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         Abstract 
HCO3

- secretion plays a vital role in regulating the pH and mucus viscosity of airway 
surface liquid to facilitate airway mucociliary clearance of inhaled pathogen. In cystic 
fibrosis (CF), reduced HCO3

- secretion contributes to defective mucociliary clearance 
which predisposes the lungs to bacterial infection. Calu-3 cells are used as a model of 
human submucosal gland serous cells which are involved in CFTR (cystic fibrosis 
transmembrane conductance regulator)-dependent HCO3

- secretion, a process that 
appears to involve functional interactions with both apical and basolateral Cl-/HCO3

- 
anion exchangers (AE), but through regulatory pathways that are not well understood. 
The aim of this thesis was to investigate the signalling mechanisms that regulate 
CFTR-dependent AE activity in Calu-3 cells.  

Under resting conditions, Calu-3 cells showed a DIDS-sensitive Cl- and HCO3
--

dependent basolateral anion exchange activity consistent with AE2 (SLC4A2) 
expression. However, apical AE activity was not detected. Increasing cytosolic Ca2+, 
or removal of extracellular Ca2+, had no effect on basolateral AE activity. In contrast, 
lowering cytosolic Ca2+ with BAPTA-AM, or inhibiting calmodulin (CaM), reduced 
basolateral AE activity. Furthermore, an intact actin cytoskeleton, as well as active 
dynamin, were essential for maintaining basolateral AE activity, possibly via supply 
of new proteins to the basolateral membrane. Inhibiting CK2 or protein phosphatase 1 
(PP1) abolished basolateral AE activity, and CK2 inhibition was linked to CaM. This 
suggests that AE activity was maintained through a novel CaM-dependent mechanism 
involving phosphorylation/dephosphorylation by CK2/PP1.  In support of this, 
transient transfection of HEK293 cells with mouse AE2, with and without CK2 co-
transfection, clearly demonstrated CK2-dependent AE2 activity.  

Stimulation of Calu-3 cells with cAMP agonists both activated an apical anion 
exchanger via a PKA and Epac-dependent mechanism, and inhibited the basolateral 
anion exchanger, but through a PKA and Epac-independent mechanism. Blocking 
CFTR with GlyH-101 caused an apparent inhibition of apical AE activity, but 
addition of basolateral DIDS restored apical activity, suggesting that a basolateral 
HCO3

- transporter was activated when CFTR was inhibited. Removal of extracellular 
Ca2+ partially reduced the cAMP-induced inhibition of the basolateral AE activity, but 
had no effect on cAMP-stimulated apical AE activity. Moreover, increasing cytosolic 
Ca2+, or lowering cytosolic Ca2+ with BAPTA-AM, markedly reduced cAMP-
stimulated apical AE activity, but it had no effect on cAMP-induced inhibition of the 
basolateral anion exchanger. Actin-cytoskeleton disruption had no effect on apical AE 
activity but dynamin inhibition caused a significant decrease. A similar decrease in 
apical AE activity was observed when CK2 was inhibited, but in contrast to the 
basolateral anion exchanger, this appeared to be via a CaM-independent mechanism. 
Inhibiting CK2, however, had no effect on the cAMP-induced inhibition of the 
basolateral AE activity, suggesting that CK2 regulation of Calu-3 anion exchangers is 
through cAMP-independent mechanisms.  

These findings provide new insights into the signalling pathways that regulate both 
the apical and basolateral anion exchangers in Calu-3 cells and help define their 
respective roles in airway HCO3

- secretion. The results could potentially open up new 
avenues for modulating AE activity which could be beneficial in HCO3

- secretory 
diseases such as CF. 

i 
 



              Acknowledgements 

First, and in particular, I would like to sincerely express my gratitude to my 

supervisor, Dr. Mike Gray, for his constant support, guidance, and for 

everything he has done for me in order to have for me to complete my PhD. I 

would like to thank Mike not only for his fantastic guidance and patience with 

me, but also for his great source of knowledge and for showing me what it 

requires to be a good scientist. I am also very grateful for his kind help and 

support with any personal issues that arose during my PhD. 

I am also very thankful to my fellow laboratory members, Dr. Mark Turner, 

Waseema Patel and Dr. Bernard Verdon who have all helped me to be able to 

complete all the experiments I set out to do.  

In addition, I would also like to thank the rest of my fellow members of the 

Epithelial Research Group at Newcastle University for their friendship, support 

and technical knowledge. I would like to express my deep sense of gratitude and 

regard to Maxine Geggie, for her valuable assistance in tissue culture and to Dr. 

Alison Howard for her help and patience when teaching me certain molecular 

biology techniques. I should also thank members of Prof Jeff Pearson’s lab who 

gave access to the laboratory and research facilities, and borrowing of their 

chemicals and other equipment. 

I would like to express great thanks to my friends who all have helped me on 

this journey in some way.  

Finally, I would like to thank my family:  Mum and Dad and to my brothers and 

sister who have been a constant source of emotional support. It is my privilege 

to express a huge thanks to my wife Shaema, for her continuous encouragement, 

patience and precious support throughout my PhD and my life in general. I am 

very grateful for everything you have done for me and for helping me get to 

where I am today. 

  

ii 
 



Table of Contents 

 

Abstract……………………………………………………………………...…………………i 

Acknowledgements……………………………………………………………………………ii 

Table of Contents……………………………..………………………………………………iii 

List of Figures……………………………………………………………………….………viii 

List of Tables…………………………………………………………………...…………xxvii 

List of abbreviation………………………………………………………………….……xxviii 

Chapter 1 Introduction .......................................................................................................... 1 

1.1 HCO3
- secretion by epithelial cells.............................................................................. 1 

1.1.1 Mechanism of Bicarbonate secretion in epithelial tissues .............................................. 4 

1.2 HCO3
- secretion in the airways ................................................................................... 8 

1.3 Submucosal glands (SMGs) ...................................................................................... 10 

1.3.1 Mechanism and regulation of SMG secretion ............................................................... 11 

1.4 Airway surface liquid (ASL) ..................................................................................... 14 

1.5 Cystic fibrosis transmembrane conductance regulator (CFTR) ................................ 17 

1.6 Regulation of CFTR .................................................................................................. 20 

1.7 Cystic fibrosis ............................................................................................................ 21 

1.8 Role of SLC26 Cl-/HCO3
- anion exchangers and HCO3

- secretion in epithelial cells
 23 

1.8.1 SLC26A4 (Pendrin) ...................................................................................................... 26 

1.9 Regulation of SLC26 anion exchangers by CFTR .................................................... 28 

1.10 The SLC4 family of anion transporters ..................................................................... 30 

1.10.1 Anion exchanger 2 (SLC4A2 or AE2) .......................................................................... 33 

1.11 Calu-3 Cells as a model of human submucosal gland serous cells ........................... 34 

Chapter 2 Methods.............................................................................................................. 38 

2.1 Cell culture ................................................................................................................ 38 

2.1.1 Expression constructs: ................................................................................................... 40 

2.2 Transepithelial Resistance Measurements ................................................................ 41 

iii 
 



2.3 Measurement of intracellular pH............................................................................... 41 

2.4 Intracellular pH Calibration ...................................................................................... 42 

2.5 Data analysis of pHi measurements........................................................................... 44 

2.6 Determination of Total and Intrinsic Intracellular Buffering Capacity of cells ........ 45 

2.7 Fluid Secretion Assays .............................................................................................. 48 

2.8 Confocal Microscopy ................................................................................................ 48 

2.9 Solutions and reagents ............................................................................................... 50 

2.10 Statistical analysis ..................................................................................................... 52 

Chapter 3 Regulation of the apical Cl-/HCO3
- anion exchange activity in polarised cultures 

of Calu-3 cells .......................................................................................................................... 53 

3.1 Introduction ............................................................................................................... 53 

3.2 Role of cyclic nucleotides (cAMP and cGMP) in the regulation of apical Cl-/HCO3
- 

AE activity............................................................................................................................ 54 

3.2.1 Role of cAMP/PKA in the regulation of apical Cl-/HCO3
- AE activity ........................ 54 

3.2.2 Role of exchange protein directly activated by cAMP (Epac) in the regulation of apical 
Cl-/HCO3

- AE activity ................................................................................................................... 60 

3.3 Role of CFTR and basolateral transporter in the regulation of apical Cl-/HCO3
- 

exchange activity .................................................................................................................. 66 

3.4 Role of intracellular and extracellular Ca2+ in the regulation of apical Cl-/HCO3
- 

anion exchanger activity....................................................................................................... 70 

3.4.1 Role of intracellular Ca2+ .............................................................................................. 70 

3.4.2 Role of extracellular calcium concentration: ................................................................ 74 

3.5 Role of calmodulin and Ca2+/calmodulin-dependent protein kinases  in the 
regulation of apical Cl-/HCO3

-AE activity ........................................................................... 75 

3.5.1 Inhibition of CaMKK .................................................................................................... 76 

3.5.2 Inhibition of CaMKII .................................................................................................... 77 

3.5.3 Role of CaM in the regulation of apical Cl-/HCO3
- exchange activity.......................... 79 

3.6 Regulation of apical Cl-/HCO3
- exchange activity by dynamin ................................ 80 

3.7 Role of actin-cytoskeleton disruption on apical Cl-/HCO3
- exchange activity ......... 83 

3.8 Regulation of apical Cl-/HCO3
- exchange activity by CK2 ....................................... 87 

3.9 Discussion ................................................................................................................. 92 

iv 
 



3.9.1 The effect of cAMP and cGMP in the regulation of apical Cl-/HCO3
- AE activity ...... 92 

3.9.2 Intracellular Ca2+ signaling plays a significant role in the regulation of apical Cl-/HCO3
-  

AE activity .................................................................................................................................... 94 

3.9.3 The effect of dynamin on apical Cl-/HCO3
- AE activity and fluid secretion ................. 96 

3.9.4 Role of the actin-cytoskeleton in the regulation of apical Cl-/HCO3
- AE activity......... 97 

3.9.5 CK2 exhibits a significant role in regulating apical Cl-/HCO3
- AE activity .................. 98 

Chapter 4 Basolateral Cl-/HCO3
- anion exchange activity in Calu-3 cells ....................... 102 

4.1 Introduction ............................................................................................................. 102 

4.2 Cl- and HCO3
- dependence of the basolateral Cl-/HCO3

- anion exchanger ............. 104 

4.3 DIDS sensitivity of the basolateral Cl-/HCO3
- anion exchanger ............................. 105 

4.4 Role of cyclic nucleotides (cAMP and cGMP) in the regulation of basolateral Cl-

/HCO3
- anion exchange activity ......................................................................................... 109 

4.4.1 cAMP agonists: ........................................................................................................... 109 

4.4.2 The role of Multidrug Resistance Proteins .................................................................. 112 

4.4.3 cGMP .......................................................................................................................... 113 

4.5 Regulation of basolateral Cl-/HCO3
- anion exchanger activity by downstream targets 

of cAMP ............................................................................................................................. 115 

4.5.1 Role of PKA ................................................................................................................ 115 

4.5.2 Exchange protein directly activated by cAMP (Epac) ................................................ 117 

4.5.3 Role of cyclic nucleotide-gated cation (CNG) channels ............................................. 120 

4.5.4 Mammalian target of rapamycin (mTOR) kinase ....................................................... 122 

4.6 Role of Ca2+ in the regulation of basolateral Cl-/HCO3
- anion exchanger activity . 123 

4.6.1 Intracellular Ca2+ ......................................................................................................... 123 

4.6.2 Effect of changing extracellular Ca2+ concentration ................................................... 135 

4.7 Role of CaM and Ca2+/CaM-dependent protein kinases in the regulation of 
basolateral Cl-/HCO3

- AE activity ...................................................................................... 140 

4.8 Regulation of basolateral Cl-/HCO3
- anion exchanger activity by dynamin ........... 146 

4.9 Role of the actin-cytoskeleton in the regulation of basolateral Cl-/HCO3
- anion 

exchanger activity .............................................................................................................. 147 

4.10 Regulation of basolateral Cl-/HCO3
- anion exchanger activity by CK2 ................. 148 

4.10.1 Effect of the CK2 inhibitor TBB: ............................................................................... 149 

4.10.2 Effect of the CK2 inhibitor CX4945 ........................................................................... 154 

v 
 



4.11 Regulation of the basolateral Cl-/HCO3
- anion exchanger by protein phosphatase 

(PP1/PP2A) activity ........................................................................................................... 158 

4.12 Discussion ............................................................................................................... 160 

4.12.1 Inhibition of the basolateral AE activity by DIDS ...................................................... 160 

4.12.2 Role of cAMP and cGMP in the regulation of the basolateral AE activity ................ 162 

4.12.3 Role of Ca2+ in the regulation of the basolateral AE activity ...................................... 163 

4.12.4 Role of CaM and CaMK in the regulation of the basolateral AE activity .................. 165 

4.12.5 How does actin-cytoskeleton disruption and dynamin inhibition lead to the marked 
decrease in the basolateral AE activity ....................................................................................... 166 

4.12.6 Role of CK2 in the regulation of the basolateral anion exchanger ............................. 168 

4.12.7 Impact of PP1 on the regulation of the basolateral AE activity .................................. 169 

Chapter 5 Regulation of heterologously expressed mouse AE2 in transiently transfected 
HEK-293T cells ..................................................................................................................... 174 

5.1 Introduction ............................................................................................................. 174 

5.2 Properties of mAE2 expressed in HEK-293T cells ................................................. 176 

5.3 Effect of cAMP agonist, Fsk, on mAE2 activity in transfected HEK-293T cells... 180 

5.4 Role of CFTR in the regulation of mAE2 activity in transfected HEK-293T cells 183 

5.5 Role of CFTR in the regulation of mAE2 activity .................................................. 187 

5.5.1 Under cAMP stimulated conditions ............................................................................ 187 

5.6 Role of Exchange protein directly activated by cAMP (Epac) in the regulation of 
mAE2 activity .................................................................................................................... 191 

5.7 Role of intracellular Ca2+ in the regulation of mAE2 activity ................................ 195 

5.8 Role of CaM in the regulation of mAE2 activity .................................................... 197 

5.9 Role of protein phosphatase 1 (PP1/2A) in the regulation of mAE2 activity ......... 198 

5.10 Role of CK2 in the regulation of mouse AE2 activity ............................................ 200 

5.10.1 Effect of acute exposure to the CK2 inhibitor TBB on endogenous Cl-/HCO3
- AE 

activity and mouse AE2 activity expressed in HEK 293T cells ................................................. 200 

5.10.2 Effect of acute exposure to the CK2 inhibitor, CX4945, on mAE2 activity expressed in 
HEK-293T cells .......................................................................................................................... 206 

5.11 Discussion ............................................................................................................... 212 

5.11.1 Inhibition of mAE2 activity by DIDS ......................................................................... 212 

5.11.2 Role of cAMP in the regulation of mAE2 .................................................................. 212 

5.11.3 Role of CFTR in regulating mAE2 activity ................................................................ 213 

vi 
 



5.11.4 Role of Ca2+ and CaM in the regulation of mAE2 activity ......................................... 214 

5.11.5 Role of PP1 in the regulation of mAE2 activity ......................................................... 215 

5.11.6 Role of CK2 in the regulation of mAE2 activity ........................................................ 216 

Chapter 6 Concluding Discussion .................................................................................... 220 

6.1 Summary of main findings ...................................................................................... 220 

6.1.1 Apical Cl-/HCO3
- anion exchanger in Calu-3 cells ..................................................... 220 

6.1.2 Basolateral Cl-/HCO3
- anion exchanger in Calu-3 cells .............................................. 224 

6.1.3 Regulation of mAE2 in transfected HEK-293T cells.................................................. 227 

6.2 Final conclusion ...................................................................................................... 228 

6.3 Future experiments .................................................................................................. 231 

Appendix ................................................................................................................................ 233 

References: ............................................................................................................................. 235 

 

  

vii 
 



List of Figures 

Figure 1. 1: A Schematic diagram of the HCO3
- dependent mechanism of extracellular mucin 

expansion and solubilisation from condensed mucin granules. Presence of HCO3
- in the extracellular 

surface dissociates the bounded Ca2+ with the condensed mucin in granule and therefore rapidly 

expands the released mucin, and prevents the formation of abnormal mucus. Figure taken from 

(Borowitz, 2015). .................................................................................................................................... 4 

Figure 1. 2: Model of HCO3
- secretion in pancreatic duct epithelial cells. (A) Proposed cellular 

mechanism of HCO3
- secretion in pancreatic duct epithelium. (B) Anion fluxes in unstimulated duct 

cells with bilateral perfusion of high Cl- and low HCO3
- solutions. (C) Anion fluxes in stimulated cells 

and bilateral perfusion of high Cl- and low HCO3
- solutions. (D) Anion fluxes in stimulated cells and 

bilateral perfusion of low Cl- and high HCO3
- solutions.  Diagrams taken from (Steward et al., 2005). 7 

Figure 1. 3: Schematic illustration of the human respiratory system. Diagram shows the conductive 

airway and the respiratory zone, which is the site of gas exchange. Figure is adapted from (Tu et al., 

2013). .................................................................................................................................................... 10 

Figure 1. 4: Overview of airway submucosal gland innervation and structures. (A) Schematic 

presentation of SMG and its four compartments. Reproduced from (Verkman et al., 2003). (B) shows 

airway innervation by the autonomic nervous system, with parasympathetic (solid lines), and 

sympathetic system (dashed lines), figure is taken from (Wine, 2007). (C) The extended observation 

of serous cell of submucosal glands, which plays a major role in the secretion of a watery fluid via the 

CFTR activity located on the apical surface of the serous cells.  Figure adapted from (Salinas et al., 

2005). .................................................................................................................................................... 13 

Figure 1. 5: The mechanism of airway mucus ciliary clearance. This illustration shows normal 

airways. (A) in which the process of airways hydration controlled by the coordinated rate of Na+ 

absorption and Cl- secretion to support mucus clearance. It also shows airway surface dehydration (B) 

due to absence of CFTR function in CF. ENaC= epithelial Na+ channel, PCL refers to periciliary 

liquid, CFTR= refers to cystic fibrosis transmembrane conductance regulator. Figure is taken from 

Ratjen et al., (2015) (Ratjen et al., 2015). ............................................................................................ 16 

Figure 1. 6: Structures of the cystic fibrosis transmembrane conductance regulator (CFTR) anion 

channel. (A) Shows the linear structure of CFTR. (B) shows the domains of the CFTR Cl- channel, 

which consists of two membrane spanning domain (MSD; MSD1 and MSD1) that function as the ion 

channel pore through the plasma membrane, each connected with a nucleotide binding domain (NBD; 

NBD1 and NBD2). The CFTR channel opens when ATP is bound at the NBDs, and when the (R) 

domain is phosphorylated by PKA. Figure taken from (Ratjen et al., 2015). ....................................... 19 

viii 
 



Figure 1. 7: Gating of the CFTR channel. Figure (A) shows the inactive (closed) form of the CFTR 

Cl- channel without ATP bound to the NBDs and so Cl- anions are trapped inside the cell until the 

process of phosphorylation and ATP binding to the NBDs occurs. (B) Illustrates the active (open) 

form of CFTR where the R domain is phosphorylated by PKA and ATP is bound to NBD1 and 2 

which leads to NBD dimerisation, and channel opening. MSD=membrane spanning protein; NBD= 

Nucleotide binding membrane; RD= Regulatory domain. Figure taken from (Hwang and Sheppard, 

2009). .................................................................................................................................................... 19 

Figure 1. 8: Mutated CFTR Cl- ion channel and CF of the lung. This figure illustrates the theoretical 

relationship between defected CFTR protein and several organ systems. Figure is adapted from 

Goodman and Precy, 2005 (Goodman and Percy, 2005). ..................................................................... 23 

Figure 1. 9: The physical and functional interaction between CFTR and SLC26 transporters. The 

CFTR plays a crucial role in the regulation of SLC26A transporters. An increase in intracellular 

cAMP leads to activation of PKA, resulting in phosphorylation of R-domain of CFTR, which binds to 

SLC26 transporters via their STAS domain to enables CFTR to directly regulate the SLC26 anion 

exchanger activity. Figure taken from (Dorwart et al., 2008). ............................................................. 30 

Figure 1. 10: SLC4 family members and their transport activity. The SLC4 gene family contains 10 

members; all are involved in HCO3
- transportation apart from one member, SLC4A11. Figure taken 

from (Alvarez-Leefmans and Delpire., 2009). ...................................................................................... 32 

Figure 1. 11: Mechanism of anion secretion in the Calu-3 cells. This new model shows HCO3
- 

transportation across the apical and basolateral membrane in cAMP-stimulated Calu-3 cells. tmAC= 

transmembrane adenylyl cyclase, CFTR= Cystic fibrosis transmembrane conductance regulator, 

NKCC= Na+-K+-2Cl– cotransporter, NBC= Na+-HCO3
- cotransporter, NHE= Na+-H+ exchanger, AE2= 

anion exchanger 2, VIP= Vasoactive intestinal peptide. (+) denotes stimulation, (-) denotes inhibition.

 .............................................................................................................................................................. 36 

 

Figure 2. 1: Western blotting against CK2 alpha subunits. The absence of both CK2 alpha (α) and 

alpha prime (α’) subunits of CK2, in the knockout cells, was confirmed by western blot analysis, 

which was performed in Dr. Salvi lab in collaboration with Horizon Discovery. ................................ 40 

Figure 2. 2: Intracellular pH calibration using the high K+/nigericin technique. (A) Shows a 

representative trace of BCECF-AM (10µM) loaded Calu-3 cells illustrating how the R value alters 

when cells are perfused with high K+/nigericin solutions of different pH. (B) Shows the standard 

curve generated from the pHi calibration and is used for the calculation of pHi from the 490/440 ratio 

data. Data represents mean ± S.E.M.; n = 4. ......................................................................................... 43 

ix 
 



Figure 2. 3: Data analysis of intracellular pH measurements. Standard response to Cl- free solution 

showing the effect of high Cl- and free Cl- buffer solution on pHi in Calu-3 cells. Red areas represent 

data used to calculate mean pHi change, and the green line represents the data points for linear 

regression used to calculate the rate of pHi change (reacidification) by linear regression. .................. 44 

Figure 2. 4: Determining of total intrinsic buffering capacity in Clau-3 cells. Experimental pH trace 

showing the changes in ratio in Calu-3 cells in response to differing concentration of NH4Cl solutions 

containing of (0, 2.5, 5, 10, 20, 30 mM/L NH4Cl). .............................................................................. 46 

Figure 2. 5: Buffering capacity at various pH values in Calu-3 cells. (A) and HEK-293T cells (B). 

Total buffering capacity (βtot) was calculated by adding the intrinsic buffering capacity of Calu-3 

cells (βi) to the buffering capacity of the CO2/HCO3
- buffer system (βHCO3-). βtot was calculated for 

cells exposed to 5% CO2, n = 6. ............................................................................................................ 47 

 

Figure 3. 1: Apical Cl-/HCO3- AE activity in Calu-3 cells before and after stimulation with cAMP 

agonists. Representative pHi trace showing the effect of Cl- removal in the apical perfusate on pHi 

under basal and Fsk-stimulated conditions (A) or ADO-stimulated conditions (B). Summary of mean 

pHi change (alkalinisation) caused by Cl- removal (C), and the rate of reacidification following Cl- 

readdition (D), in the presence and absence of forskolin (5µM), paired observations, n=10 for each 

condition. *P<0.05 compared to apical 0Cl- (Basal). (E) mean pHi change (alkalinisation) caused by 

Cl- removal, and the rate of reacidification (F) following Cl- readdition, in the presence and absence 

of ADO (10μM), n=3 for each condition. *P<0.05 compared to apical 0Cl-. (G). The rate of HCO3- 

flux under both Fsk and ADO stimulated conditions *P<0.05 compared to apical 0Cl + Fsk. Fsk 

denotes forskolin (5µM), ADO denotes adenosine (10µM), Apical 0Cl- refers to the removal of apical 

Cl-. Data are shown as mean ±SEM ..................................................................................................... 56 

Figure 3. 2: The PDE inhibitor, IBMX, and the membrane permeable analogue of cAMP, dbcAMP, 

mimic the effect of Fsk on apical Cl-/HCO3
- AE activity in Calu-3 cells. (A) Representative pHi trace 

showing the effect of Cl- removal in the apical perfusate on pHi under Fsk and IBMX (1.0mM added 

apically) stimulated conditions. Summary of mean pHi change (alkalinisation) caused by Cl- removal 

(B), and the rate of reacidification (C) following Cl- readdition in Fsk and IBMX stimulated 

conditions; no significant difference (P>0.05) compared to apical 0Cl-+Fsk. Mean pHi change 

(alkalinisation) caused by Cl- removal (D), and the rate of reacidification (E) following Cl- readdition 

in Fsk stimulated cells compared to dbcAMP stimulation (800µM, added bilaterally). No significant 

difference (P>0.05) compared to apical 0Cl-+Fsk, although mean pHi change was significantly 

(P<0.05) lower with dbcAMP compared to apical 0Cl-+Fsk. Data are shown as mean ±SEM (n=3), 

paired observations. .............................................................................................................................. 58 

x 
 



Figure 3. 3: PKA inhibitors, H-89 and Rp-cAMP decrease forskolin activated apical Cl-/HCO3
- AE 

activity in Calu-3 cells. Summary of the impact of PKA inhibitors, H-89 and Rp-cAMP, on apical Cl-

/HCO3
- AE activity in Calu-3 cells. (A) mean alkalinisation in pHi in response to Cl- free solution, and 

the rate of reacidification (B) in Calu-3 cells pre-treated with 50µM H-89 for 60 min, n=10 Apical 

0Cl-+Fsk, n=4 for +Fsk+H-89. (C) mean alkalinisation in pHi in response to Cl- free solution, (D) the 

rate of reacidification in Calu-3 cells pre-treated with 1mM Rp-cAMP for 60 min, n=6 Apical 0Cl-

+Fsk, n=3 for +Fsk+ Rp-cAMP. *P<0.05 compared to control apical 0Cl+Fsk. Data are shown as 

mean ±SEM. Control cells run in parallel. ............................................................................................ 60 

Figure 3. 4: Apical Cl-/HCO3
- AE activity is not affected by the Epac agonist 8CPT-2Me-cAMP in 

Calu-3 cells. Summary of the impact of the Epac agonist on apical Cl-/HCO3
- AE activity. Calu-3 cells 

were pre-treated with 10µM 8CPT-2Me-cAMP-AM for 60 min. (A) mean alkalinisation in pHi in 

response to Cl- free solution. (B) the rate of reacidification upon Cl- readdition. No significant 

difference (P>0.05) compared to control responses, n=3 for each condition. Control cells run in 

parallel. ................................................................................................................................................. 61 

Figure 3. 5: Effect of the Epac inhibitor, ESI-09, on the apical Cl-/HCO3
- AE activity in Calu-3 cells. 

(A) pHi experimental trace showing the effect of preincubation of Calu-3 cells with 10µM Epac 

inhibitor ESI-09 for 60 min on the  apical Cl-/HCO3
- AE activity after Cl- removing in the apical 

perfusate under basal and Fsk stimulated conditions. Summary of the effect of 10µM ESI-09 

preincubation on mean alkalinisation in pHi in response to a Cl- free solution (B), and the rate of 

reacidification after Cl- readdition (C) in unstimulated and Fsk stimulated Calu-3 cells. (D) The rate of 

HCO3
- flux during apical Cl- removal in control and +ESI-09 treated cells.  (E)  The rate of HCO3

- flux 

during apical Cl- removal in control +Fsk and +FsK+ESI-09 treated cells.  Data are shown as mean 

±SEM. B, C, and E: *P<0.05 compared to control apical 0Cl- under basal and stimulated conditions, 

n=5 for control, n=6 for +ESI-09. D: *P<0.05, #P<0.01 compared to control apical 0Cl-, n=8 for apical 

0Cl-, and n=5 for +ESI-09. Control cells run in parallel. ...................................................................... 63 

Figure 3. 6: The ESI-09-induced apical Cl-/HCO3
- AE activity is abolished by the CFTR pore blocker 

GlyH-101 under basal conditions in Calu-3 cells. (A) Representative pHi trace showing the effect of 

Cl- removal in the apical perfusate on pHi under basal condition in cells preincubated with Epac 

inhibitor, ESI-09, which was inhibited by the CFTR inhibitor GlyH-101. Calu-3 cells were pre-treated 

with 10µM ESI-09 for 60 min. (B) mean alkalinisation in pHi in response to Cl- free solution (C) the 

rate of reacidification.*P<0.05 compared to control apical 0Cl under basal condition. Data are shown 

as mean ±SEM, n=8 for Apical 0Cl-+ESI-09, and n=5 for +GlyH-101. .............................................. 64 

Figure 3. 7: cGMP does not activate apical Cl-/HCO3
- AE activity in Calu-3 cells. (A) Representative 

pHi trace showing the effect of Cl- removal in the apical perfusate on pHi before and after Fsk 

stimulation in 8Br-cGMP preincubated (1.0mM for 60 mins) Calu-3 cells.  Summary of the impact of 

xi 
 



8Br-cGMP  preincubation on mean pHi change (alkalinisation) caused by Cl- removal (B) and the rate 

of reacidification (C) following Cl- readdition, in the presence and absence of forskolin (5µM) in 

Calu-3 cells. Data are shown as mean ±SEM (n=3). No significant difference (P>0.05) compared to 

apical 0Cl-. Control cells run   in parallel. ............................................................................................ 66 

Figure 3. 8: CFTR inhibitor GlyH-101 reacidifies pHi following an apical Cl- free induced 

alkalinisation in Calu-3 cells. (A) Representative pHi trace illustrating the effect of adding the CFTR 

inhibitor GlyH-101 (10 µM) after cells were first exposed to a Cl- free solution. Note that the CFTR 

inhibitor caused pHi to rapidly acidify to a new steady-state. (B) Summary of the effect of CFTR pore 

blocker GlyH-101 on the mean alkalinisation in pHi following apical Cl removal, in the absence and 

presence of GlyH-101, in Fsk stimulated Calu-3 cells. *P<0.05 compared to control. Data are shown 

as mean ±SEM, n=3, paired observations. ............................................................................................ 68 

Figure 3. 9: Basolateral DIDS blocks the GlyH-101 induced intracellular acidification under apical Cl- 

free conditions in Fsk treated Calu-3 cells. (A) Representative pHi trace illustrating the effect of 

adding the CFTR inhibitor GlyH-101 (10µM), in the presence of basolateral DIDS (100µM), after 

cells were first exposed to a Cl- free solution, under Fsk stimulated conditions. Summary of the effect 

of different concentrations of DIDS on the magnitude (B), and the rate of acidification caused by 

GlyH-101 (10 µM) in Cl- free conditions in the presence of Fsk compared to control response. Data 

shown as mean ± SEM, *P< 0.05 compared to control, n=3 for control and 10µM; n=4 for 30µM 

DIDS, and n=5 for 100 μM DIDS. ........................................................................................................ 69 

Figure 3. 10: BAPTA-AM reduced apical Cl-/HCO3
- AE activity in Calu-3 cells. Summary of the 

effect of the preincubation of Calu-3 cells with BAPTA-AM for 60 min. on apical Cl-/HCO3
- AE 

activity (A) mean alkalinisation in pHi in response to Cl- free solution (B) the rate of reacidification 

upon Cl- readdition in Fsk stimulated condition. *P<0.05 compared to control. Data are shown as 
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stimulated apical Cl-/HCO3
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Figure 4. 1: Cl- and HCO3
- dependence of the basolateral Cl-/HCO3

- AE in Calu-3 cells. (A) 
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- AE activity in HCO3

- and Cl- free HEPES 

buffer solution in Calu-3 cells. (B) mean change in pHi produced by basolateral Cl-/HCO3
- AE activity 

in HCO3
-/KREBS solution compared to HCO3

- free and HCO3
-+Cl- free HEPES solution respectively. 

*P<0.001 compared to control response, #P<0.001 compared to Na-HEPES. Data are shown as mean 

±SEM, n=6 for control, n=3 for +Na-HEPES, and n=6 for Cl free HEPES. ...................................... 105 
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Cl-/HCO3
- anion exchanger. Plot of percent inhibition of the mean change in pHi caused by basolateral 

Cl- removal (B), and the rate of reacidification upon Cl- readdition (C) at different DIDS 
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basolateral Cl- free solution in Calu-3 cells. Summary of the impact of cAMP agonist forskolin on the 

basolateral Cl-/HCO3
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Figure 4. 6: IBMX and dbcAMP inhibit basolateral Cl-/HCO3
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under resting condition in Cau-3 cells. Data are shown as Mean±SEM.*P<0.05, n=3 for each 
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Figure 4. 27: CAMKK inhibitor, STO-609, did not affect the basolateral Cl-/HCO3
- AE activity in 

Calu-3 cells.  Summary of the effect of apical preincubation of 20μM STO-609 for 60 min on mean 

alkalinisation in pHi in response to basolateral Cl- removal (A) and the rate of reacidification upon Cl- 

readdition under resting and Fsk stimulated conditions (B).  Data are shown as Mean±SEM. No 

significant difference (P>0.05) compared to Baso 0Cl-, n=3 for each, experiments run in parallel. .. 144 

Figure 4. 28: No impact of the CaMKII inhibitor, KN-93, on the basolateral Cl-/HCO3
- AE activity in 

Calu-3 cells.  Summary of the effect of apical preincubation of 5μM KN-93 for 60 min. (A) mean 

alkalinisation in pHi in response to basolateral Cl- removal, and the rate of reacidification following 

Cl- readdition (B), under resting and Fsk stimulated condition. Data are shown as 

Mean±SEM.*P<0.05 compared to control, n=3 for each condition. Control cells run in parallel. .... 145 

Figure 4. 29: Inhibition of dynamin reduced basolateral Cl-/HCO3
- AE activity in Calu-3 cells. 

Summary of the effect of  dynamin disruption, by preincubation of cells with 80µM dynasore for 60 

min, on mean alkalinisation in pHi in response to basolateral Cl- free removal (A) and the rate of 

reacidification following Cl- readdition (B) under resting and Fsk stimulated conditions in Calu-3 
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recovered after 20 min washing off. Summary of the effect of CK2 inhibitor TBB (10µM 
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basolateral Cl-/HCO3
- AE activity under resting conditions in Calu-3 cells. Note that washing off the 

inhibitor led to recovery of the basolateral Cl-/HCO3
- AE activity. Summary of the effect of acute 

exposure to TBB (10μM) on the mean alkalinisation (pHi) produced by basolateral Cl- removal (B) 

and the rate of reacidification upon Cl- readdition (C) in control and TBB treated Calu-3 cells. (D) 
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- efflux in control and TBB treated cells, basolateral Cl-/HCO3
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- 
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transfected, HEK-293T cells, respectively. Summary data showing the effect of 25μM DIDS on mean 

alkalinisation in pHi in response to Cl- free solution (C) and the rate of reacidification upon Cl- 

readdition (D) in control and mAE2 transfected HEK-293T cells. Data are shown as Mean±SEM. C: 

*P<0.01, #P<0.001 compared to control. D: *P<0.001 compared to control, n=4 for control, and n=3 

for +mAE2. Control experiments run in parallel. ............................................................................... 178 

Figure 5. 3: Impact of DIDS on the mAE2 activity in transfected HEK-293T cell.  (A) Representative 

pHi trace showing that 25μM DIDS had no effect on the mean alkalinisation in pHi in response to Cl- 

free solution  but did inhibit rate of reacidification upon Cl- readdition , while 200μM DIDS 

significantly reduced both parameters in transfected HEK293T cells, compared to the response in the 

absence of DIDS. (B) Summary of the effect 25μM and 200 μM DIDS on mean alkalinisation in pHi 

in response to Cl- free solution and (C), the rate of reacidification upon Cl- readdition. Data are shown 

as Mean±SEM. B: *P<0.001 compared to DIDS 25μM and 0Cl-. C: *P<0.001 compared to DIDS 

25μM and P<0.001 compared 0Cl-, #P<0.01 compared to 0Cl-, n=3 for each condition, paired 
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response to different concentration of DIDS, when normalized to the control response in the absence 
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and #P<0.001 compared to 100µM and 200µM DIDS, n=6 for 0Cl and 25μM DIDS; n=3 for 50μM, 
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- anion exchange activity in non-transfected 
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mean alkalinisation in response to Cl- free solution (B), and the rate of reacidification upon Cl- 

readdition (C). Data are shown as Mean±SEM. P>0.05 no significant difference compared to control, 
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Mean±SEM. #P<0.001, †P<0.05 compared to 0Cl-, *P<0.001 compared to DIDS, n=3 for each 
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GlyH-101. Summary data showing the mean alkalinisation in pHi in response to Cl- free solution (B), 

and the rate of reacidification following Cl- readdition (C). GlyH-101 significantly reduced HCO3
- 

transport, under Fsk stimulated condition. Data are shown as Mean±SEM.*P<0.05 compared to 

control, n=5 for each condition, Paired observations. ......................................................................... 187 

Figure 5. 10: Role of CFTR in the regulation of mAE2 activity in HEK-293T cells co-transfected with 

CFTR and mAE2. (A) Representative pHi trace showing the effect of Fsk in HEK-293T cells co-

transfected with CFTR and mAE2, in the presence of 25μM DIDS. Summary data shows although 

Fsk significantly reduced mAE2 activity, as measured by the mean pHi change induced by zero Cl- 

(B), it did not affect rate of reacidification (C). The CFTR inhibitor GlyH-101, significantly reduced 

the mean alkalinisation in pHi under cAMP stimulated conditions in co-transfected cells (B), although 

the rate of reacidification did not change (C). Data are shown as Mean±SEM. B: *P<0.05 compared to 

DIDS and #P<0.001 compared to +DIDS +FSK. C: no significant difference (P>0.05), n=3 for mAE2 

0Cl- and +DIDS, and n=6 for other conditions. .................................................................................. 188 

xxv 
 



Figure 5. 11: Role of CFTR in HCO3
- transport in transfected HEK-293T cells. HEK293T cells co-

transfected with CFTR and mAE2 caused a significant increase in the mean pHi change in response to 

Cl- free solution (A), and the rate of reacidification upon Cl readdition (B), compared to CFTR-only 

transfected cells, under Fsk stimulation. Data are shown as Mean±SEM. A: *P<0.01 compared to 

(AE2), #P<0.001 compared to (AE2+CFTR), †P<0.01compared to (CFTR). B: #P<0.01 compared to 

(AE2+CFTR), n=4 for (AE2), n=6 for (CFTR) and (CFTR+AE2), and n=5 for (CFTR) +GlyH-101.
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in pHi in response to Cl- free solution (B) and the rate of reacidification upon Cl- readdition (C), 

compared to control response. Data are shown as Mean±SEM. No significant difference (P>0.05) 
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Representative pHi traces showing the effect of ESI-09 (10µM, preincubated for 60 min) on mAE2 

activity in transfected HEK-293T cells (B) compared to untreated mAE2 transfected cells (A), in the 
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min, on mean alkalinisation in pHi (C) and the rate of reacidification upon Cl- readdition (D). Data are 
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the rate of reacidification upon Cl- readdition (D). Data are shown as Mean±SEM. *P<0.05 compared 
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(10μM), on mAE2 activity, both the mean alkalinisation in pHi in response to Cl- free solution (B), 
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Chapter 1 Introduction 

1.1  HCO3
- secretion by epithelial cells    

The secretion of bicarbonate (HCO3
-) by epithelial cells is essential for 

maintaining the normal function of many epithelial tissues as HCO3
- plays a 

major role in the regulation of both intracellular and extracellular pH (Durie, 

1989; Allen et al., 1993). Extracellular HCO3
- is also important for many other 

epithelial functions. As HCO3
- is a biological buffer, it plays an important role in 

the process of acid-base homeostasis by preventing metabolic and respiratory 

disease (Kellum, 2000). The pH of mucosal layers that line all epithelia is also 

buffered by HCO3
- which can protect them from injury (Allen et al., 1993). 

HCO3
- also plays a crucial role in the process of nutrient digestion and 

solubilisation of complex mixtures of protein, including digestive enzyme and 

mucin secreted by epithelial cells (Scratcherd and Case, 1973). Furthermore, 

HCO3
- secretion by epithelial cells drives fluid secretion in many epithelial 

tissues, such as in the gastro-intestinal tract (GIT) and reproductive tracts (Hug 

et al., 2011). Recently, it has been demonstrated that the local HCO3
- 

concentration, which controls the pH and HCO3
- availability at the plasma 

membrane surface, plays a critical role in regulating the HCO3
- transporters 

involved in fluid and HCO3
- secretion (McKenna and Frost, 2014). Mutation in 

HCO3
- transporters, such as the cystic fibrosis transmembrane conductance 

regulator (CFTR), Cl-/HCO3
- anion exchangers (AEs) belonging to the SLC26 

and SLC4 families, as well as Na+-HCO3
--cotransporters (NBCe1) (Lee et al., 

2012) lead to absence or altered HCO3
- secretion and development of several 

diseases such as the cystic fibrosis (CF) (Yang et al., 2009; Quinton, 2010), 

pancreatitis (Lee et al., 2012; Maleth and Hegyi, 2014), congenital chloride 

diarrhoea, deafness and hypotension (Durie, 1989; Hoglund et al., 1996; 

Moseley et al., 1999; Taylor and Aswani, 2002; Wall, 2006; Wangemann et al., 

2007) and Sjogren’s syndrome (Almstahl and Wikstrom, 2003).  
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In the GIT, it has been shown that mammalian pancreatic ducts secrete HCO3
- 

when stimulated by cAMP agonists such as secretin and forskolin, which  is 

critical for neutralizing the acidic chyme in the small intestine to provide the 

optimum conditions for  activation of pH-sensitive digestive enzymes  

(Scratcherd and Case, 1973; Ishiguro et al., 1996). In addition, HCO3
- secretion 

by epithelial cells of the GIT plays an important role in the protection of the GI  

mucosa, and the presence of high amounts of HCO3
-, together with gastric 

mucins in the stomach, provides a protective barrier for the gastroduodenal 

mucosa against gastric acid and pepsin (Flemstrom and Isenberg, 2001; Allen 

and Flemstrom, 2005). Furthermore, it has been found that there is cAMP-

dependent HCO3
- secretion in the duodenum, jejunum and ileum of mice which 

is critically important to neutralize gastric acid and thereby protect the intestinal 

mucosa (Seidler et al., 1997; Seidler et al., 2001). HCO3
- secretion in the GIT 

also plays a crucial role in mucus release, as HCO3
- has a critical importance in 

expansion and solubilisation of secreted mucins to prevent the formation of 

aggregated mucus (Garcia et al., 2009). Furthermore, it has been demonstrated 

that reduced HCO3
- secretion in CF leads to the secretion of aggregated and 

viscous mucus in affected organs (Chen et al., 2010). A recent study has shown 

a thick and less penetrable mucus secretion from CF mouse ileum, which 

adhered to the epithelium (Gustafsson et al., 2012), but importantly the defective 

properties of this secreted mucus were normalized by adding a high 

concentration of bicarbonate (100 mM).    

 

As shown in figure 1.1, the mucin glycoproteins inside the intracellular mucin 

granules are condensed and tightly packed together by the presence of high 

amounts of Ca2+. As mucin are secreted by exocytosis onto extracellular surface, 

HCO3
- plays an essential role in chelation of these cations which causes 

expansion of the negatively charged mucins chain to form normal mucus (Garcia 

et al., 2009; Borowitz, 2015). A more recent study has shown that MUC5B, a 

mucin expressed by respiratory epithelia, bound to Ca2+ at its N-terminal D3-

domain and formed cross-links which play an essential role in MUC5B 

condensation and packing inside the secretary granules. The maximal cross-link 

formation is dependent on the presence of high calcium concentrations and low 

pH (5-6) in secretory granules. Thus, after MUC5B secretion from secretory 

2 
 



granules, the presence of HCO3
- allows for efficient mucin expansion and 

secretion by uncoupling the cross-links between Ca2+ and MUC5B (Ridley et 

al., 2014). Furthermore, HCO3
- can mimic the effect of EGTA as a Ca2+ 

chelator, to reduce the amount of free Ca2+ concentration bound to mucins, 

which enhances mucin swelling and hydration, thereby dissolving mucin 

aggregates and likely increasing its transportation (Chen et al., 2010).  

 

Human oesophageal submucosal glands have the ability to secrete sufficient 

amounts of HCO3
- that is capable of neutralizing the remaining acid in the 

esophagous after bolus swallowing which comes near to the HCO3
-
 output by 

salivary glands at rest (Meyers and Orlando, 1992).  Another critically important 

role for HCO3
- is in the process of fertilisation. It has been shown that HCO3

- is 

required for stimulation of sperm motility and spermatogenesis in Leydig cells, 

and sperm capacitation inside the female reproductive tract (Medina et al., 2003; 

Hess et al., 2005). Also, it has been reported that defects in CFTR-dependent 

HCO3
- secretion leads to reduction in spermatogenesis and thereby azoospermia 

(Xu et al., 2011). 
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Figure 1. 1: A Schematic diagram of the HCO3
- dependent mechanism of 

extracellular mucin expansion and solubilisation from condensed mucin granules. 
Presence of HCO3

- in the extracellular surface dissociates the bounded Ca2+ with the 
condensed mucin in granule and therefore rapidly expands the released mucin, and 
prevents the formation of abnormal mucus. Figure taken from (Borowitz, 2015). 

 

 

1.1.1 Mechanism of Bicarbonate secretion in epithelial tissues  

 

Although HCO3
- secretion plays a critical role in the regulation of normal body 

function, it is still controversial how HCO3
- secretion is actually achieved in 

many epithelial tissues, although CFTR appears to be a critical requirement. 

This may be because different epithelial tissues employ a different complement 

of transporters, and/or because the mechanism may also be dependent on the 

agonist employed (Seidler et al., 1997).  

The exocrine pancreas is probably the most thoroughly studied tissue, and 

pancreatic duct cells are capable of secreting several litres per day of a near 

isotonic NaHCO3 fluid known as pancreatic juice (Ishiguro et al., 2012). In the 

ductal cells HCO3
- secretion across the apical membrane is an electrogenic 

process, but it is still not fully clear whether HCO3
- exit   is mediated solely by 
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CFTR or by an electrogenic SLC26 anion exchanger (Steward et al., 2005), 

and/or a combination of the two transporters working together. Furthermore, 

HCO3
- secretion is an active process that occurs against an electrochemical 

gradient, which depends on Na+, K+, and Cl-, and involves a number of proteins 

including Na+-K+ ATPase, Na+-H+ exchangers, Cl-/HCO3
- exchangers, as well as 

carbonic anhydrase (CA). Bicarbonate secretion is stimulated by an increase in 

intracellular cAMP in response to the hormone, secretin, (Argent et al., 2012), 

and  early  studies showed that this led to an increase in the Cl- conductance 

across the apical membrane of ductal epithelial cell of the rat pancreas (Gray et 

al., 1988; Novak and Greger, 1988b), which was  later identified to be due to 

activation of  CFTR (Gray et al., 1993). These studies together with other 

electrophysiological data (Novak and Greger, 1988a) and intracellular pH 

measurements (Stuenkel et al., 1988) led to a model of HCO3
- secretion in 

pancreatic duct epithelial cells, as shown in figure 1.2A  (Gray et al., 1988; 

Novak and Greger, 1988b). In this model of HCO3
- secretion, CO2 enters the 

ductal epithelial cells across the basolateral membrane by simple diffusion, 

where it is then hydrated by the action of cytoplasmic CA to generate HCO3
-. 

The protons generated via CA activity are then then actively extruded from the 

cells across the basolateral membrane by the Na+/H+ exchanger, whose activity 

is maintained by the inward Na+-gradient, via continuous activity of Na+-K+ 

ATPase. At the apical membrane, HCO3
- is secreted into the duct lumen by Cl-

/HCO3
- AE activity, which depends on the luminal availability of Cl- that is 

maintained by the activity of CFTR and calcium-activated Cl- channels, in the 

case of calcium-stimulated secretion. In later studies, results from Ishiguro et al., 

(2001) led to a modification of this model to account for the ability of ductal 

cells to maintain the secretion of HCO3
- against a high concentration of luminal 

HCO3
- (>120mM). They showed that bilateral perfusion of high Cl--low HCO3

- 

solutions in pancreatic ducts under resting conditions, lead to HCO3
- uptake via 

NBC and HCO3
- recycling by Cl-/HCO3

- exchanger at the basolateral membrane, 

and Cl- and HCO3
- secretion at the apical membrane via Cl-/HCO3

- exchanger 

and CFTR (Figure 1.2B). However, cAMP-stimulation provided more HCO3
- to 

accumulate inside the cells, by inhibition of the basolateral Cl-/HCO3
- exchanger 

and activation of the NBC, thereby providing the driving force for HCO3
-  

secretion across the apical membrane, where Cl- exits from the cells via 

5 
 



activated CFTR and HCO3
- leaves the cells in exchange with Cl- via Cl-/HCO3

-  

exchange activity (Ishiguro et al., 2001) (Figure 1.2C). However, they also 

showed that perfusion of a high HCO3
-, but low Cl- solution in the lumen of the 

ducts, under cAMP stimulated conditions, abolished the apical Cl-/HCO3
- 

exchange activity and subsequently reduced the luminal content of Cl-, which 

favoured HCO3
- efflux across the apical membrane solely via CFTR (Figure 

1.2D). In addition,  Stewart et al., (2009) demonstrated that there is a functional 

interaction between CFTR and the SLC26A6 Cl-/HCO3
- AE in HCO3

- secretion 

across the luminal membrane of pancreatic interlobular ducts (Stewart et al., 

2009). Here, they showed that HCO3
- secretion was mediated mainly by 

SLC26A6 Cl-/HCO3
- exchanger, which was enhanced by CFTR inhibition. 

Overall, these studies in the pancreas highlight the dynamic nature of HCO3
- 

secretion in this epithelium.    
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Figure 1. 2: Model of HCO3
- secretion in pancreatic duct epithelial cells. (A) 

Proposed cellular mechanism of HCO3
- secretion in pancreatic duct epithelium. (B) 

Anion fluxes in unstimulated duct cells with bilateral perfusion of high Cl- and low 
HCO3

- solutions. (C) Anion fluxes in stimulated cells and bilateral perfusion of high Cl- 
and low HCO3

- solutions. (D) Anion fluxes in stimulated cells and bilateral perfusion of 
low Cl- and high HCO3

- solutions.  Diagrams taken from (Steward et al., 2005). 
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1.2 HCO3
- secretion in the airways 

The human respiratory system consists of a series of branching tubes and is 

composed of two main parts: (i) the conducting zone (larynx, trachea, bronchi 

and bronchioles) which is lined by a thin layer of fluid (6-10μm) known as the 

airway surface liquid (ASL; see section 1.4)), and it is the site for gas 

transportation into the lung; (ii) the respiratory zone that consist of respiratory 

bronchioles and alveolar ducts terminating in alveoli, which is responsible for 

gas exchange (Fowler, 1948), as shown in Figure 1.3.  

 

The surface of the conducting airways mainly consists of a ciliated epithelium 

that is  found in the nasal cavity, trachea, and bronchi  (Willumsen and Boucher, 

1989). The epithelial cells lining the bronchioles are more columnar, with Clara 

cells interspersed along with ciliated cells. There are also goblet cells which 

secrete mucus. The ability of the epithelium to maintain different apical and 

basolateral membranes is determined by the tight junctions (TJs), which play an 

important role in the regulation of pH by maintaining concentration gradients 

between the serosa and the ASL that lines the epithelium (Widdicombe, 2002b). 

The tracheobronchial part of the conducting airways of higher mammals also 

contain numerous submucosal glands (SMGs) (Goco et al., 1963).  These are 

composed of secretory tubules, a collecting duct, and a ciliated duct that open to 

the luminal surface of the airway (Meyrick et al., 1969). The glands are lined by 

ciliated pseudo-stratified columnar epithelial cells, with a small number of 

goblet cells and brush cells (Carden DL, 2000). SMGs secrete mucins and 

antimicrobial substances, such as lysozyme, lactoferrin, collectins, and Beta-

defensins. Indeed, airway mucus is produced primarily by SMGs. Mucus  is a 

complex mixture of water, salts, mucins and other macromolecules, including 

antimicrobials, antiproteases and antioxidants (Krouse et al., 2004). Moreover, 

SMGs are responsible for the secretion of liquid which is important for the 

transport of macromolecules from the secretory tubules of the glands, as well as 

producing a significant fraction of the ASL. The foundation of the airway innate 

host defence mechanism is formed by the concerted action of mucus (which 

traps pathogens), antimicrobial substances (which eliminate pathogens) and 

mucociliary transport (which cleans the airways of pathogens) (Verkman et al., 
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2003; Ballard and Inglis, 2004; Wine and Joo, 2004; Inglis and Wilson, 2005). 

Studies by Welsh and Smith, (2001) found that cAMP agonists can also provoke 

HCO3
- secretion through the apical membrane of airway epithelia (Welsh and 

Smith, 2001).        

 

The active secretion of both Cl- and HCO3
- is responsible for liquid secretion by 

submucosal glands (see section 1.3 for more details). Bicarbonate  performs a 

wide range of functions, such as the solubilisation and transportation of mucus 

(Quinton, 2008). Furthermore, the recent finding that mucus secretion is assisted 

by HCO3
- secretion (Quinton, 2001; Garcia et al., 2009) and that the viscosity 

and expansion of mucins are controlled by HCO3
-
 (Chen et al., 2010; 

Muchekehu and Quinton, 2010) at least in the GIT, suggests that a robust  

secretion of HCO3
-
 by SMGs is essential for appropriate mucus homeostasis, 

which is consistent with  a recent study that  demonstrated HCO3
- secretion 

plays critical role in mucus hydration (Xiao et al., 2012) in the GIT. However, 

whether this is true for the airways is currently not clear. However,, it has been 

shown that acidic pH leads to decline in ciliary beating (Clary-Meinesz et al., 

1998) and impairs the function of phagocytic cells to destroy pathogenic 

microorganism (Allen et al., 1997). More recently, Pezzulo (2012) showed that 

acidic pH in CF human and pig airways led to a marked reduction in bacterial 

killing, which could be partially recovered after re-alkalinisation of the ASL pH 

(Pezzulo et al., 2012a). In brief, insufficient HCO3
- secretion by SMGs is 

thought to be followed by accumulation of mucus plugs in the airways, bacterial 

colonisation and biofilm formation, inflammation and pathology characteristic 

of chronic lung disease such as seen in the lungs of CF patients (Hug et al., 

2003). Although it is well known that HCO3
- has a critical role in a variety of 

body tissues, the role of HCO3
- in the lungs is gaining a major interest within the 

field of airway physiology. 
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Figure 1. 3: Schematic illustration of the human respiratory system. Diagram 
shows the conductive airway and the respiratory zone, which is the site of gas 
exchange. Figure is adapted from (Tu et al., 2013).  

 

 

1.3 Submucosal glands (SMGs) 

SMGs are responsible for the secretion of approximately 95% of upper airway 

mucus (Reid, 1960). SMGs consist of four distinct regions that play crucial roles 

in the production and processing of liquid mucus to be secreted onto the airway 

surface. The first part consists of serous tubules and acini, which are responsible 

for secretion of salt, water and a wide range of antimicrobial proteins (Tom-Moy 

et al., 1983; Zhao et al., 1996; Bals et al., 1998; Singh et al., 1998). The second 

part are the mucus tubules that are lined by epithelia cells which are filled with 

mucin containing secretory granules (Nadel, 1983). These tubules allow the 

serous secretion to pass through. The third part, which is lined by non-ciliated 

columnar epithelial cells, is called the collecting duct. It has been suggested that 

epithelial cells lining the collecting duct adjust the ionic composition of serous 

and mucus epithelial cell secretions (Nadel et al., 1979). The last part is the 
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ciliated duct that is enclosed by cells which line the opening of the gland and an 

extension of the airway surface epithelium (Figure 1.4A). The majority of gland 

salt and water, as well as antimicrobial proteins, are thought to be secreted by 

the epithelial cells lining the serous acini and tubules (Tom-Moy et al., 1983; 

Zhao et al., 1996; Bals et al., 1998; Singh et al., 1998). The secretion of fluid 

and antimicrobial factors then become mixed together with mucin, which are 

then transported onto the luminal surface of the airway through the collecting 

duct.  

 

 

1.3.1 Mechanism and regulation of SMG secretion 

 

SMG produce a small amount of liquid secretion at rest, but will secretes 

copious amount of fluid under synergistic stimulation by either acetylcholine or 

substance P and vasoactive intestinal peptide (VIP) (Choi et al., 2007; Ianowski 

et al., 2008). Airway SMG secretions are primarily controlled by two main 

mechanisms; (i) a non-cholinergic mechanism, which is mediated by airway 

intrinsic neurons mostly secreting, VIP and tachykinins, and (ii) a cholinergic 

mechanism, which is under the control of vagal pathways (Wine, 2007); see 

figure 1.4B)). SMG serous cells are tightly innervated by mutual excitatory 

intrinsic airway neurons (Widdicombe and Wine, 2015). The neurotransmitters 

released by intrinsic airway neurons, including VIP and substance P, play an 

important role in liquid secretion by SMG through activation of VIP receptor 2 

(VPAC2) and NK1 tachykinin receptors, respectively, (Groneberg et al., 2001; 

Phillips et al., 2003). It has been shown that stimulation of tachykinin receptors 

by substance P leads to an increase in [Ca2+]i, which enhances fluid secretion by 

SMG in the feline trachea (Nagaki et al., 1994). Stimulation of VPAC receptors 

by VIP leads to an increase in [cAMP]i via activation  of adenylyl cyclase, 

which stimulates  SMG secretion (Groneberg et al., 2006). The function of SMG 

serous cells in the secretion of salt and fluid is shown in figure 1.4C. Active 

transepithelial Cl- and HCO3
- secretion plays an important role in fluid secretion 

by the airway SMG (Ballard and Inglis, 2004). The study by Joo et al., (2001) 

confirmed the HCO3
--dependence of fluid secretion from isolated sheep tracheal 
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SMG where carbachol stimulated fluid secretion was inhibited ~ 67% by 

replacing HCO3
- with HEPES (Joo et al., 2001). Moreover, the Cl- and HCO3

- 

dependence of fluid secretion was also observed in porcine SMG, where 

forskolin or VIP stimulated fluid secretion was inhibited ~50% by either 

bumetanide or HCO3
- replacement (Joo et al., 2002). Salt and fluid secretion by 

serous cells is primarily regulated by the apical anion channel CFTR, which is 

more strongly expressed in the apical membrane of serous epithelial cells than 

other types of cells in the airways (Engelhardt et al., 1992; Jacquot et al., 1993; 

Sehgal et al., 1996), (for more details see section 1.5). In addition, strong 

evidence has shown that stimulation of CFTR with either forskolin or 

cholinergic agonists plays an important role in fluid secretion, which was 

inhibited by the CFTR inhibitor, CFTRinh-172, in human and pig airway SMGs 

(Thiagarajah et al., 2004). Absence of CFTR in the apical membrane of serous 

epithelial cells leads to a decrease in Cl- and HCO3
-  secretion onto the airway 

surface, as well as reduction in ASL, and thereby produces a defect in 

mucociliary clearance (Boucher, 2007a). 
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Figure 1. 4: Overview of airway submucosal gland innervation and structures. (A) 
Schematic presentation of SMG and its four compartments. Reproduced from (Verkman 
et al., 2003). (B) shows airway innervation by the autonomic nervous system, with 
parasympathetic (solid lines), and sympathetic system (dashed lines), figure is taken 
from (Wine, 2007). (C) The extended observation of serous cell of submucosal glands, 
which plays a major role in the secretion of a watery fluid via the CFTR activity located 
on the apical surface of the serous cells.  Figure adapted from (Salinas et al., 2005). 
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1.4 Airway surface liquid (ASL) 

The ASL is defined as a thin layer of aqueous solution about 10μm deep that 

lines the airway surface (Widdicombe, 2002a), which contains ions, water, gel-

forming glycoprotein (mucin; MUC5B) (Widdicombe and Wine, 2015), and a 

variety of proteins including lactoferrin, defensins and lysozyme that are 

considered to play a vital function in airway hydration, natural immunity and 

antimicrobial defense (Zabner et al., 1998). The majority of the ASL is secreted 

by SMGs upon stimulation by Ca2+ and/or cAMP agonist, that plays an 

important role in mucociliary clearance and removal of inhaled pathogen from 

the lung (Cole et al., 1999; Wine and Joo, 2004; Widdicombe and Wine, 2015). 

It has been suggested by in vivo studies of radiotracer particle clearance that 

normal ASL removes deposited particles, including bacteria, on the airway 

surface within approximately six hours (Wanner et al., 1996). As shown in 

Figure 1.5A, the ASL consists of two layers, defined by light and electron 

microscopy: the periciliary liquid layer (PCL) located next to the airway 

epithelium, and an overlying thicker gel layer, made up of mucus (Boucher, 

2002). Normally, a very thin layer of ASL covers the luminal surface of the 

airways. Its quantity is accurately regulated to compensate for evaporation. 

During mucociliary clearance, the ASL facilitates cilia beating, and collectively 

with antimicrobial factors, plays an important role in the elimination of inhaled 

pathogens (Boucher, 1999). Deposited particles on the airways surface are 

effectively removed by the synchronized function of the two-phase gel system 

on the airway surface as shown in Figure 1.5. The PCL extends from the cell 

surface to the height of the extended cilia, The mucus layer is situated on the top 

of the cilia (Knowles and Boucher, 2002). Originally, the PCL was believed to 

be composed of liquid. However, the polyanionic gel properties of this layer 

(Randell and Boucher, 2006) give a perfect low resistance environment for cilia 

beating and also avoids the mucus layers from sticking together with the cell 

surface. The mucus layer is primarily composed of  mucins (Raviv et al., 2003).  

 

Recently, a new model of the periciliary layer has been proposed by Button et 

al., (2012). They showed that a macromolecular meshwork is present in the PCL 

of primary human bronchial epithelial cell cultures. Here they proposed that the 
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macromolecular meshwork is occupied by mucins and mucopolysaccharides that 

are tethered to cilia, microvilli and the epithelial surface to form an extracellular 

brush that prevents penetration of mucins and inhaled particles deposited on the 

mucus layer, into the PCL, which is required for effective mucociliary clearance 

(Button et al., 2012). Inadequate secretion from the SMGs, in combination with 

improper ion transport activity of the epithelial cells lining the luminal surface 

of the airways, leads to a reduction in ASL as seen in CF patients. Therefore, 

regulation of the ASL plays a crucial role in the process of mucociliary 

clearance, and it is this which is defective in CF, where mucus become more 

viscous and dehydrated (Matsui et al., 1998). It has been concluded that a 

reduction in ASL also inhibits neutrophil migration, which prevents the ability 

of neutrophils to capture and kill bacteria on the surface of airway epithelia 

(Matsui et al., 2005). In normal airway epithelia (Figure 1.5A), both CFTR and 

the epithelial Na+ channel (ENaC) play a critical role in the regulation of ASL 

volume and composition (see section 1.6 for more detail). As shown in figure 

1.0B, defects in CFTR function produces a viscous mucus gel, which adheres to 

the airway surface and ciliary beating is impaired (Mall et al., 2004), and 

thereby it becomes the site for chronic bacterial infection (Worlitzsch et al., 

2002). Recent studies have utilized Calu-3 cells as a model of airway SMG 

serous cells (for more details see section 1.11).  
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Figure 1. 5: The mechanism of airway mucus ciliary clearance. This illustration 
shows normal airways (A) in which the process of airways hydration controlled by the 
coordinated rate of Na+ absorption and Cl- secretion to support mucus clearance. It also 
shows airway surface dehydration (B) due to absence of CFTR function in CF. ENaC= 
epithelial Na+ channel, PCL refers to periciliary liquid, CFTR= refers to cystic fibrosis 
transmembrane conductance regulator. Figure is taken from Ratjen et al., (2015) 
(Ratjen et al., 2015). 
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1.5 Cystic fibrosis transmembrane conductance regulator (CFTR) 

CFTR is a membrane spanning glycoprotein which serves as ion channel to 

transport anions across the apical surface of epithelial cells, and has an impact 

on a variety of cellular process (Ratjen et al., 2015). This ATP-binding cassette 

(ABC) transporter-protein functions primarily as a Cl- channel on the apical 

membrane of epithelial cells of various organs, such as liver, pancreas, digestive 

tract, reproductive tract and the airways (Nagel et al., 1992). CFTR also 

functions as HCO3
- transporter in epithelial cells of many organs, including 

lungs, gastrointestinal tract, and pancreas (Gray et al., 2001). Thus, reduced 

HCO3
- secretion has been reported in CF tissue (Ko et al., 2002). Energy is used 

in the form of adenosine triphosphate (ATP) by all family members of ABC 

transporters in order to move a wide range of substance through the plasma 

membrane of cells (Dean et al., 2001). However, CFTR is the only ABC 

transporter that is not an active pump, and instead uses ATP binding and 

hydrolysis to induce structural changes in the protein that leads to channel pore 

opening and closing (channel gating), respectively. CFTR has a significant 

impact on the amount and composition of epithelial secretions by conducting Cl- 

and HCO3
-,  as well as being involved in regulating absorption and secretion of 

salt across the epithelial cells, which is followed by the creation of osmotic 

gradients leading to water transport across the epithelial cells to the mucosal 

surface (Riordan, 2008). Although CFTR serves as an anion channel, it acts also 

as a regulator, either directly, or indirectly, of a wide range of other ion 

channels, receptors, and transporters. 

 As shown in Figure 1.6, CFTR is composed of two repeating units which 

consist of two domains: a membrane spanning domain (MSD) which is 

hydrophobic and composed of six transmembrane segments; and a nucleotide 

binding domains (NBD), which is hydrophilic and is located in the cytoplasm, 

where its function is to bind and hydrolyse ATP  (Naren and Kirk, 2000). The 

two repeated units are connected to each other through a unique regulatory (R) 

domain. Phosphorylation of this domain by cAMP-PKA is responsible for the 

activation of CFTR (Cheng et al., 1991; Gadsby and Nairn, 1999). Activation of 

the CFTR increases the permeability of the apical membrane to Cl- ions, which 
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then flow out from the cells (Figure 1.6). It has been shown that movement of 

Cl- via the CFTR is stimulated by ATP binding to the NBDs, which is followed 

by dimerisation of the NBDs (Vergani et al., 2005). CFTR can also interact via 

its R-domain with the C and N-terminal domains of a variety of other 

transporters and regulatory proteins, including members of SLC26 family of 

anion transporter (see section 1.7) (Ko et al., 2004).  
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Figure 1. 6: Structures of the cystic fibrosis transmembrane conductance regulator 
(CFTR) anion channel. (A) Shows the linear structure of CFTR. (B) shows the 
domains of the CFTR Cl- channel, which consists of two membrane spanning domain 
(MSD; MSD1 and MSD1) that function as the ion channel pore through the plasma 
membrane, each connected with a nucleotide binding domain (NBD; NBD1 and 
NBD2). The CFTR channel opens when ATP is bound at the NBDs, and when the (R) 
domain is phosphorylated by PKA. Figure taken from (Ratjen et al., 2015). 

Figure 1. 7: Gating of the CFTR channel. Figure (A) shows the inactive (closed) 
form of the CFTR Cl- channel without ATP bound to the NBDs and so Cl- anions are 
trapped inside the cell until the process of phosphorylation and ATP binding to the 
NBDs occurs. (B) Illustrates the active (open) form of CFTR where the R domain is 
phosphorylated by PKA and ATP is bound to NBD1 and 2 which leads to NBD 
dimerisation, and channel opening. MSD=membrane spanning protein; NBD= 
Nucleotide binding membrane; RD= Regulatory domain. Figure taken from (Hwang 
and Sheppard, 2009). 
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1.6 Regulation of CFTR 

It has been shown that the cAMP/PKA signalling pathway is the major pathway 

that regulates CFTR activity and which stimulates Cl- and fluid secretion in 

CFTR-expressing epithelial cells (Cheng et al., 1991; Haws et al., 1994; Cobb et 

al., 2002; Cobb et al., 2003; Derand et al., 2004; Hentchel-Franks et al., 2004). 

In addition to PKA, CFTR has been shown to be phosphorylated by a range of 

different protein kinases, including Ca2+-independent and Ca2+-dependent 

isoforms of protein kinase C (PKC), cGMP-dependent protein kinases, PKGI 

and PKGII (Berger et al., 1993), adenosine monophosphate stimulated kinase 

(AMPK) (Kongsuphol et al., 2009), transmembrane human lemur tyrosine 

kinase 2 (LMTK2) (Wang and Brautigan, 2006) and casein kinase 2 (CK2) 

(Pagano et al., 2008). 

 

More recently, it has been shown that the ‘master kinase’ CK2 also plays an 

important role in the regulation of ENaC (Bachhuber et al., 2008) and CFTR 

activity (Treharne et al., 2009). CK2 is generally composed of two α catalytic 

subunits and two regulatory β subunits (Litchfield, 2003), which can specifically 

bind to and phosphorylate the CK2-binding subunits at the C-terminus of the 

ENaC (Bachhuber et al., 2008). In addition, it has been found that CFTR 

interacts with CK2 in the apical membrane of human airway epithelia (Treharne 

et al., 2009). In the NBD1 of CFTR, there is a CK2 binding motif, known as 

SYDE, which is located close to the F508 residue of CFTR (Venerando et al., 

2014). In addition, in vitro studies have shown that the α-catalytic subunit of 

CK2 phosphorylates NBD1 of CFTR (Pagano et al., 2008), and disruption of 

CK2-CFTR interaction by either CK2 inhibition or ∆F508-CFTR closes the 

CFTR channel and reduces CFTR-dependent Cl- transport (Treharne et al., 

2009). In the airways, CFTR also functions as a down regulator of  the ENaC, 

and therefore intracellular increases of cAMP also inhibit ENaC, which prevents 

Na+ reabsorption from the lumen of the airways, and thereby provides an 

osmotic driving force for water transport into the ASL (Mall et al., 1999). 
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1.7 Cystic fibrosis  

CF is the most common, life threatening, inherited disease with approximately 

9,000 affected people (1 in 2,500 live births) in the UK (Rowntree and Harris, 

2003). CF is an autosomal recessive disorder caused by mutations in the CFTR 

gene which interferes with the functions of a wide range of body organs 

(Xingshen Sun, 2010). Around 2000 CF mutations in the CFTR gene have been 

identified (www.genet.sickkids.on.ca). The most common CFTR mutation is 

deletion of phenylalanine at position 508 (deltaF508), which affects around 70% 

of CF patients (Davis, 2006). Mutations in the CFTR gene leads to either a 

reduction in the amount of the CFTR or dysfunction of this protein (Cheng et 

al., 1990; Welsh and Smith, 1995). DeltaF508 mutated CFTR is unable to reach 

the proper location in the cell membrane, instead it is retained in the 

endoplasmic reticulum, via the endoplasmic reticulum quality control (ERQC) 

and subsequently destroyed by the cytoplasmic proteasome (Cheng et al., 1990; 

Ward and Kopito, 1994; Ward et al., 1995; Gelman et al., 2002). Therefore, the 

CFTR protein is not produced, or severely reduced, at the cell membrane, and 

affected tissues suffer from failure of cAMP dependent Cl- secretion. 

Investigation of HCO3
- secretion in cystic fibrosis (CF) tissue highlighted the 

importance of CFTR in regulating HCO3
- secretion. Reduced HCO3

- secretion 

has been reported in a wide range of CF tissue, including CF canine airways 

(Smith and Welsh, 1992), CF murine intestinal epithelia (Xiao et al., 2012), CF 

human nasal epithelia (Paradiso et al., 2003) as well as in transfected cell lines 

with a mutant CFTR (Choi et al., 2001). Moreover, it has been shown that ASL 

[HCO3
-] in normal cultured primary human bronchial epithelia (HBEs) is higher 

than CF ASL (Coakley et al., 2003). Here they also found that an increase in 

[cAMP]i stimulates HCO3
- secretion in response to an acidic ASL, thereby 

causing rapid ASL alkalinisation. However, acidic ASL was not alkalinised in 

HBEs isolated from CF patients, in resting or cAMP elevated conditions, 

consistent with lack of CFTR-dependent HCO3
- secretion by CF airway epithelia 

(Coakley et al., 2003). Furthermore, similar finding has been demonstrated that 

the rate of HCO3
- secretion was markedly decreased in CF human nasal 

epithelia, compared to non-CF nasal epithelia (Paradiso et al., 2003). 
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 In CF, respiratory failure is the primary cause of death among patients, and 

occurs as a result of production of a high amount of mucus, and a decrease in the 

process of mucociliary clearance, which leads to obstructive lung disease and 

chronic bacterial airway disease (Figure 1.5). It has been shown that over 85% 

of people with CF, suffer from improper functioning of the pancreas, which is 

characterised by loss of their ability to produce pancreatic digestive enzyme and 

subsequently malnutrition occurs (Kerem et al., 1989; Estivill et al., 1995; 

Mateu et al., 2002).  

Current studies have suggested that susceptibility of the airway surfaces to 

dehydration and failure of mucus clearance in CF lung disease is caused by 

CFTR gene mutation leading to loss of CFTR dependent Cl- efflux and control 

of ENaC activity (Boucher, 2007b). In CF patients, the two main factors that are 

responsible for chronic bacterial infection and failure of the lung are defects in 

SMG function and abnormality in the ASL composition, as shown in figure 1. 8. 

Inadequate secretion of Cl- across the apical membrane of airway epithelia, 

together with the absorption of a high amount of Na+ from the extracellular 

surface, creates an osmotic gradient and copious amount of water is removed 

from ASL, this leads to formation of thick, viscous, mucus, which block the 

airway and then leads to chronic airway infection with bacteria, most commonly 

Pseudomonas aeruginosa. As a result, localized areas of the bronchial tree 

become irreversibly dilated as its muscle and elastic tissue are destroyed. 

Moreover, there is progressive destruction of the airway (Welsh, (1995)).  
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Figure 1. 8: Mutated CFTR Cl- ion channel and CF of the lung. This figure 
illustrates the theoretical relationship between defected CFTR protein and several organ 
systems. Figure is adapted from Goodman and Precy, 2005 (Goodman and Percy, 
2005). 

 

 

1.8 Role of SLC26 Cl-/HCO3
- anion exchangers and HCO3

- secretion in epithelial cells 

The human solute carrier (SLC26) gene family are large transmembrane protein 

anion transporters that consist of 10 members (SLC26A1-A11, SLC26A10 

being a pseudogene) (Li et al., 2014),  many of which are expressed in epithelial 

cells where  they  play an important role in anion secretion and absorption 

(Ohana et al., 2009). All members of the SLC26 family, except SLC26A5 

(Prestin), can function as anion exchangers, and they have a significant role in 

the transportation of a wide range of monovalent and divalent anions in 

epithelial cells. For instance, sulphate, chloride, iodide, oxalate, formate, 

bicarbonate and hydroxyl ion (Bissig et al., 1994; Karniski et al., 1998; Satoh H 

23 
 



and Yadav, 1998; Moseley et al., 1999; Jiang et al., 2002; Xie et al., 2002; Scott 

DA, (2000) ; Soleimani M and P, (2001)). Most of the SLC26 anion transporters 

are expressed in the luminal membrane of epithelial cells, and play an important 

role in epithelial Cl- and HCO3
- transportation (Mount and Romero, 2004). 

However, it has been suggested that SLC26A7 function as Cl- channel in 

Xenopus oocytes and transfected HEK cells, and it does not conduct HCO3
- 

(Kim et al., 2005). Also, a study  by Loriol et al., (2008) has shown that 

SLC26A9 plays an important role in  human airway epithelia cells as a Cl- 

channel, but was not involved in regulating intracellular pH because it also does 

not conduct HCO3
- (Loriol et al., 2008). Recently, it has been demonstrated that 

SLC26A9 plays an important role in Cl- secretion in mouse airway epithelial 

cells, and helps prevent airway mucus obstruction (Anagnostopoulou et al., 

2012). In addition, it has been shown that SLC26A9 plays an important role in 

Cl- transportation through a cAMP-dependent mechanism when co-expressed 

with CFTR in HEK-293Tcells, and that SLC26A9 activity was also CFTR-

dependent in HBE cells (Bertrand et al., 2009).  

 

The SLC26 family members have an NH2 terminal domain that encompasses the 

transmembrane segments, which are thought to be the sites for anion binding, as 

well as the COOH terminal, which is predicted to contain a sulfate transporter 

and anti-sigma factor antagonist (STAS) domain (Aravind and Koonin, 2000). It 

has been described that there is a reciprocal regulation between SLC26 

transporters and the CFTR channel, which is facilitated by binding of the STAS-

domain of the SLC26 transporters to the R-domain of CFTR, which plays an 

important role in the regulation of CFTR activity (Ko et al., 2004).  It has also 

been reported that members of SLC26 family are more likely to be involved in 

Cl-/HCO3
- exchange than Cl-/OH- exchange (Ko et al., 2002; Wang et al., 2002; 

Xie et al., 2002). The SLC26 family members of Cl-/HCO3– exchangers, 

SLC26A3, SLC26A4 and SLC26A6, are known to play an important role in 

HCO3 – secretions in kidney , intestinal  and pancreatic duct cells (Soleimani et 

al., 2001; Stewart et al., 2011).  
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Several human genetic diseases are associated with mutations in members of the 

SLC26 family including; chondrodysplasias that is caused by mutation in 

SLC26A2 (Hastbacka et al., 1994; Superti-Furga et al., 1996); chloride losing 

diarrhoea (DRA) caused by mutations in SLC26A3 (Mount and Romero, 2004), 

pendred syndrome and congenital deafness that is linked to mutations in 

SLC26A4 (Everett et al., 1997; Liu et al., 2003).. It has also been reported that 

defective SLC26A5 (Prestin) leads to non-syndromic hearing impairment (Liu et 

al., 2003; Tang et al., 2005). Moreover, it has been reported that absence of 

SLC26A6 protein in mice produces kidney nephrolithiasis due to abnormal 

transportation of oxalate (Jiang et al., 2006). SLC26A6 is also involved in 

HCO3
- secretion by pancreatic and parotid ducts (Wang et al., 2006; 

Shcheynikov et al., 2008). Also, SLC26A8 mutation leads to a decrease in the 

capability of being fertile (Toure et al., 2007). The characteristics of the SLC26 

family and diseases linked to their dysfunction are shown in Table 1.01.  
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Table 1.1: The characteristics of the SLC26 gene family. Table adapted from Mount 
& Romero 2004 (Mount and Romero, 2004). 

 

 

 

1.8.1 SLC26A4 (Pendrin)  

 

SLC26A4 (pendrin) is an electroneutral anion exchanger that functions as a Cl-

/HCO3
- exchanger (Ohana et al., 2009). Pendrin is essential for transcellular 

movement of monovalent anions, including chloride, iodide and formate, 

although it doesn’t transport divalent anions (sulphate and oxalate) (Scott et al., 

1999; Scott DA, (2000) ).  

Pendrin is highly expressed in the inner ear, thyroid gland and the kidney 

(Royaux et al., 2000; Lacroix et al., 2001). It has been shown that human 

pendrin expressed in Xenopus oocytes functions as a Cl-/formate exchanger, 
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similar to the renal Cl-/formate exchanger, which is  thought to play a critical 

role in transepithelial Cl- transport by renal proximal tubule (Scott and Karniski, 

2000). However, immunolocalisation studies have shown pendrin expression on 

the apical surface of renal β-intercalated cells of collecting ducts, but failed to 

detect any expression in the proximal tubules (Royaux et al., 2001). Here, they 

also showed that pendrin plays an important role in HCO3
- secretion in the 

kidney. In addition, a study by Amlal et al., (2010) showed that genetic deletion 

of SLC26A4 (pendrin) in mice impaired HCO3
- secretion by renal collecting 

ducts and these animals displayed significantly acidic urine, along with elevated 

HCO3
- concentration in the serum, compared to WT mice (Amlal et al., 2010). 

Furthermore, pHi measurements in β-intercalated cells of renal collecting ducts 

showed that the alkalinisation in pHi due to Cl- removal in the extracellular 

solution, was markedly decreased in pendrin knock out mice, compared to wild 

type mice, suggesting that pendrin functions as a Cl/HCO3
- anion exchanger 

(Amlal et al., 2010). It has been also reported that pendrin can be found in other 

organs, such as epithelial cells of the airway (Pedemonte et al., 2007; Di 

Valentin E, 2009), mammary gland (Rillema and Hill, 2003), testis (Lacroix et 

al., 2001), placenta (Bidart et al., 2000), endometrium (Suzuki et al., 2002) and 

liver (Alesutan et al., 2011). Mutations in the pendrin gene lead to pendred 

syndrome which is an autosomal recessive illness in which the anion exchanger 

does not function properly. Pendred syndrome is distinguished by loss of 

hearing in newborns and enlargement of the thyroid gland, due to a defect in the 

formation of thyroglobulin in the thyroid gland, that leads to development of 

goiter (Morgans and Trotter, 1958; Dror et al., 2010).  

A recent study showed that there is cooperation between CFTR and pendrin  in 

the process of Cl- and HCO3
- secretion by serous cells of airway submucosal 

glands (Garnett et al., 2011; Garnett et al., 2013).  Abnormality in the regulation 

of pendrin function by CFTR, as would occur in CF, would lead to reduced Cl-

/HCO3
- exchange. This would be predicted to lead to a decrease in the quantity 

of bicarbonate secreted into the luminal airway surface liquid (Mount and 

Romero, 2004). Moreover, it has been shown that pendrin plays an important 

role in thiocyanate secretion into the ASL, which provides ability for scavenging 

oxidants and innate defense against bacterial infection, in human bronchial 
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epithelial cells under resting and IL-4 stimulated conditions (Pedemonte et al., 

2007).  

Furthermore, it has been shown that pendrin plays an important role in the 

regulation of ASL thickness and asthma exacerbation induced by rhinovirus 

infection or allergic airway diseases (Nakagami et al., 2008). Here, they showed 

that pendrin expression was significantly increased about 5 fold in infected 

human with common colds caused by rhinovirus. They also showed that pendrin 

deficiency in mice caused a significant decrease in airway hyperactivity and 

inflammation by improving ASL hydration. Thus pendrin might be a potential 

therapeutic target in asthma exacerbations. 

  

 

1.9 Regulation of SLC26 anion exchangers by CFTR 

CFTR plays an important role in the activation of SLC26 Cl-/HCO3
- exchangers, 

indicating the importance of SLC26 anion exchangers in HCO3
- transportation in 

many epithelial cells  (Mount and Romero, 2004). In unstimulated cells, 

unnecessary fluid and electrolyte secretion is avoided through interaction of the 

unphosphorylated R-domain with NBD1 that blocks its binding with NBD2 

(Baker et al., 2007) and thus leads to inhibition of CFTR Cl- channel activity. 

However, phosphorylation of the R domain by PKA is followed by the 

detachment of the R domain from NBD1, which stimulates its interaction with 

the STAS domain of SLC26 anion transporters (Lamprecht et al., 2002; Ko et 

al., 2004). CFTR-associated protein 70 (CAP70) which is one of the PDZ 

proteins that are primarily located in the apical membrane of epithelial cells, has 

been reported to play an important role in the opening of CFTR in Calu-3 cells 

of airway SMG via its binding to the C-terminal of CFTR (Wang et al., 2000; 

Raghuram et al., 2001). This interaction leads to the combined activation of 

CFTR and SLC26 anion transporters (Ko et al., 2002; Ko et al., 2004) and 

subsequently electrolyte and fluid efflux (figure 1.9). In addition, it has been 

found that this type of regulatory activation is present for SLC26A3, SLC26A4 
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and SLC26A6, while other types of SLC26 transporters might be involved in 

this regulatory process (Wang et al., 2006).  

Recently, a clinical study has confirmed the functional cooperation between 

SLC26 AE and the CFTR channel (Dirami et al., 2013). Here, they showed that 

SLC26A8 strongly stimulates CFTR channel activity in human sperm, which 

plays an important role in anion exchange activity that is required for sperm 

motility and capacitation, and subsequently fertilization. The study by Dirami et 

al., (2013) also suggested that SLC26A8 mutations impair the formation of the 

SLC26-CFTR complex, and thereby leads to human asthenozoospermia (Dirami 

et al., 2013). The SLC26 anion exchangers also play an essential role in the 

activation of CFTR channel in vivo (Dirami et al., 2013). It has also been shown 

that salivary and pancreatic ductal fluid and HCO3
- secretion involves 

basolateral HCO3
- influx by NBCe1 to provide more HCO3

- to accumulate inside 

the cells, and luminal HCO3
- efflux and Cl- absorption across the apical 

membrane by coordinated activity of the CFTR and SLC26A6 Cl-/HCO3
- AE 

(Lee et al., 2012; Ahuja et al., 2014). 

Moreover, a recent study in primary cultures of human nasal cells from normal 

and patients carrying mutations in pendrin (DFNB4) showed that mutation in 

SLC26A4 lead to reduced anion exchange activity in the apical membrane of IL-

13 treated cells, but enhanced ASL height. In addition, there was as a decrease in 

expression of CFTR and short circuit current in the pendrin mutant airway cells 

(Lee et al., 2015). Furthermore, preliminary co-immunoprecipitation 

experiments suggested that pendrin may be coupled to CFTR, with the two 

proteins working in concert to transport Cl- and HCO3
- across the apical 

membrane of human airway epithelial cells (Lee et al., 2015). However, based 

on the observed changes in ASL height, the authors concluded that this was 

evidence that pendrin actually works in an absorptive, rather than a secretory 

mode, to regulate ASL volume. Overall, it is clear that regulation of these anion 

exchangers is an important area of research, and might be a novel target for 

future therapy of CF. 
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Figure 1. 9: The physical and functional interaction between CFTR and SLC26 
transporters. The CFTR plays a crucial role in the regulation of SLC26A transporters. 
An increase in intracellular cAMP leads to activation of PKA, resulting in 
phosphorylation of R-domain of CFTR, which binds to SLC26 transporters via their 
STAS domain to enables CFTR to directly regulate the SLC26 anion exchanger 
activity. Figure taken from (Dorwart et al., 2008).  

 

 

1.10 The SLC4 family of anion transporters 

In addition to the SLC26 family that code for Cl-/HCO3
- exchangers, there is 

another family which is called solute carrier 4 (SLC4) family of transporters that 

consist of ten genes, and all SLC4 family members encode plasma membrane 

spanning proteins (Romero et al., 2004). The SLC4 family members play an 

important role in HCO3
- transportation across the mammalian plasma membrane 

to regulate intracellular and extracellular pH, as well as transportation of Na+ 

and/or Cl-, and potentially water (Bevensee et al., 2000; Kurtz, 2014). It has 

been shown that mutations in SLC4 transporter proteins lead to a wide range of 

human genetic diseases (Cordat and Casey, 2009), such as haemolytic anaemia 

and distal renal tubular acidosis by SLC4AE1 mutation (Schofield et al., 1992; 

Bruce et al., 1997), generalized epilepsy by SLC4AE3 mutation (Sander et al., 

2002), glaucoma, cataract and bad keratopathy by NBCe1 mutation (Usui et al., 
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1999; Demirci et al., 2006) and hypertension by NBCe2 mutation (Barkley et 

al., 2004; Hunt et al., 2006). 

 

Most recently, it has been shown that eight members of the SLC4 family encode 

proteins that are involved in the process of HCO3
- transportation, and 

functionally they are classified into two main groups: three electroneutral Cl-

/HCO3
- exchangers, AE1, AE2 and AE3 (SLC4A1, SLC4A2, SLC4A3, 

respectively) and five Na+-coupled HCO3
- transporters (NBC) (Romero et al., 

2013; Kurtz, 2014). NBCe1 (SLC4A4), and NBCe2 (SLC4A5) are two 

electrogenic NBCs, while NBCn1 (SLC4A7), NBCn2 (SLC4A10), and Na+-

driven Cl-/HCO3
- exchanger (NDCBE; SLC4A8) are three electroneutral 

transporters  (Romero et al., 2013; Kurtz, 2014). Although  SLC4A9 (AE4) was 

initially reported to perform anion exchange activity, it  mostly resembles Na+-

coupled SLC4 transporters (Kurtz, 2014). Electrogenic NBCe’s plays an 

important role in HCO3
- secretion in the pancreatic duct, and HCO3

- 

reabsorption in the proximal renal tubules. However, the electroneutral NBCn 

and Na+-driven Cl-/HCO3
- exchanger (NDCBE’s) play a vital role in the 

regulation of pHi in vascular smooth muscle and CNS neurons, respectively 

(Boron, 2001). Furthermore, the products of the SLC4 gene family  perform a 

vital role in the process of CO2 transportation from the systemic circulation to 

the lungs by red blood cells, H+ or HCO3
- absorption or secretion by a wide 

range of epithelial cells, as well as controlling intracellular pH and cell size 

(Romero et al., 2004).  

 

The gene products of SLC4 transporters are comprised of three domains:  (i) N-

terminal cytoplasmic domain comprising of 400–700 amino acids, (ii) a 

transmembrane domain (TMD) of 500 amino acids, and (iii) a short C-terminal 

tail that binds to carbonic anhydrase II. The amino acid sequences of AE1–3 

TMDs are ∼65% identical, while the homologous cytoplasmic N-terminal 

domains are only ∼35% identical in amino acid sequence identity (Vince and 

Reithmeier, 2000). AE1 is the most numerous membrane protein in erythrocytes 

(Hunter, 1977) and α-intercalated cells of renal collecting duct  (Verlander et al., 

1988). AE2 is highly expressed at the basolateral membrane of most epithelia 

including stomach mucosa (Stuart-Tilley et al., 1994), colon (Gawenis et al., 
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2010), collecting duct of the kidney (Alper et al., 1997), pancreatic duct 

epithelial cells (Rakonczay et al., 2008; Ishiguro et al., 2009) and respiratory 

airway (Dudeja et al., 1999). AE3 is mostly expressed in excitable tissues, 

including brain (Kudrycki et al., 1990), retina (Kobayashi et al., 1994), heart 

(Yannoukakos et al., 1994) and smooth muscle (Brosius et al., 1997), which 

plays an important role in the regulation of intracellular pH by exporting  HCO3
- 

during intracellular alkalinisation (Sander et al., 2002). Most, if not all, of the 

SLC4 family members are functionally inhibited by 4,4'-Diisothiocyanato-2,2'-

stilbenedisulfonic acid disodium salt (DIDS) (Romero et al., 2013). It has been 

shown that DIDS, used extensively to characterize the HCO3
- transport activity 

of the SLC4 family members, covalently interacts with a lysine residue in the 

protein (Landolt-Marticorena et al., 1995). The characteristics of the SLC4 

family members are shown in figure 1.10.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 10: SLC4 family members and their transport activity. The SLC4 gene 
family contains 10 members; all are involved in HCO3

- transportation apart from one 
member, SLC4A11. Figure taken from (Alvarez-Leefmans and Delpire., 2009).  
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1.10.1  Anion exchanger 2 (SLC4A2 or AE2)  

 

The electroneutral Cl-/HCO3
- anion exchanger 2 (AE2) (Huang et al., 2012) is a 

trans membrane protein that plays an important role in the regulation of 

intracellular pH and cell volume (Turi et al., 2003). It has also been shown that 

SLC4A2 function as a Na+-independent Cl-/HCO3
- anion exchanger in polarized 

epithelial cells that plays a pivotal role in the regulation of intracellular pH, 

intracellular Cl- concentration and cell volume by excretion of HCO3
- from cells, 

and loading of cells with Cl- (Alper, 2002; Romero et al., 2004). In addition, it 

has been assumed that expression of AE2 in most epithelial cells plays important 

role in the regulation of intracellular pH by outward transportation of HCO3
- 

during intracellular alkalinisation, and /or control of cell volume by Cl- uptake 

(Stewart et al., 2002). AE2 plays an important role in the regulation of 

intracellular pH and transepithelial acid-base transportation in biliary epithelial 

cells (Concepcion et al., 2013). Also, it has been reported that AE2 is expressed 

on the apical surface of both biliary epithelial cells and hepatocytes and is 

critically involved in pHi regulation and HCO3
- secretion into the bile (Martinez-

Anso et al., 1994; Medina et al., 1997). Furthermore, it has been shown that 

AE2 is expressed in the airways (Al-Bazzaz et al., 2001) as well as Calu-3 cells 

at the basolateral membrane by immunofluorescence (Loffing et al., 2000)  

More recently, it has been confirmed that AE2 mRNA and protein are expressed 

in the basolateral membrane of Calu-3 cells, which plays an important role in 

basolateral Cl- loading and HCO3
- recycling under cAMP stimulated condition 

in Calu-3 cells (Huang et al., 2012). Moreover, the intracellular alkalinisation 

produced by basolateral Cl- removal was inhibited by 80% in AE2 knock down 

Calu-3 cells (Huang et al., 2012). Basolateral AE2 is thought to plays an 

important role in the regulation of intracellular pH in Calu-3 cells by 

participating in HCO3
- absorption, and also it facilitates the inward movement of 

Cl- through the basolateral membrane, together with the sodium-potassium 

chloride cotransporter NKCC1 (Loffing et al., 2000; Inglis et al., 2002). In 

contrast to results by Huang et al., (2012), most recent results by Garnett et al, 

have demonstrated that a functional AE was present  in the basolateral surface of 

Calu-3 cells under resting, non-stimulated conditions, with properties that are 
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consistent with AE2, and which was almost completely inhibited by intracellular 

elevation of cAMP (Garnett et al., 2011; Garnett et al., 2013). In addition to 

regulating pHi and cell volume, AE2 also plays a vital role in superoxide (O2
-) 

transportation into the extracellular space in exchange for extracellular HCO3
- 

(Turi et al., 2002). AE2 has been shown to be involved in hyperoxia-induced 

oxidative lung injury, which was markedly reduced by inhibition of AE2 by 

DIDS or perfusion with a bicarbonate free buffer solution (Nozik-Grayck et al., 

1997). However, the mechanisms that regulate AE2 activity in epithelia are not 

well understood. This gives much interest to further investigate the mechanism 

that regulates this anion exchanger in airway epithelia.  

 

 

1.11 Calu-3 Cells as a model of human submucosal gland serous cells 

 

There was an excitement about discovering a human cell line that has many 

characteristics resembling serous cells, as primary human serous cells are 

difficult to isolate and grow in culture (Shen et al., 1994). The Calu-3 cell line 

was derived from human lung adenocarcinoma cells (Shen et al., 1994) and was 

introduced as a serous cell model based on the presence of many properties of 

serous cells, such as high CFTR expression, production of antimicrobials, 

including lysozyme and lactoferrin (Haws et al., 1994; Duszyk, 2001a; Dubin et 

al., 2004). Also, Calu-3 cells form polarized monolayers (Garnett et al., 2011; 

Shan et al., 2011) capable of anion secretion in response to secretagogues that 

increase intracellular cAMP concentration (Shen et al., 1994; Devor et al., 1999; 

Garnett et al., 2011; Garnett et al., 2013). cAMP stimulation of Calu-3 cells 

leads to CFTR-dependent electrogenic Cl- secretion (Cobb et al., 2002), as well 

as HCO3
- secretion (Shan et al., 2012; Garnett et al., 2013; Kim et al., 2014). 

Also, stimulation of Calu-3 cells with cAMP agonist, VIP, caused a CFTR-

dependent I- transport through a DIDS insensitive but PKA-dependent 

mechanism (Derand et al., 2004). Based on the presence of these features, Calu-
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3 cells are a good model to use for studying transepithelial HCO3
- secretion, and 

the importance of CFTR and anion exchangers in serous cell anion secretion. 

A current model for mechanism of anion secretion in Calu-3 is summarised in 

figure 1.11. At the basolateral membrane of the Calu-3 cells, NBC is responsible 

for HCO3
- influx into the cells due to the positive regulatory effect of cAMP on 

NBC, with an inwardly-directed Na+ gradient maintained by Na+-K+ ATPase 

(not shown in the figure). Interestingly, recent work in our laboratory has shown 

that increases in intracellular cAMP leads to inhibition of basolateral Cl-/HCO3
- 

(AE) activity, which is followed by stimulation of NBC and HCO3
- 

transportation into the cell (M. Turner, PhD thesis 2014). Cl- uptake across the 

basolateral membrane is regulated by Na+-K+-Cl- cotransporter (NKCC) and 

potentially AE2 (Devor et al., 1999). At the apical membrane, Cl- exits from the 

cells by the CFTR channel. It has been discovered for the first time that there is 

a cAMP/PKA activated Cl-/HCO3
- exchanger on the apical surface of Calu-3 

cells, and its functional properties are similar to those of pendrin (SLC26A4) 

that play a crucial role in HCO3
- secretion across the cell membrane of airway 

epithelia Calu-3 cells, while Cl- is recycled by coordinated activity between 

CFTR and pendrin (Garnett et al., 2013). An inwardly-directed Cl- concentration 

gradient acts as the main driving force for HCO3
- secretion by luminal Cl-

/HCO3
- exchangers. In addition an apical Cl- conductance is essential for 

efficient operation of apical Cl-/HCO3
- exchangers (Dorwart et al., 2008). 

Intracellular elevation of cAMP leads to stimulation of CFTR Cl- efflux and 

HCO3
- secretion across the apical membrane via pendrin, while inhibiting 

basolateral AE2 (Garnett et al., 2011; Garnett et al., 2013). Paradoxically, recent 

studies by Shan et al., (2012) and Kim et al. (2014) found that CFTR was the 

predominant pathway for HCO3
- secretion in Calu-3 cells, and it worked 

independently of an apical Cl-/HCO3
- exchanger (Shan et al., 2012; Kim et al., 

2014). In addition HCO3
- secretion was blocked by CFTR inhibitors or genetic 

knock down of CFTR (Shan et al., 2012). Furthermore, basolateral AE2 was not 

abolished during cAMP stimulation in Calu-3 cells (Huang et al., 2012; Shan et 

al., 2012; Kim et al., 2014). The reason for these different findings is not clear 

but may be related to different growth conditions or batches of Calu-3 cells.  
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However, we don’t have a full understanding how CFTR regulates HCO3
- 

secretion in the airways, or the molecular mechanisms that regulate both the 

apical and basolateral Cl-/HCO3
- AE in airway HCO3

- transportation. Thus, 

regulation of CFTR-dependent apical Cl-/HCO3
- AE activity, as well as the 

basolateral AE is an important area of research, and forms the basis of this 

thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 11: Mechanism of anion secretion in the Calu-3 cells. This new model 
shows HCO3

- transportation across the apical and basolateral membrane in cAMP-
stimulated Calu-3 cells. tmAC= transmembrane adenylyl cyclase, CFTR= Cystic 
fibrosis transmembrane conductance regulator, NKCC= Na+-K+-2Cl– cotransporter, 
NBC= Na+-HCO3

- cotransporter, NHE= Na+-H+ exchanger, AE2= anion exchanger 2, 
VIP= Vasoactive intestinal peptide. (+) denotes stimulation, (-) denotes inhibition. 
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Aims  

 

The major aim of the current study was to investigate the signalling mechanisms 

that regulate the CFTR-dependent apical Cl-/HCO3
- anion exchanger (AE), as 

well as the basolateral Cl-/HCO3
- AE, to better understand their role in 

bicarbonate secretion in a model human airway epithelial cell line.  

 

 

The detailed aims of this study were to: 

 

• Study the functional properties of the basolateral Cl-/HCO3
- AE in polarised 

cultures of Calu-3 cells  

• Investigate the effect of cAMP agonists on the activity of the apical and 

basolateral Cl-/HCO3
- AEs in polarised cultures of Calu-3 cells 

• Investigate the role of intracellular and extracellular Ca2+ on the regulation of 

the apical and basolateral Cl-/HCO3
- AE activity in polarised cultures of Calu-3 

cells 

• Identify the protein kinases and phosphatases that regulate the apical and 

basolateral Cl-/HCO3
- activity under resting and cAMP-stimulated conditions. 

• Study the role of the actin cytoskeleton and dynamin in the regulation of the 

apical and basolateral Cl-/HCO3
- AE activity in polarised cultures of Calu-3 cells 

• Compare the properties of the basolateral Cl-/HCO3
- AE in Calu-3 cells to those 

of mouse AE2, after transient transfection in HEK-293T cells. 
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Chapter 2 Methods  

2.1 Cell culture  

Routine cell culture was carried out in a vertical laminar flow hood (Jouan Ltd, 

UK).  The human adenocarcinoma-derived cell line, Calu-3  (ATCC HTB-55) 

(Shen et al., 1994) were grown in T75 Costar cell culture flasks (75cm2) with 30 

mls of Eagle’s Minimum Essential Medium (EMEM)  supplemented with 10%  

fetal bovine serum  (FBS), 100 Um1-1 penicillin and 100µgml-1 streptomycin, 

1% non-essential amino acids, 2mM L-Glutamine (Sigma) and incubated at 

37ºC in a humidified air containing 5% CO2. Culture media and solutions were 

pre-warmed to 37˚C in a water bath prior to use. All culture media, supplements 

and consumables were sterile, and all the equipment was sterilized before use in 

the hood using ethyl alcohol (70%). Cells were initially seeded at 3 x 106 cells 

per flask, and then incubated in humidified air at 37°C containing 5% (v/v) 

CO2. Cells became confluent after 7 days, and then passaged once per week. 

Frozen stocks were stored in liquid nitrogen, and were only used between 

passages 20-50. To subculture Calu-3 cells, the media was removed from the 

flask and cells were washed 3 times with sterile phosphate buffered saline 

(PBS). Cells were trypsinized in 5 mls of trypsin solution (0.05% trypsin and 

0.02% ethylenediaminetetraacetic acid (EDTA) in Earle’s balanced salt solution) 

for 20 minutes in a humidified incubator at 37ºC. After the first 20 minutes, the 

detached cells (approximately 50% of the cells) were added to 10 mls pre-

warmed culture medium, and then another 5 mls of trypsin solution was added 

to the flask and incubated for another 20 minutes to ensure detachment of the 

remaining cells, and these cells were added to the culture medium. The resulting 

cell suspension was agitated gently, and then centrifuged at 1500g for 3 minutes.  

The supernatant was discarded but the cell pellet was re-suspended in 10 mls of 

culture media before seeding the cells into a new flask. For pHi experiments, 

cells were seeded at 250,000 cells cm2 initial seeding density onto semi-

permeable Transwell supports (0.4 μm pore, polyester membrane insert, 1.12 

cm2 surface area, (Corning, UK)). Calu-3 cells generally produced a polarized 
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monolayer after 7 days. All experiments described in this thesis were carried out 

8-14 days after seeding. 

Human Embryonic Kidney-293T cells (HEK-293T) and CK2 (alpha and alpha 

prime) knock out HEK-293T cells were cultured in flasks (75cm2) with 30 mls 

of Dulbecco's Modified Eagle's Medium (DMEM), supplemented as for Calu-3 

cells. HEK-293T cells were initially seeded at 1 x 106 cells in a T75 flask, and 

then incubated at 37°C in a 5% (v/v) CO2 atmosphere. Cells became confluent 

after 7 days, and were only used between passage 35 and passage 50. HEK-293T 

cells were subcultured once per week, using the same protocol as Calu-3 cells 

apart from the fact that HEK-293T cells were much more easily detached after 

incubation in 5 mls of trypsin solution for 1 minute in a humidified incubator at 

37ºC. For pHi experiments, HEK-293T cells were seeded onto the glass 

coverslips (25mm diameter) at 100,000 cells cm2 initial seeding density, and 

then transiently transfected with cDNA coding for mAE2, CFTR and/or various 

CK2 constructs, 1 day post seeding.  

The knockout CK2 (alpha and alpha prime) cells were a kind gift from Dr. Salvi 

and were generated in Dr. Salvi lab (University of Padova, Italy) in 

collaboration with Horizon Discovery, using the CRISPR/CaS9 method. The 

absence of the catalytic subunits kinase was confirmed by western blotting (see 

figure 2.1) 

For transient transfections, DNA was pre-complexed with Lipofectamine-2000 

(Manufacturers) at a ratio of 1: 2.28 respectively. After that, Opti-MEM media 

with GlutaMax was added for 15 minutes at room temperature, and then diluted 

in culture media to 1µgDNA/ml prior to adding to the cells. The transfected cells 

were incubated for 6 hours at 37°C, and then the complex media was removed 

and cells incubated with  OptiMEM+10% FCS overnight, after which the cells 

were returned back to normal culture media. pHi experiments were performed on 

the transfected cells 48 hours post transfection.   
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Figure 2. 1: Western blotting against CK2 alpha subunits. The absence of both CK2 
alpha (α) and alpha prime (α’) subunits of CK2, in the knockout cells, was confirmed by 
western blot analysis, which was performed in Dr. Salvi lab in collaboration with 
Horizon Discovery. 

 

 

2.1.1 Expression constructs: 

 

Mouse AE2 cDNA (HA-tag) was a kind gift from Beth Lee and Ron Kopito's 

lab, for more detail see Lee et al., (1991) (Lee et al., 1991). Empty plasmid  

(pcDNA 3.1 myc/His), human WT-CK2 (CK2-alpha), and double mutant CK2 

(DM-CK2; less sensitive to TBB) cDNA were a kind gift from Dr. M Salvi Lab, 

see reference (Salvi et al., 2006), DNA sequencing analysis to confirm the 

constructs. Human CFTR was a kind gift from Dr. Paul Linsdell, and was 

inserted into the pIRES2-EGFP vector, which allows strong expression of green 

fluorescent as well as CFTTR. For more detail see (Zhou et al., 2010). CFTR 

transfected cells were visualized under the fluorescent microscope before doing 

the pHi experiments and the GFP did not interfered with pHi measurements in 

BCECF-loaded cells. 
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2.2 Transepithelial Resistance Measurements 

The trans-epithelial electrical resistance (TEER) of Calu-3 cells grown on 

Transwell supports was used to determine whether cells had formed a polarized, 

resistive monolayer, and was measured using an Epithelial Voltohmmeter 

(World Precision Instruments, UK).  

Resistance measurements were corrected for the resistance of an empty 

transwell which was calculated as 111± 4 Ω cm-2. Cells were only used for 

experiments when TEER had reached a stable resistance of above 600 Ω cm-2. 

 

2.3 Measurement of intracellular pH  

Real-time intracellular pH measurements (pHi) were performed to investigate 

the H+/HCO3
- transport in Calu-3 and HEK-293T cells. 

  

(i) Calu-3 cells. Following culture of Calu-3 cells on Transwell supports, the cells  

were first washed with  NaHEPES, and then the  cells were loaded with 10µM 

of the pH sensitive dye, 2'-7'-bis (carboxyethyl)-5(6)-carboxyfluorescein 

acetoxymethyl ester (BCECF-AM) in NaHEPES. 0.5 ml of the dye solution was 

added to the apical chamber and 1 ml of dye-free NaHEPES was added to the 

basolateral compartment. Cells were then incubated for 60 mins at 37 ºC. After 

dye loading, transwells were placed in a perfusion chamber and then mounted 

onto the stage of a Nikon inverted microscope. Cells were viewed at x60 

magnification using a long working distance objective (N.A 0.6) and perfused 

with a high chloride KREBS solution at 37 ºC gassed with 5% CO2/95%O2,  in 

order to adjust the pH of the solution to 7.4. Perfusion of the apical and 

basolateral side of the cells was at a rate of 3 and 6 ml per minute, respectively.  

 

(ii) HEK-293T cells. Following culture and transient transfection of HEK-293T 

cells on glass coverslips, the cells were washed with NaHEPES, and then were 

loaded with 10µM of the pH sensitive dye, BCECF-AM in NaHEPES solution. 

1 ml of the dye solution was added onto the coverslip inside the well plate, and 

then incubated for 10 mins at 37 ºC. After dye loading, coverslips were placed in 
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a perfusion chamber and then mounted onto the stage of a Nikon inverted 

microscope. Cells were viewed at x100 magnification using an oil immersion 

objective (N.A 1.2) and perfused with a high chloride KREBS solution at 37 ºC 

gassed with 5% CO2/95%O2,  in order to adjust the pH of the solution. Cells 

were then perfused with the solution at a rate of 3 ml per minute.  

 

To measure pHi, a Life Sciences Microfluorimeter system (Life Science 

Resources, UK) was used. Cells were excited by two different wavelengths, 490 

nm (proton-bound BCECF-AM; pHi-dependent) and 440 nm (proton-free 

BCECF-AM; pHi-independent) with emitted light collected at 510 nm every 

1.024 s using a photomultiplier tube. The ratio (R) of 490 nm emission to 440 

nm emission was recorded using the PhoCal 1.6b software and used to calculate 

pHi using the intracellular pH calibration (see section 2.4).  

 

 

2.4 Intracellular pH Calibration 

The intracellular pH calibration was performed by using the high K+/nigericin 

method as described by James-Kracke, (1992) (James-Kracke, 1992). In brief, 

Calu-3 cells were prepared in the same way as intracellular pH measurements 

and high K+/nigericin solutions of set pH were perfused across the cells without 

gassing. A standard curve was generated by plotting the resulting mean R value 

calculated over a 60 s period against the pH of the perfused solutions. (pHi 

calibration data is shown in Figure 2.2). During the period of my research, 

several calibrations were performed to calibrate pHi in different batches of Calu-

3 cells. The experimental R value was converted to pHi by using the following 

equation: 

            pHi = R – (Y-axis intercept) / slope  

  

42 
 



6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.3 8.5
3

4

5

6

7

8

pHi=
R+5.160
1.419

pHi

R
at

io
 4

90
/4

40

Where: 

R = 490/440 ratio value 

Slope = slope of the linear regression fit to the standard curve 

Y-intercept = point at which the line crosses the X-axis of a graph, when X= 0. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2: Intracellular pH calibration using the high K+/nigericin technique. (A) 
Shows a representative trace of BCECF-AM (10µM) loaded Calu-3 cells illustrating 
how the R value alters when cells are perfused with high K+/nigericin solutions of 
different pH. (B) Shows the standard curve generated from the pHi calibration and is 
used for the calculation of pHi from the 490/440 ratio data. Data represents mean ± 
S.E.M.; n = 4. 
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2.5 Data analysis of pHi measurements 

As shown in figure 2.3, estimation of the mean change in pHi (ΔpHi) was 

calculated by taking the average pHi over 60 s before (labelled A) and after 

(labelled B) the new solution was applied, in order to establish a basal pHi. This 

value was then subtracted from the mean pHi obtained in the presence of test 

solution after the pHi had reached a new steady state (labelled C). Linear 

regression was used to calculate the initial rate of re-acidification (ΔpHi/Δt) 

following Cl- re-addition (labelled D) over a period of no less than 30 s of data. 

The ΔpHi/Δt was converted to transmembrane HCO3
- efflux by multiplying 

ΔpHi/Δt by the total buffering capacity of the cell (see section 2.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 3: Data analysis of intracellular pH measurements. Standard response to 
Cl- free solution showing the effect of high Cl- and free Cl- buffer solution on pHi in 
Calu-3 cells. Red areas represent data used to calculate mean pHi change, and the green 
line represents the data points for linear regression used to calculate the rate of pHi 
change (reacidification) by linear regression. 
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2.6 Determination of Total and Intrinsic Intracellular Buffering Capacity of cells 

 

In order to determine the total buffering capacity (βtot) of both cell lines used in 

this study (Calu-3 cells and HEK-293T cells), the intrinsic buffering capacity 

(βi) was first obtained by experimentation and then added to the buffering 

capacity of the CO2-HCO3
- buffer system (βHCO3

-). Calu-3 cells and HEK-

293T cells βi was calculated using the NH4
+  pulse technique (Roos and Boron, 

1981). Cells were exposed to solutions containing differing amounts of NH4Cl 

(0, 2.5, 5, 10, 20, 30mM NH4Cl). The perfused ammonium solution was free 

from Na+ and HCO3
- to block Na+ and HCO3

--dependent pH regulatory 

mechanisms, respectively (Figure 2.4). NH3 enters the cell and subsequently 

binds to free protons to form NH4+ which causes an alkalinisation of pHi. βi is 

then calculated via the following equation: 

 

 

 

 

 

Where Δ[NH4+]i = [NH4+]out  x 10(pHout-pHin) 

 

 

 

Where [NH4+]out = [NH4Cl]/(1+10(pH out - pKa)) 

 

pHout =7.4, pKa = 8.9 

 

So for 30 mM NH4Cl, [NH4
+]o = 29.08mM at pH 7.4 

 

βHCO3
-
 is calculated using the formula:   βHCO3

- = 2.3 x [HCO3
-]i,  

in which the Henderson Hasselbach equation states:   

[HCO3
-]i = pCO2 x 10(pH –pK)  

where pK= 6.1 

  

Δ[NH4+]i 
ΔpHi 

βi = 
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The total buffering capacity is then calculated by the following equation;  

 

βtot = βi + βHCO3- where βi represents the intrinsic buffering capacity and βHCO3- 

is the CO2-HCO3
--dependent buffer capacity. 

 

The buffering capacity for Calu-3 cells and HEK-293T cells at 5% CO2 are 

displayed in figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2. 4: Determining of total intrinsic buffering capacity in Clau-3 cells. 
Experimental pH trace showing the changes in ratio in Calu-3 cells in response to 
differing concentration of NH4Cl solutions containing of (0, 2.5, 5, 10, 20, 30 mM/L 
NH4Cl). 
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Figure 2. 5: Buffering capacity at various pH values in Calu-3 cells (A) and HEK-
293T cells (B). Total buffering capacity (βtot) was calculated by adding the intrinsic 
buffering capacity of Calu-3 cells (βi) to the buffering capacity of the CO2/HCO3

- buffer 
system (βHCO3

-). βtot was calculated for cells exposed to 5% CO2, n = 6. 
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2.7 Fluid Secretion Assays 

Polarized monolayers of Calu-3 cells grown on permeable Transwell supports 

for 7-10 days, were first washed three times with PBS (1ml to apical and 

basolateral compartments) in order to remove any mucus  from the apical 

surface of cells that may have accumulated over time. All PBS was then 

aspirated from the apical and basolateral sides with extra care to ensure no 

residual fluid remained on both sides of the transwell at the end of the washes. 

To determine the rate and pH of the secreted fluid, 200 μl and 1ml of 

KREBS/HCO3
- solution was added to the apical and basolateral compartments 

respectively, as well as the desired pharmacological agonist or inhibitor. Cells 

were then incubated at 37˚C in humidified air containing 5% (v/v) CO2 over a 

24 hour period. The volume of apical fluid was then measured using an 

appropriate Gilson pipette by removing the first 180μl of the fluid and placing 

this in an eppendorf.  Then the remaining fluid was removed, 1μl at a time, to 

ensure high accuracy and combined with the first 180μl.  

 

For pH measurements, the collected samples were incubated at 37˚C in 

humidified air containing 5% (v/v) CO2 for at least 5 mins for pH to equilibrate, 

and then pH measured using a micro pH electrode attached to a pH meter (pH 

meter 240, Corning).  

 

 

2.8 Confocal Microscopy 

(i) Actin-cytoskeleton. Confluent Calu-3 cell monolayers, grown for 8-12 days on 

12 mm transwell supports, were used to visualise the actin cytoskeleton network 

using confocal microscopy. After removing the culture media from the 

transwells, 10μM cytochalasin-D or solvent control was added to the cells and 

incubated at 37˚C in for 1 h in humidified air containing 5% (v/v) CO2. 

Following treatment, cells were washed with PBS three times and then fixed 

with 4% paraformaldehyde (PFA) for 10 minutes. Cells were then washed three 

times with PBS (each for 5 minutes), and then washed with 50mM NH4Cl to 
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quench any remaining PFA. After washing, cells were permeabilized by Triton 

X-100 (1% in PBS) for 5 minutes at room temperature and then rinsed with PBS 

three times for 5 minutes. Blocking buffer containing PBS with 3% FCS and 

0.1% azide was added to the cells to block non-specific binding. At this point, 

the transwell membrane was cut out gently and placed in a 12 well plate with the 

apical side facing upwards. Cells were then treated with 200μl of PBS 

containing 3% fetal calf serum, 0.1% azide and 0.25% fluorescent Phalloidin–

Tetramethylrhodamine B isothiocyanate (Phalloidin-TRITC) (Sigma) for 30 

minutes at room temperature, and subsequently cells were washed twice with 

PBS to remove unbound phalloidin conjugate. 0.2μg/ml 4',6-diamidino-2-

phenylindole (DAPI) was then added for two minutes in order to stain nuclei, 

and then cells were rinsed with PBS, and then mounted on slides using 1-2 drops 

of Vectashield mounting medium (Vector Laboratories, UK). 

 

(ii) Detection of HA-tagged mAE2. Control, untransfected and transfected HEK-

293T cells expressing HA-tagged mAE2, grown on glass coverslips for 2 days, 

were fixed with 4% PFA for 10 mins at room temperature. Cells were then 

washed with PBS three times for 5 minutes, and then washed with 50mM 

NH4Cl to quench any remaining PFA. After washing, fixed cells were then 

incubated in Triton X-100 (1% in PBS) for 5 minutes at room temperature to 

permeabilize cells, and then washed in PBS three times for 5 minutes. To block 

non-specific binding, cells were incubated with blocking buffer containing 1% 

Na-azide and 5% Goat serum in PBS at room temperature for 30 minutes. 

Blocking buffer was removed and cells were then incubated in diluted primary 

antibody (Anti-HA16B12, 1/1000 in blocking buffer, Abcam) overnight at 4°C 

on a shaker. Cells were then rinsed in PBS three times for 15 minutes to remove 

any residual unbounded primary antibody. At this point, cells were incubated 

with the diluted FITC-conjugated secondary antibody (Goat-anti mouse 

antibody, 1/100 in blocking buffer) for 1hour at room temperature away from 

light by covering with aluminium foil. Cells were then washed with PBS three 

times for 15 minutes to remove any unbounded secondary antibody. After 

washing, DAPI dye (1μg/ml) was added onto coverslips for 2 minutes, at room 

temperature, away from light, to stain the nucleus and then gently washed in 

PBS to remove any remaining DAPI. Coverslips was then mounted onto a 
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labelled microscope slide, using mounting medium, with the cell-side faced 

down. Some silicone gel was added along the edge of coverslip to seal it to the 

slide to prevent drying and movement of the coverslip under the microscope.  

 

Cells were observed under Nikon A1R Confocal microscope at x60 

magnification (0.1 DIC lens) with a numerical aperture of 1.4. Cells were 

excited with the DAPI excitation wavelength of 405nm to visualize DAPI 

stained specimens, and imaged at the emission wavelength of 450nm. TRITC 

stained specimens was visualized with 595nm excitation wavelength and 561nm 

emission wavelength.  To visualize FITC stained specimens, cells were excited 

with the FITC-excitation wavelength of 495nm and imaged at the emission 

wavelength of 517nm.  

 

 

2.9 Solutions and reagents 

All reagents and inhibitors were purchased from Sigma-Aldrich (Sigma-Aldrich 

Company Ltd., UK), apart from forskolin, BAPTA-AM, and TBB (R & D 

Systems); BCECF-AM, DIDS, Lipofectamine 2000, WGA (Invitrogen), GlyH-

101, CFTRinh-172, J-8 (Santa Cruz), Okadaic acid (Calbiochem), RpcAMP 

(Enzo life science), and Anti-HA antibody (Abcam). Gas cylinders were 

purchased from BOC and consisted of the following mixtures: 5% CO2 /95% 

O2. CX-4945 was a kind gift from Dr. Andrea Venerando (University of Padova, 

Italy). 

 

All stock solutions of agonists and inhibitors used for pHi experiments and fluid 

secretion assay were made in DMSO, apart from nigericin (made in 100% 

ethanol), and 8CPT-2Me-cAMP, carbachol and adenosine (dissolved in 

deionised water).  

 

The HCO3
- free Na-HEPES buffer solution consisted of 130mM NaCl, 5mM 

KCl, 1mM CaCl2, 1mM MgCl2, 10mM NaHEPES and 10mM D-Glucose. The 

Cl--free HEPES buffer solution consisted of 130mM Na-gluconate, 2.5mM 
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K2SO4, 6mM Ca-gluconate, 1mM Mg-gluconate, 10mM HEPES (free acid) and 

10mM D-Glucose. All HEPES-buffered solutions were calibrated to pH 7.6 at 

room temperature (7.4 at 37˚C) by addition of 1M HCl. 

 

High Cl-- Krebs solution consisted of NaHCO3
- (25mM), NaCl (115mM), KCl 

(5mM), CaCl2 (1mM), MgCl2 (1mM) and D-Glucose (10mM). In the high 

K+/high Cl- Krebs solution, the KCl concentration was increased to 115mM and 

NaCl decreased to 5mM to maintain osmolarity. In the Ca2+-free high Cl-- Krebs 

solution, the NaCl concentration was increased to 116mM, and CaCl2 was 

replaced with MgCl2 and 0.5mM EGTA was added to chelate any remaining 

Ca2+. In the Cl--free HCO3
- solution, Cl- was substituted for gluconate, and 

consisted of NaHCO3
-
 (25mM), Na-Gluconate (115mM), K2SO4 (2.5mM), Ca-

Gluconate (6mM), Mg-Gluconate (1mM) and D-Glucose (10mM). In the Ca2+-

free Cl--free Krebs solution, the Na-Gluconate concentration was increased to 

124mM, and 0.5mM EGTA was added to chelate any remaining Ca2+. The 

solution was adjusted to pH 7.4 at 37°C by bubbling with %5CO2/%95O2.  

 

The intracellular pH calibration solutions consisted of (in mM) 5 NaCl, 130 

KCl, 1 CaCl2, 1MgCl2, 10 D-Glucose, 10 HEPES (for solutions set at pH 7.6 or 

below) or 10 TRIS (for solutions set at pH 7.8 or above) as well as 10μM 

nigericin. This was added just before the start of experiments. Solutions were set 

to the desired pH by using either 1M HCl or 1M NaOH.  

 

The ammonium pulse solutions used to determine intracellular buffering 

capacity consisted of (in mM) 4.5 KCl, 1MgCl2, 2 CaCl2, 5 BaCl, 10 HEPES, 10 

D-Glucose as well as varying concentrations of NH4Cl/NMDG-Cl, ranging from 

0 NH4Cl/145 NMDG-Cl to 30 NH4 Cl/115 NMDG-Cl. All solutions were 

titrated to pH 7.4 at 37˚C using 1M CsOH. 
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2.10 Statistical analysis 

 

All results are presented as mean ± S.E.M. where n is the number of 

experiments. For data presentation and statistical analysis, GraphPad Prism 4 

software (GraphPad Software, USA) was used for statistical analysis and either 

a Student’s t test (paired or unpaired), one-way ANOVA (with Tukey’s multiple 

comparison post-test) or two-way ANOVA (with Bonferroni’s post-test)  used 

where applicable. P values of <0.05 were considered statistically significant. 

 

 

  

52 
 



Chapter 3 Regulation of the apical Cl-/HCO3
- anion exchange activity in 

polarised cultures of Calu-3 cells 

3.1 Introduction     

As detailed in the Introduction (section 1.1.1) it has been shown that 

transepithelial HCO3
- secretion in many epithelial tissues is dependent on CFTR. 

However, there is still some uncertainty about the exact role that CFTR plays in 

this process, particularly in the airways.  Evidence from our own laboratory 

(Garnett et al., 2011), and more recently from (Lee et al., 2015) have 

demonstrated that SLC26A transporters are present in the airways, suggesting 

that airway HCO3
- secretion could involve the combined activity of CFTR and 

Cl-/HCO3
- exchange. However, this conclusion is in marked contrast to previous 

work from Calu-3 cells, which suggested that both Cl- and HCO3
- secretion was 

mediated only by CFTR (Poulsen et al., 1994; Illek et al., 1997; Lee et al., 1998; 

Krouse et al., 2004; Shan et al., 2012). While the reasons for these different 

conclusions are still not resolved, it is clear that the molecular mechanisms that 

orchestrate HCO3
- secretion in these cells is still incompletely understood 

(Garnett et al., 2013), and requires further investigation. Although, our previous 

work showed that stimulation of HCO3
- secretion was clearly cAMP/PKA-

dependent (Garnett et al., 2011), little is known about the contribution of other 

cAMP-dependent binding proteins, or indeed other second messengers (such as 

intracellular calcium), and associated protein kinase signalling pathways, in 

regulating this process. This chapter details the investigations into the effects of 

non-cAMP/PKA dependent pathways in the regulation of CFTR-dependent 

apical anion exchange activity in human Calu-3 cells. Furthermore, it also 

describes the role of the actin cytoskeleton and dynamin in regulating apical AE 

activity. 
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3.2 Role of cyclic nucleotides (cAMP and cGMP) in the regulation of apical Cl-/HCO3
- 

AE activity 

3.2.1 Role of cAMP/PKA in the regulation of apical Cl-/HCO3
- AE activity  

Apical Cl-/HCO3
- AE activity in Calu-3 cells was assessed by measuring the 

change in intracellular pH (pHi) in response to the removal and readdition of Cl- 

from the apical perfusate, using HCO3
- containing buffers (see Methods) in the 

absence and presence of different treatments.  Figure 3.1A shows a typical pHi 

response trace to these manoeuvres in Calu-3 cells, in the absence and presence 

of the cAMP agonist forskolin (Fsk), which increases cAMP by directly 

stimulating transmembrane adenylyl cyclise (tmAC). Under non stimulated 

conditions, perfusion of a Cl- free solution to the apical side had little or no 

effect on pHi. Exposing cells to Fsk (5µM) in symmetrical high Cl- conditions, 

caused a significant acidification of 0.17±0.02 pH units, at a rate of 0.27±0.05 

pH units min-1 (P<0.05, n=10). Subsequent apical Cl- removal now produced an 

alkalinisation in pHi of 0.48 ± 0.03 pH units. Following Cl- readdition pHi 

reacidified at a rate of 0.86 ± 0.15 pH unit min-1 (P<0.05, n=10, Figure 3.1C and 

D). It was noticeable that the alkalinisation caused by apical Cl- removal was 

biphasic, with a fast initial rate of change, followed by a slower increase in pHi 

to a new plateau level, consistent with previous results published by our group 

(Garnett et al., 2011).  

In order to further investigate the dependency of apical Cl-/HCO3
- AE activity 

on intracellular cAMP, the physiological cAMP agonist adenosine (ADO) was 

also tested on apical Cl-/HCO3
- AE activity (Figure 3.1B). Adenosine can 

stimulate adenylyl cyclase activity via binding to adenosine type 2B receptors 

(A2BR) , and thus increase intracellular cAMP (Clancy et al., 1999). It has also 

been shown by short circuit measurements that A2B rare expressed on both the 

apical and basolateral membranes of Calu-3 cells (Szkotak et al., 2003). My 

results showed that apical Cl- removal under bilateral ADO stimulation (10μM) 

produced a significant alkalinisation in pHi of 0.22 ± 0.04 pH units, which 

reacidified at a rate of 0.09 ± 0.01 pH unit min-1 (P<0.05, n=3, Figure 3.1E and 

F) upon Cl- readdition. However, Fsk caused a significantly larger increase in 

apical Cl-/HCO3
- AE activity, both in the magnitude of alkalinisation produced 
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by apical Cl- removal, and the rate of reacidification following Cl- readdition, 

compared to ADO stimulated cells. Also, the rate of HCO3
- efflux upon Cl- 

readdition under Fsk stimulation was significantly greater compared to ADO 

stimulation (Figure 3.1G). Furthermore, in different experiments, stimulation of 

Calu-3 cells with 5μM forskolin and incubated in 5% CO2  (v/v) in air for 24 h 

in high Cl- Krebs solution at 37˚C, produced a significant increase in both 

volume and the pH of the secreted fluid, compared to untreated cells (Figure 

3.22A and B). These results indicate that Calu-3 cells have little AE activity in 

the apical membrane under resting conditions, while increasing [cAMP]i by Fsk 

(and ADO) caused activation of apical Cl-/HCO3
- AE activity, as well as an 

increase in net HCO3
- secretion. 
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Figure 3. 1: Apical Cl-/HCO3

- AE activity in Calu-3 cells before and after 
stimulation with cAMP agonists. Representative pHi trace showing the effect of Cl- 
removal in the apical perfusate on pHi under basal and Fsk-stimulated conditions (A) or 
ADO-stimulated conditions (B). Summary of mean pHi change (alkalinisation) caused 
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by Cl- removal (C), and the rate of reacidification following Cl- readdition (D), in the 
presence and absence of forskolin (5µM), paired observations, n=10 for each condition. 
*P<0.05 compared to apical 0Cl- (Basal). (E) mean pHi change (alkalinisation) caused 
by Cl- removal, and the rate of reacidification (F) following Cl- readdition, in the 
presence and absence of ADO (10μM), n=3 for each condition. *P<0.05 compared to 
apical 0Cl- (G). The rate of HCO3

- flux under both Fsk and ADO stimulated conditions 
*P<0.05 compared to apical 0Cl- + Fsk. Fsk denotes forskolin (5µM), ADO denotes 
adenosine (10µM), Apical 0Cl- refers to the removal of apical Cl-. Data are shown as 
mean ±SEM  

 

 

 

 

Another way to increase cAMP inside cells, aside from Fsk and ADO, but which 

is downstream of tmAC, was to expose cells to the general phosphodiesterase 

(PDE) inhibitor 3-Isobutyl-1-methylxanthine (IBMX) or to use a membrane 

permeable analogue of cAMP, such as dibutrylyl-cAMP (db-cAMP). My results 

showed that both these cAMP agonists caused stimulation of apical Cl-/HCO3
- 

AE activity (Figure 3.2) which was not significantly different to the results 

obtained with Fsk. These results provide further support that stimulation of 

apical Cl-/HCO3
- AE activity is cAMP dependent. 
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Figure 3. 2: The PDE inhibitor, IBMX, and the membrane permeable analogue of 
cAMP, dbcAMP, mimic the effect of Fsk on apical Cl-/HCO3

- AE activity in Calu-3 
cells. (A) Representative pHi trace showing the effect of Cl- removal in the apical 
perfusate on pHi under Fsk and IBMX (1.0mM added apically) stimulated conditions. 
Summary of mean pHi change (alkalinisation) caused by Cl- removal (B), and the rate 
of reacidification (C) following Cl- readdition in Fsk and IBMX stimulated conditions; 
no significant difference (P>0.05) compared to apical 0Cl-+Fsk. Mean pHi change 
(alkalinisation) caused by Cl- removal (D), and the rate of reacidification (E) following 
Cl- readdition in Fsk stimulated cells compared to dbcAMP stimulation (800µM, added 
bilaterally). No significant difference (P>0.05) compared to apical 0Cl-+Fsk, although 
mean pHi change was significantly (P<0.05) lower with dbcAMP compared to apical 
0Cl-+Fsk. Data are shown as mean ±SEM (n=3), paired observations. 

 

 

 

It was of interest to investigate the mechanism responsible for cAMP 

stimulation of apical Cl-/HCO3
- AE activity, and to understand whether cAMP-

induced activation of apical Cl-/HCO3
-AE was direct or through a downstream 

target of cAMP, including PKA and exchange protein directly activated by 

cAMP (Epac) (Schmidt et al., 2013). Therefore, I performed a series of 

experiments to assess the effect of two different protein kinase A (PKA) 

inhibitors, H-89 and Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-

cAMP) on the Fsk response, in Calu-3 cells. Results showed that preincubating 
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cells with H-89 (50μM for 60 min) significantly reduced Fsk activation of apical 

Cl-/HCO3
- AE activity. Figure 3.3A and B shows that both the magnitude of 

alkalinisation, produced by apical Cl- removal, and the rate of reacidification, 

following Cl- readdition, were decreased in H-89 treated Calu-3 cells compared 

to  untreated control cells (Figure 3.3A and B). This is consistent with previous 

results from our laboratory that showed inhibition of PKA, using H-89, 

markedly decreased the Fsk-induced apical Cl-/HCO3
- AE activity in Calu-3 

cells (Garnett et al., 2011). However, it was found that the resting pHi was 

significantly decreased in H-89 treated cells (7.14± 0.10, n=4), compared to 

control cells (7.60± 0.02, n=10, P<0.05).  

Since H-89 is a non-specific inhibitor of PKA, an alternative PKA inhibitor, Rp-

cAMP was also tested. Rp-cAMP has a different structure to H-89 and acts as a 

specific competitive antagonist of the cyclic nucleotide–binding domains on 

PKA (de Wit et al., 1984). Calu-3 cells were preincubated with 1mM Rp-cAMP 

on the apical side for one hour, before apical Cl-/HCO3
- AE activity was 

measured. Results also showed that PKA inhibition significantly reduced Fsk 

stimulated alkalinisation in pHi produced by apical Cl- removal, as well as the 

rate of reacidification following Cl- readdition, compared to untreated control 

cells (Figure 3.3C and D). These results clearly indicate that stimulation of 

apical Cl-/HCO3
- AE activity by cAMP is through a PKA-dependent mechanism 

in Calu-3 cells. However, it was evident that neither PKA inhibitor completely 

abolished Fsk stimulated AE activity. 
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Figure 3. 3: PKA inhibitors, H-89 and Rp-cAMP decrease forskolin activated 
apical Cl-/HCO3

- AE activity in Calu-3 cells. Summary of the impact of PKA 
inhibitors, H-89 and Rp-cAMP, on apical Cl-/HCO3

- AE activity in Calu-3 cells. (A) 
mean alkalinisation in pHi in response to Cl- free solution, and the rate of reacidification 
(B) in Calu-3 cells pre-treated with 50µM H-89 for 60 min, n=10 Apical 0Cl-+Fsk, n=4 
for +Fsk+H-89. (C) mean alkalinisation in pHi in response to Cl- free solution, (D) the 
rate of reacidification in Calu-3 cells pre-treated with 1mM Rp-cAMP for 60 min, n=6 
Apical 0Cl-+Fsk, n=3 for +Fsk+ Rp-cAMP. *P<0.05 compared to control apical 
0Cl+Fsk. Data are shown as mean ±SEM. Control cells run in parallel. 

 

 

 

3.2.2 Role of exchange protein directly activated by cAMP (Epac) in the regulation of 

apical Cl-/HCO3
- AE activity 

Based on the fact that both PKA inhibitors, H-89 and RpcAMP, did not 

completely abolish the Fsk stimulated apical Cl-/HCO3
- AE activity, my 

hypothesis was that other potential downstream targets of cAMP would be 

involved in regulating apical anion exchange activity, such as the exchange 

protein directly activated by cAMP (Epac) (Tsalkova et al., 2012).   Although a 

variety of cAMP dependent cellular processes were previously thought to be 

solely regulated by PKA, extensive studies have now shown that many of these  

are also controlled by Epac proteins (Tsalkova et al., 2012). Moreover, it has 

been found that Epac has novel cAMP properties that are independent of PKA 
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(Schmidt et al., 2013), and it has been reported that Epac1 plays a critical role in 

the regulation of intestinal Cl- secretion by Fsk, via a PKA independent 

mechanism (Hoque et al., 2010). Thus, I investigated whether Epac is involved 

in the regulation of apical Cl-/HCO3
- AE activity by first preincubating Calu-3 

cells with the membrane permeable Epac agonist, 8CPT-2Me-cAMP-AM 

(Lamyel et al., 2011), for 60 mins during dye loading. Results showed that the 

Fsk-induced activation of the apical Cl-/HCO3
- exchanger was not affected in 

Calu-3 cells exposed to the Epac agonist, nor did the Epac agonist stimulate 

apical Cl-/HCO3
- AE activity itself, under basal conditions (Figure 3.4A and B). 

This suggests that Epac stimulation by cAMP is not involved in the regulation of 

apical Cl-/HCO3
- AE activity in Calu-3 cell. 

 

 

        A                                                                       B 

 

 

 

 

 

Figure 3. 4: Apical Cl-/HCO3
- AE activity is not affected by the Epac agonist 

8CPT-2Me-cAMP in Calu-3 cells. Summary of the impact of the Epac agonist on 
apical Cl-/HCO3

- AE activity. Calu-3 cells were pre-treated with 10µM 8CPT-2Me-
cAMP-AM for 60 min. (A) mean alkalinisation in pHi in response to Cl- free solution. 
(B) the rate of reacidification upon Cl- readdition. No significant difference (P>0.05) 
compared to control responses, n=3 for each condition. Control cells run in parallel.  

 

However, in another series of experiments, Calu-3 cells were preincubated with 

the specific Epac inhibitor, ESI-09 (Almahariq et al., 2013), (Figure 3.5A). In 

the ESI-09 treated cells it was noted that the resting pHi was significantly 

reduced compared to untreated cells (6.90±0.04, n=6, compared to 7.45±0.03, 
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n=5, respectively; P <0.05). Surprisingly, Epac inhibition caused a partial, but 

significant, stimulation of apical Cl-/HCO3
- AE activity in the absence of any 

cAMP agonist (Figure 3.5A,B and C), as well a marked stimulation in HCO3
- 

efflux (Figure 3.5D), compared to untreated cells. Furthermore, Epac inhibition 

caused a significant decrease in Fsk stimulated apical Cl-/HCO3
- AE activity 

(Figure 3.5B and C) as well as the rate of HCO3
- efflux (Figure 3.5E). These 

results suggest that Fsk-induced stimulation of apical Cl-/HCO3
- AE activity in 

Calu-3 cells is not only through PKA, but involves an Epac-dependent 

mechanism. They also suggest that keeping Epac active is essential to maintain 

apical Cl-/HCO3
- AE activity under resting conditions. 
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Figure 3. 5: Effect of the Epac inhibitor, ESI-09, on the apical Cl-/HCO3
- AE 

activity in Calu-3 cells. (A) pHi experimental trace showing the effect of preincubation 
of Calu-3 cells with 10µM Epac inhibitor ESI-09 for 60 min on the  apical Cl-/HCO3

- 

AE activity after Cl- removing in the apical perfusate under basal and Fsk stimulated 
conditions. Summary of the effect of 10µM ESI-09 preincubation on mean 
alkalinisation in pHi in response to a Cl- free solution (B), and the rate of reacidification 
after Cl- readdition (C) in unstimulated and Fsk stimulated Calu-3 cells. (D) The rate of 
HCO3

- flux during apical Cl- removal in control and +ESI-09 treated cells.  (E)  The rate 
of HCO3

- flux during apical Cl- removal in control +Fsk and +FsK+ESI-09 treated cells.  
Data are shown as mean ±SEM. B, C, and E: *P<0.05 compared to control apical 0Cl- 
under basal and stimulated conditions, n=5 for control, n=6 for +ESI-09. D: *P<0.05, 
#P<0.01 compared to control apical 0Cl-, n=8 for apical 0Cl-, and n=5 for +ESI-09. 
Control cells run in parallel. 

 

 

Since apical Cl-/HCO3
- exchange activity is markedly affected by CFTR (Ko et 

al., 2002), and our laboratory has recently found that CFTR knock-down, or the 

CFTR inhibitor, GlyH-101, reduced the rate of pendrin-mediated anion 

exchange in Calu-3 cells (Garnett et al., 2011), I wanted to investigate if the 

ESI-09-induced apical Cl-/HCO3
- AE activity observed under basal conditions 

was also dependent on anion transport by CFTR. To do this, Calu-3 cells were 

preincubated with the Epac inhibitor and apical Cl-/HCO3
- AE activity measured 

under basal conditions in the absence and presence of the CFTR pore blocker 

GlyH-101. Results showed that the apical Cl-/HCO3
- AE activity induced by 
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Epac inhibition was completely abolished by GlyH-101 (Figure 3.6), suggesting 

that this apical Cl-/HCO3
- AE activity was entirely dependent on CFTR anion 

transport, or that it was in fact due to CFTR itself.  
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Figure 3. 6: The ESI-09-induced apical Cl-/HCO3
- AE activity is abolished by the 

CFTR pore blocker GlyH-101 under basal conditions in Calu-3 cells. (A) 
Representative pHi trace showing the effect of Cl- removal in the apical perfusate on 
pHi under basal condition in cells preincubated with Epac inhibitor, ESI-09, which was 
inhibited by the CFTR inhibitor GlyH-101. Calu-3 cells were pre-treated with 10µM 
ESI-09 for 60 min. (B) mean alkalinisation in pHi in response to Cl- free solution (C) 
the rate of reacidification.*P<0.05 compared to control apical 0Cl under basal 
condition. Data are shown as mean ±SEM, n=8 for Apical 0Cl-+ESI-09, and n=5 for 
+GlyH-101. 

 

 

It has been reported that, in addition to cAMP, cyclic 3',5'-guanosine 

monophosphate (cGMP) also plays an important role in regulating a variety of 

anion transporters (Barnes, 1995), and that both cGMP-dependent PKG I and 

PKG II regulate the activation of CFTR in Calu-3 cells (Chen et al., 2008), and 

stimulate anion secretion (Duszyk, 2001b). Also Wit et al, (1994) showed that 

compounds responsible for increasing cGMP and cAMP can act synergistically 

to relax microvascular smooth muscle in vivo (de Wit et al., 1994), and that a 
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combination of cAMP and cGMP plays an important role in increasing cilia beat 

frequency in bovine bronchial epithelial cells (Wyatt et al., 2005).  However, it 

was unknown whether cGMP was involved in the regulation of the apical Cl-

/HCO3
- AE activity in Calu-3 cells. Thus, experiments were done to test the 

effect of 8-Bromo cyclic guanosine mono phosphate (8Br-cGMP), a membrane 

permeable cGMP agonist on apical Cl-/HCO3
- AE activity. Results showed that a 

60 min preincubation of Calu-3 cells with 1mM 8Br-cGMP did not change 

apical Cl-/HCO3
- AE activity under resting or after Fsk stimulation (Figure 3.7B 

and C). This suggests that cGMP dependent protein kinase is not involved in the 

regulation of the apical anion exchangers in Calu-3 cells.  
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Figure 3. 7: cGMP does not activate apical Cl-/HCO3
- AE activity in Calu-3 cells. 

(A) Representative pHi trace showing the effect of Cl- removal in the apical perfusate 
on pHi before and after Fsk stimulation in 8Br-cGMP preincubated (1.0mM for 60 
mins) Calu-3 cells.  Summary of the impact of 8Br-cGMP  preincubation on mean pHi 
change (alkalinisation) caused by Cl- removal (B) and the rate of reacidification (C) 
following Cl- readdition, in the presence and absence of forskolin (5µM) in Calu-3 
cells. Data are shown as mean ±SEM (n=3). No significant difference (P>0.05) 
compared to apical 0Cl-. Control cells run   in parallel.  

 

 

 

3.3 Role of CFTR and basolateral transporter in the regulation of apical Cl-/HCO3
- 

exchange activity  

Previous work by Garnett et al., (2011) showed that addition of the CFTR 

inhibitor, GlyH-101 during the alkalinisation caused by apical Cl- free exposure 

in fsk-stimulated Calu-3 cells, produced a very fast intracellular acidification 

which could be prevented by pre-exposing the cells to 500 µM basolateral 

H2DIDS. This result suggested two things; (1) that CFTR regulates apical anion 

exchange activity and (2) that a H2DIDS-sensitive basolateral HCO3
-/H+ 

transporter also influences events at the apical membrane, and therefore could be 

involved in modulating transepithelial HCO3
- secretion. In order to investigate 

the identity of the putative basolateral HCO3
-/H+ transporter further, different 

concentrations of DIDS were applied to the basolateral side of Calu-3 cells and 

66 
 



the response to apical GlyH-101 measured. Figure 3.8 illustrates the effect of 

adding GlyH-101 on the alkalinisation produced by apical Cl- removal in fsk-

stimulated Calu-3 cells not exposed to basolateral DIDS. It can be seen that 

GlyH-101 significantly reduced the magnitude of the alkalinisation produced by 

Cl- removal (Figure 3.8A and B) and that the rate of the GlyH-101 induced 

‘acidification’ was 0.35 ± 0.03 pH unit min-1 (n=3), which is similar (not 

significantly different, P>0.05) to that observed when Cl- was reintroduced in 

control cells 0.45 ± 0.12 pH unit min-1 (n=3). These experiments were then 

repeated but cells were first exposed to different concentrations of DIDS in the 

basolateral perfusate prior to apical Cl- removal or GlyH-101 addition. Overall, 

it was found that only 100µM DIDS affected the magnitude of the GlyH-101 

induced acidification, which was inhibited by 70±20% (Figure 3.9B). In 

addition, only 100 µM DIDS affected the GlyH-101 induced rate of 

‘acidification’, which decreased from 0.35 ± 0.03 pH unit min-1 (n=3) in 

untreated cells to 0.04 ± 0.03 pH unit min-1 (P<0.05, n=5, Figure 3.9C) in DIDS-

treated cells., which equated to an 88.5±8.3% inhibition. Based on this limited 

dose-response to DIDS (and the data presented in Chapter 4) these results 

suggest that the basolateral anion exchanger SLC4A2 (or AE2) could be the 

transporter involved in modulating the pHi response to apical GlyH-101 

addition.  However, previous work by our group (Garnett et al., 2011), and result 

presented in chapter 4, showed that cAMP stimulation leads to the inhibition of 

a DIDS-sensitive basolateral Cl-/HCO3
- AE, most probably AE2. 
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Figure 3. 8: CFTR inhibitor GlyH-101 reacidifies pHi following an apical Cl- free 
induced alkalinisation in Calu-3 cells. (A) Representative pHi trace illustrating the 
effect of adding the CFTR inhibitor GlyH-101 (10 µM) after cells were first exposed to 
a Cl- free solution. Note that the CFTR inhibitor caused pHi to rapidly acidify to a new 
steady-state. (B) Summary of the effect of CFTR pore blocker GlyH-101 on the mean 
alkalinisation in pHi following apical Cl- removal, in the absence and presence of 
GlyH-101, in Fsk stimulated Calu-3 cells. *P<0.05 compared to control. Data are 
shown as mean ±SEM, n=3, paired observations. 
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Figure 3. 9: Basolateral DIDS blocks the GlyH-101 induced intracellular 
acidification under apical Cl- free conditions in Fsk treated Calu-3 cells. (A) 
Representative pHi trace illustrating the effect of adding the CFTR inhibitor GlyH-101 
(10µM), in the presence of basolateral DIDS (100µM), after cells were first exposed to 
a Cl- free solution, under Fsk stimulated conditions. Summary of the effect of different 
concentrations of DIDS on the magnitude (B), and the rate of acidification caused by 
GlyH-101 (10 µM) in Cl- free conditions in the presence of Fsk compared to control 
response. Data shown as mean ± SEM, *P< 0.05 compared to control, n=3 for control 
and 10µM DIDS; n=4 for 30µM DIDS, and n=5 for 100 μM DIDS. 
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3.4 Role of intracellular and extracellular Ca2+ in the regulation of apical Cl-/HCO3
- 

anion exchanger activity    

It has been demonstrated that both cAMP and Ca2+ play an important role in 

stimulation of HCO3
- secretion in Calu-3 cells (Krouse et al., 2004). It has also 

been shown that an increase in intracellular Ca2+ [Ca2+]i in epithelial cells 

regulates a wide range of cellular process, such as the activation  of Ca2+ 

activated Cl-  channels and Cl- secretion,  (Paradiso et al., 1991; Grubb et al., 

1994), as well as  stimulation of CFTR dependent Cl-/HCO3
- exchange activity 

in many CFTR-expressing epithelia cells (Namkung et al., 2003). Furthermore, 

a recent study has shown that elevation of intracellular cAMP caused activation 

of adenosine A2A receptors in human pulmonary epithelial cells and a 

subsequent increase in [Ca2+]i, which played a crucial role in mediating 

signalling pathways inside the cells (Ahmad et al., 2013). Also, an increase in 

[Ca2+]i plays an important role in stimulation of ciliary beat frequency in airway 

epithelial cells (Delmotte and Sanderson, 2006). Most recently, it has been 

suggested that cAMP and Ca2+ signaling are the most prominent regulators of 

HCO3
- secretion in epithelial cells (Jung and Lee, 2014), and that there is a 

synergistic interaction between Ca2+ and cAMP signaling pathways to control 

electrolyte and fluid secretion (Lee et al., 2012). Therefore, it was possible that 

there was a cross-talk mechanism between cAMP and Ca2+ signaling pathways 

in the regulation of apical Cl-/HCO3
- AE activity in Calu-3 cells. Thus, another 

series of experiments were done in order to assess the role of Ca2+ signalling in 

the regulation of apical Cl-/HCO3
- AE activity in Calu-3 cells. 

 

3.4.1 Role of intracellular Ca2+  

In order to assess if intracellular Ca2+ modulates the cAMP-stimulated apical Cl-

/HCO3
- AE activity, Calu-3 cells were pre-treated with BAPTA-AM, a chemical 

which has been widely used in studies to control intracellular Ca2+ signals that 

regulate many cellular functions (Bissonnette et al., 1994). Calu-3 cells were 

preincubated with 50µM BAPTA-AM (both apical and basolateral sides) for one 

hour and then the pHi response to apical Cl- free solution was measured after 

forskolin stimulation. As shown in Figure 3.10, BAPTA-AM significantly 
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reduced Fsk stimulated apical Cl-/HCO3
- AE activity, and reduced both the mean 

change in pHi produced by apical Cl- removal, and the rate of reacidification 

upon readdition of Cl- to the apical side, compared to control cells not 

preincubated with BAPTA-AM. Note that the resting pHi was not significantly 

changed in BAPTA-AM treated cells (7.70±0.02, n=5 compared to control cells 

7.60±0.06, n=7, P>0.05). These results suggest that resting Ca2+ levels play an 

important role in regulating the cAMP stimulated apical Cl-/HCO3
-AE activity in 

Calu-3 cells, and that intracellular chelation of Ca2+ by BAPTA-AM might 

disrupt the synergistic cross-talk mechanism between Ca2+ and cAMP, and 

thereby regulate Cl- and HCO3
- transport in Calu-3 cells. 
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Figure 3. 10: BAPTA-AM reduced apical Cl-/HCO3
- AE activity in Calu-3 cells. 

Summary of the effect of the preincubation of Calu-3 cells with BAPTA-AM for 60 
min. on apical Cl-/HCO3

- AE activity (A) mean alkalinisation in pHi in response to Cl- 

free solution (B) the rate of reacidification upon Cl- readdition in Fsk stimulated 
condition. *P<0.05 compared to control. Data are shown as mean ±SEM, n=7 for 
control, and n=5 for treated cell with BAPTA-AM. Control cells run in parallel. 

 

 

71 
 



Moreover, I have also used a Ca2+ agonist to investigate if an increase in resting 

Ca2+ could alter the cAMP stimulated apical Cl-/HCO3
- AE activity,  because it 

has been shown that CFTR mediated Cl- current is stimulated by Ca2+ agonists 

through a Ca2+ dependent activation of adenylyl cyclase I (ACI) and 

cAMP/PKA signaling pathway in primary cultures of human bronchial epithelial 

cells (Namkung et al., 2010). Thus, I studied the effect of Ca2+ release from the 

endoplasmic reticulum (ER), by exposing Calu-3 cells to the selective SERCA 

pump inhibitor thapsigargin (Tg), which causes an increase in [Ca2+]i by 

inhibiting Ca2+ uptake via the Ca2+ ATPase, back into the ER (Thastrup et al., 

1990). Calu-3 cells were exposed to 200nM Tg for 5 mins, as previous work 

from our group has shown that this leads to calcium elevation in these cells 

(Garnett et al., 2011). Responses to apical Cl- removal were measured in the 

presence of Tg under Fsk stimulated conditions. Figure 3.11 shows that Tg 

caused a significant decrease in the mean change in intracellular pH and rate of 

reacidification in response to Cl- removal, suggesting that an increase in [Ca2+]i  

does play an important, but negative, role in the regulation of the apical 

transporter (CFTR/Pendrin) in Calu-3 cells. However, as shown in Figure 3.11, 

the effect of thapsigargin was not prevented by BAPTA-AM preincubation. 

Indeed, the presence of thapsigargin and BAPTA-AM caused a further, and 

significant, reduction in apical Cl-/HCO3
- AE activity, under Fsk stimulated 

conditions. The percent inhibition of Fsk stimulated apical Cl-/HCO3
- AE 

activity (as measured by the change in pHi) by thapsigargin alone (Figure 

3.12A) was significantly less than the percent inhibition produced by BAPTA-

AM and thapsigargin+BAPTA-AM. However, the percent inhibition of the rate 

of reacidification was not significantly different between the 3 treatments 

(Figure 3.12B).  
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Figure 3. 11: Thapsigargin reduced forskolin-stimulated apical Cl-/HCO3
- AE 

activity in Calu-3. Summary of the effect of thapsigargin (200nM) on the Fsk-
stimulated apical Cl-/HCO3

- AE activity measured in the absence and presence of 
BAPTA-AM. (A) Mean alkalinisation in pHi produced by apical Cl- removal and the 
rate of reacidification upon Cl- readdition (B) under Fsk stimulation. Data are shown as 
mean ±SEM. A: *P<0.05, compared to apical Cl-+Fsk, #P>0.05 compared to 
Fsk+Thaps. B: *P<0.01, #P<0.001 compared to apical Cl-+Fsk, #P>0.05 compared to 
Fsk+Thaps, n=12 for control; n=7 for Fsk+thapsigargin, and n=3 for 
Fsk+thapsigargin+BAPTA-AM.  

 

                          A                                           B 

 

 

 

 

 

 

Figure 3. 12: Percent inhibition of apical Cl-/HCO3
- AE activity by thapsigargin 

and BAPTA-AM in Calu-3. Summary of the % inhibition of the apical Cl-/HCO3
- AE 

activity caused by thapsigargin (200nM) and BAPTA-AM (50µM) exposure. (A) Effect 
on mean alkalinisation in pHi produced by apical Cl- removal and (B) the rate of 
reacidification upon Cl- readdition under Fsk stimulated conditions. Data are shown as 
mean ±SEM. A: *P<0.001 compared to +Fsk+BAPTA-AM and 
Fsk+thapsigargin+BAPTA-AM. B: no significant difference (P>0.05), n=5 for 
+Fsk+BAPTA-AM; n=7 for Fsk+thapsigargin, and n=3 for Fsk+thapsigargin+BAPTA-
AM.   
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3.4.2 Role of extracellular calcium concentration: 

My previous experiments showed that chelation of intracellular Ca2+ and Ca2+ 

store depletion both significantly reduced the apical Cl-/HCO3
- AE activity in 

Calu-3 cells. To date, however, there were no available data on the effect of 

changing extracellular Ca2+ on the apical Cl-/HCO3
- AE activity under Fsk 

stimulated conditions in Calu-3 cells. It has been demonstrated that changes in 

extracellular free calcium concentration can be  ‘sensed’  by the extracellular 

calcium-sensing receptor (CaSR), which is a G protein-coupled receptor 

expressed in many epithelial tissues, including human bronchial epithelial cells, 

where this receptor is linked to intracellular calcium signaling. Activation of 

CaSR by increases in extracellular Ca2+ ions also plays an important role in the 

regulation of intracellular cAMP signalling cascades (Ward, 2004; Milara et al., 

2010). In order to test the effect of changing extracellular Ca2+ on the apical Cl-

/HCO3
- AE activity, cells were bilaterally perfused with  Ca2+ free Krebs prior to 

Fsk stimulation. Figure 3.13 shows that the absence of extracellular Ca2+ did not 

affect apical Cl-/HCO3
- AE activity in Calu-3 cells, compared to the control 

response. This implies that extracellular Ca2+ is not involved in the regulation of 

apical Cl-/HCO3
- AE activity in Calu-3 cells.  

 

  

74 
 



+Fsk-

Apica
l 0C

l  fre
e

2+

+Fsk+
Ca

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n 
ch

an
ge

 in
 p

H
i

+Fsk-

Apica
l 0C

l  fre
e

2+

+Fsk+
Ca

0.0

0.2

0.4

0.6

0.8

R
at

e 
of

 r
ea

ci
di

fic
ai

to
n 

(p
H

i m
in

-1
)

 

                   A                                        B 

 

 

  

 

 

 

Figure 3. 13:  Removal of extracellular Ca2+ did not affect the Fsk stimulated 
apical Cl-/HCO3

- AE activity in Calu-3 cells.  Summary of the effect of removal of 
extracellular Ca2+ on the mean alkalinisation in pHi in response to apical Cl- removal 
(A), and the rate of reacidification upon Cl- readdition (B) under Fsk stimulation. Data 
are shown as mean ±SEM. No significant difference (P>0.05) between control and 
treated cells, n=3 for each condition, paired observation. 

 

 

3.5 Role of calmodulin and Ca2+/calmodulin-dependent protein kinases  in the 

regulation of apical Cl-/HCO3
-AE activity   

It has been shown that there is an extensive cross-talk between Ca2+/calmodulin 

(CaM)-dependent protein kinase (CaMK) and some cAMP-dependent protein 

kinases that could be involved in the regulation of signalling cascades inside the 

cytoplasm of cells (Soderling, 1999). In addition, it has been shown that the 

activity of calcium–activated Cl- channels was abolished by inhibition of the 

CaMK pathway (using STO-609, a CaMKK inhibitor) in Xenopus oocytes, 

while it did not affect CFTR activity (Faria D., 2012 PhD thesis, University of 

Lisbon). Moreover, it has been reported that adenylyl cyclase I (ACI), which is 

responsible for elevation of intracellular cAMP, is a Ca2+/calmodulin stimulated 

adenylyl cyclase that colocalized with CFTR in the apical membrane of human 

bronchial epithelial cells (Namkung et al., 2010). It has been found that CaMK 
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kinase (CaMKK) is an  upstream regulator of  CAMK (Soderling, 1999) which 

is a Ser/Thr kinase whose activation is through a Ca2+/CaM dependent 

mechanism (Swulius and Waxham, 2008). Moreover, CAMK kinase-alpha 

(CaMKK-α) and CAMK kinase-beta (CaMKK-β) have been purified and cloned 

from rat brain and shown to function as upstream regulators of both CaMKI and 

CaMKIV (Tokumitsu et al., 1997). Therefore, I tested whether the CaMKK 

pathway contributes to the regulation of the apical Cl-/HCO3
- AE in Calu-3 cells.  

 

 

3.5.1 Inhibition of CaMKK 

Preincubation of cells with the CaMKK inhibitor STO-609 (inhibitor of 

CaMKK-α and CAMKK-β) for 60 min (Figure 3.14A) had no effect on basal 

AE activity, but did cause a small, but significant, reduction in intracellular 

alkalinisation produced by apical Cl- removal following Fsk stimulation (Figure 

3.14B). However, it did not affect the rate of reacidification compared to control 

cells (Figure 3.14 C). Also, inhibition of the CaMK pathway produced no 

significant effect, on the amount of secreted fluid that collected after 24 hours 

preincubation of Calu-3 cells with CaMKK inhibitor STO-609, and the pH of 

secreted fluid did not change (see Figure 3.22A and B). These results indicate 

that the CaMK pathway does not play a significant role in regulating the activity 

of the apical anion exchanger or fluid secretion in Calu-3 cells.      

 

 

 

 

 

 

 

76 
 



7.2

7.4

7.6

7.8

8.0

8.2

           KREBS/HCO3
-            KREBS/HCO3

- +Fsk

Apical 0Cl-Apical 0Cl-

240s
pH

i

-

Apica
l 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4

0.5 Control
+STO-609

M
ea

n 
ch

an
ge

 in
 p

H
i

*

-

Apica
l 0C

l
+Fsk

0.0

0.2

0.4

0.6

0.8 Control
+STO-609

R
at

e 
of

 r
ea

ci
di

fic
at

io
n 

(p
H

i m
in

-1
)

                 A                                                                             

 

 

 

 

 

   B                                                                C 

 

 

 

 

 

Figure 3. 14: CAMKK inhibitor, STO-609, reduced the apical Cl-/HCO3
- AE 

activity in Calu-3 cells. (A) Representative pHi trace showing that STO-609 
preincubation (20μM) for 60 min modestly reduced the apical Cl-/HCO3

- AE activity in 
Calu-3 cells. Summary of the effect of apical preincubation of STO-609 on (B) mean 
alkalinisation in pHi in response to Cl- free solution, and (C) the rate of reacidification 
under basal and stimulated condition. Data are shown as Mean±SEM.*P<0.05 
compared to control, n=3 for each condition. Control experiments were run in parallel. 

 

 

3.5.2 Inhibition of CaMKII 

Although my results showed that CaMKK inhibition did not markedly affect 

apical Cl-/HCO3
- AE activity, it has been found that CaMKII plays an important 

role in the regulation of membrane Cl- permeability through Cl- channels in a 

variety of epithelial cells (Hartzell et al., 2005).  Therefore, in another series of 

experiments, Calu-3 cells were preincubated with 5µM CaMKII inhibitor, KN-

93, for 60 min, and then apical Cl-/HCO3
- AE activity was measured in Cl- free 

solutions (Figure 3.15A). Similar to the results with CaMKK, inhibitor KN-93 
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had no effect on either basal or Fsk stimulated apical Cl-/HCO3
- AE activity 

(Figure 3.15B and C). 
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Figure 3. 15: Inhibition of CaMKII had no effect the apical Cl-/HCO3
- AE activity 

in Calu-3 cells. (A) Representative pHi trace showing that KN-93 preincubation (5µM) 
for 60 min did not affect the apical Cl-/HCO3

- AE activity under basal and Fsk 
stimulated condition. Summary of the effect of apical preincubation of KN-93 on mean 
alkalinisation in pHi in response to Cl- free solution (B), and the rate of reacidification 
(C) under basal and stimulated condition. Data are shown as Mean±SEM. No 
significant difference (P>0.05) compared to control, n=3 for each condition. Control 
cells run in parallel. 
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3.5.3 Role of CaM in the regulation of apical Cl-/HCO3
- exchange activity  

In order to further investigate the mechanism of regulation of the apical Cl-

/HCO3
- AE activity by intracellular Ca2+, the role of CaM was tested under basal 

and cAMP stimulated conditions, because it has been found that binding of the 

Ca2+ /CaM complex enhances cAMP synthesis, via stimulation of membrane 

adenylyl cyclase activity (Ferguson and Storm, 2004). I therefore preincubated 

Calu-3 cells with N-(8-aminooctyl)-5-iodonaphthalene-1-sulfonamide (J-8, 

50μM), which is a highly specific CaM inhibitor (Tian et al., 2011),  for 60 min 

and then apical Cl-/HCO3
- AE activity was measured in Cl- free solutions (Figure 

3.16A). Results showed that CaM inhibition had little effect on apical Cl-/HCO3
- 

AE activity under cAMP stimulated conditions, compared to untreated cells 

(Figure 3.16B and C). This suggests that CaM is not involved in the regulation 

of the apical Cl-/HCO3
- AE activity, and is also consistent with the results 

obtained for CaMKK and CaMK inhibition. 

 

 

 

                A                                                                                      

 

 

 

 

 

 

 

 

 

79 
 



-

Apica
l 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4 Control
+J-8

R
at

e 
of

 r
ea

ci
di

fic
at

io
n(

pH
i m

in
-1

)

-

Apica
l 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Control
+J-8

*

M
ea

n 
ch

an
ge

 in
 p

H
i

               B                                                                         C 

 

 

 

 

 

 

Figure 3. 16: Calmodulin does not regulate the apical Cl-/HCO3
- AE activity in 

Calu-3 cells. (A) Representative pHi trace showing the effect of calmodulin inhibition 
by preincubation with 50µM J-8 for 60 min, on the apical Cl-/HCO3

- AE activity under 
basal and Fsk stimulated conditions. Summary of the effect of J-8 on the mean 
alkalinisation in pHi in response to Cl- free solution (B), and the rate of reacidification 
upon Cl- readdition (C) under basal and Fsk stimulated condition in Calu-3 cells. Data 
are shown as Mean±SEM. *P<0.05 compared to control, n=3. Control experiments run 
in parallel. 

 

 

 

3.6 Regulation of apical Cl-/HCO3
- exchange activity by dynamin 

Dynamin is a GTPase and plays an essential role in the release of newly formed 

clathrin-coated vesicles during endocytosis, by causing scission of the neck of 

budding vesicle at the last stage of vesicle formation (Macia et al., 2006). 

Dynamin activity is enhanced by elevation of [Ca2+]i   (Liu et al., 1994). It has 

been reported that CFTR internalization from the cell surface is mediated by 

clathrin-coated vesicles  (Lukacs et al., 1997), and that siRNA knock down, and 

pharmacological inhibition of dynamin by the cell-permeable inhibitor, 

dynasore, increased CFTR accumulation on the surface of Hela cells by 

inhibiting CFTR endocytosis (Young et al., 2009). It has also been found that 

inhibition of dynamin, by dynasore, significantly increased the steady-state 

surface level of the apical Na+/K+/2Cl- cotransporter (NKCC2) by reducing 
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NKCC2 endocytosis in rat renal thick ascending limb epithelial cells (Ares and 

Ortiz, 2012). However, it was unknown whether dynamin regulates the surface 

levels the apical Cl-/HCO3
- AE in Calu-3 cells. Thus, Calu-3 cells were 

preincubated with 80µM dynasore on the apical side, and then apical Cl-/HCO3
- 

AE activity measured (Figure 3.17A). Interestingly, in dynamin treated cells, 

Fsk stimulation in high Cl- conditions caused a larger acidification in pHi 

(0.42±0.04 pH unit for dynasore treated, n=3 vs. control of 0.28±0.01 pH unit, 

n=4, P<0.05) which was also at faster but not significant rate (0.43±0.07 pHi 

min-1, n=3 for dynasore treated vs. control of 0.23±0.03 pHi min-1 n=4, P<0.05). 

Moreover, measuring apical Cl-/HCO3
- AE activity in Cl- free solutions showed 

that dynamin inhibition had no effect on apical Cl-/HCO3
- AE activity under 

resting conditions, but did induce a significant reduction in Fsk-stimulated 

apical Cl-/HCO3
- AE activity. Both the magnitude of alkalinisation produced by 

apical Cl- removal, and the rate of reacidification upon Cl- readdition, were 

significantly lower compared to the control response (Figure 3.17C and D). In 

addition, the rate of HCO3
- flux produced by Fsk stimulation was significantly 

decreased in dynasore treated Calu-3 cells compared to the control response 

(Figure 3.17E).  

 

In a separate set of experiments, the effect of dynamin inhibition on 

transepithelial electrical resistance (TEER) in Calu-3 cells was also determined 

to see if dynamin affects monolayer integrity. Thus, Calu-3 cells were treated 

with dynasore and then TEER was measured every 20 min in control and 

dynamin-treated cells. Figure 3.19 shows that dynamin inhibition did not affect 

TEER in Calu-3 cells, over the two hour period, suggesting that tight junction 

integrity in Calu-3 cells was not affected by dynamin inhibition.  
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Figure 3. 17: Dynamin inhibition reduces apical Cl-/HCO3
- AE activity in Calu-3. 

(A) Representative pHi trace showing the effect of dynamin disruption on apical Cl-

/HCO3
- AE activity in dynasore preincubated Calu-3 cells (for 60) min under basal and 

Fsk stimulated condition. Summary of the effect of dynamin disruption on mean 
alkalinisation in pHi in response to apical Cl- removal (B), and the rate of reacidification 
upon Cl- readdition(C), under resting and stimulated condition. (D) Summary of the rate 
of HCO3

- flux produced by apical Fsk stimulation compared to control. *P<0.001 
compared to control. Data are shown as mean ±SEM, n=4 for control, and n=3 for 
+Dynasore.  Control cells run in parallel. 
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3.7 Role of actin-cytoskeleton disruption on apical Cl-/HCO3
- exchange activity                              

Since dynamin has an actin binding domain that binds directly to actin filaments 

which has been shown to play a critical role in the regulation of the actin 

cytoskeleton in podocytes (Gu et al., 2010), I also assessed the role of the actin 

cytoskeleton in the regulation of apical Cl-/HCO3
- AE activity under basal and 

cAMP-stimulated conditions in Calu-3 cells.  It has been shown that apical 

CFTR is confined within a macromolecular complex which forms a 

microdomain to enable efficient cAMP signalling transduction to CFTR 

(Guggino and Stanton, 2006). There is a physical interaction between CFTR and 

the protein scaffold NHERF1, which also helps place PKA close to CFTR via 

the protein kinase A anchoring protein known as AKAP ezrin (Sun et al., 2000), 

and this complex plays an essential role in the cAMP-induced activation of 

CFTR (Huang et al., 2001). Recently, the importance of actin-cytoskeleton 

integrity for cAMP compartmentalization and PKA activity in the regulation of 

CFTR activity has been shown in human bronchial epithelial cells (Monterisi et 

al., 2012). They found that pharmacological disruption of the actin cytoskeleton 

caused a defective accumulation of cAMP in the subcortical compartment, but 

also a high concentration of cytosolic cAMP, which was accompanied by 

reduced subcortical PKA activity and CFTR dependent Cl- efflux. 

Pharmacologically, the actin cytoskeleton can be disrupted by cytochalasin-D 

(CytoD) which is a widely used as an inhibitor of actin dynamics. CytoD 

disrupts the interaction between cofilin, which is a key regulator of actin 

filament dynamics, with G- and F-actin and causes a reduction in  the rate of 

both actin polymerization and depolymerisation, in intact cells (Shoji et al., 

2012). To assess the effect of actin cytoskeleton disruption on the apical Cl-

/HCO3
- AE activity, Calu-3 cells were preincubated with 10μM cytochalasin D 

for one hour and then apical Cl-/HCO3
- AE was measured in Cl- free solutions 

under basal and cAMP stimulated conditions.  Figure 3.18 shows that actin 

disruption had no significant effect on apical Cl-/HCO3
- AE activity, under both 

basal and Fsk stimulated conditions compared to untreated cells (Figure 3.18B 

and C). I also tested if actin disruption led to changes in G-protein coupled 

receptor stimulation of apical Cl-/HCO3
- AE activity by using ADO. As seen for 

Fsk, the ability of ADO to activate apical Cl-/HCO3
- AE activity was also not 
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impaired (Fig 3.18. D and E). Taken together these results suggest that the actin 

cytoskeleton/cAMP compartmentalization is not essential for activation of apical 

anion exchange activity by cAMP in Calu-3 cells.   

To ensure that CytoD treatment had disrupted actin cytoskeleton integrity, 

confocal images of phalloidin-stained actin cytoskeleton (Figure 3.19A), were 

made. These images clearly show that CytoD caused a marked disruption of the 

cytoskeleton, which was more punctate and less organised (Figure 3.19A, Right 

panel), compared to the untreated cells (Figure 3.19A, left panel). In addition, 

CytoD caused a significant decrease in TEER in Calu-3 cells within the first 20 

mins of treatment that was maintained over a two hour period (Figure 3.19B).  
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Figure 3. 18: Cytochalasin-D did not affect apical Cl-/HCO3
- AE activity in Calu-3. 

(A) Representative pHi trace showing the effect of Cl- removal in the apical perfusate 
on pHi under basal and stimulated conditions in cytochalalsin-D preincubated Calu-3 
cells. Summary of the impact of actin-cytoskeleton disruption on apical Cl-/HCO3

- AE 
activity by preincubation of Calu-3 cells with cytochalasin-D for 60 min. on mean 
alkalinisation in pHi in response to apical Cl- free solution (B), and the rate of 
reacidification upon Cl- readdition (C) under basal and Fsk stimulated condition, n=4 
for control, and n=3 for cytochalasin-D preincubated. (D) Mean alkalinisation in pHi in 
response to Cl- free solution, (E) the rate of reacidification under basal and adenosine 
stimulated condition, n=6 for control, and n=9 for cytochalasin-D preincubated. Data 
are shown as mean ±SEM, no significant difference (P>0.05) between cytochalasin-D 
treated and untreated cells. 
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Figure 3. 19: The effect of dynamin inhibition and actin cytoskeleton disruption on 
transepithelial electrical resistance in control and treated Calu-3 cells. (A) shows 
Calu-3 cells that were untreated (left panel) compared to cells  incubated for one hour 
with 10μM CytoD (Right panel) and stained with 0.25% Texas-Red Phalloidin to 
visualize F-actin using confocal microscopy. I performed the actin staining of Calu-3 
cells with my colleague Mark Turner. (B) TEER was measured in Calu-3 cells before 
adding the inhibitors (time 0), and then cells were preincubated for two hours with 
10μM cytochalasin D or dynasore in 5% CO2. TEER measurements were made over the 
2 hour period every 20 or 30 mins, to see whether the effect of dynamin or actin 
skeleton disruption was time dependent. *P<0.05 compared to control and +Dynasore, 
n=3 for each condition. The actual values for TEER at time 0   (prior to adding 
inhibitors) were; 563.3±27.2 for control, 580±16 for Dynasore, and 925±57.9 for CytoD 
treated cells. 
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3.8 Regulation of apical Cl-/HCO3
- exchange activity by CK2  

A previous study demonstrated that CK2 (formerly known as  casein kinase 2)is 

a very interesting kinase that plays an essential role in the regulation of CFTR 

biogenesis, trafficking and activity (Luz, 2008). It has also been shown that CK2 

colocalized with CFTR in the apical membrane of airway epithelial cells, and 

inhibition of CK2 decreased CFTR-dependent Cl- transport in CFTR over 

expressing, as well as in native pancreatic duct epithelial cells, which 

endogenously express CFTR. Moreover, coimmunoprecipitation studies 

suggested that there is a direct interaction between CK2 and CFTR, but not with 

F508del CFTR (Treharne et al., 2009). Furthermore, it has been found that 

application of the CK2 inhibitor TBB (4,5,6,7-tetrabromo-benzotriazole; 10μM) 

inhibited CFTR activity and significantly reduced the short-circuit current under 

cAMP stimulation, in both distal colonic and airway epithelial cell monolayers. 

The onset of the inhibition with TBB occurred at about 1μM which is highly 

specific for CK2 (Luz et al., 2011). TBB is a specific pharmacological agent and 

highly selective for CK2 as coexpression of a TBB-insensitive form of CK2 

eliminated the ability of TBB to inhibit cAMP/PKA-dependent CFTR activity 

(Treharne et al., 2009).  

To assess the role of CK2 in the regulation of apical Cl-/HCO3
- AE activity, 

Calu-3 cells were preincubated with 10µM TBB for 60 min and then apical Cl-

/HCO3
- AE activity was measured in Cl- free solutions, but in the continued 

presence of TBB (Figure 3.20A). Note that at the start of the experiment the 

resting pHi was significantly decreased in TBB preincubated cells (6.7±0.05, 

n=4, compared to untreated cells, 7.5±0.07, n=4, P<0.05), but this did partially 

recover over the first 5-10 mins of recording (despite the continued presence of 

TBB) to a new steady state pHi of (6.88±0.06, n=4). The apical Cl-/HCO3
- AE 

activity was measured when pHi had partially recovered. Results showed that 

CK2 inhibition significantly reduced both the mean pHi change produced by 

apical Cl- removal (0.30±0.06, n=4, compared to control of 0.90±0.05, n=4, 

P<0.001), and the rate of reacidification following Cl- readdition (0.32±0.01, 

n=4, compared to control of 0.58±0.06, n=4, P<0.001), under Fsk stimulated 

conditions. However, it did not stimulate apical Cl-/HCO3
- AE activity under 
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basal conditions, compared to the control response (Figure 3.20B and C). CK2 

inhibition also caused a significant decrease in the rate of HCO3
- flux produced 

by apical Cl- removal under Fsk stimulation (Figure 3.20D). Also, as shown in 

Figure 3.22A, CK2 inhibition produced a marked decrease in the volume of Fsk-

stimulated fluid secretion (229±2.0µl/transwell, n=3, compared to the control 

response of 245±3.0 µl/transwell, n=3, P<0.05). However, the pH of the secreted 

fluid was not changed (See figure 3.22B). Therefore, these data imply that CK2 

plays an important role in the regulation of apical Cl-/HCO3
- AE activity by 

cAMP, as well as fluid secretion in Calu-3 cells.   
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Figure 3. 20: Inhibition of apical Cl-/HCO3
- AE activity by TBB in Calu-3 cells. (A) 

Raw pHi trace showing the effect of TBB preincubation and perfusion (10µM) on apical 
Cl-/HCO3

- AE activity under basal and Fsk stimulated conditions in Calu-3 cells. 
Summary of the effect of CK2 inhibition  on (B) mean alkalinisation (pHi) produced by 
apical Cl- removal, (C) the rate of reacidification upon Cl- readdition, (D) the rate of 
HCO3

- flux resulting from apical Cl- removal in the presence of Fsk in control and TBB 
treated Calu-3 cells. Data are shown as Mean±SEM. *P<0.001, #P<0.05 compared to 
control, n=4 for each condition. Control experiments were run in parallel. 

 

 

 

 

To further investigate the temporal effects of CK2 inhibition on apical Cl-

/HCO3
-  activity, in a separate series of experiments Calu-3 cells were acutely 

exposed to 10μM TBB for several mins (both apical and basolateral perfusates) 

and then AE activity measured (Figure 3.21A). Results showed that in TBB-

treated cells, forskolin addition caused a larger intracellular acidification 

compared to untreated cells (0.53±0.03 compared to 0.25±0.02 pH units, 

P<0.05). However, TBB had no  effect on either the Fsk stimulated apical Cl-

/HCO3
- AE activity, nor the rate of HCO3

- flux produced by apical Cl- removal 

under Fsk stimulation (Figure 3.21B, C and D). This suggests that TBB needs 

time to cause inhibition of CK2 and exert its effect on the apical Cl-/HCO3
- AE 

activity in Calu-3 cells. 
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Figure 3. 21: Effect of acute bilateral TBB exposure on the apical Cl-/HCO3
- AE 

activity in Calu-3 cells. (A) Representative pHi trace showing the effect of acute 
bilateral TBB exposure (10μM) on Fsk stimulated apical Cl-/HCO3

- AE activity in Calu-
3 cells. Summary of the effect of acute TBB exposure (10μM) on the mean 
alkalinisation (pHi) produced by apical Cl- removal (B), and the rate of reacidification 
upon Cl- readdition (C) in control and TBB treated Calu-3 cells. Rate of HCO3

- flux 
resulting from forskolin stimulated apical Cl- removal in control and TBB treated Calu-
3 cells (D). No significant difference (P>0.05) compared to control response. Data are 
shown as Mean±SEM. n=4 for each condition, paired observations.  
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Figure 3. 22: Summary of the effect of STO-609, Dynasore and TBB on rates of 
Fsk-stimulated fluid secretion and pH in Calu-3 cells. Cells were stimulated with 
5μM forskolin and incubated for 24 hours in 5% CO2 (v/v) in high Cl- Krebs solution at 
37˚C. (A) Shows the effect of Fsk and different inhibitors on the volume of fluid 
secreted over 24 hours; *= P<0.05 significant effect of forskolin stimulation compared 
to unstimulated control cells, #=P<0.05 significant effect of forskolin stimulation 
compared to +Fsk+TBB and Fsk+Dynasore. (B) Shows the pH of Fsk-stimulated 
secreted fluid compared to unstimulated control cells under different reatments as 
indicated. Data represents mean ± S.E.M.; n = 3 for each condition.  
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3.9 Discussion 

 

3.9.1 The effect of cAMP and cGMP in the regulation of apical Cl-/HCO3
- AE activity 

Using pHi measurements from polarised cultures of Calu-3 cells my results have 

shown that in the absence of cAMP stimulation these model human serous 

airway cells exhibit little Cl-/HCO3
- anion exchange activity at the apical 

membrane. In contrast, stimulation of Calu-3 cells with several different cAMP 

agonists (ADO, Fsk, IBMX and dbcAMP) reversed this situation, with the cells 

showing robust anion exchange activity at the apical membrane as evidenced by 

the magnitude of the alkalinisation following apical Cl- removal and the 

subsequent rate of reacidification upon Cl- readdition. However, stimulation of 

Calu-3 cells with Fsk caused a significantly larger increase in apical Cl-/HCO3
- 

AE activity, compared to ADO stimulated cells. One potential explanation for 

this difference could be that ADO might produce a smaller  increase in [cAMP]i 

compared to Fsk, which is consistent with studies by Huang et al. (2001) who 

demonstrated that stimulation of Calu-3 cells with adenosine produced very little 

increase in [cAMP]i, compared to forskolin  (Huang et al., 2001).  

Although a previous study by Illek et al., (1997) concluded that CFTR functions 

as a Cl- and HCO3
- channel (Illek et al., 1997), which was supported by studies 

performed on Calu-3 cells that showed CFTR to possess both an apical Cl- and 

HCO3
- conductance (Shan et al., 2012), my studies are also consistent with the 

most recent work obtained by Garnett et al., 2011 and 2013 (Garnett et al., 

2011; Garnett et al., 2013) that apical Cl-/HCO3
- AE directly regulates HCO3

- 

transport in Calu-3 cells. In the Garnett study the apical Cl-/HCO3
-  AE was 

identified as SLC26A4, also known as pendrin, a member of the SLC26A 

transporter family (Mount and Romero, 2004).  The cAMP-induced activation of 

apical Cl-/HCO3
- AE activity that I have described was markedly inhibited by 

two different PKA inhibitors, H-89 and RpcAMP, as well as by the Epac 

inhibitor ESI-09, which clearly indicates that stimulation of apical Cl-/HCO3
- AE 

activity is through cAMP/PKA/Epac-dependent mechanisms. Furthermore, Epac 

inhibition enhanced apical Cl-/HCO3
- AE activity under resting conditions, 

which was potentially CFTR dependent. Either way these results suggest that 
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Epac plays two distinct roles in Calu-3 cells. Under resting conditions, where 

cAMP levels are likely to be low, Epac appears to inhibit apical Cl-/HCO3
- AE 

activity. In contrast, when cells are strongly stimulated by Fsk, Epac appears to 

be required to maintain maximal Cl-/HCO3
- AE activity. Exactly how Epac is 

able to play these distinct roles requires further investigation, but it is possible 

that under resting conditions Epac could help keep cAMP levels sufficiently low 

to prevent PKA activation, by acting as a cAMP ‘buffer’.  In contrast to cAMP, 

although it has been previously shown in some cells that there is a synergistic 

interaction between the two intracellular second messengers, cAMP and cGMP, 

(de Wit et al., 1994), my results showed that cGMP is not involved in the 

regulation of the apical Cl-/HCO3
- AE activity in Calu-3 cells, under both basal 

and cAMP stimulated conditions. 

Furthermore, cAMP stimulation of apical Cl-/HCO3
- AE activity in Calu-3 cells 

was significantly reduced by CFTR inhibition, using the CFTR pore blocker 

GlyH-101, which produced a very fast intracellular acidification, suggesting that 

anion transport by CFTR modulated the apical Cl-/HCO3
- AE activity. However, 

the GlyH-101 induced acidification was prevented by addition of basolateral 

DIDS, in a dose-dependent manner, with 100µM DIDS completely blocking the 

acidification. This result suggests that a DIDS-sensitive basolateral transporter 

appears to regulate apical Cl-/HCO3
- AE activity in Calu-3 cells. This is 

consistent with the previous finding that 500µM H2DIDS abolished the CFTR 

inhibitor-induced acidification under 0Cl- conditions (J Garnett PhD thesis, 

2010). My experiments have not uncovered the exact identity of the basolateral 

HCO3
- transporter so future experiments will be required to do this. However, 

because I have shown that cAMP stimulation inhibits the basolateral anion 

exchanger in Calu-3 cells, it is unlikely that this protein is involved, although at 

this stage it cannot be ruled out. Another possibility is that the basolateral NBC 

could be involved as GlyH-101 prevents anion efflux through CFTR and this 

could therefore lead to a hyperpolarisation of the membrane potential, which 

could be large enough to reverse the electrogenic basolateral NBC, thereby 

causing HCO3
- efflux rather than entry, and so [HCO3

-]i decreases. However, 

previous results showed that GlyH-101 induced acidification was independent of 

membrane potential (J Garnett PhD thesis, 2010).  
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3.9.2 Intracellular Ca2+ signaling plays a significant role in the regulation of apical Cl-

/HCO3
- AE activity 

The mechanism by which cAMP induced activation of apical Cl-/HCO3
- AE was 

assessed by changing the concentration of intracellular and extracellular Ca2+, 

because it has been shown that there is a synergistic interaction between cAMP 

and Ca2+ in stimulation of HCO3
- secretion in Calu-3 cells  (Krouse et al., 2004). 

Consistent with this, my results showed that decreasing intracellular Ca2+ 

concentration, by BAPTA-AM, significantly reduced the cAMP-induced 

intracellular alkalinisation and rate of reacidification produced by apical Cl- 

removal. These data imply that normal (resting) concentration of [Ca2+]i is 

required for  cAMP to stimulate apical Cl-/HCO3
- AE activity in Calu-3 cells.  

However, an increase in [Ca2+]i concentration, using thapsigargin,  significantly 

reduced the cAMP stimulated apical Cl-/HCO3
- AE activity which was not 

blocked by treating the cells with BAPTA-AM; instead this caused a further 

significant reduction in apical Cl-/HCO3
- AE activity. This indicates that the 

effect of an increase [Ca2+]i is independent of BAPTA-AM; which potentially 

could be through a PKA-dependent mechanism because it has been shown that 

an increase in [Ca2+]i enhances calcineurin, a serine-threonine protein 

phosphatase, which inhibits PKA activity via dephosphorylation of PKA 

effectors (Santana et al., 2002) or even direct inhibition of PKA itself (Orie et 

al., 2009). Thus, even in the presence of BAPTA-AM, thapsigargin might 

produce some increase in [Ca2+]i to affect the PKA-dependent apical Cl-/HCO3
- 

AE activity. Consistent with this, my colleague, Waseema Patel, has measured 

intracellular Ca2+ in HEK293T cells (using the Ca2+ sensitive dye, Fura2-AM), 

in the presence of BAPTA-AM and thapsigargin, and her results showed that 

there is still a small increase in [Ca2+]i.  On the other hand, removing 

extracellular Ca2+ did not affect the cAMP-induced activation of apical Cl-

/HCO3
- AE activity. These data collectively suggest that BAPTA-AM might 

disrupt the synergistic cross-talk between cAMP and Ca2+ to maintain apical Cl-

/HCO3
- AE activity under cAMP stimulation, while an increase in [Ca2+]i exerts 

its effect via PKA inhibition, independently of intracellular Ca2+ chelation by 

BAPTA-AM. Also extracellular Ca2+ is not involved in intracellular cAMP 

signalling cascades in the regulation of Fsk stimulated apical Cl-/HCO3
- AE 

activity. Future experiment would be of interest to measure the PKA activity in 
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the presence of BAPTA-AM and thapsigargin to establish whether a decrease or 

an increase in [Ca2+]i  affects PKA activity in forskolin-stimulated Calu-3 cells, 

which could involve performing ELISA assays. 

Based on the fact that cAMP stimulated apical Cl-/HCO3
- AE activity needs 

normal (resting) [Ca2+]i  to maintain the apical Cl-/HCO3
- AE activity, I 

investigated further the relationship between cAMP and Ca2+/calmodulin 

dependent protein kinase (CaMK) in the regulation of cAMP stimulated apical 

Cl-/HCO3
- AE activity, because extensive cross-talk has been found between 

CaMK and some cAMP-dependent protein kinases, that could be involved in the 

regulation of signalling cascades inside the cells (Soderling, 1999). Results 

showed that preincubation of cells with the CaMKK inhibitor STO-609 (which 

inhibits CaMKI and CaMKIV), did not stimulate basal AE activity, but did 

produce a significant reduction in intracellular alkalinisation upon apical Cl- 

removal, following Fsk stimulation, in STO-609 treated cells, but did not affect 

the rate of reacidification compared to control cells.  A possible mechanism for 

this might be that inhibition of CaMK interferes with the ability of AC1 to 

generate cAMP, in a Ca2+-dependent manner, as AC1, which colocalizes with 

CFTR, is a Ca2+/calmodulin stimulated enzyme in the apical membrane of 

human bronchial epithelial cells (Namkung et al., 2010). However, CaMKII 

inhibition had no effect on the apical Cl-/HCO3
- AE activity, suggesting that this 

Ca2+/calmodulin dependent kinase is not involved in the regulation of apical Cl-

/HCO3
- AE activity in Calu-3 cells. Furthermore, in order to obtain an insight 

into the role of CaM in the regulation of apical Cl-/HCO3
- AE activity, Calu-3 

cells were treated with a CaM inhibitor and results revealed that CaM did not 

contribute to the regulation of apical Cl-/HCO3
- AE activity under basal and 

cAMP stimulated condition. This is consistent with the lack of a role for 

CaMKK and CaMK in the regulation of the apical Cl-/HCO3
- AE activity in 

Calu-3 cells. Also, another Ca2+-dependent protein kinase, PKC, has also been 

shown not to be involved in the regulation of the apical Cl-/HCO3
- AE activity 

under basal and stimulated conditions (J Garnett, PhD thesis, 2010).  
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3.9.3 The effect of dynamin on apical Cl-/HCO3
- AE activity and fluid secretion 

There is a strong relationship between intracellular Ca2+ and dynamin as it has 

been shown that relocation of dynamin from the cytoplasm to the plasma 

membrane is enhanced by an elevation of intracellular Ca2+ (Liu et al., 1994) 

which could be via direct binding of Ca2+ to dynamin, or indirectly, by 

dephosphorylation of dynamin through its binding with a Ca2+-sensitive 

phosphatase, known as calcineurin (Bauerfeind et al., 1997; Hens et al., 1998; 

Marks and McMahon, 1998). Dynamin also plays an important role in the 

formation of a transport vesicle derived from the trans Golgi network, which 

travels to the plasma membrane (Nabi and Le, 2003; Abazeed et al., 2005; Cao 

et al., 2005). It has also been shown that dynamin plays a key role in the 

expansion of the fusion pore within milliseconds of granule fusion, and also 

regulates the topological fate of the released granules after fusion and spreading 

of membrane proteins into the plasma membrane (Anantharam et al., 2011). 

Thus, I also investigated the role of dynamin in the regulation of apical Cl-

/HCO3
- AE activity in Calu-3 cells since increasing [Ca2+]i markedly reduced the 

cAMP stimulated apical Cl-/HCO3
- AE activity, which could be potentially by 

enhancing dynamin mediated endocytosis of the AE.  

Dynamin was inhibited via treating cells with dynasore, and this caused a 

significant decrease in cAMP stimulated apical Cl-/HCO3
- AE activity, but had 

no effect on the apical Cl-/HCO3
- AE activity under basal conditions. However, 

dynamin inhibition did not affect the pH of secreted fluid, but it did reduce the 

amount of fluid secreted over a 24 h period, compared to control responses. One 

possible explanation for these apparent discrepant results could be that dynamin 

inhibition may have reduced surface levels of CFTR, which would decrease Cl- 

efflux, and thereby reduce the driving force for fluid secretion by Calu-3 cells. 

However, the residual CFTR activity may have been enough to maintain 

sufficient apical Cl-/HCO3
- AE activity to ensure that the pH of secreted fluid 

was alkalinised over a 24 h period. This would be consistent with previous 

results from our group which showed that both CFTR KD, or treatment of cells 

with CFTR blockers, also reduced the amount of fluid secreted over 24 h but not 

the final pH of the secreted fluid (Garnett et al., 2011). Another possible 

explanation could be that apical AE activity in dynamin treated cells for 24 
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hours may not reflect the acute exposure of dynamin in pHi experiments. Thus, 

it would be worth to measure apical AE activity in dynasore treated Calu-3 cells 

following 24 hour preincubation, under both resting and Fsk-stimulated 

conditions. However, how dynamin inhibition could reduce levels of CFTR is 

not clear and needs further investigation.  Note that dynamin inhibition could 

also reduce the expression level of the apical Cl-/HCO3
- AE and subsequently 

reduce the Cl-/HCO3
- exchange activity. However, previous work from our lab 

(Garnett et al., 2011), showed that while pendrin KD in Calu-3 cells caused a 

reduction in apical anion exchange activity, it had modest effects on fluid 

secretion, but markedly reduced the pH of the secreted fluid. Thus the results 

from dynamin inhibition do not match those from pendrin KD cells.   Overall, 

my results imply that dynamin plays a role in the regulation of apical Cl-/HCO3
- 

AE activity, and this may be via a change in surface levels of CFTR in Calu-3 

cells.  

 

3.9.4 Role of the actin-cytoskeleton in the regulation of apical Cl-/HCO3
- AE activity 

I also have assessed the dependency of apical Cl-/HCO3
- AE activity on an intact 

cytoskeleton and cAMP compartmentalization. The pharmacological agent, 

CytoD, was used to disrupt F-actin polymerization and thus actin cytoskeleton 

organization, which was appeared much more punctuate and disorganised by 

phalloidin staining. Treatment was found to significantly reduce TEER in Calu-

3 cells suggesting that CytoD affected the organization of the actin cytoskeleton 

to modulate tight junction properties. However, CytoD did not affect either the 

basal or the cAMP stimulated apical Cl-/HCO3
- AE activity under Fsk and ADO 

stimulated conditions. Given that forskolin or ADO still provoked apical Cl-

/HCO3
- AE activity suggested that cAMP compartmentalization wasn’t 

necessary in order to produce this response. This is somewhat surprising because 

Monterisi et al. (2012) has demonstrated that actin-cytoskeleton disruption in 

human bronchial epithelial cells (HBE) significantly decreased cAMP-

stimulated CFTR activity. This  potentially suggests that (i) there is an important 

difference between Calu-3 and HBE cells in actin cytoskeleton organization or 

(ii) forskolin or ADO were still able to increase [cAMP]i to some extent, that 
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even a reduction in a specific cAMP microdomain, was not sufficient to reduce 

the activity of cAMP-stimulated apical Cl-/HCO3
- AE in Calu-3 cells.  Further 

investigations into the effects of cytoskeleton disruption on cAMP 

compartmentalization and [cAMP]i at specific microdomains in cAMP 

stimulated Calu-3 cells are required, which could involve performing  FRET 

analysis with cAMP or PKA sensors, which is an accurate method for the 

analysis and interpretation of changes in [cAMP]i detected at different 

subcellular regions (Salonikidis et al., 2008).   

 

3.9.5 CK2 exhibits a significant role in regulating apical Cl-/HCO3
- AE activity  

To further understand the mechanism of apical Cl-/HCO3
- AE activation by 

cAMP signalling, Calu-3 cells were treated with two different CK2 inhibitors 

(TBB or CX4945), because CK2 inhibition has been shown to reduce CFTR 

channel activity and reduce the Cl- conductance of airway cells. CK2 co-

immunoprecipitated and colocalized with WT-CFTR in the apical membrane of 

human airway epithelial cells (Treharne et al., 2009). Here, researchers also 

demonstrated that CK2 is absent in the apical membrane of CF nasal epithelia 

which makes CFTR unable to traffic to the apical membrane. It has  also been 

shown that CK2 inhibition blocked the cAMP-dependent PKA activation of 

CFTR (Mehta, 2008). My results demonstrated for the first time that CK2 

inhibition caused a significant decrease in cAMP stimulated apical Cl-/HCO3
- 

AE activity in Calu-3 cells, but it did not affect the basal AE activity. Also, CK2 

inhibition caused a significant reduction in the cAMP stimulated HCO3
- flux by 

the apical Cl-/HCO3
- exchanger. This is consistent with the previous finding that 

CK2 can modulate cAMP-dependent HCO3
- secretion in pancreatic duct 

epithelial cells (Treharne et al., 2009). My findings also provide further support 

for an interaction between CK2 and CFTR, as CK2 inhibition would potentially 

reduce CFTR anion transport function, and subsequently reduce cAMP-

stimulated apical Cl-/HCO3
- AE activity. This is consistent with previous finding 

from our laboratory, which showed that knocking down CFTR in Calu-3 cells 

decreased the rate of cAMP-stimulated apical Cl-/HCO3
- AE activity (Garnett et 

al., 2011). However, I found that CK2 inhibition produced a significant decrease 
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in the amount of secreted fluid collected after 24 h preincubation of Calu-3 cells 

with TBB, but it did not change the pH of secreted fluid. This paradoxical effect 

of CK2 inhibition could be explained by a similar mechanism described for 

dynamin inhibition, namely a selective reduction in CFTR expression/activity 

(see section 3.83).  Further investigation could involve testing the effect of CK2 

inhibition on the apical Cl-/HCO3
- AE activity in CFTR-KD Calu-3 cells. 

The exact mechanisms involved in the regulation of apical Cl-/HCO3
- AE 

activity by CK2 under cAMP stimulated condition are not clear. However, CK2 

is known to be the main, if not the only, protein kinase that can phosphorylate 

CaM in living cells (Arrigoni et al., 2004). Since I have shown that CaM is not 

involved in the regulation of apical Cl-/HCO3
- AE activity, this suggests that 

CK2 exerts its effect on the apical Cl-/HCO3
- AE activity through a CaM-

independent mechanism, possibly via direct phosphorylation of CFTR and/or the 

apical AE itself. 

 

 

The main findings of this chapter are summarized below (see Figure 3.23): 

 

• cAMP agonists stimulate CFTR dependent apical Cl-/HCO3
- AE activity in 

Calu-3 cells through PKA and Epac-dependent mechanisms. 

• cGMP is not involved in the regulation of the apical Cl-/HCO3
- AE activity in 

Calu-3 cells. 

• Epac inhibition stimulates CFTR-dependent apical Cl-/HCO3
- AE activity under 

basal conditions. 

• A decrease in [Ca2+]i significantly attenuated cAMP stimulated apical Cl-/HCO3
- 

AE activity in Calu-3 cells potentially via inhibiting the synergistic interaction 

between Ca2+ and cAMP.  
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• cAMP stimulated apical Cl-/HCO3
- AE activity was significantly reduced by 

intracellular elevation of Ca2+,  perhaps through PKA inhibition.  

CaMKI, CaMKII and CaMKIV were not significantly involved in the regulation 

of apical Cl-/HCO3
- AE activity in Calu-3 cells. 

• Dynamin inhibition caused a significant reduction in cAMP stimulated apical Cl-

/HCO3
- AE activity, as well as the amount, but not the pH, of the secreted fluid.   

• An intact actin-cytoskeleton was not required for cAMP-induced apical Cl-

/HCO3
- AE activity in Calu-3 cells. 

• CK2 plays an essential role in the regulation of cAMP stimulated apical Cl-

/HCO3
- AE activity through a CaM-independent mechanism in Calu-3 cells.  
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Figure 3. 23: Schematic illustration of intracellular signaling pathways that 
regulate CFTR and apical Cl-/HCO3

- AE activity in Calu-3 cells. Adenylyl cyclase 
(tmAC) activators (forskolin or adenosine), and the membrane permeable cAMP 
analogue ,dibutyryl cAMP, or the phosphodiesterase inhibitor, IBMX, cause a rise in 
cAMP, which is a key event in PKA and Epac-dependent stimulation of CFTR and 
apical Cl-/HCO3

- AE activity. Chelation of intracellular Ca2+ by BAPTA-AM, or 
elevation of [Ca2+]i by thapsigargin, reduced cAMP stimulated CFTR and pendrin 
activity, through a different mechanism. CK2 and dynamin play a critical role in the 
regulation of cAMP stimulated CFTR and pendrin activity. (-) denotes inhibition, (+) 
denotes stimulation, and (X) denotes not contribute. 

 

 

 

Lumen 

Blood 

101 
 



Chapter 4 Basolateral Cl-/HCO3
- anion exchange activity in Calu-3 cells 

4.1 Introduction 

A previous immunofluorescence study (Loffing et al., 2000), and recent results 

by Garnett et al, have demonstrated that there is a functional Cl-/HCO3
- anion 

exchanger at the basolateral membrane of Calu-3 cells which is active under 

resting conditions (Garnett et al., 2011; Garnett et al., 2013) and which was 

originally proposed to be a housekeeping Cl-/HCO3
- exchanger (Alper et al., 

1999). This transporter is most likely AE2 or SLC4A2, which is one of the eight 

members of the SLC4 family of solute transporters that encode proteins that are 

involved in transmembrane HCO3
- transport (Romero et al., 2004). 

Immunohistochemical analysis has shown that AE2 is present in airway 

epithelial cells with a similar level of mRNA expression from the trachea down 

to the small bronchi (Al-Bazzaz et al., 2001). The basolateral Cl-/HCO3
- AE is 

thought to play an important role in the regulation of intracellular pH (pHi) by 

participating in base efflux, and it can  also work in concert with the sodium-

potassium chloride cotransporter, NKCC1, to facilitate the inward movement, 

and accumulation, of Cl- across the basolateral membrane (Loffing et al., 2000; 

Inglis et al., 2002). In most epithelial cells the  basolateral Cl-/HCO3
- AE plays a 

critical role in the regulation of intracellular pH during intracellular 

alkalinisation, as well as in cell volume control, by regulating the Cl-  

concentration inside the cells (Stewart et al., 2002). However, it has recently 

been proposed that the basolateral Cl-/HCO3
- AE also plays an essential role in 

cAMP-stimulated transepithelial Cl- secretion in Calu-3 cells, through coupling 

of its transport activity with that of the electrogenic sodium-bicarbonate 

cotransporter (NBC). In this novel ‘tertiary’ active process, Cl- is effectively 

accumulated within Calu-3 cells through the combined activity of the two 

basolateral transporters (driven by the inward directed Na+ gradient maintained 

by the Na+-K+ ATPase), with HCO3
- cycling across the basolateral membrane 

(Huang et al., 2012; Shan et al., 2012). The study by Shan et al, 2012 also 

demonstrated that Fsk stimulation of Calu-3 cells led to an increase  in 
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basolateral Cl- loading and HCO3
- influx by stimulation of the basolateral Cl-

/HCO3
- AE and NBC activity, respectively, thereby enhancing fluid secretion 

across the apical membrane (Shan et al., 2012). Furthermore, a recent pHi study 

by Kim et al., (2014) revealed that  although the basolateral Cl-/HCO3
- AE 

appeared to be almost completely inhibited in Fsk stimulated Calu-3 cells,  it 

could in fact be shown to be active (unmasked) if  CFTR was  inhibited (in the 

presence of Fsk), suggesting that cAMP stimulation was not inhibiting the 

basolateral anion exchanger, it was simply being ‘masked’ by the more 

dominant apical anion exchanger activity (Kim et al., 2014). This result is 

consistent with our own studies where it was found that knocking down CFTR 

expression, or blocking its activity with GlyH-101, led to incomplete inhibition 

of the basolateral Cl-/HCO3
- AE  by cAMP in Calu-3 cells (Garnett et al., 2013).  

However, we also found that the basolateral anion exchanger was still inhibited 

in cells treated with both Fsk as well as the PKA inhibitor, H-89, which reduced 

apical anion exchanger activity by ~ 85%. This latter result is not compatible 

with the observations of Kim et al., (2014), and furthermore suggested that an 

increase in intracellular cAMP inhibited basolateral Cl-/HCO3
- AE activity 

through a novel PKA-independent mechanism (Garnett et al., 2013).  The reason 

for these differing results/interpretations is not resolved.  

 

However, since human airway serous cells from SMGs play an important role in 

regulating the magnitude and pH of the ASL that lines the surface of the 

conducting airways (Ballard and Inglis, 2004; Tarran et al., 2006; Garnett et al., 

2011), which  is essential for the innate defence mechanisms of the lung to 

function adequately  (Pezzulo et al., 2012b) and inhibition of the basolateral Cl-

/HCO3
- anion exchanger could theoretically provide additional HCO3

- to be 

transported by the apical AE in Calu-3 cells, the molecular mechanism that 

regulates the basolateral Cl-/HCO3
- AE under resting, as well as cAMP 

stimulated conditions, is an important area of research. In this chapter I have 

characterised in more detail the cellular signalling mechanisms that regulate the 

basolateral anion exchanger, and provide additional support that a rise in 

cytosolic cAMP inhibits AE2 activity, through a PKA-independent mechanism. 
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4.2 Cl- and HCO3
- dependence of the basolateral Cl-/HCO3

- anion exchanger 

As shown in Figure 4.1, and previously reported by Garnett et al., (2011); 

Garnett et al., (2013), Calu-3 cells exhibit a basolateral Cl-/HCO3
- AE activity 

under resting situations. In HCO3
-/KREBS condition, basolateral Cl- removal 

produced an alkalinisation in pHi of 0.36±0.02 pH units (n=6). It was noticeable 

that the alkalinisation caused by basolateral Cl- removal was monophasic, with a 

fast initial increase in pHi to a new plateau level (Figure 4.1A), in contrast to the 

alkalinisation produced by apical Cl- removal under cAMP-stimulated 

conditions, which was biphasic (see Chapter 3). To investigate the anion 

transport properties of this basolateral anion exchanger in more detail, the Cl- 

and HCO3
--dependence was assessed by removing Cl- and HCO3

- from the 

perfusate and replacing with HEPES buffer, under resting conditions. Acute 

exposure of the basolateral membrane to a HCO3
- free (but Cl- rich) HEPES 

buffered solution failed to produce any intracellular alkalinisation, but instead 

produced a large, and significant, intracellular acidification of 0.40±0.01 pH 

units (n=3, P<0.001; Figure 4.1A & B), which may be due to HCO3
- efflux via 

the basolateral Cl-/HCO3
- AE activity in exchange with extracellular Cl- or more 

likely due to inhibition of the NBC. This suggests that the basolateral Cl-/HCO3
- 

AE cannot transport significant amounts of OH- anions. Addition of a HCO3
- 

and Cl- free HEPES solution to the basolateral compartment did not produce any 

change in pHi, which was significantly different to the control response and the 

response to HCO3
--free, Cl--rich HEPES conditions (n=6, P<0.001; Figure 4.1), 

suggesting that Cl--dependent HCO3
- transportation was responsible for the 

obvious intracellular pH changes.  
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Figure 4. 1: Cl- and HCO3
- dependence of the basolateral Cl-/HCO3

- AE in Calu-3 
cells. (A) Representative pHi trace showing the basolateral Cl-/HCO3

- AE activity in 
HCO3

- and Cl- free HEPES buffer solution in Calu-3 cells. (B) mean change in pHi 
produced by basolateral Cl-/HCO3

- AE activity in HCO3
-/KREBS solution compared to 

HCO3
- free and HCO3

-+Cl- free HEPES solution respectively. *P<0.001 compared to 
control response, #P<0.001 compared to Na-HEPES. Data are shown as mean ±SEM, 
n=6 for control, n=3 for +Na-HEPES, and n=6 for Cl- free HEPES.  

 

 

4.3 DIDS sensitivity of the basolateral Cl-/HCO3
- anion exchanger  

To investigate the pharmacological properties of the basolateral anion exchanger 

the response to a basolateral Cl- free solution was evaluated in the presence of 

the anion exchange inhibitor 4-4-Diisothiocyanatostilbene-2,2′-Disulfonic Acid 

(DIDS). Figure 4.2A shows that basolateral Cl- removal produced an 

alkalinisation in pHi of 0.33±0.05 pH unit, which recovered following Cl- 

readdition at a rate of 0.57±0.07 pHi min-1 (n=8). This response was not affected 

by 0.01µM DIDS, (0.34±0.01 pH units, and the rate of reacidification following 

Cl- readdition of 0.57±0.01 pHi min-1, n=4); however, the response to a Cl- free 

solution was completely abolished by 500µM DIDS (P<0.05, paired 

observation; n=3). There was a concentration-dependent inhibition of basolateral 

Cl-/HCO3
- AE activity by DIDS. Results showed that there was a significant 

reduction in the mean pHi when perfused with Cl- free solution containing 30µM 

(0.10 ± 0.01 pH units, n=5, P<0.05) and 100 µM DIDS (0.05 ± 0.02 pH units, 

n=3, P<0.05) and a marked change in the rate of reacidification upon readdition 
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of high Cl- solution. The percent inhibition of the basolateral AE activity is 

shown in Figure 4.2B and C, and from these data an IC50 value 16.5 ± 1.3 µM 

was obtained for DIDS inhibition of the mean change in pHi. The IC50 value for 

inhibition of the rate of reacidification was 7.5 ± 1.2 µM. These results are 

consistent with the presence of a basolateral DIDS-sensitive Cl-/HCO3
-  anion 

exchanger (SLC4A2), as previously been reported in Calu-3 cells (Loffing et al., 

2000). Taken together, these data imply that the basolateral Cl-/HCO3
- AE 

activity is clearly a Cl- and HCO3
--dependent, DIDS-sensitive, anion exchanger 

in Calu-3 cells.  

 

        A 

 

 

 

 

 

 

 

                  B                                                                           C 

 

 

 

 

 

 

 
Figure 4. 2: Inhibitory effect of DIDS on basolateral Cl-/HCO3

- AE activity. (A) 
Representative pHi traces showing the effect of  DIDS (0.01 µM and 500µM) on pHi changes 
after perfusion of basolateral Cl- free solution in Calu-3 cells. DIDS dose response curve for 
inhibition of the basolateral Cl-/HCO3

- anion exchanger. Plot of percent inhibition of the mean 
change in pHi caused by basolateral Cl- removal (B), and the rate of reacidification upon Cl- 
readdition (C) at different DIDS concentrations. Non-linear regression fit to the data, n=8 for 
control; n=4 for 0.01µM and 500µM DIDS; n=5 for 10µM, 30µM, and n=3 for 0.1µM; 1µM; 
100µM DIDS. 
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Note that because the inhibitory effect of DIDS on the basolateral AE was not 

fully reversible for concentrations above 10 µM, (as shown in Figure 4.3), dose-

response experiments had to be done on separate cultured monolayers.  

 

 

 A                                                             B                           C 

 

 

 

 

 

 

Figure 4. 3: Recovery of basolateral Cl-/HCO3
- AE activity after DIDS inhibition. 

(A) Representative pHi trace showing the effect of DIDS (100µM) on pHi changes after 
perfusion of basolateral Cl- free solution in Calu-3 cells. Summary of the effect of 
100µM DIDS on mean pHi changes (B), and the rate of reacidification after Cl- 
readdition (C).  DIDS inhibition of the basolateral Cl-/HCO3

- exchanger was partially 
reversible after 8 min of wash off in high Cl- solution. Data are shown as mean± SEM 
*P<0.05 compared to control, paired observation, n=3 for each condition. 

 

 

In the DIDS experiments, DMSO was used as the vehicle to dissolve the 

inhibitor. In order to test if DMSO alone had any effect on basolateral Cl-/HCO3
- 

AE activity, Calu-3 cells were acutely exposed to 0.25% DMSO (~5min) and 

then basolateral Cl-/HCO3
- AE activity was measured in the presence of DMSO. 

Results showed that basolateral Cl- removal in the presence of 0.25% DMSO did 

not affect the basolateral Cl-/HCO3
- AE activity compared to control responses, 

for both the mean change in pHi produced by basolateral Cl- removal 

(0.30±0.01, for controls and 0.34±0.02 for DMSO treated responses, n=5, 

P>0.05) and the rate of reacidification following Cl- readdition (0.77±0.09, n=5 
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for controls and 0.88±0.08 for DMSO treated responses, n=5, P>0.05). This 

suggests that DMSO is not involved in producing any changes in the basolateral 

Cl-/HCO3
- AE activity in Calu-3 cells. 

Previous work from our group has shown that in the absence of cAMP 

stimulation, Calu-3 cells secrete an isotonic solution with a pH of ~ 7.4 (Garnett 

et al., 2011). I therefore investigated the effect of blocking the basolateral anion 

exchanger with DIDS on transepithelial fluid and HCO3
- secretion. Although 

complete inhibition of the basolateral Cl-/HCO3
-AE by 500µM DIDS did not 

affect the amount of secreted fluid, the pH of the secreted fluid was significantly 

increased after 24 h incubation of cells with DIDS, in a high Cl- Krebs solution 

at 37˚C in 5% CO2 (Figure 4.4A and B). These results provide support that 

changes in basolateral Cl-/HCO3
-AE activity can modulate transepithelial HCO3

- 

secretion, as inhibition of the basolateral Cl-/HCO3
- AE activity should cause 

accumulation of HCO3
- inside the cells, and thereby increase the driving force 

for HCO3
- secretion, by apical AE and/or CFTR activity. 

 

           

 

           A                                   B 

 

 

 

 

 

Figure 4. 4: Summary of the effect of DIDS (500µM) on fluid secretion in Calu-3 
cells. Cells were incubated with 500µM DIDS for 24 hours in 5% CO2 (v/v) in air in 
high Cl- Krebs solution at 37˚C. Summary shows the effect of DIDS on the volume (A) 
and pH (B) of the secreted fluid after 24 h; *P<0.05 significant effect compared to 
control cells, n=3. 
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4.4 Role of cyclic nucleotides (cAMP and cGMP) in the regulation of basolateral Cl-

/HCO3
- anion exchange activity  

4.4.1 cAMP agonists: 

Adenosine 3′,5′ cyclic monophosphate (cAMP) is one of the ubiquitous 

intracellular secondary messengers that plays an important role in the  regulation 

of various cellular functions, and its intracellular concentration is controlled by 

enzymes such as adenylyl cyclase and phosphodiesterases (Fantidis, 2010). As 

shown in Figure 4.5A,  the basolateral Cl-/HCO3
- anion exchange activity was 

nearly completely abolished by the addition of the cAMP agonist Fsk, which 

reduced the magnitude of alkalinisation induced by basolateral Cl- removal by 

85.2±2.6% and the rate of reacidification by 98.4±1.6%. The basolateral Cl-

/HCO3
- exchange activity was also inhibited by bilateral addition of 10µM 

adenosine (ADO), which was as effective as Fsk in reducing the basolateral AE 

activity. ADO reduced the magnitude of alkalinisation by 73.9±4.8% and the 

rate of reacidification by 81.8± 5.1% (Figure 4.5D and E). The results for ADO 

inhibition are also of interest since it was shown in Chapter 3 (section 3.2.1), 

that ADO was much less effective at activating apical AE activity compared to 

Fsk. Overall, these results suggest that intracellular increases of cAMP were 

responsible for the inhibition of the basolateral Cl-/HCO3
- exchange activity in 

Calu-3 cells. 
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Figure 4. 5: Forskolin and adenosine reduced basolateral Cl-/HCO3
- AE activity in Calu-3 

cells. (A) Representative pHi trace showing the effect of Fsk (5µM) on pHi changes after 
perfusion of basolateral Cl- free solution in Calu-3 cells. Summary of the impact of cAMP 
agonist forskolin on the basolateral Cl-/HCO3

- AE activity in Calu-3 cells, (B) mean pHi change 
(alkalinisation) caused by Cl- removal, and the rate of reacidification (C) following Cl- 
readdition, under resting and forskolin (5µM) stimulated condition.  *P<0.05 compared to Baso 
0Cl-.  Data are shown as mean ±SEM, n=10 for each condition. (D) Impact of ADO on mean pHi 
change (alkalinisation) caused by Cl- removal, and the rate of reacidification following Cl- 
readdition (E), under resting and adenosine (10µM) stimulated conditions. *P<0.05 compared to 
Baso 0Cl-.  Data are shown as mean ±SEM, n=3 for each condition, paired observations. 

 

 

Another way to increase cAMP inside cells, aside from Fsk and ADO, and 

downstream of tmAC was to use the phosphodiesterase (PDE) inhibitor, IBMX 

(1mM added apically only), or to treat cells with a membrane permeable 

analogue of cAMP, db-cAMP, (added bilaterally at a concentration of 800µM) 

to further clarify the role of cAMP in mediating the inhibition of basolateral AE 

activity. It has been shown that inhibitions of PDEs, which are responsible for 

cAMP breakdown, are accompanied by an increase of intracellular cAMP, and 

CFTR activation in Calu-3 cells (Cobb et al., 2003). As shown in Figure 4.6A, 

stimulation of Calu-3 cells with IBMX completely abolished the basolateral AE 

activity compared to the control response, and which was fully reversed after 5 

min washing off the IBMX. The PDE inhibitor caused a significant decrease in 

both mean change in pHi, produced by basolateral Cl- removal, and the rate of 

reacidification, upon Cl- readdition, compared to control response (Figure 4.6B 

and C). Moreover, db-cAMP significantly reduced the activity of the basolateral 

Cl-/HCO3
- anion exchanger, as  both the magnitude of alkalinisation produced 
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by basolateral Cl- removal, as well as  the rate of reacidification following Cl- 

readdition were significantly decreased (Figure 4.6D and E). Note that the effect 

of dbcAMP was not readily reversible. Therefore, these data provide further 

strong support that an increase of intracellular cAMP is clearly responsible for 

abolishing basolateral Cl-/HCO3
- AE activity.  

 

 

 

                       A                                                                                               

 

 

 

 

 

               B                                    C                                    D                                  E 

 

 

 

 

 

Figure 4. 6: IBMX and dbcAMP inhibit basolateral Cl-/HCO3
- AE activity in Calu-3 cells. 

(A) Representative pHi trace showing that IBMX inhibits the activity of the basolateral AE 
activity in Calu-3 cells.  Summary of the impact of IBMX on the basolateral Cl-/HCO3

- AE 
activity for both mean pHi change (alkalinisation) caused by Cl- removal (B), and the rate of 
reacidification after Cl- readdition (C) under resting and stimulated condition with cAMP 
agonists (IBMX), .*P<0.05, n=6 for each condition. (D) Mean pHi change (alkalinisation) 
caused by Cl- removal, (E) the rate of reacidification after Cl- readdition under resting and 
stimulated condition with dbcAMP (800µM) in Calu-3 cells. Data are shown as Mean±SEM. 
*P<0.05, n=3 for each condition, paired observations. 
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4.4.2 The role of Multidrug Resistance Proteins 

 

The multidrug resistance proteins (MRP) are also members of the ABC 

transporter family,  and have been shown to transport cyclic nucleotides from 

inside to outside of cells (Dean et al., 2001). It has been demonstrated that a 

functional MRP1 is expressed on the basolateral membrane of Calu-3 cells 

(Hamilton et al., 2001). MRP4 has been shown to be expressed in epithelial cells 

lining lung, kidney, intestine, etc., on both the apical (van Aubel et al., 2002) 

and basolateral membranes (Lai and Tan, 2002) of polarized cells. MRP4 plays 

an essential role as a high affinity cAMP efflux pump (Chen et al., 2001; van 

Aubel et al., 2002). Moreover, it has been reported that MRP4 is physically and 

functionally linked to CFTR in  gut epithelial cells, and that MK571 an inhibitor 

of MRP4, potentiates the CFTR mediated Cl- conductance at the apical 

membrane of gut epithelial cells (Li et al., 2007). Our hypothesis was that 

inhibition of these transporters should cause cAMP accumulation inside the 

cells, and reduce the basolateral Cl-/HCO3
- AE activity. Therefore, in order to 

investigate the role of these MRP transporters in the regulation of basolateral Cl-

/HCO3
- AE activity, Calu-3 cell cells were preincubated with the MRP4 

inhibitor, MK-571, (10µM apically) for 60 min and then basolateral AE activity 

was measured in Cl- free solutions under resting (i.e. non-cAMP stimulated) 

conditions. Results showed that MRP inhibition caused a significant reduction in 

basolateral Cl-/HCO3
- AE activity, and both the mean change in pHi produced by 

basolateral Cl- removal, and the rate of reacidification following Cl- readdition, 

were significantly reduced compared to control responses (Figure 4.7A and B). 

This implies that inhibition of the cAMP efflux pump caused an increase in 

intracellular cAMP and inhibition of the basolateral Cl-/HCO3
- activity in Calu-3 

cells, which further reinforces the fact that cAMP is responsible for inhibition of 

the basolateral AE activity. These results also indicate that under ‘resting 

‘conditions, Calu-3 cells must have a basal turnover of cAMP in the absence of 

an external cAMP agonist, and the transport activity of the MRP transporters 

helps maintain a low intracellular level of cAMP, which has been found in other 

epithelial cells (van Aubel et al., 2002).  
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Figure 4. 7: Inhibition of the MRP transporter reduced the basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells. Summary of the effect of the MRP inhibitor, MK571 (10µM), on mean 
pHi change (alkalinisation) caused by Cl- removal (A), and the rate of reacidification (B) 
following Cl- readdition under resting condition in Cau-3 cells. Data are shown as 
Mean±SEM.*P<0.05, n=3 for each condition. Control cells run in parallel. 

 

 

4.4.3 cGMP 

As mentioned in chapter 3 (section 3.2.2) cGMP plays an important role in the 

activation of CFTR and anion secretion in many epithelial cells. Although my 

results suggested it did not regulate CFTR-dependent pendrin activity in Calu-3 

cells, it was still of interest to gain an insight into the role of cGMP in the 

regulation of the basolateral anion exchanger in Calu-3 cells, and to see whether 

cGMP influences the cAMP-dependent inhibition of this exchanger. Thus, Calu-

3 cells were preincubated with the cGMP agonist, 8Br-cGMP, for 60 min and 

then basolateral Cl-/HCO3
- AE activity measured in response to Cl- free 

solutions. My results showed that, similar to the lack of effect on apical anion 

exchange activity, cGMP stimulation had no effect on either the magnitude of 

alkalinisation produced by basolateral Cl- removal, or the rate of reacidification, 

under resting conditions, nor did it alter the subsequent Fsk-induced inhibition 

of the basolateral Cl-/HCO3
- anion exchanger (Figure 4.8A and B). This suggests 
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that that cGMP dependent protein kinase is not involved in the regulation of 

basolateral Cl-/HCO3
- AE activity in Calu-3 cells.  

 

 

 

    A                                                                   B 

 

 

 

 

 

Figure 4. 8: cGMP agonist, 8Br-cGMP, did not affect the basolateral Cl-/HCO3
- AE activity 

in Calu-3 cells. Summary of the effect of the cGMP agonist on basolateral Cl-/HCO3
- AE 

activity. Calu-3 cells were preincubated apically with 1mM 8Br-cGMP for 60 min. (A) mean 
alkalinisation in pHi in response to Cl- free solution, (B) the rate of reacidification upon Cl- 
readdition. Data are shown as Mean±SEM, no significant difference (P>0.05) compared to 
control, n=3 for each condition, control cells run in parallel. 

 

 

Overall, my results demonstrate that raising intracellular levels of cAMP, using 

cAMP agonists or inhibiting cAMP efflux, was clearly responsible for the 

marked reduction in basolateral Cl-/HCO3
- AE activity in Calu-3 cells. However, 

it was not clear whether cAMP directly or indirectly inhibited the basolateral 

exchanger. Therefore, my next experiments focused on identifying the role of 

downstream targets of cAMP in the regulation of the basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells.  
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4.5 Regulation of basolateral Cl-/HCO3
- anion exchanger activity by downstream 

targets of cAMP 

To investigate the mechanisms behind the cAMP-induced inhibition of the 

basolateral Cl-/HCO3
- AE activity in more detail, I next assessed the potential 

downstream targets of cAMP. There are three major  intracellular targets for 

cAMP which include PKA, Epac and cyclic nucleotide-gated ion channels 

(CNGCs), which are non-selective cation channels that are particularly 

important in the olfactory and visual system (Craven and Zagotta, 2006). 

Moreover, it has been reported by Kim et al., (2010) that intracellular elevation 

of cAMP can lead to the activation of the mammalian target of rapamycin 

complex 1 (mTORC1) signaling pathway through a PKA-independent 

mechanism  (Kim et al., 2010).  

 

4.5.1 Role of PKA 

 

H-89, which is a competitive inhibitor of PKA, was tested on the basolateral 

response to Cl- free KREBS solution, in Calu-3 cells pre-incubated with H-89 

for 60 min, and then exposed to Fsk. Note that previous data from our group 

showed that H-89 had no effect on the resting basolateral Cl-/HCO3
- AE activity 

in Calu-3 cells using similar conditions (J Garnett PhD thesis, 2010).  As shown 

in Figure 4.9, the inhibitory effect of Fsk on basolateral AE activity was not 

changed in the presence of H-89.  Furthermore, normal basolateral AE activity 

returned after ~ 15 mins of washing off the H-89 (with high Cl- KREBS 

solution), which was completely inhibited by subsequent addition of Fsk. This is 

despite the fact that H-89 (50μM) significantly decreased the Fsk stimulated 

apical AE activity in Calu-3 cells (see chapter 3, figure 3.3). As H-89 is a non-

specific inhibitor of PKA, an alternative PKA inhibitor, Rp-adenosine-3',5'-

cyclic monophosphorothioate (RpcAMP) was used. RpcAMP has a different 

structure to H-89, and acts as a specific competitive antagonist of the cyclic 

nucleotide–binding domains on PKA (de Wit et al., 1984). Calu-3 cells were 

preincubated with 1mM RpcAMP on the apical side for one hour, and then the 
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basolateral response to Cl- removal in the presence of Fsk assessed. Results 

showed that the basolateral AE activity was completely abolished in RpcAMP 

pretreated cells, which was completely recovered after 10 min washing off of the 

inhibitor. A representative pHi trace from RpcAMP treated cells is shown in 

Figure 4.9B. The effect of both H-89 and RpcAMP are summarized in Figure 

4.9C and D. As can be seen, the PKA inhibitor had no effect on the inhibitory 

effect of Fsk on the basolateral AE activity, suggesting that PKA is not involved 

in the cAMP-dependent inhibition of the basolateral AE activity in Calu-3 cells.  
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Figure 4. 9: PKA inhibitors, H-89 and RpcAMP, had no effect on the cAMP 
induced inhibition of the basolateral Cl-/HCO3

- AE activity in Calu-3 cells. (A) and 
(B) pHi traces showing that inhibition of PKA by either  50µM H-89 , or 1mM 
RpcAMP (both inhibitors preincubated with cells for 60 min), did not affect the Fsk 
induced inhibition of the basolateral AE in Calu-3 cells. Summary of the effect of both 
PKA inhibitors, H-89 and RpcAMP, on mean pHi change (alkalinisation) caused by Cl- 
removal (C), and the rate of reacidification after Cl readdition (D) in Calu-3 cells. Data 
are shown as Mean±SEM.*P<0.05 compared to control, n=3 for each, except for 
control n=6, which were run in parallel. 

 

 

4.5.2 Exchange protein directly activated by cAMP (Epac) 

It has been demonstrated that Epac is a novel cAMP target which has properties 

independent of PKA (Schmidt et al., 2013). Therefore, Calu-3 cells were 

preincubated with the Epac agonist (8CPT-2Me-cAMP-AM) for 60 min, and 

basolateral Cl-/HCO3
- AE activity measured in response to Cl- free solutions 

under both resting and cAMP stimulated conditions. Results showed that Epac 

stimulation did not alter basolateral Cl-/HCO3
- AE activity (Figure 4.10A and 

B), nor did it alter Fsk-induced inhibition of the basolateral anion exchanger. 
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Figure 4. 10: Epac agonist, 8CPT-2Me-cAMP-AM, did not affect the basolateral 
Cl-/HCO3

- AE activity in Calu-3 cells. Summary of the effect of the Epac agonist 
(8CPT-2Me-cAMP-AM) 10µM preincubation for 60 min on the mean alkalinisation in 
pHi in response to Cl- free solution (A) and the rate of reacidification upon Cl- 
readdition (B) in the presence and absence of Fsk in Calu-3 cells. Data are shown as 
Mean±SEM. No significant difference (P>0.05) compared to control, n=3 for each 
condition. Control cells run in parallel. 

 

 

Although the experiments using the Epac agonist showed that Epac appeared not 

to be involved in regulating basolateral AE activity, inhibition of Epac by 

preincubation of Calu-3 cells with the Epac inhibitor (ESI-09), which is a novel 

and specific Epac inhibitor  (Almahariq et al., 2013), resulted in a marked 

reduction in the basolateral Cl-/HCO3
- AE activity under resting conditions, both 

in the mean change in pHi (alkalinisation) produced by basolateral Cl- removal, 

and the rate of reacidification upon Cl- readdition, compared to control 

responses. However, the residual basolateral AE activity could still be inhibited 

by Fsk (Figure 4.11A, B and C). The rate of HCO3
- flux was also significantly 

reduced in ESI-09 treated cells compared to control cells (Figure 4.11F).  The 

effect of Epac inhibition on the basolateral Cl-/HCO3
- AE activity was 

significantly recovered after washing off the inhibitor (Figure 4.11D and E). 

This result clearly implies that (1) Epac appears to be required to maintain the 

basolateral Cl-/HCO3
- AE activity under resting conditions, and (2) the Fsk- 

induced inhibition of the basolateral Cl-/HCO3
- AE activity is through an Epac-

independent mechanism. 
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Figure 4. 11: The Epac inhibitor, ESI-09, reduced the basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells under resting conditions. (A) pHi trace showing that 
inhibition of Epac by preincubation of Calu-3 cells with 10µM ESI-09 for 60 min 
reduced the basolateral Cl-/HCO3

- AE activity which was recovered after washing off 
the inhibitor. Summary of the effect of ESI-09 on the mean alkalinisation in pHi in 
response to Cl- free solution (B) and the rate of reacidification after Cl- readdition (C) 
under resting and Fsk stimulated condition. The basolateral AE activity was recovered 
after washing off the Epac inhibitor for both mean change in pHi (D) and the rate of 
reacidification (E). (F) The rate of HCO3

- flux in control and ESI-09 treated cells. Data 
are shown as Mean±SEM, *P<0.05, #P<0.01 compared to control, paired observation, 
n=4 for each condition.  
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4.5.3 Role of cyclic nucleotide-gated cation (CNG) channels  

It has been shown that CNG channels are stimulated by cAMP and increase 

transepithelial sodium and calcium absorption in rat colon (Qiu et al., 2000b). It 

has also been demonstrated that mRNA for CNG channels are expressed in 

human bronchial airway cells, which contribute to both sodium and calcium 

absorption in the adult lung (Qiu et al., 2000a). Since CNG channels are voltage 

gated ion channels (Kaupp and Seifert, 2002), and mediate membrane 

depolarization in neurons (Zufall et al., 1994; Finn et al., 1996), and there is no 

specific CNG channel inhibitor, I investigated the effect of depolarising the 

membrane potential by perfusing Calu-3 cells with a high K+ HCO3
-/KREBS 

solution, which should  inhibit the CNG channels (Figure 4.12A). Results 

showed that depolarising cell did not prevent the inhibitory effect of cAMP on 

the basolateral Cl-/HCO3
- AE activity, although the mean pHi change and rate of 

reacidification were affected under resting conditions (Figure 4.12B and C). 

This suggested that CNG channels are not involved in the cAMP-induced 

inhibition of the basolateral Cl-/HCO3
- AE activity in Calu-3 cells. The enhanced 

alkalinisation seen under zero Cl- conditions in the presence of high K+ (Figure 

2.12B), might be due to stimulation of the electrogenic basolateral NBC by 

membrane depolarisation, which would provide more HCO3
- influx across the 

basolateral membrane into the cells. However, under Fsk-stimulated conditions, 

in depolarized cells, where the basolateral anion exchanger is inhibited, there 

was a marked acidification observed upon zero Cl- perfusion (Figure 4.12A). 

This pHi data could be explained by the presence of an electrogenic anion 

exchanger, or alternatively an anion channel on the basolateral membrane, 

which is active under cAMP stimulated conditions (see Chapter 3).  
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Figure 4. 12: Depolarization of Calu-3 cells did not affect the cAMP induced 
inhibition of the basolateral Cl-/HCO3

- AE activity. pHi trace showing the effect of 
high K+ KREBS solution on the basolateral AE activity. Calu-3 cells were perfused 
with bilateral high K+ Krebs solution to depolarize cell membrane potential, and inhibit 
CNG channel. Summary of mean pHi change (alkalinisation) caused by Cl- removal (A) 
and the rate of reacidification upon Cl- readdition (B) under resting and Fsk stimulated 
condition in depolarized Calu-3 cells. Data are shown as Mean±SEM.*P<0.05 
compared to control, paired observation, n=3 for each condition.  
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4.5.4 Mammalian target of rapamycin (mTOR) kinase 

In order to assess the role of the cAMP-dependent protein kinase, mTOR, in the 

regulation of the basolateral Cl-/HCO3
- AE activity, Calu-3 cells were 

preincubated for 60 mins with rapamycin, which is selective blocker of mTOR 

protein kinase (Ballou and Lin, 2008). Results showed that inhibition of mTOR 

kinase did not produce any changes in either the magnitude of alkalinisation 

produced by basolateral Cl- removal or the rate of reacidification following Cl- 

readdition, and did not affect the cAMP induced inhibition of the basolateral Cl-

/HCO3
- AE activity (Figure 4.13A and B). This suggests that mTOR kinase is 

not involved in the regulation of the basolateral Cl-/HCO3
- AE activity under 

both resting and cAMP stimulated conditions. 
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Figure 4. 13: mTOR inhibition did not affect the basolateral Cl-/HCO3
- AE activity 

in Calu-3 cells. Summary of mean pHi change (alkalinisation) caused by Cl- removal 
(A) and the rate of reacidification upon Cl- readdition (B) in Calu-3 cells, preincubated 
for 60 min and perfused with 100nM rapamycin, under resting and Fsk stimulated 
condition. Data are shown as Mean±SEM. No significant difference (P>0.05) compared 
to control response, n=4 for control, and n=3 for +Rapamycin. Controls run in parallel. 
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4.6 Role of Ca2+ in the regulation of basolateral Cl-/HCO3
- anion exchanger activity    

It has been found that changes in [Ca2+]i can alter cAMP levels (either by 

stimulation or inhibition of cAMP production), through a number of Ca2+-

sensitive isoforms of AC (Willoughby and Cooper, 2007). Evidence has also 

shown that there is a direct link between the ER-Ca2+-store operated signaling 

pathway and cAMP production by ACs, which is independent of changes in 

cytosolic Ca2+ concentration (see Chapter 3). This response requires the 

translocation of the transmembrane ER Ca2+-sensor protein, STIM1, into a large 

immobile aggregate under the plasma membrane and activation of AC 

(Lefkimmiatis et al., 2009). Therefore, I investigated the role of Ca2+ in the 

regulation of the basolateral Cl-/HCO3
- AE activity under both resting and 

cAMP stimulated conditions. 

 

 

4.6.1 Intracellular Ca2+ 

 

4.6.1.1 Effect of increases in [Ca2+]i on anion exchange activity   

 

It has been found that elevation of [Ca2+]i by thapsigargin and muscarinic 

receptor (M3) stimulation, markedly enhanced basolateral Cl-/HCO3
- AE activity 

in mouse salivary acinar cells  (Nguyen et al., 2004). Moreover, it has been 

shown that intracellular elevation of Ca2+, using Ca2+ agonists, plays an 

important role in the stimulation of adenylyl cyclase and elevation of cAMP 

(Namkung et al., 2010). A well-known synergistic interaction between cAMP 

and Ca2+ signals has also been reported in human airway epithelial cells, which 

plays a critical role in HCO3
- and fluid secretion, in response to carbachol and 

vasoactive intestinal peptide (VIP), which is absent in CF  cells (Choi et al., 

2007). Therefore it was important to test whether increasing [Ca2+]i  could affect 

the activity of the basolateral Cl-/HCO3
- anion exchanger. I used two different 

methods to investigate this which involved studying the effects of Ca2+ release 
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from IP3-sensitive ER stores by the muscarinic agonist carbachol (Cch) 

(Mayerhofer et al., 1992), and by using the selective SERCA pump inhibitor 

thapsigargin (Thastrup et al., 1990). 

 

4.6.1.1.1 Effect of carbachol on basolateral AE activity 
 

It has been shown that Cch induces intracellular cAMP elevation in a dose 

dependent manner in rat pancreatic islets (Tian and Laychock, 2001). However, 

it has not been investigated whether Cch application could influence basolateral 

Cl-/HCO3
- AE activity in Calu-3 cells. Thus, Calu-3 cells were exposed to either 

unilateral (Figure 4.14A, C, D, E & F) or bilateral Cch (Figure 4.14G & H), and 

results showed that Cch did not affect the basolateral AE activity under resting 

or Fsk stimulated conditions, compared to the control response (Figure 4.14A-C-

F). However, a transient acidification was produced by basolateral Cl- removal 

in Fsk stimulated cells compared to the control response, when Cch was applied 

only basolaterally, (Figure 4.14A, red trace). This transient acidification might 

be due to a change in membrane potential, as an increase in [Ca2+]i could 

stimulate Ca2+-sensitive K+ channels in the basolateral membrane. This would 

cause hyperpolarisation, which would inhibit NBC activity, reduce HCO3
- influx 

into the cells, and thereby produce a transient acidification. In order to 

investigate whether this acidification was Ca2+-dependent, cells were 

preincubated with the Ca2+ chelator BAPTA-AM (50μM) for 1hr. Results 

showed that BAPTA-AM abolished the carbachol-induced transient acidification 

(Figure 4.14B, n=3), suggesting that this acidification was Ca2+ dependent.   

Note that BAPTA-AM loading significantly reduced basolateral AE activity, 

which is discussed in more detail in section 4.6.1.2. 

 

 

 

 

 

124 
 



6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

240s
Baso 0Cl-

 KREBS/HCO3
-  KREBS/HCO3

- +Fsk

Baso 0Cl- +Cch Baso 0Cl-Baso 0Cl- +Cch

 KREBS/HCO3
-

pH
i

-

Baso
 0C

l
+Fsk

-0.1

0.0

0.1

0.2

0.3

0.4 Control
+Basolateral Cch

M
ea

n 
ch

an
ge

 in
 p

H
i

-

Baso
 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4
Control
+Basolateral Cch

R
at

e 
of

 r
ea

ci
di

fic
at

io
n 

(p
H

i m
in

-1
)

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2
Baso 0Cl-

 KREBS/HCO3
- +Fsk +Cch

240s

 KREBS/HCO3
- KREBS/HCO3

-

Baso 0Cl-

pH
i

                        A 

 

 

 

   

 

 

             B 

 

 

 

 

  

 

 C                                                                      D 

 

 

 

 

 

 

 

 

125 
 



-

Baso
 0C

l

+B
ilat

era
l C

ch +Fsk
0.0

0.1

0.2

0.3

0.4

*

M
ea

n 
ch

an
ge

 in
 p

H
i

-

Baso
 0C

l

+B
ilat

era
l C

ch +Fsk
0.0

0.1

0.2

0.3

0.4

0.5

*R
at

e 
of

 r
ea

ci
di

fic
at

io
n 

(p
H

i m
in

-1
)

-

Baso
 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4

0.5
Control
+apical Cch

M
ea

n 
ch

an
ge

 in
 p

H
i

-

Bas
o 0C

l
+F

sk
0.0

0.1

0.2

0.3

0.4
Control
+apical Cch

R
at

e 
of

 re
ac

id
ifi

ca
tio

n 
(p

H
im

in
-1

)

                   E                                                                F 

 

 

 

      

 

                 

          G                                                             H                                                                                       

 

 

 

 

 

 

Figure 4. 14: Carbachol (Cch) did not affect the activity of the basolateral Cl-

/HCO3
-
 AE activity in Calu-3 cells. (A) Representative pHi trace showing lack of 

effect of Cch (20µM), applied basolaterally, on basolateral AE activity under resting 
condition, while carbachol induced a transient acidification in pHi when applied with 
Fsk stimulation in Calu-3 cells. (B) Representative pHi trace showing that BAPTA-AM 
loading abolished the transient acidification caused by Cch. Summary of the effect of 
basolateral carbachol on the basolateral AE activity on mean pHi changes after 
basolateral Cl- removal (C), and the rate of reacidification upon Cl- readdition (D), 
paired observation, n=3 for each condition. Perfusion of apical carbachol did not affect 
mean pHi change (alkalinisation) following Cl- removal (E) and rate of reacidification 
after readdition of Cl- (F) in forskolin stimulated and non-stimulated condition in Calu-
3 cells,  n=10 for control, n=7 +apical carbachol, n=6 +Fsk, and n=3 +Fsk+apical 
carbachol. Bilateral carbachol did not affect mean pHi change following Cl- removal (G) 
and the rate of reacidification after readdition of Cl- (H) in Calu-3 cells, n=3 for each 
condition. Data are shown as Mean±SEM.*P<0.05 compared to control.               
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Furthermore, in order to test whether the effect of Cch, under Fsk stimulation, 

was produced via muscarinic or nicotinic receptor stimulation, Calu-3 cell were 

perfused simultaneously with atropine and Cch, and then basolateral AE activity 

was measured under resting and Fsk stimulated conditions (Figure 4.15A). 

Application of atropine and Cch did not change the basolateral Cl-/HCO3
- AE 

activity under resting conditions, and did not abolish the Fsk induced inhibition 

of the basolateral AE activity (Figure 4.15B and C). However, the Cch induced 

transient acidification, under Fsk stimulation, was completely eliminated by 

atropine, verifying that Cch signaling pathway was through muscarinic 

cholinergic receptors. These  results suggest that intracellular elevation of Ca2+, 

by stimulation of muscarinic receptors, does not regulate basolateral Cl-/HCO3
-
 

AE activity in Calu-3 cells under both resting and Fsk stimulated conditions. 
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Figure 4. 15: Atropine blocked the transient acidification induced by carbachol in 
forskolin stimulated Calu-3 cells. (A) Representative pHi trace showing that apical 
atropine (10µM), blocked the acidification induced by carbachol, but did not affect the 
basolateral Cl-/HCO3

- AE activity, under resting and Fsk stimulated conditions in Calu-
3 cells. Summary of the effect of carbachol and atropine on mean pHi changes after 
basolateral Cl- removal (C), and the rate of reacidification upon Cl- readdition (D) under 
resting and Fsk stimulation condition in Calu-3 cells. Data are shown as Mean±SEM, 
No significant difference (P>0.05) compared to control response, n=7 for control, n=4 
for +carbachol+atropine, n=3 for +Fsk and Fsk+carbachol+atropine.  

 

 

 

4.6.1.1.2  Thapsigargin 
 

A recent study showed that ER [Ca2+] depletion caused adenylyl cyclase-

dependent cAMP production through a Ca2+ sensor, STIM-dependent pathway 

(Maiellaro et al., 2012). In order to assess the effects of Ca2+ release from the 

ER on the basolateral Cl-/HCO3
-
 AE activity, Calu-3 cells were first exposed to 

200nM thapsigargin for 5 mins (Figure 4.16A), which previous work from our 

group has shown that leads to calcium elevation in Calu-3 cells (Garnett et al., 

2011). The basolateral Cl-/HCO3
-
 AE response to Cl- free KREBS solution 

revealed no significant effect of thapsigargin on mean pHi change produced by 

basolateral Cl- removal, or rate of reacidification upon Cl- readdition, compared 

to control Calu-3 cells. In addition, the inhibitory effect of Fsk on basolateral Cl-

/HCO3
-
 AE activity was also not changed (Figure 4.16B and C). This suggests 
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that ER Ca2+-store depletion does not generate sufficient cAMP in Calu-3 cells 

to inhibit the basolateral anion exchanger. 
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Figure 4. 16: Thapsigargin did not affect the basolateral Cl-/HCO3
-
 AE activity in 

Calu-3 cells. (A) Representative pHi traces showing the effect of thapsigargin on the 
basolateral Cl-/HCO3

- AE activity under resting and stimulated condition. Summary of 
the effect of thapsigargin (200nM) on the mean change in pHi following basolateral Cl-  
removal (B) and the rate of reacidification upon readdition of Cl- (C) under resting and 
Fsk stimulated condition in Calu-3 cells. Data are shown as Mean±SEM, no significant 
difference (P>0.05) compared to control, n=10 for Baso 0 Cl-, and n=7 for +Fsk.  
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4.6.1.2  Effect of a decrease in [Ca2+]i on basolateral anion exchange activity, using 

BAPTA-AM   

 

As mentioned in chapter 3 (section 3.6) since there is a synergistic interaction 

between Ca2+ and cAMP for controlling fluid and electrolyte secretion by 

epithelial cells, another series of experiments were performed in order to assess 

the effect of  intracellular Ca2+ depletion on the resting and the cAMP-induced 

inhibition of the basolateral Cl-/HCO3
-
 AE activity. For these experiments, Calu-

3 cells were preincubated with 50µM BAPTA-AM (both apical and basolateral 

sides) for one hour and then the basolateral Cl-/HCO3
-
 AE response to Cl- free 

solution were measured under resting and cAMP stimulated conditions (Figure 

4.17B) and compared to control responses (Figure 4.17A). As shown in Figure 

4.18C and D, BAPTA-AM significantly reduced resting basolateral AE activity 

by 65.1±2.8% (n=8) in the mean pHi change in response to basolateral Cl- free 

solution. It was also noticeable that BAPTA-AM significantly reduced the rate 

of reacidification, caused by readdition of Cl- to the basolateral side, by 

57.1±8.1% (n=8) compared to control cells, not preincubated with BAPTA-AM. 

However, BAPTA-AM loaded cells still showed normal forskolin-induced 

inhibition of the basolateral AE. These results suggest that decreasing 

intracellular Ca2+ plays an important role in regulating the resting level of 

basolateral Cl-/HCO3
-
 AE activity, but it is not involved in the cAMP-induced 

inhibition of the basolateral Cl-/HCO3
-
 AE activity in Calu-3 cells.   
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Figure 4. 17: BAPTA-AM induced changes in the basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells. pHi experimental trace showing the effect of BAPTA-AM 
(50µM) preincubation on changes in pHi following the removal of basolateral Cl- in 
Calu-3 cells in the absence and presence of forskolin (B), compared to control response 
(A). Summary of the effect of BAPTA-AM on mean alkalinisation produced by Cl- 
removal (C), and the rate of reacidification upon chloride readdition (D) under resting 
and stimulated conditions. Data are shown as Mean±SEM, *P<0.05 compared to 
control. n= 8 for each condition. Control cells run in parallel. 

 

 

Interestingly, in another set of experiments, perfusion of cells with 200nM 

thapsigargin in BAPTA-AM treated Calu-3 cells (Figure 4.19A), partially 

reversed  the inhibitory effect of BAPTA-AM on the mean pHi change in 

response to Cl- free perfusion under resting conditions, although the rate of 

reacidification was still significantly reduced (Figure 4.19B and C). This implies 

that thapsigargin may be capable of causing a small increase in [Ca2+]i from a 

thapsigargin-sensitive store in BAPTA-AM treated cells that was capable of 

131 
 



-

Baso
 0C

l

+B
APTA-AM+Thpas

+B
APTA-AM+Thaps+F

sk
0.0

0.1

0.2

0.3

*

M
ea

n 
ch

an
ge

 in
 p

H
i

-

Baso
 0C

l

+B
APTA-AM+Thaps

+B
APTA-AM+Thaps+F

sk
0.0

0.1

0.2

0.3

0.4

*

*R
at

e 
of

 r
ea

ci
di

fic
at

io
n 

(p
H

i m
in

-1
)

6.6

6.8

7.0

7.2

7.4

7.6

 KREBS/HCO3
-

+Thapsigargin KREBS/HCO3
-      KREBS/HCO3

-

+Thapsigargin +Fsk

240s

Baso 0Cl- Baso 0Cl-

Baso 0Cl-

pH
i

partially reversing the BAPTA-AM-induced inhibition of the basolateral AE 

activity. This result reinforces the fact that the normal resting [Ca2+]i plays an 

important role in the regulation of the basolateral AE activity in Calu-3 cells. 
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Figure 4. 18: The Effect of thapsigargin and BAPTA-AM on the basolateral Cl-

/HCO3
-
 AE activity in Calu-3 cells. (A) Representative pHi traces showing the effect 

of thapsigargin and BAPTA-AM on the basolateral Cl-/HCO3
- AE activity under resting 

and Fsk stimulated condition in Calu-3 cells. Summary of the effect of BAPTA-AM 
(50μM) and thapsigargin (200nM) on mean pHi change (alkalinisation) following 
basolateral Cl- removal (B) and the rate of reacidification after readdition of Cl- (B),  
under resting and forskolin stimulated conditions in Calu-3 cells. Data are shown as 
Mean±SEM.*P<0.05 compared to control.  n=3 for each, except for control n=10. 
Control cells run in parallel. 

 

 

In order to test whether cAMP and Ca2+ exert their effects on the basolateral Cl-

/HCO3
-
 AE activity through the same pathway, Calu-3 cells were pretreated with 

the cAMP efflux pump inhibitor, MK571, simultaneously with BAPTA-AM, for 

60 min, and then basolateral AE activity measured under both resting and cAMP 
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stimulated conditions (Figure 4.19A). Results showed that there was a further 

reduction in basolateral Cl-/HCO3
-
 AE activity under resting conditions, both in 

the magnitude of alkalinisation produced by basolateral Cl- removal, and the rate 

of reacidification upon Cl- readdition (Figure 4.19B and C) compared to 

BAPTA-AM on its own (4.17C and D). However, the cAMP-induced inhibition 

of the basolateral Cl-/HCO3
-
 AE activity was not changed. As shown in Figure 

4.20A and B, preincubation of Calu-3 cells with BAPTA-AM and MRP 

inhibitor, MK571, caused a marked reduction in the rate of reacidification 

produced by basolateral Cl- readdition compared to BAPTA-AM treated only, or 

MK-571 treated only cells, although the mean pHi changes showed no-

significant change. These data imply that both intracellular elevation of cAMP 

and decreasing [Ca2+]i produced their effects on the basolateral Cl-/HCO3
-
 AE 

activity via distinct mechanisms. 
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Figure 4. 19: BAPTA-AM+MK571 almost completely inhibited the basolateral Cl-

/HCO3
- AE activity in Calu-3 cells. (A) Experimental pHi trace showing the effect of 

BAPTA-AM (50µM) preincubation and perfusion of MK571 on changes in pHi 
following the removal of basolateral Cl- in Calu-3 cells in the absence and presence of 
forskolin. Summary of the effect of BAPTA-AM+MK571 on mean alkalinisation 
produced by chloride removal (B), and the rate of reacidification upon chloride 
readdition (C). Data are shown as Mean±SEM, *P<0.001 compared to control, n=5 for 
each condition. Control cells run in parallel. 
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Figure 4. 20: Summary of the effect of BAPTA-AM and MK571 on the basolateral 
Cl-/HCO3

- AE activity in Calu-3 cells. Mean alkalinisation (pHi) produced by chloride 
removal (A), and the rate of reacidification upon chloride readdition (B). *P<0.001 
compared to control, # =Significant difference (P<0.001) compared to MK571, and 
BAPTA-AM. Data are shown as mean ±SEM. n= 5 for control, n=7 for BAPTA-AM, 
n=3 for +MK571 and n=5 for BAPTA-AM+MK571. 
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4.6.2 Effect of changing extracellular Ca2+ concentration 

The extracellular Ca2+ sensing receptor (CaSR) is a G-protein coupled receptor 

whose main physiological ligand is extracellular Ca2+ (Magno et al., 2011). 

Since it has been found that CaSR plays an important role in the regulation of 

anion and fluid secretion in human pancreatic ducts (Racz et al., 2002), it was of 

interest to assess whether  extracellular Ca2+ mediated signaling pathway 

regulates the basolateral Cl-/HCO3
-
 AE activity under resting and cAMP 

stimulated conditions. It has been shown that a decrease in extracellular Ca2+ 

concentration reduces the activity of the CaSR (Brown, 2007). Thus, Calu-3 

cells were exposed to Ca2+-free extracellular solution and anion exchange 

activity measured. 

 

4.6.2.1  Effect of unilateral Ca2+ free solutions: 

Apical or basolateral perfusion of extracellular Ca2+ free HCO3
-/KREBS 

solution, in which CaCl2  was replaced with MgCl2  and 0.5mM EGTA added to 

chelate any remaining Ca2+, did not produce any changes in basolateral AE 

activity. Also the cAMP-induced inhibition of the basolateral Cl-/HCO3
-
 

exchanger was not affected (Figure 4.21A-D). This suggest that neither apical or 

basolateral CaSR mediated signaling pathways were involved in the regulation 

of the basolateral Cl-/HCO3
-
 AE activity in Calu-3 cells. 
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Figure 4. 21: Unilateral Ca2+ free solutions did not affect the basolateral Cl-/HCO3
- 

AE activity in Calu-3 cells. Summary of the effect of apical Ca2+ free solution on the 
basolateral Cl-/HCO3

- AE activity on mean pHi changes produced by basolateral Cl- 
removal (A), and rate of reacidification upon Cl- readdition (B). Data are shown as 
Mean ±SEM.*P<0.05 compared to Baso 0Cl-, n=4, paired observation. Basolateral Ca2+ 
free solution on the mean pHi change caused by basolateral Cl- free solution (C), and 
the rate of re acidification (D) in Calu-3 cells. Data are shown as Mean±SEM. No 
significant difference (P>0.05) compared to control, n=5, paired observations. 
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4.6.2.2  Effect of bilateral Ca2+ free solutions: 

 

To further investigate the possibility of cross-talk between apical and basolateral 

CaSR mediated signaling  that might affect the activity of the basolateral Cl-

/HCO3
-
 AE, Calu-3 cells were perfused bilaterally with a Ca2+ free HCO3

-

/KREBS solution (Figure 4.22A). Although resting AE activity was not altered 

under these conditions there was a significant relief in the cAMP-induced 

inhibition of the basolateral Cl-/HCO3
-AE activity, when mean pHi changes were 

compared to the ‘control’ Fsk stimulated response. However, although the rate 

of reacidification was partially recovered under cAMP stimulated conditions in 

treated cells, it was not significant compared to control responses (Figure 4.22B 

and C) in Ca2+ free conditions. This indicates that, to some extent, there is a 

cross-talk between apical and basolateral CaSR-mediated signaling pathways 

that regulate the basolateral Cl-/HCO3
-
 AE activity under cAMP stimulated 

condition in Calu-3 cells. Note that the effect of bilateral Ca2+ free conditions on 

basolateral AE activity did not mirror the response seen in BAPTA-AM treated 

cells (Figure 4.17), suggesting that the bilateral removal of extracellular Ca2+ 

was not exerting an effect on basolateral AE activity simply by reducing 

intracellular Ca2+ levels.  

 

               A 

 

 

 

 

 

 

                

137 
 



-

Baso
 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4 Control

*

+Ca2+ free
M

ea
n 

ch
an

ge
 in

 p
H

i

-

Baso
 0C

l
+Fsk

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Control
+Ca2+ free

R
at

e 
of

 r
ea

ci
di

fic
at

io
n 

(p
H

im
in

-1
)

         B                                                                          C     

 

 

 

 

 

Figure 4. 22: Impact of bilateral Ca2+ free solutions on the activity of the 
basolateral Cl-/HCO3

- AE activity in Calu-3 cells. (A) Representative pHi experiment 
showing the effect of bilateral perfusion of Ca2+ free Krebs solution on the basolateral 
Cl-/HCO3

- AE activity. Summary of the effect of bilateral Ca2+ free Krebs solution on 
mean pHi changes produced by basolateral Cl- removal (B), and the rate of 
reacidification upon Cl- readdition (C), in non-stimulated and Fsk stimulated condition 
in Calu-3 cells. Data are shown as Mean ±SEM.*P<0.05 compared to +Fsk, n=4 for 
each condition, paired observation.  

 

 

 

Although the resting basolateral Cl-/HCO3
- AE activity was not significantly 

changed in the absence of extracellular Ca2+, it has been found that there is 

intracellular cAMP production, through stimulation of AC (independent of 

PDEs), by ER Ca2+-store depletion in the absence of extracellular Ca2+, via the 

ER potential Ca2+-sensor STIMI, that  couples ER-Ca2+ to cAMP production 

(Lefkimmiatis et al., 2009). Thus, I performed a set of experiments in Calu-3 

cells to assess the activity of the basolateral Cl-/HCO3
- AE in the absence of 

extracellular Ca2+-, but after ER Ca2+-store depletion. ER stores were depleted 

using thapsigargin and basolateral AE activity was measured, under resting and 

cAMP stimulated conditions. As shown in Figure 4.23A, basolateral Cl-/HCO3
- 

AE was significantly decreased, both the magnitude of alkalinisation produced 

by basolateral Cl- removal, and the rate of reacidification following Cl- 

readdition, compared to the control response (Figure 4.23B and C). This result is 

consistent with my previous results which clearly showed that an increase in 
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[cAMP]i is responsible for inhibition of the basolateral AE activity in Calu-3 

cells. This suggest that ER Ca2+-store depletion and removal of extracellular 

Ca2+ leads to an increase in [cAMP]i. Interestingly, a transient intracellular 

acidification was produced following removal of extracellular Ca2+ and ER 

Ca2+-store depletion (Figure 4.23A, red trace), which might be due to an 

elevation of intracellular cAMP and stimulation of CFTR/Pendrin activity, 

which would lead to HCO3
- efflux across the apical membrane. Although 

removal of extracellular Ca2+ partially reduced the cAMP-induced inhibition of 

the basolateral Cl-/HCO3
- AE (see Figure 4.22A and B), the cAMP-induced 

inhibition was not changed when ER Ca2+-store depletion occurred in the 

absence of extracellular Ca2+ (Figure 4.23). This might be due to the absence of 

extracellular Ca2+ alone, which could affect the rate of intracellular cAMP 

production by AC compared to complete inhibition of the basolateral Cl-/HCO3
- 

AE by cAMP under both ER Ca2+-store depleted and extracellular Ca2+ free 

conditions. 
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Figure 4. 23: Bilateral Ca2+ free solution and thapsigargin reduced the basolateral 
Cl-/HCO3

- AE activity in Calu-3 cells. (A) Representative pHi experiment shows 
impact of bilateral perfusion of Ca2+ free Krebs solution on the basolateral Cl-/HCO3

- 
AE activity in the presence of 200nM thapsigargin. Summary of the effect of bilateral 
Ca2+ free Krebs solution and 200nM thapsigargin on mean pHi changes produced by 
basolateral Cl- removal (B), and the rate of reacidification upon Cl- readdition (C), 
under resting and Fsk stimulated Calu-3 cells. Data are shown as Mean ±SEM.*P<0.05, 
#P<0.001 compared to Baso 0Cl-, n=4 for each condition, paired observations. 

 

4.7 Role of CaM and Ca2+/CaM-dependent protein kinases in the regulation of 

basolateral Cl-/HCO3
- AE activity  

Intracellular changes in Ca2+ are often decoded by the cell through Ca2+ binding 

proteins such as calmodulin (CaM), which play an important role in signal 

transduction and regulation of a wide range of cellular responses. Ca2+ and CaM 

modulate the activity of several intracellular serine/threonine protein kinase 

cascades, including CaM-kinase kinase (CaMKK), CaMKI and CaMKIV. 

Moreover, it has been shown that binding of Ca2+/CaM complex enhances 

membrane adenylyl cyclase activity, which is accompanied by elevation of 

intracellular cAMP (Ferguson and Storm, 2004). According to sequence analysis 

of SLC4A2, there are a number of putative Ca2+/calmodulin-dependent protein 

kinase (CaMKI, CaMKII and CaMKIV) phosphorylation sites present. Since it 

is unknown whether these kinases could be involved in the regulation of the 

basolateral Cl-/HCO3
- AE activity under resting and cAMP stimulated 

conditions, another set of experiments were done to test the impact of these 

kinases on basolateral AE activity.    
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4.7.1.1 Role of calmodulin (CaM) in the regulation of basolateral Cl-/HCO3
- AE 

activity  

To focus on the mechanism of regulation of the basolateral AE activity by a 

decrease in intracellular Ca2+, the role of CaM was tested. For these experiments 

Calu-3 cells were preincubated apically for 60 min with  N-(8-aminooctyl)-5-

iodonaphthalene-1-sulfonamide (J-8, 50μM), which is a highly specific CaM 

inhibitor (Tian et al., 2011), and then the basolateral Cl-/HCO3
- AE activity was 

assessed using Cl- free solutions under resting conditions. Interestingly, CaM 

inhibition caused a marked reduction in both the mean pHi alkalinisation 

produced by basolateral Cl- removal and the rate of reacidification following Cl- 

readdition, compared to control cells, while the cAMP-induced inhibition of the 

basolateral Cl-/HCO3
- AE activity was not affected (Figure 4.24A and B). CaM 

inhibition also significantly decreased the rate of HCO3
- flux produced by 

basolateral Cl- removal, compared to untreated cells (Figure 4.24C). This 

implies that CaM plays an important role in the regulation of the basolateral Cl-

/HCO3
- AE activity under resting conditions in Calu-3 cells.  

 

     A                                                        B                                                      C                                                              

 

 

 

 

 

 

Figure 4. 24: Calmodulin inhibitor, J-8, inhibited basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells under resting conditions.  Summary of the effect of apical 
preincubation of 50μM J-8 for 60 min on mean alkalinisation in pHi in response to 
basolateral Cl- removal (A) and the rate of reacidification upon Cl- readdition (B) under 
resting and Fsk stimulated conditions. (C) The rate of HCO3

- flux during Cl-  readdition 
in Calu-3 cells. Data are shown as Mean±SEM.*P<0.01, #P<0.05 compared to control, 
n=3 for each condition, experiments run in parallel. 
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To further investigate whether the inhibitory impact of CaM inhibition on 

basolateral AE activity could be changed under conditions where intracellular 

cAMP was elevated, Calu-3 cells were preincubated with J-8 and then perfused 

with the cAMP efflux inhibitor, MK571, and basolateral Cl-/HCO3
- AE activity 

was measured with and without cAMP stimulation  (Figure 4.25A). Compared 

to untreated cells (Figure 4.25B), results showed that J-8 and MK571 caused a 

very significant inhibition of the basolateral Cl-/HCO3
- AE activity under resting 

conditions, but did not change the subsequent Fsk-induced inhibition of the 

remaining basolateral Cl-/HCO3
- AE activity (Figure 4.25A, C and D). As shown 

in Figure 4.26B, treatment of Calu-3 cells with J-8 and MK572 simultaneously 

caused a marked decrease in the rate of reacidification produced by basolateral 

Cl-/HCO3
- AE activity, which was nearly abolished, compared to Calu-3 cells 

treated with MK571 or J-8 alone. However, the mean pHi change produced by 

basolateral Cl- removal, and cAMP-induced inhibition of the basolateral Cl-

/HCO3
- AE activity was not changed (Figure 4.26A and B). This suggests that 

CaM and cAMP control the basolateral Cl-/HCO3
- AE activity via separate 

regulatory mechanisms. 
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Figure 4. 25: Impact of J-8+MK571 on the basolateral Cl-/HCO3
- AE activity in 

Calu-3 cells.  (A) Representative pHi trace showing the effect of J-8 and MK571 on the 
basolateral Cl-/HCO3

- AE activity compared to control response (B) under resting and 
Fsk stimulated condition. Summary of the effect of apical perfusion of MRP inhibitor, 
MK572 in Calu-3 cells preincubated with 50μM J-8 for 60 min on mean change in pHi 
in response to basolateral Cl- removal (C) and the rate of reacidification upon Cl- 
readdition (D) under resting and Fsk stimulated conditions. Data are shown as 
Mean±SEM.*P<0.001 compared to control, n=5 for control, and n=4 for J-8+MK571.  
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Figure 4. 26: Impact of MK571, J-8 and J-8+MK571 on the basolateral Cl-/HCO3
- 

AE activity in Calu-3 cells.  (A) Mean alkalinisation in pHi in response to basolateral 
Cl- free solution, (B) the rate of reacidification upon Cl- readdition under resting and Fsk 
stimulated conditions. Data are shown as Mean±SEM.*P<0.001, †P<0.01 compared to 
MK571 and †P<0.05 compared to +J-8, n=10 for control, n=3 +K571, n=4 for +J-8, and 
n= 4 J-8+K571. 
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4.7.1.2 Inhibition of CaMKK by STO-609 

 

It has been shown that the activity of calcium–activated Cl- channels was 

abolished by inhibition of the CAMK pathway (using the CAMKK inhibitor 

STO-609) in Xenopus oocytes, while it did not affect CFTR activity (Faria D., 

2012 PhD thesis, University of Lisbon). In order to test the role of CaMKK in 

the regulation of the basolateral Cl-/HCO3
- AE activity, Calu-3 cells were 

preincubated with 20μM STO-609 for 60 min, and then basolateral Cl-/HCO3
- 

AE activity was measured in response to basolateral Cl- removal under resting 

and cAMP stimulated conditions. As shown in Figure 4.27A and B, inhibition of 

the CaMKK mediated signaling pathway did not affect the resting basolateral Cl-

/HCO3
- AE activity, and did not abolish the cAMP-induced inhibition of the 

basolateral Cl-/HCO3
- AE activity. This suggests that CaMKI and CaMKIV are 

not involved in the regulation of the basolateral Cl-/HCO3
- AE activity in Calu-3 

cells. 

 

 

        A                                                                        B 

 

 

 

 

 

Figure 4. 27: CAMKK inhibitor, STO-609, did not affect the basolateral Cl-/HCO3
- 

AE activity in Calu-3 cells.  Summary of the effect of apical preincubation of 20μM 
STO-609 for 60 min on mean alkalinisation in pHi in response to basolateral Cl- 

removal (A) and the rate of reacidification upon Cl- readdition under resting and Fsk 
stimulated conditions (B).  Data are shown as Mean±SEM. No significant difference 
(P>0.05) compared to Baso 0Cl-, n=3 for each, experiments run in parallel. 
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4.7.1.3 Inhibition of CaMKII by KN-93 

It has also been found that CAMKII plays an important role in the regulation of 

membrane Cl- permeability through Cl- channels in a variety of epithelial cells 

(Hartzell et al., 2005). To further investigate the mechanism of CaM-dependent 

regulation of the basolateral Cl-/HCO3
- AE, Calu-3 cells were preincubated with 

KN-93 (5μM), a CaMKII-specific inhibitor (Namkung et al., 2010). Results 

showed that CaMKII inhibition did not affect the resting basolateral Cl-/HCO3
- 

AE activity, nor affect the cAMP-induced inhibition of the basolateral AE, 

although the rate of reacidification was increased in treated cells, compared to 

control cells (Figure 4.28A and B). These data indicate that CAMKII was not 

significantly involved in maintaining resting activity, nor was it involved in the 

cAMP-induced inhibition of the basolateral Cl-/HCO3
- AE activity in Calu-3 

cells. Together, the above data imply that inhibition of the basolateral Cl-/HCO3
- 

AE activity by decreasing [Ca2+]i is through a CaM dependent, but CaMK-

independent, signaling pathway in Calu-3 cells. 
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Figure 4. 28: No impact of the CaMKII inhibitor, KN-93, on the basolateral Cl-

/HCO3
- AE activity in Calu-3 cells.  Summary of the effect of apical preincubation of 

5μM KN-93 for 60 min. (A) mean alkalinisation in pHi in response to basolateral Cl- 

removal, and the rate of reacidification following Cl- readdition (B), under resting and 
Fsk stimulated condition. Data are shown as Mean±SEM.*P<0.05 compared to control, 
n=3 for each condition. Control cells run in parallel. 
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4.8 Regulation of basolateral Cl-/HCO3
- anion exchanger activity by dynamin  

In order to further investigate the mechanism of Ca2+/CaM-mediated regulation 

of the basolateral AE activity in Calu-3 cells, the role of dynamin was assessed, 

because there is a Ca2+-sensing mechanism that regulates dynamin mediated 

endocytosis (Lai et al., 1999). My previous results showed that inhibition of 

dynamin, using dynasore, significantly reduced the activity of the apical Cl-

/HCO3
- AE in Calu-3 cells (see chapter 3, section 3.7). Also, experimental 

evidence has shown that dynamin plays a critical role in membrane fission of 

Golgi-derived vesicles in the trans-face of the Golgi network, through an actin-

dependent mechanism, and interference with dynamin function inhibits post 

Golgi protein transportation (Kerkhoff et al., 2001; Carreno et al., 2004; Kessels 

and Qualmann, 2004; Praefcke and McMahon, 2004; Cao et al., 2005; Kessels 

et al., 2006). However, it is unknown whether dynamin is involved in the 

regulation of the basolateral anion exchanger. Thus, Calu-3 cells were 

preincubated with dynasore for 60 min, and then basolateral Cl-/HCO3
- AE 

activity was measured in Cl- free solutions. As shown in Figure 4.29A and B, 

dynamin inhibition caused a marked reduction in the activity of the basolateral 

Cl-/HCO3
- AE activity, both in the magnitude of alkalinisation produced by 

basolateral Cl- removal, as well as the rate of reacidification following Cl- 

readdition, compared to control cells. However, dynamin inhibition did not alter 

the Fsk-induced inhibition of the remaining basolateral AE activity. This 

suggests that dynamin plays an important role in the regulation of the basolateral 

Cl-/HCO3
- AE activity in Calu-3 cells under resting conditions, but probably not 

in the cAMP-induced inhibition of AE activity.        
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Figure 4. 29: Inhibition of dynamin reduced basolateral Cl-/HCO3
- AE activity in 

Calu-3 cells. Summary of the effect of  dynamin disruption, by preincubation of cells 
with 80µM dynasore for 60 min, on mean alkalinisation in pHi in response to 
basolateral Cl- free removal (A) and the rate of reacidification following Cl- readdition 
(B) under resting and Fsk stimulated conditions in Calu-3 cells. Data are shown as mean 
±SEM, *P<0.001 compared to control, n=5 for Control, and n=4 for +Dynasore. Control 
cells run in parallel. 

 

 

4.9 Role of the actin-cytoskeleton in the regulation of basolateral Cl-/HCO3
- anion 

exchanger activity 

Since the actin cytoskeleton can bind directly to dynamin, through its actin 

binding domain (Gu et al., 2010), and dynamin inhibition significantly reduced 

the basolateral Cl-/HCO3
- AE activity (see Figure 4.29), my hypothesis was that 

an intact actin cytoskeleton would be essential for maintaining basolateral Cl-

/HCO3
- AE activity. My hypothesis was further corroborated by the most recent 

finding that actin filaments participate in trafficking pathways of the secretory 

membrane vesicles from trans-Golgi network to the plasma membrane, and play 

an important role in the regulation of some ion pumps/channels (Egea et al., 

2015). To test this hypothesis, Calu-3 cells were preincubated with CytoD for 60 

min, and then basolateral Cl-/HCO3
- AE activity was measured in response to 

basolateral Cl- free solutions. Results showed that disruption of the actin 

cytoskeleton by CytoD significantly decreased the activity of the basolateral Cl-
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/HCO3
- AE, both in the magnitude of alkalinisation produced by basolateral Cl- 

removal, as well as the rate of reacidification following Cl- readdition, compared 

to untreated cells. However, CytoD did not affect the cAMP-induced inhibition 

of the basolateral Cl-/HCO3
- AE activity after Fsk stimulation (Figure 4.30A and 

B). This implies that an intact actin-cytoskeleton plays an essential role in the 

resting activity of the basolateral Cl-/HCO3
- AE in Calu-3 cells, but like 

dynamin, not in the cAMP-induced inhibition of AE activity. 

   

 

         A                    B 

 

 

 

 

 

Figure 4. 30: Cytochalasin-D reduced basolateral Cl-/HCO3
- AE activity in Calu-3 

cells. Summary of the effect of actin disruption, by preincubation of Calu-3 cells with 
20µM CytoD for 60 min, on mean pHi change (alkalinisation) caused by basolateral Cl- 
removal (A) and the rate of reacidification upon Cl- readdition (B) under resting and 
Fsk stimulated conditions. Data are shown as Mean±SEM. *P<0.001, #P<0.01 
compared to Baso 0Cl-, n=10 for control Baso 0Cl-, n=12 for Baso 0Cl-+Cytochalasin-
D, and n=4 for Control +Fsk. 

 

 

4.10 Regulation of basolateral Cl-/HCO3
- anion exchanger activity by CK2  

In order to further investigate the mechanism behind Ca2+/CaM regulation of the 

basolateral Cl-/HCO3
- AE activity under resting conditions, another set of 

experiments were performed to assess the impact of CK2 on the basolateral AE 

activity as it has been reported that CK2 is the main serine/threonine kinase both 
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in vivo and in vitro that can phosphorylate CaM (Arrigoni et al., 2004). Also, a 

recent study by Kang et al., (2014) has shown that phosphorylation of CaM by 

CK2 strengthens binding of CaM with the M-type potassium channel (Kang et 

al., 2014). According to sequence analysis of SLC4A2 (see appendix), there are 

a number of potential CK2 phosphorylation sites present. It has been shown that 

CK2 plays an important role in the regulation of ion channels such as CFTR, 

and experimental evidence revealed that if CK2 is inhibited, PKA cannot 

activate CFTR (Mehta, 2008). My previous results showed that CK2 inhibition 

significantly reduced the apical Cl-/HCO3
- AE in Calu-3 cells (Chapter 3, Figure 

3.19); however, it was unknown whether CK2 regulates the basolateral Cl-

/HCO3
- AE activity under resting and/or cAMP stimulated conditions.  

 

4.10.1 Effect of the CK2 inhibitor TBB: 

In order to define the role of CK2 in the Ca2+/CaM mediated regulation of the 

basolateral Cl-/HCO3
- AE activity, I first assessed the effect of CK2 inhibition, 

using TBB, on the mean pHi change following Cl- removal from the basolateral 

side of Calu-3 cells. For these experiments, cells were preincubated with 10μM 

TBB in both apical and basolateral compartments, for 60 min, and then perfused 

with KREBS solution containing TBB (Figure 4.31A). TBB caused a significant 

decrease in resting pHi (6.8+0.08, P<0.05, n=5) compared to control untreated 

cells (7.5±0.07, P<0.05, n=6), which was recovered after washing off of the 

TBB. Results showed that CK2 inhibition caused a significant reduction in the 

magnitude of alkalinisation produced by basolateral Cl- removal, and the rate of 

reacidification following Cl- readdition, compared to control cells, while it did 

not affect the cAMP-induced inhibition of the basolateral Cl-/HCO3
- AE activity 

(Figure 4.31B and C). Inhibition of the basolateral AE activity, caused by CK2 

inhibition, completely recovered after 25 min of washing off the TBB (Figure 

4.31D and E), and was not significantly different to untreated cells. Also, CK2 

inhibition caused a marked reduction in the rate of HCO3
- flux produced by 

basolateral Cl- removal AE activity compared to control untreated cells (Figure 

4.31F). 
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Figure 4. 31: Inhibition of basolateral Cl-/HCO3
- AE activity by TBB in Calu-3 

cells. (A) Raw pHi trace showing the effect of TBB preincubation and perfusion on the 
basolateral Cl-/HCO3

- AE activity in Calu-3 cells under resting and cAMP stimulated 
conditions. The inhibitory effect of TBB was recovered after 25 min washing off. 
Summary of the effect of CK2 inhibitor TBB (10µM preincubation and perfusion) on 
the basolateral AE activity on mean alkalinisation (pHi) produced by basolateral Cl- 
removal (B) and the rate of reacidification upon Cl- readdition (C) under resting and Fsk 
stimulated conditions. Recovery of TBB-induced inhibition of the basolateral AE 
activity, both in the mean alkalinisation (D), and the rate of reacidification (E), in Calu-
3 cells. (F) The rate of HCO3

- flux in control and TBB treated cells. Data are shown as 
Mean±SEM. *P<0.001, #P<0.05 compared to control, n=6 for control, and n=5 for 
+TBB. Control cells run in parallel. 
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To further investigate the temporal effects of TBB-induced inhibition of the 

basolateral Cl-/HCO3
- AE activity, Calu-3 cells were instead acutely exposed to 

KREBS/HCO3
- solution containing 10μM TBB to both the apical and 

basolateral compartments, and then basolateral Cl-/HCO3
- AE activity measured 

in response to Cl- free solutions (Figure 4.32.A). Acute TBB exposure caused an 

intracellular acidification (Figure 4.32A, red trace) and mean pHi was 

significantly decreased from 7.59±0.02 to 7.49±0.01 (P<0.05, n=6) after TBB 

exposure. In addition there was a significant decrease in both the magnitude of 

alkalinisation produced by basolateral Cl- removal, and the rate of reacidification 

upon Cl- readdition compared by TBB exposure compared to control responses. 

Inhibition of the basolateral AE activity, caused by CK2 inhibition, completely 

recovered after 25 min washing off of the TBB (Figure 4.32B and C). Since the 

mean pHi was within the normal range after TBB exposure, it was unlikely that 

pHi itself caused the decrease in basolateral AE activity. CK2 inhibition also led 

to a marked reduction in the rate of HCO3
- flux, compared to control untreated 

cells (Figure 4.32D). This suggests that CK2 is important to maintain the 

activity of the basolateral Cl-/HCO3
- AE under resting conditions.   
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Figure 4. 32: Inhibition of basolateral Cl-/HCO3
- AE activity by acute exposure to 

TBB in Calu-3 cells. (A) Representative pHi trace showing the effect of acute bilateral 
TBB exposure (10µM) on the basolateral Cl-/HCO3

- AE activity under resting 
conditions in Calu-3 cells. Note that washing off the inhibitor led to recovery of the 
basolateral Cl-/HCO3

- AE activity. Summary of the effect of acute exposure to TBB 
(10μM) on the mean alkalinisation (pHi) produced by basolateral Cl- removal (B) and 
the rate of reacidification upon Cl- readdition (C) in control and TBB treated Calu-3 
cells. (D) HCO3

- efflux in control and TBB treated cells, basolateral Cl-/HCO3
- AE 

activity reversed after 25 min washing off the CK2 inhibitor. Data are shown as 
Mean±SEM.*P<0.001 compared to control and recovery, n=6 for each condition, paired 
observations. 

 

In order to further investigate whether CK2 regulation of the basolateral Cl-

/HCO3
- AE activity was direct or through CaM, in another series of experiments, 

Calu-3 cells were preincubated with the CaM inhibitor J-8 for 60 min, and then 

acutely exposed to bilateral TBB, and then the basolateral Cl-/HCO3
- AE activity 

was measured in response to Cl- free solutions (Figure 4.33A). As shown in 

Figure 4.33B and C, TBB did not further decrease the activity of the basolateral 

AE in the presence of CaM inhibitor, with respect to both magnitude of 

alkalinisation produced by basolateral Cl- removal, or the rate of reacidification 

following Cl- readdition, compared to control responses. Also, TBB did not 

cause a further reduction in the % inhibition in the rate of reacidification in the 

presence of CaM inhibitor, but did it further reduce the % inhibition in mean pHi 

change (Figure 4.33D and E). These results suggest that CK2 potentially 

controls the resting activity of the basolateral Cl-/HCO3
- AE through the 

downstream target CaM, in Calu-3 cells. 
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Figure 4. 33: Inhibition of basolateral Cl-/HCO3

- AE activity by J-8 preincubation 
and acute TBB exposure in Calu-3 cells. (A) Representative pHi trace showing the 
effect of acute bilateral TBB exposure on the basolateral Cl-/HCO3

- AE activity in 
preincubated cells with J-8 under resting condition in Calu-3 cells. Summary of the 
effect of acute TBB exposure in J-8 preincubated Calu-3 cells on mean alkalinisation 
(pHi) produced by basolateral Cl- removal (B), and the rate of reacidification upon Cl- 
readdition (C). % inhibition in mean pHi change (D), and the rate of reacidification (E), 
in Calu-3 cells treated with TBB or J-8 alone, compared to J-8 and TBB treated cells. 
Data are shown as Mean±SEM.*P<0.001 compared to control, n=9 for control, n=6 for 
TBB and +J-8, and n=3 for TBB+J-8. 
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4.10.2 Effect of the CK2 inhibitor CX4945 

 

In order to further investigate the role of CK2 in the regulation of basolateral Cl-

/HCO3
- AE activity in Calu-3 cells, I used another CK2 inhibitor, 5-(3-

chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX4945), 

which has recently been shown to be a potent and selective  ATP-competitive 

inhibitor of CK2 (Pierre et al., 2011). Calu-3 cells were preincubated with 

bilateral 10μM CX4945 for 60 min, and then perfused with CX4945 containing 

KREBS solution (Figure 4.34A). CX4945 also caused a significant decrease in 

mean pHi (6.8±0.05, n=3) compared to untreated cells (7.4±0.02, n=3, P<0.001). 

As shown in Figure 4.34B and C, CX4945 produced a significant decrease in the 

mean pHi change produced by basolateral Cl- removal, and the rate of 

reacidification following Cl- readdition compared to control cells. However, it 

did not affect the subsequent Fsk-induced inhibition of the remaining basolateral 

Cl-/HCO3
- AE activity (Figure 4.34B and C). Inhibition of the basolateral Cl-

/HCO3
- AE activity by CX4945 completely recovered after 25 min washing off 

of the inhibitor, as did the pHi (7.5±0.06). HCO3
- flux was also significantly 

reduced by CX4945, compared to untreated cells (Figure 4.34F).  
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Figure 4. 34: Inhibition of basolateral Cl-/HCO3
- AE activity by CX4945 in Calu-3 

cells. (A) Raw pHi trace showing the effect of CX4945 preincubation and perfusion 
(10µM) on the basolateral Cl-/HCO3

- AE activity in Calu-3 cells under resting and Fsk 
stimulated conditions. The inhibitory effect of CX4945 was reversed after ~ 25 mins 
wash off. Summary of the effect of CK2 inhibitor CX4945 (10µM preincubation and 
perfusion) on the basolateral Cl-/HCO3

- AE activity on mean alkalinisation (pHi) 
produced by basolateral Cl- removal (B) and the rate of reacidification upon Cl- 
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- AE in 

both mean alkalinisation (D) and the rate of reacidification (E) in Calu-3 cells. (F) 
HCO3

- efflux in control and TBB treated cells. Data are shown as Mean±SEM. 
*P<0.001, #P<0.05 compared to control, n=3 for each condition. 

 

 

Similarly, in another set of experiments, acute bilateral exposure to 10μM 

CX4945 nearly abolished the basolateral Cl-/HCO3
- AE activity in Calu-3 cells 

(Figure 4.35A). CX4945 caused a significant decrease in basolateral Cl-/HCO3
- 

AE activity in both the magnitude of alkalinisation produced by basolateral Cl- 

removal, and the rate of reacidification upon Cl- readdition compared to control 

responses (Figure 4.35B and C). Also, CK2 inhibition by CX4945 produced a 

significant decrease in the rate of HCO3
- efflux compared to untreated cells 

(Figure 4.35D). However, unlike TBB, CX4945 did not produce an intracellular 

acidification, but like TBB, the effect of CX4945 was fully reversible on 

washing away the inhibitor (Figure 4.35B-D).  Taken together, the above data 

clearly indicate that CK2 plays an essential, and novel, role in the regulation of 

the basolateral Cl-/HCO3
-AE activity under resting conditions in Calu-3 cells. 
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Figure 4. 35: Inhibition of basolateral Cl-/HCO3
- AE activity by acute exposure to CX4945 

in Calu-3 cells. (A) Representative pHi trace showing the effect of acute bilateral exposure of 
CX4945 on the basolateral Cl-/HCO3

- AE activity under resting condition in Calu-3 cells. 
Washing off CX4945 recovered the basolateral Cl-/HCO3

- AE activity. Summary of the effect of 
acute bilateral exposure of CX4945 (10μM) on the mean alkalinisation (pHi) produced by 
basolateral Cl- removal (B) and the rate of reacidification upon Cl- readdition (C), HCO3

- flux 
produced by basolateral Cl removal AE activity (D) in control response compared to CX4945 
treated and recovery in Calu-3 cells. Data are shown as Mean±SEM. B and C: *P<0.001 
compared to control and recovery, #P<0.05 compared to recovery. D: *P<0.05 to Baso 0Cl-, 
*P<0.001 to recovery, #P<0.05 compared to Baso 0Cl-, n=6 for each condition, except for 
recovery n=5. 
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4.11 Regulation of the basolateral Cl-/HCO3
- anion exchanger by protein phosphatase 

(PP1/PP2A) activity  

Recently, it was shown that regulation of M-type potassium channels by CK2-

mediated phosphorylation of CaM depends on CK2 and PP1 anchored to the M-

type potassium channel (Kang et al., 2014). In order to assess whether 

PP1/PP2A could be involved in the regulation of the basolateral Cl-/HCO3
- AE 

activity by CK2 and CaM, I performed another series of experiments where 

Calu-3 cells were preincubated with 100nM okadaic acid (OA) and perfused 

with KREBS/HCO3
- solution containing OA, and then basolateral Cl-/HCO3

- AE 

activity measured in response to Cl- free solutions (Figure 4.36A). My results 

showed that 100nM OA significantly inhibited the basolateral Cl-/HCO3
- AE 

activity, both in the mean pHi change in response to basolateral Cl- free solution, 

and the rate of reacidification upon Cl- readdition under resting condition 

compared to untreated Calu-3 (Figure 4.36B and C). This is consistent with the 

recent finding by Garnett et al., (2013) that PP1 inhibition by OA (but not 

PP2A), mimicked the cAMP-induced inhibition of the basolateral AE activity in 

Calu-3 cells (Garnett et al., 2013). These results suggest that PP1/2A keeps the 

basolateral anion exchanger active under resting conditions by 

dephosphorylating the exchanger, or an accessory/regulatory protein. The 

inhibition of the basolateral Cl-/HCO3
- AE activity by OA was only seen when 

Calu-3 cells were pretreated with OA and then perfused with OA containing 

KREBS solution, as perfusion of OA alone failed to produce any significant 

effect on AE activity. This suggests that OA needs time to produce its inhibitory 

effect on the basolateral Cl-/HCO3
- AE activity (Figure 4.36D, E and F). 
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Figure 4. 36: Effect of okadaic acid (OA) on the activity of the basolateral anion 
exchanger. (A) Representative pHi traces showing that OA preincubation and perfusion 
(100nM) reduced the activity of the basolateral anion exchanger in Calu-3 cells. 
Summary of the effect of OA preincubation and perfusion (100nM) on mean change in 
pHi produced by basolateral Cl- removal (B), and the rate of reacidification upon Cl- 
readdition (C) compared to control responses. *P<0.05 compared to Baso 0Cl-, n=8 for 
control, and n=5 for OA treated cells. (D) Representative pHi trace showing that acute 
OA exposure had no effect on the basolateral Cl-/HCO3

- AE activity. Summary of the 
effect of acute OA exposure on mean pHi change (E), and the rate of reacidification (F), 
compared to control response in Calu-3 cells. Data are shown as mean ±SEM, no 
significant difference, n=3, paired observation.   
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4.12 Discussion 

 

4.12.1 Inhibition of the basolateral AE activity by DIDS 

Using real-time measurements of pHi from polarised cultures of Calu-3 cells my 

results show that in the absence of cAMP stimulation these model human serous 

airway cells have a functional Cl-/HCO3
- anion exchanger on the basolateral 

membrane. The basic properties of this exchanger were consistent with 

SLC4A2, a Cl-/HCO3
- exchanger commonly referred to as AE2, which has 

previously been shown to be expressed at the basolateral membrane in Calu-3 

cells by immunofluorescence (Loffing et al., 2000). One of the goals of my 

project was to investigate the functional properties of the basolateral anion 

exchanger in more detail and its potential role in transepithelial HCO3
- secretion. 

My results showed that the basolateral Cl-/HCO3
- AE activity was inhibited by 

the disulphonic stilbene DIDS, and that DIDS caused an increased amount of 

HCO3
- to be secreted across the apical membrane without affecting the amount 

of fluid secreted over a 24 hr period. Therefore, these results suggest that 

inhibition of the basolateral Cl-/HCO3
- AE activity provides more HCO3

- to 

accumulate inside the cells and this in turns increases the driving force for 

HCO3
- secretion across the apical membrane in Calu-3 cells. The IC50  for DIDS 

inhibition of the basolateral anion exchanger was about 17 µM, which  is in very 

good agreement with Humphreys et al., 1994 (Humphreys et al., 1994) who 

obtained an IC50 of ~ 13 µM for DIDS block of human basolateral AE2 

heterologously expressed in Xenopus oocytes. However, these authors 

(Humphreys et al., 1994) found that 200 µM DIDS nearly abolished AE2 

activity, whereas I found that a higher concentration (500 µM) was required to 

achieve complete inhibition. This suggests that other DIDS-sensitive base 

transporters in the basolateral membrane of Calu-3 cells may be present, along 

with AE2. These could be other members of the SLC4 family, or even the 

SLC26 family,  since HCO3
- transportation  across the basolateral membrane of 

gastric parietal cells (Petrovic et al., 2003) and intercalated cells of the outer 

medullary collecting duct (Petrovic et al., 2004) are thought to be mediated by 

SLC26A7 (Rossmann et al., 2001), which is expressed in Calu-3 cells and is 
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also sensitive to DIDS.  However, based on the dose response for  DIDS 

inhibition of the basolateral Cl-/HCO3
- AE activity in Calu-3 cells, a much lower 

concentration of DIDS was needed to block the basolateral AE activity, 

compared to DIDS inhibition of the SLC26A7, with an IC50 of 126 µM (Petrovic 

et al., 2003). Also my results showed that the basolateral Cl-/HCO3
- AE activity 

is Cl- and HCO3
- dependent, in contrast to SLC26A7, which is  impermeable to 

HCO3
-, as the magnitude of Cl- current in SLC26A7 transfected Xenopus 

oocytes and HEK cells was unaffected by HCO3
- (Kim et al., 2005). Therefore, 

based on my pharmacological data and the Cl- and HCO3
- dependency, my 

results are consistent with the functional expression of AE2 on the basolateral 

membrane of Calu-3 cells.   

Although the exact role of AE2 in Calu-3 cells still needs to be determined, it is 

likely to be important in regulating resting intracellular pH via its ability to 

transport HCO3
- across the basolateral membrane, as shown in my studies and 

by others (Inglis et al., 2002; Garnett et al., 2011). Also the study by Huang et 

al., (2012) showed that intracellular alkalinisation produced by basolateral Cl- 

removal was decreased by 80% in AE2 knock down Calu-3 cells (Huang et al., 

2012). In addition, through its transport activity under resting conditions, it will 

also act to accumulate Cl- inside the cell, particularly when working in parallel 

with NKCC1 that facilitates the influx of Na+, K+ and 2Cl- ions across the 

basolateral membrane of Calu-3 cells (Liedtke et al., 2001). This is likely to be 

beneficial for transepithelial Cl- secretion, prior to stimulation by cAMP 

agonists, where the activity of the basolateral Cl-/HCO3
- AE exchanger is 

subsequently reduced. As discussed in the introduction, AE2 may also have a 

role in accumulating Cl- via coupled transport with the basolateral NBC, as 

recently suggested (Huang et al., 2012; Shan et al., 2012). However, my results 

which showed no effect of DIDS on fluid secretion, suggests this mode of 

coupling is not that important under resting conditions at least.  
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4.12.2 Role of cAMP and cGMP in the regulation of the basolateral AE activity 

 

A recent study by Kim et al., (2014) demonstrated that apical HCO3
- efflux via 

CFTR interferes with measuring basolateral AE2 activity, using pHi methods, in 

Fsk stimulated Calu-3 cells.  In this study, exposing cells to the apical CFTR 

inhibitor, CFTRinh-172 after cAMP stimulation, unmasked basolateral AE2 

activity such that basolateral Cl- substitution caused a significant alkalinisation 

(Kim et al., 2014). While I haven’t specifically tested the effect of adding a 

CFTR inhibitor to the apical membrane on basolateral AE activity, I have used 

several PKA inhibitors to block apical AE/CFTR activity and failed to show any 

basolateral AE2 activity, in Fsk stimulated Calu-3 cells. Moreover, it has 

recently been shown that the basolateral Cl-/HCO3
- AE activity is not abolished 

by an increase of intracellular cAMP (using Fsk) in Calu-3 cells (Huang et al., 

2012). However, a study by Ishiguro et al., (2002) demonstrated that the 

basolateral Cl-/HCO3
- AE activity is abolished by intracellular elevation of 

cAMP following stimulation of guinea pig pancreatic duct cells with Fsk 

(Ishiguro et al., 2002). My results showed that stimulation of Calu-3 cells by 

addition of cAMP agonists Fsk, ADO, dbcAMP or IBMX all inhibited the 

activity of the basolateral Cl-/HCO3
- AE activity. Further evidence that the 

activity of the basolateral Cl-/HCO3
- AE was affected by an increase of 

intracellular cAMP, comes from the finding that inhibition of the cAMP efflux 

transporter, most likely MRP4, mimicked the effect of cAMP agonists on 

basolateral Cl-/HCO3
- AE activity in Calu-3 cells.  

Additionally, I have also shown that intracellular elevation of cGMP did not 

affect either the basolateral Cl-/HCO3
- AE activity under resting and cAMP 

stimulated conditions. This suggests that intracellular elevation of cAMP blocks 

the basolateral Cl-/HCO3
- AE activity in Calu-3 cells, consistent with the study 

by Garnett et al., (2013). Furthermore, the mechanism by which cAMP blocks 

the basolateral Cl-/HCO3
- AE activity was assessed in more detail by inhibition 

of the downstream targets of cAMP. My results showed that inhibition of PKA, 

Epac, CNG channels and mTOR kinase, failed to overcome the cAMP-induced 

inhibition of the basolateral Cl-/HCO3
- AE activity. This clearly suggests that 

cAMP-induced inhibition of the basolateral Cl-/HCO3
- AE activity is through a 

162 
 



PKA, Epac, CNG channel, and mTOR-independent mechanism. Although Epac 

inhibition did not remove the cAMP-induced inhibition of the basolateral Cl-

/HCO3
- AE activity, it significantly reduced the resting activity of the basolateral 

Cl-/HCO3
- AE, suggesting, for the first time, that Epac plays an essential role in 

maintaining the resting basolateral Cl-/HCO3
-AE activity in Calu-3 cells. Since 

Epac plays an important role in Ca2+ release in cardiac myocytes (Oestreich et 

al., 2009), the effect of Epac inhibition on the basolateral Cl-/HCO3
- AE activity 

might be through an intracellular Ca2+ signaling pathway as it has been shown 

that Epac regulation of human intestinal Cl- secretion was completely abolished 

by BAPTA-AM (Kazi Mirajul Hoque, 2009). Future experiments should test 

these conditions on the basolateral AE activity in Calu-3 cells. 

 

 

4.12.3 Role of Ca2+ in the regulation of the basolateral AE activity 

 

4.12.3.1  Intracellular Ca2+     

To focus on the mechanism of cAMP-induced inhibition of the basolateral Cl-

/HCO3
- AE activity in Calu-3 cells, the potential role of intracellular and 

extracellular Ca2+ was assessed under resting and cAMP stimulated conditions, 

as it has been shown that changes in intracellular Ca2+ concentration affect 

cAMP production, either through inhibition or stimulation of Ca2+-sensitive ACs 

(Willoughby and Cooper, 2007). Calu-3 cells were stimulated with the Ca2+ 

agonists Cch and thapsigargin that increase [Ca2+]i by releasing Ca2+ from ER 

stores into the cytosol (Thastrup et al., 1990; Mayerhofer et al., 1992). Results 

showed that basolateral Cl-/HCO3
- AE activity was not changed by elevation of 

intracellular Ca2+ under both resting and cAMP-stimulated conditions. However, 

under Fsk stimulation basolateral Cl- removal in the presence of Cch produced a 

transient acidification in pHi in a Ca2+-dependent manner, and BAPTA-AM 

abolished the Cch-induced transient acidification. This suggests that elevation of 

intracellular Ca2+ does not play a critical role in the regulation of basolateral Cl-

/HCO3
- AE activity in Calu-3 cells.  
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Although it has been shown that cAMP and Ca2+ cooperate to simulate HCO3
- 

secretion, my results showed that intracellular depletion of Ca2+, using BAPTA-

AM, did not alter the cAMP-induced inhibition of basolateral Cl-/HCO3
- AE 

activity suggesting that intracellular Ca2+ is not involved in the cAMP-mediated 

inhibition of the basolateral Cl-/HCO3
- AE activity. However, a decrease in 

[Ca2+]i caused a marked reduction in basolateral Cl-/HCO3
- AE activity, 

highlighting the potential importance of maintaining normal [Ca2+]i levels for 

optimal basolateral Cl-/HCO3
- AE activity under resting conditions in Calu-3 

cells. Consistent with this, perfusion of thapsigargin in BAPTA-AM loaded 

Calu-3 cells, partially removed the inhibitory effect of BAPTA-AM on the 

basolateral Cl-/HCO3
- AE activity, suggesting that thapsigargin caused a small 

increase in intracellular Ca2+ even in the presence of Ca2+ chelator, BAPTA-

AM. Furthermore, elevating cAMP and decreasing [Ca2+]i simultaneously, 

produced a further reduction in the activity of the  basolateral Cl-/HCO3
- AE, 

indicating that cAMP and Ca2+ regulate the basolateral Cl-/HCO3
-
 AE activity 

via different signaling pathways, which is  an interesting area for further 

investigation. This could involve determining the Ca2+ sensitive protein that 

regulates the basolateral Cl-/HCO3
- AE activity under cAMP stimulated 

conditions in Calu-3 cells. 

 

4.12.3.2 Extracellular Ca2+  

 

Extracellular Ca2+ sensing receptor (CaSR) plays an important role in the 

regulation of anion and fluid secretion in human epithelial cells (Racz et al., 

2002). It has been shown that a decrease in extracellular Ca2+ concentration 

reduces the CaSR activity (Brown, 2007). In Calu-3 cells, removing of 

extracellular Ca2+ concentration, either apically or basolaterally, failed to inhibit 

basolateral Cl-/HCO3
- AE activity, or overcome the cAMP-induced inhibition of 

the basolateral anion exchanger, suggesting that apical or basolateral 

extracellular Ca2+ sensing receptor alone is not involved in the regulation of the 

basolateral Cl-/HCO3
- AE activity in Calu-3 cells. However, bilateral removal of 

extracellular Ca2+ significantly reduced the cAMP-induced inhibition of the 

basolateral anion exchanger, although the resting activity did not change. This 
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suggests that bilateral Ca2+ removal alters CaSR which somehow alters cAMP 

signaling and changes basolateral Cl-/HCO3
- AE activity in Calu-3 cells. This 

might be because in the absence of extracellular Ca2+, CaSR interferes with 

cAMP production, thereby partially overcoming the cAMP-induced inhibition of 

the basolateral anion exchanger. Consistent with this, it has been shown that 

cAMP production is decreased in the absence of extracellular Ca2+ concentration 

(Ferreira et al., 1998). Although removing extracellular Ca2+ alone did not affect 

the resting basolateral Cl-/HCO3
- AE activity, my results showed that in the 

absence of extracellular Ca2+, ER Ca2+-store depletion (induced by 

thapsigargin), caused a significant inhibition of basolateral Cl-/HCO3
- AE 

activity, and interestingly produced a transient intracellular acidification, 

potentially through stimulation of the apical AE activity. However, cAMP-

induced inhibition of the basolateral Cl-/HCO3
- AE activity was not changed. 

Thus, a possible explanation would be that a combination of extracellular Ca2+ 

removal combined with ER Ca2+-store depletion, increased intracellular cAMP 

levels and thereby blocked the basolateral Cl-/HCO3
- AE activity in Calu-3 cells. 

It has been reported that ER Ca2+-store depletion and absence of extracellular 

Ca2+ enhance AC and increase [cAMP]i through the ER Ca2+-sensor STIM, 

which couples ER Ca2+ level to cAMP production (Lefkimmiatis et al., 2009). 

Future experiments could involve measuring [Ca2+]i and ER [Ca2+] in the 

absence of extracellular Ca2+ to support the role of Ca2+ in the regulation of the 

basolateral Cl-/HCO3
- AE activity. 

 

4.12.4 Role of CaM and CaMK in the regulation of the basolateral AE activity 

 

Since depletion of [Ca2+]i significantly reduced the basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells, suggested that an intracellular calcium-sensor was 

involved, and therefore the role of CaM was assessed, because it has been shown 

that there is a strong relationship between CaM activation and intracellular 

Ca2+concentration (Keller et al., 2008). CaM inhibition caused a marked 

reduction in the basolateral Cl-/HCO3
- AE activity under resting conditions, but 

it did not prevent the remaining activity to be inhibited by Fsk. Although there is 
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well described cross-talk between Ca2+/Calmodulin dependent protein kinase 

(CaMK) and some cAMP dependent signaling pathways (Soderling, 1999), and 

normal intracellular Ca2+ concentration is also required to maintain the resting 

activity of the basolateral Cl-/HCO3
- AE, inhibition of CaMK (CaMKI, CaMKII 

and CaMKIV) produced  little effect on  basolateral Cl-/HCO3
- AE activity,  and 

did not  prevent the cAMP-mediated inhibition of the basolateral Cl-/HCO3
- AE 

activity. This suggests that CaM-dependent kinases were not involved in the 

regulation of the basolateral Cl-/HCO3
- AE activity under resting and cAMP 

stimulated conditions in Calu-3 cells. These data indicate that although CaM is 

not involved in cAMP-mediated inhibition of the basolateral Cl-/HCO3
- AE 

activity, it does play an important role in regulating the resting activity, through 

a CaMK-independent mechanism. This is further supported by the effect of 

BAPTA-AM, which also reduced the basolateral Cl-/HCO3
- AE activity (see 

section 4.6.1.2, figure 4.18). Taken together, decreasing [Ca2+]i potentially 

blocks the basolateral Cl-/HCO3
- AE activity through a CaM dependent pathway 

in Calu-3 cells. Consistent with this, it has been reported that CaM plays an 

essential role in transduction of Ca2+-mediated signaling pathways in all 

eukaryotic cells (O'Day, 2003). Interestingly, in the presence of a CaM inhibitor,  

elevating cAMP (by inhibition of MRP4), did  cause a further reduction in the 

resting activity of the basolateral Cl-/HCO3
- AE, suggesting that both CaM and 

cAMP induce their effects via separate regulatory mechanism. 

 

 

4.12.5 How does actin-cytoskeleton disruption and dynamin inhibition lead to the 

marked decrease in the basolateral AE activity  

 

Another hypothesis to explain the effect of [Ca2+]i depletion on resting 

basolateral Cl-/HCO3
- AE activity could be provided by an effect on dynamin 

mediated endocytosis, as it has been reported that this process is controlled via a 

Ca2+-sensing mechanism (Lai et al., 1999). Although blocking dynamin in Calu-

3 cells did not affect the cAMP-induced inhibition of the basolateral Cl-/HCO3
- 

166 
 



AE activity, the resting basolateral Cl-/HCO3
- AE activity was significantly 

decreased, which could potentially be through inhibition of supply of new 

proteins from the trans-face of Golgi complex, as dynamin plays an important 

role in the fission of newly formed vesicles, and regulates the kinetics of 

released protein to the plasma membrane (Anantharam et al., 2011). This 

highlights the importance of dynamin in the regulation of the basolateral Cl-

/HCO3
- AE under resting conditions in Calu-3 cells. However, exactly how this 

occurs is unclear, but one possible explanation could be via the actin 

cytoskeleton, since there is a direct interaction between dynamin and the actin 

cytoskeleton (Gu et al., 2010), and recent findings showed that actin filaments 

plays a vital role in transferring secretory vesicles from the trans-Golgi network 

to the plasma membrane, and thereby regulation of some ion transporter activity 

((Egea et al., 2015), see Figure 4.37). Consistent with this, I showed that 

disruption of the actin cytoskeleton in Calu-3 cells produced a marked reduction 

in the basolateral Cl-/HCO3
- AE activity under resting conditions, but it did not 

overcome the cAMP-induced inhibition. Taken together, the above data imply 

that both an intact actin cytoskeleton and dynamin are required to maintain the 

normal resting activity of the basolateral Cl-/HCO3
- AE in Calu-3 cells, 

potentially through a Ca2+-dependent mechanism.  
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Figure 4. 37: Schematic illustration of actin participation in the trafficking 
pathway of secretory vesicles from the Golgi complex to the plasma membrane.  
Actin polymerization plays a vital role in scission (1), pulling (2), and forward 
movement (3) of carrier vesicles, and regulation of ion transporter function (4), and/or 
being part of cytoskeleton (6), and keeping the Golgi extended (5).  Diagram taken from 
(Egea et al., 2015). 

 

 

4.12.6 Role of CK2 in the regulation of the basolateral anion exchanger  

 

To further understand the mechanism of CaM-induced inhibition of the 

basolateral Cl-/HCO3
- AE activity in Calu-3 cells under resting conditions, the 

role of CK2 was assessed since there are a number of putative CK2 

phosphorylation sites in SLC4A2 (see appendix), and it has been shown that 

CK2 is the main kinase that can phosphorylate CaM (Arrigoni et al., 2004) via 

three physiological CK2-phosphorylation acceptor sites in CaM (Quadroni et 
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al., 1994; Arrigoni et al., 2004). Interestingly, treatment of Calu-3 cells with two 

different selective CK2 inhibitors, TBB and CX4945, either by preincubation or 

acute exposure of cells with the inhibitors, caused a significant decrease in the 

basolateral Cl-/HCO3
- AE activity under resting conditions, while CK2 inhibition 

failed to overcome the cAMP-induced inhibition of the basolateral Cl-/HCO3
- 

AE activity. This clearly indicates that CK2 plays an important role in the 

regulation of the basolateral Cl-/HCO3
- AE activity under resting conditions, and 

also implies that CK2 regulates the basolateral AE activity potentially through a 

CaM-dependent mechanism, based on the fact that CaM is a known downstream 

target of CK2. This is further supported by my results when Calu-3 cells were 

treated simultaneously with a J-8 as well as TBB, which did not produce a 

further decrease in the basolateral Cl-/HCO3
- AE activity, compared to the 

presence of CaM inhibitor or CK2 inhibitor alone. My results are also consistent 

with recent findings that showed CK2-mediated phosphorylation of CaM plays 

an important role in the regulation of K+-channels by strengthening CaM 

binding to the K-channels, which was shown to regulate channel trafficking and 

stabilize its activity in HEK293A cells (Kang et al., 2014).   

 

 

4.12.7 Impact of PP1 on the regulation of the basolateral AE activity 

 

It has been previously reported from our group that PP1 inhibition leads to 

stimulation of apical AE activity and inhibition of the basolateral Cl-/HCO3
- AE 

activity, in Calu-3 cells (Garnett et al., 2013). I also showed that PP1 inhibition 

by OA markedly decreased the basolateral Cl-/HCO3
- AE activity under resting 

conditions, suggesting that dephosphorylation of the basolateral Cl-/HCO3
- AE, 

or other regulatory proteins might be responsible for maintaining the resting 

activity of the basolateral Cl-/HCO3
- AE in Calu-3 cells. The exact mechanism as 

to how PP1 regulates basolateral Cl-/HCO3
- AE activity is still unclear; however, 

it has been shown that CK2 can phosphorylate and activate PP1 (Van Eynde et 

al., 1994), suggesting there exists a link between active PP1 and CK2. My 

results are consistent with this as I showed that CK2 inhibition markedly 
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reduced basolateral Cl-/HCO3
- AE activity, similar to PP1 inhibition. A possible 

explanation could involve CK2 phosphorylation of PP1, which would help 

maintain the resting activity of the basolateral anion exchanger, while blocking 

the apical AE activity, under resting conditions. A recent study demonstrated 

that regulation of K+-channel activity by CK2-mediated phosphorylation of CaM 

in HEK293A cells, depends on the binding of CK2 and PP1 to the K+ channels 

(Kang et al., 2014). In accordance with this, my results showed that inhibition of 

CK2, CaM and PP1 all significantly reduced the resting activity of the 

basolateral Cl-/HCO3
- AE; therefore, regulation of the basolateral Cl-/HCO3

- AE 

activity via CK2-mediated phosphorylation of CaM might need a physical 

interaction between CK2 and PP1 and the basolateral Cl-/HCO3
- AE in Calu-3 

cells. Taken together, this suggests that under normal condition CK2 mediated 

phosphorylation of PP1 is potentially responsible for keeping the basolateral Cl-

/HCO3
- AE active under resting condition, while inhibiting apical AE activity in 

Calu-3 cells. Future experiments could involve measuring basolateral Cl-/HCO3
- 

AE activity in Calu-3 cells treated with CaM and PP1 inhibitors simultaneously, 

to test whether CaM is involved in the potential CK2-mediated phosphorylation 

of PP1. It could also look at binding of CK2/PP1 to AE2 by co-

immunoprecipitation. 

 

 

The key findings of this chapter are summarized below (see Figure 4.38):  

 

• DIDS inhibits the basolateral Cl-/HCO3
- AE activity with an IC50 of 17µM, 

which is consistent with SLC4A2 underlying this anion exchange activity. 

• Intracellular elevation of cAMP is responsible for abolishing the basolateral Cl-

/HCO3
- AE activity in Calu-3 cells through a mechanism that is independent of 

direct downstream targets of cAMP. 

• Changes in the levels of [cGMP] not involved in the regulation of the basolateral 

Cl-/HCO3
- AE activity. 
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• Inhibition of Epac protein markedly decreased the resting activity of the 

basolateral Cl-/HCO3
- AE in Calu-3 cells. 

• Decreasing intracellular Ca2+ concentration by BAPTA-AM loading, 

significantly reduced the basolateral Cl-/HCO3
- AE activity, which was 

dependent on CaM, but independent of several CaMKs.  

• Acute increase in [Ca2+]i did not affect the basolateral Cl-/HCO3
- AE activity. 

• An intact actin cytoskeleton and active dynamin are essential in maintaining the 

activity of the basolateral Cl-/HCO3
- AE in Calu-3 cells. 

• I have identified a novel role for CK2 in regulating the basolateral Cl-/HCO3
- AE 

activity in Calu-3 cells, potentially through a CaM and PP1-dependent 

mechanism. 
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Figure 4. 38: Diagram to show which signaling pathway regulate the basolateral 
AE activity under resting and stimulated conditions in Calu-3 cells. Under resting 
conditions: CK2 showed a novel role in the regulation of the basolateral AE activity 
potentially through a CaM and PP1 dependent mechanism. Decreasing [Ca2+]i also 
significantly reduced the basolateral AE activity but through CaMK independent 
mechanisms. Under cAMP stimulated conditions; increasing [cAMP]i by adenylyl 
cyclase (tmAC) activators, forskolin or adenosine, and the membrane permeable cAMP 
analogue, dibutyryl cAMP or the phosphodiesterase inhibitor, IBMX, significantly 
inhibited basolateral AE activity, but this did not involve  several well-known 
downstream targets of cAMP. Chelation of intracellular Ca2+ by BAPTA-AM, or 
elevation of [Ca2+]i by thapsigargin had no effect on basolateral AE activity. Blocking 
CK2 and CaMK failed to overcome the cAMP-induced inhibition of the basolateral AE 
activity. (-) denotes inhibition, (+) denotes stimulation, and (X) denotes not contribute. 
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Chapter 5 Regulation of heterologously expressed mouse AE2 in 

transiently transfected HEK-293T cells 

5.1  Introduction 

 

My results described in Chapter 4 showed for the first time that the activity of 

the basolateral anion exchanger in polarised cultures of Calu-3 cells was 

regulated by a number of intracellular messengers and signalling pathways, 

including cAMP/PKA/Epac, resting calcium concentration and calmodulin, as 

well as via a novel CK2-dependent pathway. I also showed that CFTR appeared 

to be involved in regulating AE activity, consistent with previous results from 

our lab (Garnett et al., 2011). Although at this stage I cannot be certain about the 

molecular identity of the basolateral AE activity in Calu-3 cells, my own results, 

and those of others (Loffing et al., 2000; Al-Bazzaz et al., 2001; Romero et al., 

2004; Garnett et al., 2011; Huang et al., 2012; Shan et al., 2012; Garnett et al., 

2013; Kim et al., 2014) provide strong support that the anion exchanger is AE2 

(SLC4A2). In order to provide further evidence that these various signaling 

pathways were capable of regulating AE2 activity, I have transiently transfected 

Human Embryonic Kidney-293T cells (HEK293T) cells with cDNA for mouse 

AE2 (mAE2; slc4A2) and studied the effect of altering the same signaling 

messengers/pathways on mAE2 mediated anion transport. I have also 

investigated the potential role of CFTR in regulating anion exchange activity by 

cotransfecting HEK-293T cells with mAE2 and human CFTR. I used mouse 

AE2, rather than human AE2, for these studies as I was not able to obtain full-

length human AE2. Nonetheless, based on the amino acid sequence of mAE2, 

this protein shows a great deal of sequence homology to human AE2, and in 

particular contains many potential CK2 phosphorylation sites similar to human 

AE2 (see appendix). The HEK-293 cell line has been commonly used to 

overexpress many different types of proteins to study their function and 

molecular regulation (Domingue et al., 2014). HEK-293 cells have a wide range 

of advantages, such as high transfection yields and adaptation to growth in 
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serum-free media and suspension culture (Graham, 1987; Garnier et al., 1994). 

The HEK-293T cells are derived from the HEK-293 parent (Kim et al., 1997) 

and have been extensively used   in electrophysiological studies of 

heterologously expressed  ion channels (Senatore et al., 2011). Heterologous 

transfection and expression of cDNA in cells, over a short period of time, is 

known as “transient expression” (Kaufman, 1997), which can be detected for 1-4 

days after transfection. (Colosimo et al., 2000). This transient expression system 

has also been used  to study the function of anion exchangers (AEs)  (Lee et al., 

1991). It has been reported that HEK293 cells have a low level of endogenous 

Cl-/HCO3
- AE activity (Sterling et al., 2002). Immunofluorescence and pulse-

chase labelling experiments demonstrated that transient expression of murine 

AE2 can be detected both at the cell surface and in intracellular compartments, 

potentially the ER, of transfected HEK cells (Ruetz et al., 1993). Here, they also 

found that transient expression of murine AE2 in HEK cells, functions as a 

plasma membrane anion exchanger, by producing a significant increase in Cl--

driven SO4
- efflux, which was inhibited by 200µM DIDS. Moreover, it has been 

shown that transient transfection of rat AE2 showed a high level of expression 

and Cl-/HCO3
- transport activity, in HEK-293 cells, which was also inhibited by 

DIDS, with an IC50 of 142µM (Fujinaga et al., 2003). Domingo et al., (2014) 

used HEK-293 cells as a useful model to overexpress CFTR, to study the 

signaling pathway that regulate CFTR activity, as HEK-293 cells neither express 

CFTR mRNA nor protein (Domingue et al., 2014). Therefore, in this chapter I 

have further investigated the role of cAMP, cytosolic calcium, CFTR and CK2 

in the regulation of mouse AE2 (mAE2) activity, which was studied after being 

transiently transfected into HEK-293T cells. 
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5.2  Properties of mAE2 expressed in HEK-293T cells 

 

To characterise the biophysical properties of mAE2, I have performed a series of 

experiments in HEK-293T cells transiently transfected with mAE2 cDNA, and 

compared the results to control, non-transfected, HEK293T cells. pHi 

measurement in control cells showed that these cells possessed an endogenous 

Cl-/HCO3
- exchange activity based on the results from the standard Cl- 

removal/readdition protocol employed in chapters 3 and 4. However, my results 

showed that Cl-/HCO3
- exchange activity was significantly increased in mAE2 

transfected HEK-293T cells after two days of transfection, both in the 

magnitude of alkalinisation in response to Cl- free solution (0.68±0.02, n=10, 

compared to control cells, 0.42±0.02, n=10, P<0.05), and the rate of 

reacidification upon Cl- readdition (0.56±0.06, n=10, compared to control cells, 

0.24±0.02, n=10, P<0.05). Also, I performed immunocytochemistry on HEK-

293T transfected with HA-tagged mAE2 to confirm the successful transfection 

and expression of mAE2 in these cells. mAE2 expression was detected using an 

anti-HA antibody that was FITC-conjugated, and therefore produces a green 

colour when  visualized by confocal microscopy. Results showed that mAE2 

transfected cells exhibit  strong green fluorescence, both at the plasma 

membrane and within the cells (Figure 5.1A and B), compared to control non-

transfected cells (Figure 5.1D). Moreover, I further investigated  mAE2 

localization in transfected cells by staining the plasma membrane with wheat 

germ agglutinin (WGA), a red plasma membrane marker (Yacoub et al., 2006). 

mAE2 was shown to be highly expressed in the  plasma membrane as indicated 

by the yellow colour around the cells produced from the combination of green 

mAE2 protein and red WGA (Figure 5.1C).  

 

 

 

 

176 
 



 

 

 

 

Figure 5. 1: Expression and localisation of mAE2 in transiently transfected HEK- 

293T cells. HEK293T cells were transfected with HA-tagged mAE2 cDNA and 
studied two days post-transfection. (A) and (B) show confocal images where mAE2 
was labelled with FITC-conjugated fluorophore (green). Significant intracellular as well 
as plasma membrane staining was observed. (C) Confocal localization of mAE2 in 
transfected HEK-293T cells, stained with the red plasma membrane marker, WGA. 
Plasma membrane localisation of mAE2 was confirmed by yellow staining, (D) control 
non-transfected cells stained with HA primary antibody and FITC-conjugated 
fluorophore. Images are representative of 3 independent experiments for mAE2 
transfected cells, 2 for control, non-transfected cells. DAPI (4',6-diamidino-2-
phenylindole) was used for staining nucleus (blue color).   

 

 

I then investigated the DIDS-sensitivity of the endogenous AE activity and 

compared this to mAE2 transfected cells. In order to test the effect of DIDS on 

the endogenous Cl-/HCO3
- exchange activity in non-transfected HEK-293T 

cells, I measured the pHi response of the HEK293T cells to a Cl- free solution, 

in the presence of 25μM DIDS, and compared this to mAE2 transfected HEK-

293T cells. My results showed that perfusion of a Cl- free solution, containing 

25μM DIDS, produced almost complete inhibition of the endogenous Cl-/HCO3
- 

AE activity (Figure 5.2A), with a significant decrease in both the magnitude of 

alkalinisation in response to Cl- free solution, and the rate of reacidification after 

Cl- readdition (Figure 5.2C and D). However, 25μM DIDS did not affect the 

magnitude of alkalinisation following Cl- removal in mAE2 transfected HEK 

cells (Figure 5.2B and C), but did significantly reduce the rate of reacidification 

upon Cl readdition (Figure 5.2D).  Therefore, I  measured mAE2 activity in 

transfected HEK-293T cells in the presence of 25μM DIDS in order to remove 

most of the contribution of the endogenous Cl-/HCO3
- exchange activity, so that 

the resulting pHi changes were mainly due to the heterologously expressed  

mAE2 activity. 

A 

100µM 

B 

100µM 

C 

100µM 

D 

100µM 
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Figure 5. 2: Effect of 25μM DIDS on the Cl-/HCO3
- AE activity in control and 

mAE2 transfected HEK-293T cells. (A) and (B) show representative pHi traces which 
show that 25µM DIDS significantly reduced mAE2 activity in transfected HEK-293T 
cells compared to control, non-transfected, HEK-293T cells, respectively. Summary 
data showing the effect of 25μM DIDS on mean alkalinisation in pHi in response to Cl- 

free solution (C) and the rate of reacidification upon Cl- readdition (D) in control and 
mAE2 transfected HEK-293T cells. Data are shown as Mean±SEM. C: *P<0.01, 
#P<0.001 compared to control. D: *P<0.001 compared to control, n=4 for control, and 
n=3 for +mAE2. Control experiments run in parallel. 

 

 

My previous results showed that 100µM DIDS significantly reduced the 

basolateral AE activity in Calu-3 cells (see chapter 4, section 4.02). To further 

investigate the functional properties of mAE2 activity in transfected HEK-293T 

cells, I performed another set of experiments where different concentrations of 
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DIDS (25μM and 200μM DIDS) were present in the standard Cl- free solution 

(Figure 5.3A). Results showed that 25μM did not affect the magnitude of 

alkalinisation produced by mAE2 activity in transfected cells, but did 

significantly reduce the rate of reacidification upon Cl- readdition (Figure 5.3A 

and B). However, the higher concentration of DIDS, 200μM, caused a 

significant decrease in mAE2 activity, both in the mean change in pHi in 

response to Cl- free solution, and the rate of reacidification following Cl- 

readdition, compared to the control responses (Figure 5.3A and B). In another 

set of experiments, 100µM DIDS caused a marked reduction in mAE2 activity, 

both in the magnitude of alkalinisation in response to Cl- free solution, and the 

rate of reacidification upon Cl- readdition, while 50µM DIDs only significantly 

decreased the rate of reacidification in mAE2 transfected HEK cells (Figure 

5.4A and B). Consistent with this, it has been shown that 200µM DIDS 

significantly inhibited mAE2 in transfected HEK-293 cells (Ruetz et al., 1993). 

The effect of different concentrations of DIDS is summarized in figure 5.4A and 

B.  

   A                                                                                  B                               C 

 

 

 

 

              

 

Figure 5. 3: Impact of DIDS on the mAE2 activity in transfected HEK-293T cell.  
(A) Representative pHi trace showing that 25μM DIDS had no effect on the mean 
alkalinisation in pHi in response to Cl- free solution  but did inhibit rate of 
reacidification upon Cl- readdition , while 200μM DIDS significantly reduced both 
parameters in transfected HEK293T cells, compared to the response in the absence of 
DIDS. (B) Summary of the effect 25μM and 200 μM DIDS on mean alkalinisation in 
pHi in response to Cl- free solution and (C), the rate of reacidification upon Cl- 
readdition. Data are shown as Mean±SEM. B: *P<0.001 compared to DIDS 25μM and 
0Cl-. C: *P<0.001 compared to DIDS 25μM and P<0.001 compared 0Cl-, #P<0.01 
compared to 0Cl-, n=3 for each condition, paired observations. 
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Figure 5. 4: Effect of different concentrations of DIDS on mAE2 activity in 
transfected HEK-293T cells. Summary of mean change in pHi (alkalinisation) caused 
by Cl- removal (A) and rate of reacidification after Cl- readdition (B), produced by 
transfected mAE2 activity in HEK-293T cells in response to different concentration of 
DIDS, when normalized to the control response in the absence of DIDS. Data are 
shown as Mean±SEM.*P<0.001 compared to control, #P<0.05 compared to 50µM, and 
#P<0.001 compared to 100µM and 200µM DIDS, n=6 for 0Cl and 25μM DIDS; n=3 for 
50μM, 100μM, and 200μM DIDS.  

 

 

 

5.3  Effect of cAMP agonist, Fsk, on mAE2 activity in transfected HEK-293T cells 

My previous experiments in Calu-3 cells showed that the basolateral Cl-/HCO3
- 

AE activity was almost completely inhibited following an intracellular increase 

of cAMP. In contrast to Calu-3 cells, the cAMP agonist, Fsk, did not affect 

mAE2 activity (Figure 5.5D-F). Interestingly, elevation of intracellular cAMP 

also did not affect the endogenous Cl-/HCO3
- activity in control cells, both in the 

magnitude of alkalinisation, and the rate of reacidification (Figure 5.5A-C).  
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Figure 5. 5: Impact of cAMP on endogenous Cl-/HCO3
- anion exchange activity in 

non-transfected HEK-293T cell and mAE2 activity in transfected cells. 
Representative pHi  traces showing that an increase in intracellular cAMP, using 5µM 
Fsk, did not affect the endogenous Cl-/HCO3

- AE activity in non-transfected cells (A), 
or mAE2 activity in transfected HEK-293T cells (D). Summary of the effect of Fsk 
(5μM) on mean alkalinisation in response to Cl- free solutions (B), and the rate of 
reacidification following Cl- readdition (C) in non-transfected HEK-293T cells. No 
significant difference (P>0.05), n=7 for each condition, paired observations. Effect 
ofFsk (5μM) on mean alkalinisation in response to Cl- free solution (E), and the rate of 
reacidification following Cl- readdition (F) in mAE2 transfected HEK-293T cells. Data 
are shown as Mean±SEM. No significant difference (P>0.05), n=6 for each condition, 
paired observations.  
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In another set of experiments, the effect of Fsk on mAE2 activity was assessed 

in the presence of 25µM DIDS in the Cl- free solution in order to remove the 

contribution of the endogenous Cl-/HCO3
- AE activity to the pHi responses in 

transfected HEK-293T cells (Figure 5.6A). Results also showed that Fsk 

stimulation did not affect mAE2 activity, as both the mean alkalinisation in 

response to a Cl- free solution, and the rate of reacidification upon Cl- readdition, 

were not different to the control response (Figure 5.6B and C), even where the 

endogenous Cl-/HCO3
- AE activity had been removed by DIDS. One possible 

explanation for the apparent lack of effect of cAMP on AE2 activity could be 

the absence of CFTR in these cells and/or difference between mAE2 and human 

AE2 sensitivity to cAMP/Fsk. I therefore next investigated the effect of co-

expressing CFTR and mAE2 on the response of mAE2 to cAMP stimulation. 

 

  A                                                                        B                                  C 

 

 

 

        

 

 

Figure 5. 6: Forskolin did not affect mAE2 activity in transfected HEK-293T cells.  
(A) Representative pHi trace showing that increasing [cAMP]i did not affect mAE2 
activity in the presence 25μM DIDS, compared to the control response. Summary data 
showing the effect of increasing intracellular cAMP, using 5μM Fsk, on mAE2 activity 
in transfected HEK-293T cells on mean alkalinisation in response to Cl- free solution 
(B), and the rate of reacidification upon Cl- readdition (C). Data are shown as 
Mean±SEM. P>0.05 no significant difference compared to control, n=3 for 0Cl-+DIDS, 
and n=4 for +DIDS+Fsk. 
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5.4  Role of CFTR in the regulation of mAE2 activity in transfected HEK-293T cells 

  

My results in Chapter 4 showed that a rise in cAMP led to a marked inhibition in 

the activity of the basolateral anion exchanger. Previous results from our lab 

found that the inhibition of the basolateral exchanger appeared to be dependent 

on the expression of CFTR, since the degree of inhibition by cAMP was 

significantly reduced in CFTR-KD Calu-3 cells (Garnett et al., 2013). However, 

it should be noted that a recent study by Kim et al., (2014), found no evidence 

that an increase in cAMP led to the inhibition of the basolateral anion exchanger 

in polarised cultures of Calu-3 cells (Kim et al., 2014). Indeed these authors 

found that when CFTR was activated by cAMP, HCO3
- transport via apical-

located CFTR obscured the activity of the basolateral anion exchanger, when 

assessed by pHi measurements using the Cl- removal/readdition method. In order 

to further investigate the potential regulatory effect of CFTR on AE2 activity, I 

have measured mAE2 activity in HEK293T cells after co-expression of CFTR. 

However, I first needed to determine whether CFTR itself contributed to Cl--

coupled HCO3
- transport in HEK293T cells, when assessed using the standard 

Cl- removal/readdition technique. 

 

Results summarised in Figure 5.7 show that expression of CFTR in HEK-293T 

cells produced a significant increase in the mean pHi alkalinisation in response 

to a Cl- free solution, compared to non-transfected cells. Although the mean rate 

of reacidification also increased following Cl- readdition in CFTR transfected 

cells, it was not significantly different compared to non-transfected cells (Figure 

5.7A and B). This suggests that CFTR may be involved in Cl--coupled HCO3
- 

transport in transfected HEK293T cells. However, in order to further investigate 

this possibility, HEK-293T cells transfected with CFTR were studied in the 

presence of 25µM DIDS to remove the contribution from the endogenous Cl-

/HCO3
- AE, as well as in the presence of a CFTR blocker (Figure 5.8A). 

Interestingly, results showed that there was an increase in mean intracellular pH 

upon cell perfusion with a Cl- free solution, in the presence of 25µM DIDS, 

which was significantly reduced by the specific CFTR inhibitor, CFTRinh-172 

(Figure 5.8B). The rate of reacidification in CFTR transfected cells was almost 
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completely inhibited by CFTRinh-172, but it was not significantly different 

compared to the rate in the presence of DIDS alone (Figure 5.8C). Nonetheless, 

these results indicate that (i) CFTR is active under basal conditions and (ii) 

contributes to Cl--coupled HCO3
- transport in HEK293T cells. The fact that 

CFTR was active in the absence of a cAMP agonist suggests that HEK-293T 

cells have enough intracellular cAMP under resting conditions to activate 

CFTR, although the reason for this is unknown. An alternative explanation is 

that expression of CFTR (rather than activity) led to the activation of another Cl- 

dependent HCO3
- transporter in HEK293T cells which was also blocked by the 

CFTR inhibitor.    
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Figure 5. 7: Role of CFTR in HCO3

- transport in HEK-293T cells transfected with 
CFTR, compared to control cells. Summary data shows the effect of expression 
CFTR on Cl--coupled HCO3

- transport in CFTR transfected HEK-293T cells, compared 
to untransfected cells. (A) Mean change in pHi in response to a Cl- free solution, and 
(B) the rate of reacidification following Cl- readdition (B). *P<0.05 compared to control, 
n=5 for control, and n=8 for +CFTR.   
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Figure 5. 8: Effect of CFTR expression 0Cl--coupled HCO3

- transport in HEK-
293T cells transfected with CFTR under resting conditions. (A) Representative pHi 
trace showing CFTR-dependent HCO3

- transports in CFTR transfected HEK-293T 
cells, in the presence of 25μM DIDS. Note that CFTR-dependent Cl--coupled HCO3

- 
transport was almost completely inhibited by CFTRinh-172. Summary data showing the 
mean alkalinisation in pHi in response to Cl- free solution (B), and the rate of 
reacidification upon Cl- readdition (C) in CFTR transfected HEK293T cells. Data are 
shown as Mean±SEM. #P<0.001, †P<0.05 compared to 0Cl-, *P<0.001 compared to 
DIDS, n=3 for each condition, Paired observations.  
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It has been found that heterologous CFTR expression in HEK-293 cells, 

significantly increased intracellular pH after stimulation with Fsk in Cl- free 

solutions (Ko et al., 2002). To investigate if cAMP stimulation also affected Cl--

coupled HCO3
- transport by CFTR in HEK293T cells, I studied the response of 

the CFTR-transfected cells before and after stimulation with Fsk, in the presence 

of 25µM DIDS (Figure 5.9).  Overall, a comparison of the data in Figures 5.08 

and 5.09 showed that there was no significant difference in mean pHi change in 

CFTR transfected HEK-293T cells under Fsk stimulation compared to 

unstimulated cells, both in the magnitude of alkalinisation (0.25±0.01, n=5, 

compared to the unstimulated response of 0.25±0.00, n=3, P>0.05), nor in the 

rate of reacidification (0.10±0.01, n=5, compared to the unstimulated response 

of 0.12±0.02, n=3, P>0.05). The most likely explanation for the lack of effect of 

cAMP stimulation would be that the transfected HEK-293T cells have enough 

endogenous cAMP to fully activate CFTR, which is in contrast to the results 

obtained by Ko et al., (2002).   
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Figure 5. 9: Effect of CFTR expression on Cl--coupled HCO3
- transport in HEK-

293T cells transfected with CFTR under Fsk stimulated conditions. (A) 
Representative pHi trace showing the effect of   Fsk (5µM) stimulation on HCO3

- 
transport in CFTR transfected HEK-293T cells in the presence of 25μM DIDS. CFTR 
activity was nearly completely inhibited by the CFTR inhibitor, GlyH-101. Summary 
data showing the mean alkalinisation in pHi in response to Cl- free solution (B), and the 
rate of reacidification following Cl- readdition (C). GlyH-101 significantly reduced 
HCO3

- transport, under Fsk stimulated condition. Data are shown as 
Mean±SEM.*P<0.05 compared to control, n=5 for each condition, Paired observations. 

 

 

 

5.5  Role of CFTR in the regulation of mAE2 activity 

 

5.5.1 Under cAMP stimulated conditions 

Although mAE2 activity in transfected HEK-293T cells was not inhibited by 

Fsk in the presence of 25μM DIDS (Figure 5.6), it was unknown whether the 

presence of CFTR would alter the response of mAE2 to cAMP stimulation. 

Therefore, HEK-293T cells were co-transfected with CFTR and mAE2, and then 

perfused with a Cl- free solution in the presence of 25µM DIDS and 5µM Fsk 

(Figure 5.10A). Results showed that exposure to Fsk significantly reduced the 

mean change in pHi in response to a 0Cl- solution, in the presence of 25µM 

DIDS, although the rate of reacidification was not changed, compared to the 
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control response (Figure 5.10B and C), suggesting that cAMP induced inhibition 

of mAE2 requires the presence of CFTR. This result is consistent with the recent 

finding in our laboratory which showed that intracellular elevation of cAMP, 

using Fsk, did not abolish the basolateral AE activity in CFTR KD Calu-3 cells, 

compared to WT Calu-3 cells (Garnett et al., 2013). Results also showed that the 

mean alkalinisation under Fsk stimulated conditions was significantly reduced 

by the CFTR inhibitor GlyH-101, which indicates that CFTR and mAE2 

contribute equally to HCO3
- transport in co-transfected HEK-293T cells (Figure 

5.10B and C). 
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Figure 5. 10: Role of CFTR in the regulation of mAE2 activity in HEK-293T cells 
co-transfected with CFTR and mAE2. (A) Representative pHi trace showing the 
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effect of Fsk in HEK-293T cells co-transfected with CFTR and mAE2, in the presence 
of 25μM DIDS. Summary data shows although Fsk significantly reduced mAE2 
activity, as measured by the mean pHi change induced by zero Cl- (B), it did not affect 
rate of reacidification (C). The CFTR inhibitor GlyH-101, significantly reduced the 
mean alkalinisation in pHi under cAMP stimulated conditions in co-transfected cells 
(B), although the rate of reacidification did not change (C). Data are shown as 
Mean±SEM. B: *P<0.05 compared to DIDS and #P<0.001 compared to +DIDS +FSK. 
C: no significant difference (P>0.05), n=3 for mAE2 0Cl- and +DIDS, and n=6 for other 
conditions.  

 

 

In addition, HEK-293T cells co-transfected with CFTR and mAE2 showed a 

significant increase in the magnitude of the alkalisation in response to a Cl- free 

solution, and the rate of reacidification upon Cl- readdition, compared to  HEK-

293T cells transfected with CFTR only (Figure 5.11A and B), but less activity 

compared to mAE2 only transfected cells. This further supports the idea that 

CFTR expression/activity down regulates mAE2 activity in HEK293T, and 

possibly Calu-3 cells. 
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Figure 5. 11: Role of CFTR in HCO3
- transport in transfected HEK-293T cells. 

HEK293T cells co-transfected with CFTR and mAE2 caused a significant increase in 
the mean pHi change in response to Cl- free solution (A), and the rate of reacidification 
upon Cl readdition (B), compared to CFTR-only transfected cells, under Fsk 
stimulation. Data are shown as Mean±SEM. A: *P<0.01 compared to (AE2), #P<0.001 
compared to (AE2+CFTR), †P<0.01compared to (CFTR). B: #P<0.01 compared to 
(AE2+CFTR), n=4 for (AE2), n=6 for (CFTR) and (CFTR+AE2), and n=5 for (CFTR) 
+GlyH-101. 
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In order to investigate whether the CFTR inhibitors, GlyH-101 and CFTRinh-

172, could potentially affect mAE2 in the absence of CFTR, mAE2 activity was 

measured in response to a Cl- free solution, in the presence of 25µM DIDS, 

under cAMP stimulated conditions (Figure 5.12A). Results showed that both 

CFTR inhibitors had no effect on mAE2 activity, (Figure 5.12B and C). This is 

consistent with my previous results in Calu-3 cells where I showed that GlyH-

101 did not affect the basolateral AE activity.  
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Figure 5. 12: CFTR inhibitors, GlyH-101 and CFTRinh-172, did not affect mAE2 
activity in transfected HEK-293T cells. (A) Representative pHi trace showing that the 
CFTR had no effect on mAE2 activity when expressed in in transfected HEK-293T 
cells, in the presence of 25μM DIDS. Summary of the effect of both CFTR inhibitors, 
GlyH-101 and CFTRinh-172, on mean alkalinisation in pHi in response to Cl- free 
solution (B) and the rate of reacidification upon Cl- readdition (C), compared to control 
response. Data are shown as Mean±SEM. No significant difference (P>0.05) compared 
to control, n=3 for 0Cl-, n=5 for +DIDS+Fsk (control), and n=5 for CFTR inhibitor 
treated cells. 
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5.6  Role of Exchange protein directly activated by cAMP (Epac) in the regulation of 

mAE2 activity 

 

I have shown in Chapter 4 (section 4.5.2) that Epac inhibition caused a 

significant decrease in basolateral AE activity in Calu-3 cells. To further clarify 

the role of Epac in the regulation of mouse anion exchange activity, mAE2 

transfected cells were preincubated with the specific Epac inhibitor, ESI-09, 

(Almahariq et al., 2013) for 60 mins.  mAE2 activity was then measured under 

resting conditions in the presence of 25µM DIDS, (Figure 5.13B) and compared 

to untreated mAE2 transfected cells (Figure 5.13A). Results showed that Epac 

inhibition caused a marked reduction in the rate of reacidification, compared to 

untreated cells (Figure 5.13D). Although the mean alkalinisation was decreased, 

it was not significantly different to control cells (Figure 5.13C). The percent 

inhibition of AE2 activity by Epac inhibition in HEK-293T cells was 

significantly lower than the percent inhibition of AE2 in Calu-3 cells (Table 

5.01). This suggests that Epac plays an important role in the regulation of AE2 

activity under resting conditions similar to results obtained in Calu-3 cells.   
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Figure 5. 13: Epac inhibitor, ESI-09, reduced mAE2 activity in transfected HEK-
293T cells. Representative pHi traces showing the effect of ESI-09 (10µM, 
preincubated for 60 min) on mAE2 activity in transfected HEK-293T cells (B) 
compared to untreated mAE2 transfected cells (A), in the presence of 25μM DIDS. 
Summary of the effect of preincubation of cells with 10µM ESI-09 for 60 min, on mean 
alkalinisation in pHi (C) and the rate of reacidification upon Cl- readdition (D). Data are 
shown as Mean±SEM.*P<0.05 compared to +DIDS, n=5 for each condition. 
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It has been shown that Epac plays an important role in the regulation of CFTR  

(Kazi Mirajul Hoque, 2009), and I demonstrated that Epac was required for 

maintaining the resting  activity of mAE2 in Calu-3 cells (Chapter 4).  I 

therefore investigated if CFTR expression could modulate the regulation of 

mAE2 by Epac. Here, HEK-293T cells were co-transfected with CFTR and 

mAE2, and preincubated with  ESI-09 for 60 min. Cells were then perfused with 

a Cl- free solution in the presence of 25µM DIDS (Figure 5.14B), and results 

compared to control cells co-transfected with mAE2 and CFTR (Figure 5.14A). 

Surprisingly, my results showed that in co-transfected cells the Epac inhibitor 

did not affect either the mean pHi change in response to 0Cl- or the rate of 

reacidification upon Cl- readdition (Figure 5.14C & D). The results in Figures 

5.13 and 5.14 therefore suggest that the presence of CFTR appears to prevent the 

Epac inhibitor from reducing mAE2 activity or alternatively that the Epac might 

not be involved in the regulation of CFTR under basal conditions.  
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Figure 5. 14: Epac inhibitor, ESI-09, did not affect mAE2 activity in HEK-293T 
cells co-transfected with mAE2 and CFTR. Representative pHi traces in which the 
effect of Epac inhibitor  ESI-09 (10µM, 60min preincubation) was assessed in HEK-
293T cells co-transfected with CFTR and mAE2  (B), compared to control (untreated) 
HEK-293T cells co-transfected with CFTR and mAE2 (B). Summary of the effect of 
preincubation of cells with 10µM ESI-09  on mean alkalinisation in pHi (C), and the 
rate of reacidification upon Cl- readdition (D), in ESI-09 treated and non-treated HEK-
293T cells co-transfected with CFTR and mAE2. Data are shown as 
Mean±SEM.*P<0.05 compared to +DIDS, n=3 for control +DIDS, and n=4 for 
+DIDS+ESI-09 treated cells.  
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5.7  Role of intracellular Ca2+ in the regulation of mAE2 activity 

My previous results in Calu-3 cells showed that a decrease in [Ca2+]i markedly 

reduced the basolateral Cl-/HCO3
- AE activity under resting conditions (see 

chapter 4, section 4.6.1.2). To further investigate the role of intracellular Ca2+ in 

the regulation of Cl-/HCO3
- AE activity,  mAE2 transfected HEK-293T cells 

were preincubated with 50µM BAPTA-AM for 60 min (Figure 5.15B), and then 

mAE2 activity was measured in the presence of 25μM DIDS, and compared to 

untreated mAE2 transfected cells (Figure 5.15A). BAPTA-AM preincubation 

caused a significant decrease in mAE2 activity, both in the magnitude of 

alkalinisation in response to Cl- free solution, and the rate of reacidification upon 

Cl- readdition, compared to the control (non-BAPTA-AM treated cells) response 

(Figure 5.15C and D). The BAPTA-AM induced inhibition of the magnitude of 

alkalinisation was significantly lower in mAE2 transfected HEK-293T cells, 

compared to the inhibition in Calu-3 cells. However, the BAPTA-AM induced 

inhibition of the rate of reacidification was not significantly different in HEK-

293T compared to Calu-3 cells (Table 5.01). This further supports the results 

from Chapter 4 that intracellular Ca2+ concentration plays a significant role in 

maintaining AE2 active under resting conditions.  
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Figure 5. 15: BAPTA-AM reduced mAE2 activity in transfected HEK-293T cells. 
Representative pHi traces showing the effect of Ca2+ chelator BAPTA-AM, (50µM, 
preincubated for 60 min) on mAE2 activity in transfected HEK-293T cells (B) 
compared to untreated mAE2 transfected cells (A), in the presence of 25μM DIDS. 
Summary of the effect of BAPTA-AM (50µM) preincubation for 60 min, in mAE2 
transfected HEK-293T cells, on both the mean pHi change in response to Cl- removal 
(C), and the rate of reacidification upon Cl- readdition (D). Data are shown as 
Mean±SEM. *P<0.05 compared to control, n=7 for AE2+DID, and n=4 for 
+DIDS+BAPTA-AM. 
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5.8  Role of CaM in the regulation of mAE2 activity 

 

As described in my previous results in chapter 4, CaM inhibition by 50µM J-8 

produced a significant decrease in the basolateral Cl-/HCO3
- AE activity in Calu-

3 cells. The mean alkalinisation in response to Cl- removal was reduced by 

50±6.9% and the rate of reacidification by 59.3±16.6% (see table 5.01). To 

further investigate the role of CaM in the regulation of anion exchange  activity, 

mAE2 transfected cells were preincubated with 50µM J-8 for 60 min, and then 

mAE2 activity measured in Cl- free solutions in the presence of 25µM DIDS 

(Figure 5.16A), compared to control untreated mAE2-transfecterd cells (Figure 

5.16B). Results showed that CaM inhibition caused a significant decrease in 

mAE2 activity, both in the mean pHi change (56±7% decrease) in response to a 

Cl- free solution, and the rate of reacidification, which declined by 70.8±8.8%, 

upon Cl- readdition, compared to untreated mAE2 transfected cells (Figure 

5.16C and D). The J-8 induced  inhibition of mAE2 activity was not 

significantly different compared to the J-8 induced inhibition of the basolateral 

AE activity in Calu-3 cells, with respect to the mean alkalinisation in response to 

Cl- free solution and the rate of reacidification upon Cl- readdition (see Table 

5.01). This further supports a role for CaM in the regulation of AE activity under 

resting conditions, potentially through a Ca2+-dependent pathway.  
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Figure 5. 16: CaM inhibitor, J-8, markedly reduced mAE2 activity in transfected 
HEK-293T cells.  Representative pHi traces showing the effect of J8 (50µM J-8 
preincubated for 60 min) on mAE2 activity in transfected HEK-293T cells (B) 
compared to untreated mAE2 transfected cells (A), in the presence of 25μM DIDS. 
Summary of the effect of J-8, on the mean change in pHi in response to Cl- free solution 
(C), and the rate of reacidification upon Cl- readdition (D). Data are shown as 
Mean±SEM.*P<0.05 compared to control, n=5 for control 0Cl-+DIDS, and n=4 for J-8 
treated cells. 

 

 

5.9  Role of protein phosphatase 1 (PP1/2A) in the regulation of mAE2 activity  

 

I have shown that inhibition of PP1/2A in Calu-3 cells with 100nM OA caused a 

significant decrease in basolateral AE activity. To further investigate the role of 

PP1/2A in the regulation of mAE2 activity, HEK-293T cells transfected with 

mAE2 were preincubated with 100nM OA for 60 min, and then perfused with a 

Cl- free solution in the presence of 25µM DIDS to measure mAE2 activity 

(Figure 5.17A), and compared to untreated cells (Figure 5.17B). Results showed 

that PP1/2A inhibition caused a significant decrease in the mean change in 

response to 0Cl-, although the rate of reacidification did not change, compared to 

untreated   cells (Figure 5.17C and D). However, the OA-induced inhibition of 

mAE2 activity in transfected HEK-293T cells was significantly different to the 

OA-induced inhibition of basolateral AE activity in Calu-3 cells, both in the 

magnitude of alkalinisation and the rate of reacidification (Table 5.01).  
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Figure 5. 17: PP1/2A inhibition reduced mAE2 activity in transfected HEK-293T 
cells. pHi traces in which the effect of PP1/2A inhibitor, OA (100nM, preincubation for 
60 min), was assessed in mAE2 transfected HEK-293T cells (B), compared to untreated 
mAE2 transfected HEK-293T cells (A). Summary of the effect of okadaic acid on the 
magnitude of alkalinisation in response to Cl- removal (C), and the rate of 
reacidification upon Cl- readdition (D). Data are shown as Mean±SEM.*P<0.05 
compared to 0Cl-+DIDS, n=5 for 0Cl-+DIDS, and n=4 for +DIDS+OA. 
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5.10  Role of CK2 in the regulation of mouse AE2 activity 

5.10.1  Effect of acute exposure to the CK2 inhibitor TBB on endogenous Cl-/HCO3
- AE 

activity and mouse AE2 activity expressed in HEK 293T cells 

Since CK2 showed a novel role in the regulation of the basolateral AE activity 

in Calu-3 cells, the effect of CK2 inhibition was also tested on mAE2 activity in 

transfected HEK-293T cells. First, I investigated if CK2 inhibition had any 

effect on the endogenous Cl-/HCO3
- exchanger. For these experiments, non-

transfected cells were acutely exposed to TBB and then endogenous Cl-/HCO3
- 

AE activity measured in Cl- free solutions (Figure 5.18A). Results showed that 

CK2 inhibition caused almost complete loss of endogenous Cl-/HCO3
- AE 

activity, both in the magnitude of alkalinisation in Cl- free solution, and the rate 

of reacidification upon Cl- readdition, compared to untreated cells (Figure 5.18B 

and C). This indicates that endogenous Cl-/HCO3
- exchange activity was clearly 

CK2 dependent. Interestingly, and similar to Calu-3 cells, application of TBB 

caused an intracellular acidification  in non-transfected HEK-293T cells (Figure 

5.18A, red trace), which was not significantly different compared to the TBB-

induced acidification in mAE2 transfected cells, (see Fig. 5.19A) both in the 

magnitude of alkalinisation (control 0.60±0.06, n=3;  mAE2 

transfected,0.44±0.06, n=6, P>0.05), and the rate of reacidification (control, 

0.17±0.02, n=3;  mAE2 transfected, 0.12±0.01, n=6, P>0.05). 
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Figure 5. 18: Impact of the CK2 inhibitor, TBB, on endogenous Cl-/HCO3
- anion 

exchange activity in non-transfected HEK-293T cells. (A) Representative pHi trace 
showing that acute TBB exposure (10μM) inhibited the endogenous Cl-/HCO3

- AE 
activity in non-transfected HEK-293T cells. Summary of the effect of acute exposure to 
TBB on mean pHi change (alkalinisation) following Cl- removal (B), and the rate of 
reacidification upon Cl- readdition (C) in non-transfected HEK-293T cells. Data are 
shown as Mean±SEM.*P<0.05 compared to control 0Cl-.  n=3 for each condition, 
paired observations. 

 

 

 

To further investigate the role of CK2 in the regulation of AE2 activity, mAE2 

transfected cells were acutely exposed to TBB in the presence of 25µM DIDS 

(Figure 5.19A). Results showed that CK2 inhibition significantly reduced mAE2 

activity, both the mean alkalinisation in response to Cl- free solution (by 

62.5±5.1%), and the rate of reacidification upon Cl- readdition by (53.3±6.9%) 

(Figure 5.19B and C), which were not significantly different compared to TBB-

induced percent inhibition of the basolateral AE activity in Calu-3 cells (Table 

5.01). This is consistent with my previous result in Calu-3 cells which showed 

that acute exposure to TBB significantly reduced the basolateral AE activity. 

This implies that CK2 plays an important role in the regulation of mAE2 activity 

under resting conditions in transfected HEK-293T cells. 
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Figure 5. 19: CK2 inhibitor, TBB, significantly reduced mAE2 activity in 
transfected HEK-293T cells.  (A) Representative pHi trace showing that acute 
exposure to TBB (10μM), in the presence of 25μM DIDS, inhibited mAE2 activity in 
transfected HEK-293T cells. Summary data showing that acute exposure of 10μM TBB 
significantly reduced mAE2 activity, both the mean pHi alkalinisation in response to Cl- 

free solution (B), and the rate of reacidification after Cl- readdition (C), in the presence 
25μM DIDS, in transfected HEK-293T cells. Data are shown as Mean±SEM. *P<0.001 
compared to +DIDS, #P<0.001 compared to 0Cl-, †P<0.01 compared to +DIDS, n=7 for 
each condition, Paired observations.  

 

 

In order to further investigate the role of CK2 in the regulation of mAE2 

activity, HEK-293T cells were co-transfected with mAE2 and the alpha catalytic 

(α)-subunit of wild type (WT) CK2 (see Methods), and then cells were acutely 

exposed to 10µM TBB in the presence of 25µM DIDS (Figure 5.20A). TBB 
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significantly decreased mAE2 activity, both the magnitude of alkalinisation in 

Cl- free solution, and the rate of reacidification following Cl- readdition, in 

HEK-293T cells co-transfected with mAE2 and WT-CK2 (Figure 5.20B and C). 

Also, the TBB induced percent inhibition of mAE2 activity in co-transfected 

HEK-293T cells was equivalent to the percent inhibition observed in mAE2 

transfected HEK-293T cells, having only endogenous CK2 (Figure 5.20D and 

E). This suggests that CK2 levels were not limiting in HEK-293T cells, as 

overexpression of the active alpha CK2 subunit did not alter the ability of TBB 

to block AE2 activity. Taken together, these results clearly indicate that keeping 

CK2 in an active state plays an essential role in maintaining both the 

endogenous, as well as mAE2 activity, under resting conditions.  
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Figure 5. 20: CK2 inhibitor, TBB, markedly reduced mAE2 activity in HEK-293T 
cells co-transfected with mAE2 and WT-CK2. (A) Representative pHi trace showing 
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the inhibition of mAE2 activity, by acute exposure to TBB (10μM) in the presence of 
25μM DIDS, in HEK-293T cells co-transfected with mAE2 and WT-CK2. Summary of 
the effect of acute exposure to the CK2 inhibitor, TBB (10μM), on mAE2 activity, both 
the mean alkalinisation in pHi in response to Cl- free solution (B), and the 
reacidification following Cl- readdition in co-transfected HEK-293T cells. Data are 
shown as Mean±SEM. B: *P<0.01 compared to +DIDS, #P<0.01 compared to 0Cl-, 
†P<0.05 compared to +DIDS, n=6 for each condition, except for 0Cl- n=4. Summary of 
the percent inhibition of mAE2 activity by acute exposure to 10μM TBB in HEK-293T 
cells co-transfected with mAE2 and WT-CK2 compared to the effect of TBB on 
endogenous CK2 in mAE2 only transfected cells, both on the mean alkalinisation in pHi 
in response to Cl- free solution (D), and the rate of reacidification upon Cl- readdition 
(E). Data are shown as Mean±SEM, no significant difference (P>0.05) compared to 
control, n=7 for mAE2 (), and n=6 for co-transfected cells (+WT-CK2). 

 

 

 

 

However, in another set of experiments HEK-293Tcells were co-transfected 

with mAE2 and the alpha subunit of CK2 containing a double mutation, V66A 

& I174A, (DM-CK2), which has previously been shown to make CK2 much less 

sensitive than WT-CK2 to TBB inhibition, without altering its catalytic activity 

(Sarno et al., 2005). Expression of the DM-CK2 mutant protein partially 

reduced the effect of TBB on mAE2 activity in co-transfected cells (Figure 

5.21A). In the presence of DM-CK2, TBB had no effect on the rate of 

reacidification following Cl- readdition, compared to the control response, but it 

still caused a significant decrease in the magnitude of alkalinisation (Figure 

5.21B and C). Interestingly, there was a significant decrease in the percent 

inhibition of mAE2 activity by TBB in HEK-293T cells co-transfected with 

AE2 and DM-CK2, both in the mean pHi change and the rate of reacidification, 

compared to HEK-293T transfected with mAE2 only (Figure 5.21D and E). This 

result suggests that having the TBB-insensitive DM-CK2 present was able to 

maintain mAE2 activity even in the presence of the CK2 inhibitor TBB.  
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Figure 5. 21: Impact of the CK2 inhibitor TBB on mAE2 activity in HEK-293T 
cells co-transfected with mAE2 and DM-CK2. (A) Representative pHi trace showing 
the effect of acute exposure to TBB (10μM) on mouse AE2 activity, in the presence of 
25μM DIDS, in HEK-293T cells co-transfected with mAE2 and DM-CK2.  Summary 
of the effect of acute exposure to TBB on mouse AE2 activity in HEK-293T cells co-
transfected with mAE2 and DM-CK2 on mean alkalinisation in pHi in response to Cl- 

removal (B), and the rate of reacidification upon Cl- readdition (C). *P<0.05 compared 
to control (+DIDS), n=9 for each condition, paired observations. TBB-induced percent 
inhibition of mAE2 activity, both the magnitude of alkalinisation in response to  Cl- free 
solution (D), and the rate of reacidification upon Cl- readdition (E) in HEK-293T cells 
co-transfected with mAE2 and DM-CK2, compared to endogenous CK2  in mAE2 only 
transfected cells. Data are shown as Mean±SEM.*P<0.05 compared to control, n=7 for 
endogenous CK2, and n=9 for +DM-CK2.    
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5.10.2  Effect of acute exposure to the CK2 inhibitor, CX4945, on mAE2 activity 

expressed in HEK-293T cells  

 

To provide further support for  CK2 regulation of mAE2  in transfected HEK-

293T cells, CX4945, another potent and selective CK2 inhibitor was tested (Kim 

and Hwan Kim, 2013). Results showed that acute exposure to CX4945 

significantly reduced mAE2 activity, in the presence of 25µM DIDS (Figure 

5.22A), both  the magnitude of alkalinisation in response to Cl- free solution (by 

34.2±7.3%), and the rate of reacidification upon Cl- readdition (by 53.6±7.8%), 

compared to the control response (Figure 5.22B and C). However, the CX-4945 

induced inhibition of mAE2 in HEK-293T cells was significantly lower than the 

CX-4945 induced inhibition of the basolateral AE activity in Calu-3 cells, both 

in the magnitude of alkalinisation and the rate of reacidification (Table 5.01). 

These results support my previous observations in Calu-3 cells, where acute 

exposure to CX4945 caused a significant decrease in the basolateral AE activity, 

but suggest that either mAE2 is less sensitive to the inhibitor. 
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Figure 5. 22: CK2 inhibitor, CX4945, significantly reduced mAE2 activity in 
transfected HEK-293T cells. (A) Representative pHi trace showing the effect of acute 
exposure to CX4945 (10μM) on mAE2 activity, in the presence of 25μM DIDS, in 
mAE2 transfected HEK-293T cells. Summary of the effect of acute exposure to 
CX4945 on mean alkalinisation in pHi in response to Cl- removal (B), and the rate of 
reacidification upon Cl- readdition (C) compared to control response. Data are shown as 
Mean±SEM. (B) *P<0.001 compared to +DIDS, (C) #P<0.001 compared to 0Cl-, 
†P<0.05 compared to +DIDS, n=9 for each condition.  

 

 

 

To investigate the effect of CX4945 further, HEK-293T cells were also co-

transfected with mAE2 and DM-CK2, and then acutely exposed to CX4945, and 

mAE2 activity studied using Cl- free solutions containing 25μM DIDS (Figure 

5.23A). Results showed that the presence of DM-CK2 partially reduced the 

ability of CX4945 to inhibit mAE2 activity as CX4945 failed to affect the mean 

change in pHi in response to Cl- free solution, and the rate of reacidification 

upon Cl- readdition (Figure 5.23B and C). Taken together, the above data 

suggest that CK2 plays an important role in the regulation of mAE2 activity in 

transfected HEK-293T cells under resting conditions, which further supports my 

previous results from Calu-3 cells. 
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Figure 5. 23: Impact of the CK2 inhibitor CX4945 on mAE2 activity in HEK-293T 
cells co-transfected with mAE2 and DM-CK2. (A) Representative pHi trace showing 
the effect of acute exposure of 10μM CX4945 on mAE2 activity in the presence of 
25μM DIDS, from HEK-293T cells co-transfected with mAE2 and DM-CK2. Summary 
of the effect of acute exposure of 10μM CK2 inhibitor CX4945 on mAE2 activity in 
HEK-293T cells co-transfected with mAE2+DM-CK2 on mean alkalinisation in pHi in 
response to Cl- removal (B), and the rate of reacidification after Cl- readdition (D). Data 
are shown as Mean±SEM. (B). No significant difference (P>0.05); n=4 for +DIDS and 
+DIDS +CX4945, and n=3 for AE2 0Cl-. 
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In order to further substantiate a role for CK2 in the regulation of mAE2, I 

performed additional experiments utilising CK2-knockout (KO) HEK-293T 

cells in which either the αCK2 subunit or the α-prime CK2-had been KO (see 

Methods for further details about these cells). For these experiments, mAE2 was 

transfected into both types of CK2-KO HEK-293T cells, and then anion 

exchange activity measured in response to a Cl- free solution in the presence of 

25µM DIDS. Results showed that mAE2 activity was significantly decreased in 

both the αCK2-KO and α-prime CK2-KO HEK-293T transfected cells, as both  

the magnitude of alkalinisation in response to Cl- free solution as well as  the 

rate of reacidification upon Cl- readdition were decreased  compared to the 

control mAE2 transfected cells containing endogenous CK2 (Figure 5.24A and 

B). Since the reduction in mAE2 activity was similar in both types of CK2 KO 

cells, this implies that αCK2 as well as α-prime CK2 subunits play equal roles in 

regulating mAE2 activity, and that maintaining CK2 in active state is essential 

for mAE2 activity. Unfortunately, double α /α -prime KO cells were not 

available for my studies. 

 

             A                                                 B 

 

 

 

 

 

 

Figure 5. 24: mAE2 activity was significantly reduced in CK2-KO HEK-293T 
cells, transfected with mAE2 compared to control mAE2 transfected cells. 
Summary of mAE2 activity in CK2-KO mAE2 transfected HEK-293T cells.  Data 
shows (A) Mean change in pHi in response to Cl- free solution, and (B) the rate of 
reacidification upon Cl- readdition. Data are shown as Mean±SEM, *P<0.05 compared 
to control mA2 transfected cells, n=4 for control,   n=7 for αCK2-KO, n=6 for αprime 
CK2-KO. 
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However, as shown in figure 5.25A and B (black bar graph), acute TBB 

exposure of α-prime CK2-KO HEK cells, transfected with mAE2, produced a 

similar level of inhibition of mAE2 activity, compared to the inhibition  in 

control HEK-293T TBB treated cells (red bar graph), both in the magnitude of 

alkalinisation, and the rate of reacidification. This result may be because TBB 

blocked the other ‘normal’ alpha CK2 subunit that is active in the α-prime cells. 

Interestingly, a very similar reduction in the rate of reacidification was observed 

in CK2-KO cells compared to that seen with TBB exposure (Figure 5.25B, 

green bar graphs vs. black and red bar graphs). However, the percent inhibition 

in the mean pHi change produced by CK2-KO cells was significantly less, 

compared to the percent inhibition caused by TBB in control mA2 transfected 

cells (Figure 5.25A, green bar graph vs. red bar graph). This apparent lack of 

inhibition might be because both CK2 α-subunits need to be KO to produce the 

same effect as TBB on mAE2 activity.  

 

           A                                                         B 

 

 

 

 

 

 

Figure 5. 25: The percent inhibition of mAE2 activity in control and CK2-KO 
HEK-293T cells. Summary of percent inhibition of mAE2 activity in control HEK-
293T cells, compared to CK2-KO HEK-293T cells with and without TBB, both in the 
magnitude of alkalinisation in response to Cl- free solution (A), and the rate of 
reacidification upon Cl- readdition (B). Data are shown as Mean±SEM, *P<0.05 
compared to control responses, n=7 for control,   n=7 for αCK2-KO, n=6 for αprime 
CK2-KO, and n=3 for αprime CK2+TBB. 
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To focus on the role of CK2 subunits in the regulation of the mAE2 activity 

further, αCK2 KO HEK-293T cells were co-transfected with mAE2 and α-CK2 

(WT-CK2), and then mAE2 activity measured in response to Cl- free solutions, 

in the presence of 25µM DIDS. Results showed that transfection of α-CK2 into 

α-CK2-KO HEK-293T cells significantly recovered mAE2 activity, as shown by 

changes in both the mean pHi response to Cl- free solutions, and the rate of 

reacidification following Cl- readdition, compared to mAE2 activity in αCK2-

KO HEK-293T cells co-transfected with empty plasmid (Figure 5.26A and B). 

Taken together, all the above data clearly indicate that CK2 is a protein kinase 

that plays a novel role in the regulation of mAE2 activity.  

 

 

 

 

            A                                                 B 

 

 

 

 

 

Figure 5. 26: mAE2 activity in α-CK2-KO HEK-293T cells cotransfected with 
mAE2 and α-CK2, compared to α-CK2-KO HEK-293T cells co-transfected with 
mAE2 and empty plasmid. Summary of the effect of transfection of mAE2 and α-CK2 
into α-CK2-KO HEK cells on mean pHi change in response to Cl free solution (A), and 
the rate of reacidification upon Cl readdition (B), compared to cells cotransfected with 
mAE2 and empty plasmid. Data are shown as Mean±SEM.*P<0.05 compared to control 
0Cl-+DIDS, n=4 for each condition. 
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5.11 Discussion 

5.11.1 Inhibition of mAE2 activity by DIDS 

 

Although HEK293 cells have a low endogenous Cl-/HCO3
- AE activity (Sterling 

et al., 2002), my results showed for the first time that 25µM DIDS almost 

completely abolished this endogenous AE activity in HEK-293T cells. My 

results also showed that the mAE2 activity in transfected HEK-293T cells was 

sensitive to different concentrations of DIDS. Although 25μM and 50μM DIDS 

did not block the magnitude of alkalinisation produced by mAE2 activity in 

response to Cl- free solutions, the two concentrations significantly inhibited the 

rate of reacidification upon Cl- readdition. However, 100μM and 200μM DIDS 

caused a marked reduction in both parameters, with 200μM DIDS significantly 

inhibiting the mean alkalinisation by 57.7±5.8%. Consistent with my results, it 

has been shown that transfected murine AE2 activity was significantly inhibited 

by 68.5% at 300µM DIDS and by 74.2% by 400µM DIDS in HEK-293 cells 

(Ruetz et al., 1993). In contrast to mAE2, my previous results in Calu-3 cells 

showed that 100µM DIDS almost completely inhibited the basolateral AE 

activity (see chapter 4, section 4.2). The different sensitivities to DIDS between 

Calu-3 cells and HEK cells transfected with mAE2  might be due to differences 

in amino acid sequence between mAE2 and the human Calu-3 basolateral AE, 

particularly  with regard to the lysine-residue that DIDS forms  a covalent bond 

with, and which causes inhibition of the AE2 by DIDS (Lee et al., 1991).    

 

 

5.11.2 Role of cAMP in the regulation of mAE2 

 

Although my results clearly showed that intracellular elevation of cAMP caused 

almost complete inhibition of the basolateral AE activity in Calu-3 cells (see 

chapter 4, section 4.4.1.), mAE2 activity was not altered by an increase in 

[cAMP]i, compared to control responses. Consistent with this, it has been 

previously found that AE2 was shown to be active under cAMP-stimulated 

condition in the proximal colon of mouse (Gawenis et al., 2010). However, a 
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recent finding in our laboratory demonstrated that an increase in [cAMP]i, did 

not fully inhibit the basolateral AE activity in CFTR knock down Calu-3 cells, 

compared to WT Calu-3 cells (Garnett et al., 2011; Garnett et al., 2013). 

Therefore, one possible explanation could be the lack of CFTR expression in 

HEK-293T cells (Domingue et al., 2014).  Consistent with this, mAE2 activity 

was found to be significantly reduced (rate of reacidification following Cl- 

readdition) in HEK-293T cells cotransfected with mAE2 and CFTR, compared 

to control responses. This implies that CFTR was required to enable cAMP to 

inhibit mAE2 activity. Exactly how this occurs is not known. Furthermore, Epac 

inhibition did not affect mAE2 activity in HEK-293T cells cotransfected with 

mAE2 and CFTR, which suggests that the presence of CFTR potentially 

abolished the effect of Epac inhibition on the mAE2 activity, because I have 

shown that Epac inhibition caused a marked decrease in the rate of 

reacidification produced by mAE2 activity in transfected HEK-293T cells, 

compared to untreated cells. The underlying mechanism for the effect of CFTR 

expression is not known, but Epac is known to interact with CFTR (Sun et al., 

2000; Hochbaum et al., 2011), and therefore overexpression of CFTR could 

potentially lead to Epac ‘depletion’ inside HEK-293T cells. However, I would 

have predicted that if this was case then this would lead to a reduction in mAE2 

activity, similar to Epac inhibition itself.  

 

 

5.11.3 Role of CFTR in regulating mAE2 activity  

 

It is well known that there is a physical and functional interaction between 

CFTR and several members of the SLC26A family of Cl-/HCO3
- AE (Ko et al., 

2004) present in the apical membrane of many epithelial cells. A recent study by 

Garnett et al., (2011) demonstrated  Cl- dependent HCO3
- transport across the 

apical membrane of Calu-3 cells via a CFTR-dependent anion exchanger, known 

as Pendrin (SLC26A4) (Garnett et al., 2011). However, most recently, Kim et 

al., (2014) found that CFTR is the predominant pathway for HCO3
- secretion in 

Calu-3 cells (Kim et al., 2014). This apparent difference in interpretation is not 

resolved but maybe due to differences in methodologies between our lab and 
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theirs. In addition, it has been shown that heterologous expression of CFTR in 

HEK-293 cells caused a significant increase in Cl- and HCO3
- dependent 

transport, as substitution of a Cl- free solution caused an increase in pHi, under 

Fsk stimulated conditions (Ko et al., 2002). However, we have also shown that 

CFTR can also regulate the basolateral AE activity through an unknown 

mechanism. Consistent with this finding, my results showed that CFTR 

transfection caused a significant increase in mean pHi change in response to Cl- 

free solution, and the rate of reacidification following Cl- readdition in HEK-

293T cells, under Fsk stimulated condition, which was almost completely 

inhibited by the CFTR pore blocker GlyH-101. Also, the mean pHi change in 

response to Cl- free solution was significantly larger in CFTR transfected HEK-

293T cells, compared to non-transfected cells. Surprisingly, CFTR transfection 

into HEK-293T cells also produced an increase in HCO3
- transport, under 

resting (non-cAMP stimulated) conditions, which was also significantly reduced 

by the specific CFTR inhibitor, CFTRinh-172. This result suggested that CFTR 

was fully active in HEK cells in the absence of exogenous cAMP agonists. One 

possible explanation for this might be that under resting conditions, HEK-293T 

cells have enough intracellular cAMP to activate CFTR which has been 

observed by others (Caci et al., 2003; Moran and Zegarra-Moran, 2005). In 

addition, both CFTR inhibitors, GlyH-101 and CFTRinh-172 did not affect 

mAE2 activity in transfected HEK-293T cells, which is consistent with my 

previous results in Calu-3 cells where GlyH-101 did not affect the basolateral 

AE activity. 

 

 

5.11.4 Role of Ca2+ and CaM in the regulation of mAE2 activity  

 

My work is the first to assess the effect of changes in resting Ca2+ concentration 

in the regulation of mAE2 activity in HEK-293T cells. In BAPTA-AM loaded 

HEK-293T cells, mAE2 activity was significantly decreased, both in the 

magnitude of alkalinisation in response to Cl- free solution, and the rate of 

reacidification upon Cl- readdition, compared to untreated cells. Consistent with 
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this,  Chernova et al., (2010) have also shown that chelation of intracellular Ca2+  

by BAPTA-AM significantly reduced the Cl-  transport by murine AE2, when 

expressed in Xenopus oocytes  (Chernova et al., 2003).This is consistent with 

my previous results in Calu-3 cells (see chapter 4, section 4.6.1.2.), and further 

supports an important role for normal intracellular Ca2+ concentration to 

maintain the resting activity of AE2. In addition, inhibition of CaM caused a 

marked reduction in mAE2 activity in HEK-293T transfected cells, both in the 

magnitude of alkalinisation and the rate of reacidification. A very similar level 

of inhibition was observed in Calu-3 cells. Consistent with this, Stewart et al., 

(2007) and Chernova et al., (2010) demonstrated that mouse AE2 was inhibited 

by the calmodulin inhibitor, calmidazolium, when expressed in Xenopus oocytes 

(Chernova et al., 2003; Stewart et al., 2007). Collectively, these results indicate 

that CaM maintains normal AE2 activity potentially through a Ca2+-dependent 

pathway, under resting conditions. It has been shown that inhibition of CaM-

dependent kinase, CaMKII, did not affect the murine AE2 activity in transfected 

Xenopus oocytes (Stewart et al., 2007), and my previous results in Calu-3 cells 

showed that inhibition of CaMKI, CaMKII, and CaMKIV were not involved in 

the regulation of the basolateral AE activity (see chapter 4, section 4.7.2-3).  

Since there is no stable interaction between CaM and murine AE2 (Chernova et 

al., 2003), it would be of interest to investigate the role of CaM-dependent 

kinases, CaMKI, CaMKII, and CaMKIV, in the regulation of mAE2 activity in 

HEK-293T cells. 

 

 

5.11.5 Role of PP1 in the regulation of mAE2 activity 

 

As described in chapter 4, inhibition of PP1/2A in Calu-3 cells markedly 

reduced basolateral AE activity. Here, I have also shown that treating mAE2 

transfected HEK-293T cells with okadaic acid caused a significant decrease in 

the mean pHi response to a Cl- free solution. This further support the role of 

dephosphorylation in the regulation of mAE2 activity by PP1/2A, potentially as 

a downstream target of CK2, because it has been shown that CK2 plays a critical 

role in the phosphorylation and activation of PP1 (Van Eynde et al., 1994). 
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Further experiments are therefore required to fully deduce the role of PP1 

signaling in regulating mAE2 activity, such as (i) testing mAE2 activity in cells 

treated with TBB and OA (ii), assessing mAE2 activity in PP1 KD cells. 

 

 

5.11.6 Role of CK2 in the regulation of mAE2 activity  

 

This is the first study to demonstrate that CK2 regulates mAE2 anion exchange 

activity in transfected HEK-293T cells. Interestingly, acute TBB exposure 

significantly reduced mAE2 activity, both the mean alkalinisation in response to 

Cl- free solution, by 62.5±5.1%, and the rate of reacidification upon Cl- 

readdition by 53.3±6.9% following Cl readdition. Also, acute exposure by 

another CK2 inhibitor, CX4945, caused a significant decrease in mAE2 activity, 

both the mean change in pHi in response to Cl- free solution by 34.2±7.3%, and 

the rate of reacidification upon Cl- readdition by 53.6±7.8%, compared to 

control, untreated responses. This is consistent with my previous results in Calu-

3 cells, which showed that acute exposure to both TBB and CX4945 

significantly reduced basolateral AE activity. However, CX4945 was 

significantly more effective in inhibiting the basolateral AE activity in Calu-3 

cells than mAE2 activity in HEK-293T cells. The reason for this is unknown but 

may be due to species differences (human vs mouse). Nonetheless, the CK2 

inhibitor data supports a novel role for CK2 in the regulation of mAE2 activity 

under resting conditions. Moreover, co-transfection of HEK-293T cells with 

mAE2 and WT-CK2 did not affect the TBB induced inhibition of mAE2 

activity, compared to mAE2 transfected HEK-293T cells expressing only 

endogenous CK2. However, co-transfection of HEK-293T cells with mAE2 and 

DM-CK2, a mutant that is much less sensitive to TBB inhibition (Sarno et al., 

2005), partially overcame the inhibitory effect of TBB. In addition, the presence 

of DM-CK2 partially prevented the ability of CX4945 to inhibit mAE2 activity, 

particularly in the mean pHi change in response to Cl- free solution. This implies 

that the presence of DM-CK2 in the transfected HEK293T cells potentially 
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blocked the inhibitory effect of CK2 inhibitors on mAE2 activity, which further 

supports a role for CK2 in the regulation of AE2 activity. 

  

Further support for a role of CK2 in regulating anion exchange activity, came 

from results where mAE2 transport was measured in CK2-KO HEK-293T cells 

(αCK2-KO and α-prime CK2-KO), which showed that mAE2 activity was 

significantly decreased, both in the magnitude of alkalinisation in response to Cl- 

free solution, and the rate of reacidification upon Cl- readdition, in both types of 

CK2-KO HEK-293T cells, compared to transfected cells with mAE2 alone. This 

strongly suggests that both catalytic subunits were involved in regulating mAE2 

activity. Interestingly, acute TBB exposure of α-prime CK2-KO HEK cells 

transfected with mAE2 produced a similar level of  inhibition of mAE2 activity 

to the TBB-induced inhibition of mAE2  in wild type HEK-293T transfected 

cells, both in the magnitude of alkalinisation and the rate of reacidification. This 

indicates that TBB potentially blocked the alpha subunit in α-prime CK2-KO 

HEK cells. Moreover, the percent inhibition of mAE2 activity by TBB in normal 

HEK293T transfected cells was significantly greater than the inhibition of 

mAE2 activity in CK2-KO cells, at least with regard to the mean pHi change in 

response to 0Cl-. This result might be due to the fact that both α-CK2 subunits 

need to be KO to produce the same effect as TBB on mAE2 activity.  To further 

support this hypothesis, α-CK2 KO HEK-293T cells were cotransfected with 

mAE2 and α-CK2, and results showed that mAE2 activity was significantly 

recovered, both in the mean pHi change in response to Cl- free solution, and the 

rate of reacidification following Cl- readdition, compared to control co-

transfected cells with mAE2 and empty plasmid. Taken together, all the above 

data clearly indicate that CK2 plays a critical role in the regulation of mAE2 

activity under resting conditions.  
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The key findings of this chapter are summarized below: 

 

• HEK293T cells express an endogenous Cl-/HCO3
- AE activity that can be 

effectively inhibited by a low concentration of DIDS, and which is regulated by 

endogenous CK2.  

• Heterologous expression of mouse AE2 confers a robust Cl-/HCO3
- AE activity 

which is blocked by DIDS in excess of 25 µM. 

• mAE2 was not inhibited by an increase in [cAMP]i in HEK-293T cells, but 

mAE2 activity was significantly reduced by cAMP in mAE2/CFTR 

cotransfected cells. 

• Epac plays an important role in the regulation of the resting level of mAE2 

activity. 

• A decrease of cytosolic Ca2+ caused a marked reduction in mAE2 activity, as did 

the inhibition of calmodulin. 

• CK2 (both catalytic subunits) plays a novel and essential role in the regulation 

of mAE2 activity in HEK-293T cells. 

 

Table 5.01 shows the summary of percent inhibition in AE2 activity, by 

different pharmacological agents, in HEK-293T cells and Calu-3 cells: 
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Table 5.1: Summary of percent inhibition in AE2 activity, by different 
pharmacological agents, in HEK-293T cells and Calu-3 cells. *P<0.05 significant 
difference compared to results in Calu-3 cells.  
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Chapter 6 Concluding Discussion 

6.1 Summary of main findings 

The aim of the current work was to investigate the signalling mechanisms that 

regulate the CFTR-dependent apical Cl-/HCO3
- anion exchanger, as well as the 

basolateral Cl-/HCO3
- AE, in  a model human  airway cell line, which secretes a 

HCO3
- rich fluid in response to an increase in [cAMP]i. I have utilized a 

dynamic, non-invasive, method to study the activity of the apical and basolateral 

exchangers independently, using polarized cultures of human airway Calu-3 

epithelial cells combined with real-time pHi measurements. This experimental 

set up is representative of the physiological condition, and thus makes the 

findings potentially transferable into an in vivo setting. I have also investigated 

the properties and regulation of mAE2 (SLC4AE2) after being transiently 

transfected into the HEK-293T cells, in order to compare the properties of the 

heterologously expressed transporter with results from the cultured Calu-3 cells. 

 

 

6.1.1 Apical Cl-/HCO3
- anion exchanger in Calu-3 cells 

 

The results of this current study have shown that the apical Cl-/HCO3
- anion 

exchanger, known as pendrin (SLC26A4), was enhanced in Calu-3 cells by a 

variety of cAMP agonists, such as Fsk, db-cAMP and IBMX, but not by cGMP. 

The mechanism by which increased [cAMP]i mediated this stimulation  was 

assessed using a range of protein kinases inhibitors and other signalling 

molecules. Two different PKA inhibitors, H-89 and RpcAMP, markedly reduced 

the Fsk-stimulated apical Cl-/HCO3
- AE activity. This provides further  support 

for an important role of PKA, as well   for a  role of CFTR in the regulation of 

this exchanger, as CFTR activity depends on PKA phosphorylation, and is 

consistent with the most recent finding by Garnett et.al., 2013 (Garnett et al., 
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2013). It also supports previous work that suggested CFTR regulates pendrin 

through a direct interaction between the two proteins via a physical interaction 

between their R and STAS domains, respectively (Dorwart et al., 2008). 

However, PKA inhibition did not fully block the apical AE activity, and I 

suspected that another cAMP-dependent pathway might be involved in the 

regulation of the apical AE activity in Calu-3 cells. My results strongly suggest 

that this was Epac, since Epac inhibition significantly reduced the activity of the 

apical AE under Fsk stimulated conditions. This implies that cAMP-stimulated 

apical AE activity is through a PKA and Epac-dependent mechanism in Calu-3 

cells. Future experiments would need to assess the effect of inhibition of both 

PKA and Epac on AE activity to confirm this.  Paradoxically, inhibition of Epac 

also enhanced the activity of the apical Cl-/HCO3
- AE under non cAMP-

stimulated conditions, suggesting that Epac has a dual effect on apical AE 

activity; i.e. inhibitory when cAMP levels are low, but stimulatory when cAMP 

levels rise in response to cAMP agonists.   

Further support for a role of CFTR in regulating the apical AE activity came 

from CFTR inhibitor studies. Here the CFTR inhibitor, GlyH-101 caused a 

reduction in apical AE activity. Since GlyH-101 is a CFTR pore blocker 

(Norimatsu et al., 2012), this suggests that anion transport by CFTR plays an 

important role in the regulation of apical Cl-/HCO3
- AE activity in Calu-3 cells. 

This could because Cl- efflux through CFTR provides external Cl- for the anion 

exchanger as has been suggested in pancreatic duct cells (Gray et al., 2001). My 

results are also consistent with the recent finding that the rate of apical AE 

activity was decreased in CFTR knockdown Calu-3 cells (Garnett et al., 2011). 

However, the effect of GlyH-101 on the apical AE activity was nearly abolished 

by application of DIDS to the basolateral perfusate, suggesting that the effect of 

GlyH-101 was indirect and potentially through a change in activity of a DIDS-

sensitive basolateral transporter, which was involved in pHi
 regulation. The 

identity of this basolateral transporter is uncertain but it could be AE2.   

However, further pharmacological and genetic studies will be necessary to gain 

a complete profile of this basolateral transporter that regulates apical AE activity 

under cAMP stimulated conditions.   
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I also found that intracellular Ca2+ plays an important role in the regulation of 

apical AE activity as BAPTA-AM markedly decreased the activity of the 

transporter. The effect of BAPTA-AM  might be due to a decrease in resting 

[Ca2+]i which could potentially block the synergistic interaction between Ca2+ 

and cAMP, that has been shown to be required for maximal stimulation of 

pancreatic ductal epithelial anion secretion (Lee et al., 2012). Paradoxically, I 

also found that an increase in [Ca2+]i, by thapsigargin, also significantly 

decreased the apical AE activity. This effect could potentially be through a 

PKA-dependent mechanism, because it has been shown that an increase in 

[Ca2+]i can inhibit the PKA- dependent signalling pathway (Santana et al., 2002) 

or even cause direct inhibition of PKA itself (Orie et al., 2009). However, it 

could also be related to a decrease in the plasma membrane levels of CFTR, 

since recent work on the effects of cigarette smoke has shown that a sustained 

increase in cytosolic calcium due to smoke exposure caused internalisation of 

CFTR (Rasmussen et al., 2014). In addition, an increase in [Ca2+]i did not 

abolish the BAPTA-AM induced decrease in the activity of the apical anion 

exchanger, but instead caused a further, and significant, decrease in apical AE 

activity, under Fsk stimulated conditions. This further decrease in AE activity 

might be because thapsigargin caused an increases in [Ca2+]i even in the 

presence of BAPTA-AM, to reduce the PKA-dependent apical Cl-/HCO3
- AE 

activity. This effect of thapsigargin is supported by recent results in our 

laboratory, which demonstrated that thapsigargin produced a small increase in 

[Ca2+]i even in the presence of  BAPTA-AM in HEK-293Tcells (W. Patel, 

unpublished observations). The effects of calmodulin, and Ca2+/calmodulin 

dependent kinases on the apical AE activity were also investigated. Here it was 

found that the mechanism by which intracellular Ca2+ regulates the apical AE 

activity was not dependent on either calmodulin or Ca2+/calmodulin dependent 

kinases.    

The role of dynamin in the regulation of apical AE activity was also assessed as 

it has been shown that dynamin is a Ca2+-sensitive protein (Liu et al., 1994). 

Dynamin inhibition caused a significant decrease in the apical AE activity in 

Calu-3 cells, potentially via reducing the expression level of CFTR, and thereby 

reducing the Cl-/HCO3
- exchange activity. This effect of dynamin was 
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unexpected as previous studies have shown that dynamin inhibition reduces the 

rate of endocytosis, and generally increases surface levels of transporter such as 

CFTR (Young et al., 2009). It would therefore be of interest to perform cell 

surface biotinylation in dynamin-treated Calu-3 cells to establish whether 

dynamin reduces the surface expression of apical CFTR as well as the Cl-/HCO3
- 

AE. 

It should be noted, however, that dynamin inhibition blocks  the release of 

newly formed vesicles from the trans face of the Golgi complex to the plasma 

membrane (Nabi and Le, 2003; Abazeed et al., 2005; Cao et al., 2005), and it 

can also affect the kinetics of released protein into the plasma membrane 

(Anantharam et al., 2011). This therefore could provide an explanation for the 

decrease in apical AE activity. The exact mechanism how this would occur is 

unclear, but one possible explanation could be via the actin cytoskeleton, as 

there is a direct interaction between dynamin and the actin cytoskeleton (Gu et 

al., 2010). However, cytoskeleton disruption did not affect the apical AE 

activity, suggesting that dynamin regulates AE activity through a cytoskeleton-

independent mechanism.  

I also provided new evidence that CK2 also regulates apical AE activity, which 

supports previous work that showed CK2 plays an important role in HCO3
- 

secretion in pancreatic duct epithelial cells, under cAMP stimulated condition 

(Treharne et al., 2009). According to sequence analysis of SLC26A4, there is a 

wide range of potential CK2 phosphorylation sites. My results showed for the 

first time that CK2 inhibition caused a marked decrease in the apical AE activity 

in Calu-3 cells, suggesting that CK2 play a novel role in the regulation of this 

transporter in Calu-3 cells. However, it will be important to establish whether 

CK2 inhibition directly affects the apical anion transporter, or whether it works 

through another protein, such as CFTR. 
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6.1.2 Basolateral Cl-/HCO3
- anion exchanger in Calu-3 cells 

 

My work has been the first to demonstrate that the IC50 for DIDS inhibition of 

the basolateral Cl-/HCO3
- AE activity in Calu-3 cells was about 17µM. However, 

500µM DIDS was required to fully inhibit AE activity, suggesting that other 

DIDS-sensitive transporters might be present in the basolateral membrane of 

Calu-3 cells. This could be other SLC4 family members, such as SLC4A9 (AE4) 

which has been recently found as a basolateral Cl-/HCO3
- anion  exchanger in 

mouse submandibular gland acinar cells (Pena-Munzenmayer et al., 2015), or 

even other members of the SLC26 family,  such as SLC26A7, which plays an 

important role in HCO3
- transport across the basolateral membrane of gastric 

parietal cells (Petrovic et al., 2003) and intercalated cells of the outer medullary 

collecting duct (Petrovic et al., 2004). SLC26A7 is expressed in Calu-3 cells (J 

Garnett PhD thesis, 2010) and is also sensitive to DIDS (Petrovic et al., 2003). 

However, the IC50 for DIDS block of the basolateral AE activity in Calu-3 cells 

was much lower than the reported IC50 for DIDS inhibition of the SLC26A7, 

which was 126µM (Petrovic et al., 2003). Also, my results showed that 

basolateral AE had a strict dependency on Cl- and HCO3
-  but it has been shown 

that SLC26A7 is impermeable to HCO3
- (Kim et al., 2005). Thus, my results are 

consistent with the expression of functional AE2 on the basolateral membrane of 

Calu-3 cells under resting conditions. 

In contrast to previous studies which showed that an increase in [cAMP]i had no 

effect on the basolateral Cl-/HCO3
- AE activity in Calu-3 cells (Huang et al., 

2012; Shan et al., 2012; Kim et al., 2014), I have demonstrated that the addition 

of cAMP agonists Fsk, ADO, dbcAMP or IBMX almost completely inhibited 

the basolateral Cl-/HCO3
- AE activity, which is consistent with the recent study 

by Garnett et al., (2013). In addition, inhibition of the cAMP efflux transporter, 

most likely MRP4, mimicked the effect of cAMP agonists on basolateral Cl-

/HCO3
- AE activity in Calu-3 cells. The reasons for the different results are not 

clear but it could be due to differences in cell culture conditions or different 

batches of Calu-3 cells.  
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My work has also been the first to investigate the mechanism by which 

increased cAMP levels inhibit the basolateral AE activity, and I have shown that 

the downstream targets of cAMP, including PKA, Epac, CNG channel, and 

mTOR, are not involved in the cAMP-induced inhibition of the basolateral Cl-

/HCO3
- AE activity. Interestingly, Epac inhibition caused a marked reduction in 

the basolateral AE activity under resting conditions, suggesting, for the first 

time, that Epac helps keep the basolateral anion exchanger active under resting 

conditions. Interestingly, Epac had the opposite effect on the apical anion 

exchanger where it appeared to inhibit pendrin activity under resting conditions. 

The net effect of this regulation by Epac would be to reduce the rate of HCO3
- 

secretion under non-cAMP stimulated conditions. This is consistent with 

previous results from our group (Garnett et al., 2011), which showed that under 

resting conditions Calu-3 cells secrete little HCO3
- into the luminal 

compartment. It is also consistent with previous results from pancreatic duct 

cells which suggested that basolateral AE2 activity is reduced after cAMP 

stimulation (Ishiguro et al., 2002). Note that I also showed that cGMP was not 

involved in the regulating basolateral Cl-/HCO3
- AE activity under either resting, 

or cAMP stimulated conditions, similar to the apical anion exchangers. 

Intracellular elevation of Ca2+ did not affect the activity of the basolateral AE; 

however, intracellular depletion of Ca2+, by BAPTA-AM, caused a significant 

decrease in basolateral AE activity under resting conditions. Interestingly, I have 

shown that intracellular Ca2+ regulates the basolateral Cl-/HCO3
-
 AE activity 

independently of cAMP. On the other hand, the absence of extracellular Ca2+ did 

not affect basolateral AE activity under resting conditions, but it did partially 

remove the cAMP-induced inhibition of this transporter. This latter effect could 

be linked to the CaSR and a change in [cAMP]i production, since cAMP 

production is decreased in the absence of extracellular Ca2+ concentration 

(Ferreira et al., 1998). A drop in cAMP would thus partially overcome the 

cAMP-induced inhibition of the basolateral AE activity. I also found that  

basolateral AE activity was significantly reduced in the absence of extracellular 

Ca2+ in ER Ca2+-store depleted Calu-3 cells, possibly through an increase in 

[cAMP]i, via store-operated cAMP production (Lefkimmiatis et al., 2009). I 

demonstrated that Ca2+/CaM dependent kinases were not involved in the 
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regulation of the basolateral AE activity under cAMP-stimulated conditions, but   

CaM inhibition itself did significantly reduce the activity of the basolateral AE, 

suggesting that decreasing [Ca2+]i potentially inhibits the activity of the 

basolateral Cl-/HCO3
- AE via a CaM-dependent mechanism in Calu-3 cells. 

However, it was also shown that CaM and cAMP induce their effects on the 

basolateral AE through a separate regulatory mechanism. 

My studies also found that dynamin inhibition markedly reduced basolateral AE 

activity under resting condition, similar to the effects observed for the apical 

anion exchanger. However, unlike the effect on pendrin activity, actin 

cytoskeleton disruption significantly reduced the basolateral Cl-/HCO3
- AE 

activity under resting conditions. However, neither dynamin inhibition nor 

cytoskeleton disruption had any effect on the ability of cAMP to further reduce 

the basolateral AE activity in Calu-3 cells, suggesting that cAMP works via a 

non-dynamin/cytoskeleton mechanism. 

I also demonstrated that CK2 plays an important role in the regulation of the 

basolateral AE activity in Calu-3 cells, possibly through a CaM-dependent 

mechanism since simultaneous inhibition of CaM and CK2 did not produce a 

further decrease in basolateral Cl-/HCO3
- AE activity, compared to CaM 

inhibition or CK2 inhibition alone. Furthermore, my work also showed that 

PP1/2A was important in regulating basolateral AE activity, suggesting that 

CK2 may signal through a CaM and PP1-dependent mechanism, as CK2 can 

phosphorylate CaM (Arrigoni et al., 2004) and PP1 (Van Eynde et al., 1994). 

This is consistent with a recent study that  demonstrated CK2 regulates K+-

channel activity through a CaM and PP1-dependent mechanism (Kang et al., 

2014).  
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6.1.3 Regulation of mAE2 in transfected HEK-293T cells  

 

In order to provide further insights into the identity and regulation of the 

basolateral anion exchanger in Calu-3 cells, I studied the properties and 

regulation of mAE2 after transient transfection into HEK-293T cells. My work 

has further investigated the effect of different concentration of DIDS on mAE2 

in transfected HEK-293T cells. It was found that only concentrations in excess 

of 100μM and 200μM DIDS significantly reduced the activity of mAE2 in 

HEK-293T cells. Consistent with this, it has been shown that high concentration 

of DIDS significantly inhibited murine AE2 activity in transfected  HEK-293 

cells, by 68.5% at 300µM DIDS and by 74.2% at 400µM DIDS (Ruetz et al., 

1993). However, in contrast to results obtained in Calu-3 cells, elevation of 

intracellular cAMP did not inhibit mAE2 activity; the most likely explanation 

would be lack of CFTR expression in these cells (Domingue et al., 2014). 

Consistent with this, an increase in [cAMP]i caused a marked decrease in the 

rate of reacidification produced by transfected mAE2 activity in response to Cl- 

free solution in HEK-293T cells cotransfected with mAE2 and CFTR, 

suggesting that CFTR is involved in the cAMP induced inhibition of the mAE2 

activity. 

In a similar fashion to Calu-3 cells, mAE2 activity was significantly reduced by 

a decrease in [Ca2+]i and CaM inhibition, which further reinforces the finding 

that intracellular Ca2+ plays an important role in the regulation of AE2 activity, 

potentially through a CaM dependent mechanism. It was also found that Epac 

inhibition reduced mAE2 activity, and this effect could potentially be through a 

Ca2+-dependent mechanism, since it has been shown that Epac enhances Ca2+ 

release in cardiac myocytes (Oestreich et al., 2009). However, it would be of 

interest to measure [Ca2+]i in ESI-09 treated HEK-293T cells in order to 

investigate whether Epac inhibition affects intracellular Ca2+ concentration. 

Interestingly, the presence of CFTR abolished the effect of Epac inhibition on 

the mAE2 activity in HEK-293T cells cotransfected with mAE2 and CFTR, 

which might be due to the involvement of CFTR in HCO3
- transport.  

227 
 



My studies have also demonstrated for the first time that CK2 play a crucial role 

in the regulation of mAE2 activity in HEK-293T cells, in a similar fashion to 

Calu-3 cells, as both CK2 inhibitors, TBB and CX4945, caused a significant 

decrease in the mAE2 activity. Interestingly, the TBB-induced inhibition of 

mAE2 activity was significantly reduced by cotransfection of mAE2 with a 

TBB-resistant CK2 mutant (DM-CK2), compared to control cells transfected 

with mAE2 alone. Most interestingly, mAE2 activity was markedly decreased in 

CK2-knockout HEK-293T cells, both in the magnitude of alkalinisation in 

response to Cl- free solution, and the rate of reacidification upon Cl- readdition, 

compared to control cells with mAE2. This effect was significantly recovered by 

cotransfection of CK2-knock out HEK-293T cells with WT-CK2 and mAE2, 

compared to control co-transfected cells with mAE2 and empty plasmid. This 

suggests that CK2 plays a novel role in the regulation of the AE2 activity both in 

the transfected HEK-293T cells and Calu-3 cells. Since inhibition of CaM and 

PP1/2A significantly reduced the activity of the transfected mAE2, CK2 

potentially control mAE2 activity via CaM and PP1 in transfected HEK-293T 

cells.  

 

6.2 Final conclusion 

The present work provides further evidence and insights into how signalling 

molecules control the CFTR-dependent apical Cl-/HCO3
- AE, as well as the 

basolateral Cl-/HCO3
- AE activity, under resting and cAMP-stimulated 

conditions in Calu-3 cells, and to some extent how the activity of the two anion 

exchangers are coordinated by the cell. 

In the apical membrane of Calu-3 cells, there was no apical AE activity under 

resting condition. However, elevation of [cAMP]i markedly increased apical Cl-

/HCO3
-  AE activity in synergism with a normal resting concentration of 

intracellular Ca2+. The cAMP-induced activation of the apical AE activity was 

through a PKA/Epac-dependent mechanism, but did not involve Ca2+/CaM-

dependent protein kinases. CK2 inhibition did not alter the resting activity of the 
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apical AE, but markedly reduced the cAMP-stimulated apical AE (Figure 6.1, 

apical side). 

In the basolateral membrane, there was a DIDS-sensitive, Cl- and HCO3
--

dependent Cl-/HCO3
- AE activity under resting condition, which was almost 

completely inhibited by elevation of [cAMP]i, This cAMP-dependent inhibition 

was, however, independent of direct downstream targets of cAMP, including 

PKA, Epac, CNG channels and mTOR kinase. Under resting conditions, Epac 

was found to be required to maintain the basolateral AE activity. The resting 

activity of the basolateral AE was Ca2+ and CaM-dependent, but did not involve 

Ca2+/CaM-dependent protein kinases. My work has also suggested for the first 

time that CK2 play a novel role in regulating the resting activity of the 

basolateral AE, potentially through a CaM and PP1-dependent mechanism 

(Figure 6.1, basolateral side).  

Overall, based on the fact that basolateral DIDS significantly increased the pH, 

but not the amount of secreted fluid from Calu-3 cells under resting conditions, 

and that cAMP agonists inhibited basolateral AE activity, I conclude that the 

basolateral anion exchanger is not required for cAMP-stimulated HCO3
- 

secretion. Indeed inhibiting the exchanger would be predicted to enhance HCO3
- 

secretion, potentially by providing more HCO3
- inside the cells and thereby 

increasing the driven force for HCO3
- and fluid secretion across the apical 

membrane, where stimulation of Calu-3 cells by cAMP agonist caused a marked 

increase in both the pH and amount of secreted fluid.  
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Figure 6. 1: Current model of the regulatory pathways identified in this study 
which impact on anion secretion in Calu-3 cells. Summary of the potential 
mechanisms regulating HCO3

- transport by CFTR-dependent apical Cl-/HCO3
- AE, as 

well as the basolateral AE activity in Calu-3 cells. (+) Indicates stimulatory regulation, 
(-) Indicates inhibitory regulation, and (X) indicates not involved. 
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6.3 Future experiments 

In addition to the future experiments I have already described previously in 

chapters 3, 4 and 5, there are also a range of other experiments that could be 

performed in order to reinforce the conclusions from the current study, and to 

provide further information into regulation of the apical and basolateral Cl-

/HCO3
- anion exchangers in airway epithelial cells. Human cell lines are only 

models of native cells, thus findings from experiments, and interpreting data 

from an immortalised cell lines, might not reveal what happens physiologically 

in vivo. It has been shown that primary serous and mucous cell cultures derived 

from  human airway glands can be produced, which resemble native serous or 

mucous cells (Finkbeiner et al., 2010). The study by Finkbeiner et al., (2010), 

showed that both cell cultures produced tight junctions become polarized, and 

generated a transepithelial electrical resistance (Finkbeiner et al., 2010). They 

also found that  in both cell types, cAMP stimulation increased short-circuit 

current, via an increase in CFTR-mediated Cl- secretion , which was inhibited by 

the CFTR inhibitor, CFTRinh-172 (Finkbeiner et al., 2010). Furthermore, the 

study by Lee and Foskett, (2010), showed that primary serous acinar cells from 

human and porcine airway submucosal glands play an important role in Cl- 

secretion, via CFTR, in response to vasoactive intestinal peptide and other 

cAMP agonists (Lee and Foskett, 2010), but HCO3
- transport was not studied in 

detail. Therefore, it would be beneficial to repeat experiments on primary airway 

epithelia in order to establish whether native serous cells also express apical or 

basolateral anion exchangers, using a similar methodology outlined in this 

thesis. For instance, measurement of intracellular pH in cAMP stimulated native 

serous cells, in the presence of a CFTR inhibitor, with and without basolateral 

DIDS, in order to identify the potential role of apical and basolateral Cl-/HCO3
- 

AE in the regulation of pHi and HCO3
- secretion. 

Since the apical Cl-/HCO3
- AE provides a CFTR-independent source of secreted 

HCO3
- in airway epithelial cells, and inhibition of the basolateral AE might 

enable more HCO3
- to be accumulated inside the cells via the action of the 

basolateral NBC, my results could have implications for CF, because HCO3
- 

secretion is known to be defective in CF airways (Smith and Welsh, 1992). 
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Thus, it would be important to study if  apical and basolateral Cl-/HCO3
- anion 

exchangers are present in native serous cells of submucosal glands from CF 

tissues or in cultured CF cell lines. In addition, cell lines such as CFSMEo- and 

6CFSMEo-, which are deltaF508 CF cell lines that do not express detectable 

CFTR protein could also be studied (da Paula et al., 2005).  

My data also suggests that bilateral Ca2+ removal partially removed the cAMP-

induced inhibition of the basolateral AE activity in Calu-3 cells, possibly 

through a CaSR-dependent mechanism. With this in mind, it would be of 

interest to investigate the expression of the CaSR in Calu-3 cells, as well as to 

determine the effect of CaSR agonists or antagonists on the basolateral Cl-

/HCO3
-
 AE activity to gain further insights into the role of CaSR in the 

regulation of the basolateral Cl-/HCO3
-
 AE activity in Calu-3 cells. 

The results obtained in the present study mostly involved the use of 

pharmacological agents. Therefore, it would be important to repeat some 

experiments in genetically modified Calu-3 cells in which the target protein of 

interest had been knocked down or knocked out. Specifically, CK2 knockout in 

Calu-3 cells would provide further insights into the role of CK2 in the regulation 

of apical and basolateral Cl-/HCO3
- AE activity in Calu-3 cells. This could 

involve approaches to silence CK2-gene expression in Calu-3 cells, which could 

be performed by recently described technology, such as TALEN and CRISPR-

Cas9. In CRISPR-Cas9 technology, clustered regulatory interspaced short 

palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas proteins), 

endogenous to prokaryotes, are transfected into eukaryotic cells, and then Cas 

proteins unwind and split the targeted specific DNA sequences, and thereby 

inhibit gene expression (Mali et al., 2013; Qi et al., 2013). Alternatively, 

methods that targeted mRNA could also be employed to knock down protein 

expression, as we have previously described for CFTR and pendrin (Garnett et 

al., 2011; Garnett et al., 2013). 
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Appendix 

Mouse AE2 protein contains 51 CK2 phosphorylation motifs described in the 

literature, compared to 42 CK2 phosphorylation motifs in human AE2, and are 

highlighted in below diagram: 

 

 

 Mouse AE2 

MSSAPRRPASGADSLHTPEPESLSPGTPGFPEQEEDELRTLGVERFEEILQEAGSRGGEEPGRS

YGEEDFEYHRQSSHHIHHPLSTHLPPDARRRKTPQGPGRKPRRRPGASPTGETPTIEEGEEDE

EEASEAEGFRAPPQQPSPATTPSAVQFFLQEDEGAERKPERTSPSPPTQTPHQEAAPRASKGA

QTGTLVEEMVAVASATAGGDDGGAAGRPLTKAQPGHRSYNLQERRRIGSMTGVEQALLPR

VPTDESEAQTLATADLDLMKSHRFEDVPGVRRHLVRKNAKGSTQAAREGREPGPTPRARPR

APHKPHEVFVELNELLLDKNQEPQWRETARWIKFEEDVEEETERWGKPHVASLSFRSLLEL

RRTLAHGAVLLDLDQQTLPGVAHQVVEQMVISDQIKAEDRANVLRALLLKHSHPSDEKEFSF

PRNISAGSLGSLLGHHHAQGTESDPHVTEPLIGGVPETRLEVDRERELPPPAPPAGITRSKSKH

ELKLLEKIPENAEATVVLVGCVEFLSRPTMAFVRLREAVELDAVLEVPVPVRFLFLLLGPSSA

NMDYHEIGRSISTLMSDKQFHEAAYLADERDDLLTAINAFLDCSVVLPPSEVQGEELLRSVAH

FQRQMLKKREEQGRLLPPGAGLEPKSAQDKALLQMVEVAGAAEDDPLRRTGRPFGGLIRD

VRRRYPHYLSDFRDALDPQCLAAVIFIYFAALSPAITFGGLLGEKTKDLIGVSELIMSTALQGV

VFCLLGAQPLLVIGFSGPLLVFEEAFFSFCSSNELEYLVGRVWIGFWLVFLALLMVALEGSFL

VRFVSRFTQEIFAFLISLIFIYETFYKLIKIFQEHPLHGCSGSNDSEAGSSSSSNMTWATTILVPD

NSSASGQSGQEKPRGQPNTALLSLVLMAGTFFIAFFLRKFKNSRFFPGRIRRVIGDFGVPIAILI

MVLVDYSIEDTYTQKLSVPSGFSVTAPDKRGWVINPLGEKTPFPVWMMVASLLPAVLVFILIF

METQITTLIISKKERMLQKGSGFHLDLLLIVAMGGICALFGLPWLAAATVRSVTHANALTVM

SKAVAPGDKPKIQEVKEQRVTGLLVALLVGLSMVIGDLLRQIPLAVLFGIFLYMGVTSLNGI

QFYERLHLLLMPPKHHPDVTYVKKVRTMRMHLFTALQLLCLALLWAVMSTAASLAFPFILI

LTVPLRMVVLTRIFTEREMKCLDANEAEPVFDECEGVDEYNEMPMPV 
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 Human AE2 

MSSAPRRPAKGADSFCTPEPESLGPGTPGFPEQEEDELHRTLGVERFEEILQEAGSRGGEEPG

RSYGEEDFEYHRQSSHHIHHPLSTHLPPDARRRKTPQGPGRKPRRRPGASPTGETPTIEEGEE

DEDEASEAEGARALTQPSPVSTPSSVQFFLREDDSADRKAERTSPSSPAPLPHQEATPRASKGA

QAGTQVEEAEAEAVAVASGTAGGDDGGASGRPLPKAQPGHRSYNLQERRRIGSMTGAEQA

LLPRVPTDEIEAQTLATADLDLMKSHRFEDVPGVRRHLVRKNAKGSTQSGREGREPGPTPRA

RPRAPHKPHEVFVELNELLLDKNQEPQWRETARWIKFEEDVEEETERWGKPHVASLSFRSL

LELRRTLAHGAVLLDLDQQTLPGVAHQVVEQMVISDQIKAEDRANVLRALLLKHSHPSDEK

DFSFPRNISAGSLGSLLGHHHGQGAESDPHVTEPLMGGVPETRLEVERERDVPPPAPPAGITR

SKSKHELKLLEKIPENAEATVVLVGCVEFLSRPTMAFVRLREAVELDAVLEVPVPVRFLFLLL

GPSSANMDYHEIGRSISTLMSDKQFHEAAYLADEREDLLTAINAFLDCSVVLPPSEVQGEELL

RSVAHFQRQMLKKREEQGRLLPTGAGLEPKSAQDKALLQMVEAAGAAEDDPLRRTGRPFG

GLIRDVRRRYPHYLSDFRDALDPQCLAAVIFIYFAALSPAITFGGLLGEKTQDLIGVSELIMST

ALQGVVFCLLGAQPLLVIGFSGPLLVFEEAFFSFCSSNHLEYLVGRVWIGFWLVFLALLMVA

LEGSFLVRFVSRFTQEIFAFLISLIFIYETFYKLVKIFQEHPLHGCSASNSSEVDGGENMTWAG

ARPTLGPGNRSLAGQSGQGKPRGQPNTALLSLVLMAGTFFIAFFLRKFKNSRFFPGRIRRVIG

DFGVPIAILIMVLVDYSIEDTYTQKLSVPSGFSVTAPEKRGWVINPLGEKSPFPVWMMVASLL

PAILVFILIFMETQITTLIISKKERMLQKGSGFHLDLLLIVAMGGICALFGLPWLAAATVRSVT

HANALTVMSKAVAPGDKPKIQEVKEQRVTGLLVALLVGLSIVIGDLLRQIPLAVLFGIFLYM

GVTSLNGIQFYERLHLLLMPPKHHPDVTYVKKVRTLRMHLFTALQLLCLALLWAVMSTAAS

LAFPFILILTVPLRMVVLTRIFTDREMKCLDANEAEPVFDEREGVDEYNEMPMPV 
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