers who may be concerned. A companion

program to this updates the performance evaluation function of the

human forecaster (see Chapter 5). This is called when a new weeks

data is loaded onto the database by the Data Input Program. This is

given in listing 6.13.

6.7 Miscellaneous Other Options

In addition to the main data input, mapping and prediction software,

some other software is also to be incorporated into the package. As

discussed earlier, this will not be considered as "mainstream" to the

application, and will initially require data from files that are not

dynamically updated using the data input program. However, they may

be useful on an on-site evaluation by police officers to identify further

development directions. Two such options are included. The first
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relates to the "time of day" study in Chapter 3. The method reads in

data in the format specified in that chapter, and from this deduces those

times of day at which household burglaries are most likely to occur.

The program specified called DAYTM, carries out this analysis, and data

is coded by day also, and the program offers the further option of

working out risk profiles for single days of the week, and also for week

ends and week days separately.

The second option allows the total number of household burglaries in the

subdivision to be analysed as a weekly time series. It is not the

ityteritiori here to facilitate Box Jenkins analysis, or other complex

techniques to be applied to the data. It is simply to provide seasonal

pattern analysis. In previous studies this has often been found useful

for medium term planning (ie. with a horizon of say three or four

months). Two options will be offered here: a simple bar graph of

weekly crime rates over the past year, and also a cumulative graph. In

the cumulative graph, the option of comparing this year with the

previous year is incorporated, to allow the current years performance in

crime prevention to be assessed. At the end of each month, a "target"

could be given to keep the years cumulative total no worse than that of

the previous year.

6.8 File Structure

Now that all of the software in the system has been designed, and the

structure of this software has been given in terms of the menu system,

it may now be useful to consider the interaction of this software with the
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data files. These are often the means of communication between separate

programs, and it is important to consider firstly what files will be

necessary and secondly which software writes to and reads from the

files. The structure is best illustrated in table 6.6.

There are two stages. In the initiation stage, most of the data files are

set up. These are listed in table 6.7. They include data about beat

boundaries, name of subdivision continuity of beats, beat centroids and

inter-centroid distances. It is expected that once they have been set

up, they will not need to be altered in day to day running.

Occasionally one may need to be altered by someone with access to the

system, for example if a beat boundary is altered.

Secondly, there is the structure of day to day running. In this set up,

the files set up in the initiation are not altered; they are only used for

reading data. There are, however several dynamic files. These include

point and tabular crime rate data, and data referring to the Bayesian

prior distributions, which are modified as further data evidence is

gathered. Generally, the data input program writes to these files, but

other programs read them. The exception to this is the prediction

program, where users prior predictions are output, so that there is a

running record of their performance.
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Table 6.6
File Interdependance

Program Name

Menu Controller
Input Crime Incident
Point Data Mapping
Risk Surface Mapping
Choropleth Mapping
Prediction
Kernel Function Setting
User/Machine Corrector

File Number
1 1 1 1 1 1 1 1 1 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

*

*	 * *	 * * * * * * * * *
*

*	 *	 *	 * *	 * *

File Numbers
1 MDF
2 IDF
3 TABCRM
4 SPTCRM
5 POSTCODE.SQZ
6 TXTCRM
7 KNOX.BIN
8 BEATS
9 BORDERS
10 KERNEL.BIN
11 COMP.MON
12 DISTS
13 ADJLST
14 HHOLDS
15 STAR
16 BTMEAN
17 COMP.PRD
18 USER.PRD
19 USER.PER
20 CENTS

Menu Descriptor File
Input Descriptor File
Beatwise Crime Dataset
Pointwise Crime Dataset
Postcode to Foot Beat Lookup
Text crime description
Definition of Knox Clusters
Beat zone descriptions for map drawing
Beat Border descriptions for map drawing
Kernel Function For Risk Surface Evaluation
Monitor of Computer Predictions
Distances Between Beat Centroids
Adjacency List
Beatwise Household Counts
Space Time Autoregression Coefficients
Beat Mean Levels Of Crime Estimates
Computer Predictions
User Predictions
Performance Of User Predictions
Centroids Of Beats
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Table 6.7

Files Requiring Initiatiation Before System is Installed

1 MDF
2 IDF
3 KNOX.BIN
8 BEATS
9 BORDERS
10 KERNEL.BIN
12 DISTS
13 ADJLST
14 HHOLDS
15 STAR
20 CENTS

Menu Descriptor File
Input Descriptor File
Definition of Knox Clusters
Beat zone descriptions for map drawing
Beat Border descriptions for map drawing
Kernel Function For Risk Surface Evaluation
Distances Between Beat Centroids
Adjacency List
Beatwise Household Counts
Space Time Autoregression Coefficients
Centroids Of Beats
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6.9 Conclusions

In this chapter, a set of requirements for a microcomputer crime pattern

analysis system has been drawn up. Following this, an implementation

has been proposed, and software to perform the specified tasks has been

written. This software has been tested for errors by the author at the

research site. However, it is possible that further flaws may become

evident when this prototype is tested in a working situation. it is also

possible that certain aspects of design, although perhaps implemented

with the intention of being easy to use and relevant, may in practise

prove not be so. At this stage, it is therefore necessary to set up an

end-user based trial, with the software to be evaluated by members of

the police force. In this way, the intended users are given an

opportunity to change certain aspects of design in the development

stage. In the following chapter, the methodology, implementation and

results of such a trial will be discussed.
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LISTINGS FOR CHAPTER 6



PROGRAM ECRYPT	 359

***** Listing 6.1 ********

C Encrypt passwords in an MDF

CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), NMDF
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER

C Attach menu descriptor file

CALL GETCOM(NMDF)
OPEN(1,FILE=NMDF)

C Read its contents

I = 1
READ (1,1) HEADER

1 FORMAT(1X,A58)
4 READ (1,5,END=3) CHOICE(I)
5 FORMAT(1X,A30)
READ (1,1,END= 6)	 EXPLAN(I)
READ (1,2,END=6) 	 PWTYPE(I), PASSWD(I)

2 FORMAT (A1,A30)
READ (1,2,END=6)	 TTYPE(I), TNAME(I)
I = I + 1
GO TO 4

3 ITEMS = I - 1
CLOSE(1)

C Now encode the passwords

DO 100 I = 1, ITEMS
100	 CALL ENCRPT(PASSWD(I))

C And output the result

OPEN (1,FILE=NMDF)
WRITE (1,1) HEADER
DO 200 I = 1, ITEMS

WRITE (1,5) CHOICE(I)
WRITE (1,1)	 EXPLAN(I)
WRITE (1,2)	 PWTYPE(I), PASSWD(I)
WRITE (1,2)	 TTYPE(I), TNAME(I)

200 CONTINUE
STOP

C Error trap for badly formed menu descriptor file ...

6 WRITE (6,*) 'Unexpected end on menu descriptor file ',NMDF
STOP
END

C* ******************************************************************

SUBROUTINE ENCRPT(PW)

C Password encryptor. Currently crude, for prototype



CHARACTER*30 PW	 360

INTEGER*2 PWINT(15)
EQUIVALENCE(PWINT, PW)
DO 100 I = 1, 15

C
C Get 4 byte representation of the 2 byte section
C

J = PWINT(I)
C
C Encrypt it
C

100	 PWINT(I) = MOD(J*255, 32768)
RETURN
END



PROGRAM MASTER
	 361

********* Listing 6.2 * ********

C Control program for police software. This program displays menus,
C and then, having recieved a choice from the menu, it either
C runs a selected piece of software or displays a new menu.

INPUTS -- Menu Descriptor File on Channel 1
-- Keyboard (Via MS/DOS)

OUTPUT -- VDU (Via MS/DOS)

EXTERN -- Loads 'Child' Programs (Via MS/DOS)
(Names specified in menu file)

C *** BS/DOS compatible only - Also some 'Child' programs require
C *** EGA graphics board in IBM/PC compatible machines.

C Subroutines Called -- GETKEY waits for a keystroke and returns it
-- MENU	 draws menu on screen
-- CHOICE makes menu selection

EXECPG Dos 'Child' initiator
GETCOM gets initiating command line from Dos

CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), IMENU, CMENU, PWDEC
CHARACTER*I FWTYPE(81, TTYFE(6)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER *4	 ITEMS, ICHCE, ERCODE
LOGICAL OK
INCLUDE 'A:SYSREG.FOR'
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,

1	 TTYPE, EXPLAN, HEADER, ITEMS

C Oisable break for security

CALL SEREAK

C Find the root menu

CALL GETCOM(IMENU)
CMENU = IMENU

C Display it --- Main Menu Loop

100 CALL MENU(CMENU)

C Make selection

CALL CHOOSE(ITEMS,ICHCE)

C Help line required

IF (ICHCE .EQ. 0) THEN
CALL HELP



GO TO 100
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END IF

C Go to new menu

IF (TTYPE(ICHCE) .EQ. 'M') THEN
CALL SECURE(ICHCE, OK)
IF (OK) CMENU = TNAME(ICHCE)
GO TO 100

END IF

C Execute a program

IF (TTYPE(ICHCE) .EQ. 'E') THEN
CALL SECURE(ICHCE,OK)
IF (OK) CALL EXECPG(TNAME(ICHCE), ERCODE)

C Check it ran ok

IF (ERCODE .NE. 0) THEN
WRITE(6,*) 'Press any key to continue ... '
AH = $08
CALL SYS1(SYSREG)

END IF
CMENU = IMENU
GO TO 100

END IF

C Run a program but do not go back to root menu

IF (TTYPE(ICHCE) .EQ. 'e') THEN
CALL SECURE(ICHCE,OK)
IF (OK) CALL EXECPG(TNAME(ICHCE), ERCODE)

C Error check

IF (ERCODE .NE. 0) THEN
WRITE(6,*) 'Press any key to continue ...
AH = $08
CALL SYS1(SYSREG)

END IF
GO TO 100

C Exit to system

END IF
IF (TTYPE(ICHCE) .EQ. 'S') THEN

CALL SECURE(ICHCE, OK)
IF (OK) THEN

C Reset break interrupt to normal and stop program

CALL RBREAK
STOP

END IF
GO TO 100

END IF

C Error in MDF

WRITE (6,*) 'Non standard action specifier in ',CMENU
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WRITE (6,*) 'causes a return to MS/DOS
STOP
END

C ********************************************************************

SUBROUTINE MENU(NMDF)

C Display menu on screen

INTEGER*1 ESC, TOPBAR(70), BOTBAR(70), MIDBAR(70), FRAME(2)
INTEGER*1 SPACES (68)
CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), NMDF
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER*4 ITEMS
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,

1	 TTYPE, EXPLAN, HEADER, ITEMS
DATA TDPBAR/-55,68*-51,-69/
DATA BOTBAR/-56,68*-51,-68/
DATA MIDBAR/-52,68*-51,-71/
DATA FRAME /-70,-70/
DATA SPACES 168*32/
ESC = 27

C Attach menu descriptor file

OPEN(1,FILE=NMDF)

C Fead its contents

I = 1
READ (1,1) HEADER

1 FORMAT(1X,A58)
4 READ (1,5,END=3) CHOICE(I)
5 FORMAT(1X,A30)

READ (1,1,END=6)	 EXPLAN(I)
READ (1,2,END=6)	 PWTYPE(I), PASSWD(I)

2 FORMAT (A1,A30)
READ (1,2,END=6)	 TTYPE(I), TNAME(I)
I = I + 1
GO TO 4

3 ITEMS = I - 1

C Clear the screen

WRITE (6,100) ESC, ESC
100 FORMAT(1H&,A1,'[40m1,A1,'[2J1)
50 WRITE (6,101) ESC
101 FORMATUH&,A1,1[36;40m1)

C Set up the frame and the menu text

WRITE (6,110) TOPBAR
110 FORMAT( 5X,70A1)

WRITE (6,110) FRAME(1), SPACES, FRAME(2)
WRITE (6,110) MIDBAR
DO 120 I= 1, 18

120	 WRITE (6,110) FRAME(1), SPACES, FRAME(2)
WRITE (6,110) MIDBAR
WRITE (6,110) FRAME(1), SPACES, FRAME(2)
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WRITE (6,110) BOTBAR
WRITE (6,201) ESC, ESC, HEADER

201 FORMAT (1X,A1,'[2;11H',A1,'[37;40m',A58)
WRITE (6,202) ESC, ESC, CHOICE(1)

202 FORMAT (1X,A1,'[5;20H',A1,'[32;40m1. 	 ',A30)
DO 300 I = 2, ITEMS
WRITE (6,203) ESC, ESC, I, CHOICE(I)

203 FORMAT (1H&,A1, 1 [34D',A1, 1 [2B',I1,'.	 ',A30)
300 CONTINUE

WRITE (6,204) ESC, ESC, ESC
204 FORMAT (1H&,A1,'[21;19W,A1,1[2;34;47m1,

l'Press the key corresponding to menu choice',A1,1[37;40m1)
WRITE (6,205) ESC

205 FORMAT (1H&,A1,1[23;7H',
l'Press H then corresponding key for more details on menu item.')
CLOSE (1)
RETURN

C Error trap for badly formed menu descriptor file ...

6 WRITE (6,*) 'Unexpected end on menu descriptor file ',NMDF
STOP
END

c*******************************************************************

SUBROUTINE CHOOSE(ITEMS, CHCE)

C Get choice from menu

INTEGER*4 ITEMS, CHCE
INCLUDE 'A:SYSREG.FOR'

100 AH = $08
CALL SYS1(SYSREG)
IF (AL .EQ. 12) THEN
CHU, =

ELSE
CHCE = AL - 48

END IF
IF (CHCE .LT. 0 .0R. CHCE .GT. ITEMS) GO TO 100
RETURN
END

c********************************************************************

SUBROUTINE HELP

C Display the help line

INTEGER*1 ESC
CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), NMDF
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER*4 ITEMS
INCLUDE 'SYSREG.FOR'
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,

1	 TTYPE, EXPLAN, HEADER, ITEMS
ESC = 27

100 CALL CHOOSE(ITEMS, ICHCE)
IF (ICHCE .EQ. 0) GO TO 100
WRITE (6,110) ESC, EXPLAN(ICHCE)
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110 FORMAT (1H&,A1,1[23;7H',A58,")

WRITE (6,120) ESC
120 FORMAT (1H&,A1,1[24;23W,

l'Press SPACE to return to main menu')
130 AR = $08

CALL SYS1(SYSREG)
IF (AL .NE. 32) GO TO 130
RETURN
END

c********************************************************************

SUBROUTINE SECURE(ICHCE, OK)

C Security check

LOGICAL OK
INTEGER*1 ESC
CHARACTER*30 CHOICE(8), PASSWD(8), TNAME(8), NMDF, GUESS
CHARACTER*1 PWTYPE(8), TTYPE(8)
CHARACTER*58 EXPLAN(8), HEADER
INTEGER*4 ITEMS
COMMON /MVAR/ CHOICE, PASSWD, TNAME, PWTYPE,

1	 TTYPE, EXPLAN, HEADER, ITEMS
ESC - 27
IF (PWTYPE(ICHCE) .EQ. '-') THEN

C If no password required then all is OK

OK = .TRUE.
ELSE

C Otherwise ask for password

WRITE (6, 100) ESC
100	 FORMAT (1H&,A1,1[23;711',

1'
WRITE (6,110) ESC, ESC

110	 FORMAT (1H&,A1, 1 [23;7H','Enter password > ',A1,1[32;42m1)
READ (5,'(A)') GUESS
CALL ENCRPT(GUESS)
IF (GUESS .EQ. PASSWD(ICHCE)) THEN

C Password correct

OK = .TRUE.
WRITE (6,140) ESC

140	 FORMAT (1H&,A1,'[37;40m1)
ELSE

C Password wrong

WRITE (6,120) ESC, ESC
120	 FORMAT (1H&,A1,1[23;7H',A1,'[31;47W,

1 1	NO ACCESS
OK = .FALSE.
DO 130 I = 1, 300000

130	 CONTINUE
END IF

END IF
RETURN
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END



367

PROGRAM INPUT

********* Listing 6 . 3 ************

INPUT

Data input program for crime pattern analysis system ---
C Reads a screen decription from the file in IDF; Prints this screen
C (an input form for a single crime record) and reads in the data.
C Stores this data onto the table of beatwise crime rates, and also
C the table of pointwise rates, in as binary files.

Files : IDF - Input Descriptor File -- Channel 1
SPTCRM - Pointwise Crime Data -- Channel 2
TABCRM - Tabular Crime Data -- Channel 3

Other Channels
- Keyed Input Of Data -- Channel 5
- Output of text to VDU -- Channel 6

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CHARACTER IDF*20, TEMPLT*76, VERBAL*60, POST*8, INCHAR*60,
1 SPCS*1, VARMKR*2, BLNK*78, TEXT*60
INTEGER	 INPOSN(6,2), WIDTH(6)
LOGICAL GIVEN(6), ALLIN, OK
LOGICAL*1 LEAVE
INTEGER*1 ESC, TR, BR, TL, BL, UL, AL
DIMENSION TEMPLT(20), VARMKR(6), SPCS(78)

C Above variables refer to characters to display form on VDU,
C and to widths, codes and cursor postion for input data items.
C QBREAK() is a test for ctrl-C --- abandon entry.

INTEGER DATEV, MONTH, YEAR, CRIME, DN, DF1, DF2, WEEK
INTEGER DT1, DT2, MT1, MT2, YR1, YR2, BEAT
INTEGER	 DA(16), MA(16), YA(16), CRA(16,32), DAYNUM
INTEGER	 REFNUM(16,100), NCRIMS(16), DAYNOT(16,100)
REAL	 CREAST(16,100), CRNORT(16,100)

C Above variables refer to dates, beats etc. for database of crime
C incidents

EQUIVALENCE (SPCS(1), BLNK)
DATA SPCS/78*"/ , VARMKR/I$DI,'SMY$V,I$P',I$TY$N1/
DATA ESC/27/,	 WIDTH/2, 2, 2, 8, 60, 4/
DATA TR/-65/, BR/-39/, TL/-38/, BL/-64/, UL/-77/, AL/-60/

C The above data statements initialise some of the constant data items

CCCCCCCCCCCCCCCC The Program CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C Disable the break key
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CALL SBREAK

C First, read in the Input Descriptor File into TEMPLT

CALL GETCOM(IDF)
OPEN(1, FILE=IDF)
DO 100 I = 1, 20

100	 TEMPLT(I) = BLNK
I = 1

120	 READ (1,'(A)', END=110) TEMPLT(I)
I = I + 1
IF (I.LT. 21) GO TO 120

110 CONTINUE
CLOSE (1)

C Now check that all of the variables required have positions given
C for input on the screen ... If not then halt the program.

DO 130 I = 1, 6
GIVEN(I) = .FALSE.
J= 1

135	 INPOSN(I,1) = INDEX(TEMPLT(J), VARMKR(I))
IF (INPOSN(I,1).NE.0) THEN

INPOSN(I,2) = J
GIVEN(I) = .TRUE.

END IF
J = J + 1
IF ((.NOT.GIVEN(I)).AND.(J .LT. 21)) GO TO 135

130	 CONTINUE
ALLIN = .TRUE.
DO 140 I = 1, 6

140	 ALLIN = ALLIN .AND. GIVEN(I)
IF (.NOT. ALLIN) THEN
WRITE (6,'(A)') ' Error -- Not all variables specified in IDF'
STOP 1

END IF

C Modify the input screen by putting dotted lines for variables

DO 150 I = 1, 6
J = INPOSN(I,1)
K = INPOSN(I,2)
DO 150 L = 0, WIDTH(I) - 1

150	 TEMPLT(K)(J+L:J+L) = "

C Modify the input coordinates to allow for border

DO 154 I = 1, 6
INPOSN(I,1) = INPOSN(I,1) + 1
INPOSN(I,2) = INPOSN(I,2) + 1

154 CONTINUE

C Read in the postcode centroid and beat information

CALL SETUP

C Now put the menu on the screen

260 WRITE (6,180) ESC, ESC
180 FORMAT (1X,A1,1[40mi,A1,1[2J1)

WRITE (6,'(2X,78A1)') TL, (AL, I = 1, 76), TR
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DO 170 I = 1, 20

170	 WRITE (6,'(2X,A1,A76,A1)') UL, TEMPLT(I), UL
WRITE (6,'(2X,78A1)') BL, (AL, I = 1, 76), BR

Next get the data from the user

C Firstly get the date, month, and year.

200 CALL GETTXT(INPOSN(1,1), INPOSN(1,2), WIDTH(1), TEXT)
IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:2), 1, 31, DATEV, OK)
IF (.NOT. OK) THEN
CALL PUTTXT(22,24,'Error in date entry: press any key')
CALL GETKEY
CALL PUTTXT(22,24,'	 1)

END IF
IF (.NOT.OK) GO TO 200

210 CALL GETTXT(INPOSN(2,1), INPOSN(2,2), WIDTH(2), TEXT)
IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:2), 1, 12, MONTH, OK)
IF (.NOT. OK) THEN
CALL PUTTXT(22,24,'Error in month entry: press any key')
CALL GETKEY
CALL PUTTXT(22,24,'

END IF
IF (.NOT. OK) GO TO 210

220 CALL GETTXT(INPOSN(3,1), INPOSN(3,2), WIDTH(3), TEXT)
IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:2), 0, 99, YEAR, OK)
IF (.NOT. OK) THEN
CALL PUTTXT(22,24,'Error in year entry: press any key')
CALL GETKEY
CALL PUTTXT(22,24,'	 1)

END IF
IF (.NOT. OK) GO TO 220

C Now get the postcode and see if it is a real one

230	 CALL GETTXT(INPOSN(4,1), INPOSN(4,2), WIDTH(4), TEXT)
IF (LEAVE()) GO TO 999
POST = TEXT(1:8)
CALL LOOKUP(POST, BEAT, XREF, YREF)
IF (BEAT .EQ. 0) THEN
CALL PUTTXT(22,24,'Post code error: Press any key')
CALL GETKEY
CALL PUTTXT(22,24,'

END IF
IF (BEAT .EQ. 0) GO TO 230

C Now the description

CALL GETTXT(INPOSN(5,1), INPOSN(5,2), WIDTH(5), TEXT)
IF (LEAVE()) GO TO 999
VERBAL = TEXT(1:60)

C Now the crime number

240 CALL GETTXT(INPOSN(6,1), INPOSN(6,2), WIDTH(6), TEXT)
IF (LEAVE()) GO TO 999
CALL CHECK(TEXT(1:4), 0, 9999, CRIME, OK)
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CALL PUTTXT(22,24,'Error in crime number: press any key')
CALL GETKEY
CALL PUTTXT(22,24,'	 v)

END IF
IF (.NOT. OK) GO TO 240

C Everything is now ready ... Allow user to verify the record

CALL PUTTXT(22,24,'Is the above record correct (YIN)')
250 CALL GETTXT(56,24,1,TEXT)

IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) THEN
CALL PUTTXT(22,24,'Please enter Y or N

END IF
IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) GO TO 250
IF (TEXT(1:1) .EQ. 'N' .0R. TEXT(1:1) .EQ. 'n') GO TO 260

C Now process the data. First make the date into a number

DN = DAYNUM(DATEV, MONTH, YEAR+1900)

C See if it it is sensible -- ie not in the future

CALL DATE(YR2, MT2, DT2)
DF2 = DAYNUM(DT2, MT2, YR2)
IF (DN .GT. DF2) THEN

C Trap for future dates

CALL PUTTXT(15,24,'Error: Your crime is in the future!:Press any
1 Key')

CALL GETKEY
CALL PUTTXT(15,24,'

1	 ')
GO TO 999

END IF

C Now attach tabular file, and find most recent date

OPEN(3,FILE='TABCRW,FORM=1UNFORMATTED')
READ (3) YR1, MT1, DT1
DF1 = DAYNUM(DT1, MT1, YR1)

C If date is after last saturday on file, roll on a week

IF (DF2 .GT. DF1) THEN
DO 270 I = 1, 32

270	 CRA(1,I) = 0
CALL DAMOYR((DF217)*7 + 7, DA(1), MA(1), YA(1))
DF1 = DAYNUM(DA(1), MA(1), YA(1))
DA(2) = DT1
MA(2) = MT1
YA(2) = YR1
READ (3) (CRA(2,J), J = 1, 32)
DO 280 I = 3, 16

READ (3) YA(I), MA(I), DA(I)
280	 READ (3) (CRA(I,J), J = 1, 32)

ELSE
YA(1) = YR1
MA(1) = MT1
DA(1) = DT1
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C Do this if otherwise

READ (3) (CRA(1,J), J = 1, 32)
DO 290 I = 2, 16

READ (3) YA(I), MA(I), DA(I)
290	 READ (3) (CRA(I, J), J = 1, 32)

END IF

C Update the tabular records

WEEK = (DF1 - DN) / 7 + 1
IF (WEEK .LE. 16) CRA(WEEK,BEAT) = CRA(WEEK,BEAT) + 1

C Overwrite the old file

CLOSE (3)
CALL CMND('COPY TABCRM EMERG.TAB >X')
CALL CMNWERASE TABCRW)
OPEN(3, FILE = 'TABCRM', FORM = 'UNFORMATTED')
DO 300 I = 1, 16

WRITE (3) YA(I), MA(I), DA(I)
300	 WRITE (3) (CRA(I, J), J = 1, 32)

CLOSE (3)

C Now update the points file -- Re read YR1, MT1, DT1 to skip on file

OPEN (2, FILE = 'SPTCRM', FORM = 'UNFORMATTED')
READ (2) YR1, MT1, DT1
DF1 = DAYNUM(DT1, MT1, YR1)

C If todays date exceeds last saturday, roll it on a week
C DF2 already known from Tabular data

IF (DF2 .GT. DF1) THEN
NCRIMS(1) = 0
CALL DAMOYR((DF2/7)*7 + 7, DA(1), MA(1), YA(1))
DF1 = DAYNUM(DA(1), MA(1), YA(1))
DA(2) = DT1
MA(2) = MT1
YA(2) = YR1
READ (2) NCRIMS(2)
READ (2) (CREAST(2,J), J=1, 100)
READ (2) (CRNORT(2,J), J=1, 100)
READ (2) (DAYNOT(2,J), J=1, 100)
READ (2) (REFNUM(2,J), J=1, 100)
DO 330 I = 3, 16

READ (2) YA(I), MA(I), DA(I)
READ (2) NCRIMS(I)
READ (2) (CREAST(I,J), J=1, 100)
READ (2) (CRNORT(I,J), J=1, 100)
READ (2) (DAYNOT(I,J), J=1, 100)

330	 READ (2) (REFNUM(I,J), J=1, 100)
ELSE

YA(1) = YR1
MA(1) = MT1
DA(1) = DT1
READ (2) NCRIMS(1)
READ (2) (CREAST(1,J), J=1, 100)
READ (2) (CRNORT(1,J), J=1, 100)
READ (2) (DAYNOT(1,J), J=1, 100)
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READ (2) (REFNUM(1,J), J=1, 100)

DO 340 I = 2, 16
READ (2) YA(I), MA(I), DA(I)
READ (2) NCRIMS(I)
READ (2) (CREAST(I,J), J=1, 100)
READ (2) (CRNORT(I,J), J= 1, 100)
READ (2) (DAYNOT(I,J), J=1, 100)

340	 READ (2) (REFNUM(I,J), J=1, 100)
END IF

Update point-based records

WEEK = (DF1 - DN) / 7 + 1
IF (WEEK .LE. 16) THEN
NCRIMS(WEEK) = NCRIMS(WEEK) + 1
CREAST(WEEK, NCR1MS(WEEK)) = XREF / 100.0
CRNORT(WEEK, NCRIMS(WEEK)) = YREF / 100.0
DAYNOT(WEEK, NCRIMS(WEEK)) = DN
REFNUM(WEEK, NCRIMS(WEEK)) = CRIME

END IF

C Overwrite the old file

CLOSE (2)
CALL CMND('COPY SPTCRM EMERG.SPT >X')
CALL CMND('ERASE SPTCRM')
OPEN (2, FILE= 'SPTCRM', FORM = 'UNFORMATTED')
DO 350 I = 1, 16

WRITE (2) YA(I), MA(I), DA(I)
WRITE (2) NCRIMS(I)
WRITE (2) (CREAST(I,J), J=1, 100)
WRITE (2) (CRNORT(I,J), J=1, 100)
WRITE (2) (DAYNOT(I,J), 3=1, 100)

350	 WRITE (2) (REFNUM(I,J), J=1, 100)
CLOSE (2)

C Check performance against machine prediction

CALL EXECPG('MONITOR', IFAULT)

C Download text and crime record number

OPEN (8, FILE='APPREC')
WRITE (8,'(I8,A60)') CRIME, VERBAL
CLOSE (8)
CALL CMND('COPY TXTCRM+APPREC >x')
CALL CMND('ERASE APPREC')

C Go round again if needed

999 CALL PUTTXT(22,24, 1 Do you have any further crime records? (YIN)')
310 CALL GETTXT(74,24,1,TEXT)

IF (INDEX('YNyn i ,TEXT(1:1)) .EQ. 0) THEN
CALL PUTTXT(22,24,'Please enter Y or N 	 t)

END IF
IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) GO TO 310
IF (TEXT(1:1) .EQ. 'Y' .0R. TEXT(1:1) .EQ. 'y') GO TO 260
CALL RBREAK
STOP
END
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c********************************************************************

C
SUBROUTINE GETTXT(XCR, YCR, WIDTH, TEXT)
INTEGER*4 XCR, YCR, WIDTH, POSN
CHARACTER*(*) TEXT
CHARACTER*1	 LETTER
INTEGER*1 SYSREG(20), AL, AR, 	 BL, BH,	 CL, CH, DL, DH

1
2
3
4
5
6
7

LOGICAL*1 ZF,
INTEGER*2 BP,
EQUIVALENCE

CF
SI,
(ZF,
(BP,

(SI,
(DS,
(AX,
(BX,

(CX,
(DX,

DI, DS, ES,	 AX,	 BX,	 CX, DX
SYSREG(1)),	 (CF,	 SYSREG(2)),
SYSREG(3)),
SYSREG(5)),	 (DI,	 SYSREG(7)),
SYSREG(8)),	 (ES,	 SYSREG(11)),
AL,	 SYSREG(13))r	 (AR,	 SYSREG(14))r
BL,	 SYSREG(15)),	 (BR,	 SYSREG(16)),
CL,	 SYSREG(17))r	 (CH,	 SYSREG(18)),
DL,	 SYSREG(19)),	 (DH,	 SYSREG(20))

EQUIVALENCE (LETTER, AL)
C
C Subroutine to put a cursor onto a given point on the vdu
C and read a string of width WIDTH.
C
C
C Initially the text to return is filled with spaces
C

DO 100 I = 1, WIDTH
100	 TEXT(I:I) = I I

C
C Put the cursor in position
C

AR = 2
BR = 0
DL = XCR
DH = YCR
CALL SYS2(16,SYSREG)

C

C Now read the input ... do not allow cursor off pro-forma
C

POSN = 1
110 AR = 8

CALL SYS1(SYSREG)
IF (AL .GE. 32) THEN

C
C Non - control character handling
C

IF (POSN .LE. WIDTH) THEN
WRITE (6,'(1H&,A1)') LETTER
TEXT(POSN:POSN) = LETTER
POSN = POSN + 1

END IF
ELSE

C

C Special characters --- return, backspace, forespace
C

IF (AL .EQ. 8 .011. AL .EQ. 11) THEN
Backspace

IF (POSN .GT. 1) THEN
POSN = POSN - 1
WRITE (6,1(1H&,A1)1) LETTER

END IF
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IF (AL .EQ. 26) THEN
Forespace

IF (POSN .LT. WIDTH) THEN
WRITE (6,'(1H,i,A1)1) LETTER
POSN = POSN + 1

END IF
END IF

C End of loop --- re-loop if return has not been pressed

END IF
IF (AL .NE. 13) GO TO 110
RETURN
END

c*********************************************************************

SUBROUTINE CHECK(STRING, LOWER, UPPER, NUMBER, FLAG)

C Subroutine to detect errors in strings of numbers

C STRING Text string to be scanned
C UPPER Upper bound for number
C LOWER Lower bound for number
C NUMBER value returned if number good
C FLAG Logical test of whether number good

CHARACTER*(*) STRING
CHARACTER*4 ARGMNT
INTEGER*4 UPPER, LOWER, NUMBER
LOGICAL FLAG

C Ensure ARGMNT has four characters

IF (LEN(STRING) .LT. 4) THEN
ARGMNT = "//STRING

ELSE
ARGMNT = STRING

END IF

C Try to read the string as a number. If OK check range

READ (ARGMNT,'(I4)',ERR=100) NUMBER
FLAG = NUMBER .GE. LOWER .AND. NUMBER .LE. UPPER
RETURN

C If program gets here, text was not a number

100	 FLAG = .FALSE.
RETURN

END

c*******************************************************************

SUBROUTINE PUTTXT(XTL, YTL, TEXT)

C Subroutine to write text on screen

C XTL	 X Text Location
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C	 YTL	 Y Text Location
C	 TEXT	 The text
C

INTEGER*4 XTL, YTL
CHARACTER*(*)	 TEXT
INTEGER*1 SYSREG(20), AL, AR, BL, 	 BH, CL, CH, DL, DH

1
2
3
4
5
6
7

LOGICAL*1 ZF,
INTEGER*2 BP,
EQUIVALENCE

CF
SI,
(ZF,
(BP,
(SI,
(DS,
(AX,
(BX,
(CX,
(DX,

DI,	 DS,	 ES, AX,	 BX, CX, DX
SYSREG(1)),	 (CF,	 SYSREG(2)),
SYSREG(3)),
SYSREG(5)),	 (DI,	 SYSREG(7)),
SYSREG(8)),	 (ES,	 SYSREG(11)),
AL,	 SYSREG(13)),	 (AR,	 SYSREG(14)),
BL,	 SYSREG(15)),	 (BR,	 SYSREG(16)),
CL,	 SYSREG(17)),	 (CH,	 SYSREG(18)),
DL,	 SYSREG(19)),	 (DH,	 SYSREG(20))

AR = 2
BR = 0
DL = XTL
DH = YTL
CALL SYS2(16,SYSREG)
WRITE (6,1(1Hii,A)') TEXT
RETURN
END

C
C* *******************************************************************

C

SUBROUTINE GETKEY
C
C	 Wait for a key to be pressed
C

INTEGER*1 SYSREG(20), AL, AR, BL, BR, CL, CH, DL, DH

1
2
3
4
5
6
7

LOGICAL*1 ZF,
INTEGER*2 BP,
EQUIVALENCE

CF
SI,
(ZF,
(BP,
(SI,
(DS,
(AX,
(BX,
(CX,
(DX,

DI, DS, ES, AX,	 BX,	 CX, DX
SYSREG(1)),	 (CF,	 SYSREG(2)),
SYSREG(3)),
SYSREG(5)),	 (DI,	 SYSREG(7)),
SYSREG(8)),	 (ES,	 SYSREG(11)),
AL,	 SYSREG(13)),	 (AR,	 SYSREG(14)),
BL,	 SYSREG(15)),	 (BH,	 SYSREG(16)),
CL,	 SYSREG(17)),	 (CH,	 SYSREG(18)),
DL,	 SYSREG(19)),	 (DH,	 SYSREG(20))

AH = 8
CALL SYS1(SYSREG)
RETURN
END

C
c*********************************************************************
C

SUBROUTINE LOOKUP(POST, BEAT, XREF, YREF)
CHARACTER*8 POST, SQUASH
INTEGER*4 BEAT, INDEX1, INDEX2
REAL*4 XREF, YREF

C
C Lookup table from Postcode to coordinates and beat
C
C POST Postcode
C BEAT Integer beat code
C XREF, YREF 10 metre grid coordinates
C
C
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C First, remove spaces from postcode

SQUASH =
INDEX2 = 1
DO 100 INDEX1 = 1, 8

IF (POST(INDEX1:INDEX1) .NE. ' ') THEN
SQUASH(INDEX2:INDEX2) = POST(INDEX1:INDEX1)
INDEX2 = INDEX2 + 1

END IF
100 CONTINUE

CALL BINLUT(SQUASH(1:7), BEAT, XREF, YREF)
RETURN
END

c********************************************************************

INTEGER*4 FUNCTION DAYNUM(DATE, MONTH, YEAR)

C Gives an integer corresponding to the date
C allowing dates to be subtracted etc.

INTEGER*4 YEAR, MONTH, DATE
IF (MONTH .LT. 3) THEN
DAYNUM = 365*YEAR + DATE + 31* (MONTH - 1) + (YEAR - 1)14

1	 - INT(0.75*((YEAR - 1)/1C0) + 1)
ELSE
DAYNUM = 365*YEAR + DATE + 31*(MONTH - 1) - INT(0.4*MONTH + 2.3)

1	 + YEAR/4 - INT(0.75*(YEAR/100) + 1)
END IF
RETURN
END

c********************************************************************

SUBROUTINE DAMOYR(NUMBER, DATE, MONTH, YEAR)

C Opposite of DAYNUM --- given the number gives date, month, year

INTEGER*4 NUMBER, DATE, MONTH, YEAR, GUESS, TEST

C Initial guess at the year -- normally correct

YEAR = NUMBER / 365.24
GUESS = NUMBER - 365*YEAR - (YEAR - 1)/4 + 15

C If incorrect, the previous year will work

IF (GUESS .LE. 0) THEN
YEAR = YEAR - I
GUESS = NUMBER - 365*YEAR - (YEAR - 1)14 + 15

END IF

C Now find the month -- Jan & Feb first, then the rest

IF (GUESS .LT. 32) THEN
DATE = GUESS
MONTH = 1
RETURN

END IF
IF (GUESS .LT. 60) THEN
DATE = GUESS - 31
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MONTH = 2
IF (DATE .EQ. 29) THEN

IF ((YEAR/4)*4 .NE. YEAR) THEN
MONTH = 3
DATE = 1

END IF
END IF
RETURN

END IF
IF (GUESS .GE. 60) THEN
MONTH = 2

100 MONTH = MONTH + 1
TEST = GUESS - 31* (MONTH - 1) + (0.4*MONTH + 2.3)
IF (TEST .GT. 0) GO TO 100

END IF
MONTH = MONTH - 1

C

C What remains gives the data of the month
C

DATE = GUESS - 31* (MONTH - 1) + (0.4*MONTH + 2.3)
RETURN
END

C
C** ********** ************** ********** ************** ********** **********

C

SUBROUTINE SETUP
C

C The Initialiser for the Look-Up table routine
C

CHARACTER*7 CODE(1564)
INTEGER*4 BEAT(1564)
REAL X(1564), Y(1564)
COMMON /LOOK/ CODE, BEAT, X, Y
OPEN(4,FILE='B:POSTCOD.SQZ',FORM='UNFORMATTED')
READ (4) CODE
READ (4) BEAT
READ (4) X
READ (4) Y
RETURN
END

C
c********************************************************************
C

SUBROUTINE BINLUT(CODE, BEAT, X, Y)
C

C The Action Routine for the lookup table
C

CHARACTER CODE*7
CHARACTER*7 TCODE(1564)
INTEGER*4 TBEAT(1564), BEAT
REAL TX(1564), TY(1564), X, Y
INTEGER LOOKH, LOOKL, LOOKM, GAP, LGAP
LOGICAL FOUND, LLT
COMMON /LOOK/ TCODE, TBEAT, TX, TY

C

C Start the search by initialising the parameters
C

LOOKH = 1564
LOOKL = 1
FOUND = .FALSE.
LGAP = 2*(LOOKH - LOOKL)
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GAP = LOOKH - LOOKL

C Main loop of a binary division search

100 IF ((GAP .NE. LGAP).AND.(.NOT.FOUND)) THEN
LOOKM = (LOOKH + LOOKL) / 2
FOUND = TCODE(LOOKM).EQ.CODE
IF (.NOT.FOUND) THEN

IF (LLT(TCODE(LOOKM),CODE)) THEN
LOOKL = LOOKM

ELSE
LOOKH = LOOKM

END IF
LGAP = GAP
GAP = LOOKH - LOOKL

END IF
GO TO 100
END IF

C Result of search may now be transferred

IF (FOUND) THEN
X = TX(LOOKM)
Y = TY(LOOKM)
BEAT = TBEAT(LOOKM)

ELSE
BEAT = 0

END IF
RETURN
END

C******************************************* **************************

LOGICAL*1 FUNCTION LEAVE()
LOGICAL*1 QBREAK
CHARACTER*1 TEXT

C Device to handle user interrupts to exit record

LEAVE = QBREAKO

C Get verification of this

IF (LEAVE) THEN
CALL PUTTXT(21,24,'Request to exit record -- Verify (YIN)')

100	 CALL GETTXT(65,24,1,TEXT)
CALL PUTTXT(21,24,'
IF (INDEX('YNyn',TEXT(1:1)) .EQ. 0) THEN
CALL PUTTXT(22,24,'Please enter Y or N
GO TO 100

END IF
LEAVE = (TEXT(1:1) .EQ. 'Y' .0R. TEXT(1:1) .EQ. 'y')

END IF
RETURN
END
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********** Listing 6.4 **********

Rasterising Program - turns a GIMMS
outline into a crushed raster code

Uses a point in polygon routine

Channels 1= Gimms Outline
2= Rasterised output
5= Limits of map

INTEGER*2 GRID(375,300), LAST, COUNT, GR2(375,300)
REAL*4 XOUTL(400), YOUTL(400), XTOP, XBTM, YTOP, YBTM
REAL*4 XLT, XLB, YLT, YLB, XSTEP, YSTEP
INTEGER*4 SIZE, IL, IH, JL, JR, DELTX, DELTY
INTEGER*4 LIMS(4,32)
INTEGER*2 MINSCN
CHARACTER*4 BEAT
LOGICAL WITHIN

C Input the limit points of the map from file

READ (5,'(4F7.0)') XBTM, XTOP, YBTM, YTOP

C Compute the steps for centroids of pixels (in terms of National grid)

XSTEP = (XTOP - XBTM) / 375.0
YSTEP = (YTOP - YBTM) / 300.0
DO 887 I = 1, 375

DO 887 J = 1, 300
887	 GRID(I,J) = 0

C Read the beats in from GIMMS area dump file

DO 888 IBT = 1, 32
READ (1,'(T10,A4)') BEAT
READ (1,'(T10,I4)1) SIZE
READ (1,'(10F7.0)') (XOUTL(I), YOUTL(I), I = 1, SIZE)
WRITE (6,'(2X,A4)1) BEAT

C Compute the x and y limits for each zone

XLT = XOUTL(1)
XLB = XOUTL(1)
YLT = YOUTL(1)
YLB = YOUTL(1)
DO 100 I = 2, SIZE

IF (XLT. LT. XOUTL(I)) XLT = XOUTL(I)
IF (XLB. GT. XOUTL(I)) XLB = XOUTL(I)
IF (YLT. LT. YOUTL(I)) YLT = YOUTL(I)
IF (YLB. GT. YOUTL(I)) YLB = YOUTL(I)

100 CONTINUE
IL = INT((XLB - XBTM)/XSTEP) - 2
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JL = INT((YLB - YBTM)/YSTEP) - 2
JH = INT((YLT - YBTM)/YSTEP) + 2
LIMS(1,IBT) = IL
LIMS(2,IBT) = IH
LIMS(3,IBT) = JL
LIMS(4,IBT) = JH
IF (IL .LE. 0) IL = 1
IF (IH .GE. 375) IH = 375
IF (JL .LE. 0) JL = 1
IF (IL .GE. 300) JH - 300

C Check, for each zone, whether centroid is inside, foe each
C centroid in the x and y limit square

DO 110 I = IL, IH
DO 110 J	 JL, JH

CALL INSIDE(XOUTL, YOUTL, SIZE,

	

1	 XBTM + (I - 0.5)*XSTEP, YBTM + (J - 0.5)*YSTEP,

	

2	 WITHIN)
IF (WITHIN) GRID(I,J) = IBT

110 CONTINUE

C Output it in run-length encoded form (see text)

CALL CRUNCH(GRID,IL,JI,,IH,JH,IBT)
888 CONTINUE

C Now do edge detection; for finding borders

DO 889 IBT = 1, 32
IL = LIMS(1,IBT)
IH = LIMS(2,IBT)
JL = LIMS(3,IBT)
JH = LIMS(4,IBT)
DO 890 I = IL + 1, IH - 1
DO 890 J = JL + 1, JH -1

C Look around each pixel for neighbours of a different zone code
C When one is found less than zone code of zone whose borders are
C being detected, then the pixel is a border. Otherwise not.

IF (GRID(I,J) .EQ. IBT) THEN
MINSCN = 32000
IF (GRID(I ,J-1).LT.MINSCN) MINSCN GRID(I ,J-1)
IF (GRID(I-1,J ).LT.MINSCN) MINSCN = GRID(I-1,J )
IF (GRID(I+1,J ).LT.MINSCN) MINSCN = GRID(I+1,J )
IF (GRID(I ,J+1).LT.MINSCN) MINSCN = GRID(I ,J+1)
IF (MINSCN .LT. GRID(I,J)) THEN
GR2(I,J) = 1

ELSE
GR2(I,J) = 0

END IF
ELSE
• GR2(I,J) = 0
END IF

	

890	 CONTINUE
WRITE (6,'(A)') '++++++++++++++++++++'

C Run length encode the border pixels in the same way as the area ones
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CALL CRUNCH(GR2,IL+1,JL+1,IH-1,JH-1,1)
889 CONTINUE

STOP
END

C
C***********************************************************************

C
SUBROUTINE INSIDE(XOUTL,YOUTL,LEN,XREF,YREF,WITHIN)

C
C Subroutine taken from Baxter, 1976 (see refs) to detect
C whether a point lies inside a vector defined polygon
C

INTEGER*4 LEN, COUNT, PTR
REAL*4	 XOUTL(LEN), YOUTL(LEN), XREF, YREF
LOGICAL*4 WITHIN
J = 0
WITHIN = .TRUE.

C
C Code from here taken directly from text : no structuring!
C

DO 11 1=2, LEN
M = 0
IF ((YOUTL(I-1)-YREF)*(YREF-YOUTL(I))) 11, 5, 9

5 IF (YOUTL(I-1)-YOUTL(I)) 8, 6, 7
6 IF ((XOUTL(I-1)-XREF)*(XREF-XOUTL(I))) 11, 12, 12
7 M = M - 2
8M=M- 1
9 M=M  + 2

IF ((YREF-YOUTL(I-l))*(XOUTL(I)-XOUTL(I-1))/
1 (YOUTL(I)-YOUTL(I-1))+XOUTL(I-1) - XREF) 11, 12, 10

10 J = J + M
11 CONTINUE

C
C Final test result
C

WITHIN = J/4*4.NE.J
12 RETURN

END
C
C**** ***************************************************************

C
SUBROUTINE CRUNCH(GRID,IL,JL,IH,JH,IBT)

C
C Run length encode the data in matrix grid
C Find number of zeroes, number of ones etc .. until end of
C horizontal line
C

INTEGER*2 GRID(375,300), COUNT
C
C Top left hand corner of zone coordinates on screen (Mode 16 EGA)
C

WRITE (6,*) IL, JL
C
C Scan horizontal line
C

DO 130 J = JL, JH
C
C Does it start inside or outside of zone
C

IF (GRID(IL,J).EQ.IBT) THEN
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ELSE

INIBT = 0
END IF
WRITE (6,*) INIBT

C Scan along run until state of inside/outside changes

LAST = INIBT
COUNT = 1
DO 140 I = IL+1, IH

IF (GRID(I,J).EQ.IBT) THEN
INIBT = 1

ELSE
INIBT = 0

END IF
IF (INIBT.EQ.LAST) THEN
COUNT = COUNT + 1

ELSE
WRITE (6,*) COUNT
COUNT = 1
LAST = 1 - LAST

END IF
140	 CONTINUE

C end of line / end of scan information

IF (LAST .EQ. 1) WRITE (6,*) COUNT
IF (J.NE.JH) WRITE (6,*) 0
IF (J.EQ.JH) WRITE (6,*) -1

130 CONTINUE
RETURN
END



PROGRAM CRUNCH
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********* Listing cv. 5 *******

Takes the ASCII run length encoded map description file
generated by MTS (Listing 6.4) and converts it to a binary
file readable by MS-DOS, which is faster to access from the
graphics programs

CHARACTER NAME*4, DFILE*30
INTEGER*2 ARRAY(1800)
INTEGER*4 NPTS
LOGICAL BORDER

C What file is the data in?

CALL GETCOM(DFILE)

C Is it a border file (in thise case filenane contains a + )

ILOC = INDEX(DFILE,'+')
IF (ILOC .NE. 0) THEN
BORDER = .TRUE.
DFILE(ILOC:ILOC)

ELSE
BORDER = .FALSE.

END IF

C Access the file to put the binary data into

OPEN (1, FILE=DFILE,FORM='UNFORMATTED')

C Main crunching loop

120 CONTINUE

C Report zone name (= BORD for a border file)

IF (BORDER) THEN
NAME = 'BORD'

ELSE
READ (5,'(2X,A4)', END =110) NAME

END IF

C Get the zone info (as in Listing 6.4)

NPTS = 3
READ (5,*,END = 110) ARRAY(1), ARRAY(2)

100 READ (5,*) ARRAY(NPTS)
NPTS = NPTS + 1
IF (ARRAY(NPTS - 1) .NE. -1) GO TO 100

NPTS = NPTS - 1

C Output it in binary form

WRITE (1) NAME,NPTS,(ARRAY(K), K = 1, NPTS)
WRITE (6,'(A)') ' Zone 7/NAME//' crunched.'
GO TO 120

C Loop ends here



110 CLOSE (1)
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STOP

END
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c 6 ********* Listing u.	 *******

SUBROUTINE ZONE(ZARRAY, COL, PITCH)

C Subroutine to shade a compacted zone array with given
C COLour and PITCH

INTEGER*2 ZARRAY(800)
INTEGER*4 COL, PITCH, I, J, EDGEX, APTR, STATE, MOVE
EDGEX = ZARRAY(1)

C Convert to screen coordinates

J = 341 - ZARRAY(2)
I = EDGEX
APTR = 2

130 APTR = APTR + 1
STATE = ZARRAY(APTR)

120 APTR = APTR + 1
MOVE = ZARRAY(APTR)

C Scan through each horizontal line of data, using MOD and the PITCH
C value to see if each pixel is supposed to be illuminated
C If a run length for scan of less than zero is encountered
C then exit loop

IF (MOVE .LE. 0) GO TO 100
IF (STATE .EQ. 0) THEN

I = I + MOVE
STATE = 1 - STATE

ELSE
DO 110 K = I, I + MOVE - 1

MASK = 1 - MIN(MOD(K+J,PITCH),1)
110	 CALL DOT(K,J,MASK*COL)

I = I + MOVE
STATE = 1 - STATE

END IF
GO TO 120

C On a second -1 jump out of zone drawing routine

100 IF (MOVE .EQ. -1) RETURN
I = EDGEX
J = J - 1
GO TO 130
END
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******** Listing 6.7 ********

SUBROUTINE MAP(REGION,PVALS,CVALS,NZONES)

C Draws a map given a region file (see text) and two arrays
C for Pitch, and colour of the region (PVALS & CVALS)

CHARACTER*(*) REGION
INTEGER*4 PTR, PITCH, COL, NZONES, PVALS(NZONES), CVALS(NZONES)
INTEGER*2 SHAPE (1800)
CHARACTER*4 NAME

C Open a region file (a set of ZONES to shade)

OPEN (1, FILE=REGION, FORM=IUNFORMATTED1)

C Shade each zone in turn

DO 100 IBT = 1, NZONES
READ (1) NAME,PTR,(SHAPE(I),I=1,PTR)
PITCH = PVALS(IBT)
COL	 = CVALS(IBT)
IF (PITCH .NE. 0) CALL ZONE(SHAPE, COL, PITCH)

100 CONTINUE
CLOSE(1)
RETURN
END

C** **************** ******* *************** ******** **************** ****

SUBROUTINE ZONE(ZARRAY, COL, PITCH)
C
C Subroutine to shade a compacted zone array with given
C COLour and PITCH

INTEGER*2 ZARRAY(800)
INTEGER*4 COL, PITCH, I, J, EDGEX, APTR, STATE, MOVE
EDGEX = ZARRAY(1)

C
C Convert to screen coordinates

J = 341 - ZARRAY(2)
I = EDGEX
APTR = 2

130 APTR = APTR + 1
STATE = ZARRAY(APTR)

120 APTR = APTR + 1
MOVE = ZARRAY(APTR)

C Scan through each horizontal line of data, using MOD and the PITCH
C value to see if each pixel is supposed to be illuminated
C If a run length for scan of less than zero is encountered
C then exit loop

IF (MOVE .LE. 0) GO TO 100
IF (STATE .EQ. 0) THEN

I = I + MOVE
STATE = 1 - STATE



ELSE
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DO 110 K = I, I + MOVE - 1
MASK = 1 - MIN(MOD(K+J,PITCH),1)

110	 CALL DOT(K,J,MASK*COL)
I = I + MOVE
STATE = 1 - STATE

END IF
GO TO 120

C
C On a second -1 jump out of zone drawing routine
C
100 IF (MOVE .EQ. -1) RETURN

I = EDGEX
J = J - 1
GO TO 130
END

C
C*********************************************************************

C
SUBROUTINE MODE (N)

C
C Set graphics mode
C

INCLUDE 'A:SYSREG.FOR'
AM = 0
AL = N
CALL SYS2(16, SYSREG)
RETURN
END

C
c**********************************************************************

C
SUBROUTINE DOT(I, J, COL)

C
C Plot a pixel at I,J of colour COL
C

INCLUDE 'A:SYSREG.FORI
INTEGER COL
AR = $0C
BH = 0
CX = I
DX = J
AL = COL
CALL SYS2(16,SYSREG)
RETURN
END

C
C********************************************************************

C
SUBROUTINE PUTTXT(XTL, YTL, TEXT)

C
C Put TEXT at position XTL, YTL
C

INTEGER*4 XTL, YTL
CHARACTER*(*) TEXT
INCLUDE 'A:SYSREG.FOR'
AR = 2
BH = 0
DL = XTL
DH = YTL
CALL SYS2(16,SYSREG)



WRITE (6,'(1H&,A)') TEXT
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RETURN
END

C**** *****************************************************************

SUBROUTINE BOXES (COL)
INTEGER*4 COL

C Draw boxes on screen for crime mapping system

DO 100 I = 0, 639
CALL DOT(I,O,COL)

100	 CALL DOT(I,349,COL)
DO 110 J = 1, 348

CALL DOT(0,J,COL)
CALL DOT(639,J,COL)

110	 CALL DOT(455,J,COL)
RETURN
END



PROGRAM CHORO
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****** Listing 6.8 *******

Choropleth mapping of past data

INTEGER*4 PVALS(32), CVALS(32), CRIMES(16,32),

	

1	 YR(16), MO(16), DA(16), WK, MARRAY(32)
CHARACTER*1 DUMMY
CHARACTER*8 PERIOD
CHARACTER*10 DATETX
REAL*4 CVEC(32), UPPER(32), PRED(32)
INCLUDE 'A:SYSREG.FOR'

C Access the data file for beatwise crime counts

OPEN (3,FILE='TABCRW,FORM=1UNFORMATTED1)
DO 50 I = 1, 16

READ (3) YR(I), MO(I), DA(I)

	

50	 READ (3) (CRIMES(I,J), J = 1, 32)
CLOSE (3)

C Put up map title and control panel

WK = 1
PERIOD = ' 7 Days
WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)
CALL MODE(16)
CALL BOXES (15)
DO 99 I = 1, 32

99 MARRAY(I) = CRIMES(WK,I)
CALL PUTTXT(20,1,'South Gosforth Subdivision')
CALL PUTTXT(22,2,'Household Burglaries')
CALL CHKEY(1)
CALL CHKEY(2)
CALL PUTTXT(58, 2,' 	 Menu :-')
CALL PUTTXT(58, 4,'<+> = advance 1 wk')
CALL PUTTXT(58, 6,'<-> = go back 1 wk')
CALL PUTTXT(58, 8,'<4> = 4 weeks data')
CALL PUTTXT(58,10,'<8> = 8 weeks data')
CALL PUTTXT(58,12,'</> =16 weeks data')
CALL PUTTXT(58,14,'<H> = High Risk ')
CALL PUTTXT(58,16,'<E> = Exit to Menu')

51 CALL PUTTXT(19,3,PERIODWEnding '//DATETX)

C Overlay blank maps

DO 105 I = 1, 32

	

105	 CVALS(I) = 16
CALL MAP('BEATS',PVALS,CVALS,32)

C Now overlay final maps: code zones according to count in
C current time period

DO 100 I = 1, 32
CVALS(I) = 1
IPVAL	 = MARRAY(I)
PVALS(I) = 1
IF (IPVAL .LT. 8) PVALS(I) = 2
IF (IPVAL .LT. 6) PVALS(I) = 4
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IF (IPVAL .LT. 2) PVALS(I) = 0

100	 CONTINUE
CALL MAP('BEATSI,PVALS,CVALS,32)

C Insert the border values and plot borders

DO 110 I = 1, 32
CVALS(I) = 1
PVALS(I) = 1

110	 CONTINUE
CALL MAP('BORDERS',PVALS,CVALS,32)

C Main menu loop

500 AR = $08
CALL SYS1(SYSREG)
ICHCE = AL
IF (ICHCE .EQ. 43) THEN

C Go back one week and draw map (on pressing -)

WK = WK - 1
IF (WK .EQ. 0) WK = 1
DO 510 I = 1, 32

510	 MARRAY(I) = CRIMES(WK, I)
PERIOD = ' 7 Days
WRITE (DATETX, i (I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)
GO TO 51

END IF
IF (ICHCE .EQ. 45) THEN

C Go forward one week and draw map (On pressing +)

WK = WK + 1
IF (WK .EQ. 17) WK = 16
DO 520 I = 1, 32

520	 MARRAY(I) = CRIMES(WK, I)
PERIOD = ' 7 Days
WRITE (DATETX,'(I2,11-1/,I2,11-1/,I4) 1 ) DA(WK), MO(WK), YR(WK)
GO TO 51

END IF
IF (ICHCE .EQ. 52) THEN

C Change map to drawing over a 4-week period (on pressing 4)

PERIOD = '4 Weeks
WRITE (DATETX,'(I2,1W,I2,1H/,I4) 1 ) DA(1), MO(1), YR(1)
DO 530 I = 1, 32

MARRAY(I) = CRIMES(1,I) + CRIMES(2,I) + CRIMES (3,1)
MARRAY(I) = MARRAY(I)	 + CRIMES (4,1)

530	 MARRAY(I) = MARRAY(I) / 4.0
GO TO 51

END IF
IF (ICHCE .EQ. 56) THEN

C Change map to an 8-week period (on pressing 8)

PERIOD = '8 Weeks
WRITE (DATETX, i (I2,1H/,I2,1H/,I4) 1 ) DA(1), MO(1), YR(1)
DO 540 I = 1, 32
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DO 550 J = 1, 8
550	 MARRAY(I) = MARRAY(I) + CRIMES(J,I)
540	 MARRAY(I) = MARRAY(I) / 8.0

GO TO 51
END IF
IF (ICHCE .EQ. 56) THEN

C Change map to a 16 week period (on pressing /)

PERIOD = '16 Week
WRITE (DATETX,'(I2,111/,I2,11-1/,I4) 1 ) DA(1), MO(1), YR(1)
DO 560 I = 1, 32

MARRAY(I) = 0
DO 570 J = 1, 16

570	 MARRAY(I) = MARRAY(I) + CRIMES(J,:)
560	 MARRAY(I) = MARRAY(I) / 16.0

GO TO 51
END IF
IF (ICHCE .EQ. 72) THEN

C Highlight 'High Risk beats' (on pressing H)

DO 600 I = 1, 32
600	 CVEC(I) = CRIMES(WK,I)

CALL RISK(CVEC, CVALS, 32)
CALL MAP('BEATS',PVALS,CVALS,32)
DO 620 I = 1, 32

620	 CVALS(I) = 15
CALL MAP('C:BORDERS',PVALS,CVALS,32)
GO TO 500

END IF
IF (ICHCE .NE. 69) GO TO 500

C If keypress is not E then re-loop; else exit menu

CALL MODE(3)
STOP
END

C******************************* **** **********************************

SUBROUTINE CHKEY(NKEY)

C Key routine for choropleth maps

IF (NKEY .EQ. 1) THEN
CALL KEYBOX(45, 5,'0 -< 2',1, 0)
CALL KEYBOX(45, 7,'2 -< 4',1, 8)
CALL KEYBOX(45,	 9,'4 -< 6',1, 4)
CALL KEYBOX(45,11,'6 -< 8',1, 2)
CALL KEYBOX(45,13,'8 -< ',1, 1)
CALL PUTTXT(40,18,'Crimes per Week')

END IF
IF (NKEY .EQ. 2) THEN
CALL KEYBOX(45,16,'High Risk',12, 1)

END IF
RETURN
END

C********** ***** ************* ****** ************ ****** ************* ****
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SUBROUTINE KEYBOX(XTL, YTL, TEXT, COL, PITCH)
C
C Draw box of a given pitch and colour next to text at point
C XTL, YTL on mode 16 EGA.
C

INTEGER*4 XTL, YTL, COL, PITCH, GTX, GTY, PCOL
CHARACTER*(*) TEXT
GTX = XTL*8 - 20
GTY = YTL*14 - 4
IF (PITCH .NE. 0) THEN
DO 100 I = GTX, GTX + 15

DO 100 J - GTY, GTY + 21
IF (MOD(I+J,PITCH) .EQ. 0) THEN
PCOL = COL

ELSE
PCOL = 0

END IF
CALL DOT(I,J,PCOL)

	

100	 CONTINUE
END IF
DO 110 I = GTX, GTX + 15

CALL DOT(I,GTY,15)

	

110	 CALL DOT(I,GTY+21,15)
DO 120 J = GTY, GTY + 21

CALL DOT(GTX,J,15)

	

120	 CALL DOT(GTX+15,J,15)
CALL PUTTXT(XTL, YTL, TEXT)
RETURN
END

C
C********************* ******************** ***********R***************

C

SUBROUTINE RISK(CVEC, CVALS, NZONES)
C
C Subroutine to identify high risk beats (ie those exceeding
C predicted values
C

INTEGER*4 CVEC(NZONES), CVALS(NZONES), FLAG(32)
C
C Set all colours to blank initially
C

DO 100 I = 1, NZONES

	

100	 CVALS(I) = 0
C
C Use MONITOR to find high risk beats
C

OPEN (10, FILE=1COMP.MON')
READ (10) FLAG
CLOSE (10)
DO 110 I = 1, NZONES

IF (FLAG .NE. 0) CVALS(I) = 12
110 CONTINUE

RETURN
END



393
PROGRAM PNTMAP

******* Listing 6.9 ******

C Program to plot point incidence of crime

INTEGER*4 DIDS(16,100), YR(16), MO(16), 2A(16), WK, NPTS(16)
INTEGER*4 PVALS(32), CVALS(32), ENDWX, CINTV, REFNUM(16,100)

C Data required includes standard crime database (pointwise section)
C and area/boundary data for the subdivision

REAL*4	 XPTS(16,100), YPTS(16,100)
CHARACTER*1 DUMMY
CHARACTER*10 DATETX, BDATE
LOGICAL OVRLAY, PLOTTD(100)
INCLUDE 'A:SYSREG.FOR'

C Initialise variables

DATA PVALS/32*1/
DATA CVALS/32*16/
OVRLAY = .FALSE.

C Get defaults for Knox cluster definition (Critical time and distance)

OPEN (8,FILE='KNOX.BIN',FORM='UNFORMATTED')
READ (8) CDIST, CINTV
CDIST = (CDIST/100.0) ** 2
CLOSE (8)

C Open the crime database (for Points)

OPEN (18, FILE= 1 SPTCRW, FORM=TUNFORMATTE21)

C For past 16 weeks

DO 50 I = 1, 16

C Find date for end of week

READ (18) YR(I), MO(I), DA(I)

C Number of incidents in week

READ (18) NPTS(I)

C and day, grid ref., and police ref no. of each incident

READ (18) (XPTS(I,J),J=1,100)
READ (18) (YPTS(I,J),J=1,100)
READ (18) (DIDS(I,J),J=1,100)

50	 READ (18) (REFNUM(I,J),J=1,100)
CLOSE (18)
WK = 1
ENDWK = 1

C Now put up the control display surrounding the map



WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)
CALL MODE(16)
CALL BOXES(15)
CALL PUTTXT(20,1,'South Gosforth Subdivision')
CALL PUTTXT(22,2,'Household Burglaries')
CALL PUTTXT(58, 2,'	 Menu :-')
CALL PUTTXT(58, 4,'<+> = advance 1 wk')
CALL PUTTXT(58, 6,'<-> = go back 1 wk')
CALL PUTTXT(58, 8,'<O> = Overlay On ')
CALL PUTTXT(58,10, I <C> = Clusters ')
CALL PUTTXT(58,12,'<S> = Select Event')
CALL PUTTXT(58,14,'<E> = Exit to Menu')
CALL PTKEY

C Start of main menu loop : repeat until E is pressed

51 CONTINUE
IF (OVRLAY) THEN
CALL PUTTXT(20,3,BDATE//' to WDATETX)

ELSE
CALL PUTTXT(20,3,'7 Days Ending '//DATETX)

END IF

C When not in OVERLAY mode, erase the currents points on VDU
C if there are any

IF (.NOT.OVRLAY) THEN
DO 52 I = 1, 16

DO 53 J = 1, NPTS(I)
53	 CALL POINT(XPTS(I,J),YPTS(I,J),4180.,5650.,120.,120.,8)
52	 CONTINUE

C Then plot the map borders, if they got damaged above

DO 110 I = 1, 32
CVALS(I) = 15
PVALS(I) = 1

110	 CONTINUE
CALL MAP('C:BORDERS',PVALS,CVALS,32)

END IF

C Plot the current weeks data

DO 100 I = 1, NPTS(WK)
CALL POINT(XPTS(WK,I),

100 CONTINUE

C Main Menu Loop ... Get Key

500 AR = $08
CALL SYS1(SYSREG)
ICHCE = AL

YPTS(WK,I), 4180., 5650., 120., 120., 2)

C Go forward a week ( After pressing + )

IF (ICHCE .EQ. 43) THEN
IF (.NOT. OVRLAY) THEN
WK = WK - 1
IF (WK .EQ. 0) WK = 1
WRITE (DATETX,'(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)
GO TO 51
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END IF
GO TO 500

END IF
C
C Go back a week ( After pressing - )
C

IF (ICHCE .EQ. 45) THEN
WK = WK + 1
IF (WK .EQ. 17) WK = 16
IF (OVRLAY) THEN
WRITE (BDATE ,1(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)

ELSE
WRITE (DATETX, T (I2,1H/,I2,1H/,I4) ') DA(WK), MO(WK), YR(WK)

END IF
GO TO 51

END IF
C
C Toggle switch on OVERLAY mode ( After pressing 0 )
C

IF (ICHCE .EQ. 79) THEN
OVRLAY = .NOT. OVRLAY
IF (OVRLAY) THEN
CALL PUTTXT(71, 8,' Off')

ELSE
CALL PUTTXT(71, 8,' On ')

END IF
END IF

C
C Scan for Knox clusters ( After pressing C )
C

IF (ICHCE .EQ. 67 .AND. NPTS(WK) .GT. 1) THEN
IF (.NOT. OVRLAY) THEN
DO 92 I = 1, 16
DO 93 J = 1, NPTS(I) -1

	

93	 CALL POINT(XPTS(I,J),YPTS(I,J),4180.,5650.,120.,120.,8)

	

92	 CONTINUE
DO 75 I = 1, 32

CVALS(I) = 15
PVALS(I) = 1

	

75	 CONTINUE
CALL MAP(tC:BORDERST,PVALS,CVALS,32)
END IF
DO 900 I = 1, NPTS(WK)

	

900	 PLOTTD(I) = .FALSE.
DO 910 I = 1, NPTS(WK)

IF (.NOT.PLOTTD(I))
1	 CALL SCAN(I, NPTS, XPTS, YPTS, DIDS, PLOTTD, WK,CDIST,CINTV,
2	 PLOTTD)

	

910	 CONTINUE
END IF

C
C Select a point to view comment text ( After pressing S )
C

IF (ICHCE .EQ. 83) THEN
CALL SELECT(NPTS, XPTS, YPTS, REFNUM, WK,

1 4180., 5650., 120., 120.)
END IF

C
C If E not pressed then default (do nothing)
C
C If E pressed then exit the case structure
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IF (ICHCE .NE. 69) GO TO 500
CALL MODE (3)
STOP
END

C********************************************************************

SUBROUTINE PTKEY

C Print the key to the point map on the VDU

CALL KEYPNT(45, 9, 1 1 Event',12,2)
CALL KEYPNT(45,11, T 2 Events1,13,2)
CALL KEYPNT(45,13,'3+',14,2)
CALL KEYPNT(45,15,'Cluster',10,4)
CALL PUTTXT(40,18,'Crime Locations')

RETURN
END

C*********************************************************************

SUBROUTINE KEYPNT(XTL, YTL, TEXT, COL, SYMTYP)
INTEGER*4 XTL, YTL, COL, GTX, GTY, PCOL, SYMTYP

C Print the text next to the key on the map

CHARACTER*(*) TEXT
GTX = XTL*8 - 8
GTY = YTL*14 + 7
CALL MARK(GTX, GTY, COL, SYMTYP)
CALL PUTTXT(XTL, YTL, TEXT)
RETURN
END

C**** *****************************************************************

SUBROUTINE POINT(X,Y,XTL,YTL,XMD,YWD,SYMTYP)

C Put a point on the map, given the National Grid cornerpoints
C and the point coordinates in National Grid scale.

REAL*4	 X, Y, XTL, YTL, XWD, YD
INTEGER*4 I, J, COL, SYMTYP, BLKSYM

C Convert to 'screen coordinates' in EGA mode 16

I = INT(((X - XTL) / XWD) * 375.0)
J = INT(((Y - YTL) / YWD) * 300.0)
J = 341 - J

C Plot it with an appropriate symbol

IF (SYMTYP .LE. 4) THEN

C Cumulative colouring for multiple occurrence of same pixel

CALL GDOT(I, J, COL)
IF (COL .EQ. 0 .0R. COL .EQ. 15) CALL MARK(I, J, 12, SYMTYP)
IF (COL .EQ. 12) CALL MARK(I, J, 13, SYMTYP)
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IF (COL .EQ. 13) CALL MARK(I, J, 14, SYMTYP)

END IF
IF (SYMTYP .GT. 4 .AND. SYMTYP .LE. 8) THEN

C Blackout : for clearing points

BLKSYM = SYMTYP - 4
CALL MARK(I, J, 16, BLKSYM)

END IF
IF (SYMTYP .GT. 8) THEN

C For cluster symbol

BLKSYM = SYMTYP - 8
CALL MARK(I, J,10, SYMTYP)

END IF
RETURN
END

c********************************************************************

SUBROUTINE GDOT(I, J, COL)

C Find out what COLour dat at position I,J is

INCLUDE 'A:SYSREG.FOR'
INTEGER COL
AH = $0D
BH = 0
CX = I
DX = J
CALL SYS2(16,SYSREG)
COL = AL
RETURN
END

c********************************************************************

SUBROUTINE MARK(I, J, COL, SYMTYP)
INTEGER I, J, COL, SYMTYP

C Plot the marker symbol

CALL DOT(I, J, COL)
IF (SYMTYP.NE .1) THEN

IF (SYMTYP.NE .3) THEN

C Cross - shaped for crime incidence

CALL DOT(I-1,J,COL)
CALL DOT(I+1,J,COL)
CALL DOT(I,J-1,COL)
CALL DOT(I,J+1,COL)

END IF
IF (SYMTYP.NE .2) THEN

C Square shaped for Cluster identification

CALL DOT(I-1,J-1,COL)
CALL DOT(I+1,J-1,COL)
CALL DOT(I-1,J+1,COL)



CALL DOT(I+1,J+1,COL)
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END IF
END IF
RETURN
END
SUBROUTINE SCAN(I, NPTS, XPTS, YPTS, DIDS, PLCTTD,WK,CDIST, CINTV,

1 PLOTTD)

C Scan for Knox clusters

INTEGER*4 NPTS(16), DIDS(16,100), WK, WKPTR, DAYGAP, CINTV
REAL*4	 XPTS(16,100), YPTS(16,100), DIST, CDIST
LOGICAL	 PLOTTD(100)

C Scan through previous week (if available) : plot if necessary

WKPTR = WK + 1
IF (WKPTR .LT. 17 .AND. NPTS(WKPTR) .GT. 0) THEN

J = 1
100	 DAYGAP = IABS(DIDS(WKPTR,J) - DIDS(WK, I))

IF (DAYGAP .LE. CINTV) THEN
DIST = (XPTS(WKPTR,J)-XPTS(WK,I))**2 +

1	 (YPTS(WKPTR,J)-YPTS(WK,I))**2
IF (DIST .LE. CDIST) THEN
CALL POINT(XPTS(WK,I),YPTS(WK,I),4180.,5650.,120.,120.,12)
PLOTTD(I) = .TRUE.
RETURN

END IF
END IF
J = J + 1
IF (J .LE. NPTS(WKPTR)) GO TC 100

END IF

C Scan through this week : plot if necessary

J = I + 1
110 IF (.NOT.PLOTTD(J)) THEN

DAYGAP = IABS(DIDS(WK,J) - DIDS(WK, I))
IF (DAYGAP .LE. CINTV) THEN
DIST = (XPTS(WK,J)-XPTS(WK,I))**2 +

1	 (YPTS(WK,J)-YPTS(WK,I))**2
IF (DIST .LE. CDIST) THEN
CALL POINT(XPTS(WK,I),YPTS(WK,I),4180.,5650.,120.,120.,12)
PLOTTD(I) = .TRUE.
RETURN

END IF
END IF
J = J + 1
IF (J .LE. NPTS(WK)) GO TO 110

END IF

C Scan through next week (if there is one) : plot if necessary

WKPTR = WK - 1
IF (WKPTR .GT. 0 .AND. NPTS(WKPTR) .GT. 0) THEN

J = 1
120	 DAYGAP = IABS(DIDS(WKPTR,J) - DIDS(WK, 1))

IF (DAYGAP .LE. CINTV) THEN
DIST = (XPTS(WKPTR,J)-XPTS(WK,I))**2 +

1	 (YPTS(WKPTR,J)-YPTS(WK,I))**2
IF (DIST .LE. CDIST) THEN
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CALL POINT(XPTS(WK,I),YPTS(WK,I),4180.,5650.,120.,120.,12)
PLOTTD(I) = .TRUE.
RETURN

END IF
END IF
J = J + 1
IF (J .LE. NPTS(WKPTR)) GO TO 120

END IF
RETURN
END

C********************************************************************

SUBROUTINE SELECT(NPTS, XPTS, YPTS,REFNUM, WK, XTL, YTL, XWD, YWD)

C Select an incident --- try to find verbal description

REAL*4 XPTS(16,100), YPTS(16,100), XTL, YTL, XWD, YWD
CHARACTER CNTEXT*4, DESCR*60
INTEGER NPTS(16), REFNUM(16,100), WK, CNUM, ENV(12), CCREF
LOGICAL DISTBD
INCLUDE 'SYSREG.FOR'
CNUM = 1
DISTBD = .FALSE.
WRITE (CNTEXT,'(I4)') REFNUM(WK,CNUM)
CALL OUTLIN(ENV, XPTS(WK,CNUM), YPTS(WK,CNUM)f
1 XTL, YTL, XWD, YWD)

C Menu of options

IF (NPTS(WK) .GT. 0)
CALL PUTTXT(58,21,
CALL PUTTXT(58,16,
CALL PUTTXT(58,17,
CALL PUTTXT(58,18,
CALL PUTTXT(58,19,

100	 AH = $08
CALL SYS1(SYSREG)
ICHCE = AL

THEN
'Ref. No: '//CNTEXT)
'<Z> Select last')
'<X> Select next')
'<V> View Comment')
'<M> Main Map')

C If border frame on screen disturbed, then set it right again

IF (DISTBD) THEN
CALL PUTTXT(10,24,

1
DO 105 I = 0, 639

105	 CALL DOT(I, 349, 15)
DO 107 I = 334, 348

107	 CALL DOT(455, I, 15)
DISTBD = .FALSE.

END IF
CALL RESTOR(ENV, XPTS(WK,CNUM), YPTS(WK,CNUM),

1	 XTL, YTL, XWD, YWD)

C Go back one crime incidence (if key pressed is Z )

IF (ICHCE .EQ. 90) THEN
CNUM = CNUM - 1
IF (CNUM .EQ. 0) CNUM = 1

C Mark current incident on map
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CALL OUTLIN(ENV, XPTS
1	 XTL, YTL, XWD, YWD)

WRITE (CNTEXT,'(I4)1)
CALL PUTTXT(58,21,'Re

END IF

C Go Forward one crime incidence (if key pressed is X )

IF (ICHCE .EQ. 88) THEN
CNUM = CNUM + 1
IF (CNUM .GT. NPTS(WK)) CNUM = NPTS(WK)

C Mark current incidence on map

CALL OUTLIN(ENV, XPTS(WK,CNUM), YPTS(WK,CNUM),
1	 XTL, YTL, XWD, YWD)

WRITE (CNTEXT,'(I4)') REFNUM(WK,CNUM)
CALL PUTTXT(58,21,'Ref. No: '//CNTEXT)

END IF
IF (ICHCE .EQ. 86) THEN

C View the comment from the database ( If V key pressed )

OPEN (8, FILE='TXTCRM')

C Find the reference number in the text file

120
	

READ (8,'(I8,A60)') CCREF, DESCR
IF (CCREF.NE .REFNUM(WK,CNUM)) GO TO 120

CALL PUTTXT(10,24,DESCR)
CALL OUTLIN(ENV, XPTS(WK,CNUM), YPTS(WK,CNUM),

1	 XTL, YTL, XWD, YD)
WRITE (CNTEXT,'(I4)') REFNUM(WK,CNUM)
CALL PUTTXT(58,21,'Ref. No: '//CNTEXT)
CLOSE (8)
DISTBD = .TRUE.

END IF
IF (ICHCE .NE. 77) GO TO 100

C If M not pressed (for return to map) then loop to menu read
C Otherwise exit

CALL PUTTXT(58,16,'
CALL PUTTXT(58,17,'
CALL PUTTXT(58,18,'
CALL PUTTXT(58,19,'
CALL PUTTXT(58,21,'

ELSE

C If no crimes occur in the selected time period

CALL PUTTXT(58,16,'No items')
CALL PUTTXT(58,17,'Press SPACE ')

110	 AH = $08
CALL SYS1(SYSREG)
ICHCE = AL
IF (ICHCE .NE. 32) GO TO 110
CALL PUTTXT(58,16,' 	 /)

CALL PUTTXT(58,17,	 1)

END IF
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RETURN
END

C *********************************************************************

SUBROUTINE OUTLIN(ENV, X, Y, XTL, YTL, XWD, YWD)
REAL*4 X, Y, XTL, XWD, YTL, YWD
INTEGER ENV(12)

C Put an outline around the selected point at x,y

C Find the pixel equivalent of x, y (call it i,j)

I = INT(((X - XTL) / XWD) * 375.0)
J = INT(((Y - YTL) / YWD) * 300.0)
J = 341 - J

C Store what is currently there

CALL GDOT(I-1,J ,ENV(1))
CALL GDOT(I-1,3+1,ENV(2))
CALL GDOT(I ,J+1,ENV(3))
CALL GDOT(I+1,J+1,ENV(4))
CALL GDOT(I+1,J ,ENV(5))
CALL GDOT(I+1,J-1,ENV(6))
CALL GDOT(I ,J-1,ENV(7))
CALL GDOT(I-1,J-1,ENV(8))
CALL GDOT(I-2,J ,ENV(9))
CALL GDOT(I+2,J ,ENV(10))
CALL GDOT(I ,J+2,ENV(11))
CALL GDOT(I ,J-2,ENV(12))

C Put a ring around it

CALL DOT(I-1,J ,11)
CALL DOT(I-1,J+1,11)
CALL DOT(I ,J+1,11)
CALL DOT(I+1,J+1,11)
CALL DOT(I+1,J ,11)
CALL DOT(I+1,J-1,11)
CALL DOT(I ,J-1,11)
CALL DOT(I-1,J-1,11)
CALL DOT(I-2,J ,11)
CALL DOT(I+2,J ,11)
CALL DOT(I ,J+2,11)
CALL DOT(I ,J-2,11)
RETURN
END

C********************************************************************

SUBROUTINE RESTOR(ENV, X, Y, XTL, YTL, XD, YWD)
REAL*4 X, Y, XTL, XD, YTL, YWD
INTEGER ENV(12)

C Remove outline around the selected point at x,y

C Find the pixel equivalent of x, y (call it i,j)



402

I = INT(((X - XTL) / XWD) * 375.0)
J = INT(((Y - YTL) / YWD) * 300.0)
J = 341 - J

C
C Put back the old contents
C

CALL DOT(I-1,J ,ENV(1))
CALL DOT(I-1,J+1,ENV(2))
CALL DOT(I ,J+1,ENV(3))
CALL DOT(I+1,J+1,ENV(4))
CALL DOT(I+1,J ,ENV(5))
CALL DOT(I+1,J-1,ENV(6))
CALL DOT(I ,J-1,ENV(7))
CALL DOT(I-1,J-1,ENV(8))
CALL DOT(I-2,J ,ENV(9))
CALL DOT(I+2,J ,ENV(10))
CALL DOT(I ,J+2,ENV(11))
CALL DOT(I ,J-2,ENV(12))
RETURN
END
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PROGRAM GFUNCT
C
C ********* Listing 6.10 ************
C
C create the kernel function for listing 6.11 as a grid of point
C estimates
C
C

INTEGER*2 GFUN(0:10,0:8), YORD, LORD, COL
CHARACTER*1 ANS

C
C Display shapes of kernel that are offered
C

1 CALL MODE(16)
CALL PUTTXT(31,2,'Select Kernel Type')
CALL PUTTXT(25,5,'1. Conic')
CALL PUTTXT(25,9,'2. Parabolic')
CALL PUTTXT(25,13,'3. Exponential')
CALL PUTTXT(25,17,'4. Gaussian')
DO 100 I = 0, 41

CALL DOT(336,266-1,15)
CALL DOT (336,210-1,15)
CALL DOT(336,154-1,15)
CALL DOT(336, 98-1,15)

100 CONTINUE
DO 110 I = 0, 47

CALL DOT (336+1,266,15)
CALL DOT(336+1,210,15)
CALL DOT(336+1,154,15)
CALL DOT(336+1, 98,15)

110 CONTINUE
C
C Linear curve
C

LORD = 41
DO 120 I = 1, 47

YORD = 41.0 - (I*1.3)
IF (YORD.GT .0) THEN
DO 130 J = YORD, LORD

CALL DOT(336+1, 98-J,11)
130	 CONTINUE

END IF
LORD = YORD

120 CONTINUE
C
C Parabolic curve
C

LORD = 41
DO 140 I = 1, 47

YORD = 41.0 - (I*I*0.033)
IF (YORD.GT .0) THEN
DO 150 J = YORD, LORD

CALL DOT(336+1,154-J,12)
150	 CONTINUE

END IF
LORD = YORD

140 CONTINUE
LORD = 41

C
C Exponential curve
C



DO 160 I = 1, 47
YORD = 41.0 * EXP(-1/10.0)
IF (YORD.GT .0) THEN
DO 170 J = YORD, LORD

CALL DOT(336+1,210-J,13)
170	 CONTINUE

END IF
LORD = YORD

160 CONTINUE
C
C Gaussian curve
C

LORD = 41
DO 180 I = 1, 47

YORD = 41.0 * EXP(-I*I1350.0)
IF (YORD.GT .0) THEN
DO 190 J = YORD, LORD

CALL DOT(336+1,266-J,14)
190	 CONTINUE

END IF
LORD = YORD

180 CONTINUE
C
C Choose kernel shape and bandwidth
C

CALL PUTTXT(30,20,'Kernel Code (1-4) > ')
READ (5,*) KSHAPE
CALL PUTTXT(30,22,'Enter Bandwidth	 > ')
READ (5,*) BW
BW = BW / 8.0
CALL PUTTXT(30,24,'Please Wait 	 	 1)

C
C Assign distances to grid points in first quadrant (rest are done
C in kernel program by symmetry
C

IF (KSHAPE .EQ. 1) THEN
C
C Conic surface (from linear decay)
C

A = 50.0 / BW
DO 200 I = 0, 10

DO 200 J = 0, 8
DIST = I*I*16 + J*J*25

200	 GFUN(I,J) = IFIX(100.0 - A*SQRT(DIST))
END IF
IF (KSHAPE .EQ. 2) THEN

C
C Parabolic Surface
C

A = 50.0 / BW**2
DO 210 I = 0, 10

DO 210 J = 0, 8
DIST = I*I*16 + J*J*25

210	 GFUN(I,J) = IFIX(100.0 - A*DIST)
END IF
IF (KSHAPE .EQ. 3) THEN

C
C Exponential surface
C

A = 0.693147 / BW
DO 220 I = 0, 10
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DO 220 J = 0, 8
DIET = I*I*16 + J*J*25

220	 GFUN(I,J) = IFIX(100.0*EXP(-A*SQRT(DIST)))
END IF
IF (KSHAPE .EQ. 4) THEN

C Gaussian surface

A = 0.693147 / BW**2
DO 230 I = 0, 10

DO 230 J = 0, 8
DIET = I*I*16 + J*J*25

230	 GFUN(I,J) = IFIX(100.0*EXP(-A*DIST))
END IF
DO 240 I = 0, 10
DO 240 J = 0, 8

IF (GFUN(I,J).LT.0) GFUN(I,J) = 0
240	 CONT:NUE

C Draw a colour coded picture to show what shape GFUN is

CALL MODE(16)
CALL PUTTXT(22,2,'Kernel Function Around Single Point')
DO 250 I = 0, 10
DO 250 J = 0, 8

COL = GFUN(I,J) / 10
COL = COL + 1
DO 260 IX = 0, 9

DO 260 IY = 0, 9
CALL DOT(315+I*10+IX,171+J*10+IY,COL)
IF (I.GT.0) THEN

CALL DOT(315-I*10+IX,171+J*10+IY,COL)
IF (J.GT.0) THEN
CALL DOT(315-I*10+IX,171-J*10+IY,COL)

END IF
END IF
IF (J.GT.0) THEN
CALL DOT(315+I*10+IX,171-J*10+IY,COL)

END IF
260	 CONTINUE
250 CONTINUE

C Draw a scale for the picture just drawn

DO 270 I = 0, 109
COL = I / 10 + 1
DO 270 J = 269, 278
CALL DOT(260+I, J, COL)

270	 CONTINUE
CALL PUTTXT(23,19,'Low Risk')
CALL PUTTXT(48,19, 1 High Risk')
CALL PUTTXT(36,20,'Scale')

C If user likes this, enter it on the file
C If not - compute a new GFUN

CALL PUTTXT(25,22,'Commit this to file (YIN) ? > 1)
READ (5, 1 (A) i ) ANS
IF (MS .EQ. 'Y' .0R. MS .EQ. 'y') THEN
OPEN(7,FILE='KERNEL.BIN',FORM=1UNFORMATTED1)



406

WRITE (7) GFUN
ELSE
CO TO 1

END IF
CALL MODE (3)
STOP
END
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PROGRAM KERMAP

******* Listing 6.11 *******

Kernel estimation program. Draws shaded contour map on screen.

INTEGER*4 DIDS(16,100), YR(16), MO(16), DA(16), WK, NPTS(16)
INTEGER*4 PVALS(32), CVALS(32), ENDWK, GVALS(32), REFNUM(16,100)

C Accesses crime database (point section): Builds up
a matrix of risks in KERN, with Kernel function GFUN

INTEGER*2 KERN(-2:378,-2:303), GFUN(0:10,0:8)
REAL*4	 XPTS(16,100), YPTS(16,100)
CHARACTER*1 DUMMY
CHARACTER*10 DATETX, BDATE
LOGICAL OVRLAY, PLOTTD(100)
INCLUDE 'A:SYSREG.FOR'

C Initialise values

DATA PVALS/32*1/
DATA CVALS/32*15/
DATA GVALS/32*2/

C Access point crime database

CPEN (2, FILE= 'SPTCRM I , FORM='UNFORMATTED')
DO 50 I = 1, 16

READ (2) YR(I), MO(I), DA(I)
READ (2) NPTS(I)
READ (2) (XPTS(I,J),J=1,100)
READ (2) (YPTS(I,J),J=1,100)
READ (2) (DIDS(I,J),J=1,100)

50	 READ (2) (REFNUM(I,J),J=1,100)

C Variables are as in listing 6.9

C Access the binary matrix representation of the Kernel function

OPEN (7,FILE='KERNEL.BIN',FORM=1UNFORMATTED1)
READ (7) GFUN

C Set up the display

WK = 1
ENDWK = 1
WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') DA(WK), MO(WK), YR(WK)
CALL MODE (16)
CALL BOXES (15)
CALL PUTTXT(20,
CALL PUTTXT(21,
CALL PUTTXT(58,
CALL PUTTXT(58,
CALL PUTTXT(58,
CALL KEYBOX(45,
CALL KEYBOX(45,
CALL KEYBOX(45,

1,'South Gosforth Subdivision')
2,'Household Burglary Risk')
8,'<B> = Beat Zones ')
10,'<Z> = Risk Zones ')
12,'<E> = Exit to Menu')
7,' Low Risk',2,1)

10,' Med. Risk',14,1)
13,' High Risk',4,1)



408
C Main Menu Loop begins here

C
51 CONTINUE

CALL PUTTXT(20,3,'16 Wks Ending WDATETX)

C
C Initialise the kernel estimate by setting to zero:
C
C It might be slow, so put a 'Please Weight' message
C

CALL PUTTXT(15,7,'Data Analysis : Stage 1')
CALL KWIPE(KERN)

C
C Begin the estimation process : put up a second 'Please Wait'
C

CALL PUTTXT(15,7,'Data Analysis : Stage 2')
DO 100 WK = 1, 16
DO 100 I = 1, NPTS(WK)
CALL KREG(XPTS(WK,I), YPTS(WK,I),

1 4180., 5650., 120., 120.,KERN,GFUN)
100 CONTINUE

CALL PUTTXT(15,7,'	 I)

C
C Display the result as a 3 - colour contour map
C

CALL MAP(113:BEATSI,PVAIS,GVALS,32)
CALL MAP('B:BORDERS',PVALS,CVALS,32)
CALL CMAP('B:BEATS',KERN,32)

C
C Await keypress
C
500 AH = $08

CALL SYS1(SYSREG)
ICHCE = AL

C
C Overlay beat boundaries (On pressing B)
C

IF (ICHCE .EQ. 66) THEN
CALL MAP(TB:BORDERS',PVALS,CVALS,32)
GO TO 500

END IF
IF (ICHCE .EQ. 90) THEN

C
C Overlay risk zones (ie Contours) (On pressing Z)
C

CALL CMAP('B:BEATS',KERN,32)
GO TO 500

END IF
IF (ICHCE .NE. 69) GO TO 500

C
C If E not pressed await next keystroke
C
C
C Otherwise exit menu section
C

CALL MODE(3)
STOP
END

C
c********************************************************************
C

SUBROUTINE KREG(X,Y,XTL,YTL,XWD,YWD,KERN,GFUN)
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C Updates the kernel estimator (in screen coordinates) when given
C a new point (in National Grid coordinates)

REAL*4	 X, Y, XTL, YTL, XWD, YWD
INTEGER*4 I, J, COL, IG, JG, XTARG, YTARG
INTEGER*2 KERN(-2:378,-2:303), GFUN(0:10,0:8)

C Perform the conversion to screen coordinates

I = INT(((X - XTL) / XWD) * 375.0)
J = INT(((Y - YTL) / YWD) * 300.0)

C Update the kernel estimator. Use 4 way symmetry to reduce
C storage overheads. Also note that kernel is in integer form
C to speed up computation

DO 100 IC = 0, 10
DO 100 JG = 0, 8

XTARG = I + IC
YTARG = J + JG
IF (XTARG.LE.375.AND.YTARG.LE.300)

1	 KERN(XTARG,YTARG) = KERN(XTARG,YTARG) + GFUN(IG,JG)
XTARG = I - IG
IF (XTARG.GT.0.AND.YTARG.LE.300.AND.IG.GT .0)

1	 KERN(XTARG,YTARG) = KERN(XTARG,YTARG) + GFUN(IG,JG)
YTARG = J - JG
IF (XTARG.GT.0.AND.YTARG.GT.0.AND.IG.GT.0.AND.JG.GT .0)

1	 KERN(XTARG,YTARG) = KERN(XTARG,YTARG) + GFUN(IG,JG)
XTARG = I + IG
IF (XTARG.LE.375.AND.YTARG.GT.0.AND.JG.GT .0)

1	 KERN(XTARG,YTARG) = KERN(XTARG,YTARG) + GFUN(IG,JG)
100 CONTINUE

RETURN
END

C*********************************************************************

SUBROUTINE CZONE(ZARRAY, KERN)

C Similar to ZONE but plots contours within zones

INTEGER*2 ZARRAY(800), KERN(-2:378,-2:303)
INTEGER*4 COL, PITCH, I, J, EDGEX, APTR, STATE, MOVE

EDGEX = ZARRAY(1)
J = 341 - ZARRAY(2)
I = EDGEX
APTR = 2

130 APTR = APTR + 1
STATE = ZARRAY(APTR)

120 APTR = APTR + 1
MOVE = ZARRAY(APTR)
IF (MOVE .LE. 0) GO TO 100
IF (STATE .EQ. 0) THEN

I = I + MOVE

STATE = 1 - STATE
ELSE
DO 110 K = I, I + MOVE - 1

C Instead of the usual filter using MOD here, a 3-stage
C classification of the value in the kernel grid controls
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C which colour the pixel is illuminated.
C Red = High Yellow = Medium Green = Low Risk

IF (KERN(K,341-J).GT. 30) CALL DOT(K,J,14)
IF (KERN(K,341-J).GT.150) CALL DOT(K,J,4)

110	 CONTINUE
I = I + MOVE
STATE = 1 - STATE

END IF
GO TO 120

100 IF (MOVE .EQ. -1) RETURN
I = EDGEX
J = J - 1
GO TO 130
END

C**********************************************#*********************

SUBROUTINE CMAP(REGION,KERN,NZONES)

C Provides a contour map for each record (corresponding to a zone)
C in the file REGION

CHARACTER*(*) REGION
INTEGER*4 PTR, PITCH, COL, NZONES
INTEGER*2 SHAPE(1800), KERN(-2:303,-2:378)
CHARACTER*4 NAME

C Attach region file

OPEN (1, FILE=REGION, FORM='UNFORMATTED')

C Output a contoured zone for each region

DO 100 IBT = 1, NZONES
READ (1) NAME,PTR,(SHAPE(I),I=1,PTR)
CALL CZONE(SHAPE, KERN)

100 CONTINUE
CLOSE (1)
RETURN
END

c*********************************************************************

SUBROUTINE KWIPE(KERN)

C Set kernel estimation matrix to all zero

INTEGER*2 KERN(-2:378,-2:303)
DO 100 I = -2, 378

DO 100 J = -2, 303
100	 KERN(I,J) = 0

RETURN
END
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PROGRAM PRDMAP

********* Listing 6.12 **********

C Bayesian Prediction program

INTEGER*4 PVALS(32), CVAIS(32), CRIMES(16,32), PY, PM, PD,
1	 YR(16), MO(16), DA(16), WK

C Accesses crime database (tabular form) and user prediction
C monitoring file

CHARACTER*1 DUMMY
CHARACTER*8 PERIOD
CHARACTER*10 DATETX

C Machine and user predictions: Means and Variances

REAL*4 UPRED(32), LWK(32), MARRAY(32), MPRED(32), UVAR(32)
REAL*4 MVAR(32), PRED(32)
INCLUDE 'A:SYSREG.FOR'

C Attach beatwise tabular database for past 16 weeks

OPEN (3,FILE='TABCRW,FORM-1UNFORMATTED')
DO 50 I = 1, 16

C Week ending for each weekly record

READ (3) YR(I), MO(I), DA(I)

C Beatwise crime array for each record

50	 READ (3) (CRIMES(I,J), J = 1, 32)
CLOSE (3)

C Machine makes its prediction

DO 98 I = 1, 32
MARRAY(I) = FLOAT(CRIMES(1,I))

98	 LWK(I)	 FLOAT(CRIMES(2,I))
CALL MPPR (MARRAY, LWK, MPRED, MVAR, 32)

C Initial map is of machine prediction

WK = 1
PERIOD = ' 7 Days

C Week ending of next week

CALL DT2NM(YR(1), MO(1), DA(1), NDAT)
NDAT = NDAT + 7
CALL NM2DT(PY, PM, PD, NDAT)
WRITE (DATETX, '(I2,1H/,I2,1H/,I4)') PD, PM, PY

C Beginning of iterative user modification loop

66 CALL MODE(16)
CALL BOXES (15)



CALL PUTTXT(20,
CALL PUTTXT(22,
CALL CHKEY
CALL PUTTXT(58,
CALL PUTTXT(58,
CALL PUTTXT(58,
CALL PUTTXT(58,
CALL PUTTXT(58,
CALL PUTTXT(19,

51 CONTINUE
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1,'South Gosforth Subdivision')
2,'Household Burglaries')

2,'	 Menu :-')
4,'<T> = Tables
6, <V> = Variability ')
8, <A> = Association ')

10,'<E> = Exit to Menu')
3,PERIOD//'Ending 1//DATETX)

C Shade in the beats

DO 100 I = 1, 32
CVALS(I) = 11
IPVAL	 = INT(PRED(I) + 0.5)
PVALS(I) = 1
IF (IPVAL .LT. 8) PVALS(I) = 2
IF (IPVAL .LT. 6) PVALS(I) = 4
IF (IPVAL .LT. 4) PVALS(I) = 8
IF (IPVAL .LT. 2) PVALS(I) = 0

100 CONTINUE
CALL MAP('BEATS',PVALS,CVALS,32)
DO 110 I = 1, 32

CVALS(I) = 15
PVALS(I) = 1

110 CONTINUE
CALL MAP('BORDERS',PVALS,CVALS,32)

C Begin the Main Menu Loop for prediction

500 CALL GETKEY(ICHCE)

C Find associated beats (if key A is pressed)

IF (ICHCE .EQ. 65) THEN
CALL ASSOC

END IF

C Find beats with most variance (if Key V is pressed)

IF (ICHCE .EQ. 86) THEN
CALL VARBT(MVAR, UVAR, CVALS, 32)
CALL MAP('BEATS',PVALS,CVALS,32)

END IF

C Put tables up ( if key T is pressed)

IF (ICHCE .EQ. 84) THEN
DO 600 I = 1, 32
UPRED(I) = 0.375 + MPRED(I)

600	 UVAR(I) = SQRT(UPRED(I))

C Draw tables of predictions

CALL TABLES(UPRED,UVAR,32)

C Initiate past user prior performance assessment routine

CALL USRCAL(UPRED,UVAR)
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CALL MERGE (UPRED,UVAR,MPRED,MVAR,PRED)
GO TO 66

END IF

C If E not pressed, return to menu; else exit menu loop

IF (ICHCE .NE. 69) GO TO 500
CALL MODE(3)
STOP
END

C*********************************************************************

SUBROUTINE CHKEY

C Prints the key for the prediction map

CALL KEYBOX(45, 5, 1 0 -< 2',11,0)
CALL KEYBOX(45, 7,'2 -< 4',11,8)
CALL KEYBOX(45, 9,'4 -< 6',11,4)
CALL KEYBOX(45,11,'6 -< 8',11,2)
CALL KEYBOX(45,13,'8 -< 1,11,1)
CALL PUTTXT(40,17,'	 Forecasted I)
CALL PUTTXT(40,18,'Crimes per Week')
RETURN
END

C********************************************************************

SUBROUTINE MPPR(CRIMES, LWK, PRED, VAR, N)

C Machine Prediction PRocedure (Hence MPPR)

REAL*4 CR1MES(N), MEANS(50), DIST(50,50), ALPHA, NEWMN, CMETRC
REAL*4 HHOLDS(50), UPPER(N), VRNCE(50), ACORR, LWK(32), PRED(N)
REAL*4 VAR(N), BTMEAN(32), SHAPE(33), VFAC
INTEGER ADJLST(9,50), SIDES, BTCOUN(32)
DATA VFAC /0.007/

C Read in the adjacency lists, the inverse distances and the data ...

OPEN (11,FILE=IDISTST)
OPEN (14,FILE=TADJLST')
OPEN (15,FILE='HHOLDS I , FORM=IUNFORMATTED1)
DO 110 I = 1, N

READ (14,100) ADJLST(1,I), (ADJLST(J,I),J=2,ADJLST(1,I) + 1)
100	 FORMAT (5012)
110 CONTINUE

READ (15)	 (HHOLDS(I), I = 1, N)

C Compute transformed means and distances (after Bartlett, 1948)
C and compensation for household densities

DO 120 I = 1, N
VRNCE(I) = 1.0 / (4.0*HHOLDS(I))

120 MEANS(I) = SQRT(CRIMES(I)/HHOLDS(I))



DO 130 I = 1, N
	

414

130 READ (11,*) (DIST(J,I),J=1,N)
CLOSE (14)
CLOSE (15)
CLOSE (11)

C Get the Space-Time Autoregression characteristics

OPEN (14, FILE='STAR')
READ (14,* ) SHAPE
CLOSE (14)

C Now perform the prediction : read in the mean level estimates
C and the counts of how many observations they are based on

OPEN (15, FILE='BTMEAN', FORM='UNFORMATTED')
READ (15) BTMEAN
READ (15) BTCOUN
CLOSE (15)
DO 160 I = 1, 32

PRED(I) = (MEANS(I) - BTMEAN(I))*SHAPE(33)
DO 150 J = 1, ADJLST(1, I)

K	 ADJLST(J+1,I)
150	 PRED(I) = PRED(I) + (MEANS(K) - BTMEAN(K))*SHAPE(I)/DIST(I,K)

PRED(I) = PRED(I) + BTMEAN(I)
VAR(I) = (1.0 + 1.0/BTCOUN(I)) * VFAC

160	 CONTINUE

C Save results for calibration

OPEN (20, FILE= 'COMP.PRD', FORM='UNFORMATTED')
WRITE (20, PRED)
WRITE (20, VAR)

C Transform the estimates back to numbers of crimes

DO 190 I - 1, N
PRED(I) = (PRED(I))**2 * HHOLDS(I)

190	 VAR(I) = VAR(I) ** 2 * HHOLDS(I) * 2.0
RETURN
END

C****** **************************************************************

SUBROUTINE TABLES(PRED,UVAR,N)

C Prints tables of past prediction: Also controls user prediction

REAL*4 PRED(N), UVAR(N)
CHARACTER*4 BEAT(50)
CHARACTER*5 NEWVAL
CHARACTER*5 YEL, CYAN
CHARACTER*8 REDONW, WHOB
CHARACTER*52 STEXT
INTEGER*1 ESC

C Screen control codes

DATA ESC/27/
WRITE (YEL	 ,'(A1,A)') ESC, '[33m'
WRITE (CYAN ,'(A1,A)') ESC,'[36m'



WRITE (REDONW, 1 (A1,A) 1 ) ESC,1[31;47m'
WRITE (WHOB , 1 (A1,1) 1 ) ESC, [37;40m'

C
C Read beat names
C

OPEN (1,FILE=IBEATS',FORM=1UNFORMATTED1)
DO 100 I = 1, N

100	 READ (1) BEAT(I)
CLOSE (1)

C
C Clear screen and print table
C

CALL MODE (3)
CALL PUTTXT(23,2,'Predicted Burglaries for Next Week')
DO 110 I = 1,8

WRITE (STEXT, 1 (4(A,2X,F5.1,2H I))')
1	 (BEAT(I+J),PRED(I+J), J = 0, 24, 8)

CALL PUTTXT(14,7+I,YEL//STEXT//WHOB)
110	 CONTINUE

CALL PUTTXT(14, 17, CYAN//'<R> = Return to map')
CALL PUTTXT(14, 19, 1 <M> = Modify Forecast1//WHOB)

C
C Menu loop for prediction adjustment
C
150 CALL GETKEY(ICHCE)

C
C Modify the machine predictions (ie adjust user prior if M pressed)
C

IF (ICHCE .EQ. 77) THEN
C
C Set up menu for beat modification
C

CALL PUTTXT(15, 20, 'Use <Z> and <X> to point at beats')
CALL PUTTXT(15, 21, 'Use <R> to return to map')
CALL PUTTXT(15, 22, 'Use <B> to select a beat to modify')
IBPTR = 1
IXPTR = 13
IYPTR = 8

120	 CALL PUTTXT(IXPTR, IYPTR, ' 1)
IXPTR = ((IBPTR - 1) /8)*13 + 18
IYPTR = MOD(IBPTR - 1, 8) + 8
CALL PUTTXT(IXPTR, IYPTR, REDONW//1<1//WHOB)

C
C Menu for Beat Modification
C

CALL GETKEY(ICHCE2)
C
C Indicate last beat if Z pressed
C

IF (ICHCE2.EQ. 90) THEN
IBPTR = IBPTR - 1
IF (IBPTR .EQ. 0) IBPTR = 32
GO TO 120

END IF
C
C Indicate next beat if X pressed
C

IF (ICHCE2.EQ. 88) THEN
IBPTR = IBPTR + 1
IF (IBPTR .EQ. 33) IBPTR = 1
GO TO 120
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END IF

C Select indicated beat for modification if B pressed

IF (ICHCE2.EQ. 66) THEN

C New submenu loop : adjust prediction level

CALL PUTTXT(03,23,'Make forecast 1) Much larger ')
CALL PUTTXT(43,23,'2) Slightly larger')
CALL PUTTXT(03,24,'	 3) Slightly less')
CALL PUTTXT(43,24,'4) Much less')
CALL PUTTXT(59,24, 1 5) Correct')

141	 CALL GETKEY(ICHCE3)
ICHCE3 = ICHCE3 - 48

C Numeric case statement

GOTO (210, 220, 230, 240, 242), ICHCE3
GO TO 141

210	 PRED(IBPTR) = PRED(IBPTR)*2.0 + 1.0
GO TO 140

220	 PRED(IBPTR) = PRED(IBPTR)*1.25
GO TO 140

230	 PRED(IBPTR) = PRED(IBPTR)/1.25
GO TO 140

240	 PRED(IBPTR) = (PRED(IBPTR) - 1.0)12.0
IF (PRED(IBPTR) .LT. 0.0) PRED(IBPTR) = 0.0
GO TO 140

140	 WRITE (NEWVAL, 1 (F5.1) 1 ) PRED(IBPTR)
CALL PUTTXT(IXPTR+2, IYPTR, REDONWNEWVAL//WHOB)
GO TO 141

C Clean up after previous menu

242 CALL PUTTXT(03,23,'
CALL PUTTXT(43,23,1
CALL PUTTXT(03,24,'
CALL PUTTXT(43,24,'
CALL PUTTXT(59,24,'

C Now similar menu to obtain variance of user prior

CALL PUTTXT(3,23,'	 How certain is the prediction ?
CALL PUTTXT(45,23,' 1) Very Certain
CALL PUTTXT(3,24,'	 2) Within usual variability
CALL PUTTXT(45,24,' 3) Likely to vary a lot 	 I)

244	 CALL GETKEY(ICHCE4)

C Direct conversion to an integer

ICHCE4 = ICHCE4 - 48
IF (ICHCE4 .LT. 1 .0R. ICHCE4 .GT. 3) GO TO 244
IF (ICHCE4 .EQ. 1) UVAR(IBPTR) = SQRT(PRED(IBPTR))/2.0
IF (ICHCE4 .EQ. 2) UVAR(IBPTR) = SQRT(PRED(IBPTR))
IF (ICHCE4 .EQ. 3) UVAR(IBPTR) = SQRT(PRED(IBPTR))*1.5
CALL PUTTXT(5,23,'
CALL PUTTXT(45,23,'	 1)

CALL PUTTXT(5,24,1
CALL PUTTXT(45,24,'
GO TO 120
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END IF

C Set up an exit if R (for Return) is pressed

IF (ICHCE2 .EQ. 82) ICHCE = 82
IF (ICHCE2 .NE. 82) GO TO 120

END IF

C Set up an exit from main user prior menu

IF (ICHCE .NE. 82) GO TO 150

C Save the predictions for future assessment

OPEN(17, FILE='USER.PRD', FORM='UNFORMATTED')
WRITE (17) SPMEAN, SPDEV
CLOSE (17)
RETURN
END

C** *******************************************************************

SUBROUTINE USRCAL(SPMEAN,SPDEV)

C User calibration routine
C Uses a Gaussian integration technique and interpolation to
C evaluate the performance function convolution (which adjusts
C the user prior

INTEGER BEAT
REAL*4 F(0:40,32), IGRAL, K, X, XL, INC, FMODIF(10)
REAL*4 SPMEAN(32), SPDEV(32), ACTUAL, NORMAL, IGRAL2, IGRALO
REAL*4 ABSCIS(10), W(10), SQR2, ROOTPI, HHOLDS(32)

C Gaussian 10-point rule constants

DATA ABSCIS/
-3.436158289955701,
-2.532731063278602,
-1.756683225546651,
-1.036610579734708,

-0.3429012445078736,
0.3429012445078770,
1.036610579734711,
1.756683225546650,
2.532731063278606,
3.436158289955692 /

DATA W/
0.7640431012181091E-05,
0.1343645422662423E-02,
0.3387438628418394E-01,

	

0.2401385531552589	 ,

	

0.6108624863809554	 ,

	

0.6108624863809539	 ,
0.2401385531552572
0.3387438628418407E-01,
0.1343645422662396E-02,
0.7640431012181565E-05 /

DATA SQR2 /1.414213562/
DATA ROOTPI/0.564189584/
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C Obtain performance function of cumulants

OPEN(14, FILE= 'USER.PER', FORM=1UNFORMATTED1)
DO 100 BEAT = 1, 32

READ (14) (F(J,BEAT), J = 0, 40)
100	 CONTINUE

CLOSE (14)

C Data to transform between crime counts and normalised data

OPEN(15, FILE= 'HHOLDS', FORM='UNFORMATTED')
READ (15) HHOLDS
CLOSE (15)
DO 105 BEAT = 1, 32

SPDEV(BEAT) = SPDEV(BEAT)/SQRT(SPMEAN(BEAT))
SPDEV(BEAT) = SPDEV(BEAT)/SQRT(HHOLDS(BEAT))

105	 SPMEAN(BEAT) = SQRT(SPMEAN(BEAT)/HHOLDS(BEAT))
DO 900 BEAT = 1, 32

IGRALO = 0.0
IGRAL = 0.0
IGRAL2 = 0.0
DO 200 I = 1, 10

C Interpolate the performance function of the cumulant

XL = NORMAL(ABSCIS(I)*SQR2)
NEARPT = INT(40.0*XL)
INC = XL - FLOAT(NEARPT)*0.025
XL = F(NEARPT,BEAT) + INC*(F(NEARPT+1,BEAT)-F(NEARPT,BEAT))
FMODIF(I) = XL

C Estimate the Zeroth, First and Second moments of the modified
C Prior using Gauss-Hermite approximation for integral of
C f(x)*exp(-x**2) over the real line.

IGRALO = IGRALO + FMODIF(I)*W(I)
IGRAL = IGRAL +

1	 FMODIF(I)*W(I)*(SPMEAN(BEAT) + SPDEV(BEAT)*SQR2*ABSCIS(I))
IGRAL2 = IGRAL2 +

1	 FMODIF(I)*W(I)*(SPMEAN(BEAT) + SPDEV(BEAT)*SQR2*ABSCIS(I))**2
200	 CONTINUE

C From these, deduce the mean and standard deviations of the modified
C distributions....

IGRAL = IGRAL/IGRALO
IGRAL2 = IGRAI2/IGRALO - IGRAL**2
SPMEAN(BEAT) = IGRAL
SPDEV(BEAT) = SQRT(IGRAL2)

900 CONTINUE
DO 910 BEAT = 1, 32

SPMEAN(BEAT) = SPMEAN(BEAT)**2*HHOLDS(BEAT)
SPDEV(BEAT) = 2.0*SPDEV(BEAT)**2*HHOLDS(BEAT)

910	 CONTINUE
RETURN
END

c*********************************************************************

FUNCTION NORMAL(Z)
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REAL*4 X, T, B(5), P, F, SQ2PI, NORMAL, Z
LOGICAL LOWER

C Hastings approximation for area under the normal curve

C Error < 1.5E-7

DATA B /0.254829592,
1	 -0.284496736,
2	 1.421413741,
3	 -1.453152027,
4	 1.061405429/
DATA P /0.23164189/
x= Z
LOWER = (X .LT. 0.0)
IF (LOWER) X = -X
T = 1.0 / (1.0 + P*X)
F = B(5)
DO 100 I = 2, 5

100	 F = F*T + B(6-I)
VALUE = 0.5*T*F*EXP(-X**2/2.0)
IF (LOWER) THEN
NORMAL = VALUE

ELSE
NORMAL = 1.0 - VALUE

END IF
RETURN
END

C**** ***************************************************************

SUBROUTINE MERGE(UPRED, UVAR, MPRED, MVAR, PRED)

C Combine user and machine priors

REAL*4 UPRED(32), UVAR(32), MPRED(32), MVAR(32), PRED(32)
INTEGER BEAT

C Weighted mean merge (assumes no correlation for simulataneous
C future events --- see text in Chapter 5.

DO 100 BEAT = 1, 32
FRED (BEAT) = MPRED(BEAT)*UVAR(BEAT) + UPRED(BEAT)*MVAR(BEAT)
FRED (BEAT) = PRED(BEAT)/(UVAR(BEAT) + MVAR(BEAT))

100 CONTINUE
RETURN
END

C* *******************************************************************

SUBROUTINE ASSOC

C Joins most associated beats together with lines
C Currently does this entirely on fixed Space-Time Autoregression
C model ....

INTEGER ADJLST(9,50)
REAL SHAPE(33), CENX(32), CENY(32), DIST(32,32)
OPEN (14, ADJLST)

C Get adjacencies
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DO 110 I = 1, N
READ (14,100) ADJLST(1,I), (ADJLST(J,I),J=2,ADJLST(1,I) + 1)

100	 FORMAT (5012)
110 CONTINUE

C Get space-time autoregression model

OPEN (13, FILE=ISTARI)
READ (13,* ) SHAPE
CLOSE (13)

C Get distances

OPEN (11, FILE=THHOLDS1)
DO 130 I = 1, 32

130 READ (11,*) (DIST(J,I),J=1,32)

C Get centroids

OPEN (10, FILE=ICENTSI,FORM=1UNFORMATTEDI)
READ (10) CENX
READ (10) CENY
CLOSE (10)

C Scan for sufficient association

DO 160 I = 1, 32
DO 150 J = 1, ADJLST(1, I)

K = ADJLST(J+1,I)

C Join associated zones with a line

IF (SHAPE(K)*SHAPE(I)/DIST(I,K) .GT. 0.25) THEN
150 CALL LINE(CENX(I), CENY(I), CENX(K), CENY(K))
160 CONTINUE

RETURN
END

C*************************************************************** *****

SUBROUTINE VARBT(UVAR, MVAR, CVALS, NZONES)

C Subroutine to highlight most variable beats, in terms
C of predictor distribution

REAL*4 UVAR(NZONES), MVAR(NZONES), CVALS(NZONES)
REAL*4 OVAR(50), SOVAR

C Combine variances

DO 100 I = 1, NZONES
100	 OVAR(I) = 1.0/(1.0/MVAR(I) + 1.0/UVAR(I))

Highlight the top quarter

CALL SORT(OVAR, SOVAR, NZONES)
DO 110 I = 1, NZONES

IF (OVAR(I) .GT. SOVAR(24)) CVALS(I) = 13
110 CONTINUE

RETURN
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END
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PROGRAM MONTOR

****** Listing 6.13 *****

Monitor the performance of the running mean estimator in the
predictor and set it to re-estimate if continuous bad performance
is observed --- also calibrate the user performance function

INTEGER*4 FLAG(32), BTCOUN(32),
REAL	 BTMEAN(32), MPRED(32)
REAL	 UPRED(32), UVAR(32)
REAL*4 F(0:40,32), IGRAL, K, X,
REAL*4 NORMAL, IGRAL2, IGRALO,
REAL*4 ABSCIS(10), W(10), SQR2
INTEGER BEAT
DATA ALPHA /0.6/

CC:NT(32), HH(32), D1, D2, D3
, M7AR(32), HHF(32)

XL, INC, FMODIF(10)
ALPHA

C Read in the exception monitor (see Chapter 5)

OPEN (1, FILE='COMP.MON', FORM=TUNFORMATTED1)
READ (1) FLAG
CLOSE (1)

C Read in the machines predictions

OPEN (2, FILE=ICOMP.PRD',FORM='UNFORMATTEDT)
READ (2) MPRED
READ (2) MVAR
CLOSE (2)

C Read in the current mean estimates

OPEN (3, FILE='BTMEAN', FORM=IUNF3RMATTED1)
READ (3) BTMEAN, BTCOUN
CLOSE (3)

C Read in the household counts

OPEN (4, FILE='HHOLDS', FORM=1UNFCRMATTEDT)
READ (4) HH
DO 100 I = 1, 32

100	 HHF(I) = FLOAT(HH(I))
CLOSE (4)

C Read in the actual figures

OPEN (7, FILE='TABCRM', FORM=1UNF3RMATTED1)
READ (7), D1, D2, D3
READ (7) COUNT
CLOSE (7)

C Read in user predictions

OPEN (8, FILE = 'USER.PRD', FORM='UNFORMATTED')
READ (8) UPRED
READ (8) UVAR
CLOSE (8

C Read in performance function for user

OPEN (9, FILE='USER.PER', FORM=1UNFORMATTED1)
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160	 WRITE (9) (F(I,BEAT), I = 0, 40)
CLOSE(9)

C Monitor for outstanding values of machine predictions

DO 110 I = 1, 32
IF (SQRT(COUNT(I)/HH(I)) .GT. MPRED(I) + 1.96*MVAR(I)) THEN

C Outlier : increment warning flag and update estimator
C if required

FLAG(I) = FLAG(I) + 1
IF (FLAG(I) .EQ. 2) THEN
BTMEAN(I) = SQRT(COUNT(I)/HH(I))
BTCOUN(I) = 1

END IF
ELSE

Normal observation : increment posterior mean (see Chapter 5)

FLAG(I) = 0
BTMEAN(I) = BTMEAN(I) * BTCOUN(I) + COUNT(I)
BTCOUN(I) = BTCOUN(I) + 1
BTMEAN(I) = BTMEAN(I) / BTCOUN(I)

END IF
110 CONTINUE

DO 115 BEAT = 1, 32

C Numerical Implimentation of the Morris calibration

SPMEH = UPRED(BEAT) / HH(BEAT)
SPHH = SQRT(UVAR(BEAT)))/(2.0*HH(BEAT))
ACTHH = SQRT((COUNT(BEAT) + 0.375)/ HH(BEAT))
PROB = NORMAL((ACTHH - SPMEH 	 )

C Beta(A,1) distribution for PROB --- update estimator

DO 120 I = 0, 40
X = FLOAT(I) / 40.0

C Avoid division by zero!

IF (PROB .LT. 0.2) PROB=0.2
IF (PROB.GT.0.8) PROB=0.8
A = PROB/(1-PROB)

120	 F(I,BEAT) = F(I,BEAT)+(X**A*(1-X))**ALPHA

C Make it integrate to unity

IGRAL = 0.0
DO 130 I = 1, 39

130	 IGRAL = IGRAL + F(I,BEAT)
IGRAL = IGRAL*2.0 + F(0,BEAT) + F(40,BEAT)
IGRAL = IGRAL * 0.0125
DO 140 I = 0, 40

140	 F(I,BEAT) = F(I,BEAT) / IGRAL

C Get next probability

115 CONTINUE
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Write out the exception monitor (see Chapter 5)

OPEN (1, FILE='COMP.MON')
WRITE (1) FLAG
CLOSE (1)

Write out the running mean estimates

OPEN (3, FILE=IBTMEANT)
WRITE (3) BTMEAN
WRITE (3) BTCOUN
CLOSE (3)

C Write out the user performance function

OPEN (9, FILE= 1 USER.PER', FORM='UNFORMATTED')
DO 150 BEAT = 1, 32

150	 WRITE (9) (F(I,BEAT), I = 0, 40)
CLOSE(9)
STOP
END

STOP
END
FUNCTION NORMAL(Z)
REAL*4 X, T, B(5), P, F, SQ2PI, NORMAL, Z
LOGICAL LOWER

C Hastings approximation for area under the normal curve

C	 Error < 1.5E-7

DATA B /0.254829592,
1	 -0.284496736,
2	 1.421413741,
3	 -1.453152027,
4	 1.061405429/
DATA P /0.23164189/
x= Z
LOWER = (X .LT. 0.0)
IF (LOWER) X = -X
T = 1.0 / (1.0 + P*X)
F = B(5)
DO 100 I = 2, 5

100	 F = F*T + B(6-I)
VALUE = 0.5*T*F*EXP(-X**2/2.0)
IF (LOWER) THEN
NORMAL = VALUE

ELSE
NORMAL = 1.0 - VALUE

END IF
RETURN
END
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CHAPTER	 7

THE USERS VIEWPOINT 

7.1 Introduction

It is surprising that although great advances have recently been made in

computerised cartographic and geographical information systems, as yet

little attention has been focused on the man-machine interface of such

software. However, the maps produced are basically a means of

communicating information, there is a message, and if the correct

impressions are to be given then careful thought must be given to

providing acceptable map display formats. In addition to mapping

aspects, consideration of ease of use of other aspects of software

designed in this study is necessary. Clearl y , a system such as this, in

its working environment will be used frequently. Difficulties in

operation may lead to erroneous data being entered into the system, and

may discourage potential users from accessing the information (in terms

of predictions, map patterns, and so on) that the system has to offer.

This is particularly important in the case of Bayesian systems such as

this. Since predictions of crime rates are based at least partly on input

from police users, it is important that they have a fluent dialogue with

the machine. Badly presented data or control options will affect the

operators understanding of the system, which will in turn alter the

predictions obtained.
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Thus, in this chapter, investigation into police user interaction with the

crime pattern analysis system is to be carried out. This is proposed on

two levels. Firstly, a study of map visualisation will be carried out,

using a sample of all of the police officers in a subdivision. This will

take the form of a questionnaire survey, the subjects being shown

several different map formats and asked to objectively evaluate them.

The purpose of this is to gain a general overview of the map formats

that are preferred, and are thought to convey relevant information in an

easily assimilated manner. Secondly, an individual user will be allowed

to operate the prototype system, and enter data corresponding to crimes

occurring over a two-month period. After this, the user will be

interviewed, and comments about the "look and feel" of the system will

be considered. Clearly, this will be a more subjective evaluation of the

system.

The second study should serve two purposes. Firstly, it is impossible

to design a system "from the drawingboard" to be without errors.

Certain problems and limitations may not occur to the designer, but will

only become apparent when the system is put into use. A trial usage of

this kind should identify some of the major omissions or design flaws

before the system is installed in a "live" environment. Viewed in

another way, it allows a second person to comment on system design,

and engage in a dialogue with the initial designer. The second purpose

that this trial serves is to allow the performance of the system to be

assessed in a working environment. Different features of the system can

be compared for effectiveness when real crime data is input to the

system.
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The aim of the chapter may be sum ari=ed as an evaluation of the

interaction of human users with geo graphical analysis software , and in

particular with the system developed in this PhD.

7 . 2 A Map Visualisation Study

The objective of this study is firstl y to identify a set of possible map

formats that may be used to convey information about crime rates, and

having done this carry out a survey of responses of police officers to

these different formats. The survey is to be carried out at a

subdivision of the Northumbria Police, using data of archived household

burglary reports occurring within that subdivision.

7.2.1 Possible Map Formats

Before designing a survey on response to mapped representation of

crime data, it is necessary to outline the set of options for such map

displays. First, the general types of map which may be used will be

considered. These may be split into three main categories.

i) Maps based on point data representation.

ii) Maps based on data aggregated to areas.

iii) Isopleth maps for estimated density of occurrence,

based on point data.
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In all cases, the data being referred to are the grid references to

the incidences of reported household burglaries over a given period of

time. In format i) these grid references are plotted directly

onto a map of the subdivision, giving a pin-map format, as in figure

7 . 2 . Alternatively, the point data can be analysed to give an

estimated 'density surface' over the region of study, and contour maps

in the format of type iii) can be compiled as in figure 7 . 1. At the

sub divisional headquarters where this survey is based, data for

incidence counts aggregated over foot beat areas is kept on a weekly

basis. This data may be used to produce maps of type ii ) . In addition

to this choice, the amount of boundary information shown on maps

could be varied. In addition to showing the outline of the entire

subdivision, foot beat boundaries may also be added. If they

are, then beat-related decision making and forecasting may be aided,

but a geographical analysis based on other areal units may be

confused by the inclusion of this extra visual information.

Similarly, there is the question of whether text labels for place

names, and local geographical features should be included on the maps.

In favour of this, police officers may find that maps are easier to

interpret in terms of the spatial relation between crime occurrence

and named local areas and landmarks, rather than in terms of'

the more abstract notions of beat boundaries and subdivisional

borders. Against, as in the previous point, inclusion of further

information on maps can lead to confused, cluttered displays. It was
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eventually decided, after informal conversations with senior police

officers, that the number of maps required to show each format with

varying degrees of extra label information would be inoperably large, so

that maps with a fixed amount of label information would be used. It is

hoped that a desire for more or less detial of this type will then be

picked up in the 'comment' section of the questionaires.

7.2.2	 Method Of Map Production

The maps that will be used in this survey will be produced using the

GININIS package, excepting the contour maps. GIMMS can produce

point-pattern and areally aggregated maps, with or without beat

boundaries, and also offers the option of text labelling on the maps it

draws. The formats of maps that GIMMS may produce will now be

considered in greater detail:-

i) Spatially Aggregated Maps

GIABIS offers several options for map display of spatially aggregated

data. These are accessed via the *MAP command. The main types

under consideration are LABEL, POINT, and AREA. In a LABELed

map, each beat region is annotated by the actual value associated

with it in the data file. The size of the text used to write this value

may either vary in proportion to the value, or be fixed. This is

controlled by the *SYMBOLISM command, issued earlier in the G1MMS

control deck. In a POINT map, a symbol is drawn at the centroid of
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each beat. The size of this symbol varies in proportion to the number

of crimes aggregated to each beat. The type of symbol could be a

square, a circle or other options, and may be shaded in various ways.

As before, all of these factors are controlled using the *SYMBOLISM

command. Note that it is distances on the symbols, and not areas, that

vary in proportion to the crime counts.

Finally, an AREA map is simply a choropleth map, where the shading of

each beat shows into which category of crime incidence count it falls.

The shading styles for different classes are selected by *SYMBOLISM

once more.

ii) Point Pattern Maps

In addition to the above, GIMMS also offers an option for plotting

point patterns onto maps, as follows. Grid references are stored in a

POINT type file, which may then be drawn using the drawmap

command with the CROSS option. This may be overdrawn onto a file

containing the subdivisional outline and beat boundaries, of type

AREA or SEGMENT, providing a crime incidence map over a given time

period.

As well as the above formats offered by GIMMS, some form of contour

mapping will also be required. The package SURFACE2 allows

contour maps to be produced reasonably simply, and so will be

used here. Unfortunately this package has no facilities for text

labelling on the maps it produces, but on the operating system
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that the software is implemented plotters are not accessed

immediately, but driven by a control file produced by the software,

and this may be modified to include text after the contouring

job is completed.

Given a set of coordinates for household burglary incidences,

SURFACE2 can build up a set of contours for estimated 'household

burglary density' over the subdivisional area, using two dimensional

extrapolation methods. It should be borne in mind that such an

extrapolation fits a model to an infinite number of points (a surface)

from a finite sample, which could lead to strange sets of contours on

occasion, particularly if the set of sample points is small or locally

sparse. Thus, contour representation is probably most useful in

regions of high crime incidence, and spurious contours in areas of low

risk should be treated with caution.

Bearing this danger in mind, a better way of mapping

density-based interpretations of the data would be to only plot contours

of a single value, and draw these as boundaries to 'high-risk' areas.

This avoids the pitfall of misinterpreting contours occurring in regions

of low crimes. Both of the options, complete contouring and

'high risk area' indication, will be considered.

Enough options have now been discussed to decide which maps are

to be included in the survey. Discussions between Police

Inspectors at the subdivision chosen for the survey and myself
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lead to some conclusions about the maps before the survey was

designed. Firstly, it seems unlikely that coloured maps would be

feasible on the target system, due to prohibitive costs for the

equipment, so it would be difficult to justify their inclusion in this

survey.	 Secondly, it was felt that beat boundaries and place

names were essential on these maps, as they provide a geographical

frame of reference for people using them. Therefore, the

principal object of this survey is to investigate how the actual crime

incidence data can best be overlaid on a map of the area of

pre-specified format.

A total of seven map formats were chosen for the survey eventually.

This set of maps covers all of the types of spatial data representation

discussed above. Each of these is described below, and all seven

are illustrated in figures 7.1-7.7.

Map Format A, Contour Map.

This map was produced using GINnIS and SURFACE2 output edited

together.

Map Format B, Incidence Map.

This map was produced using grid references of household

burglaries over a period of one week, plotting them on a

subdivisional map using GIMMS, as described above.

Map Format C, Numbers of Crimes, aggregated by beat.

This was produced using MAPTYPE = LABEL in GIMMS.
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Map Format D, Proportional Circles and Map Format E, Proportional

Squares.

These were both produced using POINT symbolism in GIMMS, to

show the same data as that in C, but using proportional symbols

to label the beats.

Map Format F, High Risk Regions.

Part of the information from the contour map is re-digitised as

a GIMMS area file, highlighting higher crime risk regions in

the subdivision, as was discussed above.

Map Format G, Choropleth Map.

This is a simple choropleth map of reported burglaries in each beat

during the week before the map was created. High crime rate is

related with high risk, and darker shading represents higher

crime risk in a beat than lighter shading.

Thus there is now a set of definitions for the seven maps that will be

used in the survey. Although they were generated using output from

the packages GIMMS and SURFACE2, similar maps could be created on

a micro without recourse to these packages, and the results of this

survey should point the way for future decisions for

implementing graphics routines in the final crime prediction

package. In addition, many micros will offer the option of colour

graphics, which will enhance the display of information.
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Figure 7.1

South Gosforth
Subdivision
Contour Map



435

Appendix

Locations Of
Household Burglaries
Last Week

Figure 7.2
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Figure 7.3

Numbers Of
Household Burglaries
Last Week
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Numbers Of
Household Burglaries
Last Week

Appendix

Figure 7.5
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Figure 7.6

High Risk Areas for
Household Burglaries
Last Month
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7.2.3	 Survey Design

The main factor to be examined in the survey is ease of use of the

maps. A good map is one that is unlikely to be wrongly interpreted.

Thus, the main object of the survey is to determine which of

the maps is easiest to understand. The most significant part of the

survey should therefore consist of the interviewee's reaction to each of

the map formats. For statistical analysis, these reactions should be

quantified in some way.

There are two ways of doing this: firstly, the interviewee could be

asked to rank each map in terms of 'ease of interpretation', or

alternatively he or she could be asked to score each map out of ten for

the same criterion. Scoring has the disadvantage that it forces

interviewees to calibrate, albeit implicitly, a scale of measurement for

the qualitative concept of 'ease of use', and some individuals

will calibrate differently to others. Thus, to some people a score of

5/10 may mean 'fair', when to others it may suggest 'poor'. This

problem is avoided when ranking is used, but while scoring allows

each map to be considered on its own merit, ranking requires evaluation

of each map in relation to all others. While this is easy for two or

three maps, for larger quantities it is thought that this may be

confusing for the interviewee.

It was decided, then, that scoring is the best form of evaluation, as it

is a conceptually simpler task than ranking when there are seven

different maps. The varying calibration effect could cause problems,

but this can be overcome either by analysing scores using two-way

ANOVA techniques, which compensate for effects of one factor when
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assessing the effect of a second factor, or by replacing the scores by

their ranks. In the latter approach, an identical analysis could be

performed to that if the questionnaires had asked for ranks, but this

approach avoids the need for interviewees to perform the ranking

themselves.

In addition to the scoring section of the questionnaire, it was decided

to include a comments section. This is partly a device to check for any

reaction to the maps which could not be expressed in the scoring

section discussed in the last paragraph. It is also useful to pick up

suggestions for ways of mapping the data which may have been

overlooked in the survey. If a significant number of suggestions of

this type are made, this would indicate the need for further

research into this subject, probably at a different subdivision.

It also was thought that rank of police officers should be included as

a variable in the questionnaire. When the complete system is

implemented, it may be that one particular rank of police officer makes

use of it considerably more than any other. For example, its operation

may generally be allocated to the duty roster of sergeants in each

subdivision, and in this case the reaction of sergeants is of specific

interest. Also, although other ranks of officer may not have access to

the system, they may require output, and if the demand for output is

noted to come from one rank in particular, again the reaction of

only that rank will be of interest.

The final questionnaire design is shown in figure 7.8. Note that

the appendices referred to on this questionnaire correspond to
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QueStionaire Used TO Carry Out Survey Of Police 
Officer Visualisation Of Crime Incidence Mapping. 

Figure 7.8

CRIME MAPPING QUESTIONNAIRE

PART 1 

NAME

RANK

DUTIES

LENGTH OF SERVICE

PART 2

Please examine the attached Appendices and assign a score to each one
between 0 and 10 depending on how effective you consider that type of
presentation to be.

For example, if you consider that Appendix A the Contour Map is easy
to understand then give it a high score but if you find it confusing
give it a low score.

Having decided on the score for each map complete the questions below
and return the form to your Sub-Divisional Administration.

Appendix A.

Appendix B

1ppendix C

Ippendix D

Lppendix E

nppendix F

.ppendix G

'ART 3 

OSMIENTS

Contour Map	 score 	 ?

Incidence Map	 score 	

Crimes per Beat	 score 	 ?

Proportional Circles	 score	 9

Proportional Squares	 score 	 ?

High Risk Regions	 score 	

Shaded Beats by Risk	 score 	

Enter here any comments you may wish to make about any of the naps or
ltermative ways of presenting the information).



figures 7.1-7.7, discussed earlier. A questionnaire was sent to

every police officer in the subdivisional headquarters, 112 in all,

together with a covering letter explaining the purpose of the

survey, and thanking them for their cooperation.

It was hoped that officers' familiarity with the project (the author had

worked in the subdivisional headquarters collecting data on several

occasions in the past) , and the brevity of the questionnaire would

result in a good rate of response.

The	 questionnaires	 were	 sent from Northumbria Police Force

Headquarters, together with a covering letter, to the

administration office for the sub divisional headquarters. From there

they were distributed to all officers in the subdivision, who were asked

to return the completed forms. After a four week period the

returned questionnaires were collected from the same office. After a

further two week period, the office was visited once more, to collect

any forms handed in later than the initial period. Finally, after a

further two weeks the office was visited once more, to collect a final

batch of forms. In fact, on this final visit no more forms had been

received, and it was decided that those forms collected already were

likely to constitute the full response to the survey.

7.2.4	 Analysis Of Results

There were 91 responders to this survey, out of a maximum of 112,

giving a response rate of 82.7% . Of the non-responders, one had
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retired since the list of police officers in the subdivision had been

compiled, and one was on sick leave for the duration of the survey

response period. The extent to which individual calibration of scoring

differs is examined initially. 	 For each individual, the average

score over all maps is calculated. This is illustrated in histogram

format in figure 7.9. It can be seen that there is a large spread in

the mean score given by individuals, which suggests that

individual calibration effects must be allowed for when assessing

response to the maps. If this were not done, there is a danger that

some linkage between 'generosity' and preference for a particular

map may result in a misleading conclusion. The compensation may

be achieved by performing a two-way analysis of variance on the

score data, with effects of individual bias in scoring, and underlying

assessment of the maps being estimated. Another approach, as

already mentioned, is to replace the scores given by individuals with

the ranks of those scores. Both of these approaches will be adopted

here.

The results of the two-way ANOVA are shown in table 7.1. Clearly

there is statistically significant (p<0.0001) evidence for both differing

levels of scoring between individuals and between maps. The fitted

scoring levels for each map after correcting for individual calibration

effects are listed in table 7.2 and shown as a histogram in figure

7.10. Clearly, map format C is the most popular.

A rank-based analysis is also performed. For each individual, the

scores given to each map are replaced by their rank (7 for the highest
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Table 7.1
Two-Way Analysis Of Variance For Map Scores 

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR > F

MODEL 96 2113.16 22.01 4.70 0.0001

ERROR 540 2527.19 4.68

CORRECTED TOTAL 636 4640.36

MODEL Term

SOURCE
DF ANOVA SS F VALUE PR > F

INDIVIDUAL BIAS 90 1115.22 2.65 0.0001

MAP SCORE 6 997.94 35.54 0.0001
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Table 7.2

Corrected Scores For Mans 

Map Format Score

A 3.540

B 6.265

C 7.870

D 5.408

E 5.188

F 6.694

G 6.035

NB. ANOVA model is GRAND MEAN + MAP EFFECT + INDIVIDUAL BIAS

Corrected score is GRAND MEAN + MAP EFFECT.
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score down to 1 for the lowest). Having done this, a Friedman test

(1) may be performed. This is a non-parametric equivalent to a two-way

ANOVA, used to test whether the rankings of the maps differ

significantly between individuals. The results of this test are shown

in table 7.3, together with the mean rank for each map. Again,

the result is a highly significant (p<0.0001) 'between maps' effect.

The above analyses apply to all ranks of police officer. However, it

is also required that an analysis of the data split by rank be

performed. For each rank, table 7.4 shows mean score ranks for

each map, and the significance level for the Friedman test as described

above. The number of responders of each rank of officer is also

listed. For the lower ranks of Constable and Sergeant, the most

popular map format is C. Note that for some of the higher ranks,

there were not enough officers to carry out a Friedman test.

7.2.5 Conclusions

When analysing the entire data set, pooling all ranks of police officer,

both the two-way ANOVA and the Friedman tests suggested that

there were differences in the responses to each of the maps.

When assessing the performances of different map formats in terms of

ease of use, both the corrected mean scores of maps (table 7.2)

and the mean rankings (table 7.4) showed that the most popular map

format was C, followed by F and B respectively. This is an

interesting result, as these three maps cover the three generic map

types discussed in section two. This would suggest that all three
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Table 7.3 
Friedman Test and Mean Rank For Map Formats 

Map Format Mean Rank

A 2.16

B 4.14

C 5.85

D 3.65

E 3.40

F 4.71

G 4.09

Result Of Friedman Test

CASES
	

CHI-SQUARE
	

D.F.	 SIGNIFICANCE

91
	

152.4311
	

6	 .0000
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Table 7.4

Friedman Tests Split By Rank Of Police Officers 

Rank Of
Officer

Mean
ABCD

Rank Of Map Format
E F G

No.	 Of
Cases

Signif-
icance

Constable 2.35 4.20 5.70 3.51 3.34 4.75 4.16 61 0.0000

Sergeant 1.75 3.79 6.21 4.43 4.11 4.25 4.16 14 0.0000

Inspector 1.92 4.50 5.83 3.17 3.17 4.75 4.67 6 0.0385

NB. For other ranks of police officer there were

insufficient cases to perform a Friedman test.
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types of maps are of some use, and that the main distinction made in

the scoring was between good and bad formats of each type.

An inspection of the comments given on the questionnaires suggests

that clarity of data presentation is an important factor. The less

cluttered appearance of map F, the high risk area map, was preferred

to the more complicated contour map from which it was derived.

Some officers seemed to have difficulty with the concept of crime

density contours (or crime risk contours), but most found the idea of

high risk areas unambiguous.

Symbolic maps, using varying sizes of squares or circles also proved

unpopular. A few users preferred point-based mapping techniques to

beat-related representations, some commenting that this highlighted

significant pockets of crime crossing borders. It is important to note

that all of the three main headings for data representations (beatwise,

pointwise and by 'risk surface') all had support in some form,

suggesting that a system should represent all of these techniques to

improve ease of use for the widest base of users.

When considering the analysis of the data which has been split by

rank in the Police Force, it can be seen that for the most common rank

in the sample, (Constable) the order of preference for the map

formats agrees exactly with that for the pooled ranks analysis. For the

next most common rank (Sergeant) there are differences in the order of

preference. Although map C is still the highest scoring, map F comes
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third, and map B fifth in the rankings. However, it should be noted

that the sample size for this category is very much smaller that the

other samples considered above, and that variability of results as a

consequence of this greatly reduces the reliability of the analysis.

For other ranks of police officers, there are so few cases in

each of the categories, and Friedman testing will not prove very

powerful. Thus, there is insufficient information

conclusions for these ranks.

One of the objectives of the final working system

to draw any useful

is that it will be of

aid not only to relatively highly ranked police resource managers but

also to lower ranking police officers, who will use this information 'on

the beat', and thus the reactions of constables and sergeants are of

considerable importance. Both of these ranks have displayed a

preference for map type C, and thus it is apparent that a

graphical routine producing maps of this format should be

incorporated. Although sergeants did not appear to respond well to the

point pattern or high risk area maps, constables who are likely to be

the principal users of the mapped output from the system showed

enthusiasm, and this justifies the inclusion of facilities to draw such

maps in the software also.

7.3 An Individual Interaction Study

In this study the working prototype crime system, as specified in

Chapter 6, is to be given a "hands on" trial. The purpose of this is to

evaluate the design ergonomics and ease of use of the system, as well as
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observing the performance of the working system. To best reproduce

the conditions of the workplace, a Police Officer who has gained

experience in crime pattern analysis has been selected to act as the

human user in this trial. Therefore, as the user has a strong concept

of the type of tasks that the system has to perform in a practical

situation, they will be in a position to make comments relevant to further

refinements that could be made to the system, in the transition between

prototype and full implementation.

7.3.1	 Procedure for Trial

The setup for this trial will now be considered. Since the trial police

user will be expected to comment on all aspects of system implementation

a situation must be created in which a set of data is to be entered into

the system and then analysed. In addition to this, the officer is

expected to be relatively familiar with the area for which data is being

analysed. For this reason, they were issued with a set of reported

household burglaries over a two month period, spatially referenced, and

maps of the area. In fact, the officer who agreed to participate in the

study had worked in this area some years previously, so that this

familiarisation process perhaps took the form more of a " memory

refresher" and an assimilation of changes that had occurred in the

subdivision since their period of experience of policing the area.

After the familiarisation period, the user was then expected to enter the

data into the system. At any time during the entry, they were able to

inspect the data using any of the available mapping or tabulation
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options. Before actually operating the system, a demonstration was

given by the author, showing the user each aspect of the system. In

case this was not sufficient to allow fluent operation of the system, the

user was then allowed to operate the system using a dummy data set.

In this way, they would gain experience of commonly used options for

map display and analysis before entering the data.

After this stage, the entry of data was performed. Initially the author

supervised the input of data items, in order to explain the operation of

the data input system to the novice user. This continued until the user

felt confident to continue unaided. After this, the author maintained

only a background presence, to handle any major problems or software

faults encountered.

Once the data was entered for the two month period, and the user

relatively familiar with the crime characterics , the prediction facilities

were used, and evaluated against the true crime counts for two weeks

following the trail period. This concluded the trial of the system.

Throughout the trial the officer was provided with a notepad to write

down any comments, either critical or identifying good aspects of the

system. At the end of the trial, the user was interviewed, using these

comments as a basis for discussion.

7.3 . 2 . 1 User Reaction to the System

In this section, the users' comments about ease of use, and suggests as

to improvements which may be made in the system are considered. The
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interview with the user raised certain points about the design of the

system, and the main conclusions reached between the user and the

author are outlined in the following sections.

7.7.3.2 Crimes External to the Subdivision

When crimes are entered into the system database, they are spatially

referenced by postcode. The postcode is then converted into a grid

reference by a look-up table. Clearly, as the crimes are only recorded

over the extent of the subdivision, look-up values are only provided for

postcodes falling within the subdivision. If a crime has a postcode that

is not in the list then it cannot be analysed, and so is not recorded in

the database.

During the system trial, however, it was found that some members of the

public reported household burglaries occurring just outside the

subdivision, or just on its borderline. This is hardly surprising since

the borderlines delimiting the areas served by subdivisions are not

generally known. As a result of this, however, some crimes could not

be entered into the database. Although these crimes would not feature

in a tabulation of crimes by beats, they may be of use when detecting

Knox clusters (see Chapter 4) or when examining point patterns.

It was felt by the user that, rather than excluding this type of

observation, they should be included in the database. This an important

point: in chapter 4 (section 2) it was discovered that clusters of crimes

often straddled beat boundaries, and that only examining processes on
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one side of these boundaries may obscure detection of some patterns.

This must also be the case with sub divisional boundaries, which are

equally artificial.

A suitable response to this would be to buffer the area of the

subdivision, by about lkm , and to store lookup values for all postcodes

within the expanded regions. In this way, occurrences just outside of

the subdivision may be stored in the database, plotted onto visual map

displays, and used for analytical purposes.

7.3.2.3 Batch Input of Data

The current software for the entry of data into the system presents the

user with a full-screen form, with boxes into which data may be typed.

Although this was thought easy to use, it was felt that after a while,

when the user was familiar with this type of input, that this method of

data entry was too slow. It was thought that there would be times when

several data items would need to be entered in a block. Currently, each

item requires a full screen form-type entry. During input, error

checking, postcode verification and data collation takes place. A result

of this is that there is a delay between data items being entered, and

during this period the officer entering the data is "held captive". It

was thought that, particularly when a large number of incidents had to

be entered at a single sitting, this would be time-consuming and

discourage the user. It was felt also that if the user were discouraged

from data entry, their enthusiasm for using the analytical and mapping

aspects of the system may also be diminished.
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A proposed solution to this problem may be to allow the user to compile

a "block" of data entries, using a screen editor, without verification,

which may then be fed into the database as a batch job. As each record

is read, it may then be checked, and a list of records failing to qualify

for database entry could be provided, allowing user modification later

on. In this method of entry, once the text file has been compiled, the

batch entry of data could be executed without supervision. Thus the

manpower overhead would be reduced.

It is hoped that eventually data will be read from a communication link

with a forcewide central database (see chapters 6 & 8) in which case,

local data input will not be required at all. However, in the interim

period the above method of batch data entry may prove more practical

than the initially proposed form-filling procedure.

7.3.2.4 Rolling Prediction Horizons

The system currently forms its predictions on a Saturday-to-Saturday

basis, allowing a prediction to be obtained once a week, at the beginning

of a week. However, it was thought that police resource managers may

require forecasts at other times during the week, in addition to this.

It was thought helpful, therefore, if the system were able to make

predictions for the period of seven days beyond the current date. This

may provide difficult to implement, although it could either be done by

pro-rating the remaining part of the current week's prediction, and the

complimentary part of the subsequent week, or by re-forming the
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week-by-beat cross-tabulations on each working day, so that the weekly

categories are based on seven day intervals terminating exactly at the

current date ; from a table of this format a rolling, seven days ahead

prediction may be made.

7.3.2.5 Postcode Entry Correction

The problem here relates again to the post-code verification routine.

When an erroneous postcode is entered, and fails to be found in the

look-up table, then an error message is displayed and the user given an

opportunity to re-enter the postcode. This method is effective when a

correct postcode is mis-typed , but if the postcode is correct, but refers

to an event just outside of the study area, then no correction can be

applied. In this case the user would become stuck in an infinite loop,

unless they use the escape sequence. This was felt not to be

sufficiently user friendly. A remedy for this may be to set up an option

for the operator to abandon a record after, say, two unsuccessful

attempts to input a postcode.

7.3.2.6 The Comment Option on the Point Map

This was the only criticism aimed at data presentation rather than input.

When displaying past data as a point-mapped option, one of the facilities

available is to display comments associated with individual crimes, which

have been entered as a part of the household burglary input procedure.

This was found to be useful for linking up subjective data about the

burglaries with their spatial patterns.
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The current means of accessing this information is by firstly positioning

a small cursor over the crime in question, and then pressing a further

button to obtain the comment text. The cursor is not moved in the

usual up, down, left and right control key format, but jumps between

the crime points in reference number order. The means of moving the

cursor was found to be useful (mainly because crime pattern analysts are

used to thinking in terms of the crime reference number) , but it was

felt that, rather than having to press a key after identifying the crime

to examine, it would be better if the text wee displayed automatically.

Thus, as the cursor moved from point to point on the map, the text

window would simultaneously change its comment. In this way, users

could either be seen through crimes in a spatial sense, by watching the

map, or scan through the comments, looking for key words or phrases,

and then identify the events spatially.

7.3.2 . 7 The Menu Based System

Having discussed the criticisms of the system precipitated in the trial,

some consideration will now be given to points that were found

praiseworthy in the system. The principal of these is the menu system.

The officer involved in the trial commented that they felt "confident" and

"in control" of the software, after having tried to deliberately press key

options not offered on a menu screen. Having tried this, they felt that

it was unlikely to damage data, or the system hardware, by wrong key

presses, and therefore felt encouraged to experiment with the system

and explore its facilities.
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7.3.2.8 The Choice of Analysis and Display Formats

A final, and general point made by the officer involved in the trial was

that they felt that the large choice of map display format, and analysis

method was an important positive factor. They felt that personally, they

found the forecasting, and Knox cluster options most useful, but that

other crime pattern analysts ma y prefer, for example the identification of

high risk areas, using kernel estimators (see chapters 4, 6).

The important point is that several options are on offer, allowing users

to develop personal methodologies for examining crime. Some analysts

perceive pattern information in different ways to others, and if' all are to

gain useful output from the system, and take appropriate corrective

action, then a wide variety of techniques should be available on the

menu system.

There is a parallel between the above, viewed as a subjective

observation, and the map visualisation study earlier in the chapter,

where several formats of geographical data map types all had significant

support from the police officers in the questionnaire survey.

7.4 System Performance

Before considering the prediction stage of the trial, in terms of user

interaction with the machine, the purely data-based prediction results

will be considered. A typical week of predicted values of weekly crime

counts for the period during May 1984 is listed in table 7.5. The
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Table 7.5
Predictions Of First Week After Bi-Monthly Learning Period

r----Prediction----]

Beat Code Police Machine Outcome
Ti 0 1.2 2
T2 0 0.4 0
T3 0 0.4 1
T4 0 0.4 1
T5 1 1.0 0
T6 1 0.7 0
Ul 0 0.4 0
U2 0 0.4 0
U3 2 1.3 1
U4 1 1.1 0
U5 1 0.8 0
U6 0 0.4 0
V1 0 0.4 1
V2 0 0.4 1
V3 1 0.5 0
V4 0 0.4 0
W1 0 0.4 1
W2 0 0.4 0
W3 1 0.5 1
W4 2 0.9 0
X1 1 0.4 0
X2 2 0.6 1
X3 2 0.6 0
Y1 0 0.4 0
Y2 2 1.0 1
Y3 2 1.7 1
Y4 1 2.2 2
Y5 1 0.8 1
Z1 2 1.4 4
Z2 3 2.3 7
Z3 4 2.5 4
Z4 0 0.4 0
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predictions are based entirely on the stochastic model of chapter 4, and

exclude the subjective, Bayesian type of input as described in chapter

5. It is noted that generally the predictions perform reasonably well

(usually out by only 1 crime) except when there are particularly large

crime counts in individual beats (say 5 or more).

It might be thought that the statistical model manages to explain the

"background" process, but that occasionally a surprisingly high amount

of burglaries occur in a particular area: this cannot be foreseen in past

data. This was also felt to be a reasonable model by the police crime

pattern analyst user. Often, there will be substantive explanations for

the sudden "crime waves" occurring, but these may not be detectable in

the past data.

It is difficult to evaluate the effectiveness of the Bayesian element in the

system, outside of the full model implementation, since it is difficult to

simulate the local knowledge of the crime pattern analyst at the time that

the archived events were occurring. However, using maps, and also

examining modus operandi details from this past data, the analyst

attempted to use the Bayesian prediction facility of the model as though

the analysis was occurring in real time, and the analyst had the

corresponding subjective knowledge.

Using this technique, a set of modified predictions were obtained, which

are shown in table 7.6. These illustrate certain situations where the

human analyst was able to spot certain patterns which the past data
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Table 7.6
Combined Predictions

Code Combined Prediction
Ti 0.9
T2 0.2
T3 0.2
T4 0.2
T5 1.0
T6 0.9
Ul 0.2
U2 0.2
U3 1.4
U4 1.0
U5 0.9
U6 0.2
V1 0.2
V2 0.2
V3 0.9
V4 0.2
W1 0.2
W2 0.2
W3 0.9
W4 1.7
X1 0.5
X2 1.0
X3 1.0
Y1 0.2
Y2 1.5
Y3 1.9
Y4 1.7
Y5 0.9
Z1 1.9
Z2 4.0
Z3 3.6
Z4 0.2
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alone was unable to detect ( such as, in one beat when a number of

similar crimes occurred in the latter part of the week ) .

7.5 Conclusions

The intended users of this system have been considered in this chapter.

Firstly, a large scale survey (over a subdivision) gave some insight into

the types of data representation that are most effective at communicating

spatial information relating to crime patterns. It was found that there

was notable support for each of the three main map types identified in

section 2. In the crime prediction and analysis system all of these

formats are offered ; it is hoped that this flexibility will allow diverse

analysts in various subdivisions, to tailor the system to their own needs.

The results of the single user trial identified that most of the aspects of

operation that required alteration were in terms of data input. There

was only one criticism relating to map format ; in fact the crime pattern

analyst remarked that they found interactive map analysis options both

easy to understand, and simple to use. Ultimately, data input will not

be problematic as the system will be fed from an external database, but

in the mean time, the suggested improvements may be relatively easily

effected.

On a final and more general note, it was stated in the introduction to

this thesis that computerised crime pattern analysis was to be

investigated, with a view to a practical implementation. This cannot be

claimed unless, in addition to the mathematical modelling and computer
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implementation aspects, the end result is a system which may be easily

used by those police officers requiring the information it has to offer.

It has now been demonstrated that a police officer experienced in crime

pattern analysis is capable of operating the system without major

difficulty, and therefore, it is reasonable to expect the concept of a

subdivision.al based computer system aiding in the analysis of crime

patterns to become a reality.
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CHAPTER	 8

CONCLUSIONS AND POINTS OF DEPARTURE

8.1 The Introduction of Automated Analysis to Crime Data

It was stated initially that a principal aim of this thesis was to

investigate methods of spatial pattern analysis that may be applied to

local crime data. In chapters 4 and 5, statistical techniques were

considered which may be applied to the occurrence of crime as a

geographical process. In the exploratory analysis of chapter 3, other

non-geographical techniques were also introduced. All of these could be

applied to local crime data which may be routinely recorded at a police

subdivisional level, and so provide a means of analysis that may be

easily realised. In Chapter 6, methods of implementing such techniques

on a micro were proposed.

It is important to note that while the ultimate goal of chapter 5 was a

crime prediction system, the preliminary spatial statistical tests that were

used to analyse patterns in the data yielded useful techniques in

themselves. For example, the knox tests in chapter 4 can be made to

highlight local " clusters" of household burglaries, which may then be

mapped. Considering the viewpoint of the crime pattern analyst, as

described in the introductory chapter, an important group of household

burglaries may be identified automatically. In the manual case, or even

the case where the analyst has access to database software, the
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detection of pattern has to be based on inspection of raw data. In this

case, the likelihood of error is high, and the task is time-consuming.

The above example is based on identifying the individual crimes thought

to be important. In addition to this, Kernel estimation techniques enable

regions at high risk from crime over a long period of time to be

identified. As the technique is based on point referenced data rather

than areal units of aggregation, areas of high risk straddling beats may

also be identified. Again, for the analyst this is important: foot beat

officers assigned to a particular beat often may not observe events in

adjacent beats, and part of the task of the analyst is to identify

patterns of this kind.

In addition to the application of the spatial techniques, the analysis of

the time-of-day data is also of use: deployment of police resources at

different times of day (or seasons of the year) may depend on areas in

the locality being subject to differing risks. For example, burglary

would appear to occur only extremely rarely on households between

5.00am and 9.00am. In this case, foot patrol officers may be briefed to

concentrate on other crimes more likely to occur during these hours.

Thus, spatial analytical and other techniques could contribute to the set

of tools available to the crime pattern analyst, performing the repetitive,

pattern scanning tasks and allowing them to concentrate on intelligent,

but more subjective analysis of the emergent patterns. Finally, using

the Bayesian techniques set out in chapter 5, the results of these

analyses could be re-combined with the statistical pattern projection.
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8.2 Realising a Full Working System

A prototype crime prediction and pattern analysis system has been

created from the work of this study and such a system has been found

to be useful by crime pattern analysts. It must now be considered how

such a system could eventually be implemented as a full working system.

8.2.1	 Hardware

From a hardware viewpoint, implementation is not particularly

problematic. The pilot system has been developed to run on an IBM PC

compatible computer, and this has become a widespread de facto standard

for personal computers (see chapter 6). It is possible, however, that

additional hardware may eventually be required after purchasing a basic

model. This will be to accommodate the increased graphical detail

required if the system is linked to a geographical information system

(see 8.2.2 & 8.2.3), and also to accommodate possible increases in data

storage requirements, either for the above reasons or for other software

enhancements to be proposed later in the chapter. It may also be

preferred if the final working system can drive a plotting device of some

type, for the production of hard copy of maps of crime patterns,

predictions and so on.

8.2.2	 An External Data Source

At the time of designing the prototype, although centralised recording of

incident reporting had been established in the Northumbria Police Force,
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the central database facility did not store the postcodes of incidents.

However, improvements in this are currently being developed, and it is

expected that a postcode recording system will be implemented by 1992.

In addition to this, the system will consist of a central file server,

which will download requested data to micros at subdivisional level. It

is also proposed that this data will be readable by other software

packages.

The prototype system developed on this study required its own data

entry system, mainly as the postcoding of data (necessary for spatially

referencing) was otherwise not recorded. In the future, however, as

this data will now become centrally available, it seems reasonable to read

data into the analysis system from the file server. This obviates the

need for data to be entered twice, and allows more sophisticated filtering

of the data for analysis, which may be performed by the central

database software currently being developed in SQL (Structured Query

Language - a database definition language).

Since the system has been designed on a modular, menu-based model,

adaption to this should not be difficult. The current data entry

program could be replaced with a program capable of communicating with

the central file server, and reading in appropriate data for analysis

using the techniques already implemented. Once this has been done,

alteration of the menu descriptor files to allow for this could replace the

new data reading module in the place of the original user data entry

module in the overall system.
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8.2.3	 Linkage to Geographical Information Systems

Another direction in which the system may be expanded is in its

graphical and cartographic output. The prototype system gives

fixed-scale mapping showing beat boundaries as background data, onto

which choropleth shading, risk contours or point data may be overlayed.

However, output of this type may be fed as data into a Geographical

Information System package, after analysis has been performed. This

allows the results to be examined in a more informative geographical

context. Added to the background information could be OS maps, and

positional data relating to various police specific attributes

neighbourhood watch areas, for example. With most GIS packages, the

facility to "zoom in" on particular sections of the map is also available.

Thus, in the case of, say, the Knox cluster detection, a detailed view of

a street were several burglaries have occurred could be obtained. This

may show relative positioning of houses, location of back allies and other

access points, and further features, allowing the analyst to look for

further connections and similarities in the crime patterns. As in the last

section, certain modules in the system could be altered to output results

into a GIS rather than directly onto the screen.

A further advantage of this type of approach is that, since the crime

pattern analysis system becomes less hardware specific, possibly

communicating with a GIS in a standard format (possibly ASCII), if the

main hardware were to be altered at a future date, to implement a faster
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or larger system, then if the software is written in a standard

programming language there should be little difficulty in loading it onto

the new hardware.

8.3 Further Development of Analytical Techniques

In addition to the software extension discussed above, some of the

central analytical techniques may also be taken in further directions.

Although the system as it stands provides the crime pattern analyst with

a set of tools, there are ways in which some techniques may be adapted

to be used in different situations, and, with the advent of GIS systems,

there are techniques which may allow crime pattern analysis as described

here to be combined with map data to provide further geographically

oriented descriptions of crime data.

8.3.1	 Space Time Prediction Models on A Force-Wide Scale

The space-time autoregression methodology used for forecasting weekly

crime rates on a foot beat scale of aggregation may also be applied to

geographical data on a larger scale. In this context, the analysis could

be used at force headquarters level as a management means of allocating

resources between subdivisions over, say, yearly periods. In this

context, predictions could not be made in a Bayesian framework (since

the type of local knowledge that beat police officers could apply to small

scale crime patterns would not be available here). However, space-time

autoregression models may be calibrated in a more orthodox sense, and

may be used as a basis for prediction.
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8.3.2	 Extention of the Concept of "Risk Surfaces" to a

GIS Environment

The technique of Kernel estimation described in chapter 4 ( Silverman,

1983) provides an estimate of a function of two-dimensional space,

mapping grid co-ordinates onto a crime "risk surface". As illustrated in

that chapter, and also in the implementation of the prototype system,

these provide a useful mapping facility. Incorporating the ideas of

multivariate calculus (see for example Kolman and Trench, 1971) into this

framework, many other useful geographical descriptive methods may be

derived.

If the surface is thought of as risk density, then, for an arbitrary area

within the subdivision, the crime risk inside the area can be thought of

as the volume beneath the risk surface if this area is extended upwards

( see figure 8.1) . This may be represented by the volume integral

JAA r bc, T (4.)...c.

where r(103) is the risk density function, and A is the area over which

X and 3 vary. For an arbitrary area, this integral could not be

evaluated analytically. However, numerical approximation techniques

could be applied if the value of was given over a grid of and
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Figure 
8.1
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values. This could be used in a GIS context. The total crime risk

could be evaluated for an arbitrary polygon drawn over an OS map on a

VDU using a mouse. This allows the extension of the idea of identifying

high risk areas to that of giving the risk associated with an arbitrary

region. This could be expressed either as an absolute quantity, or

, standardised to unit area. This may prove to be helpful if a particular

estate, or part of a locality was believed to be a "problem area". As

with the other techniques in the system, the concept of area integrals

would be hidden in the software, and the front end would present the

problem in terms of local crime geography.

As well as area integrals, line integrals could also be applied. A line

integral would evaluate the total risk along a single dimensional path

within the subdivision, if the path were parametred as 	 (1.(), (._e))

then the integral would be r t‘
J L. r (x(t), 1/4-y.0) At

as before this could be approximated numerically, given the path as a

list of vertices, and either known values of at these vertices, or a

grid of values allowing interpolation. Integrals of this type could be

used, for example, to measure the risk of particular streets within the

subdivision. This would allow a GIS to identify and map the "most

susceptible streets", possibly producing a "league table".
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Another interesting application of this might be in terms of beat

boundaries. In chapter 4, the problem of high risk areas overlapping

beat borders was identified. This technique may be used to select and

map those beat boundaries with the highest integrated risk factors. It

seems reasonable that those boundaries having high risk may cut

through two-dimensional regions of high risk.

The lack of speed at which micros are able to perform computations of

the type proposed here may currently be prohibitive, but it is important

to note that recently available floating hardware will be of aid here. As

an example, Intels recently announced 1860 cpu may be used as a second

processor, and is capable of performing 3D graphics computations as of

its basic instruction set. (see Personal Computer World, July 1989).

These are primarily intended for CAD applications, but surface

interpolation related instructions could be adapted to computations

required here.

This also delivers further opportunities to improve risk surface

estimation techniques. For example, fault lines could be included, so

that risk surfaces could have discontinuity, possibly for household

burglary on differing sides of a railway line, or motorway. Initially

computation would be performed with user-specified fault lines, although

at a later stage edge-detection techniques could be employed to find

these automatically.
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8.3.3	 Improvement of Space-Time Models

The advent of improved floating point hardware may have implications in

the prediction software also. In chapter 5, it was stated that certain

correlations had to be excluded from prediction models, since this would

require the inversion of large matrices. This predominantly affects the

predictive distributions supplied for future weeks. However, if

hardware speed is significantly improved, it seems reasonable to

investigate numerical matrix inversion techniques which may be used in

conjunction with this hardware, to give an overall improvement in the

space-time modelling used as a basis for prediction.

Alternatively, improvements in the model could be made by increasing

the geographical detail. For example, instead of forecasting on a foot

beat areal unit system, it may be possible to work in terms of postcode

sectors at some point in the future. As suggested earlier, this is not

currently feasible, but as above, the advent of faster hardware may

provide the potential to do this.

8.3.4	 Bayesian Prior Construction

It is important to incorporate subjective prior knowledge into a crime

prediction system. However, as discussed in the introductory chapter,

and also in the implementation chapter, although the Bayesian framework

requires the input of subjective prior beliefs to be represented as a
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probability distribution, it is unreasonable to expect crime pattern

analysts, whose expertise does not lie in the field of statistics, to

supply information in this form. Thus, methods were considered for

"hiding" the mathematical aspects, by asking questions about the risk of

each beat, and then asking users to supply a degree of certainty that

could be applied to their subjective forecast. However in future

developments, firstly the number of areal units may increase, and also

the complexity of the forecasting model may increase. If this occurs,

whereas previously specifying beatwise risk priors may have easily been

carried out by directly selecting individually, this may not be practical

with small units, such as postcode sectors. In this case, more

sophisticated means of constructing prior belief distributors over a set of

spatial units may be required.

This could be done using an expert system to ask questions and,

possibly by linking local area and street names with point references,

build spatial distributions. Some of the ideas behind diagnostic systems

such as MYCIN (Barr and Feigenbaum, 1982) could be used to identify

areas that were though to be of high risk. Questions could be asked in

terms of odds, or betting.

An alternative approach may be to use a mouse interface, and ask the

user to identify areas thought to be at risk, and then to return to text

questioning to find out degrees of confidence, again perhaps in terms of

betting odds. Obviously, the amount of risk aversion will vary between

users, but if calibration of the priors supplied takes place, this may be

compensated.
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8.3.5	 Incorporation of Bayesian Methodoloev Into Risk

Surface Estimation

It has already been illustrated that the risk surface techniques may be

useful in a GIS context. However, in many cases, the empirical

determination of these surfaces will only be as reliable as the data that

they are based on. In this case, non-reportal of crimes may distort the

data base, so that estimates of risk surfaces may be unrepresentitively

low in some areas. it is also possible, given the hypothesised causes of

non-reportal of crime (Walker, 1983), that under representation may be

concentrated in certain areas. Attitudes towards the police and crime

reporting may vary between neighbourhoods, and in certain communities

non-reporting of crime may be considerably more common than in others.

Despite the fact that crime data itself may not provide a full description,

it is possible that in conjunction with local subjective knowledge, a fuller

picture may be obtained. As with the prediction problem, a Bayesian

technique may provide help. A technique could be developed in which

prior knowledge of the chances of an occurrent crime being reported, as

a function of area, may be combined with point referenced incidence data

to yield a risk surface (Lo, 1984). The prior distribution could either

be derived on a subjective basis, using methods set out in 8.3.3, or an

empirical estimate of non-reportal probabilities could be derived from a

questionnaire of local communities. Other factors effecting this, such as

investigating which areas have neighbourhood watch schemes, and how
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successful these schemes have been, could also be incorporated into the

prior distribution.

8.3 . 6 Controlling For Response

An interesting problem arises if the system is implemented in some

subdivision and successfully identies problem areas. If police resources

are targetted successfully at these regions, and potential crimes are

prevented, this may then cause the predictions to become wrong!

Clearly, these may have repercussions at some stage in a

self-regulating system. Two possible methods of combating this are

possible. Firstly, when monitoring predictions for success, weighting

of penalties for under-prediction could exceed those for overprediction .

Thus the kind of error described above could be allowed for, and not

seen as requiring as much attention as an underprediction .

Alternatively, if there were some means of manpower resource

monitoring over space, this could act as a geographical control variable,

so that the measure of crime risk would then become successful crimes

per man-hour of policing in a region. If this were the case, then

predictions could be made in terms of areas requiring more resources,

rather than areas likely to have high crime risks.

However, an option of this sort would have to be offered alongside that

of the risk identification and cluster analysis options, as the system

should be informative not only to police resource managers, but also to

beat policemen. The latter would still find the identification of hogh
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risk areas and 'suspicious' crime clusters in there own beats to be

important information.

8.4 Concluding Remarks

In this study, the purpose was not to derive criminlogical or behavioural

explanations of crime processes, but to derive quantitative methods

which may be used to examine empirical crime patterns on data which is

readily available to the police force at subdivisional level. This work is

necessary for a crime pattern analyst since before considering the causes

of the patterns, these patterns must be identified. Taking this one

stage further, the aim was then to use these empirically examined

regularities as a basis for short-term forecasting. It was found that

this could be done, but that the method could be further improved if

knowledge beyond the scope of the database could also be assessed.

Although the prediction model may be viewed a an ultimate goal in the

project, the analysis of the data both in the initial, non-geographical

exploratory context, and then in exploratory analysis of the data as a

realisation of a random process in space and time yielded other useful

techniques. These may also be incorporated into crime pattern analysis

software; for example, time of day profiles for crime are useful

information for sub divisional resource managers.

Other "spin-off" techniques such as the Knox-test type of analysis and

the Kernel estimations of crime risk were also found to be useful tools.

These techniques analyse spatially referenced data and their outputs are
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essentially geographical data entities. Thus, they may be input into GIS

software, and users may view the results in the context of local

geography. Given the applicability of these techniques (perhaps not

only in terms of crime), and the recent advances in GIS technology, the

further analysis of these may be an important point of departure.

The techniques used have also proved to be relatively easily expressed

in non-mathematical terms, although their operation is essentially

mathematical. Thus, the police officer may treat them as a "black box"

asking and answering questions in terms of crime patterns, rather than

mathematical or probabilistic theory. Results may therefore be more

easily interpreted in terms of police manpower management and

phenomena relevant to local policing. Linked with other,

non-geographical data, they provide the crime pattern analyst with

information which they may use to identify and interpret incoming crime

data more reliably, and faster, than would otherwise be possible.
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