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Abstract

Phylogenetic trees represent the evolutionary relationships between a set of species.

Inferring these trees from data is particularly challenging sometimes since the trans-

fer of genetic material can occur not only from parents to their offspring but also

between organisms via lateral gene transfers (LGTs). Thus, the presence of LGTs

means that genes in a genome can each have different evolutionary histories, repre-

sented by different gene trees.

A few statistical approaches have been introduced to explore non-vertical evolu-

tion through collections of Markov-dependent gene trees. In 2005 Suchard described

a Bayesian hierarchical model for joint inference of gene trees and an underlying

species tree, where a layer in the model linked gene trees to the species tree via a

sequence of unknown lateral gene transfers. In his model LGT was modeled via a

random walk in the tree space derived from the subtree prune and regraft (SPR)

operator on unrooted trees. However, the use of SPR moves to represent LGT in an

unrooted tree is problematic, since the transference of DNA between two organisms

implies the contemporaneity of both organisms and therefore it can allow unrealistic

LGTs.

This thesis describes a related hierarchical Bayesian phylogenetic model for

reconstructing phylogenetic trees which imposes a temporal constraint on LGTs,

namely that they can only occur between species which exist concurrently. This is

achieved by taking into account possible time orderings of divergence events in trees,

without explicitly modelling divergence times. An extended version of the SPR op-

erator is introduced as a more adequate mechanism to represent the LGT effect in a

tree. The extended SPR operation respects the time ordering. It additionaly differs

from regular SPR as it maintains a 1-to-1 correspondence between points on the

species tree and points on each gene tree. Each point on a gene tree represents the

existence of a population containing that gene at some point in time. Hierarchi-

cal phylogenetic models were used in the reconstruction of each gene tree from its

corresponding gene alignment, enabling the pooling of information across genes. In

addition to Suchard’s approach, we assume variation in the rate of evolution between

different sites. The species tree is assumed to be fixed.

A Markov Chain Monte Carlo (MCMC) algorithm was developed to fit the model

in a Bayesian framework. A novel MCMC proposal mechanism for jointly proposing



the gene tree topology and branch lengths, LGT distance and LGT history has been

developed as well as a novel graphical tool to represent LGT history, the LGT Biplot.

Our model was applied to simulated and experimental datasets. More specifically we

analysed LGT/reassortment presence in the evolution of 2009 Swine-Origin Influenza

Type A virus. Future improvements of our model and algorithm should include joint

inference of the species tree, improving the computational efficiency of the MCMC

algorithm and better consideration of other factors that can cause discordance of

gene trees and species trees such as gene loss.
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1

Introduction

Mutation, natural selection and genetic drift were, for many decades, addressed as

the principal mechanisms of evolution, a slow mutational process that gradually

changed the characteristics of species over the course of time. As a single evolution-

ary lineage splits into two or more genetically independent ones, new and distinct

species have their origin in a process denominated speciation. These new lineages

will continue to evolve and split independently producing a branching pattern of

species. Its reconstruction can be attempted by studying inherited species’ charac-

teristics such as DNA, proteins or phenotypic characteristics.

The most commonly used approach to describe species evolutionary relationships

is named cladistics. It groups organisms together based on whether or not they have

one or more shared unique characteristics that come from the group’s last common

ancestor and are not present in more distant ancestors. These groups are identified

by sharing unique features that are not present in other species. Therefore, mem-

bers of the same group are thought to share a common history and are considered

to be more closely related (Harvey & Pagel, 1991). Initially, morphological and

physiological features of species were commonly used as the characters, but with

the development of molecular biology methodologies and the increasing amount of
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1. Introduction

genetic data becoming available, molecular phylogenetics took the lead in recon-

structing the history of inheritance of genetic sequence data from contemporary

organisms into a tree-like structure, formally referred to as a phylogenetic tree. The

very nature of DNA allows it to be used as a “document” of evolutionary history.

Comparisons of the DNA sequences of various genes between different organisms can

tell us a lot about the relationships of organisms that cannot be correctly inferred

from morphology.

Phylogenetic trees are usually built by analysing DNA or protein sequence data

from a gene that is present in the genomes of all the species under analysis. Such

trees form a vital part of many kinds of biological analysis, and have a wide range of

applications in comparative genomics (e.g. identifying how genes are gained, lost and

rearranged in related species), population biology (e.g. identifying the path of early

human migrations), and biomedicine (e.g. tracing infection pathways for HIV and

other pathogens). However, although there is an ever-increasing amount of genetic

data available, this flood of new data may not lead directly to a commensurate gain

in knowledge, and today, as new population genomic data sets are emerging, our

skills of analysis and interpretation are partly overwhelmed. Tree construction is a

difficult task: it is very demanding computationally, and in addition the resultant

trees are subject to a high degree of uncertainty.

Phylogenetic tree reconstruction from genetic sequence data is based on models

representing how sequences change over evolutionary time. When assuming that,

as time increases from the moment two sequences diverge from their last common

ancestor, so does the number of differences between them, estimating a tree seems to

be relatively simple. A measure of similarity between two sequences could result, for

example, from counting the number of differences between them and those sequences

2



1. Introduction

that are most similar could be grouped together. Nevertheless, the simplicity of such

an algorithm underestimates the complexity of the phylogenetic inference problem.

A simple measure of the genetic differences between sequences is not necessarily a

reliable indication of when they diverged because the evolutionary rate may vary

over time (Yang, 2006). The way a sequence evolves when governed by genetic

drift should be quite different than when it is influenced by selection. Rates of

evolution will vary for genes with different functions, or different parts of a gene with

different functions. Similarly, silent (synonymous) sites in protein coding regions will

evolve faster than replacement (nonsynonymous) sites due to different functional

constraints. Thus, different regions of DNA with different functional constraints

will evolve at different rates which might cause distantly related sequences to diverge

from each other more slowly than is expected, or even become more similar to each

other at some residues.

In addition, the statistical model used to build the tree might not be correct – dif-

ferent models might result in different estimated trees. In particular, the process of

nucleotide substitution in DNA is known to be substantially more complex and het-

erogeneous than the processes currently used in most phylogenetic models. Finally,

all estimated trees are subject to random statistical variation: gene sequence data

comprises one “sample” from the possible sequences given a fixed evolutionary tree.

Random sampling can contribute, to some extent, to tree discordance under any

model of tree-based Markovian evolution, and Martyn & Steel (2012) have shown

that this effect becomes magnified as branches in the tree become very short, or very

long. Also, long branch attraction or model ‘mis-specification’ may contribute to

systematic errors when using some tree reconstruction methods (Felsenstein, 2004).

Alternatively, those conflicts might reflect biological processes which originated

different evolutionary patterns for different genes in a genome. Citing Rusin et al.
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1. Introduction

(2014), “the evolution of the genome, apart from the mutation process, is an en-

tangled complex of individual and concerted evolutions of genes, their regulations,

gene content and arrangement on chromosomes, genetic flows between the genome

and intracellular organelles, and so forth. Their evolutionary histories often do not

coincide with each other and with patterns of speciation giving rise to a variety

of evolutionary events, such as gene duplications, losses, gains, lateral transfers,

chromosome rearrangements, and others”. Therefore, phylogenetic trees built with

the information on one specific gene (gene tree) might differ between genes. Con-

sequently, some gene trees will differ from the species tree, which represents the

evolutionary history of the species in study, giving rise to what is referred to as

phylogenetic incongruence. Interestingly, information contained in the discrepancies

between these evolutionary histories can give us an insight into these ancestral ge-

nomic events which would provide efficient instruments in a range of fields, such as

establishing orthology/paralogy relationships between gene families, functional gene

annotations, reconstruction of ancestral genes and genomes and their dating, con-

struction of phylogenies based on whole genome data, event-based reconstruction

of coevolution and accurate reconstruction of gene and species trees (Rusin et al.,

2014).

In this thesis we are going to focus specifically on phylogenetic incongruence as

a result of lateral gene transfers. We aim to reconstruct, not only the gene trees

given a known species tree, but also the gene transfer history relating them.

A Lateral Gene Transfer (LGT) occurs when organisms from distinct species ex-

change genomic material directly, thereby breaking the usual pattern of inheritance-

by-descent. It is an example of a biological mechanism by which the evolutionary

tree for a particular gene can differ from the overall pattern of species evolution.
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The presence of genes that have undergone LGT in a data set for species tree infer-

ence usually causes severe problems due to conflicting signals for the tree topology.

Simulation studies (Beiko et al., 2008) have shown the impact that LGT events can

have on estimated phylogenetic trees. The authors used a sophisticated simulation

procedure to evolve populations of genomes under various tree-like models of DNA

substitution, and non-tree-like LGT events. Phylogenetic trees were then estimated

using standard methods from the simulated genomic data, and compared to the

underlying imposed evolutionary history. Overall, LGT had the effect of drastically

decreasing statistical support for most relationships in the recovered tree.

Beyond tree construction, the correct identification of genes that have under-

gone LGT is an important biological problem, since it sheds light on the molecular

pathways in which the genes play a role. Moreover, in prokaryotes, LGT is recog-

nised as a major force allowing “evolution by acquisition” whereby new capabilities,

including genes related to virulence, may be acquired quickly. Understanding and

quantifying LGT in pathogens therefore has implications for the study of pathogen

related disease in humans.

A principled statistical model for detecting LGT events in gene trees would

involve a combination of the following hierarchical levels. At the top of the hierarchy,

we would consider a model for the underlying species tree. A model of LGT, possibly

incorporating prior biological information about the relative probabilities of different

transfer events, would then be used to relate the species tree to different related

gene trees. A model of sequence evolution over the individual gene trees would then

relate the tree to the observed genetic sequence data. Fitting such a model would

involve combined simultaneous inference of gene trees and their relationship to an

underlying species tree.

Suchard (2005) developed a Bayesian approach to joint estimation of gene trees
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1. Introduction

and an underlying species tree in the presence of LGT. This thesis draws heavily on

Suchard’s work. It consists of a hierarchical model, with different levels representing

the unrooted species tree, gene trees, and gene sequence alignments. A random walk

on the space of tree topologies was used to model the LGT process and relate gene

trees to the species tree. It is assumed that the subtree prune and regraft (SPR)

operator mirrors the observed effect that LGT has on inferred trees and that one

step on the random walk represents one SPR on the current tree. Hierarchical

phylogenetic models are used to reconstruct each gene tree from its corresponding

gene sequence alignment, enabling the pooling of information across genes.

The overall aim of the project described in this thesis is to develop statistical

methods which are capable of identifying, modelling and analysing the processes

that give rise to variation caused by LGT in the inferred gene trees. To achieve this

we propose a more biologically realistic approach to the Bayesian hierarchical model

proposed by Suchard. Our model assumes the species tree as a fixed rooted tree and

takes into account possible time orderings of divergence events in trees, without ex-

plicitly modelling divergence times. The time ordering becomes a natural constraint

to LGT events by allowing them to happen only between species that are contempo-

rary. As a result, an extended version of the SPR operator (xSPR), which respects

the time ordering, is developed as a more adequate way of describing the effect of an

LGT on a phylogenetic tree. Since we are working under a Bayesian framework, and

given the strong history of its use in phylogenetics since the mid- to late-1990s, we

use Markov Chain Monte Carlo (MCMC) methodologies for parameter inference and

developed a novel proposal mechanism in order to jointly propose the LGT distance,

gene transfer history and gene trees themselves. A proposal mechanism for ordering

a phylogenetic tree is also introduced. Hierarchical phylogenetic models are used in
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1. Introduction

the reconstruction of each gene tree from its corresponding gene sequence alignment,

as in Suchard’s model, but we further assume that variation in the rate of evolution

between different sites is not constant but Gamma distributed. A novel graphical

representation, LGT Biplot, is introduced as an adequate and easily understandable

way to present the gene transfer history.

The thesis is organised as follows. Chapter 2 provides an overview about mod-

elling molecular evolution, introducing models of nucleotide substitution and com-

mon approaches to gene tree and species tree inference, with special emphasis on

Maximum Likelihood and Bayesian inference methods. Chapter 3 discusses phylo-

genetic incongruence derived by LGT events, with Subsection 3.2.1 and Section 3.3

describing the model proposed by Suchard (2005). In Chapter 4 our Bayesian hi-

erarchical phylogenetic model is introduced in detail, as well as all the components

related to performing Bayesian inference such as proposals and the MCMC algo-

rithm. Chapters 5 and 6 shows an application of our model to simulated and real

data. Finally, in Chapter 7 we present closing remarks and discuss open problems

and possible extensions of this work.

There are several novel aspects to the research presented in this thesis. Unlike

Suchard we assume that the species tree is a fixed rooted tree and that divergence

events happened according to a time ordering. Under these assumptions, we in-

troduce the xSPR operator which is a more adequate representative of an LGT in

an ordered rooted tree, when assuming gene transfers only between contemporary

species. MCMC proposal mechanisms are constructed for ordering a rooted phy-

logenetic tree and to jointly propose LGT distance, LGT history and gene trees.

In relation to the substitution model we assume gamma rate heterogeneity, a fun-

damental improvement on Suchard’s model. We also introduce a novel graphical

representation of gene transfer history, the LGT Biplot.
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2

Modelling Molecular Evolution

Reconstructing evolutionary relationships between species and investigating forces

and mechanisms of the evolutionary process are the two major aims of studying

evolution at the molecular level. Because molecular data is readily available and

contains much more information that any other type of data available, it has be-

come the most common type of data used for phylogeny reconstruction provoking

a phenomenal growth in both areas of research for the last decades, motivated also

by the improved computer hardware and software and development of sophisticated

statistical methods (Yang, 2006). Initially, the available datasets consisted of mul-

tiple sequences alignments from only one specific gene and commonly used tree

reconstruction methods would produce a single estimate of the tree. This tree was

then treated as the estimated species tree, ignoring the variability of gene trees for

genes evolving from the same fixed pattern of speciation, or species tree. Through-

out this thesis we will assume that the phylogeny for a set of gene sequences from

the species is called the gene tree while the phylogeny representing the relationships,

specifically the strict branching pattern of divergence among a group of species is

the species tree.

Although the variability and incongruence in estimated evolutionary trees (phy-

8



2. Modelling Molecular Evolution

logenies) has attracted considerable research interest recently and promising ap-

proaches have been proposed, gene tree estimation continues to play a central role

in the current species tree reconstruction techniques, so it is worthwhile to begin by

understanding not only the methods behind gene tree inference but also to introduce

some essential concepts on genetic variation and evolution.

Variation and Evolution

Different species have different genomes and within each species, DNA sequences

differ between individuals. The exact genotype of an individual, i.e. the DNA se-

quence corresponding to a gene, determines its observable characteristics, also known

as phenotype. Variation in genotype will affect the way proteins are constructed, in

terms of their structure and timing of their production.

As a result of sexual reproduction (e.g. in mammals), organisms inherit two

copies of each chromosome, one from each parent, and thereby obtain the charac-

teristics of their parents. This means they possess two copies of each gene leading

to different combinations of genes in their offspring. Both nucleotide sequences will

often differ and might even produce proteins that will result in different phenotypes.

Although simpler forms of organisms (e.g. bacteria) might originate offspring ge-

netically very similar to their parents, their sequences will be always subject to

the fact that errors (mutations) occur during genome replication. In its simplest

form, a mutation will be a single nucleotide change which might radically change

the structure of the coded protein affecting its function. Mutations occur completely

at random and usually at a relatively low rate. Many mutations will be disadvan-

tageous in terms of the survival of the offspring. Others will have little or no effect

on the organism and these are referred to as neutral. Advantageous mutations will

be the ones that increase the fitness of the organism enabling it to survive longer
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2. Modelling Molecular Evolution

and reproduce. DNA replication and random mutation are two fundamental con-

cepts of evolution. Together they lead to a slow accumulation of mutations within

a population which results in evolution of the corresponding characteristics.

The concept of natural selection has a direct connection with evolution and

describes the process in which organisms, within a population, with certain genetic

traits are more likely to reproduce than others, increasing the likelihood of passing

their DNA onto the next generation. It acts as a filter between the genotypes of

subsequent generations and it operates at a probabilistic level in the sense that it

affects the relative probabilities of genotypes. Without the process of mutation,

natural selection would eventually result in some sort of equilibrium in the form of

an unchanging population, but mutation usually ensures that the offspring genotype

differs from that of its parents.

An initial advantageous or neutral mutation will occur in only one individual

and if genetic drift does not prevent it from spreading through a population, this

mutation might be transmitted to its offspring in reproduction. The offspring will

carry and pass the mutation to its offspring and the process carries on until it be-

comes present in a large proportion of the population, in which case we say it is

fixed. When the mutation corresponds to a change in one nucleotide it is called sub-

stitution. An accumulation of substitutions and/or other forms of mutations might

lead to a speciation event. A species is often defined as a collection of organisms that

are capable of interbreeding and producing fertile offspring. When mutations accu-

mulate in sub-populations of a fixed species, those sub-populations might diverge

and become unable to mate, originating a new species.

Inferring phylogenetic gene trees

Phylogenetic gene tree inference consists broadly of two steps: a) obtaining and
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2. Modelling Molecular Evolution

aligning molecular sequences and b) inferring gene trees for the aligned sequences.

In the first step, multiple sequence alignment has become an indispensable tool in

modern molecular biology research. The DNA sequences to be aligned often contain

open reading frames (ORFs) which are a section of a sequenced piece of DNA that

begins with an initiation (methionine ATG) codon and ends with a nonsense/stop

codon. These sequences code for proteins and therefore a coding sequence can be

considered either at the nucleotide or amino acid level. Due to the redundancy of

genetic codes, different codons, i.e. a sequence of three DNA or RNA nucleotides

that corresponds with a specific amino acid or stop signal during protein synthesis,

encode the same amino acids. Therefore, a nucleotide sequence is less conserved but

more informative than its amino acid translation. For the purpose of this thesis,

we will analyse uniquely DNA sequences. Probabilistic sequence alignment models

have been shown to provide an effective framework for building accurate sequence

alignment tools. Numerous tools exist to align DNA sequences, among which are

CLUSTAL (Higgins et al., 1992), T-COFFEE (Notredame et al., 2000), DIALIGN

(Morgenstern et al., 2002), MUSCLE (Edgar, 2004), MAFFT (Katoh et al., 2005),

FSA (Bradley et al., 2009), PRANK (Löytynoja & Goldman, 2008), and the more

recently proposed MACSE (Ranwez et al., 2011). The initial alignment can strongly

impact conclusions and biological interpretations (Wong et al., 2008).

Despite its importance, multiple sequence alignment is not in the scope of this

thesis. Our main concern lies in achieving accurate gene tree inference for the species

in study, given a fixed multiple sequence alignment. In order to set a basis for the

nomenclature that will be used throughout this thesis let us first formally describe

an example for a single gene phylogenetic analysis.

Suppose we intend to analyse the evolutionary relationships between a set of N
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2. Modelling Molecular Evolution

species using a multiple sequence alignment of N molecular sequences for gene g,

whose length of aligned sites (number of columns) we denote L. Site data Dgl =

(Dgl1, . . . , DglN) contains one nucleotide from each taxon, such that Dgln ∈ A, for

A = (A,C,G, T ), l = 1, . . . , L and n = 1, . . . , N (see Figure 2.1).

Dg

Dgl Dgln

�
�

�
�

�
��

Figure 2.1: Example of a multiple sequence alignment Dg for gene g, with N = 6
and L = 37. The Dgl column (blue) represents the set of nucleotides (one for each
species) aligned at position l, while Dgln (green) corresponds specifically to the nucleotide
in position l belonging to species n.

Phylogenetic trees can describe the genealogical relationships among species,

genes, populations or even individuals. Here we consider that the leaves represent

present-day species, internal vertices represent extinct ancestral species with no

sequence data available, and the branching pattern shows how species have diverged.

The most recent ancestor of all species is the root of the tree. The existence of a

distinguished point on a tree enables us to define a sense of time direction, that is,

time flows from the root to the leaves (Song, 2003). The branching pattern of a

tree is called topology and the lengths of its branches may represent the amount of

sequence divergence or the time period covered by the branch (Yang, 2006). The

number of branches connected to a vertex is called the degree of the vertex.

Mathematically, a rooted phylogenetic tree is a directed acyclic graph with a

unique vertex corresponding to the most recent common ancestor of all the entities at

the leaves of the tree. Formally, an N -taxon rooted phylogenetic tree T = (τ, `) has

N labelled degree-1 vertices, N −2 unlabelled degree-3 vertices, and a distinguished
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vertex of degree-2 called the root. The tree has 2N − 2 edges, each of which has a

non-negative length `j, for j = 1, ..., 2N − 2, where ` = (`1, ..., `2N−2) is the vector

of edge lengths. In a tree T , time flows from the root to the leaves, with edges

oriented to reflect this. A directed path from vertex v0 to vertex vk is an alternating

sequence of vertices v0, . . . , vk and edges e1, . . . , ek, such that ei joins vi−1 and vi,

and all eis and vis are distinct. We say that a vertex v is a descendant of vertex u

if there exists a path from u to v which goes strictly forward in time; u is called an

ancestor of v. The set {v1, v2, . . . , vN−2} of degree-3 vertices is a partially ordered

set since the ancestor-descendant relations between vertices defines the ordering of

some vertices. If we cut an edge on a tree, two subtrees will be originated, dividing

the species into two mutually exclusive sets. Thus, each edge on a tree defines a

bipartition or split of the species.

Trees are often represented using the Newick format’s parenthesis notation. Sis-

ter taxa are grouped into one clade (which represents the set of species descended

from a particular ancestral species) using parentheses, branch lengths are prefixed

by colons and a semicolon marks the end of the tree.

As an example, the phylogenetic tree in Figure 2.2(a) is a graphical representa-

tion of the following Newick string:

(A:0.3185656,(F:0.1462084,(G:0.0048672,H:0.0306487):0.1396449):0.0077896,

((B:0.0212217,C:0.2387582):0.0826425(D:0.1449661,E:0.0199936):0.2650590):

0.0320244);

It represents the evolutionary relationships of 8 hypothetical species as a phy-

logram with branches drawn proportionally to their lengths and measured by the

expected number of nucleotide substitutions per site.
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Often insufficient information exists to determine the root and the tree is left

unrooted (Figure 2.2(b)) still providing a notion of the evolutionary relationships

between organisms (Hickey et al., 2008).

(a) Rooted phylogenetic tree. (b) Unrooted phylogenetic tree.

Figure 2.2: Rooted and unrooted phylograms of the example Newick string.

The tree represented in Figure 2.2(a) is a binary or bifurcating tree. If the root

vertex had a degree greater than 2 or a nonroot vertex had a degree greater than 3,

then that vertex would represent a polytomy and we would say we were in the

presence of a multifurcating tree. For the purpose of this thesis we will assume only

bifurcating trees.

The concept of tree space, which is the set of all possible N taxa trees is also key

in phylogenetics. The total number of unrooted bifurcating trees for N taxa (ZN)

is easily seen to be

ZN = 1× 3× 5× 7× . . .× (2N − 5), (2.1)

by an inductive argument (Cavalli-Sforza & Edwards, 1967).

Considering that each unrooted tree has (2N−3) branches, with the possibility of

placing the root on any of those branches, there will be (2N−3) rooted trees for each

unrooted tree. Therefore, the number of rooted trees for N species is ZN×(2N−3).
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This number increases exponentially with the number of species (Yang, 2006).

2.1 Markov Models Of Nucleotide Substitution

A variety of evolutionary models to explain the mechanism of nucleotide or amino

acid substitutions have been proposed. Calculation of the distance between two

sequences is perhaps the simplest analysis, being the first step in distance-matrix

methods of phylogeny reconstruction. The distance between two sequences can be

defined as the average number of nucleotide changes per site, meaning that when

the evolutionary rate is constant over time, the distance will increase approximately

linearly with the time of divergence. The estimation of this distance can be obtained

through the use of a probabilistic model, commonly a continuous-time Markov chain,

to describe substitutions. Assuming that the nucleotide sites in the sequence evolve

independently of each other, substitutions at any site are described by a Markov

chain with the four nucleotides as the states of the chain. As a result of the Marko-

vian property, the probability in which the chain jumps into other nucleotide states

depends on the current state, but not on how the current state is reached (Yang,

2006).

Following the formal description of the substitution process in Yang (2006),

let X(t) be the state of the chain at time t corresponding to one of the four

nucleotides A, C, G and T. We further assume that different sites in a DNA se-

quence evolve independently and the same Markov-chain model describes the nu-

cleotide substitutions at any site. The chain is characterised by the rate matrix

Q = (qij), where qij is the instantaneous rate of change from i to j such that

Pr{X(t + ∆t) = j|X(t) = i} ' qij∆t, for any j 6= i and small ∆t. As we assume

that qij does not depend on time this is a time-homogeneous process with qii speci-

fied in such a way that each row of Q sums to zero, qii = −
∑

j 6=i qij. The Q matrix
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determines the transition-probability matrix over any time t > 0 : P (t) = (pij(t)),

where pij(t) = Pr{X(t) = j|X(0) = i}. Standard theory of Markov processes

(Yang, 2006) shows that

P (t) = exp(Qt). (2.2)

Assuming that the Markov chain X(t) has the initial distribution

π(0) = (π
(0)
A , π

(0)
C , π

(0)
G , π

(0)
T ), (2.3)

the distribution at time t is

π(t) = (π
(t)
A , π

(t)
C , π

(t)
G , π

(t)
T ) = π(0)P (t). (2.4)

A stationary distribution is a distribution π for X(t) such that π(t) = π =⇒

π(s) = π, ∀ s ≥ t. This Markov chain has a unique stationary distribution πP (t) =

π ⇔ πQ = 0, which is also the limiting distribution when time t → ∞. The chain

is also assumed to be irreducible allowing any state to change into any other state

in finite time.

By placing further constraints on substitution rates between nucleotides, dif-

ferent models of nucleotide substitution are created. These substitution models

differ in terms of the parameters used to describe the rates at which one nucleotide

replaces another during evolution. The simplest models, JC69 (Jukes & Cantor,

1969) and K80 (Kimura, 1980), have symmetrical substitution rates, qij = qji for

all i and j, with πi = 1/4. The first assumes that every nucleotide has the same

rate of changing into any other nucleotide, while the latter assigns different rates for

transitions (substitutions between pyrimidines (T ↔ C) or purines (A ↔ G)) and

transversions (substitutions between a pyrimidine and a purine (A,G ↔ T,C)).

The Tamura and Nei (1993) TN93 model accommodates unequal base composi-
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tion π = (πA, πC , πG, πT ) with different rates for transversions, transitions between

pyrimidines and transitions between purines. A special case of TN93, which we will

use throughout this thesis, is known as HKY85 and was proposed by Hasegawa et al.

(1985). It is parameterised also by unequal base compositions and, as in the K80

model, it assumes different rates for transitions (γ) and transversions (δ), which can

be translated by the transition:transversion rate ratio ρ = γ/δ.

Given this parameterisation, the HKY85 model rate matrix is given by

Q = δ



− πC ρπG ρπT

πA − πG ρπT

ρπA πC − πT

πA ρπC πG −


, (2.5)

where matrix indices reflect the nucleotides ordered as A,C,G,T. The elements de-

noted by a dash take values to ensure the row sum is zero. A detailed description of

the results for the TN93 model, which also applies to HKY85, as well as information

on more complex models, such as the General Time Reversible (GTR) model, which

allows for different nucleotide frequencies and 6 different substitution rates, can be

found in Yang (2006).

The molecular evolutionary clock hypothesis states that the rate of DNA or

protein sequence evolution is constant over time or among evolutionary lineages

(Zuckerkandl & Pauling, 1965). This hypothesis had a tremendous impact in the

field of molecular evolution by allowing inference on divergence times among species.

But controversy arose around its reliability and implications for the mechanism of

molecular evolution; see Yang (2006) for a brief review of the debate.

17



2. Modelling Molecular Evolution

In this thesis we will not assume that the evolutionary rate of DNA sequences is

constant over time. Instead we assume no clock-like restrictions on branch lengths.

The non-clock model is the standard model used in phylogenetic inference. It can

be considered as a branch-breaking model which allows the evolutionary rate to be

different for each branch in the tree. As a result, the non-clock tree model has a

large number of free parameters, one for each branch in the tree. If there are N

leaves in the tree, there are 2N − 3 branches and hence branch length parameters

in the tree model. This means that, for a typical phylogenetic problem, the largest

number of free parameters comes from the branch lengths.

It has long been recognized that it is unreasonable to assume a constant over-

all rate of evolution across nucleotide sites in a sequence. Failure to account for

variation in rates across sites would result in underestimating the sequence distance

(Yang, 2006) and, under some conditions, lead to phylogenetic artifacts such as

long-branch attraction, as has been shown in simulation studies and in analyses of

real data (Susko et al., 2003). Although the models mentioned above assume rate

homogeneity, heterogeneity can be accommodated by assuming that the specific rate

r for each site is a random variable drawn from a Gamma distribution with density

function

g(r|α, β) =
βα

Γ (α)
rα−1e−βr, r > 0, (2.6)

where α > 0 and β > 0 are the shape and scale parameters. It is a common

procedure to set β = α, so that the mean β/α = 1 with variance α/β2 = 1/α.

In this way, for α ≤ 1 the gamma distribution will have a skewed L-shape which

means most sites will have very low rates of evolution while an α > 1 describes a

bell-shaped distribution with most sites having an intermediate rate around 1 (see

Figure 2.3). Assuming variable rates among sites, the sequence distance is defined as

the expected number of substitutions per site, averaged over all sites (Yang, 2006).
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Figure 2.3: Gamma distribution probability density function for variable rates
among sites. The scale parameter β is equal to the shape parameter α so that the mean
of the distribution is 1.

Therefore, Pij = (exp{`kQ})ij, where Pij is the probability of nucleotide i being

replaced by nucleotide j and `k = t× r. Conventionally, Q is multiplied by a scale

factor so that the average rate is 1 and time t is measured by the expected number

of substitutions per site.

2.2 Phylogeny Reconstruction

Methods for inferring gene trees from sequence data are numerous and have become

extraordinarily sophisticated in recent years. The most common traditional ap-

proaches are distance-based methods such as the Neighbor-Joining algorithm (Saitou

& Nei, 1987) and UPGMA - unweighted pair-group method using arithmetric av-

erages (Sokal & Michener, 1958; Murtagh, 1984), in which distances are calculated

from pairwise comparison of sequences, and a clustering algorithm is usually used to

convert the distance matrix into a phylogenetic tree. On the other hand, character-

based methods attempt to fit the nucleotides or amino acids observed in all species at
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every sequence site to a tree. These methods include Maximum Parsimony (Fitch,

1971; Hartigan, 1973), Maximum Likelihood (ML) (Felsenstein, 1973a,b) and more

recently, Bayesian approaches which have provided a method for simultaneously ob-

taining trees and measurements of uncertainty for every parameter (Mau & Newton,

1997; Yang & Rannala, 1997; Holder & Lewis, 2003). The Markov-process models

of nucleotide substitution used in distance calculation form the basis of likelihood

and Bayesian analysis of multiple sequences on a phylogeny.

Methods for tree reconstruction are usually classified into two types: algorith-

mic (cluster methods) or optimality based (search methods). Neighbor-Joining and

UPGMA are included in the first group as they use cluster algorithms in order to

obtain a single tree as the estimate of the true tree. In optimality-based methods,

the tree with the optimal score, according to an optimality criterion, is the estimate

of the true tree (Yang, 2006). The maximum parsimony method assumes that the

most parsimonious tree is the tree that requires the minimum number of evolution-

ary steps (character changes) to explain the observed pattern. In the ML method,

the maximum likelihood tree is the tree with the highest likelihood value, under a

probabilistic model of nucleotide substitution, when fitted to the data. Bayesian

inference generates a posterior distribution for the model parameters, composed of

a phylogenetic tree and a model of evolution, based on the prior for that parame-

ter and the likelihood of the data, given a multiple sequence alignment. The fact

that Bayesian inference infers a distribution for a parameter, accounting also for

uncertainty, makes its classification as an optimality-based method controversial,

although it might be considered as such when the aim is to obtain the tree with the

maximum posterior probability, known as the MAP tree. Both ML and Bayesian

approaches are model-based, using substitution models to calculate the likelihood

function.

20



2. Modelling Molecular Evolution

When evaluating trees according to an optimality criterion, theoretically, the

score for every tree can be calculated and the tree with the best score can be identi-

fied. Although this exhaustive search can lead to the best tree, it is computationally

unfeasible for larger datasets (e.g. for N = 20, the number of possible unrooted

trees is 2.22 × 1020). Therefore some heuristic algorithms are needed to search in

tree space. There are two categories of heuristic search algorithms: hierarchical clus-

tering algorithms (see Yang (2006) for detailed information) and tree-rearrangement

or branch-swapping algorithms which propose new trees from an initial one, through

local perturbations to the current tree and generating a collection of neighbour trees.

The decision of moving or not to a new tree will depend on the inference methods

in use.

(a) NNI operator. (b) SPR operator.

Several branch-swapping algorithms have been proposed. The nearest-neighbour

interchange (NNI) uses the fact that each internal branch defines a relationship

among four subtrees (Figure 2.4(a)). It proposes a move by swapping a subtree on

one side of an internal branch with a subtree on the other side. Another mechanism is

the subtree prune and regraft (SPR) operation which is defined as cutting any branch

and thereby pruning a subtree, and then regrafting the subtree by the same cut edge

to a new vertex obtained by subdividing another edge in the tree (Figure 2.4(b)). A
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(c) TBR operator - bisection. (d) TBR operator - reconnection.

Figure 2.4: Branch-swapping mechanisms (Elliott, 2014).

greater perturbation is obtained through the tree bisection and reconnection (TBR)

where after cutting the tree in two subtrees by pruning one internal branch (Figure

2.4(c)), a new tree is formed by choosing and rejoining two branches, one in each

tree (Figure 2.4(d)). NNI generates fewer neighbours than SPR, which generates

fewer neighbours than TBR (Allen & Steel, 2001).

A characteristic of objective functions on tree space is the existence of local

peaks or tree islands. Multiple local peaks are known to exist in the tree space

during heuristic tree search under maximum parsimony and ML (see Yang (2006)

for a practical example). Steel (1994) demonstrated that the maximum likelihood

point for a phylogenetic tree is not necessarily unique, a phenomenon that had been

encountered by Cavalli-Sforza & Edwards (1967) in their early attempts to apply

maximum likelihood in phylogenetic tree reconstruction (Rogers & Swofford, 1999).

Due to this, and considering that branch swapping is a hill climbing algorithm, it is

able to find a local optimum, but such a solution cannot be improved by considering a

neighbouring tree. Branch swapping does not guarantee finding the global optimum

out of all possible solutions (the tree space), and this becomes more serious for

larger trees with more species (as the tree space is much larger) or longer sequences

(with more sites, which tends to originate higher peaks and deeper valleys making

it very difficult to traverse between peaks) (Yang, 2006). The same problem can
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be expected for stochastic tree search, although some stochastic search algorithms

attempt to overcome the problem of local peaks by allowing downhill moves, as

with simulated annealing (Metropolis et al., 1953; Kirkpatrick et al., 1983). In

this optimisation algorithm, the objective function is modified (heated) to have a

flattened surface in the early stage of the search facilitating moves between peaks

by allowing a higher acceptance of downhill moves. As the simulation proceeds

the ‘temperature’ is gradually reduced and at the final stage of the algorithm, only

uphill moves of the algorithm are accepted (Yang, 2006). See Barker (2004) for an

example of the use of simulated annealing for phylogenetic inference. The genetic

algorithm is another stochastic tree-search algorithm mainly used for ML tree search

which uses operations similar to mutation and recombination to generate new trees

from the current ones. Each tree will be kept in every generation depending on a

‘fitness’-related optimality criterion. An example of such an algorithm can be found

in Lewis (1998).

The stochastic tree-search algorithm that we will give particular attention to is

the Markov Chain Monte Carlo (MCMC) algorithm. This algorithm has the advan-

tage of being a statistical approach which assigns a posterior probability for each

tree in the posterior distribution obtained when the chain reaches equilibrium. The

Metropolis-Coupled Markov Chain Monte Carlo (MCMCMC) algorithm, introduced

by Geyer (1991) for multimodal distributions is a parallel-chain extension of this al-

gorithm which uses some of the simulated annealing algorithm principles allowing

multiple peaks in the landscape of trees to be more readily explored. Subsection

2.2.2 contains a more detailed view of both algorithms. For the purpose of this thesis

we will next overview the theoretical concepts behind inferring molecular evolution

using ML and Bayesian approaches.
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2.2.1 Maximum Likelihood

In 1981, Felsenstein provided a likelihood function for a gene sequence alignment

given a gene tree, in terms of a Markov substitution model. Then, the estimate of

the gene tree is obtained by maximizing the function with respect to the gene tree.

He assumed that sites within a gene are independent and identically distributed and

also that evolution in one lineage is independent of other lineages. Thus, the prob-

ability of observing Dgl is given by a multinomial distribution over the 4N possible

outcomes. The multinomial probabilities are functions of an unknown rooted binary

tree topology τ , branch lengths ` = (`1, . . . , `B)T , for B = 2N − 2, and a model to

describe the mutation of nucleotides along the branch lengths.

Let us consider the HKY85 model referred to earlier with the substitution-rate

matrix presented in Equation 2.5. Since only the product `b × Q enters into the

model likelihood, we fix

δ =
1

2[ρ(πAπG + πCπT ) + (πA + πG)(πC + πT )]
, (2.7)

and this constraint will enforce that

∑
m∈(A,G,C,T )

= πmQm,m = −1, (2.8)

so that each branch length is the expected number of nucleotide substitutions per

site between the two vertices the branch connects.

Considering the set of parameters Ψ = (Q, `, τ), the likelihood with respect to

alignment D, which has a total length of L independent and identically distributed

sites, is

p(D|Ψ ) =
L∏
l=1

p(Dl|Ψ ). (2.9)
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Equivalently the log-likelihood is a sum over the sites in the sequence

log p(D|Ψ ) =
L∑
l=1

log p(Dl|Ψ ). (2.10)

Variation in the rate of evolution between different sites can be accommodated

in the likelihood function using the discrete gamma method of Yang (1993, 1994). A

discrete approximation is usually used for continuous rate distribution models such

as the gamma because of the computational difficulties in evaluating likelihoods.

Thus, the distribution is partitioned into c “rate categories” of equal probability,

each with a rate constant ry for y = 1, ..., c. The probability p(Dl|Ψ ) is approximated

as

p(Dl|Ψ ) ' 1

c

c∑
y=1

p(Dl|Q, τ, ry`). (2.11)

The probability of each individual column, p(Dl|Q, τ, ry`) will be the sum of

the probabilities over all possible nucleotide combinations for the extinct ancestors,

represented by the interior vertices of the tree. This calculation is computation-

ally expensive as there are 4n−1 possible combinations for n − 1 interior vertices.

Felsenstein’s “pruning” algorithm (Felsenstein, 1973a, 1981), is the most common

approach for such a calculation.

The root of the tree can be placed anywhere on the tree without affecting the

likelihood. Therefore, we are estimating not a single rooted tree but an equivalence

class of rooted trees, namely all those compatible with a given unrooted tree, which

is what we are in effect estimating (Felsenstein, 1981).

Once we know how to calculate the likelihood, the estimation becomes a standard

mathematical problem: maximizing the likelihood function over the entire parame-

ter space. The parameters here include not only gene trees but also the parameters

in the substitution models and any parameters used to model the correlation among
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sites. A detailed explanation of numerical algorithms for maximum likelihood esti-

mation can be found in Yang (2006).

Maximum likelihood estimates are generally consistent in that the estimates con-

verge to the true gene trees as the length of the gene sequences goes to infinity, if

the underlying model is correct. Statistical tests are often employed to find the best

model for the data. The likelihood ratio test is one of the most commonly used

techniques to select the model, from among a hierarchy of models, that most appro-

priately fits the data. However, choosing the model with the highest likelihood value

may lead to one that is unnecessarily complex. In addition, it is inappropriate to

use the likelihood ratio test to select the topology of the gene tree because the like-

lihood ratio test requires the models to be nested. This has led many investigators

to consider model selection criteria such as the Akaike information criterion (AIC )

(Akaike, 1974), which does not require nested models. The AIC score is calculated

for each model, defined as

AIC = −2 logL+ 2p (2.12)

where logL is the optimum log-likelihood that measures the goodness of fit of the

model and p the number of parameters. Another commonly used model selection ap-

proach, cross validation, is based on minimizing the prediction error. However, cross

validation involves intensive computation, which dramatically limits its application

to tree building projects.

2.2.2 Bayesian Inference

Bayesian approaches to phylogenetic analysis are relatively new, being introduced in

the late 1990’s (Rannala & Yang, 1996; Yang & Rannala, 1997; Mau & Newton, 1997;

Li et al., 2000). Initially, a constant rate of evolution was assumed (the molecular

clock) as well as a flat prior on rooted tree topologies. But more efficient algorithms
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have been implemented since then in which the clock constraint is relaxed, enabling

phylogenetic inference under more realistic evolutionary models (Yang, 2006).

The field of Bayesian statistics is closely allied with ML. The Bayesian method is

different from the likelihood method in that it treats parameters as random variables

and assumes prior distributions on them whereas parameters are unknown fixed

constants in the likelihood paradigm. The notion that parameters have a probability

distribution is key in Bayesian statistics being per se a measure of uncertainty for the

parameters. In phylogenetic inference, the posterior probability can be interpreted

as the probability that the tree is correct given the multiple sequence alignment,

and assuming the multiple sequence alignment was generated under the model (i.e.

no model mis-specification). Note that all ML analyses are also conditional on

the model being correct. Let Ψ denote all the model parameters, including the

unknown phylogenetic tree. Then the posterior distribution for the phylogenetic

tree is obtained by combining the information in the data D, an aligned set of

molecular sequences described by the likelihood function p(D|Ψ ), with that in the

prior distribution, p(Ψ ).

Using Bayes Theorem, the posterior distribution is defined as

p(Ψ |D) =
p(Ψ ) p(D|Ψ )

p(D)
. (2.13)

The likelihood is calculated under one of a number of standard nucleotide substi-

tution models (referred to in Section 2.1) and the marginal probability of the data,

p(D), is a normalising constant that allows p(Ψ |D) to integrate to 1. Computation

of p(D) involves a summation over all trees topologies, and an integration over all

possible combinations of branch length and substitution model parameter values

which is analytically intractable. Fortunately, a number of numerical methods are

available that allow the posterior probability of a tree to be approximated, the most
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commonly used being Markov Chain Monte Carlo (MCMC) which entails simulation

from the posterior density p(Ψ |D).

Inferences about the history of the group of sequences are then based on the

posterior probability of the phylogenetic model parameters. The mean, median or

mode of the distribution can be used as equivalents to classical statistical “point

estimates”, and, for example, the 95% credible interval (CI) can be constructed via

the 2.5% and the 97.5% quantiles of the posterior density. Credible intervals can be

equal-tail or highest posterior density depending on whether the posterior density is

symmetric or skewed.

With the Bayesian approach, integration or marginalisation can be used to deal

with nuisance parameters. Let us assume that Ψ = (τ, `,θ) where τ is a topology

such that τ ∈ {τ1, . . . , τtn} with tn as the total number of possible topologies for n

species, ` is the branch lengths on τ , and θ corresponds to the substitution model

parameters. The marginal posterior probability function of τ is

p(τ |D) =

∫
`

∫
θ p(D|τ, `,θ)p(τ, `,θ)d`dθ∑tn

j=1

∫
`j

∫
θ p(D|τj, `j,θ)p(τj, `j,θ)d`jdθ

(2.14)

In this case, τ is our parameter of interest and all other parameters are considered

as nuisance parameters. The same reasoning can be applied to any of the other

parameters.

Prior distribution

A prior probability distribution of an uncertain quantity ξ is the probability distri-

bution that describes the uncertainty about ξ before taking into account any data

D. There are three main ways to define a prior. A first approach is a model-based

prior as, for example, the Yule process. The Yule process is a birth process with a

constant birth rate. The number of births in time interval (0, t), Y (t), has a neg-
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ative binomial distribution, which is the same as the distribution of the number of

new species of a genus produced during (0, t) in Yule’s study of evolution. Another

approach includes specifying the prior by assessing prior evidence concerning the

parameter (e.g. using past observations of the parameters in similar circumstances)

and using subjective beliefs of the researcher. Vague or diffuse priors are often used

when little information is available. For example, in the absence of background data,

a simple solution would be to assign equal probability to the possible trees, but it is

always important to assess whether the posterior is sensitive to the prior. When the

posterior is dominated by the information from the data, the choice of prior might

be less important. When this is not the case, the effect should be assessed carefully.

The most common prior probability distributions used in Bayesian phylogenet-

ics parameter estimation are the discrete and continuous Uniform, Exponential,

Gamma, Normal and Dirichlet distributions. Specifically for the model we are fit-

ting, Poisson and Geometric distributions are useful priors when modelling the num-

ber of times a certain event occurs. The main characteristics of these key probability

distributions are reviewed in Appendix A.

An important concept in relation to priors is that of a conjugate prior which

means that the prior and the posterior have the same distributional form and the

information in the data is used to update the parameters in that distribution. Con-

jugate priors are convenient as the integrals are tractable analytically, but are not

available for all distributions. As an example, if we assume that random variable X

can be modelled by a normal distribution such that X|µ ∼ N(µ, σ2), for known σ2,

the conjugate prior for µ is a Normal distribution N(m, v) with density

p(µ|m, v) ∝ 1√
v

exp

{
− 1

2v
(µ−m)2

}
, −∞ < µ <∞. (2.15)
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Since µ and X have a joint Normal distribution, the posterior distribution is

µ|X = x ∼ N

(
m+

v

σ2 + v
(x−m),

(
1

v
+

1

σ2

)−1
)
. (2.16)

On the other hand, the conjugate prior for σ2, assuming fixed µ, is an Inverse

Gamma IG(a, b) with density

p(σ2|a, b) ∝ ba

Γ (a)
σ2(−a−1)

exp

(
− b

σ2

)
, σ2 > 0. (2.17)

If the prior distribution involves unknown parameters, priors can be assigned to

them, and in the same way, if these second-level priors contain other unknown

parameters, these can have their own priors too. This is known as the hierarchical

Bayesian approach. Usually these hierarchies have no more than 2 to 3 levels, as the

effect becomes less important (Yang, 2006). An example of a hierarchical Bayesian

prior will be presented in Subsection 3.2.1 when discussing the hierarchical Bayesian

phylogenetic model proposed by Suchard et al. (2003).

Markov Chain Monte Carlo (MCMC)

Bayesian phylogenetic models can involve hundreds or thousands of parameters and

high dimensional integrals. The calculation of the posterior probability of a phy-

logenetic tree involves evaluating the marginal probability of the data p(D), which

is the sum over all possible tree topologies and integration over all branch lengths

in those trees and over all parameters in the substitution model which is hard to

calculate analytically (Yang, 2006). Thus, except for trivial problems, a numeri-

cal method is needed and the development of MCMC algorithms has resulted in a

powerful solution.

The basic idea of MCMC is to construct a Markov chain that has the parame-

30



2. Modelling Molecular Evolution

ters of the statistical model as its state space and a stationary distribution that is

the posterior probability distribution of the parameters. MCMC methods sample

successively from a target distribution, which is the posterior. Each sample depends

on the previous one, hence the notion of the Markov chain.

Formally, a first-order Markov chain is a sequence of random variables, Ψ (1),Ψ (2), . . .

for which the distribution of random variable Ψ (t) depends only on Ψ (t−1). Markov

chains have the property that they often converge towards the stationary distri-

bution regardless of the starting point. Different methods can be used to build a

Markov chain with a specific stationary distribution and for parameter-rich models

usually a mixture of different samplers is typically used, with each sampler target-

ing one parameter or a set of related parameters. The algorithm can either cycle

through the samplers systematically or choose among them randomly according to

some proposal probabilities. Together these samplers determine the transition kernel

p(Ψ (t+1)|Ψ (t)). The most common is known as the Metropolis algorithm, originally

described by Metropolis et al. (1953). Hastings (1970) later introduced an impor-

tant extension (to be defined on page 33), and the sampler is often referred to as

the Metropolis-Hastings algorithm.

In Bayesian inference, instead of searching for the optimal tree, one samples trees

according to their posterior probabilities. Once such a posterior sample is available,

features that are common among the trees can be discerned (Huelsenbeck et al.,

2001).

Computing posterior expectations

MCMC algorithms are closely related with Monte Carlo integration, a simula-

tion method for calculating multidimensional integrals. Let ϑ denote all the model
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parameters. The expectation of h(ϑ) over the density p(ϑ),

I = Ep[h(ϑ)] =

∫
h(ϑ)p(ϑ)dϑ, (2.18)

can be estimated using independent samples ϑ1,ϑ2, . . . ,ϑnϑ drawn from p(ϑ) , with

I estimated by

Î =
1

nϑ

nϑ∑
i=1

h(ϑi). (2.19)

Using the Central Limit Theorem, Î has an asymptotic normal distribution with

mean I and variance

var(Î) =
1

n2
ϑ

nϑ∑
i=1

(h(ϑi)− Î)2. (2.20)

Unfortunately when sampling ϑ1,ϑ2, . . . ,ϑnϑ from an MCMC algorithm, the ϑi

form a dependent sample from the target distribution p(ϑ). This dependence affects

the calculation of the variance of the estimator Î. Suppose δk is the autocorrelation

of h(ϑi) over the Markov chain at lag k. Then the variance can be written as

var(Î) =
1

n2
ϑ

nϑ∑
i=1

(h(ϑi)− Î)2 × [1 + 2(δ1 + δ2 + δ3 + . . .)]. (2.21)

In effect, a dependent sample of size nϑ contains as much information as an inde-

pendent sample of size nϑ/[1 + 2(δ1 + δ2 + δ3 + . . .)], known as the effective sample

size (Yang, 2006).

Metropolis-Hastings

In Bayesian inference the target distribution is the posterior, p(ϑ) = p(Ψ |D), so

that MCMC algorithms generally generate dependent samples from the posterior.

The idea of the Metropolis-Hastings (M-H) algorithm is to start the chain at an
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arbitrary point and in each iteration random changes are performed to current pa-

rameter values, and then accepted or rejected according to appropriate probabilities.

Formally, the algorithm can be described as follows.

1. Set initial state Ψ 0.

2. At tth step (for t = 0, 1, ...):

(a) Propose a new state Ψ ∗ from proposal density q(Ψ ∗|Ψ t).

(b) Accept Ψ ∗ with probability min(1, A) where

A =
p(Ψ ∗)

p(Ψ t)
× p(D|Ψ ∗)
p(D|Ψ t)

× q(Ψ t|Ψ ∗)
q(Ψ ∗|Ψ t)

= prior ratio× likelihood ratio× proposal ratio. (2.22)

(c) If the proposal is accepted, set Ψ (t+1) = Ψ ∗. Otherwise set Ψ (t+1) = Ψ t.

3. Repeat step 2.

This algorithm generates a random sequence of visited states which constitutes a

Markov chain - given the current state, the next state to be sampled does not depend

on past states. Also, the proposal density can be symmetrical (q(Ψ ∗|Ψ ) = q(Ψ |Ψ ∗))

or asymmetrical (q(Ψ ∗|Ψ ) 6= q(Ψ |Ψ ∗)) for any Ψ 6= Ψ ∗. The algorithm proposed

by Metropolis et al. (1953) assumes symmetrical proposals and it was extended by

Hastings (1970) to allow asymmetrical proposal densities.

Often, when sampling from the posterior, samples are retained only every certain

number of iterations, a process that is called thinning the chain, as this contributes to

reduce the autocorrelation across iterations, disk usage and the output size, easing up

further processing. The efficiency of the algorithm can be immensely affected by the

nature of the proposal: hence the need of developing efficient proposal algorithms.
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Although the prior and likelihood are directly related with the problem in hand, the

proposal ratio is solely dependent on the proposal algorithm. The proposal density

q(·|·) needs to specify an aperiodic and irreducible chain, i.e the state has period

d = 1 and the chain is allowed to reach any state from another state, to guarantee

that the MCMC algorithm will converge. Each of the proposal mechanisms used in

the Bayesian inference framework applied to our proposed model will be discussed

in Chapter 3.

Gibbs Sampler

Special cases of the M-H algorithm have been developed such as the Gibbs sam-

pler (Geman & Geman, 1984). The Geman brothers named the algorithm after

the physicist J. W. Gibbs, some eight decades after his death, in reference to an

analogy between the sampling algorithm and statistical physics. They introduced

Gibbs sampling in the context of image restoration. It became popular for Bayesian

inference, though it requires conditional sampling of conjugate distributions (see

Subsection 2.2.2).

A Gibbs sampler generates a draw from the distribution of each parameter or

variable in turn, conditional on the current values of the other parameters or vari-

ables. In this sampler the proposal distribution for updating a specific parameter

is the conditional distribution of that parameter given all other parameters which

leads to accepting all proposals with probability one.

Metropolis-coupled MCMC (MC3)

The Metropolis-Coupled Markov Chain Monte Carlo (MCMCMC/MC3) algo-

rithm was introduced by Geyer (1991) for multimodal distributions. The MC3
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method is usually helpful when the target distribution has multiple peaks, sepa-

rated by deep valleys, which makes it harder for the chain to jump from one peak to

another. The strategy is to run m chains in parallel, with different stationary distri-

butions pj(·), for j = 1, 2, ...,m, where p1(·) is the target distribution. The first chain

is the only one that converges to the correct posterior distribution and is known as

the cold chain. For the other chains (hot chains), the stationary distributions will

result from an incremental ‘heating’ such that

pj(Ψ ) ∝ p1(Ψ )1/[1+λ(j−1)], for λ > 0. (2.23)

By raising the density p(·) to the power 1/T , with T = 1 + λ(j − 1) > 1, the

distribution will be flattened allowing the algorithm to access other peaks. This is

accomplished by proposing a swap of states between two randomly chosen chains

through a M-H step. Considering Ψ j the current state in chain j, for j = 1, 2, ...,m,

the swap between chains j and i will be accepted with probability

min

{
1,
pi(Ψ j)pj(Ψ i)

pi(Ψ i)pj(Ψ j)

}
, (2.24)

leading to better mixing. Only the output from the cold chain will be used at the

end. Despite having several chains running, only one leads to samples from the

posterior, which turns out to be computationally expensive. It is advantageous if

the algorithm is implemented to take advantage of parallel processes (Yang, 2006).

Convergence

When the initial state of a chain is far from the posterior mode, the initial likeli-

hood will probably be low. After a long number of iterations, the chain should start
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moving towards the posterior regions with high probability mass and consequently

the posterior density will increase. The samples obtained in this early phase of the

run are known as the burn in, and are often discarded due to being heavily influ-

enced by the starting point. This is the period in which the chain converges to its

stationary distribution.

When the posterior values mix around a ‘plateau’, it might indicate that the

chain converged onto the target distribution. Therefore, the plot of the MCMC

sampled values or of the overall log-likelihood against the generations of the chain,

known as the trace plot (Figure 2.5), is often used in monitoring the performance of

an MCMC run.

Figure 2.5: Example of a traceplot of the MCMC generated values for a specific parameter.

The decision whether to use a single or multiple runs, using the same model

for the same dataset, is related to the ability to diagnose convergence. We have

seen that the algorithms used in stochastic tree search might spend long periods in

a relatively small region or local peak, which can mislead one into believing that

the chain has converged. With many parallel chains it is unlikely that all runs

will be showing this behaviour together. However, it is very important to confirm

convergence using other diagnostic tools since it is not sufficient for the chain to

reach the region of high probability in the posterior, it must also cover this region
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adequately. The speed with which the chain covers the interesting regions of the

posterior is known as its mixing behaviour. The better the mixing, the faster the

chain will generate an adequate sample of the posterior (Ronquist et al., 2009).

However, the development of correct and efficient MCMC algorithm propos-

als is a challenging task, especially when dealing with sophisticated parameter-rich

models on real data, which usually cause problems for both inference and computa-

tion. There might be a lack of information for estimating the multiple parameters,

which leads to a nearly flat or ridged likelihood surface or strong correlation be-

tween parameters. Also, it is often impossible to calculate an independent posterior

distribution to validate the computational implementation. Despite being correctly

implemented, an MCMC algorithm can suffer from slow convergence and poor mix-

ing, which causes not only a long time for achieving stationarity but also the sample

states might be highly correlated over the iterations resulting in an inefficient pa-

rameter space exploration (Yang, 2006).

The proposal mechanism also affects convergence since it needs to facilitate the

chain to go from any point in parameter space to any other point in a finite number

of steps (with positive probability). But in practice, some proposal mechanisms mix

and/or converge much faster than others. This might be due to how the proposal

density is specified. It is possible to determine how bold the proposals are by chang-

ing the proposal mechanism’s tuning parameters. Adjusting the tuning parameter

values to reach a target acceptance rate can be done manually or automatically us-

ing adaptive tuning methods. Modest proposals will be accepted most of the time

taking a longer time to cover the region of high probability mass in the posterior dis-

tribution. When too bold, most proposals will be rejected resulting again in a long

time to cover the region of interest. Extreme acceptance rates thus indicate that

sampling efficiency might be improved by adjusting proposal tuning parameters.
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Studies by Roberts et al. (1997) and Roberts & Rosenthal (1998, 2001) on several

types of complex unimodal posterior distributions suggest that the optimal accep-

tance rate is 0.44 for one-dimensional and 0.23 for multi-dimensional proposals.

Multimodal posteriors are expected to have even lower optimal acceptance rates.

Some samplers used in Bayesian MCMC phylogenetics, e.g. some tree topology up-

date mechanisms, have acceptance rates that will remain low, independent of the

tuning parameters’ values (Ronquist et al., 2009).

Fortunately, several convergence diagnostics have been developed and can help

determine the quality of a sample from the posterior distribution. Several heuristic

methods have been suggested as diagnostic tools for an MCMC run such as:

• checking the trace plots for all the parameters (convergence of the model pa-

rameters is only achieved when all parameters did converge);

• multiple chains started at different points in the parameter space should con-

verge to the same stationary distribution (this approach is arguably the most

powerful way of detecting convergence problems, its drawback being the wasted

computational power by generating several independent runs);

• run the chain without data, which should lead to a posterior distribution which

is the same as the prior;

• generate data under the likelihood model using prior-sampled parameter val-

ues (e.g. when assuming that, for a continuous parameter, the (1 − α)100%

posterior credible interval (CI) contains the true parameter value with proba-

bility (1− α), it is possible to check whether the true value is included in the

interval) (Yang, 2006).

When applying Bayesian MCMC methods to phylogenetic problems, usually the

most difficult parameter to sample from is the tree topology, making it the key
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parameter to monitor when checking convergence. By using randomly chosen trees

as initial states, the several parallel runs will initially sample from very different

regions of tree space. If the chains are converging to the posterior distribution, we

expect the tree samples to become more and more similar and therefore, comparing

the variance among and within tree samples from different runs seems an efficient

convergence diagnostic. The most common approach to compare samples of tree

topologies is to focus on split frequencies. Since each branch in a tree corresponds

to exactly one split, if two tree samples are similar, the split frequencies should be

similar as well. An overall measure of the similarity of two or more tree samples

can be the average standard deviation of the split frequencies (used in MrBayes

(Huelsenbeck et al., 2012)) or the maximal frequency difference among all observed

splits (used in PhyloBayes (Lartillot & Philippe, 2004)). While the former assumes

convergence if the average standard deviation is ≤ 0.01, the latter states that a chain

has converged once the maximal frequency difference among all observed splits is ≤

0.1, although it accepts that 0.1 < maximal difference among all observed splits <

0.3 results in acceptable convergence. As the tree samples become more similar,

both values should tend to zero.
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Phylogenetic Incongruence

A central premise of phylogenetic analysis is that relationships among organisms

follow a hierarchical pattern which can be inferred by observing and analysing ho-

mologous traits, or genetically determined characteristics, shaped by evolutionary

history. An homologous trait in two species is a trait inherited from their common

ancestor. This definition requires, however, an underlying species phylogeny, which

itself is a hypothesis and is usually unknown (Dávalos et al., 2012).

Most traits in an organism are expected to have a common evolutionary history

but incongruent gene trees might result as a consequence of different rates of change

and evolutionary mechanisms (Bull et al., 1993). Incongruence has also become

a more detectable problem with the advent of genome-scale data sets. Although

highly advantageous in phylogenetic reconstruction, genetic sequences are not with-

out their problems. Not only paralogous sequences (i.e. sequences that diverged

after a duplication event within a genome) and sequence alignment are potentially

problematic, phylogeneticists are confronted with the dilemma of how to incorporate

information about the available multiple genes in their analyses (Cranston et al.,

2009; Galtier & Daubin, 2008). Incongruence not only undermines the reconstruc-

tion of the underlying species tree from a set of gene trees but also raises the question
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of the extent to which the history of organisms’ evolution can be represented by a

single phylogenetic tree (Beiko et al., 2008). Several studies on large data sets have

confirmed that phylogenetic conflict is common, and frequently the norm rather

than the exception (Dávalos et al., 2012).

Taxonomic sampling (Graybeal, 1998), the number of characters sampled (Rosen-

berg et al., 2002), and method of analysis (Felsenstein, 1978) can all affect estimates

of phylogeny. Adaptive evolution leading to convergence, once thought to be ex-

tremely rare (Patterson, 1988), is also a relatively common source of conflict among

gene trees, as it is between morphological and molecular phylogenies. Large data

sets have also helped establish that high rates of change leading to saturation are

common (Dávalos et al., 2012), as well as biological processes leading to different

gene trees such as the mechanisms behind reticulate evolution (Linder et al., 2004;

Bapteste et al., 2005; Degnan & Rosenberg, 2006).

This chapter will explore the phylogenetic incongruence resultant from reticulate

evolution, describing in more detail the biological background of lateral gene events

and how it affects species tree inference. The hierarchical phylogenetic model for

multi gene data of Suchard et al. (2003) and its extension to account for LGT

events (Suchard, 2005), are also described as they are the basis for the model we are

introducing in this thesis.

3.1 Background

When two or more independent evolutionary lineages undergo some type of genetic

combination or exchange, we are in the presence of reticulation. It can occur at the

chromosomal, population or species levels (Linder et al., 2004). Hybridisation (two

species recombine originating another species) and lateral gene transfer (LGT), when

genes are transferred across species boundaries, are the main sources of reticulate
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evolution at the species level. In the presence of hybridization, no single tree will

represent adequately the evolution of the taxa under study, and a network or a set of

gene trees will usually be a more appropriate representation. Whether a species tree

can be reconstructed from gene trees, if genes are randomly transferred between the

trees’ lineages, is still controversial and we will return to this question later in this

thesis. At the population level (within each lineage) sexual recombination will cause

reticulate evolution and shuffling of genes will result from meiotic recombination,

which happens at the chromosome level. The diagram in Figure 3.1 published in

Linder et al. (2004) gives an interesting illustration of these possible reticulation

scenarios.

Figure 3.1: Reticulation events: a) at the species level representing a hybridisation
event; b) at the population level representing parental recombination of genes and c) at
the chromosomal level representing meiotic recombination (Linder et al., 2004).

Note that when the aim of the study is species-level inference we might feel

inclined to assume that only reticulate events at the species level will make the

graphical representation of evolution as a tree-like graph challenging. But although

meiotic recombination does not cause a species-level reticulate evolutionary history it

may produce patterns that confound species-level inference of reticulation (Linder

et al., 2004). In what follows, we will assume that the individual gene datasets

are recombination-free (so that meiotic recombination, or exchanges between sister

42



3. Phylogenetic Incongruence

chromosomes, does not take place), thus simplifying our analysis and allowing us

to assume that all gene evolution is tree-like (Posada & Wiuf, 2003; Zhang & Jin,

2003). As meiotic and sexual recombination are not in the scope of our work we are

redirecting our attention to reticulation events among species.

In hybrid speciation, two lineages recombine to create a new species, as symbol-

ized in Figure 3.2(a), but the evolutionary history of the genes inherited from species

X and Y can still be individually represented by a gene tree (see Figures 3.2(b) and

3.2(c)). In the presence of an LGT, although genetic material is transferred from

one lineage to another it does not necessarily result in a new lineage (Figure 3.2(d)),

so that the evolution of a gene can still be represented as a tree. For this specific

case, the tree in Figure 3.2(e) represents the evolutionary history of the genes later-

ally transferred from another species, and in Figure 3.2(f), the genes inherited from

the parent. Therefore, although trees might not be the most appropriate graphical

models of species evolution when reticulation occurs, they are still appropriate for

gene evolution.

Figure 3.2: Hybridisation and LGT: a) Species D is a hybrid of species X and Y.
Evolutionary history of genes inherited from species X can be represented by gene tree (b)
whereas tree (c) represents genes inherited from species Y. A similar scenario is produced
in the presence of an LGT represented in subfigures (d), (e) and (f) (Linder et al., 2004).

Both types of reticulation event are sufficiently common to be of serious concern

to systematists. Hybrid speciation is common in some very large groups of organ-

isms: plants, fish, amphibians, and many lineages of invertebrates, and horizontal

gene transfer appears to be very common in bacteria with lower levels being evident
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in many multicellular groups.

This thesis focuses on LGT driven reticulate evolution. Thus, we will now ex-

plore, in more detail, the most important biological aspects of gene transfers between

organisms and species tree reconstruction in their presence.

3.1.1 Lateral Gene Transfer

Lateral gene transfer, ‘the non-genealogical transmission of genetic material from one

organism to another’ (Goldenfeld and Woese 2007) is widely accepted as a source

of new genes and functions to the organisms that received the genetic material,

assuming the survival of that material throughout the subsequent generations.

LGT is most likely to occur between closely related species, but can also occur

between distantly related organisms. A considerable number of published studies

about genes that have probably been acquired by LGT show that the transfer can

occur not only within domains such as from Bacteria to Bacteria (Ochman et al.,

2000; Ku et al., 2013), Archaea to Archaea (Doolittle & Logsdon, 1998; Kaminski

et al., 2013) and Eukaryotes to Eukaryotes (Andersson, 2005; Wisecaver et al., 2013)

but also between domains in all possible directions (Boto, 2010; Nikolaidis et al.,

2013; Yue et al., 2013; Robinson et al., 2013). The length of DNA segments believed

to have been laterally transferred seem to range from 7 nucleotides (Denamur et al.,

2000) to an entire chromosome greater than 3 Mb (Lin et al., 2008). These segments

include non-coding DNA, portions of genes, intact genes, multi-gene clusters, oper-

ons, plasmids, transposable elements and pathogenicity islands, hence the proposal

to use the expression ‘lateral genetic transfer’ rather than gene (Beiko et al., 2005).

Mechanisms behind the transfer of genetic material between micro-organisms

became well known in the early research stages in molecular biology and molecu-

lar genetics (Lederberg & Tatum, 1946; Zinder & Lederberg, 1952; Stocker et al.,
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1953). In a nutshell, the foreign genetic material enters the cell, either as a naked

sequence or in a vector (e.g. plasmids, integrons, transposons) and once inside,

the gene must escape the host defenses, be incorporated into the host genome and

become expressed as a functional protein. This new gene will only be maintained

if it provides a function which is selected for in the population and it may or may

not replace homologous genetic material. Basic lateral transfer mechanisms include

transformation, conjugation-mediated plasmid exchange, phage-mediated transduc-

tion and variations of these processes (Figure 3.3). In contrast to transformation and

phage-mediated LGT, conjugation requires physical contact of the donor and recip-

ient bacteria. Genetic integration into a host genome might result from homologous

recombination, illegitimate recombination, combinations of both these mechanisms

or site-specific recombination (Brigulla & Wackernagel, 2010).

Figure 3.3: Mechanisms of lateral gene transfer (LGT) in bacteria: a) Transfor-
mation occurs when naked genetic material is released on lysis of an organism and is taken
up by another organism; b) In transduction, genes are transferred from one bacterium to
another by means of phages and can be integrated into the chromosome of the recipient
cell (lysogeny); c) Conjugation occurs by direct contact between two bacteria: plasmids
form a mating bridge across the bacteria and genetic material is exchanged (Furuya &
Lowy, 2006).
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The success of any LGT attempt depends on the vector compatibility between

donor and recipient, which is often related with recognition of, and interaction with,

recipient surface proteins. Despite the limitations, conjugation between distantly

related organisms such as bacteria and eukaryotes has been demonstrated experi-

mentally (Beiko et al., 2005).

As a result of these findings, Syvanen proposed in 1985 the theoretical effect

upon evolution of gene transfer across species. The theory suggests that genes can

be transferred and expressed among all species and that the uniformity of the genetic

code would allow organisms to decipher and use genes transposed from chromosomes

of foreign species. But it was only when phylogeneticists used the sequence of 16S

RNA genes for reconstructing old phylogenetic relationships that they realized that

these genes were grouping together micro-organism species that were split by other

morphological, physiological or molecular markers (Boto, 2010). In 1993, Hilario

and Gogarten proposed the concept of LGT between organisms as an alternative

explanation for the observed phylogenetic conflicts. Since then, especially with the

rise of the genomic era which allowed the comparison of complete sets of genes

between organisms, new and abundant data have reinforced this idea.

A great effort has also been carried out in the past years to gain an insight

on the importance of LGT events in Bacterial and Archaeal evolution (Boto, 2010).

Nonetheless the results are controversial since any topology obtained in phylogenetic

studies that supports an LGT event may also be explained by gene duplication and

gene loss events (Kurland et al., 2003). In order to distinguish between them, the

likelihoods of these evolutionary events have to be considered, which is problematic

given that the frequencies of such events are expected to vary between lineages as
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well as throughout evolution (Andersson, 2005). Nevertheless, it seems that lateral

genetic transfer does play a larger role in microbial evolution than initially thought

(Dagan et al., 2008), and despite the fact that the number of fully sequenced genomes

available has risen dramatically in past years, the bacterial phylogeny seems to be

still largely unresolved. These facts led to the proposal that, in the presence of such

a high rate of LGT events in bacterial evolution, the species tree can no longer be

recovered (Doolitle & Bapteste, 2007), although more conservative opinions exist.

Galtier & Daubin (2008) showed that, although LGT significantly influences the

bacterial phylogenomic pattern, it probably still allows the reconstruction of the

species tree in this group. They argue that ‘phylogenetic agreement is much more

common than disagreement, indicating that LGT is not prevalent enough to erase

the vertical signal’. More recently, Roch & Snir (2013) claimed that, under a model

of randomly distributed LGT, the species phylogeny can be reconstructed even in

the presence of many LGT events per gene tree.

With regard to eukaryotic evolution, although it has been assumed that the

lateral gene transfer effect is less relevant, it does not seem to be a negligible evo-

lutionary force both in unicellular (Andersson, 2005; Keeling & Palmer, 2008) and

multicellular (Boto, 2010) eukaryotes. Independent of the organism, if genetic ex-

changes occur between species, then the phylogeny of individual genes will be in-

fluenced by the number and nature of transfers they have undergone (Galtier &

Daubin, 2008). In general, only a small number of genes are expected to have been

horizontally transferred between any given pair of species, although the concept of

a highway of gene sharing has been proposed by Beiko et al. (2005) to represent the

multitude of LGT events that happen between some pairs of species.

Two general methods have been proposed to examine LGT. First, by examining

variation in nucleotide base composition and bias in codon usage in single genomes,

47



3. Phylogenetic Incongruence

genes suspected to have been imported through LGT are potentially identifiable.

The other method uses comparative studies across species and is based on using phy-

logenetic incongruence to reconstruct species-level networks or phylogenetic trees.

This last method offers the advantage of having a direct biological interpretability

as it describes the underlying evolutionary histories of the different genes (Suchard,

2005).

Networks

Recently, there has been some interest in using networks rather than trees to

represent evolutionary relationships between species that have undergone reticulate

evolution or to represent conflicts with a treelike evolutionary framework (Huson

et al., 2011). Phylogenetic networks generalize evolutionary trees, and can repre-

sent evolutionary histories of species that have undergone reticulate evolutionary

processes such as hybridization, recombination and lateral gene transfer. Huson

& Bryant (2006) define a phylogenetic network as any network in which taxa are

represented by nodes and their evolutionary relationships are represented by edges.

This definition allows the classification of phylogenetic networks in different types

including phylogenetic trees, split networks, reticulate networks and other type of

networks representing evolutionary data (see Figure 3.4). In a general sense, most

networks allow the graphical representation of evolutionary events not only where

species speciate but also combine (Iersel & Moulton, 2014).

A split network, widely used as a visualisation tool of potential phylogenetic

conflicts, is obtained as a combinatorial generalisation of phylogenetic trees repre-

senting incompatibilities within and between datasets and was proposed by Huson

& Bryant (2006) also as a statistical inference tool.

Reticulate networks are used to represent evolutionary histories in the presence
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Figure 3.4: A diagram representing the phylogenetic networks classification, according to
Huson & Bryant (2006), which includes a number of different concepts such as phylogenetic
trees, split networks and reticulate evolution.

of reticulate events. They usually represent reticulate evolution as a phylogenetic

tree with additional edges where a node with two or more ancestors corresponds to a

reticulate event. Reticulate networks are usually rooted giving a time direction with

an evolutionary meaning and can be split into two types: hybridisation networks

and recombination networks. The former explains a given set of trees in terms of

hybridisation events and the aim is to determine a putative reticulate network N ,

given from which trees in T will arise (Huson & Bryant, 2006). As an example,

Maddison (1997) reconstructs such a network by first inferring individual gene trees

from separate analyses and then reconciling the trees into a network. Maddison

observed that when there is one reticulation in the network, there are two trees

within the network, and every gene evolves according to one of these two gene

trees. More generally, Maddison suggested that a network that contains multiple

reticulations can be reconstructed from its constituent gene trees. Given two gene

trees, one can reconstruct a network with the smallest number of reticulations which
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induces both trees.

Linder et al. (2004) suggested a classification of approaches for phylogenetic

network reconstruction into several categories. The first one will originate a phy-

logenetic tree and suggests that, when the reticulate event originating the network

is an LGT, a possible approach is to identify the genes involved in it and remove

them from the analysis, reconstructing a tree based on the remaining genes. The

second approach starts by building a tree and adding non-tree edges using a greedy

approach to optimise some cost criterion (Hallett & Lagergren, 2001; Clement et al.,

2000; Makarenkov, 2001). A third approach attempts to reconcile several trees built

with different subsets of the data and underpins the median networks (Bandelt et al.,

2000) and the molecular-variance parsimony approach (Excoffier et al., 1992). The

parts of the tree where the reconciliation fails might be explained by a reticulation

event.

This thesis focuses specifically on the reconstruction of gene trees given a phy-

logenetic tree that represents the evolution of a number of species in the presence

of gene transfer events, and therefore we will narrow our attention to phylogenetic

tree reconstruction.

3.2 Phylogenetic Species Tree Reconstruction

If a reconstructed gene tree differs from the assumed phylogeny of the species being

studied, then LGT might be a possible explanation. Nevertheless, the true species

tree is often unknown making it necessary to either fix the species tree to equal an

inferred tree for a specially chosen gene (usually highly conserved among species) or

simultaneously estimate the species tree and gene trees given a biologically plausible

model relating them (Suchard, 2005).

To address this issue, two main groups of approaches have been proposed: a
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strict combined-data approach where multiple genes are combined into a single un-

differentiated partition before phylogenetic analysis, and the consensus approach

which has a two stage methodology: fit an independent phylogenetic model to each

gene to estimate separate evolutionary histories and reach a consensus tree from the

resulting gene topologies.

Kluge & Wolf (1993) claim that natural data partitions do not exist and the

species tree should be estimated using the whole sequence of the genome. They

proposed a combined-data approach in which the sequences from all available genes

are concatenated into a single sequence, along with other phylogenetic characters

such as morphology or behaviour.

An apparent advantage of this approach is that parameter estimates and in-

ference regarding the single evolutionary pattern are more robust than those from

individual genes. Data for individual genes are potentially sparse and will be more

subject to the effects of sampling variation (Suchard et al., 2003). On the other

hand, this method ignores the existence of the gene as the basic functional unit of

the genome, which has drawn criticism (Slowinski & Page, 1999) given it assumes

that the simultaneous analysis approach erroneously treats every nucleotide of all

available genes as independent estimators of the underlying species phylogeny, which

would mean that the longer the sequence the more precise the estimated species tree.

The estimate of the species tree is then biased if the gene trees for the long genes

happen to have incorrect topologies. Also, it is now generally known that gene trees

in principle may not match the species tree irrespective of whether the gene has a

long sequence or a short sequence. Indeed, it has been shown that under some combi-

nations of branch lengths in the species tree, incongruent gene trees are more likely

to occur than congruent gene trees (Kubatko et al., 2007; Degnan & Rosenberg,

2006). Another disadvantage of this approach lies in the fact that it ignores single
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gene information implying that, given the evolutionary history for the concatenated

data, results from the individual genes are irrelevant. But as we have discussed

before, individual genes may evolve at different rates, under different pressures or

have been laterally transferred and separate analysis can give different insights into

the histories of each gene. This will result in assuming different evolutionary models

for one or more genes to avoid inconsistent or biased inference (Yang, 1995; Buckley

et al., 2002).

For the consensus tree method, gene trees are inferred separately for each gene,

and the consensus tree, i.e., an agreement tree between two or more trees of these

gene phylogenies, is used as the estimate of the species tree. It summarizes con-

gruence among individual gene trees and produces high resolution in the branching

pattern only when there is at least a majority consensus among the different data

sets (Gadagkar et al., 2005). The argument in favour of the consensus approach

includes the fact that it accounts for extensive differences in evolutionary rates and

substitution patterns among genes in a gene specific manner. Nevertheless, retriev-

ing only one topology means that uncertainty is not accounted for. Also, the process

for estimating gene trees and for estimating species trees should not be independent.

Gene trees for different genes are dependent since they all depend on the species

tree. Consequently, it is more appropriate to assume only conditional independence

of the gene trees given a common species tree. According to this assumption, the

gene trees should then be estimated jointly across multiple loci. An extension of

the first level of a consensus approach into a Bayesian framework was proposed by

Buckley et al. (2002) with the purpose of analysing the congruence of gene tree

topologies. But, as in the consensus analysis, it inferred individual gene parameters

independently and then averaged these values or compared them with a fixed point

(Suchard et al., 2003). As a result, it fails in accounting for dependency among the
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gene trees.

To overcome the inherent difficulties of both approaches, a mixture of them is

often employed by dividing the parameter space into two sets: one set of parameters

is fixed across genes while the other parameters remain conditionally independent

between genes (Yang, 1996). This type of analysis is present in popular phylogenetic

software such as MrBayes (Huelsenbeck & Ronquist, 2001), PAML (Yang, 1997),

PAUP* (Swofford, 2003) and Phylip (Felsenstein, 1989).

3.2.1 Suchard’s Bayesian Hierarchical Phylogenetic Model

for Multiple Gene Data

Bayesian hierarchical models can be used as an alternative in analysing multiple

genes due to them naturally averaging across uncertain discrete quantities such as

topologies across genes. In 2003, Suchard et al. proposed a Bayesian hierarchical

phylogenetic model for analysing multiple gene data. The model was later extended

(Suchard, 2005) by incorporating the occurrence of lateral gene events between the

species in the model. Although our research is based on this latter article, it is

important to introduce this hierarchical structure since a similar framework will

also be integral to our model.

In Suchard’s model all of the data is used in a single analysis as in the combined-

data approach but it allows for individual inference of different gene-level phyloge-

netic parameters as in the consensus approach. A formal statistical model combines

the results from the individual genes parameters, including gene topologies, provid-

ing across-gene-level summaries of all parameters. When fitted simultaneously with

the individual gene models, it enables the borrowing of strength of information from

one gene to another in the form of a prior.

To define a hierarchical structure in the model, we start with the natural division
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of the sequence data D = (D1, . . . , Dg) into g separate genes with g copies of the

model parameters, θ = (θ1, . . . ,θg). This yields

p(θ|D) ∝ p(θ)p(D|θ) = p(θ1, . . . ,θg)

g∏
i=1

p(Di|θi). (3.1)

Key to Suchard’s hierarchical construction is modelling the prior p(θ1, . . . ,θg) such

that it depends on unknown parameters φ in which θg are only conditionally inde-

pendent given φ, that is

p(θ1, . . . ,θg) =

∫
φ

g∏
i=1

p(θi|φ)p(φ)dφ. (3.2)

Employing unknown parameters φ that, in turn, have their own prior p(φ) en-

ables the borrowing of strength of information from Dg through θg and φ to the

remaining g− 1 genes and their respective parameters. The hierarchical model thus

becomes

p(θ,φ|D) ∝ p(φ)

g∏
i=1

p(Di|θi)p(θi|φ). (3.3)

When assuming gene independence, φ is a constant across the independent areas

of the parameter space. No information is shared and therefore these models are

not hierarchical.

A Bayesian hierarchical framework is used to combine the separate gene models

within a single comprehensive model which allows information about the values of

the parameters in one gene to help in inferring the parameters in other genes. Not

only is it useful when some sections of the data are uninformative, but also, these

upper-level parameters might reveal tendencies across genes.
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Defining the Hierarchical Priors

This model assumes independent and identically distributed sites within a gene.

The likelihood of observing Dgl is given by a multinomial distribution over the

4N possible outcomes. The probabilities are functions of an unknown topology τg

relating the taxa for gene g, the branch lengths `g and a model that describes

nucleotide mutation along the branches. Suchard assumes a reversible model for

nucleotide substitution, TN93, which is parametrised by the stationary distribution

for the nucleotide frequencies and transition:transversion rate ratios for purines υg

and pyrimidines γg.

Branch lengths might not retain their characteristics between topologies, which

in their turn might differ across genes. Therefore, in order to be able to share

branch length information across genes, each branch length `gs is assumed to be

exponentially distributed

`gs
indep∼ Exp(λg) (3.4)

with unknown prior expected divergence λg for gene g. Given that the likelihood is

a negative exponential function of the branch lengths, the exponential distribution

is a common choice for a vague prior on branch lengths (Ronquist et al., 2009).

The model is also restricted to unrooted trees, since without the molecular clock

assumption it is impossible to identify the root (Suchard, 2005).

Expected divergence λg and transition:transversion rate ratios υg and γg exist

on the positive half of the real line. Since ratios are naturally transformed onto the

entire real line through a logarithmic transformation, they are naturally modelled
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by a log-normal prior such that


log υg

log γg

log λg



∣∣∣∣∣∣∣∣∣∣∣∣
Θ,Σ ∼ N(Θ,Σ) (3.5)

where Θ = (U,G,M)t are log-scale unknown means and Σ = diag(σ2
υ, σ

2
γ, σ

2
λ) is a

unknown diagonal variance-covariance matrix. This framework induces correlation

between, for example, υ1, . . . , υG, after marginalising over Θ and Σ, enabling a

sharing of strength of information from one gene to another. However, conditional

on Θ and Σ, the υg, γg and λg are independent over g.

Conjugate priors are assigned to each upper-level unknown parameter such that

Θ ∼ N(Ψ 1,Ψ 2) and 1/σ2
x ∼ Gamma(ψ1, ψ2), (3.6)

for x ∈ (υ, γ, λ). This way the computation is facilitated by using direct Gibbs

sampling of Θ and Σ. Suchard chose relatively uninformative priors by setting

Ψ 1 = 0 × (1, 1, 1)t, Ψ 2 = 10 × I, where I is the identity matrix, ψ1 = 2.1 and

ψ2 = 1.1. These specifications give a prior expectation of 1 and a variance of 10 for

σ2
υ, σ

2
γ and σ2

λ.

The Dirichlet distribution is the natural prior for the stationary distributions πg

since they are defined on the unit simplex in R4. Therefore,

πg|NΠ ,Π ∼ Dir(NΠ ×Π) (3.7)

where Π = (ΠA, ΠG, ΠC , ΠT ) are the proportions, across-gene level, for each type
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of nucleotide and NΠ is an unknown across-gene level measure of precision for πg.

The priors on Π and NΠ are assumed to be

Π ∼ Dir(η) and NΠ ∼ Gamma(ν1, ν2), (3.8)

where η = (1, 1, 1, 1), ν1 = 0.1 and ν2 = 0.1, providing a flat prior on Π and a

proper yet vague prior on NΠ .

3.3 Modelling Lateral Gene Transfers

Several research groups have worked on the problem of reconstructing a species tree

given gene trees subject to LGT (e.g. the parsimony-based reconciled tree work on

Page (2000) and the algorithm developed by Mirkin et al. (2003)). Random models

for LGT have been studied in a number of papers (Suchard et al., 2005; Galtier,

2007; Linz et al., 2007; Szöllosi et al., 2012; Roch & Snir, 2013; Steel et al., 2013),

all assuming that random LGT events occur according to a Poisson process with

the rate of transfers between two points in the tree either being constant or being

dependent on the phylogenetic distance between the two points. Roch & Snir (2013)

showed how a species tree can be reconstructed from a given number of gene trees,

provided that the expected number of LGT events lies below a certain threshold.

Above this threshold, it becomes impossible to distinguish the underlying species

tree from alternative trees.

A class of stochastic models was proposed by Suchard (2005) for LGT that

enables the simultaneous estimation of the underlying species tree relating a group

of organisms and the gene trees subject to LGT for a set of gene alignments. These

models are defined in a hierarchical manner. The hierarchical structure described in

Subsection 3.2.1 is used at the within-gene level and across-gene substitution model
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level, in order to reconstruct each gene tree from its corresponding gene alignment.

Simultaneously the LGT models impose an additional structure over the gene tree

topologies. The hierarchical model describes the gene trees given an unknown species

tree, an unknown number of LGT events and an unknown set of substitution model

parameters leading from that species tree to each gene tree. Inference is performed

via a Bayesian framework which naturally handles uncertainty in discrete parameters

such as the trees and the number of LGT events.

To build a stochastic model for LGT it is essential first to understand the concept

of tree space, which we addressed in Chapter 2. A more visual approach is to consider

tree space as a mathematical graph whose vertices represent all possible trees and

the edges describes a direct connection between two vertices. Two vertices that

are joined together by a single edge are called adjacent, and the set of all adjacent

vertices is its neighbourhood. Usually a set of tree rearrangement operations is used to

define the notion of adjacency, and hence determine the graph. Tree rearrangement

operations, which modify the tree topology by applying structural changes, can be

used to model the occurrence of an LGT event in a tree topology.

One of the main tools used to understand and model reticulation events is

the graph-theoretic operation called subtree-prune-and-regraft (SPR), represented

in Figure 2.4(b). Formally, an SPR operation on a phylogenetic tree T is defined

as cutting any edge and thereby pruning a subtree t, and then regrafting t by the

same cut edge to a new vertex obtained by subdividing a pre-existing edge in T .

In this thesis, and in common with Suchard, we assume that any gene analysed

has one copy in all the species under analysis and at all speciation times until the

most recent common ancestor. Under this assumption, the effect of an SPR on a

tree topology is equivalent to a “copy and overwrite” lateral transfer event. Given
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any two incongruent phylogenetic trees where the incongruence can be explained by

a single reticulation event, one tree can be constructed from the other by a single

SPR. If more than one reticulation event is needed to explain the incongruence, the

events can be modelled by a series of SPRs. Applying an SPR to one topology τ

results in the creation of one of several new possible topologies that differ from τ

by an extent dependent on the operator. The collection of all trees one operation

away from τ becomes its neighbourhood under that operator. Several important

properties about the graph induced by the SPR operator in unrooted and rooted

trees have been previously studied (Allen & Steel, 2001).

In Suchard’s model, LGT is modelled via an unweighted random walk process in

the tree space graph, derived from the SPR operator on unrooted phylogenetic trees.

One straightforward stochastic process on a graph is an unweighted random walk

which proceeds from vertex to vertex along the edges of the graph. This process will

generate a discrete-time Markov chain with the visited vertices as the states of the

chain. As it is unweighted, the chain randomly chooses the next vertex to visit from

all neighbours of its current vertex. For this Markov-chain, the one-event transition

probability matrix X is

(X)uv =


1

deg(u)
if vertices u and v are adjacent,

0 otherwise,

where deg(u) is the degree of u. On the basis of G random walks on the graph

induced by the SPR operator, one for each gene, a hierarchical prior is constructed

over the joint distribution of all gene trees τ1, . . . , τG, assuming that

• the vertex representing the species tree S is the initial state of G Markov

chains;
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• the Markov chains are conditionally independent given S and X;

• the vertex representing τg is the final state of the gth chain; each chain is of

unknown length 0 ≤ κg <∞.

An example of a set of possible paths of G = 4 Markov chains is represented in

Figure 3.5.

Figure 3.5: Mathematical graph representing an area of the tree space. Each
vertex corresponds to a possible topology while edges describe a direct connection, related
with a specific tree rearrangement operation, between adjacent trees. One possible Markov
chain realisation for species tree S and 4 gene topologies τ1, . . . , τ4. All chains share the
starting point S. Chains 1 and 4 have κ1 = κ4 = 3, chain 2 has κ2 = 1 and chain 3 has
κ3 = 2.

Given these assumptions, the probability of species tree S giving rise to gene

tree τg after κg LGT events is

Pr(τg = v|S = u, κg) = (Xκg)uv. (3.9)

Note that this is typically impossible to compute explicitly given the size of the

graph. The hierarchical specification is completed by assigning a prior distribution

over S by letting

S|z,M ∼Multinomial(1, z)
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where z = (z1, . . . , zM) are constants, the prior probabilities of the M possible N -

taxon tree topologies. It assumes also a conditionally independent prior on all κg

such that

κg
indep∼ Poi(Λg)

where Λg is the expected number of LGT events for gene g and is a deterministic

function of across-gene level parameters. This prior is conjugate to Equation 3.9

allowing all κg to be integrated out of the model (see Subsection 2.2.2 for more

details on integration). A graphical depiction of Suchard’s complete model is shown

in Figure 3.6.
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Figure 3.6: Graphical representation of Suchard et al. (2005) hierarchical phy-
logenetic model. S represents the species tree, Ti = (τi, `i), for i = 1, . . . , g, is the
gene tree for gene i, Di is the multiple sequence alignment for gene i, θi and κi are the
substitution model parameters and number of LGTs for gene i and φ is the hierarchical
prior parameter. The edges represent the conditional dependence between parameters.
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4

Novel Bayesian Hierarchical Phylo-

genetic Model for LGT

4.1 Novel Aspects of Our Approach

Our starting point is the Bayesian hierarchical model proposed in Suchard et al.

(2005) and described in Chapter 3 where a class of stochastic models are used for

LGTs that enable the simultaneous estimation of the underlying species tree relating

a group of organisms and the gene trees subject to LGTs for a set of gene align-

ments. This model has several drawbacks related with certain unrealistic biological

assumptions. Therefore we propose a more biologically realistic approach to it by

introducing the following aspects.

• An Ordered Rooted Species Tree. We assume the species tree is a rooted

tree (instead of unrooted as previously) and take into account possible time

orderings of divergence events in trees, without explicitly modelling divergence

times. This corresponds to assigning an order to the internal vertices, in such

a way that all speciation events occur at different moments in time.
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4. Novel Bayesian Hierarchical Phylogenetic Model for LGT

• Species Contemporaneity on LGT events. The time ordering in the

previous assumption imposes a natural constraint to LGT events by allowing

them to happen only between species that are contemporary.

• Extended SPR (xSPR). We use an extended version of the SPR operator

(xSPR), which respects the time ordering and describes the effect of an LGT

between contemporary species in an ordered rooted tree.

• Site Evolution Rate Heterogeneity. We assume that variation in the rate

of evolution in different sites is not constant but Gamma distributed.

As we are working under a Bayesian framework, Markov Chain Monte Carlo

(MCMC) methodologies were used for parameter inference and two new Bayesian

MCMC proposals were developed:

1. Proposal for ordering a phylogenetic tree.

2. Joint proposal for LGT history, LGT distance and gene trees.

Each of these aspects are described in more detail in the next sections.

In addition we have developed the LGT Biplot, a novel visualisation tool for

displaying inferred gene transfer history adequately and in an easily understandable

way, providing accessible and intuitive means for biologists to explore the results.

This tool will be described in more detail in Chapter 5.

4.2 Ordered Rooted Species Trees

A central aspect of organisms’ evolutionary histories is the timing of species diversifi-

cation. Although several widely used models have been proposed to infer speciation

times (Drummond & Rambaut, 2007; Liu & Pearl, 2007), in most circumstances
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any inference must rely almost exclusively on molecular data constrained only by

scarce time information (Szöllosi et al., 2012). For this reason, when the study aim

is the pattern of evolution rather than timing of events, non-clock-like trees are often

used to represent evolutionary paths in which branch lengths represent the expected

number of nucleotide substitutions between species. However, the transference of

DNA between two organisms implies the contemporaneity of both organisms and in

result, modelling LGT events in a non-clock-like tree is problematic.

The effect of an LGT on a rooted species tree topology is represented in Figure

4.1. As we already mentioned in Section 3.3, in this thesis we assume that LGTs

are “copy and overwrite” transfer events. At a specific point in time, a gene was

transferred from a parent or ancestor of species E, sE, and an ancestor of species X,

sX . When an LGT occurs between two species, those species will become genetically

similar for that specific gene. As a result, when inferring the gene tree, sX and its

descendants will be localised near sE, the species that donated the gene, even if they

are very distant in the species tree. Species sE will correspond to the internal vertex

representing the ancestor of E and X. If a second LGT occurs for that specific gene,

time constraints will then affect the possible donors and receivers of that copy of the

gene. No species that existed before the time point where the first LGT occurred

(in yellow) should be able to transfer genes to the subtree that is moved by the LGT

(in blue) given that they are not contemporary; note that the yellow edges represent

ancestors of blue edge species.

In order to model ancestor-descendant relationships on a phylogenetic tree, first

of all, a time direction must be associated with its edges which can be obtained when

assigning a root. In practice, using rooted or unrooted trees leads to observable

differences when trying to model LGT or recombination events in the evolutionary

histories of a set of species or individuals. For example, in Hein (1993), when propos-

64



4. Novel Bayesian Hierarchical Phylogenetic Model for LGT

X

sX sE

X

sE

a) b)

Figure 4.1: Representation of the effect of LGT on a rooted tree topology.
Assuming that an LGT, represented by the red arrow in a), occurred from species sE to
species sX , when inferring the corresponding gene tree, the subtree representing sX and
all its descendants is attached below sE , as represented in b). As a result, time constraints
are naturally created for other LGTs. For example, in this case, the species represented in
the yellow edges cannot transfer the gene to any species in the blue edges since the yellow
edges represent ancestors of blue edges species, which are not contemporary.

ing an algorithm for reconstructing the most parsimonious evolutionary histories of

sequences which have undergone recombination (which has the same effect as LGT

in phylogenetic trees), if unrooted trees were used in the algorithm, internal con-

tradictions could arise, making it difficult to construct a graphical representation.

Although the use of rooted trees would avoid this type of conflict, another problem

develops when non-clock-like rooted trees are used instead. Even when two species

are not in the same path descending from the root and could be available to trans-

fer genetic material between each other, biological events occur with a certain time

ordering. It may happen that actually those two species did not exist at the same

time. In this case, by using ordered rooted trees, where the information of relative

ages of internal vertices is retained, it avoids possible contradictions in representing

evolutionary histories of biological sequences (Song, 2003; Szöllosi et al., 2012).

Definition. An ordered rooted tree So is a leaf-labelled rooted binary tree whose

corresponding set {v1, v2, . . . , vn−2} of degree-3 vertices is a totally ordered set de-
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fined by age ordering. Computationally the ordering is achieved by assigning a

pseudotime t(·), from the interval [0,1], to each vertex such that if u is a descendant

of v, then t(u) < t(v). If there exists no ancestral relation between v and u either

t(u) < t(v) or t(u) > t(v) is allowed. The pseudotime duration of each edge is deter-

mined by the time order of speciation events such that, assuming that vertices are

numbered in increasing order backward in time, the pseudotime of the i-th vertex

is t(vi) = i/W , where W is the number of internal vertices. Therefore, tree leaves

will be assigned pseudotime 0 while t(vroot) = 1. Any time interval between two

successive speciation events is considered a time epoch such that Ej
i = [t(vi), t(vj)].

We further assume equal pseudotime duration of all epochs on So. We do not make

explicit inferences about the pseudotimes; rather, they are a computational device

used to define an order on vertices. Two equivalent rooted trees are distinct as

ordered trees if the orders of their degree-3 vertices are different.

When ordering a rooted tree we need to take into account the hierarchical re-

lationships between species which naturally determines a partial order on vertices

as the ancestors must be ordered so that they existed before their children. Thus,

in the absence of any time-related knowledge for speciation events, it seems proper

to consider the vertex ordering as being generated uniformly at random from the

orderings consistent with the ancestor-descendant relationships already defined in

the species tree S, and this defines our prior on order. As an example, Figure 4.2

shows a rooted species tree S representing the phylogeny of seven species, five inter-

nal vertices and the root. The other two trees shown in Figure 4.2 are two possible

ordered representations of S showing each vertex pseudotime.

Let I(a, b) be the number of internal vertices on an ordered rooted tree, where

a and b are vertices in the tree, whose associated pseudotimes lie strictly between

t(a) and t(b). I(a, b) counts the number of intermediate vertices between t(a) and
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S

a
b

c
d

er

So1

b

a

e

0/6

1/6

2/6

3/6

4/6

5/6

6/6

So2

b
a

e

0/6

1/6

2/6

3/6

4/6
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Figure 4.2: Species tree S describes the phylogeny of seven extant species: A,
B, C, D, E, F and G. This tree also includes five internal vertices a, b, c, d, e and
the root r. So1 and So2 represent two possible ordered species trees originated from S.
Pseudotimes are shown on the left in blue. In So1 , vertex t(a) = 2/6 and t(e) = 4/6 while
in So2 their pseudotimes are the opposite. In the prior for ordering, we consider the vertex
ordering as being assigned uniformly at random, subject to the ancestry constraints on
the tree.

t(b). Taking the example of the two ordered rooted trees in Figure 4.2, for So1 ,

I(a, b) = 2 while So2 has I(a, b) = 0. We will also assume that the descendant

vertices of a specific vertex u, such that d(u) = 3, can be divided in two subsets

and that sL(u) (resp. sR(u)) corresponds to the number of degree-3 vertices which

are in the subtree on the left (resp. right) of u. In So1 , sL(b) = sR(b) = 1 while

sL(e) = 1 and sR(e) = 0. Song (2006) has shown that the number of inequivalent

ordered trees with n leaves, for n ≥ 2, originated from all possible rooted trees with

n leaves, is ∏n

k=2

(
k

2

)
=
n!(n− 1)!

2n−1
. (4.1)

Nevertheless, the number of inequivalent ordered trees resulting from a single

rooted tree T (denoted plain by Song (2006)), Nordered(T ), depends on T ’s topology

and can be determined as:

Nordered(T ) =
∏

i=vertices in T of degree 2 or higher

∆(i), (4.2)
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where

∆(i) =
(sL(i) + sR(i))!

sL(i)! + sR(i)!
. (4.3)

Note that this is invariant under interchange of sL(u) and sR(u). See Song (2006)

for more details. In terms of the hierarchical structure of the model, assuming an

order on S results in the introduction of an extra level over Suchard’s model (Figure

4.3).
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Figure 4.3: Introducing a new level in Suchard’s hierarchical phylogenetic model
by imposing an order on S. So represents the ordered species tree.
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4.3 Species Contemporaneity on LGT events

Following Suchard’s approach for modelling LGTs (see Section 3.3 for more details)

we start by describing the collection of trees for n extant taxa as a mathematical

graph and further assume a random walk on this graph that mirrors the observed

effects of LGT.

Let G = (Υ, ε) be a graph with vertex set Υ and edge set ε, where each vertex

represents a tree on taxa 1, . . . , n and an edge uv ∈ ε corresponds to a certain

relationship between the trees represented by adjacent vertices, u, v ∈ Υ , on G .

The set of all vertices adjacent to a specific vertex are called its neighbourhood

and several operators exist which can be used to specify the neighbourhood of a

vertex and hence the structure of G , the most common being NNI, SPR and TBR

(Figure 2.4). The SPR operator offers an advantage over the other operators due

to its potential biological interpretation as it mirrors the effect of an LGT on a

phylogenetic tree. Consequently, the application of the SPR operator to a topology

should represent the differences observed between a species tree and an individual

gene tree affected by one LGT.

One important point is that the precise definition of the SPR operation depends

on the type of tree on which the operation is being performed. The more constraints

a tree has, the more restrictive an SPR operation has to be. For example, in an

unrooted tree the operator simply selects and cuts any branch in the initial tree,

pruning a subtree, and then regrafts this subtree by selecting and subdividing a

preexisting branch in the remaining tree (see Figure 2.4(b)). The vertex of degree

two that remained where the pruned edge used to be connected is deleted and the

two remaining edges are replaced by a single edge in an operation called forced

contraction, in order to maintain the binary property of the resulting tree. But
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when performing an SPR operation in unordered and ordered rooted trees several

aspects need to be taken into consideration and different approaches need to be

taken.

Song (2006) defines three different kinds of SPR operations on unordered rooted

trees (from now on named as rooted trees), which are illustrated in Figure 4.4.

Exemplifying the first type of SPR operation, tree T1 was originated by cutting

edge eb, which is not connected to the root r, and regrafting it onto a preexisting

edge, ea, in the remaining part of T . In the second type of operation, because the

pruned edge ec is connected to r, when regrafted to ea, the ancestor of s1, s2 and s3

will become the root r′ of T2, while r and the edge connecting it to r′ are eliminated.

The third kind of operation allows the possibility of cutting an edge not connected

with r (in the example of T3 we cut edge eb) and then creating a new root r′′ and

an edge connecting r and r′′. Then the pruned subtree is joined to r′′.

Figure 4.4: Illustration of SPR operations on rooted trees. (Figure reproduced
from Song (2006).)

Nevertheless, in Song & Hein (2003), when studying the SPR operator on rooted

phylogenetic trees, the authors reached the conclusion that, to determine correctly

the minimum number of recombination events between two trees, the right kind of

70



4. Novel Bayesian Hierarchical Phylogenetic Model for LGT

trees and the right kind of topological operation should be used, more specifically,

they should be leaf-labelled rooted binary trees with totally ordered internal vertices.

Therefore, and in order to perform SPR operations on ordered rooted trees, Song

(2006) proposed an additional restriction on the definition of SPR operations. Let

T be an ordered rooted tree. The SPR operation on T must satisfy the condition

that, for any two vertices vi, vj ∈ T , if t(vi) < t(vj) before the SPR operation, then

t(vi) < t(vj) after the SPR operation, and vice versa.

Song illustrates this situation with Figure 4.5 where it is shown that, if trees T1

and T2 are unordered rooted trees, then T2 can be originated by only 1 SPR on T1

by pruning the subtree containing l4 and l5 and regrafting it onto edge e. The same

operation is not possible if T1 and T2 are ordered rooted trees as t(v2) > t(v3) in

T1 but the opposite in T2. Therefore, at least two SPR operations are required to

transform T1 into T2.

e

v1
v2v3

v1

v2

v3ti
m

e

Figure 4.5: An example of trees which are more than one SPR operation apart if ordered
yet only one SPR operation apart if unordered (figure adapted from Song (2006)).

From a biological point-of-view, although it seems to mirror the LGT effect, this

operator has some drawbacks on unrooted, unordered and ordered rooted trees. Let

us assume that any edge of the tree represents the amount of change that occurs

between species u and its parent p(u), and that a point on the edge represents a

species v which, although represents the same species as u, it is genetically distinct

as a result of the change that occurred over time.
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Song’s SPR on ordered rooted trees involves the deletion of all or part of the

edge containing the prune location. Edges on an ordered rooted tree represent the

existence of some species over some historical time interval. Deletion of edges, as

with Song’s SPR, changes the number of extant species at certain points in time. We

need a properly defined SPR operation which preserves the number of extant species

over any time interval since LGT also preserves this. In particular, this constraint

would maintain the possibility of LGT between ancestral species which might be

ruled out if any edges are deleted. The xSPR operation we define below, in fact

maintains a bijection between points on an ordered rooted tree with pseudotimes

and the same tree after xSPR (Figure 4.6).

Given this, we are proposing an extended version of the SPR operator (xSPR) as

a more appropriate biological representation of an LGT event on an ordered rooted

tree.

4.3.1 Extended SPR (xSPR)

Let T be an ordered rooted tree and let eg and ep be edges on T , which are contem-

porary, i.e., contain a shared pseudotime interval. The xSPR between eg and ep is

defined as follows. The pruned edge ep is cut at some point of its length, maintaining

a stumpy edge available for further SPR moves. A vertex vp is positioned at the free

end of the stumpy edge and will have the same pseudotime as the new vertex vg

introduced in the graft edge eg when attaching the pruned subtree. The vertex on

the stumpy edge will represent the species that existed just before the occurrence of

the LGT while vg is the species that donated the gene. The binary property of the

tree is maintained and one more edge and two new vertices are added. For a more

visual explanation see Figure 4.6.

As in Suchard’s model (see Subsection 3.3), in our model LGT will be modelled
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via an unweighted random walk process in the tree space graph, but in this case

the graph is derived from the xSPR operator. In particular, vertices on the graph

represent stumpy trees and each step on the random walk increases the number of

stumps by one. Let Yi,1, . . . , Yi,ki be a sequence of ki LGTs for gene i on So. This

determines a sequence of stumpy tree topologies τi,0, τi,1 . . . , τi,ki where τi,0 = So

and τi,ki is the final topology τi. Each Yi,j corresponds to a set {epij , egij , tij}, for

j = 1, ..., ki, where tij is the pseudotime of the jth LGT for gene i, epij the prune edge

and egij the graft edge. It is important to note that the relationship between the LGT

history Y i = (Yi,1, . . . , Yi,ki) and τi is not exclusive. Different LGT histories might

originate the same topology, τi. However, the sequence of stumpy tree topologies

τi,0, τi,1, . . . , τi,ki contains exactly the same information as Yi.

So

ep

p(u)

u

eg

p(G)

E
4/6
1/6

�

τ i

p(u)

u

p(G)

vp vg

Figure 4.6: Generating a gene tree topology τi for gene i using a single xSPR operator.

Our prior on Yi, the location of xSPR events on the tree, takes the form

π(Yi|κi, So) = π(τi,1|τi,0)π(τi,2|τi,1) . . . π(τiκi |τi(κi−1)) (4.4)

=

κi∏
j=1

π(τi,j|τi,j−1) (4.5)

where each stumpy tree τi,s is conditional on the previous topology in the sequence,

τi,s−1.
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Given τi,j−1, the location of the next xSPR has the following distribution:

• The prune edge epij is distributed uniformly at random from the edges on

τi,j−1.

• The graft edge egij is distributed uniformly at random from the edges that are

contemporary to epij .

• If the pseudotime interval shared by ep and eg contains one or more intermedi-

ate vertices I(u, p(G)) > 1, defining two or more pseudotime epochs within the

interval, the epoch where the LGT occurs is distributed uniformly at random.

• Within the epoch, the specific pseudotime of an LGT is also distributed uni-

formly at random.

4.4 Model Specification

In the previous sections we described in detail the novel adaptations we have in-

troduced to Suchard’s Bayesian hierarchical model. In this section we provide a

complete specification of our model. For an easier understanding, Figure 4.7 shows

our hierarchical model framework and the associated parameters to each level, while

the diagram in Figure 4.8 depicts the dependencies between parameters. In a more

general model we might attempt to infer S jointly with the other parameters, but

for the purpose of this thesis we consider S as known.
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Figure 4.7: Diagram depicting our novel Bayesian hierarchical phylogenetic model.

To facilitate the model’s formal description our parameters will be grouped to-

gether in the following way:

• Φ = (Φ1, . . . ,ΦG) with Φg = (κg,Yg), for g = 1, . . . , G, includes all LGT

related parameters;

• T = (τ, `) denotes the set of gene trees;

• ξ = (µλ, σ
2
λ) corresponds to the across-gene level parameters for gene diver-

gence λ;

• η = (µρ, σ
2
ρ,Π , N) includes the substitution model across-gene level parame-

ters;
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S So Tg Dg

Yg

κg

λg

µλ σ2
λ

πgαg ρg

µρ σ2
ρΠ N

Φg

ξ η

θg

Figure 4.8: Diagram depicting the parameter dependencies. The parameters for
a single gene tree Tg and corresponding alignment Dg are shown for simplicity. The full
diagram would have these elements repeated G times.

• θ = (ρ,π,α) corresponds to all substitution model parameters.

Therefore, the set (So,Φ,T ,λ,ξ,η,θ) specifies the complete model and the model’s

joint posterior distribution can be written as

π(So,Φ,T ,λ, ξ,η,θ,D|S) = π(So|S)π(ξ)π(η) (4.6)

×
G∏
g=1

π(τg|Yg, So)π(Yg|κg, So)π(κg)π(`g|λg)π(λg|ξ)π(θg|η)π(Dg|θg, τg, `g).

4.4.1 Priors

The aim in this section is to define each term in Equation 4.6 explicitly.

Prior on So

The distribution π(So|S) is uniform on all orders o compatible with the ancestry

relations in S, as stated in Section 4.2.
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Priors on Φ and T

As the number of LGT events κg, the LGT history Yg and gene trees Tg are depen-

dent, there is a need to handle them jointly. Their priors are as follows:

Number of LGTs. We use truncated Geometric priors for the number of LGTs,

specifically κg ∼ TGeom(aκ, bκ), for aκ = 0.5 and bκ = B/2, where B is the number

of edges on S. The need for a truncation on the maximum number of LGTs allowed

resides in the fact that, for a high number of LGTs, the level of perturbation on the

tree might be such that any relation with the initial tree is lost. As the expected

number of LGTs between species is generally low, we assumed that the maximum

number of LGTs is half the number of edges.

LGT histories. For each LGT event Ygi = (epgi , eggi , Egi), the prune edge epgi ,

graft edge eggi and epoch Egi are chosen uniformly at random from the set of viable

choices. These viable choices must respect the species contemporaneity, as described

in Subsection 4.3.1. Each topology τg, for g = 1, . . . , G, is a deterministic function of

the set of LGT events Y g = (Y g,1, . . . ,Y g,κg) on So, i.e, π(τj|Y g, So) is an indicator

function.

Branch lengths. A common approach in Bayesian phylogenetics is to use

exponential priors on branch lengths. We assume a hierarchical prior for the branch
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lengths such that

`gj|λg
indep∼ SExp(λg, x), j = 1, . . . , B (4.7)

λg|µλ, σ2
λ ∼ LN(µλ, σ

2
λ) (4.8)

µλ ∼ N(mλ, vλ) (4.9)

1

σ2
λ

∼ Gamma(aλ, bλ), (4.10)

where SExp(λg, x) defines a shifted exponential distribution taking values of at least

x = 0.002 and has rate λg. Also, B is the number of branch lengths. The expected

divergence λg is unknown and has lognormal prior with across-gene level unknown

mean µλ and unknown variance σ2
λ. As in Suchard’s approach, to allow direct Gibbs

sampling of (µλ, σ
2
λ) we give them conjugate priors (see Subsection 2.2.2 for more

details on conjugate priors). We assume mλ = 0, vλ = 10, aλ = 2.1 and bλ = 1.1.

These settings result in relatively uninformative priors for both parameters, and

sets the prior expectation and variance for σλ to 0 and 10, respectively. Equations

(4.7)-(4.10) determine the prior component distributions π(`g|λg), π(λg|ξ) and π(ξ).

This hierarchical structure allows the information sharing between the genes

as discussed before and we further assume that branch lengths cannot be smaller

than 0.002. The prior assigns probability 0 to branch lengths smaller than 0.002,

as a branch length of 0.002 represents the occurrence of 1 substitution every 500

nucleotides on average. In our simulation studies presented in Chapter 5, where the

simulated sequences were 1000 nucleotides long, we were unable to infer very small

branch lengths, as the Markov chains tended to 0, leading to the conclusion that

the data might not have enough information to infer very small branch lengths.
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Priors on θ and η

We will discuss next the priors for each specific parameter in θ.

Transition:transversion rate ratio ρ, µρ and σ2
ρ

Similarly to λg, a hierarchical prior will be assumed for ρg such that

ρg|µρ, σ2
ρ ∼ LN(µρ, σ

2
ρ) (4.11)

µρ ∼ N(mρ, vρ) (4.12)

1

σ2
ρ

∼ Gamma(aρ, bρ). (4.13)

The last two equations define semi-conjugate priors, and we take mρ = 0, vρ = 10,

aρ = 2.1 and bρ = 1.1 as in (Suchard et al., 2003).

Base frequencies π, Π and N

The distributions πg are defined on the simplex S3 ⊂ R4 and are naturally

modelled by a Dirichlet distribution with

πg|Π , N ∼ Dir(ΠN), (4.14)

where Π = (ΠA, ΠG, ΠC , ΠT ) are the across-gene level proportions for each nu-

cleotide, and N is a pseudocount measure of precision across π. Again, a hierarchical

prior is assumed on π by taking

Π ∼ Dir(M), (4.15)
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for M = (1, 1, 1, 1), which provides a flat prior on Π , and

N ∼ Gamma(aN , bN), (4.16)

for aN = bN = 0.1. These are the choices of prior parameters taken by Suchard

et al. (2003).

Gamma shape parameter α

The value of αg is modelled using an exponential prior, so that the MCMC

procedure can explore different shapes of the gamma distribution associated with

the evolutionary rate among sites. Therefore the shape parameter αg for each gene

is given by an independent Exponential prior

αg
indep∼ Exp(aα), (4.17)

with aα = 1, which defines a distribution with mean and variance equal to 1. This

centres the distribution of the site heterogeneity rates ri to be exactly between an

L-shape distribution (αg ≤ 1) and a more bell-shape distribution (αg > 1).

4.4.2 Updating the parameters

The majority of the parameters are updated in single moves, with all other param-

eters fixed, with the exception of the parameters related to the LGT history and

gene tree topologies, which are updated jointly. Next we will describe the proposal

mechanisms for each parameter as well as the respective acceptance probabilities.
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Novel MCMC proposal for the order of So

When proposing a new order o, it is important that the current set of LGT histories,

Y 1, . . . ,Y g, is compatible with the proposed order, as otherwise we would need

a joint proposal on o and Y . Thus, the proposal distribution for So should be

conditional not only on S but also on the corresponding LGT histories for the

current gene trees. Any proposed ordering needs to allow the occurrence of the

current LGT histories for all genes, and not rule them out.

The novel proposal mechanism for So that we have developed will propose a

change in the order of one vertex v at each iteration. The vertex will be chosen

uniformly at random, such that

v ∼ U(V ) (4.18)

where V = {v1, v2, . . . , vn−2} is the set of degree-3 vertices of So. The new order will

be achieved by assigning a new pseudotime to v. This new time must not:

• Contradict ancestor-descendant ordering on S;

• Invalidate any LGT event relating the gene trees and S, by moving edges

involved in the corresponding SPR and making them non-contemporary.

Given these assumptions a new pseudotime for v will be proposed by considering

the following:

1. Vertex v will be allowed to move only to epochs between pseudotimes tmin and

tmax defined by

tmin = max{max{t(u) : u is a child of v},

max
g,i
{ti : (ti, epi , egi) ∈ Yg and epi or egi descend from v}}
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tmax = min{min{t(u) : u is the ancestor of v},

min
g,i
{ti : (ti, epi , egi) ∈ Yg and epi or egi is the ancestor edge of v}}

This ensures we satisfy the assumptions above.

v
tmin = t′min

t′max

0

tmax = 1

Figure 4.9: Diagram depicting an example of defining the pseudotime interval
to propose a new pseudotime for vertex v. The blue arrow represents an LGT from
a descendent of v and an ancestral species of D. Time is defined between 0 and 1, where
0 corresponds to present time and 1 the time defined by the ancestor of all species in
the study. Although v is allowed to move to any time point on the interval signalled in
orange, its order will change only when moving to the epoch [t′max, tmax]. In this example
[t′min, tmin] = ∅.

2. Certain changes to the pseudotime of v, more specifically, moving v to any of its

adjacent epochs, will result in no change to the order of vertices, and so we want to

rule these out. Therefore we will define

t′min = max{max
u
{t(u) : t(u) < t(v)},

max
g,i
{ti : (ti, epi , egi) ∈ Yg and epi or egi descend from v and ti < t(v)}}
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t′max = min{min{t(u) : t(u) > t(v)},

min
g,i
{ti : (ti, epi , egi) ∈ Yg and epi or egi is the ancestor edge of v and ti >

t(v)}}.

Now we have two subintervals [tmin, t
′
min] and [tmax, t

′
max] where a vertex ordering

will occur and pseudotime t∗(v) will be uniformly at random chosen, with

t∗(v) ∼ U([tmin, t
′
min] ∪ [tmax, t

′
max]). (4.19)

The proposal density is

q(S∗o |So,Y ) =
1

(tmax − t′max) + (t′min − tmin)
× 1

n− 2
(4.20)

where n−2 is the number of internal vertices on So. See Figure 4.9 for an explanatory

diagram.

Novel MCMC proposals for the Number of LGTs, LGT history and Gene

Trees

A gene tree Tg for gene g comprises a topology τg resultant from κg xSPRs operations

in tree space, where Yg = (Yg,1, . . . , Yg,κg) is the ordered set of the xSPRs which

originated τg from So, and a set of B branch lengths, `g = (`g,1, . . . , `g,B), each one

assigned to a branch of τg. The sequence of xSPRs is associated with a sequence of

stumpy tree topologies (τg,0, . . . , τg,κg), where τg,0 = So and τg,κg = τg. These stumpy

tree topologies are a deterministic function of Yg and So, and represent equivalent

information to Yg. Therefore, it is sensible to jointly propose κ∗g, Y
∗
g, τ

∗
g , and `∗g.

Three different proposal mechanisms were implemented assuming fixed S and So.
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1. Independence proposal

A simple approach is an independence sampler where for gene g and iteration

j of the MCMC sampler, we will generate κ∗g from the prior and perform κ∗g

xSPR moves on So generating Y ∗g again by sampling from the prior (see Figure

4.10), and hence τ ∗g . Conditional on τ ∗g and λg, the branch lengths are sampled

from the prior too. The proposal distribution is

q(`∗g,Y
∗
g, κ
∗
g|So,Y g, κg) = π(κ∗g)π(Y ∗g|So, κ∗g)π(`∗g|λg). (4.21)

(a) Independence sampler. (b) Backward-forward sampler.

Figure 4.10: Topology proposals: a) The current state topology is τ j . For every pro-
posal, the random walk starts on So and for κ∗ xSPR moves (in this case κ∗ = 3, in red),
a new topology τ∗ will be proposed in iteration j + 1. This topology is independent from
τ j given So; b) Assuming τ j is κ∗ = 3 xSPRs away from So (in green), in this example,
a new topology τ∗ will be proposed using b∗ = 2 xSPRs backward and f∗ = 2 xSPRs
forward (in red).

2. Backward-forward proposal

A more sophisticated approach, able to propose τ ∗g using the information in

τg is the backward-forward sampler. The idea is to propose Y ∗g by taking Y g,

ignoring the last b∗ xSPR in Y ∗g, but then appending f ∗ new xSPRs on to the

resultant xSPR history.
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Let b∗ be the proposed number of xSPRs ignored (‘backward’) in the current

Y g and f ∗ the number of steps appended (‘forward’) i.e. applied to τg,κg−b∗

(see Figure 4.10). In this case

κ∗g = κg − b∗ + f ∗ (4.22)

We will propose b∗ and f ∗ in the following way:

• If κg = 0, the current topology τg = So and no back steps can be taken, i.e.

b∗ = 0. Thus, we will propose only steps forward such that f ∗ ∼ Po(d),

for d = 2.

• For κg 6= 0, b∗ ∼ TPo(e, κg), for e = 1. The proposal for f ∗ then depends

on the value of b∗.

(a) If b∗ = 0 then f ∗ ∼ Po(h), for h = 0.5.

(b) Else, f ∗ ∼ Po(b∗).

This determines q(f ∗, b∗|κg). Given b∗ and f ∗, the f ∗ xSPRs ‘forward’ from

τg,κg−b∗ are proposed from the prior. In order to compute the proposal ratio

it is convenient in this section to drop the subscript g and write τj instead of

τg,j for a stumpy tree topology in τ g = (τg,0, τg,0, . . . , τg,kg), and similarly for

κg and Y g. Furthermore, the reverse move from Y ∗ to Y has

• b = f ∗ steps back, and

• f = b∗ steps forward.

In this notation, the proposed sequence of stumpy tree topologies correspond-
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ing to Y ∗ is τ0, τ1, . . . , τκ−b∗ , τ
∗
κ−b∗+1, . . . , τ

∗
κ−b∗+f∗ . The proposal density is

q(Y ∗, κ∗|Y , κ, So) = q(f ∗, b∗|κ)q(Y ∗|Y , f ∗, b∗, κ, So)

= q(f ∗, b∗|κ)π(τ ∗κ−b∗+1|τκ−b∗)× π(τ ∗κ−b∗+2|τ ∗κ−b∗+1)

× . . .× π(τ ∗κ−b∗+f∗|τ ∗κ−b∗+f∗−1)

= q(f ∗, b∗|κ)π(τ ∗κ−b∗+1|τκ−b∗)×

(
κ−b∗+f∗∏
j=κ−b∗+2

π(τ ∗j |τ ∗j−1)

)
.

(4.23)

Each term of the form π(τ+, τ−), where τ+ and τ− are stumpy tree topologies

related by a single xSPR from τ− to τ+, corresponds to the prior on xSPRs

described in Section 4.3.1. In order to compute the acceptance probability

later, we need the following calculation of a quantity denoted Atop (which is

the part of the acceptance probability attributed to the topology):

Atop =
π(κ∗)

π(κ)

π(Y ∗|κ∗, So)
π(Y |κ, So)

q(Y , κ|Y ∗, κ∗, So)
q(Y ∗, κ∗|Y , κ, So)

=
π(κ∗)

π(κ)

π(Y ∗|κ∗, So)
π(Y |κ, So)

× q(b, f |κ∗)
q(b∗, f ∗|κ)

q(Y |Y ∗, f ∗, b∗, κ∗, So)
q(Y ∗|Y , f, b, κ, So)

=
π(κ∗)

π(κ)

q(b, f |κ∗)
q(b∗, f ∗|κ)

×

(∏κ−b∗
j=1 π(τj|τj−1)

)
× π(τ ∗κ−b∗+1|τκ−b∗)×

(∏κ−b∗+f∗
j=κ−b∗+2 π(τ ∗j |τ ∗j−1)

)
∏κ

j=1 π(τj|τj−1)

(4.24)

×
π(τκ−b∗+1|τκ−b∗)×

(∏κ
j=κ−b∗+2 π(τj|τj−1)

)
π(τ ∗κ−b∗+1|τκ−b∗)×

(∏κ−b∗+f∗
j=κ−b∗+2 π(τ ∗j |τ ∗j−1)

) (4.25)

=
π(κ∗)

π(κ)

q(b, f |κ∗)
q(b∗, f ∗|κ)

,

as all the other terms cancel. Equations 4.24 and 4.25 correspond to the prior
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and proposal ratios, respectively.

Conditional on τ ∗ (the proposed gene tree topology), branch lengths for τ ∗ are

proposed independently from the prior, that is

`∗j
indep∼ Exp(λ), j = 1, . . . , B. (4.26)

This determines q(`∗|τ ∗, λ). The acceptance probability for the full proposal

on topology and edges lengths is min{1, A} where

A = Atop ×
π(`∗|λ)

π(`|λ)
× π(D|θ, τ ∗)

π(D|θ, τ)
× q(`|τ, λ)

q(`∗|τ ∗, λ)
(4.27)

As the branch lengths are proposed from the prior, the prior and proposal

ratios will cancel leaving us with

A =
π(κ∗)

π(κ)

q(b, f |κ∗)
q(b∗, f ∗|κ)

× π(D|θ, τ ∗)
π(D|θ, τ)

= Atop ×
π(D|θ, τ ∗)
π(D|θ, τ)

. (4.28)

3. One-step backward-forward proposal

The one-step backward-forward proposal is a special case of the backward-

forward proposal, where it proposes moves only one xSPR forward, or one

xSPR backward from the current state. When the chain’s current state for

topology is So then it only moves forward. These smaller local moves increases

the acceptance probability by producing less extensive disturbances on the

LGT history and resulting topology. In this situation, the proposal ratio of

the proposed moves depends on κg and the maximum number of LGTs allowed

by the model κgM . For κg = 0, the probability of proposing one step backward

is 0, π(b = 1) = 0 since the current topology is So, and a step forward will be

proposed with probability 1.0. If 0 < κg < κgM , then π(b = 1) = π(f = 1) =
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0.5. For κg = κgM , no steps forward are allowed, and therefore π(f = 1) = 0,

while π(b = 1) = 1. The proposal ratios for every possible move are described

in Table 4.1.

Current κg

0 1 2 . . κg(M−1) κgM

P
ro

p
os

ed
κ
g

0 - 2 - . . - -

1 0.5 - 1 . . - -

2 - 1 - . . - -

. . . . . . . .

. . . . . . . .

κg(M−1) - - - . . 1 0.5

κgM - - - . . 2 -

Table 4.1: Proposal ratios q(κg|κ∗g)/q(κ∗g|κg) for the one-step backward-forward proposal.

For this proposal, and conditional on τ , only the branch lengths that changed

during the topological part of the proposal are proposed from the prior, while all

other branch lengths will be proposed independently from a log normal random walk

centred on the current value, that is

`∗j
indep∼ LN(`j, v`), j = 1, .., Bu, (4.29)

where Bu is the number of unchanged branch lengths and v` = 0.01, which proved

to provide good mixing. In this case, the prior and proposal ratios related to the un-

changed branch lengths will contribute to the acceptance rate described in Equation

4.27, with q(`∗|τ ∗, λ) =
∏Bu

i=1 q(`
∗
i |τ ∗, λ).

Update step for branch lengths `

To provide proper mixing also for the branch lengths, with all other parameters

fixed, new branch lengths are proposed from a log normal random walk centred on
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the current value. Two different proposals were developed:

• Single branch length proposal. Each branch length `ij is independently

proposed from the proposal density defined in Equation 4.29 while all other

branch lengths are fixed. This proposal, although time consuming, leads to a

better acceptance rate.

• All branch lengths proposal. All branch lengths are proposed from the

the same lognormal proposal density simultaneously as a joint proposal.

Update steps for λ, µλ and σ2
λ

In terms of proposals, new values for λg are proposed from a lognormal random walk

such that

λ∗g|λg ∼ LN(λg, zλ), (4.30)

for zλ = 0.5, which determines q(λ∗g|λg). As any changes on λg will not affect the

likelihood calculation, the acceptance probability can be written as min(1, A) where

A =
π(λ∗g|ξ)

π(λg|ξ)
×
q(λg|λ∗g)
q(λ∗g|λg)

=
π(λ∗g|ξ)

π(λg|ξ)
×
λ∗g
λg
. (4.31)

In order to sample the across-gene level parameters µλ and σ2
λ in the outer

Metropolis-within-Gibbs cycle, we have derived their full conditional distributions

to use Gibbs sampling. Therefore, we have that

µλ|λg, σ2
λ ∼ N(νµλ , σ

2
µλ

) (4.32)

and

1

σ2
λ

∣∣∣∣λg, µλ ∼ Gamma

(
aλ +

G

2
, bλ +

1

2
SSµλ

)
(4.33)

89



4. Novel Bayesian Hierarchical Phylogenetic Model for LGT

where νµλ =
mλσ

2
λ+vλ

∑G
g=1 log λg

σ2
λ+Gvλ

, σ2
µλ

=
(
G
σ2
λ

+ 1
vλ

)−1

and SSµλ =
∑G

g=1(µλ − log λg)
2.

Transition:transversion rate ratio ρ, µρ and σ2
ρ

New values for ρg are proposed from a lognormal random walk such that

ρ∗g|ρg ∼ LN(ρg, zρ), (4.34)

with zρ = 0.1, as this choice showed to provide good mixing. This determines

q(ρ∗g|ρg). Therefore, the acceptance probability is min(1, A) with

A =
π(ρ∗g|µρ, σ2

ρ)

π(ρg|µρ, σ2
ρ)
× π(D|θ∗, τ)

π(D|θ, τ)
×
q(ρg|ρ∗g)
q(ρ∗g|ρg)

(4.35)

=
π(ρ∗g|µρ, σ2

ρ)

π(ρg|µρ, σ2
ρ)
× π(D|θ∗, τ)

π(D|θ, τ)
× ρ∗

ρ
. (4.36)

Across-gene level parameters µρ and σ2
ρ are sampled through Gibbs sampling as

their full conditional distributions are

µρ|ρg, σ2
ρ ∼ N(νµρ , σ

2
µρ) (4.37)

and

1

σ2
ρ

∣∣∣∣ρg, µρ ∼ Gamma

(
aρ +

G

2
, bρ +

1

2
SSµρ

)
, (4.38)

where νµρ =
mρσ2

ρ+vρ
∑G
g=1 log ρg

σ2
ρ+Gvρ

, σ2
µρ =

(
G
σ2
ρ

+ 1
vρ

)−1

and SSµρ =
∑G

g=1(µρ − log ρg)
2.

Base frequencies (π)

New values π∗g will be proposed from a Dirichlet distribution centered on the current

values πg such that

π∗g | πg ∼ Dir(nππg), (4.39)
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where nπ = 500, as this proved to provide good mixing. With this determining

q(π∗g|πg), the acceptance probability for this parameter is min (1, A) where

A =
π(π∗g|Π , N)

π(πg|Π , N)
× π(D|θ∗, τ)

π(D|θ, τ)
×
q(πg|π∗g)
q(π∗g|πg)

. (4.40)

Across-gene level parameters are updated through Metropolis-Hastings steps

such that

Π∗|Π , N,π ∼ Dir(nΠΠ), (4.41)

and

N∗|N,Π ,π ∼ LN(N, vN), (4.42)

where nΠ = 300 and vN = 0.1. The acceptance probability in both cases does not

depend on the likelihood and can be written as min(1, A) where

A =
π(Π∗)

π(Π)
× q(Π|Π∗)
q(Π∗|Π)

, (4.43)

and

A =
π(N∗)

π(N)
× q(N |N∗)
q(N∗|N)

(4.44)

=

(
N

N∗

)1−aN
exp (bN(N −N∗))× N∗

N
(4.45)

=

(
N∗

N

)aN
exp (bN(N −N∗)) , (4.46)

as N has a Gamma prior with parameters aN = bN = 0.1 (see Section 4.4.1).
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Gamma shape parameter α

New values α∗g are proposed from a lognormal random walk centered at the current

value, i.e.

α∗g|αg ∼ LN(αg, vα), (4.47)

with vα = 0.1 which proved to provide good mixing. The acceptance probability

will therefore be min(1, A) where

A =
π(α∗g)

π(αg)
× π(D|θ∗, τ)

π(D|θ, τ)
×
q(αg|α∗g)
q(α∗g|αg)

(4.48)

= exp(αg − α∗g)×
π(D|θ∗, τ)

π(D|θ, τ)
×
α∗g
αg
, (4.49)

as the prior distribution for αg is an Exponential with rate 1.
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5

Analysis of Simulated Data

Computer simulations are useful as they can characterize the expected performance

of phylogenetic methods under idealized conditions. Although it may not be possible

to simulate data under models representative of reality, it certainly is possible to

simulate data under the conditions assumed by the model. It is possible, then, to

examine the performance of methods under best-case conditions (i.e., when all the

assumptions of the model are met).

The general approach taken in this study was to construct DNA sequence data

for a specific ordered species tree, under our model assumptions using computer

simulation.

5.1 Data Simulation

A known rooted twelve-taxon tree was used as the model species tree S in this

study. Four multiple sequence alignments, one for each gene, were generated under

our model assumptions, in the following way:

• An order o was assigned to the vertices of S at random, giving So (Figure 5.1).
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• Conditional on this order, κg xSPRs, for g = 1, . . . , 4, were simulated from our

model for each gene (with κ1 = 0, κ2 = 0, κ3 = 1, κ4 = 2), giving 4 unrooted

topologies (τ1, τ2, τ3 and τ4). Topologies τ1 and τ2 are unrooted versions of So

since they suffered no perturbation while τ3 and τ4 are the results of the LGT

histories Y3 = {Y31} and Y4 = {Y41, Y42}, as indicated in Figure 5.1.

• Lengths assigned to each topology’s branches were drawn randomly from an

Exponential distribution, with `gi ∼ Exp(10), for gene g and branch i.

• For each gene tree Tg = (τg, `g), a multiple sequence alignment was generated

according to the HKY85+Γ substitution model (see Chapter 2.1 for further

details) with the following parameter choice:

– ρg = 1.5

– αg = 0.7

– πg = (0.15, 0.35, 0.2, 0.3) for nucleotides A, G, C, T, respectively.

Our model assumes an ordered rooted species tree in order to constrain the LGTs

that generate each gene tree in such a way that they occur between contemporary

species, but the resulting gene tree is assumed to be an unrooted tree in terms

of likelihood calculation (as explained in Subsection 2.2.1) . The simulated So as

well as the LGT events that originated τ3 and τ4 are shown in Figure 5.1, and the

unrooted topologies τ3 and τ4 can be seen in Figures 5.2 and 5.3.

5.2 MCMC

Using our implementation of the model in Java, three replicate MCMC runs were

performed. The initial values for each chain were the true value for all the parameters

except κ, Y , τ and `. This was done in order to decrease the number of iterations
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Y31Y41Y42

Figure 5.1: Ordered species tree So and LGT histories for genes 3 and 4. The
tree topologies for genes 1 and 2 are identical to So, while the tree topology for gene 3
resulted from the LGT marked in red and that for gene 4 from the occurrence of LGTs
represented in blue.

until the chain achieved convergence. Each initial topology was taken to be the

topology of So, (τ
(0)
g = So), with κg = 0 and Yg = ∅, for g = 1, . . . , 4. Each initial

branch length `gi was drawn from the prior.

One million iterations were performed for each chain (at a rate of approximately

2000 iterations per hour in an Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz with

4GB RAM) including a burn-in phase of 300K iterations. The chain was thinned

every 100 iterations. Parameters were updated by using the methods described in

Subsection 4.4.2. Gene tree topologies, LGT number and LGT history were updated

by using both backward-forward and one-step backward-forward proposals. Branch

lengths were updated using the single branch length proposal. The next section

describes the results obtained.
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Figure 5.2: Unrooted gene tree topology for gene 3, τ3.

Figure 5.3: Unrooted gene tree topology for gene 4, τ4.
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5.3 Results

5.3.1 Overall look at MCMC convergence

As our model for this specific simulation includes more than 80 parameters (the

number of LGT events in each LGT history Yg is variable), in this subsection we

will discuss only the MCMC trace, ACF and density plots for the three chains and

some selected parameters which we believe are representative of the overall results.

Figure 5.4 displays the MCMC results for parameters αg, ρg, πgA, λg and `g1 for

gene 4. It can be observed that the three chains converged to the same distribution

which gives strong support to the true value in all cases. No issues were found in

terms of mixing or high autocorrelation. Similar results were achieved for genes 1,

2 and 3.

In Figure 5.5 we observe similar plots for the across-gene level parameters, all

showing proper mixing and convergence again to the same posterior distribution,

while Figure 5.6 shows the MCMC results for the number of LGT events, this time

for all four genes. All chains converged to the same posterior distribution for genes

1, 2 and 3, but for gene 4, the green chain, after one million iterations converged

to a different region in parameter space in comparison to the red and blue chains.

This fact is of great importance and will be addressed in detail in Subsection 5.3.6.

As only red and blue chains reached the same posterior distribution for all param-

eters, in the next sections we will mainly discuss the posterior results obtained from

the red chain, although the results of the three chains will be addressed whenever

appropriate.
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5. Analysis of Simulated Data

Figure 5.4: MCMC results for within-gene level parameters αg, ρg, πgA, λg and `g1 for
gene 4. The three chains are coloured green, red and blue and dashed lines denote the
true parameter values.
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Figure 5.5: MCMC results for across-gene level parameters φ. The three chains are
coloured green, red and blue.
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Figure 5.6: MCMC results for the number of LGT events κ. The three chains are coloured
green, red and blue.

100



5. Analysis of Simulated Data

5.3.2 Within-gene level parameters

Table 5.1 presents the results for the within-gene level parameters for the simulated

genes. Listed in the table are the posterior mean and 95% HPD Bayesian credible

intervals for each Gamma shape parameter αg, transition-transversion ratio ρg, com-

position vector πg and expected divergence λg; the table also contains the posterior

means of the four π parameters. We see that the posterior means are close to the

true values (αg = 0.7, ρg = 1.5, λg = 10), which are in all cases within the credible

interval, except for ρ2. We note that the true value of ρ2 (= 1.5) is in the tail of

its posterior distribution, as we can see in Figure 5.7. This might be explained by

the simulated sequence being analysed not being particularly consistent with the

true value. Only with very long sequences would such an outlying point indicate

something suspicious (in terms of the code or MCMC run).

The posterior means of the stationary distributions πg are equally very similar

to the true values.

πg

g αg ρg λg A G C T

1 0.69(0.56,0.82) 1.57(1.35,1.80) 13.15(7.63,18.54) 0.15 0.36 0.19 0.30

2 0.68(0.58,0.78) 1.26(1.10,1.42) 9.38(5.87,13.47) 0.15 0.34 0.22 0.29

3 0.77(0.64,0.91) 1.43(1.25,1.64) 12.33(7.54,17.46) 0.16 0.34 0.19 0.32

4 0.63(0.53,0.74) 1.55(1.34,1.76) 11.52(6.90,16.22) 0.16 0.36 0.19 0.28

Table 5.1: Within-gene level parameters for the simulated data. For each gene g we have
the posterior mean and 95% credible intervals for αg, ρg and λg, and the posterior means
for πg. The true values for each parameter are as follows: αg = 0.7, ρg = 1.5 and λg = 10,
and πg = (0.15, 0.35, 0.20, 0.30)
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Figure 5.7: Posterior distribution for ρ2 for all three chains. Dashed red line
represents the true value.

5.3.3 Across-gene level parameters

Table 5.2 lists the results for the across-gene level parameters used to pool informa-

tion about ρ, λ and π. The data were simulated using ρg = 1.5 and λg = 10, for

g = 1, . . . , 4, and so it is helpful to study the posterior distribution on this original

scale for ρ and λ (rather than on the log scale of µρ and µλ ). Now

E(ρg|µρ, σ2
ρ) ≡ µ′ρ = exp

(
µρ +

σρ
2

)
(5.1)

and

E(λg|µλ, σ2
λ) ≡ µ′λ = exp

(
µλ +

σλ
2

)
, (5.2)

and so we will also look at the posteriors for µ′ρ and µ′λ.

The posterior means for these natural-scale parameters is 1.79 and 13.87 for µ′ρ

and µ′λ respectively. We note that the values used for ρg and λg when simulating our
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data are included in the 95% credible intervals for µ′ρ and µ′λ. A similar reasoning

can be applied to the central tendencies for the stationary distribution prior mean

vector Π . Table 5.2 also shows that the posterior means for Π are consistent with

the composition vector values used to simulate the data (πg = (0.15, 0.35, 0.20, 0.30)

for g = 1, . . . , 4).

Log-scale Natural-scale

central tendencies central tendencies Measures of precision

Param. Mean (95% CI) Param. Mean (95% CI) Param. Mean (95% CI)

µρ 0.36(-0.31,1.00) µ′ρ 1.79(0.91,3.39) 1/σ2
ρ 2.27(0.98,11.11)

µλ 2.40(1.67,3.08) µ′λ 13.87(6.69,27.39) 1/σ2
λ 2.17(0.93,9.09)

ΠA 0.16(0.11,0.22) NΠ 45.87(10.23,85.83)

ΠG 0.34(0.26,0.41)

ΠC 0.20(0.14,0.26)

ΠT 0.30(0.22,0.36)

Table 5.2: Across gene-level parameters for the simulated data. For each parameter we
give the posterior mean and 95% credible intervals.

5.3.4 Gene Tree Topology (τ )

Table 5.3 summarizes the posterior probabilities for all topologies in the posterior

distribution for each gene and each chain. The true topologies for each gene are the

following:

1. ((C,(A,B)),(D,E),((F,(G,H)),((I,J),(K,L))));

2. ((C,(A,B)),(D,E),((F,(G,H)),((I,J),(K,L))));

3. ((C,(B,(A,L))),(D,E),((F,(G,H)),(K,(I,J))));

4. ((C,(B,(A,D))),(F,(G,H)),(E,((I,J),(K,L))));
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For all genes, and all chains, the posterior mode corresponds to the true topology.

In the case of the topologies for genes 1 and 2, as no LGTs were performed on So

when generating either genes, the true topology is the species tree topology and their

posterior probabilities are approximately 0.998 and 0.742, respectively. For genes

3 and 4, which were constructed by performing 1 and 2 LGTs on So respectively,

the most probable topologies were the correct ones and had posterior probabilities

around 0.983 and 0.987. Note that, despite the fact that the marginal posterior

distribution of the green chain for κ4 did not converge to a posterior distribution

containing the true number of LGTs, its marginal distribution for τ4 did reach a

distribution containing only one topology, which is the true τ4, thus this topology

has a posterior probability of 1. This clearly indicates the multi-modal aspect of the

LGT history parameter space which we will address later on.

5.3.5 Branch lengths (`)

In relation to the branch lengths, Figure 5.8 shows the deviation of the posterior

distribution from the true branch lengths for gene 4. Each boxplot summarises the

difference log(posterior mean `gi) − log(true `gi), for i = 1, . . . , B where B is the

number of branches. The true branch length value is indicated on the x-axis and

the branches have been ordered in increasing length. The boxplots clearly show

that the variance of the deviation from the true value decreases as the true value

increases, although the true value lies within the marginal 95% credible intervals for

each branch length. Also, for the smallest branch length, the deviation from the true

values is such that the true value appears in the tail of the posterior distribution.

This reinforces the need for using a truncated prior which gives zero probability

to branch lengths smaller than 0.002, as a branch length of 0.002 represents the

occurrence of approximately 1 substitution every 500 nucleotides. As our simulated
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sequences are only 1000 nucleotides long, the data are unlikely to have enough

information to infer very small branch lengths. Similar results were obtained for the

genes 1, 2 and 3 (see Appendix B).

5.3.6 Number of LGTs (κ)

Figure 5.9 displays the posterior distributions for the number of LGT events, κg, per

gene and for each chain. All chains converged to the same distribution for genes 1,

2 and 3 and their posterior modes correspond to the true values (κ1 = 0, κ2 = 0 and

κ3 = 1). The posterior mode for genes 1 and 2 is zero with this value having posterior

probabilities of approximately 0.997 and 0.742, respectively, in each chain. For gene

3, the posterior probability is concentrated on one LGT event with a probability of

approximately 0.900 also, for all chains. For gene 4, and as we referred to before,

while the blue and red chains converged to a posterior distribution with its mode at

the true value (with a posterior probability of approximately 0.800 in both chains),

the green chain has a posterior mode of 5, despite convergence to the correct gene

tree topology (see Subsection 5.3.4). A possible explanation relates to the fact that

the generation of a gene tree from an ordered species tree can be explained by several

different LGT histories with different numbers of LGTs. Although our Geometric

prior on κg favours LGT histories with smaller numbers of LGTs, the complexity of

the parameter space often makes the transition between modes difficult, resulting in

poor mixing. We believe this issue is related to the joint backward-forward proposal

mechanism (see Chapter 4.4.2) for the LGT history, number of LGTs and gene trees.

The proposal we use is designed to use local moves to explore the tree space

locally (see Figure 4.10). However, consider the following situation. Suppose during

burn-in, the chain has entered a part of parameter space for which the correct gene

tree topology has been found, but for which the corresponding sequence of LGTs is
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incorrect (in particular with κg too large). Then, backward-forward proposals which

alter the gene tree topology will be heavily penalised due to a possibly large change

in likelihood to an incorrect gene tree topology. Gross changes to the LGT history

will only occur if the backward-forward proposal happens to propose an alternative

LGT history that renders the correct gene tree topology. However, this is extremely

unlikely to occur. Thus, the LGT history can get stuck in a long ‘loop’ between

So and the correct gene tree topology, and the forward-backward proposal is very

inefficient at ‘tightening’ such loops, since this can only be achieved within this

(joint) proposal by changing the gene tree topology.

Our first attempt to address this issue was to use Metropolis-coupled MCMC

(see Chapter 2.2.2 for more information) but no significant improvement occurred

in the mixing of the chain. We could use an independence proposal, where, at each

iteration, we would propose topologies from a random walk initialised always on So

and with κg ∼ Po(a) steps, for known a, to allow global moves and thereby to explore

other areas of the space but experimental results showed such a proposal to have

an extremely low acceptance rate. Another solution, which brought better results

was to develop another joint proposal, the one-step backward-forward proposal. A

special case of the backward-forward proposal, it allows the chain to move only one

step forward or one step backward, with only one step forward being allowed if the

current state for topology is So. The idea here is that, by making even smaller

local moves, the current state gene tree and LGT history are less disturbed and this

should lead to increasing the acceptance probability.

Therefore, by allowing both backward-forward and one-step backward-forward

samplers to work sequentially (a backward-forward move was proposed followed

by a one-step backward-forward move proposal), we achieved better mixing in our

MCMC analysis. Convergence issues relating to the LGT history occurred only for
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gene 4 (with κ4 = 2), where around 70% of the chains converged to the true LGT

history.

Our aim is to propose LGT histories between the current rooted species tree

order state So and gene tree topology. This will form part of our future work (see

Chapter 7).

5.3.7 LGT history (Y )

To present the LGT history we will introduce a novel visualisation tool, the LGT

Biplot, which represents the LGTs as arrows from the donor species to the receptor

species. The thickness of the arrow is a function of the posterior probability - the

thicker the arrow, the higher the probability. On the left is a list of “graft” splits, and

on the right “prune” splits. The posterior probability is obtained by marginalising

over all other aspects of the posterior distribution e.g. tree topology. The LGT

Biplots in Figures 5.10 and 5.11 show the LGT events with non-negligible posterior

probability (exceeding 0.05), for the red and blue chains, respectively. The true LGT

history for genes 3 and 4 is represented in Figure 5.1 and can be also represented in

terms of the edges or splits that participated in the event in the following way:

• Gene 3: [L] to [A];

• Gene 4: [D] to [A] and [F,G,H] to [A,B,C].

Note that, for gene 3, considering that this gene’s evolutionary history resulted

from only one LGT, and that we know the true τ3, the only possible LGT that

could originate it is [L] to [A]. Figure 5.10 shows us that our model has successfully

recovered the true LGT history with posterior probabilities of 0.94 and 0.88 for the

occurrence of the LGT from [L] to [A], for chains red and blue, respectively.
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Gene 3 - Red Chain Gene 3 - Blue Chain

Figure 5.10: Representation of the LGTs present in the posterior distribution for Gene 3.

A different situation characterises the LGT history for gene 4. As we already

saw when analysing the inference results for κ4, τ4 can be derived from So through

LGT histories with different numbers of LGTs. Nevertheless, due to the nature of

the true LGTs (used to simulate the data), τ4 can be generated through different

LGT histories even with the same number of LGTs. When looking at Figure 5.11,

we notice that although the LGT from [D] to [A] is undoubtedly the shortest path

for attaching the branch connected to D to the branch connected to A, the other

rearrangement on the gene tree topology can be originated via 4 different LGTs.

Our model assumes an ordered rooted species tree when modelling the LGTs that

generates each gene tree, but the gene tree is assumed to be an unrooted tree in

terms of likelihood calculation. Therefore, for our specific case, because the second

LGT occurred between two edges connected to the edge containing the root, LGTs
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Gene 4 - Red Chain Gene 4 - Blue Chain

Figure 5.11: Representation of the LGTs present in the posterior distribution for Gene 4.

[F,G,H] to [A,B,C], [A,B,C] to [F,G,H] , [L,I,J,K] to [D,E] and [D,E] to [L,I,J,K] will

give exactly the same gene tree topology. See Figure 5.12 for a visual explanation.

Therefore, while the posterior distributions of both chains agree in the occurrence

of an LGT between [D] and [A], with posterior probabilities of 0.45 and 0.46, the

same does not occur in relation to the second LGT. The LGT between [F,G,H]

and [A,B,C] has posterior probabilities of 0.21 for the red chain and 0.07 for the

blue chain. On the other hand, the LGT events [A,B,C] to [F,G,H] and [L,I,J,K]

to [D,E] have probabilities of 0.16 and 0.15, respectively, in the blue chain, while

their probabilities in the red chain were 0.08 and 0.11. The LGT between [D,E] to

[L,I,J,K] is also present in both posterior distributions with probability below 0.05

in each case.
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a

b2 b1

b3 b4

Figure 5.12: Representation of 4 possible LGT histories with κ4 = 2 LGTs for
Gene 4. Blue arrows a and b1 indicate the LGTs that generated τ4 in the simulated data,
but any of the combinations of a with any bi, for i = 1, . . . , 4, gives the same unrooted
gene tree topology represented in Figure 5.3.
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6

Evolution of 2009 Swine-Origin In-

fluenza Type A virus

6.1 Background

The influenza virus is an RNA virus of the family Orthomyxoviridae, which has been

isolated from a wide range of hosts including humans, birds, pigs, horses and sea

mammals. Its genome contains eight segments of single-stranded, negative-sense

RNA. Three segments encode the polymerase complex: basic polymerase 2 (PB2),

basic polymerase 1 (PB1) and the acidic protein (PA). The nucleoprotein segment

(NP) encodes a protein that binds to viral RNA. The matrix segment (MP) en-

codes two proteins: a structural component of the viral capsid and a membrane ion

channel. The non structural segment (NS) encodes a protein essential for cellular

RNA processing and transport. Two other segments, hemagglutinin (HA) and neu-

raminidase (NA), encode viral surface glycoproteins responsible for host cell entry

and exit, respectively. Based on the antigenicity of these two molecules, they are

classified into 16 HA subtypes (H1-H16) and 9 NA subtypes (N1-N9) (Neumann
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Figure 6.1: Structure and life cycle of influenza A viruses. Influenza A viruses are
enveloped, single-stranded, negative-sense RNA viruses that contain eight gene segments
that encode 16 proteins (Shi et al., 2014).

et al., 2009).

When a cell is infected with an influenza virus the individual RNA segments en-

ter the nucleus where they will be replicated. The new RNA segments are exported

to the cytoplasm and incorporated into new virus particles which will be released

from the cell (see Figure 6.1). If two or more influenza viruses infect the cell si-

multaneously, the RNAs of both viruses are replicated in the nucleus, promoting

the assembling of new virus particles with 8 RNA segments originated from either

infecting virus (Figure 6.2). This process is known as reassortment which is a form

of lateral gene transfer. These reassortment events, associated with point mutations

and inter-species transmission, can contribute to the emergence of new variants or

strains with epidemic or pandemic potential. Pandemics are typically caused by the

introduction of a virus with an HA subtype new to human populations.

In the twentieth century, three influenza viruses emerged in humans to cause

major pandemics: the 1918 Spanish flu virus (H1N1), the 1957 Asian flu virus
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Figure 6.2: Influenza virus reassortment. This diagram shows a cell that is co-infected
with two influenza viruses L and M. The infected cell produces both parental viruses as
well as a reassortant R3 which inherits one RNA segment from strain L and the remainder
from strain M (Racaniello, 2013).
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(H2N2), and the 1968 Hong Kong flu virus (H3N2). These pandemics were initiated

by the introduction and successful adaptation of a novel hemagglutinin subtype to

humans from an animal source. These viruses later become established in humans

as the cause of seasonal flu for many years until being replaced by a new pandemic

virus.

A new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the

United States in March 2009, spreading worldwide by human-to-human transmission

and originating the first influenza pandemic of the twenty-first century (Smith et al.,

2009; Trifonov et al., 2009; Kingsford et al., 2009). As with most seasonal influenza

viruses, this new virus is associated with a mild illness in the majority of people,

although it is responsible for severe complications in more susceptible individuals.

On the basis of sequence similarity to previously reported swine influenza isolates,

initial genetic characterization of the 2009 S-OIV outbreak suggested it had its

origin in pigs in which the virus had been circulating for at least 80 years. A

new triple-reassortant H3N2 virus, comprising genes from classical swine H1N1,

North American avian, and human H3N2 influenza, was reported in 1998 as the

cause of outbreaks in North American swine. In Europe, an avian H1N1 virus was

introduced to pigs (avian-like swine H1N1) and first detected in Belgium in 1979. It

is noteworthy that, until 2009, there was no evidence of Eurasian avian-like swine

H1N1 circulating in North American pigs.

Using phylogenetic analyses, Smith et al. (2009) estimated a temporal recon-

struction of the complex reassortment history of the 2009 S-OIV outbreak, summa-

rized in Figure 6.3. They compared two genomes from the S-OIV outbreak with

811 genomes representing the spectrum of influenza A diversity (285 humans, 100

swine and 411 avian isolates) and constructed phylogenetic trees for each genomic se-

quence independently. Phylogenetic trees were inferred using the neighbour-joining
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distance method, with genetic distances calculated by maximum likelihood under

the HKY85+Γ model. The parameters of this model were estimated using max-

imum likelihood on an initial tree. Further analyses were made to infer temporal

phylogenies and rates of evolution.

Their results suggest that the S-OIV likely resulted from the reassortment of

recent North American H3N2 and H1N2 swine viruses (i.e., avian/human/swine

triple reassortant viruses) with Eurasian avian-like swine viruses. It also showed

that each segment of the S-OIV genome seems to be nested within a well-established

swine influenza lineage (which circulated in swine for > 10 years before the 2009

outbreak), emphasising that the progenitor of the S-OIV epidemic had its origin in

pigs.

Despite the fact that the precise evolutionary pathway of S-OIV origin is greatly

hindered by the lack of surveillance data, these results seem to indicate that the

polymerase genes, plus HA, NP and NS, emerged from a triple-reassortant virus

circulating in North American swine. The source triple-reassortant itself comprised

genes derived from avian (PB2 and PA), human H3N2 (PB1) and classical swine

(HA, NP and NS) lineages. In contrast, the NA and M gene segments have their

origin in the Eurasian avian-like swine H1N1 lineage (Smith et al., 2009).

6.2 Analysis

We now try to infer the 2009 S-OIV evolution/reassortment events by using our

model and the same multiple sequence alignments as Smith et al. (2009) (available

at http://tree.bio.ed.ac.uk/people/arambaut/). As our model assumes a known

species tree, we fixed the species tree to be the inferred tree for gene NP which,

according to Smith et al. (2009), has been only vertically transmitted throughout

the swine lineage. Due to the complexity of our model, and the computational and
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Figure 6.3: Host species are represented by the different coloured shaded boxes:
avian (green), swine (red) and human (blue). The eight genomic segments are
represented as parallel lines in descending order of size. Dates marked with dashed vertical
lines indicate the mean time of divergence of the S-OIV genes from corresponding virus
lineages. Reassortment events not involved with the emergence of human disease are
omitted (Smith et al., 2009).
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time constraints, we sampled 26 virus representatives of eight virus lineages that

were likely involved in the reassortment events that gave origin to the 2009 S-OIV

(see Table 6.1). Species were chosen such that they would cover all lineages as well as

different clades within the lineages. Most lineages are represented by 2 or 3 species,

except the avian (with 8 species), reflecting the fact that Smith et al. (2009) used a

higher number of avian species when compared to other lineages.

Our model assumes also that all genes are present in all taxa in the analysis

and so we decided to remove genes HA and NA from our analysis as they are used

to classify the different subtypes. As an example, if we choose to analyse viruses

with gene H1 we would have to exclude some important lineages, e.g. the triple-

reassortant swine H3N2 and H3N1. The species tree is represented in Figure 6.4.

Reference in Smith et al. (2009) Code

4273 H3N2 Human florida ur070101 2008 A

2823 H3N2 Human queensland 39 2003 B

3477 H3N2 Human memphis 1 71 C

2693 H2N2 Human albany 8 1967 D

2637 H2N2 Human czechrepublic 1 1966 E

2094 H1N1 Human denver 57 F

2471 H1N1 Human oregon ur060291 2007 G

2601 H1N1 Human wilsonsmith 33 H

36 H1N1 Swine swine ohio 23 1935 I

46 H1N1 Swine swine wisconsin 2 1970 J

112 H1N1 Swine swine iowa 1 1986 K

155 H3N2 Swine swine manitoba 12707 2005 L

150 H3N1 Swine swine in pu542 04 M

141 H1N2 Swine swine shanghai 1 2007 N

00 Canada ON RV1527 2009 (H1N1) O

2593 H1N1 Human california 04 2009 P

32 H1N1 Swine swine chonburi niah9469 2004 Q

135 H1N1 Swine swine england wvl16 1998 R

811 H5N1 Avian chicken shanxi 2 2006 S

356 H1N1 Avian duck italy 69238 2007 T

1713 H9N2 Avian chicken gansu 2 99 U

731 H4N8 Avian duck victoria 5384 2002 V

576 H3N8 Avian redneckedstint westernaustralia 4923 1983 W

372 H1N1 Avian quail in 38685 1993 X

562 H3N6 Avian mallard maryland 1235 2006 Y

358 H1N1 Avian pigeon mn 1407 1981 Z

Table 6.1: Taxa included in our phylogenetic analysis and corresponding reference in Smith
et al. (2009). Each sample was coded to an alphabetical letter to facilitate the presentation
of results.
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Similarly to the analysis of simulated data in Chapter 5, we initialised three

MCMC runs (which we will identify throughout this chapter as blue, red and green)

with the following parameter choice:

• ρg = 1.5

• αg = 0.7

• πg = (0.15, 0.35, 0.2, 0.3) for nucleotides A, G, C, T,

respectively. Also, the initial vertex order for So was assigned uniformly at random

(Figure 6.4) and the initial gene tree topologies were taken to be the topology of

So. The initial branch lengths were drawn at random from an Exp(10) distribution.

Next, we present the MCMC results of iterations 3,000-265,000, which took around

11 weeks of computational time to obtain.

6.3 Results

In the next subsections we discuss the results for the most relevant parameters in

this analysis.

6.3.1 Within and between gene-level parameters

All within and between gene-level parameters converged to the same marginal pos-

terior distributions in each MCMC chain. Table 6.2 lists the posterior mean and

Bayesian confidence intervals for the Gamma shape parameters αg, transition-transversion

ratios ρg and expected divergences λg, as well as the posterior means for πg.

Although in general, for all the genes, the nucleotide sites seem to evolve at a very

low rate, the most noticeable feature of the table is that the posterior mean of αg, for

gene NS (αNS = 0.37), is almost twice the value for the other genes. This difference
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π

Gene α ρ λ A G C T

PB2 0.20(0.18,0.22) 14.67(13.22,16.17) 22.54(16.35,28.68) 0.36 0.21 0.20 0.24

PB1 0.19(0.17,0.20) 14.07(12.51,15.41) 21.95(15.72,28.07) 0.35 0.20 0.21 0.24

PA 0.20(0.18,0.22) 14.15(12.55,15.65) 23.45(16.76,30.16) 0.35 0.21 0.20 0.23

NP 0.21(0.19,0.24) 10.73(9.46,12.02) 25.47(18.27,32.98) 0.34 0.22 0.21 0.23

M 0.19(0.16,0.23) 10.64(8.72,12.63) 34.04(24.14,44.38) 0.32 0.24 0.21 0.23

NS 0.37(0.31,0.44) 7.17(6.12,8.37) 23.35(16.54,30.46) 0.34 0.22 0.20 0.24

Table 6.2: Within-gene level parameters for the six genes in this study. We present the
posterior mean and 95% credible intervals for α, ρ and λ, and the posterior means for π.

is supported by the 95% CI (0.31,0.44) suggesting that it has a larger number of sites

evolving at a higher rate than the other genes. On the other hand, the posterior

mean of the transition/transversion rate ratio for the same gene (ρNS = 7.17) is

distinguishably smaller than for the other genes, being half the value for genes PB2,

PB1 and PA. The 95% CI (6.12,8.37) also supports this conclusion. The results for

the across-gene level parameters are presented in Table C.1.

6.3.2 Topologies

The unrooted gene tree topologies with posterior probability higher than 0.1 are

listed in Table 6.3 for all six genes and MCMC runs. For PB2, all 3 chains con-

verged to a posterior distribution with a common topology as the posterior mode,

with posterior probabilities for the modal topology ranging from 0.75 to 0.96. For

gene NP, the red and green chains also converged to posteriors sharing a common

supported topology although their posterior probabilities vary (0.95 and 0.43, re-

spectively). The chains for the other four genes, at the time of the MCMC data

collection, did not converge to the same posterior distribution, although the topolo-

gies are in most cases similar. The following results summarize the MCMC output

even though clearly these chains have not fully converged.
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6.3.3 Number of LGTs

Figure 6.5 shows the posterior distribution for the number of LGTs for each gene

in the study. As mentioned before, all chains converged to the same posterior

distribution for the topology of gene PB2, but in terms of the number of LGTs, the

green chain clearly converged to a different posterior with mode equal to 12 LGTs,

while the other two chains converged to very similar posteriors with mode equal to

8 LGTs. This behaviour was also observed and analysed in our simulation results

(see Chapter 5.3.6), and is a result of the multimodal aspect of the LGT history

parameter space and the difficulty in moving between the different modes. For genes

PB1, PA, M and NS, the lack of convergence to the same posterior is obvious, while

for gene NP, all chains converged to very similar posterior distributions, with mode

equal to 5 LGTs.

6.3.4 LGT history

In the sequence of the previous results, we will start by presenting and discussing

the LGT history for gene PB2.

The LGT Biplots in Figure 6.6 show the posterior LGT events with corresponding

posterior probability (only for p ≥ 0.05), for chains red and blue, respectively. Both

LGT histories are similar and in both, seven of the LGTs are equally probable with

a posterior probability of 0.12, although the two sets of LGTs are only partially

overlapping. The LGT between clade [F,G,H] and [D,E,A,B,C] is redundant causing

no change in the topology and in both LGT histories only two LGTs are related with

the 2009 S-OIV (blue chain: [Y,Z] to [L,M,N,O,P] and [A,B,C,D,E] to [L,M,N,O,P];

red chain: [Y,Z] to [L,M,N,O,P] and [F,G,H] to [L,M,N,O,P]). These LGTs are

represented on the species tree in Figure 6.7. All the other LGT events, which are
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6. Evolution of 2009 Swine-Origin Influenza Type A virus

not involved in the outbreak, will be omitted from this analysis.

Gene PB2 - Red Chain Gene PB2 - Blue Chain

Figure 6.6: Representation of the LGTs present in the posterior distribution for gene PB2.

Similarly to the results obtained by Smith et al. (2009), and common to both

(red and blue) LGT histories is a gene transfer from the ancestor of the avian

clade [Y,Z] to the clade containing the triple-reassortant swine and the 2009 human

outbreak [L,M,N,O,P]. However, our results also suggest that this gene has genetic

information from the human lineage. Both LGT histories agree that gene PB2 might

have been also transferred from the human lineage, although the blue chain suggests

a transfer from the H1N1 human lineage [F,G,H], while the red suggests that it has

its origin in the clade containing the H2N2 and H3N2 lineages [A,B,C,D,E]. One

possible explanation might be the presence of a recombination event in addition to

reassortment. If more than one subtype of influenza virus replicates simultaneously
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6. Evolution of 2009 Swine-Origin Influenza Type A virus

in the cell nucleus, the genetic material of different subtypes of influenza viruses

can recombine. As a result, each gene segment might contain genetic material from

other subtypes. These results might suggest the sensitivity of our model to detect

lateral transfer of genetic material on a minor scale when compared to reassortment

events.

Figure 6.7: 2009 human S-OIV related LGTs for gene PB2 are represented in black and
grey arrows for the red and blue chain, respectively.

In relation to gene NP, Figure 6.8 shows the LGT Biplots for all three chains.

All three LGT histories are very similar and around 80% of the posterior probability

corresponds to four LGTs in each chain. The discrepancies between the chains show

a clear uncertainty on the relationship between avian species X, Y and Z, but the

LGT directions suggested by the other three LGTs are similar in all three chains.

Note that most LGTs occur within very closely related species and not between the

major lineages, in special the one including the 2009 S-IOV viruses. This shows no

evidence that the NP gene present in the 2009 S-OIV outbreak virus was laterally

128



6. Evolution of 2009 Swine-Origin Influenza Type A virus

transferred. This result agrees with Smith et al. (2009) that the NP virus had its

origin in the classical swine lineage.
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7

Conclusion and Future Work

Different genes suggesting different evolutionary histories for the same group of

organisms undermines the reconstruction of the underlying species tree from a set

of gene trees. Beyond tree construction, the correct identification of genes that have

undergone LGT is also an important biological problem, since it sheds light on the

molecular pathways in which the genes play a role.

A principled statistical model for detecting LGT events in gene trees involves

a combination of several hierarchical levels and combined simultaneous inference

of gene trees and their relationship to an underlying species tree. Suchard (2005)

developed a Bayesian approach to joint estimation of gene trees and an underlying

species tree in the presence of LGT.

We have presented a method to reconstruct gene-related LGT histories which

draws heavily on Suchard’s work but takes a more biologically realistic approach by

assuming an ordered rooted species tree, species contemporaneity on LGT events

and site evolution rate heterogeneity. An extended version of the topological SPR

operation (xSPR) was also introduced and, to enable inference using a Bayesian

framework, MCMC proposals were developed for ordering a phylogenetic tree as

well as a joint proposal for LGT history, LGT distance and gene trees.
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7. Conclusion and Future Work

A novel graphical representation, LGT Biplot, was also introduced as a useful

and easily understandable way to visualise the gene transfer history.

Using simulated data under the conditions assumed by the model, we show that

for all genes, all chains converged to the same posterior distribution (with strong

support to the true value in all cases) for the substitution model parameters, branch

lengths and topologies. In relation to LGT related parameters, i.e. number of

LGTs and LGT history, the complexity of the parameter space, more specifically

the fact that different LGT paths can result in the same gene tree topology given

the species tree, often makes the transition between modes difficult. Several ap-

proaches were attempted to improve the mixing, such as different proposals for the

LGT history, which proved to decrease significantly the percentage of chains that

converged to LGT histories different from the true ones, on our simulated data.

The good convergence of the posterior distributions for the HKY85+Γ substitution

model parameters would encourage the use of more complex models, perhaps even

the GTR+Γ .

Real data analysis was also performed in order to infer the 2009 S-OIV reas-

sortment events by using our model and the data used in (Smith et al., 2009), and

compare our results with the ones obtained by the article. The data comprised

multiple sequence alignments for 6 Influenza virus genes and 26 taxa. Although

the MCMC runs did not reach overall convergence, for genes PB2 and NP some

chains converged to a posterior distribution with a common topology and number

of LGTs, as well as similar LGT histories. The LGT history recovered for both

genes did correspond at some level to the conclusions reached by Smith et al. (2009)

but our model seems to show additional sensitivity by detecting not only the reas-

sortment events, but also lateral transfer of genetic material on a minor scale such

as recombination events. As future work we could test for this using the multiple
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sequence alignments within a sequence-level analysis.

7.1 Future Work

Bridge proposal to improve mixing. It would be useful to have a proposal which

would condition on So and the unrooted gene tree topology to give a sequence of

xSPRs linking the two. Of course, shorter xSPR paths would be more likely, so the

proposal should favour those. This could be achieved by making use of algorithms

which compute the shortest xSPR path. For example: (i) compute shortest path

between So and τg; (ii) with 90% probability do the first xSPR on this path, or with

10% probability an xSPR chosen uniformly at random; take the resulting stumpy

tree and repeat the process. Nevertheless the shortest xSPR path is NP hard (it is

as hard as the hardest problems in non-deterministic polynomial-time problems) to

compute, though good heuristics exist, and it is not clear how to adapt the existing

algorithms to get the shortest xSPR path. A better alternative would be to, when

linking So to τg, propose xSPRs by weighting according to some score computed

to reflect the similarity of each tree on the chain of xSPRs to the destination. For

example, score according to the size of shared sub-trees. As disrupting shared sub-

trees leads to unnecessarily large xSPR paths, by weighting we would avoid such

xSPRs and obtain shorter paths.

Moves on S. Our model currently assumes a known species tree S which is

biologically unrealistic in many analyses. In order to infer S it would be useful to

find topological operations (NNI, xSPR) on S which are compatible with all the

xSPR histories e.g. which affect part of S on which no LGTs occur. Nevertheless

this is extremely restrictive and would lead to very poor mixing on S. Another

idea is to use the bridge proposal described before: fix all the gene tree topologies,

propose a new S via an NNI or xSPR, and then link the proposed S to the gene
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trees using the bridge proposal. This is another reason why developing a topological

bridge would be very useful.

Allowing missing genes. Our current model requires that all genes in an

analysis are present in every taxon. The model can be extended however to include

a taxon with a missing gene by modelling the gene presence/absence on each edge of

So using a birth-death model. Not only would this enable analyses of gene alignments

with different number of taxa, it would also widen the type of LGT allowed to include

‘copy and acquire’ LGTs in addition to ‘copy and overwrite’.

Cospeciation/Host-parasite model. Hosts and their associated parasites

often exhibit a pattern of concordant phylogeny. Their phylogenies are largely con-

gruent if the parasite tree is superimposed on the host tree, but not identical which

might indicate that the phylogenies of hosts and parasites are not independent from

one another (Huelsenbeck et al., 1999). This might imply that some degree of host

switching by the parasites has occurred. Our model can be adapted to infer the

host gene tree topology (assumed to be the same as the host species tree), plus the

sequence of SPRs corresponding to parasites switching host. For that we take a host

gene and a parasite gene and fix k = 0 for the host gene, so that So has the same

topology as the host phylogeny, and run the inference algorithm for the parasite

genes.

Improving computational performance. Optimisation of the serial code and

use of parallel computing techniques, by taking advantage of multicore processors,

computer clusters, and GPUs, might potentially improve the performance of the

current software with the purpose of releasing it to the scientific community.
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Appendix A

Probabilistic Distributions

Dirichlet Distribution

The Dirichlet distribution, often denoted Dir(ν), is a family of continuous multi-

variate probability distributions parametrized by a vector ν of positive real numbers

and is used for quantities describing proportions of a whole, so called simplex pa-

rameters. The Beta distribution, denoted Beta(ν1, ν2) is equivalent to a Dirichlet

that describes the probability on only two proportions, which are associated with

the weight parameters ν1 > 0 and ν2 > 0. A Dirichlet distribution of dimension

K ≥ 2 with parameters ν = (ν1, . . . , νK), where νk > 0 for k = 1, . . . K, has density

p (x1, . . . , xK−1|ν1, . . . , νK) =
1

B(ν)

K∏
i=1

xνi−1
i , xi ∈ (0, 1) (A.1)

on the open (K − 1)−dimensional simplex defined by

x1, . . . , xK−1 > 0 (A.2)

x1 + . . .+ xK−1 < 1 (A.3)

xK = 1− x1 − . . .− xK−1 (A.4)
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and zero elsewhere. The normalizing constant is the multinomial Beta function,

which can be expressed in terms of the gamma function as

B(ν) =

∏K
i=1 Γ (νi)

Γ
(∑K

i=1 νi

) . (A.5)

Let V =
∑K

i=1 νi. Then Xi has mean
νi
V

, variance
νi(V − νi)
V 2(V + 1)

and covariance

− νiνj
V 2(V + 1)

. Examples include the stationary state frequencies that appear in

the instantaneous rate matrix of the substitution model.

Exponential Distribution

The exponential distribution is a continuous distribution and has density function

p(x|λ) = λe−λx, x > 0, (A.6)

where λ is known as the rate parameter, for λ > 0. The mean and variance of an

exponential distribution are 1/λ and 1/λ2, respectively. An exponential distribution

is denoted by Exp(λ).

Shifted Exponential Distribution

Sometimes it is useful to shift the exponential distribution away from zero. We

define the shifted exponential distribution, SExp(λ, L), with density function

p(x|λ) = λeλ(x−L), x ≥ L, (A.7)

where λ is the rate parameter, for λ > 0. The mean and variance of a shifted

exponential distribution are L+ 1/λ and 1/λ2, respectively.
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Gamma Distribution

The Gamma distribution, Gamma(α, β), is a two-parameter family of continuous

probability distributions. Although there are three different parametrizations, for

the purpose of this thesis, we assume a shape parameter α and rate parameter β

where both parameters are positive real numbers. The Gamma(α, β) distribution

has density function

p(x|α, β) =
βα

Γ (α)
xα−1 exp(−βx), x > 0, α, β > 0, (A.8)

with mean
α

β
and variance

α

β2
.

Geometric Distribution

The Geometric distribution is discrete and can have two different parametrisations

depending on whether our interest is in modelling the number of trials until the first

success (for x = 1, 2, . . .) or the number of failures until the first success (for x =

0, 1, . . .). Both parametrisations assume a known success probability θ, 0 ≤ θ ≤ 1

for each trial, and that the outcomes of the trials are independent. For the purpose

of our model we give emphasis to the latter which has the probability function

p(x|θ) = θ(1− θ)x, x = 0, 1, . . . , (A.9)

with mean (1− θ)/θ and variance (1− θ)/θ2. This distribution can be abbreviated

as Geom(θ).
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Truncated Geometric Distribution

A random variable X has a truncated geometric distribution TGeom(θ,N), with

parameters p and N , when it has probability function

p(x|θ) =
θ(1− θ)x

1− (1− θ)N
, x = 0, 1, . . . , N. (A.10)

Assuming that q = 1− θ, this distribution has mean

1− qN + q −NqNθ
(1− qN)θ

(A.11)

and variance

(1 + q2N)q − qN(1 + q2)N2 + qN+1(N2 − 1)

θ2(1− qN)2
(A.12)

(Olatayo, 2014).

Multinomial Distribution

For n independent trials, each of which leads to a success for exactly one of k cate-

gories, with each category having a given fixed success probability, the multinomial

distribution is a discrete distribution and gives the probability of any particular

combination of numbers of successes for the various categories.

If X1, X2, . . . , Xn are mutually exclusive events with Pr(X1 = x1) = θ1, . . .,

Pr(Xn = xn) = θn, where xi are non-negative integers such that
∑n

i=1 xi = N , and

θi are constants with θi > 0 and
∑n

i=1 θi = 1, then the probability that X1 occurs

x1 times, . . . , Xn occurs xn times is given by

N !

x1! . . . xn!
θx11 . . . θxnn . (A.13)
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The mean and variance of Xi are µi = nθi and σ2
i = Nθi(1− θi). The covariance of

Xi and Xj is σij = −Nθiθj.

Normal Distribution

The Normal (or Gaussian) distribution is a very commonly occurring continuous

probability distribution. It is symmetric about its mean, and is non-zero over the

entire real line. The normal distribution density is

f(x|µ, σ) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞, µ ∈ R, σ > 0 (A.14)

where µ is the mean of the distribution and σ2 is its variance.

Lognormal Distribution

The lognormal distribution, LN(µ, σ2), is a continuous probability distribution of

a random variable whose logarithm is normally distributed. Given a lognormally

distributed random variable X and two parameters µ and σ that are, respectively,

the mean and standard deviation of the variable’s natural logarithm, its probability

density function is

p(x|µ, σ) =
1

xσ
√

2π
exp

(
−(log x− µ)2

2σ2

)
, x > 0, µ ∈ R, σ > 0. (A.15)

This distribution has mean eµ+σ2

2 and variance e2µ+σ2
(eσ

2 − 1).

Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the

probability of a given number of events occurring in a fixed interval of time and/or

space, assuming that these events occur with a known average rate w, independently
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of the time since the last event. The Poisson distribution can also be used for the

number of events in other specified intervals such as distance, area or volume.

A discrete random variable X is said to have a Poisson distribution with param-

eter λ > 0, if, for x = 0, 1, 2, . . ., the probability mass function (p.m.f.) of X is given

by

p(x|λ) =
λxe−λ

x!
. (A.16)

The expected value of a Poisson-distributed random variable is equal to λ and

so is its variance. The distribution is often abbreviated Po(λ).

Truncated Poisson Distribution

A discrete random variable X has a truncated Poisson distribution, TPo(λ,N), with

parameters λ > 0 and N > 0 if, for x = 0, 1, 2, . . . , N , the probability mass function

(p.m.f.) of X is given by

p(x|λ) =

(
N∑
i=0

λie−λ

i!

)−1

λxe−λ

x!
. (A.17)

Uniform Distribution

The discrete Uniform distribution is a probability distribution in which each of its

say n elements are equally likely, each one with probability 1/n. If the elements are

defined as {a, a + 1, . . . , b = a + n − 1} then the distribution has mean (a + b)/n

and variance (n2 − 1)/12. Uniform distributions are often used to express the lack

of prior information for parameters that have a uniform effect on the likelihood in

the absence of data. In phylogenetics, the discrete uniform distribution is typically

used in relation to the topology parameter.

On the other hand, the continuous Uniform distribution is the probability dis-

tribution of a random number selected from a continuous interval (a, b), with b > a.
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The distribution is often abbreviated as U(a, b) and has density

f(x|a, b) =


1

b− a
for a ≤ x ≤ b,

0 for x < a or x > b

(A.18)

with mean (a+ b)/2 and variance (b− a)2/12.
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MCMC Results for Branch Lengths
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Appendix B. MCMC Results for Branch Lengths
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Appendix C

Supplementary Results of Influenza

Data Analysis

Log-scale Natural-scale

central tendencies central tendencies Measures of precision

Param. Mean (95% CI) Param. Mean (95% CI) Param. Mean (95% CI)

µρ 2.42(1.96,3.05) µ′ρ 13.53(8.54,25.41) 1/σ2
ρ 2.70(1.30,10)

µλ 3.18(2.73,3.66) µ′λ 28.36(18.08,45.83) 1/σ2
λ 0.33(0.08,0.70)

ΠA 0.34(0.30,0.39) NΠ 72.43(28.10,119.36)

ΠG 0.22(0.18,0.26)

ΠC 0.21(0.17,0.25)

ΠT 0.24(0.19,0.28)

Table C.1: Across gene-level parameters for the Influenza data. For each parameter we
have the posterior mean and 95% credible intervals.
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