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Abstract 

Chronic diseases such as cardiovascular diseases and colorectal cancer are the leading 
cause of mortality worldwide. Commonly used drugs such as aspirin and warfarin are shown 
to effective at reducing the risk of chronic diseases but have a narrow therapeutic window and 
are associated with adverse drug reactions, particularly, hemorrhage. Identification of 
pharmacogenetic markers such as single nucleotide polymorphisms (SNPs) that could help 
deliver personalized dose could help improve the risk-benefit ratio. Furthermore, development 
of a rapid point of care genotyping device consisting of a pharmacogenetic SNP panel for 
aspirin and warfarin could help implement personalized medicine in the clinical setting. 

Analysis of candidate SNPs in aspirin’s pharmacokinetic and pharmacodynamic 
pathways was carried out to explain variation in aspirin’s colorectal chemopreventive efficacy 
using two large population based case-control datasets. Associations and interactions were 
tested using logistic regression models and meta-analysis of the 2 datasets. A novel site-
specific association for rs1799853 (OR=0.73, 95% CI=0.60-0.90, P=0.003) and rs1105879 
(OR=1.16, 95% CI=1.02-1.32, P=0.03) with colon cancer risk was observed. Furthermore, 
stratification by aspirin use showed increased risk of colorectal cancer in aspirin users but not 
in non-users carrying variant allele of the SNPs rs4936367 and rs7112513 in PAFAH1B2 
gene and rs2070959 and rs1105879 in UGT1A6 gene (Pinteraction<0.05 for all). These results 
provide insight into aspirin’s differential chemopreventive efficacy and the neoplastic 
transformation of cells in colon and rectum. 

Utility of clinically validated pharmacogenetic dosing algorithms consisting of three 
warfarin dose associated SNPs from the European population needs to tested in the Gujarati 
Indians, an Indian sub-population. Dose prediction accuracy of the algorithms was compared 
between Gujarati Indian and European population. Mean squared difference of both 
pharmacogenetic algorithms was higher in Gujarati Indian compared to European population 
(Klein et al 2009, 216.3 v/s 160.7, P=0.05; Gage et al 2008, 170.6 v/s 143.2, P=0.07). Poor 
prediction accuracy could be explained by the presence of study subjects requiring dose for 
target INR range 2.5-3.5 and low frequency of the VKORC1 rs9923231 variant, which is the 
most important genetic determinant of warfarin dosing in Europeans. Therefore, the SNP 
panel and dosing algorithms developed from European populations cannot be assumed to 
have utility in the Gujarati Indian population. 

Finally, to help develop a rapid, point-of care, silicon nanowire (SiNW) based SNP 
genotyping device, a panel of isothermal melting probes were designed to genotype three 
warfarin dose associated SNPs. Testing of hybridization and washing conditions to have 
optimal hybridization kinetics between the probe and target DNA and high target sequence 
specificity was carried out using custom designed microarray platform. Accurate genotype 
calls for all 3 SNPs in 2 anonymised samples using empirically optimized hybridization and 
washing conditions was carried out successfully. Current work highlighted associations 
between probe characteristics and hybridization parameters, which would be useful in 
designing and testing probes on the SiNW platform. 

 Identification, validation and testing of clinical utility of population specific 
pharmacogenetic markers along with development and deployment of ultra-rapid point of care 
genotyping technologies could help deliver personalized risk-benefit ratio for aspirin and 
warfarin.  
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Chapter 1: Introduction 

1.  

1.1 Need for personalized medicine 

1.1.1 Burden of chronic diseases- cancer and cardiovascular disease 

Cancer is one of the leading causes of death worldwide with the burden being expected 

to grow due to the growth and aging of the population, especially in the developing and 

under-developed countries that account for 82% of the world’s population (Siegel et al., 

2012). According to the GLOBOCAN and International Agency for Research on Cancer 

estimates, approximately 14.1 million new cancer cases and 8.2 million deaths due to cancer 

occurred in 2012 (Siegel et al., 2012). There is a growing trend for the shift in cancer burden 

to less developed countries due to an epidemiological transition to improved life expectancy, 

high-fat diets, smoking and sedentary lifestyle, which have been associated with an increase 

in cancer risk (Siegel et al., 2012, Gaziano, 2005, Yusuf et al., 2001). Amongst all cancer 

types, colorectal cancer is the leading cause of cancer related mortality in developed countries 

for both males and females, which lead to an estimated loss of productivity costs due to 

premature mortality of €6 billion in Europe alone in 2008 (Hanly et al., 2015, Siegel et al., 

2012), thus posing a significant economic burden to the healthcare industry and society at 

large.  

Similar to cancer, the burden of cardiovascular disease is on the rise worldwide and was 

the largest cause of deaths in 2002 (WHO, 2015, Yach et al., 2004). According to estimates 

for the year 2020, mortality from chronic diseases will triple in number worldwide and 71% 

and 75% of all deaths will occur due to ischemic heart disease (IHD) and stroke respectively 

(WHO, 2015, Yach et al., 2004). In developing countries, the burden of cardiovascular 

disease has surpassed that of the acute infectious diseases thus creating a polarized double 

burden of disease (WHO, 2015, Yach et al., 2004, Frenk et al., 1989). Due to the substantial 

increase in the percentage of people who are either overweight or obese in developing 

countries, the number of people with cardiovascular disease in India and China are higher 

than that of all the developed nations put together (Yach et al., 2004, Popkin, 2002). Together 

with cancer, cardiovascular diseases pose a major economic and healthcare burden, which 

require immediate prevention and treatment measures to improve the quality of life and 

reduce the global health burden. 
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1.1.2 The Human Genome Project 

In 1990, the Human Genome Project was launched with the aim to map and sequence 

all 3 billion nucleotides in the human DNA. In 2001, when the first draft of the human 

genome was published (Venter et al., 2001, Lander et al., 2001), it heralded the start of 

implementation of genetics in mainstream medicine. Following it, Collins and McKusick in 

their paper described several applications of genetic knowledge in medicine such as 

individual diseases risk prediction, development of designer drugs and prediction of drug 

responsiveness which when utilized together would revolutionize disease diagnosis and 

treatment (Collins and McKusick, 2001).  They argued that clues to the genetic risk of 

common diseases, pharmacogenetics and environmental risk factor assessment would be 

provided by the sequences that account for 0.1% of the variation between individuals.  

Numerous types of sequence variation such as microsatellites, minisatellites and 

restriction fragment length polymorphisms (RFLPs) were identified through the polymerase 

chain reaction (PCR) technique (Collins et al., 1999). However, the focus soon shifted to non-

repetitive sequence variants, which were most commonly found in the genome and were 

called single nucleotide polymorphisms (SNPs). A subsequent public-private partnership 

published a publicly available map of 1.42 million SNPs distributed throughout the genome 

and estimated that 60,000 SNPs would fall within exonic regions and 85% of the exons would 

be within 5kb of the nearest SNP (Sachidanandam et al., 2001). The authors suggested 

applications of SNPs in studying human population genetics, candidate gene analysis for 

disease association using genome wide association studies (GWAS) and studying human 

evolution.  

Whilst GWAS studies have had limited success in identifying association between 

SNPs and several common diseases (Bodmer and Bonilla, 2008), they have been successful in 

pharmacogenetics where they have been used in identifying variants in drug metabolizing 

enzymes, drug target and disease susceptibility gene that are associated with adverse drug 

reactions (ADRs), drug response variation and output of a treatment in specific disease, 

respectively (McCarthy and Hilfiker, 2000, Krynetski and Evans, 1999, Drazen et al., 1999, 

Poirier et al., 1995). These examples vindicated the aim of applying genetic knowledge in 

disease diagnosis and treatment, which was put forward by the International Human Genome 

Project Consortium in 1990.   

1.1.3 Pharmacogenetics, pharmacogenomics and personalized medicine 

Pharmacogenetics is the study of the variability in drug response due to genetic 

differences whereas pharmacogenomics interrogates the entire genome to screen for the 

spectrum of genes involved in drug response. This aids in identifying the drug and selecting 
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optimal dose that is most likely to be effective and safe for an individual and hence frequently 

described as “personalized medicine”. The term pharmacogenetics and pharmacogenomics 

was coined by Friedrich Vogel in 1959 (Vogel, 1959) and Andrew Marshall in 1997 

(Marshall, 1997) respectively (Pirmohamed, 2011).  

Whilst the study of pharmacogenetics and pharmacogenomics required development of 

molecular genetic technologies, the first example of a pharmacogenetic trait called favism 

was mentioned by Pythagoras in 510 BC where certain Mediterranean populations developed 

red blood cell hemolysis after ingesting fava beans (Pirmohamed, 2011, Nebert et al., 2008, 

Cappellini and Fiorelli, 2008). The cause was later identified to be the deficiency of glucose-

6-phosphate dehydrogenase (G6PD) that is the commonest human enzyme deficiency and 

affects 600 million people worldwide (Nebert et al., 2008, Cappellini and Fiorelli, 2008). The 

same deficiency caused hemolytic crisis in ~10% of African American soldiers and a small 

number of Caucasian soldiers during World War II after being administered with an anti-

malarial drug primaquine or other chemically related drugs (Alving et al., 1956, Clayman et 

al., 1952).  

The phenotype driven approach to understanding variation in drug response was used 

extensively between the 1950s and 1980s and it usually required administration of a probe 

drug and subsequent measurement of its metabolite (Pirmohamed, 2011, Meyer, 2004).  The 

ratio of probe drug to its metabolite represented whether an individual had an absolute or 

partial deficiency of an enzyme. In the late 1970s, techniques like these helped define an 

individual’s capacity to hydroxylate debrisoquine, an anti-hypertensive drug, whose adverse 

reactions included significant cardiovascular effects such as hypotension (Mahgoub et al., 

1977). Analysis of the urinary metabolite 4-hydroxy-debrisoquine revealed the source of 

differential metabolism to be due to the deficiency of a specific cytochrome P-450 enzyme in 

the liver microsome, which was later called CYP2D6 (Meier et al., 1983).  Subsequent 

cloning and detailed sequence analysis identified two frequent alleles, CYP2D6*4 and 

CYP2D6*3, which were associated with adverse drug reactions in poor metabolizers and thus 

the first PCR-based test to identify poor metabolisers of debrisoquine was developed (Gough 

et al., 1990). Furthermore, alleles containing 3 to 13 copies of the CYP2D6 gene in 

individuals with ultra-rapid metabolism phenotype was later identified. 

Since the completion of the Human Genome Project and increased utility of genome 

wide association studies (GWAS) in pharmacogenomics has led identification of several 

genes with drug response phenotype for several drugs such as: predisposition to stent 

thrombosis in clopidogrel users with CYP2C19*2 allele, HLA-B*5701 with abacavir 

hypersensitivity and flucloxacillin induced liver injury and IL28B with interferon-alpha 
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efficacy in treating hepatitis C infection etc. (Pirmohamed, 2011, Shastry, 2006, Meyer, 

2004). Additionally, associations of polymorphisms with anticancer drugs were also 

identified, such as: polymorphism in thiopurine S-methyltransferase (TPMT) with 

mercaptopurine toxicity, polymorphism of UDP-glucuronosyltransferase (UGT1A1) with 

irinotecan toxicity and V600E mutation in the BRAF gene with vemurafenib efficacy etc. 

(Pirmohamed, 2011, Shastry, 2006, Meyer, 2004).  

Recently, polymorphisms in the CYP2C9 and VKORC1 genes were shown to be 

associated with dose sensitivity of the drug warfarin, which is used to treat atrial fibrillation 

(Klein et al., 2009, Gage et al., 2008, Aithal et al., 1999). This suggests that pharmacogenetic 

testing can improve efficacy and prevent adverse drug reactions thus reducing cost of therapy 

to the healthcare system and improving the quality of life of patients. With the trend for rise in 

chronic diseases such as cancer and cardiovascular disease, implementation of 

pharmacogenetic testing for prophylactic and therapeutic agents could help reduce the burden 

of these diseases globally.  

1.2 Genetics, aspirin and colorectal cancer 

Colorectal cancer (CRC) is one of the most frequent cancers in the developed world 

with an incidence of 160,000 cases diagnosed in the US every year and more than 31,000 

cases diagnosed in the UK alone in 2011 (CRUK, 2014, Markowitz and Bertagnolli, 2009). 

Additionally, both in the US and in the UK, it is the second leading cause of cancer related 

mortality (CRUK, 2014, Markowitz and Bertagnolli, 2009). The disease usually initiates as a 

benign polyp that develops in to advanced adenoma with dysplasia and finally progresses to 

an invasive cancer (Markowitz and Bertagnolli, 2009). Invasive cancers that are confined to 

the outer wall of the colon (stage I and II) are curable by surgical excision but if untreated, 

they can spread to lymph nodes (stage III) and then can metastasize to distant sites (stage IV) 

(Markowitz and Bertagnolli, 2009, Markowitz et al., 2002). Seventy three percent of stage III 

cancers are curable by surgery combined with adjuvant chemotherapy whereas stage IV 

cancers are usually incurable (Markowitz and Bertagnolli, 2009, Andre et al., 2004, 

Markowitz et al., 2002). Delineating underlying pathological and molecular changes that 

drive a normal epithelial cell to transform into a metastatic tumor cell could help determine 

individual susceptibility to CRC and the efficacy of antitumor agents. 

1.2.1 Carcinogenesis of colorectal cancer 

CRC occurs in both sporadic and familial (hereditary) cases, however, about 75-80% of 

tumors are of sporadic origin (Moran et al., 2010). Two major pathways are understood to be 

in involved in colorectal carcinogenesis- Chromosomal instability (CIN) or “suppressor” 
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pathway and the mutator or DNA mismatch repair pathway (Moran et al., 2010, Markowitz 

and Bertagnolli, 2009).  

1.2.1.1 Chromosomal instability pathway (CIN) 

CIN is the most common type of genomic instability observed in 80-85% of tumors; it 

is assumed to follow Fearon and Vogelstein model of carcinogenesis (Moran et al., 2010, 

Fearon and Vogelstein, 1990).  The linear model proposed that specific genetic events were 

correlated with the evolving tissue morphology (Figure 1.1). In cancers caused due to CIN, 

rare inactivating mutations in genes involved in chromosome stability during replication are 

observed (Markowitz and Bertagnolli, 2009, Barber et al., 2008). This leads to physical loss 

of a wild-type copy of tumor suppressor genes such as APC, P53 and SMAD4 and gain of 

function of oncogenes such as KRAS (Moran et al., 2010, Markowitz and Bertagnolli, 2009). 

Furthermore, CIN tumors contain high frequency of allelic imbalance, most commonly on 

chromosome 5q, 8p, 17p and 18q (Moran et al., 2010, Markowitz and Bertagnolli, 2009) 

 

1.2.1.2 DNA mismatch defect pathway 

DNA mismatch repair pathway defects are observed in approximately 15-20% of 

sporadic CRCs and the tumors are characterized by high mutation rates, 100- to 1000-fold 

more common in comparison to normal cells, mainly affecting microsatellite sequences 

(Moran et al., 2010, Pawlik et al., 2004). This is caused by the inactivation of mismatch repair 

(MMR) genes that are required for base-mismatch repair post DNA replication (Figure 1.2). 

In total, there are 7 MMR genes that encode functional proteins to carry out mismatch repair: 

hMLH1, hMLH3, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2 (Moran et al., 2010, 

Markowitz and Bertagnolli, 2009, Hoeijmakers, 2001). In sporadic tumors, epigenetic 

inactivation of hMLH1 due to methylation and less frequently, mutation in hMSH6 is 

observed (Imai and Yamamoto, 2008). In contrast, germ-line mutation in hMLH1 and hMSH2 

genes leads to the hereditary form of CRC known as hereditary non-polyposis colorectal 

Figure 1.1 Colorectal carcinogenesis through chromosomal instability pathway.  

Figure adapted with permission from Moran et al. 2010.  
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cancer (HNPCC) or Lynch Syndrome that accounts for 2-4% of all CRC cases (Bronner et al., 

1994, Fishel et al., 1993).  In both sporadic and hereditary tumors with MMR deficiency, 

mutations in the mononucleotide or dinucleotide repeat sequences in the functional regions of 

the tumor suppressor genes such as TGFβR2, BAX and IGF2R etc. and epigenetic silencing of 

a number of normally functioning genes is observed (Moran et al., 2010, Markowitz and 

Bertagnolli, 2009).   

 

1.2.2 Aspirin and colorectal cancer risk 

Acetylsalicylic acid (ASA), Aspirin, is a non- steroidal anti- inflammatory drug 

(NSAID) which is used as an analgesic, anti-pyretic or as a prophylactic drug for 

cardiovascular diseases (CVD) (Fuster and Sweeny, 2011). Aspirin is made up of two 

components: a phenol ring consisting of 6- carbon benzene ring with a carboxyl group and an 

acetyl moiety (Fuster and Sweeny, 2011). It was first introduced into the market in 1899 and 

was registered under the name of “Aspirin” by Bayer (Fuster and Sweeny, 2011). Currently, 

an estimated 40,000 tons of aspirin are produced worldwide annually and approximately 10 to 

20 billion tablets are consumed annually in the USA alone for CVD prophylaxis (Campbell et 

al., 2007), making it one of the most widely used drugs in the world. 

1.2.2.1 Association with colorectal cancer risk 

Despite being widely prescribed as an anti-platelet and anti-inflammatory drug, the first 

epidemiological evidence for an inverse association of its intake with colorectal cancer risk 

was reported from a population based case- control study in 1988 (Relative risk [RR] for 

males=0.58, 95% CI=0.38-0.88, P=0.02; RR for females=0.49, 95% CI=0.32-0.73, P<0.01) 

(Kune et al., 1988). Further evidence of an inverse association came from a meta-analysis of 

11 case- control and 7 cohort studies that showed an inverse association between long term 

aspirin use and colorectal cancer (Meta-analysis of case-control studies RR=0.59, 95% 

Figure 1.2 Colorectal carcinogenesis through defects in the DNA mismatch repair 

pathway.  

Figure taken with permission from Moran et al., 2010. 
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CI=0.54-0.64, P for heterogeneity= 0.008; Meta-analysis of cohort studies RR=0.85, 95% 

CI=0.78-0.92, P for heterogeneity= 0.006) (Cuzick et al., 2009, Bosetti et al., 2006). 

However, a significant heterogeneity was observed in the estimates between and within case- 

control and cohort studies as the studies were carried out in different populations, used 

different methods for case ascertainment, and used different types of controls. 

To test the robustness of the inverse association, the first randomized 2 x 2 factorial 

double-blinded trials were launched, first in 1993 in Familial Adenomatous Polyposis patients 

(CAPP1) and then in 1998 in 1009 patients who were genetically predisposed to Lynch 

syndrome (CAPP2), receiving 600mg daily aspirin or placebo for a mean intervention period 

of 29 months (Burn et al., 2008). After a mean follow up of 55.7 months, per protocol 

analysis showed a reduced risk of primary cancer in the aspirin group compared to placebo 

(HR=0.41, 95% CI=0.19-0.86, P=0.02; IRR=0.37, 95% CI=0.18-0.78, P=0.008) (Burn et al., 

2011b). The combined evidence from observational studies and randomized controlled trials 

provided compelling evidence that aspirin intake reduces CRC risk. Rothwell et al. returned 

to the randomized trials performed to assess the effects of aspirin on cardiovascular disease. 

Extended follow up of over 25,000 recruits displayed a highly significant reduction in 

colorectal and other cancers commencing around 5 years after the initial recruitment 

compared to placebo groups (Rothwell et al., 2012a). In 2013, Cook et al. published a long-

term follow up of the only other aspirin randomized trial with cancer as an endpoint, the 

Women’s Health Study. Alternate day 100mg aspirin resulted in an 18% reduction in 

gastrointestinal cancers with the effect commencing 10 years after randomization (Cook et al., 

2013).  

1.2.2.2 Association with colorectal adenoma risk 

Since colorectal adenomas are the precursors to most CRCs, the chemopreventive 

effect of aspirin is likely to be observed in the adenomas as they form during the neoplastic 

transformation of normal to cancer cells. The largest randomized placebo controlled trial 

consisting of 206 patients who were genetically predisposed to a hereditary form of colorectal 

cancer, familial adenomatous polyposis (FAP), showed no significant reduction in the polyp 

count in the sigmoid colon and rectum of patients taking 600mg/day aspirin compared to 

placebo (RR=0.77, 95% CI=0.54-1.10) (Burn et al., 2011a). However, there was a reduction 

in the mean polyp size in patients randomized to aspirin (3.0mm versus 6.0mm; P=0.02) 

(Burn et al., 2011a). Despite the lack of clear evidence of the protective effect of aspirin on 

primary lesions in individual trials, a meta analysis of 4 randomized controlled trials (AFPPS 

(Baron et al., 2003), CALGB (Sandler et al., 2003), ukCAP (Logan et al., 2008) and APACC 

(Benamouzig et al., 2003)) that evaluated secondary prevention of sporadic colorectal 
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adenoma with aspirin showed a risk reduction for developing adenomas (pooled RR=0.83, 

95% CI=0.72-0.96, P=0.012) and advanced lesions (pooled RR=0.72, 95% CI=0.57-0.90, 

P=0.005) (Cole et al., 2009).  Thus in both sporadic and familial risk patients, there is 

convincing evidence of adenoma risk reduction with aspirin use.  

1.2.2.3 Clinical utility of aspirin in prevention of CRCs 

Despite the accumulation of evidence that supports the use of aspirin for prophylaxis 

and adjuvant therapy in reducing CRC risk, it is not being prescribed widely for 

chemoprevention due to its adverse side effect of gastrointestinal (GI) bleeding (Huang et al., 

2011). A prospective study of 87,680 women over a 24 year follow up in the Nurses’ Health 

Study showed an increased risk of GI bleeding in regular aspirin users (≥2 325mg tablets/ 

week) compared to non-regular users (RR=1.43, 95% CI=1.29-1.59) (Huang et al., 2011). 

Additionally, compared to non-users, the risk of bleeding increased with an increase in the 

number of tablets taken per week (Ptrend<0.001) (Huang et al., 2011). However, after adjusting 

for dose, no difference in bleeding risk was observed for short term and long term users. 

Furthermore, in 2 randomized controlled trials that compared rates of GI bleeding in 

individuals taking low dose (81 mg) and high dose (325 mg) aspirin showed no significant 

difference between the rate of GI bleeding between the two groups (Baron et al., 2003, Taylor 

et al., 1999).  

A recent review looking into the risks and benefit of prophylactic use of aspirin in the 

general population observed a delayed chemopreventive effect of aspirin by 3 years from the 

start of treatment (Cuzick et al., 2014). The review also mentioned an increase of 32-36% in 

hemorrhagic strokes, which is the most serious and potentially fatal side effect, in aspirin 

users from a baseline rate of 0.03% per annum whereas the risk of the GI bleeds increased by 

30-70% from the baseline risk of 0.7/1000/ year in people taking aspirin (Cuzick et al., 2014). 

The authors estimate a relative reduction of ~9% and 7% in the number of men and women 

respectively with cancer, myocardial infarction or stroke event over a 15 year period if they 

have been taking aspirin for 10 years (Cuzick et al., 2014). Furthermore, they also calculated 

that 61-80% of the overall benefit would be accounted by the decrease in the cancer risk, 

especially, reduction in the CRC risk, which alone would account for 30-36% (Cuzick et al., 

2014). Based on the evidence of risk and benefit of using aspirin, the authors concluded that 

prophylactic use of 75 to 325 mg/day aspirin for a minimum of 5 years would have a 

favorable risk-benefit ratio.  
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1.2.3 Pharmacogenetics of aspirin 

Despite extensive evidence for aspirin’s chemopreventive efficacy and accummulating 

evidence on the risk-benefit profile, data from several studies suggests inter-individual 

variation in the chemopreventive effect and the source of this variation has been attributed to 

the presence of somatic mutations (Nishihara et al., 2013, Liao et al., 2012) and germline 

variation in aspirin’s pharmacokinetic and pharmacodynamic pathways (Wang et al., 2014, 

Reimers et al., 2014, Fink et al., 2014, Angstadt et al., 2014, Seufert et al., 2013, Nan et al., 

2013, Pathi et al., 2012, Zell et al., 2009, Hubner et al., 2008, Chan et al., 2007, Hubner et al., 

2006, Din et al., 2004, Stark et al., 2001). Aspirin’s mode of action on cellular pathways 

within the colonic epithelial cells which in turn reduces the risk of CRC has yet to be 

elucidated. Furthermore, genetic variants that influence an individual’s risk to adverse drug 

reaction associated with aspirin is currently under scrutiny (Agundez et al., 2009). Developing 

a panel consisting of SNPs associated with aspirin’s efficacy along with SNPs associated with 

adverse drug reaction could help determine the optimal dose for an individual. 

1.3 Genetics, warfarin and cardiovascular diseases 

Cardiovascular diseases (CVDs) are estimated to account for 30% of all deaths 

worldwide, where 80% of the burden is attributed to developing countries (Gaziano, 2005). 

CVDs include stroke, atrial fibrillation (AF), sudden cardiac arrest, heart failure and coronary 

artery diseases etc. In the latest executive summary by the American Heart Association, 

CVDs accounted for ~1 in every 3 deaths in the USA alone in 2011 which averages to 

approximately 1 death every 40 seconds (Mozaffarian et al., 2015). In the USA, it is estimated 

that someone has a stroke every 40 seconds and death due to stroke occurs every 4 minutes 

(Mozaffarian et al., 2015). Furthermore, it is estimated that AF related stroke occurs every 15 

seconds (AFA, 2015) thus making AF related stroke to be one of the biggest contributors to 

the burden from CVDs. AF can cause thrombosis, which is local coagulation or clotting of 

blood in a blood vessel, which when dislodged can travel to the capillaries in the brain and 

restrict or stem the flow of blood causing ischemic stroke.  

1.3.1 Blood clotting and coagulation pathway 

Blood clotting and coagulation is a process carried out in the damaged blood vessels to 

prevent loss of blood and the entire process is called as hemostasis (Silverthorn, 2009, Davie 

et al., 1991). Following the damage to the blood vessel, hemostasis leads to vasoconstriction 

to decrease blood flow and pressure within the vessel (Silverthorn, 2009). In addition to that, 

platelets rapidly create a mechanical block around the damaged and exposed vascular tissue 

through the process of clotting and finally, the exposed collagen and tissue factor of the blood 
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vessel initiates a reaction know as coagulation cascade that leads to the formation of fibrin 

mesh that stabilizes the platelet plug (Silverthorn, 2009).  

1.3.1.1 Clotting through platelet activation 

When a blood vessel is damaged, the exposed collagen and platelet-activating factor 

from endothelial cells activate platelets to adhere to the site of the injury (Camussi et al., 

1983). Aggregated platelets form a clot and adhere to collagen with the help of integrins 

(Silverthorn, 2009, Davie et al., 1991). Binding of platelets leads to the release of signaling 

molecules such as serotonin, ADP and platelet-activating factor which feeds into a positive 

feedback loop to bind more platelets; arachidonic acid is converted to thromboxane A2 by the 

cyclooxygenase-1 enzyme, a target of aspirin, which leads to further vasoconstriction and; 

plasma proteins such as von Willebrand factor help in platelet adhesion with the vascular 

endothelial cells (Silverthorn, 2009, Davie et al., 1991, Ruggeri and Zimmerman, 1987, 

Girma et al., 1987). Platelet aggregation and platelet plug formation sets the stage for the 

coagulation cascade that ends with the formation of insoluble fibrin that creates a mesh 

around the platelet plug to provide strength and stability.  

1.3.1.2 Coagulation cascade 

The last step in hemostasis is coagulation, which ends in the formation of a gelatinous 

clot. Coagulation is divided in two pathways: intrinsic and extrinsic, that are activated by 

exposure to different cells of the blood vessels (Figure 1.3) (Silverthorn, 2009). The intrinsic 

pathway is initiated when a plasma protein called factor XII is activated when it comes in 

contact with the exposed vascular collagen (Silverthorn, 2009, Davie et al., 1991). Following 

that, each plasma protein involved in the intrinsic pathway is activated by minor proteolysis, 

Ca2+ ions or phospholipids (Davie et al., 1991, Macfarlane, 1964, Davie and Ratnoff, 1964). 

In contrast, the extrinsic pathway is initiated when the tissue factor called thromboplastin that 

is located in the tissue adventitia is exposed to the blood after vascular injury and activates 

factor VII (Silverthorn, 2009, Davie et al., 1991, Wilcox et al., 1989). Activated factor VII 

and factor IX in the presence of factor VIII from the extrinsic and intrinsic pathways 

respectively activate factor X in the presence of factor Ca2+ ions and phospholipids 

(Silverthorn, 2009, Davie et al., 1991). Active factor X converts prothrombin to thrombin in 

the presence of factor Va (Davie et al., 1991, Mann et al., 1982). Thrombin, a serine protease, 

converts fibrinogen into fibrin by limited proteolysis and at the same time activates factor 

XIII which helps in cross-linking fibrin to form an insoluble fibrin clot (Silverthorn, 2009, 

Davie et al., 1991). It is suggested that the intrinsic pathway is involved in the growth and 
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maintenance of fibrin formation whereas the extrinsic pathway is involved in the initiation of 

fibrin formation (Davie et al., 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.2 Warfarin- from rat poison to oral anticoagulant 

Whilst hemostasis helps in preventing blood loss, too little hemostasis can lead to 

excessive bleeding called a hemorrhage whereas too much can lead to a blood clot known as 

thrombus that adheres to the undamaged wall of a blood vessel. When the thrombus travels to 

the vessels in the brain, it can stop the blood flow and cause a stroke.  

Two types of agents that affect platelet based clotting and coagulation cascades are 

known as anti-thrombotic and anti-coagulant agents respectively. Aspirin is one of the most 

widely used drugs in the world and is an anti-clotting agent; it affects platelet plug formation 

by inhibiting cyclooxygenase enzymes that activate platelet aggregation through generation of 

thromboxane A2 (Silverthorn, 2009). In contrast, the coumarin based anti-coagulant drug 

warfarin affects the coagulation cascade by inhibiting regeneration of vitamin K, which is a 

Figure 1.3 Intrinsic and extrinsic pathway in the coagulation cascade.  

Green arrow indicates a positive feedback loop. Figure adapted with permission from 

Davie et al., 1991.  
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co-factor in the synthesis of factors II, VII, IX and X (McDonald et al., 2009b). Whilst aspirin 

and warfarin are used as prophylactic drugs for reducing the risk of stroke due to clots, 

warfarin is shown to be superior at reducing the risk of stroke in patients with heart failure in 

sinus rhythm (HR=0.52, 95% CI=0.33-0.82, P=0.005) and in elderly patients (75 years or 

over) with atrial fibrillation (RR=0.48, 95% CI=0.28-0.80, P=0.003) when compared to 

aspirin (Homma et al., 2012, Mant et al., 2007). This suggests that warfarin is superior at 

reducing the risk of stroke compared to aspirin.  

Today, warfarin is commonly used to treat patients with CVDs but it was originally 

discovered when healthy cattle in the prairies of Canada and Northern parts of the USA began 

dying due to internal bleeding in the 1920s (Wardrop and Keeling, 2008, Francis, 2008, 

Pirmohamed, 2006). The substance responsible for bleeding- 3,3’-methylene-bis[4-

hydroxycoumarin] was identified and extracted from mouldy sweet clover by Karl Paul Link 

at the University of Wisconsin (Stahnmann et al., 1941, Campbell and Link, 1941). In 1948, 

this substance was commercialized as a rodenticide under the brand name of Warfarin as the 

funding to extract and develop this substance was provided by the Wisconsin Alumni 

Research Foundation (Wardrop and Keeling, 2008, Francis, 2008). In 1954, it got approved 

for medical use and in 1955 it was given to President Dwight Eisenhower following an 

episode of myocardial infarction (Wardrop and Keeling, 2008, Francis, 2008).  

1.3.3 Prescribing and monitoring warfarin dose 

A substantial increase in the use of warfarin can be attributed to the evidence of its 

effectiveness in preventing strokes in patients with atrial fibrillation (Pirmohamed, 2006, 

Aguilar and Hart, 2005). Warfarin has a narrow therapeutic index and thus it is difficult to 

prescribe a dose and maintain patients within a defined anticoagulation range. In 1983, a 

standardized system of measuring sensitivity to warfarin was devised and was called as the 

International Normalized Ratio (INR) (Kirkwood, 1983). INR is the ratio of the Prothrombin 

time (PT) of the patient against a control sample raised to the power of the International 

Sensitivity Index (ISI), which is the measure of the sensitivity of the test. Baseline INR for an 

individual is given the value of 1.0. For a patient with atrial fibrillation, an ideal INR range is 

between 2.0 and 3.0 (Oden et al., 2006, Hylek et al., 1996). An INR of less than 2 increases 

risk of thrombotic events whereas an INR of more than 3 increases risk of hemorrhage (Jones 

et al., 2005). A meta-analysis of 33 studies calculated that the rate of major and fatal bleeding 

events occur at 7.2 and 1.3 per 100 patient years respectively in warfarin users and thus is 

placed at number 3 on the list of drugs implicated in hospital admission because of adverse 

drug reactions (Pirmohamed et al., 2004, Linkins et al., 2003). Furthermore, dose 

requirements between individuals can vary up to 20 fold, which helped explain results of the 
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analysis of 6545 patients with atrial fibrillation taking warfarin where ~50% of the time was 

spent outside the target INR range of 2.0-3.0 (Pirmohamed, 2006, Boulanger et al., 2006).   

1.3.4 Pharmacogenetics of warfarin 

To improve the time spent within the target INR range, several studies have suggested 

that the combined knowledge of three genetic polymorphisms, along with demographic and 

anthropometric variables such as age, gender and body mass index (BMI), could explain up to 

half of warfarin dose variability (Gage et al., 2008, Yang et al., 2009, Tatarunas et al., 2011). 

Presence of the variant allele of two SNPs in the CYP2C9 gene (*2- rs1799853 and *3- 

rs1057910) have been shown to be associated with a 2-3 fold increased risk of an adverse 

event during treatment initiation (Aithal et al., 1999, Gage et al., 2008, Pavani et al., 2011) 

and -1639G>A SNP in the promoter of the VKORC1 gene has been shown to reduce the 

quantity of active enzyme thus increasing sensitivity to warfarin (Wang et al., 2008, Yuan et 

al., 2005, D’Andrea et al., 2005).  

In 2009, the International Warfarin Pharmacogenetics Consortium (IWPC) created a 

pharmacogenetic algorithm that predicted maintenance dose of warfarin based on the 3 

genetic markers, age, gender, BMI, smoking and amiodarone and enzyme inducer use (Klein 

et al., 2009).  The algorithm accounted for ~60% of the dose variation between individuals. A 

modified version of the algorithm was used in a randomized controlled trial European 

Pharmacogenetics of Anti Coagulant Therapy (EU-PACT) where the clinical utility of the 

pharmacogenetic guided dosing lead to the patients spending higher percentage of mean time 

in the therapeutic INR range (67.4%) compared to patients receiving standard dosing (60.3%) 

during the initiation of warfarin therapy (Adjusted difference, 7.0 percentage points; 95% CI, 

3.3 to 10.6; p<0.001) (Pirmohamed et al., 2013). In contrast, the Clarification of Optimal 

Anticoagulation Through Genetics (COAG) trial that was conducted in the USA reached a 

different conclusion, which is discussed in chapter 5. Thus, the EU-PACT trial showed the 

benefit of applying pharmacogenetics-guided warfarin dosing in routine clinical practice. In 

addition, genotyping the three SNPs has recently been shown to help stratify patients based on 

their sensitivity to warfarin to be initiated on new oral anticoagulants such as Endoxaban, a 

factor Xa inhibitor, thus improving safety (Mega et al., 2015) and will likely reduce the 

burden of cost due to the introduction of new anticoagulants on the healthcare system. 

Therefore, introduction of pharmacogenetics-guided warfarin stratification and dosing is 

likely to improve safety and efficacy of the drug. 
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1.4 Silicon nanowire technology for rapid SNP genotyping 

Pharmacogenetics and pharmacogenomics have become one of the most active areas of 

the personalized medicine paradigm with an increase in implementation of genetic tests 

before prescribing drugs over the past few years (Scott, 2011). Several trials that assessed the 

health resource utilization, potential cost savings for the healthcare system and improvement 

in the quality of life of the patient showed reduction in spending on medication (Chou et al., 

2000), reduction in the length of hospital stay (Ruano et al., 2013), improvement in adherence 

to the prescribed medication (Fagerness et al., 2014) and reduction in overall pharmacy costs 

(Benitez et al., 2015).  In the light of this evidence, several organizations have developed and 

curated pharmacogenetic gene and variant lists based on the relevant literature in an effort to 

summarize data on relevant markers; for example, PharmaADME “Core Gene List” 

(http://www.pharmaadme.org/) and Pharmacogenomics Knowledge Database (PharmGKB; 

http://www.pharmgkb.org/). Furthermore, websites that can predict drug dose based on the 

individual’s genetic and anthropometric factors have also been developed and are now 

available for clinical use; for example, pharmacogenetics-guided warfarin dose can now be 

calculated using the free online tool available at http://www.warfarindosing.org/ which is 

based on the validated algorithm developed by Klein et al., 2009.  

1.4.1 Point of care genotyping device 

Despite the widespread availability of several whole genome SNP genotyping platforms 

that are placed in central laboratories, one of the challenges of implementing pharmacogenetic 

biomarkers in routine clinical practice is the lack of a robust, portable and cheap genotyping 

platform that can carry out SNP genotyping at the point of care within a short turnaround time 

(Ong et al., 2012).  Several pharmacoeconomic studies have shown that the influential factor 

for the cost-effectiveness of using pharmacogenetics in clinical practice is low genotyping 

cost and fast turnaround time (under 24 hours) (You, 2011, You et al., 2009, Eckman et al., 

2009).  

To aid in the implementation of pharmacogenetics in clinical practice, a Newcastle upon 

Tyne, UK based company called QuantuMDx Ltd. is currently developing a handheld, sample 

to result DNA diagnostic device that is designed to genotype SNPs in 20 minutes for as little 

as £20 per test (www.quantumdx.com) (Figure 1.4). The device consists of 4 components: 

Mechanical lysis leads to a DNA extraction cassette, which consists of densely packed 

sorbent filter with a unique property to bind with proteins and lipids and but not charged 

nucleotides including DNA (Figure 1.4 A); Third, a microfluidic based PCR cassette with two 

or three heating zones mimicking denaturation, annealing and amplification steps of PCR 
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(Figure 1.4 B) and; Fourth, a silicon nanowire (SiNW) based field effect transistor (FET) 

nanosensor for electrical detection and genotyping of oligonucleotides (Figure 1.4 C). 

Utilization of microfluidics and SiNW based genotyping platform would reduce the device 

footprint and increase sensitivity and selectivity for detection of label-free DNA in real time 

at the point of care. 
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Figure 1.4 QuantuMDx’s silicon nanowire based DNA genotyping platform.  

(A) Microfluidics based DNA extraction cassette, (B) Microfluidics based thermal 

cycler with 95°C and 50°C heating zones in this early form, (C) Silicon nanowire 

based biosensor chip with microfluidic housing for delivering target DNA and (D) 

Prototype cassette housing DNA extraction, thermal cycler and silicon nanowire 

components. Images provided by QuantuMDx Ltd. 
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1.4.2 Chemistry of Silicon Nanowires 

Silicon nanowires are 3-dimensional nanostructures that transport electrical charge and 

have semi-conducting properties (Cui et al., 2000). Advances in SiNWs have generated great 

interest as they offer high sensitivity due to their extremely large surface area to volume ratio 

and high sensitivity in electron conductance to the variations in the electric field or charge at 

the surface (Gao et al., 2011, Gao et al., 2007, Cui et al., 2000). SiNW devices are preferred 

over other semi conductor devices because they can be prepared using either “bottom up” or 

“top down” methods (Patolsky et al., 2006, Cui and Lieber, 2001). In the “bottom up” 

approach, nanoparticles self assemble into complex structures on an oxidized silicon substrate 

using gold nanoparticles and silane as a catalyst. This is followed by depositions of nanowires 

on a substrate, photolithographic wiring of source and drain electrodes and hydrofluoric acid 

etching of exposed SiNW (Patolsky et al., 2006). The device created using this technique 

suffers from issues such as nanowire uniformity and yield.  

In contrast, in the  “top down” approach, SiNWs are patterned and etched on silicon-on-

insulator wafers using electron beam lithography followed by hydrofluoric acid etching (Gao 

et al., 2007). Whilst this approach is expensive in comparison to the “bottom up” approach, 

SiNWs created using this approach are uniform. However, SiNWs created using the “top 

down” approach could have small variations in the nanowire diameter, which could introduce 

parameter-coupling effects i.e. intra nanowire variation during conductance measurements (Li 

et al., 2011). 

There are two types of SiNWs: p-type and n-type. The type of nanowire created is based 

on which element is used as a dopant during the SiNW fabrication process; diborane (B2H6) 

for p-type and phosphine (PH3) for n-type (Patolsky et al., 2006). Doping provides surface 

charge screening by mobile charge carriers (Li et al., 2011). In 2011, Li et al. showed that 

SiNWs with low doping concentrations (1017 atoms/ cm3) are 3.2x more sensitive to change in 

surface charge along with an improved sensor detection limit when compared with the SiNWs 

having high doping concentration (1019 atoms/ cm3). Additionally, an inverse relationship 

between nanowire diameter and sensitivity to the surface charge was observed which 

suggested that thinner nanowires (20-80 nm) have higher sensitivity than thick nanowires 

(100-200 nm) (Li et al., 2011). Although, with decrease in diameter, there is an increase in 

susceptibility to background noise suggesting a trade-off between sensitivity and noise. 

Taking these parameters into consideration, SiNWs could be used to carry out ultra-rapid, 

label-free DNA detection. 
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1.4.3 DNA detection using silicon nanowires 

Li et al., 2004 showed detection of label-free DNA using both p- and n-type SiNWs (Li 

et al., 2004). Both p- and n-type SiNW surface were functionalized with a methoxy silane 

layer to which single stranded DNA oligonucleotide probes that were complementary to the 

target DNA sequence were covalently attached (Figure 1.5).  Binding of target DNA to a 

complementary oligonucleotide probe produced signal that was >6 higher than the 

background noise. Furthermore, target DNA with a single base mismatch didn’t produce 

signal above the background noise thus demonstrating the potential of the SiNW biosensor for 

detecting SNPs in the DNA. Several other studies have produced similar outcomes and 

showed that the DNA hybridization events can be observed in situ and in real time and can 

reliably detect target DNA at concentrations of 1fM with high specificity to detect SNPs (Gao 

et al., 2011, Gao et al., 2007). In addition to detecting label-free DNA, SiNWs have been 

shown to carry out multiplex detection of protein markers of cancer such as prostate specific 

antigen, carcinoembryonic antigen and mucin-1 from serum samples at femtomolar 

concentrations with high sensitivity (Zheng et al., 2005). This suggests that a SiNW based 

platform could be used for both SNP genotyping and disease specific protein marker 

detection.  
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Figure 1.5 Schematic representation of target DNA sensing with 

complementary peptide nucleic acid (PNA) probe on silicon nanowire (SiNW). 

(A) Silicon nanowire surface functionalized with aldehyde moieties for covalently 

attaching complementary oligonucleotide probes, (B) monolayer of oligonucleotide 

probes assembled through silane chemistry, (C) hybridization of target DNA analyte 

with the probe and (D) measuring change in conductance through source and drain 

electrodes that are attached to silicon nanowires. Figure taken with permission from 

Gao et al., 2007. 
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1.5 Project aims and outline of results chapters 

The results on the pharmacogenetics of aspirin and warfarin point to the potential 

clinical utility of genetic variants in improving efficacy and reduce the risk of adverse drug 

reactions. Moreover, development of the silicon nanowire platform based SNP genotyping 

platform could aid in the dissemination of clinically useful genetic markers into routine 

clinical practice.  Therefore, the primary aim of this project was to develop a panel of SNPs 

that would have clinical utility in improving risk-benefit ratio of aspirin in relation to 

colorectal cancer prevention and warfarin in relation to cardiovascular diseases prophylaxis. 

Furthermore, the project aimed at developing DNA based oligonucleotide probes and 

optimizing hybridization conditions to genotype warfarin dose associated SNPs on custom 

designed microarray platform, which could subsequently be used to carry out ultra-rapid, 

label free SNP genotyping on the silicon nanowire platform.  

In the first chapter (Chapter 3), I will use epidemiological and genome wide SNP data 

from two large population based case-control datasets to outline association between the 

known epidemiological risk factors such as BMI, smoking and alcohol consumption etc. with 

colorectal cancer risk and identify SNPs in aspirin’s pharmacokinetic and pharmacodynamic 

pathways that are either associated with or modify the protective effect of aspirin use on 

colorectal cancer risk in individual datasets. I will also describe sample size estimates to 

identify significant associations by carrying out meta-analysis of the two datasets.  

In the second chapter (Chapter 4), I will detail the results of association and interaction 

between the SNP variant allele & colorectal cancer risk and SNP variant allele, aspirin use & 

colorectal cancer risk respectively from the meta-analysis of the two large population based 

case-control datasets. I will also discuss drawbacks of current meta-analyses, infer biological 

implications and causality of the association and interaction results and provide an overview 

of the clinical utility of potential significant findings.  

In the third chapter (Chapter 5), I will test for the clinical utility of published genotype- 

guided dosing algorithms by measuring their dose prediction accuracy in the Gujarati Indian 

population that lives on the western coast of India and compare them with the prediction 

accuracy observed in white European and South Indian populations. I will provide sample 

size estimate to identify a novel SNP that is specific to the Gujarati Indian population and can 

explain >5% of dose variability using genome wide association study. 

  In the last chapter (Chapter 6), I list a panel of custom designed probes which are 

designed to genotype 3 warfarin dose associated SNPs (rs1799853, rs1057910 and 

rs9923231), discern the interplay between hybridization conditions and target DNA 

specificity, delineate dynamics of 2-dimensional environments on hybridization kinetics and 
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based on the derived optimal experiment conditions, perform genotyping of anonymised DNA 

samples on a custom designed microarray platform. I will also discuss experiments that would 

be required to test sensitivity and specificity of the custom designed probe panel on the 

microfluidics based silicon nanowire genotyping platform. 
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Chapter 2: Materials and Methods 

2.  

2.1 Aspirin Pharmacogenetics 

2.1.1 Literature review and SNP selection 

A comprehensive review of the literature was carried out using PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar (http://scholar.google.co.uk) as 

search engines. A combination of keywords such as ‘aspirin’, ‘NSAID’, ‘pharmacogenetics’, 

‘polymorphisms’, ‘SNPs’, ‘gene variant’ and ‘colorectal cancer’ was used to search for 

relevant literature in the databases. All studies presenting original data on SNP and colorectal 

adenoma or carcinoma risk association, or interaction between SNP and aspirin (or NSAID) 

use in relation to colorectal adenoma or carcinoma were retrieved and reviewed. The UK-

CCSG study collaborators crosschecked candidate SNP selection from the literature. Results 

from ongoing studies and unpublished data were obtained from UK-CCSG and NIH-CCFR 

study collaborators and were also included in the analysis. Types of studies reviewed included 

case-control studies, cohort studies, prospective studies, meta-analysis and randomized 

controlled trials. Careful consideration during the review was given to the study design, study 

size, inclusion and exclusion criteria of the study subjects such as type of controls (matched, 

un-matched or sibling) and case ascertainment (population or family based), regular aspirin 

and NSAID use definition and type of statistical analysis employed. This helped in comparing 

results from the current study with published results. Throughout the duration of the study 

between March 2012 and May 2014, new SNPs were included in the current study based on 

the latest literature evidence.  

2.1.1.1 Study population 

2.1.1.2 UK-Colorectal Cancer Study Group 

Study design, subject enrolment and data collection was carried out previously by the 

UK-CCSG study group (Turner et al., 2004, Barrett et al., 2003). Briefly, cases between the 

age of 45 and 80 years with histologically confirmed incident colorectal cancer and diagnosed 

in the period of 1997-2013, were identified at each of the three recruitment centers: Leeds 

(Leeds General Infirmary, St. James’s Hospital), Dundee (Ninewells Hospital, Perth Royal 

Infirmary) and York (York District Hospital). In Dundee and York, where recruitment was 

carried out between 1997 and 2000, eligible patients were identified via ward diaries and 

patient notes, whereas, the pathology department in hospitals based in Leeds provided a 
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monthly update on patients diagnosed with colorectal cancer in previous 4 weeks between 

1997 and 2013. Patients who had a primary cancer previously, history of coeliac disease, 

familial adenomatous polyposis, diverticular disease 2 years before current cancer diagnosis, 

non-adenocarcinoma colorectal cancer or ulcerative colitis diagnosed in previous 3 years were 

not recruited in the study. Cases were interviewed by a research nurse to collect 

epidemiological data and a blood sample. Informed written consent was obtained from cases 

prior to the interview. 

Healthy population-based controls were identified through patient’s GP practice list. An 

age and sex matched control with no history of previous cancer at the time of recruitment was 

identified for each case between 1997 and 2000 at all 3 study sites. Following 2000, friends or 

spouse of cases from Leeds with no history of cancer at the time of recruitment were collected 

for the study. Controls were contacted initially by post along with a standard letter from their 

GP, an information sheet and an addressed and stamped return envelope. Eligible controls 

were contacted by phone to arrange a time for an interview with a research nurse at home. 

Informed written consent, epidemiological data and blood sample was obtained during the 

interview. The research ethics committee at each participating center approved the study 

design and protocol (Supplementary Figure 1). 

2.1.1.3 NIH-Colon Cancer Family Registry 

Study design, subject enrolment and data collection was carried out previously by the 

NIH-CCFR study group (Newcomb et al., 2007). Briefly, NIH-CCFR employed two types of 

case ascertainment strategies: population based families from cancer registries and clinic 

based families from cancer family clinics. Population based cases and controls were enrolled 

at 6 study centers: Fred Hutchinson Cancer Research Centre (FHCRC), University of Hawaii 

(UHI), Cancer Care Ontario (CCO), Mayo Clinic (MC), University of Southern California 

Consortium (USC) and Universities of Queensland and Melbourne (UQM).  All study centers 

used different recruitment strategies and sampling schemes (Table 2.1). For the current study, 

incident case probands identified through population based cancer registries recruited between 

1997 and 2002 were included in the analysis. Depending on the study center, recruitment 

strategy differed based on age at diagnosis, race and family history of colorectal cancer, for 

example, only FHCRC invited all eligible cases on the study whereas in UQM, age limit of 18 

to 59 years for age at diagnosis was applied in selecting case probands (Table 2.1).   

Healthy population based and spouse controls were identified through medicare and 

driver’s license files, telephone subscriber lists and electoral rolls and were randomly selected 

between 1997 and 2002. Only cases and controls of self reported non-Hispanic white ethnicity 

were included in the analysis. Informed consent was provided by all study participants and the 
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study design was approved by the Institutional Review Boards at each NIH-CCFR site. St. 

James’s Hospital in Leeds approved the study design and joint analysis of UK-CCSG and 

NIH-CCFR data (Supplementary Figure 1).  

 

NIH-CCFR 

Study Site 
Population-based recruitment criteria of cases 

Fred 

Hutchinson 

Cancer 

Research Center 

• Incident colorectal cancer diagnosed between January 

1998 and June 2002. Age at diagnosis between 20 and 74 

years. 

• No family history eligibility criteria. 

• All colorectal cancer affected first degree relatives were 

recruited. 

University of 

Hawaii 

• Cases diagnosed between 1997 and 2001 with 

adenocarcinoma of colon or rectum. 

• Only cases with more than 1 first degree relative with 

colorectal cancer were recruited. 

• No single case families were recruited. 

Cancer Care 

Ontario 

• Incident colorectal cancer cases diagnosed between July 

1997 and June 2000 with age at diagnosis between 20 and 

74 years. 

• All cases met Amsterdam-I criteria and were part of 

multiple case families. 

• All cases with FAP were excluded. 

Mayo Clinic 

• Cases diagnosed between 1997 and 2000. 

• Cases were either from multiple living-case families and 

were between the age of 18 and 74 years or were 

diagnosed under the age of 50 years with no family 

history criteria. 

University of 

Southern 

California 

Consortium 

• Cases diagnosed between 1997 and 1999 with the age 

range of 21 and 75 years. 

• Screened for 33% of whites >50 years, 66% of whites <50 

years and 66% of all minorities between 21-75 years. 

University of 

Queensland and 

• Cases diagnosed between 1997 and 2001 with primary 

adenocarcinoma of colon or rectum. 
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Melbourne • Cases diagnosed between the age of 18 and 59 years. 

Table 2.1 Population-based case recruitment strategies employed by the NIH-CCFR 

study sites.  

Table adopted from Newcomb et al. 2009. 

2.1.2 Epidemiological questionnaire 

2.1.2.1 UK-Colorectal Cancer Study Group 

A research nurse carried out interviews of the study participants either in hospital or at 

home.  Interviewees completed detailed diet and lifestyle questionnaire called the Food 

Frequency and Epidemiology Questionnaire (FFEQ) (Barrett et al., 2003), which was 

modeled on the questionnaire developed and validated by the European Prospective 

Investigation into Cancer and Nutrition (Kaaks et al., 1997). The questionnaire included 

information on suspected and established risk factors of colorectal cancer such as: medical 

history, medication use (including aspirin and NSAID use), reproductive history of female 

participants, physical activity, demographics, alcohol and tobacco use, race and ethnicity and 

detailed dietary data. Completed questionnaires were sent to University of Leeds for manual 

entry into a customized electronic database. Some of the questionnaires were checked for data 

entry accuracy in the database (Barrett et al., 2003). Regular use of aspirin or NSAIDs (such 

as ibuprofen, naproxen, diclofenac, indomethacin and pyroxicam) was defined as taking pain 

killer medication for 3 months or longer before the interview for controls and cancer 

diagnosis in cases. Other information such as number of pills per day, dose strength (mg) and 

duration of intake was also collected. All epidemiological data was collected previously by 

the UK-CCSG study group and was provided for the current study. 

2.1.2.2 NIH-Colon Cancer Family Registry 

Each study participant completed a standardized family history, personal exposure and 

baseline epidemiologic questionnaire either in person (USC), by telephone (FHCRC, USC, 

UQM) or by mail (UHI, CCO, MC) (Newcomb et al., 2007). The questionnaire included 

medical history and medication use, reproductive history of female participants, physical 

activity, demographics, alcohol and tobacco use, race and ethnicity and limited dietary data. 

Questionnaires were customized by the participating centers for local usage, in particular for 

different language conventions and brand names, and added some questions of local interests. 

Copy of the questionnaires from all centers can be downloaded from 

http://www.coloncfr.org/questionnaires. Regular use of aspirin or NSAIDs (such as naproxen, 

ketoprofen, diclofenac, ibuprofen, sulindac, pyroxicam and indomethacin) was defined as 
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regular use for at least twice per week for 1 month or more. Additionally, information on 

number of pills per day and duration of intake was also collected but dosing strength 

information was not collected. All epidemiological data was collected by the NIH-CCFR 

group previously and was made available for the current study.  

2.1.3 SNP genotyping 

2.1.3.1 UK-Colorectal Cancer Study Group 

Venous blood sample from cases and controls was collected by the research nurse at the 

time of the interview, or shortly after, which was stored in an EDTA vacutainer tube at -20°C. 

Genomic DNA was extracted from leukocytes using Nucleon BACC2 Genomic DNA 

extraction kit at the study sites (Gen-Probe Life Sciences, Manchester, UK). An aliquot of 

genomic DNA sample was sent to either Tepnel Pharma Services Ltd. (Manchester, UK) or 

Wellcome Trust Clinical Research Facility (Edinburgh, UK) for genotyping >240,000 SNPs 

using the Illumina HumanExome BeadChip array V1.1 (Illumina, San Diego, USA). SNPs 

were automatically called using the Illumina GenomeStudio data analysis software (Illumina, 

San Diego, USA). Overall, genotyping call rate for the samples was 97.21%. A 100% match 

for the genotype call was observed for 64 sample replicates that were genotyped at both 

facilities. All the genotyping work was carried out by the UK-CCSG study group previously 

and the genotype data was made available for analysis. 

SNPs with a minor allele frequency (MAF) of >3% that were absent on the Illumina 

HumanExome BeadChip array v1.1 were genotyped using TaqMan drug metabolizing 

genotyping assay for allelic discrimination (Applied Biosystems, Paisley, UK) at St. James’s 

Hospital, Leeds (Table 2.2). To carry out the assay, genomic DNA samples were robotically 

replica-plated in a series of 96-well daughter plates. The end-point fluorescence was read 

using an ABI PRISM 7700 sequence detection system (Applied Biosystems, Paisley, UK) and 

analyzed using Sequence Detector Software v1.7a. For quality control, each 96 well plate 

included previously analyzed samples representative of each genotype where the genotype 

had been verified by sequencing along with multiple no-template control samples. In addition, 

1% of the samples were selected at random for repeat analysis. Overall, the failure rate was 

<2%. Primer design, optimization and genotyping assay was carried out by the UK-CCSG 

study group and the genotype data was made available for analysis. 

2.1.3.2 NIH-Colon Cancer Family Registry 

Peripheral blood was collected using standardized procedures from cases and controls 

(Newcomb et al., 2007). Genomic DNA was extracted from leukocytes using the protocol of 

Lum and LeMarchand (Lum and Le Marchand, 1998) and quantified using the dsDNA 
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PicoGreen kit (Invitrogen, Paisley, UK). DNA samples were genotyped at USC on 3 separate 

platforms: Illumina 1M, Illumina 1M-Duo and Illumina HumanOmni1 arrays (Illumina, San 

Diego, USA) by the NIH-CCFR study group previously (Table 2.2). SNPs were automatically 

called using the Illumina GenomeStudio data analysis software (Illumina, San Diego, USA). 

Genome wide SNP data was provided by Prof. Graham Casey and was stored on a server at 

St. James’s Hospital, Leeds. SNP rs20417 was previously imputed at USC and thus the 

imputed genotype data was provided by them for analysis. Before the analysis, SNPs that 

were absent on the arrays were manually imputed by using proxy SNPs (linkage 

disequilibrium R2=1.0) from HapMap II CEU population (Table 2.2).  

 

SNP ID 

Genotyping platforms for UK-

CCSG dataset 
Genotyping platforms for NIH-CCFR dataset 

Illumina 

Human 

Exome Array 

BeadChip 

v1.1 

Taqman Allelic 

Discrimination 

Assay 

Illumina 

Human 1M 

Array 

Illumina 

Human 1M-

Duo Array 

Illumina 

Human 

Omni1 Array 

rs1045642  P  P  P  P  

rs1321311 P   P  P  P  

rs1057910 P   P  P   

rs1799853 P    P  P  

rs6983267 P   P  P  P  

rs961253 P   P    

rs11694911  P  P  P  P  

rs28362380  P  P  P  
Proxy SNP 

rs1405948 

rs4936367 P   P  P  
Proxy SNP 

rs1351452 

rs7112513 P   P  P  
Proxy SNP 

rs1351452 

rs3842787 P   P  P  P  

rs20417  P   P  P  

rs2070959 P   P  P  P  

rs1105879 P   P  P  P  

rs2619112  P  P  P  P  

rs10958713  P  P  P  P  

rs11986055  P  P  P  P  

rs12910333  P  P  P  P  
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rs5995355  P  
Proxy SNP 

rs6000449 

Proxy SNP 

rs6000449 

Proxy SNP 

rs6000449 

rs230490  P  
Proxy SNP 

rs1313925 

Proxy SNP 

rs1313925 
P  

rs5275   P  P  P  

rs4648310  P  P  P   

rs5029748   P  P   

rs2745557  P  P   P  

rs6474387    P   

rs16973225  P    P  

rs2302615  P     

rs2430420  P     

rs5277  P    P  

rs2965667  P     

rs140461033 P      

rs144410046 P      

rs201103548 P      

rs28382815 P      

rs148026549 P      

rs145407778 P      

rs10852434 P      

rs147942040 P      

rs141625476 P      

rs147070911 P      

rs150408050 P      

rs147694237 P      

rs142710583 P      

rs185651296 P      

rs186808413 P      

rs78428934 P      

Table 2.2 List of SNPs genotyped across different platforms in UK-CCSG and NIH-

CCFR datasets. 

 

2.1.4 Statistical Analysis 

Before analyzing UK-CCSG and NIH-CCFR datasets, common data elements (CDEs) 

were defined since each study employed unique recruitment and data collection protocols. 

Questionnaires and data dictionaries were examined to identify CDEs (eg. Age, height, 

weight, BMI, smoking, alcohol intake, exercise, aspirin/NSAID use) to produce common 
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definitions, standardized values and coding terms (Table 2.3).  Resulting dataset was 

reviewed using logic checks to test for data distribution between and within two studies. 

Outlying sample data were removed from all downstream analyses or that variable was 

normalized.  Data on individuals of non-Hispanic white ethnicity only was tested in all 

subsequent downstream analyses. Variables such as age and BMI etc. were coded as 

continuous variables whereas variable on aspirin/ NSAID or aspirin-only regular use were 

coded as dichotomous (0 and 1) variables. Non- regular users were used as the reference. The 

associations between known epidemiological risk factors (such as BMI, smoking, family 

history etc.), aspirin or NSAID use and colorectal cancer risk were assessed using conditional 

logistic regression models estimating odds ratios (OR) and 95% CI with two sided P-value 

adjusted for age, sex and study site.   

Genotyped SNP data from UK-CCSG and NIH-CCFR were compared for the SNPs that 

were common between platforms in both studies (Table 2.2). Each genotyped SNP was coded 

as 0, 1 or 2 for the number of copies of variant allele and the imputed SNPs were coded based 

on the “expected” number of copies of variant allele. SNPs were excluded if they were tri-

allelic, call rate (<98%), minor allele frequency (MAF) of <4% and inconsistency with Hardy 

Weinberg equilibrium (HWE) in controls (p<0.001, corrected for multiple testing). 

Comparison of SNP MAF between controls in two datasets was carried out using Fisher’s 

exact test to check for genotyping consistency and population substructure. SNPs on the same 

chromosome were tested for linkage disequilibrium (R2) in controls in both datasets. The 

associations between SNP genotype and colorectal cancer risk were tested using conditional 

logistic regression models estimating ORs and 95% CI with two sided P-value adjusted for 

age, sex and study site. Interaction of SNP genotype with only aspirin or NSAID use between 

regular users and non-users in relation to colorectal cancer risk was investigated. The two 

reference groups comprised of individuals who had homozygous wild type genotype and were 

either non-users or only aspirin (and/or NSAID) users. Gene-environment (G x E) interaction 

was tested using case- control logistic regression and cross product of the presence of variant 

allele and dichotomous regular use of NSAID or aspirin-only. The likelihood ratio test was 

used to determine the statistical significance of the interaction. Interaction P-values were 

adjusted for age, sex and study site. The significance threshold for type 1 error (P-value) in all 

tests was set at 0.05. For each SNP, the risk of colorectal cancer, colon cancer (combining 

proximal and distal colon) and rectal cancer was estimated using a dominant inheritance 

model. A co-dominant or recessive inheritance model was not used, as the sample size was 

relatively small in both datasets.  All analyses were conducted in Stata v12 for Macintosh OS 

(Stata Corp., College Station, USA). 
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Common 
Data 

Element 

UK-CCSG 
definition 

NIH-CCFR 
definition 

Standardized 
definition 

Coding terms 

Age 

Cases: age at 
cancer diagnosis, 
Controls: age at 

interview 

Cases: age at 
cancer diagnosis, 
Controls: age at 

interview 

Cases: age at 
cancer diagnosis, 
Controls: age at 

interview 

Continuous 
variable 

Sex 
Male coded as 0, 
female coded as 1 

Male coded as 1, 
female coded as 2 

Male coded as 0, 
female coded as 1 

0 for male, 1 for 
female 

BMI 
BMI at 1 year 

before interview 

BMI at 2 years 
before the 
interview 

Keep respective 
study definitions 

Continuous 
variable 

BMI at 20 
years of 

age 
BMI at 20 years BMI at 20 years BMI at 20 years 

Continuous 
variable 

Regular 
Smoking+ 

Smoked 1 cigarette 
a day for 1 year 

Smoked 1 
cigarette a day for 

3 months 

Smoked 1 
cigarette a day for 

3 months 

0 for non-
smoker, 1 for 

smoker 
Smoking 

before 
diagnosis+ 

Regular smoking 1 
year before 
diagnosis 

Regular smoking 
1 year before 

diagnosis 

Regular smoking 
1 year before 

diagnosis 

0 for non-
smoker, 1 for 

smoker 

Alcohol 
intake^ 

Alcohol intake of 
≥1 drink a week at 
the age 40 years 

Alcohol intake of 
≥1 drink a week 

for at least 6 
months at the age 

30-40years 

Alcohol intake of 
≥1 drink a week 
at the age 30-40 

years 

0 for non-
drinker, 1 for 

drinker 

Alcohol 
intake 
unit^ 

Alcohol units based 
on intake quantity 

Alcohol units 
based on intake 

quantity 

Alcohol units 
based on intake 

quantity 

Continuous 
variable 

Exercise 

Hours spent on 
activities in a week 

a year ago from 
interview 

Hours spent on 
activities in a 

week in 30s and 
40s 

Keep respective 
study definitions 

Continuous 
variable 

Aspirin/ 
NSAIDs 

use 

Regular aspirin/ 
NSAIDs use for 3 
months or longer 

At least twice a 
week for more 
than a month 

Keep respective 
study definitions 

0 for non user, 1 
for user 

Calorie 
intake 

Based on average 
diet 1 year before 

the interview 

Based on average 
diet 2 years 
before the 
interview 

Keep respective 
study definitions 

Continuous 
variable 

Family 
risk 

First degree and/or 
second degree 

relative with CRC 

First degree 
and/or second 
degree relative 

with CRC 

First degree 
and/or second 
degree relative 

with CRC 

0 for no, 1 for 
yes 

Table 2.3 Standardized definitions of common data elements between the UK-CCSG 

and NIH-CCFR datasets. 

+ Smoking includes cigarettes, cigar and pipes 
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^Alcohol includes beer, cider, wine, sherry, other fortified wine, sake, champagne and spirits 

 

2.1.5 Random effects meta-analysis 

Log odds and standard error were estimated using unconditional logistic regression and 

a dominant inheritance model for the SNPs having significant threshold (P<0.08) for 

association with CRC (Table 3.4) or interaction with aspirin only use and CRC (Table 3.6) in 

either the UK-CCSG or NIH-CCFR datasets. Dominant inheritance model was used to 

increase the power of observing significant association. The associations were further tested 

using the co-dominant inheritance model to test for the robustness of associations observed 

using the dominant model. Estimates of log odds and standard error from both datasets, which 

were adjusted for age, sex and study site, were manually entered in a Microsoft Excel file 

which was used as the dataset to carry out random effects meta-analysis in Stata v12 for 

Macintosh OS (Stata Corp., College Station, USA). –metan- command was used to calculate 

the meta-analysis odds ratio, 95% confidence interval and two sided p-value. The –metan- 

command conducts meta-analysis of the data from more than one study by assessing the effect 

estimates (log odds) with corresponding standard errors and display the results graphically in 

a forest plot. To test for heterogeneity between the estimates from the two datasets, Cochran’s 

Q-test was calculated. However, since Cochran’s Q-test is not accurate for testing 

heterogeneity in meta-analysis studies with few datasets, Higgin’s I-squared statistic (Higgins 

et al., 2003), which represents the percentage of variation between the estimates as a result of 

heterogeneity, was also calculated. The significance threshold for type 1 error (P-value) in all 

tests was set at 0.05. 

2.1.6 Power calculation 

To estimate the number of cases and controls that are required for an association test 

between SNP genotype and colorectal cancer risk and interaction test between SNP genotype, 

aspirin (and NSAID) use and colorectal cancer risk, power calculation was carried out using 

Quanto v1.2.4 (Quanto; hydra.usc.edu/gxe/). For association test, the design was set as “un-

matched case-control” with 1 control per case ratio and the hypothesis as “Gene only”. MAF 

was set as 0.10 and the inheritance pattern was assumed to be dominant. Baseline disease risk 

(P0) was set at 0.05 and the RG, which is the expected OR, was set between 1.20 and 2.0. The 

power to detect a SNP associated with colorectal cancer risk was set at 80% with the type 1 

error rate set at 0.05. However, for the interaction test, the design was set as “un-matched 

case-control” with 1 control per case ratio and the hypothesis as “Gene-environment 

interaction”. MAF was set as 0.10 and the inheritance pattern was assumed to be dominant. 
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Based on the number of aspirin users in the UK-CCSG and NIH-CCFR datasets, the binary 

environmental factor prevalence (PE) was set at 0.25 with baseline disease risk (P0) set at 

0.05. RG, RE and RGE which are the expected OR value for gene, environment and gene-

environment interaction respectively was set at 1.20, 0.75 and 1.50. The power to detect an 

interaction between SNP and only-aspirin (or NSAID) use in relation to colorectal cancer risk 

was set at 80% with the type 1 error rate set at 0.05. 
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2.2 Warfarin Pharmacogenetics 

2.2.1 Data collection and study population 

SNP frequencies were analyzed from 501 individuals obtained from 2 sources. The first 

source consisted of genomic DNA samples from a cohort of 399 unrelated healthy individuals 

of self-reported Gujarati ethnicity, contributed by the Institute of Human Genetics (IHG), 

Ahmedabad, India.  No clinical information was available for these samples and they were 

therefore only included in the investigation of SNP frequency distribution. The requirement 

for an informed consent was waived for them because the consent had been obtained 

previously by the IHG from the individuals for carrying out genetic studies.  

The second source consisted of 102 patients of self-reported Gujarati ethnicity who 

were treated with warfarin. They were recruited between 1st November 2012 and 1st May 

2013 at the Care Institute of Medical Sciences (CIMS) hospital, Ahmedabad, India. Clinical 

information including age, gender, height (in cm), weight (in kg), current smoking status, 

clinical indication for warfarin treatment, current warfarin dose (mg/day), initiation dose 

(mg/day), latest INR, concomitant medications (including any herbal medication) and adverse 

drug reactions were recorded by a research nurse at CIMS hospital. Records of routine INR 

values were also obtained for 88 patients. Therapeutic INR range was defined as being 

between 2 and 3 for patients with atrial fibrillation (AF), deep vein thrombosis (DVT), 

pulmonary embolism (PE) and left ventricular ejection fraction (LVEF); and 2.5 to 3.5 for 

patients with mechanical heart valves.  

Stable or therapeutic warfarin dose was defined as the dose at which the 2 consecutive 

INR measurements, each being 1 week apart, were within the therapeutic range (Definition 

based on Klein et al. 2009). All 102 patients provided informed consent prior to enrolment in 

the study. During the interview, research nurse collected finger prick blood sample from 102 

unrelated patients on Whatman FTA cards (Whatman plc, Kent, UK). The Institutional Ethics 

Committee at CIMS and IHG approved the study (Supplementary Figure 4 and 

Supplementary Figure 5).  

2.2.2 Genotype analysis and quality control 

Genomic DNA was isolated from Whatman FTA cards using ZyGEM prepGEM 

storage card blood kit (ZyGEM Corporation Ltd, Hamilton, New Zealand). Briefly, two 

1.2mm2 punches were made using a Harris micro punch. These were transferred to a 0.5ml 

safe-lock microfuge tube (Eppendorf, Hamburg, Germany) containing 100µl of MilliQ water 

and stored at room temperature for 15 minutes. Water was aspirated and the punches were re-

suspended in 44µl of MilliQ water, 5µl of ZyGEM MAGENTA buffer and 1µl of prepGEM 
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enzyme. This solution was placed in a thermal cycler at 75°C for 15 minutes followed 95°C 

for 5 minutes. Tubes were centrifuged at 16,000g for 5 minutes and the supernatant 

containing genomic DNA was transferred to a labeled 1.5ml safe-lock tube (Eppendorf, 

Hamburg, Germany). Assessment of the quantity and quality the DNA extracted using 

ZyGEM prepGEM kit was not carried out since the extraction process didn’t involve a 

cleanup step to remove cell debris and proteins. Since only spectrophotometric techniques 

were available to quantify DNA, which are prone to providing inaccurate results in the 

presence of protein contamination, DNA quantification was not carried out.   

DNA samples were genotyped for the 4 SNPs in CYP2C9 (8633C>T= rs1799853; 

47639A>C= rs1057910; 47644C>G= rs28371686; 15625delA= rs9332131), 4 SNPs in 

VKORC1 (3588G>A= rs9923231; 5332G>T= rs61742245; 8956G>A= rs7294; 5924C>T= 

rs17708472), 1 SNP in CYP4F2 (23454G>A= rs2108622), 1 SNP in GGCX (16025G>C= 

rs11676382), 1 SNP in CALU (24879A>G= rs339097), 1 SNP in CYP3A4 (25343G>A= 

rs2242480) and 1 SNP in CYP2C19 (3583C>T= rs3814637). PCR and Sequenom iPLEX 

primers were designed for a multiplex reaction of 10 and 3 SNPs using Sequenom’s Assay 

Designer 4.0 software (Sequenom, Hamburg, Germany) (Supplementary Table 5). Samples 

were amplified using Qiagen HotStar Plus DNA polymerase kit (Qiagen, Hilden, Germany) 

in 50ul reactions and the PCR reaction mixture was prepared according to Sequenom’s 

recommendation (Sequenom, 2004). PCR amplicons generated from the DNA of 101 

warfarin treated patients were purified using QIAquick PCR Purification kit (Qiagen, Hilden, 

Germany) to remove cell debris generated during the DNA isolation step, which may inhibit 

accurate genotype call to be made by Sequenom MassARRAY platform. DNA extraction and 

PCR amplification steps were carried out by the PhD candidate whereas genotyping by mass 

spectrometry with the use of Sequenom MassARRAY (Sequenom, Hamburg, Germany) was 

carried out at the High Throughput Genomics Group, Wellcome Trust Centre for Human 

Genetics, Oxford University.   

Genotype calls from Sequenom MassARRAY were validated using restricted fragment 

length polymorphism (RFLP) PCR in a randomly selected 10% of the total number of 

samples for 5 SNPs (rs1799853, rs1057910, rs9923231, rs7294 and rs2108622). Missing 

genotype calls by Sequenom for the 3 SNPs (rs1799853, rs1057910 and rs9923231) in 53 of 

102 patients treated with warfarin that reached therapeutic dose were re-genotyped using 

RFLP PCR for downstream analyses. Each SNP was genotyped with a specific PCR protocol 

and site-specific restriction enzyme (New England BioLabs, MA, USA) (Supplementary 

Table 6). Electrophoresis of 20µl of the digested PCR products was carried out according to 

the manufacturers’ protocol on 2% E-gel pre-stained with SYBR Safe DNA Gel stain 
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(Invitrogen, New York, USA) and visualized with ultra violet light using i-Base (Invitrogen, 

New York, USA). All RFLP PCR based genotyping was carried out by the PhD candidate.  

2.2.3 Statistical Analysis 

Accordance with the Hardy-Weinberg equilibrium for polymorphisms was analyzed 

using the χ2- test. Population allele frequencies between the 101 patients and 399 healthy 

individuals were compared using Fisher’s exact test for concordance before merging the two 

datasets for further analyses. Linkage disequilibrium (LD) score between SNP pairs was 

carried out using PLINK v1.07 software (www.pngu.mgh.harvard.edu/~purcell/plink). 

Genotype frequency data for the European (EUR), Gujarati Indian from Houston (GIH), 

African (AFR) and Han Chinese (CHB) population was obtained from the 1000 Genomes 

database [Genome assembly: GRCh37] (browser.1000genomes.org/index.html). Genotype 

frequencies of the four populations were compared with the Gujarati population using 

Fisher’s exact test. Fifty-three patients who had reached stable therapeutic warfarin dose were 

used to test the clinical utility of the published clinical and pharmacogenetic algorithms by 

Klein et al. 2009, Gage et al. 2008 and Pavani et al. 2012 (Pavani et al., 2012, 2009, Gage et 

al., 2008). Clinical and genotype data from the patients were used to predict therapeutic dose 

using these algorithms (Supplementary Information 1 (Klein et al., 2009 algorithm), 

Supplementary Information 2 (Gage et al., 2008 algorithm), Supplementary Information 3 

(Pavani et al., 2012 algorithm)). Data was organized as per the requirements of the algorithm 

before carrying out the analysis. However, for the Pavani et al. 2012 algorithm, rs11676382 

and rs7900194 SNPs in the GGCX and CYP2C9 gene respectively were not included in the 

analysis as rs11676382 had <1% minor allele frequency (MAF) and rs7900194 had not been 

genotyped in this study. Missing genotype calls for rs7294 and rs17708472 SNPs were 

inputted as “0” in the algorithm. Predicted dose was compared with empirical therapeutic 

dose using ordinary linear regression to calculate coefficient of determination (R2).  R2 value 

was used to compare the explained variance of warfarin dose by clinical and pharmacogenetic 

algorithms within a population.  

Anonymised clinical and genetic data of European patients (part of the International 

Warfarin Pharmacogenetics Consortium (IWPC)) from which Klein et al. 2009 and Gage et 

al. 2008 pharmacogenetic algorithms were developed, was obtained from PharmGKB website 

(www.pharmgkb.org) whereas, South Indian patient data for the Pavani et al. 2012 algorithm 

was provided by the corresponding author. To compare the dose prediction accuracy of 

algorithms in the Gujarati Indian with European and South Indian population, mean squared 

difference (MSD) between the predicted and therapeutic dose was compared using Mann-
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Whitney test. A P- value of ≤0.05 was considered statistically significant. All statistical 

analysis apart from LD score was carried out in Stata v12.0 (Stata Corp., Texas, USA).  

2.2.4 Power calculation 

To estimate the number of patients being treated with stable warfarin dose that are 

required for a genome wide association study (GWAS) analysis for future study, power 

calculation was carried out using Quanto v1.2.4 (Quanto; hydra.usc.edu/gxe/). The design was 

set as “Independent individuals” and the hypothesis as “Gene only”. MAF was set as 0.05 and 

the inheritance pattern was assumed to be log additive. The R2
G, which is the measure of 

coefficient of determination, was set between 0.05 and 0.30. The power to detect a SNP that 

explained a minimum of 5% variance of warfarin dose was set at 80% with the genome wide 

two-sided significance level of 5x10-8 (significance level based on Perera et al. 2013). 
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2.3 QuantuMDx Silicon Nanowire Technology 

2.3.1 Probe design 

Wild-type target sequences for probe design were obtained from the UCSC genome 

browser (GRCh37/ hg19; http://genome.ucsc.edu/) in FASTA format. Target sequence length 

was set between 30-40bp with the resulting sequence flanking either side of the SNP 15-20bp 

long. This would allow for designing probes with the SNP positioned at various locations 

within the probe. Isothermal melting probes were generated using OligoWiz2.2 online 

software (http://www.cbs.dtu.dk/services/OligoWiz2/) that was last visited in September 

2011. After uploading the FATSA file, a series of parameters were set to calculate the scores 

of the probes (Wernersson et al., 2007). To calculate cross hybridization and low-complexity 

score, H. sapiens was chosen from the species database. Parameters like probe length, melting 

temperature (Tm) and cross hybridization were set according to the guidelines mentioned in 

(Gresham et al., 2010). The optimal length of the probe was set at 21bp for the 2 CYP2C9 

SNPs and 16bp for VKORC1 SNP to generate probes with similar Tm as the GC content 

between the CYP2C9 and VKORC1 sequence varied. Lowest and highest length was set at 18 

and 23bp for the CYP2C9 SNPs and 12 and 18bp for the VKORC1 SNP respectively.  

Optimum Tm was set at 51°C with hybridization chemistry being DNA:DNA, cross 

hybridization minimum length of homology stretch was set at 0 and position was set at 

random prime. It is important to note that OligoWiz software calculates Tm using the Nearest 

Neighbor algorithm. The resulting probes were then further screened by setting the total score 

cut-off value to 0.4 and the minimum distance between oligos to 1. These parameters filtered 

out an array of probes, which were then exported in either FASTA or TAB format. From this 

array, probes having a Tm 51+/-1.5 °C were filtered out manually while the rest were 

discarded. These probes were then tested in OligoCalc V3.26 online software 

(http://www.basic.northwestern.edu/biotools/oligocalc.html) for potential hairpin formation, 

3’ complementarity and potential self-annealing sites. Probes having potential for generating 

any of the 3 structures mentioned above were discarded and the rest of the probes were loaded 

on to ClustalX2.1 software (http://www.clustal.org/clustal2/) to observe the location of the 

SNP within the probes. Probes having SNP located between the center of the probe and 2bp 

away from the either end were filtered out whereas the rest were discarded. Filtered probes 

were then uploaded on the UCSC genome browser BLAT function 

(http://genome.ucsc.edu/cgi-bin/hgBlat?command=start) to confirm homology of the query 

sequence with the human genome. Lastly, mutant probes were manually generated by 

changing the SNP nucleotide of the selected probes and the final probe sets were given unique 
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identity numbers and names (Supplementary Table 9). Probe sequences with 5’ C6-amino 

group modification were sent for synthesis to BioBasic (New York, USA) and 100nmoles of 

HPLC purified and lyophilized oligos were shipped to Newcastle.   

2.3.2 PCR primer design 

PCR primers were generated using a combination of 3 internet-based software 

packages. DNA sequence was retrieved from the UCSC genome browser (GRCh37/ hg19; 

http://genome.ucsc.edu/), which was uploaded on the Primer 3 software V0.4.0 

(http://frodo.wi.mit.edu/), which provided with putative primer pairs. These were tested for 

absence of primer dimers and primer loops using OligoCalc V3.26 software (Supplementary 

Table 10). The length of the amplicon was kept between 140-250 bp. Primer sequences with 

5’ Cy3 label modification were sent to Metabion (Hilden, Germany) and 20nmoles of HPLC 

purified and lyophilized oligos were shipped to Newcastle. These were used to generate Cy3 

labeled PCR amplicons.  

2.3.3 Generating PCR amplicons 

One hundred genomic DNA samples, which were previously genotyped for the three 

SNPs were provided by Prof. Ann Daly, Newcastle University and were then used as 

templates for PCR products. Sample GU45 which was genotyped as homozygous wild-type 

for all 3 warfarin SNPs was used to test the microarray platform. Since no homozygous 

mutant sequence for the three SNPs were available to test on the microarray platform, 

homozygous mutant sequence for all 3 SNPs were synthesized (Supplementary Table 11) and 

received lyophilized after being cloned in pEX-A2 vector (MWG Eurofins, Ebersberg, 

Germany). Cy3 labeled amplicons of CYP2C9*2, CYP2C9*3, VKORC1 and ACTB were 

generated using Cy3 labeled primers. Qiagen HotStart Plus 1000U (Qiagen: Hilden, 

Germany) PCR kit and SensQuest LabCycler thermal cycler was used to generate PCR 

products. PCR reaction was carried out in 100µl solution consisting of 0.1 ng/µl of template 

DNA, 10µl of Qiagen 10X buffer, 200µM dNTP mix, 0.5µM of each primer and 1 U of 

HotStart Plus Taq polymerase. The PCR was performed with initial denaturation at 95°C for 

5 minutes followed by 35 cycles of denaturation (95°C for 30 seconds), annealing (58°C for 

30 seconds), extension (72°C for 30 seconds) and final extension (72°C for 2 minutes).  

Electrophoresis was carried out on 2% E-gel (Invitrogen; New York, USA) and PCR 

products were viewed using i-Base (Invitrogen; New York, USA).  Amplicons obtained after 

PCR were purified using QIAquick PCR purification kit (Qiagen: Hilden, Germany) to 

remove any residual primers, nucleotides, enzyme, salts and other impurities that may hinder 

the microarray experiment. A batch of PCR amplicons that were generated with primers not 
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labeled with Cy3 were sent to GATC Biotech (London, UK) for dual pass Sanger sequencing 

to ensure that the primers were amplifying the region of interest.  

2.3.4 Custom microarray slide layout and printing probes 

Slide layout design and probe spotting was carried out by ArrayJet Ltd. (Edinburgh, 

UK). The probe oligos were spotted on 20 epoxy silane layered glass slides. Sixty-six 

lyophilized 5’ amine terminated oligos were provided to ArrayJet. They were re-suspended in 

water to a concentration of 100µM. Each oligo was printed in triplicate and was spotted in 5 

different concentrations: 0.1, 0.5, 1.0, 5 and 20µM. Each slide was divided in to 8 miniarrays 

and each miniarray consisted of 66 oligos in 5 concentrations in triplicate and included 

ethylene glycol buffer spots as negative controls. Each drop dispensed on the slide was 100pL 

in volume containing the desired oligo. Two drops per spot were printed. Horizontal gap and 

vertical pitch between the spots was kept at 250µm. Printing was carried out at between 45-

55% relative humidity and 20-22°C. Slides were incubated in the humidity chamber for 30 

minutes after printing to favor DNA immobilization. Following that, slides were sent to 

Newcastle and were stored at 4°C.  

2.3.5 Surface blocking of microarray slides 

Slides were dried at 90°C for 90 minutes in the N-Biotek NB-205 shaking incubator (N-

Biotek, Gyeonggi-do, Korea). Blocking was carried out with blocking solution containing 

50mM ethanolamine (Sigma Aldrich, Dorset, England) in 0.1% sodium dodecyl sulfate (SDS) 

(Sigma Aldrich, Dorset, England) and 0.1M Tris at pH 9.0 (Sigma Aldrich, Dorset, England) 

at 50°C for 15 minutes. Slides were rinsed with MilliQ water for 1 minute and were dried by 

centrifugation. 

2.3.6 Target DNA hybridization and slide scanning 

Eight miniarrays on a slide were simultaneously divided and sealed using an 8 well 

ProPlate gasket (Grace Bio-Labs, Oregon, USA).  Cy3 labeled DNA amplicon stocks were 

diluted to 10uM with MilliQ water. 200ul of hybridization solution containing PCR amplicon, 

3x saline sodium citrate (SSC) buffer (Sigma Aldrich, Dorset, England) and 0.1% SDS was 

added to each miniarray. Hybridization solution containing amplicons was heated to 95°C for 

3 minutes prior to adding it to the miniarray. Microarrays were sealed and kept in a moist 

shaking hybridization chamber at a specific temperature and 50 rpm for 16 hours. Slides were 

washed using a series of 300ml of SSC washing buffers with increase in stringency with 

every wash. Washing was carried out at 115 rpm in a shaking incubator with temperature set 

at 30°C. Slides were dried by centrifugation and were scanned using Axon Genepix4000B 

scanner (Molecular Devices, California USA) and Genepix Pro6.0 software. Scanner’s PMT 
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gain was set to 625 and laser power was set at 100% in all experiments. Spot intensity data 

along with the probe spot information in each miniarray on the microarray slide was exported 

in a text file. 

2.3.7 Statistical analysis 

Spot intensity data from the text file was exported to a Microsoft excel sheet where data 

from each miniarray was separated manually. To calculate true intensity of each probe spot, 

median value of the intensity of the pixels representing the probe spot was subtracted by the 

median value of the intensity of the pixels representing the background around the probe spot. 

Since each probe was spotted in triplicate, an average value of the intensity for the probe was 

calculated. Background intensity for a miniarray was calculated using the intensity signals 

from ACTB control probes using the formula: average intensity values of probes (in a 

miniarray) + 3X standard deviation of intensity of probes. Probes whose mean intensity value 

was lower than that of the background intensity were replaced with background intensity 

value. Specificity, defined as the efficiency of a probe to identify and discriminate target for a 

given DNA sequence, was calculated as the ratio of the intensity of a probe when hybridized 

to complementary DNA compared to non-complementary DNA. All data sorting and 

statistical analysis was carried out in Microsoft excel. 
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Chapter 3. (Results 1): Pharmacogenetic influences on colorectal cancer 

chemoprevention using aspirin- Part 1 

3.  

3.1 Introduction 

3.1.1 Development of aspirin 

Acetylsalicylic acid (ASA), also commonly known as aspirin, is a non- steroidal anti- 

inflammatory drug (NSAID) which is used as an analgesic, anti-pyretic or as a prophylactic 

drug for cardiovascular diseases (CVD) (Fuster and Sweeny, 2011). Aspirin is made up of 

two components: a phenol ring consisting of 6- carbon benzene ring with a carboxyl group 

and an acetyl moiety (Figure 3.1) (Fuster and Sweeny, 2011). In 1853, Charles Gerhardt 

created the first chemically synthesized compound of ASA but it was found to be impure and 

unstable ((Gerhardt, 1853) cited in (Fuster and Sweeny, 2011)). However in 1897, chemist 

Arthur Eichengrün assisted by Felix Hoffman at Friedrich Bayer & Company (now known as 

Bayer Pharma) obtained ASA in its purest form by acetylating the phenol group. This 

compound demonstrated desirable analgesic and anti-pyretic properties but had a low risk of 

gastric irritation. It was first introduced into the market in 1899 and was registered under the 

name of “aspirin” (Fuster and Sweeny, 2011). Currently, an estimated 40,000 tons of aspirin 

is produced worldwide annually and approximately 10 to 20 billion tablets is consumed 

annually in the USA alone for CVD prophylaxis (Campbell et al., 2007), making it one of the 

most widely used drugs in the world. 

 

  A         B 

 

 

 

 

 

 

Figure 3.1 Two dimensional chemical structure of (A) Salicylic acid and (B) 

Acetylsalicylic acid.  

Figure adopted from NCBI PubChem (NCBI, 2014). 
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3.1.2 Aspirin and colorectal neoplasia 

Aspirin is widely prescribed for its anti-platelet and anti-inflammatory effects, however 

in 1988, the first epidemiological evidence for an inverse association of its intake with 

colorectal cancer risk was observed in a population based case- control study (Relative risk 

[RR] for males=0.58, 95% CI=0.38-0.88, p=0.02; RR for females=0.49, 95% CI=0.32-0.73, 

p<0.01) (Kune et al., 1988).  Colorectal cancer is the third most common cancer in men and 

second most common in women with an estimate of 1.2 million new cases and 609,000 deaths 

worldwide in 2008 (Jemal et al., 2010). Thus, primary prevention of colorectal cancer is a 

priority.  More recently, a meta-analysis carried out by Bosetti et al., 2006 showed an inverse 

association between long term aspirin use and colorectal cancer after pooling the risk 

estimates from 11 case- control studies (RR=0.59, 95% CI=0.54-0.64, p for heterogeneity= 

0.008) and 7 cohort studies (RR=0.85, 95% CI=0.78-0.92, p for heterogeneity= 0.006) 

(Cuzick et al., 2009, Bosetti et al., 2006).  

However, a significant heterogeneity was observed in the estimates between and within 

case- control and cohort studies as the studies were carried out in different populations, used 

different methods for case ascertainment, and used different types of controls. Two large scale 

randomized 2 x 2 factorial trials, the Physician’s Health Study and the Women’s Health 

Study, examined the effects of long term low dose aspirin use on the incidence of colorectal 

cancer in healthy men and women respectively. In the Physician’s Health Study, 11037 and 

11034 men were randomized to 325mg of alternate day aspirin and aspirin placebo 

respectively for mean treatment duration of 5 years. After an early termination of the trial 

follow up at 5 years due to a significant reduction in myocardial infarction incidence in the 

aspirin group, no significant association between aspirin use and colorectal cancer incidence 

was observed (RR=1.15, 95% CI=0.80-1.65) (Gann et al., 1993). Similarly in the Women’s 

Health Study, 19934 and 19942 women were randomized to 100mg of alternate day aspirin 

and aspirin placebo respectively for mean treatment duration of 10 years. After a mean follow 

up duration of 10.1 years, no significant association between aspirin use and colorectal cancer 

incidence was observed (RR=0.97, 95% CI=0.77-1.24, p=0.83) (Cook et al., 2005).  

In 2008, Burn et al. described the first randomized 2 x 2 factorial double-blinded trial in 

1071 patients who were genetically predisposed to the hereditary form of colorectal cancer, 

Lynch syndrome, receiving 600mg daily aspirin or placebo for a mean intervention period of 

29 months. At the end of the intervention period, no difference in the incidence of neoplasms 

(adenoma and cancer) between aspirin and placebo group was observed (RR=1.0, 95% 

CI=0.7-1.4, p=0.7) (Burn et al., 2008). However, after a mean follow up of 55.7 months, per 

protocol analysis showed a reduced risk of primary cancer in the aspirin group compared to 
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placebo (Hazard ratio [HR]=0.41, 95% CI=0.19-0.86, p=0.02; Incidence Rate Ratio 

[IRR]=0.37, 95% CI=0.18-0.78, p=0.008) (Burn et al., 2011b). In a follow up observational 

study of a randomized trial, the Women’s Health Study, Cook et al. showed reduction in 

colorectal cancer by 20% (HR=0.80, 95% CI=0.67-0.76, P=0.021) in the group taking 100mg 

alternate day aspirin compared to the placebo group with the effect commencing 10 years 

after randomization (Cook et al., 2013). The combined evidence from observational studies 

and randomized controlled trials provided compelling evidence that aspirin intake reduces 

colorectal cancer risk.  

Colorectal adenomas are the precursors to most colorectal cancers. The 

chemopreventive effect of aspirin is likely to be observed in the adenomas as they form 

during the neoplastic transformation of normal to cancer cells. The largest randomized 

placebo controlled trial consisting of 206 patients who were genetically predisposed to 

another form of  hereditary  colorectal cancer, familial adenomatous polyposis (FAP), showed 

no significant reduction in the polyp count in the sigmoid colon and rectum of patients taking 

600mg/day aspirin compared to placebo (RR=0.77, 95% CI=0.54-1.10) (Burn et al., 2011a). 

However, there was a reduction in the mean polyp size in patients randomized to aspirin 

(3.0mm versus 6.0mm; p=0.02) (Burn et al., 2011a). Furthermore, similar results were 

observed in a trial involving 34 Japanese patients with FAP, which showed a trend for 

reduction in the mean diameter of polyps in patients randomized to 100mg/day aspirin for 6-

10 months compared to the placebo group (Response rate= 2.33, 95% CI=0.72-7.55) 

(Ishikawa et al., 2013). Despite the lack of clear evidence of the protective effect of aspirin on 

primary lesions in individual trials, a meta analysis of 4 randomized controlled trials (AFPPS 

(Baron et al., 2003), CALGB (Sandler et al., 2003), ukCAP (Logan et al., 2008) and APACC 

(Benamouzig et al., 2003)) that evaluated secondary prevention of sporadic colorectal 

adenoma with aspirin showed a risk reduction for developing adenomas (pooled RR=0.83, 

95% CI=0.72-0.96, p=0.012) and advanced lesions (pooled RR=0.72, 95% CI=0.57-0.90, 

p=0.005) (Cole et al., 2009).  Thus in both sporadic and familial risk patients, there is 

convincing evidence of adenoma risk reduction with aspirin use.  

In addition to the evidence from controlled trials, meta analysis of 5 observational 

studies, of which two focused on colorectal cancer, showed an inverse association between 

cancers with distant metastasis and regular aspirin use (pooled OR=0.69, 95% CI=0.57-0.83, 

p<0.0001) which were consistent with the observations from randomized trials (pooled 

OR=0.48, 95% CI=0.30-0.75, p=0.002) (Algra and Rothwell, 2012). However, the inverse 

association was not observed for cancers with regional spread (pooled OR for observational 

studies=0.98, 95%CI=0.88-1.09, p=0.71) (Algra and Rothwell, 2012). In a meta analysis of 5 
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large randomized trials from the UK of daily aspirin versus controls, patients with colorectal 

cancer without metastasis at the time of initial diagnosis had an overall significantly reduced 

risk of later metastasis in aspirin users (HR=0.26, 95% CI=0.11-0.57, p=0.0008) and further 

risk reduction of later metastasis in patients still on trial treatment at the time of diagnosis 

(HR=0.13, 95% CI=0.03-0.56, p=0.007) (Rothwell et al., 2012b). Furthermore, allocation to 

aspirin use halved the risk of death due to cancer in patients with adenocarcinoma without 

metastasis at initial diagnosis compared to controls (HR=0.50, 95% CI=0.34-0.74, p=0.0006) 

(Rothwell et al., 2012b). Thus there is a plethora of convincing evidence for aspirin to be 

prescribed for prophylaxis and adjuvant therapy in patients at high risk for colorectal cancer.  

3.1.3 Variation in aspirin’s chemopreventive efficacy 

 Despite the evidence of aspirin’s chemopreventive potential, its efficacy varies 

between individuals. Chan et al. 2007, carried out immunohistochemistry staining to 

determine the expression of COX-2 in 636 incident colorectal cancers for whom baseline 

epidemiological data on aspirin use was available from two cohort studies [the Nurses’ Health 

Study (NHS) and the Health Professional Follow-up Study (HPFS)]. Using Cox regression 

analysis for competing risks to compare colorectal cancer risk in regular aspirin users based 

on the expression of COX-2 in tumors, the authors showed a significant decrease in the risk of 

colorectal cancers that over-expressed COX-2 (RR=0.64, 95% CI=0.52-0.78) but no influence 

on cancers with weak or absent COX-2 expression (RR=0.96, 95% CI=0.73-1.26) (Chan et 

al., 2007). Prostaglandins synthesized by COX-2 are metabolized by hydroxyprostaglandin 

dehydrogenase 15-(nicotinamide adenine dinucleotide) (15-PGDH, HPGD) enzyme, thus 

HPGD functions as a metabolic antagonist of COX-2 (Yan et al., 2004). Using 270 colorectal 

cancer cases from the NHS and HPFS cohorts, Fink et al. showed that compared to non-use, 

regular aspirin use was associated with a low risk of colorectal cancer that was surrounded by 

colonic mucosa with high HPGD mRNA expression (HR=0.49, 95% CI=0.34-0.71, 

p=0.0002) but not in cancers surrounded with mucosa having low HPGD expression 

(HR=0.90, 95% CI=0.63-1.27, p=0.53) (Fink et al., 2014).  

 The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in 

carcinogenesis of colorectal cancer, and activating mutations in the PIK3CA gene that occur 

in two “hotspots” (exon 9 and 20) are present in approximately 15-20% of colorectal cancers 

(Samuels et al., 2004). PIK3CA is a downstream mediator of COX-2 and mutations in 

PIK3CA leads to increased prostaglandin E2 synthesis and inhibition of apoptosis in colon 

cancer cells. Using PIK3CA mutation status and epidemiological data on 964 patients with 

colorectal cancer, from the NHS and HPFS study, Liao et al. showed an improved colorectal 

cancer specific survival among post-diagnosis regular aspirin users with mutated PIK3CA 
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colorectal cancer (HR=0.18, 95% CI=0.06-0.61, p<0.001) but not in patients with wild type 

PIK3CA cancer (HR=0.96, 95% CI=0.69-1.32, p=0.76) (Liao et al., 2012). Lastly, a recent 

study carried out by Reimers et al., found an improved overall survival benefit associated with 

post cancer diagnosis regular aspirin use (RR=0.53, 95% CI=0.38-0.74, p<0.001) in tumors 

expressing HLA class I antigen, whereas, no benefit was observed in tumors not expressing 

HLA class I antigen (HR=1.03, 95% CI=0.66-1.61, p=0.91) (Reimers et al., 2014).  

 Even though the majority of the literature describes modulation of aspirin’s 

chemopreventive effect through COX-2 inhibition, other potential mechanisms such as 

inhibition of NFkB transcription factor (Seufert et al., 2013, Din et al., 2004, Stark et al., 

2001), interaction with Wnt signaling pathway (Nan et al., 2013), polyamine metabolism (Zell 

et al., 2009, Hubner et al., 2008) and specificity protein (Sp) transcription factors (Pathi et al., 

2012) may help explain the variation in efficacy. Furthermore, presence of a single nucleotide 

polymorphism (SNPs) in the UDP glucoronosyltransferase 1A6 (UGT1A6) and cytochrome 

450 2C9 (CYP2C9) enzymes that metabolize aspirin have been implicated to modulate its 

chemopreventive efficacy and modify colorectal cancer risk in observational studies 

(Angstadt et al., 2014, Hubner et al., 2006, Wang et al., 2014) but lacked statistical power to 

correct for multiple tests due to small sample size. Genome wide association studies (GWAS) 

have identified novel SNPs that are associated with colorectal cancer risk (Peters et al., 2012, 

Dunlop et al., 2012, Tomlinson et al., 2008) however, they lack depth to test for a large 

number of SNPs within candidate gene loci or pathways. Therefore, re-assessing previously 

implicated SNPs along with the SNPs from candidate genes in larger datasets is imperative to 

develop a SNP panel, which can help explain variation in aspirin’s chemopreventive efficacy. 

3.1.4   Aims 

The current study aimed to re-assess SNPs that are previously implicated to modulate 

aspirin’s chemopreventive efficacy in small observational studies and identify novel SNPs in 

candidate genes that are associated with colorectal cancer risk or modulate aspirin’s 

chemopreventive efficacy. A systematic review of the literature was carried out to assemble a 

panel of potentially informative SNPs from candidate gene loci and aspirin’s pharmacokinetic 

and pharmacodynamic pathways. These SNPs were tested for association with colorectal 

cancer risk and interaction with aspirin use and cancer risk within two large population based 

case-control study datasets, UK-Colorectal Cancer Study Panel (UK-CCSG) and NIH-Colon 

Cancer Family Registry (NIH-CCFR), with the latter serving as a validation dataset. 

Identification of novel SNPs that are associated with cancer risk and modify aspirin’s efficacy 

may help gain insight into the neoplastic transformation of epithelial cells in colon and rectum 

and relevant aspect of aspirin’s mode of action respectively.  Perception of the biological 
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implication of these SNPs could help in assembling a panel of genetic markers, which would 

serve as a prognostic test for patients at risk of colorectal cancer and being treated with 

aspirin. 
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3.2 Results 

3.2.1 Baseline characteristics of cases and controls 

Overall, baseline epidemiological and genotype data was available for 3186 and 2926 

individuals from UK-CCSG and NIH-CCFR datasets respectively. UK-CCSG dataset 

consisted of 1910 cases and 1276 controls whereas the NIH-CCFR dataset consisted of 1941 

cases and 986 controls (Table 3.1). As no controls were available from the USC, MC and UHI 

sites in the NIH-CCFR dataset, cases for these sites were removed from downstream analyses. 

Furthermore, 16 study subjects in the NIH-CCFR dataset that were not of non-Hispanic white 

ethnicity were removed from analysis. In comparison to the subjects in NIH-CCFR dataset, 

UK-CCSG dataset consisted of slightly higher number of males than females, both cases and 

controls that were older, lower number of subjects with first or second degree relative with 

colorectal cancer, higher number of current smokers, lower number of subjects that used only 

aspirin (or NSAID) regularly and subjects with slightly lower BMI but higher physical 

activity output and daily alcohol intake (P<0.001 for all) (Table 3.1). No difference was 

observed in the distribution of primary cancer across site (colon and rectum) between the two 

datasets (P=0.15).  
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Baseline 

characteristics 

Colorectal Cancer Study Group  Colon Cancer Family Registry 
P-value

b 

Dundee Leeds York Total  CCO USC UQM MC FHCRC UHI Total
a 

Sex, n (%)              

Male 285 (54.7) 1343 (55.0) 136 (60.7) 1764 (55.4)  523 (51.3) 89 (43.2) 267 (50.9) 136 (44.7) 414 (48.4) - 1204 (50.2) 
<0.001 

Female 236 (45.3) 1098 (45.0) 88 (39.3) 1422 (44.6)  497 (48.7) 117 (56.8) 258 (49.1) 168 (55.3) 442 (51.6) - 1197 (49.9) 

Age at diagnosis in 

cases (in years), n 

(%) 

             

<40 0 (0) 20 (1.2) 0 (0) 20 (1.1)  23 (4.4) 16 (7.8) 62 (18.3) 39 (12.8) 40 (7.3) - 125 (8.8) 

<0.001 40-69 83 (57.2) 896 (54.2) 62 (55.4) 1041 (54.5)  463 (87.5) 169 (82.0) 277 (81.7) 253 (83.2) 420 (76.8) - 1160 (82.0) 

>69 62 (42.8) 737 (44.6) 50 (44.6) 849 (44.5)  43 (8.1) 21 (10.2) 0 (0) 12 (4.0) 87 (15.9) - 130 (9.2) 

Age at interview in 

controls (in years), 

n (%) 

             

<40 0 (0) 5 (0.6) 0 (0) 5 (0.4)  6 (1.2) - 40 (21.5) - 0 (0) - 46 (4.7) 

<0.001 40-69 218 (58.0) 415 (52.7) 64 (57.1) 697 (54.6)  357 (72.7) - 146 (78.5) - 209 (67.6) - 712 (72.2) 

>69 158 (42.0) 368 (46.7) 48 (42.9) 574 (45.0)  128 (26.1) - 0 (0) - 100 (32.4) - 228 (23.1) 

Family History of 

Cancer, n (%) 
             

Unaffected 370 (77.1) 1575 (74.3) 140 (76.9) 2085 (74.9)  645 (63.2) 100 (48.5) 309 (58.9) 145 (47.7) 641 (74.9) - 1595 (66.4) 

<0.001 

Affected second 

degree relatives 
29 (6.0) 173 (8.2) 10 (5.5) 212 (7.6)  163 (16.0) 9 (4.4) 117 (22.3) 67 (22.0) 62 (7.2) - 342 (14.2) 

Affected first or 

first and second 

degree relatives 

81 (16.9) 373 (17.6) 32 (17.6) 486 (17.5)  212 (20.8) 97 (47.1) 99 (18.9) 92 (30.3) 153 (17.9) - 464 (19.3) 

Smoking, n (%)              

Never 211 (41.1) 977 (40.2) 80 (37.7) 1268 (40.2)  387 (38.0) 93 (45.2) 234 (44.7) 139 (46.3) 344 (40.2) - 965 (40.2) <0.001 
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Stopped 223 (43.4) 1043 (42.9) 101 (47.6) 1367 (43.3)  527 (51.8) 88 (42.7) 209 (39.9) 126 (42.0) 416 (48.6) - 1152 (48.0) 

Current 80 (15.6) 410 (16.9) 31 (14.6) 521 (16.5)  104 (10.2) 25 (12.1) 81 (15.5) 35 (11.7) 96 (11.2) - 281 (11.7) 

Any NSAID use, n 

(%) 
             

No 372 (72.5) 1733 (71.2) 167 (78.4) 2272 (71.9)  611 (60.6) 102 (49.5) 394 (75.3) 156 (53.1) 387 (45.4) - 1392 (58.4) 
<0.001 

Yes 141 (27.5) 702 (28.8) 46 (21.6) 889 (28.1)  398 (39.4) 104 (50.5) 129 (24.7) 38 (46.9) 465 (54.6) - 992 (41.6) 

Aspirin only use, n 

(%) 
             

No 372 (79.7) 1733 (79.0) 167 (86.5) 2272 (79.6)  611 (71.4) 102 (61.1) 394 (88.0) 156 (69.6) 387 (58.7) - 1392 (70.9) 
<0.001 

Yes 95 (20.3) 460 (21.0) 26 (13.5) 581 (20.4)  245 (28.6) 65 (38.9) 54 (12.1) 68 (30.4) 272 (41.3) - 571 (29.1) 

Primary Cancer 

Site, n (%) 
             

Colon 90 (63.8) 1154 (65.9) 62 (54.9) 1306 (65.2)  279 (65.8) 131 (69.3) 188 (58.4) 189 (63.6) 337 (62.6) - 804 (62.6) 
0.15 

Rectum 51 (36.2) 596 (34.1) 51 (45.1) 698 (34.8)  145 (34.2) 58 (30.7) 136 (41.6) 108 (36.4) 201 (37.4) - 480 (37.4) 

BMI at 20 years 

(kg/m2), mean (SD) 
22.3 (2.5) 22.3 (3.2) 22.5 (3.4) 22.3 (3.1)  22.4 (3.6) 22.1 (3.1) 22.8 (3.9) 23.1 (4.0) 22.6 (4.4) - 22.6 (4.0) 0.002 

Physical Activity 

(Hours/ week), 

mean (SD) 

25.4 (17.1) 23.1 (13.4) 26.1 (19.7) 23.7 (14.6)  4.1 (7.1) 8.7 (9.4) 6.5 (7.2) 10.9 (15.7) 6.5 (8.8) - 5.4 (7.7) <0.0001 

Alcohol (Units/ 

day), mean (SD) 
1.7 (3.0) 3.2 (5.0) 2.2 (3.1) 2.9 (4.6)  0 (0) 1.6 (1.7) 1.8 (2.9) 2.0 (2.5) 2.2 (3.6) - 2.0 (3.3) <0.0001 

Table 3.1 Baseline epidemiological characteristics data distribution within the UK-CCSG and NIH-CCFR datasets. 

a, Total number of  subjects calculated from only CCO, UQM and FHCRC study sites.  

b, P-value calculated using Fisher’s exact test for categorical variables and Student t-test for continuous variables. 
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3.2.1.1 Association between environmental risk factors and colorectal cancer 

To test for association between environmental risk factors and colorectal cancer risk, 

continuous variables such as BMI, daily calorie intake, weekly exercise and alcohol intake per 

day were converted to dichotomous variables by placing a cut off point where 50% of the 

controls under the cut off value were coded at 0 and 50% of the controls above the cut off 

value were coded as 1. In the UK-CCSG dataset, higher BMI at the age of 20 (>21.8 kg/m2), 

ever smoked, higher daily calorie intake (>2172.5 kcal), higher alcohol intake (>5.6 units/ 

day) and presence of first or second degree relative diagnosed with colorectal cancer were 

associated with an increased risk of colorectal cancer (all P<0.001; Table 3.2). Higher time 

spent in carrying out exercise every week (>22 hours/ week) showed a trend for a decreased 

risk of colorectal cancer but didn’t reach statistical significance (P=0.076). The associations 

observed in the UK-CCSG dataset are consistent with the existing literature (Fedirko et al., 

2011, Hannan et al., 2009, Larsson and Wolk, 2007, Slattery et al., 2003b, Giacosa et al., 

1999, Slattery et al., 1997). In concordance with the existing literature, use of only aspirin and 

any NSAID (including aspirin) was inversely associated with colorectal cancer risk (Only 

aspirin OR=0.74, 95% CI=0.61-0.89, P=0.003; Any NSAID OR=0.65, 95% CI=0.55-0.76, 

P=1.79 x 10-7). The mean daily dose of aspirin among regular aspirin only users was 

107mg/day (Range= 25 mg/day to 4000 mg/day).   

However, in the NIH-CCFR dataset, only BMI at the age of 20 (>21.5 kg/m2), calorie 

intake in males (>2218 Kcal), presence of first or second degree relative diagnosed with 

colorectal cancer and higher weekly exercise (>3 hours/week) were associated with an 

increased risk of colorectal cancer (Table 3.2). The positive association between increase in 

exercise and colorectal cancer risk could be due to the socio-economic status of the study 

subjects (Doubeni et al., 2012) but the lack of data regarding socio-economic status precluded 

adjustment for it in the model. A significant association between family risk and cancer could 

be due to the case recruitment strategies employed by the CCO and UQM sites, which 

selected cases based on the family history and age at cancer diagnosis respectively (Site 

specific association: for CCO OR=13.2, 95% CI=9.46-18.53, P<0.001; for UQM OR=4.51, 

95% CI=2.96-6.85, P<0.001) (Table 2.1). However, for FHCRC site where no family history 

based case recruitment strategy was employed, a high association between family history and 

CRC was observed (OR=7.54, 95% CI=4.68-12.14, P<0.001), which is because 35.5% of the 

cases had affected FDR and (or) SDR with CRC compared to controls that only had 6.8% of 

affected family members. The relatively high proportion of cases with affected family 

members at the FHCRC site is because all CRC affected FDR were recruited on the study 

which were substantially higher in cases than controls (Table 2.1). Smoking status and 
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alcohol consumption showed association trend with colorectal cancer risk but didn’t reach 

statistical significance (P>0.05).  Use of only aspirin and any NSAID (including aspirin) was 

associated with a reduced risk of colorectal cancer (Table 3.2). Compared to the un-adjusted 

model, the association strength between aspirin (or NSAID) use and cancer risk was poor in 

the adjusted model, where the association was adjusted for age, sex and study site (For any 

NSAID use OR=0.82, 95% CI=0.69-0.98, P=0.03; for aspirin only use OR=0.78, 95% 

CI=0.63-0.96, P=0.02). This could be because the mean age of regular aspirin only or NSAID 

users versus non-users in both cases (Mean age (SD) for aspirin only user v/s non-user=59.0 

(10.5) v/s 51.7 (10.8), t-test P<0.0001; Mean age (SD) for any NSAID user v/s no-user=55.9 

(10.9) v/s 51.7 (10.8), t-test P<0.0001) and controls (Mean age (SD) for aspirin only user v/s 

non-user=64.0 (8.2) v/s 57.4 (11.7), t-test P<0.0001; Mean age (SD) for any NSAID user v/s 

no-user=63.1 (8.9) v/s 57.4 (11.7), t-test P<0.0001) was significantly higher and thus 

adjusting for age in the regression model could be leading to adjusting for the case-control 

status. Furthermore, compared to the UK-CCSG dataset, the NIH-CCFR dataset didn’t record 

the daily aspirin dose information and hence no further analysis regarding the relationship 

between the dose and CRC risk was carried out.  
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 UK-Colorectal Cancer Study Group (N=3186)  NIH-Colon Cancer Family Registry (N=2401) 

Controls,  

n (%) 

Cases, 

n (%) 
Odds Ratio (95% CI) P value  

Controls, 

n (%) 

Cases, 

n (%) 
Odds Ratio (95% CI) P value 

BMI at 20 years 

[kg/m2]a     

 

   
 

Low 629 (49.8) 822 (44.8) 
1.22 (1.06-1.41) 0.006 

481 (49.5) 575 (41.3) 
1.39 (1.18-1.64) 8.2 x 10-5 

High 633 (50.2) 1013 (55.2) 490 (50.5) 816 (58.7) 

Family history of 

cancer         

No 210 (47.5) 196 (29.6) 

2.15 (1.68-2.76) 1.98 x 10-9 

876 (88.8) 719 (50.8) 

7.71 (6.16-9.64) 3.3 x 10-150 First or (and) second 

degree relative 
232 (52.5) 466 (70.4) 110 (11.2) 696 (49.2) 

Cigarette smoking         

No 558 (43.8) 710 (37.6) 
1.30 (1.12-1.50) 0.0005 

408 (41.4) 557 (39.4) 
1.08 (0.92-1.28) 0.34 

Yes 716 (56.2) 1180 (62.4) 578 (58.6) 856 (60.6) 

Alcohol  

[units/ day]b         

Low 644 (50.6) 741 (39.6) 
1.57 (1.36-1.81) 1.01 x 10-9 

146 (48.2) 219 (42.3) 
1.27 (0.95-1.69) 0.10 

High 628 (49.4) 1131 (60.4) 157 (51.8) 299 (57.7) 

Physical activity 

[hours/ week]c         
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Table 3.2 Association between baseline characteristics and colorectal cancer risk. 

Continuous variables such as BMI, alcohol and physical activity were converted to dichotomous variables by placing a cut off point where 50% 

of the controls under the cut off value were coded at 0 and 50% of the controls above the cut off value were coded as 1. 

a, Body Mass Index (BMI) cut off point in UK-CCSG and NIH-CCFR is 21.8 kg/m2 and 21.5 kg/m2 respectively  

b, Alcohol intake cut off point in UK-CCSG and NIH-CCFR is 5.6 units/day and 0.89 units/day respectively 

c, Physical activity cut off point in UK-CCSG and NIH-CCFR is 22 hours/week and 3 hours/week respectively 

d, Regular aspirin or NSAID use is defined as regular intake for a period of 3 months or longer in the UK-CCSG dataset whereas it is defined as 

regular use of at least two pills per week for at least one month in the NIH-CCFR dataset 

Low 625 (49.1) 976 (52.3) 
0.88 (0.76-1.01) 0.079 

395 (48.6) 493 (43.3) 
1.24 (1.03-1.48) 0.02 

High 647 (50.9) 889 (47.7) 418 (51.4) 645 (56.7) 

Regular aspirin only 

used         

No 851 (76.9) 1421 (81.4) 
0.76 (0.63-0.91) 0.004 

518 (64.7) 874 (75.2) 
0.60 (0.50-0.73) 4.80 x 10-7 

Yes 256 (23.1) 325 (18.6) 283 (35.3) 531 (24.8) 

Regular any NSAID 

used         

No 851 (66.9) 1421 (75.2) 
0.67 (0.57-0.78) 3.58 x 10-7 

518 (52.9) 874 (62.2) 
0.68 (0.58-0.81) 6.04 x 10-6 

Yes 421 (33.1) 468 (24.8) 461 (47.1) 531 (37.8) 



 54 

3.2.2 SNP frequency and linkage disequilibrium 

Overall, 43 SNPs from 16 genes that are involved in aspirin’s pharmacokinetic and 

pharmacodynamic pathways were selected for analysis in the current study (Table 3.3). 

Seventeen SNPs, which were absent on the Illumina Human Exome Array v1.1 platform in 

the UK-CCSG dataset, were genotyped using Taqman allelic discrimination assay (Table 2.2). 

However, 12 SNPs from the CES2 gene and 4 from the PAFAH1B2 gene were removed from 

all downstream analyses as the MAF was <4% (Supplementary Table 1).  

A total of 27 SNPs were selected for analysis in the UK-CCSG dataset, out of which, 

SNP rs4648310 in PTGS2, rs4936367 in PAFAH1B2 and rs11694911 in ODC1 gene were 

observed to be inconsistent with the Hardy Weinberg equilibrium in controls (all P<0.05; 

Supplementary Table 1).  On comparing the SNP genotype frequency in controls with the 

HapMap Phase I GBR population from the 1000 Genomes database using Fisher’s exact test, 

5 SNPs (rs1799853, rs4936367, rs7112513, rs28362380 and rs2430420) showed different 

genotype frequency in controls compared to the GBR population (all P<0.05; Supplementary 

Table 1).  Overall, 6 linkage disequilibrium (LD) groups in controls were found on 

chromosomes 1, 2, 8, 10, 11 and 15 (Supplementary Figure 2). SNPs rs2070959 and 

rs1105879 in UGT1A6 gene and rs7112513 and rs4936367 in PAFAH1B2 gene had a high 

LD score (R2) of 0.89 and 0.99 respectively.  

 

Number Gene Name SNP ID Study Reference 

1 ALOX15 rs2619112 (Kleinstein et al., 2013) 

2 CDKN1A rs1321311 (Dunlop et al., 2012) 

3 CES2 

rs140461033 

(Kubo et al., 2005) 

rs44410046 

rs201103548 

rs28382815 

rs148026549 

rs145407778 

rs10852434 

rs14792040 

rs141625476 

rs147070911 

rs150408050 

rs147694237 

4 CYP2C9 
rs1057910 

(Barry et al., 2013) 
rs1799853 
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5 IkBkB 

rs10958713 

(Seufert et al., 2013) 
rs11986055 

rs5029748 

rs6474387 

6 IL16 

rs12910333 
Unpublished data from 

NIH-CCFR group 

rs16973225 
Unpublished data from 

NIH-CCFR group 

7 Intergenic 

rs6983267 (Nan et al., 2013) 

rs961253 
Unpublished data from 

UK-CCSG group 

8 MDR1 rs1045642 (Sharma et al., 2012) 

9 NCF4 rs5995355 (Ryan et al., 2014) 

10 Near MGST1 rs2965667 
Unpublished data from 

NIH-CCFR group 

11 NFkB rs230490 (Seufert et al., 2013) 

12 ODC1 

rs11694911 (Barry et al., 2011) 

rs28362380 (Barry et al., 2011) 

rs2302615 
(Barry et al., 2011, 

Hubner et al., 2008) 

rs2430420 (Barry et al., 2011) 

13 PAFAH1B2 

rs4936367 

(Zhou et al., 2011) 

rs7112513 

rs142710583 

rs185651296 

rs186808413 

rs78428934 

14 PTGS1 rs3842787 (Makar et al., 2013) 

15 PTGS2 

rs20417 
(Makar et al., 2013, 

Ulrich et al., 2005) 

rs5275 (Makar et al., 2013) 

rs4648310 (Barry et al., 2009) 

rs2745557 
Unpublished data from 

NIH-CCFR group 

rs689469 (Kraus et al., 2013) 

rs5277 (Barry et al., 2009) 

16 UGT1A6 
rs2070959 (Scherer et al., 2014, 

Angstadt et al., 2014) rs1105879 

Table 3.3 List of SNPs from genes involved in aspirin’s pharmacokinetic and 

pharmacodynamic pathways, which were included in the study. 
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In contrast to the UK-CCSG dataset, SNPs in the NIH-CCFR dataset were genotyped 

using three separate Illumina platforms (See section 2.1.3 SNP genotyping). Whilst the 

Illumina platform used in the UK-CCSG dataset covered exonic content only with >240,000 

markers, the platforms used in the NIH-CCFR dataset covered the whole genome, including 

the exonic regions, using 1 million markers. Overall, only 31 SNPs were selected for analysis 

in the NIH-CCFR dataset as, some of the SNPs selected for the UK-CCSG dataset were not 

genotyped in the NIH-CCFR dataset (Supplementary Table 1). rs16973225 and rs5277 were 

removed from all downstream analyses as they were only genotyped in cases. rs689469 was 

also removed from all downstream analyses as the SNPs’ MAF was <4%. Apart from 

rs11694911 (p=0.02), all SNPs were consistent with the Hardy Weinberg equilibrium in 

controls. Furthermore, with the exception of rs6683455, rs1799853 and rs961253, allele 

frequencies of all other SNPs were not found to be significantly different from that of the 

HapMap Phase I CEU population from the 1000 Genomes database (Supplementary Table 1). 

A total of 6 LD groups on controls were found on chromosomes 1, 2, 4, 8, 10 and 11 

(Supplementary Figure 3). Similar to the UK-CCSG dataset, SNPs rs1105879 and rs2070959 

in UGT1A6 gene and rs7112513 and rs4936367 in PAFAH1B2 showed a high LD score 

R2>0.90 in the NIH-CCFR dataset.  

3.2.3 Association between SNP genotype and colorectal cancer risk 

Out of 28 SNPs analyzed in the UK-CCSG dataset, 1 showed a significant association 

with colorectal cancer risk (Supplementary Table 2). The variant T allele of a non-

synonymous SNP rs1799853, which converts arginine to cysteine at 144th amino acid 

position in CYP2C9 enzyme, was associated with decrease in colorectal cancer risk 

(OR=0.82, 95% CI=0.69-0.98, P=0.026) in individuals with the variant allele (Table 3.4). 

Furthermore, presence of variant A, T and G alleles of SNPs in CDKN1A (rs1321311), ODC1 

(rs2302615) and UGT1A6 (rs2070959) genes respectively showed trends for an association 

with colorectal cancer risk but didn’t reach the type I error significance threshold of 0.05 

(Table 3.4).  

In contrast, none of the four SNPs, which were associated with colorectal cancer risk in 

the UK-CCSG dataset, showed significant association with cancer risk in the NIH-CCFR 

dataset (Table 3.4). However, presence of variant T allele of SNP rs6983267, which indirectly 

affects expression of target oncogenes including MYC (Nan et al., 2013) and was initially 

identified through GWA studies, showed a trend for decrease in colorectal cancer risk in the 

NIH-CCFR dataset (OR=0.83, 95% CI=0.70-1.00, P=0.057) but not in the UK-CCSG dataset 

using a dominant model (Table 3.4). 
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On carrying out association tests between SNPs and site-specific colorectal cancer risk 

(colon and rectum) in the UK-CCSG dataset, the variant T alleles of rs1799853 and 

rs2302615 were both associated with a site specific reduction of colon cancer risk only 

(rs1799853 OR=0.73, 95% CI=0.60-0.90, P=0.002; rs2302615 OR=0.78, 95% CI=0.65-0.93, 

P=0.012) (Table 3.5; Supplementary Table 3). However, the variant C allele of SNP 

rs1105879 in UGT1A6 gene was associated with an increased risk of colon cancer only 

(OR=1.21, 95% CI=1.01-1.44, P=0.036) (Table 3.5). No site-specific associations were 

observed in the NIH-CCFR dataset (Supplementary Table 3). 
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene 

name 
SNP ID 

Copies 

of rare 

allele 

Controls, 

n (%) 

Cases,  

n (%) 

Odds 

Ratio 
95% CI P-value*  

Controls, 

n (%) 

Cases, 

 n (%) 

Odds 

Ratio 
95% CI P-value* 

CDKN1A rs1321311 
0 579 (59.3) 946 (56) 

  
  566 (57.8) 789 (55.9)    

1 or 2 398 (40.7) 743 (44.0) 1.14 0.97, 1.34 0.07  414 (42.2) 622 (44.1) 1.08 0.91, 1.27 0.72 

CYP2C9 rs1799853 
0 709 (74.3) 1274 (78)     141 (78.8) 126 (79.3)    

1 or 2 245 (25.7) 359 (22.0) 0.82 0.68, 0.98 0.03  38 (21.2) 33 (20.8) 0.97 0.58, 1.64 0.83 

Intergenic rs6983267 
0 282 (28.9) 523 (31) 

  
  267 (27.1) 436 (30.9)    

1 or 2 693 (71.1) 1167 (69.1) 0.91 0.76, 1.08 0.31  717 (72.9) 976 (69.1) 0.83 0.70, 1.00 0.06 

ODC1 rs2302615 
0 501 (51.6) 907 (56.1)     - - - - - 

1 or 2 470 (48.4) 710 (43.9) 0.83 0.71, 0.98 0.06  - - - - - 

UGT1A6 rs2070959 
0 497 (51) 812 (47.9)     433 (44.0) 636 (45.0)    

1 or 2 477 (49.0) 882 (52.1) 1.13 0.97, 1.33 0.07  551 (56.0) 779 (55.1) 0.96 0.82, 1.13 0.90 

Table 3.4 Association between SNP variant allele and colorectal cancer risk. 

*P-value of association is adjusted for age, sex and study site within each dataset. 

CI, Confidence Interval 

n, Number of subjects 
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 Colon Cancer  Rectal Cancer 

Gene name SNP ID 

Copies 

of rare 

allele 

Controls, 

n (%) 

Cases,          

n (%) 

Odds 

Ratio 
95% CI P-value*  

Controls, 

n (%) 

Cases,          

n (%) 

Odds 

Ratio 
95% CI 

P-

value* 

CYP2C9 rs1799853 
0 709 (74.3) 855 (79.8)     709 (74.3) 419 (74.7)    

1 or 2 245 (25.7) 217 (20.2) 0.73 0.60, 0.90 0.002  245 (25.7) 142 (25.3) 0.98 0.77, 1.25 0.86 

ODC1 rs2302615 
0 501 (51.6) 613 (57.8)     501 (51.6) 294 (52.9)    

1 or 2 470 (48.4) 448 (42.2) 0.78 0.65, 0.93 0.012  470 (48.4) 262 (47.1) 0.95 0.77, 1.17 0.86 

UGT1A6 rs1105879 
0 458 (47.1) 481 (43.1)     458 (47.1) 281 (48.1)    

1 or 2 515 (52.9) 634 (56.9) 1.17 0.99, 1.39 0.036  515 (52.9) 303 (51.9) 0.96 0.78, 1.18 0.99 

Table 3.5 Association between SNP variant allele and site-specific colorectal cancer risk in the UK-Colorectal Cancer Study Group 

dataset. 

*P-value of association is adjusted for age, sex and study site. 

CI, Confidence Interval 

n, Number of subjects 
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3.2.4 Interaction between aspirin only use, SNP genotype and colorectal cancer risk 

Aspirin use was defined as regular intake of aspirin for 3 months or longer in the UK-

CCSG dataset whereas, it was defined as regular intake of aspirin twice a week for a month or 

longer in the NIH-CCFR dataset. Furthermore, aspirin only use was defined for subjects who 

regularly used aspirin but not other NSAIDs. Gene- environment (G x E) interaction was 

tested for SNP genotype and aspirin only use in relation to colorectal cancer risk. 

Out of all the SNP variants investigated for interaction with aspirin only use and 

colorectal cancer risk, 2 SNP variants reached significance in the UK-CCSG dataset and the 

SNPs in high LD with them showed a similar trend for interaction but didn’t reach 

significance threshold (Supplementary Table 4).  The variant G allele of PAFAH1B2 SNP 

rs4936367 showed a statistically significant interaction with aspirin only use (Pinteraction=0.04), 

increasing the risk of colorectal cancer by 65% in aspirin users (OR=1.65, 95% CI=1.02-2.66) 

but not in non-users (OR=1.02, 95% CI=0.80-1.30) (Table 3.6). A SNP rs7112513, which is 

in high LD with rs4936367 (R2=0.99) showed a similar association trend but didn’t reach 

statistical significance (Pinteraction=0.08; Table 3.6). Similarly, the variant G allele of UGT1A6 

gene SNP rs2070959 showed a statistically significant interaction with aspirin only use 

(Pinteraction=0.05), increasing the risk of colorectal cancer by 48% in aspirin users (OR=1.48, 

95% CI=1.03-2.11) but not in non-users (OR=1.02, 95% CI=0.84-1.24) (Table 3.6). A SNP 

rs1105879, which is in high LD with rs2070959 (R2=0.89) showed a similar association trend 

but didn’t reach statistical significance threshold for interaction (Pinteraction=0.10; Table 3.6). In 

contrast, none of the 4 SNPs reached significance threshold for interaction in the NIH-CCFR 

dataset and no other SNP showed interaction trend with aspirin only use and colorectal cancer 

risk  (Supplementary Table 4).  

Since 3 SNPs showed site-specific association with colorectal cancer risk, they were 

tested for site-specific interaction between aspirin only use and both colon and rectal cancer 

risk. However, minor alleles of all 3 SNPs showed no significant evidence of interaction in 

either datasets (Table 3.7 and Table 3.8).  
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene name SNP ID 

Copies 

of rare 

allele 

Non-users Aspirin users 
P-value for 

interaction* 
 

Non-users Aspirin users 
P-value for 

interaction* OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ 

PAFAH1B2 

rs4936367 

0 
n=1475                        

1 
 

n=393                      

1 
   

n=1114                        

1 
 

n=456                     

1 
  

1 or 2 
n=372                 

1.02 (0.80, 1.30) 
0.88 

n=93                      

1.65 (1.02, 2.66) 
0.04 0.04  

n=278                 

0.92 (0.70, 1.20) 
0.53 

n=115                 

1.00 (0.66, 1.51) 
1.00 0.39 

rs7112513 

0 
n=1515                        

1 
 

n=404                      

1 
   

n=1109                        

1 
 

n=453                        

1 
  

1 or 2 
n=391                 

1.03 (0.81, 1.31) 
0.80 

n=95                   

1.55 (0.96, 2.48) 
0.07 0.08  

n=279                  

0.89 (0.68, 1.16) 
0.38 

n=115                  

1.00 (0.67, 1.51) 
0.98 0.30 

UGT1A6 

rs1105879 

0 
n=863                        

1 
 

n=237                          

1 
   

n=598                        

1 
 

n=234                          

1 
  

1 or 2 
n=1039                  

1.00 (0.83, 1.21) 
1.00 

n=263                       

1.38 (0.97, 1.98) 
0.08 0.10  

n=791                  

0.93 (0.75, 1.16) 
0.53 

n=337                       

1.19 (0.85, 1.66) 
0.31 0.16 

rs2070959 

0 
n=927                        

1 
 

n=253                       

1 
   

n=638                         

1 
 

n=246                        

1 
  

1 or 2 
n=973                    

1.02 (0.84, 1.24) 
0.83 

n=247                    

1.48 (1.03, 2.11) 
0.03 0.05  

n=752                  

0.87 (0.70, 1.09) 
0.23 

n=325                 

1.16 (0.83, 1.61) 
0.39 0.12 

Table 3.6 Association between SNP variant allele and colorectal cancer risk stratified by only aspirin use. 

+P-value for association between SNP variant allele and colorectal cancer risk. 

*P-value for interaction between SNP variant allele, aspirin use and colorectal cancer risk calculated using Likelihood ratio test. P-value is 

adjusted for age, sex and study site. 

OR, Odds Ratio 

CI, Confidence Interval 
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene name SNP ID 

Copies 

of rare 

allele 

Non-users Aspirin users 
P-value for 

interaction* 
 

Non-users Aspirin users 
P-value for 

interaction* OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ 

CYP2C9 rs1799853 

0 
n=1105                        

1 
 

n=304                      

1 
   

n=90                      

1 
 

n=74                      

1 
  

1 or 2 
n=318                 

0.77 (0.60, 0.99) 
0.04 

n=93                      

0.58 (0.36, 0.93) 
0.02 0.26  

n=22                 

1.20 (0.46, 3.10) 
0.71 

n=17                

0.98 (0.31, 3.13) 
0.98 0.77 

ODC1 rs2302615 

0 
n=753                        

1 
 

n=219                    

1 
   - - - -  

1 or 2 
n=616                 

0.78 (0.63, 0.97) 
0.02 

n=170                   

0.74 (0.50, 1.11) 
0.15 0.66  - - - - - 

UGT1A6 rs1105879 

0 
n=653                       

1 
 

n=191                          

1 
   

n=428                       

1 
 

n=180                          

1 
  

1 or 2 
n=813                  

1.06 (0.86, 1.31) 
0.57 

n=214                       

1.50 (1.02, 2.23) 
0.04 0.12  

n=578                  

0.95 (0.74, 1.22) 
0.71 

n=270                       

1.42 (0.96, 2.12) 
0.08 0.07 

Table 3.7 Association between SNP variant allele and colon cancer risk stratified by aspirin only use. 

+P-value for association between SNP variant allele and colon cancer risk. 

*P-value for interaction between SNP variant allele, aspirin use and colon cancer risk calculated using Likelihood ratio test. P-value is adjusted 

for age, sex and study site. 

OR, Odds Ratio 

CI, Confidence Interval 

n, Number of subjects 
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene name SNP ID 

Copies 

of rare 

allele 

Non-users Aspirin users 
P-value for 

interaction* 
 

Non-users Aspirin users 
P-value for 

interaction* OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ 

CYP2C9 rs1799853 

0 
n=782                        

1 
 

n=212                      

1 
   

n=80                      

1 
 

n=67                      

1 
  

1 or 2 
n=261                 

1.01 (0.76, 1.35) 
0.92 

n=83                      

0.99 (0.57, 1.71) 
0.96 0.96  

n=22                 

1.72 (0.65, 4.56) 
0.28 

n=14                

0.58 (0.12, 2.87) 
0.50 0.09 

ODC1 rs2302615 

0 
n=542                        

1 
 

n=151                    

1 
   - - - -  

1 or 2 
n=488                 

0.91 (0.71, 1.17) 
0.47 

n=141                   

1.18 (0.71, 1.95) 
0.53 0.42  - - - - - 

UGT1A6 rs1105879 

0 
n=500                       

1 
 

n=152                          

1 
   

n=339                       

1 
 

n=168                          

1 
  

1 or 2 
n=575                  

0.89 (0.70, 1.14) 
0.37 

n=146                       

1.16 (0.71, 1.90) 
0.54 0.31  

n=470                  

1.01 (0.75, 1.35) 
0.96 

n=219                       

0.96 (0.61, 1.50) 
0.84 0.90 

Table 3.8 Association between SNP variant allele and rectal cancer risk stratified by aspirin only use. 

+P-value for association between SNP variant allele and rectal cancer risk. 

*P-value for interaction between SNP variant allele, aspirin use and rectal cancer risk calculated using Likelihood ratio test. P-value is adjusted 

for age, sex and study site. 

OR, Odds Ratio 

CI, Confidence Interval 

n, Number of subjects 

 



 64 

3.3 Discussion 

Colorectal cancer is a heterogeneous disease and is the second leading cause of cancer 

mortality with the lifetime risk estimated between 5-6% (Peters et al., 2012).  There is an 

extensive evidence of the chemopreventive effect of regular use of aspirin in relation to 

colorectal cancer; however, data from recent studies suggests inter-individual variation in the 

chemopreventive effect may be attributed to the presence of somatic mutations (Nishihara et 

al., 2013, Liao et al., 2012) and germline variation (Wang et al., 2014, Reimers et al., 2014, 

Fink et al., 2014, Angstadt et al., 2014, Seufert et al., 2013, Nan et al., 2013, Pathi et al., 

2012, Zell et al., 2009, Hubner et al., 2008, Chan et al., 2007, Hubner et al., 2006, Din et al., 

2004, Stark et al., 2001). Aspirin’s mode of action on colonic epithelial cells for reducing 

colorectal cancer risk has yet to be elucidated. Since genetic variation in aspirin’s 

pharmacokinetic and pharmacodynamic pathways have been shown to modulate its efficacy 

in prior studies with a small sample size, re-assessment of previously associated variants 

along with exploration and identification of novel variants using biostatistics and 

epidemiological studies in these pathways could help explain aspirin’s mode of action and 

gain insight into the neoplastic transformation of colonic epithelial cells.  

The current study employed two large population-based case-control datasets (UK-

CCSG and NIH-CCFR) consisting of a combined total of 3851 colorectal cancer cases and 

2262 controls of self reported non-Hispanic white ethnicity, where one dataset was used as a 

validation dataset for the other. Previously documented environmental risk factors such as 

BMI, smoking and calorie intake etc. were studied for their association with colorectal cancer 

risk amongst the two datasets. In total, 43 SNPs across 16 genes involved in aspirin’s 

pharmacokinetic and pharmacodynamic pathways were investigated for association or 

modification of the protective effect of aspirin use on colorectal cancer risk. These included 

18 novel SNPs, which had not been investigated previously. 

3.3.1 Known epidemiological risk factors 

Despite several key differences between the two datasets such as, significantly younger 

age at diagnosis of cases in the NIH-CCFR dataset and case ascertainment strategies, most of 

the key epidemiological risk factors showed similar association trends with colorectal cancer 

risk in both datasets (Table 3.2). All continuous variables such as BMI, daily calorie intake 

and physical activity etc. were converted to dichotomous variables with the cut-off value set 

at the point where 50% of the controls under the cut off value were used as reference. The aim 

for converting continuous variables to dichotomous variables was to assess the association 

between the variable and CRC risk at a set cut-off value. This method of assessment is in 
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contrast with the test of association between the variable and CRC risk that provides an 

estimate for the increase in risk per unit value of the variable, when the variable is continuous.      

An increase in BMI >21 kg/m2 at the age of 20 years was significantly associated with 

an increased risk of colorectal cancer in both datasets. A recent study conducted by de 

Mutsert et al. in Health Professional Follow-Up Study showed that compared to the BMI of 

18.5-22.9 at the age of 21 years, risk of obesity related cancers such as colorectal, renal, 

pancreatic and oesophageal cancers increased with increase in BMI (For 23.0-24.9 

Multivariate HR= 1.15; for 25.0-27.4 HR=1.24; for 27.5-29.9 HR=1.36 and; for ≥30 

HR=1.90) (de Mutsert et al., 2014). Pathologically, humans with high BMI have an increased 

adipose tissue mass. This increase in adipose tissue triggers an increase in pro-inflammatory 

cytokines such as tumor necrosis factor- alpha (TNFa) and interleukin-6 (IL6) along with an 

increase in immune cell infiltration (Khandekar et al., 2011). TNFa activates several 

downstream signaling pathways, including nuclear factor-κB (NF-κB), which promotes 

carcinogenesis, angiogenesis and metastasis (Khandekar et al., 2011).  

In both datasets, cigarette smoking was associated with an increased risk of colorectal 

cancer. This observation is in concordance with the results of Hannan et al., 2009 who 

showed an increased colorectal cancer incidence amongst current smokers (HR=1.27, 95% 

CI=1.06-1.52) and former smokers (HR=1.23, 95% CI=1.11-1.36) compared to lifelong non-

smokers (Hannan et al., 2009). Furthermore, a nested case control study within the PLCO 

screening trial showed association between smoking and cotinine (r=0.88, p=3.45 x 10-94), O-

cresol sulfate (r=0.72, p=1.22 x 10-42) and hydroxycotinine (r=0.67, p=5.41 x 10-32) (Cross et 

al., 2014). Compared to subjects with undetectable levels, subjects with detectable levels of 

hydroxycotinine (OR=2.68, 95% CI=1.33-5.40) and O-cresol sulfate (OR=1.81, 95% 

CI=0.98-3.33) showed an elevated risk of colorectal cancer (Cross et al., 2014). 

Hydroxycotinine is a major metabolite of nicotine but its effect on colorectal carcinogenesis 

has yet to be elucidated. 

Alcohol intake was associated with an increased risk of colorectal cancer in both 

datasets. This observation is consistent with the meta-analysis results of Fedriko et al., 2011 

who showed an increased risk of colorectal cancer for moderate (RR=1.21, 95% CI=1.13-

1.28) and heavy (≥4 drinks/day) (RR=1.52, 95% CI=1.27-1.81) drinkers compared to non-or 

occasional drinkers (Fedirko et al., 2011). A possible biological mechanism behind the 

increased risk could be alcohol induced hypermethylation of Alcohol dehydrogenase iron 

containing 1 (ADHFE1) gene, which leads to reduced gene expression and cell proliferation 

(Moon et al., 2014). Furthermore, hypermethylated ADHFE1 gene has been reported to be 

associated with colorectal cancer differentiation (Moon et al., 2014).   
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Physical activity was associated with a decreased risk of colorectal cancer in the UK-

CCSG dataset but conversely; it was associated with an increased risk in the NIH-CCFR 

dataset. Numerous epidemiological studies have shown consistent inverse association 

between physical activity and colon and rectal cancer risk (Slattery et al., 2003a), with several 

proposed biological mechanisms to explain association including increased gut motility, 

decreased insulin and obesity and enhancing immune system by influencing prostaglandin 

levels (Slattery, 2004). The association observed in the NIH-CCFR dataset is inconsistent 

with the literature, which could be due to the socio-economic status of the study subjects 

whereby subjects from the poor socio-economic background would have a limited access to 

early diagnosis and treatment, especially in the US where the health service is not publicly 

funded (Doubeni et al., 2012). However, the lack of data regarding the socio-economic status 

didn’t allow adjusting for it in the regression model in current study. 

Compared to the UK-CCSG dataset, an exceptionally high association was observed 

between family history and colorectal cancer risk in the NIH-CCFR dataset (Table 3.2). This 

is likely to be due to the case ascertainment strategies employed by the NIH-CCFR study sites 

such as CCO and UQM, which selected cases based on the family history and age at cancer 

diagnosis respectively (Table 2.1). In contrast, UK-CCSG study sites employed a case 

selection criterion, which only excluded cases that had Lynch syndrome. 

  Since the aspirin (and NSAID) dose information was available in the UK-CCSG 

dataset, a standardized variable was created that encompassed dose and duration information: 

75mg aspirin tablet year. 75 mg aspirin tablet year was defined as the amount of 75 mg 

aspirin tablets taken each day for one year. This helped in investigating association between 

aspirin dose and duration combination with CRC risk (75mg aspirin tablet years <0.25 (Ref) 

OR=1.0; ≥0.25 and ≤4.2 OR=0.73 95% CI=0.53-1.0; >4.2 and ≤10.2 OR=0.68 95% CI=0.49-

0.93; >10.2 OR=0.55 95% CI=0.40-0.76; Ptrend=1.13 x 10-5). However, since the aspirin (and 

NSAID) dose information was not collected by the NIH-CCFR consortium, association of 

aspirin dose and duration with CRC risk was not investigated. 

3.3.2 SNP variant allele and colorectal cancer risk 

In the present study, the variant T allele of a non-synonymous SNP rs1799853, which 

converts arginine to cysteine at the 144th amino acid position in the CYP2C9 enzyme, was 

associated with a decrease in colorectal cancer risk (OR=0.82, 95% CI=0.69-0.98, P=0.026) 

in the UK-CCSG dataset (Table 3.4). This observation is consistent with the results from a 

recent meta-analysis consisting of 16 case-control studies where the presence of the variant T 

allele was associated with reduced colorectal cancer risk (Summary OR=0.92, 95% CI=0.86-

0.98, P=0.012) (Wang et al., 2014). CYP2C9 is involved in the metabolism of several 
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xenobiotics (including aspirin), endogenous compounds and activation of pro-carcinogenic 

compounds in tobacco smoke (Panigrahy et al., 2010, Shou et al., 1996).  Using (S)-warfarin 

as a substrate, the variant allele has been shown to produce a slow metabolizing enzyme 

variant which retain only ~5-30% of the wild type activity (Bigler et al., 2001, Takahashi et 

al., 1998, Rettie et al., 1994).   This in turn would be expected to reduce risk of adenoma and 

cancer, as lower quantities of pro-carcinogens would be metabolized to carcinogenic 

metabolites. Barry et al. provided evidence to this hypothesis, where adenoma recurrence risk 

increased in smokers carrying the wild type genotype (Former smokers RR=1.26, 95% 

CI=0.99-1.58; Current smoker RR=1.60, 95% CI=1.19-2.15) but no change in risk for 

individuals with ≥1 variant allele (Pinteraction=0.04) (Barry et al., 2013).  

In the NIH-CCFR dataset, presence of the variant T allele of the intergenic SNP 

rs6983267 showed a borderline significant association for decrease in colorectal cancer risk 

(OR=0.83, 95% CI=0.70-1.00, P=0.057). The observation is in concordance with the results 

of Nan et al. where the presence of the variant allele was associated with reduced colorectal 

cancer risk (OR=0.83, 95% CI=0.74-0.94, P=0.002) (Nan et al., 2013) and with the results of 

several GWAS studies (Tenesa et al., 2008, Zanke et al., 2007, Tomlinson et al., 2007). The 

MYC oncogene is 355 kb downstream to rs6983267; in vivo and in vitro experiments have 

shown that the SNP impairs binding of transcription factor 7 like-2 (TCF7L2) to the MYC 

promoter, which reduces MYC expression and induces resistance to tumorogenesis (Sur et al., 

2012, Pomerantz et al., 2009). 

The current study showed novel site-specific association between the SNPs rs1799853, 

rs2302615 and rs1105879 and colon cancer. Whilst the direction of association is similar to 

that for colorectal cancer risk reported in the literature, these results require further validation 

as the association was based on few study subjects and observed in only the UK-CCSG 

dataset. A study carried out by Makar et al. suggested a site-specific association between 

rs20417 SNP in the PTGS2 gene with approximately two fold increase in rectal cancer risk in 

the population based Diet, Activity and Lifestyle Study and nearly 5 fold increase in rectal 

cancer in risk in the NIH-CCFR study where sibling controls were used (Makar et al., 2013). 

Site-specific association between rs20417 and rectal cancer was not observed in the UK-

CCSG dataset and was not replicated in the NIH-CCFR dataset as the current study used 

population controls in the NIH-CCFR dataset (Supplementary Table 3). 

3.3.3 Modulation of aspirin’s efficacy by SNPs 

On carrying out interaction analysis between SNP, aspirin only use and colorectal 

cancer risk, a novel observation was made where the variant allele of rs2070959 in UGT1A6 

showed an increased risk for cancer in aspirin users but not in non-users. SNP rs1105879, 
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which is in high LD with rs2070959, showed the same direction of association with aspirin 

use in relation to cancer risk, but didn’t reach the significance threshold of 0.05 for interaction 

(P=0.10). A study in the literature has shown that the presence of variant alleles of either 

SNPs reduce colon polyp risk in NSAID users (OR=0.53, 95% CI=0.33-0.86) but not in non-

users (OR=1.04, 95% CI=0.76-1.43) (Bigler et al., 2001). Furthermore, presence of a variant 

allele of rs1105879 reduces the risk of rectal cancer in NSAID users (OR=0.66, 95% 

CI=0.37-1.15) but increases risk in non-users (OR=1.25, 95% CI=0.89-1.77). However, the 

interaction analysis was carried out in a small number of individuals and the study used 

unaffected siblings controls rather than population controls (Scherer et al., 2014). The UDP 

glucuronosyltransferase 1A6 (UGT1A6) enzyme is involved in metabolizing aspirin through 

glucuronidation of salicylic acid. Presence of variant alleles at rs2070959 and rs1105879 have 

been associated with ~30-50% reduced enzyme activity compared to the wild-type form 

(Ciotti et al., 1997). Therefore, the hypothesis was that the presence of variant allele of 

UGT1A6 SNPs would reduce risk of colorectal cancer in aspirin users as longer duration 

would be required to metabolise aspirin. Interaction results in the current study are in contrast 

with the hypothesis and other studies thus requiring further validation.  

Similar to the UGT1A6 SNPs, presence of a variant allele of rs4936367 in PAFAH1B2 

was associated with increase in colorectal cancer risk amongst aspirin users but not in non-

users. Type I PAF acetylhydrolase α2 (PAFAH1B2) is an enzyme found in erythrocytes that 

hydrolyse acetyl group of aspirin (Zhou et al., 2011). In silico analysis using SIFT and 

PolyPhen for predicting functional consequence of the SNP suggests that the missense 

variation would not affect enzymatic activity, however, functional validation using in vitro 

and in vivo methods remains to be carried out. The novel interaction observed in the current 

study provides a new biological pathway to explore for understanding modulation of aspirin’s 

chemopreventive efficacy.  

3.3.4 Downstream analysis    

In the current study, several known epidemiological and genetic associations with 

colorectal cancer risk were observed which were consistent with the existing literature, thus 

vindicating dataset’s ability to identify known observations. Whilst the direction of 

association of all epidemiological risk factors, except physical activity, were consistent in 

both datasets, association of genetic variants with colorectal cancer was only observed in the 

UK-CCSG dataset. Inability to replicate these modest genetic associations in the NIH-CCFR 

dataset could be due to the case ascertainment bias as it affects genetic association estimates 

and hence, may lead to underestimation of the sample size required to detect genuine 

association with sufficient power (Zöllner and Pritchard, 2007).     
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Two novel gene-environment interactions observed in the UK-CCSG dataset were not 

replicated in the NIH-CCFR dataset thus prompting their validation in either a larger case-

control dataset or by carrying out random-effects meta-analysis of the UK-CCSG and NIH-

CCFR dataset that would provide higher power to observe interaction and would account for 

the variation in association effect sizes between the datasets. Power calculation for an 

unmatched case-control study was carried out where the baseline population risk for 

colorectal cancer was set at 5% (based on Peters et al. 2012) and 25% of the study subjects 

were estimated to be aspirin users (based on the percentage of aspirin users in UK-CCSG and 

NIH-CCFR datasets). From the calculations, it is estimated that a dataset containing 2923 

cases and controls would have 80% power to observe an association between a SNP with an 

MAF of 10% and an increase in colorectal cancer by 20%, which would reach a significance 

threshold of 0.05. On the other hand, it is estimated that a dataset containing 3076 cases and 

controls would have 80% power to observe an interaction between a SNP with an MAF of 

10% that increases colorectal cancer risk by 20% and 25% of study subjects being aspirin 

users, which would reach a significance threshold of 0.05. The combined UK-CCSG and 

NIH-CCFR dataset would consist of 3851 cases and 2262 controls, thus making meta-analysis 

an ideal methodology to re-assess associations and interactions that reached significance 

threshold of 0.05 in the two datasets.  

3.4 Conclusion 

The current chapter presented results from an exploratory analysis of candidate SNPs in 

aspirin’s pharmacokinetic and pharmacodynamic pathways to be associated with colorectal 

cancer risk or modulate aspirin’s chemopreventive efficacy. Two novel interactions between 

SNPs in UGT1A6 and PAFAH1B2 genes with aspirin use in relation to colorectal cancer risk 

were identified in one of the two datasets. Power analysis estimate suggests that conducting a 

meta-analysis by combining the two datasets for the associations and interactions with P≤0.08 

identified in the current chapter would have power to be replicated with P≤0.05. Re-analysis 

of the results observed in the current chapter is carried out using the random effects meta-

analysis of the UK-CCSG and NIH-CCFR datasets in the following chapter.  
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Chapter 4. (Results 2): Pharmacogenetic influences on colorectal cancer 

chemoprevention using aspirin- Part 2 

4.  

4.1 Introduction 

4.1.1 Aspirin and colorectal cancer prevention 

With an estimated 1.2 million new cases and 609,000 deaths worldwide in 2008 (Jemal 

et al., 2010), colorectal cancer (CRC) is the third most common cancer in men and second 

most common in women. Development of a primary prevention strategy for CRC is 

imperitive. Aspirin is a non-steroidal anti-inflammatory drug (NSAID), which is commonly 

used as an analgesic, anti-pyretic or as a prophylactic drug to treat cardiovascular diseases 

(CVD) (Fuster and Sweeny, 2011). A surfeit of evidence from case- control studies, cohort 

studies, meta-analyses and randomized controlled trials show regular intake of aspirin reduces 

colorectal adenoma and cancer risk (Ishikawa et al., 2013, Burn et al., 2011b, Burn et al., 

2011a, Cuzick et al., 2009, Logan et al., 2008, Bosetti et al., 2006, Cook et al., 2005, Kune et 

al., 1988). Furthermore, an inverse association between regular aspirin use and risk of distant 

metastasis and case-fatality has also been reported (Rothwell et al., 2012b, Algra and 

Rothwell, 2012). Thus there is convincing evidence for aspirin to be prescribed for 

prophylaxis and adjuvant therapy in patients with risk of CRC.  

Despite the extensive evidence of aspirin’s chemopreventive efficacy, data from several 

studies suggests inter-individual variation in the chemopreventive effect and the source of this 

variation has been attributed to the presence of somatic mutations (Nishihara et al., 2013, Liao 

et al., 2012) and germline variation in aspirin’s pharmacokinetic and pharmacodynamic 

pathways (Wang et al., 2014, Reimers et al., 2014, Fink et al., 2014, Angstadt et al., 2014, 

Seufert et al., 2013, Nan et al., 2013, Pathi et al., 2012, Zell et al., 2009, Hubner et al., 2008, 

Chan et al., 2007, Hubner et al., 2006, Din et al., 2004, Stark et al., 2001). Aspirin’s mode of 

action on cellular pathways within the colonic epithelial cells which in turn reduces the risk of 

CRC has yet to be elucidated. Delineating aspirin’s metabolism pathway and the interaction 

of its metabolites with molecules involved in key cellular processes associated with 

tumuorogenesis could not only help validate variation in the chemopreventive efficacy, but 

also aid in understanding the neoplastic transformation of colonic epithelial cells. 
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4.1.2 Aspirin’s pharmacokinetic pathway 

Aspirin is made up of two components: a phenol ring consisting of 6- carbon benzene 

ring with a carboxyl group and an acetyl moiety (Fuster and Sweeny, 2011). Once aspirin is 

ingested orally, it crosses the mucosal lining of the stomach and small intestine with 

bioavailability of 40-50% (Floyd and Ferro, 2014, Pedersen and FitzGerald, 1984). It 

undergoes hydrolysis to salicylic acid (SA) by human carboxylesterase 2 (CES2) in liver and 

intestinal microsomes (Tang et al., 2006), and by PAFAH1B2 subunit of Type I platelet 

activating factor acetylhydrolase (PAFAH) in erythrocytes (Zhou et al., 2011) before entering 

the systemic circulation.  

Approximately, 50% of the aspirin and SA absorbed in the stomach and small intestine 

is then conjugated during first-pass hepatic metabolism.  Three different pathways, which are 

as follows, then clear SA: First, glucuronidation by UDP-glucuronosyltransferases (UGTs) to 

form salicyl acyl glucuronide and salicyl phenolic glucuronide (Chen et al., 2007, Kuehl et 

al., 2006); Second, glycine conjugation by glycine-N-acylase to form salicyluric acid which is 

further conjugated to produce salicyluric acid phenolic glucuronide (Chen et al., 2007, 

Campbell et al., 1988) and; Third, oxidation by cytochrome P450 (CYP) enzymes to generate 

a minor metabolite called gentisic acid (Dupont et al., 1999). High inter-individual variation 

in the clearance of SA could be explained by the variability in SA conjugation. A study 

carried out by Hutt et al. showed that the urinary recovery of conjugated metabolites as a 

percentage of administered dose (900 mg) varied greatly between 129 study participants (Hutt 

et al., 1986). Overall, plasma half-life of aspirin is ~15-20 minutes across a range of treatment 

doses. 

Genetic polymorphisms in the enzymes UGT and CYP have been shown to encode 

protein variants with differential metabolic activities (Subramanian et al., 2012, 

Krishnaswamy et al., 2005). Furthermore, genetic variants (rs1105879 and rs2070959) in the 

UGT1A6 gene have been shown to be associated with colorectal adenoma (RR=0.68, 95% 

CI= 0.52-0.89) and carcinoma risk (OR=3.87, 95% CI=1.04-14.45) (Scherer et al., 2014, 

Hubner et al., 2006). The same variants have been shown to interact with regular aspirin use 

in relation to colorectal adenoma where the carriers of the variant allele using aspirin 

regularly were at a reduced risk of colorectal adenoma (OR=0.66, 95% CI= 0.45-0.95) 

compared to individuals having wild-type genotype (OR=0.93, 95% CI= 0.60-1.44) 

(Pinteraction=0.02) in population based case- control studies (Chan et al., 2005). Similarly, a 

meta-analysis of 16 case- control studies by Wang et al.  showed a significant association 

between the genetic variant rs1799853 in the CYP2C9 gene with colorectal adenoma 

(OR=1.39, 95% CI= 1.07-1.81, P=0.013) and cancer (OR=0.92, 95% CI=0.86-0.98, P=0.012) 
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(Wang et al., 2014). Thus, variation in the metabolism of aspirin could affect its efficacy in 

preventing colorectal neoplasia. 

4.1.3 Aspirin’s pharmacodynamic pathway 

Once aspirin is absorbed, it enters the portal circulation where it irreversibly inhibits 

Cyclooxygenase (COX) or Prostaglandin H-synthase (PTGS) enzymes. The primary target of 

aspirin is the COX-1 enzyme, which it inhibits by irreversibly acetylating Ser529 residue, 

thereby preventing access of the substrate to the enzyme’s catalytic site (Picot et al., 1994). 

COX-1 is constitutively expressed in platelets and gastric epithelial cells where it converts 

arachodonic acid to prostanoids such as Thromboxane A2, which is involved in the platelet 

activation cascade. Thus, inactivation of the COX-1 enzyme using aspirin provides cardio-

protection by reducing platelet activation and subsequent aggregation. Experimental evidence 

suggests that cancer patients exhibit increased platelet activation, which in turn has been 

shown to support tumor metastasis by protecting metastatic cells from the immune system and 

aid in attaching cancer cells to the endothelial lining thereby initiating secondary lesions (Gay 

and Felding-Habermann, 2011). Therefore, observation of reduced risk of distant metastasis 

in regular aspirin users from observational studies and randomized controlled trials (Rothwell 

et al., 2012b, Algra and Rothwell, 2012) could be the result of the inactivation of the COX-1 

enzyme in platelets.  

Another COX enzyme- COX-2, which is induced in response to pro-inflammatory and 

mitogenic stimuli in monocyte and epithelial cells, is also inactivated by aspirin but has been 

shown to act in a dose dependent manner (Dovizio et al., 2013, Sharma et al., 2010). 

Requirement of higher dose and dosing frequency of aspirin could be attributed to the ability 

of nucleated monocytes and epithelial cells to resynthesize COX-2 enzyme. COX-2 has been 

shown to be overexpressed in colon cancer, and COX-2 expressing colorectal cancer tissues 

produce large amounts of prostaglandin E2 which can cause resistance to apoptosis and 

stimulate cell migration and angiogenesis (Alfonso et al., 2014, Dixon et al., 2013, Eberhart et 

al., 1994). Acetylation of COX-2 at Ser516 by aspirin (Dovizio et al., 2013) results in 

generation of lipoxins that has been shown to inhibit cancer cell proliferation and 

angiogenesis (Ferrandez et al., 2012, Claria and Serhan, 1995).   

Further to the COX-dependent pathway, there is growing evidence of the 

chemopreventive effects of aspirin and salicylate through COX-independent pathways. To 

date, the only COX-independent target known to interact with aspirin is IĸB kinase (IKK). In 

vivo and in vitro studies have shown that aspirin and salicylate inhibit IKK, which prevents 

activation of NF-ĸB thereby reducing inflammatory and angiogenic responses (McCarty and 

Block, 2006, Yin et al., 1998). However, a study carried out by Stark et al. 2001 showed 
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activation and nuclear translocation of NF-ĸB in colorectal cancer cell lines that was induced 

by aspirin which was followed by apoptosis. The study also showed that this effect was 

specific to the cells of colonic origin only, thus suggesting a tissue specific effect of aspirin on 

NF-ĸB signaling (Din et al., 2004, Stark et al., 2001). Furthermore, a causal link between the 

nuclear translocation of NF-ĸB and apoptosis preceded by the activation of an upstream 

regulator c-Src tyrosine kinase in CRC cells with aspirin has been demonstrated, suggesting c-

Src as an upstream mediator of NF-ĸB signaling in CRC cells (Brady et al., 2011). 

Other chemopreventive mechanisms that have been mentioned in the literature include 

nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 specificity protein transcription 

factors induced by aspirin, which was associated with the downregulation of genes involved 

in cell survival, proliferation and angiogenesis (Pathi et al., 2012); decrease in the ATPase 

and selective inhibition of DNA cleavage activity of the topoisomerase IIα enzyme by the 

primary metabolite of aspirin- salicylic acid (Bau et al., 2014); decrease in cellular glucose 

consumption and inhibition of cell proliferation through inhibition of 6-phosphofructo-1-

kinase activity by aspirin and salicylic acid (Spitz et al., 2009) and; activating polyamine 

catabolism by increasing the expression and activity of spermidine N-acetyltransferase in 

colonic mucosa by aspirin, thus reducing the risk of colorectal neoplasia (Martínez et al., 

2003).  

Genetic variation in both COX-dependent and independent pathways have been shown 

to be associated with CRC and modulate aspirin’s chemopreventive efficacy.  For example, 

presence of the single nucleotide polymorphism (SNP) rs20417 in COX2 has shown to be 

associated with an increased risk of rectal cancer in two independent observational studies 

(Diet, Activity, Lifestyle Study OR=1.95, 95% CI=0.80-4.26, P=0.05; Colon Cancer Family 

Registry OR=4.88, 95% CI=1.54-15.45, P=0.01) (Makar et al., 2013). A study carried out by 

Seufert et al. 2013, which analyzed SNPs in genes involved in COX-independent pathway, 

showed association between 3 SNPs (rs9694958, rs10958713 and rs5029748) in the IĸBKβ 

gene with lower risk of colorectal or colon cancer (P<0.05 for all). Furthermore, 2 SNPs 

(rs230490 and rs997476) in the NF-ĸB gene were associated with higher CRC risk among 

NSAID users compared to non-users (Pinteraction<0.05 for both) (Seufert et al., 2013). 

Additionally, SNPs rs11694911 (RR=1.29, 95% CI=1.08-1.53, P=0.005) and rs2430420 

(RR=1.20, 95% CI=1.03-1.40, P=0.022) in the ODC1 gene have been shown to be associated 

with an increased risk for colorectal adenoma (Barry et al., 2011). Based on the literature 

evidence, there is clear evidence that the variation in aspirin’s pharmacokinetic and 

pharmacodynamic pathway could influence CRC risk by modulating aspirin’s 

chemopreventive efficacy.  
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4.1.4 Aims 

In the previous chapter, 43 SNPs across 16 genes involved in aspirin’s pharmacokinetic 

and pharmacodynamic pathways were tested for association and modification of the 

protective effect of aspirin use on colorectal cancer. Using two large population based case-

control datasets, the UK-Colorectal Cancer Study Group (UK-CCSG) and the NIH-Colon 

Cancer Family Registry (NIH-CCFR), novel site-specific associations between SNPs in 

CYP2C9, ODC1 and UGT1A6 gene with colon cancer risk were observed (P<0.05 for all) 

(Table 3.5). Moreover, SNPs rs4936367 and rs2070959 in the PAFAH1B2 and UGT1A6 gene 

respectively showed novel significant interactions with aspirin only use in relation to CRC 

risk, where the variant allele for both SNPs was associated with an increase in CRC risk 

amongst aspirin users but not in non-users (Table 3.6). However, the aforementioned 

asssociations and interactions were not observed in the NIH-CCFR dataset.. The difference in 

findings between datasets could be due to the differences in the case acertainment strategies 

used within the two datasets which may affect the sample size required to detect genuine 

associations with sufficient power (Zöllner and Pritchard, 2007).      

Based on the power calculation for an unmatched case-control study, where the baseline 

population risk for CRC is set at 5% and 25% of the study subjects are estimated to be aspirin 

only users, a dataset containing 2923 cases and controls would be required to test for 

association between the SNP and CRC and; 3076 cases and controls would be required to test 

for interaction between the SNP, aspirin only use and CRC with 80% power at a 0.05 

significance level (see Downstream analysis). Based on the power calculation, carrying out a 

meta-analysis of the UK-CCSG and NIH-CCFR dataset would be an ideal approach as the 

combined dataset would consist of 3851 cases and 2262 controls. There are two popular 

models for meta-analysis: fixed effect and random effects that accounts for different 

assumptions. In the fixed effect model, it is assumed that a single true effect size exists for all 

the studies in the analysis and the source of variance between the studies is due to sampling 

error (Borenstein et al., 2010, Walker et al., 2008). In contrast, in the random effects model it 

is assumed that there is a distribution of true effect sizes and the aim is to deliniate the mean 

effect size (Borenstein et al., 2010, Walker et al., 2008). Since UK-CCSG and NIH-CCFR 

used different case ascertainment strategies (Table 2.1) which may be the source of within-

study and between-study variance in the effect size, a random effects model was used to carry 

out meta-analysis.  

The current analysis aimed to re-assess associations and interactions observed in the 

previous chapter that reached a significance threshold of 0.08 in either datasets using a 

random effects meta-analysis approach. The cut-off of P≤0.08 was based on the power 
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calculation for an un-matched case-control study which estimated that 1949 cases and 

controls would be required to observe an association with 80% power between a SNP with a 

MAF of 15% and an increase in colorectal cancer risk by 20%, which would reach a 

significance threshold of 0.08. Furthermore, it was estimated that a dataset containing 2087 

cases and controls would have 80% power to observe an interaction between a SNP with an 

MAF of 15% that increased colorectal cancer risk by 20% and 25% of the study subjects 

being aspirin users, which would reach a significance thresholf of 0.08. Since the UK-CCSG 

dataset consisted of 1910 cases and 1276 controls whereas the NIH-CCFR dataset consisted 

of 1415 cases and 986 controls, a P-value cut-off of 0.08 was used to select asssociations and 

interactions from the previous chapter for meta-analysis. Analysis of these novel associations 

and interactions could further our understanding of the neoplastic process in the colon and 

rectum and add evidence to the relevant aspects of aspirin’s mode of action. Additionaly, 

novel SNPs identified from the analysis could be used to develope a panel of genetic markers, 

which would be utilised to predict the efficacy of aspirin’s prophylactic treatment in patients 

at risk of CRC.   
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4.2 Results 

4.2.1 Meta-analysis of association between SNP and CRC risk 

Overall, 4 SNPs from 3 separate gene loci- CDKN1A, CYP2C9 and UGT1A6 within the 

UK-CCSG and 1 intergenic SNP at 8q24 locus within the NIH-CCFR datasets showed 

association with CRC risk with significance threshold of <0.08 (Supplementary Table 2). 

These were taken forward for meta-analysis (see Random effects meta-analysis) and the 

results are presented in Figure 4.1. The variant T alleles of SNPs rs1799853 and rs6983267, 

which lie in the CYP2C9 gene and intergenic region respectively, were associated with a 

reduced risk of CRC (CYP2C9 rs1799853 Meta-analysis P=0.03; Intergenic rs6983267 Meta-

analysis P=0.04). For the other 3 SNPs, no significant association between the variant allele 

and CRC risk was observed (CDKN1A rs1321311 Meta-analysis P=0.12; UGT1A6 rs2070959 

Meta-analysis P=0.37; UGT1A6 rs1105879 Meta-analysis P=0.20).   

On carrying out a site-specific association test between SNPs and colon or rectal cancer, 

3 SNPs from 3 separate gene loci- CYP2C9, ODC1 and UGT1A6 were found to be associated 

with colon cancer in the UK-CCSG dataset (Table 3.5 and Supplementary Table 3). 

Subsequent meta-analysis, showed that the variant T allele of rs1799853 in CYP2C9 gene, 

and the variant C allele of rs1105879 in UGT1A6 gene, were associated with colon cancer 

(Figure 4.2) (CYP2C9 rs1799853 Meta-analysis P=0.003; UGT1A6 rs1105879 Meta-analysis 

P=0.03). Furthermore, as rs2070959 was in high linkage disequilibrium (LD) with rs1105879 

(R2=0.90), meta-analysis showed a trend for an increase in the risk of colon cancer in the 

presence of the G allele but didn’t reach statistical significance (Meta-analysis P=0.10). Meta-

analysis for rs2302615 in ODC1 gene was not carried out since the SNP was not genotyped in 

the NIH-CCFR dataset (Supplementary Table 1).  No significant associations were observed 

in the meta-analysis between the SNPs and rectal cancer (Figure 4.3).  

Since the test for association with cancer risk was carried out using a dominant 

inheritance model for the SNPs, the associations were re-assessed using a co-dominant 

inheritance model for the SNPs. Overall, 2 significant associations between the SNP and CRC 

in the dominant model were replicated successfully using the co-dominant model (CYP2C9 

rs1799853 Meta-analysis OR=0.85, 95% CI=0.72-1.00, P=0.05, I-squared=0%; Intergenic 

rs6983267 Meta-analysis OR=0.87, 95% CI=0.80-0.95, P=0.001, I-squared=0%). For the 2 

significant associations between the SNPs and colon cancer using a dominant model, 

association for only rs1799853 in the CYP2C9 gene was replicated successfully using the co-

dominant model (CYP2C9 rs1799853 Meta-analysis OR=0.78, 95% CI=0.65-0.93, P=0.007, 

I-squared=0%; UGT1A6 rs1105879 Meta-analysis OR=1.09, 95% CI=0.99-1.20, P=0.10, I-
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squared=0%). This suggests that the results from the dominant inheritance model largely 

mimic the results that would have been obtained using the co-dominant model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Meta analysis of association between the SNP variant allele and CRC 

risk. 

Forest plot depicting meta-analysis odds ratio of association. I-square is the measure 

of the variation in odds ratio attributable to heterogeneity (Higgins et al., 2003) and p-

value tests for heterogeneity between the UK-CCSG and NIH-CCFR dataset. 

UK-CCSG, UK-Colorectal Cancer Study Group 

NIH-CCFR, NIH-Colon Cancer Family Registry 
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Figure 4.2 Meta- analysis of association between the SNP variant allele and colon 

cancer risk. 

Forest plot depicting meta-analysis odds ratio of association. I-square is the measure 

of the variation in odds ratio attributable to heterogeneity (Higgins et al., 2003) and p-

value tests for heterogeneity between the UK-CCSG and NIH-CCFR dataset. 

UK-CCSG, UK-Colorectal Cancer Study Group 

NIH-CCFR, NIH-Colon Cancer Family Registry 
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Figure 4.3 Meta-analysis of association between the SNP variant allele and rectal 

cancer risk. 

Forest plot depicting meta-analysis odds ratio of association. I-square is the measure 

of the variation in odds ratio attributable to heterogeneity (Higgins et al., 2003) and p-

value tests for heterogeneity between the UK-CCSG and NIH-CCFR dataset. 

UK-CCSG, UK-Colorectal Cancer Study Group 

NIH-CCFR, NIH-Colon Cancer Family Registry 
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4.2.2 Meta-analysis of interaction between aspirin only use, SNP genotype and colorectal 

cancer risk 

Overall, 2 SNP variants in the UK-CCSG dataset, rs4936367 in PAFAH1B2 and 

rs2070959 in UGT1A6 showed a significant gene-environment interaction with aspirin only 

use in regards to CRC risk. The presence of the variant alleles was associated with an 

increased risk of CRC in aspirin users but not in non-users (Pinteraction≤0.05) (Table 3.6). SNPs 

rs7112513 and rs1105879 that were in high linkage disequilibrium with rs4936367 and 

rs2070959 respectively, showed a similar trend for interaction but didn’t reach significance 

threshold of <0.08. Since a significant interaction was only observed in the UK-CCSG 

dataset, all 4 SNPs were selected for the meta-analysis of interaction.  

 On carrying out meta-analysis of the gene X environment (GxE) interaction term, all 4 

SNPs showed a significant interaction with aspirin only use and CRC risk (Figure 4.4 A).  To 

explore the interaction, the association between the SNP variant allele and CRC risk was 

stratified by aspirin only users and non-users. For all 4 SNPs, presence of the variant allele 

was associated with an increase in risk of CRC in aspirin users (PAFAH1B2 rs4936367 

OR=1.32, 95% CI=0.79-2.22; PAFAH1B2 rs7112513 OR=1.28, 95% CI=0.82-2.01; UGT1A6 

rs2070959 OR=1.38, 95% CI=1.06-1.79; UGT1A6 rs1105879 OR=1.36, 95% CI=1.05-1.75) 

but not in non-users (PAFAH1B2 rs4936367 OR=0.91, 95% CI=0.76-1.10; PAFAH1B2 

rs7112513 OR=0.90, 95% CI=0.72-1.14; UGT1A6 rs2070959 OR=0.97, 95% CI=0.81-1.15; 

UGT1A6 rs1105879 OR=0.99, 95% CI=0.85-1.15) (Figure 4.4 B-D).  

The GxE interaction meta-analysis was re-assessed using the co-dominant inheritance 

model where only 2 SNPs in the UGT1A6 gene showed significant interaction with aspirin 

only use and CRC risk (rs2070959 OR=1.35, 95% CI=1.08-1.70, Pinteraction=0.008, I-

squared=0%; rs1105879 OR=1.32, 95% CI=1.06-1.64, Pinteraction=0.01, I-squared=0%) 

whereas, 2 SNPs in the PAFAH1B2 gene showed a trend for interaction but didn’t reach 

statistical significance threshold (rs4936367 OR=1.40, 95% CI=0.94-2.11, Pinteraction=0.10, I-

squared=25.7%; rs7112513 OR=1.36, 95% CI=0.96-1.91, Pinteraction=0.08, I-squared=0%). 

When stratified by aspirin only users and non-users, all 4 SNPs suggested a trend for an 

increased risk of CRC in aspirin users (PAFAH1B2 rs4936367 OR=1.32, 95% CI=0.74-2.34; 

PAFAH1B2 rs7112513 OR=1.26, 95% CI=0.79-2.02; UGT1A6 rs2070959 OR=1.27, 95% 

CI=1.03-1.55; UGT1A6 rs1105879 OR=1.24, 95% CI=1.03-1.50) but not in non-users 

(PAFAH1B2 rs4936367 OR=1.32, 95% CI=0.79-2.22; PAFAH1B2 rs7112513 OR=1.28, 95% 

CI=0.82-2.01; UGT1A6 rs2070959 OR=1.38, 95% CI=1.06-1.79; UGT1A6 rs1105879 

OR=1.36, 95% CI=1.05-1.75). This suggests that the results from dominant model largely 

agree with the results from co-dominant model.   
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Since rs1105879 and rs2070959 in the UGT1A6 gene showed site-specific association 

with colon cancer in the meta-analysis, site-specific interaction between these SNPs, aspirin 

only use and colon or rectal cancer was carried out. Meta-analysis of the GxE interaction term 

showed a significant interaction with colon cancer (Figure 4.5 A) but not rectal cancer (Figure 

4.6 A). When stratified by aspirin only users and non-users, the variant allele in both SNPs 

was associated with an increase in risk of colon cancer in aspirin users but not non-users 

(Figure 4.5 B and C). No significant association between the variant allele of both SNPs with 

rectal cancer in aspirin users and non-users was observed (Figure 4.6 B and C). 
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Figure 4.4 Meta-analysis of interaction between SNP variant allele, aspirin only use and colorectal cancer risk. 

(A) Forest plot depicting meta-analysis odds ratio of GxE interaction term. I-squared is the measure of the variation in odds ratio attributable to heterogeneity (Higgins et 
al., 2003) and p-value tests for heterogeneity between the UK-CCSG and NIH-CCFR dataset. 

(B) Association between PAFAH1B2 SNP rs4936367 variant allele and colorectal cancer risk stratified by aspirin use. 
(C) Association between PAFAH1B2 SNP rs7112513 variant allele and colorectal cancer risk stratified by aspirin use. 
(D) Association between UGT1A6 SNP rs2070959 variant allele and colorectal cancer risk stratified by aspirin use. 
(E) Association between UGT1A6 SNP rs1105879 variant allele and colorectal cancer risk stratified by aspirin use. 
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Figure 4.5 Meta-analysis of site-specific interaction between the SNP variant allele, aspirin only use and colon cancer risk. 

(A) Forest plot depicting meta-analysis odds ratio of GxE interaction term. I-squared is the measure of the variation in odds ratio attributable to heterogeneity 
(Higgins et al., 2003) and p-value tests for heterogeneity between the UK-CCSG and NIH-CCFR dataset. 

(B) Association between UGT1A6 SNP rs1105879 variant allele and colon cancer risk stratified by aspirin use. 
(C) Association between UGT1A6 SNP rs2070959 variant allele and colon cancer risk stratified by aspirin use. 



 85 

A                  B          C 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Meta-analysis of site-specific interaction between the SNP variant allele, aspirin only use and rectal cancer risk. 

(A) Forest plot depicting meta-analysis odds ratio of GxE interaction term. I-squared is the measure of the variation in odds ratio attributable to 
heterogeneity (Higgins et al., 2003) and p-value tests for heterogeneity between the UK-CCSG and NIH-CCFR dataset. 

(B) Association between UGT1A6 SNP rs1105879 variant allele and rectal cancer risk stratified by aspirin use. 
(C) Association between UGT1A6 SNP rs2070959 variant allele and rectal cancer risk stratified by aspirin use. 
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4.2.3 Meta-analysis of interaction between aspirin only use, SNP haplotype and colorectal 

cancer risk 

As the 2 SNPs in the PAFAH1B2 and UGT1A6 gene were in LD with each other, SNP 

haplotype interaction with aspirin only use and colorectal cancer risk was tested. However, 

since rs4936367 and rs7112513 in the PAFAH1B2 gene showed a high degree of LD 

(R2=0.99) in both datasets (Supplementary Figure 2 and Supplementary Figure 3), haplotype 

analysis was not carried out for these SNPs. In contrast, the UGT1A6 SNPs have been shown 

to have two haplotype alleles, UGT1A6*2 (rs1105879 and rs2070959) and UGT1A6*4 

(rs1105879 single mutation) (Hubner et al., 2006).  

Overall, no association between the UGT1A6 haplotypes and colorectal cancer risk in 

either of the datasets reached P<0.08 (UK-CCSG UGT1A6*2 OR=1.16, 95% CI=0.98-1.37, 

P=0.08; UK-CCSG UGT1A6*4 OR=1.03, 95% CI=0.70-1.50, P=0.89; NIH-CCFR 

UGT1A6*2 OR=1.01, 95% CI=0.84-1.20, P=0.94; NIH-CCFR UGT1A6*4 OR=1.16, 95% 

CI=0.74-1.83, P=0.52) and therefore, meta-analysis for association with cancer risk was not 

carried out. Furthermore, when the test for association of UGT1A6 haplotypes with CRC risk 

stratified by aspirin only use, no interaction between either of the haplotypes with CRC and 

aspirin only use was observed in the NIH-CCFR dataset (For UGT1A6*2: Aspirin only use 

OR=1.25, 95% CI=0.88-1.79 versus Non-users OR=0.90, 95% CI=0.71-1.13, Pinteraction=0.13; 

For UGT1A6*4: Aspirin only use OR=1.36, 95% CI=0.53-3.53 versus Non-users OR=1.20, 

95% CI=0.68-2.13, Pinteraction=0.88). Similarly, no significant association between the 

UGT1A6 haplotypes and CRC risk was observed when stratified by aspirin only use in the 

UK-CCSG dataset (For UGT1A6*2: Aspirin only use OR=1.55, 95% CI=1.06-2.25 versus 

Non-users OR=1.05, 95% CI=0.86-1.28, Pinteraction=0.07; For UGT1A6*4: Aspirin only use 

OR=1.18, 95% CI=0.53-2.66 versus Non-users OR=0.96, 95% CI=0.60-1.54, Pinteraction=0.69). 

Since no significant interaction was observed in either of the datasets, meta-analysis for 

interaction between UGT1A6 SNP haplotypes, aspirin only use and CRC risk was not carried 

out. 
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4.3 Discussion 

There is an extensive evidence of the chemopreventive effect of regular use of aspirin in 

relation to colorectal cancer; however, data from recent studies suggests inter-individual 

variation in the chemopreventive effect that has been attributed to the presence of somatic 

mutations (Nishihara et al., 2013, Liao et al., 2012) and germline variation (Wang et al., 2014, 

Reimers et al., 2014, Fink et al., 2014, Angstadt et al., 2014, Seufert et al., 2013, Nan et al., 

2013, Pathi et al., 2012, Zell et al., 2009, Hubner et al., 2008, Chan et al., 2007, Hubner et al., 

2006, Din et al., 2004, Stark et al., 2001). Several COX-dependent and –independent 

pathways have been implicated in aspirin’s mode of action on colonic epithelium for reducing 

CRC risk. Furthermore, genetic variants in these pathways have been suggested to modulate 

aspirin’s chemopreventive efficacy in prior studies.   

The association and interaction estimates reported in the literature however were based 

on datasets with small sample size or case ascertainment bias thus requiring re-assessment 

either in a new dataset or by carrying out meta-analysis using several datasets. The current 

study employed two large population-based case-control datasets (UK-CCSG and NIH-

CCFR) consisting of a combined total of 3851 colorectal cancer cases and 2262 controls of 

self reported non-Hispanic white ethnicity. Based on the power calculations presented in the 

previous chapter (see Downstream analysis), the random effects meta-analysis approach using 

the two datasets had 80% power to observe associations and interactions for SNPs with a 

MAF of 10%. SNPs that reached significance threshold (P≤0.08) in either of the two datasets 

were investigated using the meta-analysis approach in the current chapter. In total, 5 SNPs 

were tested for association with CRC risk and 4 SNPs were tested for GxE interaction with 

aspirin only use and CRC risk. Furthermore, site-specific cancer (colon and rectum) risk was 

also tested for these SNPs. 

4.3.1 Association with CRC risk 

A total of 5 SNPs from 4 separate gene loci were tested for association with CRC risk 

using the meta-analysis. However, only 2 out of 5 SNPs showed significant association with 

CRC (Figure 4.1). The variant T allele of rs1799853 in the CYP2C9 gene was associated with 

a decrease in risk of CRC. The current observation is in concordance with the study by Wang 

et al., 2014, where meta-analysis of 16 case-control studies showed a decreased risk of CRC 

in the presence of the variant T allele of rs1799853 (Summary OR= 0.92, 95% CI=0.86-0.98, 

P=0.012) (Wang et al., 2014). Cytochrome P450 (CYP2C9) is involved in metabolizing 

dietary carcinogens and several xenobiotic compounds. In vitro studies have shown that the 

enzyme carrying novel amino acids encoded by the SNP variants (rs1799853 or rs1057910) 
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retain only 5-30% of the activity of the wild-type enzyme (Haining et al., 1996). Since 

CYP2C9 is involved in the metabolism of pro-carcinogenic compounds such as 

benzo[a]pyrene (Shou et al., 1994), it can be hypothesized that the carriers of variant alleles 

have a reduced ability to metabolise pro-carcinogenic compounds and thus have a reduced 

risk of cancer. Further to the association with CRC risk, the variant T allele of rs1799853 also 

showed a novel site-specific association for reduction of colon cancer risk but not rectal 

cancer risk in the current study (Figure 4.2 and Figure 4.3). Several hypotheses such as 

differential expression and activity of the enzyme across the intestine leading to different rate 

of metabolism of pro-carcinogens (Läpple et al., 2003), spatial differences in the gut 

microbiome and  distinct gene-specific methylation profile and somatic molecular 

characteristics of proximal and distal CRCs (Deng et al., 2008) could explain this observation. 

Assessment of the mRNA expression and protein expression of the CYP2C9 enzyme shows a 

10 fold higher protein content in the liver than intestine (P<0.001) which suggests that 

majority of the pro-carcinogen metabolism takes place in the liver (Läpple et al., 2003). 

However, assessment of the difference in protein expression between colon and rectum in the 

Human Protein Atlas (http://www.proteinatlas.org) shows medium protein expression in the 

colon but no expression in the rectal tissue (Uhlen et al., 2015). This suggests the possibility 

of site-specific metabolism of pro-carcinogens in the colon and compliments the observation 

of site-specific reduction of colon cancer risk only in the presence of the variant allele made 

in the current study. Therefore, this association should be considered as a hypothesis 

generating observation and warrants further analysis in other datasets. 

Variant T allele of the SNP rs6983267 was also observed to be associated with a 

decreased risk of CRC (Figure 4.1).  This observation is in concordance with the three 

genome wide association studies (GWAS) that have consistently shown 15-18% reduced risk 

for CRC in association with the presence of the variant T allele of rs6983267 (Tenesa et al., 

2008, Zanke et al., 2007, Tomlinson et al., 2007). The nearest gene locus to this SNP is the 

MYC oncogene, which has been implicated in tumorigenesis. Previous experiments have 

shown impaired binding of WNT pathway related transcription factor 7 like-2 (TCF7L2) 

protein with the MYC promoter in the presence of variant T allele, thus inhibiting MYC 

expression and inducing resistance to intestinal tumorigenesis (Sur et al., 2012, Tuupanen et 

al., 2009, Pomerantz et al., 2009). Additionally, MYC acts as a transcriptional activator of the 

downstream gene ODC1 which is involved in polyamine synthesis (Zell et al., 2009). ODC 

activity and polyamine levels are observed to increase in colon cancer (Pegg et al., 1994), 

therefore, it could be hypothesized that the variant T allele of rs6983267 would lead to 
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reduced MYC expression which would lead to reduced ODC activity and polyamine levels 

thus reducing CRC risk. 

Another novel association observed in the current study was the site-specific association 

of SNP rs1105879 in the UGT1A6 gene with colon cancer but not rectal cancer (Figure 4.2 

and Figure 4.3). SNP rs2070959 which is in high LD (R2=0.90) with rs1105879 showed a 

similar trend for association but didn’t reach statistical significance. In accordance with 

current results, a study conducted by Thompson et al., 2009 suggested a trend for an increased 

risk of colon cancer in the presence of UGT1A6 SNPs but the association didn’t reach 

statistical significance threshold possibly due to the small study size consisting of 422 cases 

and 481 population controls (Thompson et al., 2009). These functionally relevant SNPs have 

previously been associated with reduced risk of colorectal adenoma recurrence in an aspirin 

intervention trial (Hubner et al., 2006) but a 3 SNP genotype consisting of the 2 

aforementioned SNPs is associated with an increased risk of CRC in the case- unaffected 

sibling control cohort of the NIH-CCFR dataset (Scherer et al., 2014). This novel site-specific 

association has not been reported in the literature and warrants further investigation and 

validation in other datasets to generate hypothesis that might explain the biological 

mechanism behind this association.  

4.3.2 Association with CRC risk stratified by aspirin only use 

A total of 4 SNPs from two gene loci, PAFAH1B2 and UGT1A6, were tested for 

interaction with aspirin only use and CRC. All 4 SNPs reach significance threshold for the 

GxE interaction term (Figure 4.4 A) and the variant allele in all 4 SNPs was associated with an 

increased CRC risk in aspirin only users but not in non-users (Figure 4.4 B-E). This is the first 

study to report an interaction between SNPs in the PAFAH1B2 gene, aspirin only use and 

CRC.  

Type 1 platelet activating factor acetylhydrolase subunit 2 (PAFAH1B2) acetylates 

aspirin to salicylic acid in erythrocytes as a heterodimer with PAFAH1B3 (Zhou et al., 2011) 

and in plasma as a homomer (Zhou et al., 2013). Currently, no literature exists describing 

functional variants in the PAFAH1B2 gene that modulates its acetylhydrolase activity. To 

predict the impact of SNPs on protein function, the Variant Effect Predictor (VEP) tool in 

1000 Genomes database was used 

(http://browser.1000genomes.org/Homo_sapiens/UserData/UploadVariations?db=core). SNP 

rs7112513 is an intron variant whereas rs4936367 is a missense variant found in exon 7 and 

results in a valine to methionine change at amino acid position 151 in the protein. Since 

rs4936367 is a missense variant, it was hypothesized to affect protein function, however, the 

VEP tool predicts that the missense variation is tolerated by the protein (SIFT score= 0.23; 
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PolyPhen score=0.353) and suggests that it has very little or no impact on its function. 

Absence of functional data restricts hypothesis generation for the observed GxE interaction in 

the current study and the novelty of the observation warrants validation in other datasets. 

Like the PAFAH1B2 SNPs, two UGT1A6 SNPs showed association for an increased 

risk of CRC in aspirin only users but not in non-users in the presence of the variant allele 

(Figure 4.4 E-F). However, a study conducted by Bigler et al., 2001 showed association for a 

decreased risk of colon adenoma in aspirin users (OR=0.53, 95% CI=0.33-0.86) but not in 

non-users (OR=1.04, 95% CI=0.76-1.43) in the presence of the variant allele (Bigler et al., 

2001). Furthermore, a study by Chan et al., 2005 showed an interaction trend for colorectal 

adenoma similar to that observed in the Bigler et al., 2001 study (Pinteraction=0.02) (Chan et al., 

2005). This is the first study to report an interaction between the two UGT1A6 SNPs, aspirin 

only use and CRC. The contrast in the association observed for cancer risk in the current 

study and adenoma risk in the literature could be attributed to a difference between the key 

genetic and epigenetic molecular differences between adenoma and carcinoma which may 

make carcinoma cells more sensitive to aspirin intervention. This hypothesis could be backed 

by the results from the CAPP trial where aspirin intervention didn’t reduce polyp number in 

the sigmoid colon or rectum (RR=0.77, 95% CI=0.54-1.10) but reduced risk of CRC after 2 

years of intervention (HR=0.41, 95% CI=0.19-0.86, P=0.02; IRR=0.37, 95% CI=0.18-0.78, 

P=0.008) (Burn et al., 2011b, Burn et al., 2008).  

Additionally, the two UGT1A6 SNPs in the current study showed significant interaction 

with aspirin only use and site specific colon cancer but not rectal cancer where the risk of 

colon cancer was increased in aspirin users and not non-users having the variant allele (Figure 

4.5 and Figure 4.6). A similar trend for interaction was observed between the two SNPs, 

NSAID use and colon cancer in a study by Thompson et al., 2009 but the interaction didn’t 

reach the significance threshold possibly due to the small study size consisting of 422 cases 

and 481 population controls. In contrast, a study conducted by Scherer et al., 2014 showed 

that the SNP rs1105879 was associated with lower risk of rectal cancer in NSAID users but 

not non-users in the presence of the variant allele (Pinteraction=0.02) (Scherer et al., 2014). 

However, this observation was based on a small study sample of 445 rectal cancer cases and 

743 sibling controls and hasn’t been replicated in any other datasets.  

Salicylic acid formed after hydroxylation of aspirin in stomach and systemic circulation 

is metabolized through glucoronidation by UDP-glucuronosyltransferases (UGTs) to form 

salicyl acyl glucuronide and salicyl phenolic glucuronide (Chen et al., 2007, Kuehl et al., 

2006). In vitro biochemical assays showed that the enzyme variant containing rs2070959 and 

rs1105879 had 41-74% metabolic activity of the wild-type form at certain pH levels (Ciotti et 
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al., 1997), whereas, a study conducted on liver microsomes showed that the enzyme variant 

containing rs2070959 and rs1105879 had higher metabolic activity compared to the wild-type 

form (Nagar et al., 2004). Although, when metabolism of salicylic acid in urine following 

aspirin dosing to young volunteers was tested, excretion of aspirin and its metabolites after 2-

4 hour period was found to be higher in individuals homozygous for rs2070959 and 

rs1105879 compared to the wild-type individuals suggesting that the variant form of enzyme 

may confer more rapid glucoronidation compared to wild-type form (Chen et al., 2007). The 

Chen et al. 2007, study didn’t account for the possible change in the pharmacokinetic 

parameters of the other 2 enzymes involved in salicylic acid metabolism but does support the 

interaction result of the current study where the carriers of the variant allele had an increased 

risk of CRC compared to the wild-type individuals. 

4.3.3 Clinical utility of the SNPs 

Whilst the novel associations and interactions in the current study provide plausible 

hypotheses of the mechanistic processes of colorectal neoplasia and aspirin chemoprevention, 

it also provides an opportunity to explore the utility of genotyping SNPs before prescribing 

aspirin as a prophylactic or an adjuvant drug for preventing CRC. One of the ways to test for 

their clinical utility is by carrying out burden tests of association, which models the effect of 

“mutation load” by accumulating minor alleles of several SNPs within a functional unit- in 

this case the aspirin pharmacokinetic and pharmacodynamic pathway. In this test, each variant 

is weighted and is assumed that the direction of the association for all variants with the 

phenotype is same (Moutsianas and Morris, 2014). Since some variants in the current study 

showed positive association whereas certain variants showed inverse association with CRC, 

burden tests of association cannot be conducted. However, generalized burden tests, which 

don’t assume the same direction of association for all variants could be used to test the 

clinical utility of the SNPs identified in the current study (Moutsianas and Morris, 2014). 

Nonetheless, carrying out generalized burden tests is beyond the scope of the current study as 

the novel associations and interactions have yet to be validated in other datasets and 

functional characterization of variant alleles of some SNPs needs to be undertaken.  

4.3.4 Study limitations 

 Whilst the current study highlights plausible biological mechanisms to explore in the 

future, it also has several drawbacks. First, no multiple test correction procedure to control the 

type 1 error rate was used due to the relatively small study size of 3851 cases and 2262 

controls and modest effect size for associations and interactions. Furthermore, since a flexible 

approach to study design and analysis was employed which encompassed multiple hypotheses 
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and multiple tests for each hypothesis, appropriate multiple test adjustment for a global 

conclusion could be difficult to perform (Bender and Lange, 2001). Hence any “significant” 

or “novel” observations in the current study should be regarded as exploratory results that 

warrants further testing in other datasets. Second, even though the log odds and standard error 

for associations in the NIH-CCFR dataset were adjusted for study site, the case ascertainment 

strategies employed at the NIH-CCFR sites were hugely different and thus, adjusting 

association for study site may not encompass the variance in the effect size estimates 

observed at different sites. However, carrying out meta-analysis where NIH-CCFR study sites 

were stratified into individual datasets would have reduced power to observe significant 

association and increased between study heterogeneity. Third, a dominant inheritance model 

was used for carrying out association and interaction tests in the meta-analysis to increase 

statistical power. However, upon carrying the tests using co-dominant model, majority of the 

results had similar estimates to that observed in the dominant model and reached significance 

threshold of 0.05 that was set for the current study thus suggesting that the associations are 

robust as they are observed irrespective of the inheritance model used in the test. 

4.4 Conclusion 

The current chapter presented exploratory meta-analysis results of candidate SNPs in 

aspirin’s pharmacokinetic and pharmacodynamic pathways that were associated with 

colorectal cancer risk or modulated aspirin’s chemopreventive efficacy using two population 

based case-control datasets- UK-CCSG and NIH-CCFR. SNP rs1799853 in the CYP2C9 gene 

and rs6983267 near MYC gene were associated with CRC and rs1105879 in UGT1A6 gene 

showed a novel site-specific association with colon cancer risk only. Furthermore, novel 

interactions between SNPs in UGT1A6 and PAFAH1B2 genes with aspirin only use in 

relation to colorectal cancer risk were observed. Lastly, two SNPs in the UGT1A6 gene 

showed novel site-specific interaction with aspirin only use and colon cancer risk. Together, 

these results provide hypothesis-generating observations that involve new biological 

mechanisms that could be investigated further to help explain aspirin’s differential efficacy 

and provide insight into the neoplastic transformation of cells in colon and rectum. All novel 

associations and interactions identified in the current study warrant further investigation in 

other case-control datasets. 



 93 

Chapter 5. (Results 3): Testing clinical utility of published warfarin 

dosing algorithms in the Gujarati population from India 

5.  

5.1 Introduction 

5.1.1 Warfarin pharmacogenetic pathway 

Warfarin is an oral anticoagulant, which is widely prescribed to manage 

thromboembolic diseases such as atrial fibrillation, pulmonary embolism and deep vein 

thrombosis. It is administered as a racemic mixture of 2 optically active enantiomers, S- and 

R- warfarin, with the S- isomer being 3 to 5 times more potent at anti-coagulating than the R-

isomer (Tatarunas et al., 2011). S-warfarin is primarily metabolized by the cytochrome P450 

(CYP2C9) enzyme, which catalyzes its conversion to inactive 6-hydroxy and 7-hydroxy 

metabolites, whereas R-warfarin is metabolized to 10-hydroxywarfarin by CYP1A2 and 

CYP3A4 (Kaminsky and Zhang, 1997). Two non-synonymous single nucleotide 

polymorphisms (SNPs) in the CYP2C9 gene, CYP2C9*2 (rs1799853) and CYP2C9*3 

(rs1057910), reduce enzymatic activity by 12% and 5% respectively compared to the wild 

type genotype (Tatarunas et al., 2011).  The presence of the variant allele of either of the two 

SNPs is associated with an increased risk for an adverse event by 2-3 fold during treatment 

initiation (Aithal et al., 1999, Gage et al., 2008, Pavani et al., 2011). The VKORC1 gene codes 

for vitamin K epoxide reductase complex subunit 1 (VKORC1), an enzyme that activates 

clotting factors by regeneration of vitamin K1 from vitamin K1 2,3-epoxide and is the target 

for warfarin (Choonara et al., 1988, Bell, 1978). A SNP within the VKORC1 gene promoter, -

1639G>A (rs9923231) leads to creation of an E-box binding site which may repress 

transcription resulting in decreased mRNA levels and therefore resulting in lower levels of 

active enzyme (Wang et al., 2008, Yuan et al., 2005, D’Andrea et al., 2005).  

Several studies have suggested that the combined knowledge of these 3 SNPs, along 

with demographic and anthropometric variables such as age, gender and body mass index 

(BMI), could explain up to half of warfarin dose variability (Gage et al., 2008, Yang et al., 

2009, Tatarunas et al., 2011).  Addition of other genetic polymorphisms in genes involved in 

warfarin pharmacokinetics and pharmacodynamics (Reider et al., 2007, McDonald et al., 

2009a, Voora et al., 2010, Lane et al., 2011, Pavani et al., 2011, Universiy, 2012), 

concomitant medication use (McDonald et al., 2012, Whitley et al., 2007), indication for 

warfarin medication (Vink et al., 2003), ethnicity (Whitley et al., 2007), smoking 
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(Nathisuwan et al., 2011) and vitamin K intake (Lubetsky et al., 1999) could further improve 

dosing accuracy and explain dose variability.  

5.1.2 Benefit of genotype based warfarin dosing 

Response to warfarin therapy is monitored using International Normalised Ratio (INR), 

which is the ratio of patient’s prothrombin time to that of a reference population. Several 

anticoagulation trials report the optimal target INR level to be between 2 and 3 (Oden et al., 

2006, Hylek et al., 1996). To improve the time spent within target INR, in 2007, the Food and 

Drug Administration (FDA) added pharmacogenetic information to the warfarin drug label, 

but didn’t provide any dosing regime to make use of the genetic information. Subsequently, 

the label was updated in 2010 to include a genotype-stratified dosing table (Lee and Klein, 

2013, Klein et al., 2009).  A retrospective study carried out by Finkelman et al. concluded that 

the therapeutic dose predicted using pharmacogenetic algorithms were more accurate 

compared to the dose calculated using genetic tables or empirical dosing alone (Finkelman et 

al., 2011).  In 2010, the Medco-Mayo Warfarin Effectiveness Study showed 43% lower risk 

of hospitalization due to bleeding or thromboembolism (HR: 0.57, 95% CI: 0.39 to 0.83, 

P=0.003) for patients who were given genotyped guided dose during treatment initiation 

(Epstein et al., 2010).   

A recent randomized clinical trial, CoumaGen-II, demonstrated that in intention to treat 

analysis, patients whose dosage was calculated using a pharmacogenetic algorithm had lower 

percentage of out of range INR (31% versus 42% at 1 month; 30% versus 42% at 3 months, 

P<0.001 for both) and spent a higher percentage of time within the therapeutic range (69% 

versus 58% at 1 month; 71% versus 59% at 3 months, P<0.001 for both) compared to people 

on a standard dosing regime (Anderson et al., 2012). Two further randomized clinical trials, 

European Pharmacogenetics of Anti Coagulant Therapy (EU-PACT) (Pirmohamed et al., 

2013) and Clarification of Optimal Anticoagulation through Genetics (COAG) (Kimmel et 

al., 2013), tested the clinical utility and effectiveness of pharmacogenetic guided dosing 

regimes. In the EU-PACT trial, patients receiving a pharmacogenetic-guided warfarin dose 

spent a higher percentage of mean time in the therapeutic INR range (67.4%) compared to 

controls (60.3%) during the initiation of warfarin therapy (Adjusted difference, 7.0 percentage 

points; 95% CI, 3.3 to 10.6; P<0.001). However, in the COAG trial, no difference was 

observed in the mean percentage of time in the therapeutic range between the genotype 

guided group (45.2%) and control group (45.4%) (Adjusted difference, -0.2; 95% CI, -3.4 to 

3.1; P=0.91) but a significant interaction between ethnicity and dosing strategy was observed 

(P=0.003).  
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Two potential factors could explain conflicting results from the two aforementioned 

trials. First, the EU-PACT trial used a loading dose algorithm (Avery et al., 2011) whereas the 

COAG trial used a maintenance dose algorithm (Gage et al., 2008). The loading dose 

algorithm incorporates pharmacokinetic parameters of S-warfarin based on the CYP2C9 

genotype. A simulation carried out by Avery et al., 2011 illustrated improved plasma S-

warfarin and anticoagulation response time profile compared to the maintenance dose 

algorithm. Second, 1.3% and 27% of the patients on the EU-PACT and COAG trial 

respectively were Africans. Both trials genotyped patients for VKORC1, CYP2C9*2 and 

CYP2C9*3 SNPs which have been shown to explain a significant proportion of warfarin dose 

variability in white Europeans but not in non-European populations, suggesting absence of 

population specific SNPs in the algorithm. In a recent genome wide association study 

(GWAS) in African American individuals, a novel SNP upstream of CYP2C18 (rs12777823) 

was found to be significantly associated with warfarin dose requirement (P= 4.5 x 10-12) and 

improved dosing accuracy of the Klein et al., 2009 dosing algorithm by 21% (Perera et al., 

2014, Perera et al., 2013b). Thus, the EU-PACT trial showed the benefit of genotype guided 

dosing approach in a genetically homogeneous population whereas the COAG trial failed to 

show benefit of the approach in a genetically diverse population. This suggests that despite 

the strong evidence for the clinical utility of pharmacogenetic based dosing strategy, ethnic 

variations at the genetic and demographic level should be taken into account.   Alternatively, 

another dosing algorithm incorporating additional genotype data such as that for rs12777823 

could be used. 

5.1.3 Clinical utility of warfarin pharmacogenetics in India 

It is estimated that 30% of all deaths worldwide are attributed to cardiovascular diseases 

(CVDs) out of which ~80% of the burden is from developing countries (Gaziano, 2005). 

Epidemiological transition to improved life expectancy, high-fat diets, smoking and sedentary 

lifestyle have been implicated to be causal factors for mortality due to atherosclerotic CVDs, 

especially at ages below 50 years in urban India (Gaziano, 2005, Yusuf et al., 2001). It is 

estimated that India suffers the highest loss of potentially productive life years due to deaths 

from cardiovascular disease (9.2 million years lost in 2000) compared to all other countries 

(Reddy et al., 2005).  With low cost and high efficacy, warfarin is anticipated to remain the 

drug of choice for preventing cardiovascular related diseases and deaths. Most of the existing 

literature on warfarin pharmacogenetics is related to the white European population. 

However, there is an increasing interest in developing genotype-guided warfarin dose 

algorithm for the Indian population.  



 96 

Results on the clinical utility of pharmacogenetic algorithms from the studies carried 

out in the white European population imply that they cannot be translated to the Indian 

population due to demographic, dietary and genetic based differences between the two 

populations. A study carried out by the Indian Genome Variation Consortium showed that the 

heterogeneous Indian population could be divided into 5 clusters based on their genotype 

frequencies. It suggested that the effect of population stratification on association studies 

carried out in individuals from one cluster, regardless of ethnicity, may be small (Consortium, 

2008). To date, allele frequencies of warfarin dose associated SNPs have been established and 

a population specific pharmacogenetic algorithm has been developed for the South Indian 

population (Adithan et al., 2003, Pavani et al., 2011, Pavani et al., 2012).  However, the 

clinical utility of existing pharmacogenetic algorithms for the Gujarati Indians, a sub-

population of 60 million which belongs to a different population cluster compared to South 

Indian population, has not been tested.  

5.1.4 Aims 

The current study aims to: (A) analyze allele frequencies of a panel of 13 warfarin dose 

associated SNPs in the Gujarati population and compare them with allele frequencies 

observed in European, African and Han Chinese populations and (B) test the clinical utility of 

published genotype- guided dosing algorithms by measuring their dose prediction accuracy in 

the Gujarati population and comparing them with the prediction accuracy observed in white 

European and South Indian populations. 
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5.2 Results 

5.2.1 Clinical characteristics of patients treated with warfarin 

To further investigate the clinical utility of the published algorithms, 102 patients of 

Gujarati ethnicity were recruited on the study and had clinical information recorded (see Data 

collection and study population). Nearly two thirds of the study participants were male and 8 

out of 102 patients were current smokers. The mean age, BMI and body surface area (BSA) 

was 51.3 years, 23.91 kg/m2 and 1.68 m2 respectively (Table 5.1). Current warfarin dose was 

not available for 2 patients but the mean weekly warfarin dose for the rest (100 patients) was 

24.4 mg/week.  

 

Parameter 
Number of 

subjects 
Mean 

Standard 

deviation 
Minimum Maximum 

Age (years)* 102 51.3 13.7 15 76 

BMI (kg/m2) 102 23.91 4.08 16 36.46 

BSA (m2) 102 1.68 0.20 1.15 2.19 

Warfarin (mg/ week) 100 24.4 10.4 7 52.5 

Number of concomitant 

medications 
102 5.5 2.6 1 14 

Table 5.1 Clinical characteristics of 102 patients treated with warfarin 

Demographics, warfarin intake and concomitant medication use summary of 102 patients 

recruited on the study. 

* Age is calculated as the difference between the interview date and date of birth. 

 

The mean number of concomitant medications (including herbal medications) was 5.5 

with the maximum number of concomitant drugs in one patient being 14 (Table 5.1). Overall, 

patients co-administered with amiodarone and azole antifungal drugs had lower mean 

warfarin dose requirement whereas, patients co-administered with statins had a higher mean 

warfarin dose requirement compared to other drug users thus suggesting an association 

between concomitant drug use and warfarin dose (Figure 5.1). Furthermore, upon stratifying 

current warfarin dose into 3 groups to define patient’s sensitivity to warfarin: sensitive (≤21 

mg/week), intermediate (>21 - 49≤ mg/week) and resistant (>49 mg/week) (based on Klein et 

al. 2009), 69% of the amiodarone drug users and 100% of the azole antifungal drug users 

were warfarin sensitive, whereas ~64% of the statin users were warfarin intermediate 

suggesting an association between concomitant drug use and warfarin dose (Table 5.2). 
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Warfarin dose 
stratification Limits Number of 

subjects 
Concomitant drugs 

Amiodarone Azole Statin Others* 

Sensitive 21≤ 
mg/week 51 18 5 11 17 

Intermediate >21 - 49≤ 
mg/week 47 8 - 21 18 

Resistant >49 
mg/week 2 - - 1 1 

Table 5.2 Current warfarin dose (mg/week) and concomitant medication use 

Dose stratification based on sensitivity to warfarin and use of concomitant drugs for 100 

patients whose current warfarin dose information was available. 

Others include aspirin, clopidogrel, multivitamins, antibiotics, non-steroidal anti-

inflammatory drugs, folic acid supplement, beta-blockers etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Average warfarin dose (mg/week) based on concomitant medication use  

Error bars indicate standard deviation. 

*Others include aspirin, clopidogrel, multivitamins, antibiotics, non-steroidal anti-

inflammatory drugs, folic acid supplement, beta-blockers etc. 
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Fifty percent of the patients were being treated for valvular heart disease whereas only 

~20% of the patients were indicated treatment for atrial fibrillation (Supplementary Table 7). 

The high percentage of patients treated for valvular heart disease could be either due to high 

prevalence of rheumatic fever in the Indian population (Seckeler and Hoke, 2011) or due to 

recruitment bias as the recruitment hospital specializes in heart valve replacement. Two 

patients were re-hospitalized with adverse reaction during their warfarin treatment. 

5.2.2 Genetic makeup of the Gujarati population 

Out of 102 patients that were treated with warfarin, genetic analysis was not carried out 

on the 102nd patient as the sample was received after the recruitment deadline; thus removed 

from all subsequent downstream genetic analysis. A total of 13 SNPs were genotyped in 500 

subjects recruited on the study (see Genotype analysis and quality control). These SNPs were 

selected for the current study based on the literature evidence of their effect on daily warfarin 

dose or their utility in predicting daily warfarin dose. Out of 13 SNPs analyzed in the study, 2 

SNPs (rs2242480 in CYP3A4 gene and rs3814637 in CYP2C19 gene) had <80% call rate on 

the Sequenom and were therefore not included in the downstream analyses (Supplementary 

Table 8). Validity of the genotype calls made by Sequenom platform was carried out using 

RFLP PCR on 10% of randomly selected samples for 5 SNPs (rs1799853, rs1057910, 

rs9923231, rs7294 and rs2108622) (Figure 5.2). 100% concordance was observed between 

the genotype calls from Sequenom MassARRAY platform and RFLP PCR techniques. Four 

samples where the SNP variant rs9923231 was called as homozygous for an extremely rare 

third allele (-1639 G>T), bi-directional Sanger sequencing (GATC Biotech, UK) was carried 

out for genotype confirmation. From the sequencing chromatograph, it was observed that 

three of the samples were homozygous wildtype and one sample was homozygous mutant for 

the second allele (-1639 G>A) (Figure 5.3). 

Using Fisher’s exact test, no evidence was observed for differences in any of the SNP 

frequencies between the cohort of 101 patients and 399 healthy individuals with exception of 

the SNP rs2108622 (P=0.012), and therefore, SNP data from both cohorts were merged 

(Table 5.3). All SNPs were in concordance with the Hardy- Weinberg equilibrium and no 

SNP pairs were observed to be in linkage disequilibrium (LD). On comparing the MAF 

observed in the population enrolled on the current study with the Gujarati Indian in Houston 

(GIH) population in 1000 Genomes database, the allele frequency for all the SNPs were 

similar between the 2 populations thus vindicating the genotype calls made in the current 

study. Overall 5 out of 11 SNPs (rs28371686, rs9332131, rs61742245, rs11676382 and 

rs339097) had <1% MAF in the Gujarati population (Table 5.3).  The highest MAF was 

observed for rs7294 (variant A allele=68%) and rs2108622 (variant A allele= 43%) in the 
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Gujarati population as compared to the 3 reference populations- EUR, AFR and CHB.  All 6 

SNPs with MAF >1% had significantly different frequencies compared to all 3 populations 

(Table 5.3).  

 

A. CYP2C9- rs1799853 and rs1057910  B. VKORC1- rs9923231 

 

 

 

 

 

 

 

 

 

 

C. CYP4F2- rs2108622    D. VKORC1- rs7294 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Restriction fragment length polymorphism (RFLP) PCR to genotype SNPs. 

Genotyping rs1799853 and rs1057910 in the CYP2C9 gene. Lanes consists of homozygous 

WT and heterozygous MT sample for rs1799853 and rs1057910 SNPs; (B) Genotyping 

rs9923231 in the VKORC1 gene.  Lanes consists of homozygous WT, homozygous MT and 

heterozygous MT sample; (C) Genotyping rs2108622 in the CYP4F2 gene. Lanes consists of 

heterozygous MT, homozygous MT and homozygous WT sample; (D) Genotyping rs7294 in 

the VKORC1 gene. Lanes consists of heterozygous MT, homozygous WT and homozygous 

MT sample respectively. Lane 1 in all figures represents 2- log 10kb DNA ladder. 
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Figure 5.3 rs9923231 SNP genotyping using Sanger sequencing for 4 

samples. 

Highlighted peak and letter on the chromatograph represents rs9923231 SNP 

position. Samples re-genotyped are (A) IUKWP63, (B) IUKWP49, (C) 

IUKWP8 and (D) IUKWP71. 
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Gene 

Name 

HGVS 

Name 

Polymorphism 

(N=500) 

Cohort 

comparison 

(P-value) 

Population specific Minor Allele Frequency* 

Study 

population 

Gujarati 

Indian 

(GIH) 

European 

(EUR) 

African 

(AFR) 

Han 

Chinese 

(CHB) 

CYP2C9 

8633C>T 
rs1799853 

(n=451) 
0.62 0.06 

0.05 

(P=0.27) 

0.12 

(P<0.001) 

0.02 

(P<0.001) 

0.00 

(P<0.001) 

47639A>C 
rs1057910 

(n=455) 
0.20 0.08 

0.13 

(P=0.06) 

0.06   

(P=0.049) 

0.006 

(P<0.001) 

0.04 

(P=0.013) 

47644C>G 
rs28371686 

(n=446) 
1.0 0.00 0.00 0.00 

0.02 

(P<0.001) 
0.00 

15625delA 
rs9332131+ 

(n=400) 
0.11 0.001   

  

VKORC1 

3588G>A 
rs9923231 

(n=472) 
0.16 0.21 

0.18 

(P=0.65) 

0.40 

(P<0.001) 

0.07 

(P<0.001) 

0.95a 

(P<0.001) 

5332G>T 
rs61742245+ 

(n=420) 
1.00 0.00   

  

8956G>A 
rs7294 

(n=425) 
0.65 0.68 

0.67 

(P=0.17) 

0.35 

(P<0.001) 

0.48 

(P<0.001) 

0.05 

(P<0.001) 

5924C>T 
rs17708472 

(n=434) 
0.12 0.15 

0.16 

(P=0.86) 

0.23 

(P<0.001) 

0.05 

(P<0.001) 

0.00 

(P<0.001) 

CYP4F2 23454G>A 
rs2108622 

(n=465) 
0.012 0.43 

0.44 

(P=0.51) 

0.27 

(P<0.001) 

0.09 

(P<0.001) 

0.22 

(P<0.001) 

GGCX 16025G>C 
rs11676382 

(n=446) 
1.0 0.008 

0.01 

(P=0.68) 

0.09 

(P<0.001) 

0.006 

(P=1.0) 

0.00 

(P=0.36) 

CALU 24879A>G 
rs339097 

(n=386) 
1.0 0.005 

0.00 

(P=0.58) 

0.00  

(P=0.12) 

0.17 

(P<0.001) 

0.01 

(P=0.35) 

Table 5.3 Summary of minor allele frequency of 11 SNPs in 5 populations 

Comparison of SNP allele frequency between cohort of 101 patients and 399 healthy 

individuals was carried out using Fisher’s exact test. Comparison of allele frequency of 11 

SNPs in the Gujarati population with four other populations was carried out using the Fisher’s 

exact test.  

* Minor allele frequency data obtained from the 1000 Genomes database for Gujarati Indian 

in Houston (GIH), European (EUR), African (AFR) and Han Chinese in Beijing (CHB) 

+Frequency data unavailable in the 1000 Genomes database for Gujarati Indian in Houston, 

European, African and Han Chinese in Beijing 

a, Only 97 samples were genotyped in the 1000 Genomes database from the Han Chinese 

population for rs9923231 SNP  

N, Total number of study subjects 

n, Number of samples called for the genotype in the current study population
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5.2.3 Dose prediction accuracy of algorithms within the population 

The list of variables incorporated in the two clinical and three pharmacogenetic 

algorithms to predict therapeutic warfarin dose is shown in Table 5.4. For the Pavani et al. 

2012 algorithm, rs11676382 and rs7900194 SNPs in the GGCX and CYP2C9 gene 

respectively were not included in the following analysis as rs11676382 had <1% minor allele 

frequency (MAF) and rs7900194 had not been genotyped in this study. The coefficient of 

determination (R2) was calculated using the sum of squared errors (SSE) and sum of squared 

total (SST) from linear regression between the predicted and therapeutic dose using the 

equation R2= 1-(SSE/SST). The R2 value was used to compare the correlation between the 

predicted of the published algorithms and therapeutic dose within the population since the 

SST will be same for the population.  To compare the predicted dose against therapeutic dose, 

53 patients who were receiving therapeutic dose in the current study population were selected 

for analysis. Furthermore, anonymised clinical and genetic data of 1100 European patients 

(part of the IWPC) that had reached a stable therapeutic dose and from which Klein et al. 

2009 and Gage et al. 2008 pharmacogenetic algorithms were developed, was obtained from 

PharmGKB website (www.pharmgkb.org) while, data from 121 South Indian patients from 

which the Pavani et al. 2012 algorithm was developed were provided by the corresponding 

author for analysis. 

Compared to the clinical algorithms, doses predicted with pharmacogenetic algorithms 

published by Klein et al. 2009 and Gage et al. 2008 had higher correlation with the 

therapeutic dose in both Gujarati and European populations (Table 5.5). However, dose 

predicted using the pharmacogenetic algorithm published by Pavani et al. 2012 had a notably 

lower correlation with the therapeutic dose compared to the other two clinical and the 

pharmacogenetic algorithms in the Gujarati population (Table 5.5). This algorithm was not 

tested in the European population since some of the key variables used to predict dose were 

not available (Table 5.4). It is important to note that the R2 value can’t be used to compare 

prediction accuracy of the algorithms between populations, as the SST value is different for 

different populations (Study population=6002.05; IWPC population=311162.57; South 

Indian=12952.98). This helps explain the relatively lower R2 values for the algorithms in the 

Gujarati population compared to the European population, however, the general trend for a 

higher R2 value of pharmacogenetic algorithms compared to clinical algorithms remain 

consistent in both populations. 
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Variables incorporated 

Clinical algorithms Pharmacogenetic algorithms 

Gage et al. 

2008 

Klein et al. 

2009 

Gage et al. 

2008 

Klein et al. 

2009 

Pavani et al. 

2012+ 

Age ✓ ✓ ✓ ✓ ✓ 

Height* ✓ ✓ ✓ ✓ ✓ 

Weight* ✓ ✓ ✓ ✓ ✓ 

Race ✓ ✓ ✓ ✓  

Concomitant 

medication~ 
✓ ✓ ✓ ✓  

Target INR ✓  ✓   

Smoking status ✓  ✓   

Indication for 

treatment 
✓  ✓   

CYP2C9 rs1799853   ✓ ✓ ✓ 

CYP2C9 rs1057910   ✓ ✓ ✓ 

VKORC1 rs9923231   ✓ ✓ ✓ 

CYP4F2 rs2108622     ✓ 

VKORC1 rs7294     ✓ 

VKORC1 rs17708472     ✓ 

GGCX rs11676383     ✓ 

CYP2C9 rs75838422     ✓ 

Table 5.4 Variables incorporated in clinical and pharmacogenetic algorithms 

*Height and weight are used to calculate BMI (kg/m2) for Klein et al. 2009 and Pavani et al. 

2012 and body surface area (BSA) (m2) for Gage et al. 2008 algorithm. 

+Gender variable is only incorporated by Pavani et al. 2012 algorithm. The dose predicted is 

further adjusted for thyroid status. 

~Information on amiodarone use only is incorporated in Gage et al. 2008 algorithm whereas, 

information on amiodarone and enzyme inducers (eg. Carbamazepine, phenytoin, rifampin or 

rifampicin) is incorporated in Klein et al. 2009 algorithm. 
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Dosing algorithms 

Study population 

Gujarati Indian 

(N=53) 

IWPC European 

(N=1100)* 

South Indian 

(N=121) 

Clinical 

only 

Klein et al. 

2009 
4.67% 21.36% - 

Gage et al. 

2008 
2.47% 23.12% - 

Pharmaco-

genetic 

Klein et al. 

2009 
10.06% 43.19% - 

Gage et al. 

2008 
8.20% 49.74% - 

Pavani et al. 

2012 
0.04% - 44.18% 

Table 5.5 Coefficient of determination (R2) for predicting therapeutic dose using 

clinical and pharmacogenetic algorithms 

*881 out of 1100 subjects were used to test Gage et al. 2008 algorithm as subjects with 

missing variables were dropped from this analysis. 

N, Number of subjects 
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5.2.4 Dose prediction accuracy of algorithms between populations 

Mean squared difference (MSD) between the predicted and therapeutic dose was used 

to compare the dose prediction accuracy of algorithms between populations since the SST 

was different between populations. Using the Mann-Whitney test for comparing MSD 

between populations, prediction accuracy of one of the two clinical algorithms was better in 

Gujarati Indians compared to Europeans (P=0.04 for Klein et al. 2009 algorithm; P=0.22 for 

Gage et al. 2008 algorithm) (Table 5.6). Prediction accuracy of all three pharmacogenetic 

algorithms was, however, poorer in the Gujarati Indians, one significantly so (P=0.05 for 

Klein et al. 2009 algorithm; P=0.002 for Pavani et al. 2012 algorithm; P=0.07 for Gage et al. 

2008 algorithm) (Table 5.6). Since half of study subjects in the Gujarati population had 

mechanical heart valve replacement due to which they had a higher target INR requirement 

than other subjects, a post hoc sub-group analysis of was carried out where MSD for the 

subjects with the target INR range of 2-3 were compared with the European population.  For 

clinical algorithms, no difference in the MSD between the two populations was observed 

(Klein et al. 2009 144.08 v/s 222.45, P=0.48; Gage et al. 2008 133.75 v/s 219.50, P=0.33). 

Similarly for the pharmacogenetic algorithms, no difference in the MSD between the two 

populations was observed (Klein et al. 2009 193.98 v/s 160.69, P=0.29; Gage et al. 2008 

130.78 v/s 143.22, P=0.59). This suggests that the poorer prediction accuracy of the 

pharmacogenetic algorithms is likely to be associated with genetic variables.  

To test that the univariate effect size of the 3 SNP variables (rs1799853, rs1057910 and 

rs9923231) used in the pharmacogenetic algorithms is similar between current study 

population and estimate of the effect size from the European population (obtained from Gage 

et al., 2008), a Wald test was carried out (Gage et al., 2008). No evidence to reject the null 

hypothesis that the Gujarati population encompassed the effect size reported for the European 

population was observed (P>0.05 for all 3 SNPs) (Table 5.7). Despite the R2 of the clinical 

algorithm being lower than pharmacogenetic algorithm, the MSD of the pharmacogenetic 

algorithm is higher than the clinical algorithm in the Gujarati population. This conflict in 

results was due to a few subjects where the squared difference between therapeutic dose and 

dose predicted with pharmacogenetic algorithm was substantially higher (Figure 5.4).  

Overall, the allele frequency result suggests a distinct genetic makeup of the Gujarati 

population as compared to 3 other populations. Simultaneously, from the dose prediction 

accuracy results, it can be hypothesized that the SNP panel used in the pharmacogenetic 

algorithms that are developed from European population do not include SNPs that are specific 

to genetically distinct populations. 
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Dosing algorithms 

Study population 

Gujarati Indian 

(N=53) 

IWPC European 

(N=1100)* 

South Indian 

(N=121) 

Clinical 

only 

Klein et al. 

2009 
119.97 222.45 

P=0.04 
- 

Gage et al. 

2008 
129.16 219.50 

P=0.22 
- 

Pharmaco-

genetic 

Klein et al. 

2009 
216.34 160.69 

P=0.05 
- 

Gage et al. 

2008 
170.64 143.22 

P=0.07 
- 

Pavani et al. 

2012 
256.13 - 

59.75 
P=0.002 

Table 5.6 Mean squared difference (MSD) between the predicted and therapeutic dose 

P-value for the difference in MSD between the Gujarati Indian and IWPC European or South 

Indian population was tested using Mann-Whitney test. 

*881 out of 1100 subjects were used to test Gage et al. 2008 algorithm as subjects with 

missing variables were dropped from this analysis. 

N, Number of subjects 

 

 

SNP id 
Gujarati Indian IWPC European 

Wald Test 

P- value 

R2 Coefficient (95% CI) R2 Coefficient (95% CI)  

rs1799853 0.4% -0.28 (-1.42 to 0.85) 5% -0.19 (-0.22 to -0.15) 0.88 

rs1057910 0.08% -0.09 (-1.04 to 0.86) 6% -0.33 (-0.37 to -0.29) 0.62 

rs9923231 7.63% -0.74 (-1.46 to -0.02) 25% -0.28 (-0.30 to -0.25) 0.21 

Table 5.7 Comparison of SNP effect size in a univariate linear regression model 

Effect size obtained from univariate linear regression model between the therapeutic dose and 

the SNP in Gujarati Indian population and effect size estimates from the IWPC European 

population were compared using the Wald test.  
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A                                                                           B 

Figure 5.4 Dotplot comparing squared difference between predicted and therapeutic 

dose using (A) Gage et al. 2008 and (B) Klein et al. 2009 clinical and pharmacogenetic 

algorithms in the Gujarati population. 

Blue dot indicates squared difference for each subject and horizontal red line indicates mean 

of squared difference.  

 

5.3 Discussion 

The current chapter details tests for the clinical utility of published clinical and 

pharmacogenetic algorithms and compares the allele frequencies of warfarin dose associated 

SNPs between the Gujarati Indian population and Europeans, Africans and Han Chinese 

populations. When comparing the dose prediction accuracy of the published algorithms within 

population, the results show that in both Gujarati Indian and white European populations, the 

dose prediction accuracy of the pharmacogenetic algorithms was higher than the clinical 

algorithms, which is in concordance with the results published by Klein et al. 2009 for the 

white European population (Table 5.5). However, the prediction accuracy of one of the two 

clinical algorithms was slightly better in Gujarati Indians compared to white Europeans but 

the prediction accuracy of all three pharmacogenetic algorithms was poorer in the Gujarati 

Indians compared to white Europeans and South Indians (Table 5.6). In a post hoc sub-group 

analysis where only subjects requiring target INR of 2-3 were included, no significant 

difference in the prediction accuracy of both clinical and pharmacogenetic algorithms 

between the Gujarati Indians and Europeans was observed.  

In the main analysis, the poorer performance of the pharmacogenetic algorithms in 

Gujarati Indians could in majority be explained by the presence of the study subjects that 

require higher warfarin dose due to their target INR range being 2.5-3.5. Since the published 

clinical and pharmacogenetic algorithms have been designed to predict dose for the target 

INR range of 2-3, the prediction dose by the algorithms would be underestimated for the 
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subjects requiring target INR of 2.5-3.5. Furthermore, the poor performance of the 

pharmacogenetic algorithms in the main analysis could in part be explained by the MAFs of 

rs1799853 and rs9923231 that were almost half compared to Europeans but were higher than 

African and Han Chinese populations. This suggests that the 3 SNPs assayed by the 

pharmacogenetic algorithms have reduced ability to explain dose variance in the Gujarati 

population. Additionally, allele frequency of the SNPs in the VKORC1 (rs7294) and CYP4F2 

(rs2108622) had significantly higher MAF in Gujarati Indians compared to Europeans, 

Africans and Han Chinese populations. This suggests that population specific SNPs have not 

been accommodated by the European population specific algorithms. Therefore, the SNP 

panel and dosing algorithms developed from white European populations cannot be assumed 

to have utility in genetically distinct populations. 

5.3.1 Clinical variables and warfarin dose 

Overall, 102 patients were recruited on the study who were on warfarin treatment at the 

time of recruitment out of which only 53 were prescribed therapeutic dose of warfarin. 

Approximately 50% of the patients prescribed warfarin had mechanical heart valve 

replacement to treat valvular heart disease.  Heart valve disease, which is a downstream 

consequence of acute rheumatic fever (ARF), is suggested to occur due to an auto-immune 

response by T cells and macrophages that recognize laminin present in the basement 

membrane of the heart valves (Carapetis and McDonald, 2005). The high percentage of 

patients treated for valvular heart disease could be either due to high prevalence of acute 

rheumatic fever (ARF) in the Indian population (Seckeler and Hoke, 2011) or due to 

recruitment bias as the recruitment hospital specializes in heart valve replacement.  

Sixty nine percent of the amiodarone drug users and 100% of the azole anti-fungal drug 

users had a warfarin dose requirement of <21 mg/week in the study. Amiodarone is 

prescribed to patients with cardiac arrhythmias and has been shown to inhibit CYP2C9 

enzyme that catalyzes oxidation of S- and R-warfarin thus, reducing warfarin clearance and 

potentiating the anticoagulation effect of warfarin (Heimark et al., 1992). However, use of 

amiodarone is included in the IWPC algorithm so should not have affected the findings in the 

current study. Similarly, both in vitro and in vivo studies have showed that azole anti-fungal 

drugs such as fluconazole inhibits CYP2C9 and CYP3A4 enzyme activity by up to 70% and 

45% respectively thereby potentiating warfarin’s anticoagulation effect (Kunze et al., 1996, 

Black et al., 1996). Lastly, whilst the average weekly warfarin dose of statin users was higher 

in comparison with other drug users, 97% of the statin users required <7mg/day of warfarin 

dose. Statin co-administration has been shown to potentiate warfarin anticoagulation so 
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patients taking statins require lower warfarin doses (Bellosta et al., 2004) due to competitive 

inhibition of cytochromes P450 such as CYP3A4 (Corsini et al., 1999).  

Whilst these results are in concordance with the existing literature, they should be 

inferred with caution due to two reasons: First, 49 of 102 patients hadn’t reached maintenance 

dose and therefore the current dose comparison is subjected to change and: second, the 

comparison was carried out with the other drug users as the reference group rather than no 

concomitant drug users as the later group was absent in the current study. Since other drug 

user group consisted of a number of anti-platelets and herbal medications, which can either 

potentiate or inhibit the effect of warfarin, the group isn’t ideal for carrying out dose 

comparisons. However, the contribution of concomitant medication information to warfarin 

dose was observed in the Gujarati Indian population when the information was removed from 

the Klein et al. 2009 dosing algorithm. The coefficient of determination (R2) reduced from 

10.06% to 4.13% after removing co-medication data from the dosing algorithm. This 

illustrates the importance of incorporating co-medication data in the dosing algorithm for 

dosing accuracy.  

5.3.2 SNP frequency difference between populations 

The relative contribution of demographic features such as age, sex, BMI, disease 

indication and concomitant medication to warfarin dose variability has been shown to be 

independent of ethnicity (Dang et al., 2005). Comparing MSD of clinical algorithms between 

the Gujarati Indian and white European population showed no evidence of differential 

performance of the algorithms between populations (Table 5.6), a finding consistent with the 

observations of Dang et al. 2005. This suggests that the performance of pharmacogenetic 

algorithms, which consist of clinical and genetic variables, is non-consistent between 

populations in part due to genetic differences.  

The contribution of genetic factors to warfarin dose variability depends on the 

distribution of genetic variants in a particular population. This is the first study to report the 

MAF of SNPs associated with warfarin dose in the Gujarati population and compare them 

against the frequencies found in Europeans, Africans and Han Chinese. Additionally, the 

MAF of SNPs reported in the study are in concordance with the MAF reported in the 1000 

Genomes database for the Gujarati Indian in Houston (GIH) population thus vindicating the 

accuracy of the genotype calls reported in the current study and also supporting the use of the 

genotype data from the database for downstream studies. SNPs included in the study have 

been shown to affect warfarin’s pharmacokinetic and pharmacodynamic pathways. The 

highest MAF of 68% and 43% was observed for rs7294 and rs2108622 respectively and all 6 

SNPs with MAF of >1% had significantly different frequencies compared to 3 other 
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populations (Table 5.3). This shows differences in VKORC1 haplotype frequencies between 

the Gujarati Indian and the other 3 populations.  

A study by Lee et al., 2006 showed that the variability in warfarin dose requirement 

between different ethnicities could be explained by the difference in VKORC1 haplotype 

frequencies thus suggesting that the VKORC1 haplotypes play a vital role in predicting 

therapeutic warfarin dose accurately (Lee et al., 2006b). In the current study, no evidence for 

difference in the effect sizes of the 3 SNPs used in pharmacogenetic algorithms between the 

Gujarati Indian and white European population was observed, however, MSD of the 

pharmacogenetic algorithms was higher in Gujarati Indians compared to white Europeans 

suggesting absence of population specific SNPs in the algorithm that would explain higher 

percentage of dose variance.  

Despite having a high R2 and low MSD value in the South Indian population, the 

pharmacogenetic algorithm developed by Pavani et al. 2012 had the lowest R2 value when 

compared with other algorithms in the Gujarati Indian population and the highest MSD of all 

algorithms across different populations. The algorithm incorporated more than twice the 

number of SNPs than the algorithms of Gage et al. 2008 and Klein et al. 2009 but lacked 

critical clinical variables such as race and concomitant medication. This suggests the 

algorithm’s predicted dose data could be over-fitted to the observed dose data and thus may 

explain its poor performance in the Gujarati Indian population. However, the algorithm’s poor 

performance due to the genetic differences between population clusters in the Indian 

population can’t be ruled out (Consortium, 2008). 

5.3.3 Other variables affecting warfarin dose 

Smoking status was only incorporated in the Gage et al. 2008 algorithm and none of the 

algorithms incorporated vitamin K intake data. In a meta-analysis carried out by Nathisuvan 

et al., 2011, smoking was associated with a 12.13% (91% CI, 6.99-17.27, P<0.001) increase 

in warfarin dose compared to non-smokers (Nathisuwan et al., 2011). Similarly, another study 

showed that patients initiating on warfarin treatment and consuming high amount of vitamin 

K (>250 ug/day) had lower day 5 INR and needed more warfarin to achieve INR>2.0 

compared to normal vitamin K consumers (<250 ug/day) (32.0±9.2 mg/week versus 25.4±6.4 

mg/week, P=0.009) (Lubetsky et al., 1999). However, calculating daily vitamin K intake is 

very difficult and the intake varies by geographic location due to difference in diet. However, 

since the vitamin K intake influences INR response, incorporating INR response in the 

pharmacogenetic dosing algorithm after starting warfarin treatment could be beneficial. A 

dose revision algorithm developed by Lenzini et al. 2010 incorporated INR response on day 4 

of warfarin treatment and target INR to revise maintenance dose prediction (Lenzini et al., 
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2010). This algorithm together with the initiation dose algorithm developed by Avery et al. 

2011 was used in the EU-PACT trial which reported the clinical benefit of using 

pharmacogenetic based algorithm over standard dosing in anticoagulation control 

(Pirmohamed et al., 2013, Avery et al., 2011). Based on the evidence, addition of smoking 

status and INR response to the existing algorithms may potentially improve dosing accuracy. 

5.3.4 Study limitation 

Whilst the current study is the first to test the clinical utility of know clinical and 

pharmacogenetic algorithms in the Gujarati Indian population and report genotype 

frequencies of known warfarin dose associated SNPs, there are several key limitations: First, 

sample size used in the study to carry out tests for the clinical utility is small. Due to the small 

sample size, there is a lack of statistical power to observe significant difference in the 

prediction accuracy of pharmacogenetic algorithms between populations and thus derive a 

definitive conclusion. Second, half of the patients recruited on the current study had a higher 

target INR range of 2.5-3.5 since they were being treated for mechanical heart valve 

replacement. As the published clinical and pharmacogenetic algorithms are derived from the 

population having target INR of 2-3, they are likely to underestimate the maintenance dose 

for the subjects having target INR of 2.5-3.5. Results from post hoc sub-group analysis 

indicates that the poor dose prediction of the pharmacogenetic algorithm in the Gujarati 

population in the main analysis is likely to be due to the presence of subjects having target 

INR requirement of 2.5-3.5 and thus warrants caution in interpreting results. However, 

association of poor performance of the algorithms with population specific genetic makeup 

cannot be excluded since the study lacks statistical power to test the association. With a larger 

sample size, it is plausible to test the interaction between the SNP, ethnicity and maintenance 

dose as shown by (Limdi et al., 2015).     

5.3.5 Identification of population specific novel SNPs 

Results from the current study suggest the need for a downstream study to identify SNPs 

that can explain dose variability within the Gujarati Indian population. A recent GWAS study 

carried out in African Americans found a novel rs12777823 genotype that explained 5% of 

the dose variability whereas the rs1799853 and rs1057910 genotype which explains 5% dose 

variability in the people with European ancestry explained only 1-2% variability in the 

African American population (Perera et al., 2013a). SNP rs12777823 has an MAF of 33% in 

the GIH population in 1000 Genomes database thus it could be hypothesized that genotyping 

this SNP could help explain higher proportion of warfarin dose variability in the Gujarati 

Indian population. Since this SNP was not genotyped in the current study, the aforementioned 
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hypothesis can’t be tested but a similar approach to identify relevant genotypes could be 

conducted in the Gujarati Indian population.  

Based on the power calculation where the type 1 error threshold 5 x 10-8 was set, a 

GWAS study in the Gujarati Indian population would require a minimum of 772 patients on 

stable warfarin dose to identify a SNP having MAF of 0.05 that explains 5% of warfarin dose 

variability with 80% power. A similar GWAS approach is needed across genetically distinct 

clusters of population in India to identify population specific SNPs that can explain more than 

5% of warfarin dose variability and a list of SNPs that represent as a genetic signature for an 

individual which could help in population cluster identification (Consortium, 2008). 

Development of a pan-India warfarin pharmacogenetic algorithm that incorporates population 

specific SNPs along with a rapid genotyping platform could help in introducing warfarin 

pharmacogenetics across the population.   

5.4 Conclusion 

Results in the current chapter suggest limited utility of the published pharmacogenetic 

algorithms for the Gujarati Indian population. The poor dose prediction accuracy of the 

published pharmacogenetic algorithms in the Gujarati Indian population in the main analysis 

could be explained by the presence of subjects having target INR of 2.5-3.5 and low 

frequency of the VKORC1 rs9923231 variant which is the most important genetic determinant 

of warfarin dosing in Europeans. Furthermore, the absence of variables such as smoking 

status and INR in the algorithms may help explain their poor prediction accuracy. Therefore, 

the SNP panel and dosing algorithms developed from European populations cannot be 

assumed to have utility in current population. The results suggests need for a population 

specific GWAS study to identify novel genetic markers which can help explain dose variance 

and development of pharmacogenetic algorithms that can incorporate variation in warfarin 

dose based on ethnicity. Developing improved algorithms that allow prediction of dose 

independent of ethnicity by incorporating additional genetic markers is also important. 

Population specific pharmacogenetic algorithms are needed urgently to allow effective 

deployment of increasingly cheap and reliable DNA diagnostics.  
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Chapter 6. (Results 4): Optimisation of hybridization parameters for 

multiplex SNP genotyping on custom designed microarray platform 

6.  

6.1 Introduction 

6.1.1 Health economics of pharmacogenetic testing 

Emergence of omics technologies has led to an outpouring of putative biomarkers that 

could help enhance the effectiveness and safety profile of many commonly prescribed drugs 

(Wu, 2011). Testing for these biomarkers in routine clinical practice could have a profound 

benefit to the health of the patients and the economics of healthcare. Selection of a biomarker 

for clinical utilization is primarily based on its ability to stratify patients to a specific drug by 

reducing the risk of adverse drug reaction (ADR) and predicting accurate dose (Wu, 2011). 

One of the best example for pharmacogenetic guided dosing is warfarin where, 2 SNPs 

(rs1799853 and rs1057910) in the CYP2C9 gene and 1 SNP (rs9923231) in the VKORC1 

gene along with anthropometric variables such as age, sex, BMI and concomitant medication 

use explain ~60% of warfarin dose variance (Klein et al., 2009).   

Economic analysis conducted by the Brookings Joint Centre for Regulatory Studies, 

based on assumption of genotyping cost of $350 and an inflated 15 and 50% reduction in 

bleeding events and stroke respectively, suggested that pharmacogenetic warfarin dosing 

would lead to savings of up to $2 billion in the US alone per year (McWilliams et al., 2010). 

In contrast, using a genotyping test costing $400 with 3 days turn around time was concluded 

not to be cost-effective. However, a sub-analysis indicated a benefit if the genotyping results 

were delivered in under 24 hours (at less than $200 per test) or if the test is conducted in 

patients at high risk for hemorrhage (Eckman et al., 2009). A pharmacoeconomic study by 

Prof. Joyce Hoi-sze You showed that the influential factors for cost-effectiveness were low 

genotyping cost and fast turn around time, improvement in anticoagulation control, and 

genotyping patients at high risk of bleeding (You, 2011). Reduction in the cost of genotyping 

to $47 per test (You et al., 2009) and a subsequent improvement in the time spent in 

therapeutic range (TTR) to >77% (You et al., 2012) would make genotype guided warfarin 

dosing cost effective.  

6.1.2 Current warfarin SNP genotyping platforms 

A study by King et al., 2008 tested 3 molecular methods developed by instrument 

manufacturers to calculate accuracy and turnaround time to genotype 3 warfarin SNPs. The 
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INFINITI analyzer, developed by AutoGenomics, is a fully automated microarray platform 

that uses allele specific primer extension technology and fluorescent labeled PCR product 

binding to capture probes on a BioFilmChip (Vairavan, 2004). Despite a relatively low 

number of manual steps in the assay and 100% genotyping accuracy for all 3 SNPs, it takes 

~8 hours to genotype and the instrument has a large footprint (King et al., 2008).  

The second method, called the Invader assay, uses primary hybridization and cleavage 

of allele specific primer extension reaction followed by fluorescence resonance energy 

transfer based secondary signal amplification and detection using the GENios FL 

fluorescence plate reader (TECAN, Zurich, Switzerland) (Lyamichev et al., 1999).  It consists 

of a relatively low number of manual steps and records ~100% genotyping accuracy for all 3 

SNPs but it takes ~3 hours to genotype and requires a large quantity of DNA sample (250ng) 

(King et al., 2008). The last method, called the Tag-It mutation detection assay, utilizes 

multiplex PCR, allele specific primer extension and bead hybridization (Strom et al., 2005). It 

has the largest number of manual steps out of the 3 methods tested, and has an ~8 hour 

turnaround time but requires least amount of DNA sample (15ng) and provides ~100% 

genotyping accuracy for all 3 SNPs (King et al., 2008). 

The 3 aforementioned methods are designed to be high throughput by genotyping >20 

samples per run, restricting their utility for research purpose only since the genotype results in 

clinics are required on the day patients are initiated on warfarin therapy. To genotype SNPs 

from blood sample to result in 2 hours, BioAnalytical Innovations at LGC (Teddington, UK) 

developed HyBeacon probes where the internal nucleotides are tagged with fluorophore 

moieties and the 3’ end consists of a blocker to prevent PCR extension of probes (French et 

al., 2001).  Hybridization of probes to complementary DNA leads to a measurable elevation 

in probe fluorescence emission and thus can be used to carry out allele discrimination and 

genotyping using a real time PCR assay. This technology was used by Pirmohamed et al. in 

their randomized trial (EU-PACT) to genotype 3 warfarin SNPs (rs1799853, rs1057910 and 

rs9923231) from sample to result in approximately 2 hours after randomization of patients 

(Pirmohamed et al., 2013). Despite the short turn around time and high genotyping accuracy, 

the assay requires the reagents to be frozen at -20°C and has a short shelf life thus restricting 

its utility, particularly in developing countries in some urban hospitals where power cuts are 

frequent.  

6.1.3 QuantuMDx’s silicon nanowire platform 

QuantuMDx is a Newcastle based biotechnology company partnered with Newcastle 

University, which is currently developing a handheld, sample to result DNA diagnostic device 

(www.quantumdx.com). The device consists of 4 components: Mechanical lysis leads to a 
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DNA extraction cassette, which consists of densely packed sorbent filter with a unique 

property to bind with proteins and lipids and but not charged nucleotides including DNA; 

Third, a microfluidic based PCR cassette with two or three heating zones mimicking 

denaturation, annealing and amplification steps of PCR and; Fourth, a silicon nanowire 

(SiNW) based field effect transistor (FET) nanosensor for electrical detection and genotyping 

of oligonucleotides. 

Fabrication and electrical characterization of SiNWs have been described previously 

(Patolsky et al., 2006, Cui and Lieber, 2001). The first functional application of boron-doped 

SiNWs was shown in 2001 where SiNWs were demonstrated to exhibit pH dependent change 

in electrical conductance when amine or oxide functionalized surface of the nanowires were 

protonated and deprotonated (Cui et al., 2001). To demonstrate detection of charged 

biological species, detection of streptavidin binding to biotin modified SiNWs and reversible 

binding of antibody to antigen coated SiNW was also carried out (Cui et al., 2001). Due to 

their small footprint and highly sensitive and selective detection nature, SiNWs offer the 

capability to carry out label-free and real time detection of charged biological species such as 

DNA to carry out diagnostics at the point of care.  

Li et al. showed detection of label-free DNA using both boron and phosphorous doped 

SiNWs (Li et al., 2004). They were able to detect complementary single stranded target DNA 

in sample solution using covalently attached single stranded DNA probes to methoxy silane 

functionalized SiNWs with a signal to noise ratio of >6. Moreover, a single base mismatch in 

the target DNA didn’t produce signal above the background noise thus demonstrating the 

potential of the SiNW biosensor for detecting SNPs in DNA. Several other studies produced 

similar outcomes and showed that the DNA hybridization event can be observed in situ and in 

real time and can reliably detect target DNA at concentrations of 1fM with high specificity to 

detect SNPs (Gao et al., 2011, Gao et al., 2007).  

The results demonstrating SiNW’s ability to detect SNPs in situ were obtained using 

custom designed, short length (<50 bp) single stranded target DNA. However, in 

QuantuMDx’s device, the target DNA with a length between 100-150bp would be generated 

using the microfluidic PCR cassette.  Length of target DNA (Gibriel, 2014), along with 

several other parameters such as probe length (Chou et al., 2004), surface probe density 

(Peterson et al., 2001), hybridization temperature (Gibriel, 2014), hybridization chamber 

dimensions (Gibriel, 2014) and washing stringency (Gibriel, 2014) play a critical role in 

designing genotyping assays which have the capability to carry out multiplex SNP genotyping 

with high sensitivity and selectivity. As described in the next section, these parameters can be 

optimized using custom designed DNA microarrays. 
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6.1.4 Custom designed DNA microarrays 

DNA microarray technology has evolved rapidly in the past decade and has enabled 

whole genome- and transcriptome-based experiments to be conducted in a single run. This 

technology has been used for several purposes such as microbial detection, SNP genotyping, 

comparative genomic hybridization (CGH), chromatin immune-precipitation (ChIP) on chip 

analysis and miRNA detection (Poulsen et al., 2008). Microarrays consist of several probes, 

which are complementary to a specific sequence in the target nucleic acid, covalently attached 

to either glass or silicon surface. 

Hybridization of complementary nucleic acids in a 3 dimensional medium (eg. 

solution) has been well studied using the Nearest Neighbor model (Poulsen et al., 2008) but 

microarray provides 2 dimensional surfaces during hybridization, similar to that on a SiNW 

platform. Constraints induced by attaching one end of the probe to a solid surface include 

inability of the probe to diffuse in the hybridization solution, thus reducing the hybridization 

rate and steric hindrance to the approaching target nucleic acid from the surface (Poulsen et 

al., 2008). Steric hindrance could be due to the physical constraint of the 2 dimensional 

surfaces or electrostatic repulsion from the neighboring DNA probes or target nucleic acids.  

Furthermore, accuracy, sensitivity and specificity of a probe may be affected by several 

factors such as probe length, probe GC content and target nucleic acid concentration (Koltai 

and Weingarten-Baror, 2008). Sensitivity is also affected by probe concentration and is 

dependent upon the availability of free probes to bind with target nucleic acid (Koltai and 

Weingarten-Baror, 2008). Therefore, characterizing parameters associated with probes and 

optimization of several hybridization conditions such as hybridization temperature and 

duration and washing stringency on the microarray platform would enable replication and 

optimize target DNA hybridization and SNP genotyping on the SiNW platform. 

6.1.5 Aims 

The current study aimed to identify optimal hybridization and washing conditions for 

carrying out simultaneous SNP genotyping, understand the interplay between hybridization 

conditions and specificity of probes towards target DNA sequence, understand dynamics of 

the microarray based 2 dimensional environments and based on the derived optimal 

experiment conditions, perform genotyping of anonymised DNA samples. Isothermal melting 

DNA probes were designed in silico to carry out genotyping of 3 warfarin dose associated 

SNPs: rs1799853 (CYP2C9*2), rs1057910 (CYP2C9*3) and rs9923231 (VKORC1 -

1639G>A). Specificity, sensitivity and kinetics of hybridization between probe and target 

DNA for probe concentration, hybridization temperature, washing stringency and 

hybridization duration was determined. Optimal condition was identified for each 
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hybridization condition parameter and was used to carry out genotyping of 2 anonymised 

samples for 3 SNPs to test the genotyping accuracy of the assay.  Understanding the 

interaction of these parameters with hybridization kinetics, specificity and sensitivity would 

enable probes to be designed and selected for QuantuMDx’s SiNW platform.  
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6.2 Results 

To identify optimal genotyping conditions for all 3 SNPs, several hybridization 

temperatures and washing stringency strategies were tested followed by testing of 4 

hybridization durations to determine the duration at which hybridization between the probe 

and its complementary target DNA reaches equilibrium thereby providing high target DNA 

specificity.  Each parameter was tested and optimized by genotyping each SNP in a separate 

miniarray, which allowed for interrogating the association between probes’ characteristics and 

hybridization parameter. Since the target DNA specificity value of 1 or <1 for a probe depicts 

inability of the probe to genotype the SNP in target DNA accurately, condition of the 

hybridization parameter at which probes for all 3 SNPs had target DNA specificity >1 was 

selected. 

6.2.1 Assay reproducibility and sensitivity 

Initially, PCR step for generating target DNA amplicons of 3 SNPs was optimized. 

Since the melting temperature of primers for all 3 SNPs and the ACTB control sequence was 

similar, with the lowest melting temperature of the primer being 61°C (Supplementary Table 

10), 58°C was selected as the annealing temperature for the PCR reaction for all 3 SNPs and 

the ACTB control sequence. All 4 PCR reactions generated amplicons of the expected size 

with no non-specific bands or primer dimers (Figure 6.1).    

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 PCR to generate amplicons for microarray experiments 
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Since only 20 microarray slides were available for testing due to funding constraints, 

intra- and inter- experimental reproducibility were tested to ensure that the subsequent 

optimization assays could be carried out without the need of having duplicates for each assay. 

To test for intra-experimental reproducibility, assays were analysed simultaneously on two 

separate microarray slides at hybridization temperature of 42°C and subjected to the same 

washing conditions. Overall, there was a high degree of selectivity for the microarray probes 

in detecting the target DNA amplicon, with no cross hybridization observed (Figure 6.2). 

Paired sample t-test for the mean spot intensity for all probes showed a high correlation 

between the two microarray slides (R2=0.88, P<0.0001). Furthermore, to test for inter-

experimental reproducibility, the same assays on two separate microarray slides were also 

carried out on consecutive days at 42°C and with the same washing conditions.  Similar to the 

intra-experiment analysis, the assays showed a high degree of reproducibility (R2=0.84, 

P<0.0001).   

6.2.2 Probe concentration and orientation 

To investigate the relationship between fluorescent intensity and probe concentration, 5 

different probe concentrations were tested viz: 0.1, 0.5, 1.0, 5 and 20µM. Figure 6.3 is a 

typical graph observed for most probes. Between 0.1 to 5µM concentration, an exponential 

increase in fluorescent intensity with increase in probe concentration is observed but between 

5 and 20µM probe concentration the fluorescent intensity plateaus. This suggests that above 

20µM, further increase in probe concentration will not make significant difference in the 

probe fluorescent intensity. 

Overall, there were 6 probe sets for CYP2C9*2, 5 for CYP2C9*3 and 4 for VKORC1-

16939G>A SNP. Each probe set consisted of 1 wild type and 1 mutant probes in sense and 

anti-sense strand orientation, thus making 4 probes in total for each probe set. Strikingly, 

probes with high specificity towards target DNA within a probe set of all 3 SNPs showed a 

strand orientation bias. For example, CYP2C9*2 probes showed sense strand orientation bias 

whereas CYP2C9*3 and VKORC1-16939G>A probes showed anti-sense strand orientation 

bias. However, this observation couldn’t be explained in the current study. 
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Figure 6.2 Microarray intra-

experimental reproducibility and 

probe sensitivity to target DNA. 

Mean fluorescent intensity of all probes 

within a miniarray that is hybridized 

with a specific target DNA is 

represented on a single graph. Each 

graph consists of data obtained from the 

2 microarray slides called epoxy 1 and 

epoxy 2. (A) Probe 1 to 576 are designed 

to bind to CYP2C9*2 amplicon only. (B) 

Probe 577 to 1056 are designed to bind 

to CYP2C9*3 amplicon only. (C) Probe 

1057 to 1512 are designed to bind to 

VKORC1-1639G>A amplicon only. 

Probes show high sensitivity towards 

their complementary DNA and no non-

specific hybridization is observed. 



 123 

 

 

 

 

 

 

 

 

6.2.3 Optimising hybridization temperature 

In the current study, 5 hybridization temperatures viz: 42, 44, 48, 50 and 52°C were 

tested to identify optimal hybridization temperature at which high specificity is achieved 

without losing fluorescent signal intensity. Selection of the hybridization temperatures was 

based on the study by (Gresham et al., 2010).  

Overall, an increase in fluorescent signal intensity was observed between 42 and 44°C 

hybridization temperature but a rapid fall in the intensity was observed at hybridization 

temperatures above 44°C for all 3 SNP probes. For CYP2C9*2 probes, specificity increased 

between 42 and 50°C hybridization temperature for the wild-type probes, whereas the mutant 

probes also showed a trend for an increase in specificity with increase in hybridization 

temperature (Figure 6.4 A). Similar to the CYP2C9*2 wild-type probes, CYP2C9*3 wild-type 

probes showed an increase in specificity with increase in temperature. In contrast however, 

CYP2C9*3 mutant probes showed a trend towards an inverse relationship between specificity 

and hybridization temperature (Figure 6.4 B). Lastly, for the VKORC1-1639G>A probes, 

highest specificity was observed at 44°C and 42°C for wild-type and mutant probes 

respectively (Figure 6.4 C). For all 3 SNPs, wild-type probes had a higher specificity 

compared to mutant probes suggesting a higher affinity of the wild-type probe to its 

complementary target DNA compared to the mutant probes. Based on the relationship 

between hybridization temperature and specificity of probes for all 3 SNPs, 48°C was 

selected as the optimal hybridization temperature since above 48°C, CYP2C9*3 probes have 

very low specificity where below 48°C, CYP2C9*2 probes have a low specificity. 

Figure 6.3 Relationship between probe surface concentration and fluorescent 

intensity post hybridization 

Probe fluorescence at all 5 concentrations viz: 0.1, 0.5, 1, 5 and 20µM. Each probe is 

spotted in triplicate at all 5 concentrations. 
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Figure 6.4 Effect of hybridization 

temperature on probe’s specificity 

towards target DNA 

Graphs represent average   specificity of 

20µM wild-type (in blue) and mutant 

probes (in pink) to wild-type and mutant 

target DNA amplicon respectively across 

5 hybridization temperatures. 
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6.2.4 Optimising post-hybridization washing 

Following optimization of hybridization temperature at 48°C, the effect of post-

hybridization washing on probe specificity was tested using three washing strategies: (A) first 

2 washes with 2x SSC buffers followed by 0.2x SSC buffer; (B) first wash with 2x SSC, 

second wash with 1x SSC and last wash with 0.2x SSC buffer and; (C) first wash with 2x 

SSC, 2nd wash with 1x SSC and last wash with 0.1x SSC buffer. The strategies were designed 

to test if the increasing in wash buffer stringency would increase probe specificity. 

For the CYP2C9*2 wild-type and mutant probes, target DNA specificity was highest 

when the least stringent washing strategy was used (Figure 6.5 A). Similar to the CYP2C9*2 

wild-type probes, CYP2C9*3 wild-type probes had the highest specificity when the least 

stringent washing strategy was used however in contrast, the mutant probes had the highest 

specificity when the most stringent washing strategy was used (Figure 6.5 B). This contrast in 

the effect of washing stringency on probe’s specificity could partially be explained by the fact 

that the mutant probe has G instead of T at SNP position, thus increasing GC content of the 

probe. Lastly, for the VKORC1-1639G>A probes, both wild-type and mutant probes had the 

highest target DNA specificity when the most stringent washing condition was applied 

(Figure 6.5 C). Although specificity of VKORC1-1639G>A probes at the least stringent 

washing strategy was higher than the CYP2C9*2 and CYP2C9*3 probes at their optimal 

washing strategy. Thus washing strategy A that includes first 2 washes with 2x SSC buffers 

followed by 0.2x SSC buffer was concluded as the optimal washing strategy, although, the 

effect of an increase in washing temperature was not tested in the current study. 
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Figure 6.5 Effect of washing buffer 

stringency on probe specificity 

towards target DNA 

Graphs represent average specificity of 

20µM wild-type (in blue) and mutant 

probes (in pink) to wild-type and 

mutant target DNA amplicon 

respectively across 3 washing 

strategies: (A) Two washes with 2x 

SSC buffer followed by 0.2x SSC 

buffer, (B) Washing with 2x SSC, 1x 

SSC and 0.2x SSC buffers and (C) 

Washing with 2x SSC, 1x SSC and 

0.1x SSC buffers. 
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6.2.5 Optimising hybridization duration when genotyping a single SNP 

A total of 4 hybridization durations were tested in the current study: 30 minutes, 2 

hours, 5 hours and 16 hours. The aim of the test was to identify optimal hybridization 

duration at which the hybridization reaction reached equilibrium, which is the point at which 

the rate of association and dissociation between target DNA and probe is equal thus obtaining 

high specificity.  The experiment was carried out using optimal hybridization temperature of 

48°C and washing strategy where the first 2 washes were with 2x SSC buffers followed by 

0.2x SSC buffer, and the results are shown in Figure 6.6 and Figure 6.7.  

When the probe surface concentration was 20µM, CYP2C9*2 wild-type and mutant 

probes had the highest specificity at 16 hours, CYP2C9*3 wild-type and mutant probes had 

highest specificity at 16 and 5 hours respectively and VKORC1-1639G>A wild-type and 

mutant probes had highest specificity at 2 hours (Figure 6.6). It is to be noted that even after 

30 minutes of hybridization duration, CYP2C9*2 and VKORC1-1639G>A probes showed 

high specificity whereas, CYP2C9*3 probes took longer duration to exhibit the level of 

specificity that could be utilized for genotyping.   Since the hybridization kinetics is also 

determined by probe surface concentration, specificity of probes with surface concentration of 

5 µM was also determined. Wild-type and mutant probes for all 3 SNPs having 5µM surface 

concentration showed similar trend and level of specificity in relation to hybridization 

duration compared to probes with 20µM surface concentration (Figure 6.7). This suggests that 

the hybridization kinetics of probes with surface concentration of 5µM is similar to that of 

20µM and is in concordance with the fluorescent intensity results shown in Figure 6.3.  

 To rule out the specificity results at different hybridization durations being the result 

of probe spotting error, post-hybridization spot morphology was observed during the scanning 

stage. Figure 6.8 represents a typical spot morphology for the probes spotted at 20µM 

concentration. At 30 minutes and 2 hours, uneven fluorescent intensity is observed across the 

spot whereas at 5 and 16 hours, a uniform fluorescent intensity is observed across the spot. 

The observation provides evidence for no spotting error and suggests that there are various 

stages of hybridization kinetics that are dependent upon the duration of hybridization. 
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Figure 6.6 Effect of hybridization 

duration on probe specificity 

towards target DNA for 20µM 

surface probe concentration 

Graphs represent average specificity 

of 20µM wild-type (in blue) and 

mutant probes (in pink) to wild-type 

and mutant target DNA amplicon 

respectively across 4 hybridization 

durations: 30 minutes, 2 hours, 5 

hours and 16 hours. 

 



 129 

A 

 
 

 

 
 

 

 
 

 
B 

 

 
 

 
 

 

 
 

 
C 

 

 

 

 

 

 

 

 

 

Figure 6.7 Effect of hybridization 

duration on probe specificity 

towards target DNA for 5µM 

surface probe concentration 

Graphs represent average specificity 

of 5µM wild-type (in blue) and 

mutant probes (in pink) to wild-type 

and mutant target DNA amplicon 

respectively across 4 hybridization 

durations: 30 minutes, 2 hours, 5 

hours and 16 hours. 
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Hybridization 
Duration 

30 minutes 2 hours 5 hours 16 hours 

Har_017 

(20uM) spot 

  

  

Figure 6.8 Effect of hybridization duration on probe spot morphology 

Image of 20µM spot of Har_017_051011_CYP2C9_R144C_SENSE_WT probe hybridized 

with CYP2C9*2 wild-type target DNA for different hybridization duration.  White square for 

30 minutes and 2 hours spot indicates region of uneven hybridization.   

 

Thus, probe specificity data coupled with spot morphology information suggests that 

reliable specificity and fluorescent intensity could be achieved when the hybridization 

duration is set between 2 and 5 hours for the current set of probes. However, optimization of 

hybridization duration was carried out using a single target DNA per miniarray to genotype a 

single SNP at a time. The optimal hybridization duration may vary when multiple target 

DNAs are added simultaneously in a miniarray to genotype multiple SNPs. 

6.2.6 Testing optimal hyrbidization conditions for genotyping multiple SNPs 

Since genotyping of all 3 SNPs on the SiNW will be carried out simultaneously in a 

multiplex format, testing of optimal hybridization conditions for genotyping multiple SNPs 

on the microarray platform was carried out. Furthermore, since the concentration of PCR 

amplicons could vary between samples on the SiNW platform, 8 different amplicon 

concentration combinations were tested on the microarray platform to test for the robustness 

of probe specificity (Table 6.1). Two microarray slides were used in this experiment where on 

one slide, homozygous wild-type target DNA and on another slide homozygous mutant target 

DNA was tested. All optimal hybridization conditions except hybridization duration of 16 

hours were used in the experiment to allow hybridization of multiplex amplicons to their 

respective probes. 

Overall, probes for all 3 SNPs were able to detect homozygous wild-type and mutant 

target DNA at various concentrations of target DNA amplicon in multiplex format (Figure 

6.9). Maximum variation of specificity was observed for the VKORC1-1639G>A probes in 

relation to the target DNA amplicon concentration but the same probes showed highest degree 

of specificity compared to the probes of CYP2C9*2 and CYP2C9*3.  
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To test the specificity of probes for a heterozygous target DNA sequence, an experiment 

similar to the one carried out for homozygous target DNA sequence was carried out in the 

same hybridization and washing conditions with a range of target DNA amplicon 

concentrations in multiplex format as shown in Table 6.1. For CYP2C9*2 and CYP2C9*3, 

both wild-type and mutant probes had specificity of ~1 thus suggesting similar quantity of 

hybridization of wild-type and mutant probes to their complementary single stranded target 

DNA (Figure 6.10 A and B). However for VKORC1-1639G>A, wild-type probes had a 

substantially higher specificity than mutant probes (Figure 6.10 C) which could either be due 

to the target DNA being prepared by mixing equimolar quantity of homozygous wild-type 

and mutant target DNA which could have led to a pipetting error or possibility of 

hybridization bias towards wild-type probes as they have a higher GC content compared to 

mutant probes. In total, the results indicate the ability of the probes of all 3 SNPs to identify 

and genotype multiplex target DNA sequence in optimal hybridization conditions.     

 

Target DNA 

Amplicon 

Miniarrays: Concentration of amplicons (x 10nM) 

1 2 3 4 5 6 7 8 

CYP2C9*2 1 1 0.5 0.5 1 1.5 1.5 1 

CYP2C9*3 1 0.5 1 0.5 1.5 1 1.5 1 

VKORC1-

1639G>A 
1 0.5 0.5 1 1.5 1.5 1 2 

Table 6.1 Concentration (nM) of target DNA amplicons of CYP2C9*2, CYP2C9*3 and 

VKORC1 -1639G>A SNP added in 8 miniarrays on a microarray slide 
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E             F 

Figure 6.9 Multiplex genotyping of 3 SNPs in a homozygous wild-type and mutant 

DNA sample 

 Graphs represent average specificity of wild-type (in blue) and mutant (in pink) probes. 

Graphs A and B represent genotyping of wild-type and mutant sample for CYP2C9*2 

SNP respectively, C and D represents genotyping of wild-type and mutant sample for 

CYP2C9*3 SNP respectively and E and F represent genotyping of wild-type and mutant 

sample for VKORC1-1639G>A SNP respectively. 
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Figure 6.10 Multiplex genotyping 

of 3 SNPs in a heterozygous 

sample 

 Graphs represent average specificity 

of wild-type (in blue) and mutant (in 

pink) probes across 8 miniarrays. 
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6.2.7 Genotyping of DNA samples 

Lastly, to test the genotyping accuracy of the probes using the microarray platform and 

optimal hybridization and washing conditions, 2 previously genotyped DNA samples- W14 

and FRW62 were randomly chosen to be genotyped for all 3 SNPs. Probe specificity was 

tested using 10nM singleplex and 10nM equimolar multiplex target DNA amplicons for both 

DNA samples. 

Using the specificity as an indicator for the genotype call, sample W14 was 

homozygous wild-type for CYP2C9*2 and heterozygous mutant for CYP2C9*3 and 

VKORC1-1639G>A SNP (Figure 6.11 A and B). For sample FRW62, the specificity indicated 

the sample to be heterozygous mutant for CYP2C9*2 and CYP2C9*3 but homozygous mutant 

for VKORC1-1639G>A SNP (Figure 6.11 C and D). For both samples, target DNA specificity 

data for both wild-type and mutant probes for all 3 SNPs corroborated well for singleplex and 

multiplex target DNA format. Since these samples were previously genotyped for all 3 SNPs 

in another study, the genotype call from the microarray platform was compared against the 

genotype data for the samples from the previous study. Genotype calls for the sample W14 

corroborated perfectly with genotype call from the previous study, but for sample FRW62 the 

genotype call for VKORC1-1639G>A didn’t match with the genotype call made in the 

previous study. Subsequent bi-directional Sanger sequencing confirmed that the genotype call 

for VKORC1-1639G>A SNP in FRW62 using this microarray platform was correct (Figure 

6.12).  This suggests either an error in the genotype call made in the previous study or sample 

mix-up. Irrespective of the underlying reason for this discrepancy, probes designed for 

genotyping 3 warfarin dose associated SNPs along with optimized hybridization and washing 

conditions were able to genotype samples accurately. 
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Figure 6.11 Genotyping of 3 

SNPs in W14 and FRW62 

DNA samples 

Graphs represent average 

specificity of wild-type (in 

blue) and mutant probes (in 

pink) of CYP2C9*2, 

CYP2C9*3 and VKORC1-

1639G>A SNPs in singleplex 

(A and C) and multiplex (B and 

D) target DNA amplicons. 
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Figure 6.12 Sanger sequencing chromatograph for VKORC1-1639G>A SNP amplicon 

from FRW62 DNA sample 

Highlighted peak represent VKORC1-1639G>A SNP position in the chromatograph 

 

6.3 Discussion 

Identification of putative biomarkers for commonly prescribed drugs has led to an 

increase in demand for point of care companion diagnostics that can genotype the biomarkers 

rapidly and cheaply thus improving safety and effectiveness of the drug. Implementation of 

these biomarkers in routine clinical practice has been suggested to reduce cost to the 

healthcare industry and improve quality of life for patients (McWilliams et al., 2010). 

Warfarin, which is one of the most commonly prescribed drugs, is an oral anticoagulant that 

is used to manage thromboembolic diseases.  Two SNPs in the CYP2C9 gene (CYP2C9*2 and 

CYP2C9*3) and a SNP in the VKORC1 gene (VKORC1-1639G>A) have been previously 

shown to affect warfarin dose (Pavani et al., 2011, McWilliams et al., 2010, Wang et al., 

2008, Gage et al., 2008, Yuan et al., 2005, D’Andrea et al., 2005, Aithal et al., 1999). 

Furthermore, a randomized clinical trial (EU-PACT trial) showed that patients receiving 

warfarin dose based on their genotype for the 3 SNPs spent a higher percentage of mean time 

in the therapeutic INR range (67.4%) compared to controls (60.3%) during the initiation of 

warfarin therapy (Adjusted difference, 7.0 percentage points; 95% CI, 3.3 to 10.6; p<0.001) 

(Pirmohamed et al., 2013). However, there is no point of care test available to genotype these 

SNPs in a turn around time of 20 minutes at low cost thus inhibiting the implementation of 

genotype-guided warfarin dosing in clinical practice.  

QuantuMDx’s SiNW based platform is aiming to genotype SNPs in less than 20 

minutes for around £20. One of the genotyping strategies that are under development uses 

differential hybridization kinetics between the probe attached to the silicon surface and free 

floating complementary or non-complementary target DNA.  However, to design probes that 

have a high specificity towards complementary target DNA, the effect of various 

hybridization conditions on hybridization kinetics of the probe has to be studied. The aim of 
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the current section of work was to design a set of probes for the 3 warfarin dose-associated 

SNPs and characterize the effect of hybridization conditions on their target DNA specificity 

by carrying out the test on a custom-designed microarray slide. Characterization of the 

probe’s specificity will help elucidate optimal hybridization conditions where probes would 

have highest specificity to complementary target DNA. Furthermore, these would help guide 

the testing of probe specificity on the SiNW platform.  

6.3.1 Hybridization temperature and probe specificity 

The current study tested 5 hybridization temperatures in order to identify the optimal 

temperature at which probes for all 3 SNPs have optimal signal intensity and target DNA 

specificity. Probes for CYP2C9*2 and CYP2C9*3 SNPs showed higher specificity at 

hybridization temperatures above 48°C whereas probes for the VKORC1-1639G>A SNP had 

a higher specificity below 48°C (Figure 6.4). An association between probe length and 

hybridization temperature was observed since the probe length for CYP2C9*2, CYP2C9*3 

and VKORC1-1639G>A SNP probes was 20, 22 and 16 respectively. This association has 

been reported in previous studies where longer probes had higher signal intensity compared to 

shorter probes resulting in higher specificity (Letowski et al., 2004, Chou et al., 2004). The 

association has previously been explained using the thermodynamics of duplex formation 

where the free energy of duplex formation (ΔG°) is estimated using the Nearest Neighbor 

model that assumes that the stability of a given nucleotide pair is dependent upon the identity 

and orientation of the neighboring nucleotide pair (Gresham et al., 2010). As enthalpy (ΔH°), 

which is the measure of total energy of a thermodynamic system and entropy (ΔS°) which is 

the measure of energy available for useful work within a thermodynamic system has been 

empirically determined for all 10 nearest neighbors nucleotide pairs, ΔG° of a duplex can be 

determined using the equation ΔG°= ΔH°- TΔS°, where T is the melting temperature of the 

duplex (Gresham et al., 2010). Since mismatch destabilizes duplex formation, T for the 

mismatch duplex is lower than that of the perfectly matched duplex. Therefore, the ΔG°PM of 

a perfectly matched duplex is significantly lower than the ΔG°MM of a duplex with a mis-

match at a given hybridization temperature (ΔS°). Furthermore, it also explains that with the 

increase in probe length, ΔG° between the probe and non-complementary target DNA 

decreases thus enabling increase in hybridization temperature to increase ΔG° for mis-match 

duplex and thus increasing target DNA specificity. However, it also suggests that shorter 

probes have higher specificity which explains higher target DNA specificity of the VKORC1-

1639G>A probes compared to that of CYP2C9*2 and CYP2C9*3 (Figure 6.4). Poulsen et al. 

observed a general decrease in specificity with increase in probe length, which corroborates 

with the aforementioned mathematical hypothesis (Poulsen et al., 2008).    
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6.3.2 Washing stringency and probe specificity 

Three different washing stringency strategies were tested in the current study to identify 

optimal washing strategy that would provide highest specificity for the probes from all 3 

SNPs. Probes for CYP2C9*2 and CYP2C9*3 SNPs showed higher specificity when the least 

stringent washing strategy A was used whereas, probes for the VKORC1-1639G>A SNP had 

the highest specificity when most stringent washing strategy was applied (Figure 6.5). Since 

probes for the VKORC1-1639G>A SNP had the highest GC content compared to the probes 

of CYP2C9*2 and CYP2C9*3 SNPs, an association between probe’s GC content and washing 

stringency was observed whereby, probes with higher GC content had higher specificity with 

increasingly stringent washing strategy. Since GC rich probes form more hydrogen bonds 

compared to the AT rich probes when hybridizing with the target DNA molecule, a more 

stringent washing strategy would be required to disassociate non-complementary target DNA 

from the probe to improve probe’s specificity. Poulsen et al. reported a similar observation 

where AT rich probes had lower signal intensity compared to GC rich probes when wash 

buffer stringency was increased which resulted in lower specificity (Poulsen et al., 2008).   In 

the current study, the least stringent washing strategy provided optimal specificity for the 

probes of all 3 SNPs.  

6.3.3 Hybridization duration and kinetics 

Since hybridization duration plays a critical role in affecting probe’s specificity, four 

different hybridization durations were tested to identify the duration at which probes from all 

3 SNPs showed high specificity. Compared to the probes of CYP2C9*2 and CYP2C9*3 

SNPs, probes of VKORC1-1639G>A SNP reached high specificity at shorter hybridization 

duration (Figure 6.6 and Figure 6.7). This suggests that probes with short length and high GC 

content require shorter hybridization duration to achieve high specificity compared to the 

probes with long length and AT rich sequence.  

The rate of hybridization and disassociation of perfectly matched (PM) and mis-

matched (MM) target DNA dictates hybridization kinetics and thus hybridization duration. 

Hybridization kinetics can be mathematically represented by the formula  where R, 

L and C denotes number of free probes available for hybridization, number of free target 

DNA molecules (in Molar) and number of bound probe-target DNA complexes respectively 

(Dai et al., 2002). Assume Kf and Kr to be association (Molar-1 time-1) and dissociation rates 

(time-1) respectively. Now assuming that the Kf is same for PM and MM target DNA but the 

dissociation rate of PM is less than MM target DNA  (KrPM<<KrMM), mathematical 

representation of temporal based hybridization kinetics would be τL0= 1/ Kf (L0 + KD) where, 

L0 is the concentration of probes at time=0 of the experiment, τ is the time at which the 
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hybridization reaction has reached equilibrium and KD=Kr/Kf (Dai et al., 2002). Since 

KrPM<<KrMM, KD-PM<<KD-MM and thus τPM>> τMM. This represents the temporal aspect of 

hybridization kinetics and explains the requirement for a longer hybridization duration to 

achieve high signal intensity and target DNA specificity when genotyping many SNPs. 

The mathematical representation of temporal based hybridization kinetics also explains 

the post-hybridization spot morphology observed at hybridization duration of 30 minutes and 

2 hours for all 3 SNPs (Figure 6.8). At short hybridization durations, Kf is same for PM and 

MM duplex with the probe but since KrPM<<KrMM, the number of free probes available for 

hybridization are high. Stopping the hybridization reaction before it has reached equilibrium 

coupled with high probe surface density that would be creating electrostatic hindrance to 

forming new probe-target DNA duplex may be leading to formation of uneven spot 

morphologies at short hybridization durations. However, in the current study, uneven spot 

morphology was not detected at 5 and 16 hours of hybridization durations suggesting the 

hybridization reaction reaching equilibrium. In the current study, 16 hours of hybridization 

duration was found to be optimal for carrying out multiplex SNP genotyping.  

6.3.4 Optimisation on SiNW platform 

Since the SiNW platform will carry out multiplex genotyping, the current microarray 

platform was used to test probe specificity when multiplex target DNA was added in the 

miniarray. Probes of all 3 SNPs showed high specificity when multiplex homozygous and 

heterozygous target DNA was added at different concentrations, thus suggesting low non-

specific hybridization between probes and non-complementary DNAs  (Figure 6.9 and Figure 

6.10). Furthermore, the probes were able to genotype 2 anonymised samples for all 3 SNPs 

accurately in singleplex and multiplex format (Figure 6.11). Therefore, the current set of 

probes for all 3 SNPs can carry out genotyping on the microarray platform accurately.  

The current study didn’t test probes on the SiNW platform. In comparison to the 

microarray platform, microfluidic based SiNW platform offers several advantages such as: 

smaller hybridization chamber volume, which could help accelerate hybridization kinetics by 

increasing the probability of collision between the probe and target DNA as the diffusion 

distance is reduced (Peytavi et al., 2005, McQuain et al., 2004, Axelrod and Wang, 1994); 

recirculating hybridization buffer containing target DNAs within microfluidic environment, 

which has been shown to accelerate hybridization kinetics and reduce hybridization duration 

(Lee et al., 2006a) and; lower probe surface concentration that could improve target DNA 

capture rate due to lower electrostatic repulsion from neighboring probe-target DNA duplexes 

(Peterson et al., 2001).  
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Owing to the high sensitivity of the SiNW platform, there are several additional issues 

that would require to be optimized before carrying out multiplex SNP genotyping. In contrast 

to the microarray platform where hybridization temperature is provided externally to 

accelerate hybridization reaction and improve specificity, SiNWs can’t be used at higher 

working temperatures as it has a negative effect on the use of SiNWs in electronic circuits 

(Hashim and Sidek, 2012). However, QuantuMDx has recently been able to heat the SiNW to 

50°C without compromising its detection capabilities (Data not shown), thereby allowing the 

use of high temperatures to carry out SNP genotyping. Additionally, hybridization and 

washing buffers containing high concentrations of ions can’t be used on the SiNW platform as 

electrolytes in solution have been shown to reduce SiNW sensitivity due to their “screening 

effect” on the nanowires which leads to reduction in the current passing across the nanowires 

(Nozaki et al., 2014).  Therefore, it is imperative to spot the current set of probes of all 3 

SNPs on to the SiNW platform and carry out further optimization of the hybridization 

conditions in order to carry out rapid sample to result SNP genotyping.  

6.4 Conclusion 

Results in the current chapter demonstrates designing, optimization, testing and 

validation of 64 DNA oligonucleotide probes that can carry out simultaneous genotyping of 

CYP2C9*2, CYP2C9*3 and VKORC1-1639G>A SNPs on a custom designed microarray 

platform. Several experimental conditions such as hybridization temperature, hybridization 

duration and washing buffer stringency were optimized. Association of probe length with 

hybridization temperature, probe’s GC content with washing buffer stringency and probe 

surface concentration and target DNA multiplexing with hybridization duration was observed. 

Accurate genotype calls for all 3 SNPs in 2 anonymised samples using empirically optimized 

hybridization and washing conditions was carried out successfully on the microarray 

platform. Whilst further optimization and validation of probe specificity on microfluidic 

based SiNW platform would be required due to differences in the hybridization kinetics of 

probe-target DNA duplex between the two platforms, the current work highlighted 

associations between probe characteristics and hybridization parameters which would be 

useful in designing probes for genotyping other SNPs in the future. 
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Chapter 7: General discussion and future work 

7.  
Pharmacogenetics and pharmacogenomics can aid in the identification and selection of 

the appropriate drug and its optimal dose that will improve the risk-benefit ratio for the 

individual; a demonstration of “personalised medicine”. Study and application of personalised 

medicine for commonly prescribed drugs such as aspirin and warfarin has seen a rapid 

increase and the outcomes are likely to improve the delivery of these drugs and reduce the 

burden of chronic diseases like colorectal cancer and cardiovascular diseases.  

The current thesis described three separate projects that had the objective of identifying 

new clinically useful genetic variants that could help explain variation in the chemopreventive 

effect of aspirin in relation to colorectal cancer; test the clinical utility of published and 

clinically validated genotype-guided warfarin dosing algorithms in the Gujarati Indian 

population and; develop a panel of oligonucleotide probes and delineate optimal hybridization 

and washing conditions to carry out hybridization based detection of warfarin dose associated 

SNPs on a custom designed microarray platform that could then be transferred to the silicon 

nanowire based platform.  

In the first and second results chapters (Chapter 3 and 4), out of 43 candidate SNPs 

from 16 genes that are involved in aspirin’s pharmacokinetic and pharmacodynamic pathways 

which were selected for the analysis, 3 SNPs were observed to be associated with colorectal 

cancer risk with 2 of them having site-specific association with colon cancer risk in the meta-

analysis. Furthermore, 4 SNPs in 2 genes showed interaction with aspirin use and colorectal 

cancer risk whereby the variant allele was associated with an increase in cancer risk amongst 

aspirin users but not in non-users. This exploratory analysis identified 2 SNPs that showed 

site-specific association with cancer risk and 4 SNPs that showed interaction with aspirin use 

and cancer risk.  

Whilst the associations and interactions in the meta-analysis reached the type 1 error 

threshold of 0.05, they were not corrected for multiple tests due to number of hypotheses 

tested and lack of statistical power. Hence, the current results should be interpreted as 

hypothesis generating observations that require testing in further confirmatory studies and no 

specific conclusions can be drawn. This was largely due to the relatively small effect size of 

the associations and interactions that were observed in the current study. However, the size 

and the direction of association of CYP2C9 and intergenic SNPs, rs1799853 and rs6983267 

respectively, with colorectal cancer risk that was observed in the current study was similar to 
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 the effect size observed in the previous studies (Wang et al., 2014, Tenesa et al., 2008, Zanke 

et al., 2007, Tomlinson et al., 2007) thus suggesting that the novel associations and 

interactions noted in the current study could be bona fide observations rather than a false 

discovery. To support this, these SNPs would have to be tested in a new case-control cohort 

known as Genetic Epidemiology of Colorectal Cancer Consortium (GECCO) that has 

combined genetic and epidemiological data from 5 case-control and 5 cohort studies thus 

making a total of 8634 cases and 8553 controls (Nan et al., 2015).  

Using this dataset, the GECCO consortium recently showed an interaction between the 

SNP rs2965667 in MGST1 gene with aspirin or NSAID use and colorectal cancer risk 

(Genome wide Pinteraction= 4.6 x 10-9) whereby the wild-type TT genotype was associated with 

lower risk of cancer amongst aspirin or NSAID users (OR=0.66, 95% CI=0.61-0.70) 

compared to the individuals with the rare TA or AA genotype which was associated with an 

increased risk of cancer (OR=1.89, 95% CI=1.27-2.81) (Nan et al., 2015). Additionally, the 

consortium also showed an interaction between the SNP rs16973225 near the IL16 gene with 

aspirin or NSAID use and colorectal cancer risk (Genome wide Pinteraction= 8.2 x 10-9) when 

they carried out case-only interaction analysis. It is to be noted that both SNPs were tested in 

the current study for association and interaction but no significant results were observed 

which highlights the issue of the effect size of associations and interactions for these SNPs. 

Furthermore, previously mentioned SNPs from literature were not identified in the latest 

GWAS study which suggests that they didn’t have power to validate those SNPs low effect 

sizes.  

      Like previous studies, the current study was unsuccessful in identifying SNPs with a 

large effect size that could be utilized in clinical practice. Furthermore, the current study only 

tested for the effect of SNPs on aspirin’s efficacy but didn’t test for the association with 

aspirin’s adverse reaction. Moreover, it was beyond the scope of the current study to carry out 

a generalized burden test to assess the clinical utility of the novel SNPs identified in the study 

since these SNPs were not validated in other datasets and functional characterization of the 

variant allele of some SNPs is still pending. Whilst these results highlight lack of evidence for 

the clinical utility of the SNPs in predicting aspirin dose for prophylaxis and adjuvant therapy 

for colorectal cancer, it also highlights novel pathways that may be explored in the future to 

explain the variation in aspirin’s chemopreventive efficacy and colorectal tumorigenesis.  

In the third result chapter (Chapter 5), the clinical utility of published genotype guided 

warfarin dosing algorithms that were developed using white European and South Indian 

population data were tested in the Gujarati Indian population. Unlike aspirin, warfarin dose is 

significantly associated with the variant alleles in the CYP2C9 gene (CYP2C9*2 and
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 CYP2C9*3) and the VKORC1 gene (-1639G>A) (Jorgensen et al., 2012). Furthermore, 

development of a pharmacogenetic dose prediction algorithm based on the three SNPs (Klein 

et al., 2009) and successful demonstration of its clinical utility by improving time spent in the 

therapeutic range has also been shown in the white European population (Pirmohamed et al., 

2013). When the algorithm was tested for its clinical utility in the Gujarati Indian population 

in the current study, the dose prediction accuracy of the genotype guided dosing algorithm 

was found to be inferior in the Gujarati Indians compared to white Europeans. This is most 

likely to be due to the presence of the study subjects requiring warfarin dose for the target 

INR range 2.5-3.5. Since the pharmacogenetic algorithms were designed to predict dose for 

the target INR range 2-3, it is highly likely that the algorithms were underestimating dose for 

the subjects with higher target INR range and thus leading to poor prediction accuracy. 

However, due to the small study size and lack of power, testing for the influence of genetics 

on algorithm’s performance in the Gujarati Indian population couldn’t be carried out. Thus 

the hypothesis for the influence of genetics on algorithm’s performance could not rejected. 

Hence, one of the explanations for the poor dose prediction accuracy was suggested to be the 

low frequency of the VKORC1 rs9923231 variant in Gujarati Indians, which is the most 

important genetic determinant of warfarin dosing in the white Europeans (Klein et al., 2009, 

Gage et al., 2008). 

Whilst this is the first study to test the clinical utility of published pharmacogenetic 

algorithms and calculate allele frequencies of various warfarin dose associated SNPs in the 

Gujarati Indian population, recent study has reported allele frequencies of SNPs in the North 

Indian population (Giri et al., 2014) and a second group has developed pharmacogenetic 

based dosing algorithm for the South Indian population (Pavani et al., 2012). When the 

pharmacogenetic algorithm for the South Indian was tested for its utility in the Gujarati Indian 

population, the dose prediction accuracy was observed to be significantly lower in the 

Gujarati Indians. This could either be due to the inaccuracy in the development of the dosing 

algorithm whereby the predicted dose was over-fitted with the therapeutic dose or it could be 

due to genetic differences between the sub-populations in India that have been previously 

reported (Consortium, 2008).  

The current study didn’t involve identification of the population specific novel SNP that 

could explain variance in dose of warfarin by 5% or more and further developing the IWPC 

algorithm to better predict warfarin dose for the Gujarati Indians. This was due to the very 

low number of patients in the current study that reached therapeutic dose (N=53) whereas, 

based on the power calculation estimates, a minimum of 772 patients on therapeutic dose of 

warfarin would be required to carry out aforementioned analysis. Despite the shortfalls of the 
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 current study, it did provide an insight into the clinical utility of published algorithms in the 

Indian population and re-affirmed the need to carry out GWAS studies in ethnically diverse 

populations to help implement warfarin pharmacogenetics at a large scale. 

Whilst warfarin has been the first line anti-coagulant for more than 6 decades, newer 

oral anti-coagulants (NOACs) such as dabigatran, rivaroxaban, apixaban and edoxaban that 

directly inhibit thrombin and factor Xa in the coagulation cascade have been introduced into 

clinics recently (Pirmohamed et al., 2015). Whilst NOACs offer the advantage of standardized 

dosing without the need of regular monitoring and have fewer drug interactions than warfarin, 

they have several disadvantages such as lack of specific antidotes in case of excess bleeding, 

lack of reliable marker to assess the degree of anticoagulation, possibility of poor adherence 

and much higher costs than warfarin (Pirmohamed et al., 2015). Many clinical trials (such as 

RELY trial) promoted the advantage of switching all patients from warfarin to NOACs, a 

recent double-blind trial called ENGAGE AF-TIMI 48 showed that the use of edoxaban is 

useful in patients who carry one or more of the warfarin dose associated SNPs whereas in the 

rest of the patients who were wild-type for all 3 SNPs, no benefit was derived by switching to 

endoxaban (Mega et al., 2015). The latest study highlighted the benefit of using a 2-stage 

approach whereby the patients are first stratified to either NOACs or warfarin based on their 

sensitivity to warfarin and then deriving a genotype guided dose for the patients who are 

normal responders to warfarin. This approach may become a cost-effective solution for the 

healthcare bodies however, clinical data to support this approach is lacking currently. 

In the final chapter (Chapter 6), development of oligonucleotide probes for genotyping 

warfarin dose associated SNPs and optimization of hybridization and washing conditions to 

carry out genotyping on a custom designed microarray platform was described. Since 3 SNPs 

have been previously shown to be significantly associated with warfarin dose and benefit of 

genotyping them in the clinics been proven, developing probes for genotyping these SNPs on 

an ultra-rapid point of care genotyping device would help in implementing warfarin 

pharmacogenetics in routine clinical practice. The current work identified optimal 

hybridization and washing conditions for genotyping 3 SNPs using 64 probes on a microarray 

platform with the aim of replicating the conditions on the silicon nanowire platform once the 

probes have been spotted on them. 

Whilst the microarray platform successfully genotyped 3 SNPs in 2 anonymised 

samples using optimal conditions, more samples couldn’t be tested as only a certain number 

of microarray slides were available for testing due to monetary constraints. Furthermore, 

optimization of conditions using a microfluidic channel and chamber on the microarray 

platform was not carried out in the current study but several studies have previously reported 
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an improvement in the hybridization kinetics and target DNA specificity after using a 

microfluidic channel on a microarray platform (Henry and O’Sullivan, 2012). Moreover, the 

probe panel and conditions were not tested on the silicon nanowire platform due to the 

unavailability of a reliable supply of high quality nanowire chips and lack of test station 

facility consisting of probe station with semiconductor property analyzer where electrical 

detection using nanowires could be carried out. 

Despite the relative success and methodological ease of carrying out SNP genotyping 

using differential hybridization between the probe and the target, several other methods could 

also be used for SNP genotyping on the silicon nanowire platform. One such method that is 

currently under development carries out SNP detection using base extension technique that is 

similar to the one employed on the Sequenom platform whereby a single base that is 

complementary to the SNP position on the target DNA is added on the 3’-end of the probe. 

However, to carry out SNP detection on the silicon nanowire platform, the base used for 

extending the probe would be conjugated with a heavily charged molecule that will disrupt 

the current passing through the nanowires thus aiding in SNP detection. This method along 

with the differential hybridization based SNP genotyping is currently under development at 

QuantuMDx Ltd. that will use the silicon nanowire platform in their ultra rapid point of care 

genotyping device. 

In conclusion, the current work has aided in the identification of SNPs that are 

associated with CRC risk and modulate aspirin’s chemopreventive efficacy in a exploratory 

meta-analysis, shown poor dose prediction accuracy of published genotype guided warfarin 

dosing algorithms in the Gujarati Indian population and developed a probe set for carrying out 

warfarin dose associated SNPs on custom designed microarray platform where optimal 

hybridization and washing conditions were identified for rapid genotyping. The work 

presented here provides a unique overview of the entire pharmacogenetic process, from the 

methods employed in the identification of clinically useful genetic markers to testing clinical 

utility of genotype guided dosing algorithms in predicting personalised dose to developing a 

technology that would help deploy pharmacogenetic knowledge into clinical practice.  
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Chapter 8: Appendix 

8.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1 St. James’ Hospital ethics committee approval letter for 

carrying out analysis in UK-CCSG and NIH-CCFR dataset. 
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Supplementary Figure 2 Linkage disequilibrium heat maps for SNPs in the UK-

Colorectal Cancer Study Group dataset. 
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Supplementary Figure 3 Linkage disequilibrium heat maps for SNPs in the NIH-Colon 

Cancer Family Registry dataset. 
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SNP ID 

UK-Colorectal Cancer Study 

Group 
 

NIH-Colon Cancer Family 

Registry MAF 

comparison 

between 

datasets+ 
Observed 

MAF 

Hardy-

Weinberg 

equilibrium 

(P-value) 

MAF 

comparison 

(P-value)* 

 
Observed 

MAF 

Hardy-

Weinberg 

equilibrium 

(P-value) 

MAF 

comparis

on (P-

value)* 

rs1045642 0.46 0.85 0.51  0.48 0.48 0.24 0.31 

rs1321311 0.23 0.65 0.41  0.24 0.34 0.26 0.64 

rs1057910 0.07 0.13 0.66  0.08 0.25 0.80 0.77 

rs1799853 0.14 0.89 0.04  0.11 0.23 0.02 0.12 

rs6983267 0.47 0.40 0.36  0.48 0.95 0.12 0.67 

rs961253 0.37 0.13 0.24  0.35 0.26 0.02 0.08 

rs11694911 0.12 0.04 0.79  0.12 0.02 0.25 0.91 

rs28362380 0.09 0.69 0.04  0.09 0.30 0.67 0.89 

rs4936367 0.10 0.03 0.002  0.11 0.87 0.65 0.07 

rs7112513 0.10 0.60 0.01  0.11 0.87 0.66 0.59 

rs3842787 0.09 0.66 0.76  0.07 0.65 0.59 0.19 

rs20417 0.14 0.52 0.74  0.18 0.59 0.72 0.36 

rs2070959 0.29 0.05 0.56  0.33 0.22 0.91 0.005 

rs1105879 0.32 0.27 0.29  0.35 0.58 0.96 0.06 

rs2619112 0.46 1.00 0.80  0.45 0.05 0.58 0.30 

rs10958713 0.37 0.06 0.57  0.36 0.73 0.98 0.41 

rs11986055 0.04 0.09 1.00  0.04 1.0 0.69 0.46 

rs12910333 0.28 0.25 0.50  0.30 0.76 0.66 0.35 

rs5995355 0.06 0.16 0.77  0.06 0.02 0.85 0.83 

rs230490 0.44 0.73 0.66  0.41 0.43 0.53 0.24 

rs5275 - - -  0.36 0.88 0.55 - 

rs4648310 0.04 0.0003 0.90  0.04 0.63 0.65 0.03 

rs5029748 - - -  0.25 0.45 0.27 - 

rs2745557 0.18 0.91 0.53  0.17 0.10 0.14 0.34 

rs6474387 - - -  0.06 1.0 0.49 - 

rs16973225A 0.06 1.0 1.0  - - - - 

rs2302615 0.28 0.52 0.94  - - - - 

rs2430420 0.34 0.22 0.009  - - - - 

rs5277A 0.14 0.90 0.06  - - - - 

rs2965667 0.04 0.22 1.0  - - - - 

rs140461033 0.01 <0.0001 1.0  - - - - 

rs144410046 0.004 <0.0001 1.0  - - - - 

rs201103548 0.005 <0.0001 -  - - - - 

rs28382815 0.002 <0.0001 0.03  - - - - 

rs148026549 0.0005 0.99 1.0  - - - - 

rs145407778 0.002 0.96 0.006  - - - - 

rs10852434 0.00 1.0 -  - - - - 

rs147942040 0.005 <0.0001 1.0  - - - - 

rs141625476 0.004 <0.0001 0.001  - - - - 

rs147070911 0.005 <0.0001 0.001  - - - - 
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rs150408050 0.004 <0.0001 1.0  - - - - 

rs147694237 0.005 <0.0001 0.001  - - - - 

rs142710583 0.004 <0.0001 0.001  - - - - 

rs185651296 0.003 <0.0001 0.30  - - - - 

rs186808413 0.015 0.64 1.0  - - - - 

rs78428934 0.002 0.96 1.0  - - - - 

Supplementary Table 1 Comparison of observed minor allele frequency of SNPs 

between UK-Colorectal Cancer Study Group and NIH-Colon Cancer Study Registry. 

*Observed minor allele frequency (MAF) in controls was compared to the MAF reported for 

Phase I GBR and Phase I CEU population from 1000 Genomes database in UK-CCSG and 

NIH-CCFR datasets respectively using Fisher’s exact test. 

+Observed MAF in controls of the two datasets were compared using Fisher’s exact test. 
Ars16973225 and rs5277 was only genotyped in cases in the NIH-CCFR dataset. 
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene name SNP ID 

Copies 

of rare 

allele 

Controls, 

n (%) 

Cases,          

n (%) 

Odds 

Ratio 
95% CI P-value*  

Controls, 

n (%) 

Cases,          

n (%) 

Odds 

Ratio 
95% CI P-value* 

MDR1 rs1045642 
0 297 (29.2) 476 (28.4) 

  
  257 (26.1) 383 (27.1)    

1 or 2 722 (70.9) 1202 (71.6) 1.04 0.87, 1.23 0.87  728 (73.9) 1032 (72.9) 0.95 0.79, 1.14 0.93 

CDKN1A rs1321311 
0 579 (59.3) 946 (56) 

  
  566 (57.8) 789 (55.9)    

1 or 2 398 (40.7) 743 (44.0) 1.14 0.97, 1.34 0.07  414 (42.2) 622 (44.1) 1.08 0.91, 1.27 0.72 

CYP2C9 

rs1057910 
0 848 (86.9) 1487 (87.8) 

  
  841 (85.8) 992 (86.5)    

1 or 2 128 (13.1) 207 (12.2) 0.92 0.73, 1.17 0.49  139 (14.2) 155 (13.5) 0.95 0.74, 1.21 0.80 

rs1799853 
0 709 (74.3) 1274 (78) 

  
  141 (78.8) 126 (79.3)    

1 or 2 245 (25.7) 359 (22.0) 0.82 0.68, 0.98 0.03  38 (21.2) 33 (20.8) 0.97 0.58, 1.64 0.83 

Intergenic 

rs6983267 
0 282 (28.9) 523 (31) 

  
  267 (27.1) 436 (30.9)    

1 or 2 693 (71.1) 1167 (69.1) 0.91 0.76, 1.08 0.31  717 (72.9) 976 (69.1) 0.83 0.70, 1.00 0.06 

rs961253 
0 401 (41) 654 (38.5) 

  
  406 (41.3) 573 (40.5)    

1 or 2 576 (59.0) 1044 (61.5) 1.11 0.95, 1.30 0.13  578 (58.7) 842 (59.5) 1.03 0.87, 1.22 0.99 

ODC1 

rs28362380 
0 841 (83.4) 1365 (82.6) 

  
  822 (83.4) 1149 (81.3)    

1 or 2 168 (16.7) 287 (17.4) 1.05 0.85, 1.30 0.93  164 (16.6) 2665 (18.7) 1.16 0.93, 1.43 0.21 

rs11694911 
0 788 (77.6) 1356 (80.9) 

  
  772 (78.3) 1135 (80.2)    

1 or 2 228 (22.4) 321 (19.1) 0.82 0.68, 0.99 0.11  214 (21.7) 280 (19.8) 0.89 0.73, 1.09 0.31 

rs2430420 
0 452 (44.4) 748 (44.5) 

  
  - - - - - 

1 or 2 565 (55.6) 932 (55.5) 1 0.85, 1.17 0.78  - - - - - 
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rs2302615 
0 501 (51.6) 907 (56.1) 

  
  - - - - - 

1 or 2 470 (48.4) 710 (43.9) 0.83 0.71, 0.98 0.06  - - - - - 

PAFAH1B2 

rs4936367 
0 779 (80.8) 1294 (79.3) 

  
  786 (79.7) 1125 (79.5)    

1 or 2 185 (19.2) 337 (20.7) 1.1 0.90, 1.34 0.45  200 (20.3) 290 (20.5) 1.01 0.83, 1.24 0.64 

rs7112513 
0 789 (80.6) 1340 (79.1) 

  
  779 (79.4) 1122 (79.5)    

1 or 2 190 (19.4) 355 (20.9) 1.1 0.90, 1.34 0.40  202 (20.6) 289 (20.5) 0.99 0.81, 1.22 0.51 

PTGS1 rs3842787 
0 629 (82.8) 974 (79.9) 

  
  843 (85.9) 1242 (88.0)    

1 or 2 131 (17.2) 245 (20.1) 1.21 0.96, 1.53 0.37  139 (14.2) 169 (12.0) 0.83 0.65, 1.05 0.37 

PTGS2 

rs4648310 
0 951 (93.1) 1568 (93.6) 

  
  917 (93.1) 1085 (94.1)    

1 or 2 70 (6.9) 108 (6.4) 0.94 0.69, 1.28 0.91  68 (6.9) 68 (5.9) 0.85 0.6, 1.20 0.28 

rs20417 
0 750 (73.2) 1179 (70.6) 

  
  672 (68.2) 976 (69.0)    

1 or 2 275 (26.8) 492 (29.4) 1.14 0.96, 1.35 0.17  313 (31.8) 438 (31.0) 0.96 0.81, 1.15 0.80 

rs2745557 
0 612 (67.4) 1150 (70.6) 

  
  558 (69.7) 838 (66.9)    

1 or 2 296 (32.6) 480 (29.5) 0.86 0.72, 1.03 0.14  243 (30.3) 414 (33.1) 1.13 0.94, 1.37 0.11 

rs5277 
0 759 (73.7) 1193 (71.2) 

  
  - - - - - 

1 or 2 271 (26.3) 482 (28.8) 1.13 0.95, 1.35 0.10  - - - - - 

rs5275 
0 - - - - -  385 (41.3) 618 (45.3)    

1 or 2 - - - - -  547 (58.7) 746 (54.7) 0.85 0.72, 1.01 0.17 

UGT1A6 

rs1105879 
0 458 (47.1) 762 (44.9) 

  
  412 (41.8) 594 (42.0)    

1 or 2 515 (52.9) 937 (55.1) 1.09 0.93, 1.28 0.14  573 (58.2) 819 (58.0) 0.99 0.84, 1.17 0.77 

rs2070959 
0 497 (51) 812 (47.9) 

  
  433 (44.0) 636 (45.0)    

1 or 2 477 (49.0) 882 (52.1) 1.13 0.97, 1.33 0.07  551 (56.0) 779 (55.1) 0.96 0.82, 1.13 0.90 
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IL16 

rs16973225 
0 773 (87.6) 1421 (89.0) 

  
  - - - - - 

1 or 2 109 (12.4) 176 (11.0) 0.88 0.68, 1.13 0.23  - - - - - 

rs12910333 
0 455 (51.0) 853 (53.7) 

  
  482 (48.9) 737 (52.1)    

1 or 2 438 (49.1) 735 (46.3) 0.9 0.76, 1.05 0.32  504 (51.1) 677 (47.9) 0.88 0.75, 1.03 0.27 

IKBKB 

rs11986055 
0 851 (93.3) 1487 (92.2) 

  
  914 (92.9) 1305 (92.3)    

1 or 2 61 (6.7) 126 (7.8) 1.18 0.86, 1.62 0.28  70 (7.1) 109 (7.7) 1.09 0.80, 1.49 1.00 

rs10958713 
0 373 (41.0) 679 (41.9) 

  
  406 (41.2) 609 (43.0)    

1 or 2 537 (59.0) 940 (58.1) 0.96 0.82, 1.13 0.80  579 (58.8) 806 (57.0) 0.93 0.79, 1.09 0.58 

rs5029748 
0 - - - - -  557 (56.6) 643 (55.8)    

1 or 2 - - - - -  428 (43.5) 510 (44.2) 1.03 0.87, 1.23 0.60 

rs6474387 
0 - - - - -  161 (87.0) 146 (90.1)    

1 or 2 - - - - -  24 (13.0) 16 (9.9) 0.74 0.38, 1.44 0.24 

NCF4 rs5995355 
0 791 (88.0) 1409 (88.0) 

  
  874 (88.6) 1224 (86.6)    

1 or 2 108 (12.0) 193 (12.1) 1 0.78, 1.29 0.56  112 (11.4) 190 (13.4) 1.21 0.94, 1.55 0.18 

ALOX15 rs2619112 
0 263 (29.4) 434 (27.6) 

  
  288 (29.2) 390 (27.6)    

1 or 2 632 (70.6) 1137 (72.4) 1.09 0.91, 1.31 0.50  698 (70.8) 1024 (72.4) 1.08 0.90, 1.30 0.55 

NFKB rs230490 
0 289 (32.2) 498 (31.2) 

  
  335 (34.0) 478 (33.8)    

1 or 2 609 (67.8) 1098 (68.8) 1.05 0.88, 1.25 0.77  651 (66.0) 937 (66.2) 1.01 0.85, 1.20 0.73 

MGST1 rs2965667 
0 668 (93.2) 1361 (92.8) 

  
  - - - - - 

1 or 2 49 (6.8) 105 (7.2) 1.05 0.74, 1.49 0.86  - - - - - 

IL23R rs6683455 
0 - - - - -  755 (77.3) 867 (75.5)    

1 or 2 - - - - -  222 (22.7) 282 (24.5) 1.11 0.90, 1.35 0.53 
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PGDH rs7349744 
0 - - - - -  101 (54.6) 205 (48.2)    

1 or 2 - - - - -  84 (45.4) 220 (51.8) 1.29 0.91, 1.82 0.46 

FLAP rs17239025 
0 - - - - -  162 (87.6) 153 (93.9)    

1 or 2 - - - - -  23 (12.4) 10 (6.1) 0.46 0.21, 1.00 0.14 

Supplementary Table 2 Association between SNP variant allele and risk of colorectal cancer. 

*P-value is adjusted for age, sex and study site. 

CI, confidence interval 

n, number of subjects 
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene name SNP ID 

Copies 

of rare 

allele 

Colon,      

n (%) 

Rectum,          

n (%) 

Odds 

Ratio 
95% CI P-value*  

Colon,      

n (%) 

Rectum,          

n (%) 

Odds 

Ratio 
95% CI P-value* 

MDR1 rs1045642 
0 314 (28.5) 162 (28.1)     218 (27.1) 125 (26.0)    

1 or 2 788 (71.5) 414 (71.9) 1.02 0.81, 1.27 0.66  586 (72.9) 355 (74.0) 1.06 0.82, 1.37 0.53 

CDKN1A rs1321311 
0 623 (56.3) 323 (55.5)     462 (57.7) 254 (53.0)    

1 or 2 484 (43.7) 259 (44.5) 1.03 0.84, 1.26 0.70  339 (42.3) 225 (47.0) 1.21 0.96, 1.52 0.18 

CYP2C9 

rs1057910 
0 990 (88.9) 497 (85.7)     553 (86.3) 345 (86.3)    

1 or 2 124 (11.1) 83 (14.3) 1.33 0.99, 1.80 0.12  88 (13.7) 55 (13.8) 1 0.70, 1.44 0.86 

rs1799853 
0 855 (79.8) 419 (74.7)     73 (79.4) 50 (79.4)    

1 or 2 217 (20.2) 142 (25.3) 1.34 1.05, 1.70 0.008  19 (20.7) 13 (20.6) 1 0.45, 2.21 0.88 

Intergenic 

rs6983267 
0 346 (31.3) 177 (30.4)     249 (31.0) 150 (31.4)    

1 or 2 761 (68.7) 406 (69.6) 1.04 0.84, 1.30 0.58  554 (69.0) 328 (68.6) 0.98 0.77, 1.25 0.77 

rs961253 
0 432 (38.8) 222 (38.0)     332 (41.3) 182 (37.9)    

1 or 2 681 (61.2) 363 (62.1) 1.04 0.84, 1.27 0.71  472 (58.7) 298 (62.1) 1.15 0.91, 1.45 0.29 

ODC1 

rs28362380 
0 908 (83.7) 457 (80.6)     656 (81.7) 390 (81.3)    

1 or 2 177 (16.3) 110 (19.4) 1.23 0.95, 1.61 0.06  147 (18.3) 90 (18.8) 1.03 0.77, 1.38 0.83 

rs11694911 
0 894 (81.4) 462 (79.9)     632 (78.6) 392 (81.7)    

1 or 2 205 (18.7) 116 (20.1) 1.09 0.85, 1.41 0.57  172 (21.4) 88 (18.3) 0.82 0.62, 1.10 0.18 

rs2430420 0 481 (43.5) 267 (46.4)     - - - - - 
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1 or 2 624 (56.5) 308 (53.6) 0.89 0.73, 1.09 0.16  - - - - - 

rs2302615 
0 613 (57.8) 294 (52.9)     - - - - - 

1 or 2 448 (42.2) 262 (47.1) 1.22 0.99, 1.50 0.06  - - - - - 

PAFAH1B2 

rs4936367 
0 858 (80.3) 436 (77.6)     643 (80.0) 377 (78.5)    

1 or 2 211 (19.7) 126 (22.4) 1.18 0.92, 1.51 0.37  161 (20.0) 103 (21.5) 1.09 0.83, 1.44 0.75 

rs7112513 
0 890 (80.1) 450 (77.1)     640 (79.9) 377 (78.7)    

1 or 2 221 (19.9) 134 (23.0) 1.2 0.94, 1.53 0.27  161 (20.1) 102 (21.3) 1.08 0.81, 1.42 0.81 

PTGS1 rs3842787 
0 642 (80.6) 332 (78.7)     704 (88.0) 423 (88.1)    

1 or 2 155 (19.5) 90 (21.3) 1.12 0.84, 1.50 0.47  96 (12.0) 57 (11.9) 0.99 0.70, 1.40 0.91 

PTGS2 

rs4648310 
0 

1032 

(93.9) 
536 (92.9)     605 (93.9) 380 (94.5)    

1 or 2 67 (6.1) 41 (7.1) 1.18 0.79, 1.76 0.59  39 (6.1) 22 (5.5) 0.9 0.52, 1.54 0.78 

rs20417 
0 768 (69.9) 411 (71.9)     553 (68.8) 338 (70.4)    

1 or 2 331 (30.1) 161 (28.2) 0.91 0.73, 1.14 0.76  251 (31.2) 142 (29.6) 0.93 0.72, 1.18 0.41 

rs2745557 
0 748 (70.0) 402 (71.7)     485 (68.4) 273 (65.6)    

1 or 2 321 (30.0) 159 (28.3) 0.92 0.74, 1.15 0.45  224 (31.6) 143 (34.4) 1.13 0.88, 1.47 0.29 

rs5277 
0 791 (71.9) 402 (69.9)     - - - - - 

1 or 2 309 (28.1) 173 (30.1) 1.1 0.88, 1.37 0.40  - - - - - 

rs5275 
0 - - - - -  361 (46.3) 202 (44.0)    

1 or 2 - - - - -  418 (53.7) 257 (56.0) 1.1 0.87, 1.39 0.43 

UGT1A6 rs1105879 
0 491 (43.1) 281 (48.1)     322 (40.2) 208 (43.3)    

1 or 2 634 (56.8) 303 (51.9) 0.82 0.67, 1.00 0.06  480 (59.9) 272 (56.7) 0.88 0.70, 1.10 0.29 
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rs2070959 
0 517 (46.5) 295 (50.7)     348 (43.3) 221 (46.0)    

1 or 2 595(53.5) 287 (49.3) 0.85 0.69, 1.03 0.11  456 (56.7) 259 (54.0) 0.89 0.71, 1.12 0.39 

IL16 

rs16973225 
0 940 (89.7) 481 (87.6) 

  
  - - - - - 

1 or 2 108 (10.3) 68 (12.4) 1.23 0.89, 1.70 0.14  - - - - - 

rs12910333 
0 561 (53.9) 292 (53.3)     432 (53.8) 239 (49.8)    

1 or 2 479 (46.1) 256 (46.7) 1.03 0.83, 1.26 0.85  371 (46.2) 241 (50.2) 1.17 0.34, 1.47 0.14 

IKBKB 

rs11986055 
0 987 (92.9) 500 (90.9)     737 (91.7) 445 (92.9)    

1 or 2 76 (7.2) 50 (9.1) 1.3 0.89, 1.89 0.21  67 (8.3) 34 (7.1) 0.84 0.55, 1.29 0.46 

rs10958713 
0 456 (43.0) 223 (40.0)     364 (45.3) 195 (40.6)    

1 or 2 605 (57.0) 335 (60.0) 1.13 0.92, 1.39 0.12  440 (54.7) 285 (59.4) 1.21 0.96, 1.52 0.07 

rs5029748 
0 - - - - -  370 (57.5) 216 (53.7)    

1 or 2 - - - - -  274 (45.6) 186 (46.3) 1.16 0.90, 1.49 0.14 

rs6474387 
0 - - - - -  83 (87.4) 59 (93.7)    

1 or 2 - - - - -  12 (12.6) 4 (6.4) 0.47 0.14, 1.53 0.21 

NCF4 rs5995355 
0 928 (88.1) 481 (87.6)     695 (86.6) 417 (86.9)    

1 or 2 125 (11.9) 68 (12.4) 1.05 0.77, 1.44 0.67  108 (13.5) 63 (13.1) 0.97 0.70, 1.36 0.80 

ALOX15 rs2619112 
0 279 (27.0) 155 (28.9)     221 (27.5) 133 (27.7)    

1 or 2 755 (73.0) 382 (71.1) 0.91 0.72, 1.15 0.38  582 (72.5) 347 (72.3) 0.99 0.77, 1.28 0.78 

NFKB rs230490 
0 319 (30.5) 179 (32.6)     264 (32.8) 167 (34.8)    

1 or 2 727 (69.5) 371 (67.5) 0.91 0.73, 1.14 0.36  540 (67.2) 313 (65.2) 0.92 0.72, 1.16 0.42 

MGST1 rs2965667 
0 885 (93.2) 476 (92.3)     - - - - - 

1 or 2 65 (6.8) 40 (7.8) 1.14 0.76, 1.72 0.48  - - - - - 
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IL23R rs6683455 
0 - - - - -  487 (75.7) 289 (72.4)    

1 or 2 - - - - -  156 (24.3) 110 (27.6) 1.19 0.89, 1.58 0.24 

PGDH rs7349744 
0 - - - - -  126 (49.4) 62 (43.7)    

1 or 2 - - - - -  129 (50.6) 80 (56.3) 1.26 0.83, 1.90 0.22 

FLAP rs17239025 
0 - - - - -  90 (94.7) 59 (92.2)    

1 or 2 - - - - -  5 (5.3) 5 (7.8) 1.53 0.42, 5.50 0.32 

Supplementary Table 3 Association between SNP variant allele and site-specific colorectal cancer risk. 

*P-value is adjusted for age, sex and study site. 

CI, confidence interval 

n, number of subjects 
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 UK-Colorectal Cancer Study Group  NIH-Colon Cancer Family Registry 

Gene name SNP ID 

Copies 

of rare 

allele 

Non-users Aspirin users 
P-value for 

interaction* 
 

Non-users Aspirin users 
P-value for 

interaction* OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ OR (95% CI) P-value+ 

MDR1 rs1045642 

0 
n=537                        

1 
 

n=139                      

1 
   

n=392                        

1 
 

n=138                      

1 
  

1 or 2 
n=1307                 

1.01 (0.82, 1.24) 
0.94 

n=348                 

1.22 (0.82, 1.80) 
0.33 0.49  

n=999                 

0.97 (0.76, 1.24) 
0.83 

n=433                 

0.98 (0.67, 1.44) 
0.94 1.00 

CDKN1A rs1321311 

0 
n=1078                        

1 
 

n=287                         

1 
   

n=779                        

1 
 

n=320                         

1 
  

1 or 2 
n=820                        

1.09 (0.90, 1.33) 
0.36 

n=212                        

0.96 (0.67, 1.37) 
0.81 0.45  

n=608                        

1.10 (0.88, 1.37) 
0.41 

n=248                        

0.94 (0.67, 1.30) 
0.70 0.64 

CYP2C9 

rs1057910 

0 
n=1677                        

1 
 

n=434                        

1 
   

n=1082                        

1 
 

n=425                        

1 
  

1 or 2 
n=226                     

1.00 (0.75, 1.35) 
0.99 

n=64                       

0.82 (0.48, 1.38) 
0.45 0.54  

n=162                     

0.99 (0.71, 1.39) 
0.97 

n=72                       

1.13 (0.68, 1.87) 
0.63 0.85 

rs1799853 

0 
n=1417                        

1 
 

n=371                      

1 
   

n=114                        

1 
 

n=90                      

1 
  

1 or 2 
n=423                        

0.85 (0.8, 1.07) 
0.16 

n=119                       

0.70 (0.46, 1.06) 
0.09 0.36  

n=32                        

1.46 (0.66, 3.23) 
0.35 

n=19                       

0.80 (0.28, 2.22) 
0.67 0.25 

Intergenic 

rs6983267 

0 
n=566                        

1 
 

n=164                      

1 
   

n=427                        

1 
 

n=169                      

1 
  

1 or 2 
n=1333                

0.93 (0.75, 1.14) 
0.48 

n=334                   

0.77 (0.52, 1.13) 
0.18 0.41  

n=960                

0.80 (0.63, 1.02) 
0.07 

n=402                   

0.82 (0.57, 1.18) 
0.29 0.70 

rs961253 

0 
n=750                        

1 
 

n=195                      

1 
   

n=568                       

1 
 

n=223                     

1 
  

1 or 2 
n=1156               

1.07 (0.88, 1.30) 
0.49 

n=304                 

1.40 (0.97, 2.02) 
0.07 0.17  

n=822               

0.99 (0.79, 1.23) 
0.92 

n=348                 

1.17 (0.84, 1.65) 
0.35 0.29 
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ODC1 

rs28362380 

0 
n=1499                        

1 
 

n=399                      

1 
   

n=1126                       

1 
 

n=471                      

1 
  

1 or 2 
n=325                       

0.99 (0.77, 1.27) 
0.92 

n=77                   

1.30 (0.79, 2.14) 
0.30 0.36  

n=266                 

1.15 (0.87, 1.52) 
0.33 

n=100                   

1.19 (0.77, 1.83) 
0.43 0.48 

rs11694911 

0 
n=1473                       

1 
 

n=384                      

1 
   

n=1095                        

1 
 

n=457                      

1 
  

1 or 2 
n=372                 

0.79 (0.62, 0.99) 
0.04 

n=99                   

0.65 (0.41, 1.01) 
0.05 0.58  

n=297                       

0.83 (0.63, 1.08) 
0.16 

n=114                   

1.07 (0.71, 1.61) 
0.75 0.25 

rs2430420 

0 
n=819                        

1 
 

n=206                      

1 
   - - - - - 

1 or 2 
n=1026                 

0.97 (0.80, 1.18) 
0.79 

n=280                 

0.92 (0.64, 1.33) 
0.67 0.95  - - - - - 

rs2302615 

0 
n=967                        

1 
 

n=260                        

1 
   - - - - - 

1 or 2 
n=798                  

0.83 (0.69, 1.00) 
0.05 

n=213                  

0.86 (0.60, 1.24) 
0.42 0.94  - - - - - 

PAFAH1B2 

rs4936367 

0 
n=1475                        

1 
 

n=393                      

1 
   

n=1114                        

1 
 

n=456                     

1 
  

1 or 2 
n=372                 

1.02 (0.80, 1.30) 
0.88 

n=93                      

1.65 (1.02, 2.66) 
0.04 0.04  

n=278                 

0.92 (0.70, 1.20) 
0.53 

n=115                 

1.00 (0.66, 1.51) 
1.00 0.39 

rs7112513 

0 
n=1515                        

1 
 

n=404                      

1 
   

n=1109                        

1 
 

n=453                        

1 
  

1 or 2 
n=391                 

1.03 (0.81, 1.31) 
0.80 

n=95                   

1.55 (0.96, 2.48) 
0.07 0.08  

n=279                  

0.89 (0.68, 1.16) 
0.38 

n=115                  

1.00 (0.67, 1.51) 
0.98 0.30 

PTGS1 rs3842787 

0 
n=1147                        

1 
 

n=294                        

1 
   

n=1220                        

1 
 

n=478                      

1 
  

1 or 2 
n=261                  

1.18 (0.89, 1.57) 
0.26 

n=75                        

1.45 (0.86, 2.45) 
0.17 0.39  

n=165                  

1.01 (0.72, 1.42) 
0.95 

n=92                 

0.71 (0.46, 1.12) 
0.14 0.27 
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PTGS2 

rs4648310 

0 
n=1722                        

1 
 

n=458                      

1 
   

n=1176                        

1 
 

n=470                        

1 
  

1 or 2 
n=127                    

0.89 (0.62, 1.29) 
0.55 

n=30                   

0.89 (0.43, 1.87) 
0.77 0.76  

n=75                  

1.06 (0.66, 1.71) 
0.80 

n=31                        

0.51 (0.23, 1.13) 
0.10 0.12 

rs20417 

0 
n=1339                        

1 
 

n=342                      

1 
   

n=951                        

1 
 

n=399                      

1 
  

1 or 2 
n=507                  

1.08 (0.88, 1.34) 
0.46 

n=146                 

1.34 (0.90, 1.99) 
0.15 0.43  

n=439                 

0.98 (0.78, 1.23) 
0.84 

n=172                      

0.80 (0.56, 1.14) 
0.22 0.26 

rs2745557 

0 
n=1245                        

1 
 

n=345                         

1 
   

n=835                        

1 
 

n=320                      

1 
  

1 or 2 
n=557                        

0.88 (0.71, 1.09) 
0.23 

n=132                        

0.84 (0.56, 1.26) 
0.39 0.67  

n=404                    

1.27 (0.99, 1.63) 
0.06 

n=140                   

1.01 (0.68, 1.51) 
0.94 0.38 

rs5277 

0 
n=1330                        

1 
 

n=347                        

1 
   - - - - - 

1 or 2 
n=522                  

1.20 (0.97, 1.49) 
0.09 

n=140                 

0.92 (0.62, 1.37) 
0.70 0.20  - - - - - 

rs5275 

0 - - - - -  
n=580                        

1 
 

n=232                      

1 
  

1 or 2 - - - - -  
n=748                 

0.80 (0.64, 1.01) 
0.06 

n=313                   

0.88 (0.63, 1.24) 
0.46 0.97 

UGT1A6 

rs1105879 

0 
n=863                        

1 
 

n=237                          

1 
   

n=598                        

1 
 

n=234                          

1 
  

1 or 2 
n=1039                  

1.00 (0.83, 1.21) 
1.00 

n=263                       

1.38 (0.97, 1.98) 
0.08 0.10  

n=791                  

0.93 (0.75, 1.16) 
0.53 

n=337                       

1.19 (0.85, 1.66) 
0.31 0.16 

rs2070959 

0 
n=927                        

1 
 

n=253                       

1 
   

n=638                         

1 
 

n=246                        

1 
  

1 or 2 
n=973                    

1.02 (0.84, 1.24) 
0.83 

n=247                    

1.48 (1.03, 2.11) 
0.03 0.05  

n=752                  

0.87 (0.70, 1.09) 
0.23 

n=325                 

1.16 (0.83, 1.61) 
0.39 0.12 
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IL16 

rs16973225 

0 
n=1063                        

1 
 

n=399                          

1 
   - - - - - 

1 or 2 
n=186                  

0.93 (0.68, 1.28) 
0.93 

n=60                       

0.76 (0.44, 1.31) 
0.33 0.69  - - - - - 

rs12910333 

0 
n=925                        

1 
 

n=248                       

1 
   

n=697                        

1 
 

n=291                       

1 
  

1 or 2 
n=847                    

0.85 (0.70, 1.04) 
0.12 

n=208                    

1.18 (0.81, 1.73) 
0.38 0.28  

n=694                    

0.91 (0.73, 1.13) 
0.40 

n=280                    

0.84 (0.60, 1.17) 
0.30 0.50 

IKBKB 

rs11986055 

0 
n=1659                        

1 
 

n=447                          

1 
   

n=1280                        

1 
 

n=534                       

1 
  

1 or 2 
n=133                  

1.35 (0.91, 1.99) 
0.14 

n=28                       

0.99 (0.45, 2.17) 
0.99 0.21  

n=110                  

1.00 (0.66, 1.49) 
0.99 

n=37                    

1.17 (0.60, 2.28) 
0.65 0.69 

rs10958713 

0 
n=752                        

1 
 

n=209                       

1 
   

n=591                        

1 
 

n=238                       

1 
  

1 or 2 
n=1048                    

0.99 (0.82, 1.21) 
0.96 

n=262                    

0.96 (0.66, 1.40) 
0.84 0.79  

n=801                    

0.94 (0.75, 1.17) 
0.58 

n=332                    

0.75 (0.54, 1.05) 
0.10 0.50 

rs5029748 

0 - - - - -  
n=704                        

1 
 

n=267                       

1 
  

1 or 2 - - - - -  
n=547                    

0.93 (0.74, 1.17) 
0.52 

n=233                    

1.08 (0.76, 1.54) 
0.66 0.49 

rs6474387 

0 - - - - -  
n=137                        

1 
 

n=93                       

1 
  

1 or 2 - - - - -  
n=15                    

1.48 (0.50, 4.38) 
0.48 

n=18                    

0.49 (0.16, 1.48) 
0.21 0.14 

NCF4 rs5995355 

0 
n=1563                        

1 
 

n=407                         

1 
   

n=1208                        

1 
 

n=512                       

1 
  

1 or 2 
n=215                        

0.94 (0.70, 1.28) 
0.71 

n=61                        

1.82 (1.01, 3.29) 
0.05 0.09  

n=183                    

1.63 (1.15, 2.30) 
0.005 

n=59                    

0.88 (0.51, 1.50) 
0.63 0.13 
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ALOX15 rs2619112 

0 
n=505                        

1 
 

n=129                         

1 
   

n=390                        

1 
 

n=159                       

1 
  

1 or 2 
n=1252                        

1.00 (0.80, 1.25) 
0.99 

n=330                        

1.41 (0.93, 2.12) 
0.10 0.20  

n=1002                    

1.16 (0.91, 1.48) 
0.22 

n=412                    

0.91 (0.63, 1.31) 
0.60 0.14 

NFKB rs230490 

0 
n=547                        

1 
 

n=143                         

1 
   

n=485                        

1 
 

n=178                       

1 
  

1 or 2 
n=1226                        

1.14 (0.92, 1.41) 
0.23 

n=324                        

0.79 (0.52, 1.18) 
0.25 0.17  

n=907                    

0.95 (0.76, 1.20) 
0.66 

n=393                    

1.13 (0.79, 1.61) 
0.50 0.16 

MGST1 rs2965667 

0 
n=1441                        

1 
 

n=367                         

1 
   - - - - - 

1 or 2 
n=115                        

1.19 (0.77, 1.82) 
0.43 

n=28                        

0.72 (0.33, 1.57) 
0.41 0.25  - - - - - 

IL23R rs6683455 

0 - - - - -  
n=940                        

1 
 

n=382                       

1 
  

1 or 2 - - - - -  
n=301                    

1.00 (0.77, 1.31) 
0.98 

n=117                    

1.04 (0.69, 1.58) 
0.85 0.86 

PGDH rs7349744 

0 - - - - -  
n=154                        

1 
 

n=86                       

1 
  

1 or 2 - - - - -  
n=140                    

1.36 (0.80, 2.32) 
0.26 

n=95                    

1.64 (0.89, 3.02) 
0.11 0.40 

FLAP rs17239025 

0 - - - - -  
n=144                        

1 
 

n=97                       

1 
  

1 or 2 - - - - -  
n=9                    

0.45 (0.11, 1.86) 
0.27 

n=14                    

0.34 (0.09, 1.31) 
0.12 0.77 

Supplementary Table 4 Association between SNP variant allele and colorectal cancer risk stratified by only aspirin use. 

+P-value for association between SNP variant allele and colorectal cancer risk. 
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*P-value for interaction between SNP variant allele, aspirin use and colorectal cancer risk calculated using Likelihood ratio test. P-value is 

adjusted for age, sex and study site. 

OR, Odds Ratio 

CI, Confidence Interval 
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Supplementary Figure 4 Ethics approval from Care Institute of Medical Sciences 

hospital for the warfarin study. 
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Supplementary Figure 5 Ethics approval from Institute of Human Genetics for the 

warfarin study 
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Supplementary Table 5 PCR and Sequenom iPLEX primer sequences for genotyping 13 SNPs on Sequenom MassARRAY platform. 

F- Forward primer 

R-Reverse primer 

Number SNP Number PCR Primer iPLEX Primer 

1 rs61742245 
F-ACGTTGGATGTTAGTGCTCTCGCTCTACGC 

R-ACGTTGGATGAAGACGCGCGAACAGCTGAT 
CGCGCGGTAATCCCGGT 

2 rs11676382 
F-ACGTTGGATGGCCGCAGGTAAGTTCACAAC 
R-ACGTTGGATGTCTAGAGTTACTCTCCCCAG 

AGGGGAAAGTTACCAAG 

3 rs1799853 
F-ACGTTGGATGCAGTGATATGGAGTAGGGTC 
R-ACGTTGGATGCTGCGGAATTTTGGGATGG 

AAGAGGAGCATTGAGGAC 

4 rs17708472 
F-ACGTTGGATGGCCCGGCCCTTAAGTAATTC 
R-ACGTTGGATGCCCAGTCTCTGATGCAAAAC 

ACCGAGTGAACCGTTATAC 

5 rs339097 
F-ACGTTGGATGTCTGTCTTTCCCCTTTAGCC 

R-ACGTTGGATGCCTTGGATTCTGAATCTGGC 
CTGAATCTGGCCAATACTTA 

6 rs28371686 
F-ACGTTGGATGACATGCCCTACACAGATGCT 
R-ACGTTGGATGTGTCACAGGTCACTGCATGG 

CGCGGTCCAGAGATACATTGA 

7 rs2242480 
F-ACGTTGGATGTGCTAAGGTTTCACCTCCTC 

R-ACGTTGGATGGCAGGAGGAAATTGATGCAG 
ACCCAATAAGGTGAGTGGATG 

8 rs9332131 
F-ACGTTGGATGACATGAACAACCCTCAGGAC 

R-ACGTTGGATGCAAGCAGTCACATAACTAAGC 
AGCTTTTGTTTACATTTTACCT 

9 rs7294 
F-ACGTTGGATGAAAAAAGAGCGAGCGTGTGG 
R-ACGTTGGATGTTCTAGATTACCCCCTCCTC 

TTACCCCCTCCTCCTGCCATACCC 

10 rs3814637 
F-ACGTTGGATGCGACAATACTTACACAAAGCC 
R-ACGTTGGATGAGAGAACTGGAAATAACCTC 

CTCATTAGGAAATTTAGAACAAATA 

11 rs2108622 
F-ACGTTGGATGCATCAGTGTTTTCGGAACCC 

R-ACGTTGGATGGGACAAAAACAGAGAGAGGG 
CTCAGGGTCCGGCCACA 

12 rs1057910 
F-ACGTTGGATGTGTCACAGGTCACTGCATGG 
R-ACGTTGGATGCTACACAGATGCTGTGGTGC 

GCACGAGGTCCAGAGATAC 

13 rs9923231 
F-ACGTTGGATGTCTGGGAAGTCAAGCAAGAG 
R-ACGTTGGATGGCTAGGATTATAGGCGTGAG 

ATAGGCGTGAGCCACCGCACC 
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Supplementary Table 6 Restriction Fragment Length Polymorhism (RFLP) PCR protocol for genotyping 5 SNPs. 

F- Forward primer 

R-Reverse primer 

 

SNP 
Number 

Primers 
Thermal Cycler Programme 

Restriction 
Enzyme 

Restriction 
site 

Digested Product 
Reference 

Steps 
Temperature 

(°C) 
Time (sec) Cycles Allele 

Product 
Size 

rs1799853 
F-TACAAATACAATGAAAATATCATG 

R- CTAACAACCAGACTCATAATG 

Denature 95 30 

35 AvaII Destroyed 

WT 527 + 164 (Gaikwad et al., 2013, 

Pavani et al., 2011, 

Adithan et al., 2003) 

Anneal 57 30 
Variant 691 

Extend 72 60 

rs1057910 
F-AATAATAATATGCACGAGGTCCAGAGATGC 

R- GATACTATGAATTTGGGACTTC 

Denature 95 30 

35 NsiI Destroyed 

WT 112 + 29 (Gaikwad et al., 2013, 

Pavani et al., 2011, 

Adithan et al., 2003) 

Anneal 57 30 
Variant 141 

Extend 72 60 

rs9923231 
F- CAAGTTCCAGGGATTCATGC 
R- CAAGACGCTAGACCCAATG 

Denature 95 30 
30 MspI Destroyed 

WT 327+227 
(Gaikwad et al., 2013) Anneal 60 30 

Variant 554 
Extend 72 60 

rs2108622 
F- CGGAACTTGGACCATCTACA 
R- CTACTCTCCCACAGGCATTA 

Denature 95 30 
35 PvuII Destroyed 

WT 379+60 
(Pavani et al., 2012) Anneal 60 30 

Variant 439 
Extend 72 60 

rs7294 
F- TTTGCTTTGGCATGTGAGCCTTGC 

R- ACAGTCCATGGCAGACACATGGTT 

Denature 95 30 

30 AciI Created 

WT 182+99 
(Pavani et al., 2011) Anneal 64 30 

Variant 281 Extend 72 60 
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Clinical Indication 

Total 
Atrial Fibrillation 

Deep Vein 

Thrombosis 

Left Ventricular 

Ejection Fraction 

Pulmonary 

Embolism 

Valvular Heart 

Disease 
Other* 

21 6 9 5 50 11 102 

Supplementary Table 7 Clinical indications for warfarin treatment in 102 patients. 

*Other clinical indications include arterial thrombosis, coronary artery bypass graft, pacemaker implantation, left branchial paresis and diabetes 

mellitus. 
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Assay QC Assessment GD Pass Rate* Project Assessment Clustering+ 

rs1057910 Pass 93.1 Pass 2 

rs11676382 Pass 99.3 Pass 2 

rs17708472 Pass 96.7 Pass 1 

rs1799853 Pass 93.3 Pass 1 

rs2108622 Pass 96.5 Pass 1 

rs2242480 Pass 76.2 Fail 2 

rs28371686 Pass 99.3 Pass 2 

rs339097 Pass 86.0 Pass 2 

rs3814637 Pass 68.8 Fail 1 

rs61742245 Pass 93.5 Pass 2 

rs7294 Pass 94.7 Pass 1 

rs9332131 Pass 89.1 Pass 2 

rs9923231 Pass 95.6 Pass 1 

Average GD Pass Rate  90.93   

Number of failed assays   2  

Supplementary Table 8 Assay performance on Sequenom MassARRAY platform. 

*The pass rate of each assay is calculated with failed DNAs removed (conservative + moderate + aggressive + user calls)/ (total calls – minus 

bad spectra). An assay is considered a ‘pass’ if the rate if 80% or over whereas a failed assay fails to reach 80% call rate. 
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SNP Sequence Name Sequence 5'-3' 

CYP2C9*2 

Har001_051011_CYP2C9_R144C_SENSE_WT GCA TTG AGG ACC GTG TTC A 

Har002_051011_CYP2C9_R144C_ANTISENSE_WT TGA ACA CGG TCC TCA ATG C 

Har003_051011_CYP2C9_R144C_SENSE_M GCA TTG AGG ACT GTG TTC A 

Har004_051011_CYP2C9_R144C_ANTISENSE_M TGA ACA CAG TCC TCA ATG C 

Har005_051011_CYP2C9_R144C_SENSE_WT GAG CAT TGA GGA CCG TGT TC 

Har006_051011_CYP2C9_R144C_ANTISENSE_WT GAA CAC GGT CCT CAA TGC TC 

Har007_051011_CYP2C9_R144C_SENSE_M GAG CAT TGA GGA CTG TGT TC 

Har008_051011_CYP2C9_R144C_ANTISENSE_M GAA CAC AGT CCT CAA TGC TC 

Har009_051011_CYP2C9_R144C_SENSE_WT AGG ACC GTG TTC AAG AGG AA 

Har010_051011_CYP2C9_R144C_ANTISENSE_WT TTC CTC TTG AAC ACG GTC CT 

Har011_051011_CYP2C9_R144C_SENSE_M AGG ACT GTG TTC AAG AGG AA 

Har012_051011_CYP2C9_R144C_ANTISENSE_M TTC CTC TTG AAC ACA GTC CT 

Har013_051011_CYP2C9_R144C_SENSE_WT GAG GAC CGT GTT CAA GAG GA 

Har014_051011_CYP2C9_R144C_ANTISENSE_WT TCC TCT TGA ACA CGG TCC TC 

Har015_051011_CYP2C9_R144C_SENSE_M GAG GAC TGT GTT CAA GAG GA 

Har016_051011_CYP2C9_R144C_ANTISENSE_M TCC TCT TGA ACA CAG TCC TC 

Har017_051011_CYP2C9_R144C_SENSE_WT AGC ATT GAG GAC CGT GTT C 

Har018_051011_CYP2C9_R144C_ANTISENSE_WT GAA CAC GGT CCT CAA TGC T 

Har019_051011_CYP2C9_R144C_SENSE_M AGC ATT GAG GAC TGT GTT C 

Har020_051011_CYP2C9_R144C_ANTISENSE_M GAA CAC AGT CCT CAA TGC T 

Har021_051011_CYP2C9_R144C_SENSE_WT TGA GGA CCG TGT TCA AGA GG 

Har022_051011_CYP2C9_R144C_ANTISENSE_WT CCT CTT GAA CAC GGT CCT CA 

Har023_051011_CYP2C9_R144C_SENSE_M TGA GGA CTG TGT TCA AGA GG 

Har024_051011_CYP2C9_R144C_ANTISENSE_M CCT CTT GAA CAC AGT CCT CA 

CYP2C9*3 

Har025_051011_CYP2C9_I359L_SENSE_WT ACG AGG TCC AGA GAT ACA TTG AC 

Har026_051011_CYP2C9_I359L_ANTISENSE_WT GTC AAT GTA TCT CTG GAC CTC GT 

Har027_051011_CYP2C9_I359L_SENSE_M ACG AGG TCC AGA GAT ACC TTG AC 

Har028_051011_CYP2C9_I359L_ANTISENSE_M GTC AAG GTA TCT CTG GAC CTC GT 

Har029_051011_CYP2C9_I359L_SENSE_WT CGA GGT CCA GAG ATA CAT TGA C 

Har030_051011_CYP2C9_I359L_ANTISENSE_WT GTC AAT GTA TCT CTG GAC CTC G 

Har031_051011_CYP2C9_I359L_SENSE_M CGA GGT CCA GAG ATA CCT TGA C 

Har032_051011_CYP2C9_I359L_ANTISENSE_M GTC AAG GTA TCT CTG GAC CTC G 

Har033_051011_CYP2C9_I359L_SENSE_WT GAG ATA CAT TGA CCT TCT CCC C 

Har034_051011_CYP2C9_I359L_ANTISENSE_WT GGG GAG AAG GTC AAT GTA TCT C 

Har035_051011_CYP2C9_I359L_SENSE_M GAG ATA CCT TGA CCT TCT CCC C 

Har036_051011_CYP2C9_I359L_ANTISENSE_M GGG GAG AAG GTC AAG GTA TCT C 

Har037_051011_CYP2C9_I359L_SENSE_WT GAT ACA TTG ACC TTC TCC CCA 

Har038_051011_CYP2C9_I359L_ANTISENSE_WT TGG GGA GAA GGT CAA TGT ATC 

Har039_051011_CYP2C9_I359L_SENSE_M GAT ACC TTG ACC TTC TCC CCA 

Har040_051011_CYP2C9_I359L_ANTISENSE_M TGG GGA GAA GGT CAA GGT ATC 

Har041_051011_CYP2C9_I359L_SENSE_WT AGA TAC ATT GAC CTT CTC CCC A 

Har042_051011_CYP2C9_I359L_ANTISENSE_WT TGG GGA GAA GGT CAA TGT ATC T 

Har043_051011_CYP2C9_I359L_SENSE_M AGA TAC CTT GAC CTT CTC CCC A 
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Har044_051011_CYP2C9_I359L_ANTISENSE_M TGG GGA GAA GGT CAA GGT ATC T 

VKORC1-

1639G>A 

Har045_051011_VKORC1_G1639A_SENSE_WT CAC CCG GCC AAT GGT T 

Har046_051011_VKORC1_G1639A_ANTISENSE_WT AAC CAT TGG CCG GGT G 

Har047_051011_VKORC1_G1639A_SENSE_M CAC CTG GCC AAT GGT T 

Har048_051011_VKORC1_G1639A_ANTISENSE_M AAC CAT TGG CCA GGT G 

Har049_051011_VKORC1_G1639A_SENSE_WT ACC CGG CCA ATG GTT G 

Har050_051011_VKORC1_G1639A_ANTISENSE_WT CAA CCA TTG GCC GGG T 

Har051_051011_VKORC1_G1639A_SENSE_M ACC TGG CCA ATG GTT G 

Har052_051011_VKORC1_G1639A_ANTISENSE_M CAA CCA TTG GCC AGG T 

Har053_051011_VKORC1_G1639A_SENSE_WT CGC ACC CGG CCA AT 

Har054_051011_VKORC1_G1639A_ANTISENSE_WT ATT GGC CGG GTG CG 

Har055_051011_VKORC1_G1639A_SENSE_M CGC ACC TGG CCA AT 

Har056_051011_VKORC1_G1639A_ANTISENSE_M ATT GGC CAG GTG CG 

Har057_051011_VKORC1_G1639A_SENSE_WT ACC GCA CCC GGC C 

Har058_051011_VKORC1_G1639A_ANTISENSE_WT GGC CGG GTG CGG T 

Har059_051011_VKORC1_G1639A_SENSE_M ACC GCA CCT GGC C 

Har060_051011_VKORC1_G1639A_ANTISENSE_M GGC CAG GTG CGG T 

Har061_051011_VKORC1_G1639A_ANTISENSE_M IGG CCA GGT GCG GT 

Har062_051011_VKORC1_G1639A_ANTISENSE_M IIG GCC AGG TGC GGT 

Har063_051011_VKORC1_G1639A_ANTISENSE_M III GGC CAG GTG CGG T 

Har076_251011_ACTB_COTROL_SENSE_PROBE GGT CCC GGC CAG CC 

Har079_271011_ACTB_CONTROL_SENSE_PROBE CTC GTA GAT GGG CAC AGT GT 

Supplementary Table 9 Probe set designed to genotype 3 warfarin dose SNPs. 

I, Inosine 

Har076 and Har079 probes used a positive controls. 

WT= wild type, M= mutant  
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SNP/ Gene Sequence Name Sequence 5'-3' 
Melting 

temperature (°C) 
Amplicon size  

CYP2C9*2 
Har064_051011_CYP2C9_R144C_FP CCT CCT AGT TTC GTT TCT CTT CCT GT 64 

232 bp 
Har065_051011_CYP2C9_R144C_RP CAT ATC ACT GAC CTT ACT GGA CTA CTA TCT TCT CTA C 65 

CYP2C9*3 
Har066_051011_CYP2C9_I359L_FP TGC ATG CAA GAC AGG AGC C 64 

154 bp 
Har067_051011_CYP2C9_I359L_RP GGA GAA ACA AAC TTA CCT TGG GAA 62 

VKORC1-

1639G>A 

Har068_051011_VKORC1_G1639A_FP AGC CAG CAG GAG AGG GAA ATA 62 
167 bp 

Har069_051011_VKORC1_G1639A_RP GCC TCC CAA AAT GCT AGG ATT 62 

ACTB 
Har077_251011_ACTB_CONTROL_FP GTG GTG GTG AAG CTG TAG CC 61 

197 bp 
Har078_251011_ACTB_CONTROL_RP GCT GTG CTA TCC CTG TAC GC 61 

Supplementary Table 10 PCR primer sequence for generating PCR products for the 3 warfarin SNPs and ACTB control sequence. 

FP= Forward primer, RP= Reverse primer. 

bp, base pair 
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SNP DNA sequence (5’ – 3’ sense strand) 

CYP2C9*2 

GCTCCTCGGGCAGAGCTTGGCCCATCCACATGGCTGCCCAGTGTCAGCTTCCTCTTTCTTGCCTGGGATCTCCCTCCTAGTTTCGTTTCTCTTCCT

GTTAGGAATTGTTTTCAGCAATGGAAAGAAATGGAAGGAGATCCGGCGTTTCTCCCTCATGACGCTGCGGAATTTTGGGATGGGGAAGAGGAG

CATTGAGGAC[C/T]GTGTTCAAGAGGAAGCCCGCTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGGTGGGTGACCCTACTCCATATCACTGACC

TTACTGGACTACTATCTTCTCTACTGACATTCTTGGAAACATTTCAGGGGTGGCCATATCTTTCATTATGAGTCCTGGTTGTTAGCTCATGTGAAG

CGGGGGTTTGAAGCTGAGAGCCAA 

CYP2C9*3 

CCCCTGAATTGCTACAACAAATGTGCCATTTTTCTCCTTTTCCATCAGTTTTTACTTGTGTCTTATCAGCTAAAGTCCAGGAAGAGATTGAACGT

GTGATTGGCAGAAACCGGAGCCCCTGCATGCAAGACAGGAGCCACATGCCCTACACAGATGCTGTGGTGCACGAGGTCCAGAGATAC[A/C]TT

GACCTTCTCCCCACCAGCCTGCCCCATGCAGTGACCTGTGACATTAAATTCAGAAACTATCTCATTCCCAAGGTAAGTTTGTTTCTCCTACACTG

CAACTCCATGTTTTCGAAGTCCCCAAATTCATAGTATCATTTTTAAACCTCTACCATCACCGGGTGAGAGAAGTGCATAACTCATATGTA 

VKORC1-

1639G>A 

TGGACTACAGGTGCCTGCCACCATGTCTGGCTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTTGTCTTAAACTCCT

GACCTCAAGTGATCCACCCACCTCGGCCTCCCAAAATGCTAGGATTATAGGCGTGAGCCACCGCACC[C/T]GGCCAATGGTTGTTTTTCAGGTCT

TCTCTTGCTTGACTTCCCAGAGGGATCCCTTACTGTTGCACCTACCCTTCTGGGAACTCTCTTCCTCTGGCGTCTGTGATATTTCCCTCTCCTGCT

GGCTCCTCCCTCTCCAGATGCTGTTTCTCACATCTACTCTCTTCTAGAGAGTGTGGTAGACAGAATAATGGTCACCAAAGATGTCCC 

Supplementary Table 11 DNA sequence encompassing the SNP sent for synthesis 

Letters in red color show SNP position within the DNA sequence 

[Ancestral nucleotide/Variant nucleotide] 
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8.1 Supplementary Information 1 (Klein et al., 2009 algorithm) 

 

Predicted clinical dose (mg/week)= [4.0376-(0.2546*Age in decades)+(0.0118*Height in 

cm)+(0.0134*Weight in Kg)-(0.6752*Asian race)+(0.4060*Black or African 

American)+(0.0443*Missing or Mixed race)+(1.2799*Enzyme inducer status)-

(0.5695*Amiodarone status)]2  

 

Predicted pharmacogenetic dose (mg/week)= [5.6044-(0.2614*Age in 

decades)+(0.0087*Height in cm)+(0.0128*Weight in Kg)-(0.8677*VKORC1 A/G)-

(1.6974*VKORC1 A/A)-(0.4854*VKORC1 genotype unknown)-(0.5211*CYP2C9 *1/*2)-

(0.9357*CYP2C9 *1/*3)-(1.0616*CYP2C9 *2/*2)-(1.9206*CYP2C9 *2/*3)-

(2.3312*CYP2C9 *3/*3)-(0.2188*CYP2C9 genotype unknown)-(0.1092*Asian race)-

(0.2760*Black or African American)-(0.1032*Missing or Mixed race)+(1.1816*Enzyme 

inducer status)-(0.5503*Amiodarone status)]2 

 

Legend for use of algorithms:  

• Age in decades = 1 for 10-19, 2 for 20-29, etc…  

• VKORC1 G/A = 1 if heterozygous for rs9923231, otherwise zero  

• VKORC1 A/A = 1 if homozygous for A at rs9923231, otherwise zero  

• VKORC1 genotype unknown = 1 if rs9923231 genotype missing or unknown, otherwise 

zero  

• CYP2C9 *1/*2 = 1 if CYP2C9 genotype is *1/*2, otherwise zero  

• CYP2C9 *1/*3 = 1 if CYP2C9 genotype is *1/*3, otherwise zero  

• CYP2C9 *2/*2 = 1 if homozygous for CYP2C9 *2 allele, otherwise zero  

• CYP2C9 *2/*3 = 1 if CYP2C9 genotype is *2/*3, otherwise zero  

• CYP2C9 *3/*3 = 1 if homozygous for CYP2C9 *3 allele, otherwise zero 

 • CYP2C9 genotype unknown = 1 if CYP2C9 genotype unknown, otherwise zero • Asian 

Race = 1 if self-reported race is Asian, otherwise zero  

• Black/African American = 1 if self-reported race is Black or African American, otherwise 

zero  

• Missing or Mixed race = 1 if self-reported race is unspecified or mixed, otherwise zero  

• Enzyme inducer status = 1 if patient taking carbamazepine, phenytoin, rifampin, or 

rifampicin, otherwise zero  

• Amiodarone status = 1 if patient taking amiodarone, otherwise zero 
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8.2 Supplementary Information 2 (Gage et al., 2008 algorithm) 

 

Predicted clinical dose (mg/week)= [exp(0.613+(0.425*BSA)-

(0.0075*Age)+(0.156*African American race)+(0.216*target INR)-(0.257*Amiodarone 

status)+(0.108*Smoking status)+(0.0784*DVT/PE))] *7  

 

Predicted pharmacogenetic dose (mg/week)= [exp(0.9751−(0.3238*VKORC1 

genotype)+(0.4317*BSA)−(0.4008*CYP2C9*3)−(0.00745*Age)−(0.2066*CYP2C9*2)+(0.2

029*target INR)−(0.2538*Amiodarone status)+(0.0922*Smoking status)−(0.0901*African 

American race)+(0.0664*DVT/PE))]*7 

 

Legend for use of algorithms:  

• Age = 1,2,3…..99 etc. 

• BSA = Body surface area in m2 

• VKORC1 genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous 

mutant 

• CYP2C9*2 = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous mutant 

• CYP2C9*3 = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous mutant 

• Target INR = 2.5 for patients with AF, DVT, PE or LVEF; 3 for patients with mechanical 

heart valve replacement 

• Amiodarone status = 1 if patient is taking Amiodarone, otherwise zero 

• Smoking status = 1 if patient is smoking, otherwise zero 

• African American race = 1 if self reported race is African American, otherwise zero 

• DVT/ PE = 1 if patient is treated for DVT or PE, otherwise zero 
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8.3 Supplementary Information 3 (Pavani et al., 2012 algorithm) 

 

Predicted pharmacogenetic dose for males (mg/week)= -

(0.1013885349*Age)+(1.449999606*BMI)+(8.054730665*CYP2C9*2)+(1.726919455*CYP

2C9*3)-(4.437335987*VKORC1*3)-(2.771903482*VKORC1*4)+ (1.511628517*VKORC1 

-1639)+(1.570215716*CYP4F2 V433M)+ 

(2.409742997*GGCX)+(11.05198035*CYP2C9*8)+7.970140851 

 

Predicted pharmacogenetic dose for females (mg/week)=  -(0.05440552061*Age)-

(0.2938201651*BMI)-(1.576151039*CYP2C9*2) - 

(5.950436495*CYP2C9*3)+(2.983528309*VKORC1*3)+(8.699010214*VKORC1*4)-

(11.00733747*VKORC1 -1639)-(2.282918521*CYP4F2 V433M)-(4.097105716*GGCX)-

(2.96671589*CYP2C9*8)+44.53497515 

 

Legend for use of algorithms:  

• Age = 1,2,3…..99 etc. 

• BMI = Body Mass Index in Kg/m2 

• CYP2C9*2 = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous mutant 

• CYP2C9*3 = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous mutant 

• VKORC1*3 genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous 

mutant 

• VKORC1*4 genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous 

mutant 

• VKORC1 -1639 genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if 

homozygous mutant 

• CYP4F2 V433M genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if 

homozygous mutant 

• GGCX genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous 

mutant 

• CYP2C9*8 genotype = 0 if homozygous wild-type, 1 if heterozygous and 2 if homozygous 

mutant 
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