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Abstract 

 

Anaerobic batch reactors were inoculated with cold-adapted biomass (seed) to treat the organic 

material (COD) of domestic wastewater at 4, 8 & 15oC. The substrate was pre-UV sterilized to preclude 

competition between the cells thriving in the seed and the autochthonous, originated from wastewater 

cells. The performance in terms of organic removal showed that the specific cold-adapted inoculum 

efficiently treats anaerobically raw domestic wastewater at all temperatures based on the UWWTD 

(Urban Waste Water Treatment Directive) (91/271/EEC). The observed methanogenic taxa were 

Methanomicrobiales, Methanosaetaceae, and Methanosarcina during the whole experimentation. 

Methanomicrobiales were predominant at lower temperatures (4, 8oC) followed by 

Methanosaetaceae; at 15oC there was no distinct difference amongst them. Longer enrichment 

showed that further investigation may be required to clearly point the predominance between 

methanogens. Specific cellular activity was calculated (via qPCR, FISH) to enable scale-up & design 

simulation. The specific methanogenesis values showed that the activities at low temperatures are at 

least similar to those of typical mesophiles using a conservative cellular weighing reference to convert 

the cells to VSS. Higher specific activities were observed after acclimation of the cells at 4oC compared 

to 15oC regardless of the operational temperature (4 or 15oC). Acclimation at 4oC also resulted in a 

formation of a community that can be hardly disturbed from the competition of the wastewater cells 

when the seed:substrate ratio is low. This was not evident after acclimation at 15oC and it manifests 

that anaerobic treatment start-up at 4oC results in a sturdy and highly active methanogenic community. 

The CODRAW:CH4 conversion at 4oC was approximately 50% and reached up to 80% of the theoretically 

expected for sterile and non-sterile wastewater feed respectively. It is likely that the conversion was 

boosted from the synergy of the indigenous bacterial communities from wastewater and the cells 

originated from the seed. Enzymes (lipases) assays showed that the wastewater-originated group of 

cells (bacteria) contributed to the hydrolysis of insoluble organic material (lipids) and led to richer 

formation of intermediates that were subsequently utilized by the methanogenic populations of the 

seed. Limited lipid hydrolysis accounted for the organic material that remained insoluble. The lipases 

assays demonstrated that on equal temperatures (37oC) the specific activity of the enzymes secreted 

from the cells at low temperature (4oC) is higher than those secreted from cells at 15oC. This proves 

that the formation of a sturdier and of higher wastewater treatment performance community is likely 

when this is developed at low temperatures. The assay also demonstrated that a 4-degree temperature 

increase (from 4-8oC) is adequate to trigger the lipid:CH4 bio-conversion. Thus, for a complete 

anaerobic wastewater treatment using the specific inoculum, the temperature limit lies in-between 

4oC and 8oC. A scale up designation based on the differentiation of the specific methanogenic activity 

according to temperature shouted that this limit lies at 5oC. For operation at lower temperature (<5oC), 

the required vessel volume and the hydraulic retention time (HRT) become extremely high and 

consequently financially unattainable. The results suggest that inoculating digesters for low 

temperature operation with cold-adapted communities is a promising way to treat wastewater and an 

appropriate solution for the investigation of the process limits. Hence, my recommendation for 

successful low temperature carbon neutral wastewater treatment is the inoculation of anaerobic 

reactors with cold adapted or psychrophilic biomass strategy, acclimation at low temperature and 

operation at a temperature >5oC. 
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“The impediment to action advances action. 

What stands in the way becomes the way.” 

— Marcus Aurelius ,121-180 A.D. 
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Contributions 

1. The selected cold adapted biomass can, in principle, cope with extreme temperature 

conditions and render a wastewater effluent able to meet the UWWTD (91/271/EEC) 

COD standards for discharge on water surface at low temperatures (4, 8 and 15oC). 

 

2. A safety factor for design purposes was estimated from the discrepancy between 

CODremoved and CODCH4. This disagreement suggests that the digester works partially as 

a clarifier the lower the temperature gets. 

 

3. Specific rates for hydrolysis and methanogenesis of wastewater at 4, 8 and 15oC were 

calculated so they can be further used as fundamental parameters for applied 

engineering purposes. 

 

4. The start-up of bio-reactors that operate at ambient or low temperature conditions 

needs to take place during cold periods as: 

 

 Acclimatization at 4oC results in a stable, sturdy community where hydrolysis 

limitation can be rapidly overcome during seasonal variation.  
 

 The biomass acclimatized to low temperatures produces more active enzymes 

than those secreted from the cells acclimatized to higher ones, when 

temperature increases. 

 

5. The hydrolysis of lipids appears to be more temperature sensitive than the hydrolysis 

of proteins and carbohydrates. The inefficiency of lipids to be hydrolyzed could be a 

key factor that describes the sensitivity of methane production rates to temperature. 

 

6. A 4-degree temperature increase (from 4-8oC) is adequate to trigger the CODlipid:CH4 

conversion. 

 

7. The anaerobic lipolytic activity in a bio-reactor operating at low temperatures is 

increasing by the addition of indigenous from raw wastewater communities. 

 

8. Specific cellular activity as a function of temperature can assist in the estimation of the 

HRT and subsequently the volume of an anaerobic treatment tank. The relationship 

between HRTt and HRTt-1 based on Tt, Tt-1 respectively may nullify potential errors from 

a mistakenly selected HRTt. 

 

9. With regards to applicability, operation at 5oC is the lowest temperature limit of 

anaerobic wastewater treatment  
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Nomenclature 

General Terminology 

AD Anaerobic Digestion 

AF Anaerobic Filter 

AH Anaerobic Hybrid 

AnMBR Anaerobic Membrane Bio Reactor 

ASBR Anaerobic Sequenced Batch Reactor 

BOD Biochemical Oxygen Demand 

BW Black Water 

BWKW Black Water Kitchen Waste 

CLSM Confocal Laser Scanning Microscopy 

COD Chemical Oxygen Demand 

CSTR Continuous Stirred Tank Reactor 

DGGE Denaturating Gradient Gel Electrophoresis 

DNA Deoxyribonucleic Acid 

DOC Dissolved Organic Carbon 

DPWW Dairy Parlour Waste Water 

EGSB Expanded Granular Sludge Bed 

F:M Food to Microorganisms 

FISH Fluorescent In Situ Hybridization 

FOV Fields of View 

G-AnMBR Granular Anaerobic Membrane Bio Reactor 

HRT Hydraulic Retention Time 

HUSB Hydrolytic up flow Sludge Bed 

Kcal Kilo calories 

kDa Kilo Dalton 

kJ Kilo joules 

LCFA Long Chain Fatty Acids 

LTAD Low Temperature Anaerobic Digestion 

MMB Methanomicrobiales 
MSA Methanosulfonic Acid 
MSH Mineral media 

MSC Methanosarcina 

MST Methanosaeta 

NA Nutrient Agar 

Nel Number of electrons 

OLR Organic Loading Rate 

PCR Polymerase Chain Reaction 

PGL Polygalactorunase 
pH Power of Hydrogen 
p-NPP Para-nitrophenyl palmitate 

qPCR Quantitative Polymerase Chain Reaction 
R2A Agar Type 

RNA Ribonucleic Acid 

RPF Rigid Polyurethane Foam 
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S Organic Material 

SRB Sulphate Reducing Bacteria 

SRT Sludge Retention Time 

SVI Sludge Volume Index 

TOC Total Organic Carbon 

TSS Total Suspended Solids 

UASB Up flow Anaerobic Sludge Bed 

UV Ultra Violet 

UWWTD Urban Waste Water Treatment Directive 

VFA Volatile fatty Acids 

VSS Volatile Suspended Solids 

WW  Waste water   

WWTP Waste Water Treatment Plant 

Xv Bacterial Mass 

Y Yield 

 
 
 

 
 

Chemical Compounds 

C4H6.1O1.2N)x BSA protein 

C6H12O6 Glucose 

C8H18O Octanol 

Ca Calcium 

CH3CH2CH2COOH Butyrate 

CH3CH2COOH Propionate 

CH3COOH Acetate 

CH4 Methane 

Co  Cobalt 

CO2 Carbon dioxide 

Fe Iron 

FeS Iron Sulphide 

H+ Proton 

H2 Hydrogen 

H2O Water 

H2S Hydrogen Sulphide 

HCl Hydrochloric Acid 

HCO3 Bicarbonate 

KCl Potassium Chloride 

Mn  Manganese 

N Nitrogen 

Na Sodium 

Ni Nickel 

P Phosphorus 

Pb Lead 
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Chapter 1: Introduction – AD at low 
temperature, why?  

 

Figure 1.1 – left: Colony of Bacteria thriving a block of ice from Antarctica (Lake Bonney); right-up: same image, detail after 

zooming; right-bottom: Confocal laser photomicrographs from the same sample, showing microorganisms associated with a 

sediment particle, with enlarged views of two species of cyanobacteria (blue, DAPI-stained bacteria; red, chlorophyll auto 

fluorescence; gray, sediment particle); scale bars, 10mm (Priscu et al 1998). 

  

 

 

1 
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1.1. General Introduction 

2.5 billion people lack of sanitation (WHO & UNICEF 2012) and clean water is becoming the ultimate limiting 

resource (AWA/Deloitte 2011). As urban populations increase, water scarcity (WWAP 2012) becomes more 

widespread and prices inevitably increase (Figure 1.2) (UN Population Division 2008) (Figure 1.4.a, b) (WWAP 

2012) (Figure 1.3), subsequently the need for water reuse, recycling and reclamation becomes more pressing. 

Wastewater, after treatment, is a source of water and can be returned to the natural environment ensuring no 

disturbance of the ecosystem (Water UK report – Wastewater Treatment and Recycling 2006).  

Most wastewater treatment technologies are energy intensive and are becoming increasingly expensive as fuels 

and electricity prices increase (Figure 1.2) (Haarmayer, 2011). Energy neutral or positive wastewater treatment 

plants can, in principle, be developed as the energy in wastewater is far greater than the energy required to treat it 

(Heidrich et al 2011). Hence, the question is how we can re-use this energy rather than let it be lost. A convenient 

way is the bioconversion of the organic material in wastewater to biogas via anaerobic digestion. 

Anaerobic treatment of domestic wastewater is an established technology (or suite of technologies) in countries 

with warm climates (Haandel and Lettinga 1994). At lower ambient temperatures (<20oC) these systems are less 

effective. The rates of substrate utilization, growth, methane production and wastewater hydrolysis all decline with 

temperature drop and previous attempts to treat domestic wastewater at less than 8oC have resulted in treatment 

process failure (Alonzo et al 1969; Kettunen and Rintala, 1997; Bowen et al 2014). However, most attempts to 

date were focused on acclimatizing mesophilic biomass to low temperature.  

I have sought to determine if inoculation of a reactor with psychrophilic/cold-adapted biomass would be a more 

effective way to investigate the performance and limits of the process at low temperatures.  

A positive answer would pave a new path in conservation of our environment, passing it to our children in as 

good or better condition than it was passed to us. 

 

Figure 1.2 – Trends in consumer prices for utilities index (CPI) 2010, for the last 31 years (Haarmayer, 2011); the index is set 

to 100 for 1982-1984 except for telephone, wireless and internet services where the index is set to 100 at 1997. 
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Figure 1.3 – Global physical and economic water scarcity (WWAP 2012) 

 

Figure 1.4 - a) World Population status since 1950 (U.S. Census Bureau, International Database 2011); b) Urban population in 

low and middle-income countries, 1975-2009 (UN Population division 2008). 
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Chapter 2: Literature Review on low 
temperature AD 

 

 

Figure 2.1 – Methane bubbles observed by sonar, escape from sea-bed as temperature rise (BBC News 19 Aug. 2009); Methane 

bubbles formed in the bottom of the Arctic sea covered in ice trying to escape the atmosphere penetrating the ice (Alaska 

Dispatch 30 April 2012). 
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2.1. Wastewater Treatment and Systems 

Wastewater etymology & description: Wastewater (also written as waste water) is any water that has been 

adversely affected in quality by anthropogenic influence. Municipal wastewater is usually conveyed in a combined 

sewer or sanitary sewer, and treated at a wastewater treatment plant or septic tank. Treated wastewater is 

discharged into receiving water via an effluent sewer (Directive 91/271/EEC). 

2.1.1. General View 

The main aim of sewage treatment is to obtain an effluent that complies with the relevant discharge standards. In 

Europe this will typically mean meeting with the standards of the Urban Waste Water Treatment Directive 

(UWWTD 91/271/EEC) to protect the environment from the adverse effects of urban waste water discharges and 

discharges from certain industrial sectors. Parameters that might be taken into consideration include organic-

biodegradable material (BOD, biodegradable COD), nutrients (P, N), total suspended solids (TSS) and pathogens 

(Metcalf and Eddy 2002). In certain circumstances other pollutants/parameters such as heavy metals, pesticides 

sulphur containing compounds and inorganic elements, turbidity and color might also be relevant.  

Wastewater engineering includes both physical and biological processes. In the latter, organic matter is degraded 

by the microorganisms present in the wastewater or the inoculum. Broadly speaking there are two types of 

biological reaction: aerobic and anaerobic. In the anaerobic reactors, mineralization takes place following a 

fermentative path where biogas (CH4, CO2) is typically the final product (Schrurer and Jarvis 2009). Nutrient 

removal mainly occurs via de-nitrification in specific reactor setups to achieve nitrification followed by nitrate 

removal (>90% in a 2 phased submerged filter - UASB); phosphorus removal takes place after its conversion to 

struvite (80% removal at 9.0pH and Mg:P of 1.6:1) (Sousa et al 2008, Jordaan et al 2010). Nitrogen can also be 

sufficiently removed with minimum amounts of O2 via anaerobic ammonia oxidation (Ahn et al 2004; Hu et al 

2013, etc.). Finally if pathogens are present a 3rd step of disinfection/sterilization is added (usually chlorination, 

UV irradiation or Ozone) (Metcalf and Eddy 2002). 

2.1.2. Wastewater Characteristics 

Engineering a reactor requires an understanding of parameters that are often site specific as socio-economic and 

climatic factors change the nature of the waste (Hussain et al 2001) (e.g. water content and organic material 

concentration). 

Solids: are classified on the basis of size into to dissolved, colloidal solids and particulate matter (the solids and 

particulates are known as suspended solids (TSS); TSS containing organic carbon are referred to as volatile 

suspended solids (VSS) (Hammer and Hammer 2002). 

Organic material: is the source of energy for a wide range of heterotrophic cells participating in biological 

reactions. Utilization of organic compounds by microorganisms is known as “metabolism” and can be divided into 

two classes of processes. Consumption for energy production is called “catabolism”, whereas use for 

multiplication is “anabolism” (Malina and Pohland 1992).  

2.1.2.1 Chemical Oxygen Demand 

Chemical oxygen demand or COD is a key parameter in wastewater treatment (Ritmann and McCarty 2001, Henze 

et al. 2008). It is used to estimate the concentration of organic compounds and define effluent quality (for example 

UWWTD 91/271/EEC). Usually expressed as mg/L (or g/m3 or ppm) COD indicates the oxygen required for the 

total oxidation of the organic material in the waste (Metcalf and Eddy 2002). COD can give an indication of the 

potential amount of CH4 that could be derived from the organic fraction of wastewater (Heidrich et al 2011). 

2.1.3 Chemical Energy from Organic Material 

The mineralization of organic material releases energy which is then available for metabolic processes (Malina 

and Pohland 1992). Though some of energy is dissipated or lost as heat to the environment (Haandel and Lettinga 

1994). Due to the complex composition of most wastewaters it is not possible to define a standard energy for all 

types of wastewater. A rational approach for the estimation of the free energy is by the thermodynamic calculation 
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upon oxidation of common wastewater compounds. As the values vary significantly when expressed in kJ/mol a 

more appropriate way is to state them as kJ/gCOD (Table 2.1).  

This can be deduced by assuming that a hypothetical wastewater compound CxHyOz is being oxidized:  

 CxHyOz + (2x - z)H2O  xCO2 + (4x + y -2z)H+ + (4x + y + 2z)e- (Eq.1) 

or 

(1/(4x+y- 2z))CxHyOz + ((2x–z)/(4x+y+2z))H2O  (x/(4x+y–2z))CO2 + H+ + e- (Eq.2) 

The Eq. 1 shows that the oxidation of 1 mol of organic compound transfers of (4x + y + z) electrons. In other 

words for every C atom the number of electrons being transferred is: 

Nel (number of electrons transferred per C atom) = (4x + y -2z)/x = 4 + (y – 2z)/x (Eq. 3) 

For domestic wastewater, the electrons transferred per C atom ranges from four (for carbohydrates and most of 

the proteins) to six (Fats) (Table 2.1).  

The Nel describes the oxidative state of every compound. The higher the Nel per C atom the more reduced the 

compound and the less free energy released from oxidation (Figure 2.2). For most of the common compounds 

with Nel >3el/C the energy is roughly 14.0 Kj gCOD-1 (approx. 3.3Kcal mol-1). 

Table 2.1 - Values of free released energy & electron transfer on oxidation of organic compounds (Haandel and Lettinga 1994) 

  
Compound Kcal/mol Kj/gCOD Kcal/g COD Kcal/g TOC 

Nel (el/C-

atom) 

1 Oxalic Acid 82 21.47 5.13 3.44 1 

2 Formic Acid 68 17.96 4.29 5.71 2 

3 Citric Acid 916 14.99 3.58 7.16 3 

4 Glucose 686 14.94 3.57 9.53 4 

5 Lactic Acid 326 14.19 3.39 9.05 4 

6 Acetic Acid 207 13.52 3.23 8.62 4 

7 Glycerine 387 14.44 3.45 9.39 4.67 

8 Phenol 723 13.48 3.22 10.01 4.67 

9 
Ethylene 

Glycol 
281 14.69 3.51 11.69 5 

10 Benzene 761 13.27 3.17 10.55 5 

11 Acetone 410 13.39 3.2 12.18 5.33 

12 
Palmitic 

Acid 
2338 13.31 3.18 12.18 5.75 

13 Cyclohexane 901 13.06 3.12 12.48 6 

14 Ethylene 314 13.69 3.27 13.08 6 

15 Ethanol 312 13.60 3.25 13 6 

16 Methanol 165 14.40 3.44 13.76 6 

17 Ethane 344 12.85 3.07 14.33 7 

18 Methane 191 12.47 2.98 15.88 8 
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Figure 2.2 - Free energy released from the oxidation of organic compounds per gram of COD as a function of the N-el. 

Transferred per carbon atom (Haandel and Lettinga 1994); data points refer to the free energy released from Table 2.1. 

 2.1.4. Bacterial Metabolism 

Biological wastewater treatment is the removal of organic material based on bacterial metabolism (anabolism - 

catabolism) (Malina and Pohland 1992).  

2.1.4.1. Fermentative Catabolism 

The catabolic fermentation in anaerobic digestion results in methane formation (Malina and Pohland 1992). 

Methane is the most reduced in Nel/C atom-1 organic compound (Nel 8). Thus AD is the quintessential 

fermentative process as all the organic material from various compounds is transformed to the least oxidized 

product, methane (Eq.4). The methane retains the chemical energy from the reduced compounds allowing only a 

minor fraction to be released in the environment. In aerobic processes by contrast, the energy is lost as CO2 is the 

final product and the anabolic fraction is much higher as described below.  

CxHyOz + (4x-y-2z)/4H2O  (4x – y + 2z)/8CO2 + (4x+y-2z)/8CH4 (Eq.4) 

CO2 is also formed in anaerobic digestion and the gases (CO2 and CH4) escape from the liquid phase forming 

biogas. 

2.1.4.2. Anabolism 

Anabolism and catabolism can be quantified. Catabolism can be estimated from the quantity of methane produced 

and anabolism can be quantified from the increase in the amount of biomass.  

At the same time catabolism and anabolism (metabolism) can be described from the decrease in organic matter. 

Figure 2.2 briefly explains how substrate is being utilized through cellular metabolism. 

 

Figure 2.2 - Representation of microbial metabolism and decay (Haandel and Lettinga 1994) 
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Eq.5 describes the relationship between the microbial mass produced and the metabolized substrate mass: 

Y = - (ΔΧv / ΔS)m (Eq.5) 

Where Y is the Yield coefficient; Xv the bacterial mass (volatile solids); S the organic material or substrate being 

utilized; m indicates that the changes between Xv and S occurred from the metabolic activity (Haandel and 

Lettinga 1994) and that no external factors affected the process (e.g. removal from chemical or physical processes). 

For aerobic reactions Y yield can reach up to 0.45g VSS/g COD (Hammer and Hammer 2002). For anaerobic 

digestion at mesophilic temperature conditions the Y is lower reaching the amount of 0.02-0.03 

mgVSS/gCODremoved (McCarty 1990, Stronach et al 1986). Thus in aerobic processes the production of biomass 

is higher leading to increased sludge handling costs. 

In aerobic systems approximately the 1/3 of the metabolized COD mass is converted to CO2 whereas the 2/3 is 

anabolized and becomes biomass. Under anaerobic conditions the low yield results in a significant conversion of 

the organic material into methane (approximately 97% of COD) (Marais and Ekama 1976). In anaerobic treatment 

the number of cells does not necessarily increase; as all living organisms decay they themselves become the 

organic substrate for other organisms’ metabolic processes.  

Marais and Ekama (1976) assert that during periods of starvation the biomass produced from aerobic metabolism 

has a higher decay rate than the biomass generated through anaerobic metabolism. This indicates that anaerobic 

biomass is more robust than the aerobic one and gives an extra advantage to the anaerobes at low temperatures as 

metabolic rate is generally slow, and ‘food’ is limited. Such limitations are mainly caused by the changes that 

occur to the substrate structure at low temperatures (Neidleman 1987), resulting to lower amounts of bioavailable 

substrate for the cells to uptake, grow and thrive. 

2.2. Anaerobic Digestion of domestic wastewater 

The conversion of sewage to biogas is a complex procedure; however it can be separated in four phases, 

hydrolysis/fermentation, acidogenesis, acetogenesis and methanogenesis (Figure 2.3.a, b). Different microbial 

populations are thought to participate in each interlinked process (Angelidaki et al 1999, Haandel and Lettinga 

1994, Malina and Pohland 1994).  

 

Figure 2.3 – a) Reaction sequence for the anaerobic digestion of complex organic substrate; all values expressed in %; b) 

Anaerobic degradation steps: 1) acidogenesis from glycerol combined with lipid (triglyceride) hydrolysis; 2) acidogenesis from 

sugars (glucose); 3) acidogenesis from amino acids; 4) acetogenesis from long chain fatty acids (LCFA); 5) acetogenesis from 

butyrate (HBu); 6) acetogenesis from valerate (HVa); 7) acetogenesis from propionate (HPr); 8) acetoclastic methanogenesis  

(Angelidaki et al 1999). 

a) b) 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=9mWBxwibmoTkvM&tbnid=dynsgCAJPpCEMM:&ved=0CAUQjRw&url=http://www.wastewaterhandbook.com/webpg/th_sludge_83anaerobic_digestion.htm&ei=GxPkUa6aGabG0QWu84DQCg&bvm=bv.48705608,d.d2k&psig=AFQjCNFiwd0Gfp0gwwI8OwKYsgT7q1FzRw&ust=137398798755
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Hydrolysis; complex organic material (proteins, carbohydrates and lipids) is dissolved into smaller molecules 

(glycerin, fatty acids, amino acids and sugars). Hydrolysis is not necessarily a strictly anaerobic process as studies 

showed that micro-oxygenation enhances the physiological metabolism of the facultative hydrolytic bacteria 

assisting substrate hydrolysis (Qi et al 2005, Chu et al 2012). 

Acidogenesis; material produced by hydrolysis is utilized by fermentative bacteria and simpler compounds 

(LCFAs & VFAs, alcohols, CO2, ammonia and H2S) are released. This step is carried out by diverse consortia of 

organisms (Haandel and Lettinga 1994). As in hydrolysis, facultative acidogenic microorganisms can also 

metabolize organic material through micro-aerobic processes (Haandel and Lettinga 1994, Qi et al 2005, Chu et 

al 2012). 

Acetogenesis; the organic compounds released from the cells in the previous phase are converted to CH3COOH 

and H2/CO2 as shown on Figure 2.3.a. As indicated on the same figure a fraction of 70% of the COD is converted 

to acetic acid where only 30% turns into hydrogen. Hydrogen may also be released from acetate formation 

depending on the oxidative state of the original organic compound (Nel <4 gives acetate and CO2, Nel >4 gives 

acetate and H2) (Haandel and Lettinga 1994). As wastewater nature is multi-dimensional usually both H2, CO2 are 

produced. 

Acetate may also be formed from hydrogen through homoacetogenesis and vice versa through acetate oxidation 

when specific microbial communities are present (acetate oxidizing bacteria and homoacetogens respectively) 

(Batstone et al 2002). Homoacetogenesis usually requires a high H2 partial pressure (1-10Pa) to occur over 

methanogenesis (Kotsyurbenko et al 2001). At lower temperatures though acclimation of the cells seems to be a 

key factor in the competition for H2 between methanogens and homoacetogens (Kotsyurbenko et al 2001). 

Methanogenesis; is the process whereby methane is produced from acetate and H2/CO2. For methane formation 

the presence of acetotrophic and hydrogenotrophic methanogens is essential (Thauer et al 1993); the reactions 

taking place are shown below (Eq.6, 7): 

CH3COOH  CH4 + CO2 – Acetotrophic Methanogenesis (Eq. 6) 

4H2 + CO2  CH4 + 2H2O – Hydrogenotrophic Methanogenesis (Eq. 7) 

Commonly, under mesophilic conditions hydrogenotrophic methanogenesis is thermodynamically favored 

compared to acetoclastic methanogenesis. As 70% of the methane comes from acetate, methanogenesis tends to 

be the rate limiting step at mesophilic conditions (Henze and Herramoes 1983); however it is not certain if this is 

the case at low temperatures. 

Methanogenesis may also be derived from propionate and butyrate which can be converted to acetate and thus 

methane (Eq.8, 9). These reactions are thought to be less common (Gerardi 2003). 

4CH3CH2COOH + 2H2O  4CH3COOH + CO2 +3CH4 (Eq.8) followed by Eq.6 

          CH3CH2CH2COOH + 2H2O  4CH3COOH + CO2 +3CH4 (Eq.9) followed by Eq.6 

Methane can be also formed from hydrogenotrophic reduction of CO2 (Eq.10) under special conditions (e.g. 

specific H2 partial pressure to promote syntrophic interactions between microbial communities) (He et al 2006). 

HCO3
- + H2 + H+  CH4 + 3H2O (Eq.10) 

2.2.1. Environmental Factors 

The performance and feasibility of anaerobic digestion is dictated by environmental factors such as: pH, 

temperature, nutrients and presence of toxic compounds (Malina and Pohland 1992, Haandel and Lettinga 1994). 

In domestic wastewater the most important factor is arguably temperature as it cannot be controlled. Domestic 

wastewater is usually buffered by the carbonate-bicarbonate buffering system (Malina and Pohland 1992, Haandel 

and Lettinga 1994); however, pH control may be required at high VFA or ammonia concentrations to avoid 

inhibition of methanogenesis. Domestic wastewater as substrate also provides with adequate amounts of nutrients 

(micro-macro nutrients and phosphorous) and rarely contains toxic compounds. 
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2.2.1.1. Temperature 

Anaerobic wastewater treatment is significantly affected by temperature. Theoretically there are two optimum 

temperatures, near 35oC and near 55-60oC for mesophilic and thermophilic consortia respectively. At temperature 

more than 70oC rates decrease even in the presence of excess substrate (Zinder et al 1984). On the other hand 

methanogenesis is feasible at temperatures lower than 20oC, though slower growth and reaction rates imply the 

need for larger reactors and longer residence times (Mackie and Bryant 1981, Chapter 2.2.4). Which begs the 

question what if the population was adapted to low temperatures? 

Microorganisms are classified according to optimum growth and metabolism temperature into psychrophilic, 

mesophilic and thermophilic (Figure 2.4); the boundaries among them are not clear (Lettinga et al 2001). 

 

Figure 2.4 - Relative growth rates of methanogens according to their optimal temperature conditions (Lettinga et al 2001) 

2.2.1.2. Other factors 

Reactor pH; the operating pH needs to be stable in the neutral range (6.8-7.2); change in pH may affect the archaeal 

population and thus methanogenesis (Liu et al 2008). Acidogenic populations compete with methanogens for 

specific substrates (e.g. propionate) (Hwang et al 2001) and may be less affected by lower pH values resulting to 

limited methane production rates. However, a suboptimal pH does not necessarily stop methanogenesis. The 

process has been observed at pH values low as 5.0 by Methanosarcina barkeri and Methanosarcina vacuolata, 

(Maestrojuan and Boone 1991) as well as at a pH > 7.2 (Liu et al 1991, Boone et al 1986, Mathrani et al 1986). 

Nutrients; the C:N ratio (C:N as COD:Nitrogen) in anaerobic reactors usually vary from 400:7 to 1000:7 

depending on the substrate (Henze and Harremoes 1983). A typical ratio in wastewater is 1000:18:5 (Spencer 

2005). The N:P also varies but usually a good working ratio is 7:1 (Malina and Pohland 1992). Other, less common 

C:N:P ratios have also been studied and found workable (Stronach et al 1986). Certain micronutrients are also 

required at low concentration (Fe, B, Zn, Cu, Mn, Mo, Al, Co, Ni, Se). Studies showed that their use as trace 

element solution promotes biomass growth and subsequently methanogenesis stability (Zhang et al 2012, Jansen 

et al 2007). 

Toxic compounds; there are various toxic compounds that can adversely affect methanogenesis. Accumulations 

of fatty acid, ammonia and hydrogen sulfide, excess of heavy metals (Ni, Pb, Co, etc.) can cause inhibition or 

failure of the process. In small amounts though these elements can be useful (e.g. Zhang et al 2012 enhanced 

anaerobic digestion of food waste using 0.05ml of a trace element solution containing 563, 8.9, 23.9, 14.2, 138.9, 

27.2, 10.1, 495.8, 35.2, 56.1 mg.L-1 of Fe, B, Zn, Cu, Mn, Mo, Al, Co, Ni, Se respectively). 

2.2.2. Need of carbon neutral/positive wastewater treatment 

The advantage of the anaerobic treatment of domestic wastewater at low temperatures is that wastewater can be 

treated under ambient conditions with no need to expend energy to maintain a specific temperature. Any biogas 

generated can be used on the site or sold. 

Three quarter of our biosphere is situated at low temperatures in hypoxic and anoxic environments (i.e. deep 

oceans and lakes) (Metje and Frenzel 2007). Biomass from these environments might be appropriate for the 

investigation of the true temperature limits for the anaerobic treatment of domestic wastewater.  

http://www.sciencedirect.com/science/article/pii/S016777990101
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There is methanogenic capacity at low temperature. 30-40 Tg/year methane is emitted from the arctic wetland 

(approx. 6% of humanity’s annual needs (Reeburgh and Whalen 1992) or approximately 8% of the gases causing 

global warming per year (Cao et al 2012).  

However, lower temperatures can lead to lower growth and substrate utilization rates. This in turn may drive to 

slow degradation and increase in biomass yield due to accumulation of the un-hydrolyzed organic material (0.03-

0.18 gVSS/gCOD; Stronach et al 1986). Accumulation of un-hydrolyzed material may also lead to changes in the 

psysico-chemical properties of the substrate. Other challenges that may occur due to low temperatures are high 

gaseous solubility, high liquid viscosity, and lower diffusion of soluble compounds (Lettinga et al 2001). 

2.2.3. Why low temperature 

As metabolic rates are related to temperature, treating wastes anaerobically at low temperatures is challenging. 

The approach becomes more difficult when the substrate is low strength domestic wastewater. Low levels of 

substrate, poor substrate-biomass contact, low gas production and the need for excellent biomass retention 

(Lettinga et al 2001) are the main barriers to the anaerobic treatment of wastewater at ambient temperature in 

temperate climates. For me, the answer why I do it, as J.F. Kennedy said when he was asked why investing time 

and money to moon expedition, saying: ‘we do it not because it is easy but because it is hard’. 

2.2.4. Metabolism at low temperature 

Studies of cells in cold environments (permafrost ice, snow, clouds) showed that their metabolic rates are similar 

to those of normal cells living in water and soil (Price and Sowers 2004). These rates fall into 3 sub-groups: the 

rate ug(T) for growth, um(T) for sufficient maintenance and us(T) for survival when the cells are imprisoned (e.g. 

trapped in ice) and micro-molecular damage repairs (especially when cells are dormant). The activation energy 

required for the three metabolic processes was estimated at 110kJ/mol and the energy distribution among them 

follows the ratio of 106:103:1 respectively (Price and Sowers 2004). 

2.2.5. Mesophilic biomass as seed 

Thus far, attempts to treat wastewater anaerobically at ambient temperatures in temperate countries have sought 

to acclimatize mesophilic sludge to low temperature, typically by using either 1 or 2 phase reactor configurations. 

Under limited mesophilic temperature conditions methane to COD conversion can reach the 0.34LCH4/gCOD 

(Borja et al 2002) at 15-19oC (close to the theoretically expected, 0.35gCOD) at a prolonged HRT of up to 20 

days. The COD:CH4 conversion and the methanogenic activity is lower though between 5-15oC (Figure 2.5.a). 

   

Figure 2.5 – a) Temperature dependency of methane production using mesophilic biomass as seed (reproduced from Lettinga 

et al 2001); b) Influence of temperature on methane production when temperature decreases or increases (Dhaked et al 2010). 

a) b) 

http://www.sciencedirect.com/science/article/pii/S016777990101
http://www.sciencedirect.com/science/article/pii/S0956053X1000
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Slow performance might be attributed to limited acclimation or less favorable thermodynamics. Lettinga et al 

(2001) showed that at >17oC the substrate utilization activity follows a linear trend reaching the 35oC that appears 

to be the optimum temperature. Thus lowering operational temperature of AD with mesophilic biomass causes 

COD:CH4 conversion decline and potentially change in the metabolic CH4 pathways (Dhaked et al 2010) (Figure 

2.5.b). 

2.2.5.1. 1 step configuration 

Engineering studies typically focus on treating wastewater using a single reactor.  

Uemera and Harada (2000) tested the feasibility of low strength domestic sewage digestion at 25 to 13oC using a 

UASB reactor seeded with mesophilic granular sludge rich in Methanothrix-like archaea at an HRT of 4.7 hours. 

Average total COD removal reached 69.4% with poor gaseous COD:CH4 conversion (74% and 45% for 25 and 

13oC respectively); large amounts of methane were detected in the effluent. After 6 months operation the biomass 

properties changed; MLVSS acidification and deterioration (based on SVI) resulting in limited settleability 

increasing the likelihood of washout. Similarly F420 co-enzyme associated with hydrogenotrophic methanogenesis 

(Dolfing and Mulder 1985) was reduced, implying a reduced capacity for methane production from hydrogen or 

formate. This suggests that there were changes in the structure of hydrogenotrophic community and in the overall 

reduced biomass. The hypothesis was supported by scanning electron microscopy which showed that granules had 

the tendency to break or collapse and the Methanothrix-like communities had disappeared The ATP concentration 

was also reduced throughout the reactor apart from the lowest level of 10cm.  The qualitative and quantitative 

changes in biomass were attributed to starvation and limited hydrolysis at low temperatures.  

Biomass deterioration and washout were also observed by Xing et al (2009) in a study of low strength wastewater 

treatment at 20 and 15oC.  Lowering the temperature from 20 to 15oC resulted in a limited performance and a 

decrease in the proportion of Methanosaeta sp.; however other genera seemed to increase (notably 

Methanospirillum); no effect on the bacteria was observed (the predominant eubacteria being Firmicutes).  

Maharah and Elefsiniotis (2001) set up CSTR reactors to treat municipal wastewater and a mix of municipal-

industrial (starch rich) wastewater using a seed:substrate ratio of 1:1. The aim was to promote acidogenesis for 

biological nitrogen and phosphorus removal. The experiment started at 25oC and the temperature was gradually 

reduced to 8oC.  An HRT of 30 hours was chosen based on the optimum hydrolysis rate achieved in a similar study 

at 25oC by Benerjee et al (1999). Switching of HRT to 48 and 60 hours led to limited substrate after a certain 

period, followed by bacterial decay (as VSS) and resulted in low VFA production. Lowering the temperature to 

8oC also reduced the VFA production, presumably due to a reduction in the activity, but not the abundance of the 

acidogenic bacteria as the VSS concentration remained stable. By contrast Alvarez et al 2008 found that biomass 

(VSS) increased when the operational temperature was reduced from 21 to 14oC in a 2-phased (hydrolytic - 

methanogenic) reactor treating raw domestic wastewater.  The increase was attributed to limited hydrolysis as the 

dilute nature of the wastewater (COD<250mg L-1) led to poor contact between cells and substrate. 

Dague et al (1998) tested the treatability of synthetic low strength dairy wastewater (600mgCOD/L) using a 

continuous ASBR inoculated with mesophilic granular sludge. Starting at 25oC the temperature was reduced to 

5oC. The experiment was aiming to convert an ASBR to a high rate reactor by lowering the HRT from 24 to 6 

hours and achieve a higher operational OLR. Lowering the temperature reduced the COD removal efficiency from 

>90% at 25oC to 60-70% at 5oC at all HRT. The temperature decrease limited methane production but reduced 

HRT increased the gas production showing successful conversion of a conventional ASBR to a high rate reactor. 

Additionally lowering the HRT resulted in a higher than theoretically expected methane production. This is 

attributable as the lower HRT allowed un-degraded material to accumulate in the reactor that could be utilized in 

the subsequent batch feed leading to the putative excess of methane. This suggests that intermediates accumulated 

at lower temperature may be subsequently degraded causing an increased F:M ratio and a higher microbial growth 

rate.  

Akila and Chandra (2007) tried to treat synthetic glucose-based wastewater at 15oC achieving an 83±6% and 

90±4% COD removal for low (950 mgCOD/L) and high (8000 mgCOD/L) strength wastewater with 70±2% and 

78±3 COD:CH4 efficiency respectively using a UASB reactor. The initial HRT of 7 days was reduced to 1 day for 

each substrate. Despite the HRT and OLR changes the removal efficiency was stable. The inoculum was cattle 
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manure, operated at 37oC and gradually reduced to 15oC; the adaptation lasted 21 months. The results showed that 

the higher the COD content of the influent (8000mg/L) the poorer the effluent quality; however the conversion of 

COD to methane was better at the higher COD values. The effluent contained non-degraded VFAs rendering it 

unsuitable for discharge without further treatment. Activity test showed that the predominant methane pathway 

was through acetate (>70 times higher than H2). 

Treatment of brewery wastewater (1000-6000 mgCOD/L) at 15oC was reported by Connaughton et al (2006). 

They use an EGSB-AF reactor in a comparative study with a control reactor at 37oC with a mesophilic inoculum. 

In the first 100 days performance was not stable, however the process eventually stabilized (in terms of COD 

removal and CH4 production) at both temperatures. Some washout was inferred at 15oC but it was observed that 

a higher OLR could be tolerated.  Significant effluent polishing was undertaken by an upper fixed film layer. 

Enright et al (2007) using toluene-containing wastewater in a similar setup to Connaughton et al 2006, at 15oC 

achieved high COD removal efficiencies (70-90%). Collins et al (2005) in the same group with a similar reactor 

setup using anaerobic granules from a full-scale citric acid production plant found that high rate anaerobic 

digestion is feasible and reproducible under favorable conditions (18-20oC) with low VFA accumulation (<1000 

ppm). However, when temperature decreased to10oC a system shock was evident. This suggests that the granules 

cannot operate at a very low temperature level, possibly due to limited hydrolysis that limits the sCOD production 

which is necessary for granules preservation (Kalogo and Verstraete 2001). However the study showed presence 

of putative psychrophilic propionate and butyrate degraders with the former being the most sensitive to 

temperature perturbations (a finding repeated by Collins et al 2006). 

Elmitwalli et al (2002) compared a hybrid anaerobic filter (AF) with anaerobic hybrid (AH) reactor at 13oC using 

low strength domestic wastewater at an HRT of 4 hours with a view to determining which configuration is more 

efficient for wastewater pre-treatment. The AF performed better than the AH in terms of COD removal with 70.7% 

and 58.9% for AF and AH respectively; SS removal was also higher for AF (82% over 53% for AH); similar 

amounts of methane were produced in both systems. Excess sludge was formed in both systems with more being 

found in the AF. The AH sludge quality was better than the sludge formed in AF in terms of settleability and 

filterability expressed as SVI index and VSS/TSS. This means that the AF sludge has higher organic content and 

further stabilization is required rendering a post-stabilization step necessary at a higher degree than for AH. Hence, 

although pre-treatment may promote the biodegradability of the wastewater substrate by removing the hard to 

degrade material, it may also result in increased amount of sludge that requires extensive post-treatment and 

subsequently increased handling costs. 

2.2.5.2. 2 step configuration 

Single stage AD reactors operating at low temperatures suffer from poor contact between the biomass and 

wastewater, accumulation of inert suspended solids and the consequent deterioration of treatment efficiency 

(Seghezzo et al 1998). Two stage reactors might therefore be worth considering.  

Rebac et al (1999) carried out a comparative study between one and two-phased EGSB reactors at 10-15oC, 

treating malting and synthetic waste using a mesophilic inoculum. The single reactor removed 90% of COD at an 

HRT of 1.6 hours and an OLR of 12 gCOD/m3/day, at a temperature of 10-12oC. The use of a second compartment 

allowed the application of a higher OLR (2.8 and 12.3 kgCOD/m3/day for the two compartments respectively), at 

an HRT of 3.5 hours at 10-15oC, achieving 67-78% and 90-96% removal for soluble COD and VFAs respectively. 

The second phase mainly polished the effluent, utilizing the VFAs that were formed in the 1st one. The same study 

showed that after long acclimation of cells to low temperatures one compartment is adequate to achieve sufficient 

anaerobic low strength wastewater (mainly of VFAs) treatment at 3-12oC. 

Alvarez et al (2008) treated low strength raw domestic wastewater (400- 118 mgCOD/L) at 21-14oC via a 2 stage 

hydrolytic upflow sludge blanket – upflow sludge blanket (HUSB-UASB) configuration at an overall HRT of 9.3-

17.3 hours. The system managed to reduce the COD by 49-65% and TSS by 49-89% (for cold and warm periods 

respectively); importantly COD solubilization occurred in the HUSB indicating high hydrolytic capacity. Methane 

formation was modest: 36.1% of COD was converted to CH4 probably due to low sCOD/TSS especially in the 

cold period. sCOD mainly generated in the HUSB (11-26% depending the period) suggesting that hydrolysis and 

acidification primarily takes place in that compartment, followed by sCOD uptake in the UASB (10-38% sCOD 
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removal for cold and warm period respectively). The low sCOD removal resulted in the accumulation of VFAs in 

the UASB that inhibited methanogenesis. This suggests that acidification was not complete in HUSB especially 

at cold periods where hydrolysis rates were limited. Thus, an increase in HRT is required in the first compartment. 

The VSS removal was 56.8 and 81.4% for HUSB and overall system respectively. Sludge SMA was stable 

throughout the experimental period and the hydrogenotrophic pathway predominated at both temperatures. No 

granulation occurred in the system, probably due to low sCOD generation from low strength wastewater in 

conjunction with the high VSS concentrations (sCOD/VSS >10 (Kalogo and Verstraete 2001) or 6.6 (Ligero and 

Soto 2002)). Granulation was achieved though by O’Reily et al (2010) who tested methane production and 

granulation feasibility with a synthetic glucose-based wastewater at 15oC. The study showed that carbohydrates 

degradation and presence of hydrogenotrophic methanogens (e.g. Methanomicrobiales) promoted granulation at 

low temperature. This is expected as carbohydrates are considered the easiest degraded compound (Eastmean and 

Ferguson 1981) in anaerobic treatment providing with high sCOD. 

A 2-phased UASB-septic tank setup inoculated with mesophilic sludge was selected by Luostarinen and Rintala 

(2006) to treat black water (BW) and black water-kitchen waste (BWKW) (COD: 1g/L) at 20-10oC. The run was 

continuous and semi-continuous. The removal efficiency for BW at both temperatures and feed types remained 

the same for COD (90%) but significantly lower for dissolved CODdis (20 & 70% for semi- and continuous BW 

feed respectively no matter the temperature). For BWKW the efficiency was similar however the effluent had 

higher total COD content rendering post-treatment necessary. A similar reactor configuration was used for 

synthetic BW and dairy parlour wastewater (DPWW) at 20-10oC by Luostarinen and Rintala (2005) achieving a 

90 and 80% COD removal for each substrate. This suggests that a single phase is adequate for BW however a 

second step is required for DPWW. TSS and VSS were efficiently removed from the 1st step however the good 

performance for BW resulted in elevated sludge production, hence more frequent emptying. SMA tests showed 

that the sludge is not properly stabilized due to limited hydrolysis. Methane production was proportional to 

temperature; although the biomass had a mesophilic origin activity was detected even at 5oC in batch systems. In 

a similar study from Luostarinen and Rintala (2007) treating BW and BWKW it was found that lowering of 

temperature from 20 to 10oC affects the methane production rate (for both BW and  BWKW). The treatment of 

BW was found once again to be easier than of BWKW suggesting that for the former a single phase is adequate. 

At lower temperature the sludge bed height increased suggesting limited hydrolysis. Low COD:CH4 conversion 

resulted to poor sludge stability even after 198 days for both substrates. 

The same UASB-septic tank setup was used as a BW pre-treatment step rather than polishing the effluent by both 

Bogte et al (1993) and Luostarinen et al (2007), inoculated with paper-mill sludge operating at ambient 

temperature acclimatized at the local seasonal variation (5-13oC and 14-17oC for cold and warm periods). The 

results from Bogte et al (1993) were promising as the cold period setup was more efficient than the warmer one 

in terms of CODss (particulate COD) removal but not for total COD, suggesting that the reactor was operating 

more like a settler during the cold period. For the first year the CODremoved:CH4 conversion during cold could not 

exceed the 5% of the theoretically expected. The performance increased throughout the warmer period showing 

that seasonal variation can tackle the issue of poor methanogenesis with CODremoved:CH4 conversion reaching close 

to 20% (2nd year, cold period). Further acclimation also promoted dissolved COD degradation, reducing the scum-

forming potential. Luostarinen et al (2007) re ran this reactor after 13 years to treat BW and compared the findings 

with the study from Bogte et al (1993) for the warm period. The performance was similar in terms of biogas 

production regardless the 13 years´ adaptation. After 13 years, the start-up occurred faster compared to Bogte et 

al (1993) supporting higher microbial adaptation to low temperature (≤17oC). The COD removal never exceeded 

the 60% for both eras showing that treatment is not dependent on adaptation, or that further acclimation is required. 

Dissolved COD removal increased, reaching 53% from a negative reduction observed on the first operational year 

(Bogte et al 1993) supporting the hypothesis that adaptation of the methanogenic populations to low temperature 

is feasible. The effluent after 13 years could not meet the Class II Finnish and Dutch discharge standards as high 

accumulation of organic material rendered a polishing step mandatory. 

In the same study Luostarinen et al (2007) set a UASB-septic tank reactor re-inoculated with the above 13 years 

old mesophilic sludge acclimated to low temperatures to treat BW at 15oC and compare the performance with a 

reactor that was remained unseeded operating at 25oC. The results at low temperature were similar with those 

obtained from the ‘13 years old’ reactor operating at 14-17oC as expected. The performance of the control at 25oC 
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though was higher in terms of COD to methane conversion showing that the particular substrate is difficult to 

degrade at low temperature. Organic solid material (CODss) removal at 15 and 25oC though was similar showing 

once again that temperature does not affect CODss removal even after long acclimation to low temperatures. 

Elmitwalli et al (2003)  also treated concentrated domestic wastewater (grey water 3600mg COD/L) at 13oC and 

tried to address hydrolysis limitation by using a two-phased digester (2x AHRPF-septic tank) achieving 94% COD 

removal at an HRT of 2.5 days for each digester. The experiment was based on Zeeman and Lettinga’s (1999) 

suggestion that a 2-phased AD configuration would promote hydrolysis and prevent acidification. The AH reactor 

is an AF using RPF media (Huysman et al 1983). Poor biogas production was attributed to limited hydrolysis 

causing accumulation of insoluble matter in the first step. Thus, the COD removal was a mixture of physical 

separation (22%) and biological reaction and took place mainly in the first tank that filled with sludge after 4 

months. The seed was mesophilic flocculent and granular sludge. From the data extracted and ADM1 modeling it 

was suggested that for a single reactor an HRT of 5.5-7.5 days is required to achieve similar results. Such a long 

HRT is perhaps too long to be practicable; thus, the use of mesophilic sludge may not be efficient enough for 

successful single compartment anaerobic treatment at low temperature. 

Elmitwalli et al (2002) reported domestic sewage treatment using a combination of an AF followed by AH 

inoculated with mesophilic sludge at 13oC. Various HRT were tested with an optimum of 4 and 8 hours for the 

AF and AH respectively. Hydrolysis took place mainly in the AF reaching the 81% CODss removal at an overall 

of 91%. 60-74% COD was converted to methane irrespective of the HRT from both steps. Most of the gas was 

produced in the second compartment though as the AF mainly hydrolyzed a high fraction of CODss that was 

converted to CH4 at a lower level of 20-35%. Excess sludge produced mainly in the AF than at the AH (81 and 

58% VSS/SS for AF and AH respectively). An OLR <0.38kgCODss/m3/day was suggested for stabilized AH 

sludge at an optimal HRT operation of 4-8 hours for the two steps (AF, AH). At lower HRT poor CODss removal 

in the AF lead to acidification, deterioration of the biomass and poor sludge settleability, washout and poor 

treatability.  

McHugh et al (2006) also found that biomass can be affected by high VFA concentrations and that the associated 

disintegration of granular sludge affected the COD removal efficiency. The study employed whey-based 

wastewater in a double UASB reactor setup, operating at temperature that was reduced from 20 to 12oC at an OLR 

of 0.5 and 13.3 kgCOD/m3/day for the first and second compartment respectively. Lower temperatures caused 

process inhibition mainly on the second phase as a result of excess VFA and it was found that an OLR 

<6.6kgCOD/m3/day was required to avoid inhibitory conditions, as methanogens could not utilize the amount of 

intermediates that were generated. The limited VFA degradation at low temperatures was supported from the 

activity tests that did not reveal presence of any putative psychrophilic organisms although the experiment ran at 

low temperature for 500 days. 

A VFA based substrate was digested at low temperatures (8-3oC) by Lettinga et al (1999) in a 2 phased EGSB 

setup inoculated with mesophilic granular sludge. The overall COD removal was adequate reaching 63-92% 

(around 80% for lower temperature) at an HRT of 2-5 hours. Although butyrate and acetate were easily degraded 

(100 & 90-100% respectively) in the first compartment, propionate was not; perhaps due to the large quantities of 

acetate from the evidently decelerated acetate utilization. Homoacetogenesis was less likely as the hydrogen 

concentration was low. Molecular analysis showed that the dominant methanogenic communities contained both 

acetotrophic and hydrogenotrophic (Methanosaeta-like and Methanospirillum-like) bacteria. Limited propionate 

oxidizers growth suggests that inoculation of enriched cultures is necessary; batch experiments showed that such 

cells can be cultivated using H2 or formate as substrate at 10oC. 

2.2.5.3 Anaerobic-membrane configuration 

Membrane reactors have also been used to promote low temperature anaerobic treatment of wastewater. It is 

thought that membranes can achieve a higher biomass-substrate ratio that could lead to better performance. Hu 

and Stuckey (2006) found that low strength domestic synthetic wastewater could be treated successfully (>90% 

sCOD removal) with no washout phenomena achieving a high COD:CH4 conversion at mesophilic temperatures 

(close to 0.395m3 CH4/kgCOD). The same study showed that generation of a gel layer on the membrane boosts 

the process; however membrane fouling was observed and appeared to be due to particles of 0.15-0.14μm in 
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diameter. Fouling was tackled by Smith et al (2013) who sparged and back flushed the membrane using the biogas 

formed in a study with actual and synthetic wastewater using a similar setup to that of Hu and Stuckey (2006) at 

15oC. The inoculum had a mesophilic origin and the efficiency reached the 69±10% and 92 ±5% COD removal 

for real and synthetic wastewater respectively. This study found that acetoclastic anaerobic digestion is 

predominant and Methanosaeta sp. was the key genus. The biomass yield was considered high (~0.10 

gVSS/gCOD removed) and a substantial fraction of the methane produced (40-50%) was dissolved in the effluent. 

The increase in solids seemed to be beneficial to the performance as it increases adsorption of the soluble material.  

Contradictory results were reported by Krzeminski et al (2012) who showed that large molecules such as un-

hydrolyzed proteins, fats and carbohydrates have a detrimental effect on sludge filterability and are likely to 

contribute in membrane fouling resulting to limited performance and subsequently poor treatability, especially at 

lower temperature where hydrolysis rates are slower. The colloidal and soluble COD fraction <1μm accounts for 

more than 63% of the COD in the system and plays an important role increasing the filterability deterioration. 

Additionally, failure seems likely when temperature decreases (experimental temperature: 10-18oC) unless easily 

biodegradable material (e.g. VFAs) is present. Evident accumulation of non-degraded compounds was detected 

from Garcia et al (2013), who compared a granular and a suspended growth anaerobic membrane bio reactor (G-

AnMBR, AnMBR) at moderate temperatures (25-10oC), treating settled domestic wastewater. The results showed 

that there is no significant difference between granular or suspended biomass in COD and BOD removal at 

moderate temperatures. Remarkably though differences appeared between the fouling compounds on the 

membranes, with the G-AnMBR less clogged. This signifies that G-AnMBR is highly recommended to low 

temperature operation as cleansing is less energy intensive and less gas sparging is required. Yoo et al (2013) 

showed that the problem of membrane fouling can be overcome by the addition of activated carbon as a membrane 

scraper so the un-hydrolyzed material can be absorbed onto it. The advantages of this technique must be set against 

costs of membranes and activated carbon.  

2.2.5.4. Summarizing  

Thus far, attempts to operate a reactor seeded with mesophilic biomass at low temperatures have resulted in both 

limited hydrolysis and methanogenesis. Limitations have increased the risk of failure due to the physical 

deterioration of the biomass, reduced settleability and led to washout. No significant treatment has been observed 

with real wastewater at less than 8oC and no recognizable psychrophilic community has been detected. As a result 

high bacterial performance at low temperatures remains problematic (according to Figure 2.4). In general adequate 

performance at low temperatures is favored by low organic loading rates, high retention times and a two stage 

process.  

2.2.6. Psychrophilic and cold-adapted strategy 

One solution would be inoculating digesters with cold-adapted inocula to create a psychrophilic reactor biomass. 

The choice of seed is of major importance (Collins et al 2006). As most cold-adapted cells are either 

stenopsychrophiles or eurypsychrophiles (Topt.<15oC but unable or able to tolerate T>15oC respectively). 

According to Sheford’s law of tolerance for successful growth (Sheford 1931) psychrophiles are more likely to 

thrive at low temperatures than at traditional mesophilic conditions. Moreover, psychrophilic seeds from low 

nutrient environments might have at an advantage in low strength wastewater (Cavicchioli 2006). Interestingly, 

Cavicchioli (2006) found that methanogens are the most abundant archaea in many samples from cold 

environments (Figure 2.6) suggesting that growth and multiplication of methanogenic organisms at low 

temperatures is common in Nature.  
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Figure 2.6 - 16S rRNA archaeal tree; in blue the isolates corresponding to archaea originated from cold climate environments 

(Cavicchioli 2006) 

2.2.7. Adaptation to cold 

Limitations that organisms come across when exposed to low temperature include decreased enzymatic rates, 

lower membrane fluidity (Ganzert et al 2007) and increased stability of nucleic acid structures (Thomas and 

Cavicchioli (1998).   

Studies carried out by Russell (1999), Cavicchioli (2006) and Thomas and Cavicchioli (1998) found that 

psychrophilic microorganisms produce proteins that are not only active at low temperatures, but are more efficient 

and flexible than those of mesophilic and thermophilic cells. Other proteome adaptations to low temperature 

include “antifreeze proteins” (Feller and Gerday 2003), extracellular enzymes that prevents unwanted ice 

formation in their surrounding environments (for example the permafrost’s ‘veins’, enhancing liquid transfer 

between cells and environment (Junge et al 2004), or enzymes adapted to substrates whose structure changes at 

low temperatures (Saunders et al 2003), promoting substrate utilization and uptake at such conditions.  

The molecular basis for the cold adaptation in proteins includes a higher proportion of non-charged polar amino 

acids (glutamine, threonine) and hydrophobic residues for higher protein-substrate activity and thus higher 

catalytic efficiency (Saunders et al 2003).  

Microbial life has developed a wide range of other strategies including: thickening of the cellular lipid bilayer at 

such conditions providing them insulation (Saunders et al 2003), “cannibalism” at long periods of starvation, 

development of  ultra-microcells,  dormancy, sporulation,  cell size reduction, formation of capsular 

polysaccharide coats,   adjusting the cellular water volume, use of permafrost/ice veins for energy extraction from 

trapped organic compounds (Price and Sowers 2004, Price 2007). 

2.2.8. Psychrophilic and cold-adapted biomass as seed 

Communities with these myriad adaptations to low temperature environments could be very useful seeds for 

anaerobic treatment reactors operating at low temperatures.  

A wide variety of cold-adapted methanogens and other organisms have been described. Simankova et al (2003) 

revealed a psychrotolerant hydrogenotrophic ecotype of the genus Methanocorpusculum belonging to the order of 

Methanomicrobiales having a morphology of motile irregular cocci (Figure 2.7.d) from Baldegger lake 

(Switzerland). Interestingly this organism had more than one copy of the mcrA gene. The same study isolated a 
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strain of  Methanomethylovorans hollandica (Figure 2.7.c) which was uniquely able to use methanol, 

methylamines, DMS and methanomethiol as substrates at temperatures of 4-5oC. Sarcina-like cells were also 

detected with no unique properties apart from psychro-tolerance and the formation of large agglomeration (up to 

1mm) (Figure 2.7.a). Franzman et al (1997) isolated an obligate psychrophilic methanogen from Ace lake 

(Antarctica), Methanogenium frigidum, the first psychrophilic methanogen known to be able to  catabolise H2/CO2, 

with a  growth rate of 0.24 day-1 (doubling time 2.9 days). The effect of temperature on its growth has been 

established (Figure 2.7.e) and it can tolerate a pH range: 6.3-8.0. Nozhevnikova, et al (2003) isolated a 

psychrophilic methanogenic community after incubation experiments of sediments from Lake Baldeg and Lake 

Soppen (Switzerland). The samples were pre-incubated at 4 to 60°C and then transferred to 6°C. The methane 

production rates were higher for the bacteria pre-incubated at low temperatures. The acetate methanogenic 

pathway predominated and Methanosaetaceae was the most dominant methanogenic genus.  A hydrogenotrophic 

psychrotolerant methanogen (Methanosarcina lacustris) was found to dominate in a study on Siberian permafrost, 

carried out by Metje and Frenzel (2007) trying to reduce iron (II), VFAs and ethanol. Methanogenesis follows the 

acetoclastic pathway at the optimum temperature (26-28oC) but H2/CO2 became more important at lower 

temperature (4oC).  Butyrate was consumed during methanogenesis and accumulated when methanogenesis was 

inhibited (with BES and CH3F), suggesting that butyrate serves as precursor of methane, presumably providing 

acetate and H2 by syntrophic oxidation. A Ratkowsky plot (square-root of growth rate versus temperature plot 

(Ratkowsky et al 1983) suggested that participate in anaerobic treatment could survive and grow at temperatures 

as low as 7.15oC. Another example of syntrophy at low temperature anaerobic conditions is Syntrophus 

aciditrophicus, a psychrophilic/psychrotolerant syntrophic microorganism studied by Mclnerney et al (2007). This 

particular organism is able to metabolize fatty acids, benzoate, cyclohexane carboxylate and cyclohex-l-ene and 

crotonate if a CO2 reducer methanogen or an SRB is present. 

  

Figure 2.7 – (left) Micrographs of a) strain MT, b) strain MM (both Sarcina-like), c) strain ZB, d) strain MSP. (Simankova et 

al 2003); (2e) effect of temperature to growth of Methanogenium frigidum, data points represent values of µ during growth in 

MSH medium, dark line: best fit of the modified square root equation (Franzmann et al 1997). 

Ya Lokshina and Vavilin (1999) compared the kinetics of  microbial consortia from Syktyvar Forest, Polar Ural 

(Varkuta) and East Central Germany at low temperature (mean annual 4-6oC), and found little difference between 

growth rates at 6oC (0.011-0.022 day-1). When temperature was increased the growth rate increased substantially.  

Nozhevnikova et al (2007) using sediments from Lake Baldegg, Switzerland found that methanogenesis mainly 

followed the acetoclastic pathway (predominance of Methanosaetaceae); H2/CO2 methanogenesis was 

outcompeted by homoacetogenesis at 5-15oC. In this study the fraction of hydrogenotrophic methanogenesis was 

proportional to temperature attaining its maximum under thermophilic conditions (>50%, up to 70oC). Similar 

results in terms of homoacetogenesis at low temperatures were obtained by Kotsyurbenko et al (1993) using an 

inoculum from a pond in the Urals. Homoacetogens out-competed methanogens and subsequently methane 

formation rate was poor at low temperature and increased at higher (6 to 28oC). Kotsyurbenko et al (1993) also 

evaluated the effect of temperature on hydrolysis and acidogenesis using various organic substrates at 6, 15 and 

28oC. They found that temperature affects the rate of cellulose hydrolysis, fermentation and 

(e)

( 
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acidogenesis/acetogenesis. The last was found to be the rate limiting step and the most temperature sensitive as it 

required the longest start-up period (at 6oC) amongst the other processes mentioned.  

The relative rates of homoacetogenesis and methanogenesis at low temperatures were also examined by 

Kotsyurbenko et al (2001). H2 uptake of isolates of methanogens and homoacetogens were compared. 

Methanogens had an advantage at low H2 pressure, however when H2 is not limited homoacetogens did better than 

methanogens. The results showed that with excess H2 homoacetogenesis leads to the re-distribution of the organic 

matter in the psychro-active communities. Thus, the presence of syntrophic methanogenic communities able to 

outcompete homoacetogens and uptake H2 reducing partial pressure is of major importance (Kotsyurbenko 2005). 

Nozhevnikova et al (2001) in a study using inocula taken from 50cm sediment depth of a Swiss lake showed that 

temperature decrease adversely affects methane formation (tested from 25 to 5oC) and that methanotrophs seem 

to be more tolerant to temperature decrease than methanogens.  

Hoj et al (2005) using soil from Spitsbergen wetlands showed that there is both acetotrophic and hydrogenotrophic 

methanogenesis at 10oC in communities with   Methanomicrobiales, Methanonobacteriaceae and Methanosaeta.  

The relative importance of the H2/CO2 pathway to methane production at low temperature was not clear. The 

pathway appears to be favoured if polysaccharides are present as an important fraction of the organic material (e.g. 

rice paddy soils or lake sediments) or if the cells are exposed to nutrient-poor environments (Kotsyurbenko et al 

2004).  

Kotsyurbenko et al (2004) also stated that apart from temperature, sampling depth plays a vital role for 

methanogenesis indicating that the optimal depth for high methane production is 30-50cm below the ground 

surface. Yavitt et al (2006) also detected higher methanogenic activity from the samples that were taken slightly 

deeper than 20cm. Ganzert et al (2007) also mentioned that soils that were sampled from 20-35cm depth or close 

to the surface (<5cm) were the optimum in terms of methane production. This was supported by the in increased 

possibility of methanogenic substrate´s presence in the form of solubilized TOC and DOC (total and dissolved 

organic carbon) from decomposed vegetation at deep and shallow depths respectively.  

Yavitt et al (2006) sampled 3 peat soils from the continental western Canada to test methanogenesis at low 

temperature and defined specific cellular activity. The maximum performance was 250nmol/g/day (or 250 

femtomols/cell/day) at 25oC for un-amended incubation. The activity was enhanced by 600 times after addition of 

ethanol. After storage at 0oC for 18 months the experiment was repeated demonstrating decreased activity equal 

to 10-221 femtomols CH4/cell/day; addition of ethanol only doubled the amount. Decay of active methanogens 

from starvation and low or no adaptation to 0oC possibly contributed to the lower activity. 16S rRNA sequence 

identified species affiliated with Methanosaetaceae, Methanosarcinaceae, Methanomicrobiales and 

Methanobacteriales; all psychrotolerant. 

Psychrophilic cells had been found in ice core samples from Lake Vostok by Price (2000) at temperature below 

freezing point. The cells were able to survive and metabolize although the nutrients were dispersed in the solid 

ice; they could not multiply. Sulphate (SO4
-2) and nitrate (NO3

-) were found to be the main electron acceptors; 

methanosulfonic acid (MSA), formic and acetic acid are the main energy/carbon providers. This reveals potential 

for methanogenesis at low temperatures as formic and acetic acids are fundamental substrates to the methane 

pathway. 

Although psychrophilic and cold-adapted inoculum had been tested for their ability to anaerobically degrade a 

variety of substrates (Alvarez et al 2008; Elmitwalli et al 2002; Luostarinen et al 2007; Rebac et al 1999; Sanz and 

Fernando-Polanco 1990), only a few of the systems could adequately operate at <13 oC with real wastewater as 

substrate, fact that has recently been attributed to failure in methanogenesis at temperatures below 8 oC (Bowen et 

al 2014). 

Hydrolysis was the rate limiting step in most previous studies of the treatment of real wastewaters employing   

mesophilic or cold-adapted inocula. Hydrolysis is the step in which carbohydrates are converted to sugars and 

subsequently fermented to VFAs; proteins are hydrolyzed to amino acids and further degraded to VFAs through 

anaerobic oxidation linked to H2 production or via fermentation and lipids, mainly triglycerides are hydrolyzed to 

LCFAs and further oxidized via b-oxidation to acetate or propionate. 
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2.2.9. Effect of temperature to hydrolysis 

At low temperatures slow hydrolysis rates lead to the accumulation of suspended solids and consequently reduced 

efficiency. For hydrolysis optimization the control of HRT and pH (Hwang et al 2001) (Figure 2.8.a, b, c, d) in 

addition an appropriate SRT is required (Miron et al 2000).  Miron et al (2000) also revealed that a CSTR treating 

domestic wastewater,  operating at 25oC needs at least 8 days for complete hydrolysis and prevention of biomass 

acidification that might lead to washout and deterioration phenomena; in detail it also revealed potential 

implications that might occur at low temperature operation (see also Figure 2.9.a, b, c, d, e): 

   

  

Figure 2.8 - a) two and b) three dimensional contour plots of a quadratic model predicting acetate production with respect to 

pH and HRT; c) two and d) three dimensional plots of a model model for the acetate production rate in the extended region for 

optimized butyrate production (Hwang et al 2001). 

The study in hydrolysis of lipids by Miron et al (2000) showed that: 

 39% of the lipids are already converted to LCFA before entering the WWTP. At lower temperatures 

completed hydrolysis may require more time. 

 Low SRT inhibits the b-oxidation of LCFA rendering degradation of lipids impossible, leading to 

accumulation of lipids.  

 At an SRT >3 days, accumulation of LCFA occurs (Figure 2.9.c) leading to acidogenic conditions as b-

oxidation of LCFA becomes the rate limiting step compared to hydrolysis; for SRT >15 days lipids 

hydrolysis becomes rate limiting.  

 Lipid unsaturation accelerates degradation. LCFA such as C16:1 (palmitoleic), C18:1 (oleic), and C18:2 

(linoleic) were found to be the easiest degradable acids under acidogenic conditions (removal by 

hydrogenation stimulated by the high H2 pressure). At lower tempertures the ease in the degradation of 

the above compounds isn’t certain and higher SRT may be required affecting lipid hydrolysis. 

a) b) 

c) 
d) 
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The hydrolysis of proteins was evaluated in the same study and Miron et al (2000) concluded that: 

 Proteins can be identified by the amount of NH4
+-N  

 Most protein hydrolysis occurs in the sewer however at low temperatures this may not occur. 

 An SRT of 8-10 days is enough to achieve high protein hydrolysis at 25oC (Figure 2.9.d); higher retention 

time might be required at lower temperature causing limited lipid degradation though. 

 Chemical processes, such as the  precipitation of ammonium as struvite, may lower degradation rates  

 High concentrations (174-220 mg/L) of amino acids can inhibit protein hydrolysis; slow acidogenesis at 

low temperatures can lead to the accumulation of amino acids, and make inhibition more likely. 

The hydrolysis of carbohydrates was also observed by Miron et al (2000): 

 Hydrolysis of hydrocarbons is proportional to SRT (Figure 2.9.e). Employing high retention time to 

hydrolyze carbohydrates at low temperature though might result in limited lipid degradation due to 

acidification conditions. 

 Dissolved carbohydrates were a small (1.5%) but consistent as fraction of total carbohydrates for all 

SRTs. This suggests that carbohydrates hydrolysis might become limited, especially at low temperature 

as CODdis may be hard to remove increasing the percentage above. 

Kinetics of wastewater hydrolysis is much debated. Pabon Pereira et al (2009) suggest that hydrolysis does not 

follow first order kinetics, which can be applicable in only batch studies where the inoculum is well balanced. 

Velasquez-Orta et al (2011), Veeken and Hameless (1999) and Eastman and Ferguson (1981) suggest that first 

order kinetics can describe hydrolysis irrespective of the reactor. Eastman and Ferguson (1981) also found that 

hydrolysis limits anaerobic wastewater treatment as the solubilisation the organic material is slow (hydrolysis rate 

constant: 0.125 hours-1). The same study showed that carbohydrates are extensively degraded first followed by 

proteins; lipid degradation was slow or unlikely at the acid phase due to the reasons described by Miron et al 

(2000). 

Hills and Nakano 1984 demonstrated the relationship between particle size and hydrolysis. This study showed that 

hydrolysis and subsequently methane production is inversely proportional to a substrate’s particle size diameter 

(in average) and to its shape (sphericity) (Figure 2.10.a, b). Shape seems to have a greater impact at lower 

temperature as liquid density increases and polyhedral crystals are formed increasing the particle diameter and 

asymmetry.  

Rates of hydrolysis and the effect of temperature on biodegradability have been investigated by Veeken and 

Hamelers (1999) for various biowastes in a temperature range of 20-40oC. The results showed that hydrolysis rates 

can be described by first order kinetics and the enzymes participating in the process obey the Arrhenius equation. 

The hydrolysis constant at 20oC was 0.03days-1 . The results showed the rate of hydrolysis (Figure 2.11.a) and  

biodegradation (Figure 2.11.b) varied with temperature. The average metabolism activation energy was estimated 

to be  64±14 kJ/mol. 

Hydrolysis in MFC has also been studied by Velasquez-Orta et al (2011). This study showed that the more complex 

the substrate the lower the hydrolysis rate. Substrate complexity had also an impact on COD removal efficiency 

and the coulombic efficiency (CE). The rate constants were calculated (assuming first order kinetics) as 0.0024 

hours-1 for hydrolysis and 0.018 hours-1 for combined hydrolysis and fermentation (at 19±2oC) suggesting 

hydrolysis as the rate limiting step over fermentation. 

From the foregoing, it is possible to gain an insight as to why hydrolysis is the rate limiting step in low temperature 

anaerobic treatment. Lack of adaptation of cold-adapted mesophilic biomass to low temperature, in addition to the 

lack of psychrophiles in the mesophilic inocula are the main reasons behind the slow wastewater hydrolysis rates. 

Changes in the nature of the substrate may also contribute to the limitation. Plainly the presence of hydrolytic 

organisms with elevated activity at low temperatures would lead to enhanced hydrolysis and more successful 

anaerobic treatment at low temperatures. 
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Figure 2.9 - a) Fractions (%) of COD as a function of 

SRT in CSTR AD at 25oC;  biopolymers include carbs, 

lipids and proteins; Hydrolysates include LCFAs, 

simple sugars, amino acids b) total hydrolysis, 

acidogenesis and methanogenesis as a function of SRT 

and pH; c) % lipid hydrolysis and acidification as a 

function of SRT d) percentage of the Nkj x 1.5/0.16 

hydrolysis as a function of SRT e) percentage of the 

carbohydrates hydrolysis of the fraction (C0carbh + 

VFA0-NH4
+-N x 1.5/0.16) as a function of SRT. Ref: 

Miron et al (2000). 

a) b) 

d) c) 

e) 
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Figure 2.10 - a) Methane production as a function of substrate particle size; corrected to 0oC and 1atm; b) gas production as a 

function of particle sphericity (Φs) and average diameter (Dp); ref: Hills and Nakano 1984. 

 

 

Figure 2.11- a) Arrhenius plots for hydrolysis rates of different substrates as a function of temperature; b) effect of 

biodegradability to hydrolysis rates (Veeken and Hamelers 1999). 

2.2.9.1. Substrate preference 

Irrespective, of the temperature some substrates are preferentially degraded. Consequently, some compounds 

accumulate in bioreactors, increasing the risk of inhibition in anaerobic treatment. Substrate preference leads to 

enzymes synthesis for specific substrates, this contributes to the buildup of other intermediates (Whooley et al 

1983) (rates from Masse et al 2001). Breure et al 1986 studied the hydrolysis of gelatin in the presence of 

carbohydrates and found that carbohydrates are easier to degrade than proteins and that the biomass had greater 

affinity for carbohydrates than other substrates. It is believed that this preference for carbohydrates may also occur 

at lower temperatures. Moreover the changes in the physical nature of the substrate (e.g. lipid solidification, 

crystallization, fatty acids chain rigidity; Neidleman 1987) at low temperatures can make a substrate intrinsically 

more difficult for enzymes to break down. Thus one might anticipate that, at low temperatures, lipids are more 

likely to accumulate than proteins or carbohydrates. 

2.2.10. Potential psychrophilic and cold-adapted hydrolysis (lipolysis) 

From the foregoing, it is naturally important to consider hydrolysis and most especially lipolysis.  

2.2.10.1. Lipases 

The enzymes responsible for the breakdown of lipids are called ‘lipases’.  

Lipases (glycerol ester hydrolases - biocatalysts) are proteins secreted by bacteria to hydrolyze esters and glycerol 

with long chain fatty acids, based on the interface generated by a hydrophobic substrate when in liquid (Figure 

2.12). Lipases don’t necessarily follow the Michaelis-Menten model as activity increases with substrate 

emulsification (Jaeger et al 1994). At low temperature increased liquid density might lead to poor lipolysis due to, 

b) a) 

a) b) 
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inter alia, limited emulsification. The details of lipase synthesis and secretion depend on the bacterial taxon. The 

lipase catalytic site contains a serine-protease-like catalytic triad that consists of serine, histidine and aspartate 

amino acids. It is covered by a lid-like a-helical structure which is removed when in contact with the substrate, 

exposing specific hydrophobic residues at the protein’s surface. This mechanism is responsible of lipase substrate 

specificity (Jaeger et al 1994). Specific lipid types require specific enzymes which might be specific to specific 

microbial genera. 

 

Figure 2.12 - Lipase enzymatic reaction mechanism resulting to a fatty acid and vice versa (hydrolysis and synthesis) (Jaeger 

et al 1994). 

2.2.10.2. Psychrophilic and cold adapted Lipases 

Enzymes with an optimum at low temperatures are the key proteins that a bio-reactor must have to operate at cold 

environments. Burgess and Pletschke (2008) estimated that for every 10oC temperature switch the activity 

increases or decreases by a fold of 2. Psychrophilic and cold-adapted cells are able to produce enzymes that 

efficiently operate at low temperature.  

Cold adapted lipases are produced by microorganisms (Table 2.1) inhabiting cold environments (≈5oC). These 

organisms and their enzymes can be found in deep sea, Antarctic and Polar regions, in artificially refrigerated 

environments (e.g. frozen food). In addition to bacteria, a number of fungi (Table 2.2) have been also found to be 

able to produce cold-adapted enzymes (Joseph et al. 2007). Both aerobic and anaerobic microorganisms produce 

lipolytic enzymes at low temperatures (Yumoto et al 2003).   

Cold adapted enzymes usually have a molecular weight in-between 30-50 kDa (Preuss et al 2001, Dieckelmann 

et al 1998). Water content in the substrate is of major importance for the lipolytic performance (Anderson 1980, 

Parfene et al 2011). Thus, as water turns into ice at lower temperatures lipolysis is decelerated. Salt concentration 

in the liquid also affects the lipolytic performance (Parfene et al 2011). Joseph et al (2006) showed that sodium 

chloride increased lipase production whereas the presence of metals in the media had an inhibitory effect. The 

study also suggested that lactose improved lipolysis. Performance was also boosted by the addition of 0.1-1% (v/v) 

detergent (Lee et al 2001). 

Lipases can hydrolyze vegetable oils and lard at extremely low temperatures of (-7 to -29oC) with great specificity 

(Alford and Pierce 1961). Many lipases demonstrate the ability to work at a range of temperatures (e.g. those 

excreted from Aeromonas sp.) (Pamberton et al 1997).  Alquati et al (2002) and Arpigny et al (1997) investigated 

the mechanisms of adaptation to low temperature and found: a very low proportion of arginine residues compared 

to lysine, low content in proline residues, a small hydrophobic core, a very small number of salt bridges and 

aromatic-aromatic interactions. The same study investigated a psychrophilic enzyme from Psychrobacter 

immobilis that required half the activation energy required from a mesophilic enzyme at 37oC when at 4oC (from 

110 to 63 kJ/mol). Breuil and Kushner (1975) showed that an Acinetobacter sp. excretes higher amounts of lipases 

at low temperatures although its optimum growth temperature is 30oC. Lo Giudice (2006) found that 95.5% of 

155 lipases had significant lipolytic activity at low temperature and one (Pseudoalteromonas sp.) performed higher 

at 4oC than at 15oC. 

Choo et al (1998) studied a psychrotrophic enzyme showing preference to p-Nitrophenyl esters of fatty acids of 

short-medium carbon chains (C4, C6). Similar specificity was detected from Rashid et al (2001) who showed that 

the activity energy required was estimated at 46.9 and 32.2 kJ/mol for 5 & 35°C respectively for p-nitrophenyl 

butyrate hydrolysis. These values are low compared to the activation energy required for metabolism at low 
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temperature (110 kJ/mol) suggested by Price and Sowers (2004) or Veeken and Hamelers (1999) (64 kJ/mol) for 

total biowaste hydrolysis at 20-40oC. Kulakova et al (2004) suggested that only 19.2 kJ/mol is required for the 

same substrate at 5oC.  

Table 2.1 - Bacterial cells producing cold adapted lipases (Joseph et al 2007, 2008). 

Microorganism   Sources Reference 

Acinetobacter sp. strain No. 6   Siberian tundra soil Suzuki et al., 2001  

Acinetobacter sp. strain No. O16   Ns Breuil and Kushner, 1975  

Achromobacter lipolyticum    Ns Khan et al., 1967 

Aeromonas sp. strain No. LPB 4   Sea sediments Lee et al., 2003  

Aeromonas hydrophila   Marine habitat Pemberton et al., 1997  

Bacillus sphaericus MTCC 7526  Gangorthi glacier (western 

Himalayas) 

Joseph, 2006 

Corynebacterium parametabolum MTCC 6841 Naukuchiatal lake Uttaranchal Joshi et al, 2006 

Microbacterium phyllosphaerae MTCC 7530    

Moraxella sp.     Antarctic habitat  Feller et al., 1990  

Morexella sp TA144   Antarctic habitat  Feller et al., 1991 

Photobacterium lipolyticum M37   Marine habitat Ryu et al., 2006  

Jung et al., 2008 

Pseudoalteromonas sp. wp27     Deep sea sediments Zeng et al., 2004  

Pseudoalteromonas sp.  Antarctic marine   Lo Giudice et al., 2006  

Psychrobacter sp.    

Vibrio sp.    

Pseudomonas sp. strain KB700A   Subterranean environment   Rashid et al., 2001  

Pseudomonas sp. B11-1:    Alaskan soil Choo et al., 1998  

Pseudomonas P38   Ns Tan et al., 1996  

Pseudomonas fluorescens    Refrigerated milk samples  Dieckelmann et al., 1998  

Pseudomonas fluorescens     Refrigerated food Andersson 1980  

Pseudomonas fluorescens    Refrigerated human placental 

extracts 

Preuss et al., 2001  

Pseudomonas fragi strain no. IFO3458   BCCMTM/LMG2191T  Bacteria 

collection,  Universiteit Gent, 

Belgium  

Alquati et al., 2002  

Pseudomonas fragi Strain no. IFO 12049   Ns Aoyama et al., 1988  

Psychrobacter sp. wp37     Deep sea sediments Zeng et al., 2004  

Psychrobacter okhotskensis sp.    Sea coast  Yumoto et al., 2003  

Psychrobacter sp. Ant300     Antarctic habitat Kulakovaa et al., 2004  

Psychrobacter immobilis strain B 10     Antarctic habitat Arpigny et al., 1997  

Serratia marcescens    Raw milk  Abdou, 2003  

Staphylococcus aureus    Ns Alford and Pierce, 1961  

Staphylococcus epidermidis   Frozen fish samples  Joseph et al., 2006  

Yarrowia lipolytica Frozen food Parfene et al., 2001 

*Ns: Not specified 

Feller et al (1991) showed that the optimum temperature can be also changed by transferring genes from a 

psychrophilic organism to Escherichia coli. Jung et al (2008) investigated a lipase secreted from Photobacterium 

lipolyticum that retains 75% of the activity at optimum conditions when exposed at 5oC. These lipases have a 

unique cavity beneath the lid and a wider oxyanion hole requiring lower activation energy, making them efficient 

lipid catalysts at low temperatures. Zeng et al (2004) studied 23 different lipolytic cells with growth temperature 
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ranging from 4 to 30oC. Although their optimal temperature was at 10±2oC at 4oC they could retain 60% of their 

optimum activity. Similar results were found by Suzuki et al (2001) who demonstrated that 57% of the optimum 

activity can be retained when the enzymes are exposed to 4oC.Other studies that showed noteworthy lipolytic 

activity at low temperature were Tan et al (1996), Abdou (2003) and Khan et al (1967).  

Lipases of fungal origin (Table 2.2.) are used in the food industry for lipid degradation at ambient temperature 

(Coenen et al 1997). Mayordomo et al (2000) examined a fungal lipase that had a higher productivity when the 

mycelium was grown at 30oC, and was able to efficiently hydrolyze glycerides, showing preference towards esters 

of short- and middle-chain fatty acids. This lipase showed also high activity in the range of 0-20oC. One of the 

most widely used fungal lipases is Candida Antarctica A and B (Table 2.3.) with 45 and 35 kDa molecular weight 

(CALA and B respectively). Kirk et al 2002 and Uppenberg et al 1994 examined CALA and B estimating them 

of 1.55 Angstrom and 2.1 Angstrom, respectively. The structure of CALB shows that the enzyme has a Ser-His-

Asp catalytic triad in its active site. Its ‘architecture’ appears to be in an 'open' conformation with a rather restricted 

entrance to the active site and is believed that this accounts for the substrate specificity and high degree of lipase 

stereo-specificity. The A component is shown to be more thermostable than the B component.  

Table 2.2 - Fungi producing cold-adapted lipases (Babu et al 2007, 2008). 

Microorganism Sources Reference 

Aspergillus nidulans   Ns* Mayordomo et al., 2000  

Candida antarctica  Antarctic habitat  Patkar et al., 1993;  

  Uppenberg et al., 1994a  

   Uppenberg et al., 1994b   

  Patkar et al., 1997  

  Koops et al.,1999 

  Zhang et al., 2003   

  Siddiqui and Cavicchioli, 2005  

  Kirk and Christensen 2002 

C. lipolytica     Frozen food Alford and Pierce 1961  

Geotrichum candidum  Frozen food Alford and Pierce 1961  

Pencillium roqueforti Frozen food Alford and Pierce 1961  

Rhizopus sp.   Frozen food Coenen et al., 1997  

Mucor sp.  Frozen food Coenen et al., 1997  

*Ns: Not specified 

Table 2.3 - CALA and CALB enzyme characteristics (Kirk and Christensen 2002) 

 CALA CALB 

molecular weight (kDa)3 45 33 

isoelectric point (pI)3 7.5 6 

pH optimum 7 7 

specific activity (LU/mg)4 420 435 

thermostability at 70oC3,a 100[100] 15[0] 

pH stability3,b .6-9 .7-10 

interfacial activation yes (but low) No 

positional specificity toward glycerides5 Sn-2 Sn-3 

A: residual activity after incubation at 60oC in 0.1 M tris buffer (pH 7.0) for 20mins and [120] mins; b: pH at 

which more than 75% activity is retained following incubation for 20 hours at room temperature. 

Plainly low temperature lipolysis is possible. Enzymes secreted either by bacteria or fungi have developed the 

mechanisms to efficiently operate at low temperature. Additionally, bio-engineering and biotechnology have held 
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the promise that we can use chemical, biological and molecular techniques to facilitate and optimize enzymatic 

lipolysis. 

2.2.10.3. Other psychrophilic enzymes 

There are a variety of other enzymes that are able to decompose either carbohydrates or proteins at low 

temperatures. An extracellular (40kDa) endo-polygalacturonase (PGL) enzyme from a psychrophilic fungus 

Mucor flavus able to hydrolyze polysaccharides to sugars at an optimal temperature of 20oC was reported by Gadre 

et al 2003. Huang and Yang 2003 found the first cold-adapted imidase (105 kDa) (hydrolyzes cyclic imides to 

monoamidated dicarboxylates) with surprising high activity at low temperature. The enzyme extracted from the 

liver of Oreochromis niloticus (a fish) and in a comparative study with conventional enzymes showed 10 to 100 

times higher activity from 0 to 40oC on maleimide as substrate.  

A large variety of other enzymes capable of operating at low temperature have been investigated; however this 

study focuses on lipases as the accumulation of lipids proved to be an issue with anaerobic treatment at low 

temperatures. 

2.2.10.4. Enzyme pretreatment & post-treatment capacity 

Lipid accumulation is a common issue in variety of industrial wastewater (for example slaughterhouse wastes 

(Cammarota and Freire 2006). In domestic wastewater the phenomenon is less prominent as the lipid content is 

usually low. 

Masse et al (2001) pre-treated slaughterhouse wastewater using a Pancreatic lipase 250 at a concentration ranging 

from 125-1000 mg L-1 at 20-24oC. The results showed that the enzyme assisted the reduction of the size of lipids 

and after 4-24 hours and LCFAs appeared after 6-7 hours of treatment. Similarly, Valladao et al 2011 showed that 

the use of 1%w/v of Penicillium restrictum as an enzyme hydrolysis step for the degradation of poultry wastewater 

could increase the specific methanogenic activity at 35oC. Many studies have recognized the feasibility of enzyme 

pre-treatment; however no studies have been published at temperatures of less than 20oC. 

2.3. Microbial community structure conservation 

Inoculating a bioreactor with psychrophilic or cold-adapted biomass is a possible strategy for the promotion of the 

COD:CH4 conversion at low temperature Biomass that performs at low temperatures and retains its psychrophilic 

characteristics might be the ideal inoculum for WWTPs situated in countries where temperature is low and 

seasonal temperature fluctuations are common. In such wastewater systems, numerous indigenous 

microorganisms will compete with the individuals from the seed for the substrate’s organic carbon. This 

competition forms a very dynamic pattern in the bio-reactor diversity (Pender et al 2004). Curtis and Sloan (2004) 

suggested that ‘invasion’ from outside (e.g. wastewater cells) can influence an established community diversity 

according to: 

 Diversity of the source or meta-community where the ‘immigrants come from 

 Distribution of the taxa in the meta-community 

 Immigration rate of bacteria from the source to the local community (i.e. biological reactor) 

 The population size of both invaders and system cells 

 The size of the local community 

 The spatial heterogeneity of the local community 

Thus it is of great importance to determine whether the arrival of ‘immigrants’ from one source (e.g. wastewater) 

has a significant impact on the diversity patterns of the reactor communities, especially at low temperatures. 

2.3.1. Parameters that may affect cell abundance 

Engineered bio-systems allow us to study the patterns of microbial diversity which are ultimately a product of 

evolution (speciation) and the ecological processes of immigration and environmental selection. High rates of 

dispersal imply high rates of immigration; high immigration limits speciation; hence, a community once formed, 

is almost fixed as it would be very hard for abundant species to go extinct (Curtis et al 2006).  
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There are fundamental truths underlying the formation of an open local community of microorganisms. According 

to neutral theory (which assumes the equivalence of specific growth rate for all organisms) the community is 

continuously exposed to immigration from some larger source community when individuals die they are either 

replaced by an immigration or a birth event (Bell 2000, 2001, Hubbell 2001) (Hubbell’s model Figure 2.13). Thus 

the community forms and develops through a continuous cycle of immigration, births and death (Sloan et al 

2006b). Decay/extinction or immigration in such systems enhance (high immigration rates) or deplete diversity 

(low immigration rates) (Sloan et al 2006) (Figure 2.13). Although predicted taxa-abundances show agreement 

between theory and observation there is no doubt that the neutral theory does fail to explain some observations 

(Woodcock et al 2007) remaining an anathema to many microbiologists. Indeed Prosser et al (2007) suggested 

that the existing conceptual theory is not sufficient to describe biological systems in detail as they are multifactorial 

and cannot be fully understood. 

Brock (1987) described the study of diversity as mumbo-jumbo; however we believe that such systems can be 

understood if both random and deterministic factors will be analysed as they both affect the community 

structure. 

 

Figure 2.13 - (a) schematic representation of vacancy fulfilment of a local community of 6 individuals from 3 taxa 

(A,B,C); (b) an individual from C dies/extincts leaving a position vacant, the possible scenarios for the fulfilment 

of the vacant position may be: (c) the slot is being fulfilled from an individual of the existing population 

(reproduction, figures 1, 2, 3 top to bottom) or an immigrant from the meta-community (D, figure 4, bottom) (e.g. 

wastewater), altering the abundance distribution (Curtis and Sloan 2006; Battin et al 2007) 

Neglecting the innate differences amongst species and their distinct responses to environmental factors may lead 

to ecosystem oversimplification. Thus, both neutral and deterministic factors such as temperature and competition 

for substrate respectively is needed to describe how external conditions can affect specific populations, driving 

them to proliferate or go extinct (Curtis and Sloan 2004). Such factors enhance growth of particular 

microorganisms and suppress others, changing the functionality of such systems (Kotsyurbenko 2005, Xing et al 

2009), especially when communities are continuously exposed to different conditions. Analysis of a microbial 

community structure including both neutral and deterministic factors gives a better insight into cellular adaptation 

and functional redundancy. Adaptation is one of the key aspects in engineered biological systems (Rittman and 

McCarty 2001), especially in low temperature anaerobic treatment where the predominance of the cold-

adapted/psychrophilic cells in the community matrix seems to be the key for efficient wastewater to energy 

bioconversion.    
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Chapter 3: Experimental plan, what is 
the purpose for the particular 
experiments? 

  

Figure 3.1 - Representation of the experimental sequence; from batches to sub cultures, from data collection to scaling 

up.  

 

 For Batch 1-8 the experimentation was carried out using an Arctic/Alpine inoculum (the same 

through batches), re-fed with either raw or primary settled wastewater, incubated at the same 

conditions (temperatures 4, 8, 15oC; seed:substrate 1:3) for the examination of different 

parameters as stated on the methods. 

 For the sub-cultures 1, 2 the experimentation was carried out in microcosms (serum vials) seeded 

with the inoculum from the batches (as indicated by the arrows), fed with either raw or primary 

settled wastewater (seed:substrate 1:7), set at 4 and 15oC the way it is stated on the methods, for 

the examination of various parameters. 

 Cost & applicability included the results and findings that were extracted from the 

experimentation (batches and subcultures as indicated by the arrows) to create a scale up 

approach based on a regression analysis between the cell specific methanogenic activity and the 

temperature over time. 
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3.1. Brief description of the experiments and their conclusions. 

Chapter 4: This chapter investigates the methanogenesis and wastewater treatment performance of 8 batch reactors 

operating at 4, 8 and 15oC, using the arctic inocula as seed and sterilized wastewater as substrate. The main aim is 

to collect the fundamental design parameters that would assist in the scale up process. 

4.3. This sub-chapter describes the start-up period of the anaerobic wastewater treatment at low temperatures. It 

depicts the size of the challenge, running a digester with low strength raw wastewater at low temperatures. 

It describes the boost of methane production rates between batch 1 and 2; gives an insight to molecular 

data of the seed (i.e. methanogenic communities) and manifests the bias that may occur between the 

selected molecular techniques (qPCR-FISH correlation for archaea). 

4.4. This section presents the maximum methane production achieved for the particular reactor configuration. It 

provides with the first estimation of the specific cellular methanogenic and hydrolytic activity and depicts 

the phylogenetic community structure after 400 days exposure to different low temperatures. It reveals 

what the rate limiting step is and how this affects the pilot scale design. 

4.5. This part presents the anaerobic treatment of primary settled wastewater at low temperatures. It shows how 

the COD removal increases due to substrate’s higher biodegradability and further cellular adaptation. It 

provides with an insight into the accumulation of the un-hydrolyzed compounds after 2.5 years of operation, 

revealing that lipids are the components that are less degraded at low temperatures. 

Chapter 5: The purpose of these experiments is to investigate the status of the microbial diversity in the seed after 

temperature switch (15 to 4oC and vice versa) and co-existence with the indigenous from wastewater cells. 

5.3. This sub-chapter presents the effect of temperature switch (15 to 4oC) to the cells when the latter are exposed 

to non-sterile raw wastewater. Hydrolysis in this case seems to be the limiting step; however the both 

methanogenic and hydrolytic activities increase under non-sterile conditions. Thus, a complementary 

interaction between the biomass in the seed and the wastewater is proposed. Insignificant differentiation to 

diversity suggests that the communities of the seed cannot be outcompeted from the cells in WW at low 

temperature, using a 1:3 seed:substrate ratio. 

5.4. This sub-section is a repetition of the previous experiment, including a temperature switch from 4 to 15oC. 

The wastewater in this case was primary settled and the seed:substrate ratio was 1:7. The specific cellular 

activity was higher at 4oC than at l5oC suggesting that the development of a psychrophilic community is 

likely. Additionally, higher activity at 15oC, from cells acclimatized at 4oC than at 15oC proves that the 

former performs better than the latter at all treatments (sterile or non WW). A 2-fold decrease (1:7 from 

1:3) of the seed:substrate ratio affected the bacterial diversity acclimated at 15oC. Overall, acclimatization 

at cold temperatures rather than at warm leads to a highly active and robust microbial community. 

Chapter 6: Lipids appeared to accumulate at low temperature. I therefore extended my investigation to lipases, the 

enzymes responsible for the lipid solubilization. 

6.3. This section investigates the activity of the enzymes at all temperatures, showing that the proteins at 4oC are 

slightly more active than at 8 and 15oC. Thus, the structure of the lipids is likely the reason for lower 

degradation rates at low temperatures. The activity at low temperatures (15oC) was found promising 

compared to activities from mesophilic treatment plants. The temperature range that triggers the 

degradation of lipids was also defined. 

Chapter 7: In this chapter specific activity, CODremoved/CODmethanized factor and temperature data for Newcastle 

upon Tyne region were used to simulate a reactor scale up for 20.000 people based on HRT. Regression analysis 

was carried out for HRT optimization and forecast. The capital cost for all HRTs was estimated. 

7.3. This chapter, after making certain assumptions, estimates of the HRT that is required for the treatment of 

domestic wastewater using the specific seed. The concept includes correspondence between temperature 

and specific rates. Regression analysis was used in HRT optimization and forecast. Finally a cost analysis 

for a plug-flow digester using our HRT and design volume reveals that after a certain size, application 

needs to consider other parameters. 
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Chapter 4: Running digesters seeded with 
cold-adapted inocula to 
investigate the limits & 
define design parameters  

 

 

 

  

 

  

Figure 4.1 - Anaerobic digestion mechanism where sewage and its intermediates becoming substrate for microorganism 

(i.e. Methanosarcina Mazei on the figure (BacMap), converted to methane and pure water as effluent. The detailed 

pathway is shown on figure down-left (Mu and Chen 2011).  

 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=FcVUWczC1rJa7M&tbnid=QVl8nrOG_jxxfM:&ved=0CAUQjRw&url=http://techalive.mtu.edu/meec/module21/ArrangeTP.htm&ei=amoCUuC6Mam-0QXOlIG4Dg&bvm=bv.50310824,d.d2k&psig=AFQjCNE7Jot7MFCzZbml6BSV8RN2Ph3AQg&ust=137597633691
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=vlHE25jo29k4uM&tbnid=LWB8fyP96DSb1M:&ved=0CAUQjRw&url=http://www.rcmdigesters.com/rcm-advantage/why-rcm/&ei=rmgCUoq8COmn0AXt5YGoBw&bvm=bv.50310824,d.d2k&psig=AFQjCNECu-u5CY1JMf2r9hK6ync0Qf_z_g&ust=137597596634
http://www.sciencedirect.com/science/article/pii/S004313541100
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4.1. The start-up period – Batch 1, 2 

4.1.1. Abstract 

Low temperature anaerobic treatment of domestic wastewaters using conventional mesophilic biomasses, 

acclimatized to low temperature is challenging. I wished to determine if the anaerobic treatment of domestic 

wastewater at low temperatures could be improved if a cold-adapted biomass will be used to seed an anaerobic 

bio-reactor. Thus, 8 batch reactors were employed and inoculated with a cold-adapted inoculum (seed:substrate 

1:3 (v/v)). The seed was collected from the high Arctic and an Alpine Lake to treat raw domestic wastewater. Two 

batch studies are presented in this sub-chapter, to describe the start-up of anaerobic WW treatment at 4, 8 and 

15oC.  

Batch 1 (1-230 days): inconsistent and insufficient methanogenesis was observed for the first 140 days at 4 and 

8oC (0.012 and 0.013 mgCODCH4.L-1.day-1 respectively); at 15oC methane appeared from day 40 (mgCODCH4.L-

1.day-1) suggesting that the initial methanogenic populations have their optimum closer to 15oC. 

Acidogenesis/acetogenesis was poor at 4 and 8oC, demonstrating that the bacteria responsible also grow better at 

high temperatures. CO2 formation suggests that hydrolysis/fermentation takes place at all 3 temperatures, but with 

lower rates the lower temperature. This suggests that hydrolysis is as expected, temperature sensitive.  sCOD 

depletion took place at 8 and 15oC after 100days. At 4oC slow hydrolysis resulted in sCOD formation even after 

200 days of operation. The sequenced methanogenic taxa were Methanomicrobiales, Methanosaetaceae, and 

Methanosarcina, with the first being predominant at all temperatures. At 216 days it is not clear which taxon was 

dominant. A comparative study between archaeal qPCR and FISH enumeration on the same day (216) suggested 

the presence of a large inactive archaeal population (e.g. FISHmax: 6.7×103, qPCRmax: 1.1×107).  The correlation 

amongst the two methods was found strong R2: 0.896.  

Batch 2 (+99 days): Higher amount of methane was formed at all 3 temperatures, compared to batch 1 (×10 at 4 

and 8, ×2 at 15oC). This implies that cells are better adapted to both the substrate and the temperature than in batch 

1. Effluent COD met the UWWTD (91/271/EEC) standards at 15oC and showed high removal capacity at 8oC but 

not at 4oC. sCOD and VFAs were fully depleted at all 3 temperatures. Lower CO2 production in the second batch 

demonstrates a reduction in the sinks or the seed’s organic material, if present, or less/no O2 ingress (the sampling 

strategy for this batch changed to ensure 100% sealed reactor for all operational days). VSS/TSS increase at 4 and 

8oC reveals treatment boundaries at <15oC, due to accumulation of un-hydrolysed material (as VSS).  

4.1.2. Introduction 

Increase in energy demand and intensive release of carbon dioxide through rapid urban development rendered 

conventional wastewater treatment processes (mainly aerobic) less favourable. The British water and wastewater 

industry accounts for over 4 million tonnes of CO2 per year, equal to the 1.0% of the annual UK greenhouse gas 

emissions, consuming 8100 GWh per annum (Environmental Agency 2009). Thus, the challenge of carbon and 

energy neutral/negative treatment with reduced CO2 emissions needs to be considered (Logan 2008).  

The problem can be partially solved using traditional anaerobic treatment systems. Currently almost all full-scale 

anaerobic treatment plants are operating at temperatures exceeding 18oC (Lettinga et al 2001). This makes the use 

anaerobic treatment systems problematic in cold or temperate regions (maximum average <15oC). As temperature 

drops, the risk of failure of both methanogenesis and hydrolysis increases. Previous studies showed that lowering 

the operational temperature of a digester leads to the decrease of the maximum substrate utilization rates, 

maximum specific growth rates and rates in biogas production (Alonzo et al 1969; Kettunen and Rintala 1997). 

Thus, temperature is the “Achilles heel” for anaerobic treatment systems. So far, the most efficient environmental 

engineering strategy was to acclimatise mesophilic organisms at low temperature; however none of the studies 

could adequately operate at <13oC with real wastewater as substrate (Uemura and Harada 2000, Elmitwalli et al 

2002, Alvarez et al 2008, Luostarinen et al 2007, Bogte et al 1993), fact that has recently been attributed to failure 

in methanogenesis at temperatures below 8 oC (Bowen et al 2014).  

A different approach would be the use of a cold-adapted-psychrophilic inoculum to establish the true limits of the 

anaerobic treatment of wastewater at low temperature. The aim of this chapter is to examine the feasibility of low 

temperature anaerobic wastewater treatment at 4, 8 and 15oC. At such temperatures the start-up is commonly the 
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most prolonged step as lack of cells acclimated at such temperature doesn’t allow the development of communities 

capable to function. The use of a cold-adapted inoculum though can theoretically accelerate the start-up and prove 

that methane production can be feasible at low temperature. A preliminary study in the performance of inoculum 

with regards the COD, sCOD removal in addition to gas production is presented. Finally molecular analysis reveals 

some fundamental characteristics of the seed such as the population and the community structure. 

4.1.3. Materials and Methods 

Reactors assembly; eight quick fit 1L glass batch reactors (Sigma Aldrich, UK) with 480 ml of headspace were 

assembled and incubated at 4, 8 and 15oC.  Duplicate reactors were used for 4 and 8oC; quadruplicates at 15oC.  

Although the reactors were designed for CSTR purposes, mixing was only applied prior and during sampling at 

70 rpm for 10 minutes using a stainless steel stirrer paddle. Mixing was avoided during operation to minimize 

likelihood of microbial community disturbance. Thorough mixing was only applied prior sampling for TSS, VSS. 

Sampling itself for both thorough and limited mixing was taking place a few seconds after mixer switch off. After 

preparation reactors were flushed with 99.9% N2 to ensure anaerobic conditions and sealed. 

Inoculum; The laboratory-scale batch reactors were seeded volumetrically (250 ml) with an equal mixture of 

putatively cold-adapted sediment from Lake Geneva ‘’N 46o23’04’’, E 6o25’07’’ (average temperature -11 – 17 
oC) and soils from Svalbard, in the high Arctic at various sampling points situated at ‘’N78o, E11, 15,16o’’ (average 

temperature -16 – 6 oC) and operated at 4, 8 and 15oC. 

Re-inoculation; in the end of every batch (first batch) and before initiation of  a new one (second batch) the mixed 

liquor (solid/liquid) was emptied in a plastic 1L vial and set for centrifugation (Cryofuge 5500i, Thermo Scientific, 

UK) at 4000rpm for 20 minutes at 10oC. After liquid-solid separation the first (supernatant) was discarded and the 

solid was used as inoculum for the consequent batch after volumetric measurements (250±10ml). New N2-flushed, 

sterile wastewater (750 ml) was combined with the inoculum resulting to a 1L volume of mixed liquor of 1:3 

seed:substrate, which was successively positioned into the quick fit reactor, re-flushed with N2 and sealed. The re-

inoculation practice was carried out into plastic bags, filled with N2 to ensure anaerobic conditions throughout the 

procedure. 

Wastewater substrate; wastewater collected from the Tudhoe Mill (County Durham, UK) wastewater treatment 

plant (WWTP) treating domestic wastewater. Screened raw influent wastewater was used to ensure high COD 

concentration at Batch 1, 2. The COD content was approximately 500 and 1000 mg.L-1 for the first and second 

batch respectively. The substrate composition was estimated based on COD as 45% carbohydrates 35% lipids and 

20% proteins for raw wastewater with negligible variation between the two batches.  

The protein content was measured via the Bradford protocol (Bradford 1976), based on the interaction between 

protein and Coomassie Brilliant Blue G-250, providing a blueish-brown solution depending the protein 

concentration. The staining reaction requires 1 minute to complete and remains stable for 30 min. The absorbance 

is estimated via spectrophotometry at a wavelength of 595nm. In detail, 100mg of Coomasie blue G-250 was 

dissolved in 50 ml of 95% ethanol. Once the dye powder was completely dissolved the volume of the solution was 

made up to 1L by adding deionised water. The 1L solution was then filtered until colour turned brown (from blue). 

5ml of solution was added into tubes with 100μl of sample or standard. A spectrophotometer from Merck (UK) 

was introduced to measure the absorbance of either samples or standards with known BSA (Bovine Serum 

Albumin) protein concentration (Sigma Aldrich (UK)). The conversion to COD was carried out using 

(C4H6.1O1.2N)x as a point of reference (Sanders et al 1996). 

The lipids were estimated gravimetrically using a methanol:chlorophorm extraction protocol (Bligh and Dyer 

1959) at a ratio 1:2. A 10 ml sample was initially mixed into a body of methanol:chloroform solution to a final 

volume 20 times the volume of the sample, until homogenized to form a miscible system. 1g of KCl was also 

added and mixed (Folch et al 1957). The homogenate is subsequently separated into two layers. Methanol phase 

contains all the non-lipid material located on the top, whereas lipids are dissolved in the chloroform, situated in 

the bottom of the vial. A Pasteur pipette was used to abstract the chloroform phase, which was subsequently 

evaporated in a fume cabinet so the lipids can be released. The remaining lipid after CHCl3 evaporation is weighed, 

indicating the amount of fat that is present in the sample. 10ml of mixed liquor was used as sample volume for the 
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particular study’s lipid content. The conversion to COD was carried out stoichiometrically using octanol (C8H18O) 

as a point of reference (main castoroil compound). 

Carbohydrates content was estimated by the anthrone method, a simple colorimetric method firstly reported by 

Hedje and Hofreiter (1962). Polysaccharides are firstly hydrolysed to monomers from digestion via hydrochloric 

acid and heat. Then the solution reacts with the anthrone yielding a greenish-blue colour. The amount of total 

carbohydrates is determined according to its absorbance, expressed to concentration based on a glucose standard 

curve. In detail, 100μg samples were added into digestion tubes and hydrolysed using 5ml of 2.5N HCl at 100oC 

for 3 hours. After digestion the samples cooled down and neutrilized with Na2CO3 prior centrifugation (8.000rpm 

for 3 minutes). The supernatant was collected and used as the extract-sample. 1 ml sample was then mixed with 4 

ml of anthrone solution (0.2g dissolved in cold 100ml iced cold 95% H2SO4) and set to a waterbath (Grant, UK) 

to boil for 8 minutes at 100oC. After boiling the samples were left to cool down at room temperature. The 

concentration was estimated using a spectrophotometer from Merck (UK) at 630nm, standardizing a curve with 

known amounts of glucose. For the preparation of the standards 100 mg of glucose were dissolved in distilled 

water, 10 ml of the stock was further diluted in 100 ml water, adding few drops of toluene. The glucose solution 

was diluted to achieve certain glucose concentrations. The procedure of HCl hydrolysis and the addition of 

anthrone was then repeated for the standards. The conversion to COD was implemented stoichiometrically using 

glucose (C6H12O6) as a point of reference. 

Sterilization techniques; UV irradiation was applied at a dose of 110 kJ/cm2. The rationale behind sterilization 

was primarily to quantify the treatment performance of the seed, excluding the effect of the wastewater-originated 

cells, and secondly to preclude any competition between the cells thriving the seed and those present in the 

substrate. UV light (11 W; Hozelock Vorton (UK)) was selected because it had less adverse effect on the 

biodegradability of the wastewater (assessed by changes in the BOD5:COD, compared to thermal methods 

(autoclaving at 109oC for 20 minutes). Preliminary trials showed a reduction of 16(±1.4) and 8(±4)% BOD5:COD 

for autoclave and UV-irradiation(40 minutes) respectively. Both approaches achieved an 8-log reduction of 

1.73(±0.01)×108 or 2.04(±0.04)×108 CFU.100ml-1 (CFU: Colony Forming Unit) on R2A and Nutrient Agar 

respectively (chosen dilution 1:103, detection limit based on duplicate control petridishes as 1(±1)×103). The 

wastewater BOD5 and COD were measured based on APHA 2005 to quantify the changes in the 

nature/composition and subsequently biodegradability of the substrate due to sterilization. The efficiency of the 

sterilization method was tested by counting colony forming units. After sterilization 50 μl of wastewater sample 

was spread onto Nutrient (NA) and R2A (APHA 2005, Reasoner and Geldreich1985) agar plates. Plates (dilutions 

and controls) were prepared in duplicates; additional un-inoculated plates were prepared as controls. The plates 

were set for incubation at 17±2oC in the dark for 5 days prior to enumeration; all calculations were based on APHA 

2005. 

Analytical methods; Total COD (COD) and Soluble COD (sCOD) were analysed via ‘digestion tube method’ 

following Standard Methods (APHA 2005). sCOD was measured on a 0.2µm filtered sample (glass fibre syringe 

filter, VWR, UK). The ratio sCOD to COD is an indicator of hydrolysis as the fate of the solubilized COD fraction 

(sCOD) represents the status of the organic liquidification.  

VFA (Volatile Fatty Acids) analysis; samples from the liquid phase were removed from the reactors using sterile 

syringes, transferred to sterile 2 ml micro-centrifuge tubes and centrifuged (3 min at 13.000 rpm) to obtain a 

supernatant for analysis.  Volatile fatty acid concentrations in the supernatant were subsequently determined by 

ion exchange chromatography (IEC) based on a modified method of Manning and Bewsher (1997).  Briefly, 

aqueous samples were syringe-filtered through 0.45 µm filters, acidified 1:1 v/v with Oxysulfonic acid and 

sonicated in a sonic bath for 40 minutes to remove carbonate from the samples as carbon dioxide (Manning and 

Bewsher 1997).  The resulting samples were analysed on a DIONEX ICS-1000 equipped with an Ionpac ICE-

AS1, 4x250mm column using a 1.0mM heptafluorobutyric acid eluent solution.  The volume of the injection loop 

was 10 µl and flow rate was 0.16ml/min.  The cation regenerant solution used for the AMMS-ICE II Suppressor 

was 5mM tetrabutylammonium hydroxide. The minimum detection limit of the particular analyte/instrument is 

0.8ppm (lower values cannot be consistent). VFAs in anaerobic treatment are the products of biodegradation of 

sugars, amino acids long and lower chain acids. They can be used as fundamental parameters to describe the status 

of fermentation/acidogenesis, or estimate the prospective methanogenesis in terms of expected amount of biogas.  
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Methane; CH4 was monitored in the gas phase as % by volume, using gas chromatography.  Samples of gas (3ml) 

were removed from the headspace using a gas-tight syringe (SGE-Europe), and injected into a 3ml-volume 

exetainer. Subsequently 100μl of gas sample was removed from the vial and further injected directly onto a Carlo 

Erba HRGC S160 GC fitted with an FID detector and HP-PLOTQ column (0.32 mm diameter, 30 m length and 

20 µm film). CO2 gas was measured using a Mass Spectrometry (Thermo Scientific, UK) following the same 

sampling strategy as for methane. For both gases hydrogen was used as a carrier gas at a flow rate of 60ml min-1. 

Gas concentrations in the liquid phase were thermodynamically calculated using Henry coefficients (Henry 

coef.CH4: 433.6, 481.6, 574.8 at 4, 8 and 15oC respectively; Henry coef.CO2: 14.7, 17.0, 21.8 at 4, 8 and 15oC) 

(Dolfing et al 2010, Dolfing and Janssen 1994). The Henry coefficients were used assuming equilibrium between 

the gas and the liquid phase,  

Microbiological community analysis; microbial community structure was described using the rapid community 

fingerprinting method, denaturing gradient gel electrophoresis (DGGE).  Biomass samples were obtained from 

the pellets produced during the preparation of samples for VFA analysis, as described. Total genomic DNA was 

extracted from biomass pellets collected during the VFA sampling using a FastDNA® SPIN for soil kit (Q-

BIOgene, Cambridge, UK) according to the manufacturer’s instructions.  

Polymerase chain reaction (PCR) was used to generate amplicons for use in the DGGE procedure.  Bacterial 16S 

rRNA gene fragments were amplified using the primer pair Primer2 and Primer3 (Muyzer et al 1993) with a 5’ 

GC clamp. A nested PCR was used to amplify archaeal 16S rRNA gene fragments: primers A20f and U1492r 

(Orphan et al 2001) were used to amplify a 1472 base-pair fragment (based on E.coli 16s rRNA position); 

amplicons from the first PCR were further amplified using primers Arch344 (Raskin et al 1994) with a 5’GC 

clamp and U522 (Amann et al 1995) to generate a 178 base pair fragment for DGGE.  All PCR reactions were 

prepared using the PCR reagent MegaMix Blue (Microzone Limited, West Sussex, UK), according to the 

manufacturer’s instructions.  Products were analyzed by DGGE on a D-gene DGGE system (Bio-Rad, Hercules, 

CA, US) using a 10% polyacrylamide gel containing a denaturant gradient of 30-60%.  The gel was stained for 30 

minutes using SYBR green I (Sigma, Poole, UK) in the dark and viewed under ultraviolet light on a Bio-Rad 

Fluor-S ® Multi Imager (Bio-Rad, UK).  Finally, selected DNA bands were excised from the bacterial and archaeal 

gel, PCR-amplified using primers Arc344f, U522r; purified using a Qiagen  502 PCR clean up kit (Qiagen, 

Crawley, UK) and sequenced using an ABI prism Big Dye Terminator Cycle Sequencing Ready reaction Kit and 

an ABI Prism 377 DNA sequencer (Applied Biosystems, USA). Sequences were compared to the GenBank 

database (Benson et al 2008) using the BLAST algorithm to determine nearest neighbors (Altschul et al 1990). 

Quantitative PCR (qPCR) was used for the quantitation of methanogens in the reactors using primers for 

Methanomicrobiales (MMB282F, 832R), Methanosarcinaceae (MSC380F, 828R) and Methanosaetaceae 

(MST702F, 862R) (Yu et al 2005) which covered the dominant methanogens found in the reactors, according to 

the sequenced bands cut from the archaeal DGGE gel.  For total archaea the Arc109F and Arc344R primers were 

used (Sun et al 2007; Reging et al 1998). The qPCR was carried out on a CFX96 real–time PCR system (Biorad, 

UK) using a 32 cycle, 2-step reaction qPCR procedure, with a reaction mixture that comprised of: 3µl DNA 

template, 1 µl sterile de-ionized water, 0.5 µl each of the forward and reverse primers and 5 µl of Ssofast EvaGreen 

Supermix (Biorad, UK).  The analysis incorporated a 5-point calibration curve using standards of known genomic 

DNA concentration of: Methanoculleus bourgensis, Methanosarcina barkeri and Methanosaeta harundinacea for 

MMB, MSC and MST primers respectively; no-template controls were prepared from filter-sterilized de-ionized 

water.  For total archaea standards of the last two groups were used (Yujiao et al 2007). All qPCR reactions were 

performed in triplicate and efficiency values were calculated based on standards and also a 4-point serial dilution 

of a selected sample.  Starting quantity (SQ) values from the qPCR in copy no. ml-1 were converted to cells ml-1 

using the formula recommended Klappenbach et al 2001 (Eq.11). 

𝑪𝒆𝒍𝒍. 𝒎𝒍−𝟏 =
𝐚

𝐛×𝐜
   (Eq.11) 

Where: (a) SQ*dilution factor on plate 

 (b) /mean no. of copies of RNA gene in archaea 

 (c) *100 as the factor to allow for initial extraction of pellet from 1 ml into an elution vol. of 100 µl: 

  i.e. 1000 µl / (1000/100) 



P h . D .  T h e s i s  –  E v a n g e l o s  P e t r o p o u l o s .  A 9 9 1 7 8 0 6 6  

I n v e s t i g a t i n g  t h e  t r u e  l i m i t s  o f  a n a e r o b i c  t r e a t m e n t  o f  w a s t e w a t e r  a t  
l o w  t e m p e r a t u r e  u s i n g  a  c o l d  a d a p t e d  i n o c u l u m  

P a g e  |36  

 

The selected mean copies of RNA gene were 2.13, 2.6, 3.0 and 2.0 for total Archaea, MMB, MSC and MST 

respectively (Weijers et al 2009, Klappenbach et al 2001).  

For the archaeal FISH enumeration the protocol that was followed was from Coskuner et al (2005). Prior to FISH 

analysis, samples were fixed with 4% paraformaldehyde (Amann et al 1990), the probe that was used was 

ARC915, labeled with Cy3 (seq 5′-GTGCTCCCCCGCCAATTCCT-3′) (Stahl and Amann 1991), purchased from 

Genosys (Cambridge, UK). 

For hybridization, 0.5ml of mixed liquor was set into a 2ml Eppendorf. The samples were serially dehydrated in 

60%, 80%, and 96% ethanol by adding 1 ml of the corresponding concentration, followed by centrifugation at 

13.000 rpm in a micro-centrifuge (MSE Microcen-taur, UK). After dehydration the remaining pellet was re-

suspended in 38µl hybridization buffer (0.9 M NaCl, 50 mM sodium phosphate (pH 7.0), 5 mM EDTA, 0.1% 

SDS, 0.5 mg of poly(A)/ml, 10x Denhardt’s solution; all reagents were purchased from Sigma Aldrich, (UK)). 

Finally 2µl of labeled probe (50 µg/µl) was added. A negative control with no probe was also prepared. Pre-

hybridization step took place where samples were left in the heating block at 46oC for 15 minutes without addition 

of the probe. After addition the samples were left at same temperature for 1.5 hours. Sample wash followed twice 

applying 0.5 ml washing buffer (20 mM Tris HCl, 0.01% SDS, 5 mM EDTA, and NaCl), incubating for 15 minutes 

at 48oC, followed by a quick wash in 0.5 ml milli-q water (filtered at 0.2um-autoclaved). The samples were 

centrifuged removing the supernatant; extra 100 µl of milli-Q water were added. Finally 10µl sample was set on 

gelatin-coated slide and left to dry in a 30oC incubator. 5-10 µl Citifluor (Citifluor, Kent, United Kingdom) was 

added on top of the sample followed by sealing it by coverslip. The edges were sealed using nail varnish. 

The slides were examined with a Leica TCS SP2 UV confocal laser scanning microscope (CLSM) equipped with 

an X63 magnification na1.32 lens. The selected software for visualization was LCS 2.61 (Leica GMBH, 

Heidelberg). Auto-fluorescent background material was removed by setting a threshold from the no-probe control. 

Up to ten FOVs (fields of view) were taken, with less than 24 z axis-sections of 1.14µm average height). 

The enumeration carried out via Image-J, a java-based image processing software (National Institutes of Health, 

Maryland USA) developed by Wayne Rasband at Research Services Branch of the National Institute of Mental 

Health. A 16-bit integer was used prior qualitative image analysis. A multiplication factor was introduced (×3) to 

compensate for the biomass that was lost through continuous pipetting during the sample preparation (FISH). This 

was estimated from the average weight loss of the samples, defined via weighing in the beginning of the method 

and in the end of the washing step. 

4.1.4. Results 

Batch 1 was running for 230 days. The performance in terms of gases is shown below (Figure 4.2.a, b c, d) 
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Figure 4.2 –a) Methane production at 4, 8 and 15oC with the exponential trend line for 15oC; b) similarly as ‘a’ at 4 and 8oC, 

Y axis scale different than previous; c) methane production rate in COD from CH4 per day including a trendline to describe 

the effect of temperature to the methane production rate; d) CO2 production with the corresponding trend lines at each 

temperatures, as a function of time; n = 2 for 4 and 8oC, n=4 for 15oC; error bars express standard error; all results are expressed 

as averages from duplicates and quadruplicates for 4, 8oC and 15oC respectively; all gases are expressed as mmols per volume  

of the headspace.  

The fate of intermediates (VFAs) and sCOD is presented on the figures below (4.3.a, b) 
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Figure 4.3 – Average a) total VFA in the reactor at all temperature as summary of acetate and propionate (no other intermediates 

were detected); b) Soluble COD fate at all temperature; n = 2 for 4 and 8oC, n=4 for 15oC, error bars indicate standard error 

The molecular analysis includes an archaeal and a bacterial DGGE image (Figure 4.4.a, b respectively). Main 

bands are presented on Table 4.1, 4.2. 

 

Figure 4.4 – DGGE images for a) Archaea day 1 & 216; b) Similarly for Bacteria; Sequence of columns: M, 1, 2, 3, 4, 5, 6, 7, 

8, 8, M (1, 2: 4oC; 5, 6: 8oC; 3, 4, 7, 8: 15oC); boxes with numbers correspond to the bands that were cut for sequencing; the 

affiliated genus and class is shown on the Tables 4.1, 4.2 below for archaea and bacteria respectively. 
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Table 4.1 – Archaeal bands sequenced via 1st generation sequencing and identified via GenBank 

Band Archaeal ID  Class Origin % 

1 N/A (Not Applicable/unidentified)  N/A N/A N/A 

2 N/A  N/A N/A N/A 

3 Uncultured Methanosaeta  Methanomicrobia Lake Geneva 100 

4 Uncultured Methanomicrobiales   Methanomicrobia Lake Geneva 98 

5 Uncultured Archaeaon (Crenarchaeote)  Crenarchaeota Arctic region 100 

6 N/A  N/A N/A N/A 

7 N/A  N/A N/A N/A 

8 Uncultured Methanomicrobiales   Methanomicrobia Lake Geneva 98 

9 N/A  N/A N/A N/A 

10 Uncultured Methanogenic Archaeon (Methanosarcina)  Methanomicrobia Laptev Sea 100 

11 N/A  N/A N/A N/A 

12 Uncultured Methanomicrobiales  Methanomicrobia Lake Pavin 100 

*N/A stands for sequences that could not be sequenced at the GenBank database 

 

Table 4.2 – Bacterial bands sequenced via 1st generation sequencing and identified via GenBank 

Band Bacterial ID Class Origin % 

1 Uncultured Bacterium N/A N/A 100 

2 Uncultured Bacterium N/A N/A 94 

3 Uncultured Methylobacter Gammaproteoacteria High Arctics 88 

4 Uncultured Cyanobacterium Cyanobacteria N/A 91 

5 Bacterium 081657 (Acidovorax) Betaproteobacteria Japanese paddy soil 90 

6 Uncultured Clostridia Clostridia Spitsbergen - Norway 90 

7 Uncultured Bacterium N/A N/A 84 

8 Uncultured Chloroflexi Chloroflexi Roopkund Glacier - Himalayas 96 

9 Acrobacter Epsilonproteobacteria N/A 96 

10 N/A N/A N/A  

11 Uncultured Paludibacter Bacteroidetes N/A 82 

12 Uncultured Bacterium N/A N/A 86 

*N/A stands for sequences that could not be sequenced at the GenBank database 

Based on the methanogenic species detected, a qPCR enumeration (same dates) was carried out (Figure 4.5).  

The total archaeal population was quantified via qPCR (Arc109F and Arc344R)) and FISH (AR915). The results 

demonstrate a discrepancy between the two methods. This enabled us to correlate them for day 1 and 216 (Figure 

4.6.a, b). 
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Figure 4.5 – Average methanogenic population in the reactors at all temperatures for day 0 and 216; all values expressed in 

106; error bars indicate standard error1; n = 2 for 4 and 8oC, n=4 for 15oC; MST, MSC, MMB stand for Methanosaetaceae, 

Methanosarcinaceae and Methanopmicrobiales respectively 

 

Figure 4.6 – Correlation of the archaeal qPCR and FISH enumeration for a) day 1 and b) day 216. 

Batch 2: After 216 days of operation the reactors were re-fed and run for an extra 99 days at the same conditions. 

The performance in terms of VFAs, COD (total and soluble), methane – carbon dioxide production and 

MLVSS/MLSS is shown on the figures below (Figure 4.7.a, b, c, d, e, and f). 

                                                           
1 The error bars were also calculated with the log-transformed data, however the back transformation of the results could not depict the 
variance of the population resulting to non-representative, extremely low values (e.g. SE of 1-5 cells.ml-1). A different approach for error 
bars was the estimation of the 95% confidence level of the log transformed mean, however the back transformation resulted to extremely 
high mix and max bars due to the low number of replicates (duplicates, quadruplicates).  
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Figure 4.7 – a) VFAs as a summary of acetate and propionate (no other VFAs detected); degradation as b) soluble COD and 

c) total COD fate; d) CH4 production rates with a trendline to depict the effect of temperature to methanogenesis; e) VSS/TSS 

ratio f) CO2 production per had space volume; at all temperatures; all results are average of n = 2 for 4 and 8oC, n=4 for 15oC; 

all gases expressed in mmols per headspace volume; error bars express standard error (n=2, n=4 for 4-8 and 15oC respectively) 

4.1.5. Discussion 

Methanogenesis needed approximately 40 days to start-up at 15oC whereas at 4 and 8oC, 140 days were required 

for consistent methane production.  This suggests that the cells were not acclimatized to the specific substrate and 

this resulted to a slow start-up period. Cellular adaptation to wastewater was found temperature dependent and 

methane firstly appeared at 15oC. This manifests that the bacterial and archaeal optimum temperature is closer to 

15oC rather than at lower temperatures. Although the methane production rates were lower the lower the 

temperature (Figure 4.2.a, c) the production rate was steady fitting well to an exponential trend (R2>0.89 at all 

temperatures) (Figure 4.2.c). This revealed an exponential relationship between temperature and activity, which 

agrees with the general idea suggested by Lettinga et al 2001 and presented on Figure 2.5.a. 

In the second batch methane production rates were increased by 15, 11 and 5 fold for 4, 8 and 15oC respectively 

(batch 1: 0.012±0.001, 0.013±0.001, and 0.775±0.32; batch 2: 0.18±0.13, 0.14±0.01 and 4.81±1.41 mg CODCH4 

L-1 day-1) (Figure 4.2.a, 4.7.d). Increase in rates suggests that the cells from the seed were more adapted to raw 

wastewater as substrate, able to utilize it at higher rates than at the first batch. This also suggests that the 

bacterial/archaeal communities are more active and can operate (treat) better. The increase in methane production 

could not necessarily be attributed to growth of the total biomass as qPCR results on the methanogenic 

communities showed decay at all temperatures, especially at the two lower ones. Limited or negative growth at 

low temperatures (6oC) was also noticed by Lokshina et al 1999. Reductions of abundance supports that treatment 

at extremely low temperatures gives an advantage only to the most resilient cells to thrive and comes in contrast 

with what is usually considered as a thumb rule of growth in anaerobic digestion that supports that growth accounts 

for approximately the 3% of the COD removed (Malina and Pohland 1992, Haandel and Lettinga 1994, McCarty 

1990, Stronach et al 1986).  A different hypothesis for the decay of the archaeal population is the possible presence 
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of inactive or unable to adapt to the substrate cells that perished, especially at low temperatures. This scenario 

would result to vacancies in the community structures that may lead to changes in the abundance according to the 

theory presented on Chapter 2.3. 

The first DGGE image on day 1 for both archaea and bacteria showed no difference in terms of band presence and 

absence (similarity <95%, P = 0.01, data not shown). Negligible differences were also present in terms of band 

density. After 216 days of operation, the bands are still of high similarity for both phyla and no band differentiation 

seems apparent. In terms of density though, visually some bands look stronger, where others seem to fade (e.g. 

archaea: band 3: uncultured Methanosaeta has its optima at 15oC). Similarly for bacteria, no noteworthy change 

to band pattern for both sampling days is evident; density variation though suggests different temperature optima 

for specific communities (Figure 4.4.a, b).  

The methanogenic groups that were detected after sequencing were Methanosaetaceae, Methanosarcinaceae and 

Methanomicrobiales, with predominance of the Methanomicrobiales at all temperatures on day 1 (Figure 4.5). 

After 216 days of operation, the predominance of Methanomicrobiales is suggested but not proven (based on 

ANOVA test, P-value: 0.537, 0.397, 0.350 at 4, 8 and 15oC respectively) at 4 and 8oC where at 15oC 

Methanosarcinaceae seems to remained abundant. At cold temperatures (4, 8oC) Methanosarcinaceae was the 

second most abundant. Both Methanosarcinaceae and Methanomicrobiales are hydrogenotrophic methanogens. 

This suggests a preference for hydrogenotrophic methanogenesis at low temperatures, using these specific inocula.  

Methanosaetaceae was the third most abundant at all temperatures. However it is the only group with a population 

that was not significantly changed after 216 days of operation. The scenario of the either promoted 

hydrogenotrophic or acetotrophic methanogenesis requires further investigation as there is a plethora of studies 

supporting preference to both pathways as presented on Chapter 2.2.5, 2.2.8. Pathway to methane is important as 

different substrates lead to different intermediates and presence of suitable microbial communities may accelerate 

degradation and treatment. The reduced methanogenic populations also contributes to the uncertainty in the 

preferred pathway to methane as further differentiations in the archaeal communities may disturb the community 

dynamics and result to changes in substrate preference via high decay, immigration and colonization (Chapter 

2.3). At this point tracer experiments with radio-labelled substrates could have been a more informative approach 

to define what the preferable pathway to methane is. 

As described earlier, qPCR results revealed a decay in the methanogenic population at all temperature; the decay 

was apparently exacerbated at lower the temperatures. This was perhaps due to the limited hydrolysis (apparent 

based on VFAs and sCOD values) at lower temperatures. The limited intermediates (as VFAs) formation suggests 

that starvation possibly occurred, and lack of substrate resulted to minimization of the archaeal population. It is 

important to mention that the Methanosaetaceae cells were least affected (Figure 4.5). Thus it would be important 

to see the fate of the particular taxon in the next batch feeds. 

As previously described, the VFAs level in the first batch was very modest, and essentially no net production 

occurred. This indicates that either hydrolysis was limited or the VFA production rate was equal to the methane 

production rate; however as only traces of methane were formed, it is likely that hydrolysis was limited. It is also 

possible that the presence of sulfur reducing bacteria (SRB) (e.g. clostridia-like, Table 4.2) contributed to low 

methane formation, as such scavengers might have utilized part of the intermediates (VFAs) increasing the CO2 

(Figure 4.2.d). This scenario is likely considering that the methanogenic population could have been outcompeted 

by the putative scavenging population. Alternatively, intermediates such as gaseous H2 that were potentially 

formed by acetate oxidation (Dhaked et al 2010) escaped into the gas phase due to the sampling strategy. This 

strategy was based on removing liquid sample from a reactor port, allowing head space release, followed by N2 

re-flush (only for batch 1). The VFA and sCOD concentrations pattern were observed consistently low at 4oC.  

The sCOD concentrations observed in the first batch at 8 and 15oC were sufficiently low and subsequently treated 

enough to be discharged into the environment if a secondary clarifier is present to separate the effluent from the 

solid fraction; at 4oC further treatment would be required, (based on UWWTD (91/271/EEC)). For the second 

batch all reactors after 40-60 days managed to degrade the sCOD to acceptable levels. Analyzing the trends, the 

second batch trend lines are steeper than the first. This suggests that the anaerobic treatment reaction rate was 

accelerated (sCOD rate constants (day-1), batch 1: -0.003, -0.003 and -0.005; batch 2: -0.011, -0.012 and -0.013), 

and agrees with the accelerated methane production rates. Combining both events, COD:CH4 conversion in the 
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second batch takes place at higher rates than in batch 1. This suggests that higher acclimation led to more efficient 

treatment and a higher rate of methanogenesis. In principle the evidently higher COD removal and methane bio 

conversion suggests that the specific biomass is promising and has the capacity to adapt and treat domestic 

wastewater at the raw phase. Thus, further batches will shed more light and help us define the details and the limits 

of low temperature anaerobic digestion. 

In terms of COD the results in the first batch cannot lead a clear conclusion in terms of COD treatability because 

of high fluctuations, possibly caused from the high in solids organic content due to presence of plant material in 

the inoculum. In the second batch, a COD decline is noticeable for 8, 15oC, whereas at 4oC the trend suggests 

insufficient treatment. As the reduction in COD cannot be reconciled with the methane produced (the methane 

bioconversion for batch 2 estimated 0.02 and 0.07 l CH4/gCODremoved at 15 and 8oC respectively, at 4oC no COD 

removal was observed) and it is believed that the digester partially operates as a clarifier, especially at lower 

temperature This event was also evident on the 1st batch, however high COD fluctuations in the mixed liquor do 

not lead to conclusions with confidence. This phenomenon is common in low temperature anaerobic treatment 

(Luostarinen and Rintala 2005, Bogte et al 1993, Elmitwalli et al 1993 etc.). This event requires further 

investigation as it may lead to biomass deterioration, washout phenomena and sludge instability that would result 

to treatment failure (Xing et al 2009, Uemura and Harada 2000). In the next batches it is important to estimate the 

exact ratio between the removed (methane) and settled COD and how this discrepancy may enable a new principle 

(as safety factor) in wastewater treatment to tackle the COD accumulation at low temperatures. 

Higher production of CO2 was observed on the first than on the second batch. This suggests that hydrolysis 

occurred at a higher rate on the 1st batch, possibly due to presence of high organic material in the seed. This cannot 

be confirmed as an unfed seed control was not prepared. Excessive CO2 also asserts the presence of sinks (e.g. 

SO4, combined with the presence of SRB) as described earlier or the introduction of O2 during sampling. The 

lower CO2 production in the second batch demonstrates a reduction in the sinks or the seed’s organic material, if 

present, or less/no O2 ingress (the sampling strategy for this batch changed to ensure 100% sealed reactor). 

The VSS:TSS ratio appeared to be lower at higher temperatures (Figure 4.7.e), suggesting higher removal of 

organic solids the higher the temperatures. This agrees with the sCOD and VFA peaks that were apparent at low 

temperature even after 200 days, suggesting insufficient or slow hydrolysis/fermentation. Poor hydrolysis and 

accumulation of organic material as VSS may also be caused by the poor COD:CH4 conversion. Excess VSS 

account for proteins, lipids and carbohydrates. Further investigation on these three components may define which 

of those is responsible for the VSS accumulation, the poor methane conversion and the discrepancy between the 

COD removed and methanized.  As noted COD removal could not be accounted by the methane formed. VSS 

seem to accumulate in the mixed liquor, possibly forming agglomerates due to hydrophobicity, settling due to 

their weight, leading to poor methane production. VSS accumulation has been noticed in previous studies in 

wastewater treatment at low temperature (Alvarez et al 2008, Elmitwalli et al 2002), suggesting that hydrolysis 

limitation is present and needs to be engineered for successful treatment at such temperatures. 

General Archaeal population was quantified both via qPCR (Arc109F, Arc344R) and FISH (ARC915). The initial 

relationship showed a weak correlation (Figure 4.6.a). Incorporation of the probe into the sample due to the lack 

of nonsense probe control could have resulted in poor correlation; however as the correlation was stronger on the 

later experimental days I believe that this was not the case. Hence, it is very likely that high number of inactive 

cells are present; the DNA of inactive cells is preserved and is detectable via qPCR but not by FISH which stains 

only the active cells. The weak correlation suggests that qPCR is not a preferable method for enumeration at the 

early days of an experiment as dead cellular material can interfere and lead to overestimation of the biomass. We 

believe that FISH is unlikely to overestimate biomass; however as it is a laborious and expensive method it cannot 

be easily used in a regular basis. For day 216 though, the correlation is high with an R2 equal to 0.896. This 

suggests that presence of inactive cells is likely but lower, and it becomes even lower the more the time passes. 

Both methods seem to have advantages and disadvantages, thus, it is up to the researcher which one thinks more 

appropriate for the nature of its study. For the particular study I believe that a more representative approach would 

be the summation of the qPCR based methanogenic populations that were sequenced from the DGGE bands. This 

would exclude the archaeal cells that are not necessarily methanogens (e.g. Crenarchaeota) and might 

underestimate the methanogenic capacity of the particular seed if involved in the enumeration. 
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4.1.6. Conclusions 

Methanogenesis start-up is highly related to temperature (40 days at 15oC, 140 for 4 and 8oC).  

The inocula is adapted to this particular complex substrate at low temperatures, as the rates of CH4 production 

increased up to 15 times at 4oC, soluble and total COD reduction are higher at Batch 2 than 1. Hydrogenotrophic 

methanogenesis during start-up appears favoured at low temperature as Methanomicrobiales-like seems the 

predominant taxon at all temperatures. 

Hydrolysis was slow and inversely proportional to temperature as during the first batch sCOD and VFA peaks 

were observed even after 200 days at low temperatures (4, 8oC). Additionally, on the second batch a VSS:TSS 

increase at lower temperatures (mainly at 4oC) asserts that hydrolysis may be the limiting step.  

There may have been a large inactive archaeal population present in the seed; this would explain the disagreement 

between FISH and qPCR, with the latter giving larger counts. The improved archaeal qPCR:FISH correlation can 

be achieved when the population is active, this reveals that qPCR provides with a larger archaeal coverage, and 

delivers with a better signal compared to FISH. 

4.2. Anaerobic digestion of domestic wastewater at low temperatures (4, 8 and 15oC) in reactors with 

psychrophilic inocula – Batch 3. 

4.2.1. Abstract 

Low temperature methanogenesis is one of the most challenging aspects of the successful anaerobic treatment of 

domestic wastewater in temperate regions. Most previous attempts to find the lower operating temperature limits 

for anaerobic domestic wastewater treatment have attempted to acclimatise mesophilic sludge. An alternative 

approach would be the use of seed containing communities that have been adapted over evolutionary time-scales 

to cold-temperatures. Batch reactors were inoculated with a mixed inoculum whose sources included soils and 

sediments from the high Arctic and an Alpine lake to treat UV-sterilized raw domestic wastewater at 4, 8 and 15oC. 

Wastewater was treated to an effluent quality that met the UWWTD (91/271/EEC) standard for COD removal 

within 60 days. A mass balance of COD to CH4 conversion showed that reactors at low temperatures operate 

partially as clarifiers with the accumulation of un-hydrolysed COD. The bacterial and archaeal communities of 

replicate reactors showed high similarity, whereas those at different temperatures were significantly different. 

Methanomicrobiales and Methanosaetaceae were equally dominant in methanogenic communities at 15oC. 

Methanomicrobiales were dominant at lower temperatures (4, 8oC) followed by Methanosaetaceae suggesting that 

at low temperature methanogenesis tends to follow the hydrogenotrophic pathway. Specific methanogenic activity 

at 4, 8 and 15oC were 6.3, 7.6 and 10.3 fmols CH4 cell-1day-1; hydrolytic activity was estimated at 76.2, 186.6 and 

250.9 fgrams COD.cell-1day-1. The results suggest that inoculating digesters for low temperature operation with 

cold-adapted communities is a promising way to treat wastewater and appropriate to investigate the limits of AD. 

4.2.2. Introduction 

Chapter 4.1 demonstrated that the use of a cold-adapted-psychrophilic inoculum can lower the temperature limits 

of anaerobic wastewater treatment proving the feasibility of methane production from the particular substrate at 

4oC. Practically this asserts that the sustainable character of anaerobic wastewater treatment can be retained even 

for plants situated in countries with ambient temperature <15oC. The previous sub-chapter (Chapter 4.1) accounts 

for the start-up period of the cold adapted inoculum treating raw wastewater at low temperatures. The establishment 

of the efficiency of the seed with regards the CH4 production and the COD removal from the two previous batch 

trials cannot be safely guaranteed. As the rates were accelerated between the first and the second batch, I am 

convinced that further acclimation would promote the adaptation and subsequently the capacity of the seed to treat 

and convert the organic material of the wastewater to CH4. Hence, the aim of this chapter is to quantify the 

maximum methanogenic and wastewater COD treatment performance at low temperatures using the specific cold 

adapted/psychrophilic inoculum at a batch reactor setup. Additionally, the impact of temperature on the microbial 

community structure of the seed was evaluated. Finally, the detailed calculation of the cell specific hydrolytic and 

methanogenic activity were presented. These results would assist in determining if the inoculum is capable of 

treating anaerobically domestic wastewater at the temperatures of 4, 8, and 15oC and it will also examine if the 

efficiency is adequate to meet the UWWTD (91/271/EEC) COD standards. 
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4.2.3. Materials and Methods 

Reactors assembly; the same reactors’ regime as described on Chapter 4.1.3 was used for the particular batch 

experiment, using the same inoculum (as in Chapter 4.1.3), following the re-inoculation technique described on 

the same chapter. The reactors after reinoculation and re-feed were set at 4, 8 and 15oC. 

Wastewater; the reactors were fed with raw wastewater of 600 ppm. The collection of the substrate took place 

according to Chapter 4.1.3 (treatment plant, treatment step). Its composition was found similar to the one estimated 

for the first and second batch based on the carbohydrates, lipids and protein content (45% carbohydrates 35% 

lipids and 20% proteins – protocols on Chapter 4.1.3). The substrate was UV-sterilized following the same 

sterilization procedure as described on Chapter 4.1.3. Presence of sulphate (SO4-2) and nitrate (NO3-) in the 

wastewater was determined after sample filtration from a 0.45µm syringe filter. Filtration was required to protect 

the column of the Dionex, ICS-1000 Ion Chromatograph fitted with AS40 Automated Sampler from impurities. 

The sample volume was 5 ml. The data analysis was carried out on Chromeleon software (Dionex, Corporation).  

Analytical methods; total and soluble COD (tCOD, sCOD respectively) were estimated as described on Chapter 

4.1.3 From the initial and final COD values for a specific time period Δt the k (removal coefficient for COD) 

values were estimated (1st order kinetics; Eq.12). 

CODt = COD0 e–kΔt (Eq.12) 

VFA (Volatile Fatty Acids) analysis in the mixed liquor in addition to the gas analysis for methane and carbon 

dioxide content in the head space were estimated following the methods described on Chapter 4.1.3. 

Rates; Hydrolysis and methanogenesis rates were estimated using the equations below (Eq. 13, 14 and 15): 

• If sCODt1>sCODt0 then Hydr. Rate = [ΔsCOD(t0,t1)) + ΔCODCH4(t0,t1)] / Δt 

• If sCODt1<sCODt0 then Hydr. Rate = [(ΔCODCH4(t0,t1)) + (ΔCODVFA(t0,t1)*] / Δt 

• Methanogenesis rate = ΔCODCH4(t0,t1) / Δt 

* for sCODt<sCOD0, VFAs present ≈0ppm to avoid including Acidogenesis in the calculations. 

Where sCODt0 and sCODt1 stand for the initial and final sCOD concentration at a specific time period respectively, 

ΔsCOD(t0,t1) stands for the difference amongst them. ΔCODCH4(t0,t1)stands for the methane production in a specific 

time period expressed in COD; ΔCODVFA(t0,t1) stand for the production/reduction of the VFA status in a specific 

period of time expressed in COD; Δt stands for the time required for any of the above differences to occur. 

Typically the hydrolysis rate equals the solubilisation rate that is the amount of the soluble organic material 

(sCOD) formed in a specific period of time Δt plus the amount of methane formed in that same period (Eq.13). 

However, in some cases sCOD (and VFA) decreased over the relevant time period (Δt). Then the hydrolysis rate 

was calculated as the sum of the amount of VFAs and the amount of methane that were formed in Δt, minus the 

VFAs present at t0 (all expressed in units of COD; Eq. 14. The Eq.15 was used to simply describe methanogenesis 

rate as the amount of methane that was formed in a specific Δt.  

Microbiological community analysis; microbial community structure was described using the rapid community 

fingerprinting method, denaturing gradient gel electrophoresis (DGGE) as described on Chapter 4.1.3. Briefly, 

this includes the extraction of genomic DNA from biomass pellets, amplification of the extract via PCR 

(Polymerase Chain Reaction) and DNA band visualization via DGGE on a D-gene DGGE system (Bio-Rad, 

Hercules, CA, US); selected DNA bands were excised, sequenced and compared to the GenBank database to 

determine nearest neighbors (all steps are in detail described on Chapter 4.1.3). 

Diversity of the microbial communities from different temperatures were analyzed based on band pattern using 

gel images obtained from DGGE, processed with the software package Bionumerics (Applied Maths, Austin, 

Texas, US).  The image after band matching was quantified and re-examined in Primer6 (Multivariate statistics 

for ecologists, Luton, UK) for microbial community analysis at all temperatures. The data were transformed by 

‘presence or absence’ transformation and examined using the ‘Bray-Curtis’ similarity test. Analysis was carried 

out using non-Metric Multidimensional Scaling (MDS) and analysis of similarity (ANOSIM). The selected test 

was ´one way´ with temperature as factor. The significance of the similarities were evaluated based on P-value. 

P-value is a number used to determine if a result is statistically significant, practically is a function of the observed 

Eq.13 

Eq.14 

Eq.15 
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results that is used for testing a statistical hypothesis (e.g. similarity). The confidence level was chosen as 90% 

which corresponds to a P-value = 0.1. 

Quantitative PCR (qPCR) was used for the quantitation of the dominant methanogens found in the reactors, 

according to the sequenced bands cut from the archaeal DGGE. The methodology is described on Chapter 4.1.3. 

A correction factor was included to normalize the results based on the samples’ minimum DNA content. The value 

was estimated via Spectrophotometer - Fluorospectrometry (Nanodrop – Thermoscientific UK) so populations 

with non-equal DNA content can be compared. The minimum amount estimated as 2.8 ng.μl-1 and was used for 

normalization purposes.  

For bacterial FISH enumeration the protocol from Coskuner et al (2005) was followed. Prior to FISH analysis, 

samples were fixed with 4% paraformaldehyde (in ethanol) (Amann et al 1990). The probe was labeled with FITC 

(fluorescein) and was purchased by Genosys (Cambridge, UK). The type was Eub338 (S-D-Bact-0338-a-A-18) – 

(sequence: GCT GCC TCC CGT AGG AGT) – specificity: 16S rRNA gene of many eubacteria (338–355) (Aman 

et al 1990). The hybridization, visualization and enumeration methodology is described on Chapter 4.1.3. 

The rate of change of a reaction as a function of temperature, Q10, (temperature coefficient) was estimated from 

the cell specific activity following the Eq.16. Where R1, 2 account for the specific methanogenic or hydrolytic 

activities corresponding to the T1, 2 temperatures (K). The Q10 was calculated as an average of the temperature 

coefficients estimated from the developed activities between 4oC-8oC, 4oC-15oC and 8oC-15oC.  

𝑸𝟏𝟎 = (
𝑹𝟐

𝑹𝟏
).𝟏𝟎/(𝑻𝟐−𝑻𝟏)  (Eq.16) 

For the specific activity the conversion of the cells (both bacteria and methanogens) to grams of cells was carried 

out based on the assumption that 1 cell weighs 26.24 f.grams (Trousselier et al 1997). For a more conservative 

approach the cellular weight suggested from Rittmann and McCarty (2001), equal to10-12 gram cell, was also taken 

into account and involved in the discussion part. 

4.2.4. Results 

The collected wastewater was low in organic matter content (COD of 600mg.L-1). Anions (SO4
2-, NO3

-) were 

found able to scavenge a negligible amount of methane (1.4% of the theoretically expected). The influent BOD5 

accounted for the 40% (240 mg.L-1) of the influent COD suggesting a biodegradability ratio (BOD:COD) of 0.4. 

The reactors were monitored for 102 days. The starting pH at all temperatures was 7.0. During the process no 

values less than 6.8 and 7.0 or no more than 7.3 and 7.0 for 15 and 4oC respectively were observed; at 8oC pH laid 

in-between these two values. The reactors’ performance was described following the three fundamental steps of 

AD, hydrolysis (fermentation), acidogenesis-acetogenesis and methanogenesis (Figure 4.8.a, b, 4.9. and 4.11). 

The fate of the organic material in the reactor as COD and sCOD is described on Figures 4.8.a, b.  

 

Figure 4.8 – a) Total COD in the mixed liquor after 102 days of incubation at all temperatures; b) Soluble COD for the same 

time and conditions: n=2 for  4 & 8 degrees and n=4 for 15oC, error bars indicate standard error 
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The VFAs were also poor, their status is shown on Figure 4.9.  

Figure 4.9 – Volatile fatty acids in the mixed liquor as the sum of acetate and propionate; longer chain acids never detected; 

IEC minimum detection limit = 0.8ppm; n=2 for  4 & 8 degrees and n=4 for 15oC, error bars indicate standard error 

From Figure 4.8.a and Eq.12 the ‘k’ removal coefficient was calculated (Figure 4.10) 

 

Figure 4.10 - k COD removal coefficient (day-1) for the reactors seeded with cold adapted microbial communities at 4, 8 and 

15oC (day-1); n=2 for  4 & 8 degrees and n=4 for 15oC; error bars express standard error. 

The methane production at all temperatures is shown on Figure 4.11. 

 

Figure 4.11 – Methane formation from wastewater for the particular seed at 3 temperatures for 102 days of incubation; n=2 for  

4 & 8 degrees and n=4 for 15oC. The volume is expressed as mmol in the headspace, error bars indicate standard error 

From the DATA collected and the equations 13, 14, 15 the daily rates for hydrolysis and methanogenesis were 

estimated (Figure 4.12); from Eq.12 and COD fate (Figure 4.8.a) the COD removal rates were calculated. 
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Figure 4.12 - Hydrolysis, methanogenesis and COD removal rate expressed as mg COD. L-1.day-1 for wastewater as substrate; 

error bars indicate standard error (n=2 for 4, 8oC, n=4 for 15oC), all results are expressed as averages from duplicates and 

quadruplicates for 4, 8oC and 15oC respectively calculated between the days: 5-37, 8-37 and 5-37 for hydrolysis 

methanogenesis and for COD removal rates respectively; polynomial trendlines show the effect of temperature to the reaction 

rate. 

The volumetric rates above enable the estimation of the size of an anaerobic treatment facility. An equivalent 

person usually releases 100L of wastewater, containing 50g COD day-1 in daily basis, or wastewater of 500 

mgCOD L-1 per day. This value may change as the physicochemical properties of wastewater vary depending on 

socio-economic factors. The wastewater driven to a conventional wastewater treatment plant may reduce its 

concentration by 50% from the primary physical separation processes. Hence, approximately 250mgCOD L-1 is 

remained to be treated until the COD reach the 125mg L-1, according to the UWWTD 91/271/EEC. Thus, the 

reactor volume that is required to efficiently hydrolyse, biomethanize or treat the wastewater per person in one day 

to cope with the directive standards, using the 1:3 seed:substrate ratio, based on Figure 4.12 is shown on Table 4.3 

below: 

Table 4.3 – Required volume estimations for all processes based on the observed volumetric rates (hydrolysis, methanogenesis 

and COD removal), using the specific seed at a 1:3 seed to substrate ratio 

 m3 person-1.day 

Temp. Hydrolysis Methanogenesis COD Removal 

4oC 7.4 (2.2) 5.7 (0.8) 1.8 (0.1) 

8oC 3.3 (0.6) 2.4 (0.6) 1.7 (0.0) 

15oC 2.2 (0.3) 1.4 (0.3) 1.3 (0.3) 

*values in the parenthesis express the standard error; n = 2, 2, 4 for 4, 8 and 5oC respectively 

Temperature differentiation affected both bacterial and archaeal seed communities. After analysis of the DGGE 

image at Bionumerics and further statistical analysis in Primer6 the effect of temperature to archaea and bacteria 

is shown on Figure 4.13.a and b respectively. The analysis was carried out on the 56th day of the experiment.  
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Figure 4.13 –  MDS ordination plots based on Bray-Curtis similarity of presence-absence data for communities of a) archaea 

and b) bacteria in reactors operating at 4, 8 and 15 oC for the treatment of raw domestic wastewater; sample titles  correspond 

to temperature (4, 8, 15oC) and the number of replicate (a, b, c, d). 

To get a better insight of the methanogenic community structure within the reactors at all operational temperature 

a qPCR analysis was carried out (Table 4.4).  

Table 4.4 - Methanogenic taxa populations per ml detected at the experiment, day 1, 56, 102; 

 day 1 day 56 day 102 

 MST MSC MMB MST MSC MMB MST MSC MMB 

4oC 3.96 

(2.16) 

0.22 

(0.08) 

3.54 

(1.92) 

0.64 

(0.05) 

0.01 

(0.08) 

0.54 

(0.24) 

0.48 

(0.16) 

0.02 

(0.02) 

0.62 

(0.29) 

8oC 4.98 

(1.58) 

0.18 

(0.1) 

3.51 

(1.67) 

1.08 

(0.07) 

0.17 

(0.1) 

0.75 

(0.6) 

0.60 

(0.12) 

0.04 

(0.01) 

0.78 

(0.13) 

15oC 4.57 

(0.88) 

0.51 

(0.24) 

4.8 

(0.77) 

0.41 

(0.16) 

0.09 

(0.04) 

0.73 

(0.46) 

1.22 

(0.18) 

0.31 

(0.31) 

1.29 

(0.47) 

*all values expressed in 106 per ml; abbreviations stand for: MMB Methanomicrobiales, MSC Methanosarcina, MST 

Methanosaetaceae; n=2 for  4 & 8 degrees and n=4 for 15oC; values in parenthesis express the standard error (n 2 for 4 and 

8oC, n=4 for 14oC)2. 

Similarly, the bacterial population trend at all operational temperatures was examined through enumeration via 

FISH (Table 4.5). Representative FISH images can be also found in Appendix (Appendice 1, Figure a.1a, b, c for 

4, 8 and 15oC). 

 

 

                                                           
2 The error bars were also calculated with the log-transformed data, however the back transformation of the results could not depict the 

variance of the population resulting to non-representative, really low values (e.g. SE of 1-5 cells.ml-1). A different approach for error bars 
was the estimation of the 95% confidence level of the log transformed mean, however the back transformation resulted to extremely high 
mix and max bars due to the limited number of replication (duplicates, quadruplicates) 

a) 

b) 
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Table 4.5 – Total bacterial cells enumerated by FISH 

 day 5 day 60 

 Total bacterial cells 

4 oC 3.71 (1.54) 0.01 (0.00) 

8 oC 1.12 (0.37) 1.52 (1.51) 

15 oC 2.32 (0.69) 0.1 (0.05) 

*all values expressed in 107 per ml; n=2 for  4 & 8 degrees and n=4 for 15oC; values in parenthesis indicate standard error (n 

= 2 for 4 and 8oC, n=4 for 15oC)3; counts took place on day 5 and 60. 

SCOD, VFAs and methane data (Figure 4.8.b., 4.9, 4.11) were combined with the methanogenic population (Table 

4.4) and the bacterial cell enumeration from FISH (Table 4.5), to enable the calculation of the specific activity per 

cell at low temperature for raw domestic wastewater treatment (Figure 4.14.a, b). The specific activity was also 

expressed gCOD (removed or reduced) per gram of methanogenic and hydrolytic biomass per day for further 

comparison purposes with previous studies. The conversion based on Trousselier et al 1997 (1 cell = 26.24 f.grams 

C) (Figure 4.14.d). The specific activity also enabled the calculation of the Q10 (Figure 4.14.c) for both reactions. 

 

 

Figure 4.14 – a) Specific methanogenic activity per methanogenic cell at all temperatures; b) specific hydrolytic activity per 

bacterial cell at all temperatures; values referred to raw domestic wastewater as substrate; n=2 for  4 & 8 degrees and n=4 for 

15oC; error bars express standard error. c) Q10 for hydrolysis and methanogenesis reaction as an average of the values calculated 

amongst temperatures; n = 3, 4-8, 4-15, 8-15; d) methanogenic and hydrolytic activity expressed per gram of methanogenic 

and hydrolytic biomass per day – conversion based on Trousselier et al 1997 (1 cell = 26.24 f.grams C). 

                                                           
3  The error bars were also calculated with the log-transformed data, however the back transformation of the results could not depict the 

variance of the population resulting to non-representative, really low values (e.g. SE of 1-5 cells.ml-1). A different approach for error bars 
was the estimation of the 95% confidence level of the log transformed mean, however the back transformation resulted to extremely high 
mix and max bars due to the limited number of replication (duplicates, quadruplicates) 
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The specific activity is required to accurately calculate the maximum wastewater OLR that can be applied. This,  

is especially useful when considering scale up of bench scale observations. Based on this study’s activities for 

hydrolysis and methanogenesis, the  desired OLR was determined for each process assuming that there are ~109 

and ~108 bacterial and methanogen cells/ml respectivley (Table 4.6). The rationale behind this population size 

selection is that these numbers are relatively common in real scale conventional anaerobic wastewater treatment 

plants. 

Table 4.6 - Suggested Organic Loading Rate (OLR) for hydrolysis and methanogenesis processes based on specific activity 

 4oC 8oC 15oC 

Hydrolysis (kg COD/m3.day) 0.08 0.19 0.25 

Methanogenesis (kg COD/m3.day) 0.04 0.05 0.07 

*OLR values were estimated for ideal conditions where 109 cells can be retained in the digester at a ‘methanogens:total cells’ 

ratio is 1:10. 

4.2.5. Discussion 

COD is a key parameter in wastewater treatment (Rittman and McCarty 2001), an approximate estimate of the 

potential energy contained in wastewater (Heidrich et al 2011) and is commonly used to describe AD performance 

and effluent quality; thus, anaerobic reactor performance (Figure 4.8.a, b.). At all three temperatures both COD 

and sCOD were reduced to levels lower than the effluent standard of 125 mg L-1 required in Europe (UWWTD 

91/271/EEC) within a period of 56 days (Figure 4.8.a, b). sCOD of the preceding wastewater batches (first and 

second batch) were also sufficiently removed but more time was required; COD was similarly removed at 15oC 

to levels below the UWWTD standard of 125 mg COD L-1, except at lower temperatures (4, 8 oC)  where the 

standard was only met in this third batch. Therefore a satisfactory effluent COD quality can in principle be obtained 

by AD, even at temperatures as low as 4 oC with cold-adapted inocula. 

Methane production occurred at all temperatures (Figure 4.11). Organic substrate in the wastewater was converted 

to methane at ratios of 0.12, 0.15 and 0.18 L CH4/g CODremoved at 4, 8 and 15 oC respectively in the absence of 

VFA accumulation. These values are distinctly lower than the theoretical value of 0.35 L CH4/g CODremoved. No 

methane COD was observed in the liquid phase considering that the COD values were low. Though, it is important 

to mention that the wastewater was raw and limited COD to methane conversion was expected. This renders the 

biomass promising considering that a higher COD:CH4 is likely for feed with primary settled wastewater, in 

absence of heavy, solid, hard to hydrolyse organic material. After approximately 56 days of operation the 

difference in methane production between the highest and the lowest temperature was only two-fold (Figure 4.11) 

although the temperature was 3.75 times lower; at 8oC the methane lies in between these 2. This suggests that an 

increase of ‘seed:substrate’ ratio from 1:3 (selected) has the potential to theoretically boost the performance in 

terms of methane production as more cells would be introduced into the reactor. The quality of the biogas was 

high in CH4 content at all temperatures (93.3(±0.02)%, 95.1(±0.3)% and 91.9(±1.1)% (CH4:(CO2-CH4)) at 4, 8 

and 15oC respectively). 

Only low amounts of VFA were, produced which presumably reflects the low COD concentration in the waste. 

Moreover, the VFA consumption rate was equal or higher to the VFA production (Figure 4.9), resulting to values 

close to 0 after the 20th, 40th and 40th day for 15 and 4, 8oC respectively. The stable pH is also indicative of 

satisfactory VFA consumption rates. This event ensures high methanogenic activity, but on the other hand reveals 

potential of slow hydrolysis. 

The data in Figure 4.8.a were used to calculate the first order rate coefficient k. The values ranged between 0.022 

day-1 and 0.033 day-1 at 4 and 15 oC respectively (Figure 4.10). ‘k’ is a parameter that assists in predicting the time 

that is required for sufficient wastewater treatment, and preliminarily estimates the volume of a pilot scale AD 

reactor (Marais and Shaw 1961). Additionally, the daily COD removal rate was estimated and compared with the 

CH4 production rate (Figure 4.12). The daily removal rate is useful for further comparison with the methane 

formation rates, to calculate how efficiently the organic material is bio methanized. These two rates clearly depict 

how much of the COD accumulates as a function of temperature and inform how anaerobic treatment is being 

affected by temperature drop.   
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COD removal rates ranged between 7.0 and 9.6 mg COD.L-1day-1. These values were higher than the COD-

equivalent CH4 production rates, which ranged between 2.2 and 9.1 mg COD.L-1day-1, and higher than the 

hydrolysis rates which ranged between 1.7 and 5.8 mg COD.L-1day-1 (Figure 4,12). The difference between rates 

of hydrolysis and methanogenesis increased with decreasing temperature.  The discrepancy between the daily 

removal and methanogenesis rate (mg COD day-1) was negligible at 15 oC but 3.2-fold at 4 oC and 1.35-fold at 

8oC. Taken together with the lower than theoretical conversion of COD to methane and absence of VFA 

accumulation, these data suggest that a substantial fraction of the COD removal occurred via settling, that is that 

the reactors acted partially as clarifier, as shown by Luostarinen and Rintala 2005, Bogte et al 1993, Elmitwalli et 

al 1993 etc.  These results are in line with previous observations that hydrolysis is the rate limiting step in anaerobic 

sewage treatment at low temperatures (Elmitwalli et al 2003); however the difference between hydrolysis and 

methanogenesis decreases with temperature. Further evidence for hydrolysis limitation can be deduced from the 

sCOD:COD ratio that increased with decreasing temperature, presumably due to the slow COD lysis combined 

with slow uptake of the already hydrolysed compounds. The low VFAs that were formed at all temperatures 

(Figure 4.9) also provide with evidence of hydrolysis limitation. This phenomenon was also likely to batch 1 and 

2; batch 3 assisted in quantifying the effect of COD settlement as a function of temperature. In general the 

volumetric COD removal and CODCH4 rates are realistic and modestly lower than those Rebac et al (1999) applied 

to treat domestic wastewater at 10-15oC (Chapter 2.2.5.2). 

In terms of wastewater engineering this means that the system that only operates at 4oC would need to be de-

sludged at least 3 times more often with less stabilised sludge than the one operating at 15oC. However, in practice 

temperatures fluctuate over the year and part of the settled COD may be subsequently hydrolyzed during periods 

of increased temperature. To avoid the phenomenon of COD accumulation the reactor configuration needs to be 

designed including a multiplication factor for COD content in the system, equal to the division of ‘CODremoved 

rate/CODCH4 rate’, as a function of the  period of time that temperature follows the pattern of 4, 8 or 15oC. A 

different approach to tackle this issue would be the increase of the seed:substrate ratio (from 1:3 current study) 

according to this factor. This would introduce larger microbial populations, ready to contribute in the 

biodegradation of the COD, by excreting additional quantities of enzymes to promote hydrolysis and treatment at 

these low temperatures. Further research into the nature of the COD fraction that was not degraded may allow the 

development of engineering strategies to overcome this issue. In practice increase of the seed takes place by adding 

new active inoculum or it occurs from the anabolic reactions of the biomass. The first option although it is more 

expensive is recommended as growth in anaerobic systems at low temperatures is low.  

In short, the particular inoculum is able to treat wastewater to a satisfactory level at low temperatures. Although 

the time taken to achieve a satisfactory effluent concentration was long, the reactor kinetics (a batch fed system) 

was favourable. The effluent quality reflects the intrinsic properties of the biological material; in particular the 

affinity for substrate which in turn represents the ks (half saturation coefficient) for an equilibrated effluent 

concentration at theoretically unfavorable conditions (e.g. low temperature). The rate of removal reflects, in part, 

the active biomass concentration, which can be manipulated (e.g. membrane reactors) to maintain its content to 

dictate the factor m (decay). It is no surprise therefore that some success has been reported with ambient 

temperature wastewater treatment in membrane bioreactors; however, low temperature anaerobic wastewater 

treatment is in principle possible in any reactor format (Krzeminksi et al., 2012, Smith et al, 2013, Garcia et al, 

2013).  It is clear though, that anaerobic treatment is slower at lower temperatures and self-evident that 

temperatures vary throughout the year in temperate climates. It should be possible to accommodate lower 

temperatures by having larger concentrations of biomass and longer retention times; however, this might be more 

difficult if the winter temperature biomass was different from the summer temperature biomass. 

Temperature differentiation affected both bacterial and archaeal seed communities. Plausible reasons could be 

natural selection, decay, dominance and microbial immigration trends based on the preferable for the organisms’ 

conditions. Statistical analysis (Figure 4.13.a, b) was carried out on day 56 as all reactors were at the peak of their 

activity. 

The bacterial DGGE image at day 1 (data not shown) demonstrated no significant difference in terms of presence 

and intensity between communities-bands (similarity >90%, P = 0.01). Therefore, the inoculum with the mixed-

biomass was essentially uniform in all reactors.  By day 56 the differences in band intensity suggested   that 
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different taxa were dominating at different temperatures. The differences in intensity were observable, but less 

pronounced on the final sampling date (day 102) Statistical analysis of the DGGE image on day 56 (Figure 4.13.b) 

showed that the bacteria at 4 and 8 oC were ~85 % similar. This suggests that 4 degrees difference in temperature 

does not cause important changes between bacterial communities at the lower temperature range. At 15oC the 

bacterial communities differed from the previous two with a similarity <75%, P = 0.07 (Figure 4.13.b). 

This implies that switching from 8 to 15oC implies far more biological change than switching from 8 oC to 4 oC.  

This in turn explains why attempting to adapt mesophilic sludges to psychrophilic conditions has proven difficult 

in the past (Bowen et al 2014). 

The higher similarity between the communities developed at lower temperatures can be roughly visualized from 

Appendix - Appendix 1, Figure a.1 a, b, c where the cells from 4 and 8oC seems more similar in terms of shape 

and size (smaller) compared to those that were developed at 15oC. 

Likewise the differences between archaeal communities were also negligible on day 1. However, over time 

temperature related differences became apparent for the bands associated with Methanosaetaceae that appear more 

intense at higher temperature and the bands associated with Methanomicrobiales that were stronger at lower 

temperatures (differentiation occurred in previous batch as the experiment was re-fed for 400 days). On day 56 

and day 102 of analysis the band intensity differences were even stronger than at the early experimental days. By 

day 56 of the third batch the statistically differences were apparent between the reactors at 4 and 8oC (>70%) and 

those at 15oC (Figure 4.13.a) (60%; P=0.01). 

The archaeal communities appear even more temperature sensitive than the bacterial communities as they differ 

at a higher degree compared to bacteria, i.e. at 4-8oC, with 70 and 80% similarity for archaea and bacteria 

respectively. In both cases there appears to be an important difference between the reactors at 4-8 oC and those at 

15 oC.  

The archaeal sequences had a generally low similarity with those that were compared in the database. The 

methanogenic taxa that were sequenced were similar to those detected in the first batch and belong to the groups 

of Methanomicrobiales, Methanosarcinaceae, and Methanosaetaceae.  

The abundance of key genera was evaluated using qPCR analysis (Table 4.4). After 102 days the marginally 

dominant genus at 4 and 8oC is Methanomicrobiales, a strictly hydrogenotrophic methanogen, followed by 

Methanosaetaceae, a strictly acetoclastic methanogen. At 15oC the difference between the two taxa is not 

distinguishable. The genus Methanosarcina was detected at low abundances at all temperatures. In earlier samples 

(day 0 and 56) the abundances of Methanomicrobiales and Methanosaetaceae populations were not significantly 

different (Table 4.4). The hydrogenotrophic methanognesis scenario agrees with the observations of Simankova 

et al (2003) where Methanomicrobiales seemed to have an important role at low temperature anaerobic digestion. 

However, many studies have found that acetoclastic methanogenesis and homoacetogenesis are favoured over 

H2/CO2 methanogenesis (Schulz et al 1997, Fay et al 2004, Kotsyurbenko et al 1993, Nozhevnikova et al 2007). 

An authorative answer to this question would require a long term time series with varying temperatures.  

From Table 4.4, 4.5. a decline in the abundance for both bacteria and methanogens is evident. This is probably 

due to reduction of the available substrate up to day 56, event that is also obvious from Figure 4.8.a,b, 4.9 and 

4.11 where organic carbon is low and methane production plateaus.  

As previously observed (in the first batch) where Methanomicrobiales seemed to be the most important genus at 

low temperatures. However, it is also noticeable that Methanosarcinaceae cells, which were initially relatively 

abundant, compared to other groups are undetectable. Methanosaetaceae were also almost as important as 

Methanomicrobiales with the difference between the two genera becoming less evident at higher temperatures.  

Bacterial sequencing revealed at least 14 taxa (out of 31) to organisms associated with cold environments (data 

not shown). This suggests that cold adapted bacteria are present in the seed and hydrolyse organic material at 

temperatures lower than 15oC. Like the methanogenic population, the abundance of the bacterial one also declined 

(Table 4.5). The cause seems likely to be the limited organic material available.  
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The hydrolytic and methanogenic cell specific activity (Figure 4.14.a, b) can be used for design as it provides a 

detailed representation of the performance of the selected seed. The vast majority of research studies express 

activity per gram of VSS. This increases the potential of error especially when the seed is originated from 

sediments as other carbon sources other than microbial cells may contribute to VSS leading to an underestimation 

of its methanogenic capacity. Specific activity combined with certain assumptions (e.g. a COD OLR, plausible 

cellular population (108/ml and109/ml for methanogens and bacteria respectively) may lead to a plausible scale up 

model for sufficient wastewater treatment OLR (Table 4.6). These values are realistic (compared to those stated 

on Chapter 2.2.5) and correspond to sufficient wastewater treatment in 1 day HRT. The unresolved question is 

how to achieve a 109 and 108 active bacteria and methanogens respectively. I believe that these specific activities 

are underestimated due to presence of inactive cells that affected the qPCR and potentially higher cellular 

adaptation and affinity to the substrate in future batches. Furthermore, the bacterial activity is likely to increase if 

a more biodegradable (as opposed to settled) wastewater was used.  

Specific activity also enabled the estimation of the Q10 and the clear demonstration that hydrolysis is easier affected 

by temperature than methanogenesis. Consequently understanding hydrolysis may be the key in understanding 

and optimising the relationships between treatment and temperature.  Specific activities of methanogens under 

reactor conditions ranged between 6 and 10 fmol CH4 cell-1.day-1 (Figure 4.4.a).  These values are only slightly 

lower than typical maximum specific activities of mesophilic methanogens if we assume a “typical” cell mass of 

10-12 gram cell (Rittmann and McCarty 2001) and specific activities of 35 mmol CH4 g-1 day-1 and 450 mmol CH4 

g-1 day-1 for acetoclastic and hydrogenotrophic methanogens respectively (Dolfing and Mulder 1985). Being less 

conservative, using the proposed cellular mass based on Trouselier et al 1997 the activity between the specific 

cold adapted cells and typical mesophilic cells tends to become almost equal (Figure 4.14.d). This underlines that 

this biomass offers potential to make anaerobic treatment of municipal wastewater at low temperatures a viable 

process. My findings on the relative temperature sensitivity of hydrolysis and methanogenesis support earlier 

suggestions by Zeeman and Lettinga (1999), Elmitwalli et al (2003), Rebac et al (1999) that the anaerobic 

treatment of domestic wastewater at lower temperatures would be more efficient if hydrolysis/fermentation were 

separated from methanogenesis.  They reasoned that a two-phased configuration might reduce risk of the inhibition 

of methanogenesis by intermediates.  

I recommend designing reactors on the basis of specific cell activity to avoid the underestimation of activity 

because of the presence of plant biomass. To provide space for CODsludge accumulation and allow a higher retention 

time a multiplication factor should be included as a design parameter equal to the ratio between CODremoved and 

CODCH4 for the corresponding time period of 4, 8 or 15oC (appropriately interpolated for other temperatures). The 

archaeal qPCR data showed that anaerobic treatment can potentially follow the H2/CO2 pathway. Thus, to further 

promote gas-liquid exchange the 2-phase chambers should have connected head spaces so the CO2 formed from 

hydrolysis/fermentation and the H2 from acidogenesis/acetogenesis would be easier accessible from the 

methanogens. A key unresolved question is if it will be possible to sustain a reactors psychrophilic properties 

during the warmer months of the year and if the reactor could transition from moderate to low temperatures in the 

winter. This will depend on the effect of temperature on the long term dynamics of the microbial community 

(Ofiteru et al 2010).  Therefore engineers should be able to manage the microbial population to ensure they have 

the treatment capacity required for the temperatures they anticipate to encounter. 

4.2.6. Conclusions 

Anaerobic wastewater treatment at low temperature (4oC to 15oC) was successful. This suggests that the selected 

biomass can, in principle, cope with extreme temperature conditions and after 56 days of biological reaction the 

effluent at 4, 8 and 15oC is able to meet the UWWTD (91/271/EEC) COD standards for discharge on water body.  

The amount of methane at 15oC was only two-fold higher than the amount measured at 4oC, no process failure 

observed at all three temperatures. 

A safety factor for design purposes was estimated from the discrepancy between CODremoved and CODCH4 (3.2, 

1.35 and 1 for operation at 4, 8 and 15oC respectively). This disagreement suggests that the digester works partially 

as a clarifier the lower the temperature gets.  

Hydrolysis is the rate limiting step of the process; the limitation becomes less evident the lower the temperature. 
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Temperature affects archaeal communities; lower temperatures favoured hydrogenotrophs. Temperature 

associated differences in the bacterial community were also observed. 

Specific rates for hydrolysis and methanogenesis of raw wastewater at 4, 8 and 15oC were calculated so they can 

be further used as fundamental parameters for applied engineering purposes. 

4.3. Cumulative phenomena, what is responsible for poor COD:CH4 conversion at low temperature - Batch 5 

4.3.1. Abstract 

Conventional anaerobic wastewater treatment plants treat primary settled wastewater. In this study 8 batch reactors 

were employed to treat primary settled wastewater at 4, 8 and 15oC, using the seed from the previous 3 batches. 

During treatment with primary settled sewage peaks of sCOD and VFAs were observed, with larger variety of 

intermediates, in marked contrast to the results observed using raw wastewater. This suggests that hydrolysis is 

not as limiting as when raw sewage is used. Methane production rates were still affected by temperature. The 

primary settled sewage first order COD removal coefficients ‘k’ (day-1) were higher than of raw sewage. This 

suggests that the easier to degrade substrate combined with potentially further acclimation of the seed accelerates 

treatment. Wastewater influent (COD: 190mg L-1) attained UWWTD (91/271/EEC) COD standards in 15 days. 

As in previous batches, hydrolysis seemed to be the limiting step. Analysis of the effluent for proteins, lipids and 

carbohydrates revealed that lipids formed a major part of the un-degraded fraction. Thus, this research study needs 

further focus on the enzymes (lipases) responsible for lipid degradation. 

4.3.2. Introduction 

So far, Chapters 4.1, 4.2 demonstrated that wastewater treatment in terms of COD and its CH4 bioconversion can 

be achieved at temperatures of 4, 8 and 15oC using a cold-adapted inoculum, meeting the COD standards 

(UWWTD 91/271/EEC, Chapter 4.2) regardless the raw and hard to degrade nature of the substrate. This manifests 

that the biomass can treat and bioconvert organic substrate originated from domestic wastewater to methane 

regardless the low temperature range.  

Practically, real scale wastewater treatment plants rarely treat wastewater at its raw phase as this may cause 

problems not only in the quality of the inoculum (Uemura and Harada 2000, Elmitwalli et al 2000, Xing et al 

2009) but also in the electro/mechanical equipment of the plant. As anaerobic treatment is frequently positioned 

in treatment plants after the physical separation units (e.g. clarifier, (Metcalf and Eddy 2002; Hammer and 

Hammer 2002)), the incoming wastewater stream to the biological process is usually primary settled. Treatment 

of a pre-treated effluent reduces the chance of hard-to-hydrolyze or un-hydrolyzed COD accumulation and 

subsequently minimizes the probability of biomass deterioration, low settleability and sludge washout as described 

on Chapter 2.2.5. On the contrary, low-strength substrate (e.g. primary settled) may limit mass transfer and good 

contact between the seed and substrate (Lettinga et al 2001). Analysis of the composition of the raw wastewater 

showed that the reactors were consistently fed with substrate rich in lipids. This agrees with what Raunkjaer et al 

(1993) observed in similar tests trying to identify the wastewater nature. Chapter 4.2 showed that there is a fraction 

of removed COD which cannot be methanized. This gap in COD:CH4 mass balance is inversely proportional to 

temperature. Stability of the pH and lack of VFA peaks suggest that this material remains unhydrolyzed. Hence, 

accumulation of unhydrolyzed material is inversely proportional to temperature. Further literature review 

commonly supports that lipids account for the higher fraction of the un-hydrolyzed material (Eastman and 

Ferguson 1981, Miron et al 2000). Possibly, this is due to the hydrophobicity of lipids that renders them able to 

be associated on the surface of the anaerobic sludge (Rinzema et al 1993). 

Thus, the aim of this study is to investigate the feasibility of the anaerobic treatment of primary settled wastewater 

using the particular cold adapted inoculum after long acclimation with raw wastewater at low temperatures (4, 8 

and 15oC), and evaluate its efficiency with regards to the COD removal and CH4 production. Additionally, a 

quantification and a comparison of the unhydrolyzed material in the seed (lipids, proteins and carbohydrates) 

amongst the operational temperatures would reveal which of the wastewater compounds is less likely to be 

hydrolyzed and can potentially accumulate at lower temperatures. 
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4.3.3. Materials and Methods 

Reactors assembly; the same reactors’ regime as described on Chapter 4.1.3 and 4.2.3 was used for the 

experimentation, using the same inoculum (as in Chapter 4.1.3 and 4.2.3), following the re-inoculation technique 

as described on Chapter 4.1.3. The reactors after re-inoculation and re-feed were set at 4, 8 and 15oC. 

Wastewater; the reactors at this batch were fed with sterile primary settled wastewater of ≈220 mgCOD L-1. The 

collection, pre-sterilization and re-feed of the substrate was carried out similarly to Chapter 4.1.3. Its composition 

was found to be 60% carbohydrates and 38% lipids; proteins were less than 2% – the protocol is on Chapter 4.1.3.  

Analytical methods; total and soluble COD (tCOD, sCOD respectively) were estimated as described on Chapter 

4.1.3. The k removal coefficients for COD were estimated from the initial and final COD values for a specific time 

period Δt using 1st order kinetics (Eq.12) as on Chapter 4.1.3. VFA (Volatile Fatty Acids) analysis in the mixed 

liquor in addition to the gas analysis for methane content in the head space were estimated following the methods 

described on Chapter 4.1.3.  

Thorough mixing was only applied prior sampling for lipid, carbohydrates and proteins tests to accurately depict 

the properties of the biomass and to quantify the insoluble COD that may accumulate in the reactor. The 

quantification of these compounds, expressed in COD, would assist in the determination of the least easy to 

hydrolyze compound between lipids, carbohydrates and proteins. The estimation and conversion to COD method 

is described on Chapter 4.1.3.  

4.3.4. Results 

The treatment performance of the anaerobic reactor can be described by the VFAs (Figure 4.16.a) and the soluble 

COD (Figure 4.16.b) in the mixed liquor. Methane production (Figure 4.17) was evident supporting that 

methanogenesis at very low COD concentrations is feasible. 

 

 

Figure 4.16 –a) VFAs status at all temperatures as a summary of acetate, propionate, butyrate, valerate and isovalerate; b) 

Soluble COD in the mixed liquor; at all temperature for primary settled wastewater; error bars indicate standard error , n=2 for  

4 & 8 degrees and n=4 for 15oC 
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Figure 4.17 – Methane production rates at all temperature for primary settled wastewater; n=2 for  4 & 8 degrees and n=4 for 

15oC; error bars express standard error. 

Lipids, carbohydrates and proteins concentrations were quantified and expressed as COD (Figure 4.18.a, b, c). 

This clearly manifests which one accumulates in the bioreactors as in previous batches hydrolysis seemed to be 

the limiting step with an evident discrepancy between the COD removal and CODCH4 production rates. 
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Figure 4.18 – Cumulative phenomena after thorough mixing for a) lipids; b) carbohydrates; c) proteins; in the mixed liquor at 

all 3 temperatures; error bars indicate standard error, n=2 for 4, 8oC, n=4 for 15oC 

With regards the wastewater treatment, the substrate COD was reduced to levels able to meet the UWWTD 

(91/271/EEC) standards (Figure 4.19a). Additionally, the COD fate time series enabled the calculation of the ‘k’ 

COD removal coefficient (Figure 4.19b). 

 

Figure 4.19 – a) COD fate in the reactor; k COD removal coefficient; for primary settled wastewater at 4, 8 and 15oC; n = 2 

for 4 and 8, n = 4 at 15oC, error bars express standard error. 
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between COD removal and methane formation, event that was not evident for raw wastewater. This, as expected, 

asserts that the primary settled wastewater can be easier biomethanized than raw wastewater and is perhaps less 

prone to settling. In terms of wastewater engineering this is highly desirable, as less settling promotes use of 

smaller tanks, due to lower demand of biomass (cells) for COD degradation. Additionally it signifies, less chances 

of VSS accumulation, absence of unhydrolyzed COD and subsequently minimizes the probability of biomass 

deterioration, low settleability and sludge washout as shown in previous studies (Uemura and Harada 2000, 

Elmitwalli et al 2000, Xing et al 2009).  

The temperature sensitivity of methanogenesis (as rates’ exponential trendline coef.) was found to be similar to 

those previously observed for reactors fed with raw wastewater (Chapter 4.2). This suggests that substrate 

biodegradability may hold a secondary position in wastewater treatment at low temperatures, and further 

investigation needs to focus to the microbial communities that participate into the anaerobic treatment process 

(optimum growth, operational temperature, presence of enzymes, activity) rather than the substrate itself. 

The current study better represents the normal scale WWTPs due to the use of primary settled wastewater as 

substrate, which is common to WWTP designation that usually includes a primary clarifier prior the biological 

reaction tank for numerous reasons (Metcalf and Eddy 2002). The use of primary settled WW at this study mainly 

ensures that treatment will be accelerated compared to what we have previously seen in the batches with raw 

wastewater. It also reveals that low temperature anaerobic treatment using the specific inoculum can be applied 

for effluent polishing purposes, event that was not evident in a similar study with a cold adapted mesophilic sludge 

implemented by Bowen et al (2014). Effluent polishing was also shown by Rebac et al 1999 who treated VFA at 

low temperature that were generated in the first compartment of a two-phased unit. The current study though has 

the advantage that achieved effluent polishing using only one compartment to fulfil all 3 anaerobic reactions. 

No VFAs were detected after 30 days of operation, thus all easily-degradable compounds were hydrolyzed or the 

rate of methane production was equal or greater than the rate of hydrolysis and acidogenesis, with an inexplicable 

peak of acids on day 22 (Figure 4.16.a), a peak was simultaneously detected in the sCOD (Figure 4.16.b), which 

suggests that this was not a measurement error. The peak may signify the highest observed rate of acidogenesis-

acetogenesis in the system that could have been promoted by rapid hydrolysis/fermentation (justified by the lowest 

observed pH prior acids´ peak-data not shown, (Hwang et al 2001)). The VFA peak decreased the next days, 

supporting the scenario that the optimum pH for hydrolysis/fermentation is not necessarily the same with the one 

required for methanogenesis, with the first usually lower than the second (Hwang et al 2001). From an engineering 

point of view, this scenario supports that a two chamber reactor configuration for anaerobic treatment of 

intermediates can be used to overcome the limited hydrolysis and guarantee different pH between hydrolysis and 

methanogenesis. 

As described in the previous batches, the anaerobic reactors that were employed for this study so far were running 

with raw wastewater as substrate, and hydrolysis seemed to be the limiting step. As shown on Chapter 4.2 (Figure 

4.12) there is a discrepancy between COD removed and COD methanized. This discrepancy leads to COD 

accumulation that contributes to accumulation of insoluble organic material within the reactor. The accumulation 

is highly dependent on temperature as showed on Chapter 4.1 as VSS/TSS (Figure 4.7.e). Similar evidences of 

VSS accumulation due to limited hydrolysis has been also reported by Uemura and Harada 2000, Elmitwalli et al 

2000, Xing et al 2009. 

Detailed analysis for carbohydrates, proteins and lipids in the mixed liquor shed light on the fate of hydrolysis of 

these specific compounds. As it can be clearly observed not all the rates of hydrolysis are equally affected by 

temperature.   

The concentrations of carbohydrates were low (110-150 mg COD L-1) at all temperature (Figure 4.18,b). Protein 

concentrations were also low, (70 mg COD L-1 approximately) at the warmer temperatures with only modest 

accumulation at 4oC (Figure 4.18,c). The signal for lipids was considerably higher (2-5 grams COD L-1 for 15 and 

4oC) (Figure 4.18,a).  

Clearly, lipids account for the higher fraction of the un-hydrolyzed material. Similar results were found by 

Eastman and Ferguson (1981) and Miron et al (2000). The conclusion of methanogenesis limitation through lipid 

degradation is also supported by the good agreement between the exponential coefficients of methane production 
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rates and lipid content at all temperatures (current study and Chapter 4.2). The exponential trends have a coefficient 

of 0.114 and 0.123 for primary settled and raw wastewater respectively, where the lipid content has a coefficient 

of -0.885, suggesting that lipids may notably account for the poor COD to methane conversion at low temperatures.  

At this point it would be good to clarify why the effluent COD was much lower than the COD lipid signal. As 

described on Chapter 4.2 thorough mixing was only applied before sampling for carbohydrates, proteins and lipids 

measurements, where particles of biomass were abstracted for analysis. For liquid effluent analysis less mixing 

and avoidance of biomass particles ensured a consistent analysis for other tests (VFAs, COD, etc.), parameters 

that could have had high fluctuations if biomass was involved. Additionally the hydrophobicity of lipids helps 

them being adsorbed on the surface of the anaerobic sludge, hindering the transport of soluble substrates to the 

biomass, decreasing their degradation rate (Rinzema et al 1993), event that also renders them hardly able to keep 

in suspension for long after mixing at the low selected speed of 70 rpm. 

Subsequently, as lipids evidently account for the largest part of hydrolysis limitation, the investigation needs to 

focus on the catalysts that cells are using to solubilize the specific compounds. 

Lipases (glycerol ester hydrolases - biocatalysts) are enzymes secreted by bacteria to hydrolyze glycerol with long 

chain fatty acids.  This suggests that either the production or activity of the relevant enzymes (lipases) is 

temperature sensitive or perhaps the biphasial nature and structure (1, 2, 3 acid chains) of the lipids change with 

temperature rendering them difficult to biodegrade (Neidleman 1987). 

An investigation into the activity and presence of such enzymes at the corresponding temperatures might explain 

why lipids accumulate in the reactors at low temperatures.  

4.3.5. Conclusions  

Low strength primary settled wastewater can be successfully treated in 15 days, in terms of COD, according to 

UWWTD (91/271/EEC) standards at all temperature (4, 8 and 15oC). The first order removal coefficient for settled 

wastewater was higher than that previously observed for raw wastewater. The hydrolysis of lipids appears to be 

more temperature sensitive than the hydrolysis of proteins and carbohydrates. The failure of lipids to hydrolyze 

could be a key factor in the temperature sensitivity of methane production rates. 

An investigation into the presence and activity of lipases in this context would be valuable. 
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Chapter 5: What is the impact of 
temperature switch and 
WW-cell invasion to the 
structure and treatment 
performance of a microbial 
community developed in 
low temperature anaerobic 
reactors  

  

Figure 5.1 - Left: Microbial community dynamics based on neutral theory (Battin et al 2007); Right: visualization of colorized 

bacterial cells from a SEM image, representing different taxa in a saturated from microorganisms’ community. 
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5.1. Psychrophilic microbial communities; who wins the competition for dominance for successful anaerobic 

wastewater treatment? 

5.1.1. Abstract 

Perhaps the most important parameter for successful anaerobic domestic wastewater (DWW) treatment at low 

temperature is the selection of the biomass, as seed. An ideal biomass would operate at low temperature, 

converting COD to methane, and exclude the competition from the indigenous from wastewater (WW) 

microorganisms. To achieve the above, I believe that the use of a cold-adapted seed is the key. The main aim of 

this study is to introduce a new psychrophilic/cold-adapted biomass for anaerobic treatment of low strength DWW, 

which can be used in digesters, situated at countries where temperature can rapidly fall at 4oC, leading to decline 

of hydrolysis and methanogenesis rates. 12 microcosms were inoculated with a cold-adapted seed, acclimatised at 

15oC, fed with UV-sterile and non-sterile WW (350 mgCOD L-1), and incubated at 4 and 15oC at a 1:3 

seed:substrate ratio. The results showed that anaerobic treatment continues when temperature falls to 4oC, ensuring 

high COD to CH4 conversion (>80%). The diversity (Bacteria and Archaea) of the inoculum did not significantly 

change regardless the treatment (sterile, non-sterile) after 96 days of operation. Additionally, wastewater 

communities seem to improve the hydrolytic activity. I conclude that the addition of autochthonous wastewater 

bacteria increases the treatment performance and that these bacteria co-exist with the cold-adapted hydrolytic cells. 

Lower temperatures had no significant effect on microbial communities. Hydrolysis and methanogenesis rates 

were adversely affected by temperature decrease (drop from 6.9 to 1.35 mgCOD.L-1.day-1 and from 4.8 to 0.03 

mgCOD.L-1.day-1 for methanogenesis and hydrolysis respectively for the seeded and fed with sterile wastewater 

reactors). However, the cells from wastewater contributed to the hydrolysis/fermentation of the substrate, 

accelerating wastewater treatment even at 4oC (drop from 9.76 to 1.39 mgCOD.L-1.day-1 and from 7.4 to 0.8 

mgCOD.L-1.day-1 for methanogenesis and hydrolysis respectively for the seeded and fed with non-sterile 

wastewater reactors). In general this Arctic inoculum may have a promising role in the anaerobic treatment of 

domestic WW in temperate climates where typical temperatures vary between 15 and 4oC. 

5.1.2. Introduction 

The need for carbon neutral or carbon positive domestic wastewater treatment needs to be re-considered due to 

the increase of CO2 emissions from the rapid urban development (Environmental Agency 2009). The current high 

carbon footprint of wastewater treatment (aerobic treatment) can be reduced using traditional methanogenic 

systems. Currently almost all full-scale anaerobic treatment plants operate at temperatures >18oC (Lettinga et al 

2001). Attaining this temperature threshold would require energy consumption for heat generation especially in 

countries with cold or temperate climates where the ambient temperature is often low (<15oC).  Previous studies 

showed that lowering the operational temperature of a digester leads to decrease in the maximum substrate 

utilization rates, maximum specific growth rates and rates in biogas production (Alonzo et al 1969; Kettunen and 

Rintala, 1997) or failure. Previous studies though used mesophilic inocula, acclimatized to low temperature. In 

nature methanogenesis does occur at low temperatures (Metje and Frenzel 2007). I therefore sought to use of cold-

adapted/psychrophilic biomass as an inoculum for a reactor treating domestic wastewater in the hope that it might 

improve treatment at low temperature.  

The aim of this study was to see how anaerobic treatment is affected when a cold adapted biomass acclimatized 

at 15oC is exposed to 4oC. This would assist in depicting the behaviour of the digesters situated in cold climate 

countries, where minimum and maximum average temperature lies in between 4 and 15oC respectively.  

A secondary objective was to understand the impact of the ´invasion´ of the autochthonous from wastewater 

microorganisms to the inoculum diversity.  

Seeding can be understood using a neutral approach (Bell 2000, 2001), where decay or immigration at such 

systems is equally likely for all individuals (Sloan et al 2006). The treatment efficacy of the cold-adapted matrix 

might be compromised by autochthonous wastewater bacteria which are not cold adapted leading to treatment 

rates deceleration at low temperatures. This problem can be potentially tackled if the seed:substrate ratio is 

increased with no obvious limits to this approach. I therefore sought to determine if the cold-adapted biomass can 

outcompete the autochthonous wastewater bacteria and retain its dominance in the bio-reactor. 
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5.1.3. Materials and Methods  

Microcosm Assembly; 12 microcosms were set up in sterile 160 ml glass Wheaton vials (Sigma Aldrich, UK), 

sealed with butyl rubber caps and flushed with 99.9% N2. Eight of them were inoculated with 20 ml of seed 

material and 60 ml of raw domestic wastewater allowing a headspace volume of 80ml; four additional bottles were 

inoculated with just domestic wastewater (DWW) as un-seeded controls. All microcosms were prepared in 

duplicates and incubated at 15 and 4oC. Further replication was avoided to maintain the inoculum to the reactors 

(where the seed was originated from) relatively stable. 

Microcosms were seeded with biomass from laboratory-scale batch reactors treating DWW which had been 

operating at 15oC for 400 days.  These reactors were originally seeded with a mixture of putatively cold-adapted 

sediment from Lake Geneva and soils from Svalbard, in the high Arctic (Chapter 4.1, 4.2). The re-inoculation was 

carried out in parallel with the re-inoculation of the 1L reactors (after finalization of batch 3, Chapter 4.2). Equal 

volumetrical abstraction of the desired amount of biomass was extracted from the pellet generated after 

centrifugation (at 4000rpm for 20 minutes at 10oC) of the four 1L reactor replicates (15oC). The extracted seed 

was combined and used as inoculum for the current experiment. 

Raw wastewater was collected from Tudhoe Treatment works at Spennymoor (UK) wastewater treatment plant. 

The substrate was pre-sterilized using an autoclave and UV irradiation, the effect of sterilization was evaluated by 

its impact on biodegradability (as the BOD to COD ratio). For UV irradiation a UV lamp (400mm UV lamp T-

514, Semtec Flow Water Sterilization, China) was selected. The wastewater was passing through the chamber 

where the lamp was situated using a peristaltic pump (Watson and Marlow, Poole UK) for 5, 10, 15, 20 and 

40mins. For thermal sterilization an autoclave was employed (Ensign Rodwell, UK, set), operating at various 

retention times and temperatures (109-121oC for 10-20mins). After sterilization BOD5, COD, total cell counts 

were quantified as previously described (Chapter 4.1.3). 

BOD5, COD, soluble COD, VFA, SO4
-2, NO3

- hydrolysis and methanogenesis rates, CH4, CO2, microbiological 

community analysis were also evaluated as previously described (Chapter 4.1.3). The coefficient of variation was 

calculated for the sCOD, VFAs and methane production time series. Average variation coefficient is the quotient 

between standard deviation divided by the mean (n=2), averaged for all data points in the time series that 

correspond to a specific temperature/treatment setup. 

The DNA samples were taken on days 3, 32 and 96. The molecular analysis was similar as described on Chapter 

4.1.3. The statistical analysis on them was carried out on day 96 that corresponds to the initiation of the plateau 

phase in COD concentration and CH4 production. The statistical test was a two-way test (pairwise) using Primer6 

(Multivariate statistics for ecologists, Luton, UK) (as described on Chapter 4.2.3) selecting temperature and 

treatment as factors. The statistical significance of the results were also evaluated via ANOSIM (ANalysis Of 

SIMilarity) and expressed as statistical significance (P-value) and possible relationship level % between variables 

(R-value). As previously stated (Chapter 4.2.3), P-value is the number that defines whether a result is statistically 

significant. The confidence level was chosen as 90% which corresponds to a P-value = 0.1. R-value (Global R) 

examines how strong the difference between the compared samples is by measureming the separation between 

groups. R can be from 1 to 0, R rarely is negative (0: indistinguishable; 1: all similarities amongst groups are less 

than any similarity between groups; -1: usually coupled with statistically insignificant comparisons by P value). 

5.1.4. Results 

Wastewater was low in organic matter, COD of 353mg L-1; providing 0.33 mmols of CH4. Analysis for anions 

(SO4
-2, NO3

-) suggested minimum competition for methanogens from cells using other electron acceptors (CH4 

loss <0.0012 mmols). BOD5 estimated as 60% of COD providing a biodegradability ratio BOD:COD ~0.4. The 

bacterial population was quantified as 3.0E8±1.6x108 & 1.2E8±5.8x107 CFU (colony forming unit)/ml on NA and 

R2A respectively. 

The effect of UV and thermal sterilization to biodegradability is shown on Figure 5.2.a, b. For UV irradiation, X 

axis represents the retention time as the power was constant (11 Watts). For autoclaving the variable is energy, 

estimated by the power that was introduced to the liquid, to reach the desired temperature, starting from 4oC 
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multiplied by the retention time. Figure 5.3.a, b shows the UV sterilization efficiency to the wastewater microbial 

communities. The performance of the thermal sterilization of wastewater is also on Figure 5.3.c, d. 

 

Figure 5.2 - (a) Biodegradability as BOD:COD ratio after sterilization via UV irradiation at different retention times; (b) 

Biodegradability as BOD:COD ratio after autoclaving. 

 

 

Figure 5.3 – Bacterial enumeration after sterilization of wastewater using UV irradiation – enumeration on (a) nutrient agar 

(NA), (b) R2A agar; Bacterial enumeration after sterilization of wastewater via autoclaving, evaluated on (c) nutrient agar 

(NA), (d) R2A agar; thermally processed samples were Log- transformed for better visualization. 

The anaerobic wastewater treatment performance is described following the three fundamental steps of AD, 

hydrolysis-fermentation, acidogenesis-acetogenesis and methanogenesis (Malina and Pohland 1992; van Haandel 

and Lettinga 1994 etc.). The representative parameters are shown on Figure 5.4.a, b, c. 
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Figure 5.4. – Average (a) sCOD present in the microcosms at all conditions; (b) total volatile fatty acids as summary of acetate, 

propionate, butyrate, valerate, isovalerate and isobutyrate; (c) methane production at the same conditions; moving average 

trend was used for illustration purposes; n = 2 for all samples; the average variation coefficients for ‘15oCunamended control-
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WW’, ‘4oCunamended control-WW’, ‘4oC seeded-non st WW’, ‘15oC seeded-non st WW’, ‘4oC seeded-st WW’, ‘15oC 

seeded-st WW’ are, plot a: 0.04, 0.36, 0.17, 0.09, 0.02, 0.09 respectively; plot b: 0.07, 1.14, 0.66, 0.19, 0.24, 0.15 respectively; 

plot c:  0.54, 0.0, 0.29, 0.08, 0.14, 0.04 respectively 

Combining the data above, using Eq. 12, 13, 14, the hydrolysis and methanogenesis rates were determined. (Figure 

5.5.). 

 

Figure 5.5. - Hydrolysis and methanogenesis rate for wastewater as substrate at all treatments and temperature conditions; st 

WW stands for seeded and fed with sterile wastewater, non st WW stands for seeded fed with non-sterile wastewater, WW ctrl 

stands for unseeded wastewater control; error bars represent the standard error, n = 2 for all samples. 

The bacterial DGGE (Figure 5.6) and the statistical analysis of the bacterial community structure for different 

treatments and a temperature is shown on (Table 5.1). The Table 5.1 represents the ANOSIM results of a two-way 

(pairwise) test for temperature and treatment (sterile or non) as factors. It includes the statistical significance (P-

value %), the possible level (R-value). As described on Chapter 5.1.3, 4.2.3, P-value is the number that defines 

whether a result is statistically significant (confidence level chosen as 90% which corresponds to a P-value = 0.1), 

while R-value (Global R) examines how strong the difference between the compared samples is by measureming 

the separation between groups; R can be from -1to +1; commonly from 0 to 1 (more details on Chapter 5.1.3).  

Similarly, the DGGE image for Archaea (Figure 5.7), in addition with the statistical analysis (Table 5.2). 

 

 
Figure 5.6 - Bacterial DGGE gel image after 96 operational days for all temperatures (4, 15oC) and treatments (sterile 

wastewater fed, non-sterile wastewater fed and WW controls (un-seeded); image taken via Bionumerics software; the labels 

correspond to the code name of the microcosm reactor (e.g. 72.3 or 71.3.), the operational temperature 4 or 15oC and the 

treatment type (sterile or non or un-seeded wastewater control)  
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Figure 5.7 - Archaeal DGGE gel image after 96 operational days for all temperatures (4, 15oC) and treatments (sterile 

wastewater fed, non-sterile wastewater fed and WW controls (un-seeded); image taken via Bionumerics software; the labels 

correspond to the code name of the microcosm reactor (e.g. 72.3 or 71.3.), the operational temperature 4 or 15oC and the 

treatment type (sterile or non or un-seeded wastewater control)  

Table 5.1: ANOSIM table from the Bacterial Pairwise Test between treatments 

Groups observed R value, Possible 

level  

P value, Statistical 

significance (%) 

Non sterile - sterile 0.25 33.3 

Non sterile – WW control 1 11.1 

Sterile – WW control 1 11.1 

*sterile, non-sterile and WW correspond to the treatments that were selected to each microcosm 

Table 5.2: ANOSIM table from the Archaeal Pairwise Test between treatments 

Groups observed 
R value, possible 

level 

P value, Statistical 

significance (%) 

Non sterile - sterile 0.25 20 

Non sterile – WW control 0.667 2.9 

Sterile – WW control 0.667 2.9 

*sterile, non-sterile and WW correspond to the treatments that were selected to each microcosm 

For better interpretation the microbial community structure is presented in dendrogram and MDS plots for both 

bacteria and archaea (Figure 5.8 a, c and b, d for bacteria and archaea respectively). 
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Figure 5.8 – Community structures on day 96, (a) Bacterial MDS; data were pre-transformed according to band to presence 

(as 1) –absence (as 0); (b) Similarly for archaea MDS. (c) Cluster analysis for bacteria presented as dendrogram. (d) Similarly 

for archaea; 4 and 15 correspond to the operational temperatures; WW: wastewater un seeded controls; ST and NON ST 

correspond to the treatment type of the inoculated reactors, sterile and non-sterile respectively 

5.1.5. Discussion 

COD (chemical oxygen demand) is a key parameter in wastewater treatment (Ritmann and McCarty 2001; Henze 

et al 2008) as it gives an insight on how efficient the organic removal is. The sCOD was successfully degraded at 

all seeded microcosms, meeting the UWWTD (91/271/EEC) requirements for COD (<125 mgL-1) (Figure 5.4.a). 

This manifests that the inoculum is efficient in terms of COD treatment, and low strength wastewater of 350 

mgCOD L-1 can be hydrolysed, fermented and converted to methane even at its raw phase (Figure 5.4.a, b, c). No 

sCOD depletion occurred in the ‘wastewater only’ controls, presumably due to the absence or small numbers of 

active methanogens (no bands or extremely faded before day 96), though the accumulation of organic 

intermediates (sCOD, VFAs, (Figure 5.4.b)) implies that hydrolysis took place. 

The rates were poor at lower temperature as it required more time for the substrate to be hydrolysed and bio-

methanized. Similar results were obtained previously on Chapter 4.1 and 4.2 and are common in literature 

(Krzeminski et al 2012, Lettinga et al 2001 etc.). Hydrolysis was the rate limiting step, in all seeded treatments 

(sterile or non) and temperatures, similarly to previous studies (Elmitwalli et al 2003 etc.), or as shown on Chapter 

4.2. This suggests that a ratio between hydrolysis and methanogenesis equal to 1:1 is hard to be achieved. As 

methanogenesis occurs faster the research endeavours need to focus on ways to promote engineered hydrolysis 

(mechanically, chemically or biologically engineered, e.g. pre-mixing, fenton process, enzymatic hydrolysis 

respectively), otherwise methanogens are ‘convicted’ to survive in conditions of starvation that may risk their 

presence in the community matrix in the long run.  

COD is an indicator of the amount of energy contained in wastewater that might be recovered as methane (Heidrich 

et al 2011). At both 4 and 15oC the time that is required for the substrate to reach the methane plateau phase is the 

same Figure 5.4.c. This perhaps happens due to the effect of temperature to the substrate itself, the first limits the 

second and this reveals that there is a relationship between the not easily available substrates and temperature. 

Nonetheless, the COD:CH4 conversion was lower at 4oC, reached approximately the 80% and 60% (theoretical 

100% equals to 0.35 LCH4/gCODremoved) for non-sterile and sterile substrate respectively (Figure 5.4.c). At 15oC 

the conversion reached and exceeded (non sterile) the 100% in both treatments. The total amount expected was 

0.33mmol/head space. The surplus of methane in the microcosms with non-sterile WW at 15oC originates 

presumably from the organic material that could have been present within the seed (previously un-hydrolysed 

material). 80% COD:CH4 conversion is really close to the theoretical one (100% or 0.35 LCH4/g CODremoved). 

Thus, the introduction of non-sterile wastewater would decelerate the accumulation of the insoluble COD and 

subsequently reduce the likelihood of biomass deterioration as reported by Uemura and Harada 2000, Elmitwalli 

et al 2000, Xing et al 2009. The further treatment capacity of the non-sterile wastewater fed reactors would ensure 

d) C) 
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sufficient treatment at low temperatures in any likelihood of slow transition from 4 to 15oC, where the conversion 

is ~100%. 

On Chapter 4.3 the results showed that there is excess COD the lower the temperature, which was also detectable 

on Chapter 4.1 expressed as VSS:TSS ratio. COD tests in the soil (seed) at the end of the experiment showed that 

the excess amount of methane is close to the average COD difference between non-sterile and sterile seed. In 

detail, the CODseed difference between sterile and non-sterile at 4 and 15oC was 98 and 82 mg COD.L-1 

respectively. This corresponds to an estimated difference between sterile and non-sterile CODCH4 at 4 and 15oC of 

65 and 105 mgCODCH4/L respectively. High standard errors of ±1937 and ±1284 (test in triplicates) for the CODseed 

at 4 and 15oC due to the nature of the sample do not confidently support this conclusion. In any case the methane 

from the non-sterile wastewater fed reactors was consistently higher at both temperatures whereas the COD in the 

microcosm reactor was higher than expected due to the presence of an insoluble fraction (also shown on Chapter 

4.3). Hence, the accumulated organic fraction (mainly lipids), combined with the wastewater originated´ bacterial 

organisms that operated in the reactor explain the increased methane volumes at non-sterile conditions.  The fact 

that only non-sterile treatments provided with higher than expected amounts of methane suggests that there should 

be some hydrolytic activity from the cells habiting the wastewater that promotes anaerobic wastewater treatment. 

It is not clear why lipids accumulate, a plausible scenario could be due to changes in their structure at low 

temperatures (Neidleman 1987) or reduced enzymatic expression or activity. 

In terms of engineering, 60 days of retention time is a long period as an HRT in a conventional WWTP; thus 

optimizations or further acclimation and growth need to be considered, otherwise it can only be applicable in 

limited treatment plants where volume is of minor importance. The time that was required for treatment was 

similar with the one needed on Chapter 4.2. This was expected, as the experiments were using the same seed (type 

and acclimation to wastewater time), had the same seed:substrate ratio and were exposed to similar temperature 

conditions (4, 15oC). 

The notable acceleration in VFA and methane production observed in the microcosms inoculated with non-

sterilized wastewater is presumably due to the presence of beneficial autochthonous bacteria that promote 

hydrolysis. This subsequently led to higher methane formation rates. This supposition is supported by the amount 

of VFAs that was generated to the un-seeded controls (especially at 15oC), where the substrate was hydrolysed 

and the intermediates accumulated as there were no methanogens to bio-methanize them.  

Thus, it seems that microorganisms from both the seed and the wastewater are complementary. In particular, the 

modest hydrolytic and excellent methanogenic capacity of the seed was matched by excellent hydrolytic (I suspect 

lipolytic - a lipase assay to the seed and wastewater would shed light into the hypothesis, Chapter 6) and modest 

methanogenic capacity of wastewater.  Clearly the best treatment will be obtained by using “live” wastewater as 

in practice higher numbers of bacteria are introduced in the system, capable to contribute in wastewater hydrolysis 

at low temperature. 

There was no detectable difference in the bacterial diversity amongst the seeded microcosms, irrespective of the 

wastewater used (sterile or non-sterile) at day 3. This suggests though, that either the DNA of inactivated 

microorganisms from UV irradiation might still be present the first days of the experiment at these temperatures 

or that the wastewater DNA was undetectable against the background of the seed.  

Differences between the wastewater only controls and the Arctic seed microcosms were apparent by day 32. The 

differentiation indicates that the bacterial communities of the Arctic seed predominated whereas the microbial 

community structure was not evidently affected from the wastewater originated cells. The phenomenon was 

stronger at day 96 (Figure 5.8.a, c). The clear cluster formation between the microcosms seeded with adapted 

biomass and those with wastewater alone indicate that the indigenous WW bacteria could not become dominant, 

at least over a 3 month period. 

Temperature decrease could not affect the communities qualitatively as the cells at 4oC cluster with those at 15oC 

(similarity ≈80%) regardless the treatment. Statistical analysis (Table 5.1) showed no significant difference 

amongst them (R = 0.25, P = 0.33).  Wastewater controls at both 4 and 15oC were nearly significantly different to 

the microcosms inoculated with the seed at both temperatures, whether sterile or not (R = 1, P = 0.11); Temperature 

had little effect on bacterial community composition in microcosms containing only wastewater (>90% similarity 
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- excluding the ‘15WWctrl (1)’ (un-seeded wastewater fed control at 15oC) due to O2 ingress after malfunction of 

a syringe during gas sampling). This suggests that the bacterial communities in the seed are resilient to invasion 

from the microorganisms in the wastewater at “high” and low temperatures. 

The gene sequences found in the seeded microcosms were similar to those previously retrieved from cold 

environments, and dissimilar to any of the predominant sequence present in the wastewater.  

The archaeal groups that were found at the original Arctic seed were retained in the microcosms fed with, either 

sterile or non-sterile wastewater (Figure 5.7). The sequences were similar to those previously retrieved from cold 

environments and belong to the groups of Methanosaetaceae, Methanomicrobiales and Methanosarcinaceae. This 

explains why COD to methane conversion worked well (Figure 5.4.c). The archaeal communities in WW controls, 

that were detected at the end of the experiment were significantly different (Table 5.2) to those from the Arctic 

seed at all temperature and treatments (R = 0.667, P = 0.029). Temperature decrease affected the communities in 

WW controls (similarity <90%), as archaea (putative methanogens) started appearing at 15oC but in low numbers, 

as only traces of methane appeared. The archaeal communities of the seed were not significantly affected by 

temperature (R = 0.25, P = 0.2 between treatments at both temperatures, Table 5.2). 

It is concluded that the cold adapted inoculum performed adequately after the rapid temperature decrease. The 

biomass retains its original diversity structure, and operates in synergy with the indigenous wastewater 

microorganisms. Pre-sterilization of the substrate to “protect” the seed from the putative wastewater mesophiles 

is not required.  

I conclude that a well-established community might be difficult to disturb. Interpreting the phenomenon based on 

neutral dynamics (Bell 2000, 2001) it can be said that the established community in the seed did not allow the 

wastewater communities to predominate in the bio-reactor community matrix.  

This conclusion though was based on a seed:substrate ratio of 1:3. It would be interesting to investigate if changes 

in the ratio, promoting the wastewater originated cells, would retain the microbial community unchanged. In real 

scale quantitative and sometimes qualitative retention of the biomass in desirable levels can be achieved using 

anaerobic membrane reactors. 

Finally in terms of sterilization both methods were successful. Autoclaving can potentially cause inconsistency to 

the substrate altering its nature expressed as BOD:COD ratio. This is perhaps due to excess heat that causes 

caramelization of disaccharides and monosaccharides (Butler 1913), main biodegradable carbon sources, which 

can be easily utilized from the biomass. However, even if a thermal approach operated it would have been 

impossible to apply thermal sterilization in a normal scale wastewater treatment plant. Thus, UV irradiation is the 

recommended method for wastewater sterilization.  

5.1.6. Conclusions 

Conversion of COD to methane reached the 80% and 100% at 4oC at 15oC respectively. This suggests that the 

inoculum is able to treat wastewater in terms of COD, based on UWWTD (91/271/EEC), at low temperature. 

Decrease of temperature from 15oC to 4oC decelerated the reaction but no failure occurred. Both hydrolysis and 

methanogenesis were reduced.  

Sterilization as pre-treatment step is not required. It might only be useful when the communities in the seed are 

less than the autochthonous organisms and one wishes to confer an advantage to the seed.  

For the microcosms with a cold adapted inoculum, the bacterial and archaeal diversity remained apparently 

unchanged by the microbial communities from the wastewater even though the presence of unsterile wastewater 

assisted in the hydrolysis organic material.  

Archaeal communities were negligible in wastewater, as only faded bands were detected; thus, the higher rates of 

methanogenesis from non-sterile microcosms can be attributed to the improved hydrolysis rates. 

Examining sterilization techniques it was found that UV irradiation is preferable to thermal sterilization, as it has 

the less effect on biodegradability.   
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It is believed that this particular inoculum can make the assist in anaerobic wastewater treatment at low 

temperatures and may be robust to fluctuations in temperature especially when operated in conjunction with the 

biomass originated in the wastewater. 

However it would be interesting to examine whether the inoculum would function at lower seed:substrate ratios 

and test the effect of temperature raising from 4-15oC . 

5.2. Low temperature for psychrophilic AD - seed is the key 

5.2.1. Abstract 

Microcosms were inoculated with acclimatized seed from long term 4oC and 15oC batch ‘mother’ reactors 

containing un-hydrolyzed material from previous batches and fed with UV-sterilized and unsterilized wastewater 

(WW).  Wastewater contained inhibitory compounds and decelerated methanogenesis in comparison to un-

amended samples (just seed) especially when operated at 4oC. Specific methanogenic activity at 15oC was higher 

for inocula acclimatized at 4oC than inocula acclimatized at 15oC when both operated at that temperature. 

Molecular analysis showed that bacterial communities from 4oC retain their structure better when temperature 

fluctuates or when challenged by indigenous organisms from WW; no significant change occurred to the archaeal 

community at both temperatures (4oC, 15oC. Thus, digesters operating at low temperature would be preferably 

inoculated with biomass acclimatized to a lower temperature.  

5.2.2. Introduction 

As previously mentioned, numerous studies showed that lowering the operational temperature of a digester leads 

either to a decrease of the maximum substrate utilization rates, maximum specific growth rates and rates in biogas 

production or to a failure (Alonzo et al 1969; Kettunen and Rintala, 1997). So far we proved that methanogenesis 

can occur at low temperatures (4oC, Chapter 4) from communities that are acclimated both at 4 and 15oC (Chapter 

4, 5.1). But what if the temperature rises? 

The aim of this study was to investigate how anaerobic treatment is affected when a cold adapted biomass 

acclimatized at 15oC is exposed to 4oC and vice versa using a lower seed:substrate ratio (1:7) compared to the 

previously selected one (1:3). Similarly to Chapter 5.1, this would assist in depicting the behaviour of the digesters 

situated in cold climate countries and further understand the impact of the ´invasion´ of the wastewater-originated 

microorganisms to the inoculum diversity.  

For an expanded interpretation of the impact of the temperature/treatment conditions to the 

treatment/methanogenic performance of the seed, the results were expressed in cell specific activity. This 

introduces a more detailed parameter (CH4.cell-1.day-1) that depicts the effect of the conditions to the methanogenic 

cells. The methanogenic population was selected instead of total cells due to the importance of the former in 

anaerobic treatment. The presence of active methanogens supports that all previous steps including bacterial 

populations were successfully carried out. An expression per total cells wouldn’t necessarily be comprehensive 

(with the means we used) as it is not certain which cell is active and which is not. 

The cell specific methanogenic activity can more accurately describe the treatment and methanogenic capacity of 

the biomass as it excludes the presence of non-bacterial organic compounds of the seed. This can potentially lead 

to inoculum underestimation when expressing the treatment efficiency per gram of VSS. 

5.2.3. Materials and Methods  

Microcosm Assembly; 28 microcosms were set up in sterile 160 ml glass Wheaton vials (Sigma Aldrich, UK), 

sealed with butyl rubber caps and flushed with 99.9% N2. 16 microcosms were inoculated with 10ml of seed 

material and 70ml of raw domestic wastewater allowing a headspace volume of 80ml (seed:substrate 1:7 or 

seed:total vol.: 1:8); four additional microcosms were inoculated with just DWW, as un-seeded controls. 8 were 

inoculated with just seed and de-ionized water as 2nd un-amended control (details on Figure 5.9). All microcosms 

were prepared in duplicates and incubated at 15 and 4oC for 70 days. 

Microcosms were inoculated with with biomass from laboratory-scale batch reactors treating DWW acclimatized 

to domestic wastewater at 4 and 15oC for 2.5 years (from Chapter 4).  These reactors were originally seeded with 
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a mixture of putatively cold-adapted sediment from Lake Geneva and soils from Svalbard, in the high Arctic 

(Chapter 4.1.3). The re-inoculation was carried out according to the process described on Chapters 4.1.3 and 5.1.3. 

Wastewater was collected from Tudhoe Treatment wastewater treatment plant (Spennymoor, UK). The substrate 

was taken after the primary clarifier. Its composition was found similar to the one at Chapter 4.3, the analysis was 

carried out similarly to the one described on Chapter 4.1.3. Presence of chloride Cl- in the wastewater was 

determined via Ion Chromatography as described on Chapter 4.2.3 for other anions (e.g. SO4
-2, NO3

-).  

Where necessary, UV-sterilization was undertaken as previously described (Chapter 5.1.3)  

CH4, Microbiological community analysis was evaluated as described on previously (Chapter 4.2.3, 5.1.3). The 

average variation coefficient was calculated for the methane production time series (average variation coefficient 

is the quotient between standard deviation divided by the mean (n=2), averaged for all data points in the time 

series that correspond to a specific temperature/treatment setup.). 

 

Figure 5.9 - Graphic representation of experimental setup; inoculum from acclimatized cold adapted reactors (seed at 4oC and 

seed at 15oC) was equally distributed to the microcosm reactors in the circles (4oC: blue circle; 15oC: yellow circle). 

Additionally controls with unsterile wastewater were prepared and set at 4 and 15oC (black spots); Abbreviations: Seed: just 

biomass control; St.: Seeded with sterile wastewater; Non St.: Seed with non-sterile wastewater; WW: Wastewater un-amended 

control; all microcosms were examined in duplicates  

Quantitative PCR (qPCR) was carried out following the same protocol as Chapter 4.2. The minimum DNA content 

was 4.75ng/μl. This is required for normalization of the cellular population to compare it with others of different 

DNA extraction efficiencies. 

Bacteria enumeration from cell counts: The enumeration had been carried out following the Kepner and Pratt 

(1994) protocol for DAPI, modified according to Meynet et al (2012) who used SYBr Gold (Invitrogen Life 

Sciences, UK) as stain for better resolution on the image. In detail, 1ml of 1:10.000 diluted stain in Mili-Q water 

(filtered-autoclaved distilled water) added to a pelleted sample after centrifugation of 1 ml sample (discarded 

supernatant). Sample and stain were applied on a polycarbonate membrane filter (Merck Milipore, UK) and set 

onto vacuum. The remaining sample was set on microscope slides and was covered with Citifluor prior sealed 

with a cover slip and glued with nail varnish. Slides were examined with an Olympus BX40 Epifluorescence 

microscope; 20 randomly chosen fields of view were counted measuring the fluorescent cells that have a clear 

outline and finite cell shape. To define the bacterial the methanogenic population (qPCR) was abstracted from the 

total cellular population. 

The DNA samples were taken on days 0 and 70. The community structure was statistically analysed on day 70. 

The analysis was similar as described on Chapter 4.2.3. The statistical test includes one way and two-way tests 

(pairwise) depending on the comparisons (one way to compare only temperature or treatment switch, pairwise to 

compare the overall effect of both factors). The tests were carried out on Primer6 (Multivariate statistics for 

ecologists, Luton, UK) selecting temperature and treatment as factors (similarly to Chapters 4.2.3, 5.1.3). 
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5.2.4. Results 

The substrate was weak in organic content (COD of 170 mg L-1); the methane produced from seeded microcosms 

is shown on Figure 5.10.a, b. Methanogenesis was observed at both 4 and 15oC, the rates were higher at higher 

temperature. 

   

Figure 5.10 – Methane production versus time (a) at 4oC as average of duplicates (b) similarly at 15oC; labels represent 

acclimatization temperature to operational temperature (4-4, 4-15, 15-15, 15-4), st:seeded and fed with  sterile WW, non st: 

seeded and fed with non-sterile WW, seed: seeded and unfed controls; WW: un-amended controls; all points represent the 

average of duplicate samples; average variation coefficient for 4-4seed, 15-4seed, 15-4non st, 15-4st, 4-4non st, 4-4st, 4ww is 

0.37, 0.77, 0.36, 0.30, 0.32, 0.39, 0 respectively (plot a); 15-15st, 15-15non st, 4-15st, 4-15non st, 15-15seed, 4-15seed, 15ww 

is 0.55, 0.63, 0.31, 0.56, 0.31, 0.38, 0.57 respectively (plot b).  

Slow methanogenic activity of the wastewater fed microcosms compared to the un-amended controls suggested that 

inhibition of the methanogenic population occurred originated from the substrate. Anion analysis showed increased 

levels of Cl- in the wastewater for the feeding day (day 1) compared to the next 3 weeks (day 7, 14, 21) (Table 5.3). 

Table 5.3 - Concentration of Chloride ion (Cl-) in the feed for day 1 (feeding the microcosms), days 7, 14 and 21 also 

presented for comparison purposes 

Cl- day 1 day 7 day 14 day 21 

Conc. (mg.L-1) 135,9 74,0 57,3 52,1 

Other compounds (SO4
-2, NO2

-, NO3
-Ca, Mg, K, Cd, Cr+-, S, Ni, Al, Zn, Al, Fe, Pb, As, Si) were also measured but their concentration 

was consistent with low variation between day 1 (feeding) and days 7, 14, 21  

The methanogenic groups that were identified through GenBank database were Methanomicrobiales, 

Methanosarcinaceae and Methanosaetaceae. Quantitative PCR for all samples showed that at all temperatures the 

dominant family is Methanosaetaceae. The summation of all three is showed on Figure 5.11 for the first and final 

experimental day. 
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Figure 5.11 - Methanogenic populations in the microcosm at day 0 & 70 as asummary of the taxa detected most similar to Gen 

Bank database; particularly Methanomicrobiales, Methanosarcina and Methanosaetaceae; X axis: acclimatization temperature 

to operational temperature (4-4, 4-15, 15-15, 15-4), st:seeded and fed with  sterile WW, non st: seeded and fed with non-sterile 

WW, seed: seeded and unfed controls; WW: un-amended controls; all points represent the average of duplicate samples, error 

bars indicate standard error (n=2)4. 

Cell counts showed that the bacterial population was approximately 1.25 times higher at 15 than at 4oC (Table 

5.4), giving an extra advantage to the seed acclimatized to higher temperatures.  

Table 5.4 - Bacterial population in the mixed liquor of the microcosms and in the wastewater feed at 4 and 15oC 

Inoculum 

from 4oC 
4-4 st 4-4 non st 4-15 st 4-15 non st 4-4 seed 4-15 seed 

Cells.ml-1 
4,04  

(0.28) 

5.59  

(0.56) 

3.74 

(0.46) 

5.52  

(0.39) 

3.30  

(0.15) 

3.11  

(0.27) 

Inoculum 

from 15oC 
15-15 st 15-15 non st 15-4 st 15-4 non st 15-15 seed 15-4 seed 

Cells.ml-1 
4.16  

(0.33) 

6.61 

(0.47) 

4.1  

(0.24) 

5.76 

(0.31) 

4.61  

(0.41) 

4.25  

(0.27) 

Wastewater 4 WW 15 WW     

Cells.ml-1 
2.27  

(0.34) 

2.21  

(0.26) 
    

Bacterial populations in the microcosm at day , measured from cell counts; Abbreviations: acclimatization temperature to 

operational temperature (4-4, 4-15, 15-15, 15-4), st:seeded and fed with sterile WW, non st: seeded and fed with non-sterile 

WW, seed: seeded and unfed controls; WW: un-amended controls; all values account for the average population calculated 

from duplicate microcosms, values in parenthesis indicate standard error (n=2)4. 

From the population and the methane production (Figure 5.10.a, b, 5.11) the activity was estimated and expressed 

per methanogenic cell (Figure 5.12) – specific activity. For the calculation the assumptions that were made were 

that all measured methanogenic population is active and that all methanogens produce methane at the same rate 

regardless taxonomy. The rates were calculated as an average of the cells between day 1 and 70. This resulted to 

a really high activity, especially for the un-amended controls. 

                                                           
4 The error bars were also calculated with the log-transformed data, however the back transformation of the results could not depict the 

variance of the population resulting to non-representative, really low values (e.g. SE of 1-5 cells.ml-1). A different approach for error bars 
was the estimation of the 95% confidence level of the log transformed mean, however the back transformation resulted to extremely high 
mix and max bars due to the limited number of replication (duplicates, quadruplicates) 
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Figure 5.12 - Specific methanogenic activity at all conditions; X axis: acclimatization temperature to operational temperature 

(4-4, 4-15, 15-15, 15-4), st:seeded and fed with sterile WW, non st: seeded and fed with non-sterile WW, seed: seeded and 

unfed controls; WW: un-amended controls; all points represent the average of duplicate samples; calculated from days 1-70 

Statistical community analysis revealed a clear differentiation for the bacterial (Figure 5.13.b, d), but not the 

archaeal communities. The switch in temperature combined with the increased competition from the wastewater 

cells seem to have an impact to the bacterial community (Figure 5.13.a, c) at such low seed:substrate ratio. 
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Figure 5.13 - a) Bacterial & b) Archaeal MDS plot day 70; c) and d) similarly plotted in dendrogram; labels correspond to the 

acclimatization temperature (1st) and operational temperature(2nd)  (e.g.4-4, 4-15, 15-15, 15-4), st:seeded and fed with  sterile 

WW, non st: seeded and fed with non-sterile WW, seed: seeded and unfed controls; WW: un-amended controls; all points 

represent the average of duplicate samples 

5.2.5. Discussion 

The temperature switch and the competition from the indigenous wastewater cells were able to affect the 

acclimatized at 15oC bacterial communities, although in higher abundance compared to at 4oC (Table 5.4) where 

the effect was less. This revealed that the 15oC acclimatized biomass, at the particular seed:substrate ratio (1:7) 

was not resilient to both factors. The competition caused a dynamic ecosystem (Pender 2004) that formed changes 

in the structure of the less sturdy community (acclimatized at 15oC) according to Figure 5.13.a, c. On the other 

hand, the biomass acclimatized at 4oC managed to retain its structure and performed better. This supports that the 

community ´shaped´ by the 4oC acclimation is a formed community, which once developed, is fixed. This renders 

very hard for the abundant species to go extinct as the probability for other cells (invaders) to hold a vacant position 

and colonize in the community is low due to their lack of adaptation at 4oC and their low population. This also 

suggests that that the acclimatized to lower temperature cells may be more persistent to various conditions and 

seem to be the key microorganisms that need to be present in biomasses that are exposed to low temperatures (< 

15oC). Archaeal communities were not affected either by temperature or treatment, showing that the community 

is formed (Figure 5.13.b, d). 

The bacterial community differentiation was not that evident to the previous trial (Chapter 5.1). I believe that the 

main reason was the seed:substrate ratio, which was twofold higher than the current one (1:3 and 1:7 for the 

d) 

c) 
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previous and current study respectively or 1:4 to 1:8 seed:total vol.). This (seed:substrate 1:3) formed a larger 

community that remained unaffected from the exogenous factors the time that the experiment lasted (96 days). 

For less dense communities though (seed:substrate 1:7) 70 days is an adequate time period to cause differentiations 

in the community structure. This observation agrees with Curtis and Sloan (2004) who pointed that the size of 

both the invaders and the established community are of major importance for the diversity preservation. This 

supports that for low temperature anaerobic wastewater treatment seed:substrate ratios lower than 1:3 are not 

recommended unless the seed includes resilient communities as those developed at 4oC acclimation. 

From the cluster analysis it is shown that two major bacterial clusters were formed (Figure 5.13.a, c), mainly 

separated by acclimation (15oC and 4oC; similarity >30%). The exception was the acclimatized seeded microcosm 

that operates at 15oC with UV-sterilized WW, ‘15-15oC sterile’ (R < 0.445, P = 0.009), which seem that remained 

unchanged retaining its original community structure (similarity >30%) compared to those inoculated with the 

same seed, operating under different conditions (i.e. ‘15-4oC sterile or non’, ‘15-15oC seed’ and ‘15-4oC seed’) 

that had their community structure affected. This demonstrated that the autochthonous in wastewater bacteria, 

starvation and temperature switch may disturb the cells acclimatized to 15oC. Thus, it is possible that seeded 

biomass could be “overgrown” by potential presence of more tolerant bacteria in the wastewater. This could cause 

a loss of function and lead to treatment failure as regardless their tolerance, performance in AD-terms is not known. 

From the lower temperature acclimation, the ‘4-15oC seed’ microcosms were more similar to ‘15-15oC st’ 

microcosms than to the ‘4-4oC seed’. This might have occurred due to regrowth of some of the organisms that 

were present in the original arctic seed and were in low populations after the prolonged exposure to the 4oC 

acclimation period. This supports that some of the cells might have been dormant and remained inactive without 

to fully deplete from the community matrix. No significant differentiation occurred between the 15-4oC (sterile or 

non) and the 15-15oC non-sterile. 

The archaeal communities at both seed based clusters were of high similarity (≥70%) despite the conditions 

(Figure 5.13.b, d). This suggests that archaea were not affected by the indigenous in wastewater cells. WW 

communities were found different to all inoculated samples (similarity >20%, R = 1, P = 0.002). This depicts that 

the archaeal populations from WW cannot outcompete those habiting the seed. Temperature switch had a 

negligible impact to the populations from both seeds (4 and 15oC), obtaining a similarity of 80%. Describing the 

archaeal community as a dynamic ecosystem I conclude that the bio-reactor community structure acclimatized to 

low temperatures (<15oC) is hard to be challenged from the WW cell invasion or temperature differentiation. This 

indicates that the fixed and stable after years of acclimation archaeal community of the seed is hard to be 

outcompeted at these temperature from the low population of the wastewater-originated archaeal cells.  

From the above, it is concluded that acclimation at 4oC results in a more stable bacterial community compared to 

at 15oC, as communities retain a high degree of similarity under different conditions. For archaea the diversity 

seems stable regardless the conditions (temperature, treatment). 

The results are not in full agreement with the findings of the previous experiment (Chapter 5.1) where the bacterial 

communities of the seed remained stable and the archaeal communities were more prone to differentiation. 

Although the archaeal differentiation is not that intense between the current and previous chapter (5.1), the larger 

diversity in the bacterial community structure is obvious. This shows that the higher proportion of bacteria from 

wastewater in the mixed liquor may more actively compete with the seed-originated cells in the bacterial 

community when both exposed closer to the mesophilic range temperatures (15oC).  

Presence of unusually high inhibitory compounds (Cl-) in the wastewater (Table 5.3) decelerated methanogenesis 

at all fed with wastewater microcosms. The inhibition is likely to have a chemical nature as it occurred only to the 

wastewater-fed microcosms, letting the un-amended controls perform normally. The responsible compound was 

possibly NaCl (as Cl- found in high concentrations). This scenario is plausible due to the recent snow fall in the 

region, and excessive use of NaCl to tackle snow accumulation on the streets, which subsequently ended to the 

sewers. I believe that the remaining salt was dissolved in the wastewater and was driven to the wastewater treatment 

plant causing damage to the biomass. Inhibition from NaCl is common (Lefebvre et al 2007). The observed 

concentration in our study is relatively low however it is 100% and 200% higher with the observed concentration 



P h . D .  T h e s i s  –  E v a n g e l o s  P e t r o p o u l o s .  A 9 9 1 7 8 0 6 6  

I n v e s t i g a t i n g  t h e  t r u e  l i m i t s  o f  a n a e r o b i c  t r e a t m e n t  o f  w a s t e w a t e r  a t  
l o w  t e m p e r a t u r e  u s i n g  a  c o l d  a d a p t e d  i n o c u l u m  

P a g e  |79  

 

of the next few weeks (Table 5.3). At 15oC cells could recover after 30 days, possibly due to higher growth rates 

and started performing normally after a while. Unfortunately at 4oC the recovery was slower and hardly noticable. 

The methane production started rapidly at both temperatures for the unamended microcosms. This did not occur 

for the seeded and fed with sterile or non WW ones for the reason described above.  

A comparison between the un-amended seeded microcosms (Figure 5.10.a, b) showed that the methane production 

at 15oC is greater than at 4oC supporting that also the volumetric rate at 15oC is higher. However, Figure 5.11 

shows that the methanogenic population developed at 4oC was lower than at 15oC. Thus, a more representative 

approach would be the use of the specific methanogenic activity (Figure 5.12, CH4.cell-1day-1), ideal for 

comparison of inoculum that differs in cell abundance (Figure 5.11). The specific activity per methanogenic cell 

revealed a different performing pattern (Figure 5.12.) with the cells acclimatized at 4oC operating better than the 

originally acclimatized at 15oC cells when both at 15oC. Less substrate (COD) at the 15oC-inoculum compared to 

at 4oC (Chapter 4.3) can be a plausible reason behind poor performance. The  methane produced from the 

‘acclimatized at 15oC-working at 4oC’ seed (15-4seed) was found lower than the methane formed from the 

acclimatized at ‘15oC-working at 15oC’ one (15-15 seed). Additionally, the CH4 production from both was found 

lower than the expected from the accumulated COD in their seed (from Chapter 4.3). This suggests that there was 

still organic material that could have been utilized. Thus, the cells from 15oC find it harder to utilize the specific 

substrate compared to those originated from lower temperatures for reasons that require further investigation. At 

4oC it can be seen that in absence of other types of available substrates (carbohydrates and proteins) the cells may 

easier compromise and adapt to the insoluble substrate (lipids) that could not previously utilize. 

The specific activities for the un-amended samples at the original acclimation temperatures (4-4oC seed and 15-

15oC seed) were found significantly different (one way ANOVA, P-value: 0.05) with the one at 4oC operating 

better. This suggests that the initial Arctic inoculum (Batch 1, Chapter 4.1) contained psychrophilic 

(psychroactive) communities which were developed after prolonged acclimation (not observed on Chapter 4.2).  

Temperature switch caused a shock to the un-amended samples acclimatized at 15oC that led to an activity decrease 

if not process failure. The shock was not apparent to the cells of the seed acclimatized at 4oC, operating at 15oC. 

This shows that cells acclimatized at 15oC may find it hard to cope with seasonal variation where those 

acclimatized at 4oC seem more capable to go on the process. 

With regards to the microcosms fed with wastewater, unfortunately, those operating at 4oC (4-4oC  15-4oC  sterile 

or non) could not properly recover from the inhibition; thus, it wouldn’t be reliable to focus on them. With regards 

to those operating at 15oC, the pattern is similar to the un-amended controls. Specific activity showed that the 

seeded with biomass acclimatized at 4oC reactors perform at least 4 to 9 times (4-15oC sterile or non) higher than 

those seeded with 15oC acclimatized biomass when both at 15oC (one way ANOVA, P-value: 0.008). Between 

sterile or non wastewater fed reactors, the rates were higher for the latter as previously shown (Chapter 5.1). This 

occurs due to the supplementary bacterial cells present in wastewater that assist in hydrolysis of the insoluble 

material. As in Chapter 5.1 the cells from both origins co-operate and accelerate wastewater treatment. 

Comparing the specific activity here with the activity presented on Chapter 4.2. (better representation at Chapter 

5.3.) it is evident that after 5 batches the cells perform extremly higher, especially at 4oC. This reveals a potential 

of higher adaptation after at least 200 days since batch three. A second scenario would be a change in the 

predominance of the methanogenic population. In batch three the predominant methogenic families at 15oC were 

Methanosaetaceae and Methanomicrobiales where as at 4oC Methanomicrobiales was found to be the dominant 

one (Chapter 4.2). Currently,  the most abundant family is Methanosaetaceae followed by Methanosarcinacreae. 

This suggests that these two communities are more active than Methanomicrobiales, a community that was 

outcompeted by these two after longer acclimation (since batch three). This scenario can be supported by the 

increasing population of Methanosaetaceae over the total methanogenic population compared to the first and third 

batch  (data not shown). This also demonstrates that the pathway of Acetate to CH4 might become predominant 

after long time of exposure to low temperatures. Further research is required to be certain of the above, as this 

result contradicts with previous findings (Chapter 4.1, 4.2). 

In terms of wastewater engineering I suggest that digesters operating to low temperatures need to be inoculated 

with seed acclimatized at lower temperature, as the communities developed perform better regardless the substrate 
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(sterile or non). This points that the un-hydrolyzed material that accumulates during cold periods will be utilized 

at a higher rate when temperature will increase. The hypothesis is mainly supported from the un-amended controls 

as un-hydrolyzed material was the only substrate that could be utilized at a higher rate; c.f. the methanogenic 

activity of the ‘4-4oC seed’ is greater than the ‘15-4oC seed’. The 9 fold higher specific activity of the ‘4-15oC non 

st.’ compared to ‘15-15oC non st,’ suggests that the method is promising for application in places where the warm 

period accounts for the 1/9 of the annual period. 

5.2.6. Conclusion 

The experiment suggests that acclimatization at 4oC results in a stable, sturdy community where hydrolysis 

limitation can be rapidly overcome during seasonal variation.  

5.3. What are the conclusions combining chapter 4 & 5? 

5.3.1. The volumetric rates 

The cells that participate in the treatment process demonstrate high activity even after more than 800 days of 

exposure to low temperature. This supports that the organisms can in principle cope with the low temperatures 

and treat either raw or primary settled wastewater even at 4oC.  

From Chapters 4.2 and 5.1 it is concluded that temperature plays a key role in anaerobic wastewater treatment as 

it affects both hydrolysis and methanogenesis (Figure 5.14). Hydrolysis seems to be the rate limiting step at all 

temperatures regardless the treatment (sterile or non substrate) (Figure 5.14). Temperature switch from 15 to 4oC 

can potentially unbalance the microbial communities, as biomass pre-acclimatized at 15oC, at a seed:substrate 

ratio ≤1:7, finds it harder to retain its diversity stable (Figure 5.13.a) when temperature decreases in the presence 

of numerous from wastewater microbial populations. At larger seed:substrate ratios (≤1:3) the co-existence 

between the cells habiting the seed and those originated from wastewater is sufficient to boost hydrolysis even at 

4oC and overcome the shock from temperature decrease (i.e.15 to 4oC non st WW, Figure 5.14).  

Cells originally acclimatized at 4oC do methanize and hydrolyze at a higher rate compared to those operating at 

4oC acclimatized at 15oC regardless the substrate (sterile or non), and the operational temperature (higher or lower) 

when both at 4oC (seeded at 4oC operating at 4oC (4oCMR) over those acclimatized at 15oC – operating at 4oC 

(4oC st WW, 4oC non st WW). This implies that the cells from 4oC are more tolerant to their acclimation 

temperature. Similarly, at 15oC the ‘15 non st WW’ performs the highest, due to the mesophilic nature of the cells 

from WW that co-operate with the numerous microbial population of the seed. Expressing the rates per cell though 

renders the pattern unlikely to be kept the same. 

5.3.2. The specific rates 

After normalization of the methanogenic population (qPCR) based on the minimum DNA content (Chapter 4.2, 

5.2, min: 2.8ng/μl) the specific activity was re-estimated (Figure 5.15). Normalization ensures that two or more 

samples with different DNA extraction efficiencies would become comparable after adjustment of the qPCR 

measured population based on a factor generated from the fraction between DNAmeasured and DNAminimum-measured. 

At 15oC after 2 batches (Chapters .4.4, 5.4.) the methanogenic performance was reduced by 2.5 times (15 MR and 

15-15 st or non) possibly due to inhibition (Table 5.3), however the operation didn’t stop. Comparing the 15 MR 

with the un-amended 15-15 makes clear that the performance after two batches increased (×2). This suggests that 

cells at 15oC may easily thrive to this temperature and adapt to the WW substrate (either easily degradable or un-

hydrolyzed). Temperature decrease from 15 to 4oC (sterile or non) led to decelerated rates compared to those from 

15-15 sterile or non WW fed microcosms (74-130 times for st and non st respectively). The same phenomenon 

occurred to the un-amended microcosms (un-amended 15-15, 15-4) at a lower level (20-folded decrease). Hence, 

temperature decrease from 15 significantly affects the performance of the cells as the reaction seems to stop (e.g. 

15-4 seed), although substrate is present (supposing lipids mainly, evident from the activity from 15-15 seed).  

At 4oC the specific activity after 2 batches (Chapters 4.2, 5.2) significantly increased (4MR to 4-4 seed). 

Unfortunately a comparison between 4 MR and 4-4st or non though would not be valid due to the chemical 

inhibition. When cells at 4oC were exposed to 15oC WW fed the performance increased of at least 4-9 times 

compared to those originally acclimatized at 15oC (4-15 st, non st - 15-15 st, non st). The phenomenon was 
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repeated for the un-amended 4-15 and 15-15 where the 1st achieved the highest specific activity at this study. This 

suggests that the microbial community developed at 4oC has a higher methanogenic capacity than the one 

originally developed at 15oC. In terms of wastewater treatment engineering this means that the conversion of 

COD:CH4 would be far more accelerated. This manifests that seasonal variation would overcome the problem of 

limited hydrolysis and the substrate utilization rate would be higher if the acclimatized at lower temperature cells 

are predominant in the bioreactor. Finally, comparison of the original activity between the un-amended samples 

at 4 and 15oC (4-4seed – 15-15 seed) reveals the potential presence of a psychrophilic community at low 

temperatures (one way ANOVA, P-value: 0.05). The high performance of the acclimatized at 4oC when at 15oC 

community suggests that if such community it has either narrow temperature range and at 15oC different are more 

active, or that is cold adapted and can operate at both temperatures with an optimum closer to 15oC. WW 

sterilization decelerates methanogenesis as non-sterile samples produced higher amounts of CH4. This is explained 

based on the lipolytic activity of raw wastewater (Chapter 6). 

 

Figure 5.14 - Hydrolysis and Methanogenesis rates for 4, 8 15oC (Chapter 4.2), similarly for 15 to 4oC and 15 to 15oC either 

sterile or non (Chapter 5.1.); MR: original temperature (mother reactors); st WW: with sterile wastewater’; non st: non-sterile 

wastewater; WW stands for wastewater controls; 1, 3, 6, 7 double bars were all pre-acclimatized at 15oC – on the columns the 

temperature switch is being shown; error bars stand for standard error. 

 

Figure 5.15 - Specific methanogenic activity rates for 4, 8 15oC (Chapter 4.2), similarly for 15 to 4oC or ‘4 to 15oC’ either 

unamended controls (seed), sterile or non (Chapter 5.2.); MR: original temperature (mother reactors); st WW: with sterile 

wastewater’; non st: non-sterile wastewater; WW stands for wastewater controls; seed stands for un-fed controls (seed and DI 

water) – on the columns the temperature switch is being shown; all results previously normalized to a 2.8ngDNA/μl content.   
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Chapter 6: Lipid degradation, lipases’ 
kinetics at low temperature 
anaerobic treatment of 
domestic wastewater 

  

Figure 6.1 - Proposed mechanism of triolein hydrolysis from lipases of Candida rugosa in bi-phasic water-oil system. (Karigar 

and Rao 2011); Right: X-ray structure of Candida Antarctica A lipase in its closed state (ref: Proteopedia; active link:  

http://www.proteopedia.org/wiki/index.php/Lipase_from_Candida_ antarctica_in_ closed_state)  

http://www.proteopedia.org/wiki/images/8/8b/CalA01
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6.1. Low temperature lipolysis of domestic wastewater (4, 8 & 15oC) - Lipases: kinetics and identification 

6.2. Abstract 

Previous studies enabled the hypothesis that lipids in anaerobic wastewater treatment accumulate the lower the 

temperature (15 to 4oC). A lipase assay to enzymes that were extracted from seven anaerobic bio-reactors operating 

at 4, 8 and 15oC confirmed the hypothesis as activity at 4oC dropped close to 0. The main reason is likely to be the 

change in lipid structure in addition to deceleration to enzyme kinetics the lower the operational temperature. 

Incubation of the same enzymes (from 4, 8 and 15oC) at 37oC showed that the enzymatic activity was high at all 

temperatures. The specific activity based on samples’ protein content was higher at 4oC compared to 15oC when 

both at 37oC. This manifests that a biomass acclimatized to low temperatures produces more active enzymes than 

those secreted from the cells acclimatized to higher ones when operating at same temperatures. Kinetic analysis 

showed that temperature rise of 4 degrees (from 4 to 8oC) is adequate to kick off the CODlipid:CH4 conversion and 

that the trigger for lipid hydrolysis lies in-between 4-8oC. At a lower than this temperature either carbohydrates or 

proteins or both seem to be the only available substrates. Surprisingly, the anaerobic lipolytic activity in a bio-

reactor operating at low temperatures is increased by the addition of indigenous from raw wastewater 

communities. 

6.3. Introduction 

This study gives an insight into the enzymes that are responsible for the domestic wastewater lipid degradation 

when these are exposed to low temperatures (4, 8 and 15oC). It also helps the reader to clarify whether it is the 

presence or absence of the enzymes, or the kinetics that renders lipid degradation extremely slow the lower the 

temperature (Chapter 4.3). Estimation of the lipolytic activity of the cold adapted seed will potentially explain the 

reason of limited hydrolysis in anaerobic treatment at cold environments.  

Previous experiments in low temperature anaerobic treatment showed that carbohydrates and proteins were 

efficiently degraded, where lipids accumulate (Chapter 4.3). A likely scenario could be that lipid structure tends 

to turn into a solid at low temperature (Neidleman 1987); however I believe that enzymes’ kinetics’ is also 

considered as a plausible reason. Lipid solubilisation is part of the hydrolysis process. Hydrolysis is the 1st step of 

anaerobic treatment and depends on extracellular mainly enzymes to create products that would be further uptaken 

by the acidogens and methanogens, transferring the electrons through metabolism, converting COD to CH4 and 

CO2 (biogas) (Kim et al 2012). Lipids are a major fraction of wastewater composition that may account for up to 

41% of the domestic wastewater COD (Raunkjaer et al 1993); more if the substrate has a lipid based industrial 

origin (e.g. slaughterhouse, soap manufacturing etc.). Thus, it is of major importance to investigate the reasons 

that lead to limited lipid lysis. 

Hydrolysis of lipids leads to LCFAs and VFAs formation, intermediates that are further used for methane 

production, the final product that represents the energy generation. The expected amount of energy from 

wastewater is estimated at 14.0kJ gCOD-1 (Heidrich et al 2012). This shows that 41% of the WW COD might not 

be converted to energy and will be lost. Another drawback of limited hydrolysis is that the partly treated effluent 

that contains un-hydrolysed lipid COD would not be able to meet the discharge standards (UWWTD 91/271/EEC). 

Additionally, lipid accumulation is likely to cause formation of lipid agglomerates in the bioreactor that can 

potentially lead to biomass deterioration, washout (Uemura and Harada 2000, Elmitwalli et al 2000) and lead to 

treatment failure. Thus, lipases seem to hold a key position in the biological reaction as they are responsible of the 

hydrolysis of triacylglycerol and other lipids, important step in the COD to energy bio-conversion. 

Lipases consist of a catalytic triad formed by Ser-His-Asp/Glu which is common for most serine-hydrolases 

(Cygler et al 2004). A specific feature for many of them is the alpha/beta-hydrolase fold consisting of a series of 

parallel β-sheets and a number of helices that flank the sheets on both sides (Ollis et al 1992, Schrag and Cygler 

1997). The majority contains a lid that controls access of the substrate based on hydrophobicity as it is the main 

functional principle, responsible for substrate specificity. As described on Chapter 2.2.10, 2.2.6, and 2.2.7 various 

mechanisms have been naturally developed to render these enzymes able to sufficiently overcome the operational 

obstacles that may occur for anaerobic treatment at low temperatures (Chapter 2.2.3). 
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Activity based proteomics is the easiest approach to identify activity for specific proteins (e.g. lipases), as 

analysing the whole proteome is work intensive and time consuming.  

Para-nitrophenyl palmitate (pNPP) assays, as described by Winkler and Stuckmann (1979) are commonly used to 

estimate the hydrolytic/esterolytic activity of lipases. The main protocol principle of the pNPP assay is the 

estimation of the para-nitrophenol (pNP) that is released following the 1:1 mole:mole reaction as a result of 

enzymatic hydrolysis of pNPP (Schmidinger et al 2006) (Figure 6.2.). The estimation is carried out at 410 nm 

whereas the activity is expressed in U (unit, required amount of enzymes for catalysis of 1μmol of para-

nitrophenyl per minute). According to Gupta et al (2002) this protocol is commonly used for lipolytic research 

endeavors to estimate the esterolytic activity for both lipases and esterases. Other substrates of pNP such as pNP-

caprylate, pNP-acetate, and pNP-valerate can also be used. The selection of –palmitate was based on its carbon 

number (C16), is a compound that is more likely to be found accumulated in reactors with slow 

hydrolysis/fermentation compared to the other three. Additionally palmitate´s high melting temperature (63°C, 

Lide 2005) ensures that at 15oC most, if not all will have a solid nature. This would better represent the status of 

the reactors that have a high content of un-hydrolyzed lipids (Chapter 4.3) most likely in a solid phase.  

 

Figure 6.2- Hydrolysis of hydrophobic pNPP to amphipathic palmitate and p-nitrophenol (Sato et al 2013); for the lysis a 

lipase enzyme is required to be attached on the hydrophobic part of palmitate and subsequently break it down. 

6.4. Materials and Methods 

Reactors assembly; seven quick fit 1L glass batch reactors were used similarly to Chapter 4.1.3, set at 4, 8 & 15oC 

Inoculum; laboratory-scale batch reactors were treating mainly raw, but also domestic WW and had been exposed 

to 4, 8 and 15oC for 3 years (same reactors as in Chapter 4).  The selected seed:substrate ratio was 1:3 for all this 

period of time, the same ratio was followed for the particular study. These reactors were originally seeded with a 

mixture of putatively cold-adapted sediment from Lake Geneva and soils from Svalbard, in the high Arctic (same 

features to first, second, third and fifth batch, Chapter 4.1, 4.2, 4.3).   

Wastewater as substrate; primary settled wastewater was collected from Tudhoe Treatment works at Spennymoor 

(UK) wastewater treatment plant (similar to fifth batch – Chapter 4.3). Where necessary UV-sterilization was 

undertaken as described previously (Chapter 5.2.1).  

Re-feed and re-inoculation procedure was carried out as described on Chapter 4.1.3. 

Methane; CH4 was monitored in the gas phase as % by headspace volume, as described to Chapter 4.1.3. 

VSS; Volatile Suspended Solids content was estimated gravimetrically based on APHA 2005 (as described on 

Chapter 4.1.3). 

Enzyme extraction; the lipolytic activity protocol was based on Gessesse et al (2002). 10ml of mixed liquor was 

taken from the reactors. The pH was adjusted at 8.0 via addition of Trizma (Tris HCl) buffer (Sigma Aldrich, UK) 

achieving a final concentration of 10mM. Triton X-100 and EDTA solution was also added at the optimum 

concentration suggested (0.5 and 10mM respectively). For cell lysis a sonicator was used (Labsonic, UK), with 

maximum frequency of 13KHz. Sonication take place for 30minutes following a pace of 3minutes burst and 5 
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minutes of rest on ice. After lysis centrifugation took place for 10minutes at 4400rpm. The supernatant was further 

centrifuged at 13.000rpm for 10minutes. The 2nd supernatant was the sample for the assay application. 

Enzyme assay; similarly, the assay protocol was based on Gessesse et al (2002) and Kim et al (2012). P-

Nitrophenyl palmitate (pNPP) (Sigma Aldrich, UK) was selected as substrate. 20mM of stock were prepared in 

Isopropanol (Sigma Aldrich, UK). The solution was further diluted 1:20 in 20mM Trizma (Tris HCl, pH 8.0) 

Buffer (Sigma Aldrich, UK) containing 0.1% Gum Arabic and 0.4% Triton X-100 (Sigma Aldrich, UK). 

Enzyme extract and substrate were set onto a plastic cuvette (VWR, UK) at a ratio 1:10. Samples were prepared 

in duplicates and incubated to the corresponding operational temperatures of 4, 8 and 15oC. Additional samples 

were set at 37oC. Unsterilized primary settled wastewater controls were also prepared to identify whether or not 

the activity is originated from the cells habiting the seed or from the indigenous in wastewater cells. An additional 

assay was carried out to raw wastewater samples. This WW controls were mainly added to support the finding 

from Chapters 5.1 and 5.2. Controls with only p-nitrophenyl palmitate were also prepared and tested at all 

temperatures. 

The cuvettes were set into a spectrophotometer (Merck, UK), and the absorbance was measured at 410nm.The 

measurements were taking place every 20 minutes for the 1st hour and more sporadically after that. The correlation 

was estimated by the curve formed by known concentration of p-nitrophenol standards. The standards were tested 

at all operational temperature for time: 0 and after 30 minutes to examine whether there is a change in their 

structure of the compound after a certain time (calibration curves are shown on Appendix – Appendix 2, Figure 

a.2 a, b, c, d). As no differentiation occurred, the curves for time 0 were used. The results were expressed in Units 

(U) of lipase activity, which corresponds to the amount of enzyme that hydrolyses 1μmol of para-nitrophenyl (or 

produces 1 μmol of para-nitrophenol) per minute. For better interpretation the results were normalized based on 

protein content. 

Protein assay; after cell lysis the protein content of the samples was estimated via the Bradford protocol (Brardford 

1976), similarly to Chapter 4.1.3. 

6.5. Results 

The protein and mixed liquor VSS content depict the cellular differentiation amongst samples, which seems low 

when expressed in solids but considerable when in proteins (Figure 6.3.a, b). At both cases the samples that operate 

at 8oC seem to be the richer in cellular material. 

   

Figure 6.3 - a) Protein content of the reactor samples after cell lysis; b) VSS content of the reactors mixed liquor; error bars 

account for standard error, n = 2, 2, 3 for 4, 8 and 15oC respectively. 

The CH4 formation rate was related to temperature, with the highest amount appearing at 15oC (Figure 6.4). The 

differentiation between temperatures though (4, 8, 15oC) was not clear as rates were low and standard error 

especially at 15oC and 4oC was high.  
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Figure 6.4 - Methane formation rate per day per gram of biomass as mixed liquor VSS inoculated in the reactors; error bars 

account for standard error, n = 2, 2, 3 for 4, 8 and 15oC respectively. 

The measured lipase activity at all operating temperatures (and at 37oC) is shown on Figure 6.5.a (raw data on 

Appendix - Appendix 2, Table a.1, 2, calibration curves: Appendix 2 Figure a.2 a, b, c, d). Enzyme activity per ml 

of mixed liquor was found dependent on temperature. When the activity amongst all reactors was expressed per 

protein content and set at same conditions (37oC) the lipases at 4oC seemed to be more active than those from 8 

and 15oC (Figure 6.5.b), or the proportion of the lipases per all proteins at 4oC is much higher than at 8 and 15oC. 

Plotting the activity after normalization (based on the minimum protein content (WW)) assists to the estimation 

of the lipases’ lipolysis ‘k’ coefficient (Figure 6.5.c).  
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Figure 6.5 - a) Lipase activities 4, 8, 15 and 37oC after correlation with the calibration curve; b) similarly, expressed per gram 

of protein content; (c) normalized activity – kinetics representation (activity versus temperature);  4oC excluded (approx. 0.0), 

normalization to the minimum protein content to compare activities of different protein abundance: WW: 0.2 mg/ml, no activity 

detected for wastewater control at any of the operating temperatures; error bars stand for standard error 

Combining the activity at 8 and 15oC (excluding 4oC, almost 0.0) with the activity of all operating temperatures 

at 37oC, plotting to an Arrhenius plot, the estimation of the developed lipolysis kinetics of the particular inoculum 

developed at the three temperatures (4, 8 and 15oC) can be defined (Figure 6.6.).  

 

Figure 6.6 - K Arrhenius coefficient for all enzymes extracted at reactors operating at 8, 15 and 37oC after normalization to the 

minimum protein content, WW: 0.2 mg/ml; sample at 4oC was excluded (approx. = 0.0 U); trendline equations from top to 

bottom correspond to 4, 15 and 8oC. 

Lipases activity combined with methane production data results to the identification of the relationship between 

lipolysis and methanogenesis as a function of temperature (Figure 6.7).  

 

Figure 6.7 - Relationship between CH4 formation and enzymatic lipolytic activity both developed from the seed at 4, 8, 15oC 
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For comparative purposes the activity was also expressed per gram VSS (U.gVSS-1 or µmol pNPP.gVSS-1.min-1) 

at 4, 8, 15 and 37oC (Table 6.1) according to VSS content and the activity on Figure 6.3.b and 6.5.a respectively. 

Table 6.1- Lipolysis activity per gram VSS of mixed liquor at all operational and incubation temperatures (4, 8, 

15 and 37oC) 

Temperature (oC) 4 8 15 4-37 8-37 15-37 

U.gVSS-1 0,00 34,48 67,46 401,17 506,25 793,45 

*4, 8, 15 correspond to the operational and incubation temperatures; 37oC, 4-37, 8-37, 15-37 correspond to the operational and 

incubation temperature respectively e.g. 4-37 signifies operational temperature 4oC, incubation for the essay 37oC  

Lipolytic activity in primary settled wastewater was negligible; however for raw wastewater the activity was 

similar to the one measured from thee seeded samples at their operating temperatures (Figure 6.8.a, b).  

  

Figure 6.8 – Lipolytic activity from raw wastewater; a) activity at all operative temperatures plus at 37oC for comparison with 

previous data; b) specific activity based on sample protein content; error bars stand for standard error, n  2 for all samples. 

6.6. Discussion 

Enzymatic activity was found present at all temperatures, 4, 8 and 15oC (Figure 6.5.a, b, and c). The degradation 

pattern was found not canonical, following the ‘activity-temperature’ exponential trend, suggested from Burgess 

and Pletschke (2008), which indicates that for every 10oC raise the activity becomes double-folded. This shows 

that lipid degradation is dependent to temperature, which affects either enzyme kinetics or substrate properties or 

both. Activity at 4oC was found close to 0; however I believe that there is activity but too low to detect. This is 

supported by the presence of activity at all three temperatures when at 37oC. This demonstrates that for a bio-

engineered lipolysis approach at 4oC a numerous population of cells is required to achieve a good performance as 

a summary of cellular excreted enzymes. 

Apart from the scenario of activity-temperature dependence, a different explanation for the enzyme deceleration 

would be the likelihood of lipid structure differentiation at different temperatures (solidification - crystallization) 

(Neidleman 1987). As lipids solidify the lower the temperatures lipases find it hard to penetrate the external lipid 

surface that works as a barrier. In the case of palmitate this is very likely. P-nitrophenyl palmitate is an ideal 

substrate due to its high melting point (63oC) in addition to its very slow solubility (0.000145 mg.L-1 at 25oC). The 

effect of solubity was excluded by adding only p-NPP controls. Furthermore, p-NPP is a saturated fatty acid. 

Saturation is a factor that decelerates lipolysis as the absence of at least one double hydrogen bond renders the 

movement of the lipase within the lipid molecule difficult. This obstacle is increased at low temperatures 

considering that saturated fats solidify at much lower temperatures compared to the unsaturated ones. These values 

would ensure guaranty that the specific substrate would remain solid during experimentation retaining Alteration 
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of the substrate´s structure/nature can be supported from the raw data collected (Appendix - Appendix 2 Figure 

a.2 a, b, c, d), as samples were incubated to the corresponding temperatures (4, 8, 15 and 37oC) the starting optical 

density immediately increased the lower temperatures (value after 20 minutes incubations: approx. 1.04, 0.64, 

0.61 and 0.27 at 4, 8, 15 and 37oC respectively). This clearly supports change in lipid structure when this is exposed 

to different temperatures. This may affect the enzyme activity as lipases may not be able to act equally in different 

lipid surfaces. In such case it is important to keep the substrate in a form that would be hard to solidify. One of the 

recommended options to tackle solidification would be the addition of 0.1-1% (v/v) detergent (Lee et al 2001). The 

detergents though need to be friendly to the microbial communities to avoid disturbance of the population. 

Additionally, prior application the detergent kinetics needs to be examined to low temperature to determine if it is 

active or not at such conditions. 

The lipolysis capacity of the lipases fell close to 0, if not stop at 4oC incubation (Figure 6.5.a, b); however methane 

was formed (Figure 6.4., 6.7). This suggests that either readymade compounds (VFAs) were present or hydrolysis 

of proteins and carbohydrates occurs at 4oC. The 1st scenario is less likely as no VFAs were detected in the feed. 

The ion exchange chromatography detection limit of 0.8ppm for VFA, combined with the small amounts of 

methane produced cannot drive to a clear conclusion. Previous studies showed that carbohydrates and proteins 

don’t accumulate (Chapter 4.3) at 4oC; this suggests that the 2nd scenario is more plausible. The combined lipid 

degradation activity and methane production at 8oC suggest that temperature increase of 4 degrees is sufficient to 

convert lipids to methane. Consequently, the trigger for lipid hydrolysis and its conversion to methane lays in-

between 4-8oC, whereas carbohydrates and proteins seem to be the only available substrate at 4oC for the specific 

inoculum. This drives to the conclusion that introduction of energy for temperature elevation needs to be taken 

into consideration only when temperature drops lower than 8oC. This conclusion is promising considering that 

most anaerobic digesters operate to temperature >35oC, a fact that results in increased maintenance costs, high 

carbon footprint and unsustainability. 

Incubation of all lipases at 37oC clearly answers whether it is the enzymes themselves or their absence the 

‘Achilles’s heel’ for anaerobic treatment at low temperatures. Obviously the lipases are present (Figure 6.5.a, b, 

c) at all temperatures; their activity varies based on temperature. Thus, bacterial organisms that produce lipases 

do exist at low temperature and are capable to produce extracellular enzymes. 

From a comparison between the activities of the reactors per gVSS at 37oC (Table 6.1) with similar studies it is 

concluded that the lipolysis activity of the particular psychrophilic/cold-adapted inoculum is very promising. Kim 

et al (2012) estimated the activity of the lipases from a mesophilic (35oC) and a thermophilic (55oC) anaerobic 

sequence batch reactor equal to 60 and 65 U.gVSS-1 respectively when at 37oC. These values are 6.2, 8.4 and 13.2 

times lower than the activities that were estimated at 37oC incubation from the lipases produced from the 4, 8 and 

15oC inoculum respectively Actually the activities after incubation of the inoculum at the operational temperature, 

8oC and 15oC, found to be two times lower and equal to Kim et al (2012) ´s activity per gram VSS. Additionally 

Gessesse et al (2003) who optimized this method measuring the activity from activated sludge samples measured 

an activity of approximately 300U.gVSS-1 at 37oC, close to the one valued in this study when the 8oC inoculum 

was incubated at 37oC but less than the 15oC when at 37oC. 

The amount of proteins was quantified (Figure 6.3.a) as an indicative value of the enzymes present; however it 

does not necessarily correspond to the lipase amount, as not all proteins are lipases. Though, it is the most suitable 

quantification approach as it is the closest parameter to enumerate the enzymes. . Although the results were also 

correlated with the VSS content (Figure 6.3.b) the approach would be perilous and was used only comparison 

purposes with similar studies. The nature of the seed (sediment) is rich in plant material or other inadequate for 

the process bacterial cells (e.g. Diatoms) that would result to underestimation of the seed’s lipolytic ability 

Expressing the activity, based on the protein content did not result to a noteworthy difference at the operational 

temperatures (Figure 6.5.b).  This means that the limitation of lipid degradation cannot be tackled by the 

seed:substrate ratio increase unless high volume of seed would be introduced as specific activity at 4oC is 

negligible. Incubation at 37oC showed a different picture. Even though growth rates and cellular populations might 

be low at 4oC, ‘specific activity’ was slightly higher than at 15oC when both samples were incubated at 37oC. This 

suggests that although lipolysis is limited at low temperatures, the enzymes are present, able to hydrolyze substrate 

faster when temperature raises (Figure 6.5.b, 6.6). The higher specific lipolytic activity at 4oC suggests that a bio-
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reactor that operates at low temperatures should be seeded with an inoculum strictly acclimatized to low 

temperatures, preferably at 4oC. This would ensure apart from a higher lipid degradation rate, higher methane 

production activity and a more stable microbial community (Chapter 5.1, 5.2.). In other words, I recommend that 

the start-up of bio-reactors that operate to ambient-low temperature conditions need to take place during the winter 

period. 

Wastewater lipolytic activity varied according to wastewater process origin. Primary settled wastewater showed 

no activity at the operational temperatures. On the other hand, for raw wastewater the activity was similar to the 

reactors’ samples at 4, 8 and 15oC (Figure 6.5.a and 6.8.a respectively). Thus, the lipolytic activity in a bio-reactor 

would be promoted by the addition of the indigenous from wastewater communities. This was also shown on 

Chapter 5.1, 5.2, as non-sterile microcosms had the higher hydrolytic rates that resulted to higher methane 

production rates. Raw wastewater activity was also detected at 4oC, lower than at 8 and 15oC, but slightly higher 

from the seeded samples. 

Methanogenesis occurred faster and at higher rates (Figure 6.4) the higher the temperature. This was supported by 

the lipolytic activity (Figure 6.7), pointing a strong relationship amongst these 2 processes. This makes sense as 

lipids account for an important COD fraction (Raunkjaer et al 1993).  

Although the gas volume was relatively low due to the low wastewater COD content, methanogenesis did not 

stop. This shows that even a small amount of carbon is enough for the cells to kick off. I tend to believe that the 

introduction of generally low in COD wastewater allows only the highly active cells to stay alive or ‘awake’ 

regardless the starvation, ready to metabolise any type of available carbon source. 

In terms of wastewater engineering the study suggests that the problem of lipid accumulation can be tackled by 

the daily day-night cycle, as a 4-degree temperature increase is adequate to trigger the reaction. At extreme 

latitudes though, such increase is not always likely. In such cases the accumulation can be tackled by the seasonal 

variation, where lipids that accumulate during an extended cold period would be utilized during a warmer one (as 

generally shown on Chapter 5.2). As it would be worthless to increase the seed: substrate ratio due to the reasons 

described earlier (activity approx. 0.0 t 4oC), the most applicable engineered solution would be an enzymatic pool 

for pre- or post-treatment. High amounts of purified enzymes would be introduced to the system to increase the 

lipolytic capacity and lead to higher COD:CH4 conversion. This would require a 2-phased reactor configuration 

with a minimum operational temperature at 8oC. In terms of applicability, I recommend encapsulation of enzymes 

in beads and set in a reactor with a membrane barrier. 

6.7. Conclusion 

Lipid degradation rate reduces the lower the temperature gets due to lipase activity kinetics in addition with 

changes in lipid structure.  

Enzymes are present at all temperatures ≥4oC, those that are produced from the cells acclimatized at 4oC have 

higher degradation capacity than those generated from the cells acclimatized at higher temperatures when both at 

warm conditions. This suggests that inoculation of a bio-reactor with low temperature acclimatized biomass is 

highly desired. 

Indigenous raw wastewater cells also produce enzymes able to hydrolyze lipids at low temperatures. The cells 

from primary settled wastewater though were generally found of negligible lipolysis capacity, possibly due to low 

population as showed from VSS and protein content. 

Lipolysis is limited at 4oC however carbohydrates and proteins seem easier to be hydrolysed. A 4-degree 

temperature increase (from 4-8oC) is adequate to trigger the CODlipid:CH4 conversion.  

The daily day-night cycle in addition with the seasonal variation would efficiently reduce the accumulation of 

lipids.   
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Chapter 7: Engineering low temperature 
anaerobic treatment of 
domestic wastewater - scale 
up  

 

Figure 7.1 - Construction site works of an anaerobic digester at Kansas (ethanol plant with start-up planned soon); Dec. 2012 

(Ethanol Produce Magazine, Dec. 2012). 
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7.1. From lab to treatment plant, scaling up via optimizing HRT in a digester operating at 4oC≤T≥15oC - 

volume, HRT & cost. 

7.2. Abstract 

The transition of a research study from a bio-reactor phase to a treatment plant is challenging as variety of 

parameters need to be considered. An anaerobic treatment simulation was carried out based on the effect of 

temperature to specific methanogenic activity. A 36-months temperature dataset from Newcastle upon Tyne (UK) 

region was introduced to adjust the specific methanogenic activity from 4 to 15oC, and achieve wastewater 

treatment for a hypothetical municipality of 20.000 equivalents persons. Safety factors inspired from the 

CODremoved:CODmethanized were included. The results showed that low temperature anaerobic treatment is feasible 

with this specific inoculum, when the methanogenic population will reach the 1.52×109 cells.ml-1, at an average 

HRT that lies in-between 8.8 and 13.5 hours and corresponds to a volume of 745 to 1125 m3. The results also 

showed that there is a significant relationship between previous and current’s month temperature, and 

subsequently HRT. Finally, it was shown that the capital cost for the particular HRTs and volumes does not 

decisively vary and further details need to be considered for scale-up applications. 

7.3. Introduction 

A successful experimental scale up declares whether an experimental study was productive or not. In terms of 

wastewater treatment this is highly important as scaling up from a bio-reactor to a treatment plant requires a 

massive investment of time and money.  

Full scale anaerobic wastewater treatment plants at mesophilic and thermophilic conditions are generally designed 

based on Monod kinetics. These equations were introduced in the 60s to describe the cellular metabolism for 

wastewater treatment engineering. At lower temperature though, it is not certain whether the kinetics would follow 

these equations. Likelihood of substrate´s physical state changes (Neidleman 1987), variation of media density 

(Veeken and Hamelers 1999) and differentiation in bacterial-archaeal diversity render Monod kinetics an 

oversimplified way to scale up low temperature anaerobic wastewater treatment. Furthermore, the introduction of 

VSS in the calculations (Monod) would possibly lead to biomass underestimation, due to the biomass nature 

(sediments contain plant material that result to excess VSS which might mislead the design) and the presence of 

insoluble COD (as VSS, Chapter 4.1). This could potentially cause treatment failure; consequently VSS need to 

be avoided. Thus, there is a need of a different approach in sizing and scaling up a treatment plant operating at 

low temperatures. 

I recommend the introduction of specific methanogenic rates for HRT and size calculation as methanogens are the 

fundamental cells, which finalize the process, converting all intermediates to CH4, I believe that specific 

methanogenic rates are the key to accurately evaluate the capacity of the seed, and subsequently the size of the 

treatment vessel. As cellular activity changes according to temperature, ‘reactor volume-performance-behavior’ 

would follow the same pattern. Thus, sizing via specific rates following the temperature patterns would include 

the effect of ambient temperature variation to the biomass as an in principle fundamental design parameter. This 

would lead to a treatment plant that includes the only un-controlled parameter that dictates the treatment 

performance in the design, temperature. 

To achieve complete treatment the HRT needs to be accurately estimated. A mistaken estimation would lead to 

treatment plant flooding or biomass starvation and decay. Hence optimizations are required. 

I believe that there is a relationship between the previous and current month’s temperature, considering that there 

is a ‘smooth’ climate transition between cold and warm periods during the year time. An equation that connects 

these two would minimize the HRT errors from a mistaken weather forecast as it would include a known 

temperature value. This correlation between temperatures would promote more accurate HRT adjustments in 

anaerobic wastewater treatment plants operating at low temperatures and would lead to a more reliable and 

efficient treatment. 

 In this study 3 approaches are presented for HRT evaluation. The actual HRT, based on the cellular performance 

as a function of a 3-year temperature data-set, the optimized one, by increasing the polynomial trend line fit of the 

actual HRT versus time and the ‘forecasted’ one, where the HRT would be estimated including the previous and 
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current month’s temperature. The last would assist the operator engineers to adjust the HRT accurately, 

minimizing the effect of a false weather forecast by including the previous month’s temperature.  

Finally, as HRT dictates the reactor volume, it potentially affects the cost. Capital cost estimation was carried out 

for the 3 HRT-volume approaches.  

7.4. Materials and Methods 

For applicability purposes 7 assumptions were made.  

Assumptions: 

1. 2010-2012 temperature data were collected for Newcastle upon Tyne region (Figure 7.3.) (Metoffice)  

2. The methanogenic population of the seed (seed:substrate, 1:7) assumed for the study as 7.6×108 

methanogenic cells per ml (or 1.52×108 for a ×2 biomass increase, 1:3 seed:substrate from 1:7, or 1:4 

seed:total vol. to 1:8 seed:total vol.). 

3. All decimal places at temperatures are excluded (<0.5rounds down, >0.5 rounds up), (concept 3 below 

was carried out with both actual and adjusted T values). 

4. Temperatures lower than 4 were set as 4oC; similarly, temperatures higher than 15 were set as 15oC 

(concept 3 below was carried out with both actual and adjusted T values). 

5. Maximum population served by the WWTP = 20.000 persons 

6. Organic load per person = 55g COD.person-1.day-1; hydraulic load = 100L.person-1day-1 

7. 50% of the raw influent is removed from preliminary treatment in terms of COD; 125 mgCOD.L-1 is the 

acceptable discharge level according to UWWTD (91/271/EEC) and the desired treatment level. 

The ratio seed:substrate was selected as 1:3. From the previous 2 studies (Chapter 5.1 and 5.2) it was showed that 

this ratio is efficient in COD:CH4 conversion and ensures predominance and preservation of the microbial diversity 

regardless temperature or treatment (non sterile wastewater) conditions. The calculations were carried out using 

the data from a 1:7 seed:substrate approach (based on Chapter 5.2) and were converted to a 1:3 ratio as the latter 

ratio guaranteed the predominance of the arctic inoculum cells over the wastewater originated ones. The 

acclimation of biomass at 4oC rather than at 15oC is highly recommended (Chapter 5.2), hence a start-up over the 

winter is highly desired. 

The HRTs and reactor size estimation is based on the maximum specific rates observed (Figure 7.2.). Activity 

from 4, 15oC and the temperature switches from higher to lower range and vice versa were included. Linear 

interpolation was applied for the values in-between (Eq. 17). At this point an exponential approach could have 

been more representative; however as there is no 3rd value in-between, the linear approach is the only option.  

𝒚 = 𝒚𝟏 + (𝒙 −  𝒙𝟏) × (
 𝒚𝟐 −  𝒚𝟏

𝒙𝟐 −  𝒙𝟏

) 

 

Figure 7.2 - Specific methanogenic activity from seeded samples with un-hydrolyzed wastewater material; the numbers show 

acclimation temperature -operational temperature (reproduced from Chapter 5.2, Figure 5.12). 
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Concept 1: Sizing a reactor  

 The specific rates (fmols CH4.cell-1.day-1) were converted to accommodated OLR (kgCOD.m-3.day-1)  

 The wastewater based on the municipal population was converted to concentration (kgCOD.m-3) 

 From the cellular methanogenic capacity and the concentration that needs to be treated the HRT was 

estimated; the introduction of a factor inspired from Chapter 4.2 as CODremoved:CODmethanized (Figure 7.4.) 

was introduced to include the possibly accumulated fraction of un-hydrolyzed material (as COD)  

 The HRT was expressed in hours based on a 1:7 seed:substrate ratio (as specific rates were estimated at 

the particular ratio (Figure 5.12)) and then divided by a factor of 2 to represent a 1:3 ratio. 

 HRT × Q (flow) results to the required tank volume; choosing a circular digester the ‘h’ height and‘d’ 

diameter were selected. 

 

Figure 7.3 – Newcastle upon Tyne temperature for the period 2010-2012 (Metoffice). 

 

Figure 7.4 – ratio COD removed to COD methanized (reproduced from Chapter 4.2) versus temperature  

From Figure 7.4, solving for ’y’ the safety factor values for all temperatures can be estimated (Table 7.1): 
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Table 7.1 – Safety factor as a fraction of COD methanized to total COD removed 

T (oC) COD removed: COD methanized 

4 2.65 

5 2.41 

6 2.12 

7 2.00 

8 1.83 

9 1.66 

10 1.52 

11 1.38 

12 1.26 

13 1.15 

14 1.05 

15 0.95 

Concept 2: Optimizing HRT 

On excel a polynomial trend line cannot exceed the 6th degree; to improve fit a multivariate regression is required. 

This would increase the R2 and the trend line fit between the data points at a level that will not affect the 

Diagnostics tests. In terms of wastewater engineering this would provide with a more accurate estimation of the 

average HRT. In practice this would create a model that can accurately describe the manipulation of the 

methanogenesis from wastewater performance according to the regional temperature pattern. 

The regression analysis was carried out on Excel 2010 using the Analysis Tool Pak add-on. The HRT values were 

logarithmically transformed and the calendar dates were expressed numerically as in sequence (i.e. January 2010 

= 1, February 2010 = 2…36). This step is mandatory as regression analysis strictly assesses numerical data. The 

time values were further transformed using the Eq.18 and formed a matrix of [8x36] (Appendix - Appendix 3, 

Table a.3 blue cells). No specific mathematical background lies behind this option other than the need of a 

transformation that would ‘lift’ the regression (Figure 7.5). Other transformations were also tested with no 

significant fit (square roots, squares, etc.). 

x1 = 11 

x2 = 12 

x3 = 13 

x4 = 14 

x5 = 15 

x6 = 16 

x7 = 17 

x8 = 18 

Where 1 = the numerical value of the month 1, 2, 3... ..36, and superscript is the polynomial degree (1, 2... 8).  

The regression amongst the 2 matrixes Ln(HRT) and Time (transformed) provided with an equation of 8 

coefficients and an intercept ‘c’. This formed a table of [1x8]. The 8th degree was chosen as the regression achieved 

the maximum R2, without failing the diagnostics tests (heteroscedasticity, autocorrelation and multicollinearity). 

Trials with more/less than 8 coefficients were also analyzed but were rejected due to lower validity with regards 

to the statistical diagnostics tests compared to the 8th degree polynomial.  

Eq. 18 

 18 
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All 8 coefficients were tested for statistical significance prior use (ANOVA). Apart from diagnostic tests Akaike 

criterion (AIC) tests were also carried out, showing also that the 8th degree polynomial is the most suitable 

regression to describe the HRT based on temperature relationship. 

The new trendline was designed (Ln(HRT) on Y axis versus time)) using the appropriate x (transformed time 1, 

2, ..8) and y (coefficients 1, 2, ..8) in the equation and the function MMULT (matrix multiplication) of excel, 

adding the intercept ‘c’. Setting the new values on the natural logarithm led to the estimation of the new optimized 

average HRT. 

Concept 3: Predicting HRT & decision making 

To define the relationship between the current and previous month´s temperature and HRT a new regression was 

carried out and studied, combining the Ln(HRT) from ‘concept 2’ and the 2 temperatures (current ‘T(t)’ and 

previous ‘T(t-1)’) for all months excluding the 1st. The ‘T(t)’ plays the role of the one given from a hypothetical 

weather forecast. The regression was carried out based on both actual and adjusted temperatures. 

Using Excel 2010 and the Analysis Tool Pak add-on, the new model equation based on the parameters above was 

designed. Statistical tests (ANOVA and Diagnostics (heteroscedasticity, multicollinearity and autocorrelation)) 

investigated the coefficient validity and their statistical significance. The results showed that high validity is 

ensured for the two coefficients of the equation that correlates the current temperature (T(t)) with the previous 

month’s one (T(t-1)) and the constant ’c’ (for both actual and adjusted temperatures). 

Multiplication of the coefficients by the corresponding temperatures (a1 x T(t) and a2 x T(t-1), (Eq.19)) leads to an 

estimation of a new HRT, which is correlated with the previous month’s T. The new model proves that there is a 

significant relationship between previous ‘T(t-1)’ and current ‘T(t)’ temperature, and subsequently between their 

corresponding HRTs. 

Ln(HRTforecasted) = ao + a1 T(t) + a2 T(t-1)   Eq. 19 

Where ao is the constant ´c´, a1 and a2 are the 1st and the 2nd coefficient, t is time and T accounts for the temperature. 

The forecasted approach was carried out with both the adjusted (assumption 3, 4) and actual temperature values 

with no significant difference observed in terms of HRT; this shows that actual and adjusted temperatures are 

highly correlated (tan φ: 0.982). 

An interesting approach would also be the introduction of the rate of change of temperature. This would assist in 

the projection of the future temperature by us; however this is not the purpose of this study and not much analysis 

was carried out on that.  

Concept 4: Capital cost  

The total capital cost (CTC) of a digester is highly related to the reactor volume (Eq. 20) (Brown 2003). 

𝐶𝑇𝐶 = 𝑀 ×  𝑉𝐷
𝑆𝐹 

Where VD is the digester volume, SF is the scaling factor and M is the multiplier based on the type of unit operation 

(i.e. Brown 2003). For anaerobic digestion though such values are unavailable. AgSTAR (2009) provided with 

cost related graphs for plug flow digesters (at 2005-2008); thus the equation below (Eq. 21) can deliver a rough 

estimation of the cost.  

𝑪𝑻𝑪 = 𝟔𝟏𝟕 ×  𝑺𝑶𝑷 + 𝟓𝟔𝟔. 𝟎𝟎𝟎 

Where SOP is the operational size that can be estimated from the equation below (Eq.22). Changing the potential 

methane (PCB) and expected energy from methane (ED) according to the domestic wastewater characteristics we 

would have a representative of the cost of a digester treating domestic wastewater equation (Eq.22). 

𝑽 = 𝑺𝑶𝑷 × (𝒃 ×
𝑯𝑹𝑻 × 𝑷𝑪𝑩 ×  𝒇𝑪𝑯$

𝑬𝑫 ×  𝒇𝑩𝑫 × 𝑻𝑺
) 

Eq. 20 

 18 

Eq. 21 

 18 

Eq. 22 

 18 
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Where V is the reactor volume, SOP as above, beta (b) is a lumped unit conversion (numerical value is 0.0377) 

(Faulhaber et al 2012), HRT is the hydraulic retention time (calculated above), PCB is the potential of methane 

per person (0.020625m3/person/day for 55gCOD/person/day), fCH4 is the percentage of methane in the biogas 

composition equal to 90% (from Chapter 4.2), ED is equal to the energy expected equal to 14.0 MJ/kgCOD 

(Heidrich et al 2011), fBD, TS are the total solids equal to 0.03kg/L (Chapter 6, estimated for the VSS needs). 

Solving Eq.22 for SOP and using the Eq.21 the CTC can be estimated. 

The same can be carried out for the HRTactual, HRTnon-optimized and the HRTforecasted and end up with a comparative 

cost study with the only parameter that changes be the Volume based on the HRT. 

The price needs to be corrected to 2013 US Dollars ($) (8.9% reduction based on U.S. Inflation 2013). 

As the treatment plant is not initially planned to produce biogas for electricity purposes a 36% correction 

(reduction) in the total cost price is recommended (USDA 2008). 

7.5. Results 

Concept 1 

The collected temperature data (assumption 1) were rounded and transformed (all 4oC < T < 15oC) according to 

assumption 3, 4; the temperature time series is presented on Figure 7.5.a. Combining the methanogenic population 

(assumption 2), with the temperature pattern (switch up or down or stable) and the activity from Figure 7.2, the 

specific activity for 7.6×108 cells per ml per day at all temperatures was estimated and presented on Figure 7.5.b. 

The activity was further converted into the OLR that can be accommodated. From the population, the 

organic/hydraulic load per person and the pre-treatment efficiency (Assumption 5, 6, 7) the concentration that 

needs to be treated estimated at 0.15 kgCOD.m-3. From the comparison between the OLR that can be 

accommodated and the concentration that needs to be treated, including the safety factor values (Table 7.1) the 

treatment HRT is estimated (Figure 7.5c for a seed:substrate ratio of 1:7 and 1:3). All steps are shown on Appendix 

– Appendix 3, Table a.3. 

The HRTs from Figure 7.5c has an average of 27.0 and 13.5 hours for the 1:7 and 1:3 seed:substrate ratios 

respectively. From the population (assumption 5) a flow of 2.000 m3.day-1 enters the WW treatment plant; as V = 

Q × t, solving for V (m3) a volume of 2245.8 and 1122.9 m3 for 1:7 and 1:3 seed:substrate ratios respectively is 

required. Selecting the 1:3 ratio, the proposed dimensions for a cylindrical digester are shown on Table 7.2: 
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Figure 7.5 – a) Adjusted temperature, rounded and transformed (all 4oC < T < 15oC) (assumption 3, 4) as function of time; b) 

Specific activity as a function of temperature trend (up, down, stable) for the desired methanogenic population (assumption 2) 

and Figure 7.5a); c) estimated HRT for 1:3 and 1:7 seed:substrate ratios – trend line based on 6th degree polynomial. 

Table 7.2 – Digester design parameters 

Parameters Value 

h (m) 8.30 

d (m) 4.10 

ratio h:d 2.02 

Area (m2) 13.20 

total vol. (m3) 1135.70 

Concept 2  

After the estimation of a general HRT and the selection of the 1:3 ratio, an optimized regression fit between HRT 

and time would provide with a more accurate value in terms of HRT and tank volume. 

The HRT values from ‘concept 1’ were logarithmically transformed; the independent variable (calendar months) 

was numerically expressed as 1, 2, 3.. .36. After selection of an 8 degree polynomial the values of time were 
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further transformed based on Eq. 18. This formed a new matrix of [8x36]. A new regression between ln(HRT) 

[1x8] and the transformed time [8x36] (Appendix - Appendix 3, Table a.4 blue cells for transformed time, red 

cells for LnHRT) provides with an equation of 8 coefficients, or a table [1x8] and an intercept. The new regression 

is shown below (Eq. 23, Table 7.3).  

Diagnostics tests for heteroscedasticity, multicollinearity and autocorrelation showed no systematic error (high R2 

adjusted), no linear relationship and generally no relationship between the trendline’s residuals respectively 

(autocorrelation, heteroscedasticity, multicollinearity). This proves that the equation should not be optimized 

further than the 8-degree polynomial (autocorrelation = 1.36). The 8 degree option ensures that the AIC criterion 

value is the minimum from all other options of coefficients’ numbers, a fact that also supports the model-equation 

validity. An ANOVA test (Appendix - Appendix 3, Table a.6) also proved the statistical significance of the 

equation (Table 7.3). Its significance is also supported from the high R2 and R2 adjusted (Appendix - Appendix 3, 

Table a.5), the 2nd supports that its validity is unlikely to change with addition of more variables-predictors. 

Regression equation (Eq. 23): 

Y(t) = -3933c + 8.539t1
1 - 4.282t2

2 + 0.893t3
3 - 0.094t4

4 + 0.0054t5
5 - 0.0002t6

6 + 2.91E-06t7
7 - 2.00E-08t8

8  

R2 = 0.7951 - R2 adjusted = 0.7345 

Table 7.3 – Equation coefficients with corresponding statistical validity results (from ANOVA) 

 Coefficient* Std. Error t-Statistic Prob. 

c -3.9327 2.5550 -1.5392 0.135394622 

t1 8.5389 2.7709 3.0816 0.004699298 

t2 -4.2820 1.0131 -4.2268 0.000242294 

t3 0.8930 0.1750 5.1032 2.30828E-05 

t4 -0.0939 0.0164 -5.7264 4.36393E-06 

t5 0.0054 8.8090E-04 6.1480 1.43383E-06 

6 -0.0002 2.7102E-05 -6.4153 7.13698E-07 

t7 2.9123E-06 4.4355E-07 6.5659 4.83221E-07 

t8 -1.9831E-08 2.9917E-09 -6.6287 4.11033E-07 

*The coefficients correspond to the Eq. 23 intercept and coefficients, c, t1, t2 t3, t4, t5, t6 ,t7, t8 

 

Figure 7.6 – Logarithmically transformed HRT as a function of time and its new optimized polynomial trendline (8th degree) 

(Eq. 23). 
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Solving Eq. 23 using the transformed time data results to a new update 8th degree polynomial trendline (Figure 

7.6). On Excel this is feasible using the MMULT function between the matrix of the coefficients and the one of 

the transformed time, adding the intercept ‘c’. 

The new values from the multiplication were set on the natural logarithm to convert them to HRT (hours). From 

the new values the average optimized HRT was estimated, HRToptimized: 8.88 hours.  

Knowing the flow (Q) and HRT (t) the volume of the digester was estimated as 740.1m3; in detail (Table 7.4). 

Table 7.4 – Optimized digester design parameters 

Parameters Value 

h (m) 7.4 

d (m) 3.80 

h:d 1.95 

Area (m2) 11.34 

Volume (m3) 747.54 

Concept 3 

To build a relationship between HRT-Tt and HRT-T(t-1) a new model is required to involve both temperatures. 

Applying regression between actual Tt, Tt-1 and Ln(HRT) the equation below (Eq.24) is formed. LnHRT accounts 

for the Ln transformed values of HRT that were estimated on concept 1. The X, Y for the regression is showed on 

Appendix – Appendix 3, Table a.7 (blue for X, red for Y). 

Y(HRT) = 3.392ao – 0.564Tt + 0.320T(t-1) (Eq. 24) 

With an R2 = 0.849 – R2 adjusted = 0.840 

Where ao is the constant ´c´, Tt is the coefficient for current temperature, and T(t-1) is the coefficient for the previous 

month’s one 

The equation is significantly valid as it implies to all diagnostic tests (heteroscedasticity, autocorrelation and 

multicollinearity), with high R2, R2 adjusted and statistically significant coefficients based on their p-values (>95% 

validity) (Table 7.5) (Appendix – Appendix 3, Table a.9, 10). Akaike criterion (AIC) was also found <1.0. 

Table 7.5 – Equation coefficients with their corresponding statistical validity (from ANOVA) 

 Coefficient Std. Error t-Statistic Prob. 

ao 3.392605 0.285423 11.886233 2.816E-13 

Tt -0.563846 0.044609 -12.639625 5.5126E-14 

T(t-1) 0.320419 0.043455 7.373416 2.1880E-08 

Combining the current and previous month’s temperature with the equation coefficients based on the significant 

relationship between ‘Tt’, ‘Tt-1’ the forecasted HRT can be estimated (Figure 7.7, 7.8). 

The regression procedure was repeated for the HRT forecast based on the adjusted temperature data (Appendix – 

Appendix 3, Table a.8). The new coefficients were really close to those estimated from the actual temperature. 

The new regression is shown below (Eq. 25). ANOVA test for the new coefficients is shown on Appendix – 

Appendix 3, Table a.11, 12. 

Y(HRT)´ = 3.633a0 – 0.5819t+ 0.317(t-1) (Eq. 26) 

With an R2 = 0.78 – R2 adjusted = 0.766 

Using the natural logarithm the forecasted LnHRT can be converted to HRT (hours). This was carried out for both 

actual and adjusted temperature.  The graph with the actual and forecasted HRT is shown on Figure 7.8. On the 

figure the optimized HRT versus time from concept 2 was also included. 
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Figure 7.7 – Actual and forecasted Ln(HRT) as a function of time (regression based on the actual temperatures). 

 

Figure 7.8 – Forecasted (for both adjusted and actual temperature), optimized and actual HRT (defined on concept 1) as a 

function of time; adjusted and actual lines are overlapping due to the high correlation that renders them almost identical. 

Designing a reactor based on the forecasted HRT (actual T) may also be an engineering approach based on the 

average forecasted HRTactual value (Table 7.6). The use of the Tadjusted leads to a minor volume increase of 3m3. 

Table 7.6 – Forecasted digester design parameters 

Parameters Value 

h (m) 7.80 

d (m) 4.00 

h:d 1.95 

Area (m2) 12.57 

Volume (m3) 967.40 
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A different approach to forecast HRT is by predicting the temperature with no need of a weather forecast. A rough 

estimation can be carried out based on the rate of change. 

The rate of change of the HRT of the 36 forecasted HRTs is estimated as shown on Eq.26.  

Average ((HRT(t) - HRT( t-1)) / HRT(t-1)) = +0.06342 (Eq. 26), 

or 6.34% with 34.3% standard deviation - high variations such as those for months 3, 12, 13 were excluded due to 

extreme fluctuations (Stdev > 3.0 sigma needs to be excluded Pukelsheim 1994). 

Thus, the HRT can be in theory estimated by combining the previous month’s temperature plus ‘Average 

ΔHRTt/HRTt-1’. A more accurate approach would also be the introduction of the T-statistic value (1.96) as the 

variance of the fore coming months is unknown; however, this would create an even higher standard deviation 

and would risk the applicability of the equation. Its use might be applicable if more values will be assessed to 

lower the deviation. 

As an overall, the validity and description capacity can be increased the more the time passes as more temperature 

data would be added and result to an improved description of the temperature phenomena over time. This suggests 

that the model would have the capacity to minimize HRT errors from weather forecasts by including the previous 

month’s temperature. More monthly temperature data is likely to also provide with a more accurate rate of change 

that would assist in HRT forecasting based on past detailed treatment plant’s behaviour.  This approach seems to 

be a useful tool for wastewater treatment plant operators that need to predict temperature conditions, to boost 

anaerobic treatment capacity at low temperature conditions (i.e. 4oC≤T≤15oC). The approach can not only be 

applicable in a monthly basis as the rationale is the same even for shorter time periods (weekly or daily average). 

I believe that a monthly basis is a more representative approach as average temperature variations are more 

distinguishable compared to those occurring for shorter period of time, and subsequently are enough to cause 

evident changes in the specific cellular activity. 

Concept 4 

The optimum solution, the optimized HRT (HRT = 8.82 hours and Volume = 737.4 m3) accounts for a cost that 

can be estimated by Eq. 22, solving for SOP with the parameters as described at Chapter 7.4-concept 4 

SOP = 7502.8 as operational size 

From Eq. 21 solving for CTC 

CTC = 5.194.478,2 US Dollars ($) 

Due to inflation from 2009 the dollar price reduced by 8.9%. 

Thus CTC 2013 = 5.657.117 US Dollars ($) 

As the digester is not going to be used for electricity production purposes a reduction of a 36% of the capital cost 

is acquired: 

 CTC for optimized HRT = 3.672.471 US Dollars ($) 

Similarly for actual HRT (average HRT = 13.5 hours and Volume = 1135.7 m3) the capital cost is: 

 CTC for actual HRT = 3.628.174 US Dollars ($) 

For the forecasted HRT with adjusted or actual Temperature (average HRT = 11.5 hours and Volume = 967.4 m3) 

the capital cost: 

 CTC for forecasted HRT = 3.651.088 US Dollars ($). 

7.6. Discussion 

The 1st Concept shows that it is feasible to estimate an operational HRT for the treatment of a hypothetical 

municipality based on specific cellular activity. All the expected HRTs are relatively low even though the 

operation is at low temperature. Exception is the one that was estimated from the transition of higher temperatures 

to 4oC (up to 121 hours, Appendix – Appendix 3, Table a.3). This indicates the size of the shock that cells 
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experience when an acclimatized at relatively high temperature (15oC) seed transits to an extremely low one (4oC). 

This also depicts the challenge that previous treatment endeavors met after short term acclimation of mesophilic 

biomasses to low temperatures (e.g. Bowen et al 2014). The shock can be avoided if the seed was cold-adapted or 

psychrophilic (e.g. activity of the acclimatized and operative at 4oC).  Another benefit of low temperature 

acclimation is the high methanogenic capacity of the seed with regards to specific activity. Hence, extremely low 

temperatures (4oC) might be useful for the development of a sturdy community (as discussed on Chapter 5.2), 

however it might be unattainable as an operational temperature for anaerobic wastewater treatment unless a 

biomass highly active at such conditions is introduced (e.g. activity 4-4oC, 4-15oC, Chapter 5.2). An average tank 

volume of 1135.7m3 is realistic, fact that manifests that LTAD with a proper inoculum may be feasible with no 

need of high HRT and large tank volumes; however, the development of an active methanogenic community equal 

to 1.52×109 cells.ml-1 seems to be the greatest challenge. 

The regression from concept 1 between the HRT versus time (Figure 7.5.c) appears with a maximum fit of a 6th 

degree polynomial and an R2 of 0.4819. The descriptive capacity of the trendline is poor. Practically, this might 

lead to operational errors as the regression cannot exactly describe the relationship between the temperature trend 

and HRT.  Hence, further optimization should be carried out via regression analysis. Testing for the best fit from 

a 7th degree polynomial up to a 20th it was concluded that the 8th degree is the optimum. Higher or lower degrees 

polynomials couldn´t pass the diagnostics tests (i.e. 8th degree for autocorrelation p = 0.0136, close to the limit). 

Thus, the optimum degree is the 8th with an R2 of 0.7951 and an R2 adjusted equal to 0.7345, increasing the 

descriptive capacity between HRT and temperature by 49% (Figure 7.6). The high R2 adjusted value supports that 

the new regression is unlikely to change regardless if new variables enter the model. This automatically renders 

the coefficients highly significant. The significance of the new polynomial is also supported by all p-values for 

the individual coefficients from the ANOVA test. Values close to ≈ 0.000 and a t-statistic >|1.96| demonstrate 

validity higher than 95%. Another evidence that supports the significance of the coefficients of the equation is the 

Significance F value, which is really small (1.6×10-7) (R2 and ANOVA on Appendix – Appendix 3, Table a.4, 5). 

The optimized regression results to an average HRT that reduces the tank volume by 37% compared to the 

estimated HRT from the actual values. The smoothness of the curves excludes all peak points and results to an 

average HRT of 8.82 hours. This value is satisfactory as it is usually workable at mesophilic or thermophilic 

treatment plants where introduction of energy is mandatory. Thus, a sophisticated design may ensure good 

performance, similar to conventional wastewater treatment plants even at a temperature range between 4 and 15oC 

using the specific inoculum. This approach combined with an active at low temperatures seed would easily 

promote sustainability, not only due to its treatment potential but also based on its easy application (relatively low 

HRT) and the net energy consumption and neutral carbon footprint (or at least a minimum amount to prevent frost, 

temperatures ≤ 5oC are not recommended). 

Adjusted and actual temperatures showed to be highly correlated (tan = 0.982). This suggests that the assumptions 

3, 4 (Temperature round up-down; 4oC < T < 15oC) cannot have a significantly affect the operational HRT. Hence, 

HRT, volume and cost based on the 1st temperature approach (actual) should be similar to the 2nd (showed on 

concept 3). The introduction of the ‘CODremoved:CODmethane’ factor plays key role to the treatment efficiency as the 

lower the temperature the more the un-hydrolyzed material remaining in the tank (shown on Chapter 4.2). 

Insoluble COD may cause treatment inhibition due to toxicity, biomass degradation or reactor failure if 

accumulation will reach a certain level. Including this important for the operation parameter excludes one of the 

factors that usually lead to treatment plants´ failure. Additionally it is a factor that is based on a sophisticated 

rationale compared to many of the formulas in wastewater engineering that introduce empirical parameters that 

were observed a few decades ago and their applicability is under question. Apart from this operational factor, no 

other safety factor was introduced. I believe that in terms of organic treatment this factor is efficient; however in 

case of high hydraulic fluctuations a 2nd one might need to be taken into consideration. 

The model that includes the previous month’s actual temperature to estimate HRT (Concept 3) demonstrated high 

descriptive capacity comparing with the actual HRT (Figure 7.7, 7.8). An additional regression using the adjusted 

temperature values also showed high accuracy in forecasting HRT. The strong descriptive capacity is supported 

by the R2 and R2 adjusted with values of 0.849 and 0.84 for the regression with the actual temperatures and 0.78, 

0.76 for the one based on the adjusted temperature (Appendix – Appendix 3, Table a.9, 11). Comparing these two 

it seems that the one with the actual temperatures is more significant not only due to the slightly highest R2, R2 
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adjusted but also from the F value that indicates higher validity (6.7×1014 > 3×1011 for actual and adjusted 

respectively) based on the ANOVA test (Appendix – Appendix 3, Table a.10, 12). 

The HRT(Tt, t-1) model for the HRT estimation including Tt and Tt-1revealed that there is a strong relationship 

between the previous and current month’s temperature and subsequently between previous and current month’s 

HRT. The results seem to support my hypothesis that there should be a smooth transition from a warm period to 

a cold one and vice versa. The new regression appeared to have statistically significant coefficients, with p-values 

low enough to support a statistical confidence level, passed the diagnostics tests and had a t-statistic >|1.96|. This 

equation can be a tool to minimize the effect of weather forecast errors to HRT adjustments. HRT is a fundamental 

wastewater treatment parameter, which ensures treatment reliability; higher HRT values lead to biomass starvation 

and lower lead to insufficient treatment. Thus, accuracy is mandatory, especially at treatment plants operating at 

low temperatures, as small temperature fluctuations result to tremendous operation differences (e.g. 1 degree 

difference between 4 and 5oC leads to massive HRT differentiation). This phenomenon was also evident as 

expected to the concept 1 and possibly implies for the limit of LTAD in terms of applicability. Generally though, 

this equation was based on the temperature data that were gained for the Nort-East British region, hence, it is 

under question whether it can be applicable where the temperature pattern differs. Nonetheless the rational should 

be the same and following the methodology am convinced that a similar model can be built. 

A different approach to forecast HRT is the introduction of the rate of change of HRT to indicate that the current 

temperature is equal to the previous one differentiated according to the rate. The rate of change was calculated 

from the sequential differences between the 36 temperature values, however the not so great amount of data 

combined with their high variance led to high standard deviation. To nullify prediction errors the 1.96 value of t-

statistic can be included.  This would achieve higher predictive capacity but less accuracy as it will increase the 

standard deviation. Hence, a model development with more month by month data is likely to boost accuracy and 

minimize the standard deviation. Thus, it is the engineer’s responsibility whether or not to use the rate of change 

according to the level of accuracy that is required. For the current study I believe that the rate of change cannot 

lead to a reliable prediction due to the high standard deviation that may reduce the accuracy of the HRT forecast. 

As showed on Figure 7.8 the HRT estimation or projection (Concept 1, 3) generally demonstrated a smooth HRT 

evolution between temperatures except when the transition is from 5 to 4oC, where high HRT values were 

observed. Specifically, for this transition the retention time increases at least 3 times. Thus, 1 degree of temperature 

differentiation at the lowest temperature range requires at least 3 times higher reactor volume.  In terms of finance 

and management analysis I believe that a WWTP that operates at 4oC as minimum temperature is not attainable 

and in terms of applicability it might need to be considered that the temperature limit for anaerobic wastewater 

treatment lies at 5oC. Maybe a 3rd or more specific activity data points between 4-15oC would have given us a 

different pattern by revealing a smoothest transition in the adaptation of cells when the temperatures decreases. In 

general though, the increase of the volume at this level suggests that in terms of applicability the operation of a 

digester at 4oC is financially forbidden as it would require the use of a massive land investment. Thus, I say that 

the limit of low temperature anaerobic digestion lies at 5oC. 

The 3rd Concept resulted to 35 HRT values (excluding the 1st as there is no previous value) with an average HRT 

of 11.5 hours to efficiently remove the wastewater COD at low temperature (<15oC). This HRT reduces the tank 

volume by 15%, compared to the volume that was estimated based on the actual temperature values (Concept 1) 

and increases it by 23% compared to the optimized one (Concept 2). The difference in terms of volume is important 

as volume may cause implications, affect the cost (mainly maintenance), the construction area, the construction 

risk assessment and subsequently the decision making process.  

These 3 approaches provided with 3 HRT values, the actual, the forecasted and the optimized. HRT dictates the 

tank volume capacity, which subsequently affects other parameters in an anaerobic treatment plant. Using the 

Eq.21, 22 for the 3 HRTs to estimate cost I concluded that the prices do not importantly differ compared to the 

volume alterations. This happens due to the relationship between the denominator and the numerator (HRT, V). 

The linear relationship amongst them leads to a standard capital cost with low fluctuations based on the building 

details. In practice this means that a tank size after a certain point does not significantly alternates the cost. Thus, 

in terms of application, capital cost cannot point which HRT is the most cost-efficient. Therefore, it is up to the 
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engineer to choose the desired retention time based on secondary factors (i.e. number of reactors, maintenance 

cost, field management etc.) rather than the overall cost itself. 

7.7. Conclusions 

The limit of temperature for anaerobic wastewater treatment with regards to applicability lies at 5oC. 

An anaerobic treatment reactor with an HRT in-between 8.8 and 13.5 hours, and volume of 745 to 1125 m3 is 

sufficient to cope with the WW treatment needs of a municipality of 20.000 equivalent persons, using the particular 

inocula at a 1:3 seed:substrate ratio, operating at low temperatures (4-15oC).  

There is a significant statistical relationship between previous and current month’s temperature, subsequently 

previous and current’s month HRT. 

HRT estimation via the use of the previous month’s temperature leads to a more reliable treatment performance 

as a known parameter (previous month’s temperature) is included. 

Detailed analysis of the relationship between HRT and time (or corresponding temperature) leads to a retention 

time optimization and tank volume minimization. 

Reactor scale up at this level (745-1125 m3) requires a total capital cost of 3.645.514±8852 US Dollars ($). The 

choice of the desired HRT-Volume should further include other parameters as the cost itself cannot result to a 

clear decision due to the relationship between the HRT and the tank volume and their position in the particular 

equation (denumerator and numerator respectively). 
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Chapter 8: General conclusions & future 
work 

 

Figure 8.1 - Image of transparent water movement. 
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8.1. General conclusions and recommendations 

The specific cold-adapted inoculum efficiently treats anaerobically domestic wastewater at 4, 8 and 15oC (batch 

2, 3, Sub-culture 1), based on UWWTD (91/271/EEC) for COD standards.  

The start-up of methanogenesis from UV sterile raw wastewater as substrate was highly related to temperature 

and required 40 to 140 days at 15oC and 4, 8oC respectively (batch 1). The inoculum showed high adaptive capacity 

to the particular complex substrate at low temperatures as the rates of CH4 production between the first and the 

second batch increased up to 15 times at 4oC. Soluble and total COD reduction was also higher on the second 

batch than at the first. The amount of CH4 between 15oC and 4oC was only two-fold higher for the 1st after three 

batches. This was the minimum difference that was observed during the batch studies. Batch 3 revealed that 

anaerobic raw wastewater treatment at low temperature (4oC to 15oC) is feasible (tCOD). Thus, the selected 

biomass manages to cope with low temperature conditions and after 56 days of biological reaction the effluent at 

4, 8 and 15oC meets the UWWTD (91/271/EEC) COD standards for discharge on a water surface.  

COD to CH4 conversion reached the 80% at 4oC when fed with non-sterile substrate, using an inoculum 

acclimatized at 15oC (sub-culture 1). The performance was increased than when the wastewater was sterile due to 

the symbiosis phenomenon between the indigenous bacterial communities from wastewater with the cells 

originated from the seed; the 1st assisted to hydrolysis of insoluble organic material and the 2nd biomethanized it. 

For the particular experiment, a 1:3 seed:substrate ratio was used (similar to batch studies, Chapter 4). No 

significant difference occurred to bacterial and archaeal diversity from the ´invasion´ of the microbial communities 

habiting the wastewater. Thus, sterilization as a pre-treatment step is not required. It can only be applied when the 

communities of the seed are outnumbered and an advantage to these cells is necessary (e.g. seed:substrate <1:3).  

Comparing the behavior of the communities based on acclimation temperature (4, 15oC) and how they behave to 

temperature differentiation, it was shown that acclimatization at 4oC results in a stable, sturdy community where 

hydrolysis limitation can be rapidly overcome during seasonal variation (sub-culture 2).  

Hydrolysis limitation was evident from the 1st experimental days, as the VSS:TSS ratio increased the lower the 

temperature (second batch). Additionally, sCOD and VFA peaks after 200 days at low temperature (4oC) for batch 

1 revealed slow hydrolysis. The third batch and sub-culture 2 proved that hydrolysis is indeed the limiting step 

and gave an insight on how slower it occurs compared to methanogenesis. The limitation becomes less evident 

the lower the temperature as methane production rate was also decreasing. Batch 3 also indicated the discrepancy 

between CODremoved and CODCH4 and proved that un-hydrolysed material remains in the bio-reactor. A safety 

factor for design purposes was enabled from this fact. This disagreement confirmed that a digester works partially 

as a clarifier the lower the temperature gets; thus, larger volume at lower temperatures is required to accommodate 

higher wastewater volumes due to higher retention time. 

Limited hydrolysis was caused mainly by accumulation of lipids in the mixed liquor (fifth batch, chapter 4.3). 

Proteins and carbohydrates seem to be easier bio-methanized, where lipid accumulation seems to have a strong 

relationship with poor COD:methane conversion at low temperature. Investigation of the enzymes responsible for 

lipid degradation (lipases) showed that the limitation occurs due to the kinetics of lipase activity in addition to 

changes in the lipid structure as enzymes were present at all temperatures ≥4oC (batch 8). Lipases that were 

produced from cells acclimatized at 4oC had a higher degradation capacity than those excreted from cells 

acclimatized at higher temperatures when all were exposed to the same temperature (37oC). This suggests that 

inoculation of a bio-reactor for wastewater treatment purposes with low temperature acclimatized biomass is 

highly desired. Indigenous raw wastewater cells also produce enzymes able to solubilize lipids at low 

temperatures. The cells from primary settled though were inactive. Lipolysis was limited at 4oC however 

carbohydrates and proteins are easier to be hydrolysed as methane occurred at 0.0 lipolytic activity. A 4-degree 

temperature increase (from 4-8oC) is adequate to trigger the CODlipid:CH4 conversion (batch 8, chapter 6) revealing 

that the limit of LTAD lies in-between 4 and 8oC. Practically this suggests that the daily day-night cycle in addition 

to the seasonal variation would efficiently reduce the accumulation of lipids.   

Change of the substrate from raw to primary settled wastewater showed that the 2nd can be successfully treated in 

15 days, in terms of COD, according to UWWTD (91/271/EEC) standards at all temperature (4, 8 and 15oC). The 

accelerated performance occurred due to the substrate’s higher biodegradable fraction, which boosted treatability. 
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The ´k´ COD removal coefficients for all temperatures were higher than those for raw wastewater. Higher 

biodegradability assisted hydrolysis and led to quantitatively and qualitatively richer intermediates´ formation. 

Molecular analysis showed from the early experimental days (batch 1) the capacity for hydrogenotrophic 

methanogenesis at low temperature. Methanomicrobiales was the predominant taxon at all operational 

temperatures (4, 8 and 15oC). However, there was a high likelihood of inactive archaeal population present in the 

seed, due to a disagreement between FISH and qPCR archaea enumeration, with the 2nd indicating higher numbers. 

By the end of the first batch the effect of temperature to archaeal communities was appeared in terms of band 

intensity mainly. At batch 3 enumeration confirmed that hydrogenotrophs find lower temperature more optimum 

than acetotrophs.  However, Acetotrophs (Methanosaetaceae) seemed more consistent, as their population slightly 

changed amongst early and final experimental days (batch 1, 3). The hypothesis was confirmed by the 2nd sub-

culture, which showed predominance of Methanosaetaceae at all temperatures, and specific methanogenic rates 

massively higher than before (batch 3). Further analysis (454 sequencing) might shed more light to the 

identification of the predominance. 

Bacterial differences were not significantly observed amongst temperatures. The main conclusion was that the use 

of an 1:7 seed:substrate ratio is not recommended, especially for seeds acclimatized at 15oC as bacterial diversity 

is likely to change when the inoculum is exposed to lower temperature. 

Specific rates for hydrolysis and methanogenesis for raw wastewater at 4, 8 and 15oC were calculated so they can 

be further used as fundamental parameters for applied engineering purposes (batch 3). Additionally, specific 

methanogenic rates for primary settled wastewater for 4, 15oC and for temperature alterations (4 to 15oC and vice 

versa) were calculated (sub-culture 2). The activity for primary settled WW was higher than for raw. This possibly 

happened due easier to biodegrade COD, longer cellular adaptation and depletion of the inactive population that 

might have been previously involved to the specific activity estimations. 

A simulation showed that an anaerobic treatment reactor with an HRT between 8.8 and 13.5 hours, and volume 

of 745 to 1125 m3 is adequate to cope with the needs of a municipality of 20.000 equivalent persons (Conc. of 

0.15 kgCOD.m-3), operating at temperatures between 4-15oC, using the particular inocula at an 1:3 seed:substrate 

ratio (Chapter 7). This would require a total capital cost of 3.645.514±8852 US Dollars ($). The choice of the 

desired HRT-Volume should include more parameters (i.e. number of digesters, landscape etc.) as the cost itself 

cannot result to a decisive conclusion. The same study showed that there is a significant statistical relationship 

between the previous and current month’s temperature, therefore previous and current month’s HRT. Additionally 

it was shown that a more detailed description of the relationship between the HRT and temperature leads to a 

retention time optimization and tank volume minimization. Finally it showed that the limit of the anaerobic 

treatment of domestic wastewater at low temperature in terms of applicability lies at 5oC. 

8.2. Future work 

I strongly recommend the future researchers and their endeavours to focus their research interests on the topics 

below: 

8.2.1. Lipases identification 

Chapter 6 showed that lipases hold a key position in the limited lipid hydrolysis. The low content of 

lipases/proteins within the samples which were prepared for the activity proteomics did not lead to any fruitful 

conclusions (all 1D SDS PAGE gels were either faded or blank and for that reason they were not included in this 

Thesis). Further investigation on this field would help in the identification (SDS-PAGE – MOLDI-TOF) of the 

lipases excreted at 4oC or not present at 15oC and vice versa. This would assist in the identification of the enzymes 

operating maximally when exposed to high temperatures after acclimation to lower ones. Further research on this 

field might have an application not only to the wastewater treatment industry but also in numerous other processes 

and products (detergents, biodegradability processes, bioremediation, cleansing products etc.) 

8.2.2. Scale up to a pilot plant 

A reactor scale-up based on the specific activity from Chapters 4 and 7 would give a new direction in anaerobic 

wastewater LTAD designation. A successful scale up would bring the endeavour closer to real life application, 
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setting under examination its sustainable character at actual temperature conditions. Additionally, it would prove 

that designing in the basis of specific activity is attainable and it would examine how reliable it is compared to the 

up to now design approaches. My proposed setup is a granular anaerobic MBR reactor to ensure that biomass is 

retained within the reactor body as growth might be slow enough to compensate in the case of washout. Other 

configurations may also be applicable. However the presence of a membrane seems to be of highest importance 

due to its major advantage of active biomass preservation (as showed on Chapter 5) 

8.2.3. Reactor configuration (compartments) 

The need of a comparative study between a 1-phased and a 2-phased (or more) configuration should also be 

considered. Based on the findings from Chapter 4.3 and 6 lipids accumulation occurs. This might be of high risk 

for the biomass which should be isolated from the potentially acidified accumulated substrate. An assessment of 

more than one phase reactors would demonstrate which configuration is optimum by comparing the required size 

to both the net energy produced and the COD removal efficiency that is achieved. 

Other configurations such as steps of post- pre- treatment using manufactured enzymes may also be included to 

promote engineered hydrolysis. The enzymes can be immobilized onto or into beads depending on the substrate 

to be hydrolysed. The results would show whether such an approach is viable, efficient and adequate to accelerate 

treatability taking into account that a small temperature increase (from 4 to 8oC) is satisfactory to trigger overall 

wastewater hydrolysis (Chapter 6). 

8.2.4. Further addition of HRT(Tt-Tt-1) data, model optimization and validation. 

The enrichment of the HRT - Tt-Tt-1 model with more temperature data would promote the model accuracy (R2, 

R2 adjusted). It would also lead to the development of a temperature predictive model, and subsequently HRT 

prediction, for the specific region based on the rate of change. The scaling up of such an anaerobic treatment 

system operating in the specific temperature conditions (4-15oC) would enhance model validation and contribute 

to the accuracy and reliability of the model. 
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10. Appendix 

10.1. Appendix 1 

 
Figure a.1 - FISH images from day 102 of the 3rd Batch; the images account for Bacterial (red) and Archaeal 

(green) populations that were developed in the 1L bioreactors  at 4 (a), 8 (b) and 15oC (c), inoculated with the 

specific cold adapted inocula (described on the Materials and Methods, Chapter 4.2). 

a) 

b) 

c) 
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10.2. Appendix 2 

Table a.1 - Raw data of the measured O.D. via spectrophotometry at 410nm; the samples account for the lipases 

activity; R1,2  were operatig at 4oC, R5, 6 at 8oC and R5, 7, 8 at 15oC. WW accounts for only wastewater control 

at all temperatures and pNPP accounts for only p-pintrophenyl palmitate control at similar conditions. 

Time (min.) 0 20 70 110 150 195 230 275 320 

R1 0.714 1.046 1.06 1.119 1.146 1.189 1.234 1.225 1.274 

R1 0.711 1.042 1.072 1.121 1.147 1.191 1.232 1.232 1.279 

R2 0.659 0.962 0.993 1.038 1.067 1.106 1.142 1.152 1.204 

R2 0.653 0.962 0.994 1.033 1.072 1.112 1.145 1.153 1.2 

R3 0.67 0.637 0.652 0.675 0.692 0.711 0.737 0.741 0.769 

R3 0.668 0.636 0.65 0.672 0.69 0.711 0.738 0.739 0.765 

R5 0.667 0.651 0.665 0.68 0.692 0.709 0.727 0.726 0.744 

R5 0.666 0.644 0.66 0.677 0.691 0.708 0.725 0.726 0.748 

R6 0.707 0.687 0.71 0.731 0.746 0.779 0.796 0.801 0.827 

R6 0.708 0.687 0.711 0.732 0.753 0.775 0.795 0.792 0.835 

R7 0.657 0.611 0.627 0.638 0.65 0.673 0.694 0.691 0.725 

R7 0.659 0.615 0.622 0.631 0.648 0.674 0.694 0.7 0.73 

R8 0.692 0.669 0.704 0.745 0.784 0.836 0.871 0.904 0.952 

R8 0.688 0.671 0.708 0.75 0.789 0.843 0.879 0.912 0.943 

Ww 4 0.608 0.928 0.97 1.005 1.035 1.076 1.103 1.084 1.159 

Ww 8 0.608 0.588 0.595 0.599 0.609 0.635 0.647 0.645 0.665 

Ww 15 0.609 0.567 0.565 0.561 0.565 0.579 0.589 0.581 0.592 

pNPP 4 0.683 1.058 1.155 1.155 1.196 1.236 1.246 1.236 1.295 

pNPP 8 0.677 0.668 0.688 0.688 0.701 0.733 0.746 0.747 0.759 

pNPP 15 0.679 0.644 0.656 0.656 0.664 0.678 0.684 0.682 0.69 

Table a.2 - Similar to Table a.1 for all samples after set to an experimental temperature of 37oC. 

Time (min.) 0 20 40 70 100 130 160 190 

R1 0.562 0.388 0.291 0.296 0.378 0.463 0.55 0.637 

R1 0.581 0.409 0.326 0.327 0.411 0.503 0.597 0.689 

R2 0.546 0.412 0.33 0.281 0.307 0.362 0.421 0.482 

R2 0.538 0.41 0.324 0.278 0.309 0.372 0.433 0.491 

R3 0.597 0.519 0.511 0.595 0.774 0.957 1.139 1.312 

R3 0.583 0.513 0.506 0.609 0.807 0.995 1.179 1.354 

R5 0.517 0.344 0.275 0.276 0.336 0.409 0.48 0.557 

R5 0.508 0.345 0.276 0.317 0.379 0.444 0.519 0.6 

R6 0.567 0.441 0.386 0.427 0.55 0.684 0.809 0.947 

R6 0.557 0.424 0.383 0.431 0.558 0.693 0.827 0.966 

R7 0.547 0.414 0.384 0.459 0.611 0.7755 0.887 1.028 

R7 0.532 0.397 0.385 0.471 0.633 0.776 0.918 1.143 

R8 0.484 0.289 0.191 0.154 0.17 0.194 0.226 0.253 

R8 0.477 0.288 0.191 0.154 0.169 0.197 0.226 0.26 

ww 0.45 0.278 0.175 0.124 0.132 0.151 0.177 0.199 

ww 0.459 0.271 0.172 0.169 0.134 0.152 0.173 0.201 

pNPP 0.588 0.44 0.336 0.231 0.18 0.178 0.184 0.193 

pNPP 0.578 0.447 0.32 0.225 0.17 0.17 0.182 0.191 
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Figure a.2 - Calibration curves implemented with known amounts of p-nitrophenol at all operational temperatures 

(a, b, c, d for 4, 8, 15 and 37oC respectively). Trials were also carried out 30 minutes after application of the 

standards in the cuvette to examine weather there is any differentiation over time.  
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10.3. Appendix 3 

Table a.3 - Digester’s HRT estimation on the basis of specific activity; in red-green the specific activities´ evolution based on temperature variation and the 

amount of OLR (blue) that can be acommodated with this rate at the corresponding temperature for a population of  7.6×108 methanogenic cells. The safety 

factor inspired from Chapter 4.4 was included to the HRT calculations as a multiplication factor for the CODinflow concentration. Red and green cells account 

for increasing and decreasing temperature trends respectively. 

     fmol/cell/day gCOD/cell/day 
gCOD/7.6×108 
cells/ml/day 

mg 
COD/ml/day 

  
seed:substrate 

1:7 
seed:substrate 

1:3 

Month date 
Average 

T 
Adjusted 

T 
trend sp. rates  760000000  

OLR (kg 
COD/m3/day) 

HRT 
(days) 

hrs hrs 

1 01/01/2010 1.2 4 n/a 25.9 1.66E-12 0.00125984 1.25984 1.25984 0.32 7.6 3.8 

2 01/02/2010 1.8 4 up 25.9 1.66E-12 0.00125984 1.25984 1.25984 0.32 7.6 3.8 

3 01/03/2010 5.85 6 up 39.77 2.55E-12 0.001934432 1.934432 1.934432 0.17 4.1 2.0 

4 01/04/2010 8.8 9 up 53.47 3.42E-12 0.002600723 2.6007232 2.6007232 0.10 2.3 1.2 

5 01/05/2010 10.1 10 up 67.51 4.32E-12 0.003283622 3.2836224 3.2836224 0.07 1.7 0.8 

6 01/06/2010 14.45 14 up 95.25 6.10E-12 0.004632813 4.6328128 4.6328128 0.03 0.8 0.4 

7 01/07/2010 16.2 15 up 102.18 6.54E-12 0.004970112 4.970112 4.970112 0.03 0.7 0.3 

8 01/08/2010 14.6 15 up 18.53 1.19E-12 0.000901248 0.901248 0.901248 0.16 3.8 1.9 

9 01/09/2010 13.85 14 down 16.92 1.08E-12 0.000822899 0.8228992 0.8228992 0.19 4.6 2.3 

10 01/10/2010 9.7 10 down 10.48 6.70E-13 0.00050951 0.5095104 0.5095104 0.45 10.7 5.4 

11 01/11/2010 4.8 5 down 2.42 1.55E-13 0.000117772 0.11777152 0.11777152 3.07 73.8 36.9 

12 01/12/2010 -0.35 4 down 0.81 5.19E-14 0.000039424 0.039424 0.039424 10.08 241.9 121.0 

1 01/01/2011 3.4 4 down 25.9 1.66E-12 0.00125984 1.25984 1.25984 0.32 7.6 3.8 

2 01/02/2011 5.6 6 up 39.77 2.55E-12 0.001934432 1.934432 1.934432 0.17 4.1 2.0 

3 01/03/2011 6.3 6 up 39.77 2.55E-12 0.001934432 1.934432 1.934432 0.17 4.1 2.0 

4 01/04/2011 11.2 11 up 78.5 5.02E-12 0.003818092 3.81809216 3.81809216 0.05 1.3 0.7 

5 01/05/2011 11.7 12 up 81.38 5.21E-12 0.003958214 3.9582144 3.9582144 0.05 1.1 0.6 

6 01/06/2011 13.7 14 up 95.25 6.10E-12 0.004632813 4.6328128 4.6328128 0.03 0.8 0.4 

7 01/07/2011 14.6 15 up 102.18 6.54E-12  0.004970112 4.970112 4.970112 0.03 0.7 0.3 

8 01/08/2011 14.6 15 up 18.53 1.19E-12 0.000901248 0.901248 0.901248 0.16 3.8 1.9 

9 01/09/2011 14.15 14 down 16.92 1.08E-12 0.000822899 0.8228992 0.8228992 0.19 4.6 2.3 
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10 01/10/2011 11.4 11 down 12.09 7.73E-13 0.000587853 0.5878528 0.5878528 0.35 8.5 4.2 

11 01/11/2011 8.7 9 down 8.86 5.67E-13 0.000431162 0.4311616 0.4311616 0.58 13.9 6.9 

12 01/12/2011 4.9 5 down 2.42 1.55E-13 0.000117772 0.11777152 0.11777152 3.07 73.8 36.9 

1 01/01/2012 4.6 5 down 2.42 1.55E-13 0.000117772 0.11777152 0.11777152 3.07 73.8 36.9 

2 01/02/2012 4.95 5 down 2.42 1.55E-13 0.000117772 0.11777152 0.11777152 3.07 73.8 36.9 

3 01/03/2012 8.65 9 up 53.47 3.42E-12 0.002600723 2.6007232 2.6007232 0.10 2.3 1.2 

4 01/04/2012 6.85 7 down 5.64 3.61E-13 0.000274464 0.274464 0.274464 1.10 26.3 13.1 

5 01/05/2012 10.55 11 up 78.5 5.02E-12 0.003818092 3.81809216 3.81809216 0.05 1.3 0.7 

6 01/06/2012 12.4 12 up 81.38 5.21E-12 0.003958214 3.9582144 3.9582144 0.05 1.1 0.6 

7 01/07/2012 14.6 15 up 102.18 6.54E-12 0.004970112 4.970112 4.970112 0.03 0.7 0.3 

8 01/08/2012 15.6 15 up 102.18 6.54E-12 0.004970112 4.970112 4.970112 0.03 0.7 0.3 

9 01/09/2012 12.75 13 down 15.31 9.80E-13 0.00074455 0.7445504 0.7445504 0.23 5.5 2.8 

10 01/10/2012 8.4 8 down 7.25 4.64E-13 0.000352813 0.3528128 0.3528128 0.78 18.6 9.3 

11 01/11/2012 6.05 6 down 4.03 2.58E-13 0.000196115 0.1961152 0.1961152 1.68 40.4 20.2 

12 01/12/2012 3.85 4 down 0.81 5.19E-14 0.000039424 0.039424 0.039424 10.08 241.9 121.0 

 

Table a.4 – This table presents the time in months (1-36), the transformed HRT (red), the transformed time (blue), the lnHRT after MMULT function, and the actual HRT 

after exp(LnHRT); in blue and red the two components of the regression, for Y axis: ln(HRT) and X axis: transformed time; the ‘trendline (ln(HRT))’ accounts to the 

multiplication of the transformed time (blue) with the coefficients. 

t (months) HRT ln(HRT) 1 2 3 4 5 6 7 8 trendline (ln (HRT')) HRT (hours) 

1 3.785134 1.331081 1 1 1 1 1 1 1 1 1.128489633 3.09098445 

2 3.785134 1.331081 2 4 8 16 32 64 128 256 1.82117169 6.17909419 

3 2.046748 0.716252 3 9 27 81 243 729 2187 6561 0.847148531 2.33298492 

4 1.151743 0.141276 4 16 64 256 1024 4096 16384 65536 -0.29271849 0.74623218 

5 0.831203 -0.18488 5 25 125 625 3125 15625 78125 390625 -0.915134056 0.40046294 

6 0.406123 -0.9011 6 36 216 1296 7776 46656 279936 1679616 -0.855963196 0.42487376 

7 0.344943 -1.06438 7 49 343 2401 16807 117649 823543 5764801 -0.244896152 0.78278583 

8 1.902256 0.643041 8 64 512 4096 32768 262144 2097152 16777216 0.657896133 1.93072607 

9 2.286421 0.826988 9 81 729 6561 59049 531441 4782969 43046721 1.573396261 4.82300058 
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10 5.356823 1.678371 10 100 1000 10000 100000 1000000 10000000 100000000 2.273145154 9.70989194 

11 36.89495 3.608075 11 121 1331 14641 161051 1771561 19487171 214358881 2.615098519 13.6685629 

12 120.9584 4.795447 12 144 1728 20736 248832 2985984 35831808 429981696 2.55381664 12.8560773 

13 3.785134 1.331081 13 169 2197 28561 371293 4826809 62748517 815730721 2.132069505 8.43229945 

14 2.046748 0.716252 14 196 2744 38416 537824 7529536 1.05E+08 1475789056 1.460139702 4.30656112 

15 2.046748 0.716252 15 225 3375 50625 759375 11390625 1.71E+08 2562890625 0.688305957 1.99034095 

16 0.651365 -0.42868 16 256 4096 65536 1048576 16777216 2.68E+08 4294967296 -0.022809427 0.97744874 

17 0.572509 -0.55773 17 289 4913 83521 1419857 24137569 4.1E+08 6975757441 -0.530145547 0.58851931 

18 0.406123 -0.9011 18 324 5832 104976 1889568 34012224 6.12E+08 11019960576 -0.731276173 0.48129438 

19 0.344943 -1.06438 19 361 6859 130321 2476099 47045881 8.94E+08 16983563041 -0.580366815 0.55969303 

20 1.902256 0.643041 20 400 8000 160000 3200000 64000000 1.28E+09 25600000000 -0.095530636 0.90889052 

21 2.286421 0.826988 21 441 9261 194481 4084101 85766121 1.8E+09 37822859361 0.64310213 1.90237315 

22 4.230604 1.442345 22 484 10648 234256 5153632 1.13E+08 2.49E+09 54875873536 1.504487033 4.50184374 

23 6.947197 1.938338 23 529 12167 279841 6436343 1.48E+08 3.4E+09 78310985281 2.326026705 10.2371853 

24 36.89495 3.608075 24 576 13824 331776 7962624 1.91E+08 4.59E+09 1.10075E+11 2.939477216 18.90596 

25 36.89495 3.608075 25 625 15625 390625 9765625 2.44E+08 6.1E+09 1.52588E+11 3.200886493 24.5542877 

26 36.89495 3.608075 26 676 17576 456976 11881376 3.09E+08 8.03E+09 2.08827E+11 3.021252228 20.5169675 

27 1.151743 0.141276 27 729 19683 531441 14348907 3.87E+08 1.05E+10 2.8243E+11 2.393787142 10.9549033 

28 13.14447 2.576001 28 784 21952 614656 17210368 4.82E+08 1.35E+10 3.77802E+11 1.412879846 4.10776812 

29 0.651365 -0.42868 29 841 24389 707281 20511149 5.95E+08 1.72E+10 5.00246E+11 0.279039992 1.32186021 

30 0.572509 -0.55773 30 900 27000 810000 24300000 7.29E+08 2.19E+10 6.561E+11 -0.716683191 0.4883694 

31 0.344943 -1.06438 31 961 29791 923521 28629151 8.88E+08 2.75E+10 8.52891E+11 -1.236119478 0.29050936 

32 0.344943 -1.06438 32 1024 32768 1048576 33554432 1.07E+09 3.44E+10 1.09951E+12 -0.973343398 0.37781773 

33 2.773308 1.020041 33 1089 35937 1185921 39135393 1.29E+09 4.26E+10 1.41E+12 0.221103173 1.24745213 

34 9.3174 2.231884 34 1156 39304 1336336 45435424 1.54E+09 5.25E+10 1.79E+12 2.16142234 8.68347974 

35 20.18862 3.005119 35 1225 42875 1500625 52521875 1.84E+09 6.43E+10 2.25E+12 4.082696621 59.305178 

36 120.9584 4.795447 36 1296 46656 1679616 60466176 2.18E+09 7.84E+10 2.82E+12 4.320642061 75.2369195 

 

Table a.5 - Regression Statistics, descriptive capacity of the model equation – coefficients and intercept (regression optimization, polynomial 8th degree) 
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Regression Statistics 

Multiple R 0.891730061 

R Square 0.795182502 

Adjusted R Square 0.734495836 

Standard Error 0.880888084 

Observations 36 

 

Table a.6 - ANOVA test for the model validity (regression optimization, polynomial 8th degree) 

  df SS MS F Significance F 

Regression 8 81.34015451 10.16751931 13.10308 1.66E-07 

Residual 27 20.95102303 0.775963816   

Total 35 102.2911775    

 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept -3.932680814 2.555018853 -1.539198354 0.135395 -9.17515 1.309785 -9.17515 1.30978484 

X Variable 1 8.538866017 2.770900805 3.081620967 0.004699 2.853447 14.22428 2.853447 14.22428485 

X Variable 2 -4.282035074 1.013066357 -4.226806117 0.000242 -6.36068 -2.20339 -6.36068 -2.203394608 

X Variable 3 0.892974925 0.174983907 5.103183135 2.31E-05 0.533938 1.252012 0.533938 1.252012247 

X Variable 4 -0.093880221 0.016394397 -5.726360164 4.36E-06 -0.12752 -0.06024 -0.12752 -0.060241697 

X Variable 5 0.005415777 0.000880903 6.147981391 1.43E-06 0.003608 0.007223 0.003608 0.007223242 

X Variable 6 -0.00017387 2.71024E-05 -6.415301874 7.14E-07 -0.00023 -0.00012 -0.00023 -0.00011826 

X Variable 7 2.91232E-06 4.4355E-07 6.565930614 4.83E-07 2E-06 3.82E-06 2E-06 3.8224E-06 

X Variable 8 -1.9831E-08 2.99168E-09 -6.628696126 4.11E-07 -2.6E-08 -1.4E-08 -2.6E-08 -1.36925E-08 
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Table a.7 - HRT, LnHRT, actual ambient temperature (t, t-1) for each month; additionally, the Y and X axis values 

that were involved for the regression analysis (blue and red values respectively), the new trendline´s data points 

(as lnHRT and HRT forecasted), the monthly rate of change*. 

 actual Ln HRT  forecasted 
Ln HRT 

Forecasted 
HRT 

Rate of Change 
Month HRT Ln HRT Temperature (t, t-1) 

1 3.785134 1.331081 1.2     

2 3.785134 1.331081 1.8 1.2 2.786097 16.21761 0.5 

3 2.046748 0.716252 5.85 1.8 0.68239 1.978601  

4 1.151743 0.141276 8.8 5.85 0.302094 1.352689 0.5042735 

5 0.831203 -0.18488 10.1 8.8 0.506061 1.658744 0.14772727 

6 0.406123 -0.9011 14.45 10.1 -1.54445 0.21343 0.43069307 

7 0.344943 -1.06438 16.2 14.45 -1.14908 0.316929 0.12110727 

8 1.902256 0.643041 14.6 16.2 0.315607 1.371091 -0.0987654 

9 2.286421 0.826988 13.85 14.6 0.230434 1.259146 -0.0513699 

10 5.356823 1.678371 9.7 13.85 2.342979 10.41221 -0.299639 

11 36.89495 3.608075 4.8 9.7 3.7964 44.54056 -0.5051546 

12 120.9584 4.795447 -0.35 4.8 5.152344 172.8361  

13 3.785134 1.331081 3.4 -0.35 1.385186 3.995571  

14 2.046748 0.716252 5.6 3.4 1.334236 3.797095 0.64705882 

15 2.046748 0.716252 6.3 5.6 1.63906 5.150328 0.125 

16 0.651365 -0.42868 11.2 6.3 -0.91443 0.400744 0.77777778 

17 0.572509 -0.55773 11.7 11.2 0.364651 1.440012 0.04464286 

18 0.406123 -0.9011 13.7 11.7 -0.60926 0.543751 0.17094017 

19 0.344943 -1.06438 14.6 13.7 -0.48155 0.617827 0.06569343 

20 1.902256 0.643041 14.6 14.6 -0.19457 0.823188 1.2167E-16 

21 2.286421 0.826988 14.15 14.6 0.060432 1.062295 -0.0308219 

22 4.230604 1.442345 11.4 14.15 1.475294 4.37232 -0.1943463 

23 6.947197 1.938338 8.7 11.4 2.128441 8.401761 -0.2368421 

24 36.89495 3.608075 4.9 8.7 3.420872 30.59608 -0.4367816 

25 36.89495 3.608075 4.6 4.9 2.379201 10.79627 -0.0612245 

26 36.89495 3.608075 4.95 4.6 2.085207 8.046257 0.07608696 

27 1.151743 0.141276 8.65 4.95 0.10012 1.105304 0.74747475 

28 13.14447 2.576001 6.85 8.65 2.299917 9.973357 -0.2080925 

29 0.651365 -0.42868 10.55 6.85 -0.37072 0.690236 0.54014599 

30 0.572509 -0.55773 12.4 10.55 -0.23928 0.787195 0.17535545 

31 0.344943 -1.06438 14.6 12.4 -0.89607 0.408172 0.17741935 

32 0.344943 -1.06438 15.6 14.6 -0.76124 0.467085 0.06849315 

33 2.773308 1.020041 12.75 15.6 1.172635 3.230493 -0.1826923 

34 9.3174 2.231884 8.4 12.75 2.728906 15.31612 -0.3411765 

35 20.18862 3.005119 6.05 8.4 2.67354 14.49118 -0.2797619 

36 120.9584 4.795447 3.85 6.05 3.170896 23.82882 -0.3636364 

37   4.094184439  2.331028 10.28852  

   Average:  11.49996 0.06342453 

*The values that are missing account for those with a standard deviation higher than3 sigma (Anderson et al 2011). 
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Table a.8 - Similarly with Table a.5 but with adjusted ambient temperatures (red) based on Consumption 3, 4, 

chapter 7.2. NO rate of change was included in this option. 

 actual Ln HRT  
forecasted Ln HRT, HRT 

 HRT Ln HRT Temperature (t, t-1) 

1 3.785134 1.331081 4    

2 3.785134 1.331081 4 4 2.57517 16.21761 

3 2.046748 0.716252 6 4 1.411202 1.978601 

4 1.151743 0.141276 9 6 0.29993 1.352689 

5 0.831203 -0.18488 10 9 0.669965 1.658744 

6 0.406123 -0.9011 14 10 -1.34063 0.21343 

7 0.344943 -1.06438 15 14 -0.65326 0.316929 

8 1.902256 0.643041 15 15 -0.33592 1.371091 

9 2.286421 0.826988 14 15 0.246069 1.259146 

10 5.356823 1.678371 10 14 2.256665 10.41221 

11 36.89495 3.608075 5 10 3.897225 44.54056 

12 120.9584 4.795447 4 5 2.89251 172.8361 

13 3.785134 1.331081 4 4 2.57517 3.995571 

14 2.046748 0.716252 6 4 1.411202 3.797095 

15 2.046748 0.716252 6 6 2.045882 5.150328 

16 0.651365 -0.42868 11 6 -0.86404 0.400744 

17 0.572509 -0.55773 12 11 0.140677 1.440012 

18 0.406123 -0.9011 14 12 -0.70595 0.543751 

19 0.344943 -1.06438 15 14 -0.65326 0.617827 

20 1.902256 0.643041 15 15 -0.33592 0.823188 

21 2.286421 0.826988 14 15 0.246069 1.062295 

22 4.230604 1.442345 11 14 1.674681 4.37232 

23 6.947197 1.938338 9 11 1.886629 8.401761 

24 36.89495 3.608075 5 9 3.579885 30.59608 

25 36.89495 3.608075 5 5 2.310526 10.79627 

26 36.89495 3.608075 5 5 2.310526 8.046257 

27 1.151743 0.141276 9 5 -0.01741 1.105304 

28 13.14447 2.576001 7 9 2.415917 9.973357 

29 0.651365 -0.42868 11 7 -0.5467 0.690236 

30 0.572509 -0.55773 12 11 0.140677 0.787195 

31 0.344943 -1.06438 15 12 -1.28793 0.408172 

32 0.344943 -1.06438 15 15 -0.33592 0.467085 

33 2.773308 1.020041 13 15 0.828053 3.230493 

34 9.3174 2.231884 8 13 3.103293 15.31612 

35 20.18862 3.005119 6 8 2.680561 14.49118 

36 120.9584 4.795447 4 6 3.20985 23.82882 
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Table a.9 - Regression Statistics, descriptive capacity of the model equation - coefficients and intercept (regression 

for forecast with actual temperature values) 

Regression Statistics 

Multiple R 0.921841864 

R Square 0.849792422 

Adjusted R Square 0.840404449 

Standard Error 0.692720169 

Observations 35 

 

Table a.10 - ANOVA test for the model validity (regression for forecast with actual temperature values) 

 df SS MS F Significance F 

Regression 2 86.87336702 43.43668351 90.51925974 6.71536E-14 

Residual 32 15.35555943 0.479861232   

Total 34 102.2289265    

  Coefficients Standard Error t Stat P-value 

Intercept 3.392605111 0.285423069 11.88623304 2.81695E-13 

X Variable 1 -0.56384662 0.044609439 -12.63962593 5.51264E-14 

X Variable 2 0.320419182 0.043455998 7.373416768 2.18804E-08 

 

Table a.11 - Regression Statistics, descriptive capacity of the model equation - coefficients and intercept 

(regressikon for forecast with adjusted values) 

Regression Statistics 

Multiple R 0.883475718 

R Square 0.780529344 

Adjusted R Square 0.766812428 

Standard Error 0.83733673 

Observations 35 

 

Table a.12 - ANOVA test for the model validity (regression fpr forecast with adjusted values) 

 df SS MS F Significance F 

Regression 2 79.79267687 39.89633844 56.90268 2.9E-11 

Residual 32 22.43624958 0.701132799   

Total 34 102.2289265    

  Coefficients Standard Error t Stat P-value 

Intercept 3.633746488 0.388885349 9.344004598 1.16E-10 

X Variable 1 -0.581983994 0.059244896 -9.82336083 3.5E-11 

X Variable 2 0.31733987 0.059244896 5.356408551 7.04E-06 
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