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Abstract

One concern in the homological theory of Banach algebras is the identification
of projective algebras and projective closed ideals of algebras. Besides being of in-
dependent interest, this question is closely connected to the continuous Hochschild
cohomology.

In this thesis we give necessary and sufficient conditions for the left projectivity
and biprojectivity of Banach algebras defined by locally trivial continuous fields
of Banach algebras. We identify projective C*-algebras .A defined by locally trivial
continuous fields U = {Q), (A¢)tcq, @} such that each C*-algebra A; has a strictly
positive element. We also identify projective Banach algebras .A defined by locally
trivial continuous fields U = {Q, (K(E;))teq, ©} such that each Banach space E;
has an extended unconditional basis.

In particular, for a left projective Banach algebra A defined by locally trivial con-
tinuous fields U = {Q, (At)teq, ©} we prove that () is paracompact. We also show
that the biprojectivity of A implies that () is discrete. In the case ¢/ is a continuous
tield of elementary C*-algebras satisfying Fell’s condition (not nessecarily a locally
trivial field) we show that the left projectivity of .4 defined by ¢/, under some ad-
ditional conditions on ¢/, implies paracompactness of ().

For the above Banach algebras .4 we give applications to the second continuous
Hochschild cohomology group H%(A, X) of A and to the strong splittability of
singular extensions of A.



"There was one picture in particular which bothered him. It had begun with a leaf
caught in the wind, and it became a tree; and the tree grew, sending out innumerable
branches, and thrusting out the most fantastic roots.”

Leaf by Niggle - ].R.R. Tolkien
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1 Introduction

1 Introduction

1.1 History and recent work

In a purely algebraic setting the homological theory of algebras was first introduced by
Hochschild, MacLane and Cartan and Eilenberg during 1940-1960, see [3, 14, 15, 24].
The theory has had a big influence on many areas of pure mathematics.

In 1962 the first paper on continuous Hochschild cohomology appeared [17].
Kamowitz used the second Banach cohomology groups to solve a Wedderburn de-
composition problem for commutative Banach algebras. Later the Homological theory
of Banach and C*-algebras was developed somewhat independently by the Moscow
school led by Prof A. Ya. Helemskii [12] and by several Western authors, particularly,
by Prof B. E. Johnson of Newcastle, England [16].

In 1970 Helemskii adapted purely algebraic homology theory to the continuous version
and defined (C-relative) projective Banach modules. He showed that as in the purely
algebraic version, one can compute cohomology groups by constructing projective or
injective resolutions of the corresponding module and the algebra.

The theory of continuous homology of Banach algebras is now well developed. It
has applications in many branches of mathematics, including extensions of Banach al-
gebras [2] and automatic continuity [6], spectral theory [11], the theory of de Rham
homology [4] and K-theory.

For example, a research monograph by Bade, Dales and Lykova [2] on algebraic and
strong splittings of extensions of Banach algebras includes many examples of Banach
algebras A for which it is proven that there exists an extension of A which does not
split algebraically or strongly. See also a recent paper by Laustsen and Skillicorn [19].

We should mention the most recent papers on projective and injective modules. In
[8] Dales and Polyakov characterize some homological properties such as flatness and
injectivity of Banach left L!(G)-modules, where G is a locally compact group. In [29],
Racher gives more examples of projective and flat modules over the Banach algebra
L'(G) and connections of those properties with the compactness and amenability of G.
See also [7] and [37].
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In [12] Helemskii describes the projective ideals of Cy(Q2). He shows that a closed
left ideal of Cp(Q)) is projective if and only if its spectrum is paracompact. We will
generalise this property to the Banach algebras defined by continuous fields of Banach
algebras.

In [20] Lykova proved the projectivity of K(E) for some Banach spaces E. In [28]
Phillips and Raeburn showed that all c—unital C*-algebras are left projective. In [23]
Lykova proves, using different methods, that every ideal of a separable C*-algebra is
left projective.

In this thesis we generalise these results for C*-algebras defined by locally trivial con-
tinuous fields U = {Q), A¢, ®} where each A; is a o-unital C*-algebra. We also prove
results on the right projectivity of Banach algebras defined by locally trivial continuous
fields U = {Q), K(E;),®} where each E; is a Banach space with an extended uncondi-
tional basis.

Some main results of this thesis are already published in my joint paper with Lykova

[5].

1.2 Main results

The main results are the following.

Theorem 4.16. Let Q) be a Hausdorff locally compact space with the topological dimension
dim Q) < /¢, for some ¢ € N, let U = {Q, Ay, O} be a locally trivial continuous field of
o-unital C*-algebras, and let the C*-algebra A be defined by U. Then the following conditions
are equivalent:

(i) Q) is paracompact;
(ii) A is right projective and U is a disjoint union of o-locally trivial continuous fields of C*-
algebras with strictly positive elements.

Theorem 5.25 Let Q) be a Hausdorff locally compact space. Let U = {Q, (K(Ey)), O}
be an (-locally trivial continuous field of Banach algebras, for some ¢ € IN. Suppose, for each
x € Q, E, is a separable Banach space with a hyperorthogonal basis (e ),eN C Ey. Let A be
the Banach algebra generated by U.

Then the following conditions are equivalent:
(i) Q) is paracompact;
(ii) A is right projective and U is a disjoint union of o-locally trivial continuous fields of Ba-
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nach algebras.

Recall definitions from Dixmier’s book "Les C*-algebres et leurs représentations”
[9, Section 2].

Definition 1.1 (Fell’s condition). Let Q) be a locally compact Hausdorff space, and U =
{Q, Ay, ®} a continuous field of elementary C*-algebras. U is said to satisfy Fell’s condition
if, for every x € ), there exists a neighbourhood Uy of x and a vector field p of U, defined
and continuous in Uy, such that, for every t € Uy, p(t) is a projection of rank 1. Note that
U|Uy = U(Hy).

Definition 1.2. Let U = {Q), (At)teq, O} be a continuous field of Banach algebras over ).
Let A C ©. Then A is said to be total if, for every t € Q), the set x(t), as x runs through A, is
total in Ay. U is said to be separable if © has a countable total subset.

Theorem 6.29. Let ) be a locally compact Hausdorff space of finite dimension and
U = {O, (At)teq, O} be a separable continuous field of elementary C*-algebras, of rank RNy,
satisfying Fell’s condition. Let A be the C*-algebra defined by U. Then the following are equiv-
alent

(i) ) is paracompact.

(ii) U is a disjoint union of continuous fields of elementary C*-algebras that satisfies the o-Fell
condition and A is left projective .

See appendix A for a definition of paracompactness as well as known topological
properties of paracompact spaces.

1.3 Description of results by sections

In Section 2 we investigate the properties of left and right projective Banach algebras
defined by locally trivial continuous fields U = {Q, (Ax)xeq, @} of Banach algebras.
We prove the projectivity of the Banach algebras Ay, x € Q).

Proposition 2.3. Let Q) be a locally compact topological space, let U = {Q), (Ax)xeq, O}
be a locally trivial continuous field of Banach algebras and let A be the Banach algebra defined
by U. Suppose that A is projective in A-mod. Then the Banach algebras Ay, x € Q) are uni-
formly left projective.
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Proposition 2.4 Let U = {Q), (Ax)x, A} be a locally trivial continuous field of Banach
algebras such that every Ay has an identity e such that sup.. ., |lea, || < C for some constant
C. Suppose that Q) is paracompact. Let A be the Banach algebra defined by U. Then A is
projective in A-mod.

In Section 3 we prove the following results on the topological properties of ().

Proposition 3.4. Let Q) be a locally compact Hausdorff space, let U = {Q, (Ax)xcq, O} be
a o-locally trivial continuous field of Banach algebras, and let A be the Banach algebra defined
by U. Suppose that A is projective in A-mod. Then () is paracompact.

We also give an example of a locally trivial continuous field of left projective Banach
algebras such that the algebra defined by this field is not left projective.

In Sections 4 and 5 we show sufficient conditions for the left projectivity of A
defined by locally trivial continuous fields of Banach algebras and give proofs of The-
orems 4.16 and 5.25. In Section 6 we study projectivity of C*-algebras with Fell’s
condition and give a proof of Theorem 6.29. In Section 7 we apply the methods used
in Sections 2 and 3 to investigate the biprojectivity of Banach algebras defined by lo-
cally trivial fields of Banach algebras. This produces the following results.

Theorem 7.4 Let ) be a locally compact Hausdorff space and let U = {Q), (At)teq, O} be
a locally trivial continuous field of Banach algebras. Let A denote the Banach algebra defined
by U. If A is biprojective then the Banach algebras (A;);eq are uniformly biprojective.

Theorem 7.5 Let Q) be a locally compact Hausdorff space and let U = {Q), (At)teq, O} be
a locally trivial continuous field of Banach algebras. Let A denote the Banach algebra defined
by U. If A is biprojective then Q) is discrete.

We also give examples of families of biprojective Banach algebras such that contin-
uous field of them are biprojective for discrete ().

1.4 Definitions and notations

The unit circle T is defined as
T={AeC:|A| =1}

Let A be a Banach algebra. In this report we consider homological properties of Banach
A-modules. The modules we are interested in here are Banach modules. The following

6
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definition of Banach modules can be found in [13].
Let A be a Banach algebra and let X be a Banach space. We say that X is a left
Banach A-module if there exists a bounded bilinear operator

m: AxX —X

(a,x) —>a-x
such that, for every a,b € A and x € X, we have
a-(b-x)=(a-b)-x.

Right Banach A-modules are defined similarly.

Let X be a Banach space. We say that X is a Banach A-bimodule if it is a left Banach
A-module and a right Banach A-module and if the following relation is satisfied

(a-x)-b=a-(x-b),

for every a,b € A and x € X.

Let P and Q be left Banach A-modules. Let p : P — Q be a bounded continuous
linear map. We say that p is a morphism of left Banach A-modules if p(ax) = ap(x) for all
ac€ A xeP.

For a Banach algebra A we will denote the category of all left Banach A modules and
morphisms of left (right) Banach A-modules by A-mod (mod-A) and the category of
all Banach A bimodules and morphisms of Banach A-bimodules by A-mod-A.

1.4.1 The projective tensor product

The following definitions of the tensor products of vector spaces can be found in [13].
Let E and F be complex vector spaces and let E ® F be the algebraic tensor product of
E and F.

Suppose A and B are algebras. We make A ® B into an algebra by setting mul-
tiplication as (a1 ® by)(a2 ® bp) = (a1a2) ® (b1bz). The algebra A ® B is called the
algebraic tensor product of A and B.

Let E and F be Banach spaces. The projective norm on E ® F is defined by

n

lull =~ _inf 3 [lai]l[[bil],

u=yi,a;®b; ;5
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where the infimum is taken over all expressions of u of the form u = Y/ ; 4; ® b; with
nc€N,a; € Eand b; € F fori =1,...,n. We call the completion of E ® F with respect
to this norm the projective tensor product of E and F and we denote it by EQF. When A
and B are Banach algebras then A®B is also a Banach algebra. This fact can be found
in [13].

We will need the following lemmas to approximate the norm of some elements of
the projective tensor product of two Banach spaces.

Lemma 1.3. Let ¢ be a primary nth root of unity and let j € Z. Then

L n ifnlj
Z(gj)k — { f |] '
k=1 0 otherwise.
Proof. Suppose that n|j. Then & = 1 which gives
Z(Cj)k =Y 1=n
k=1 k=1
Now suppose otherwise. Then & # 1 and so
f sy @1 —g @@ -1 _d@y-n
=1 &—1 & —1 &—1 :

]

Lemma 1.4. Let X and Y be Banach spaces. Suppose an element u € X®Y can be represented
as

n
U=y X ® Yy
k=1

and that & is a primary n'" root of unity, then

1 n
||u||X®Y g Z

Z & k]%

=

n
Z Ckixl
i=1

X

gl (5]

Proof. Consider v € X®Y,

:I»—\
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Then by definition of the norm in X®Y,

Y. ¢ My

j=1

i gkixi

i=1

1 n
lollxey < = ),
=

X Y

Therefore it is enough to show that u = v.

By Lemma 1.3, we have, fori =1,..,nand j =1, .., n,
n . Nk nx; ifi=j
Y. (51_1) Xj = J J

k=1 0 otherwise.

We then have

> >
|‘3 Il Hl":
—_ —_
M: Il 1
—_
~
= 1
—_
/N VS

»
Il
—
-
I
—_

~
I
—_

I
SR, I~k IR
[\1:
M:
et
fay
=
~
®
~
<R
=
$.
~—

= L ()@ (y)
= jéxf ®Yj

]

Lemma 1.5. Let X and Y be Banach spaces. Suppose an element u € X&Y can be represented

as

m n
U= Z Z x,i ®y§<, where x,l< S X,yfc €Y, withindicesk =1,..,nandl =1, ..., m;
I=1k=1

and that & is a primary m™ root of unity and that v is a primary n'" root of unity. Then

[ullxey < 233
Ullxey < —
mn =

L It ki .t
&

x |[s=1j=1

m n )
Yo Yy

Y
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Proof. Similar to above, consider v € X&Y,

- LEE[(EEer) (B

I=1k=1 t=11i s=1j=1

Then by definition of the norm in X XY

1 m n
lollxey < o D1 |
1=1k=1

Z Zg ls,7 k]y]

s=1j=1

X

Therefore it is enough to show that u = v.

By Lemma 1.3, we have, fors =1,..,m,t=1,..,.m,j=1,.,nand k=1, .,n,

i &) (o )kxt{m(ni")kﬁ st

0 otherwise
and
1 - A\k mnx} ifi=j
=] S — ]
k;m <;7 ) g {O otherwise.
We then have
1 n ) m n
o= EE |(EE e o (£ 5]
M= [ \e=1i= s=1j=1
R e () o) o )
MR 23 k=1 121 j=1 =1 5=1 : J
1 n n n m i s
— Xy (m () ) @ ()
k=1j=1i=1s=1
1 n m s s
- L35 () ()
=2 ) %oy
s=1j=1
= u.

10
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1.4.2 Continuous fields U = {Q), (A;),©} of Banach and C*-algebras
The following can be found in [10].

Definition 1.6. Let Q) be a Hausdorff space. We say that Q) is locally compact if every point of
Q) has a compact neighbourhood.

Definition 1.7. Let Q) be a locally compact Hausdorff space. We say a function f : QO — C
vanishes at infinity if for every € > 0 there exists a compact subset K of Q) such that |f(t)| < e
for every t € QO \ K. We write f(t) — 0as t — oo.

In this thesis we consider homological properties of Banach algebras defined by
continuous fields of C*-algebras and Banach algebras. All of the definitions below can
be found in [9].

Definition 1.8. Let (A¢)sea be a family of Banach algebras. We denote by 11y o Ay the product
space of (A¢)ien equipped with pointwise operations and the sup norm. Every element of
IT;cp At is called a vector field. More generally, if Y C A, an element of Il;cy Ay is called a
vector field over Y.

Definition 1.9. A continuous field U of Banach algebras is a triple U = {Q, (At)icq, O}
where ) is a locally compact Hausdorff space, (A¢)icq is a family of Banach algebras and © is
a subalgebra of I1;cq At such that

(i) for every t € Q), the set x(t) for x € © is dense in Ay;
(ii) for every x € ©, the function t — ||x(t)|| 4, is continuous on C);

(iii) whenever x € 1ycq A and, for every t € Q) and every € > 0, there is an x' € © such
that || x(s) — x'(s)|| a, < € throughout some neighbourhood of t, it follows that x € ©.

The elements of © are called the continuous vector fields of .
Definition 1.10. Let U = {Q, (At)tcq, O} be a continuous field of Banach algebras over a
locally compact Hausdorff space (). Let A be the norm closed subalgebra of ®. Then it can be

shown that A equipped with the norm || x|| = sup,.(, ||x(t)| 4, is a Banach algebra which we
call the Banach algebra defined by U.

For every t € Q), the map ©; : A — Ay : a — a(t) is a Banach algebra homomor-
phism with dense image and norm less than or equal to 1.

11
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Definition 1.11. Let U = {Q, (At)icq, O} be a continuous field of Banach algebras over a
locally compact Hausdorff space (). Let Y C Q and ty € Y. A vector field x over Y is said
to be continuous at tg if, for every e > 0, there is an x' € © such that ||x(t) — x'(t)||a, < €
throughout some neighbourhood of ty. The vector field x is said to be continuous on Y if it is
continuous at every point of Y.

Let ©Oly be the set of continuous vector fields over Y. A triple {Y, (A¢)icy,®Oly} is a
continuous field of Banach algebras over Y, which is called the field induced by U on Y, and
which is denoted by Uly.

Definition 1.12. Let Q) be a locally compact Hausdorff space, and let
U ={Q, (A)ten,©} and U= {Q, (Az/f)tGQ/@/}

be two continuous fields of Banach algebras (C*-algebras) over Q). Let (¢t)ieqy be a family of
maps such that each ¢ is an isometric (x-)isomorphism of Banach algebras A; onto Aj.

Define the map ¢ by
¢ : TliepAr — Tlep Al
(@(t))teq = (Pr(a(t)))rca-
If p(©) = O we say that ¢ = (¢t)teqy isomorphism of U onto U'.

Let A be the Banach algebra defined by U and A’ be the Banach algebra defined by U'. Then
one can see that, for all x € A,

1) ()l ay = e (x (D))l = llx(E) ][4, = O as £ = oo,

Thus ¢p(A) = ¢(A").
Remark 1.13. Let A be a Banach algebra, let Q) be a locally compact Hausdorff space, and let

O be the algebra of continuous mappings from Q) into A. For every t € Q), put Ay = A. It can
be shown that, U = {Q), (At)teq, O} is a continuous field of Banach algebras over Q).

Definition 1.14. Let A be a Banach algebra and let ) be a locally compact Hausdorff space.
The continuous field of Banach algebras U = {Q), (At)teq, O}, where Ay = A for every t € Q),
is called the constant field over Q) defined by A. A field isomorphic to the constant field is called
trivial.

If every point of Q) possesses a neighbourhood V such that U|y is trivial, then U is said to
be locally trivial.

12
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Definition 1.15. We say that a continuous field U of Banach algebras over ) o-locally (n-
locally) satisfies a condition I' if there is an open cover {U,}, u € M, of Q) such that each
Ulu, satisfies the condition T and, in addition, there is a countable (cardinality n, respectively)
open cover {V;} of Q) such that V; C U,,(;) for each j and some p(j) € M.

Remark 1.16. Let () be a Hausdorff locally compact space, and let i/ = {Q), A;,®} be
a continuous field of Banach algebras which locally satisfies a condition I'. Suppose (2
is o-compact (compact) and ) is an open subset of Q0. Then U|q, o-locally (n-locally
for some n € IN, respectively) satisties the condition T'.

Definition 1.17. Let Q) be a disjoint union of a family of open subsets {W,}, u € M, of Q.
We say that U = {Q), Ay, ©} is a disjoint union of L{|WH, ne M.

Remark 1.18. Let () be a paracompact Hausdorff locally compact space, and let U =
{Q), A, ®} be a continuous field of Banach algebras which locally satisfies a condition
I'. By [10, Theorem 5.1.27 and Problem 3.8.C(b)], the space () is the disjoint union of
open-closed c-compacts G, 4 € M, of Q). Suppose () is an open subset of (2. Then
Ulq, is a disjoint union of U|g,nq,, 4 € M, o-locally satistying the condition T.

1.4.3 Left projective Banach modules

Let A be a Banach algebra. Let P, X and Y be left Banach A-modules. Leto : X — Y
be an epimorphism of Banach A-modules. Let ¢ : P — Y be a morphism of Banach
A-modules. The map 1 is a lifting of ¢ if the following diagram commutes:

thatis ooy = ¢.
The lifting problem is whether or not there exists a lifting ¢ which is a morphism of
Banach A-modules. If such a morphism exists we say that the lifting problem has a
positive solution. Otherwise it has a negative solution. A lifting problem is called
admissible if ¢ is admissible, that is there exists a bounded linear operator « : Y — X
which is a right inverse to ¢.

A left Banach A-module P is said to be projective in the category A-mod if every
admissible lifting problem for P has a positive solution in A-mod. We say that a Banach
algebra A is left projective if it is projective in the category A-mod.

13
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We give an equivalent definition for projectivity which is the one that we will use
most of the time. This can be found in [12]. We must first introduce a special mor-
phism of modules. Let A be a Banach algebra and let X be a left Banach A-module.

We define the unitisation of A as A, = A ® C with multiplication given by
(a,A)(b,u) = (ab+ Ab+ pa,Ap) for a,b € Aand A, u € C and ||(a,A)| = ||a| + |A]-
The identity of A, is e = (0,1). We shall write a + Ae for an element (a,A).

Let X be a left Banach A-module. Then X is a left Banach A;-module with multi-
plication defined by (a,A) - x = a-x + Ax.

For X € A-mod, consider the free left Banach A-module A &X with multiplication
a-(bx)=abex;ac A,be Ay, x € X.
The morphism of left Banach A-module
mx i AL ®X — X
AaQx—a-x.

is known as the canonical projection. When it is obvious what module we are working
with we will simply write 77 instead of 7rx. It is known that 7t is admissible in A-mod
since we can define the following bounded linear operator which is a right inverse to
TT:
a: X — AL®X
X e®x,

where e is the identity in A .

Observe that
(moa)(x) =m(e®@x)e-x =x

for every x € X.
Note that « is not a morphism of left A-modules.

We now state the following theorem of Helemskii’s:

Theorem 1.19. [[13], p.168] Let P be a left Banach A-module. P is projective in A-mod if and
only if there exists a morphism of left Banach A-modules p : P — Ay &P such that 7o p is
the identity on P.

14
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Proof. We give a sketch of a proof.

First suppose that P is projective in A-mod. Consider the following diagram

p
idp
A, &P —~P.

Since P is projective in A-mod there exists a morphism of modules p such that the

following diagram commutes
P
4

\
A, &P P,

idp

Thus completing the claim.

Now suppose there exists a morphism of left Banach A-modules p : P — A &P
such that 77 o p is the identity on P.

We show that AL &P is projective in A-mod and the claim easily follows. Consider
the following admissible lifting problem

A

AL &P

where ¢ has a right inverse «a. Let e be the identity of A.. Defining ¢(a ® x) = a(ax o
¢)(e ® x) makes the above diagram commute. O

1.5 Cohomology groups
The following definitions can be found in [13, Ch 1 §3. Pages 71-72 ].

Let A be a Banach algebra, and let E be a Banach A-bimodule. The Banach space
of bounded n-linear maps from A x --- x A into E is denoted by B"(A, E); the ele-
ments of B"(A, E) are known as the the continuous n-cochains. We set B°(A, E) = E.

For n > 1 consider the map 6" : B"(A,E) — B"T1(A, E) given by T + §"T, where
0"T(ay,....,ay41) =a1 - T(ay, ..., ay41)

15



1 Introduction

n
+ Z(—l)kT(ﬂL---, Af—1, Ok At1, s Ant1)
k
+ (=1)""T(ay, ..., an) - aps1,

a, € Ai=1,...,n+1.
The map 6° : B°(A,E) — B'(A, E) is defined by

Ox)(a)=a-x—x-a,a € A, x €E.

The spaces ker " and imé"~! are denoted by Z"(A,E) and N"(A,E) respectively.
Note that 6"*16" = 0 for all n and so N"*(A,E) C Z"(A,E).

The complex
0 O o1 5!
0— BY(AE) — B (AE) — ...

is called the standard cohomology complex.

Definition 1.20. Let A be a Banach algebra and let E be a Banach A-bimodule. Let n € IN.
The n'"* continuous cohomology group of A with coefficients in E is defined as

H"(A,E) = Z"(AE)/N"(AE);

H°(A,E) = E.

16



2 Necessary conditions on Ay, x € Q, for left projectivity of A defined by locally trivial
fieldsU = {Q), (A;), ®}

2 Necessary conditions on A,, x € (), for left projectivity
of A defined by locally trivial fields U/ = {Q), (A;), O}

In this section we prove results on a locally trivial continuous field of Banach algebras
{U, (At)teq, ©} when the Banach algebra A defined by U is projective.

2.1 Left projectivity of A,, x € ()

Lemma 2.1. Let Q) be a locally compact Hausdorff space, let U = {Q, A;, ®} be a locally
trivial continuous field of Banach algebras Ay and let A be the Banach algebra defined by U.
Let y € Q. For every a, € Ay there is a € A such that a(y) = ay,.

Proof. Fix y € Q). By [18, Theorem 5.17], Q) is regular and, by [10, Theorem 3.3.1], (2 is
a Tychonoff space. By assumption, Uf is locally trivial and so there are open neighbour-
hoods V;, and Uy, of y such that V,, C Uy, U |u, is trivial and V}, is relatively compact. Fix
a continuous function f, € Co(Q) such that 0 < f, <1, f,(y) = 1 and fy|q\y, = 0. Let
¢ = (¢x)xeu, be an isomorphism of U|y, onto the trivial continuous field of Banach
algebras over U, where, for each y € (), ¢, is an isometric isomorphism of Banach
algebras.

For an arbitrary element a,, define a field a to be equal to a(x) = f,(x)(¢5 ' o ¢y)(ay),
for every x € U, and 0 otherwise. By property (iii) of Definition 1.9, the field a is
continuous and a € ©. Since ||a(x)||4, — 0 as x — co, we have thata € A. O

Definition 2.2. Let (Ax)yeq be a family of Banach algebras. We say that the Banach algebras
Ay, x € O, are uniformly left projective if, for every x € ), there is a morphism of left Banach
Ay-modules

Ox: Ay = (Ay)+®Ay

such that w4 0 py = ida, and sup, ¢ ||ox|la, < oo
Proposition 2.3. Let Q) be a locally compact Hausdorff space, let U = {Q, (A¢)tc, O} be a
locally trivial continuous field of Banach algebras and let A be the Banach algebra defined by

U. Suppose that A is projective in A-mod. Then the Banach algebras (Ay)ycq are uniformly
left projective.

Proof. Fix x € Q). Since U is locally trivial, there exists an open neighbourhood U, C )
of x such that U|Uy is trivial. Let ¢ = {¢:}tcy, be an isomorphism of U |Uy onto the
trivial continuous field of Banach algebras Cy (UL, Ax) over U,, where, for each t € U,,

17
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¢r: Ay — A, is an isometric isomorphism of Banach algebras.

By [18, Theorem 5.17], () is regular, and so there exists an open neighbourhood,
Ve C Uy, of x such that V, C U,. By [10, Theorem 3.3.1], Q) is Tychonoff and so
there exists an fr € Co(Q2) such that 0 < fx <1, fx(x) =1 and fy[q\u, = 0.

For a, € Ay set dx(t) = fx(t)(gbt_l o ¢x)(ayx), t € Uy and 0 otherwise. Then, by the
proof of Lemma 2.1, d, € A. Itis clear that, for a, € Ay, we have Ty (dy) = ay.

Since A is projective in A-mod, by Theorem 1.19, there exists a morphism of Banach
left A-modules p : A — A4 &®A such that wop = 14. Now define

ﬁx . Ax H (Ax)+®Ax
Ay — (Tx, ® Te)p(dx)

where 7y, : Ay — (Ax)+ sends a+ Ae to a(x) + Aey, e and ey are the adjoined identities
in A1 and (Ay)+ respectively. We now show that g, is a morphism of Banach left A,-
modules. We first show that it is linear. For ay, by € Ay, u, A € C,

(Aax + uby)™ = fx(t)(¢; ' 0 ¢r)(Aay + uby)
= /\fx(t)(ﬁbt_l o ¢x)(ax) + ]/‘fx(t)(‘f)t_l o ¢x)(bx)
= Adiy + pby

and so

Ox(Aay 4 pby) = (o, ® T)p((Aax + pbx)™)
= (Tu, ® Te)p(Adlx + pby)
= (Ta, @ ™) (Mo(dx) + P‘P(EX))

= Apx(ax) + ppx(bx).

Let ay, by € Ay.

= Vfx()(¢; " opx)(ax), t € Uy and 0 otherwise. Likewise set Ex(t) =
TLopy)(by), t € U, and 0 otherwise.

i‘ N

Note the following
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Then

Let a, € Ay. Then

a4 = [ fe(@a o px)(ax)lla < IIfellllga s llax]l a, < llaxlla..

It is then clear that p, is bounded, since

1Pxlla, = sup [|px(ax)]

llax] <1

= sup |(te, ®T)p(@x)lla,, 04, < sup [ITllloll.allalla < llo]l.a.
Jaxli<1 Jaxli<1

Therefore gy is a morphism of Banach left Ay-modules.

We now show that 7t4, o py = 14, . We first show that

7, (T, @ T)ut) = Te(7t(u))

for every u € A;®A. By the linearity and boundness of 714, 7, and 7., we only need
to prove this when u is an elementary tensor. Leta € A ,b € A. Then

A, (T, @ T)(a®@D)) = 7a, (T2, (a) ® (D))
= Tx, (a)Tx(b)
= Ty(ab)

19
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=T (n(a®b)).
Leta, € A,. Then

(74, © Px)(ax) = 7a, ((Tx, ® Tu)p(dx))
= Te(7a(p(dx)))
= Ty (dy)

= ay.

Therefore, by Theorem 1.19, the Banach algebras (Ay)rcq are uniformly left projective.
O

2.2 Banach algebras of continuous fields which are left projective

Proposition 2.4. Let U = {Q), (Ax)xeq, O} be a locally trivial continuous field of Banach
algebras and suppose that every Ay has an identity e, such that sup, . |lea,||la, < C for
some constant C. Suppose that Q) is paracompact. Let A be the Banach algebra defined by U.
Then A is projective in A-mod.

Proof. By assumption () is a paracompact locally compact Hausdorff space. Let B =
{Vi} e be an open cover of Q) such that each point of Q) has a neighbourhood that
intersects with no more than three sets of B as in [12]. By [18, Problem 5.W], since
{Vii}uen is a locally finite open cover of the normal space (), it is possible to select a
non-negative continuous function h, for each V), in B such that £, is 0 outside V), and
is everywhere less than or equal to one, and

Y hu(s) =1 forall se€Q.
HEA

Set g = /I

Consider a field p € [];cq At such that p(f) = ea,. By assumption ¢/ is locally trivial.
Therefore there is a neighbourhood U; of t and p’ € © such that p’(s) = p(s) for every
s € Uy and so p € O by Part (iii) of Definition 1.9. Since g,(t) — 0 as t — co we have
that g,p € A.

Order the finite subsets N(A) of A by inclusion. Let a € A and let A € N(A). Define

Yar = Z g;ﬂ@gyi?-
HEA
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Note that since ||a(t)|| — 0 as t — oo, for any € > 0, there exists a compact set K such

that
3

la(t)]|a, < 18C

forall t € K.

Since {V},},ca is a locally finite open cover of the normal space (), the compact set K
intersects only with a finite number of sets {V),,, ..., V};, } of B. Take Ao = (p1, ..., m,) €
N(A), then

€
||8ya||A < 18C

for every u & Ao.

Let Ay > A1 > Ag, where Ay = (11, oo Pimgs o Bimy ) @A A = (1, o) Hings ooos Pinys iy ) -
Note that

1Yans = Yar | a4 =Varn\r T Yaro = War\re — Yaro) | asa
= Hya,)\z\/\o - yﬂ,/\l\)to HA@A
S ||ylil,)t2\/\0 HA@A + ||yﬂ,)tl\/\0 HA@A

Let 77 be a primary (my — mg)th root of unity. By Lemma 1.4,

my—1mg my 1y
Worolaca € - 3 | 1wl | L 0
a A\ HARA = My — m 1 8us " 8usP
2 0 =1 s=mp+1 A s=mp+1 A

For any x € () there are no more than three y € A such that g,,(x) # 0 which gives us

myp my e
Y. nuall =sup| Y n"gu(x)a(x)|| <3 max lgualla < ¢z 21)
s=mo+1 A X€Q |[s=mp+1 . neEA\Ao
Similarly
myp mp
Y. 7 Psup|| =sup| Y. 7 Fgu(x)p(x)
s=mp+1 A xeQ) s=mp+1 Ay
<3 max . < 3C. (2.2)
| max, g la

This gives us
€
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Similarly
1Yo\ a0l asa < %
and so
1Ya,0, — Yar llaza <&

This shows that y, , converges in A, ®.A. We define the following map

o: A — A+®A
a— li/I\Ilya,A.

Let us show that p is a morphism of left Banach .A-modules.
Fora,b € A and «, 8 € C we have

p(aa+ Bb) = li}\n Yaat b
= h}\n Z gu(aa+ Bb) ® gup

HEA
= li}r\n Y guaa @ gup + 11?1 Y guBb @ gup
per peA
= lima Y gua®@gup +1im§p Y sub@gup
HEA per
= ap(a) + pp(b).

Foralla,b € A,

p(ab) = li}\n Yab,A

=1lim ) g.ab® gup
A
ueA

=alim ) gb®@gup
A HEA

= ap(b).

Leta € Aand A = (yy,..., um) € N(A). Let 7 be a primary mth root of unity. Another
application of Lemma 1.4 yields,

m
< 9Cl|al| 4-
A

iy
Y " gup
s=1

1 m
lyarllaea < — Y. 1" gu.a
t=1 1

sS=

A

Thus ||p|| < 9C and so p is bounded. Therefore p is a morphism of left Banach .A-
modules.
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It remains to show that 77 o p = 1 4 in order for A to be left projective. Leta € A,

(70 p)(a) = m(limys,)

=T (11/{1“ Y gua ®8VP>

HEA

= lim ) gjap
HEA

= lim (Z hy) ap

ueA

=da

Below we will need the following result.

Theorem 2.5 ([32], Corollary 3.35). Let A be a Banach algebra and let B be a closed subalgebra
of A which contains a right bounded approximate identity for A. If B is left projective then A
is left projective.

We now give a result on the projectivity of trivial bundles of Banach algebras.

Proposition 2.6. Let () be a compact Hausdorff space and let B be a Banach algebra with a
right bounded approximate identity. Let A = C(Q), B). Then A is left projective if and only if
B is left projective.

Proof. 1f A is left projective we have that B is left projective from Proposition 2.3.

Suppose that B is left projective. Let f, € C(Q)) be the identity. For b € B define
feb € Aby (feb)(t) =0. Set f.B = {f.b:b e B}.

Let us prove that f.B is closed in A.

Suppose that {u,} = {f.b,}, where b, € B for all n, is a sequence in f,B such that

lim u, =a € A withrespectto ||.||.
n—oo

Let t € O). Then
[bn —a(t)||p < || febn —alla = |lun — al| a-
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Then, for every t € (),
lim b, = a(t) € B.

n—oo
Since the limit is unique in a normed space, for all ¢t € ), a(t) = b for some b € B.
Thus a = f.b € f.B and so f.B is closed in A and f.B = B.

By Theorem 2.5, to show that A is left projective it is enough to show that f,B con-
tains a right bounded approximate identity for A.

Let (x))) e be a right bounded approximate identity in B with ||x,||p < C < co. Let
fex) be as above. We claim that (fex))rca is a right bounded approximate identity in
A.

Let e > 0 and let a € A. Since a is continuous on (), for each t € () there exists an open
neighbourhood U; of t such that

la(s) —a(t)]| <

21+0)

for all s € U;. Note that {U; }+eq is an open cover of (). By assumption, () is compact,
hence there exists an finite subcover {U}? ; of {Ui}icq. Since (xp)pca is a right
bounded approximate identity in B, for every i = 1,...,n, there exists a A; € A such
that, for all A > A;,

Pick Ag € A such that A\¢j > A; foreachi=1,...,n

Then, forall A > Agand foralli =1,...,n,

€

la(ti)xa —a(t)lls < 5-

For s € Uy, and all A > Ag, we have

la(s)xa —a(s)lls
=[[(a(s) +a(t;) —a(ti))xr —a(s) +a(t;) —a(t;)|s

<|[(a(s) —a(t;))xallp + [la(t;) — a(s)||s + |la(t:)xr —a(t;)|s
Ce 3 €

2110 +2(1+C) 3

=E&.

24



2 Necessary conditions on Ay, x € Q, for left projectivity of A defined by locally trivial
fieldsU = {Q), (A;), ®}

Therefore, for s € (), and all A > A, since s € Ut]. for some j, we have
la(s)xr —a(s)|p < e

and so
lafexy —alla <e.

Thus f.x, is a right bounded approximate identity in A, and so, by Corollary 2.5, A is
left projective. O

2.3 An example of a Banach algebra defined by a continuous field
which is not left projective

Example 2.7. We now consider an example of a continuous field of Banach algebras U/
such that, for all t € Q), A; is left projective, but A defined by U is not left projective.
Let U = {N, ()ren, TTien €7} where 7 = {x = (x1...x) : |lxll2 = (T, Ix;]2)2}
is the Banach algebra with pointwise operations and product. Set lp = (1,...,1).
Let A be the Banach algebra defined by /. Note that A is the cp-sum of the Ba-
nach algebras (¢?);cn Then 1 @2 is an identity for /2. Note that ||1 E%H = v/t and so
ngtzugtz — ooast — oo.

All of the ¢? are left and right projective since they have an identity. Let p; : ¢2 —
(£2)+&¢? be a morphism of modules such that 7t 0 p; = idp. It is clear that pt(0?)
belongs to (2@ /7.

Fix t € IN. Define e, = (0, ..., 1,...,0) € E% with the 1 in the nth position and zeros
elsewhere. Let pt(e,) = Y724 Alal @ bl

Then, for every n <'t,

ot(en) = Pt(ei) = eyp(en)

(]

= e, Yy _Alal @b}
i=1

oo
= ) Mena! @ b
i=1

:€ﬂ®

Z /\?(a?)nb?] (since Z A(ah), € C)
i=1 i=1

=e, ®u"  (where u” € (?).
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Note that e, = (7t 0 py)(en) = (e, @ u") = e,u™ and so (u"), = 1.
We now define the following linear functional:
V&0 —C

t
(xll"'l xi’) ® (yll""yt) = leyl
i=1

Then
V(pi(en)) = Vien@u") =1,
and so t
V (ot <2 en>) =t
n=1
Thus

t t
t=1[V(es <Z €n>)| < VIl Y enll = IVIHIpeNVE,
n=1 n=1

which shows that ||| > ll_\‘?\l An application of the Cauchy-Schwarz inequality || V|| =

1 so we have ||p¢|| = o0 as t — oo. Thus, by Proposition 2.3, A is not projective.
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3 Topological properties of ()

3.1 A necessary condition on () for the left projectivity of A defined
by U = {Q, (A:), 0}

In [12, Theorem 4] Helemskii proved a commutative C*-algebra A = Cy(Q) is projec-
tive in A-mod if and only if its spectrum () is paracompact.

Lemma 3.1. Let A be a left projective Banach algebra and A # {0}. Then A% # 0,

Proof. Suppose that A> = {0}. Picka € A such thata # 0. Letp : A — A ®A
be a morphism of Banach A-modules such that mop = 14. By [31, Theorem 3.6.4],
p(a) = Y2, (a; + Aie) ® (b;) where e is the identity in A4, a; € A, b; € A, A; € C and
soa;+ Aie € AL

Then a = (rmop)a = m(X 2, (a; + Aie) @ (b)) = Y2 (aibi + Aibi) = Y720 Aib.

Therefore

1

a® 2 A;b;
=1
=a®a.

This implies that a = 0, so we have a contradiction. O

We extend Helemskii’s result to the case of Banach algebras defined by continuous
tields of Banach algebras.
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Proposition 3.2. Let Q) be a locally compact Hausdorff space. Let U = {Q), (At)teq, O} be
a locally trivial continuous field of Banach algebras, let A be the Banach algebra defined by U
and let u € A& A. Define the function

F,:00x0O—1R

(s,t) — (= @ ) () [ 4,04,
Then
(i) E, is continuous on Q) x ),
(ii) For every compact K, F,(s,t) — 0 as t — oo uniformly for s € K,
(iii) For every compact K, F,(s,t) — 0 as s — oo uniformly for t € K,

(iv) If p: A — AL ®A is a morphism of left Banach A-modules such that 7t o p = 14 then,
for a € A2 we have that Fy(,(s,s) > || 7s(a)| 4, for all s € Q.

Proof. By [31, Theorem 3.6.4], every element u from A&.A can be written as } 7° 1 A; 4; ®
bi, \i € C, a; € A, b; € A, where } ;7 |A;| < oo and the sequences {a;}, {b;} converge
to zero in A as i — oo.

(i) We shall show that F, continuous at an arbitrary point (sg,tp) € Q x Q). Let
Us, and U, be neighbourhoods of sy and ty respectively such that U/ |Us, and

o~

U|Uy, are trivial. Therefore there exists Banach algebras B, By, such that U|Us, =
Co(Us,, Bsy), U|Uy, = Co(Us,, By,), and there exist isometric isomorphisms of Ba-
nach algebras ¢s : As — Bs, and ; : Ay — By,.
Let ¢ > 0. Then there exists an N such that
ad £
Y Ailllallallbilla < T
i=N+1

Let the sequences (||a;|| 4)5>, and (||b;]|.4)2, be bounded by C, and C, respec-
tively. Let C = max{C,, C; }. Choose D such that } ;> ; [A;| < D.

Note that for each i we have the following

(s @ 91) (T @ T) (85 @ bi) — (s © P1y) (Tsg @ Ty ) (@i @ by) [ 5, 25,
=[I(¢s @ i) (ai(s) @ bi(t)) = (s @ W1y) (ai(s0) @ bi(t0)) |, &5,
=l 9(a@)(s) @ p(b:)(t) — ¢(a)(s0) @ P(bi) (to)llp,, 25,
=l¢(a;)(s) @ p(b;)(t) — () (s0) @ (i) (to)
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D0, o,
D0, 25,
)& 9B (1), o5,

i) (£) = (i) (to))lp, &8,
) (to) |15, &8,
§H<P(ﬂ_) S)HBSOH( p(b;)(t) — p(bi) (o)) |1,
¢(a;) (so) — ¢(ai) (s)) B,
§||az'||A||( (i) (t) — 9(bi) (0)) 1B, + 10l all () (s0) — (i) (s)) ]I,
where 4; = a;|Us, and b; = b;|Uy, fori=1....

Since ¢ is continuous, let W;O C Vs, be an open neighbourhood of sy such that for
all s € w;'o we have

£

(@) (s0) ~ (@) (5Dl < gmmr

Similarly let on C Vj, be an open neighbourhood of t; such that for all t € Ytio we

have
3

1 (B:) () = $(B:) (o)) 18, < gepN

Then

(s @ i) (T @ T) (Aitti © bi) = (s @ 1o (Tsg @ Tao) (A @ bi) || g, 5,
<|Ailllasl|all((Bi) (£) = ¢ (B:) (o)) I3y, + [Ail 1Dilall (9(a7) (50) — p(ai) (s)) g,

s

€
<|Ailllail 4 - iICDN + Al bi]] 4 - iICDN

o€
2N
for all (s,t) € Wi, x Y]

Set Wy, X Y3, = ﬂf\i 1 Wsi0 X on. Note that Wy, x Y}, is open.
Then for all (s, t) € Ws, x Y, we have

(s ® 1) (T ® 1) () Aidi ® by) — (s, @ rg) (Tsp @ Thy) Z/\‘Zl@b)HBS 8By,
i=1 i=1

N
< 19 91) (597 (L A 1) — (B 10) (g ) (L A ), +
i=1 i=1
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N
S
<) 1(@s @90 (T © 1) (it @ i) = (Psg @ Pr) (Tsy @ Thg) (Nisti @ i) |, o,y + 5
i=1
< Ne ¢
2N 2
= &.

Thus F, (s, t) is continuous.
(ii) Let e > 0. Similar to part (i) above pick Ny € IN such that

& €
Z [Ailllaill allbill 4 < 5
i=No+1

Recall that the sequences {a;},{b;} converge to 0 in A as i — oo and so the
sequences {a;}, {b;} are also bounded. There exists a C € R such that ||a;|] < C
for all i. We can therefore pick a compact subset K C Q) such that for all t € O\ K
No

where M > C ) |A;| (3.1)
i=1

&
16:(t)[] 4, < M

foralli=1,...,Np.

Then, by (3.1),

No .
sup Fy (s, t) < sup (Z |)\z'|||ﬂi(5)||As||bi(f)||At) +3

seQ) seQ) \i=1

No .
<2 Ailllallallbi (B4 + 5
i=1

% Nailla- 5 + =
< )LZ' CliA'——i‘—
= 2M 2

<e+s
22
=€

forallt € Q\ K.

(iii) This follows in the same way as above.

(iv) Note that for a ® b € A®.A we have that
[(a@b)|la = llablla < [lalallblla = lla @bl 464
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Note that when a € A2 we have that p(a) € A®A. Let a € A2 and we can view
p(a) = L2, 4; @ b;.

Thus, for all s € ),

Foa)(s,8) = (s @ 5)p(a) | 4.4,
> |7 (7 ® ) (0(a))) || 4

= || (5 © 1) (Zm@l))

= (ZTS ) ® Ts(b )

(Ts(ai) T (bi))

As

As

I
.Mg

~
I
—_

As

I
L

~
I
—_

(ts(aibi))

As

= TS(Z a;b;)
i=1

= [Its(a) |4,

As

The following defintion is a partial definition of Definition 1.15.

Definition 3.3. Let Q) be a locally compact topological space. We say that a continuous field
of Banach algebras U = {Q, (Ax)xeq, O} is o-locally trivial if there is an open cover {Uy,} of
Q) such that each U|U, is trivial and that there is a countable open cover {V;} of Q) such that
V; C Uy for each j and some o(j).

Proposition 3.4. Let Q) be a locally compact Hausdorff space, let U = {Q), (Ax)xeq, O} bea
o-locally trivial continuous field of Banach algebras, and let A be the Banach algebra defined
by U. Suppose that A is projective in A-mod or in mod-A. Then Q) is paracompact.

Proof. We give a proof for A which is projective in .A-mod. The case mod-.A is similar.

By assumption, U is a o-locally trivial continuous field. By Definition 3.3, there is
an open cover {U,} of Q) such that each U]y, is trivial and, in addition, there is a
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countable open cover {V;} of Q) such that V; C U,y for each j.

We shall split the proof into the following lemmas:

Lemma 3.5. If V] is paracompact for every j then () is paracompact.

Proof. Let B be an arbitrary open cover of (). For each j € N, the family B; = {BNV;:
B € B} is an open cover of V;. By assumption, V; is paracompact and so B; has an
open locally finite refinement D; that is also a cover of V;. The family of open subsets
D; = {DNV;:D € D;} is locally finite in () and is a refinement of B. Furthermore,
since () = Ujen Vj, the family D = Ujen D]’- is an open co-locally finite cover of (). By
[18, Theorem 5.28], () is paracompact. O

Therefore to prove Proposition 3.4 it is enough to show that, for every j € IN, the topo-
logical space V] is paracompact. Let us fix j and prove that VJ is paracompact.

Since A is left projective, there exists a morphism of left Banach .A-modules p : A —
A4 ®A such that 7m4 0 p = id 4.

By Definition 3.3, for V; there exists a(j) such that V; C U, such that U]y, ;) 18 trivial.
Let U|y, ;) = {Ua(j) Ba(j), C(Ua(j), Baj)) } with the family of isometric isomorphisms
¢ = {¢t}ieu, (j)- By Proposition 2.3, B, is left projective. By Lemma 3.1, there exists
X0, Yo € By(j) such that xoyo # 0. For t € U, (j) set

x(t) = ¢} (x0),

y(t) = ¢ (vo).
Then x and y are continuous vector fields on U,;) such that p(t) = x(t)y(t) # 0 for
every t € Uy ().

By [10, Theorem 3.3.1], ) is a Tychonoff space and so, for every s € 7] - Ua(j),
there is f; € Co(Q2) such that 0 < f; <1, f5(s) = 1 and fs(t) = O for all £ € O\ Uy;).
By Property (iii) of Definition 1.9 and [9, Proposition 10.1.9], the field f;p is continuous
and || fs(t)p(t)|| = 0 as t — oo, so we have f;p € A.

For every s € V; C U,(j) and t € O, we set

(I)(S, t) = Fp(fsp) (S, t)

fs € Co(Q) such that f;(s) =1 and fs(f) = 0 for all t € O\ U,(;) and the function F is
defined in Proposition 3.2.
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3 Topological properties of ()

Lemma 3.6. The function ® is well defined.
Proof. Let s € V; C Uy and fs,gs € Co(Q)) such that f;(s) = gs(s) = 1 and fs(t) =
gs(t) —OforalltEQ\U

We have, for t € (),

Ey (1) = (@ wp(fe p)llasa
= 1/ £:()x(8) (% © Wp(VF Dl aen,
= (% ®@w)p(v/gs\/ fs xy) N aza,
= 1\/£:(9)x(5) (% © Wp(VE Vllaza
= (= © w)p(vEs P)lacn,
= [|(7s @ 7)p(gs P)ll a4,
= Fo(gup)(5,1)-

Thus @ is independent of the choice of f;. O
Lemma 3.7. The function ® is a continuous function on Vj x Q).

Proof. Let (so,t0) € V; x Q and f5, € Co(Q) such that 0 < f5; < 1, f,(s0) = 1 and
fso(t) =0 forall t € O\ U,(j). Consider the neighbourhood V = U x Q) of the point
(so, to) where U = {s € V; : fs,(s) # 0}. Then, for (s,t) € V,

d(s,t) =F , 4 s, t
(s, ) p<f;;(()s) p)( )
~ e (25 5) laea
= @@ TR (fn s,

1
= (@ T n )

Hence @ is the ratio of two continuous functions on V, so it is continuous at (sg, tg). O

Lemma 3.8. For every compact K C 7]-, the function ®(s,t) — 0as t — oo in Q uniformly
fors € K.

Proof. By [10, Theorem 3.1.7], since () is a Tychonoff space, for a compact subset
K C V; C Q and for a closed subset O\ U,y C Q\K, there is fx € Co(Q) such
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that 0 < fx <1, fk(s) = 1forall s € Kand fx(t) = 0 for all t € Q\ U,(;)- Note that
fxkp € A

By Proposition 3.2, the function F, s, ) (s,t) — 0 as t — oo in () uniformly for s € Q).

Thus the function ®(s,t) = Fypp(s,t) on Kx QO C V; x Q tends to 0 as t — o in
Q) uniformly for s € K. O

Conclusion of the proof of Proposition 3.4
For (s,t) € V; x Vj, we set
E(s, ) = @(s,)/[lp(s) |l a,-
By Proposition 3.2, ®(s,s) > ||p(s)| , for every s € V;. Therefore E(s,s) > 1 for every
se V.
For (s,t) € V; x Vj, we also set
G(s,t) = min{E(s, t), 1} min{E(t,s),1}.

By Lemmas 3.6, 3.7 and 3.8, the function G(s, t) has the following properties:

(i) G(s,t) is continuous on V; x Vj,

(ii) for every compact K C Vj, G(s,t) — 0 as t — oo uniformly for s € K,
(iii) for every compact K C Vj, G(s,t) — 0 as s — oo uniformly for t € K,
(iv) G(s,s) =1foralls € V.

By [13, Theorem A.12, Appendix A], V] is paracompact. By Lemma 3.5, () is paracom-
pact.
O
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4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

4 Projectivity of C*algebras defined by continuous fields
of ;-unital C*algebras

4.1 Projectivity of Cy(Q2, A) for paracompact () and for a c-unital C*-
algebra A

In the next two sections we give sufficient conditions for Banach algebras .4 defined by
locally trivial fields U = {Q, (Ax)xeq, @} to be left and/or right projective.
Recall that a C*-algebra is said to be c-unital if it contains a sequential bounded ap-

proximate identity. We generalise the following theorem.

Theorem 4.1 (Lykova [21], Phillips and Raeburn [28]). Let A be a c-unital C*-algebra.
Then A is both right and left projective.

Definition 4.2. Let A be a C*-algebra and let a be a positive element in A. We say that a is
strictly positive if f(a) > 0 for every non-zero positive linear functional f.

Theorem 4.3 ([27], 3.10.5). Let A be a C*-algebra. Then A is o-unital if and only if it possesses
a strictly positive element.

The following results are from Phillips and Raeburn [28].

Lemma 4.4 ([28], Lemma 2.1). Let A = Cy(Q) be a commutative C*-algebra with a sequen-
tial approximate identity {u,}. Then there is an increasing sequence { f,} in A such that

(1) 0< fy <1foralln,
(2) || futhn — unl|la < %for all n, and
(3) fufm = fmifn > m.

Proof. Let fy = 0 and suppose we have chosen fy, fi,..., fr—1 in A, compactly sup-
ported on ), satisfying (1),(2) and (3). Define K, = {x € Q[ii,(x) > 1} and let
K = K, Usuppfu_1. Now choose f; such that f,|K = 1, f, is compactly supported, and
0 < fu < 1. Clearly, {fo, f1, ..., fu} satisfy (1), (2) and (3). O

Lemma 4.5 ([28], Lemma 2.2). Let A be a commutative C*-algebra and let {f,} be an
increasing sequence in A satisfying properties (1) and (3) of Lemma 4.4. For each n, set
en = fu — fn—1 and let é, be the Gelfand transform of e,,. Then

1. 0<e, <1 foralln,

35



4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

2. epey = 0if |m—mn| > 1, and

1
3. H27_1 meg || < V2 for any {n1,...,.yn} C T,
A

Proof. (1) is clear.
To see (2) suppose that m>n+1. Then,

enm — (fn _fn—l)(fm _fm—l) = (fn _fn—l)fm — (fn _fn—l)fm—l
= (fn = fu—1) = (fu — fa—1) =0.

The following proof of (3) is due to N. Lausten. For the original proof see [28].

Let k < m < n € IN. Then n —k > 2, so by (2)
ther ¢ = 0 or ¢, = 0. In particular |{k € N : ¢(x
{k € N:ex(x) # 0} = ko, ko1 for some ko € IN.

énér. That is ei-

O: pug
) # }| < 2, if it is 2, then

Choose xy € Q) such that

’“NZ‘H

2
kek

By above there exists a j such that é;(xg) = 0 for k # j,j + 1.

Let fi(xo) = a and fj1(xo) = b. Then 0 = 2j»(x) = ﬁ+2(x0) —b. Hence b = j?j+2(x0).
Notethat0 <a<land 0<b <1.

By Lemma 4.4(3),
b* = fis2(x0) fj+1(x0) = fj+1(x0) = b.
Therefore b = 0 or b = 1. By Lemma 4.4(3), ab = a. Thus if b = 0 then a = 0.

Then

1 1 1
2 27 (xo0) S‘ﬂjﬂz+ﬂj+1(b—ﬂ)2 :

A
If b = 0 then
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If b =1 then

N—=

<V2.

= |a? + 7001 - )2 <t + (1-a)

n 1
Y ke
j:1

A
[

Lemma 4.6. Let A be a commutative C*-algebra with a sequential approximate identity {u, }.
Let {fn} be an increasing sequence in A satisfying properties (1),(2) and (3) of Lemma 4.4.
Then {fu} is a sequential approximate identity in A.

Proof. Leta € A and ¢ > 0. For n € IN note that

| fna —a|| = || fna — a + futtna — fuuna + uya — uyal|
< [Juna — al| + || fua — fuunal| + || futna — uyal|
< luna — all + || fulllla — unall + [|al[[| futtn — un||
a
< 2||upa —al| + M
n
Pick Nj such that % < £. Pick N such that [ju, — uua|| < § for every n > Np. Set
N = max{Nj, N, }. Then for every n > N we have that

llal]  2e e
—a|| < 2||upa — By
| fua — a|| < 2||upa —al| + ” < 3 +3 3

O

Theorem 4.7 ( [1], Theorem 1). Let A be a C*-algebra with a strictly positive element. Then
there is a commutative C*-subalgebra B of A which contains a sequential approximate identity
for A.

Theorem 4.8. Let A be a C*-algebra with a strictly positive element and let Q) be a locally
compact Hausdorff space which is paracompact. Then Cy(Q), A) is right projective.

Proof. By Theorem 4.7, there is a commutative C*-subalgebra B of A which contains a
sequential approximate identity {u,} in A. As in Lemma 4.5 we use {u,} to construct
an increasing sequence {f,} in B satisfying properties (1) — (3) of Lemma 4.4. Note
that, by Lemma 4.6, {f,} is a bounded approximate identity for B. As in Lemma 4.5,
for each n, set e, = f, — fyu_1. We define fy = 0. We claim that {f,} is a bounded
approximate identity for A.

Let a € A and € > 0. Similar to the proof of Lemma 4.6, for n € IN,
| fna —a|| = || fna — a + fuina — fuuna + uya — uyal|
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< |una — all + || fua — fuunall + || fana — unall
< [lupa —al| + ||fn||||ﬂ — tna|| + [|a[l[| furen — vn

<2|lupa —al| ++—

Pick Nj such that % < £. Pick Np such that [|u, — uua|| < § for every n > Np. Set
N = max{Nj, N, }. Then for every n > N we have that

a
lall 2,

I fua—all < 2luga—al + 120 < 224 £ =
Similarly, using fuu, = Unfn,

||afn —a|| <2||auy — al| + —

Pick N3 such that |u, — auy|| < § for every n > N3. Set N’ = max{Njp, N3}. Then for
every n > N’ we have
lafn —al| <e.

Thus {f»} is a bounded approximate identity for A.

By assumption () is a paracompact locally compact Hausdorff space. Let B = { V), },,ca
be an open cover of () such that each point of () has a neighbourhood that intersects
with no more than three sets of B as in [12]. By [18, Problem 5.W], since {V,} uen is a
locally finite open cover of the normal space (), it is possible to select a non-negative
continuous function h, for each V), in B such that &, is 0 outside V), and is everywhere
less than or equal to one, and

Y hu(s) =1 forall se€Q.
HeN

Set g, = /Iy

Fora € Co(Q, A), A = (y1, ..., hkm) € N(A) and n € IN define

m.on 1 1
_ 2 2
Yrma =) Zgﬂiej ® 8ue; a-
i=1j=1

Define N(A) x N as a directed set with (A, n) < (A", m) if and only if A’ C A and
n < m.

For each a € Co(Q), A), we wish to show that (yu4)n(a)xn I8 @ Cauchy net. We
break this up into the following lemmas.

38



4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

Lemma4.9. 1. Letac Cy(QA), neIN, Ay = (1, fhmy) € N(A) and
M = (U1, o Himgs s By ) € N(A). Then we have that

YA omallco,a)80(0,4). < 18 Hia\ﬁ Iguallcya,a).
1 0

2. Let a € Co(Q), A). Then for any ¢ > 0, there exists a Ay € N(A) such that for all
A > Ag we have

€
sup [|guallcy(0,4) < 54
HEMAg

3. Leta € Co(Q, A), A = (y1, ..., him) € N(A) and ny > nq. Let the sequence (f,) C A
be defined as in Lemma 4.4. Then

YA np0 — I/A,nl,a“CO(Q,A)®C0(Q,A)+ <18 sug la(t) = fu,—1a(t) ]| a-
te

4. Let a € Cyo(Q, A). For any ¢ > 0 there exists an ng € N such that for all n > ng we
have that

la = fuallcy,a) = sup la(t) = faa(t)lla < =5 54

Proof. 1. Let  be a primary (my — mg)th root of unity and let ¢ be a primary nth
root of unity. By Lemma 1.5, we have

||y/\1\A0,n,a ||C0(Q,A>®CO(Q,A)+ <

LS ki
Y. Y S'nigue

t=1i=mg+1

n mip—moy

1
n(my —mp) Z;{ Z

LS ki
Y, X & Vgueia

=1 i:m0+1

Co(QLA) Co(Q),A)

Since for every x € () there are at most 3 values of i such that g, (x) # 0 we have
the following, for k =1,...,m; —mp,l =1,...,n,

1
It ki 2
G gue;

Y (s z«:“i

i=mg+1 t=1

<3 max sup||gu(x) Y &"e?
#eA\o xeO) t=1

n I 1
2 e

t=1

= sup
xeQ)

A
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<3v2 (by Lemma4.5).

Similarly, for k =1, ..,m; —mg,l =1,..,n,

n mq . 1
Y ) éiltﬂiklgmetzﬂ

t=1 i:m0+1 Co(Q,A)
o ki = it )
=sup|| Y. n Vgu(x)) ¢ Mefa(x)
XGQ 1:m0+1 t=1 A
n 1
<3 max sup ||gu(x)a(x) Y & e}
HEA\A xeO) t=1 A

n 1
Z g—ltetz
t=1

<3
<3, 0% 298 lsu(x)a()l o sup

<32
=2, s el

- :
—3\6#3?\)30 I8ual ¢y,

A

Therefore

YA\ Aomallco,a)800(0,4) < 18}{3?@\0 lguallc,(a,a)-

2. Lete > 0.Since a € Cy(£), A) there is a compact set K C Q) such that ||a(t)||4 < Z
for every t € O\ K. Since compact sets only intersect a finite number of elements
of {V}uen. We can find a finite set A\g € N(A) such that for t € K we have

sup |lgu(t)a(t)][a = 0.

HEA\Ag

Therefore .
sup [|guallcy(0,4) < TR
HeEA\Ag

3. Recall for b € A and a € Cy(Q), A) we define the element ba € Cy(Q), A) by
(ba)(t) =b-a(t).
Then

YAz = Yy, HCO(Q,A)®CO(Q,A)+

m. 1 1 1

2 2
Y ) 8u€ ®gueia
izlj:ﬂl—I—l

Co(Q,A)BCo(Q,A)+
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(Z Y s e} @ gue ,) ' (a_iizlleja>

=1j=m+ Co(QA)ECo(Q,A)
(since emen, = 0 for [m —n| > 1)
m n—1
< Z Z gylej ®gy, a— ) eja
i=1j=m+1 Co(Q,A)ECo(Q,A) + =t g4
mo 22 1 1
= Z Z g#iejz ®gl/‘iej2 SuPH”(t)_fnrl“(t)HA
i=lj=m+l Co(,A)8Co(0,A),
n1—1
(since ) ej = fu—1).
j=1

In a silmilar method to the proof of part (1), one can show that,

< 18.

Z Z gﬂte] ®g1”1]

i=1j=n1+1

Co(Q,A)RCH(Q,A) ¢

Thus

YA nza = Yanyallcy,n)ac0n), < 18 f“g la(t) — fu-1a(t)]| a-
S

. Let € > 0. Since a vanishes at infinity we can pick a compact set K C () such that
for every x € () \ K we have that

S
< —.
la(o)lla < 1o

Then, for every x € Q) \ K, we have that

la(x) = fua(x) 14 < la()lla+ [full sla(o)lla < 502+ 10200 = =

Since a is continuous, for every x € (), there exists an open set U, C () such that,
for each y € Uy,

la(x) = a()lla < 51

Then {Uy}xek is an open covering of K. Let {Uy,}", be a finite subcover. Let
i € {1,..,m}. Since {f,,} is an approximate identity in A there exists an n; such
that for every n > n; we have that

la(x;) = fua(xi)lla < 15
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Then set np = maxj<j<, n;. Then, for every x € K, there exists an i such that
x € Uy, and, for n > ng, we have

la(x) = fua(x)]la
—lla(x) - a(x;) +a(x;) — fua(x) = faa(x;) + fua(x:) 14
<llax:) — fuawi)lla + la(x) = alx)lla + | foalx)) = fuax)
<lla(x) = funlxi) 14 + la(x) = a(xp)lla + L fullallax) = a(axi) 14
I3 £ £
£
==
Therefore
sup [|a(t) — fua(t)||a = max{sup [la(t) — fua(t)|| 4, sup [|a(t) — fua(t)[[a} < 5%
teQ) tek t¢K
O

Lemma 4.10. For each a € Co(Q, A), (Yan,a) (An) is @ Cauchy net in Co(Q, A)&Co(Q, A)+.

Proof. Let ¢ > 0. Let Ag and ng be as in Lemma 4.9 (2) and (4) and let (A, np) >
(A1,n1) > (Ao, np) such that n; — 1 > ng. Note that

y/\Zr”Z/a - y/\z\)\o,nz,ﬁl + y/\o,nz,a/

y/\llnlla = y/\l\AO/nlra + y/\()/nlra'
So we have

YAz mpa — y/\l,nl,aHCO(Q,A)®CO(Q,A)+

< [Yanaomallco@a)aco@,a), + 1Vanaom.allcy.a)ac,4)-
Y a0 — Yagmpallcy,a)800(0,4), -

By parts (1) and (2) of Lemma 4.9, since Ay, Ay > Ay

€
1Y\ Aomaallco,n)8c0 0,0y, <18 sup  [[guallcya,a) < 3
HEA2\Ag
and ]
1Y Aoniallc@a)aca), <18 sup  [lguallcya,a) < 3
HEA\Ao
By parts (3) and (4) of Lemma 4.9,
&
[YAq 20 — Yaomallcya,a)ac(0,4), < 18 Sug |a(t) — fu—1a(t)]la < 3
te
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Therefore

”]/Az,nz,a - y)n,nl,ﬂ”CO(Q,A)®CO(Q,A)+ <&

Conclusion of the proof of Theorem 4.8.
Note that Co(Q, A)&Co(Q, A) + is complete, hence lim, ) ¥4 exists for every a € A.
We now set

0:Co(Q, A) — Co(Q, A)RCH(Q, A) 4

ar— limyy, .
(A/n)]/ 1,0

It is clear that p is linear since, for all a,b € Cy(Q), A) and for all a, § € C,

p(aa+ Bb) = lim yy , agypp = lim ) Zgy 2®gye (aa + Bb)
(Am) () (=5

1

Z; e? ge; a—i—lmaZZgV

);46)\1

N\H

1
uei b =ap(a) + po(b).
Similarly p(ab) = p(a)b since

p(ab) = lim y, ,, o = lim Z Zgy 2®gy (“b)
( ) (A )ﬂe/\l

(hm ) Zgy 26 }a) b=p(a)b.

]16)\1

By part (1) of the proof of Lemma 4.9, we have that ||p(a)|| < 18||a||. Therefore p is a
morphism of right Banach Cy(Q2, A)-modules.

It remains to show that mop = 1¢ q 4)- Recall that for each x € () we have that
Y uen hu(x) = 1 since h is a partition of unity. Thus

(p(a)) = im ((yrnq)) = 1m 2 Zh eja.
(An) ;46/\]

We wish to show that lim, ,,) ¥ ,en 2}1:1 hyeja = a. Consider it acting on an element
x € Q). Then

11m Z Zh

Ple/\]
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n

= Jim Y- )
j=1

= lim fua

=a(x).

We also obtain the following theorem.

Theorem 4.11. Let A be a C*-algebra with a strictly positive element and let () be a locally
compact Hausdorff space which is paracompact. Then Cy(Q), A) is left projective.

Proof. This follows in the same way as in the proof of Theorem 4.8. O

4.2 Projectivity of A defined by locally trivial continuous fields of
c-unital C*-algebras

We now generalise these results to locally trivial continuous fields.

As in [10, Theorem 7.2.4], for a normal topological space (), we say that the topo-
logical dimension of () is less than or equal to ¢ if the following condition is satisfied:
every locally finite open cover of () possesses an open locally finite refinement of order

L.

Theorem 4.12. Let U = {Q, (Ay),®} be a locally trivial continuous field of o-unital C*-
algebras. Let A be the C*-algebra generated by U. Suppose that () is paracompact and has
finite dimension. Then A is right projective.

Proof. Let £ be the dimension of (). By assumption, U/ is locally trivial and so, for each
s € ), there is an open neighbourhood Us of s such that Uy, is trivial. Since Q) is
paracompact, the open cover {Us}scq of Q) has an open locally finite refinement {W, }
that is also a cover of ).

By [10, Theorem 5.1.5], the paracompactness of () implies that (2 is a normal topolog-
ical space. By [10, Theorem 7.2.4], for the normal space (), the topological dimension
dim Q) < ¢ implies that the locally finite open cover {W,} of Q) possesses an open
locally finite refinement {V),},ca of order / that is also a cover of Q). By [18, Problem
5.W], since {V}; } e is a locally finite open cover of the normal space (), it is possible to
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select a non-negative continuous function h,, for each V), in B such that h,, is 0 outside
V,, and is everywhere less than or equal to one, and

Y hu(s) =1forall se€Q.
HEN

Note that in the equality }.,cp hu(s) = 1, for any s € Q, there are no more than ¢
nonzero terms. Set g, = /hy.

Let ¢ = (¢%) rev, be an isomorphism of U|V}, onto the constant field
{Vu, Ay, C(Vy, A,)} over V,, defined by A,

Let 4 € A. By Theorem 4.7, there is a commutative C*-subalgebra B, of A, which
contains a sequential approximate identity {u},} for A,. As in Lemma 4.5 use {u},} to
construct an increasing sequence {f} } in B, satisfying properties (1) — (3) of Lemma
4.4. Note that, by Lemma 4.6, {f} } is a bounded approximate identity for B,. One can
show that {f}} is a bounded approximate identity in Ay, as in the proof of Theorem
4.8. As in Lemma 4.5, for each n, set ¢, = f,il — 7’;_1. We define f, = 0.

Lemma 4.13. Forany a € Aand forany A = {y1,...,un}, n,m € N,k € N,

n N ) ' :
13 g0l (\/efl) a
t=1i=1

< (v2max |gual| (4.1)

A

and

< (V2 (4.2)

n N ) , :
Yo N &g (od) ! ( ef )
t=1i=1 A

where ¢ is a primary n-th root of unity and u is a primary N-th root of unity in C, and

N m
Y Y s () e vame (Ve | <2 @)
i=1j=n+1 ASA,
and N
YooY @) (Vel) @@kt (el a
i=1j=n+1 ASA,
< 26 max |94 (a) — £ 198 (@) ey, 1, (4.4)
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4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

Proof. Since for every x € () there are at most ¢ values of u such that g,(x) # 0 we

have the following
n N
ZZ ltﬂklg]/ll (P.l < /ei’H)
t=1i=1

A
—sup | ¥ 3 e o) ()
xe) =1i= Ax
<tmaxsap |37 g, (1) (¢1) " (/e
peA xeQ) ||t=1 Ay
</ max ol ﬁl_l( e”)
<tmax| V- esu(o) ™ (V)|
n
</max gl _1< ey)
<ema]| 32" 9h) 7 (ef .
<02 by Lemma 4.5 part (3).
Similarly
n N
ZZ Mg (94 (vd“) a
n N
=sup |35 961 g, (00 (V') at)
x€Q) |[t=1i=1 Ay
</ maxsu Vol ( )a X
peA xeg ;C gﬁ (
</ maxsup Zé k)~ ( ) supHg# a(x)|| ,
HEA xe '
<(+/2maxsu x)a(
= st xeg |8 (x)a(x)] Ay
=tV2max||gual|
Thus the inequalities (4.1) and (4.2) hold.
Let 7y be a primary (m — n)-th root of unity.
N m
Y Y @) (Vel) @ vamet) T (e
i=1j=n+1 ASAL

46



4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

1 m
<G o, &

l:n+1k 1

Z Z'Y / 814; (o)™ (\/\)

t=n+1i=

( ) Z 2262 (by Lemma 4.5)
l=n+1k=

Y 27“’7]“8% (¢h')~ (\/7)

t=n+1i=

A

A

=272,

Hence inequality (4.3) holds.

Note that, for u € Ay ®A,b € A, ||ubl| 4, 5.4 < ||ull 4, 2.4lbll 4. Then

i . i g#i(qbili)_l (ﬁ) ®g7/‘i(4)fi)_1 <\/¥> a

i=1j=n+1

ARAL
-|x (2 o) (V) © vt (@))
«(veme=E vat (V)

ARA L
() v (V)

x% i Zm 1 () a)

IN
ag
Ms
=z
3%:

ASA L

(by Lemma4.5)

A

N
Z% V8l Z\/g_wqb.' < ’> a) (by inequality (4.3)).

A

Recall that for every x € () there are at most ¢ values of y such that g,(x) # 0.
Therefore

2 v s Hiy—1 (M
L (V8w = X V89 (") @)
= = A
n—1
<263 maxsup || /R(x)a(x) = Y Ra(x)(94) ! (el') alx)
HEA xev, j=1 A,
n—1
3 max sup ||a(x) — fé*l et ) a(x
<2f*maxsup ax) — L (¢4) (¢) <>&




4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

—=2/% max sup H — (¢h) 7 ( 7)a(x)‘

peA xeV), Ax

_ny3 M H
=27 max (|9} (a) — fi 10+ (@)l ¢y, 4,)
Hence the inequality (4.4) holds. Il
Fora € A, n € N, A € N(A) we define the following element y, ,, , in ARA,
n
Yorn =2 2 8u(¢e)™ (\/Z) ® gu(9e)™! ( 6’,”) a.
pueA j=1

Define N(A) x N as a directed set with (A, n) < (A", m) if and only if A’ C A and
n < m.

Lemma 4.14. For any a € A, the net (y, ) n)n converges in ARA.

Proof. Note that any compact K C ) intersects only a finite number of sets in the
locally finite covering {V}} and, for any a € A, ||a(t)|| — 0 as t — co. Let ¢ > 0. There
is a finite set A € N(A) such that for 4 ¢ A we have

3
lgualla < 602
For A C A C A and m > n, we have

Hya,/\”,m - ya,)\’,n”A@A = Hya,/\”\/\,m + Yarm — Yar\An — Yarn HA@A
< Hya,x\”\/\,m laga+ ||ya,A’\A,n | 464 + 1Yarm — Yarnll aga:

By Lemma 1.5, for A= {m,..., ym}, " €N,

||y7\,17l,11 ||A®.A+ S

IngE

1 7l
n
dr

C”’?klgm pa’) ! <\/¥>
A
¢ g (gl (@)”

where ¢ is a primary m-th root of unity and 7 is a primary fi-th root of unity in C.

Il
—_

m il

m§

A

By inequalities (4.1) and (4.2) from Lemma 4.13,

W m

Yol aza < 267 Vo guall 4 <
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4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

and

S
1Yo pnanll aga < 262 o lguall 4 < 3

By inequality (4.4) from Lemma 4.13, for A = {p1,..., un},

Y 5 gu@) (I vEmel) T ()

i=1j=n+1
;olp(a) — g4’ (f;ﬁﬂ)

H%,A,m —Ya,An HA@A =

ASA L

< 2% max
1<p<N

Co(Vip App)
By Part 4 of Lemma 4.9, for every p,

(@) = £ ¢l (a)

. —0 as i — oo.
CO(V]Jp/AVp)

Hence
|Yam = Yarnll ag4 — 0 as n,m — co.

Thus, in view of the completeness of ARA, for any a € A, the net y,, , converges in

AR A. [

Let us complete the proof of Theorem 4.12.

Set

pA—>A®A+

a— lim yy ;.-
(/\,n)]/ n,a

We claim that p is a morphism of right Banach A-modules and that rop =1 4.

Leta,b e A,ua, B € C. Then

p([XLZ + ﬁb) = (hm) YA\ n,0a+Bb

- lm T ) 3 guh) ™ (/o) @ guloh) ™ () aa + )
P‘e =

— l1m }E]Zgy (P. -1 (\/2) ®gy(4>.)_1 (\/2) aa

+ hm Z/:\Zgy ¢h) 1 (ﬁ) ® gu(epe) ! <\/7> pb
VE J



4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

=i 16007 (1] @07 ()

") pen j=1

+plim 3 Zgu o) (el ) @ gulgh) T (el ) b
") uen j=1

— (1)1311) Yana+ B (I)I\III;I) Yanb

= ap(a) + Bp(b)

and

p(ab) = hm) YA,n,ab

(A
hm H;A]Zgy Pa)” (ﬁ) @ gu(ge) ! <\/¥> ab
(e E (Donit (1)
" uel j=1
- (tmon):
=p(a)b

By inequalities (4.1) and (4.2) of Lemma 4.13, we have

lo(@)llaga, <26%all.

Thus p is a morphism of right Banach .4-modules.

It remains to show that mop = 14. Let a € A. Then

(mop)e) = (Jim v

(An)
. (&% ¥ Y suloh) (Vo) @ sutoh) (/) )
e j=1

zéi%n<2 308 (/o) @ uto) (<) >
/ peA j=1

= tim 3 (sulet) ! () ©ulot) ™ (/6] )
M) er j=1

= tim T Y (9h) ! (o) o



4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

Note that, for all s € (), there exists a ys such thats € V.

Since (f};) is a bounded approximate identity in A, we have

a(s) = lim (¢5°) 7" (fi") a(s)

n—oo
= lim (07 (&) a0,
Recall that ), < iy, (s) = 1forall s € Qand hy(s) =0fors ¢ V.

Therefore,
(o p)(a 22 (@) () als)

,}5&,2 P97 (o) a0

for every s € ().

Thus (o p)(a) = a. O

Lemma 4.15. Let Q) be a Hausdorff locally compact space and let () be a disjoint union of a
family of open subsets {W, }, u € M, of Q). Suppose, for every u € M, W, is paracompact.
Then () is paracompact.

Proof. Let V = {V,} be an arbitrary open cover of Q). For each y € M, the family
Vi = {VNW, :V € V} is an open cover of W,. Since W), is paracompact, V, has
an open locally finite refinement N, that is also a cover of W,. Hence V has an open
locally finite refinement N = Ue MmNy of Q. Therefore Q) is paracompact. O

Theorem 4.16. Let Q) be a Hausdorff locally compact space with the topological dimension
dim Q) < /¢, for some ¢ € N, let U = {Q, Ay, O} be a locally trivial continuous field of
o-unital C*-algebras, and let the C*-algebra A be defined by U. Then the following conditions
are equivalent:

(i) Q) is paracompact;

(ii) A is right projective and U is a disjoint union of o-locally trivial continuous fields of
C*-algebras with strictly positive elements.
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4 Projectivity of C*algebras defined by continuous fields of -unital C*algebras

Proof. By Theorem 4.12, the fact that () is paracompact with the topological dimension
dim Q) < /£ implies right projectivity of .A. By Remark 1.18, since () is paracompact, U
is a disjoint union of ¢-locally trivial continuous fields of C*-algebras.

By Proposition 3.4 and Lemma 4.15, conditions (ii) implies paracompactness of ().
Thus (ii) <= (i). [
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5 Projectivity and continuous fields of Banach algebras of compact operators

5 Projectivity and continuous fields of Banach algebras
of compact operators

5.1 Projectivity of K(E)
The following definition and theorem is from [34].

Definition 5.1. Let E be a Banach space and let {e } 4 be a family of elements in E. We say
that {eq }wen is an extended unconditional basis for E if for every x € E there exists a unique
family of scalars {;}ica such that

x= lim Zéiei

AEN(A) ;2

where N(A) is the collection of all finite subsets of A ordered by inclusion. If A is countable
then we say that {ey }yen is an unconditional basis for E.

Example 5.2. We give some examples of some Banach spaces with an unconditional or
extended unconditional basis.

1. The sequence spaces ¢y and ¢7, for every 1 < p < oo, have an unconditional basis.

2. Every separable Hilbert space has an unconditional basis and every
non-separable Hilbert space has an extended unconditional basis.

3. Let A be an uncountable set equipped with the discrete topology. Then Cy(A)
has an extended unconditional basis.

Theorem 5.3 ([34], Theorem 17.5). Let E be a Banach space and let {ey }ocp be a family of
elements in E. Then the following are equivalent:

(i) {ex}ucn is an extended unconditional basis of E.

(ii) There exists a constant K such that

1Y mieille < KII Y vieille

ieA ieA
forany A € N(A) and any {n;}ica, {vitier € Cwith |n;| < |vi| for every i € A.

Definition 5.4. Let E be a Banach space and let {ey },cp be a family of elements in E. We say
that {ey }aca is a hyperorthogonal extended basis for E if

1) mieille < 1| Y_ vieille

icA icA

forany A € N(A) and any {#;}icr, {vitiex € Cwith ;| < |vi| for every i € A.
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5 Projectivity and continuous fields of Banach algebras of compact operators

Definition 5.5. Let E be a Banach space with an extended unconditional basis {ey }ycp. For
each 0 € A define the following linear functional

fg :E—C
li — Cp.
AG}{’?A)e;\CQeG Co

The family { fo} are known as the associated linear functionals to {eg}.

Definition 5.6. Let E be a Banach space with an extended unconditional basis {eg}oep with
the associated linear functionals { fg}9c . We say that E is shrinking if { fo }eca is an extended
unconditional basis in E*.

Example 5.7. The sequence spaces cy and /7, for every 1 < p < oo are shrinking. Note
that ¢! is not shrinking.

The following lemma is a slight strengthening of Lemma 3 in [22].

Lemma 5.8. Let E be a Banach space with and extended unconditional basis {eg }oe p with the
associated linear functionals { fg}gcn. Then there exists a constant M such that

sup || ), fo(x)eqlle < Mllx|[
AEN(A) 60er
and in particular the linear functionals fy are continuous on E.

Proof. Consider the linear space E; of sets { = {lp € C,0 € A} such that the family
Coeg is summable in E. We put the following norm on E;

IgllE, = sup I ) ZoeollE-

AEN(A) 0er

It can be shown that this is a valid norm and that E; is complete with respect to this
norm. We can then apply the inverse mapping theorem to show that the following
operator is bounded

P:E— E
x— {fo(x)}.

This means that

sup || ) fo(x)eqll < ||| [|x]]-

AEN(A) e
We then have that
fol = Il fo(x)eql|/lleqll < (IIPI|/[leal])||x]]

and so the fy are continuous. O
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5 Projectivity and continuous fields of Banach algebras of compact operators

Let E be a Banach space with an extended unconditional basis {ep}gca. Let {fo} be
the associated linear functionals to {eg}. For 6 € A define

egp - E— E

x — fo(x)ep.

Note that egy € K(E) for each 6 € A.

Let

{Ch=)_ eon}ren(n):
fer
Lemma 5.9 ([22], Lemma 4). Let E be a Banach space with an extended unconditional basis
{eotocn. Let {fo} be the associated linear functionals to {eg}. Then {Cy}ren(n) is a left
bounded approximate identity in K(E).

Proof. Lete > 0 and leta € K(E). Set S = {x € E : ||x|| < 1}. Since a is compact we
have that a(S) is compact.
Let M be the constant in Lemma 5.8. Let y € E. Since E has an extended unconditional

basis there exists A, € N(A), such that for all A > A, we have

S
I X folwes —ylle < 1=
L Y

Now set
I3

_ / . g /
U,=1{y €E: H(G)E__A;y@ee ide)(y')||e < 1+M}'

The family {U, },cE is an open cover of a(S) and so we can find a finite open subcover

{Uy, }i=1,2..n- Thus for every y € a(S) there is an element Ay, from {Ay;} such that

| © fowleo—ylle < 1=z

6Ny,

By Lemma 5.8 we have

sup || Y fo ( Y. fo(y)es ]/) egllr < 1]:1—;4

AEN(A) BeA 9’6)\%,0

d
and so Me

sup |2 fo(weslle < :
AENMANAy, =0 eeZA 1+M
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5 Projectivity and continuous fields of Banach algebras of compact operators

Let Ag = U'_; Ay,;. Then, for every A > Ag, and y € a(S) we have

1Y foly)ee —ylle

fer
<| Y. foeo—ylle+ 1) foweo— Y fo(weallr
96/\%,0 fer 96)‘3/1‘0
e(1+ M)
(1+M)
=¢.
This shows that
|Cra —al|g < ¢
for all A > Ay. From Lemma 5.8 we have that C, is bounded. ]

Lemma 5.10. Let E be a Banach space with an extended unconditional basis {eg}gcp such
that E is shrinking. Then {Ca}ren(a) = {Xoea €96 faen(a) 18 a right bounded approximate
identity in K(E).

Proof. Lete > 0 and a € K(E). By [36, 7.2] the adjoint operator a* is a compact operator
from K(E*). By assumption E* has an extended unconditional basis { fy}. Then, by
Lemma 5.9, there exists a Ag € N(A) such that

[aCy —all = [[(aCy —a)*|| = [|Cha” —a™[| <e
for every A > Aj. ]
We now generalise a result of Lykova from [20].

Theorem 5.11. Let E be a Banach space with an extended unconditional basis {eg}gcp. Then
K(E) is right projective.

Proof. Let {fy} be the associated linear functionals to {eg} and set egy = fyeg € K(E).
By Lemma 5.9, the family {} egy} is a left bounded approximate identity for K(E), so
there exists a constant C; such that for all A € N(A)

1) eeollx(ey < Cu-
oeA

Since {eg}gea is an extended unconditional basis there exists a constant C, such that
for all A = (64,...,0) € N(A), (1, ...,im) € T and a € K(E) we have

m m
1Y meeaoallkey < Call Y eon,allk(e)-
t=1 t=1
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5 Projectivity and continuous fields of Banach algebras of compact operators

Let A € N(A) and a € K(E). We then define

Yra = Z egg X egoa.
fer

We wish to show that (yxq)ren(a) converges in K(E)&K(E). We break this into the
following lemmas.

Lemma 5.12. Let a € K(E) and let A > Ag € N(A). Let A\g = (04, ...,0m,) and A =
(91, ceey 9m0, cesy Oml). Then

m

[VargallkEreke < C1GI Y. enoalkE)-
s=mp+1

Proof. Let i1 be a primary (m; — mg)th root of unity. From Lemma 1.4 we have that

1 my—mp my my
YA\ roallk(B) 2K (E) < P— Y. e, Y, i mleg g a

1 0 =1 s=mp+1 K(E) s=my
- C% my—myg my mq
o omyp =g t—zl S—%—i—l 0 s—mZ—H R

K(E) 0 K(E)
my
< C1C§ Z €p,0,a
t=my+1 K(E)

Ol
Lemma 5.13. For each a € K(E) and € > 0 there exists Ay € N(A) such that for all
A€ N(A),

€
2 Cppa <S5~
€A\ K(E) 2C; Cz

Proof. This follows directly from Lemma 5.9.
O

Lemma 5.14. Let a € K(E) and € > 0. Then there exists a Ay € N(A) such that for all
Ay > A > Ag € N(A) we have

YA — Yrrall <e.
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5 Projectivity and continuous fields of Banach algebras of compact operators

Proof. Let Ag be as in Lemma 5.13. Then we have

Y220 = Yavall = Va2 r00 T Yroa — YA \roa — Yaoall
= ||yA2\A0,a - yAl\AO,aH
< yaagell T 1yaagall
Cnge C1C§s
26,2 20,2
~ 8 E
2 2
— E.

]

We are now ready to show that K(E) is right projective. We define the following
morphism of Banach K(E)—modules

p: K(E) = K(E)®K(E)

a— liiny;w.

We now show that p is a morphism of modules and that 770 p = Tg(g).
The map p is linear since for a,b € K(E),a,p € C

p(“a + ﬁb) = }1\151\ YAwa+Bb

= lim (Z ego ® egg(aa + ﬁb))

AEA O

= lim (lX Z ego X eppa + ,3 Z ego X 69917)

AEA\  gea e

=uali li b
a lim (Z eqp ®eeeﬂ> + p lim <Z egp @ egp )

fer e
:“ERWﬂ+ﬁER%b
= wap(a) + Bp(b)
and
— i
p(ab) lim 5 ap

= lim Z egy ® egpab
AEA O
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=1 b
m (2 epp & eee“)

oeA

=1 b
ren A

= p(a)b.
The map p is bounded as ||p(a)|| < C?C3||a|| from above.
We finally show that o p = 1g ),

mrop(a) = m(lim y;q)

=7 |l e ool
(Algz 0 © 99)

feA

=limm e epoa
m (Z 0 © 99)

feA
= lim epoa
fim | & oo
(S

=da

This completes the proof. O

5.2 Projectivity of Cy(Q), K(E))

Theorem 5.15. Let () be a locally compact Hausdorff space which is also paracompact and let
E be a Banach space with an extended unconditional basis. Then Cy(Q), K(E)) is projective in
mod-Co(Q), K(E)).

Proof. Let {ep}gece be an extended unconditional basis for E. Let {fy}gcq be the asso-
ciated linear functionals to {eg}gco. Set egg = fgeg € K(E).

By assumption Q) is a paracompact locally compact Hausdorff space. Let B = { V), },,ca
be an open cover of () such that each point of () has a neighbourhood that intersects
with no more than three sets of B as in [12]. By [18, Problem 5.W], since {V,, } nen is a
locally finite open cover of the normal space (), it is possible to select a non-negative
continuous function h,, for each V,, in B such that h, is 0 outside V), and is everywhere
less than or equal to one, and

Y hu(s) =1 forall se€Q.
HEN
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5 Projectivity and continuous fields of Banach algebras of compact operators

Set gy = /Iy

Since {eg} is an extended unconditional basis there exists a constant C; such that for
allo = (64,...,0m) € N(®), (11,...,7m) € T and a € K(E) we have

m m
1Y neeanallke) < Cill Y eanallkie)-
t=1 t=1

Since {Y_ egg }oce is a bounded approximate identity in K(E) there exists a constant C
such that for all o € N(®P)
1Y eanllk(py < Co.

feo

Fora € Co(Q,K(E)), (A,0) € N(A) x N(P) we define

Yrea = Z Z 8ueop @ guepoa.
ueAbeo

We wish to show that y,,, is a Cauchy net. We break this up into the following
lemmas.

Lemma 5.16. 1. Let a € Cy(Q,K(E)), ¢ € N(®) and A > A € N(A). Let A =
(U1, oo thmg) and A = (y1, ..., Py, s Yy ). Then

[y reall ook (EnecookE), <9CTCH e Iguallcyk(E))-

2. Let a € Co(Q,K(E)). Then for any € > 0, there exists a Ag € N(A) such that for all

A > Ag we have
€

sup |[guallcyk(E) < 377773

peA g K o( (E)) 36C%C§

3. Let a € Co(Q),K(E)), A = (U1, im) € N(A) and ¢’ > 0 € N(P). Let 0 =
(61, ... Omy) and 0’ = (604, ..., 0y, ..., Om, ). Then

11
Z €9t9t€l(x)

t:no-l-l

Co(OK(E)ECo(OK(E)), < 9CTCasup
xeQ)

’ ’ Yro \o,a

K(E)

4. For any € > 0 there exists a g € N(P) such that for all ¢ > 0y we have that

s

< —=.
36C2C,
K(E)

Z eppa(X)

feo\oy

sup
xeQ)
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Proof. 1. Let 57 be a primary (my — mg)th root of unity and let ¢ is be a primary nth
root of unity. By Lemma 1.5 we have

Hmumllco <>>® o0, <>> <
n 1—Mmy
Z Z Z Z ¢ guiea,
I=1 k=1 ||t=1i=mg+1 Co(Q,K(E))
n nq
Z Z giltrlikig}liegtgta
t=1i=mo+1 Co(Q,K(E))

Since for every x € () there are at most 3 values of u such that g, (x) # 0 we have
the following, for k =1,...,my —mp,l =1, ..., n,

n mq )
Z Z Cltﬂklgﬂie&@t

t=li=mo+1 Co(QK(E))
Lt ki
=sup||Y. Y. &'"gu(x)ego

n
<3 max sup Zéltgy(x)eetet

HEAMA xeQ) ||4=1

K(E)
=
<3|)_ & epe,
t=1 K(E)
n
<3C1 ||)_ oo, (by Theorem 5.3)
t=1 K(E)
<3C1Co. (by Lemma 5.8)
Similarly
ok
Z‘ Z ¢ lgl/‘iEGtha
t=li=mo+1 Co(QK(E))
_ SO i ki
=sup |} Y, &y Vgu(x)eqealx)
xeQ) t:1i:m0+1 K(E)

<3 max sup
HEAM\A xe

Z & gu(x)ege,a(x)

t=

Z & Meg,g,

K(E)

<3 max
HEAN\A

sup [| g, (x)a(x) || g,
K(E) xeQ)
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<3C1C, 1;1)3@ sup ||gu(x)a(x) HK(E) (by Theorem 5.3 and Lemma 5.8)
xe

<3C;C; max Hgy

e a HCO(Q,K(E)) '

Therefore

[YanreallcokEnacoiE), <9CIC max, Iguallcyk(E))-

. Since a € Co(QO), K(E)), for every € > 0, there is a compact set K C () such that
la()llkE) < 3¢c2cz for every t € O\ K. Compact sets intersect with a finite
12

number of elements of {V),},ca. Set Ag = p: V, N K = @, then for each t € K we
have

up. lgu(1a(t) [ ce) = 0.
HEMAg

Therefore
€
sup g (0a(t) leyor()) < zogms-
LA\ M o (E)) 36C%C%

. Let # be an mth root of unity and let ¢ is be an (19 — n1)th root of unity. By
Lemma 1.5 we have

1 nm-—nog m It
i —m) & & 3 Zé 1 "800

n m
Z Zl lt”klgﬂzef?tf?t

1 [[t=no+1 t=ng+1i=
From part (1) we have that
Z Zé”ﬂklgy,eetet <3C,Cy.
t=ng+1i= CO(Q,K(E))
We then have
N ki
Z Z ¢ t17_ Zgﬂief)tf)ta
t=np+1i=1 Co(QK(E))
SRR
=sup | Y, Y. ¢ "y Mg (x)eqea(x)
x€Q ||t=no+1i=1 K(E)
1
<3 max sup Z (:_Ztgy(x)egtgtg(x)
HEA e t=ng+1 K(E)
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5 Projectivity and continuous fields of Banach algebras of compact operators

11
<Bsup| ) §_lt69t9ta(x)
xeQ) t=np+1 K(E)
11
§3Clsup Z egtgta(x)
xeQ) t=np+1 K(E)

Therefore

ny
Z thGta(x)

t=np+1

lyaoncallco@ ke, ecoaiE) < ICIC2 sup
xXe

K(E)

. Since a vanishes at infinity we can pick a compact set K C () such that for every
x € O\ K we have that

€
< ———.
Ha(x)HK(E) > 36C%C§

Therefore, for x € Q\ Kand ¢ € N(®),

€
1Y eopa(x) || k() <

< (5.1)
= 36C2C,

Since a is continuous, for every ¢ > 0 and every x € (), there exists an open set
U, C Q such that ||a(x) —a(y)|| <

open cover of the compact set K.

@ for every y € U,. Then {Uy}yek is an

Let {U,,}!", be a finite subcover of {Uy},cx. Leti € {1,..,m}. Then a(x;) is
a compact operator in K(E). Therefore since {} e} is an approximate identity
in K(E) we can pick a finite set 0; such that for every ¢ > 0; we have that

3

< ——.
~ 72C2G,
K(E)

Z eppa (X;)

feo\o;
Set 0y = Ui, ;.

Let x € K. Since {Uy, };":1 is a cover of K there exists an i such that x € U,,.
Then for o > 0y we have that

Z egea (X)

fea\oy K(E)
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5 Projectivity and continuous fields of Banach algebras of compact operators

=| X esnla(x) —a(x;) +a(x;))
feo\oy K(E)
<\ X esala(x) —a(x:)) + Y eooa(x:)
fea\oy K(E) fea\oy K(E)
€
<|| Y e la(x) = alxi)lie) + 75 e
feo\oy K(E) 1-2
cCp by E
272C2C2 " 72C2C,
R
©36C2C,
Therefore, for x € Kand 0 € N(®),
€
I Y. esoa()llkr) < 7~ (5.2)
0\reo 36C2C;
Thus by (5.1) and (5.2),
sup | Y. egoa(x) <t
06 Po
x€Q) ||fea\ oy K(E) 36C%C2

Lemma 5.17. For each a € Co(€Q, K(E)), (Ya,n,a) (rn) is @ Cauchy net in

Proof. Lete > 0,a € Cy(Q), K(E)). Let Ag and 0y be as in Lemma 5.16 parts (2) and (4)
respectively.

Then for (A, 02) > (A1, 01) > (Ao, 00). Note that

Yrpoma = Y1o\ro,00,a + y)\o,az\ao,a + Yrg,o0,ar

Yr,o0a = y/\l\)\g,al,a + y)\o,al\ao,a + Yro,00,a-

[YA2,00.0 = Yayovall ok (E) & Co(QK(E)),

= ||y)\2\)\0,(72,11 + y)\o,(fz\Uo,ll + y/\(),U(),ﬂ - ]/Al\/\o,al,u - y)to,(Tl\(To,a - y/\(),U'(),lZ || Co(Q,K(E))®C0(Q,K(E))+
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5 Projectivity and continuous fields of Banach algebras of compact operators

< W roonall ook Enaco@kE). T 1Vannonall ok E)acy @k E),
Yoo \ovallco k(BN 2ok E)) . T Va0 \00allco k(BN @ QK(E)), -
By parts (1) and (2) of Lemma 5.16,

=1 ™

1Y\ Ao,ma lco (K (BN @ Co QK (E)) s <

and

|

1Y\ Ao, llco k(BN @Co(QK(E)). <

By parts (3) and (4) of Lemma 5.16,

L)

1Y r0,01\c0.all Co(K(E)) 2 Co (QK(E)) s <

and

|

Hy)\o,az\ao,u”CO(Q,K(E))®C0(Q,K(E))+ <

Therefore
[YAz020 — ]//\1,01,11||C0(Q,K(E))®CO(Q,K(E))+ <E&

Conclusion of the proof of Theorem 5.15.
Note that Cy(Q), A)®Cy(Q, K(E))+ is complete. By Lemma 5.17, y, -, is a Cauchy net.
Therefore lim, ,,) Y10 €xists for every a € Co(Q), K(E)). Set
p:Co(Q,K(E)) = Co(Q,K(E))®Co(Q), K(E))

a > lim y) g 4.

(A0)
It is clear that p is linear since, for all a,b € Cy(Q), A) and for all a, € C,

p(aa + Bb) = (11m) Yromatpp = lim Z Z Sueoo @ guepo(wa + Bb)

(A0) HEAbEC
= lim Z Z Sueg © gueppa + ﬁ hm Z Z Sueoo © guegob = ap(a) + Po(D).
Oy AO) yed e

Similarly p(ab) = p(a)b since

p(ab) = lim y, ;, = lim Z Zgye% ® guegoab = p(a)b.
(Ae) (Ao) jiEN ber

By part (1) of Lemma 5.16, we have that ||o(a)|| < 9C2C2||a||. Thus p is a morphism of
right Banach Cy(Q), K(E))-modules.
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5 Projectivity and continuous fields of Banach algebras of compact operators

It remains to show that wop = 1¢ o k(k))- Recall that for each x € () we have that
Yuen hu(x) = 1 since h is partition of unity. Thus, since 7 is continuous,

- li o,a
nt(o(a)) ﬂ((g(r;)m, )

= lim 7()_ ) gueos @ gucoon)
ueAbeo

We wish to show that lim, ) ¥,c) Loco ueopa = a. Consider it acting on an element
x €0

111’1’1 Z Z h 69911

yE/\ fco

= hm hm Z Z By (x)egga(x

yE/\ bco
= hm Z 699(2

fco

=a(x).

As to the left projectivity of Cy(Q), K(E)) we have the following theorem.

Theorem 5.18. Let () be a locally compact Hausdorff space which is also paracompact and let X
be a Banach space with an extended unconditional basis which is shrinking. Then Cy(Q), K(X))
is left projective.

Proof. Let {eg}gce be an extended unconditional basis for X. Let {fy}gcq be the asso-
ciated linear functionals to {eg }gcp. Set egg = fyeg € K(X).

In Lemma 5.10 we showed that {Ci} cna) = {Loea €09 fren(a) is @ right bounded
approximate identity in K(E). The rest of the proof is similar to the proof of Theorem
5.15.

Let B be an open cover of () such that each point of () has a neighbourhood that
intersects with no more than three sets of B.
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5 Projectivity and continuous fields of Banach algebras of compact operators

By [18, Problem 5.W], since {U} },cn is a locally finite open cover of the normal space
(), it is possible to select a non-negative continuous function h, for each U, in U such
that h, is 0 outside U, and is everywhere less than or equal to one, and

Y hu(s)=1forall se€Q.
HEA

Set gy = /hy.
Fora € Co(Q,K(E)), (A,0) € N(A) x N(P) we define

Yroa = Z 2 agueps & ueoo-
HEABECT

We show that y, ,, converges in the following lemma
Lemma 5.19. (i) Let a € Co(Q,K(X)), 0 € N(®) and Ay > Ag € N(A). Let A\g =
(M1) oo Pimg) and Ay = (U1, ooy Pimgs o Py ). We then have that

22
YA\ Aol aga < 9CTC Jmax Iguallcyo,k(x))-

(ii) Leta € Co(Q, A). Then for any € > 0, there exists a Ay € N(A) such that for all A > A
we have that

€
sup |[guallcykx) < 377277
N e e
(iti) Let a € Co(Q),K(X)), A € N(A) and o1 > 09 € N(®P). Let 09 = (61, ...,0m,) and
o1 = (61, Omg, - Oy ). We then have that

11

Z a(x)69t9t

t:n0+1

2
Hy)\,al\ao,aHA@A < 9C1 @) sup
xeQ)

(iv) For any € > 0 there exists a 0y € N(P) such that for all ¢ > oy we have that

Z a(x)thGt

tea\op

sup
xeQ)

s
< —=-
36C2C,

Proof. (i), (ii) and (iii) follow as in Theorem 5.15.
(iv) Since a vanishes at infinity we can pick a compact set K C () such that for every

x € O\ K we have that
€

la(x) |l k(x) < m

67



5 Projectivity and continuous fields of Banach algebras of compact operators

Then for every x € Q) \ K we have that

s

Z a(x)ef)t@t < CZH[Z(x)H < 36C2C2'
1

tea\oy K(X)

Since a is continuous we have that for every ¢ > 0 and x € () there exists an open set
Uy C O such that |la(x) —a(y)|| < for every y € U,. Then {Uy }rck is an open
cover of K.

3
72C3C3

Let {Uy,}" ; be a finite subcover of {Uy }ycx. By Lemma 5.10 {}_ e, } is a right bounded
approximate identity in K(X) and so for every i we can pick an ¢; such that for every
o > 0; we have that

<
72C2C,

Z a(xi)e9t9t

teo\o;

Set 0y = Ui, ;.

Let x € K. Since {Ux]. };”:1 is a cover of K there exists an i such that x € U,,. Then
for o > 0y we have that

Z a(x)e9t9t

teo\oy K(E)
— 2 (a(x) —a(x;) + a(x;))eq,,
tea\oy

K(E)

<|| Y (a(x) —a(x;))egq +11 Y. alxi)ego
tE(T\O'O K(E) tE(T\O'O K(E)
3
<[ X eon la(x) —a(xi)llk(e) + 75z
tea\oy K(E) 1-2
<C £ i 3
272C2C2 T 72C2C,
€
- 36C2C2°
Thus
£
sup a(x)eg,o < —.
€0 teaz\ao o 36C2C,

K(E)
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O

Set p(a) = lim) s Y 4. As in Thereom 5.15 p converges. The fact that p is a mor-
phism of modules and that 7o p = 1¢ (o k(g)) follows in an almost identical manner
as in Theorem 5.15. Therefore Cy((), K(E)) is left projective. O

5.3 Projectivity of A defined by locally trivial continuous fields of
compact operators

We now generalise these results to continuous fields of these algebras with E separable.

Theorem 5.20 ([33], 20.2). Let E be a Banach space and {e, } a complete sequence in E such
that x, # 0(n = 1,2, ...). The following statements are equivalent:

1. {ey} is a hyperorthogonal basis of E.

2. The relations {an}, {yn} C C, |vn| < |an| (n = 1,2,...), Y72, aie; € E imply
Y21 viei € E and

<

(o]
Z Yi€i
i=1

oo
Z nie;l| .
i=1

Let (Ex)ycq be a family of separable Banach spaces such that each Ey has a hyper-
orthogonal basis {e },en. For each x € Q) let {f;¥} be the associated linear functionals
to {e} }. Define

ey, : Ex — Ex
b fu(t)ey

Lemma 5.21. Let E be a Banach space with a hyperorthogonal basis (en)nen. For any n <
m € N and any {n;}icn € T. The following holds

m m
Yo omel| <) el s (5.3)
i=n-+1 E i=n+1 ||g
2.
m
‘ Y e <1. (5.4)
i=n+1 K(E)

Proof. 1. Follows directly by Theorem 5.20.
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5 Projectivity and continuous fields of Banach algebras of compact operators

2.
m m
Z €ii = sup Z eii(y)
i=n+1 K(E) lylI<1 |li=n+1 E
m (]
= sup || ) e (Efj(.’/)ej)
Iyl <1 |li=n+1 j=1 E
m
=sup | ) fi(y)e
Iyl<1 |li=n+1 E
< sup ||} fi(y)ei|| (by Theorem 5.20)
Iyll<1||i=1 E
= sup |lylle =1.
lyll<1

[]

Theorem 5.22. Let U = {Q, (K(Ey)),©} be an {—locally trivial continuous field of Ba-
nach algebras where, for x € Q), Ey is a separable Banach space with a hyperorthogonal basis
(eX)neN C Ex. Let A be the Banach algebra generated by U. Suppose that Q) is paracompact
then A is projective in mod-A.

Proof. By assumption there is an open cover {W,}, « € M, of Q) such that each U|w,
is trivial and, in addition, there is an open cover {B;} of cardinality £ of Q) such that
B; C W, foreachj=1,...,{ and some a(j) € M. By [12, Lemma 2.1], for any para-
compact locally compact space () there exists an open cover U = {U,} of relatively
compact sets such that each point in () has a neighbourhood which intersects no more
than three sets in ¢/. Consider an open cover {B]- nu, : U, ed,j =1,...,4} of Q.
Denote this cover by {V} }. Note that {V},} is an open locally finite cover of () of order
3¢.

By [18, Problem 5.W], since {V},},,ca is a locally finite open cover of the normal space
(), it is possible to select a non-negative continuous function h,, for each V), such that
hy is 0 outside V), and is everywhere less than or equal to one, and

Y hu(s) =1 forall s€Q.
HEN

Note that in the equality Y e fu(s) = 1, for any s € (), there are no more than 3/
nonzero terms. Set g, = /hy.
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5 Projectivity and continuous fields of Banach algebras of compact operators

Let ¢* = (¢}) rev, be an isomorphism of Uy, onto the trivial continuous field of
Banach algebras {V, (K (E;)),CO(VM,K(I/SVV ))} where ¢ is an isomorphism of Banach
algebras ¢% : K(Ey) — K(E;)

For each x € Q) let {f;'} be the associated linear functionals to {e} }.

Lemma 5.23. Forany a € Aand forany A = {y1,...,un}, n,N € N, I,k € N,

Zzélt’?hgu, MYl <3¢ (5.5)
t=1i=1 A
and
n N "
ZEC 78 (P81 7 (el )a < 3¢max||gyal] , (5.6)
t=1i= "

where ¢ is a primary n-th root of unity and u is a primary N-th root of unity in C, and

Z Z’V ltﬂ_klg% (pe')~ (ett)

t=n+1i= A
m
<3¢ max sup || Y. (¢%") 7 (e} )a(x) (5.7)
1<p<Ner t=n+1 K(Ex)

where vy is a primary (m — n)th root of unity.

Proof. Since for every x € () there are at most 3/ values of u such that g,(x) # 0 we
have the following,

N

n
Z g (h) T (el

=1 A

S lt ki
=sup Z D ¢ g () ()~ (e

€@ li=1i=1 K(Ex)
<3/ max sup gulx Z ()~ Teh)
<3¢maxsup |g,(x (¢h)~1(el)
€A e K(Ex)
<3/ max ol
na t;C i

K(Ey)
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n
) e

t=1

<3¢ max

(by inequality (5.3))
HEA

K(Ey)
<3¢ (byinequality (5.4)).

Similarly
n N
Z Z g (k) T (el )a
=1i=1 A
=sup ZZC M7 g () (K1) 7 (el )a(x)
xeQ ||t=1i=1 K(Ex)
<3£maxsup ZCI ltg (x) (@) (ef)a(x)
HEA xe K(Ex)

~ Sup Hg#(x)”(x)HK(Ex)

n
<3¢ max ZC ”eft
=1 K(EV) xeQ)

HeEA

n
<3¢ max 2 eft

na sup ||gu(x)a(x) HK(EX) (by inequality (5.3))

K(E’;) xe)

<3¢ maxsup ||gy(x)a(x)||K(E ) (byinequality (5.4))
HEA xe g

=3max|[ya] ;-

Thus the inequalities (5.6) and (5.5) hold.

Z Z'V nm 8% (p5) " (ely)a

t=n+1i= A
m
=sup ||} Z'r 78, () () (el )a(x)
x€Q) ||t=n+1i=1 K(Ex)
m
<3¢/ max sup v e () (k) TN el Va(x)
1<p<Ner t—;rl Hp tt k(e
m
<3¢ max sup (PP T (el Ya(x)
1<P<N xEV t:;—}—l * i K(Ex)
=3/ max sup 'y_ltey” (a(x))
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Z v e 9k’ (a(x))

=3/ max sup
1<p<Nx€VF

t=n+1 K(Ey,)
m
=3{ max sup  sup Y. ’Y_lt< e fclp(a(x))”>efp
1<p<N X€Vup u€ky,,|ul|<1 |[t=n+1 Eup
< Hp My Hp
<3¢ max sup  sup Yo (f g (a(x)u) e
1<p<N XE€Vup ueEy,,|[ul|<1 |[t=n+1 Eup
m
=3¢ max_sup | Y e %" (a(x))
1<p<Nyev,, ||t=nt1 K(Ey,)
I 1 - Hp H
=3¢ max sup ||(¢y")” Y. e/ ¢k (a(x))
1sp<Nyev,, t=n+1 K(Ey)
S "
—3€1r<na<xN sup Z (92")" (ettp)”(x)
Hence inequality (5.7) holds. O

Fora € A,n € N,A € N(A) we define the following element y,, » ,, in A®.A

Yana = Z Zgﬂ 4)# 11 ®gﬂ(§b0) ( )a

ueAi=1

Define N(A) x N as a directed set with (A, n) < (A", m) if and only if A’ C A and
n < m.

Lemma 5.24. For any a € A, the net (y, ) »)n converges in ARA.

Proof. Note that any compact K C () intersects only a finite number of sets in the
locally finite covering {V,,} and, for any a € A, ||a(t)|| — 0 as t — co. Let ¢ > 0. There
is a finite set A € N(A) such that for y ¢ A we have

3
lgualla < 5702
For A C A’ € A" and m > n, we have

H]/a,/\”,m —Yarn ”_A@A = Hyu,/\“\/\,m T Yarm — Yar\An — Yarn ||A®,A
< NYarramll aza + 1Yo anll aza + 1Yarm — Yarnll 4z a-
By Lemma 1.5, for A = {uq,...,um}, i €N,
1Vaiallasa, <
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Cltﬂklgy, (4’-1) (ett )

=
1=

0

I=1k=1

Iyl

—
I
—_
~.
I
—_

A

X 5“’7 8;4,(47-1) (eftl)”

1=
[\13

—~
I
—_
~.
I
—_

A

where ¢ is a primary m-th root of unity and # is a primary 7i-th root of unity in C.
By inequalities (5.6) and (5.5) from Lemma 5.23,

R 2 €
[Yamamll aza < ¢ yg%’{A gual 4 < 3

and

Hya/\’\/\n”A®A < 902 l’é’l)\é} Hgya”A < 5

By inequality (5.7) from Lemma 5.23, for A = {y1, ..., un},

||]/a,)x,m - ]/a,)x,n”A@A =

Y3 su(el) (¢lf) @ g (9h) 7" (e ) a

i=1j=n+1

ARAL
m
< 9¢ max sup Z s (eﬁ”)a(x)
1<p<Nyxev,, ||t=n+1 K(Ey)

By Part 4 of Lemma 5.16, for every Hp, 1<p<N,

i ett a(x)

sup = sup Z e 5P — 0 as i — oo.
xeVy, K(Ey) xeVy, K(Eyp)
Hence

|Yarm— Yarnll 4 — 0 as n,m — co.

Thus, in view of the completeness of A®A, for any a € A, the net Ya A n CONVerges in

AR A. O

Let us complete the proof of Theorem 5.22
Set

p: A — A®A+
li .
a— (/g;l;l) Yaan
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We claim that p is a morphism of right Banach A-modules and that rop =1 4.

Leta,b € A,ua, B € C. Then

p(aa+ Bb) = (hm) Yaa+pbAn

- m§:[gy@ (ef;) ® gu(@e) ™" (ef;) (aa + pb)

Am) peAi=1

_ahm Z Zgy CP. ” ®gy(¢.) ( y)a

:ma Z Zg}‘ (P' €ji ®g?‘(¢') ( y)b
= ap(a) + po(b)

and

ab) = lim
P( ) (An)yab,)\,n

ZTZZ@@ () ® gu(@8) " (el;)ab

ye/\z
= p(a)b

Leta € A. Then
lp(a)|| < 9¢%al|

by inequalities 5.6 and 5.5.

Thus p is a morphism of right Banach .4-modules.

Leta € A. Then

(top)a ”((im) Yan)

(hm Z Zgﬂ gby 11 ®gl‘(¢') ( V)a>

ye/\z

= 1m Z 27'[ Sy CP. n) ®g;¢(4’;~1)71(65)”)

ye)\z

75



5 Projectivity and continuous fields of Banach algebras of compact operators

]

Theorem 5.25. Let Q) be a Hausdorff locally compact space. Let U = {Q), (K(Ex)), ®} be
an {-locally trivial continuous field of Banach algebras, for some ¢ € IN. Suppose, for each
x € Q, E, is a separable Banach space with a hyperorthogonal basis (e ),eN C Ey. Let A be
the Banach algebra generated by U.

Then the following conditions are equivalent:
(i) Q) is paracompact;
(ii) A is right projective and U is a disjoint union of o-locally trivial continuous fields of Banach
algebras.

Proof. By Theorem 5.22, the fact that () is paracompact implies right projectivity of
A. By Remark 1.18, since () is paracompact, U/ is a disjoint union of o-locally trivial
continuous fields of Banach algebras.

By Proposition 3.4 and Lemma 4.15, conditions (ii) implies paracompactness of ().
Thus (ii) <= (i). O

Theorem 5.26. Let U = {Q), (K(Eyx)), ®} be an {—locally trivial continuous field of Banach
algebras where, for x € ), Ey is a separable Banach space with a shrinking hyperorthogo-
nal basis (e})nen C Ex. Let A be the Banach algebra generated by U. Suppose that Q) is
paracompact. Then A is left projective.

Proof. By assumption there is an open cover {W,}, « € M, of () such that each U|,
is trivial and, in addition, there is an open cover {B;} of cardinality £ of Q) such that
BiC W, «(j) foreach j=1,..., ¢, and some a(j) € M. By [12, Lemma 2.1], for any para-
compact locally compact space Q) there exists an open cover U = {U,} of relatively
compact sets such that each point in () has a neighbourhood which intersects no more
than three sets in /. Consider an open cover {B]- N, : U, e,j =1,...,4} of Q.
Denote this cover by {V, }. Note that {V},} is an open locally finite cover of () of order
3¢.

By [18, Problem 5.W], since {VV}VG A is a locally finite open cover of the normal space
(), it is possible to select a non-negative continuous function h,, for each V), such that
hy is 0 outside V), and is everywhere less than or equal to one, and

Y hu(s)=1forall se€Q.
HEN
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Note that in the equality }.,ca hu(s) = 1, for any s € ), there are no more than 3/
nonzero terms. Set g, = /hy.

Let ¢* = (¢) rev, be an isomorphism of U|y, onto the trivial continuous field of Ba-

nach algebras V,, where ¢ is an isomorphism of Banach algebras ¢ : K(Ex) — K (E;)

For each x € Q) let { £} be the associated linear functionals to {e}; }.

Lemma 5.27. Forany a € Aand forany A = {yy,...,un}, n,m € N, Lk € N,

Y Zéf K, (od")"H(el)|| <3¢ (5.8)
t=1i= A
and
Y Z‘:ltﬂklguz §) e[ < 3¢max||gua| (5.9)
t=1i= A UEA

where ¢ is a primary n-th root of unity and y is a primary N-th root of unity in C, and

Z 27”17’“&41 Y (el

t=n+1i= A
m
<3¢ max sup | Y a(x)( k- (eff) (5.10)
1<p<NxEV t=n+1 K(Ey)
where vy is a primary (m — n)th root of unity.
Proof. 1t follows as in the proof of Lemma 5.23. O

Fora € A,n € N,A € N(A) we define the following element v, , , in A®A
n
Yorn = 3, 3 8ua(Pd) " (eh) © gu(¢d) " (e])-
peAi=1

Define N(A) x N as a directed set with (A, n) < (A", m) if and only if A’ C A and
n < m.

Lemma 5.28. For any a € A, the net (y, ) n)n converges in AQA.

Proof. Note that any compact K C () intersects only a finite number of sets in the
locally finite covering {V},} and, for any a € A, ||a(t)|| — 0 as t — co. Let ¢ > 0. There
is a finite set A € N(A) such that for 4 ¢ A we have

3
||8;4‘1||A < 702
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For A C A C A and m > n, we have

Hyu,)\“, —Yax n”A®A 1Ya AM\Am t Yarm = Yar\an — ]/a,)x,nHA@gA
< H}/a,/\”\/\,mHA@)A + ”ya,)\’\)\,nHA@)A + ”ya,)\,m - ya,/\,n”.A@A'

By Lemma 1.5, for A = {1, ..., um}, i € N,

1Woiallaga, <

1 i m i m
— Y ) ZZ@lt’?klgﬂ, (@)1 (erf)
M 13 2 || i=1i=1 A
< | Y ety Mg (ph) (el
t=1i=1 A

where ( is a primary m-th root of unity and # is a primary 7i-th root of unity in C.

By inequalities (5.9) and (5.8) from Lemma 5.27,

(.;.)Im

Yol aza < 967 g*?,’\‘A Iguall 4 <

and

Hya/\’\/\n”A®A < 90> l’é’l)\é} Hgya”A < 5

By inequality (5.10) from Lemma 5.27, for A = {p1,..., un},

ﬁ Y. gua(gl) ! (ef) @ g9k (e

[Yanm—
i=1j=n+1 ASAL
m
<9/ max sup Z a(x) (') (eftp)
1sp<Nyev,, ||t=nt+1 K(Ex)

By Part 4 of Lemma 5.19, for every p,, 1 < p <N,

— 0 as i — oo,
K(Ex)

sup
xXe VF‘P

3 ax) (9l") ()

since for every x € V), , Ey is a separable Banach space with a shrinking hyperorthog-
onal basis (¢ef),cN. Hence

|Yam = Yarnll aga — 0 as n,m — co.

Thus, in view of the completeness of A®.A, for any a € A, the net y, ) , converges in

AR A. O
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5 Projectivity and continuous fields of Banach algebras of compact operators

Set

o: A — A®A+
i :
a (ﬂl) Yarn
We claim that p is a morphism of right Banach A-modules and that rop = 14. The
rest of our proof is similar to the proof of Theorem 5.22. O

Theorem 5.29. Let Q) be a Hausdor{f locally compact space. Let U = {Q), (K(Ey)), ®} be an
L-locally trivial continuous field of Banach algebras, for some £ € IN. Suppose, for each x € (),
E, is a separable Banach space with a shrinking hyperorthogonal basis (e}y),eN C Ex. Let A
be the Banach algebra generated by U.

Then the following conditions are equivalent:

(i) Q) is paracompact;

(ii) A is left projective and U is a disjoint union of o-locally trivial continuous fields of Banach
algebras.

Proof. By Theorem 5.26, the fact that () is paracompact implies left projectivity of A.
By Remark 1.18, since () is paracompact, U is a disjoint union of o-locally trivial con-
tinuous fields of Banach algebras.

By Proposition 3.4 and Lemma 4.15, condition (ii) implies paracompactness of ().
Thus (ii) <= (i). O
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6 On the Projectivity of C*-algebras with Fell’s condition

6 On the Projectivity of C*-algebras with Fell’s condition

6.1 Definitions and notation

The following definitions can be found in Dixmier’s book "Les C*-algebres et leurs
representations” [9, Section 2].

Definition 6.1. Let (H,(.)y) and (K, (.)x) be Hilbert spaces. Define the following inner
product for x1,x, € H and y,,y2 € K
(x1 @ y1, 02 @ y2) = (x1,%2)y (Y1, Y2)k -

Set H ®4 K to be the completion of H ® K with respect to the norm generated by this inner
product. H @4 K is known as the Hilbert tensor product of H and K.

Remark 6.2. Let H and K be Hilbert spaces. We can view B(H) ® B(K) as a subset of
B(H ®4 K) via (T® S)(h@k) = T(h) @ S(k) for T € B(H), S € B(K).

Definition 6.3 ([9], 2.12.15). Let A and B be C*-algebras and let w: A — B(H), T: B —
B(K) be faithful representations of A and B respectively. We denote by A @c,. B the C*-algebra
of operators on H ®4 K generated by mt(a) @ t(b) where a € A,b € B. The C*-algebra
A ®cy B is known as the C*-tensor product of A and B and does not depend on the choice of
representations 7t and T.

Remark 6.4. Let A and B be C*-algebras. By [30, 1.22.2] the following map

i: AQB — A ®c+ B,
such that a@b—~a®b, ac€ A, beB,

is well defined and

i(u) | aoeB < ]| acB-

Theorem 6.5 ([13], Proposition I1.2.50). Let Q) be a locally compact Hausdorff space. Then
the map

71 Co(Q)RCH(Q) — Co(QA x Q)
such that a®@b—a®b, ac Cy(Q), be Cy(Q),

is not a topological isomorphism.
Note that by [13, Remark 11.2.10] -y is not surjective.
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6 On the Projectivity of C*-algebras with Fell’s condition

Definition 6.6. A C*-algebra A is said to be elementary if there is a Hilbert space H such that
the C*-algebras A and K(H) are isomorphic as C*-algebras.

In this section we investigate continuous fields of C*-algebras which satisfy a prop-
erty known as Fell’s condition. We first review some results from [9, Section 10.7].

Theorem 6.7 ([9],10.6.1). Let H be a Hilbert space. For ¢,11 € H \ {0} we denote by ¢, the
operator

96/77 :H— H
(0 ¢

The operator O ,, is of rank < 1 and every operator of rank < 1 is of this type. If ', 1" € H we
have

00y = (&',1) Oy
and
Oc = Ong-
Remark 6.8 ([9], 10.6.2). Let ¢1(t), ..., C2n(t) be variable vectors of H. By [9, 3.5.6], if
(i(t),&;(t)) converges to (1;,7;) for any i and j then

”951(1‘)152(0 T 0, 1 (0),60(1) ”B(H) converges to [|6y,p, + .. + Oy, 12, ||B(H)-
In other words |0z, (1),z,(t) + - + 02y, (1), (1) | (1) 13 @ continuous function of the scalar

products (&;(t),¢i(t)) .

Definition 6.9. A continuous field H of Hilbert spaces is a triple H = {Q), (H;)teq, T'} where
QO is a locally compact Hausdorff space, (Hi)icq is a family of Hilbert spaces and T is a subspace
of I1;cqHy such that

(i) for every t € Q), the set x(t) for x € T is dense in Hy;

(ii) for every x € T, the function t — ||x(t)| g, is continuous on Q),
1

where || x(t)[|n, = (x(t), x(t))}, is the norm induced by the inner product of Hy;

(iii) whenever x € Il;cqH; and, for every t € Q) and every € > 0, there is an x' € T such
that ||x(s) — x'(s)|| g, < e throughout some neighbourhood of t, it follows that x € T.

Remark 6.10 ([9], 10.7.1). Let H = {Q, (H})teq,T'} be a continuous field of Hilbert
spaces. If x,y € T then the function t — (x(t),y(t)), is continuous by the inequality

4 (x(8), y(1) g, =1x(8) + y (O I, — x(t) — ()17, +illx(D)+ iy (1) |7, — illx(t) — iy (D[,
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6 On the Projectivity of C*-algebras with Fell’s condition

Remark 6.11 ([9], 10.7.2). Let H = {Q, (Ht)tcq, '} be a continuous field of Hilbert
spaces. For each t € ), let Ay = K(H;). For x,y € T define 6y, € Il;cnA; by the
formula 0y (t) = 6, (), () By above we have that

Ory = byxr Oxybuy =0:y
with z(t) = (x'(t),y(t)) x(t). Then the set A of the vector fields
9x11x2 + 93{3,3{4 + + 9X2,1,1,XZ,1/

where x1, ..., xp, € I is an involutive subalgebra of IT;cnA;. The set A(t) is dense in the
set of operators of finite rank in H;, and is therefore dense in A;. By Remark 6.8,

||6X11x2(t) + ot 0x2n71rx2n (t) ||Ht

is a continuous function of the (x;(t), x;(t)), and therefore of t. Then by [9, Proposition
10.3.2], there exists a unique set ©® C I1;cqA¢ such that U = {Q), A, ®} is a continuous
field of elementary C*-algebras. The triple U is said to be associated to H. It will be denoted
by U(H).

We now consider the correspondence betwen continuous fields of Hilbert spaces
and continuous fields of elementary C*-algberas. Again the following can be found in
[9, Section 10.7].

Remark 6.12 ([9], 10.7.5). Let # = {Q, (H;),T'} be a continuous field of Hilbert spaces
over a locally compact Hausdorff space (), with a continuous vector field x such that
|x(£)||, = 1 forevery t. Let p = 0,y € @ and U = U(H) = {Q, (A¢),O}. Then p is a
continuous vector field of U/ of projections of rank 1.

Remark 6.13 ([9], 10.7.5). Let Y = {Q), A;, ©} be a continuous field of elementary
C*-algebras over a locally compact Hausdorff space (), with a continuous field of pro-
jections p € © of rank 1. Let H; be the subspace A;p(t) of A;. By Remark 10.6.4 of [9]
H; is a Hilbert space. Let T be the set of all x € © such that x(t) € H; for every t € Q).
Then ‘H = {Q), H;, T'} is a continuous field of Hilbert spaces. Moreover let x = p. Then
x is an element of I such that ||x(¢)| g, = 1 for every t € Q).

Definition 6.14 (Fell’s condition). Let () be a locally compact Hausdorff space, and U =
{Q, Ay, ©} a continuous field of elementary C*-algebras. U is said to satisfy Fell’s condition
if, for every x € ), there exists a neighbourhood U, of x and a vector field p of U, such that,
for every t € Uy, p(t) is a projection of rank 1. Note that U|Uy = U (Hy).
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6 On the Projectivity of C*-algebras with Fell’s condition

Proposition 6.15 ([9], Proposition 10.7.7). Let ) be a locally compact Hausdorff space, and
U a continuous field of elementary C*-algebras over (). The following conditions are equivalent

1. For every ty € (), there exists a neighbourhood V of ty and a continuous field H of
non-zero Hilbert spaces over V, such that U|V is isomorphic to U(H ).

2. U satisfies Fell’s condition.

Proof. (1)=(2). Suppose that condition (1) is satisfied. Let ty € (). Let V; be a neigh-
bourhood of ty and H = {Vj, (H;), '} be a continuous field of non-zero Hilbert spaces
over Vp such that U |V} is isomorphic to /(). Let ¢ be a non-zero element of H;, and
let x be a continuous vector field of H such that x(#p) = ¢. The set V of the t € Vj such
that x(f) # 0 is a neighbourhood of ty; put y(t) = Hx(t)HI}tlx(t) for t € V. The vector
field 6, of U(H ) is defined and continuous on V, and 6,,,(t) is a projection of rank 1
for every t € V. There therefore exists a vector field p of U/, defined and continuous on
V, such that the p(t) are projections of rank 1.

(2)=(1). Suppose that U satisfies Fell’s condition. Let ty € (). There exists a neigh-
bourhood V of ty and a continuous field p of projections of U of rank 1 defined on V.
Then, by [9, Lemma 10.7.6], |V is isomorphic to U (H). O

6.2 Necessary and sufficient conditions for the projectivity of C*-
algebras with Fell’s condition

Let Q) be a locally compact Hausdorff space, and let i = {Q), (A¢), ®} be a continuous
field of elementary C*-algebras satisfying Fell’s condition. We define A(s,t) = As ®c.
At

Definition 6.16. Let U = {Q), (A;), ®} be a continuous field of C*-algebras. Let A be the
C*-algebra defined by U. For (s, t) € Q x ), define

q)(s,t) : .A®.A — A(S, t)
a®br a(s)®b(t)

and extend by linearity.

Then for v € ARA, define
Go: O xQ— R
(5,8) = @) (@) ags-
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6 On the Projectivity of C*-algebras with Fell’s condition

Lemma 6.17. Let w € ARA such that w = Y ' 1 a; ® b;. Then Gy (s, t) is continuous on
Qx Q.

Proof. Let ¢ > 0 and s, fp € Q). We wish to show that G, is continuous at (sg, tp).

Since A satisfies Fell’s condition, by Proposition 6.15, there exists a neighbourhood
Vs, of 5o and a continuous field of Hilbert spaces Hs, = {Vs,, (Hs(5))sevy,, I'sy} such
that A|Vs, is isomorphic to U (Hs,). Likewise there exists a neighbourhood V;, of fg
and a continuous field of Hilbert spaces U;, = {V4,, (Hto(t))tevtoz I't,} such that A|V},
is isomorphic to U (Hs,).

Therefore a;|V;, € T, and b;|V}, € T'y, for each i and so, for all (s, t) € Vi, x V4,

(Zal®b> 5,t) € K(Hs, (s) @y Hyy (1))

Therefore, by Remark 6.11, there exists x?,y;? € I's, and w}“,z”

j € I'y,, my € N such
that

(;aiéébi)( —J%(Zny ®9wz()>,

where the limit is taken in the uniform topology over a neighbourhood of (s,t).

We note that for ¢ € Hg,(s), 7 € Hy,(t), xj,y;j € T's; and wy, z; € T'y; we have

Ox;y;(5) @ 0w,z (1) (T @ 17)
= (,yj(s)) x(s) @ (11, 2;(t)) w;(t)
= (@ 1,yi(s) ®zj(t)) xi(s) @ w;(t)
=0x;(s)@w; (1), y;(s) 2 (1) (E @ 11)-

Therefore, by Remark 6.10, (s,t) + 0x,y,(s) ® 0w,z (t)(¢ @ 17) is a continuous func-
tion on Vs, x V;,. By Remark 6.11,

Vo X V.
Therefore @) (w)| a(sy) is @ limit of continuous functions in the locally uniform

m . .
psh Gx]r,z,y]n(s) ® Gw}«,z}i(t)HA(s 0 is continuous on

topology, and so is continuous on () x Q).
O]
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6 On the Projectivity of C*-algebras with Fell’s condition

Lemma 6.18. Let v € A& A. Then the following are true
(i) Gy(s,t) is continuous on Q) x Q);

(ii) Gy(s,t) — 0as t — oo uniformly for s € Q);

(iii) Gy(s,t) — 0as s — oo uniformly for t € Q).

Proof. (i) Let e > 0 and (sp, tg) € Q) x Q). We wish to show that G, is continuous at

(So, to).

By [31, Theorem 3.6.4], every element v from A®.A can be written as } 5o A; 4; ®
bi, \i € C, a; € A b; € A, where Y °; |Aj| < co and the sequences {a;},{b;}
converge to zero in A as i — oo.

Pick N such that

& €
Yo [Ailllaill ]| < 7
i=N+1
Let w = Zizil Aia; ® b;. By Lemma 6.17, Gy, is continuous on () x Q). Therefore

there exists a neighbourhood, Uy ) of (so, to), such that

&
|GZU(S/ t) - GZU(SOI t0)| < 5/

for all (s, t) € Uy

s0.t0)*
Note that,

||(P(So,t0) (w) ||A(S(),fo) :H q)(So,to) (w) - (P(So,l’o) (U - w) + (P(So,to) (U - w) ||A(So,f0)
S H q)(So,to) (w) + qp(So,to) (U o w) ”A(So,to)
+ H go(So,to) (U - w) ||A(So,t0)'

and so,
—|| P (s0,t0) (w) + P(soto) (v —w) ”A(Sozto) s ||90(so,to) (v —w) ||A(so,to)
- || (P(So,to) (w) ||A(50/t0).

Then, for all (s, t) € U,

s0.t0)”

GU(S, t) — GU(So, tQ)
=[l@(s,0) (O ais,t) = 1 P(s0,t0) (D) asot0)
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6 On the Projectivity of C*-algebras with Fell’s condition

=[l@(s,) (W) + @) (0= W) a(s,t) = 1 P(s0,t0) (W) + Prso,t0) (@ — W) | (s t0)
<l s,n (@) ags,) + 1@, (@ — W)l as
950,10 (0 = W) L a(so,t0) — 1P s0,t0) (@[] As0,80)
=[|@,0) (0 = W)l a(s ) T 1@(sp,0) (0 = W) | (s, 1) T Gao(8, ) — Gw (80, t0)
<5+ Gals) = Gulso to)
<5 +1Gu(s,£) = Gulso, to)|
<e.
Similarly, for all (s, t) € U, 1)/

GU(SOI tO) - GU(S, t)

:H(P(So,to) (U)HA (so,t0) — ||(P (s,t) (U)HA(S,t)
=[[@(s0,t0) (@) + Psp,t) (0 = W)l A(sp ) = 1@ (s,6) (W) + @5,y (0 — W) [ a5 1)
< Hq)(S(),to (w) ||A (s0,t0) + ”q) (s0,t0) ( w) ”A(So,to)

+ s, (@ = W)l ae) = 196, @) a0
=[P (s0,t0) (0 = W) asot0) T 19,6 (0 — W) [ a(s,6) + G (S0, t0) — Gu (s, £)

<5+ Galso,to) — Gals, 1

&
SE + |Gw(so, to) — Guw(s, t)|
<E.

We therefore have that
|Go(s,t) — Go(so, to)| < e

(ii) Lete > 0. For t € O, let 1; : A — A; be evaluation at t. We note that

lees,0 (@) lagy < 1T @) () 4,84,
Pick Ny such that

(ee]

S
> illlailllibi]l < 5.

i=Np+1
Recall that the sequences {a;},{b;} converge to 0 in A as i — oo and so the
sequences {a;}, {b;} are also bounded. There exists a C € R such that ||a;|] < C
for all i. Also we can therefore pick a compact subset K C () such that for all
te Q\K

€ (o)
[T (bi)lla; < 5+, where M > C)_ [A]
to2M i=1
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6 On the Projectivity of C*-algebras with Fell’s condition

foralli =1,..., Ny. We then have

No e
sup Go(s, t) < sup <Z |)\i|||TS(ai)||||Tf(bi)||At> 3

seQ) s€Q) \i=1
No €
< Y Wlllailllz(®i)lla, + 5
18—1 .
< §+§
=&

forallt € O\ K.

(iii) Follows as in (ii).
O

Definition 6.19. Let ) be a locally compact topological space. We say that a continuous field
of elementary C*-algebras U = {Q), (Ax)xcq, O}, satisfies the o-Fell condition if for every
x € Q, there exists a neighbourhood U, of x and a vector field, py, such that px(s) is a
projection of rank 1 for each s € Uy and there is a countable open cover {V;} of Q) such that
V; C Uy for each j and some x(j) € Q.

Definition 6.20. Let U = {Q), (At)icq, ©} be a continuous field of Banach algebras. Let () be
a disjoint union of a family of open subsets {Wy } e pm of Q. We say that U = {Q), (A)ieq, O}
is a disjoint union of U|w,, p € M.

Theorem 6.21. Let Q) be a locally compact Hausdorff space, let U = {Q), (A¢),©} be a
disjoint union of continuous fields of elementary C*-algebras U|W,, u € M, satisfying the
o-Fell condition and let A be the C*-algebra defined by U. Suppose that A is left or right
projective. Then () is paracompact.

Proof. By assumption, ) is a disjoint union of the family of the open subsets { W, } ;e r1-
We shall split the proof into the following lemmas. By Lemma 4.15, if W, is paracom-
pact for each u then Q) is paracompact.

Fix p € M. By assumption U|w, satisifes the c—Fell condition. Therefore, for ev-
ery x € W), there exists a neighbourhood Uy of x and a vector field p, such that py(s)
is a projection of rank 1 for each s € Uy and there is a countable open cover {V;} of W,
such that V; C U, ;) for each j and some x(j).

Lemma 6.22. The paracompactness of all 7] NW,,j € N, implies the paracompactness of W,,.
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Proof. Let B be an arbitrary open cover of W,,. For each j € N, the family B; = {BNV;N
W, : B € B} is an open cover of V; N W,,. By assumption, V; N W, is paracompact and
so BB has an open locally finite refinement D; that is also a cover of V; N W,,. The family
of open subsets D;- = {DNYV;:D € D;} is locally finite in W), and is a refinement of 3.
Furthermore, since Wy, = U;jen Vj, the family D = Ujen D;- is an open o—locally finite
cover of W,,. By Kelley [18, Theorem 5.8], W), is paracompact. O

Fix j € IN. We will prove that V; N W,, is paracompact.

Suppose that A is left projective. Then there exists a morphism of modules p : A —
A+ &®A such that mop = 14.

By [10, Theorem 3.3.1], W, is a Tychonoff space and so, for every s € V] C Uy
there is f; € Co(Q2) such that 0 < f; <1, fs(s) = 1 and fs(t) = 0 for all t € Q\ U,;).
By Property (iii) of Definition 1.9 and [9, Proposition 10.1.9], the field fp is continuous
and || f(t)p(t)|| = 0 as t — oo, so we have fp2 € A.

Note that p(fsp3) € AQA for every s € V; C Uy For every s € V; C Uy
t e ), we set

i) and

q)(S, t) = Gp(fspyz() (S, t)
where the function G is defined in Definition 6.16.

Lemma 6.23. Let s € Vo N W,,. Then @ is independent of the choice of fs.

Proof. Let f5,gs € Co(Q) such that 0 < f;,¢5 < 1, fs(s) = gs(s) = 1 and f(t) = gs(t) =
Oforallt € O \ Ux(])

Let p(\/fspx) = 121 a; @ b and p(/gspx) = Lioq ¢; @ d; where a;,b;,¢; and d; € A.
Then

Gy (5:8) = l9(s (0(fspE)) L agsy
= H(P(s,t)(\/JTSPxP(\/JTSPX))”A(s,t)

= @) (Vfsx Yo ai @ bi) [l agsyp
i=1

= ll@s ) (Y VFspxi @ bi) | ags p)
i=1
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= 2 £(5)p()ai(s) © bi() | age
= 2 pa(s)ai(s) © bi(1) | 4o

= 2 85(5)px(5)a1(5) © bi(1) | s
- ||<o<s,t><2 V&P @ b)) e

_H(Pst \/_PxZEIl@b ||Ast

—H§0 s,t) \/gpxp \/_Px ||A s,t)
— ||(P s,t \/_S\/_pr ||A (s,t)
= HG"(s,t)(\/]Tspxp(\/g_spx))HA(s,t)

— lgn (vFops i )l 4
:uq%,t)(i@pxc,@di)HA(s,ﬂ
—uz F($)pa(5)ei(s) @ di(t) s
= 1 2 pe(9ei) @ i) e

- ||i§ 2e(8)Px(8)ci(8) © (1) L age

= [/ 8&s(s)px(s) ) cis) @di(H) [ s p)

Ie

3

= @0 (V&sPx Y i @di)ll agsyp)
iz

= ||(P(s,t)(\/§Pxp(\/§Px)||A(s,t)
= 19 (0(8sP) s 1)
= Gy(gupt) (5/1)

Therefore & does not depend on the choice of f;. O

Lemma 6.24. Let s € V., N W,,. Then ®(s,s) > 0.
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6 On the Projectivity of C*-algebras with Fell’s condition

Proof. Since px(s) # 0, there exists ¢, 77 € Hx(s) such that (&, px(s)(y)) # 0.

Recall that the projective tensor norm is the largest cross norm on A; ® Asand the
injective tensor norm is the least cross norm on As ® A;. Therefore the following con-
tinuous linear map exists

V(ss) - AS®AS — As Q¢+ As
XRQY—» xRy

Define the following continuous linear maps

is : Hx(s)OH(s) = Hx(s) @y Hy(s)
XRQY—=>xQY,
¢:A(s,s) = Ay @cy As
XY —x Ry,

and the following continuous maps which are linear in the first term and conjugate
linear in the second term

l/)é,‘,iy P As®As — Hx(5)®7'lx(s)

x@y—x*(5) @y(n),
e+ AY e As — Ha(s) @1 Ha(s)

x®y— x(¢)@yn).

Note that i is injective.

Consider the following diagram

ARA
R i go(s,s)
TsQTs
A 'Y(s,s)
As ®As As c* As

o e

H, (s)&Hx(s) — Hy(s) @y Hy(s) A A @cy As.

]

Leta®@b e A® A. Then

(’)’(s,s) 0T ®Ts)(a®b) = ’)’(s,s)(a(s) ®b(s))
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=a(s) ®b(s)
= P(s,5) ((1®b).

Thus ,)/(s,s) 0T Q Ty = go(s,s)'
Letx ®y € As ® As. Then

(P 0P 0 Y(ss)(x®@Y) = (Pgyo¢)(xRY)
= lﬁé‘,ﬂ(x* ®Y)
=x"(¢)®y(n),

and

(iso vz y)(x®@y) = is(x"(5) ®@y(n))
=x*(¢) ®@y(n).

Therefore is o Yen = V(ss) 0T @ T Thus the above diagram commutes.

Therefore Gp(f5p§)(sfs) = ||(P(s,s)p(fsp%c)||A(s,s) = ||7(s,s)(TS®TS)p(fSp32c)||A(s,s)' Since i,
is injective it is enough to show that 9z, (&) p(fsp3) # 0.

Suppose p(fsp?) = Y52, a; @ by. Thus py(s) = Y52 a;(s)b;(s). So we have

t”('ﬁ{’,‘,iy (T5®Ts)P(fsP§))
ZtT(; a; (s)(¢) @ bi(s)(n))
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6 On the Projectivity of C*-algebras with Fell’s condition

Lemma 6.25. The function ®(s, t) is continuous on (VN W,) x Q.

Proof. Let (sp,tg) € V] x Q and fs, € Co(Q) such that 0 < f;, < 1, f;,(sgp) = 1 and
fso(t) = 0 for every t € O\ Uyyj).

Consider the neighbourhood V = U x Q) of (so, to) where U = {s € V; N W,,|f5,(s) #
0}.

Then, for (s,t) € V,

I20)
B H“"“” (” (ff(osﬁ’i)) AeH)
/ﬁ H(P(S’t) (p <f50p’2‘>> HA(s,t)

1
sy Colrord) (571

By Lemma 6.18 part (i), G, fiP®) (s,t) is continuous. Therefore G, 2)(s, t) is the ratio
of two continuous functions and hence is continuous. ]

Lemma 6.26. For every compact K C Vy NW,,, the function ®(s,t) — 0as t — oo in )
uniformly for s € K.

Proof. By [10, Theorem 3.1.7], since () is a Tychonoff space, for a compact subset
K C V;NW, C O and for a closed subset () U.j) C Q\K, there is fx € Co(Q2)
such that 0 < fx <1, fk(s) =1foralls € Kand fx(t) =0forall t € O\ Uy).

By Lemma 6.18, the function G, (s, t) — 0 as t — o0 in ) uniformly for s € Q.

Thus the function ®(s,t) = Gp(fp)(s,t) on K x Q C (V;NW,) x Q tends to 0 as
t — oo in () uniformly for s € K. O

Conclusion of the proof of Theorem 6.21

For (s,t) € (ViNW,) x (V;NW,), we set

E(s, t) = ®(s,t)/D(s,s).
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6 On the Projectivity of C*-algebras with Fell’s condition

By Lemma 6.24, ®(s,s) > 0 for every s € VJ N W,,. Therefore, by Lemma 6.25, E(s,t) is
continuous at every (s, t) € (V; N W) x (V; N W,,).
For (s,t) € (V;NW,) x (V;NW,), we also set
F(s,t) = min{E(s,t),1} min{E(t,s),1}.

By Lemmas 6.25 and 6.26, the function F(s, t) has the following properties:

(i) F(s,t) is continuous on (V; N W) x (V;NW,,),

(ii) for every compact K C V] MWy, F(s,t) — 0 as t — oo uniformly for s € K,
(iii) for every compact K C V;NW,, F(s,t) — 0 as s — oo uniformly for ¢ € K,
(iv) F(s,s) =1foralls € V;NW,.

By [13, Theorem A.12, Appendix A], V] N W, is paracompact. By Lemma 6.22, W, is
paracompact. By Lemma 4.15, () is paracompact.
Il

Definition 6.27. Let U = {Q), (A¢)teq, O} be a continuous field of Banach algebras over ).
Let A C ©. Then A is said to be total if, for every t € Q), the set x(t), as x runs through A, is
total in Ay. U is said to be separable if © has a countable total subset.

We state the following theorem, [9, Theorem 10.8.8], without proof.

Theorem 6.28. Let () be a paracompact space of finite dimension and U = {Q), (At)icq, O}
be a separable continuous field of elementary C*-algebras, of rank W, satisfying Fell’s condition.
Then U is locally trivial.

Theorem 6.29. Let () be a locally compact Hausdorff space of finite dimension and U =
{Q, (At)teq, O} be a separable continuous field of elementary C*-algebras, of rank X, satisfy-
ing Fell’s condition. Let A be the C*-algebra defined by U. Then the following are equivalent

(i) Q) is paracompact.

(ii) U is a disjoint union of continuous fields of elementary C*-algebras that satisfies the o-Fell
condition and A is left projective .

Proof. (i) = (ii). Suppose that Q) is paracompact. By Theorem 6.28, the continuous
field U is locally trivial and so, by Theorem 5.26, A is left projective.
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6 On the Projectivity of C*-algebras with Fell’s condition

Since () is paracompact it is the disjoint union of o—compact sets {W,}, see [10, The-
orem 5.1.27]. Since U satisfies the Fell condition, for every x € W, there exists a
neighbourhood Uy of x, and a vector field p, such that p,(s) is a projection of rank 1
for each s € Uy. Since W), is o-compact and Hausdorff it is regular, see [26]. Therefore
for every U, there exists an open set Vy such that Vy C U, The family {Vy} is an
open cover of W,,. Therefore, since W, is o-compact, there exists a countable subcover
{Vi}jen of {Vi}. Therefore, by Definition 6.19, U|w, satisifies the o-Fell condition.
Thus U is a disjoint union of continuous fields of elementary C*-algebras that satisfies
the o-Fell condition.

(ii) = (i). Suppose that U is a disjoint union of continuous fields of elementary C*-

algebras that satisfies the o-Fell condition and A is left projective. By assumption ()
has finite topological dimension. Then, by Theorem 6.21, () is paracompact. O
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7 Biprojectivity

7 Biprojectivity

7.1 Biprojective Banach algebras
The following definition of biprojectivity can be found in [13].

Definition 7.1. Let A be a Banach algebra. We say that A is biprojective if there exists a
morphism of bimodules, p : A — AQA, such that 7t o p is the identity operator on A where 7t
is the canonical morphism.

Definition 7.2. Let (Ax)xeq be a family of Banach algebras. We say that the Banach algebras
Ay, x € Q, are uniformly biprojective if, for every x € (), there is a morphism of Banach Ay
bimodules

Oxt Ay = Ax®Ay

such that wa, o py = idy, and sup, . [|px[|a, < ce.

The following result of Helemskii’s, on the biprojectivity of commutative C*-algebras,
can be found in [13].

Theorem 7.3. Let Q) be a locally compact Hausdorff space. The Banach algbera Cy(Q)) is
biprojective if and only if Q) is discrete.

We will generalise this result to describe the biprojectivity of Banach algebras defined
by continuous fields.

7.2 Biprojectivity of Banach algebras defined by locally trivial fields

Theorem 7.4. Let Q) be a locally compact Hausdorff space and let U = {Q), (At)teq, O} be a
locally trivial continuous field of Banach algebras. Let A be the Banach algebra defined by U.
If A is biprojective then the family (A¢)ieq are uniformly biprojective.

Proof. Fix x € Q). Since U is locally trivial, there exists an open neighbourhood U, C ()
of x be such that U|Uy is trivial. Let ¢ = {¢: }+cu, be an isomorphism of ¢/ |U, onto the
trivial continuous field of Banach algebras over U, where, for each t € (), ¢ : A} — A,
is an isometric isomorphism of Banach algebras.

By [18, Theorem 5.17], () is regular, and so there exists an open neighbourhood,

Ve C Uy, of x such that V, € U,. By [10, Theorem 3.3.1], ) is Tychonoff and so
there exists an fx € Co(Q) such that 0 < fx <1, fx(x) =1 and fx[q\y, = 0.
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7 Biprojectivity

For ay, € Ay set dy(t) = fo(t)p; 'px(ay), t € Q. Then, by a similar way to the proof of
Lemma 2.1, 4, € A. It is clear that, for a, € Ay, we have Ty (dy) = ay.

Since A is biprojective in A-mod-A there exists a morphism of Banach A-bimodules,
p: A — ARA such that mop = 14 where 7 is the canonical morphism of Banach
A-bimodules. Now define

p~x . Ax H Ax®Ax

a— (T @ Ty ) p(dx)

where T,(a) = a(x). As in Proposition 2.3 it can be shown that gy is a morphism of
Banach A-bimodules, 71y o gy = id, and that sup, ., [|0x]| 4, < [0l 4 O

Theorem 7.5. Let Q) be a locally compact Hausdorff space and let U = {Q), (At)teq, O} be a
locally trivial continuous field of Banach algebras. Let A denote the Banach algebra defined by
U. If A is biprojective then () is discrete.

Proof. Since A is biprojective, there exists a morphism of Banach A-bimodules p : A —
A& A such that 71 4 0 p = id 4.

By [18, Theorem 5.17], a Hausdorff locally compact space is regular. Therefore, since U
is locally trivial on (), there is an open cover {Uy}, p € M, of ) such that each U], is
trivial and, in addition, there is an open cover {V,} of Q) such that V, C U, (s for each
« and some p(a) € M.

Let us show that, for every «, V, is discrete. By Lemmas 2.1 and 3.1, there are continu-
ous vector fields x and y on U, such that p(t) = x(t)y(t) # 0 for every t € U,,(,). By
[10, Theorem 3.3.1], ) is a Tychonoff space and so, for every s € V,, there is f; € Cy(QQ)
such that 0 < f; <1, fs(s) = 1 and fs(t) = 0 for all t € O\ U,,(,). Note that f;p € A.
For every s € V and t € (), we set

CI)(S, t) - Pp(fsp)(s’ t)/Hp(S)HAs’

where the function F,(s,t) = ||(Ts ® T)ul| 4,44, is as defined in Proposition 3.3. By
Proposition 3.3, ®(s,s) > 1 for every s € V,.

As in Proposition 3.4, the function ®(s, t) is a positive continuous function on V,, x
() and does not depend on the choice of f;.

Further, for every s, t € V, such that s # t, there is gs € Cyp(Q)) such that 0 < g; <1,
¢s(s) = 1 and gs(t) = 0. Since p is a morphism of Banach .A-bimodules, we have

D(s,t) = Fog o p)(,8)/[lp(s)]
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7 Biprojectivity

= [[(x @ w)e(fs xgs V)l aza,/IP(s)la,

= [[(x®w)p(fs X)8s(t) y(t) | 4,84,/ IP(s)[| 4, = O.
Therefore, ®(s,t) = 0 for every s,t € V, such that s # t, and ®(s,s) > 1 for every
s € V,. For sp € V,, because ®(s,t) is a positive continuous function on V, x V,,
the function G, (t) = P(sp,t) is a positive continuous function on V,. Note that

Gs,'({0}) = Vi \ {so}. Therefore singletons are open in V,. This implies that V, is
discrete.

Recall that QO = |J, Vi where, for each «, V, is an open subset of (). Thus Q) is
discrete. -l
Example 7.6. We now use Selinov’s examples, from [32], of some biprojective Banach

algebras to construct different Banach algebras which are also biprojective

Let () be a topological space with the discrete topology. For every t € (), let E; be
an arbitrary Banach space of dimension dim E; > 1. Take a continuous linear func-
tional f; € Ef, || ft|| = 1 and define on E; the structure of a Banach algebra Ay, (E;) with
multiplication given by ab = fi(a)b, a,b € A ft(Et). For each t € ), choose ¢; € E; such
that fi(er) = 1 and [[e;|| < 2. Then ¢; is a left identity of Af,(E;) since for any a € E; we
have

er-a=f(e)-a=1-a=a.

Consider the operator p; : Ay (E;) — Aft(Et)ééAﬂ(Et) defined a — e; ® a. We show
that p; is an A ft(Et)-bimodule morphism. Leta,b,c € E;, A,y € C. Then

pt(abc) = ey @ abc = (e @ ab)c = (e; ® fi(a)b)c = (fi(a)er @ b)c = ap(b)c,

pr(Aa—+pb) = et ® (Aa+ pb) = Aey @ a+ per @ b = Apy(a) + pp(b).

We can see that p; is bounded since
loe(@) || = ller @ all = llex[[|al} < 2{[al]

We finally show that TCA, (Er) © Pt = idAft(Et)' Let a € E;. Then

(A () (@) 0 0t = T0a, (£, (et @ a) = era = fi(er)a = a.

Thus Ay, (E;) is a biprojective Banach algebra.
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7 Biprojectivity

Consider the continuous field of Banach algebras U = {Q, A;, ®} where A; is the
Banach algebra Ay, (E;) with f; € Ef, [|fi]| = 1. Let gt be a continuous function on
Q) such that g¢(t) = 1 and g:(s) = 0 for all s # t. Since () has the discrete topology
© = [T;cq A+, and so the field e;g; such that (e;g:)(s) = 0 for all s # t and (e;g¢) (t) = e
belongs to the Banach algebra A defined by U.

For a € A we define (g:a) € A by
a(t) ifs=t
a)(s) = :
(gta)(s) {0 ifs £t

Let N(Q)) be the set of finite subsets of () ordered by inclusion. For a € A and
A € N(Q), define

Yra = Y €8t ® gl

teA
By assumption, sup,.(, ||e:|| < 2.

Note that compact subsets of () have a finite number of elements.

Pick Ag = (X1,...,Xn,) C Q such that |[a(t)|| < 5 for t € Ag. Let Ay > Ay > Ag

where Ay = (X1, ..., Xy, oy Xy ) @Nd Ap = (X1, .., Xy, ooey Xy, Xy ). Let 17 be a (ny — ny)t"
root of unity.
We then have
1 np—nq np c(s—n _1) 1y —c(s—n _1)
||y)L2,IIl _yAlra .A+®A S nH — Z || Z 17 ! gxsexs”.AH Z 17 ! gxsaH.A
2— M c=1 s=ny s=ny
1 np—nq
<—— ) sup el sup [la(t)]lg,
h2 m c=1 tE/\z\)\l fE/\z\)\l
1 €
_ 2. =
np —n (nz m) 2
= 8,

which shows that y, , is a Cauchy net in A®A for each a € A. Let us define p : A —
A®A by setting, for every a € A,

p(a) = liin Y grer ® g
teA
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7 Biprojectivity

Let us now show that p is a morphism of A-bimodules. We first show that p is linear.
Leta,b € Aand a, € C. Then

plaa + pb) = lim ) gier © gi(na + D)

teA

= li}r\n Y grer @ groa + li/I\n Y grer @ g1Bb

ter teA
= alim 2 grer ® gra + Blim Z grer @ gtb
A teA A teA
= ap(a) + pp(b).

Leta,b € A. Then

and so
) fila(t)b(t) ifs=t
e {0 if s £ t
Note that
) fila()b(t) ifs=t
((g:a)b)(s) = {0 oy
also and so

This shows that

p(ab) =lim ) ge; ® grab
A ter

= (liin Y grer @ gra)b

teA

We note that
(fe(a(t))gt(b))(s) = {
so gtab = fi(a(t))g:b. Therefore

p(ab) =lim Y gie; ® gsab
A te

= lim thet ® fi(a(t))geb
Ater
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7 Biprojectivity

= lim Y fi(a(t))grer @ gib

teA

= lim Z agrer @ gib
T

=lima ) _ ge; @ gib
Atea

= ap(b).
From above ||p(a)|| < |letll|al] < 2]ja]|. Therefore p is a morphism of Banach .A-

bimodules.
We now show that mop =14. Leta € A. Then

mop(a) =7 <li£n Y gier ®gta>

teA

= li)r\n T <Z grer @ gm)

teA

= lim téra
m)s
ea

=1lim ) _ grera(t)
A teA

= li/r\n Y ga(t)
=a.
Therefore A is biprojective.

Example 7.7. Let () be a topological space with the discrete topology. For every t € (),
let (Et, Ft, (-, -)t) be a pair of Banach spaces with a non-degenerate continuous bilinear
form (x,y):, x € E, y € F, with ||, )¢]| <1 and infjeq ||(-,-)¢|| > 0. The tensor algebra
E+&F; generated by the duality (-, -); can be constructed on the Banach space E;®F; where
the multiplication is defined by the formula

(x1 @ y1)(x2 @ y2) = (x2,y1)ex1 @ Y2, X; € Ey,yi € Fi.
Choose x? € E;, ) € F; such that (xP, 1) =1, [|y?]| = 1 and ||2?]| < 2.

Consider the operator p; : E;®@F — (E;®F;)®(E;®F;) defined on an elementary tensor
byxoy— (x0y) @ (¥®y), x € E,y € F.

Note that

lor(x @il = (x @) ® (x} @ )|l < 2[x[lllyl = 2[x @yl
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7 Biprojectivity

Extend p; linearly and on E;®F; since p; is bounded. We now show that p; is an
E;®F;-bimodule morphism and that TE,&F © Pt = idE@Fﬂ so that E;®F; is a biprojec-
tive Banach algebra.

Let a,b € E;QF and A, u € C. We note that p¢(pa + Ab) = ups(a) + Apt(b) by con-
struction.

Let - -
A=) Gy, b=) n oy
n=1 n=1
We show that p;(ab) = ap(b) = p(a)b.

Then
ab = <fo®yl> (Zx ®y]>
i=1
=Y Y (o)l o)
i=1j=1
-1 21< Lyl (@ ).
1= ]:
Therefore o o
orlab) = - 3 (vl (f oy @ (@ ).
i=1j=1
Note that -
(xp @y)) @ (x} @ i),
n=1
and so
Z %Ry ® ((x?@’]/?z)(ZxZ@]/i))-
n=1 k=1
Note that
(xf @ y3) (Z%?@yi) = L(dey) (ko) =¥ (hui) (Feu).
k=1 k=1 k=1

Combining this with above gives us
= L (x DYp) ® <(X?®y2)<2xl?®yi>>
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7 Biprojectivity

=) <xk/yn> X @y) © (xf @)
n=1k=1
= pt(ab).
Similarly we have
(b)) = Y (@ yf) @ (xf @)
n=1

and so

X
B
~—~~

Sy
~—

Il

e
=
2
X
<
Poul S
N——
VR
agk
=
=S
®
<
N
X
o
+ O
X
<
=
N——

AO
i

agk:
~
gk
=
Pouli N
X
<
2
N——
=
=
X
<
>
X
=
+ O
&®
<
e
N———

n=1 \k=1
=Y Y () e e ey
n=1k=1
= pt(ab)

We now show that 7tp 5p 0 pr = idg o,

Let a be as above. Then

[e0]

e ar © () = Mg ap (Z (¥ ®1Y)) ® (x} ®yz>>

n=1

(x4 @y?) (2} @ y2)

I
agk

=
I
—_

I
¢

(,9) (x 23

3
I
—_

I
¢

(xh @ )

—_

I
=0

Consider the continuous field of Banach algebras U = {Q), A;, ©} where A; is the Ba-
nach algebra E;&F; with ||{-,-)¢|| < 1. Let A be the Banach algebra defined by .

Since () has the discrete topology ® = [];cn At, and so, for every t € () and every
x;t @y € E/®F, the field g;x; ® y;, such that (g1x; @ y;)(s) = 0 for all s # t and
(gext @ yi) () = x+ @ y¢ belongs to A. Let N(Q) be the set of finite subsets of () ordered
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7 Biprojectivity

by inclusion. For every t € Q, choose x¥ € E, 19 € F; such that (x?,4%); =1, |19 =1
and [|x¥|| < 2. Fora = {x(t) ® y(t) }teq € A, and A € N(Q), define

Yar = 3 (gx(t) @) @ (gx] @ y(t)),

teA
and extend by linearality.

Let € > 0. Pick Ay C Q compact such that ||x(t)|| < § and |Jy(t)[| < 1 for t ¢ Ay.
Let A > A1 > Ag where Ay = (w1, ..., Wy, ..., Wny, .. Wny ), A1 = (W1, ..., Wy, .., Wy, ) and
Ao = (w1, ..., Wy,). We then have

||]/Az,a - y/\l,a||A+®A

1 np—nq np o np _ o
< —— Y Y 7T (gux(ws) @yp ) lallYs 1T (gu xh, @ y(ws)) |l 4
7’12 nl c=1 s=m S=1q

where 7 is a primary (1, — n7)th root of unity.

Then
1y
1Y 7D (guox(ws) @99,)]| 4
S=MNnq
5]
=sup|| Y 7T (gu (H)x(ws) @3l 4,
teQ)  s=m
_ 0
= max [[2x(ws) @ Y, [| Ay,
<
< max |lx(ws)] 4,
<&
5
Similarly

1y
1Y 7 (guxd, @ y(ws))]|a

S=Nnq
)
=sup || ¥ 7T (g, ()25, @ y(ws))lla,
teQ)  s=mny

L 0
o nlrgsaﬁxnz ||st ® y(ws) HA“’S

<
<2 max [[y(ws)]l4.,

103
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Therefore
[YAza — y)\l,a||,4+®_,4 <&

Similarly, for A = (wy, ..., wy,), we have

||yAa||A+®A
ZHZ’?CS Suwx(ws) ® y5,.) ”AHZW *(gwex, @ y(ws)) | 4

< 2 max || (ws)HAws max ||y(ws)||AwS

< 2||al| 4-
for each A € N(A) and a € A.

Therefore for any a € A, the net (y,,)) converges in A®.A. Let us define p : A —
A®A by the formula,

p(a) =lim } (gix(t) @ y}) ® (812} @ y(t)),

teA

on elementary tensors and extend by linearity and continuity on A&.A.

We show that p is a morphism of modules. Since p is linear and continuous by con-
struction and above we may prove this condition only for elementary tensors. Let

a={x(t) @y(t) }eq,b={u(t) @v(t) }1eq € A.

Note that
ab = {(u(t),y(t)); x(t) ® v(t) }req,
and so
p(ab) = lim ) ((u 1) gx() @ 7) © (g} @ 0(t)),
teA

p(a) =lim } - (gix(t) @ y}) @ (812} @ y(1)),

teA

p(b) =lim ) (giu(t) @ y}) @ (8} @ o(t)),

teA

o(a )b—llpg gex(t) @ y)) @ ((u(t),y(t)), gx} @ v(t)),
te
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7 Biprojectivity

ap(b) = Hm ) ((u(t),y(t), gx(t) @ y7) ® (gx] @ v(t)).

Ater

Hence

plab) = ap(b) = p(a)b.
We now show that mop =14. Leta € A. Then

(rtq0p)(a _11m2gt Hey)) () @yt —hmth
teA teA

Therefore A is biprojective.
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8 Applications to H?(A, X) and the splitting of extensions

8 Applications to H*(A,X) and the splitting of exten-

sions

In this section we look at the second continuous cohomology group. The following
definitions can be found in [2, Section 2].

Let A be a Banach algebra, and let E be a Banach A-bimodule. Recall that B"(A, E) is
the Banach space of bounded n-linear maps from A X ... X A into E and the elements
of B"(A, E) are the continuous n-cochains. We set B°(A, E) = E.

A map T € B?(A,E) is a 2-cocycle if
a-T(b,c)—T(ab,c)+ T(a,bc)—T(a,b)-c=0

for all a,b,c € A. Let Z2(A, E) be the space of all 2-cocycles in B%(A, E).

Recall that, for S € B(A,E),
(61S)(a,b) = a-S(b) — S(ab) + S(a)-b, a,b, € A.

Let T € B?*(A,E). Then T is a 2-coboundary if there exists S € B(A,E) such that
51S = T. Let N?(A, E) be the space of all 2-coboundries in B%(A, E).

The second continuous cohomology group of A with coefficients in E is defined as
H?(A,E) = Z%(A,E)/N?*(A,E).

Definition 8.1. Let A be a Banach algbera and let E be a Banach A-bimodule such that x-a = 0
for every x € E, a € A. We say that E is a right annihilator Banach A-bimodule.

Definition 8.2. Let A be a Banach algebra. An extension of A is a short exact sequence of
Banach algebras and continuous homomorphisms

y:0 I—-~B-T1-A 0 Y =Y (B;I).

If I = {0} we say that the extension Y_ is singular. The extension Y is admissible if there is a
continuous linear map Q : A — B such that 7w o Q = i4. The extension splits strongly if there
is a continuous homomorphism 6 : A — B such that mo 0 = iy.
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8 Applications to H?(A, X) and the splitting of extensions

Let X(B;I) be a singular extension of a Banach algebra A. Then I is not just a
Banach B-bimodule, but also a Banach A-bimodule with respect to the operations

a-x=bx, x-a=xb (xel,acA),

where b € B is chosen such that 7(b) = a; these operations are well defined ex-
actly because 12 = {0}. Conversely, let E be a non-zero Banach A-bimodule, and let
L = X(B;I) be a singular extension of A such that E is isomorphic to I as a Banach
A-bimodule. Then the sequence X is a singular extension of A by E. Note that such an
extension X(B, I) always exists.

The following two theorems can be found in [13].

Theorem 8.3 ([13], Proposition IV.2.10(I)). Let A be a Banach algebra. Then the following
are equivalent:

1. H%(A,E) = {0} for any right annihilator Banach A-bimodule E;
2. A is left projective.

Theorem 8.4 ([13], Theorem 1.1.10). Let A be a Banach algebra, and let E be a Banach
A-bimodule. Then the following are equivalent:

1. H*(AE) = {0};
2. every singular, admissible extension of A by E splits strongly.

We now apply the results of the above sections to the second cohomology group
and the strong splittability of singular extensions of Banach algebras.

Proposition 8.5. Let Q) be a locally compact Hausdorff space and let U = {Q), (A;), O} be a
disjoint union of o-locally trivial continuous fields Uy, p € M of Banach algebras. Suppose
one of the following conditions hold:

1. Q) is not paracompact;
2. the Banach algebras A, t € Q, are not uniformly left projective.
Then for the Banach algebra A defined by U
(i) there exists a Banach A-bimodule X such that H?(A, X) # {0}; and

(ii) there exists a strongly unsplittable singular admissible extension of the Banach algebra A.

107



8 Applications to H?(A, X) and the splitting of extensions

Proof. If condition (1) holds then by Proposition 3.4, A is not left projective. Simi-
larly if condition (2) holds then, by Proposition 2.3, A is not left projective. There-
fore, by Theorem 8.3, there exists a right annihilator Banach A-bimodule X such that
H?(A, X) # {0}. By Theorem 8.4, there exists a strongly unsplittable singular exten-
sion of the Banach algebra A. O

Theorem 8.6. Let U = {Q), (K(Ey)), ®} be an {—locally trivial continuous field of Banach al-
gebras where, for x € ), Ey is a separable Banach space with a shrinking hyperorthogonal basis
(eX)nen C Ey. Let A be the Banach algebra generated by U. Suppose that ) is paracompact.
Then H*(A,E) = {0} for any right annihilator Banach A-bimodule E.

Proof. By Theorem 5.26 A is left projective. Therefore, by Theorem 8.3, H2(A, E) = {0}
for any right annihilator Banach A-bimodule E. O

Theorem 8.7. Let Q) be a locally compact Hausdor{f space, let U = {Q), (A¢), ©} be a disjoint
union of continuous fields of elementary C*-algebras U|W,, u € M, satisfying the o-Fell
condition and let A be the C*-algebra defined by U. Suppose that Q) is not paracompact. Then

(i) there exists a Banach A-bimodule X such that H?(A, X) # {0}; and

(ii) there exists a strongly unsplittable singular admissible extension of the Banach algebra A.

Proof. By Theorem 6.21 A is not left projective. Therefore, by Theorem 8.3, there exists
a right annihilator Banach A-bimodule X such that #?(A, X) # {0}. By Theorem 8.4,
there exists a strongly unsplittable singular extension of the Banach algebra A. O
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A Paracompact topological spaces

Here we have collected the topological material that we use throughout this thesis.

For a review of paracompact spaces see [18, p156-160].

Definition A.1. Let B be a cover of a topological space Q). B is said to be locally finite if every
point in () has a neighbourhood intersecting only a finite number of set in B.

Definition A.2. Let By and B, be two systems of sets. By is said to be a refinement of B, if
every set from I3y is contained in some set from Bj.

Definition A.3. A Hausdorff topological space () is said to be paracompact if every open
cover of Q) has an open locally finite refinement that is also a cover of Q).

Example A.4. We give some examples of some paracompact spaces.
1. All compact spaces are paracompact.
2. All metric spaces are paracompact.
3. All locally compact Hausdorff second countable spaces are paracompact, see [25].

4. Let Ry be the real numbers equipped with the topology generated by the basis of
all half-open intervals [4,b), where a,b € R. The space Ry is call the Sorgenfrey
line and is paracompact, see [35].

Example A.5. We give some examples of some spaces which are not paracompact.

1. Let BN be the Stone-Cech compactification of the natural numbers and let p €
BN \ N. Then BIN \ {p} is not paracompact.

2. Let Ry be the Sorgenfrey line. In [35] it was shown that R, X IR;, known as the
Sorgenfrey plane, is not paracompact.

Note that some authors replace Hausdorff with regular in the above definition. In
our case our topological spaces are always locally compact and Hausdorff and there-
fore regular.

Theorem A.6 ([26], Theorem 41.1). Every paracompact Hausdorff space () is normal.

Theorem A.7 ([10], Theorem 7.2.4). Let () be a normal topological space ). The topological
dimension of () is less than or equal to ¢ if every locally finite open cover of () possesses an open
locally finite refinement of order (.
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Theorem A.8 ([18], Theorem 5.28). Let () be a reqular topological space, then the following
are equivalent:

1. the space () is paracompact;
2. each open cover of Q) has a locally finite refinement;
3. each open cover of Q) has a o-locally finite refinement.

Definition A.9. Let (Uy)ycp be an indexed open cover of a topological space Q). An indexed
family of continuous functions
F=¢s:Q—[0,1]

is said to be a partition of unity on Q), subordinate (Uy)yep, if
1. Y pen Pu(x) =1 for each x,
2. for each x € () all but a finite number of F vanish outside some neighbourhood of x,
3. ¢ vanishes outside U, for each x € A.

Theorem A.10 ([26], Theorem 41.7). Let Q) be a paracompact Hausdorff space; let (Uy)gen
be an indexed open covering of (). Then there exists a partition of unity on Q) dominated by

(urx)aeA'

Theorem A.11 ([13], Theorem A12). Let Q) be a locally compact Hausdorff space such that
there exists a continuous function F : Q) x Q) — [0, 1] satisfying the following properties

(i) for every compact K, F(s,t) — 0 as t — oo uniformly for s € K,
(ii) for every compact K, F(s,t) — 0 as s — oo uniformly for t € K,
(iii) F(s,s) =1 for every s € Q).
Then Q) is paracompact.

By F(s,t) — 0 as t — oo uniformly for s € K we mean that for every ¢ > 0 there exists
a compact set K, C Q) such that |F(s,t)| < ¢ for every t € Q \ K, and every s € K.
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