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“Biology has become a sort of branch of computer science, genes are just long computer

tapes, and they use a code which is just another kind of computer code, it’s quaternary

rather than binary but it’s read in a sequential way just like a computer tape, it’s

transcribed, it’s copied and pasted. All the familiar metaphors from computer science fit.

This is a complete turnabout from the way biology used to be, where one talked in terms

of a vital fluid. Now we’re becoming wholly mechanistic when talking about life. It’s a

great revelation to all of science. It’s a most thrilling and exciting time for a scientist to

be alive.”

Richard Dawkins



Abstract

To comprehend the immense complexity that drives biological systems, it is necessary

to generate hypotheses of system behaviour. This is because one can observe the

results of a biological process and have knowledge of the molecular/genetic com-

ponents, but not directly witness biochemical interaction mechanisms. Hypotheses

can be tested in silico which is considerably cheaper and faster than “wet” lab trial-

and-error experimentation. Bio-systems are traditionally modelled using ordinary

differential equations (ODEs). ODEs are generally suitable for the approximation of

a (test tube sized) in vitro system trajectory, but cannot account for inherent system

noise or discrete event behaviour. Most in vivo biochemical interactions occur within

small spatially compartmentalised units commonly known as cells, which are prone

to stochastic noise due to relatively low intracellular molecular populations.

Stochastic simulation algorithms (SSAs) provide an exact mechanistic account of the

temporal evolution of a bio-system, and can account for noise and discrete cellular

transcription and signalling behaviour. Whilst this reaction-by-reaction account of

system trajectory elucidates biological mechanisms more comprehensively than ODE

execution, it comes at increased computational expense. Scaling to the demands

of modern biology requires ever larger and more detailed models to be executed.

Scientists evaluating and engineering tissue-scale and bacterial colony sized bio-

systems can be limited by the tractability of their computational hypothesis testing

techniques.

This thesis evaluates a hypothesised relationship between SSA computational perfor-

mance and biochemical model characteristics. This relationship leads to the possibil-

ity of predicting the fastest SSA for an arbitrary model - a method that can provide

computational headroom for more complex models to be executed. The research

output of this thesis is realised as a software package for meta-stochastic simulation

called ssapredict. Ssapredict uses statistical classification to predict SSA performance,

and also provides high performance stochastic simulation implementations to the

wider community.
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Chapter 1

Introduction

1.1 Background and motivation

Ever since the technology to sequence DNA became available, we entered the mod-

ern age of biological discovery and understanding. DNA, the codex of life, provides

a rudimentary description of a biological organism. However, this description does

not explicitly communicate the behavioural complexity of the biological interaction

networks it encodes. A process such as morphogenesis [1] reveals the incredible

capabilities of these interaction networks and the highly accurate timing and robust-

ness required of these networks.

Systems biology [2] is a discipline that deciphers the internal mechanisms of complex

biological systems using modelling and simulation techniques. Such biosystems are

“black boxes” for scientists who may initially know a subset of the internal compo-

nents but not how they interact to self-regulate. Models are formulated to represent

hypotheses for how the system may behave, and are executed via simulation in silico

for “dry” experimentation. Simulation results can be compared to real world “wet”

experimental data to test hypothesis validity. Repeated hypothesis testing in this

manner allows scientists to continuously refine their understanding and hone in on

the complex biological reality (see Figure 1.1). Unfortunately, there is an inverse

relationship between model complexity (i.e. the level of biological knowledge) and

1
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simulation tractability. Therefore, simulation performance is an important limiting

factor for knowledge acquisition in the field of systems biology.

F I G U R E 1 . 1 : Hypothesis driven knowledge discovery (taken from [2])

Synthetic biology [3] embodies the idea of “artificial life”. This field takes two major

research paths to reach this goal:

1. Synthetically created chemical systems that emulate the complex behaviour

and properties of natural biochemical systems [4].

2. Designing and building complex living biosystems that would otherwise not

exist in nature [5].

In this thesis I will discuss challenges related to the design of synthetic organisms.

This area of synthetic biology considers cells as programmable information process-

ing devices akin to computational devices. A major challenge is to engineer cells that

perform useful behaviours which are not seen in naturally evolved organisms. Cur-

rent synthetic biology builds novel biosystems using catalogued genetic components

in a similar way to using Lego bricks. This approach has been typified by the BioBrick

Foundation component approach and the annual iGEM competition that challenges

budding synthetic biologists to create new biosystems based on BioBricks [6]. The
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component abstraction simplifies the construction of more complex synthetic biosys-

tems in the same way that a CPU designer no longer has to work at the silicon level,

but instead works at higher levels of abstraction and connects components such as

logic gates. This significantly reduces the potential design space and means that a

synthetic biologist can create large or complex systems more quickly.

When genetic components are put together for a new synthetic biological design

there may be unforeseen issues due to the underlying complexity of the biochemical

interaction network. Furthermore, biological systems at the scale of a cell are prone

to stochastic noise and the robustness of design needs to be evaluated. Therefore,

it is necessary to generate models of the synthetic biological system and test the

designs using simulation. Once the design has been refined from in silico modelling

and simulation, a wet lab implementation can be created. Wet lab work is costly in

terms of both finance and person-hours, therefore in silico knowledge can save large

amounts of wet lab trial and error.

Biological systems are commonly modelled with ordinary differential equations

(ODE), which is a continuous deterministic approach. ODEs can accurately model test

tube scale chemical interactions, but are inaccurate for chemical systems with low

molecular populations such as cells [7–9]. Stochastic Simulation Algorithms (SSAs)

are the primary means of simulating naturally discrete cellular systems affected

by stochastic noise, generating multiple realistic trajectories of molecular quantities

over time from a set of reactions (with associated stochastic rate constants), initial

amounts and stopping criteria. Exact SSAs, introduced by Gillespie [10], generate tra-

jectories that are demonstrably equivalent to the Chemical Master Equation and must

simulate each and every reaction in the system. The algorithmic complexity scaling

of O(M) (where M is the set of reactions), and concomitant generation of pseudo-

random numbers to emulate stochasticity for each reaction event, makes simulating

ever larger reaction networks increasingly intractable despite continued advances

in computational power. Subsequently approximate SSAs have been introduced that

conditionally apply multiples of reactions at each step [11].
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My research group colleagues have been modelling and analysing biological sys-

tems [12, 13] whilst also investigating the challenges of designing synthetic life

[14, 15] and other biochemical systems [16, 17]. This includes researching the

auto-generation of synthetic bio-systems [18] using databases of modular genetic

“components” [19] to generate complex systems with defined behaviour [20]. There

has been a particular focus on developing tools that aid the design of synthetic bio-

systems [21]. These tools perform hypothesis testing via model execution which

involves the research, development and use of the SSA [22–24].

1.2 Aims and scope

The goal of this thesis is to aid scientists in the fields of systems and synthetic

biology to use SSAs when simulating models of their biosystems. ODE models are

the standard paradigm when modellers approach biosystems, but in many cases

they are not suitable for such models. Continuous, deterministic ODE models are

appropriate for test tube sized systems [7–9], but in vivo biosystems are actually

composed of small compartmentalised units: cells. Cells are subject to stochastic

noise because of the relatively small molecular population of each cell. Furthermore,

by correctly considering discrete (molecular) entities and being provably equivalent

to the CME, the SSA can be considered an exact trajectory of a biosystem rather than

an approximation.

However, there are currently many compromises or drawbacks that have to be con-

sidered when using SSAs. Perhaps the most important of these reasons is that compu-

tational performance of the SSA may dissuade a scientist from using this technique.

For example, if one considers a tissue scale system of multiple adjacent cells or a

bacterial colony model involving perhaps thousands of cells, the large yet intricate

reaction network may simply become intractable to compute. One of the strengths

of the SSA is that it considers each and every reaction that occurs in the system as a

discrete event. Unfortunately, this feature becomes a critical bottleneck when faced

with systems that involve high molecular populations of reactive species.
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A number of research groups have been working on improving the performance

of the SSA with algorithmic improvements and strategies to reduce computational

complexity. Consequently, many different variants of the SSA [11, 25–30] have been

produced since the original Gillespie direct method [31] that claim to ameliorate

computational performance. From a survey of the literature, I realised that many

published SSAs are tested with an insufficient number of models, mostly tailored to

properties of the newly introduced algorithm. Therefore, it is hard to extrapolate

or compare performance between algorithms as each will often be benchmarked

against competitors’ algorithms using only favourable models. I have found that

SSAs which claim to be “state of the art” may perform worse than supposedly less

advanced variants with certain types of model. This notion is introduced as the first

of three hypotheses evaluated in this thesis:

Hypothesis 1

There is no single SSA that is superior in performance for every biomodel

The cost of simulating a system with one SSA variant or another depends on the

properties of the underlying network and the states reached during the simulation.

Each biological model exhibits characteristics that may be suited to a particular

simulation algorithm, such as the degree of coupling1 in the reaction network or

whether the system is especially stiff 2. Effective discrimination between SSAs should

be based on matching favourable algorithmic properties to model characteristics.

This leads us to the second hypothesis that shall be evaluated in this thesis:

Hypothesis 2

There is a relationship between biomodel characteristics and SSA performance

Through experimentation, I have found that SSA execution times can vary by several

orders of magnitude depending on the model simulated. I have also noted a tendency

for scientists to select one particular algorithm and use that for their simulations.
1Degree of coupling is the maximum number of reactions in a reaction network that are affected

by a reaction firing [29]
2Stiffness is caused by multiple processes occurring at differing time-scales within a reaction

network [32].
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Often this selection is based on some notion of intuition, algorithm availability from

a software package, or even ease of algorithm implementation. Such an arbitrary

selection of SSA could, in a bad case, result in a simulation taking in the order of

months rather than hours to complete. If hypothesis A holds, I will be unable to

find a single fastest algorithm to recommend for all models and therefore one must

deduce the fastest SSA on a per model basis. If hypothesis B also holds, I should be

able to quantify the best algorithm for a given model. Thus, this generates the final

hypothesis that is evaluated in this thesis:

Hypothesis 3

An algorithm can select the best SSA for an arbitrary model with only a small

margin of error

1.3 Structure of thesis

Chapter 2 outlines the background for the stochastic simulation algorithm.

Chapter 3 introduces modelling and simulation for systems and synthetic biology.

Chapter 4 presents a performance benchmark of 9 major stochastic simulation al-

gorithm formulations over a large number of biomodels.

Chapter 5 presents an analysis of biochemical model characteristics.

Chapter 6 demonstrates the automated selection of the highest performing stochas-

tic simulation algorithm for a given model.

Chapter 7 presents the stochastic simulator developed during the period of research.

Next generation simulator (ngss) uses the implementations of the 9 algorithms

benchmarked.

Chapter 8 presents the ssapredict meta simulator web application.

Chapter 9 concludes the thesis.
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1.4 Main contributions

The work presented in this thesis contributes to two EPSRC funded synthetic biol-

ogy projects: “ROADBLOCK: Towards Programmable Defensive Bacterial Coatings

& Skins” (EP/I031642/1) and “AUDACIOUS: Towards a Universal Biological-Cell

Operating System” (EP/J004111/1). Three pieces of software have been developed

as part of this research work: (1) ngss (2) ssapredict (3) SSA benchmarking suite.

1.4.1 ngss: Next Generation Stochastic Simulator

ngss is the stochastic simulator I have developed as a major deliverable for this thesis.

The simulator is an important component of the latest incarnation of the Infobiotics

Workbench (IBW2) which is being developed for the EPSRC ROADBLOCK synthetic bi-

ology grant (see Figure 1.2). ngss allows for model designs written in the Infobiotics

Language (IBL) to be executed and thus hypothesis tested prior to biomatter compi-

lation. ngss currently implements nine different variants of the SSA: Direct Method

(DM) [31], First Reaction Method (FRM) [10], Next Reaction Method (NRM) [25],

Optimised Direct Method (ODM) [26], Sorting Direct Method (SDM) [27], Loga-

rithmic Direct Method (LDM) [28], Partial Propensities Direct Method (PDM) [29],

Composition Rejection (CR) [30] and Tau Leaping (TL) [11]. Model files can be

loaded in the community standard SBML (systems biology modelling language) [33]

format, or in the IBW2 “data-model” XML format. The simulator is able to output

timeseries data in the ubiquitous CSV (comma separated values) format for simple

import into analytical software. Compressed HDF5 (hierarchical data format) [34]

output is available for heavy duty and high performance computing applications.

The software is written in the C++ programming language with an emphasis on com-

putational performance. For multi-core machine parallelism, ngss supports OpenMP

[35] to distribute individual simulation runs on separate CPU cores. For computing

cluster applications, ngss also supports OpenMPI [36]. Object oriented design princi-

ples were strictly adopted to ease the addition of new algorithms to the software. ngss
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F I G U R E 1 . 2 : Screenshot of a model written in IBL within Infobiotics Workbench
(IBW2) ready to be simulated with ngss. The view on the right hand side of the ap-
plication is the simulation pane, where simulation parameters (including algorithm

selection) for the model can be supplied before execution with ngss.

is open source software released under the terms of the GNU General Public License

(GPL) version 3 and is available for Windows, Mac and Linux operating systems. The

simulator source can be downloaded from http://ssapredict.ico2s.org/resources.

1.4.2 ssapredict

ssapredict is a web service designed to automate the process of determining the

fastest SSA for a given model. This tool was designed to improve the usability and

availability of SSAs for scientists. For example, uploading a model in SBML format is

a one click operation. After the upload is complete, ssapredict uses trained classifiers

to predict the fastest performing SSA based on the topological properties of the

model. Once a prediction has been received, the scientist has the option to simulate

the model (see Figure 1.3). With minimal effort the user can receive a statically built

version of the ngss simulator for their operating system preconfigured to run their

model with the optimal SSA selection.

http://ssapredict.ico2s.org/resources
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F I G U R E 1 . 3 : Screenshot of the model analysis results page from the ssapredict web
application. Model topological property values are shown as well as the information
about the predicted fastest SSA for this model. There is an option to simulate the

model using ngss.

ssapredict is open source software released under the terms of the GNU Affero

General Public License (AGPL). It is written using the python programming language

using the web2py web application framework. The source code can be downloaded

from http://ssapredict.ico2s.org/resources.

1.4.3 SSA benchmarking suite

The benchmarking suite is designed to be a tool for researchers that either use SSAs to

simulate biochemical reaction networks or create new variants of the SSA. Scientists

can evaluate their SBML format models using the suite’s model metric analytics and

assess which of the nine implemented algorithms is most suitable for their model.

Software developers are able to implement their own algorithms and test them in

the suite against other implemented algorithms for correctness, performance and

memory usage. Furthermore, developers can use the source code for the supplied

http://ssapredict.ico2s.org/resources
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algorithms in their own software. The benchmarking suite is released under the

terms of GNU General Public License (GPL) version 3.

1.5 Published work
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• Daven Sanassy, Paweł Widera, and Natalio Krasnogor. “Meta-Stochastic Simula-

tion of Biochemical Models for Systems and Synthetic Biology”. ACS Synthetic

Biology, 4(1):39–47, 2015.

• Savas Konur, Marian Gheorghe, Harold Fellermann, Daven Sanassy, Natalio

Krasnogor, Christophe Ladroue, Sara Kalvala, Laurentiu Mierla, Florentin Ipate.

“In Silico Design and Analysis of Genetic Boolean Gates: Membrane Computing

Approach”, J. Theor. Comp. Sci. (submitted).

Conference papers

• Daven Sanassy, Harold Fellermann, Natalio Krasnogor, Savas Konur, Laurentiu

M. Mierla, Marian Gheorghe, Christophe Ladroue, Sara Kalvala. “Modelling

and Stochastic Simulation of Synthetic Biological Boolean Gates”. Proceedings

of 16th IEEE International Conference on High Performance Computing and

Communications, pp. 404-408, Paris, France, 2014.

• Savas Konur, Christophe Ladroue, Harold Fellermann, Daven Sanassy, Lauren-

tiu Mierla, Florentin Ipate, Sara Kalvala, Marian Gheorghe, Natalio Krasnogor.

“Modeling and Analysis of Genetic Boolean Gates using Infobiotics Workbench”.

Proceedings of Workshop on Verification of Engineered Molecular Devices and

Programs 2014 (CAV 2014), pp. 26-37, Vienna, Austria, 2014.
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Extended abstracts

• Daven Sanassy, Jonathan Blakes, Jamie Twycross, Natalio Krasnogor. “Improv-

ing Computational Efficiency in Stochastic Simulation Algorithms for Systems

and Synthetic Biology”, Proceedings of SynBioCCC: Workshop on Design, Con-

struction, Simulation and Testing of Synthetic Gene Regulatory Networks for

Computation, Control, and Communications, pp. 1-4, Paris, France, 2011.





Chapter 2

Background Theory

2.1 Introduction

Simulation of mathematical and computational models of reaction networks is an in-

valuable tool for biologists aiming to understand the dynamic behaviour of complex

biochemical systems. In the fields of Systems and Synthetic Biology, repeated rounds

of model-driven hypothesis generation, validated or refuted by wet lab experimen-

tation, lead to refined quantitative and predictive models. In silico experimentation

with these models is cheaper, faster, and more reproducible than its physical coun-

terpart.

2.2 Biological overview

Biological systems are biochemical “machines” that exist for the primary function

of replication of the instruction set that encodes them [37]. “Replication machines”

are typically realised as (one or many) biological cells which provide a closed struc-

tural environment to enable replication behaviour and survival. These replication

machines also each encapsulate a copy of the very “code” that describes them; this

13
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code is stored as the famous DNA (deoxyribonucleic acid) molecule. There are sub-

sections of DNA that encode for protein molecules called genes. Proteins have many

biochemical functions and are the method of control that genes possess in order

modulate the functions of the cell.

Biological cells can be considered as information processing devices [38], compara-

ble to a programmable electronic appliance [39]. Whilst electronic devices are made

up of circuits that regulate switching electron flow to produce complex behaviour,

biological cells are made up of genetic circuits whose communication currency is

molecules (rather than electrons). Genetic circuits are subcomponents of the overall

gene regulatory network of an organism. Gene regulatory networks describe the in-

teractions of the organism’s molecular species and dictates behaviour via modulation

of gene products. Gene products are the result of gene expression which is a discrete

stochastic process. This process begins with a subsection of the DNA sequence called

a “transcription unit” which encapsulates the transcription of gene(s) to RNA (Ri-

bonucleic acid). The transcription unit has a “promoter” site at the beginning of

its sequence, followed by the region to transcribe and a stopping sequence. The

promoter allows for the initialisation of gene expression by providing a site for the

enzyme RNA polymerase (RNAP) to bind. RNAP “reads” through the coding region

of the DNA and rewrites this code into different forms of RNA. One form of RNA

generated is messenger RNA (mRNA) which provides the instructions for protein

synthesis. Transcription is regulated by proteins called transcription factors which

control the rate of RNA production. Transcription factors upregulate or downreg-

ulate RNA production by altering the binding affinity of RNAP with the promoter

region of the transcription unit. There are two classes of transcription factor: (1)

repressors which downregulate and (2) activators which upregulate.

A piece of molecular machinery called a ribosome subsequently translates mRNA into

proteins (see Figure 2.1). Translation is initiated after the ribosome attaches to the

ribosome binding site (RBS). The RBS is a section of the mRNA that is responsible

for binding to the ribosome. The ribosome reads through the mRNA sequence which

encodes the sequence of amino acids that form a polypeptide chain (i.e. a protein).
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F I G U R E 2 . 1 : Peptide synthesis - the (green) ribosome reads through the mRNA
which is translated to a peptide chain (taken from [40]). tRNAs recruit amino acids
to the ribosome which are assembled in the order specified by the mRNA template

to the growing peptide chain.

Every three codons (letters) of the mRNA sequence encodes an amino acid, which the

ribosome attaches to the developing polypeptide chain using transfer RNA (tRNA).

When this translation process is terminated by the stopping sequence, the polypep-

tide chain will then fold into a very precise protein structure. Bio-components of the

system can be degraded, for example mRNA degradation is catalysed by the Ribonu-

clease (RNAse) enzyme. Degradation is an important system process to maintain

homeostasis.

System behaviour can be modelled by creating reaction rules of a biochemical process.

As an illustration, the gene expression process can be modelled by the following

rules:

(TRANSCRIPTION) Gene + RNAP! Gene + RNAP + mRNA

(TRANSLATION) mRNA + RBS! Protein

(DEGRADATION) mRNA! ?

(DEGRADATION) Protein! ?
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The left-hand-side of a rule states the reactant molecular species, whilst the right-

hand-side describes the product species. Note that the level of system detail is chosen

by the modeller, and may be limited by biological knowledge. To simplify the model,

one may combine several processes into a single rule. For example, the current gene

expression rules implicitly include the tRNA mechanisms. The tRNA mechanism

could be explicitly added to the model as extra rules if finer detail is required.

2.3 Biochemical modelling

Biochemical systems are traditionally described by mathematical models in the form

of Ordinary Differential Equations (ODEs), namely Reaction Rate Equations (RREs)

[31]. These ODEs assume the system to be deterministic and the system’s molecular

populations to be continuous variables. This is in stark contrast to reality where

molecules are discrete entities best represented as integer values, and where the

chemical kinetics of the system are non-deterministic. Whilst it may not seem intu-

itive to model in this manner, RREs can give a remarkably accurate result for the

temporal evolution of the system when molecular populations are large [7]. However,

there are several reasons that mean the RREs may be inappropriate for modelling

the full range of biochemical systems. When the populations of chemical species

are low, this deterministic approach cannot properly account for the stochastic noise

present in the system that is inversely proportional to the square root of the size of

the molecular population [31]:

noise ⇠ 1p
]molecules

(2.1)

Another issue with RREs is treating the molecular populations as continuous when

in reality these are discrete. For example, a discrete model would allow a gene

to be in either an active or inactive state, whilst in a continuous model a gene is

erroneously considered to always be fractionally active. Switching between active

and inactive states as regulators bind and unbind, creates bursts of transcription,
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the timing and frequency of which is unpredictable. Understanding such events is

critically important to the emerging field of synthetic biology where the emphasis

is on control and reliability of genetically encoded systems. The inability of RREs

to capture fluctuations introduced by stochastic noise and thus potentially different

trajectories of the system are a major shortcoming. Furthermore, for complex systems

RREs are not guaranteed to give an accurate average of the molecular populations

[31].

The aforementioned issues are strong evidence that it is desirable to model the

dynamics of a biochemical system as the discrete, stochastic process that it is in reality.

A chemical reaction can only occur if the reactant molecules moving with Brownian

motion collide in the correct orientation and with sufficient energy. Therefore, one

can model a biochemical system by the probabilities of specific types of molecular

reactions occurring within a time interval. In fact, Gillespie defines the fundamental

hypothesis of stochastic chemical kinetics as the “average probability that a particular

combination of reactant molecules will react accordingly in the next infinitesimal

time interval dt” [31]. It is important to note that this relies on the assumption that

the system is both well-stirred and thermally equilibrated in order to simply calculate

a reaction probability from just a stochastic reaction constant and knowledge of the

molecular populations.

There are two different approaches to stochastically modelling biochemical systems.

The first is the stochastic Chemical Master Equation (CME) which is typically an

infinite set of ODEs derived from the fundamental hypothesis [27]. Solving the CME

requires the consideration of every single possible simulation trajectory and cannot

be solved analytically or numerically for all but the most trivial cases. However, one

can “kinetically sample” [41] the CME using the Stochastic Simulation Algorithm

(SSA), which is mathematically equivalent to the CME but derived independently

from the fundamental hypothesis. The SSA is a computational method that models

molecules as discrete entities and their interactions as steps in an algorithm that

can be executed (as opposed to solved mathematically) to simulate the system’s

behaviour. This technique falls under the category of executable biology [42] or
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algorithmic systems biology [43] and corresponds more closely to the way biologists

think about molecules interacting. Simulating the mechanism by which the temporal

evolution of the system occurs in a stepwise fashion allows one to understand how

and why a system moves from one state to another [43]. This exact mechanistic

reaction-by-reaction execution of the biosystem provides insights not available with

the RREs (which can only approximate this behaviour) [31].

The second stochastic approach is to model the system using stochastic ordinary

differential equations (SDEs). However, the SDE approach is continuous, and does

not consider molecules as discrete entities. Therefore, this approach cannot provide

the mechanistic account of a biosystem afforded by the SSA. Furthermore, SDE

theory is “daunting for a typical applied mathematics student” [44] – a steep barrier

of entry for a typical biologist.

2.4 Stochastic Simulation Algorithms (SSA)

2.4.1 Introduction

Gillespie first introduced the Stochastic Simulation Algorithm (SSA) as a novel

Markov chain Monte Carlo simulation technique for chemically reacting systems

in 1976 [10, 31]. He initially produced two formulations, the First Reaction Method

(FRM) and the Direct Method (DM). Whilst both these algorithms are quite dif-

ferent in implementation, they are equivalent and share a common structure (see

Algorithm 1).

Algorithm 1 Common algorithmic steps for SSAs
1: procedure S S A(molecular species, reactions)
2: while reaction available to fire do
3: calculate reaction propensities . Step (1)
4: select reaction to execute . Step (2)
5: calculate reaction time . Step (3)
6: end while . Simulation time exceeded
7: end procedure
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The SSA has 3 major steps per algorithmic iteration. Firstly, propensity calculations

(Table 2.1) are required for every reaction channel1 in the system. This is achieved

by iterating through the reactions, and considering the reaction type, the stochastic

rate constants and the number of reactants present in the system at that moment.

The more reactants available in the system for a particular reaction, the greater its

propensity (i.e. the probability of that reaction occurring).

Reaction type Example #Reactants Propensity function

Source ; ! A 0 aj(x) = cj
Uni-molecular A! B 1 aj(x) = cjx1

Bimolecular Homogeneous A+ A! B 2 aj(x) =
cjx1(x1�1)

2
Bimolecular Heterogeneous A+B ! C 2 aj(x) = cjx1x2

TA B L E 2 . 1 : Propensity calculations for elementary reaction types where aj(x) is
the propensity of reaction j and cj is the stochastic rate constant of reaction j. The

variables x1 and x2 represent the species (amounts) involved in the reactions.

The last 2 algorithmic stages of the SSA rely on random sampling to select a reaction

to fire and time interval to increment the simulation. As the FRM and DM diverge in

how reactions are selected for execution and how the time intervals are generated, I

shall present both algorithms in the following section to highlight their differences.

2.4.2 First Reaction Method & Direct Method

At each iteration, the FRM (Algorithm 2) calculates a time interval ⌧ for each and

every reaction in the system to fire, and chooses the reaction with the shortest ⌧

to fire next. It should be noted that at each iteration, the ⌧ of every reaction needs

to be recalculated. The formula for calculating the ⌧ for each reaction is shown in

Equation 2.2:

⌧j =
1

aj(x)
ln

✓
1

rj

◆
(2.2)

1A reaction channel is a single stochastic model rule which implements reaction behaviour when
executed.
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Algorithm 2 First Reaction Method (FRM) [10]
1: procedure F R M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: while t < t

end

do
6: for j  1 to M do . calculate reaction propensities
7: calculate propensity a

j

8: end for
9: for j  1 to M do . calculate a time for each reaction

10: generate r1  rand()
11: ⌧

j

 �1.0 ⇤ ln(r1)/aj
12: end for
13: µ j where j is min{⌧

j

} . select reaction µ to fire
14: update state vector X  X +R

µ

. execute reaction
15: update simulation time t t+ ⌧

µ

16: end while
17: end procedure

A uniform random number r is required to calculate ⌧ for each reaction j. The ⌧ for

a reaction j is related to the propensity aj(x) of it occurring. A reaction with a higher

propensity is more likely to have a shorter ⌧ .

The DM (Algorithm 3) takes an alternative, equally valid approach and calculates a

single ⌧ per iteration for the next reaction to occur by calculating the ⌧ (see Equa-

tion 2.3) based on the total propensity, a0, of the system (see Equation 2.4).

⌧ =

1

a0(x)
ln

✓
1

r2

◆
(2.3)

a0(x) =
MX

j=1

aj(x) (2.4)

This approach provides a drastic performance improvement on FRM, as only one

uniform random number r2 is required for ⌧ calculation per iteration. Random num-

ber generation is typically computationally expensive [25] and should be minimised

wherever possible. Whereas FRM scaled with O(M) for random number usage, DM

is O(1) [27].
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Algorithm 3 Direct Method (DM) [31]
1: procedure D M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: while t < t

end

do
6: set total propensity a0  0.0 . calculate reaction propensities
7: for j  1 to M do
8: calculate propensity a

j

9: a0  a0 + a
j

10: end for
11: generate r1  rand() . select reaction µ to fire
12: target propensity a

t

 a0r1
13: for j  1 to M do
14: a

t

 a
t

� a
j

15: if a
t

 0 then
16: µ j
17: break
18: end if
19: end for
20: update state vector X  X +R

µ

. execute reaction
21: generate r2  rand() . calculate reaction time
22: ⌧  �1.0 ⇤ ln(r2)/a0
23: update simulation time t t+ ⌧
24: end while
25: end procedure

Reactions are selected in Monte Carlo fashion where probability is proportional to

propensity. One multiplies the total propensity a0 of the system by a uniform random

number r1, and performs linear search until the target value r1a0 is reached (see

Equation 2.5). The target propensity aj found by the linear search dictates which

reaction µ is selected.

min

(
µ|

j=µX

j=1

aj(x) > r1a0(x)

)
(2.5)

Because DM is significantly more efficient than FRM, it was at that point in time

considered the de-facto standard SSA formulation. However, the structure of FRM

provides routes for SSA optimisation [25]. Gillespie highlighted the advantages of

the algorithms: they are exact (ODEs can only approximate time increments between

reactions) and accurately account for the noise present in the system. Moreover, the

algorithms are simple to implement and have low memory requirements. However,
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he also realised the disadvantages of the algorithms, they are computationally ex-

pensive for just a single run and a large number of runs are often required in order

to have confidence in the averaged result.

NOTE: Uniform random numbers used by in reaction selection and ⌧ calculation are in the

interval [0,1].

2.4.3 Worked through example of Direct Method for a simplified

network

I shall now work through a toy example (see Table 2.2) for Direct Method to clarify

the algorithm’s execution. In the system, there are 3 reactions with 2 species with

all parameters for the simulation listed.

Reaction Rate Constant Type

G! P 1.0 Uni-molecular
P! ; 0.1 Uni-molecular

P + P! P.P 0.7 Bimolecular Homogeneous

TA B L E 2 . 2 : “Toy” reaction network.

Let us set the initial amounts of G = 1, P = 3 and P.P = 0 and the simulation time t

= 0.0.

• The first step is to calculate the propensity for each reaction in the system.

Reaction Propensity formula Propensity calculation Propensity aj(x)

G! P cjx1 1.0⇥ 1 1.0
P! ; cjx1 0.1⇥ 3 0.3

P + P! P.P
cjx1(x1�1)

2
0.7⇥3⇥(3�1)

2 2.1

TA B L E 2 . 3 : Propensity calculations
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• The next step is to sum all the propensities in the system to get the total

propensity a0(x) (see Equation 2.4), which is a0(x) = 1.0 + 0.3 + 2.1 = 3.4.

• One now needs to generate a random number r2 (using a uniform random

number generator) in order to select a reaction (see Equation 2.5); I shall

assume r2 = 0.5. The total propensity is subsequently parametrised by the

random number r2a0(x) = 0.5⇥ 3.4 = 1.7 for reaction selection.

• Now one must subtract reaction propensities aj(x) where j[1..M ], from the

parametrised total propensity r2a0(x) = 1.7 until r2a0(x) <= 0.0. The first

reaction has propensity 1.0, resulting in r2a0(x) = 1.7� 1.0 = 0.7 and therefore

not selected. Subtracting the second reaction propensity results in r2a0(x) =

0.7�0.3 = 0.4, so is not selected. Subtracting the final reaction yields r2a0(x) =

0.4� 2.1 = �1.7 and is therefore selected.

• Following the selection of reaction 3, one applies it by changing the species

amount vector. This reaction removes two of species P and adds one of species

P.P. The state vector is therefore now G = 1, P = 1 and P.P = 1

• The final step is to calculate the ⌧ for this reaction application (see Equa-

tion 2.3). Another uniform random number r1 must be generated (which

one can assume to be 0.2 in this example) to be used for the ⌧ calculation.

⌧ =

1
3.4 ln

�
1
0.2

�
= 0.473364092. Simulation time is progressed t = t+ ⌧ .

• This process is repeated until the maximum execution time is exceeded or there

are no more reactions to fire (if total propensity a0(x) = 0.0).
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2.4.4 Next Reaction Method

The first major revision to the exact SSA, the Next Reaction Method (NRM, Algo-

rithm 4) was published in 2000 by Gibson & Bruck [25] - more than 20 years after the

original algorithms. Following renewed interest in stochastic modelling, the require-

ment to simulate ever larger networks increased. In spite of Moore’s Law and the

resulting improvements in computational power available, the existing algorithms

did not scale satisfactorily to larger reaction networks and it was recognised that

more efficient algorithms were key [25].

The NRM is based on FRM and introduces multiple algorithmic enhancements to

greatly improve computational efficiency. A dependency graph for reactions is adopted

(See Section 2.4.11), so that only affected reactions are considered when recalcu-

lating propensities. Thanks to the dependency graph, this step of the algorithm

scales as O(logM) with loosely coupled2 networks but still retains O(M) worst case

performance.

FRM’s Achilles heel is its heavy use of random numbers (M per iteration), M � 1 of

which are subsequently discarded. This is significant as Gibson & Bruck approximate

generating one random to be roughly equivalent in computational expense to ten

division operations [25]. NRM removes this wastage and instead employs an indexed

priority queue [45] data structure to store unused ⌧ values for use at the appropriate

time. This is made possible by considering absolute, rather than relative, ⌧ values

for reaction execution. Gibson & Bruck demonstrated how absolute ⌧ values allow

legitimate reuse of statistically independent random numbers. Absolute ⌧ values are

simply calculated by generating a relative ⌧ and adding it to the current simulation

time. Because of this ⌧ reuse, NRM only requires one random number to be generated

per iteration, so this step of the algorithm has now been made O(1) rather than

O(M) and is cheaper than DM which requires two random numbers per iteration.

The authors claim that the indexed priority queue is a good choice in terms of
2Degree of coupling is the maximum number of reactions in a reaction network that are affected

by a reaction firing [29]
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Algorithm 4 Next Reaction Method (NRM) [25]
1: procedure N R M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: initialise dependency graph DG
6: initialise indexed priority queue PQ
7: while t < t

end

do
8: if first iteration then . calculate reaction propensities
9: for j  1 to M do

10: calculate propensity a
j

11: end for
12: else
13: for dep in DG

µ

do
14: a

old

 a
dep

15: calculate updated propensity a
dep

16: if dep 6= µ then
17: if ⌧

dep

6=1 then
18: if a

dep

6= 0.0 then
19: R = a

old

/ a
dep

20: �⌧ = ⌧
dep

- t
21: ⌧

new

= R⇥ �⌧ + t
22: else
23: ⌧

new

=1
24: end if
25: else
26: if a

dep

6= 0.0 then
27: generate r1  rand()
28: ⌧

dep

 �1.0 ⇤ ln(r1)/adep
29: ⌧

new

= ⌧
dep

+ t
30: end if
31: end if
32: end if
33: PQ

dep

 update with ⌧
new

34: end for
35: end if
36: if first iteration then . populate indexed priority queue
37: for j  1 to M do
38: if a

j

6= 0.0 then
39: generate r2  rand()
40: ⌧

j

 �1.0 ⇤ ln(r2)/aj
41: else
42: ⌧

j

=1
43: end if
44: PQ

j

 store ⌧
j

45: insert PQ
j

node! PQ
46: end for
47: end if
48: PQ

top

 get top node from PQ . select reaction µ to fire
49: µ get PQ

top

reaction
50: update state vector X  X +R

µ

. execute reaction
51: ⌧  get PQ

top

absolute reaction time . set absolute reaction time
52: update simulation time t ⌧
53: end while
54: end procedure
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computational expense because of a low update count per iteration and as NRM only

ever requires access to the highest priority element (reaction with lowest ⌧ value).

Thanks to these changes, NRM scales with O(logM) for reaction selection, and can

therefore handle much larger reaction networks than DM. It is important to remem-

ber that whilst NRM constitutes a massive leap in SSA computational efficiency, this

comes at a cost. The new data structures (indexed priority queue and dependency

graph) drastically increase memory requirements and implementing NRM correctly

is significantly more challenging than deploying DM.

2.4.5 Optimised Direct Method

Cao et al. introduced the Optimised Direct Method (ODM, Algorithm 5) in 2004,

as a modified version of DM claimed to outperform NRM. The idea behind the

ODM is to sort reactions channels such that those with higher propensity values are

assigned lower index values. Because larger reaction networks have a tendency to be

multi-scale (they have some reactions that are far more likely to occur than others),

sorting the reactions channels in this way reduces the average search depth of the

DM reaction selection linear search. This is achieved by a short pre-simulation run of

DM to assess the average propensity values of the reactions, after which it resumes

the simulation with the reordered indexes [26].

The authors declared that for “real world” models they had tested, ODM outper-

formed NRM. However, they noted that they had not tested large enough models to

fully realise the scaling advantage of NRM. They demonstrated that the degree of

reaction network coupling severely affected NRM performance. A major complaint

was that Gibson & Bruck had not specified how coupled a reaction network would

have to be for NRM performance to begin deteriorating in comparison to DM. Af-

ter profiling NRM with a favourable model for the algorithm, they discovered that

the vast majority of computational time was spent maintaining the indexed prior-

ity queue (totally eclipsing the expense of random generation). This led them to

realise that DM could be modified taking inspiration from NRM, without needing an
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Algorithm 5 Optimised Direct Method (ODM) [26]
1: procedure O D M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: initialise dependency graph DG
6: initialise reaction search order SO [1..M ] = 1..M
7: set total propensity a0  0.0
8: initialise pre-sim propensities RP [1..M ] = {0} . pre-simulation
9: while t < t

presim

do
10: run direct method for a timestep ⌧
11: for j  1 to M do
12: RP

j

+= propensity
j

13: end for
14: update simulation time t t+ ⌧
15: end while
16: sort RP to from highest to lowest . set reaction search order SO
17: set SO to have RP reaction order
18: set simulation time t 0.0
19: while t < t

end

do
20: CalculatePropensities() . CalculatePropensities() described in Algorithm 6
21: generate r1  rand() . select reaction µ to fire
22: target propensity a

t

 a0r1
23: for j  1 to M do
24: k  SO

j

25: a
t

 a
t

� a
k

26: if a
t

 0 then
27: µ k
28: break
29: end if
30: end for
31: update state vector X  X +R

µ

. execute reaction
32: generate r2  rand() . calculate reaction time
33: ⌧  �1.0 ⇤ ln(r2)/a0
34: update simulation time t t+ ⌧
35: end while
36: end procedure

indexed priority queue. Firstly, the dependency graph from NRM was adopted as this

does not have an associated update cost per iteration whilst improving propensity

update efficiency. Secondly, the aforementioned modifications to reaction channel

sorting are implemented in order to vastly improve reaction search performance in

“undoubtedly” multi-scale real world reaction networks [26].
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Algorithm 6 CalculatePropensities()
1: function C A L C U L AT E P R O P E N S I T I E S
2: if first iteration then
3: for j  1 to M do
4: calculate propensity a

j

5: a0 += a
j

6: end for
7: else
8: for dep in DG

µ

do
9: a0 -= a

dep

10: calculate updated propensity a
dep

11: a0 += a
dep

12: end for
13: end if
14: end function

2.4.6 Sorting Direct Method

The Sorting Direct Method (SDM, Algorithm 7) was introduced by McCollum et al in

2006 [27] as a natural successor to ODM. They note that whilst ODM appeared to

be the fastest SSA variant, it suffered from the inability to deal with sharp transient

changes in reaction propensities that can occur in biological systems. The change

proposed abandoning the pre-simulation aspect of ODM and instead opted for an

efficient dynamic analysis of reaction propensities by allowing the system to be

loosely sorted at runtime. The authors claim that SDM always performs at least as

well, if not better than ODM when benchmarked against real world models [27].

McCollum et al. demonstrate that the assumption made by the ODM, that long

term reaction execution behaviour will not change, is incorrect, for example in an

oscillating system or one that is affected by a burst of transcriptional activity. It is

likely that the authors of ODM realised this, but were concerned about the potential

cost of continuously sorting reaction channels. SDM achieves high performance by

only approximately sorting the reaction channel indexes. Instead of a full sort per

iteration, the reaction which fired is moved up in reaction order to the next lowest

index. This only requires a pointer swap of two memory addresses per iteration, and

this loose style of sorting adds very little computational expense to the algorithm.

Testing performed by the authors of SDM demonstrate a performance advantage for
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Algorithm 7 Sorting Direct Method (SDM) [27]
1: procedure S D M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: initialise dependency graph DG
6: initialise reaction search order SO [1..M ] = 1..M
7: set total propensity a0  0.0
8: while t < t

end

do
9: CalculatePropensities() . CalculatePropensities() described in Algorithm 6

10: generate r1  rand() . select reaction µ to fire
11: target propensity a

t

 a0r1
12: for j  1 to M do
13: k  j
14: l SO

j

15: a
t

 a
t

� a
l

16: if a
t

 0 then
17: µ l
18: break
19: end if
20: end for
21: if k 6= 0 then . update reaction search order SO
22: tmp SO

k

23: SO
k

 SO
k�1

24: SO
k�1  tmp

25: end if
26: update state vector X  X +R

µ

. execute reaction
27: generate r2  rand() . calculate reaction time
28: ⌧  �1.0 ⇤ ln(r2)/a0
29: update simulation time t t+ ⌧
30: end while
31: end procedure

SDM over ODM with several models, and that the sorting overhead is so low that it

is likely to be less costly than the pre-simulation overhead of ODM [27].

2.4.7 Logarithmic Direct Method

In 2006, Li & Petzold released an unpublished manuscript describing Logarithmic

Direct Method (LDM, Algorithm 8). This improvement is similar to ODM and SDM

in the sense that it alters the average search depth during reaction selection, but by

a different method. LDM performs a binary search on reaction propensities during

reaction selection and can therefore claim to have O(logM) performance during this
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step of the algorithm. It achieves this by first summing reactions propensities cumu-

latively (thus avoiding a sort), and performing the binary search on the cumulative

reaction propensity array.

Algorithm 8 Logarithmic Direct Method (LDM) [28]
1: procedure L D M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: initialise dependency graph DG
6: while t < t

end

do
7: CalculatePropensities() . CalculatePropensities() described in Algorithm 6
8: create cumulative sum array C [1..M ] . select reaction µ to fire
9: set total propensity a0  0.0

10: for j  1 to M do
11: a0 += a

j

12: C
j

= a0
13: end for
14: generate r1  rand()
15: target propensity a

t

 a0r1
16: µ binarysearch for a

t

in C
17: update state vector X  X +R

µ

. execute reaction
18: generate r2  rand() . calculate reaction time
19: ⌧  �1.0 ⇤ ln(r2)/a0
20: update simulation time t t+ ⌧
21: end while
22: end procedure

In the performance comparison present in the manuscript, LDM is consistently shown

to significantly outperform ODM and SDM for several models. However, this finding

is directly contradicted by Gillespie who states that LDM is slightly slower than ODM

and SDM [7]. Also, the results show that ODM consistently slightly outperforms SDM,

which is in opposition to the findings of McCollum et al. These contradictions lend

strong support to the creation of a standardised benchmark of stochastic simulation

algorithms in order to determine the most performant algorithm without the fear of

bias, leading to my decision to create a benchmarking suite.

It should be noted that Gillespie states that due to numerical truncation, it would be

maximally accurate to sort reaction indexes such that lowest reaction propensities

occupy the lowest reaction indexes. This is the opposite ordering to that obtained

with ODM or SDM, but LDM would be unaffected by any potential reordering as it

performs a divide and conquer search on a cumulative array and thus removes the
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effect of any pre-ordering. This is significant, as truncation in multi-scale networks

with many order of magnitude differences between propensities may result in the

lowest reaction never firing [7].

2.4.8 Partial Propensity Direct Method

Algorithm 9 Partial Propensity Direct Method (PDM) [29]
1: procedure P D M(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: init data structures n,⇧,⌃,⇤, L, U (1), U (2), U (3)

6: while t < t
end

do
7: generate r1  rand() . reacton selection
8: I, J = GetIndexesIandJ(r1)
9: µ L

I,J

10: generate r2  rand() . calculate reaction time
11: ⌧  �1.0 ⇤ ln(r2)/a0
12: update state vector X  X +R

µ

. execute reaction
13: for all k in U (1)

µ

do . Update ⇧,⌃,⇤ and compute �a

14: l U (1)
µ,k

15: for all m in U (3)
l

do
16: (il

m

, jl
m

) U (3)
l,m

17: if l 6= il
m

then . 5.2.2
18: ⇧

i

l
m,j

l
m
 ⇧

i

l
m,j

l
m
+ c

µ

0 , µ0 = L
i

l
m,j

l
m

19: end if
20: if l = il

m

then
21: ⇧

i

l
m,j

l
m
 ⇧

i

l
m,j

l
m
+ 1

2cµ0 , µ0 = L
i

l
m,j

l
m

22: end if
23: if l 6= il

m

then . 5.2.3
24: ⇤

i

l
m
 ⇤

i

l
m
+ c

µ

0 , µ0 = L
i

l
m,j

l
m

25: end if
26: if l = il

m

then
27: ⇤

i

l
m
 ⇤

i

l
m
+ 1

2cµ0 , µ0 = L
i

l
m,j

l
m

28: end if
29: ⌃

temp

 ⌃
i

l
m

30: ⌃
i

l
m
 n

i

l
m
⇤
i

l
m

31: �a �a+ ⌃
i

l
m
� ⌃

temp

32: end for
33: �a �a+ n

l

⇤
l

� ⌃
l

;⌃
l

 n
l

⇤
l

34: end for
35: update a a a+�a
36: update simulation time t t+ ⌧
37: end while
38: end procedure

The Partial Propensity Direct Method (PDM, Algorithm 9) introduced in 2009 by

Ramaswamy et al, is unique in the sense that it scales with the number of species N in
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the system rather than the number of reactions M which is likely to be much greater.

They also introduced SPDM, a sorting version (with inspiration from SDM) which

is particularly appropriate for stiff systems [29]. In other exact SSAs, computational

efficiency may scale logarithmically or even in constant time with reactions in weakly

coupled networks, however for strongly coupled networks these algorithms will still

scale linearly. In strongly coupled networks the degree of coupling increases with

system size and may even be as high as the number of reactions. With a high degree

of coupling in the network, there will tend to be fewer species than there are in a

weakly coupled network with the same number of reactions, because a high degree

of coupling infers more reactions with shared reactants and products. In such a

situation it is advantageous to scale with species rather than reactions [29].

The idea behind PDM is to factor out a particular species from each reaction, gen-

erating partial propensities that depend on the population of zero or one species.

Ramaswamy et al. define “the partial propensity of a reaction with respect to one

of its reactants as the propensity per molecule of this reactant” [29]. PDM uses

novel data structures to update partial propensities including an implicit species

dependency graph, but retains the same time step sampling method as DM.

F I G U R E 2 . 2 : (a) Partial propensity direct method data structures
(b) Example reactions that populate data structures (taken from [29])

I recommend the original paper [29] as a comprehensive guide to implementing this

algorithm, especially in regards to data structure implementation. However, due to
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typographical errata in the original paper, corrections are required to steps 5.2.2 and

5.2.3 as detailed in Algorithm 9.

2.4.9 Composition Rejection

Algorithm 10 Composition Rejection Direct Method (CR) [30]
1: procedure C R(molecular species, reactions)
2: set simulation time t 0.0 . initialise
3: initialise species state vector X [1..N ]
4: store vector of reactions R [1..M ]
5: initialise dependency graph DG
6: set total propensity a0  0.0
7: set fixed number of groups G
8: BuildGroups() . init groups, calc all a

j

, a0, pmin
9: while t < t

end

do
10: if NOT first iteration then . calculate reaction propensities
11: for dep in DG

µ

do
12: a0 -= a

dep

13: calculate updated propensity a
dep

14: a0 += a
dep

15: end for
16: rg  CalcUpdatedReactionGroup(a

dep

)
17: if ReactionGroupUnchanged(rg) then
18: UpdateReactionGroupPropensity(rg)
19: UpdateGroupPmax(rg)
20: else
21: RemoveFromReactionGroup(a

dep

)
22: UpdateGroupPmax(rg

remove

)
23: AddToReactionGroup(a

dep

, rg)
24: UpdateGroupPmax(rg)
25: end if
26: end if
27: generate r1  rand() . select reaction µ to fire
28: target propensity a

t

 a0r1
29: create cumulative sum array C [1..G]
30: SumGroupPropensitiesCumulativeArray(C)
31: g  binarysearch for a

t

in C . find target group g for reaction µ
32: µ = Rejection(g) . Rejection(g) described in Algorithm 11
33: update state vector X  X +R

µ

. execute reaction
34: generate r2  rand() . calculate reaction time
35: ⌧  �1.0 ⇤ ln(r2)/a0
36: update simulation time t t+ ⌧
37: end while
38: end procedure

Slepoy et al introduced the Composition Rejection variant of DM (CR, Algorithm 10)

in 2008, which claims to have constant time scaling O(1), independent of M [30]. To

achieve this, both reaction selection and propensity updates must be O(1). Reaction
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selection is performed via rejection sampling [30] which makes reaction selection

independent of M . To imagine rejection sampling, consider a histogram with reac-

tions on the x-axis and propensities on the y-axis. Two uniform random numbers are

selected, the first one selects a reaction µ from 1 to M in order to choose a reaction

that may potentially fire. The second uniform random number selects a value arej be-

tween 0 and pmax (the highest reaction propensity in the system). If aµ >= arej, then

the reaction is selected. This can be visualised as r being within the area covered by

the propensity of reaction i in the plot. If aµ < arej then the reaction is rejected and

the algorithm is repeated until a reaction is selected [30].

Whilst rejection sampling makes reaction selection independent of M , it has an intrin-

sic cost, needing two random numbers to select a reaction instead of one, and also

if there are many reactions rejected, this random number cost is repeated multiple

times per iteration. To address this, the composition aspect of the CR is adopted. This

simply means that reactions with similar propensity values are grouped together.

Reactions are placed in groups from pmin to pmax where each group boundary is

a cascading factor of 2 multiple of pmin. Arranging groups in this manner means

that selecting a reaction from a particular group by parametrising the group’s pmax,

significantly reduces the number of rejections. This has an associated cost and pre-

cautions must be taken to maintain the O(1) scaling. A third random number is

needed to select the reaction group to fire, which is achieved by parametrising the

total propensity and selecting by each group’s total propensity, in a similar way to

standard DM reaction selection. Figure 2.3 elucidates the composition grouping and

rejection sampling mechanisms employed by the algorithm.

I must make G, the number of groups, independent of M to maintain O(1) scaling

by bounding its value. Slepoy et al. argue that if there is a reaction propensity

distribution that requires a large number of groups, because of exponential group

boundaries, one can postulate that reaction propensities under a certain value are so

unlikely to fire they can be ignored and pmin increased. Whilst this fair assumption

allows the generation aspect of CR to be O(1), it can be argued that should this



Chapter 2. Background Theory 35

F I G U R E 2 . 3 : Composition and rejection algorithm for random variate generation.
A reaction is selected from a set of reaction propensities left by picking random
points A and B from a bounding rectangle until a point inside a vertical bar B is
found. Grouping the propensities by their magnitude (right side sub-figure) makes

rejected points less likely (taken from [30]).

situation arise, ignoring some reaction propensities would logically imply that this

algorithm has become approximate rather than exact.

Algorithm 11 Rejection(g)
1: function R E J E C T I O N(group index g)
2: while true do
3: gs = num reactions in group
4: µ = randInt(gs)
5: a

rej

= rand() ⇤ p
max

6: if a
µ

>= a
rej

then return µ
7: end if
8: end while
9: end function

For the update step of the CR algorithm, the dependency graph (from NRM) is used

in order to determine which reactions are updated, and those are assigned to new

groups if necessary. As changing the group a reaction belongs to can be performed

in constant time, the authors state that the update aspect of the CR algorithm is

O(1). However, it should be noted that because part of the update step is updating

the reaction propensities, it would be unwise to ignore the O(logM) scaling unless

the reaction network is very weakly coupled. This can be highlighted in their results

which demonstrate that the massive performance increase for CR over NRM for large

reaction networks is mainly provided by the generation step, whilst the update step

performance is similar to NRM. It should also be noted that because of CR’s high
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standing cost, algorithms with lower data structure overheads and consumption of

random numbers will strongly outperform CR on smaller reaction networks.

2.4.10 Tau Leaping

Algorithm 12 Tau Leaping (TL) [11]
1: procedure T L(molecular species, reactions)
2: SSA run counter g  0 . initialise
3: set simulation time t 0.0
4: while t < t

end

do
5: if g > 0 then
6: run standard DM for g iterations
7: g  0
8: else
9: if TauLeapStep() then . TauLeapStep() described in Algorithm 13

10: if g > 0 then
11: run standard DM for g iterations
12: g  0
13: end if
14: else
15: end simulation
16: end if
17: end if
18: end while
19: end procedure

⌧ leaping (TL, Algorithm 12) is a method created by Gillespie which first appeared

in 2001 [11]. This method is distinct to the other methods previously mentioned

in the sense that it is an approximate algorithm as opposed to an exact formulation.

Gillespie noted that a strength of the exact SSA was that it meticulously considered

every reaction occurring in the system, though performance was a caveat. Much of

the detail of the exact simulations may be unnecessary and irrelevant to achieving an

accurate picture of the system’s temporal evolution, and these laborious simulations

come at high computational expense. It would therefore be preferable to increment

the temporal evolution of the system by a small but significant time interval each

step rather than an infinitesimal ⌧ , as long as acceptable accuracy could be achieved.

Applying many individual reaction events in one algorithmic step (as opposed to one

reaction per step) should provide a significant improvement to the time required to

perform a simulation.
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Algorithm 13 TauLeapStep()
1: function TA U L E A P S T E P
2: set restart leap flag rf  false
3: set total propensity a0  0.0
4: set non-critical tau ⌧

ncr

 0.0
5: while first leap or re-leaping do
6: if rf 6= true then . if this is not a re-leap..
7: CalculatePropensities()
8: a0  SumPropensities()
9: if a0  0.0 then return false

10: end if
11: IdentifyCriticalReactions() . described in Algorithm 14
12: ⌧

ncr

 CalculateTauNCR()
13: end if
14: if ⌧

ncr

6=1 && ⌧
ncr

< ⌧
min

then . check if tau leap is above min value
15: g  100 . Use DM for g runs
16: break
17: end if
18: a0crit SumCriticalPropensities() . choose tau for critical reactions
19: ⌧

crit

 1
20: if a0crit 6= 0.0 then
21: generate r1  rand()
22: ⌧

crit

 �1.0 ⇤ ln(r1)/a0crit
23: end if
24: ⌧  min(⌧

crit

, ⌧
ncr

) . tau should be smallest of crit/non-crit
25: if ⌧ ==1 then return false
26: end if
27: . sample poisson distribution to fire reactions in tau leap
28: . critical reactions fired by monte carlo
29: FireReactions()
30: if HasNegativesInStateV ector() then . re-leap if negatives in state vector
31: ResetStateV ector()
32: ⌧

ncr

 ⌧
ncr

/2.0
33: rf  true
34: else
35: t t+ ⌧
36: rf  false
37: end if
38: end while
39: return true
40: end function

In order to perform a faithful approximation of the system’s temporal evolution

with ⌧ leaping, the leap condition must be met. Gillespie defines the leap condition

as the requirement for ⌧ to be small enough such that each leap will not result in

an appreciable change to the propensity of any reaction. He also states that the

more compliant a ⌧ leap is to the leap condition, the greater the accuracy of the

simulation [11]. Thus, a balancing act ensues where ⌧ needs to be large enough

that a performance increase is achieved, but small enough that good accuracy is
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maintained. If it transpires that the ⌧ required to satisfy the leap condition is so small

such that only a handful of reaction events fire each ⌧ leap, it is preferable to fall

back to using DM until simulation conditions change to accommodate a significant

leap (Cao et al suggest 100 iterations of DM before returning to ⌧ leap [46]). The

rationale being that there would be no efficiency advantage to using ⌧ leaping in

this situation; in fact the overheads of the ⌧ leaping would result in the algorithm

performing worse than an exact SSA. Moreover, if the exact SSA outperforms the

approximation it is preferable to get an exact result.

If the leap condition is satisfied, the assumption is made that the propensity of each

reaction channel is constant during the leap [11]. This assumption allows one to

consider the probability of a particular reaction channel firing independently of other

reaction channels. Therefore, one can sample the Poisson random variable with mean

aj(x)⌧ for each reaction channel to determine how many times each reaction has

fired during a ⌧ leap.

Gillespie acknowledged some issues that would need to be addressed upon intro-

duction of his algorithm, namely an effective method to select the largest possible ⌧

that satisfies the leap condition. Another issue was that it was possible for the state

vector to end up with a negative species amount, an impossible situation that could

not occur with an exact SSA formulation. This was addressed by Cao et al [47], who

introduced a modified ⌧ leap to avoid negatives occurring in the state vector. This is

achieved by searching for critical reactions (see Algorithm 14), which are reactions

that would result in a negative species amount after a pre-determined number of

firings. Once critical reactions have been identified, the algorithm ensures that only

one critical reaction can be fired in a time-step, whilst still “leaping” multiples of

non-critical reactions as before.

In the rare case that negatives still occur in the state vector, the algorithm simply

restarts the erroneous leap with a smaller value for ⌧ . For the purposes of this

thesis, I have implemented and considered the 2006 iteration of ⌧ leaping with

“efficient step size selection” [46]. This improves upon the original algorithm by

increasing compliance with the leap condition whilst reducing the computational
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Algorithm 14 IdentifyCriticalReactions()
1: function I D E N T I F Y C R I T I C A L R E A C T I O N S
2: set critical reaction parameter K  10
3: set critical reaction flag CR [1..M ] = {false}
4: for j  1 to M do
5: create temp copy of state vector Xtemp  X
6: for k  1 to K do
7: Xtemp  Xtemp +R

j

. apply reaction K times
8: end for
9: for i 1 to N do

10: if Xtemp

i

 0 then
11: CR

j

 true
12: break
13: end if
14: end for
15: end for
16: end function

cost of determining the ⌧ to leap. A major shortcoming of the original algorithm was

that ⌧ is bounded by a fraction of the sum of all reaction propensities. This means

that in a multi-scale system, a particular reaction channel with a propensity orders of

magnitude smaller than others may in fact be leaped with a ⌧ that contravenes the

leap condition for that reaction channel. The modified ⌧ calculation considers the

relative change in each reaction propensity in order to calculate the ⌧ leap interval,

rather than the absolute change of the sum of reaction propensities.

2.4.11 Reaction dependency graph (RDG)

The first SSA to use a dependency graph was Next Reaction Method (NRM) which

was introduced in the year 2000 by Gibson & Bruck [25]. This algorithm used a reac-

tion dependency graph (RDG) which is an interaction network that determines which

reactions propensities need to be updated when a particular reaction is executed.

More algorithms that used the RDG were subsequently introduced including Opti-

mised Direct Method (ODM) [26], Sorting Direct Method (SDM) [27], Logarithmic

Direct Method (LDM) [28] and Composition Rejection (CR) [30]. Whilst the RDG

improved simulation times, there was a lack of discussion in the literature on the

memory requirements and generation methods of this optimisation.
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A reaction dependency graph is typically stored as a data structure that consists of a

list of affected reaction indices for each reaction within a reaction network. Therefore,

the worst case space complexity of the RDG is O(M2
) (where M is the number

of reactions in the network) and this occurs when the reaction network is fully

coupled. Furthermore, the more coupled the network becomes, the more ineffective

the RDG is at improving computational performance (as more propensities need

to be recalculated per iteration). The naïve method of generating a reaction graph

has time complexity of O(M2
). This involves checking whether each reaction in the

network affects any of the other reactions in the network.

Algorithm 15 Naive RDG Generation (O(M2
))

1: procedure R D G(reactions)
2: . initialise
3: store list of reactions RL [1..M ]
4: create empty dependency graph DG
5: for i RL[1..M ] do
6: for j  RL[1..M ] do
7: if j is affected by i then
8: . j is a dependency for i
9: DGi  j

10: end if
11: end for
12: end for
13: end procedure

The memory and generation time requirements of the RDG have negative implica-

tions for exact stochastic simulation in fields such as Systems & Synthetic Biology,

where reaction networks modelled grow in size with ever increasing biological knowl-

edge. Consequently, when M is sufficiently large, generation times of the RDG will

take longer than simulating a model without the RDG. Also when M is large, the

RDG becomes intractable in terms of memory requirements, and high memory usage

affects computational performance due to cache misses and memory paging [48].

The authors of the CR algorithm (which was formulated for large reaction networks)

include analysis of a low memory version of their algorithm (i.e. no RDG) for this

reason [30].
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2.5 Modelling genetic biochemical systems

2.5.1 Modelling synthetic genetic logic gates

To demonstrate how the genetic regulatory machinery can be modelled and simu-

lated, I shall explore an initial example biosystem. This exemplar system involves

implementing Boolean logic gates in a gene regulatory context and produces a bio-

chemical output based on the presence of biochemical inputs.

Synthetic Boolean logic gates have been addressed in various studies [49–51] and are

of interest as the fundamental building blocks of potential biological computing. The

devices discussed in this section are constructed using the genetic subcomponents

of the XOR gate designed by Beal et. al [49]. Here, I consider two important logic

gates: AND & OR. Both gates use two inducers, aTc and IPTG, as inputs. Inducers are

chemicals that inhibit the activity of repressor transcription factors (i.e. they reduce

the impact of transcription downregulation). aTc and IPTG inhibit the activities of

TetR and LacI proteins, respectively. Both gates have green fluorescent protein (GFP)

as an output to indicate a true/on resultant state for the system when production of

GFP is high. The genetic designs of the gates are presented in Figures 2.4 & 2.5.

Promoter RBS lacI tetR

LacI

TetR

aTcIPTG

Prom1 RBS gfp

GFP

RBS

F I G U R E 2 . 4 : Genetic device functioning as an AND gate. Inputs to the gates are
the molecular species IPTG and aTc. The output of the gate is given by the expressed

amount of GFP molecules.
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Figure 2.4 illustrates a genetic AND gate, which receives two input signals: aTc and

IPTG. In this system, the transcription factors LacI and TetR are expressed by genes

controlled by a single promoter. The aTc and IPTG molecules bind to TetR and LacI,

respectively, to prevent them from inhibiting the production of GFP by binding to

the corresponding promoter which up-regulates the expression of GFP. If both IPTG

and aTc are set to high, then neither LacI nor TetR can inhibit GFP production and

thus GFP production will be high.

Promoter RBS lacI tetR

LacI

TetR

aTcIPTG

Prom1 RBS gfp

GFP

Prom2 RBS gfp

GFP

RBS

F I G U R E 2 . 5 : Genetic device functioning as an OR gate. Inputs to the gates are the
molecular species IPTG and aTc. The output of the gate is given by the expressed

amount of GFP molecules.

Figure 2.5 illustrates a genetic OR gate, comprising two separate mechanisms for

inducing GFP production. Each mechanism has a unique promoter for each of the

two GFP genes present in the system, allowing for individual activation of either GFP

gene. As with the genetic AND gate, IPTG and aTc are used as inputs for the genetic

OR gate. The production of GFP in the first mechanism is repressed by LacI whilst

the second is repressed by TetR. As in the AND gate IPTG and aTc regulate LacI and

TetR respectively. Because there are two separate GFP genes present controlled by

two unique mechanisms, GFP can be produced when IPTG is set to high or when aTc

is set to high (and when they are both set to high).

The stochastic model comprises a set of reaction channel rules governing the kinetic

and stochastic behaviour of the system. Therefore, a modeller needs to convert the

high level qualitative biological description shown in Figures 2.4 & 2.5 into a precise

set of rules. Tables 2.4 & 2.5 present the rules and the kinetic constants of the
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(a) AND gate

Rule Kinetic
constant

r1 : gene_LacI_TetR k1! gene_LacI_TetR + mrna_LacI_TetR k1 = 0.12

r2 : mrna_LacI_TetR k2! mrna_LacI_TetR + LacI k2 = 0.1

r3 : mrna_LacI_TetR k3! mrna_LacI_TetR + TetR k3 = 0.1

r4 : LacI + IPTG k4! LacI-IPTG k4 = 1.0

r5 : TetR + aTc k5! TetR-aTc k5 = 1.0

r6a : gene_GFP + LacI k6a! gene_GFP-LacI k6a = 1.0

r6b : gene_GFP-LacI k6b! gene_GFP + LacI k6b = 0.01

r7a : gene_GFP + TetR k7a! gene_GFP-TetR k7a = 1.0

r7b : gene_GFP-TetR k7b! gene_GFP + TetR k7b = 0.01

r8 : gene_GFP k8! gene_GFP + GFP k8 = 1.0

r9 : GFP k9! k9 = 0.001

r10 : LacI k10! k10 = 0.01

r11 : TetR k11! k11 = 0.01

r12 : mrna_LacI_TetR k12! k12 = 0.001

TA B L E 2 . 4 : Kinetic rules for the Boolean AND gate.

(b) OR gate

Rule Kinetic
constant

r1 � r5 same as the rules r1 � r5 of the AND gate
r6a : gene_GFP1 + LacI k6a! gene_GFP1-LacI k6a = 1.0

r6b : gene_GFP1-LacI k6b! gene_GFP1 + LacI k6b = 0.01

r7a : gene_GFP2 + TetR k7a! gene_GFP2-TetR k7a = 1.0

r7b : gene_GFP2-TetR k7b! gene_GFP2 + TetR k7b = 0.01

r8 : gene_GFP1 k8! gene_GFP1 + GFP k8 = 1.0

r9 : gene_GFP2 k9! gene_GFP2 + GFP k9 = 1.0
r10 � r13 same as the rules r9 � r12 of the AND gate

TA B L E 2 . 5 : Kinetic rules for the Boolean OR gate.

devices described above. If one considers the AND gate, Rules r1 to r3 describe the

expression the LacI and TetR proteins from gene_LacI_TetR, regulated by the same

promoter. Rules r4 and r5 describe the binding of LacI to IPTG and TetR to aTc,

respectively. Rules r6a and r6b describe the inhibition activity of LacI, i.e. its binding

to the promoter that upregulates the GFP production. Rules r7a and r7b define the
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same process for TetR. Rule r8 describes the expression of GFP. Rules r9 to r12 define

the degradation process of various molecular species. The input molecules aTc and

IPTG are kept constant in the model to stop them being quickly consumed and thus

maintain a persistent output state in the model.

When considering this model and the respective stochastic rules, it should be noted

that there is no consideration for biological intermediates such as mRNA production.

Furthermore, whilst the RBS is shown in the Figures for the gates, it is overlooked

for the stochastic rules. Whilst these entities could indeed be considered in the

stochastic rules, a decision is made by the modeller regarding the level of detail that

is required. In this particular system, the behaviour that I wish to observe (Boolean

gate mechanics) should be captured at this scale. If the simulations performed on

this model do not match hypotheses or biological reality, it may then be necessary to

increase detail level until the desired behaviour is captured by the model.

2.5.1.1 Systems Biology Markup Language (SBML)

Systems Biology Markup Language (SBML) is a model format created to standardise

the description of biochemical models [33]. The stated motivation of the format

was to allow biological models to be “shared, evaluated and developed cooperatively”.

SBML is touted as a “software independent language”, enabling interoperability be-

tween different modelling and simulation platforms. SBML is an XML based for-

mat that is supported by many different frameworks. A free software library is in

continuous development for the SBML standard, called libSBML [52]. This library

supports many different programming languages and handles the parsing of SBML

models for developers. The SBML model standard contains a comprehensive set

of formalised biological modelling types and operators, including those that are es-

sential to stochastic simulation: species, rules (i.e. reactions), and parameters (i.e.

stochastic rate parameters). Other more advanced features that can be employed by

stochastic modellers include events and compartments. Compartments provide a level

of spatial resolution as well as separation which is analogous to a cell membrane.



Chapter 2. Background Theory 45

2.5.2 Simulating synthetic biological boolean gates
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F I G U R E 2 . 6 : GFP expression in the AND (left) & OR gates over time for the
aTc/IPTG input combinations low-low, low-high, high-low, and high-high. Error bars

denote the standard deviations of 100 statistically independent samples.

Simulation of the stochastic models detailed in Section 2.5.1 is performed using

the Gillespie SSA [10, 31]. At each reaction execution, the system state vector of

molecular species is adjusted and a time-series trajectory of the system can be logged.

To perform simulations of the models, I use my ngss (next generation stochastic

simulator) software [24]. Ngss simulates stochastic models provided in SBML format

[33] and generates time-series for all the molecular species present in the system.

Time-series data is outputted and recorded as plain text comma separated values.

For each model I tried four different configurations of gate inputs aTc and IPTG

(high-high, high-low, low-high and low-low) where low is zero molecules and high is

1000 molecules.

Trajectories of both gate dynamics are shown in Figure 2.6 for the four different

input combinations of low and high aTc and IPTG. The gates quickly approach a

steady state with output concentrations that implement the desired Boolean logic.

During the short transient period, GFP is produced in marginal quantities even in
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the absence of input signals, but this expression is suppressed once LacI and TetR

repress the respective promoters and the present GFP degrades.

AND gate GFP expression
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F I G U R E 2 . 7 : Heat map visualisations of the AND & OR gate transfer functions
obtained by stochastic simulation. Colours indicate GFP expression for different aTc
& IPTG input values. The top inlay shows the steady-state response of the gate for
varying IPTG amounts under constant aTc = 1000, the right inlay shows the gate

response for varying aTc under constant IPTG = 1000.

Figure 2.7 show the transfer functions (gate output for varying input values) of

the AND and OR gates. In principle, the genetic AND and OR devices closely im-

plement the requested transfer functions and express high GFP amounts under the

presence of both (AND gate) or either of the two inputs (OR gate). Yet, the sim-

ulations also reveal that the gate outputs follow their inputs more or less linearly

and do not implement a clear switching behaviour where the output concentration

would drastically change around some critical threshold input value. Depending on

the application, the observed linear behaviour can cause problems by accumulating

errors when complicated circuits are composed by feeding the output of one gate

into other downstream gates.

2.5.3 Benchmarking models

Ngss supports nine different variants of the SSA that each employ various optimisa-

tions in order to improve computational performance. Eight exact SSA formulations

are included. These are Direct Method (DM) [31] and First Reaction Method (FRM)
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F I G U R E 2 . 8 : Algorithm benchmark performance results in rps (higher is better) of
each algorithm for the AND gate with aTc and IPTG in high-high (constant 1000
1000) and low-low (constant 0 0) input configuration. Each algorithm’s performance

was evaluated as the mean of a total of 100 runs.

[10], Next Reaction Method (NRM) [25], Optimised Direct Method (ODM) [26],

Sorting Direct Method (SDM) [27], Logarithmic Direct Method (LDM) [28], Partial

Propensities Direct Method (PDM) [29] and Composition Rejection (CR)) [30]. An

approximation algorithm, Tau Leaping (TL) [11] is also considered.

As I am concerned with improving the simulation time for a particular model, I bench-

marked the performance of each of the mentioned SSA variants for the Boolean gate

models. For each algorithm, 100 runs were performed and each simulation com-

pleted to 6000 seconds of simulation time. The metric for measuring performance
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F I G U R E 2 . 9 : Algorithm benchmark performance results in rps (higher is better)
of each algorithm for the OR gate with aTc and IPTG in high-high (constant 1000
1000) and low-low (constant 0 0) input configuration. Each algorithm’s performance

was evaluated as the mean of a total of 100 runs.

used is reactions per second (rps). Rps is calculated by dividing the number of re-

actions executed by the amount of computational (process) time required. Whilst

many comparative benchmarks use simpler metrics for measuring performance such

as runtimes, this is not appropriate for measuring multiple samples of a stochastic

simulation. Different runs of a stochastic biochemical model will generate a different

stochastic trajectory before hitting a shared simulation end point, and the number

of executed reactions and computational work done by each run might vary. Rps

is therefore a more appropriate metric for algorithmic computational performance

than runtime because it removes the effect of stochasticity on algorithmic runtime.
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Rps is analogous to a relative speed up metric, where higher is better.

The algorithmic performance profiles of the different input combinations for both

the OR gate and AND gate were similar, with identical algorithm performance rank-

ings per input combination. Figures 2.8 and 2.9 show the algorithmic performance

results (in reactions per second of CPU time) for the AND and OR gate models re-

spectively. These results demonstrate that even very small differences in a model (in

this case, the initial concentrations of two species) may result in large differences in

algorithmic performance profiles. One can see that for the low low configuration TL

is the fastest performing simulation algorithm, and outperforms others by an order

of magnitude. However, in all other configurations ODM is the better algorithmic

selection and strongly outperforms TL.





Chapter 3

Modelling and Stochastic Simulation

of Biochemical Models

3.1 Introduction

Stochastic simulation for systems & synthetic biology requires an understanding of

the fundamental biological constituents of complex biochemical systems. A biolog-

ical concept must first be formulated of the target system, to be translated into a

formalised model description that adheres to a format suitable for simulation. This

chapter introduces some of the biological knowledge required for stochastic mod-

elling and explores some biological systems from the literature. There is a discussion

of how these biological systems can be modelled and simulated, followed by an ini-

tial benchmark of stochastic simulation performance. This preliminary analysis will

elucidate the motivation for the first hypothesis of this thesis: There is no single SSA

that is superior in performance for every biomodel.

“ To do this [simulate biology] effectively, not only must we use the vocab-

ulary of the machine language, but we must also pay heed to what may

be called the grammar of the biological system.

Sydney Brenner [53] ”
51
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3.2 Simulating models from the literature

3.2.1 Experimental models

The first dataset consists of eight fully specified stochastic biological models (see

Table 3.1). This dataset has been collected from the literature and curated, thus it

will be referred to as the curated models dataset in this thesis. These models have been

sourced from the literature concerned with the analysis of real biological systems

and incorporate biologically plausible models of these systems. I intend for these

models to represent a snapshot of “real world models” used by biologists.

Model Description Reference Species Reactions

A1 cAMP Oscillations [54] 8 14
A2 Heat Shock Response [55] 28 61
A3 E.Coli QS Circuit [56] 22 25
A4 Thermodynamic Switch [13] 16 24
A5 Auxin Transport [12] 43 124
A6 G Protein Signalling [57] 19 26
A7 Exponential Growth [58] 200 920
A8 lacZ lacY Expression [59] 23 22

TA B L E 3 . 1 : Summary of models available in the curated models dataset.

NOTE: A second and much larger dataset for this thesis is introduced in Section 4.2.2.

3.2.2 Model A1: Robust cAMP oscillations during Dictyostelium

aggregation

The first model I shall explore investigates cyclic adenosine monophosphate (cAMP)

in the social amoeba Dictyostelium discoideum [54]. cAMP is used as an intracellular

signalling molecule for many different organisms. cAMP binds to the cAMP protein

receptor (CRP) which is a transcription factor typically regulating many genes. For
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example, in the bacterium Escherichia coli, CRP is involved in the mechanisms of

over 50% of transcription units and affects up to 200 promoters [60].

During periods of starvation, Dictyostelium cells transition to an aggregation state

in which they group together to produce spores. This process is regulated by cAMP,

which Dictyostelium is able to secrete in order to induce the behaviour in surround-

ing cells. Stimulation of cAMP production occurs in an oscillatory fashion, with

Dictyostelium generating pulses of cAMP following a regular period [54].

F I G U R E 3 . 1 : Aggregation of Dictyostelium discoideum (taken from [61]).

This system was initially modelled deterministically [62], producing the expected pe-

riod and amplitude with the specified parameters [54]. However, in vivo, the system

is subject to large fluctuations for its parameters. Analysis has shown this model is

not robust in the face of minor changes to its parameter space [63]. This contradicts

biological reality where the Dictyostelium cAMP oscillations remain robust in the face

of large variation.
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Figure 3.2 (A) shows the model evaluated by Kim et al. [54] which is based on

the deterministic model from Laub and Loomis [62]. Kim et al. use a perturbed pa-

rameter set and simulate the model both deterministically and stochastically. Their

simulation results demonstrate that an altered parameter set causes the determinis-

tic model to terminate its oscillatory behaviour. However, they show that by using

stochastic methods the model’s oscillatory behaviour actually remains robust. These

simulation results are shown in Figure 3.2 (B), with a blue deterministic simulation

plot and a red stochastic simulation plot.

F I G U R E 3 . 2 : Gene regulatory model and simulation results of cAMP production
during Dictyostelium aggregation (taken from [54]). Part (A) of this figure shows
the gene regulatory network involved in Dictyostelium aggregation. Part (B) of
this figure shows the results of simulations performed on the model. The blue plot
shows the results of an ODE solver for this model. The red plot shows the results of

a stochastic simulation for this model.

This result is significant because a biologist using a deterministic method of eval-

uating this model might conclude that the model is incorrect, whilst the issue lay

with the simulation methodology itself. Kim et al. communicate that this type of

oscillating model should be simulated stochastically and not deterministically, even

with high species amounts. The rationale for SSA use is typically for models with

low molecular species counts, but this particular model has relatively high species
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amounts and yet is still heavily influenced by the effects of stochastic noise. The anal-

ysis indicates that stochastic noise is an important source of intracellular robustness

[54].
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F I G U R E 3 . 3 : Stochastic simulation results for repeated cAMP oscillation experi-
ment and SSA performance benchmark for nine different algorithms for model. The
left hand side figure shows a repeated experiment of cAMP oscillations using the
ngss simulator. This simulation was run using the Direct Method algorithm running
for 480 minutes of simulation time. The right hand side figure shows the bench-
mark results for this model over nine algorithms. The benchmark was performed
on a single core of an Intel i7 2600K with 16GB RAM. The benchmark was run on
each algorithm-model combination with error bars showing the variation over 10

samples.

The left hand side of Figure 3.3 shows a repeat of the experiment performed by Kim

et al. using the Direct Method algorithm from ngss simulation software to confirm

the robust oscillatory behaviour. The same robust oscillatory behaviour was verified

for all the nine SSA implementations of interest.

Figure 3.3 also shows the benchmark of the nine SSA implementations for the cAMP

oscillation model. One can see that algorithmic performance is similar for all algo-

rithms with the exception of TL. TL is able to apply multiple reactions per algorithmic

step if there is only a small relative change in propensity for the system. This sys-

tem has high levels of cAMP molecules which allows TL to apply multiple reactions

involving cAMP molecules in a single step which drastically improves algorithmic
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performance. It is quite clear from the benchmark results that a scientist would want

to select TL for this model as it is orders of magnitude faster than other formulations.

When benchmarking a model that displays oscillatory behaviour, one might expect

SDM to exhibit strong performance compared to other SSA formulations. This is

because SDM dynamically sorts reactions (loosely by propensity) in order to reduce

reaction search depth at each iteration. However, this model only has 14 reactions

and of those only a few reactions involving cAMP will dominate the system. Thus

the low numbers of reactions in this system means that the performance advantage

from reduced reaction search depth is negligible.

3.2.3 Model A2: Heat shock response in Escherichia coli

Model A2 investigates the regulation of the heat shock response genetic circuit in

Escherichia coli [55]. Organisms strive to maintain homeostasis and possess repair

mechanisms to ensure biochemical robustness. Amongst these mechanisms, heat

shock response is a gene regulatory subsystem that detects and repairs damage

caused by heat shock, oxidative stress, toxins and other stressors [64].

Proteins in a cell that sustain heat shock unfold and denature (lose their precise

protein structure). In response, heat shock proteins (HSPs) are produced that behave

as molecular chaperones to help refold denatured proteins or as proteases to degrade

them. There is an important balance to be maintained, as producing HSPs places a

large metabolic burden on the organism. However, without HSPs, heat shock will

disrupt normal cellular function.

Figure 3.4 shows an overview of the heat shock response model A2. Regulation of

heat shock response is controlled by the sigma factor protein �32. A sigma factor is a

transcription initiation factor which binds to RNAP to induce transcription of relevant

genes, but dissociates prior to transcription [66]. Kurata et al. model important

network motifs involved in the heat shock response [55]. Firstly, heat shock invokes a

feed-forward motif by greatly increasing rpoH mRNA translation. Secondly, feedback

motifs regulate the levels of �32 to minimise the resultant metabolic costs. The
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F I G U R E 3 . 4 : Model of heat shock response in Escherichia coli with SSA perfor-
mance benchmark for nine different algorithms. The left hand side figure shows an
overview of the heat shock response regulation model (taken from [65]). The right
hand side figure shows the benchmark results for this model over nine algorithms.
The benchmark was performed on a single core of an Intel i7 2600K with 16GB
RAM. The benchmark was run on each algorithm-model combination with error

bars showing the variation over 10 samples.

model shows �32 upregulating the FtsH protease which degrades �32. The model

also shows that the �32 upregulated DnaK molecular chaperone will inhibit �32

transcription initiation if DnaK is not involved in repair activity. This means that

when HSPs complete their repairs, they terminate the heat shock response behaviour

to reduce the metabolic load on the biosystem.

Kurata et al. claim that their model accurately reproduces heat shock behaviour even

when tested experimentally with relevant gene knockout mutants [55]. They note

that low numbers of �32 molecules in the system may subject it to stochastic fluctua-

tions in behaviour. Therefore, they performed stochastic simulations to complement

their deterministic model of heat shock response. However, they found that the ef-

fects of stochastic noise did not alter heat shock response when compared to the

deterministic model.

The right side of Figure 3.4 shows the results of the SSA performance benchmark for

the heat shock response model. PDM, which claims superior performance for highly
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coupled reaction networks, is the highest performing algorithm for this model closely

followed by SDM and ODM. Reaction networks are considered “coupled” when the

products of an arbitrary reaction are likely to affect the reactant populations of other

reactions. The key features of this model involve feedback and feed-forward loop

motif behaviours for �32, which implies that the network is highly coupled.

Comparing the benchmarks of model A1 in Figure 3.3 and model A2 in Figure 3.4,

one can see a large difference in algorithm performance profiles. Most of this dif-

ference is explained by the very strong performance of TL in model A1. This is the

first piece of evidence demonstrating large variations in SSA performance between

models.

3.2.4 Model A3: Escherichia coli AI-2 quorum sensing circuit

Model A3 represents the genetic circuit regulating AI-2 quorum sensing in Escherichia

coli (see Figure 3.5). Quorum sensing is a decentralised social mechanism employed

by organisms such as bacteria to co-ordinate behaviour. Bacterial quorum sens-

ing uses signalling molecules (autoinducers) which are secreted by individual cells.

The autoinducers can then be “sensed” by neighbouring cells, thus quorum sensing

be thought of a simple communication system. In small numbers, these signalling

molecules do not induce a change in behaviour. However, when a threshold amount

of autoinducers is “detected” by a cell, a shift in behaviour is induced. Quorum sens-

ing can co-ordinate group behaviours as varied as biofilm formation, cell division,

virulence and motility [56].

More specifically, autoinducer signalling molecules bind to receptors and induce gene

expression. For example, an autoinducer can bind to a transcription factor protein

and activate it causing an up-regulation of gene expression. In bacterial quorum

sensing, gene expression involved in synthesis of the autoinducer is up regulated

by itself causing a positive feedback loop. Model A3 evaluates the synthesis of AI-

2 (Autoinducer 2) in Escherichia coli via the Pfs-LuxS pathway. AI-2 is a family of

signalling molecules that are employed by many different species. Using this model,
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Li et al. show that dramatically increased levels of AI-2 in the presence of glucose

are not dependent on Pfs or LuxS levels. Therefore, their experiments show that an

alternate (glucose regulated) AI-2 synthesis pathway must exist [56].
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F I G U R E 3 . 5 : Model of AI-2 synthesis and uptake pathways in Escherichia coli with
SSA performance benchmark for nine different algorithms. The left hand side figure
shows AI-2 synthesis and uptake pathways in Escherichia coli (taken from [56]).
The right hand side figure shows the benchmark results for this model over nine
algorithms. The benchmark was performed on a single core of an Intel i7 2600K
with 16GB RAM. The benchmark was run on each algorithm-model combination

with error bars showing the variation over 10 samples.

Figure 3.5 shows the SSA performance benchmark for the Li et al. Escherichia coli

model [56]. The SSA performance profile for this model is similar to model A1,

if one compares Figures 3.5 and 3.3. However, whilst the results of model A1 are

shown on the logarithmic scale because of the very high relative performance of

TL, this model does not have such a large difference in performance between any

algorithm. TL is also the fastest performing algorithm for this model, which is related

to the high amounts for various species in the model. As the performance difference

between TL and other algorithms is not by many orders of magnitude, this suggests

that the algorithm does not “leap” at every algorithmic iteration or that leaps are for

smaller time-steps. One should also note that the SSA performance profile appears

different to that of model A2 because of the strong relative performance of TL, but

the algorithm performance rankings are otherwise similar.
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3.2.5 Model A4: Thermodynamic switch modulating abscisic acid

receptor sensitivity

Abscisic acid (ABA) is a phytohormone that regulates growth when the plant is

subject to environmental stressors such as drought, salinity and cold weather [67].

For example, during winter ABA inhibits cell division and slows plant growth. ABA

can reduce transpiration during periods of dehydration by closure of stomata. ABA

also regulates seed dormancy to ensure that seeds do not germinate during poor

conditions for survival [68].

F I G U R E 3 . 6 : Major abscisic acid (ABA) signalling pathways in response to cellular
dehydration (taken from [69]). ABA, ABA receptors (ABARs) and protein phos-
phatases 2C (PP2Cs) regulate sucrose non-fermenting-1 protein kinase 2 (SnRK2s)
control both fast and slow ABA signalling pathways in response to cellular dehydra-
tion. Fast signalling can invoke stomatal closure, whereas slow pathways instigate

transcriptional regulation of stress response genes.

ABA acts on 14 receptors in Arabidopsis of the PYR/PYL/RCAR protein family that

regulate the behaviour of 2C-type protein phosphatases (PP2Cs) [70]. PP2Cs reg-

ulate the phosphorylation of sucrose non-fermenting-1 protein kinase 2 (SnRK2),

keeping them inactive during times of low environmental stress [13]. Phosphoryla-

tion is a reversible process that switches the activity enzymes or receptors on or off,
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regulating cellular signalling and is essential to nearly every cellular process [71].

During periods of environmental stress, ABA levels increase and inhibit PP2C activ-

ity by inducing stable complexes between PP2Cs and PYR/PYL/RCAR. The reduced

PP2C activity results in the presence of active SnRK2 kinases which enable stress

response via phosphorylation. Figure 3.6 shows the signalling pathways controlled

by the activity of the SnRK2 kinases.
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F I G U R E 3 . 7 : “Thermodynamic switch” abscisic acid (ABA) regulation model with
SSA performance benchmark for nine different algorithms. The left hand side figure
shows an overview of the abscisic acid (ABA) regulation model (taken from [13]).
In this diagram, A represents ABA, R represents a receptor and P represents a
PP2C phosphatase. The right hand side figure shows the benchmark results for this
model over nine algorithms. The benchmark was performed on a single core of an
Intel i7 2600K with 16GB RAM. The benchmark was run on each algorithm-model

combination with error bars showing the variation over 10 samples.

The ABARs are divided between monomeric and dimeric oligomeric states. Dupeux

et al. experimentally show that dimerisation prevents interactions between PP2Cs

and ABARs unless ABA is present. They created a model (see left side of Figure 3.7)

to test the competition of binding affinities between dimeric and monomeric receptor

proteins. This model demonstrated that at low ABA concentrations monomeric have

stronger binding affinities for receptor activation, whilst at higher concentrations

both receptor types contribute equally to the process. These results lend weight to
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their hypothesis that activation of signalling pathways is influenced by the thermo-

dynamic effects of receptor oligomerisation [13].

The right side of Figure 3.7 shows the results of the SSA performance benchmark of

the ABA regulation model (A4). ODM is the fastest algorithm for this model, closely

followed by SDM and LDM (which are two quite similar algorithms to ODM). The

SSA performance profile of model A2 is similar to model A4 with the exception of

PDM. Whilst PDM is still a strong performing algorithm for model A4, it only ranks

4th overall (compared to first for model A2). Interestingly, this indicates that there

are differences between these two models that only affects the relative performance

of PDM compared to other algorithms. Overall algorithm perform is lower than for

model A2, but this is to be expected as A4 is a larger model (see Table 3.1).

3.2.6 Model A5: Auxin transport case study

Auxin is an important plant hormone that influences growth and development, in-

ducing cell elongation, division and differentiation [72]. The morphogenetic pattern

formation effects of auxin do not simply occur as an outcome of reaction diffusion

[1]; auxin is actively pumped through plant cells in a specific direction. When the

concentration of auxin reaches a maxima at a plant tip, growth is induced. For ex-

ample, if light is present at one side of a plant, auxin is pumped to the unlit side.

Consequently, the unlit side of the plant is stimulated to grow at a faster rate than

the lit side. This directional growth behaviour causes the plant to bend toward the

direction of the light source in order to improve photosynthetic efficiency.

Auxin is transported directionally by import and export proteins. The AUX1 protein

acts as a cell auxin importer, whilst the PIN1 protein behaves as the plant cell auxin

exporter. AUX1 recruits auxin from all positions surrounding the cell, but the PIN1

exporter is positioned at a specific side of the cell wall to generate a directional flow

of auxin (see Figure 3.8).

Twycross et al. introduced a compartmentalised multi-scale model of auxin transport

designed to represent a row of contiguous cells segments in a plant stem [12]. This
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F I G U R E 3 . 8 : Auxin transport proteins in Arabidopsis cells (taken from [72]). Im-
port proteins (green) recruit auxin from the extracellular space into the cytosol.
Export proteins (red) transfer auxin from the cytosol into neighbouring extracellular
space in a specific direction. The net effect is to create a pumped polar flow of auxin

across plant cells.

model represents a standard experiment to measure auxin velocities using radio

labelled agar to trace the flow of auxin molecules through the plant stem. The model

is broken down into a row of stem segment compartments for spatial resolution,

between source and sink agar compartments (see Figure 3.9). There are a total of

43 compartments in the model including 21 apoplast (extracellular space) compart-

ments in alternating sequence with 20 cytoplasm compartments to model the plant

stem. Both in vitro and in silico experiments measure the number of molecules that

arrive at the sink block from the source block to determine the auxin flux.

Apoplasts

Source agar block Stem segment Sink agar block

Cytoplasms
= Efflux carriers

S(t)

LLs Ls

F (t)c1(t) c2(t) c3(t)

a0(t) a1(t)

F I G U R E 3 . 9 : Auxin transport experiment model (taken from [12]).

This case study evaluates the accuracy of different modelling approaches: (1) dis-

crete stochastic, (2) deterministic numerical solution and (3) deterministic analytical

solution. Twycross et al. stress the importance of considering multiple modelling ap-

proaches when assessing a biological system, and pay particular attention to the
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importance of stochastic modelling. They argue that stochastic modelling allows for

a mechanistic understanding at the molecular level of this inherently multi-scale

system, to observe tissue level phenomena caused by stochastic noise generated at

the cellular level [12]. Wet lab experiments reveal the velocity of auxin to be ap-

proximately 1 cm · h�1. The deterministic asymptotic model determined an auxin

velocity of 1.95 cm · h�1, whilst the stochastic simulation indicated 3.38 cm · h�1. The

authors state that these are good predictions considering the resolution of the model

and that some parameters are estimated. Furthermore, the sensitivity of the wet lab

apparatus must be considered (minimum detection level) as the stochastic model

reports the very first molecule entering the sink.
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F I G U R E 3 . 1 0 : SSA performance benchmark for nine different algorithms of the
Twycross et al. auxin transport model [12]. The benchmark was performed on a
single core of an Intel i7 2600K with 16GB RAM. The benchmark was run on each
algorithm-model combination with error bars showing the variation over 10 samples.

This auxin transport model is an example of a linear chain network topology [73]

where reaction flow is “pipelined” through a single global chain of reaction channels.

Figure 3.10 shows SSA performance for this model with PDM as the fastest algorithm

for this network topology. Interestingly, TL has relatively poor performance even

though the initial molecular species population for auxin is fairly high. This suggests

that the linear chain network topology may bottleneck the performance of the TL

algorithm. SDM is the second strongest algorithm for model A5 and has a higher
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relative performance compared to ODM for any other model evaluated in the curated

models dataset. This suggests that model A5 is subject to transient variations in

reaction channel propensities.

3.2.7 Model A6: G Protein Signalling

Model A6 is the computational model produced by Heitzler et al. to unravel the signal

transduction mechanisms controlling the angiotensin II type 1A receptor (AT1AR)

in human embryonic kidney cells [57]. The hormone angiotensin II is the strongest

regulator of blood pressure in the human body, controlling vasodilation as well as

water and salt balance [74]. AT1AR is a transmembrane protein, extending through

the lipid bilayer of the cell membrane [75], weaving in and out of the membrane

seven times. The AT1AR is a member of the of G protein-coupled receptor family

which “activate” G proteins as part of a signal transduction pathway [74].

F I G U R E 3 . 1 1 : Overview of competing G protein-coupled receptor kinase signalling
model (taken from [57]).
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Figure 3.11 is an overview of the competing G protein-coupled receptor kinase

signalling model. As knowledge of the signalling pathways is incomplete, the model

was developed from multiple hypotheses and refined incrementally until results

agreed with the experimental data for the system. This model attempts to elucidate

the extracellular signal-regulated kinase (ERK) activation by AT1AR via the G protein

and �-arrestin pathways. The G protein pathway is activated quickly but its action

is temporal, whilst the �-arrestin pathway is slow to activate and has a sustained

effect. Both pathways are regulated by competing G protein-coupled receptor kinases

(GRKs) which are responsible for receptor phosphorylation.

The variable HR in the model encapsulates the entire hormone-receptor binding pro-

cess whilst HRP1 and HRP2 are the receptor after phosphorylation by the competing

GRKs. G proteins (G) are activated (G_a) under the catalytic effect of HR as well

as the phosphorylated HRP1. However, the phosphorylated HRP2 state quenches

G protein activation through depletion of HR but induces the �-arrestin pathway.

G protein activation initiates a signalling cascade by catalysing the cleaving of the

membrane lipid PIP2 into the second messenger DAG [76]. Second messengers are

small intracellular signalling molecules that are produced upon receptor activation,

rapidly broadcasting signals to other cell areas [75]. This in turn catalyses the acti-

vation of protein kinase C (PKC), which induces the phosphorylation of ERK through

G protein-dependent mechanisms - noted as GpERK in the model. The �-arrestin

pathway catalyses �-arrestin-dependent ERK phosphorylation - noted as bpERK in

the model. Heitzler et al. consider both phosphorylated forms of ERK (GpERK and

bpERK) separately in the model as they have different physiological effects [57].

The competing G protein-coupled receptor kinase model considers a number of

hypotheses (indicated as blue circled numbers in Figure 3.11), which were exper-

imentally validated [57]. These are: (1) two distinct phosphorylated forms of re-

ceptor HRP1 and HRP2, (2) reversible �-arrestin-dependent ERK phosphorylation,

(3) enzymatic amplification of �-arrestin-dependent ERK phosphorylation, (4) non-

phosphorylated receptor can induce ERK activation and (5) two modes of receptor

phosphorylation.
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F I G U R E 3 . 1 2 : SSA performance benchmark for nine different algorithms of the
Heitzler et al. competing G protein-coupled receptor kinase model [57]. The bench-
mark was performed on a single core of an Intel i7 2600K with 16GB RAM. The
benchmark was run on each algorithm-model combination with error bars showing

the variation over 10 samples.

As shown in Figure 3.12, SDM is the fastest performing algorithm for model A7. This

implies that there are variations in reaction channel propensities over the course

of the simulation, as SDM loosely adjusts reaction search depth based on reaction

propensities. For the previous models evaluated, PDM performance has been greater

than or only slightly less than that of SDM or ODM. However, in model A6 PDM

performance is significantly lower than ODM or SDM. This reveals the existence of

model configurations that are suboptimal for the PDM algorithm.

3.2.8 Model A7: Discrete proliferation model

Unlike the other models in the curated model dataset, model A7 is not specifically a

biological model. It is a generic model that can be applied to many different fields

including biology, ecology and finance [58]. The model was devised to demonstrate

unexpected spatio-temporal behaviour that can emerge from discrete dynamic sys-

tems. This model encapsulates the idea of discrete agents that proliferate and die,

echoing the way that biological cells divide and perish. Another important feature
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of this model is that it is two dimensional and can be imagined as populations on a

grid. Parallels can be drawn between this system and the famous “Conway’s game

of life” cellular automaton [77].

F I G U R E 3 . 1 3 : Results of the Shnerb et al. discrete proliferation model for both con-
tinuous and discrete agent simulations (taken from [58]). The top left figure shows
a snapshot of the concentrations of type A agents in the two-dimensional model.
The top right figure shows a snapshot of the concentrations (on a logarithmic scale)
of type B agents. The bottom figure shows the time-series of B agent populations for
a discrete simulation (solid blue line) and continuous approximation (dashed red

line).

More specifically, my SSA simulatable realisation of the Shnerb et al. model is a 10 by

10 two-dimensional lattice upon which two types of agent (A and B) can exist at each

lattice point. In this model implementation, agents are represented as “molecular

species” which follow typical SSA “reaction” rules. Agents of type A are immortal

(i.e. are not degraded, consumed or subject to death), whilst agents of type B die

with a probabilistic rate µ. Both agent types can move around the lattice positions;

rules which are realised as diffusion reactions with probabilistic rates DA and DB
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respectively. If the two agent types meet on a lattice point during the simulation, B

agents can divide at a rate of �. This rule implies that type A agents act as catalysts to

B agent proliferation. With the assumption that the proliferation rate � of B is lower

than the death rate µ, a continuous approach would predict that the B population

would decrease and eventually become extinct. Equation 3.1 shows B time variation

as a continuous partial differential equation model [58].

@nB

@t
= DBr2nB + (�nA � µ)nB. (3.1)

However, an “exact” discrete approach reveals that individuals self organise into

spatio-temporal groups to survive and prosper [58]. This is experimentally vali-

dated by the timeseries plot of Figure 3.13 with the continuous approximation (red

dashed line) showing the B population to exponentially decrease, though the discrete

method (solid blue line) declares exponential B population growth. It is generally

assumed that continuous approximations are suitable for systems considered at the

macroscopic scale, such as this lattice scale growth model. Shnerb et al. demonstrate

that discrete, stochastic fluctuations present at the microscopic scale can have a

pronounced effect at the macroscopic scale. The top right sub-figure of Figure 3.13

shows that the populations of B agents self organise into patchy structures at the

macroscopic level.

Figure 3.14 presents the results of the SSA performance benchmark of my lattice im-

plementation of the Shnerb et al. proliferation model. Species amounts are initially

low at t = 0, but the exponential growth of the B species population leads to drastic

changes in SSA performance profiles as the simulation progresses. At t = 0, TL is

the slowest algorithm and has extremely poor performance compared to the fastest

algorithm PDM. Conversely, by t = 200 TL performs orders of magnitude faster than

any other SSA formulation. The reaction network is large compared to other models

in this dataset at 920 reactions (see Table 3.1). There are 200 species in the model

but these are actually the two agent types occupying the 100 lattice points. As so

many reaction channels are funnelled through relatively few species, the network is
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F I G U R E 3 . 1 4 : SSA performance benchmark of the Shnerb et al. discrete prolif-
eration model for nine different algorithms The left hand side figure shows the
benchmark results when run at t = 0 simulation time. The right hand side figure
shows the benchmark results when run at t = 200 simulation time. The benchmark
was performed on a single core of an Intel i7 2600K with 16GB RAM. The bench-
mark was run on each algorithm-model combination for 10 seconds of CPU time

with error bars showing the variation over 10 samples.

tightly coupled which explains strong PDM performance. This benchmark provides

clear evidence that the transient nature of stochastic simulations impact upon simu-

lation performance. Whilst it would be preferable to pick the fastest algorithm for a

given model, the system may reach states which indicates that a dynamic change of

algorithm would be optimal.

3.2.9 Model A8: Stochastic model of lacZ lacY gene expression

Model A8 investigates stochastic behaviour in simple prokaryotic gene expression.

Kierzek et al. introduced a model of single gene expression during the exponential

growth phase of a cell [78]. Based on experimental data, this system specifically

modelled lacZ gene expression in Escherichia coli. The lacZ gene is part of the lac

operon (see left side of Figure 3.15) and codes for the �-galactosidase enzymatic

protein. In Escherichia coli the lac operon enables the metabolism of lactose.
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F I G U R E 3 . 1 5 : Model of lacZ lacY gene expression with SSA performance bench-
mark for nine different algorithms. The left hand side figure shows the transcription
and translation of the lac operon (taken from [79]). The right hand side figure
shows the benchmark results for the lacZ lacY gene expression model over nine
algorithms. The benchmark was performed on a single core of an Intel i7 2600K
with 16GB RAM. The benchmark was run on each algorithm-model combination

with error bars showing the variation over 10 samples.

This model goes into fine grained detail and considers the biomechanics of transcrip-

tion and translation timings. The model results agree generally with experimental

data [78] and reveals that stochastic transcription behaviour is dependent on pro-

moter strength. Promoter strength is tuned by adjusting the binding rate of RNAP

with the lac operon promoter. Using this model, Kierzek et al. found that strong

promoters tend to produce uniform gene expression whilst weak promoters pro-

duce bursts of transcription associated with stochastic behaviour. Understanding

the effects of promoter strength is important for synthetic biology applications to

accurately control the levels of gene expression [80].

Kierzek further extended the lacZ model to include lacY expression, creating the

lacZ � lacY model that I have benchmarked in this section (see Figure 3.15) [78].

lacY encodes the lactose permease protein which has the role of transporting lactose

directionally into the cell. In this model, lacZ and lacY are expressed constitutively

which means they are constantly active. This is because the model was designed to
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test computational limits [59] and represents an Escherichia coli mutant that lacks a

lac repressor.

Kierzek et al. state that transcription, translation and mRNA degradation are “tightly

coupled” [59]. For example, their model makes the assumption that ribonuclease

and ribosomes compete for the RBS which implies reaction network coupling. A

scientist might expect PDM to be the optimal algorithm given this knowledge of

the model and claims by the authors of the PDM algorithm [29]. However, the SSA

performance benchmark for this model (see right side of Figure 3.15) reveals that

ODM is the best performing algorithm for this model, whilst PDM only ranks 4th.

3.3 Summary & conclusions

This chapter has introduced the requirements for stochastic simulation of biochemi-

cal models by presenting the process of modelling synthetic Boolean gates. A mod-

eller begins with a hypothetical mechanistic outline of the biosystem (see Figure 2.4)

which is then distilled into a set of stochastic rules between molecular species (see

Table 2.4). With these rules and species, along with specified reaction rate parame-

ters and initial species amount information, a stochastic simulation can be executed.

The output for the SSA is a timeseries log of the (species) state vector which can

then be analysed to evaluate the model hypothesis. My benchmarks of the synthetic

Boolean gate models demonstrates that it is possible to see large variations in SSA

performance caused by differences in initial species amounts.

Section 3.2 concisely describes models taken from systems and synthetic biology liter-

ature that were subsequently benchmarked for my initial treatise of SSA performance.

A total of nine model benchmarks were performed as model A7 was benchmarked

for two sets of initial species amount values. One observes that TL and PDM were

the fastest algorithms for three models each, whilst ODM and SDM are the fastest

for two models and one model respectively. Naturally, this means that five of the

nine SSA variants evaluated did not achieve a top ranking status for any of the nine

models. These include two formulations that I have found to be a popular choice for
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stochastic simulation. Firstly, DM (which can be considered the de facto standard SSA

formulation) is trivial to comprehend and implement when compared to more mod-

ern SSAs. This simplicity makes DM an attractive choice for a scientist or developer

who needs to integrate stochastic chemical kinetics into their simulation software.

However, DM was significantly slower than the fastest algorithm for each benchmark.

Secondly, NRM, which features multiple optimisations is available within established

simulation software. NRM was the first major advance in SSA technology since DM,

and has had more time to percolate through the computational biology community

than the most recent variants. Whilst NRM had a higher average ranking than DM

over the models investigated, based on these results one could not advise that it is

simply applied to all simulations if performance requires consideration.

If one compares the benchmarks on a model by model basis, one can observe

three distinct “classes” of model-algorithm performance profile. Models A1 and

A7(t = 200s) belong to a class of model where TL greatly outperforms any other al-

gorithm. Models A7(t = 0s) and A5 benchmark results belong to the second class of

model-algorithm results and have the same algorithm rankings. PDM was the fastest

algorithm for this second class of model. The final class consists of five models: A2,

A3, A4, A6, and A8. Whilst there are obvious similarities in performance profiles,

this class has larger variability in actual algorithm rankings. For example, PDM is

the fastest for A2 but only ranked fourth for model A4, but the relative performance

differences are small. The biggest variation is present in model A6 which has a large

drop in performance for PDM compared to the other models. If I sum the rankings of

the strongest algorithms for this model class I find that ODM scored 7, SDM scored

10 and PDM scored 19. This means that one can consider ODM as the most consistent

algorithm for this class of model.

From these benchmark experiments on published models, one cannot declare any

one SSA formulation to be superior to all others. In fact, one can observe that several

SSAs are capable of ranking first depending on the specific model simulated. This

lends weight to the first hypothesis of this thesis: There is no single SSA that is supe-

rior in performance for every biomodel. Furthermore, I have shown some preliminary
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findings that model-algorithm performance can be clustered into classes of similar

SSA performance profiles. Evidence has been presented that algorithm performance

is dependent on the specific model and that different types of model share similar-

ities in overall SSA performance profiles. A connection between model class and

algorithm performance implies that model characteristics influence performance.

This evidence supports the second hypothesis of the thesis: There is a relationship

between biomodel characteristics and SSA performance.

One can observe from model A7 and the synthetic Boolean gates benchmarks that

differing initial species amounts can also cause variations in algorithm performance.

Chapter 5 demonstrates my methodology to determine model characteristics using

static topological properties (thus ignoring species amounts). In Chapter 6 I will

demonstrate that is indeed possible to make accurate predictions of SSA performance

using only the static topological properties.



Chapter 4

Characterising Biochemical Models

4.1 Introduction

This chapter investigates the quantitative characterisation of stochastic biochemical

models. Two datasets of biochemical models are introduced that will enable the per-

formance and predictions experiments contained in this thesis. Biochemical models

can be represented as graphs from which one can extract topological data to find

relationships (and differences) between them. The stochastic simulation literature

only considers a few model properties that it is assumed are related to algorithm per-

formance such as reaction network size and the level of coupling between reactions.

I have performed an exhaustive appraisal of graph properties for the biochemical

model datasets which I will use in later chapters to test the hypotheses of this thesis.

“ Most [biological] network papers discuss at most two or three metrics

at a time. What justifies the choice of a few metrics, in place of a com-

prehensive suite of network metrics? Is there any scientific basis of the

choice of the metrics or are they invariably handpicked? More impor-

tantly, do these few handpicked metrics carry the maximum information

extractable about the biological system?

Soumen Roy [81] ”
75
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4.2 Computing properties of biochemical models

4.2.1 Biochemical models as graphs

Understanding biological systems requires scientists to abstract the source of their

complexity. One can catalogue the components of a biosystem, but one must also in-

spect the immense web of internal interactions that allow it to maintain homeostasis

or to change state.

Kitano states that systems biology observes four key points in order to gain a “systems”

level understanding of a complex system: (1) System structure, (2) System dynamics,

(3) Control mechanism, and (4) Design methods [2]. Simulation allows scientists to

investigate the dynamics of a system and elucidate control mechanisms. Structure

must be modelled by abstracting the network of interactions in the system, so that

common design patterns or motifs can be found from the observation of dynamics in

the context of network topology.

“Network biology” uses mathematical graphs to represent cellular networks [82]. Net-

work analysis sits at the foundations of systems biology aided by computational mod-

elling and analytical tools [83, 84]. In this thesis, my focus is on the transcriptional

regulatory networks that can be modelled as directed graphs (see Section 4.2.3).

Complex biological systems expressed as mathematical graphs can be analysed with

well established graph theoretical methods [82]. Graph topology can predict the

complex behaviours that govern biosystems and thus one would intuitively expect

to find a relationship between topology, system dynamics and ultimately simulation

performance.
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4.2.2 Experimental models

In the previous chapter, I used a small “cherry picked” set of curated fully parametrised

models (see Section 3.2.1). A comprehensive benchmark of SSA performance re-

quires an extensive dataset for a statistically meaningful analysis of algorithm be-

haviour. Thus, I now introduce a second dataset containing 380 models in SBML

[33] format retrieved from the BioModels database [85]. In Figure 4.1, a histogram

is shown displaying the spread of model size within the dataset, quantified by reac-

tion_num_vertices (which equates to the reaction network size of a model). It can be

seen from the histogram that the vast majority of BioModels have a reaction network

size of 50 reactions or less, but there are a small number of larger models (up to

1800 reactions) also used for the analysis.
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F I G U R E 4 . 1 : Histogram displaying spread of model reaction size within the
BioModels dataset. Number of reactions equates to the reaction size of a model.

The x-axis bin size is 25. The y-axis is on a square root scale.
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The BioModels usually contain deterministic rate functions instead of stochastic rate

constants, and thus a decision was made to set the stochastic rate constants of all

reactions to 1.0. This essentially converts them into non-deterministic models. This

decision also means that property analysis is performed upon unweighted depen-

dency graphs derived from these models (i.e. graphs lacking reaction rate data).

Furthermore, in order to simplify models and remove extra variables that cannot be

captured by the static dependency graph analysis, the amounts of all species were

set to 100 and remain constant throughout simulation.

It should be noted that this means that any analysis performed on the BioModels will

not be able to account for transient changes within a simulated model. The curated

models dataset (see Section 3.2.1) is completely parametrised but small in size (8

models) and not sufficient for definitive analysis. Therefore, analytic insight garnered

from the BioModels dataset will be tested using the curated models dataset. I wish

to highlight that whilst there are many complete deterministic models available

from online databases, few complete curated stochastic models are freely available.

Therefore, a future analysis featuring complete stochastic models will have to be

preceded by the creation of a dataset with a reasonably large number of curated

stochastic models. This is an open challenge for the systems and synthetic biology

communities at large.

4.2.3 Graphs and graph theory

Graph theory is a branch of discrete mathematics that abstracts the representation of

discrete entities and their relationships. Graphs consist of symbolic points (referred to

as nodes or vertices) that are connected by symbolic lines (referred to as edges). Each

vertex will typically represent an entity and an edge will represent a relationship

between a pair of vertices. These relationships can be bi-directional (undirected

graph) or uni-directional (directed graph), with directed edges possessing an arrow

head to signify relationship directionality. Meta-data can be associated with edges

or vertices by graphs to label the graph. Graphs can also be weighted which means
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they have associated edge value labels, for example to represent distances if vertices

were equivalent to geographical locations.
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F I G U R E 4 . 2 : Diagram of an example graph. This graph is weighted and each of the
5 vertices is labelled. The graph contains 5 weighted edges, 2 of which are directed.

The graph paradigm can be applied to a diverse array of discrete subjects, for example

algorithms can be represented as graphs and a subsequent analysis can measure

the algorithm’s computational complexity. Networks are analogous to graphs, for

example in a social network each vertex represents a person and an edge represents

a nominal friendship between 2 people (i.e. 2 vertices). Analysis of the social network

graph can reveal relationships such as friendship groups and predict which friends

have not yet made connections.

Biochemical models consist of molecular species entities and a set of reactions that

define the relationship between species. Therefore, there is a concomitant mapping

from a biochemical model to a species network graph (SNG) (see Section 4.2.5).

A reaction dependency graph (RDG) can also be generated by setting reactions

as vertices and edges to represent the species dependency relationship between

reactions (see Section 4.2.4).
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4.2.4 Exemplar reaction network & reaction dependency graph

(RDG) generation

In this section, I introduce an example reaction network (i.e model) upon which I

demonstrate the generation of a RDG. Table 4.1 lists the reactions in an example

reaction network and the resulting dependencies for each reaction. I define depen-

dencies as the reactions that need to be updated when a reaction is executed at each

iteration of the SSA.

Name Reaction Depends Affects Update

R1 A! B A A, B R1, R2
R2 B! C B B, C R2, R3
R3 C + D! E C, D C, D, E R3, R4, R6
R4 E! E + F E F R5
R5 F! A F A, F R1, R5
R6 E! B E B, E R2, R4, R6

TA B L E 4 . 1 : Example reaction network and reaction dependencies from McCollum
et al [27].

It is important to note the affects column of Table 4.1 as this operation allows reaction

dependencies to be calculated for each reaction. The species that are affected by a

reaction are those whose values are changed when the reaction is executed. R4

(E ! E + F ) illustrates this by only affecting F , because the net effect on the

population of E is zero when the reaction is executed. Whilst a reaction of this type

is chemically implausible, it can be used to represent a gene transcribing a protein

in a high level biochemical model (Gene ! Gene+ Protein).

After a reaction is executed, if the affected species are members of the set of species

any reaction depends (see Table 4.1) upon, then those reactions need to be updated.

For example, executing R1 affects species A and B. Therefore, R1 needs to be up-

dated as it depends on A. R2 needs to be updated as it depends on B.
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The naive method of generating a RDG is shown in Algorithm 15. This method

works by iterating through each reaction and testing whether it affects any of the

other reactions if executed, resulting in O(M2
) scaling. The resulting RDG based on

the reaction network in Table 4.1 is visualised in Figure 4.3.

Reaction Dependency Graph (RDG)

In a reaction dependency graph, each vertex corresponds to a unique reaction,

hence the number of vertices in a reaction dependency graph is equal to the

number of reactions in the model. A directed edge is placed from vertex Vi to

vertex Vj if the firing of reaction Ri changes the propensity of reaction Rj. Any

duplicate edges are removed from the graph.

R1 R2 R3

R4 R5 R6

F I G U R E 4 . 3 : Reaction Dependency Graph (RDG) generated from exemplar reac-
tion network in Table 4.1. In this graph, directed edges point to the reactions which
need to be updated (propensity recalculated) when a particular reaction is executed.
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4.2.5 Species network graph (SNG) generation

The species network graph of Table 4.1 is shown in Figure 4.4. This type of graph

maps to the reaction network with negligible processing or transformation. Put

simply, each species is a vertex in the graph and a directed edge is placed between

each product and reactant of every reaction in the model.

Species Network Graph (SNG)

In a species network graph, each vertex corresponds to a unique species, and

so the number of vertices in a species network graph is equal to the number of

species in the model. A directed edge is drawn from vertex Vi to vertex Vj if for

any reaction species Si is a reactant and species Sj is a product. Any duplicate

edges are removed from the graph.

A B C

D E F
F I G U R E 4 . 4 : Species Network Graph (SNG) generated from exemplar reaction

network in Table 4.1.

This graph results in a visualisation that a biologist would typically create to un-

derstand a biosystem. However, the layout would usually be less condensed than in

Figure 4.4, with edge overlaps avoided if possible to improve human comprehension

of the system.
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Even in the small example model from Table 4.1, the connectivity profile of the SNG

and RDG are quite distinct. This indicates that there are different features available

from analysing both model-graph interpretations individually.

4.3 Analysis of graphs

Models were characterised by calculating the values of a wide range of graph prop-

erties of the reaction dependency graph and species network graph of every model.

The reaction and species graph properties which were calculated using the igraph C

library [86], are summarised in Table 4.2. Properties which relate to individual or

subsets of vertices or edges were calculated over all vertices or edges in the graph,

and the minimum, maximum and mean values recorded. Where it was possible to

calculate a property considering the graph as undirected (i.e. replacing all directed

edges by undirected edges), or only using incoming or outgoing edges, then val-

ues for both directed and undirected, or incoming and outgoing edges were also

calculated.

4.3.1 Number of graph vertices and edges

The simplest graph properties to quantify are the number of vertices V and edges

E. These values can typically be found by querying the size of the data structures

that describe the graph (hence O(1) time complexity). In the RDG, the number of

vertices is equivalent to the number of reactions in the graph, whilst vertices equate

to species in the SNG.

V = Number of Vertices (4.1a)

E = Number of Edges (4.1b)
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Computational Complexity Graph Property

O(1)

† number of edges, number of vertices, density of
graph

O(V )

† min|mean|max outgoing edges, min|mean|max in-
coming edges, min|mean|max all edges

O(V + E)

† weakly connected components, articulation points,
bi-connected components, reciprocity of directed
graph

O(V E) average geodesic length (undirected), average
geodesic length (directed), min|mean|max out-
going closeness, min|mean|max incoming close-
ness, min|mean|max closeness in undirected graph,
min|mean|max betweenness, min|mean|max be-
tweenness in undirected graph, min|mean|max
edge betweenness, min|mean|max edge between-
ness undirected graph

O(V (V + E)) min|mean|max shortest path in undirected
graph, min|mean|max shortest incoming path,
min|mean|max shortest outgoing path

O((V + E)

2
) girth of undirected graph

O(V d2) transitivity of graph vertices, average local transitiv-
ity

O(V 4
) min edge connectivity

O(V 5
) min vertex connectivity

TA B L E 4 . 2 : Summary of model topological properties analysed. Complexity relates
to worst case time complexity for the computation of the property, where V is vertices,
E is edges, and d is the average node degree. Properties marked with † have constant

or linear scaling and are known as the restricted set of fast properties.

4.3.2 Graph density

Graph density is a measure of how densely interconnected a graph is with regard to

its edges. This is equivalent to the term degree of coupling used by biologists when

referring to a reaction network model. Graph density is a computationally trivial

property to calculate (O(1)) as the expression to compute it only relies on V and E

(see Equation 4.2).
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density =

2|E|
|V |(|V |� 1)

(4.2)

Equation 4.2 assumes that the graph is undirected, thus one ignores edge direction-

ality of the RDG and SNG when calculating this property.

4.3.3 Graph degree

The degree of a vertex, is a count of the number of edges that are connected (incident)

to it. For the special case of loops (i.e. an edge from one vertex to itself), the edge

is counted twice. When considering a directed graph, one can restrict the counting

to incoming or outgoing edges. To condense graph degree analysis, I record the min,

mean and max vertex degree values for each of the incoming, outgoing and total

edges. Computational complexity of degree calculations is O(V ), because one needs

to iterate through each vertex in the graph and count the number of edges incident

to it.

4.3.4 Weakly connected components

4

5
1

2

3

6

weakly connected
    components

F I G U R E 4 . 5 : Diagram of a graph made up of 6 vertices that possesses 2 weakly
connected components. Each vertex set {1, 2, 3} and {4, 5} are weakly connected
components. Each weakly connected component holds the maximal connected prop-
erty, as if (for example), vertex 6 was added to subgraph {4, 5} forming subgraph

{4, 5, 6}, the subgraph would no longer be connected.

A connected graph is one where there is a path between any two vertices in the graph.

A connected component of an undirected graph is a subgraph of a supergraph that con-

tains a path between vertices (i.e. the subgraph is connected), but is not connected
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to other vertices in the supergraph. A subgraph is maximal connected if connecting

any more vertices from the supergraph results in the subgraph no longer retaining

connected status. Weakly connected graphs are directed graphs (such as the RDG and

SNG) that are maximal connected when edge directionality is ignored. Thus, weakly

connected components are maximal connected subgraphs of a supergraph. This can be

calculated using a “backtracking” depth first search method, in O(V + E) time[87].

4.3.5 Articulation points

Articulation points are vertices in a connected graph, that if removed result in the

graph no longer being connected. Thus, removal of an articulation point increases

the number of connected components in a graph. Tarjan and Hopcroft’s method can

be used to find the articulation points in a graph [87]. The algorithm is based on a

single pass of depth first search, hence has linear O(V + E) time complexity.

4.3.6 Biconnected components

41
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7

articulation
points
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F I G U R E 4 . 6 : Diagram of a graph possessing 2 articulation points and 2 bicon-
nected components. Vertex sets {1, 2, 3, 4} and {5, 6, 7} are from biconnected com-
ponents marked A and B respectively. Vertices 4 and 5 are articulation points that

separate the 2 biconnected components A and B.

A biconnected graph is a graph that contains no articulation points. Biconnected

components of a graph are maximal biconnected subgraphs which are connected to
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other biconnected components by articulation points. Biconnected components can

be found using Tarjan and Hopcroft’s method in linear O(V + E) time [87]. This

property is an indicator of network redundancy and thus robustness.

4.3.7 Directed graph reciprocity

Reciprocity of a directed graph is a measure of edge bidirectionality in a graph.

The model analysis in Section 4.4 uses the ratio of the number of bidirectional

connections LB and the total number of connections L (see Equation 4.3). This

computation of edge directionality can be made in linear O(V + E) time.

reciprocity =

LB

L
(4.3)

4.3.8 Shortest paths in graph

For this measure, the shortest path from each vertex v in the graph to every other

vertex is observed. One could consider this a measure of the size of the graph in terms

of the “spread” of connected vertices. This measure can be contrasted to the size of

the graph in terms of simply counting the number of vertices. The shortest paths

for all vertex pairs in the undirected and directed graph are found, then minimum,

mean and maximum values are recorded.

In an unweighted graph, O(V + E) breadth first search can be used to calculate

shortest path for an arbitrary vertex. Thus to calculate all shortest paths for all

vertices the computational cost is O(V (V + E)). As a side note, Dijkstra’s algorithm

would be used in order to calculate shortest paths for a fully weighted graph and the

Bellman-Ford algorithm for a partially weighted (or negatively weighted) graph.
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4.3.9 Centrality

Centrality is a measure of how “central” a particular vertex is in a graph, or in other

words, how much of a “focal point” a vertex is within a graph [88, 89]. Section 4.3.3

discusses the use of degree as a network property which one should note is a measure

of centrality known as degree centrality. Degree centrality measures the number of

incident edges for a vertex, and is thus a local centrality measure as it only considers

connectivity to vertices that are adjacent to the vertex of interest.

In Section 4.4, I analyse 2 further measures of centrality: closeness and betwee-

ness. Closeness and betweenness centrality differ from degree centrality in that

they consider non-adjacent vertices and can be regarded as measures of global

centrality. The closeness and betweeness centrality measures are defined in Sec-

tions 4.3.9.1 & 4.3.9.2.

4.3.9.1 Closeness centrality

Closeness uses (shortest path) distance as a metric to quantify the level of vertex

centrality within a graph. Closeness centrality of a vertex v is defined as the inverse

sum of the shortest paths between v and all other vertices (see Equation 4.5) [88].

Equation 4.4 defines d(v, t) as the shortest path between v and an arbitrary target t

(where h are intermediate vertices).

d(v, t) = min(xvh + ...+ xht) (4.4)

closeness(v) =

"
NX

t=1

d(v, t)

#�1

(4.5)

However, this method is not appropriate for graphs with disconnected components

[88], as there is an infinite distance between disconnected vertices. Opsahl shows

that this can be remedied by rearranging Equation 4.5 to be the sum of inversed
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distances (rather than the inverse of the sum of distances). This rearrangement is

valid because the limit of 1 when divided by infinity is zero (see Equation 4.6).

closeness(v) =
NX

t=1

1

d(v, t)
(4.6)

Closeness centrality can be computed using Newman’s method [90] in O(V E) time.

Newman’s method employs Dijkstra’s algorithm to calculate shortest paths [91].

4.3.9.2 Betweenness centrality
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F I G U R E 4 . 7 : Diagram of a graph possessing a high betweenness vertex. Vertex 7
has high betweenness, and if removed would catastrophically damage the network.

Betweenness measures the likelihood a vertex v is found to be an intermediate ver-

tex on the shortest path of 2 arbitrary vertices s, t of a graph (see Equation 4.7).

This means that a vertex with high betweenness is in a position of “control”, as

an important intermediate to relay information across a network [92]. Therefore,

betweenness is also a measure of system robustness, as the removal of a high be-

tweenness node may have a devastating effect on the network [93]. As an example,

removal of vertex 4 in Figure 4.7 (a vertex with high degree centrality) would not

seriously damage the network, but removal of vertex 7 (high betweenness centrality),

would damage the network severely. In terms of algorithm performance, this may
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indicate a potential bottleneck as the flow of network behaviour may be funnelled

through this vertex [88].

betweenness(v) =
X

s 6=v 6=t

�st(v)

�st

(4.7)

Betweenness centrality can be computed using Brandes’ method [94] in O(V E) time.

Brandes’ method employs Dijkstra’s algorithm to calculate shortest paths [91]. Edge

betweenness is analogous to betweenness, but considers edges rather than vertices.

4.3.10 Average geodesic length

A geodesic in graph theory is the shortest path between 2 vertices. This particular

metric measures all the shortest paths in the graph and finds the average. The

average geodesic length can be computed in O(V E) using Dijkstra’s algorithm [91].

NOTE: The average geodesic length metric I measure is closely related to the mean shortest

path metric. Whilst geodesic length is synonymous with shortest path, the shortest path metrics

gather paths for all vertices including the edge case of V
i

to V
i

. However, the average geodesic

length metric excludes the path from V
i

to V
i

.

4.3.11 Girth of graph

4

5
1

2

3

6

cycle within
graph

F I G U R E 4 . 8 : Diagram of a directed cyclic graph with a girth of 3. The vertex set
{1, 2, 3} is connected in a closed loop, beginning and ending at the same vertex.
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The girth of a graph is defined as the length of the shortest cycle that exists within

the graph [95]. For graphs that have no cycles (acyclic graphs), the girth is recorded

as infinite.

4.3.12 Graph transitivity

Graph transitivity can be considered as a measure of clustering within a graph and is

equivalent to the clustering-coefficient of a graph [96]. There are three measures of

graph transitivity to consider: (1) global transitivity (2) local transitivity (3) average

local transitivity.

NOTE: Graph transitivity should not be confused with the edge-transitive or vertex-transitive

properties of a graph. These properties are related to graph automorphism rather than any

notion of a clustering-coefficient.

Global transitivity is the ratio of closed triples in a graph to the total number of

triples (see Equation 4.8). A triple is a subgraph of 3 connected vertices that exists

within the graph (see Figure 4.9). A closed triple (also known as a triangle) implies

that all 3 vertices in the triple are connected to one another. An open triple implies

that 2 out of 3 vertices are connected. The total number of triples in the graph is

simply the sum of open and closed triples.

global transitivity (CG) =
number of closed triples
total number of triples

(4.8)

Local transitivity measures the “cliquishness” of the local neighbourhood for a par-

ticular vertex v [97]. If v is connected to kv neighbours, the total possible number of

edges between those neighbours is Xt(v) =
kv(kv�1)

2 . Local transitivity is defined as

the ratio of extant connections between neighbours Xe(v) and total possible connec-

tions Xt(v).

local transitivity (CL) =
Xe(v)

Xt(v)
(4.9)
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1
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4

6

5

open triple

closed triple (triangle)

BA

F I G U R E 4 . 9 : Diagram of a graph with a closed triple and an open triple highlighted.
Vertex set {1, 2, 3} in region A contains a closed triple (triangle) as there are edges
{{1, 2}, {2, 3}, {1, 3}} ⇢ E. Vertex set {4, 5, 6} in region B contains an open triple

as there are edges {{4, 5}, {4, 6}} ⇢ E whilst {5, 6} 62 E.

Average local transitivity ¯CL is a global measure of transitivity in a graph. This is

calculated by taking the mean of CL for all vertices in the graph.

average local transitivity (

¯CL) =
1

n

nX

i=1

CL(i) (4.10)

4.3.13 Connectivity

In a connected graph, connectivity considers the level of robustness in a network

by measuring the minimum number of graph elements that need to be removed

in order for the graph to become disconnected [98]. Thus there are two measures:

(1) vertex connectivity evaluates the smallest subset of vertices that require removal

for disconnecting the graph and (2) edge connectivity that considers edge removal.

Graph connectivity can be computed by solving multiple max-flow problems that can

be derived from the graph [99]. A max-flow problem is defined as calculating the

maximum flow (based on edge weights as flow capacity) of notional information

from a source vertex to a sink vertex. The igraph library has V 5 time complexity for

vertex connectivity and V 4 for edge connectivity calculations.
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4.4 Model property analysis

4.4.1 Methods

Model properties (described in Section 4.3) were collected for each model in the

BioModels and curated models datasets (see Sections 4.2.2 & 3.2.1). 54 properties

were generated for each of the reaction and species dependency graphs of a model.

An additional property, reaction graph stiffness ratio, was also calculated bringing

the total number of properties to 109. For some models certain properties were not

possible to compute, e.g. when a division by zero occurred. I replaced all missing val-

ues with zeros. Nine model properties were found to be constant for all models and

therefore would be of no use as performance indicators and thus were removed from

the data set, resulting in 100 model properties available for analysis. By comparing

the model properties of both datasets, I wished to assess whether the BioModels

were representative of the curated models.

4.4.2 BioModel property correlation analysis

Roy proposes using heatmap visualisations as an important tool for network analysis

in systems biology and other fields [81, 100]. Figure 4.10 presents a heatmap of

the 100 analysed network property correlations for all 380 models in the BioModels

dataset. Property correlation values were recorded as the Pearson’s correlation coef-

ficient (see Appendix A.1) which measures the linear relationship of each possible

pair of property variables. The correlation heatmap has a thin diagonal line of single

red points (positive linear correlation) where the same two properties are being

compared and can be disregarded. There are also larger square block regions of

red that are present on the diagonal. This is because multiple properties that have

been generated using the same methods are grouped together on both axes. For

example, region A shows that there are nine property values generated using the

closeness centrality metric from the reaction dependency graph of the models. The
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B

A

F I G U R E 4 . 1 0 : Heatmap of model graph property values correlations for the BioModels dataset. Both axes
list 100 properties analysed from the reaction dependency graph and species network graphs in the same order.
The heatmap values shown display the Pearson correlation values for each property-property combination over all
380 models in the BioModels dataset. Red values indicate positive correlations and blue values indicate a negative
correlation, whilst whiter values indicate no/low levels of correlation. Vector version for high resolution viewing

available at: http://ssapredict.ico2s.org/ssapredict/static/analysis/propertyheatmap.pdf

different variants of this metric vary the recorded edge directionality of the RDG and

collects the max, min and mean values for each variant. One can observe that all

of these property values are closely correlated. This raises the possibility that many

of the properties within such a group may duplicate feature information (and thus

some may be removed without losing feature information). Blue regions of the plot

indicate a negative (i.e. inverse) linear relationship between property variables. The

largest regions of inverse linear correlations exist between the closeness centrality
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C

D

E

F I G U R E 4 . 1 1 : Hierarchically clustered heatmap of model graph property value correlations for
the BioModels dataset. Both axes list 100 properties analysed from the reaction dependency graph
and species network graphs in the same order. The heatmap values shown display the Pearson cor-
relation values for each property-property combination over all 380 models in the BioModels dataset.
Red values indicate positive correlations and blue values indicate a negative correlation, whilst whiter
values indicate no/low levels of correlation. Vector version for high resolution viewing available at:

http://ssapredict.ico2s.org/ssapredict/static/analysis/propertycluster.pdf

metrics and the shortest path length metrics (see region B). This corroborates the

theory as closeness centrality is calculated using the inverse sum of shortest path

lengths from a vertex v to all other vertices (see Section 4.3.9.1).

Figure 4.11 uses the same property correlation data as Figure 4.10, but uses hierar-

chical clustering on both axes. Clusters along the diagonal of this plot also reveal
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areas of duplicated feature information (see regions D & E). The hierarchical clus-

tering improves the visibility of feature redundancy between unrelated properties.

Region D shows that the measures of betweeness is clustered with the number of

edges, number of vertices and node degree metrics. One should note that between-

ness measures are computationally expensive (O(V E) time), whilst the other metrics

are trivial to compute. Region E confirms that different variants of closeness mea-

sures are tightly clustered with one another, thus one only needs to compute a subset

to extract full feature information. One can also see that density is clustered strongly

with closeness measures. Density is trivial to compute (O(1) time) compared to

closeness measures, and this analysis reveals it may be possible to capture relevant

feature information using just the density metric. Region C increases the scope of

the findings of region B (from Figure 4.10) which showed that there is an inverse

relationship between closeness measures and shortest path metrics. One can observe

that the average path length, diameter, articulation points and components metrics

are also inversely related to the closeness measures.

Clustering in this fashion not only demonstrates how strongly correlated pairs of arbi-

trary properties are, but also elucidates those that have a similar vector of correlation

values for all n properties. Properties with very similar correlation vectors describe

the same notional feature information, providing the opportunity to restrict the set

of evaluated properties without compromising underlying feature data. This analysis

reveals that within the domain of interest, there are strong feature relationships be-

tween different properties. For example, the number of vertices in the RDG is tightly

clustered to the mean betweenness centrality of the RDG. This result is significant

because it means that a property calculable in O(1) time holds similar information to

a property that requires O(V (V E)) time. In general, this analysis shows that a large

number of computationally expensive measures are clustered with fast-to-compute

measures.

NOTE: Whilst betweenness centrality is calculable in O(V E) time, one must calculate it for every

vertex to gain the mean value over all vertices. Therefore, the computation of this property has

O(V (V E)) time complexity.
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4.4.3 Dataset comparison and analysis using model topological

properties

A quantitative analysis of model properties used the Mann Whitney U test (see Ap-

pendix A.2) to investigate whether both experimental model datasets considered in

this thesis share the same distributions of values for a given property. This statistical

test compared the distributions of values for each property of the BioModels and

curated models datasets, given the null hypothesis that the distributions for both

datasets are equal. The null hypothesis (distribution of values for a given property

was equivalent) was rejected for 55 out of 100 properties (p-value <= 0.05). This

result is important because it demonstrates that the BioModels dataset does not com-

prehensively represent the fully specified curated models that I have sourced from

computational biology literature. However, it does demonstrate that I have at least

45 properties that would be suitable for generating analysis that can be applied to

fully parametrised “real world” models. Furthermore, the sample size for the curated

models dataset (8 models) is small compared to the BioModels dataset (380 models)

and thus the likelihood that the distributions would be equivalent is quite optimistic

as the curated models values may themselves be outliers for a given property.

As I am interested in whether analytical insight from the BioModels dataset are

applicable to the fully specified curated models, properties where curated models

values lie within the range of BioModels values should still be relevant even if the

distributions are not equivalent. A visual analysis was performed by comparing the

distributions of values for each property in the BioModels dataset as black box-

plots (including black points as outliers) against the curated models property values

represented by coloured triangle points (see Figures 4.12 & 4.13). These properties

are extracted from the topology of the reaction dependency graph (RDG and species

dependency graphs (SDG) of the models. For properties that examine the minimum,

mean or maximum value of a particular metric have been condensed such that

multiple BioModels box-plots and curated models values are shown in a single plot.

This analysis allows one to see where there are properties that the curated models
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values lie outside of the range of the BioModels distribution and also properties for

which the curated models would be considered outliers for the BioModels dataset.

Model size can be evaluated by observing the number of vertices for the RDG (num-

ber of reactions in the model) and SDG (number of species in the model). Fig-

ures 4.12 & 4.13 show that the number of vertices for curated models does lie within

the range of BioModels values. However, one should note that both plots are on

a logarithmic scale and the curated models values tend to be distributed toward

the upper quartile of BioModels values. This indicates that the BioModels dataset

overrepresents smaller models, a finding which is corroborated by the histogram of

BioModels reaction network size (see Figure 4.1).

All of the plots that display the mean shortest path metrics for both RDG & SDG con-

tain curated models values that lie outside of the range of BioModel values. Other

properties which also have out-of-range curated models values are undirected aver-

age path length (RDG & SDG), mean directed edge betweenness (RDG), minimum

directed edge betweenness (SDG), mean undirected edge betweenness (RDG) and

minimum undirected betweenness (SDG). For these properties, the distribution of

curated models values is higher than the distribution of BioModels values. This result

can be explained by the presence of many smaller models in the BioModels dataset.

Higher values for properties such as shortest path, average path length and between-

ness also indicates that curated models may have reaction and species networks that

are more strongly coupled than those for the BioModels dataset.

This analysis identifies the topological properties that have few good training exam-

ples for the BioModels dataset: edge connectivity (RDG & SDG) and girth (RDG).

The low BioModel edge connectivity values indicate that the models are potentially

“fragile” as removing a single edge can disconnect the dependency graphs. The fixed

RDG girth value of 3 over all BioModels and curated models, indicates that every

graph analysed has short cycles (indicating coupling), which is a finding that may

bode well for PDM algorithmic performance.
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There were also several other properties for which there was little variation in cu-

rated models values: articulation points (RDG), weakly connected components (RDG

& SDG), girth (RDG) and biconnected components (RDG). Most curated model val-

ues (and the median BioModels values) for weakly connected components are 1

(with an upper quartile value of 5), indicating that these biosystems have a high

level of interconnectivity and dependencies tend to be fully interconnected. The girth

values for the SDG indicate coupling between species dependencies in these systems.

The number of articulation points for the RDG is usually 1, indicating robust systems

(i.e. with only one disconnection point). This insight is important when combined

with the edge connectivity findings. Thus, it is likely that these systems are robust,

but usually possess one critical “hub” node. However, one must not forget that as the

majority of these models are small, this will negatively affect the prospect of finding

multiple articulation points.
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F I G U R E 4 . 1 2 : Property values and statistics of models in the BioModels and curated models datasets.
The black box-plots show the property statistics for the BioModels dataset (this includes the black points which
represent outliers). The horizontally jittered coloured triangles display the property values of models in the curated
models dataset. The order of plots (row major) has been sorted by the p-value of the associated Mann-Whitney U
test that compared the distributions of the curated models and BioModels values for each property, and where there
were multiple subplots a mean p-value was used. Property types with computational complexity  O(V +E) are
denoted with a clock symbol at the bottom right corner of a plot. Specific properties selected by feature selection
methods (see Section 6.4) are indicated by a pointing finger symbol. Vector version for high resolution viewing

available at: http://ssapredict.ico2s.org/ssapredict/static/analysis/property-distribution-plots.pdf
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F I G U R E 4 . 1 3 : Property values and statistics of models in the BioModels and curated models datasets.
The black box-plots show the property statistics for the BioModels dataset (this includes the black points which
represent outliers). The horizontally jittered coloured triangles display the property values of models in the curated
models dataset. The order of plots (row major) has been sorted by the p-value of the associated Mann-Whitney U
test that compared the distributions of the curated models and BioModels values for each property, and where there
were multiple subplots a mean p-value was used. Property types with computational complexity  O(V +E) are
denoted with a clock symbol at the bottom right corner of a plot. Specific properties selected by feature selection
methods (see Section 6.4) are indicated by a pointing finger symbol. Vector version for high resolution viewing

available at: http://ssapredict.ico2s.org/ssapredict/static/analysis/property-distribution-plots.pdf
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4.5 Property computability and complexity

Figures 4.12 & 4.13 highlight properties that are “fast” to compute, as indicated by

clocks in the bottom right corner of the sub-plots. These are properties that have

time complexity that scales at most linearly with the size of the dependency graphs

(and thus the size of the models). From Table 4.2 which lists the properties analysed

and respective computational complexities, one can see that time scaling can be

as favourable as O(V 5
). In practice, I found that once the size of a model reaches

the order of 105 reactions, the more expensive properties require a large amount of

time to be computed. In fact, if the simulation time of the large model executed is

relatively sufficiently short, property calculations could greatly exceed the CPU time

required by the simulation.

The third hypothesis of this thesis: “An optimal selection of SSA can be made for an

arbitrary model” is closely related to the second hypothesis: “There is a relationship

between biomodel characteristics and SSA performance”. To be explicit, one would

use biomodel characteristics to determine the optimal SSA for an arbitrary model. If

these hypotheses hold, any practical realisation of this relationship would depend

upon a relatively fast evaluation of model properties. In other words, any tool based

on these findings would need to determine the optimal algorithm in a timely manner

to be of any significant value. An estimate of relative algorithm performance based

on short “pre-runs” of available SSA implementations would be preferable to a slow

property analysis. However, as demonstrated in Section 3.2.8, stochastic simulations

are prone to transient algorithm performance variability. Therefore, a small “pre-run”

does not guarantee an accurate selection of the fastest SSA for the entire duration

of the simulation.

There are two steps that are required for the model property analysis: (1) dependency

graph generation and (2) graph property generation. SDG generation is computa-

tionally trivial as there is a direct mapping from a stochastic model to its respective

SDG. RDG generation requires an algorithmic method to calculate dependent reac-

tions for each reaction in the system. The standard approach of generating the RDG
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requires O(M2
) time (see Algorithm 15). For large reaction networks, this O(M2

)

time scaling is undesirable. To remedy this, I have developed a O(M) time com-

plexity method for generating the RDG (see Section 4.5.1). Likewise, for tractable

large model graph property analysis one should only consider the  O(V +E) graph

properties. Property correlations in Section 4.4.2 indicate that useful feature infor-

mation of biomodel properties is duplicated in fast-to-compute and slow-to-compute

properties. Thus, I may be able to remove some slow-to-compute properties without

detrimentally affecting the quality of any analysis relating biomodel characteristics

to algorithm performance.

4.5.1 O(M) Reaction dependency graph generation

In this section, I introduce a novel algorithm to generate a RDG in linear time

(see Algorithm 16). This can replaces the typical “naive” O(M2
) RDG generation

that is found in established simulation software implementations [101, 102] (see

Algorithm 15). My method works by pre-calculating a species index (SI) lookup table

that stores reactions that depend on each species. When computing a particular

reaction’s dependencies, I lookup the reaction’s affected species in the SI table to get

the list of respective reaction dependencies.

One should note that my method still requires worst case O(M2
) space in order to

store the complete reaction dependency graph. Indurkhya and Beal [48] have also

introduced a dependency graph that provides O(M) generation time, but also offers

O(M) space complexity. Their bipartite dependency graph uses the same approach

as my O(M) RDG generation method, but instead stores the SI lookup and affected

species intermediates. When a particular reaction dependency set is required, the full

list for a single reaction can be generated from these intermediates. This is effectively

a trade off between algorithm performance and space - however this algorithmic

cost is quickly amortised for larger models. Therefore, the Indurkhya-Beal method

can be considered the state-of-the-art with regard to SSA dependency graphs.
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Algorithm 16 Fast RDG Generation (O(M))
1: procedure FA S T R D G(reactions)
2: . initialise
3: store list of reactions RL [1..M ]
4: create empty dependency graph DG
5: create empty species index table SI [1..N ]
6: . generate species index table
7: for i RL[1..M ] do
8: for j  reactantsi do
9: . append i as affected by species j

10: SIj  i
11: end for
12: end for
13: . now generate dependency graph
14: for i RL[1..M ] do
15: for j  affectedi do
16: . reactions indexed by j are dependencies of i
17: DGi  SIj
18: end for
19: end for
20: end procedure

4.6 Summary & conclusions

This chapter introduced a methodology for characterising biochemical models of

the type that can be executed by stochastic simulation algorithms. I have adopted a

technique used for systems level biology: network analysis. Some SSA variants (e.g.

NRM, ODM) use dependency graphs to boost computational performance. Mathe-

matical graphs are analogous to networks, and can be quantitatively assessed using

graph topological properties. Due to a lack of fully parametrised biochemical models,

network analysis is performed upon unweighted graphs. The analysis does not take

reaction rates into account (i.e. an extremely rare event carries as much weight as a

commonly executed reaction). Furthermore, a topological (structural) analysis of a

model does not consider transient variability due to differing states reached during

simulation.

Chapter 3 introduced the concept that algorithm performance is related to model

characteristics. It was shown that algorithm performance profiles fall into groups or

“classes” of model. Using the data generated from the graph topological analysis of
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the models, I can begin to address the second and third hypotheses of this thesis.

To comprehensively evaluate these hypotheses, I first need to collect comprehensive

benchmark data for the BioModels dataset. SSA benchmarking is addressed in the

following chapter.





Chapter 5

Benchmarking Stochastic

Simulation Algorithms

5.1 Introduction

Many published SSAs are tested with an insufficient number of models, mostly tai-

lored to properties of the newly introduced algorithm. Consequently, it is hard to

extrapolate or compare performance between algorithms as each will often be bench-

marked against competitors’ algorithms using only favourable models. To address

this issue, I have created a performance benchmarking suite which allows for a direct

and unbiased comparison of stochastic simulation algorithms. The benchmark suite

provides reference implementations of 9 different SSAs and a set of 380 test mod-

els. Aside from analysing computational performance, I have checked the statistical

correctness of the algorithms using the Discrete Stochastic Models Test Suite [103].

107
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F I G U R E 5 . 1 : Overview of benchmarking suite

5.2 Benchmarking suite

5.2.1 Overview

The benchmarking suite is designed to be a multi-purpose tool for researchers us-

ing stochastic simulation algorithms to simulate biological reaction networks. A

schematic representation of the structure is shown in Figure 5.1. Users supply their

stochastic models in SBML format [33]. Software developers are able to implement

their own algorithms and test them in the suite against other implemented algo-

rithms. Furthermore, developers can use the source code for the supplied algorithms

in their own software. The benchmarking suite is released under the terms of GNU

General Public License (version 3 or later).
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5.2.2 Algorithm implementations

Algorithms were implemented in the benchmarking suite with as little deviation as

possible from the descriptions in the literature. The code was written in C++ in an

object oriented style, with care taken to ensure good performance. Common inter-

faces and encapsulation were used to allow new algorithms, model loaders, output

methods, random number generators and timers to be easily integrated into the suite.

Models are initially parsed using the Infobiotics Workbench multi-compartmental

stochastic simulator SBML model loader [21, 52], and “flattened” so they can be

simulated by standard stochastic algorithms. The details of the experiment to be

performed is dictated by a XML parameters file. Different parts of the experiment

are timed independently so that the user can analyse different aspects of algorithmic

performance, for example how initialisation times vary by algorithm.

Algorithm Type Ref

Direct Method Exact [31]
First Reaction Method Exact [10],[31]
Next Reaction Method Exact [25]

Optimised Direct Method Exact [26]
Sorting Direct Method Exact [27]

Logarithmic Direct Method Exact [28]
Partial Propensity Direct Method Exact [29]

Composition Rejection Exact [30]
Tau Leaping Approximation [11]

TA B L E 5 . 1 : Summary of available stochastic simulation algorithms in benchmark-
ing suite.

Algorithms were tested against a subset of the Discrete Stochastic Model Test Suite

(DSMTS) [103] test models in order to validate that they had been implemented

correctly and to ensure the benchmarking suite was generating accurate results

(see Section 5.3). The test suite checks the statistical correctness of the output by

comparing the mean and the standard deviation of a simulator’s outputs to its own

collection of verified results for the same model. Algorithms were also tested with

models referred to in the results section of their own papers in order to verify that
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the performance of my implementations tally with the authors’ original results. This

allowed me to check that I had not inadvertently produced an under-performing

implementation of each algorithm.

After implementation and accuracy testing, I found that certain algorithms had repro-

ducibility issues for their respective papers. For example, the original PDM paper had

a typographical error in the algorithm listing which resulted in incorrect simulation

trajectories [29]. This fault was reported by the authors who subsequently made

errata available [104]. Another issue for SSA implementation reproducibility is a

lack of algorithmic detail in some literature. The CR algorithm paper only provides a

qualitative description of the algorithm, along with expected computational complex-

ity and benchmark results for large random reaction networks [30]. Producing an

implementation that replicated the CR paper benchmark results took a large amount

of development time.

5.2.3 Benchmark models

The benchmarking dataset contains 380 models in SBML [33] format retrieved from

the BioModels database [85]. As described in Section 4.2.2, the BioModels have

stochastic reaction rates set to a fixed value of 1.0 due to the scarcity of curated

stochastic models. To complement the topological analysis detailed in Chapter 5, the

species amounts for all the BioModels are set to a constant 100. This removes the

transient variability that can affect algorithm performance (see Chapter 3), as the

static property analysis does not capture this element of a simulation.

The other dataset of this thesis is the curated models dataset (see Section 3.2.1).

The smaller set of curated models were described and performance benchmarked in

Chapter 3.
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5.3 Simulation algorithm accuracy testing

Stochastic simulation algorithms are by their very nature non-deterministic, which

presents difficulties for detecting design or implementation errors. Standard devel-

opment practices can be applied such as regression testing and unit testing by using

fixed PRNG seeds. This ensures simulation algorithm behaviour is both determin-

istic and reproducible. However, what happens if the PRNG implementation itself

changes? Precise PRNG output may vary from version to version and can conceivably

differ by platform. Furthermore, different SSA variants often consume random num-

bers in radically varying amounts and requirements. For example, NRM consumes

one random per iteration, whilst CR consumes an unbounded number of randoms

due to rejection sampling.

A different approach is required to evaluate SSAs: probabilistic comparison. Evans

et al. introduced DSMTS in 2007 [103] for statistically checking the accuracy of

SSA implementations. The stochastic test suite has been adopted by established

simulation software such as COPASI [101] and Systems Biology Workbench [83].

DSMTS provides 36 model files in SBML format, along with “gold standard” time-

series and respective standard deviation values for each model. These gold standard

values have been computed either analytically or numerically for each model variant.

These 36 model files are minor variants of 3 simple biochemical systems. Many of the

tests are of identical biosystems but only vary in their usage of SBML features. Thus,

DSMTS also places a strong emphasis on testing the quality of the implementation

of a model parser and simulator features.

Figure 5.2 shows the gold standard time-series and concomitant standard deviation

traces for model dsmts-001-01. This model is a variant of a birth-death process [105].

The system only possesses a single species X with initial amount 100. There are

two reactions in the system: (1) birth X ! X +X with stochastic rate 0.1 and (2)

death X ! ? with stochastic rate 0.11. The system is simulated for 50 seconds of
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F I G U R E 5 . 2 : DSMTS birth-death process model (dsmts-001-01) “gold standard”
mean and standard deviation results. These results were generated analytically, and

are used to test simulator results by comparing distributions.

simulation time, and because the death rate exceeds the birth rate the amount of X

decreases.

In order to test a simulator implementation, a developer must run the model for the

specified 50 seconds simulation time and log species amounts at every one second

interval. Evans et al. recommend performing a minimum of 10,000 simulation runs

to attain a sample size that is adequate for statistical testing. A Z-test must be

performed to assess the null hypothesis that the simulator is generating a valid

trajectory. Xt is the random variable representing the species X at time t, thus

µt = E(Xt) and �t =

p
V ar(Xt). After application of the Central Limit Theorem it

follows that [103]:

Zt ⌘
p
n(

¯Xt � µt

�t

) ⇠ N(0, 1) (5.1)

where ¯Xt =
1
n

Pn
i=1 X

(i)
t when X(i)

t is the value of Xt for the ith simulator run. Evans

et al. report that Zt values should lie within the range (-3,3). Thus values that

lie outside this range should be considered a violation of the null hypothesis. The

standard deviation test is computed as follows:
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Yt ⌘
r

n

2

(

ˆS2
t

�2
t

� 1) ⇠ N(0, 1) (5.2)

where ˆS2
t ⌘ 1

n

Pn
i=1(X

(i)
t � µ(i)

t )

2. The specified range for non-violation of this test

is (-5,5). As the test runs are probabilistic, a perfectly valid simulator may produce

trajectories that violate some of the 50 mean and standard deviation tests per dsmts

model. Therefore, the authors state in supplementary materials that it would not be

unreasonable to expect a valid simulator to fail up to 3 mean tests and 6 standard

deviation tests when 10,000 runs are evaluated.
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F I G U R E 5 . 3 : DSMTS mean and standard deviation test for DM using model dsmts-
001-01. The null hypothesis of this test is that the SSA generated a valid set of
trajectories. Red line limits indicate the error range which when crossed indicate a
violation of the null hypothesis. 10,000 runs were computed and no errors detected.

Figure 5.3 shows the accuracy of the DM algorithm for the birth-death process model

dsmts-001-01 described earlier. One can observe that the Z values for the mean
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diagnostics all lie within the range (-3,3) which means there are no violations of the

null hypothesis. Likewise, the standard deviation test values over all values of Xt lie

within the range (-5,5), so I can conclude that my DM algorithm implementation

is performing valid simulations for this test. Figures 5.4 & 5.5 show the accuracy

results with dsmts-001-01 for the other 8 algorithms that I have implemented and

benchmarked. Since there are no violations of the null hypothesis for any of these

algorithms with this test, one can be confident in the simulation accuracy of the SSA

implementations.

5.4 Measuring algorithm performance

The performance metric used to measure algorithmic computational speed was re-

actions per second (rps) of CPU time. Rps allows one to compare algorithm perfor-

mance in a manner that ignores simulation run time. This means that algorithm per-

formance can be compared between two models that take vastly differing amounts

of time to execute. Using rps also improves comparative accuracy: if one wishes

to run an algorithm for x seconds, and measure how many reactions are executed,

the amount of time elapsed would almost certainly not be exactly x seconds, but a

number very close to x seconds. If this was compared to another run of x seconds,

neither run would be exactly the same amount of time, and thus a comparison in

this manner would lose accuracy. Dividing the number of reactions executed by the

exact simulation time to get a result in rps generates a value that is appropriate for

comparison.

All runs were executed on a single core of an otherwise idle benchmarking machine

that possessed an Intel i7 2600K CPU with 16GB RAM and was running Ubuntu

11.04. The large amount of RAM available and size of models involved meant that

all simulations could be run in memory and thus avoid performance deterioration

caused by memory paging. As the BioModels have fixed parameters and species

amounts, there are no transient shifts in model-algorithm performance. Therefore,

an accurate measure of model-algorithm performance can be achieved with a short
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F I G U R E 5 . 4 : DSMTS mean and standard deviation tests for FRM, LDM, SDM &
ODM using model dsmts-001-01. The null hypothesis of this test is that the SSA
generated a valid set of trajectories. Red line limits indicate the error range which
when crossed indicate a violation of the null hypothesis. 10,000 runs were computed

and no errors detected.

simulation benchmark run. Each of the BioModels was executed for 10 seconds of

CPU time for all 9 algorithms. Each algorithm was run 10 times on each model,

hence a total of 90 rps values for each model. 10 seconds of CPU time for each

model/algorithm combination would be enough to determine an accurate result for

algorithm performance.
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F I G U R E 5 . 5 : DSMTS mean and standard deviation tests for NRM, PDM, CR & TL
using model dsmts-001-01. The null hypothesis of this test is that the SSA generated
a valid set of trajectories. Red line limits indicate the error range which when crossed
indicate a violation of the null hypothesis. 10,000 runs were computed and no errors

detected.

5.5 Preliminary BioModels performance analysis

In Figure 5.6, the histogram displays the number of times a particular algorithm was

considered the fastest algorithm (highest mean rps) for each model in the BioModels

dataset. This metric (fastest algorithm) is an overview of algorithm performance that

represents my goal of selecting the fastest performing algorithm. However, it does
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F I G U R E 5 . 6 : Histogram displaying the number of times a particular algorithm was
classed as being the fastest algorithm (highest mean rps) when executed on every

model in the BioModels dataset. The y-axis is on a square root scale.

not account for an algorithm consistently performing well yet not necessarily being

the absolute fastest algorithm on many models. To put this result into perspective,

I compared the performance of each algorithm to the best algorithm in the group

for each of the models. Figure 5.7 shows that three frequent winners PDM, ODM

and SDM, have very similar performance profiles (they are all improved variants

of DM) with the notable exception of a few models for which PDM performs badly.

TL, another algorithm in the top 4, performs exceptionally well for about 20% of

the models, but is outperformed by other algorithms for the rest of the dataset. For

the worst performers, CR and FRM, there is a clearly visible gap that separates their

performance from the best.
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F I G U R E 5 . 7 : Comparison of the performance of each algorithm against the best
algorithm performance for every model in the BioModels dataset. The red data
points are the algorithm performance values for each model. The grey data points
show the best performance for each model. The models on the horizontal axis are

ordered by best performance.

Table 5.2 shows how consistent the top 4 winning algorithms are. For each of those

algorithms, I measured how many times it was ranked below the top 4. ODM was

the algorithm that most consistently remained in the top 4 (378 out of 380 models),

but was closely followed by SDM (368 out of 380 models). On the other hand, PDM

and TL were ranked below the top 4 many times, including being ranked as the

worst algorithm for some models. TL in particular remained in the top 4 for only 80

models.

Figure 5.8 shows a bi-clustered heatmap of algorithm performance for each model

in the BioModels dataset, with each heatmap cell containing a normalised algorithm

rps result for a given model. This complements the histogram in Figure 5.6, allowing

one to observe the performance of an algorithm over all models. One can deduce
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rank ODM SDM PDM TL

> 4 2 12 42 300
> 5 0 1 22 287
> 6 0 0 17 205
> 7 0 0 7 51
= 9 0 0 6 8

TA B L E 5 . 2 : Number of times one of the 4 best performing algorithms (See Ta-
ble 5.3) was ranked below the top 4 for any of the 380 models from the BioModels
dataset. Each row shows the total number of models for which an algorithm was

ranked under a given threshold. The lowest possible rank was 9.

how similar the performance profiles of algorithms are to one another using the

clustering analysis.

Both these analyses highlight some interesting results that may initially seem unex-

pected. Strikingly, one of the most advanced algorithms, CR, fares poorly in that it

cannot be classed as the fastest algorithm for any model (see Figure 5.6). In Fig-

ure 5.8, one can observe that CR performs stably across all models, but as a relatively

advanced algorithm, one might be surprised that its performance is generally low

relative to other algorithms. Indeed, CR is much slower than DM on most models

(even though it is based upon it), in spite of the benefits of a reaction dependency

graph and composition-rejection sampling. The reason for this poor recorded perfor-

mance is likely to be caused by the model sizes available in the dataset. As shown

in Figure 4.1, only a small number of “large” models exist in the dataset, and the

overheads introduced by composition and rejection sampling outweigh the perfor-

mance benefits obtained when used with small models. One can assume that even

the largest models in the BioModels dataset do not cross the threshold of size that

allows CR to really show a performance advantage over the other algorithms. This

first result does highlight the fact that the state of the art SSA is not necessarily

performant for any given model.

Another interesting result is that FRM, which one might have assumed to be the worst

performing algorithm across all models, is the fastest algorithm for more BioModels

than CR, DM or NRM. Looking at Figure 5.8, one can see that FRM is indeed the
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slowest performing algorithm for the vast majority of models. The model perfor-

mance vector for FRM mostly contains dark or red (low) performance values. Even

in its green (high performance value) regions, FRM is slower than many of the other

algorithms, and some algorithms e.g. ODM and SDM outperform this algorithm for

almost every model from visual inspection. The fact it performs fastest on certain

models is an indication of the presence of tiny reaction networks (e.g. 1 or 2 reac-

tions) in the BioModels dataset. With models of this size, performance overheads are

incurred for more advanced algorithms without achieving any performance benefits.

In this situation, FRM would have low random number usage as it requires one

random number per reaction in the network, and has a combined step for reaction

selection and ⌧ calculation.

TL is another algorithm that has the best computational performance for a large

number of BioModels. One can see from Region A of Figure 5.8 that TL has a num-

ber of low performance values, whilst Region D shows large clusters of strongly

pronounced high performance values. Region D contains small & simple reaction

networks that allow TL to apply many reactions per algorithmic iteration. Consider-

ing that the performance values have been normalised on the logarithmic scale, this

means TL actually performs orders of magnitude faster than other algorithms for

some models. However, one can also observe from Region A that TL is amongst the

slowest algorithms for other models. Region A contains models with large reaction

networks, indicating that TL does not scale well with larger models. This result high-

lights that in a principled selection of SSAs, TL would be an important algorithm that

has excellent performance with some models, but needs to be replaced by a different

algorithm for models it struggles with.

In Figure 5.8, one can see that the performance profiles for ODM, SDM and LDM

are similar in pattern. This result is quite expected as all three algorithms are

closely related; they are all based on DM and use a reaction dependency graph.

The only difference between them is that they each have different methods of re-

ducing the search depth in the reaction selection step of the algorithm (see Sec-

tions 2.4.5, 2.4.6 & 2.4.7). The difference between ODM and SDM in the heatmap
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is almost imperceptible, but with closer inspection one can see that LDM is slightly

slower than ODM or SDM. This is confirmed in Figure 5.6, as LDM is far less fre-

quently the fastest algorithm when compared to SDM or ODM. One can see from

this histogram that ODM outperforms SDM with this metric, even if the performance

bi-cluster heatmap and dendrogram indicate little difference between them. It is im-

portant to note that SDM’s advantage over ODM is that it can optimise for transient

shifts in the propensities of a model. The BioModels analysis has constant propensity

values which favours ODM over SDM. Even with this disadvantage, Figure 5.8 indi-

cates that the performance differences are almost negligible. Thus, I can hypothesise

that with complete models SDM would actually be the most performant of these two

algorithms.

NRM is clustered quite closely to ODM, SDM and LDM in Figure 5.8, but overall

has a slower (darker) performance vector. This decreased performance is confirmed

in Figure 5.6, as NRM is only the fastest algorithm for a single BioModel. NRM is

different to ODM, LDM and SDM in that it is based on FRM rather than DM, and also

uses more complex data structures compared to the other algorithms. As discussed by

Cao et al. [26], the overhead of these data structures (that were originally introduced

to increase performance) are actually the reason that this algorithm appears to

be slightly slower than the other 3 (more modern) algorithms. It is interesting to

note that FRM-based NRM is closely clustered to ODM, SDM and LDM, as these 3

algorithms are based on DM. The underlying algorithmic feature that unifies all 4

algorithms is a Reaction Dependency Graph (RDG), which is therefore responsible

for the similarly improved performance profiles attributed to these algorithms.

DM has a surprisingly strong performance profile when compared to more modern

algorithms, suggesting that subsequent performance improvements introduced actu-

ally have little impact for many models. However, Region B in Figure 5.8 highlights

a set of BioModels where DM performs quite poorly in regard to algorithms such

as ODM and SDM. Region B contains the cluster of the largest reaction networks in

the dataset, indicating that DM scales poorly with reaction network size. One should

also note that DM does not appear to strongly outperform SDM, ODM and LDM for
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any models. This result does indicate that an algorithm such as SDM can completely

replace the use of DM for any model.

As shown in Figure 5.6, PDM is the algorithm that is fastest for the largest proportion

of BioModels that were benchmarked. Figure 5.8 confirms that PDM is indeed one of

the fastest algorithms for most models. However, Region C in the heat map demon-

strates that there are models where PDM is actually outperformed by the original DM

algorithm it is based upon. Region C contains a cluster of small reaction networks

that are differentiated by having a higher number of species than reactions compared

to other models. PDM scales with the number of species (other algorithms typically

scale with number of reactions) which explains why PDM has relatively poor perfor-

mance for these models. PDM uses “partial propensities” (see Section 2.4.8) and an

advanced species dependency graph data structure to boost computational perfor-

mance. It is the only algorithm evaluated that uses a species dependency graph, and

its optimisations mean that the algorithm claims to scale with species rather than re-

actions. Whilst PDM’s optimisations give it a strong advantage over other algorithms

for most models, the fact it can be outperformed by the original DM algorithm for

certain models is surprising. With this type of performance profile, PDM joins TL as

an algorithm that would be an important addition to a modern simulation suite.

5.6 Quantitative BioModels performance analysis

As described in Section 5.4, rps performance values for 10 runs were collected

for each BioModels model-algorithm combination. The Shapiro-Wilk test (see Ap-

pendix A.4) was used to determine whether algorithm performance was distributed

normally across the runs. It was found that performance across runs was not normal

for 49.27% of model/algorithm combinations (p-value <= 0.05). The Shapiro-Wilk

test also showed that mean performance across all models is not normal for any

algorithm (p-value <= 0.05, max. W = 0.074). Therefore, I used non-parametric

statistical tests to measure the significance of performance differences between the

algorithms.
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The distributions of algorithm performance were compared using Kruskal-Wallis H

test (see Appendix A.3). For each model in the BioModels dataset, I tested the hypoth-

esis that the performance values of all algorithms come from the same distribution.

This hypothesis was rejected for all 380 models (p-value <= 0.01, H = 1552.01).

cr dm nrm frm ldm sdm tl odm pdm

0 1 1 2 9 43 75 87 162
0.00% 0.26% 0.26% 0.53% 2.37% 11.32% 19.74% 22.9% 42.63%

TA B L E 5 . 3 : Distribution of best performing algorithms for all models in the
BioModels dataset. This data is represented as a histogram in Figure 5.6.

Table 5.3 shows the number of times an algorithm was considered the fastest for each

model in the BioModels dataset. As discussed in the qualitative analysis based on

Figure 5.8 (see Section 5.5), this metric underrepresents the variation in performance

of a particular algorithm. To corroborate the findings in Section 5.5, I needed to

perform statistical tests that quantify a ranking of algorithms using the performance

data generated for all models.

A Mann Whitney U test (see Appendix A.2) was used to perform a pairwise compar-

ison of algorithm performance, with the Benjamini-Hochberg procedure applied to

control FDR (false discovery rate) with multiple comparisons. Mean algorithm perfor-

mance was calculated from all runs on a single model, and the distribution of these

means across all models was compared for each possible algorithm pair. For each

algorithm pair that had a significant difference in distributions (p-value <= 0.05), a

Spearman’s rho statistic (see Appendix A.5 was used to determine the best perform-

ing algorithm. Algorithms were then ranked by the number of other algorithms they

outperformed, and in the case of ties the ranks were averaged (see Table 5.4).

The analysis presented in Table 5.4 reveals an interesting result regarding ODM and

LDM. LDM is tied in ranking with ODM yet the performance profile of ODM appears

stronger in Figure 5.8. Table 5.3 shows that ODM is the best performing algorithm for

87 models compared to only 9 models for LDM, therefore I had previously expected

ODM to be ranked more highly than LDM.
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pdm sdm odm & ldm tl & nrm dm cr frm

1.0 2.0 3.5 5.5 7.0 8.0 9.0

TA B L E 5 . 4 : Algorithm ranking results from Mann Whitney U test using a pairwise
comparison of mean algorithm performance for each model. Where the distributions
were significantly different (p-value <= 0.05), a rho statistic was used to determine
the best performing algorithm. Algorithms were ranked by the number of other

algorithms they outperformed. In the case of ties, the ranks were averaged.

Furthermore, the bi-cluster dendrogram in Figure 5.8 indicates that the performance

profiles of ODM and SDM are extremely similar, though ODM is the fastest algorithm

for 87 models compared to 43 for SDM (see Table 5.3). These preliminary results

suggest that the rank for SDM and ODM would be approximately equal with ODM

having a slight performance advantage. However, the analysis reported in Table 5.4

actually shows SDM to be ranked higher than ODM.

The general order of rankings for other algorithms shown in Table 5.4 does appear to

fit the results shown in Section 5.5. PDM has consistently been the best performing

algorithm for the BioModels dataset, whilst FRM and CR are the worst performers.

pdm odm sdm ldm tl nrm dm cr frm

2.48 2.52 2.73 3.77 5.54 5.55 5.74 7.88 8.77

TA B L E 5 . 5 : Algorithm ranking results from Mann Whitney U test using a pairwise
comparison of algorithm performance based on the distribution of values for all runs
for each model. Final algorithm rank was determined by averaging the algorithm

ranks across all models.

A further analysis was performed using the pairwise Mann Whitney U test outlined

previously to compare algorithm performance, but with some modifications. Unlike

the previous analysis (Table 5.4) which used mean performance values, this next

analysis used the distribution of values of all runs for each model. In this analysis,

algorithm rank was determined by averaging the rank of a particular algorithm

across all models (see results in Table 5.5). One major advantage of this analysis

over the previous Mann Whitney U test is that information is not lost by considering

the performance data of all runs as opposed to using mean values. Another benefit is
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that the new ranking now incorporates the relative performance difference between

algorithms.

In Table 5.5, one can observe striking differences to the previous analysis (see Ta-

ble 5.4) with regards to the order of ODM, SDM and LDM. The updated ranking

order now corroborates the findings of my preliminary analysis (see Section 5.5).

The relative ranking difference between PDM (2.48) and the second highest ranked

algorithm, ODM (2.52), is minor. One can also see that the relative rankings of ODM

(2.52) versus SDM (2.73) are quite close which fits the clustering of their perfor-

mance profiles in Figure 5.8, but is not reflected in Table 5.3. The average ranking for

DM (5.74) is similar to the average rankings of TL (5.54) and NRM (5.55), demon-

strating its relatively strong performance compared to more advanced algorithms.

The average rankings of CR (7.88) and FRM (8.77) are much lower than for the

other algorithms, which is reflected in the previous performance analyses.

5.7 Summary & conclusions

This chapter has introduced the SSA performance benchmarking suite that I have de-

veloped for this thesis. The benchmarking suite allows developers to check algorithm

accuracy, assess SSA performance and generate model metric data (see Chapter 4).

My performance benchmarking of the BioModels dataset along with quantitative

analysis of results has comprehensively tested the first hypothesis of the thesis: There

is no single SSA that is superior in performance for every biomodel. A simple winners

ranking (see Figure 5.6) shows that whilst PDM is the most frequent winner for

the BioModels, there are 3 other algorithms that are superior for large numbers of

models: ODM, SDM and TL. Statistical testing to determine algorithm ranking based

on per model algorithm performance (see Table 5.5) has shown that whilst PDM

is the highest ranked algorithm, ODM and SDM’s overall rank rating is extremely

similar to the PDM value.

The finding that no single algorithm is superior over all models is highlighted by the

bi-cluster analysis of model-algorithm performance (see Figure 5.8). Furthermore,
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the bi-cluster analysis reveals that one should not simply select one of the highest

ranking SSAs from the statistical analysis and expect good performance over all

models. One can see that for models there are orders-of-magnitude performance

differences between high ranking SSAs (see Figure 5.7). In addition, high ranking

algorithms each have groups of models that have better performance with other SSAs,

including much lower ranked SSAs. This is clear evidence that a scientist should not

apply a single SSA formulation to every biochemical model they wish to execute.

Instead, a different approach must be adopted as suggested by the third hypothesis

of the thesis: An algorithm can select the best SSA for any arbitrary model with only a

small margin of error.

Now that both model topological metrics and model-algorithm performance data has

been collected for each of the BioModels, it is possible to test the third hypothesis.

According to the second hypothesis of the thesis, there is a relationship between

model characteristics and algorithm performance. Therefore, if the second and third

hypotheses hold, it would be possible to predict the fastest SSA for a given model if

one is able to extract model characteristics a priori to simulation.





Chapter 6

Principled Selection of Stochastic

Simulation Algorithm

6.1 Introduction

The availability of multiple variants of the SSA comes at the cost of a lack of clar-

ity as to which one to use for a particular biochemical model. More specifically,

many published SSAs are tested with an insufficient number of models, mostly tai-

lored to properties of the newly introduced algorithm. Consequently, it is hard to

extrapolate or compare performance between algorithms as each will often be bench-

marked against competitors’ algorithms using only biochemical models that perform

favourably with the newly introduced algorithm. When considering these variants,

a scientist may wish to know which SSA will be the fastest for simulating their

particular model(s).

Currently, it is common to execute reaction networks with a single SSA implementa-

tion, for example Next Reaction Method (NRM) [25]. Due to the lack of model and

algorithmic analysis available, scientists are unaware that a different algorithm may

perform orders of magnitude faster than their “default” algorithm. To compound this

issue, whilst several stochastic simulators are freely available [101, 102, 106, 107],

129
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their selection of algorithms is limited. Such a situation would result in a scientist lim-

iting the complexity of their model to obtain a tractable simulation time. Therefore,

it is preferable that scientists are provided with tools that match the best algorithm

for their model and allow for better performing simulations. If simulation time can

remain tractable in spite of increasing model complexity, the development of finer

grained biological knowledge is possible.

The cost of simulating a system with one SSA variant or another depends on the

properties of the underlying network of the model and the states reached during

the simulation. Each biological model exhibits characteristics that may be suited

to a particular simulation algorithm. Thus effective discrimination between SSAs

should be based on matching model characteristics to algorithmic performance. In

this chapter, I investigate the possibility of using the data generated by the model

property analysis (see Chapter 4) and algorithm-model performance benchmark

analysis (see Chapter 5) to predict the fastest algorithm for an arbitrary model.

6.2 Experimental roadmap

Thus far, 2 datasets have been benchmarked and analysed: the 8 curated models (see

Section 3.2.1) and the 380 BioModels (see Section 4.2.2). I now wish to test whether

one is able to predict relative algorithm performance using model characteristics

based on the previous benchmark analysis (see Chapter 5). The BioModels use fixed

values for species amounts and stochastic rate constants, whilst the curated models

are representative of “real world” stochastic models. I have shown how to extract

quantitative model characteristics using graph topological analysis of biochemical

networks (see Chapter 4).

An initial experiment to detect a relationship between model characteristics and

algorithm performance was conducted using linear regression to predict algorithm

performance (see Section 6.3). The positive results of this experiment have led me to

hypothesise that one can predict the fastest algorithm for an arbitrary model given

the model topological properties. Furthermore, statistical testing of the characteristic
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equivalence between the 2 datasets indicated that there are many properties that

share similar distributions (see Section 4.4.3). Therefore, I hypothesise that it would

be possible to use the larger BioModels dataset as a training set for prediction and still

obtain accurate prediction for the curated models. A set of prediction experiments

were designed to verify these hypotheses.

The prediction experiments are divided into 2 distinct stages. The first stage, (cross-

validation experiments), focused on the BioModels dataset. Employing 10-fold

cross-validation (see Appendix B.5), I wished to determine the quality of predic-

tors that could be generated from this dataset. The second experimental stage (real

world model experiments) tested the accuracy of predictors generated from the

BioModels dataset when used to predict the algorithm performance rankings of the

curated models (which were not used in the training set).

In both experimental stages I used four classification methods (see Section 6.5). For a

baseline comparison I have used two random predictors (blind pick and distribution

aware). The accuracy of each predictor is tested with 4 relaxation thresholds (" =

[0%, 1%, 5%, 10%]). In this scenario, if the performance of the algorithm selected by a

predictor for a given model lies within the relaxation threshold of the performance of

the actual best algorithm, the prediction is scored as correct. In practice choosing an

algorithm that performs very closely to the absolute best algorithm would be good

scenario for a potential user. The small performance difference is acceptable as long

as one is able to avoid the worst performing algorithms. Predictions are scored as

correct as long as the performance of the predicted algorithm Pp is worse by no more

than " percentage of the best algorithm performance Pb, that is Pb � Pp  Pb"%.

Presented with a large number of models properties, I applied some feature selection

techniques (see Section 6.4) to determine properties that would potentially improve

the prediction accuracy of algorithm performance classifiers. Another set of impor-

tant properties that would be explored experimentally were properties that were fast

to compute (highlighted by † in Table 4.2) as these would be the strongest candidates

to be used in a tool that could predict algorithm performance of a particular model

a priori to simulation.



Chapter 6. Principled Selection of Stochastic Simulation Algorithm 132

For each of the 2 experimental stages, I used 4 different sets of model properties. The

first set of properties were those identified by multiple feature selection techniques

(listed in Table 6.1). Secondly, I tested the performance of classifiers with the inter-

section of the set of feature selected properties and the set of properties that were fast to

compute. The third set of properties tested was the full set of fast properties. The final

experiment of each experimental stage tested classifier accuracy using the entire set

of available properties. Section 6.6 shows the results of the prediction experiments

in comprehensive detail.

Following the prediction experiment results, I explored the impact of classifier mis-

predictions (see Section 6.7). The final performance prediction experiment evaluates

the accuracy of the best predictors when confronted with much larger models than

were available in the BioModels training set (see Section 6.8).

6.3 SSA performance estimation using linear regres-

sion

Linear regression (ordinary least squares method) was used to fit a linear model

estimating the performance (see Appendix B.1). Regression was performed on a per

algorithm basis with results visualised in Figure 6.1. The red data points in each plot

show the actual algorithm performance for every BioModel; BioModels are sorted

on the x-axis by algorithm performance. The grey data points show the performance

estimated by the linear regression model for each algorithm. The coefficient of de-

termination (R2) is close to 1 (perfect fit) for 7 out of 9 algorithms. PDM and TL

algorithms are the exception with R2 of 0.71 and 0.6 respectively, which indicates

their performance is more difficult to estimate with a linear function.
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F I G U R E 6 . 1 : Comparison of real and estimated performance for each algorithm
and all BioModels using linear regression. The red data points are the real algorithm
performance values for each model. The grey data points are the performance values
estimated by linear regression. The linear regression fit was measured with the

coefficient of determination (R2).

6.4 Feature selection for SSA performance estimation

Linear regression was used to construct a linear model of performance for each algo-

rithm. The absolute value of the coefficients assigned to each property was used for

selection. Cross-correlation was calculated between all properties and performance

values and then converted to an F-score to obtain a p-value for each property. Then

properties with the lowest p-values were selected. The last selection method used

support vector regression (SVR) [108, 109] with recursive feature elimination (RFE)

as an estimator of the performance. The estimator was trained on initial set of all

properties and the properties with the smallest absolute weights assigned to them

were removed from the set. The procedure was recursively repeated on the reduced

set until the desired number of properties was left in the set.
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frequency

property name LR CC RFE

(SDG) min. directed edge betweenness 7 9 8
(SDG) edge connectivity 3 7 9
(RDG) min. directed betweenness 5 8 6
(SDG) min. out degree 4 7 7
(SDG) min. total degree 4 3 8
(SDG) min. in degree 4 1 9
(RDG) edge connectivity 2 3 7
(SDG) reciprocity 1 2 7
(SDG) min. undirected edge betweenness 5 2 2
(SDG) transitivity 1 5 2
(RDG) max. incoming closeness 1 4 2
(RDG) average local transitivity 2 3 2
(RDG) mean undirected closeness 1 4 1
(RDG) mean incoming closeness 2 2 1
(SDG) max. undirected closeness 1 1 1
(SDG) min. directed betweenness 5 7 -
(RDG) min. in degree - 2 7
(RDG) max. undirected closeness - 5 3
(SDG) min. undirected betweenness 2 5 -
(RDG) transitivity 1 - 2
(RDG) max. outgoing closeness 1 2 -

TA B L E 6 . 1 : Frequency of properties selection for each of the selection methods: lin-
ear regression (LR), cross-correlation (CC) and recursive feature elimination (RFE).

Only properties selected by at least two methods are shown.

Each method selected the top 10% of properties for each algorithm. I have listed the

properties most frequently selected across the algorithms for each selection method

in Table 6.1. There were three properties selected for all the algorithms — directed

edge betweenness (SDG), edge connectivity (SDG) and minimum in degree (SDG). It is

interesting to note that these three properties are based on the species dependency

graph although these systems are typically thought of as reaction networks. Out, in

and total degree of the species dependency graph are commonly selected features,

which is a strong indication that the density of the species dependency graph influ-

ences algorithm performance. Amongst the most highly selected properties there is

also edge connectivity, minimum edge betweenness centrality (directed and undirected)

and reciprocity for the species dependency graph. These properties all measure the

amount of possible traffic passing through the graph, and thus I suspect that bottle-

necks in the species dependency graph are likely to be a cause of poor algorithmic
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performance. When it comes to the reaction dependency graph, minimum directed

betweenness and edge connectivity are high on the feature selection list. However, the

selection of reaction dependency graph based properties is not particularly uniform

across the selection methods.

6.5 SSA performance classifier experiments: Methods

I employed two variants of a random predictor, a classifier based on a set of lin-

ear regression estimators trained separately for each algorithm (see Appendix B.1),

logistic regression [110] (see Appendix B.3), support vector classifier with linear ker-

nel [111] (see Appendix B.2) and a nearest neighbour classifier [112] using a vote

of 5 nearest models (see Appendix B.4). For each predictor I performed a 10-fold

cross-validation experiment (see Appendix B.5) and measured the mean accuracy

and standard deviation.

The two random predictors used different amounts of information. First was a blind

random predictor, which assumed that each algorithm is equally probable to per-

form best. The probability of a such blind guess to be correct is equal to 1
9 (see

Equation 6.1).

p =

X

i

wipi =
1

9

X

i

pi =
1

9

(6.1)

The second random predictor assumed that each algorithm is as probable for selec-

tion as it was observed as a winner for the training set (see Table 5.3), then roulette

wheel selection was used to make a prediction. In the ideal case, this informed ran-

dom predictor would assign a weight equal to the true probability of winning for

each algorithm (see Equation 6.2). Given the distribution of winners in my bench-

mark I expect the probability of a correct guess to be almost three times greater than

in the case of the blind guess.
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p =

X

i

wipi =
X

i

p2i ' 0.27 (6.2)

6.6 SSA performance classifier experiments: Results

6.6.1 Cross-validation experiments

To evaluate the accuracy of classifiers, I employed 10-fold cross-validation (see Ap-

pendix B.5). Models were split into 10 different folds, that is pairs of training and

test sets. Each test set was unique and contained 10% of the models. The order

of models in the sets was randomly shuffled but a fixed random seed was used to

ensure that all predictors are trained and tested with the same sets.

The first cross-validation experiment investigated the accuracy of predictors using

properties identified by feature selection techniques which are shown in Table 6.1.

Results for this first experiment are shown in Table 6.2.

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.12 ± 0.018 0.17 ± 0.021 0.32 ± 0.040 0.42 ± 0.055
random (informed) 0.32 ± 0.024 0.39 ± 0.048 0.54 ± 0.031 0.67 ± 0.035
linear regression 0.32 ± 0.066 0.35 ± 0.061 0.46 ± 0.074 0.58 ± 0.066
logistic regression 0.47 ± 0.074 0.56 ± 0.085 0.67 ± 0.052 0.76 ± 0.065
k-NN vote (k=5) 0.60 ± 0.055 0.67 ± 0.043 0.75 ± 0.053 0.81 ± 0.030
linear SVC 0.50 ± 0.066 0.57 ± 0.054 0.67 ± 0.044 0.76 ± 0.057

TA B L E 6 . 2 : Results of the 10-fold cross-validation classification experiment us-
ing a reduced set of properties identified in feature selection (see Table 6.1) with

increasing relaxation threshold ".

The experimental accuracy of the random predictors is in agreement with the expec-

tations from theory (see Section 6.5). The informed (distribution aware) random

selection is three times more accurate than blind random selection. As expected, the

greater the relaxation threshold ", the greater the classifier accuracy as the set of win-

ners gets larger and it becomes easier to select a winner. Interestingly, accepting as
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little as 1% performance difference leads to as much as 9% improvement in selection

accuracy. One can also observe that the best predictor accuracy ratio (to the blind

guess) drops with increasing " reaching 2:1 for " = 10%. All 4 predictors demon-

strate accuracies far higher than a blind random selection, but one must note that

linear regression fares worse over all relaxation thresholds than informed random

selection. Of the other 3 predictors, k-Nearest Neighbour is the most promising pre-

dictor with 60% accuracy (81% with " = 10%), compared to blind random selection

accuracy of 12% (42% with " = 10%).

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.12 ± 0.018 0.17 ± 0.021 0.32 ± 0.040 0.42 ± 0.055
random (informed) 0.32 ± 0.024 0.39 ± 0.048 0.54 ± 0.031 0.67 ± 0.035
linear regression 0.36 ± 0.066 0.44 ± 0.058 0.56 ± 0.077 0.68 ± 0.061
logistic regression 0.42 ± 0.060 0.50 ± 0.057 0.63 ± 0.061 0.74 ± 0.068
k-NN vote (k=5) 0.46 ± 0.079 0.54 ± 0.072 0.66 ± 0.064 0.74 ± 0.055
linear SVC 0.42 ± 0.056 0.50 ± 0.050 0.62 ± 0.050 0.74 ± 0.059

TA B L E 6 . 3 : Results of the 10-fold cross-validation classification experiment us-
ing the intersection of the set of properties where (computational complexity 
O(V +E)) and the set of properties identified by feature selection, with increasing

relaxation threshold ".

Although the above results are encouraging, the use of many of the available topo-

logical properties is not practical. A large number of these properties have high

computational complexity (with respect to number of nodes in the graph), with

quadratic complexity for the betweenness or shortest path measures, up to the order

of O(n5
) for connectivity. Therefore, for the larger models analysed, the computation

of all the properties is more time consuming than running the simulation with all

algorithms. In the second experiment, I removed all properties with computational

complexity greater than O(n) from the set of feature selected properties (see Ta-

ble 6.3). Compared to the previous experiment there was a small but noticeable

overall drop in prediction quality. k-Nearest Neighbour was still the best predictor

but accuracy had dropped from 60% to 46% (81% to 74% with " = 10%). Whilst all

other predictors had decreased in accuracy, linear regression actually increased from

32% to 36% (58% to 68% with " = 10%).
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accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.12 ± 0.018 0.17 ± 0.021 0.32 ± 0.040 0.42 ± 0.055
random (informed) 0.32 ± 0.024 0.39 ± 0.048 0.54 ± 0.031 0.67 ± 0.035
linear regression 0.42 ± 0.075 0.47 ± 0.077 0.56 ± 0.097 0.70 ± 0.067
logistic regression 0.60 ± 0.086 0.68 ± 0.063 0.76 ± 0.052 0.82 ± 0.044
k-NN vote (k=5) 0.63 ± 0.070 0.73 ± 0.054 0.80 ± 0.034 0.84 ± 0.046
linear SVC 0.63 ± 0.078 0.72 ± 0.061 0.81 ± 0.060 0.85 ± 0.055

TA B L E 6 . 4 : Results of the 10-fold cross-validation classification experiment using
a reduced set of properties (computational complexity  O(V +E)) with increasing

relaxation threshold ".

For the third experiment, I decided to assess the performance of predictors when

given the full set of 32 computationally inexpensive (fast) properties. Results dis-

played in Table 6.4 indicate a marked improvement in accuracy over the previous

experiments. k-Nearest Neighbour and linear SVC now had the same prediction accu-

racy (63% with " = 0%). However, from evaluating the prediction quality at differing

relaxation thresholds, it appears that linear SVC was the strongest predictor (85%

with " = 10%).

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.12 ± 0.018 0.17 ± 0.021 0.32 ± 0.040 0.42 ± 0.055
random (informed) 0.32 ± 0.024 0.39 ± 0.048 0.54 ± 0.031 0.67 ± 0.035
linear regression 0.42 ± 0.082 0.48 ± 0.090 0.59 ± 0.098 0.69 ± 0.085
logistic regression 0.64 ± 0.075 0.73 ± 0.052 0.81 ± 0.056 0.86 ± 0.050
k-NN vote (k=5) 0.64 ± 0.075 0.72 ± 0.070 0.80 ± 0.050 0.86 ± 0.041
linear SVC 0.65 ± 0.085 0.75 ± 0.041 0.82 ± 0.035 0.86 ± 0.035

TA B L E 6 . 5 : Results of the 10-fold cross-validation classification experiment using
the total set of available properties with increasing relaxation threshold ".

For the final experiment of this stage, I tested the prediction accuracy with the entire

set of 100 properties, results are shown in Table 6.5. Prediction accuracy overall was

similar to the previous (fast properties) experiment but demonstrated some slight im-

provement. Linear SVC was still the strongest predictor and has improved from 63%

to 65% (85% to 86% with " = 10%). This result has highlighted the trend of higher

quality predictions when more properties are introduced in the cross-validation ex-

periments (effectively testing on the training set). However, it is important to note
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that just using computationally inexpensive properties produced similar quality re-

sults to using the full set of properties. It is also surprising that feature selected

properties were much less accurate for the classifiers than this fast property set. This

may be due to the differences between the feature selection techniques and the

classification methods employed. However, linear regression was used in feature

selection yet was the worst performing non-random classifier for feature selected

properties.

6.6.2 Real world models experiments

In this experimental stage, I decided to determine whether the predictive analy-

sis for algorithmic performance based on the BioModels dataset could be applied

successfully to complete “real world” models from computational biology literature

(Table 3.1). Therefore, I repeated the 4 previous experiments but instead used the

curated models as the test dataset. To emulate a black box prediction scenario, I did

not normalise the values of properties across the models.

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.14 0.14 0.14 0.29
random (informed) 0.29 0.29 0.43 0.43
linear regression 0.29 0.29 0.29 0.29
logistic regression 0.43 0.43 0.43 0.43
k-NN vote (k=5) 0.14 0.14 0.14 0.14
linear SVC 0.43 0.43 0.43 0.43

TA B L E 6 . 6 : Prediction accuracy of complete curated models using a reduced set of
properties identified in feature selection (see Table 6.1) with increasing relaxation

threshold ". The entire BioModels dataset was used for training of predictors.

Table 6.6 shows the results of the predictors with feature selected properties. The

first interesting result to note is that there is very little difference in accuracy be-

tween relaxation thresholds compared to the cross-validation experiments. k-Nearest

Neighbour had been the strongest predictor in the corresponding cross-validation

experiment but was now the worst, with a selection accuracy equivalent to a blind



Chapter 6. Principled Selection of Stochastic Simulation Algorithm 140

random guess at just 14%. Linear SVC and logistic regression were the strongest

predictors with 43% selection accuracy.

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.14 0.14 0.14 0.29
random (informed) 0.29 0.29 0.43 0.43
linear regression 0.29 0.29 0.43 0.43
logistic regression 0.57 0.57 0.71 0.71
k-NN vote (k=5) 0.43 0.43 0.43 0.43
linear SVC 0.43 0.43 0.57 0.57

TA B L E 6 . 7 : Prediction accuracy of complete curated models using the intersection
of the set of properties where (computational complexity  O(V + E)) and the set
of properties identified by feature selection, with increasing relaxation threshold ".

The entire BioModels dataset was used for training of predictors.

In Table 6.7, one can see the results of the intersection of the set of fast proper-

ties and the set of feature selected properties. There was a marked improvement in

prediction quality for k-Nearest Neighbour which now has 43% selection accuracy.

Therefore, unlike the cross-validation experiments which improved as more proper-

ties were used for prediction, a situation arose where removing certain properties

actually increased prediction quality. Logistic regression is the strongest predictor at

an improved 53% (71% with " = 10%).

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.14 0.14 0.14 0.29
random (informed) 0.29 0.29 0.43 0.43
linear regression 0.29 0.29 0.43 0.43
logistic regression 0.71 0.71 0.86 0.86
k-NN vote (k=5) 0.57 0.57 0.57 0.57
linear SVC 0.43 0.43 0.57 0.71

TA B L E 6 . 8 : Prediction accuracy of complete curated models using a reduced set
of properties (computational complexity  O(V + E)) with increasing relaxation

threshold ". The entire BioModels dataset was used for training of predictors.

The results of the experiment that used all 32 computationally inexpensive proper-

ties are shown in Table 6.8. Prediction accuracy had improved for logistic regression,
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k-Nearest Neighbour and linear SVC over the 2 previous experiments. Logistic regres-

sion is still the strongest predictor with 71% selection accuracy (86% with " = 10%).

In the previous experiment, I had noted that removing properties improved perfor-

mance, but in this case the opposite had occurred. The common factor between both

experiments was the increasing and exclusive use of fast properties, indicating that

these properties are highly applicable to classifiers. Similarly to the cross-validation

experiments, the feature selected properties fared poorly for prediction accuracy

compared to computationally inexpensive properties.

accuracy

predictor " = 0% " = 1% " = 5% " = 10%

random (blind) 0.14 0.14 0.14 0.29
random (informed) 0.29 0.29 0.43 0.43
linear regression 0.14 0.14 0.14 0.14
logistic regression 0.57 0.57 0.71 0.71
k-NN vote (k=5) 0.29 0.29 0.43 0.43
linear SVC 0.71 0.71 0.86 0.86

TA B L E 6 . 9 : Prediction accuracy of complete curated models using the total set of
available properties with increasing relaxation threshold ". The entire BioModels

dataset was used for training of predictors.

The final experiment of this stage repeated the use of the entire set of 100 properties

for comparison (see Table 6.9). This increased the quality of linear SVC to 71% (86%

with " = 10%), but reduced the accuracy of the other 3 predictors. Linear regression

now has prediction accuracy equivalent to blind random selection at 14%, whilst

k-Nearest Neighbour has the same prediction quality as informed random selection

(29%). Although the best predictor on the full property set has the same accuracy as

the best predictor on the fast property set, there is an overall decrease in selection

accuracy.

6.6.3 Prediction results summary

These results demonstrate that one can make predictions of SSA performance for an

arbitrary model that is significantly higher than a random selection. Table 6.5 shows
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that best classifier accuracy is over 5 times better than a blind random selection1.

There were 4 property set results used for each experimental stage. Surprisingly, I

found that the 2 property sets based on feature selected properties had relatively

poor prediction accuracy. The other 2 property sets are the fast-to-compute properties

and the complete property set. The complete set of properties are not suitable for

practical use as it contains many computationally expensive properties. For large

models, this would mean that model property analysis exceeds model simulation

time, rendering any such analysis redundant. Fortunately, the experimental results

have shown that the subset of fast-to-compute properties has accuracy that is close

to the complete set.

If one acknowledges the fast-to-compute properties as the best practical choice for a

predictor, one can continue this pragmatism by allowing almost fastest SSA predic-

tions to be considered correct. With a relaxation threshold " = 10%, the best classifier

linear SVC has 85% accuracy for the cross-validation experiments (see Table 6.4).

Using the “real world” models test set achieved 86% accuracy versus 29% for a blind

random selection, though logistic regression was the best predictor for these models

(see Table 6.8). This is clear evidence that using static topological properties provides

accurate predictions for fully parametrised (and thus dynamic) stochastic models.

6.7 SSA performance classifier experiments: Assess-

ing mispredictions

The 2 experimental stage results provided different winning classifiers for fast-to-

compute graph property queries that could be employed in a tool (see Tables 6.4 & 6.8).

The cross-validation stage indicated that linear SVC would be the strongest classi-

fier. Using the curated models as the test set suggests that logistic regression should

be employed for use in a “real world” tool to automate SSA selection. However,
1Table 6.5 cross-validation experiments show that with no relaxation threshold (" = 0), a blind

random pick has 12% accuracy, whilst the best classifier (linear SVC) has 65% accuracy
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one should note that the curated models dataset is small (8 models) and thus may

over-represent edge cases. The prediction experiments have relaxation thresholds (")

because for practical uses selecting an SSA with almost best performance is sufficient.

Crucially, the failures of a tool to automate SSA selection are just as important as its

successes. A misprediction that resulted in the selection of an algorithm that was an

order of magnitude or more slower than the best would be considered a catastrophic

failure for such a tool. Therefore, one should be able to discriminate on the quality

of the 2 most highly rated classifiers by assessing the impact of mispredictions.

F I G U R E 6 . 2 : Distribution of relative performance loss caused by mispredictions
for the best (linear SVC & logistic regression) and worst predictors (two variants of
random choice). The whiskers represent the 1.5 IQR (interquartile range) past the
closest quartile (top/bottom edge of the box). Observations outside this range are

marked as outliers.

To demonstrate the consequences of mispredictions for a tool based on our analysis, I

ran another 10-fold cross-validation experiment using the fast property subset (com-

putational complexity  O(V + E)). This time I measured the relative performance

loss for each inaccurate prediction. Figure 6.2 shows the distribution of these values
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for the best classifiers for both experimental stages (linear SVC and logistic regres-

sion) compared to the random predictors. One can see from the box and whisker

plots that both classifiers significantly outperform a blind random selection which has

median 31% relative performance loss. However, logistic regression (with median

8.4% performance loss) had a higher median performance loss than the distribution

aware random selection (median 7.6% loss). On the other hand, logistic regression

had a lower interquartile range than the distribution aware random selection.

The predictor with the most favourable mispredictions, linear SVC, had a median

relative performance loss value of only 5.4% and the interquartile range was lower

than 20%. This means that most of the mispredictions correspond to less than a 20%

performance loss, though I also found several outliers for which the performance

drop was large (up to 86%).

6.8 SSA performance classifier experiments: Large scale

models

The BioModels training set used for the classifiers is mainly composed of smaller

reaction network models (see Figure 4.1). One of the aims of this thesis is to develop

techniques that allow SSA performance to scale with the growing demands of sys-

tems & synthetic biology. Therefore, I designed an experiment to investigate whether

the predictors trained on small models would be accurate for large models. I treated

model A3 (see Section 3.2.4), as a “template” and instantiated it on 1 ⇥ 1, 10 ⇥ 10

and 100⇥ 100 two dimensional lattices (see Table 6.10 for the model network sizes).

Model A3 represents a quorum sensing mechanism within a single Escherichia coli

cell, and is fully parametrised. Quorum sensing is a simple communication mecha-

nism that occurs between multiple cells, therefore it is logical to extend the model in

this manner. Transport reactions were added between adjacent cells on the lattice to

consider the flow of signalling molecules between cells. Table 6.10 reveals that the
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largest model represents a colony of 10,000 cells and consists of 289,000 reactions

(the vast majority of BioModels have less than 50 reactions).

model size reactions species

1⇥ 1 25 21
10⇥ 10 2860 2100

100⇥ 100 289600 210000

TA B L E 6 . 1 0 : Reaction and species graph sizes for different versions of the stochas-
tic Escherichia coli AI-2 quorum signal circuit model from Li et al. The model size is

the number of points on a 2D lattice the model was instantiated on.

Figure 6.3 shows the algorithmic performance for the Escherichia coli quorum sens-

ing model instantiated for the different lattice sizes. One can observe vastly differing

performance profiles between the model variants. The “single cell” version of the

model has TL as the clear winner, whilst ODM was the second fastest algorithm

(but has less than 50% of TL performance). For 10⇥ 10 lattice version, CR was the

fastest algorithm closely followed by PDM. CR was also the fastest algorithm for the

100⇥ 100 model, but this time by a wide margin. PDM was the second fastest algo-

rithm for this model but was still over 5 times slower than CR. All other algorithms

had extremely poor performance for this large model.
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F I G U R E 6 . 3 : Algorithmic performance (number of reactions per second) for an
Escherichia coli quorum sensing circuit. Models were instantiated on a square lattice
with single, 100 and 10 000 cells. Transports reactions were added for adjacent cells

of the lattice.

To complete the experiment, I used the 2 best classifiers using fast-to-compute model

properties from the prediction experiments to assess the accuracy with the large
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model variants. The logistic regression predictor selected ODM for all 3 model vari-

ants. However, the benchmark shows that ODM is significantly slower than the fastest

algorithm for all models. ODM ranks second in the single cell model version, which

may indicate that prediction quality is higher for smaller models. The linear SVC

predictor, selected TL for the single model and PDM for the 10 ⇥ 10 and 100 ⇥ 100

lattices. Whilst the TL prediction is accurate, CR is the fastest algorithm for the

large lattices (PDM is second fastest). One can argue that for the 10 ⇥ 10 lattice, a

pragmatic relaxation threshold " should mean that PDM selection is also an accurate

prediction. The PDM algorithm is 13% slower than CR for the 10⇥10 lattice and 82%

slower for 100⇥ 100. The BioModels training set has no models for which CR is the

winning algorithm, therefore it is impossible for any of the classifiers to predict this

result. If one was to disregard CR (as there are no training examples), the linear SVC

predictor would have made perfect predictions of the fastest SSA for these models.

6.9 Summary & conclusions

The third hypothesis of this thesis asserted that one should be able to use an algo-

rithm to determine the selection of the best SSA for an arbitrary biochemical model

with minimal error. This chapter has presented the use of statistical classification

techniques to make an automated selection of the fastest SSA. Cross-validation exper-

iments show selection accuracy of up to 65% compared to 12% for a blind random

selection. Prediction experiments using a small set of fully parametrised models in-

dicate a selection accuracy of up to 71%, compared to 14% for a blind random pick.

These results confirm the third hypothesis; it is indeed possible to use an algorith-

mic method to select the best SSA with an accuracy far higher than a random pick.

One should note that this implicitly demonstrates that the second hypothesis (there

is a relationship between biomodel characteristics and SSA performance) also holds

because the statistical classification methods employ this relationship to make these

predictions.
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To enable a transfer of these findings to a practical use case, it is necessary to only

consider the fast-to-compute model properties (see Table 4.2). Although this restricts

the number of available properties to 32 (from 100), I have found that there is only

a very minor difference in selection accuracy. For example, Tables 6.4 & 6.5 show

that for the cross-validation experiments the best predictor accuracy only drops from

65% to 63%. It is likely that feature redundancy exists between the subsets of fast-

to-compute and slow-to-compute properties. This finding had been predicted by the

BioModel property correlation analysis (see Section 4.4.2). Furthermore, if I consider

almost fastest algorithms (10% relaxation threshold) as optimal selections, up to 86%

accuracy is achieved with fast-to-compute properties (see Tables 6.4 & 6.8).

I have considered the impact of mispredictions on relative performance loss (see

Section 6.7) and found that linear SVC resulted in the lowest performance loss (out

of the 2 best performing predictors when using fast properties). Linear SVC was

also found to be the most accurate predictor for a large scale biosystem example

using fast-to-compute properties (see Section 6.8) and cross-validation experiments

(see Section 6.6.1). Although logistic regression is the best predictor for the fully

parametrised curated models, I recommend linear SVC as the classifier for a tool.

This is because of the low number of models available in the curated models dataset

(see Section 6.6.2), and the relative success of linear SVC for the other experiments

and analysis. These results mean that it is feasible to produce a computational tool to

improve SSA performance by selecting the fastest SSA based on model characteristics.

I subsequently created a web application for this purpose named ssapredict which

is described in the following chapter.

The analysis presented in Chapter 6 was explicitly designed to test the hypotheses of

this thesis. As such, the analytical techniques employed were intentionally elemen-

tary. For example, the classifiers evaluated were principly based on a linear model

in spite of findings indicating that non-linear techniques may provide increased clas-

sifier accuracy (see Section 6.3). However, by demonstrating that relationships can

be found with relatively simple methods, I am providing transparent evidence that

the hypotheses hold. Future work in this area should expand upon this analysis
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using more rigorous techniques to discover intricate relationships. An unexpected

finding was that classifiers significantly decreased in accuracy with a consensus vote

of three simple feature selection methods I had employed: LR, CC & RFE-SVR (see

Section 6.4). Therefore, future work should identify important biomodel features

by exploring more advanced and/or appropriate feature selection methods. For ex-

ample, the Correlation Feature Selection (CFS) algorithm is suitable for optimising

classifiers as it is designed to generate feature subsets that are “highly correlated

with the class, yet uncorrelated with each other” [113].

Furthermore, one can improve the assessment of classifier accuracy by using multi-

ple cycles of cross-validation [114]. Krstajic et al. demonstrate experimentally that a

single pass of cross-validation is subject to high variance and thus does not provide ac-

curate assessment. Repeated cross-validation involves psuedo-random generation of

folds such that a given fold Dt (see Appendix B.5) is composed of a different subset of

models at each cross-validation cycle. The disadvantage of multiple cross-validation

cycles (Krstajic et al. suggest 50 repeats) is an extreme increase in computational

time required. However, future work that generates more advanced classifiers should

employ this method to avoid errors in the assessment of classifier accuracy.

Another issue to be tackled in future analysis is the present class imbalance problem.

Due to the restricted nature of the published models available, the number of pos-

itive examples for training were heavily imbalanced by class (see Figure 5.6). For

one of the algorithms, CR, there were no positive examples and thus this algorithm

would never be selected by a classifier. However, the large scale model experiments

(see Section 6.8) show that CR is actually an algorithm that is applicable to spe-

cific types of model. Therefore, it is important to increase the number of positive

examples for the underrepresented classes in the dataset to generate more accurate

classifiers. Should it prove difficult to curate a balanced dataset in the abscence of

applicable published models, class imbalance techniques must be adopted. These

include resampling strategies that, for example, oversample minority class examples

for training [115]. Another approach is to use an ensemble classifier (a combination
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of single classifiers) which has been shown to improve classifier performance with

imbalanced datasets [116].





Chapter 7

Ssapredict: Meta-Stochastic

Simulation Web application

7.1 Introduction

Stochastic simulation algorithms (SSAs) are used to trace realistic trajectories of

biochemical systems at low species concentrations. As the complexity of modelled

biosystems increases, it is important to select the best performing SSA. Numerous

improvements to SSAs were introduced but they each only tend to apply to a certain

class of models. This makes it difficult for a systems or synthetic biologist to decide

which algorithm to employ when confronted with a new model that requires simula-

tion. In Chapter 6, I demonstrated that it is possible to determine which algorithm

is best suited to simulate a particular model, and that this can be predicted a priori

to algorithm execution. I present a web based tool ssapredict that allows scientists

to upload a biochemical model and obtain a prediction of the best performing SSA

[24]. Furthermore, ssapredict gives the user the option to download our high perfor-

mance simulator ngss (see Chapter 8) preconfigured to perform the simulation of the

queried biochemical model with the predicted fastest algorithm as the simulation

engine.

151
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The ssapredict web application is available at http://ssapredict.ico2s.org. It is free

software and its source code is distributed under the terms of the GNU Affero General

Public Licence.

7.2 Web application overview

NGSS

MODEL

CONFIGMODEL

PREDICTOR

TOPOLOGICAL
ANALYSIS

properties

SSAPREDICT ZIP ARCHIVE

input output

F I G U R E 7 . 1 : Structural diagram of ssapredict architecture and work-flow [24].

My meta-stochastic simulation solution, ssapredict, is implemented as a web appli-

cation. Figure 7.1 provides an overview of the ssapredict work-flow. Ssapredict is

designed to be easy to use and receiving a prediction only requires the user to press

an upload button and select the biochemical model of interest (in SBML [33] format)

that resides on their computer. After the model has been uploaded, the web appli-

cation automatically begins model topological analysis using the fast propertygen

auxiliary application (see Section 7.4). A prediction is then made using the linear

SVC classifier that was trained using the BioModels benchmark & property data (see

Chapter 6). Once the prediction has been made, the user can download our portable

high performance simulator, ngss (next generation stochastic simulator) which is

preconfigured to run the model with the predicted fastest algorithm (statically built

for use with Mac OS X, Linux or Windows operating systems).

http://ssapredict.ico2s.org
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7.3 Ssapredict walk-through

A user can access the ssapredict web application using a modern internet browser

by entering the web address: http://ssapredict.ico2s.org. Figure 7.2 shows the land-

ing/home page for ssapredict.

ssapredict Home Resources About

What is ssapredict?
ssapredict is a web service designed to automate the process of determining the fastest stochastic

simulation algorithm (SSA) for a bio-chemical model. It calculates the topological properties of a

model to predict the best performing algorithm.

ssapredict is easy to use. With one-button click you upload a model and receive a prediction. 

You can then download the simulator customised for your model (for GNU/Linux, Windows or Mac

OS).

Upload ModelUpload Model

We supply some models for testing and demonstration purposes: Heat Shock Response, E.Coli QS Circuit, LacZ Expression.

How can I help?
We are looking for more models to train/test ssapredict on and more algorithms to include in our stochastic

simulator. 

We believe, that with your help we can not only create a platform for SSA comparison but also drive

algorithmic innovation in the SSA community. Please read more on what we need and how can you help us.

ssapredict: a biologist's tool for enhancing the computational performance of stochastic simulations

Interdisciplinary Computing and Complex BioSystems group at Newcastle University   ·  About us  ·  Design by  Luka Cvrk

F I G U R E 7 . 2 : Screenshot of ssapredict “home” page.

At the centre of the page, there is a large button which allows the user to upload a

model. The upload button activates a “file open” dialog for a user to select the model

from the filesystem. At the top of the page, there is a black header that contains the

http://ssapredict.ico2s.org
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name of the application, as well as 3 small buttons. The header persists over multiple

pages of the web application, so these buttons are always available but interrupt

analysis if used. The Home button returns the user to the landing page to perform a

new analysis. The Resources button takes the user to a page that provides: (1) source

code for the web application, (2) source code for the ngss simulator, (3) source code

for propertygen and (4) the 380 BioModels predictor training set. The About button

lists the members of the ssapredict team and gives details to allow SSA developers

and modellers to contribute to the meta-stochastic simulation suite. Directly below

the upload button there is a selection of SBML models for test purposes (these models

have been taken from the curated models dataset).

F I G U R E 7 . 3 : Cropped screenshot of ssapredict “home” page after model uploaded.

Figure 7.3 shows a cropped screenshot of the home page after a model has been

uploaded. Once the model file is selected, the original upload button is faded out

and an orange upload progress bar appears. After the model completes the upload

process, a new “Get Results” button is faded on to the page. The results button

activates the analysis process and the user is taken to a temporary “progress” page

until the analysis completes. In the background, ssapredict executes propertygen on

the uploaded model to extract 32 fast-to-compute graph properties. The generated

property values are subsequently delivered to the (BioModels trained) linear SVC

fastest SSA predictor (see Section 7.5).
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Upon analysis completion, the prediction results are displayed on the results page

(see Figure 7.4). For the example heat shock response model, ssapredict has selected

PDM as the fastest SSA. In Section 3.2.3, I performed a SSA performance benchmark

(upon model A2) which demonstrated that PDM was the actual fastest algorithm for

this biochemical system.

F I G U R E 7 . 4 : Cropped screenshot of ssapredict results page after model has been
analysed. The model heat_shock_response.sbml has been analysed and ssapredict has

selected PDM as the expected fastest algorithm.

The results page also includes a brief summary of the algorithm to explain its opti-

misations as well as reaction network configurations that it is best suited to. At the

right hand side of the page, there is a list of the 32 graph property values computed

by propertygen should the user wish to perform their own topological analysis. The

results page also contains a “Simulate Model” button. This feature allows a user to

download a static1 version of the ngss stochastic simulator for Mac, Windows or

Linux operating systems. The user is taken to a “Simulation Settings” web page in

order to provide simulation parameters for ngss (see Figure 7.5).
1A static executable in this context is compiled and/or distributed with all dependencies, therefore

no libraries need to be installed on a target machine to run the application.
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F I G U R E 7 . 5 : Cropped screenshot of ssapredict simulation settings page.

The simulation settings page allows users to provide 4 parameters: (1) number of

simulation runs, (2) amount of simulation time to execute the model (in model time

units), (3) simulation time intervals at which the simulator logs the system state

vector and (4) the target operating system. Ssapredict then generates a ngss XML

simulation parameters file for these values, as well as setting the predicted fastest

SSA. OpenMP multi-core parallelism and CSV (comma separated values) simulation

output settings are also set as default in the parameters file. The web application

then assembles a zip file (see Figure 7.1) that contains: (1) the ngss executable for

the target platform, (2) the generated simulation parameters file, (3) the uploaded

model file and (4) instructions for using the simulator. The zip file format [117] was

chosen for compression because it has the widest support over multiple platforms

(without installing third party software).

7.4 Model property generation

Uploaded SBML models are parsed and the reaction & species dependency graphs

are generated (see Section 4.2). 32 fast-to-compute properties are extracted from

the RDG and SDG of the model (see Table 7.1). To minimise analysis time and thus
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produce a prompt prediction, I had to maximise property generation performance.

Therefore, I wrote an auxiliary program in C++ (which has much greater perfor-

mance than the python language) dedicated to computing graph properties called

propertygen. Propertygen is dynamically initiated by ssapredict after model upload,

and the output is accessible to the web application. See Section 7.6.2 for technical

details.

Computational Complexity Graph Property

O(1) number of edges, number of vertices, density of
graph

O(V ) min|mean|max outgoing edges, min|mean|max in-
coming edges, min|mean|max all edges

O(V + E) weakly connected components, articulation points,
bi-connected components, reciprocity of directed
graph

TA B L E 7 . 1 : Summary of “fast” model topological properties analysed by proper-
tygen. Complexity relates to worst case time complexity for the computation of the

property, where V is vertices, E is edges.

7.5 Ssapredict (fastest SSA) predictor

Ssapredict uses the linear SVC (fastest SSA) predictor developed in Chapter 6. The

linear SVC predictor is trained with the BioModels dataset (see Section 4.2.2) using

SSA performance benchmark results and the subset of 32 fast-to-compute properties.

Once the propertygen model topological analysis has completed, the 32 property

values are delivered to the predictor and a prediction of the fastest SSA is returned.

See Section 7.6.3 for technical details.
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7.6 Software engineering

7.6.1 Ssapredict web application

The ssapredict web application is based on the python web2py web application frame-

work (version 1.99.4) [118, 119]. Web2py implements the established model-view-

controller design pattern which developers must follow to build web applications

[120]. The ssapredict model contains: (1) the menu system (i.e. header buttons), (2)

functions that “bootstrap” the prediction analysis tasks and (3) a persistent SQLite

database of performed analyses [121]. The view contains the HTML for each web

page of the application [122]. The controller contains python functions for each

web page of the application. The controller dynamically generates content for each

of the web pages dependent on application flow, which can then be displayed by

the view. Figure 7.6 shows the directory structure of the ssapredict web application

source code. The model-view-controller parts of the web application structure are

highlighted in red.

Under the views folder, there are default and analyse sub-folders. The default folder

contains HTML for the home, team and resources pages. The analyse folder contains

the analysis progress, analysis results and simulation settings pages. The static folder

contains the aesthetic theme [123] and javascript/jQuery [124] client-side scripts

used by the website. The modules folder contains python source code files for func-

tionality that is external to web2py: (1) statistical classification, (2) property parsing,

and (3) zip file generation. The simulators folder contains static versions of the ngss

simulator for Linux, Mac OS X, and Windows operating systems. The data folder

contains the linear SVC fastest SSA predictor. The private folder has a web2py con-

figuration file that is used for web application server routing. Finally, the scripts

directory contains functionality for initialising the web application SQLite database.

To bootstrap the web2py server, the _scheduler.py script must first be initialised.

The web2py scheduler is required for the server to run background tasks; it is required
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ssapredict

src
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default
analyse

static

simulators
private

modules
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data

controllers

scripts

F I G U R E 7 . 6 : Diagram of ssapredict file system source tree.

for updating the SQLite database. Once the scheduler is initialised, the server can be

started using the executable web2py.py script.

There are two active controller files for ssapredict: default.py and analyse.py.

Each python function in the controller files is specific to a separate view. Values

returned by a controller function is accessible to its respective view for display. The

index controller function uses a SQLFORM object and the jquery.fileupload.js

script to handle model upload. Once the model is uploaded, a new database sched-

uler_task is created containing a task identifier and model filename. The appli-

cation is subsequently forwarded to the analyse function in tasks.py (models

folder). This function runs propertygen on the uploaded model and executes the

predict_model function from the prediction.py module (see Section 7.6.3)

on the generated model topological property values to predict the fastest SSA. The
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application is subsequently redirected to the results controller/view where it dis-

plays the predicted fastest SSA and the computed model topological properties data.

The “Simulate Model” button forwards the user to the download controller which

uses a SQLFORM object to record user inputted simulation settings. The “Generate

Simulator” button copies the appropriate simulator version and zip compresses it

with the generated simulation parameters (zipgen.py module) and the uploaded

model file. A download dialog is initialised for the user, and intermediates are deleted

after the download completes.

7.6.2 Propertygen SBML model graph property generator

Propertygen is the model topological property analyser auxiliary program used by

ssapredict to generate 32 fast-to-compute properties from the RDG & SDG of a bio-

chemical model (see Chapter 4). Propertygen is free software and its source code

is distributed under the terms of the GNU General Public Licence (GPL) version 3

[125].

Parsing SBML models, generating dependency graphs and computing graph prop-

erties are the most computationally expensive aspects of the prediction workflow

(see topological analysis in Figure 7.1). Therefore this part of the web application

was written in the C++ programming language [126] and compiled to improve

performance by orders of magnitude compared to the python interpreter employed

by web2py. Figure 7.6 shows the directory structure of the propertygen source code.

The SBML folder contains the SBML [33] parsing source code that uses the LGPL

licensed libsbml 5.6.0 library [52]. The Properties folder contains source code for

graph property generation which is based on the GPL licensed igraph 0.5.4 network

analysis library [86]. The Data Structures folder contains the source code required

to generate the RDG and SDG of a biochemical model (see Sections 4.2.4 & 4.2.5).

The Utility folder provides some simple file output code for writing property results

to disk. The dependency directory contains a compressed archive of the igraph 0.5.4

library, as propertygen is incompatible with newer versions of this library.
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F I G U R E 7 . 7 : Diagram of propertygen file system source tree.

The main function of propertygen reads a single command line parameter: the SBML

filename. The SBML file is then parsed using the CSBMLReader class, returning a

populated CModelData object. The CPropertiesManager class invokes genera-

tion of the RDG & SDG, and wraps function calls to the igraph library. The calculated

graph property values are written to a file using the CFileOutput class.

7.6.3 Linear SVC model-algorithm performance predictor

Ssapredict uses a Linear SVC predictor trained with the BioModels SSA performance

benchmark and model topological properties data (see Chapter 6). This is imple-

mented as a single python module that uses the scikit-learn machine learning li-

brary [127]. Once propertygen has performed a model topological analysis, it writes

property values to the file system. Ssapredict invokes the prediction.py script

with the model property values file and a prediction is returned.

Figure 7.8 shows the python function call graph of the prediction module when

executed on the property values of model A3 (see Section 3.2.4). The call graph

shows that the predictor takes less than a second to run (result from an Intel Core i5

4200U laptop). The prediction module first uses read_data to access the BioMod-

els training data from the file system. This is the most expensive operation of the

prediction module (80% of computational time spent in the read_data function).
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simple_classification read_data re

predict_model

properties

simple_classification
calls: 1

time: 0.058181s

read_data
calls: 1

time: 0.586990s

re.compile
calls: 1

time: 0.009522s

predict_model
calls: 1

time: 0.732892s

1 1 1

properties.read_props
calls: 1

time: 0.000106s

1

F I G U R E 7 . 8 : Function call graph of ssapredict python linear SVC prediction mod-
ule. In this instance, the predictor evaluated the model topology of model A3 (see

Section 3.2.4) and predicted ODM as the fastest SSA.

The module then uses regular expressions (re) to remove unused data from the

training set (1% of CPU time). The 32 model topological property values generated

by propertygen are read from the file system using read_props (<1% of CPU time).

One should note that the computational cost of the predictor will not vary by model

size, as the predictor always handles the same number of property values at each in-

vocation. Finally, the simple_classification function invokes the sklearn linear

SVC classifier using the training data and target model properties (8% CPU time).

Other auxiliary/complementary functions have been removed from the call graph

for clarity.



Chapter 8

Next Generation Stochastic

Simulator (ngss)

8.1 Introduction

Next generation stochastic simulator (ngss) is the simulation software developed dur-

ing the course of this thesis. Ngss is the natural successor to the multi-compartment

stochastic simulator (mcss) that was previously developed by colleagues in my re-

search group [22]. The ngss SSA implementations (see Table 5.1) are reused from

source code originally developed for (and tested by) the SSA benchmarking suite.

Ngss also retains the computational performance benchmarking capabilities of the

SSA benchmarking suite (see Chapter 5). Ngss was developed in the C++ program-

ming language with developmental priority assigned to computational performance.

The software is written to be cross-platform, and compiles & runs on Mac, Windows

and Linux operating systems. Ngss is the simulation component of the ssapredict [24]

SSA prediction & simulation suite (see Figure 7.1).
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F I G U R E 8 . 1 : Terminal window showing example use of the ngss simulator.

8.2 Simulating models With ngss

Ngss has been designed to run from the command line interface (or be executed by

another application as an external command). Figure 8.1 shows example use of

ngss within a Linux terminal window. Ngss takes a XML simulation parameters file

as the mandatory first command line argument. In this example, the parameters file

is simulate.params. Figure 8.2 displays the contents of the simulate.params

file used in Figure 8.1. Ngss also accepts an arbitrary number of additional com-

mand line arguments, each of which override any default (or parameter file) simu-

lation parameter values. In Figure 8.1, the show_progress parameter is overrid-

den as false on the command line, whilst Figure 8.2 shows that it was originally

set to true in the simulate.params file. The simulation parameters select the

modelA1.sbml file for simulation and specifies comma separated values (csv) for

simulation output. Thus, after execution a csv file modelA1.sbml.output.csv is

generated that contains simulation time-series (means and standard deviations) data.

A modelA1.sbml-rundata directory is also generated that contains the time-series
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for each individual run in csv format. Figure 8.1 demonstrates using the UNIX wc

-l command to count lines in a file, that there are 100 values (if one ignores the 2

lines with fields and whitespace) in the time-series, and 10 individual-run csv files

in the modelA1.sbml-rundata directory. These values were set in the simulation

parameters as 10 runs and 100 simulation max_time units, with a log_interval

of 1.0 time units (see Figure 8.2).

8.3 Simulation parameters

This provides details of the simulation parameters available to configure ngss at run-

time. This XML parameters system is a clean reimplementation of the mcss simulator

[21, 22] parameters system (using the RapidXml parsing library [128]). Figure 8.2

shows the structure and fields of an example ngss simulation parameters XML file.

If one considers the XML document as a tree structure, there is a parameters root

element which encloses a parameterSet element named “SimulationParameters”.

The parameterSet contains a list of parameter elements that each have a pair of

attributes: name of parameter and associated value.

Section 8.3.1 lists the parameter names along with their value types (shown in

green). If appropriate, parameter value option strings are also displayed (in grey).

8.3.1 Available simulation parameters & types

model_file ( S T R I N G ) Name of the sbml model on the file system. This should be

fully qualified with directory relative to the ngss executable and include the

model file extension.

simulation_algorithm ( S T R I N G ) The stochastic simulation algorithm to use:

“dm”, “frm”, “ldm”, “odm”, “sdm”, “nrm”, “tl”, “pdm”, “cr”.

parser ( S T R I N G ) Parser to use for the model file:

“sbml”, “mcss”.
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F I G U R E 8 . 2 : Terminal window running the VIM editor with an open ngss XML
simulation parameters file.

output ( S T R I N G ) Sets the type of output for simulation logging:

“csv”, “hdf5”, “console”, “performance”, “gnuplot”.

runs ( I N T E G E R ) Number of simulation runs to execute.

max_time ( D O U B L E ) Amount of simulation time to execute model.

max_runtime ( D O U B L E ) A wall time1 limit in seconds for the simulator to run.

seed ( U N S I G N E D L O N G I N T E G E R ) Seed to initialise random generator. A seed value

of zero will generate a random seed based on system sources of entropy (or

system time).

parallel ( B O O L E A N ) Enables SSA run parallelisation using OpenMP.

mpi ( B O O L E A N ) Enables distributed SSA runs using OpenMPI.

show_progress ( B O O L E A N ) Enables progress logging to the standard out. This

outputs a (simulation time, run) tuple after each second of simulation time has

been executed by any active run.

compress ( B O O L E A N ) If hdf5 output is selected, this option enables gzip compres-

sion.
1Wall (clock) time in this context is the human perceived “real world” amount of time that the

simulation has been running on the machine.
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data_file ( S T R I N G ) If hdf5 output is selected, this option defines a filename to

write to. Otherwise, hdf5 output is written to the model filename appended

with a hdf5 file extension.

8.4 Software engineering

Ngss was developed in adherence to an object oriented programming style in the

multi-paradigm C++ programming language. The primary development environ-

ment was Ubuntu Linux 12.04, using the command line GNU development toolchain

[129] and the VIM text editor. The target compiler for Linux was GCC 4.6.3 which

supports a large subset of the C++11 standard [130] (using the -std=c++0x com-

piler flag). The target compiler for Windows was the Visual Studio 2010 version of

the Microsoft C++ compiler (MSVC10) which had a smaller subset of C++11 than

GCC 4.6.3. Therefore, to generate cross-platform source code, I was limited to the

intersection of the 2 subsets of C++11 support. The Mac OS X platform supports

the GNU toolchain (including g++ 4.6.3) via the MacPorts package management

system [131].

ngss

src

Algorithms

Data Structures
Logging

Parsers

Utility

F I G U R E 8 . 3 : Diagram of ngss file system source tree.
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Figure 8.3 shows the directory structure of the ngss source code. The Parsers folder

contains classes to parse simulation parameter files (CRapidParamsParser) and

SBML model files (CSBMLReader). The Data Structures folder contains classes that

hold data generated by the parsers: CParamsData and CModelData. This folder

also contains data structures used by SSA implementations as algorithmic optimi-

sations (e.g. CDependencyGraph). The Algorithms folder contains the SSA im-

plementation source code, including the CStochasticSimulationAlgorithm

base class that all SSAs inherit from and the ISimulationAlgorithm interface

that they must implement. This folder also holds the CAlgorithmsManager class

which provides SimulateAlgorithm functions to execute simulation when pro-

vided with initialised CModelData and CParamsData objects. The Logging folder

provides classes that manage and generate simulator output (e.g. CCSVOutput and

CHDF5Output). These logging classes inherit from the CDataLogger base class and

must implement pure virtual functions declared in the IDataLogger interface. The

Utility folder provides “convenience/wrapper” classes for pseudo-random number

generation (CRandomNumberGenerator) and high precision wall clock timing for

performance evaluation purposes (CHighResolutionTimer).

The main function of ngss uses the Read function of the CRapidParamsParser

class to generate a CParamsData object (by parsing a XML simulation parameters

file provided as a command line argument). The biochemical model file name and

model parser type are then available from the CParamsData object. A model parser

object is then initialised (e.g. CSBMLReader) and the GenerateModelData func-

tion is executed (using the model file name), which returns a populated CModelData

object. If the CModelData object is valid, the CAlgorithmManager class is used

to simulate the model. The CAlgorithmManager class exposes SimulateAlgo-

rithm (single thread execution), SimulateAlgorithmOpenMP (parallel multi-core

execution) and SimulateAlgorithmMPI (for parallel computing clusters) func-

tions.
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The SimulateAlgorithm function calls the SetAlgorithm function which re-

turns the SSA selected in the parameters (as an instantiated ISimulationAlgo-

rithm object). This dynamic selection of algorithm at runtime is an instance of the

strategy programming design pattern. Figure 8.4 shows the inheritance-tree class

diagram for all the ISimulationAlgorithm derived classes. ODM, TL, CR, SDM

and LDM inherit directly from DM (CGillespieDirectMethod). The NRM imple-

mentation inherits directly from the the FRM implementation. Both DM and FRM

inherit from the CStandardSSA class which provides “standard” propensity cal-

culation functionality. PDM inherits directly from the CStochasticSimulation-

Algorithm base class (i.e. not CStandardSSA) because it does not use standard

propensity functions.

The IDataLogger objects are also dynamically instantiated for output functional-

ity (e.g. CCSVOutput) and passed to the ISimulationAlgorithm object using the

AddDataLogger function (see Figure 8.4). The ISimulationAlgorithm::Execute

function performs a complete (single) stochastic run, therefore it is called N times

(where N is the number of runs to execute). The CStochasticSimulationAlgo-

rithm::Execute function definition calls the pure virtual SSATimeStep function

which must be implemented by every SSA formulation. The SSATimeStep is called

at every algorithmic iteration to compute reaction execution and populates a SAl-

gorithmEvent struct with events generated by SSA algorithmic execution on a per

iteration basis. The SAlgorithmEvent data is then used to update the species state

vector and simulation time.

8.4.1 External software libraries

Figure 8.5 shows the directory tree of the ngss include folder. Ngss specific header

files are contained in the ngss src folder (see Figure 8.3), therefore this include folder

contains header files for external libraries used by ngss. In this section, I describe the

third party source code & libraries used by the ngss simulator (shown in Figure 8.5).
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ngss

include

boost
gsl-1.15

libsbml

hdf5
rapidxml-1.13

F I G U R E 8 . 5 : Diagram of ngss include directories on the file system.

8.4.1.1 Boost

The boost libraries [132] extend the C++ standard library (STL) [133] with further

features. Use of these libraries is standard for C++ developers, and commonly used

boost features are integrated into future version of the C++ standard. Ngss devel-

opment was based on boost version 1.46, but the software is compatible with more

recent versions of the libraries. The boost libraries are released under the terms of

the Boost licence. This permissive free2 open source licence allows for modification,

reuse and redistribution so long as the original copyright notices are maintained.

The C++ standard library does not currently include cross-platform support for file

system access. Ngss uses boost::filesystem to: (1) check if model and parameter

files exist, (2) delete files (post-run removal of intermediates), (3) create new di-

rectories (store intermediates), (4) rename files (manipulating intermediates). The

boost::tokenizer library is used to split command line parameters into separate

tokens to ease parameter parsing.

8.4.1.2 GSL

The GNU Scientific Library (GSL) is a free open source numerical library [134]. GSL

offers a plethora of functionality for scientific applications including linear algebra,
2Free in this context means “free as in freedom”, but not “free as in beer”.
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algorithmic methods and statistics. Ngss uses version 1.15 of the GSL, but should

be compatible with more recent versions of the library. GSL is released under the

terms of the GNU Public Licence (GPL) version 3 [125]. Although the GNU GPL is

a free licence (and allows for modification and redistribution of source code), it is

“restrictive” in that derivative works must also be open sourced, and any other code

must use a compatible licence. Therefore, GNU GPL libraries may be disregarded

by proprietary developers. Crucially, the GSL licence forces ngss to also be released

under a compatible licence.

Ngss employs GSL to provide random number generation. The CRandomNumberGen-

erator class uses the gsl_rng_mt19937 Mersenne Twister pseudorandom number

generator (PRNG). This PRNG has a “tremendously large” [135] period of 219937 � 1,

which makes it suitable for applications that consume a large amount of random

numbers. The Mersenne Twister can generate hundreds of millions of pseudoran-

dom numbers per second on a CPU [136], which means it is appropriate for high

performance simulations. The ngss exact SSA implementations consume random

numbers from the GSL uniform distribution, whilst TL also samples the GSL poisson

distribution.

8.4.1.3 libSBML

LibSBML [52] is a free open source library for parsing, writing and validating Systems

Biology Markup Language (SBML) [33] files. Ngss uses libsbml version 5.6.0 of the

library, but the software is compatible with more recent versions. Libsbml is released

under the terms of the Lesser GNU Public Licence (LGPL) version 2.1. This licence

is more permissive than the original GPL, and allows source code to be reused,

modified and redistributed without requiring derivative work to remain open source

if dynamically linked to the executable. This licence also requires attribution to the

original author of the library in the derivative works.
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The CSBMLReader class employs libSBML to parse SBML models using the readS-

BML function. A CModelData object is subsequently populated with model informa-

tion from the SBML file. This object translates the model information into structures

that can be executed by the SSA implementations.

8.4.1.4 HDF5

HDF5 (Hierarchical Data Format) [34] is a flexible file format designed for “high

volume and complex data” [137]. Ngss uses version 1.8.6 of the HDF5 C++ API, but

should be compatible with more recent versions. The HDF5 development libraries

are released under a BSD style licence [138]. This is a permissive licence that only

requires attribution to the original developer and redistribution of copyright notices.

HDF5 is a “filesystem-like” data format that defines two major containers: Datasets

and Groups. Datasets are laid out as multidimensional arrays and can be grown or

shrunk dynamically if required. Groups resemble directories in a filesystem [137],

and each HDF5 file has a root Group. Groups can “hold” Datasets or other Groups.

HDF5 Attributes can be used to annotate Groups or Datasets. Ngss possesses a

CHDF5Output class to optionally store SSA time-series data in HDF5 format. The

root Group of the ngss HDF5 format is annotated with the following Attribute meta-

data: (1) simulator name, (2) simulator version, (3) model file, (4) runs

(number of runs), (5) log interval, (6) max time (simulation time), (7) simula-

tion algorithm and (8) seed (random seed). For each performed simulation run,

a “run Group” is added to the root Group. A two dimensional Dataset of unlimited

size is created within each run Group which holds species amounts time-series data

(see LogEvent function). The WriteRunSpeciesNames function also records the

names and indices of the species written to the time-series data in another Dataset.

I apply two filters to the HDF5 file if the simulation parameters compression setting

is set to true (default value is true): (1) Deflate & (2) Shuffle. The Deflate filter

applies gzip on-the-fly compression [139]. I use the lowest level of Deflate compres-

sion as I have found that increased settings provide diminished returns at greater
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computational cost. I have also found that applying compression actually improves

computational performance whilst reducing file space requirements. Therefore, the

computational overhead of the lowest compression setting is offset by the resultant

saving in I/O operations. The Shuffle filter rearranges values in the data stream in

order to improve compression ratios. Data is written as chunks, where a chunk is an

“atomic” [139] unit for I/O operations. After a small benchmark of different config-

urations, I found that setting a chunk size of 10KB provides good I/O performance

for ngss.

8.4.1.5 RapidXml

RapidXml is a free open source library for XML parsing [128] and can be licensed

under the Boost or MIT licences. Both of these licences are permissive, only requiring

attribution to the author and copyright notices to be maintained. RapidXml is “header

only” which means that its entire implementation is distributed in C++ header files.

Therefore, the library can be fully integrated into the source code of ngss and thus

does not require separate compilation. RapidXml version 1.13 is distributed as part

of the ngss source code. This lightweight library claims to be up to 100 times faster

than other mainstream XML parsing libraries [140].

The CRapidParamsParser class uses RapidXml to parse ngss simulation parame-

ters (which are stored in XML format) and populates a CParamsData object. The

CParamsData object is available to many different classes in the simulator source

code.

8.4.2 Parallelising stochastic runs

Scientists usually require the execution of multiple SSA runs in order to determine

average system behaviour or to generate other statistics about the system trajectories.

It may also be necessary to perform a very large number of runs in order to detect

rare system events. For example, one would need to execute a model 1011 times to
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estimate the probability an event that has a 10

�7 likelihood of occurring with a 95%

confidence interval [141].

Executing multiple stochastic simulation runs simultaneously is an “embarrassingly

parallel” procedure. This means that each run can be executed independently with

no intercommunication required during simulation. All runs have the same initial

conditions (as dictated by the model), but would each possess a different pseudo-

random generator seed and generate a different simulation trajectory. Therefore,

one can distribute these independent simulation runs on different CPU cores (see

Section 8.4.2.1) or different machines in a computing cluster (see Section 8.4.2.2).

Ngss uses OpenMP and OpenMPI to take advantage of SSA’s direct mapping to task

parallelism. This is enabled at runtime using the parallel and mpi simulation

parameters. After simulation completes, the simulator output (generated by IData-

Logger derived classes) may need to be combined.

8.4.2.1 OpenMP

void CAlgorithmManager::SimulateAlgorithmOpenMP( const CParamsData &params,
const CModelData *pModelData )

{
const int RUNS = params.GetRuns();
#pragma omp parallel for
for ( int i = 0; i < RUNS; ++i )
{

ISimulationAlgorithm *pAlgorithm = SetAlgorithm( params );
pAlgorithm->Execute( params );

}
}

F I G U R E 8 . 6 : Compressed code fragment from the ngss CAlgorithmMan-
ager::SimulateAlgorithmOpenMP function.

OpenMP is a cross platform API that supports scalable shared-memory parallel pro-

gramming [35]. Employing OpenMP means that ngss can dynamically (and automat-

ically) distribute stochastic runs to each core of a multi-core CPU that has a single

shared pool of global memory for a process. This is significant as modern CPUs are

increasingly multi-core in order to improve thermo-efficiency.
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The CAlgorithmManager::SimulateAlgorithmOpenMP function is the entry

point for ngss OpenMP execution. Figure 8.6 shows a fragment of this function, but

as it removes most of the source code it should only be considered as a pseudo code

description of functionality. One can see that simulation algorithm is instantiated and

executed using the for loop. Enlisting OpenMP task parallelism is as simple as adding

a #pragma compiler directive above the for loop that requires parallelisation.

8.4.2.2 OpenMPI

void CAlgorithmManager::SimulateAlgorithmMPI( const CParamsData &params,
const CModelData *pModelData )

{
MPI_Comm_rank( MPI_COMM_WORLD, &nProcess );
MPI_Comm_size( MPI_COMM_WORLD, &nProcessTotal );

ISimulationAlgorithm *pAlgorithm = SetAlgorithm( params );
pAlgorithm->Execute( params );

if ( nProcess == MASTER )
{

int nCount = nProcessTotal - 1;
while ( nCount > 0 )
{

int nProcDone = -1;
MPI_Status status;
MPI_Recv( &nProcDone, 1, MPI_INT, MPI_ANY_SOURCE,

MSG_COMPLETE, MPI_COMM_WORLD, &status );
nCount--;

}
//now call functions to collate and process data

}
else
{

//let master know we have finished
MPI_Send( &nProcess, 1, MPI_INT, MASTER, MSG_COMPLETE, MPI_COMM_WORLD );

}
}

F I G U R E 8 . 7 : Compressed code fragment from the ngss CAlgorithmMan-
ager::SimulateAlgorithmMPI function.

OpenMPI is an open source implementation of the Message Passing Interface (MPI)

[36]. OpenMPI is an API that provides access to a protocol for communication on

distributed-memory architectures. Ngss employs OpenMPI to enable distribution of

SSA runs on high performance computing clusters.
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Ngss uses a “master/slave” model, assigning the status of “master” to the first SSA

process (all other processes are “slaves”). The master instance waits for all slave in-

stances to send task completion messages before collating and processing generated

stochastic run data. Figure 8.7 shows a fragment of this function (with most source

code removed) to elucidate this feature.





Chapter 9

Conclusions

9.1 Summary of thesis motivation

Scientists in the fields of systems and synthetic biology use computational techniques

to measure, decipher and comprehend complex biological systems. Simulation is an

important tool for computational hypothesis testing that is traditionally performed by

evaluating deterministic ordinary differential equation models. However, this does

not account for the stochastic noise present in cellular biosystems or accurately repro-

duce the discrete switching behaviour found in gene regulatory networks. Stochastic

simulation algorithms can generate exact system trajectories but may become com-

putationally intractable with large or detailed models. Thus, poor computational

performance of stochastic simulation algorithms may impede the knowledge dis-

covery afforded by this era of high-throughput cell biology in spite of increasing

computational power. The field of synthetic biology aims to design large biosystems

from defined genetic components. Therefore, synthetic biologists require innovation

in SSA technology for hypothesis testing in order to avoid costly wet lab trial and

error.

After evaluating a range of algorithmic advancements in the SSA, I found that so

called “state-of-the-art” SSA formulations could be outperformed by more primitive

methods for certain classes of model. Furthermore, I found that sets of models with

179
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similar characteristics would perform favourably with a particular subset of SSA for-

mulations, whilst other model types would favour a distinct subset of algorithms.

From a review of the literature, it is difficult for a scientist to identify the fastest

SSA for their particular model. I also found that the computational performance

difference may vary by several orders of magnitude between fast and slow SSA for-

mulations. Therefore, it is important that a scientist is able to automatically deduce

the fastest SSA for a given model a priori to simulation.

9.2 Evaluation of hypotheses

This thesis set out to evaluate 3 hypotheses related to SSA performance.

Hypothesis 1

There is no single SSA that is superior in performance for every biomodel

To test the first hypothesis of this thesis, one would have to find evidence that a

particular SSA was fastest over all models. Chapters 3 & 5 benchmarked a total

of 388 different biochemical models. Whilst I found that certain modern SSAs had

better overall performance than the original (FRM & DM) formulations, there was

no SSA found that was fastest for all models. Statistical tests to rank algorithm

performance (see Table 5.4) show that the 3 highest ranked algorithms had very

similar mean rankings. Furthermore, it is not sufficient to simply select an algorithm

that has a high mean ranking, because my analysis did show that all SSAs have

subsets of models that another formulation is better suited to (see Figure 5.7 and

Table 5.2).

Hypothesis 2

There is a relationship between biomodel characteristics and SSA performance

The second hypothesis is closely related to the third hypothesis, as a prediction of the

fastest SSA for an arbitrary model relies on a relationship between performance and
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model characteristics. Chapter 4 investigated the network analysis of biochemical

models as a metric of model characteristics, surveying a large number of graph

properties. The combination of model metric and performance benchmarking data

allowed me to test both the second and third hypotheses.

Hypothesis 3

An algorithm can select the best SSA for an arbitrary model with only a small

margin of error

Chapter 6 presented the use of statistical classification techniques to predict the

fastest SSA for an arbitrary model (using graph property values derived from the

model). I found that I was able to predict the fastest SSA with up to 65% accuracy

based on model topological properties compared to a probability of 1
9 for a blind

random selection of SSA (see Table 6.5). Furthermore, I found that selection accu-

racy of up to 63% could still be achieved with a subset of fast-to-compute properties,

indicating feature redundancy in the global set of properties. Introducing a relax-

ation threshold (") that allows any algorithm prediction within 10% of the fastest

algorithm to be considered successful resulted in a prediction accuracy of 85% for

fast-to-compute properties with the Linear SVC predictor.

Therefore, I have demonstrated that an algorithm can indeed select the fastest SSA

for an arbitrary model with good accuracy. Furthermore, this prediction is performed

using model characteristics, implying that there must be a relationship between

model characteristics and algorithm performance.

9.3 Knowledge transfer

The prediction analysis performed in this thesis was directly applicable for real

world application to improve SSA usability. Chapter 7 detailed the “ssapredict”

tool created based on the finding of this thesis. This easy-to-use web application

improves accessibility of the SSA for biologists, providing an accurate prediction of

SSA performance and providing simulation capabilities via the ngss simulator.
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Chapter 8 described the “ngss” simulator which is based on the SSA implementa-

tions tested and benchmarked in the SSA benchmarking suite (see Chapter 4). Ngss

is available as part of the ssapredict suite, and has also been integrated into the

Infobiotics Workbench 2 software that is currently under development as part of the

EPSRC ROADBLOCK project grant (EP/I031642/1).

9.4 Limitations & reflections

The meta-simulation technique presented in this thesis makes predictions of the

fastest SSA based on the static topological properties of a model. However, stochastic

simulations, by their very nature, are subject to dynamic changes in system behaviour.

Figure 3.14 shows that SSA performance profiles can vary greatly depending on the

transient system state. As the analysis presented in this thesis is based on the model

topological properties of unweighted graphs derived from partially parametrised

biosystems (see Section 4.2.2), it is not possible to capture or account for this be-

haviour.

There is a distinct lack of fully parametrised stochastic models available or catalogued

in the appropriate literature due to the established prevalence of deterministic ODE

models. In order to generate performance analysis that can capture a full account of

discrete stochastic system behaviour, one requires the curation of a large number of

fully parametrised stochastic models. The low adoption rate of stochastic modelling

(compared to deterministic ODE modelling) is problematic in and of itself. As shown

in model A7 (see Section 3.2.8), discrete systems with large actor/agent popula-

tions that scientists often assume can be evaluated using continuous deterministic

approaches may be profoundly affected by discrete stochastic system fluctuations.

Furthermore, model A1 (see Section 3.2.2) showed that biological systems can in

fact rely on stochastic noise to, almost counter-intuitively, implement robustness in

biosystem behaviour. This raises important questions about the validity of some bio-

chemical analyses based on continuous deterministic approaches. Is it possible that
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scientists are underfitting models of biological systems by avoiding the use of discrete

stochastic biochemical modelling & simulation paradigms?

9.5 Future research directions

9.5.1 Online meta-SSA

The logical next step in this course of research is to develop a meta-simulation

technique that can dynamically adjust SSA formulation at runtime based on transient

system state. With access to a large dataset of fully parametrised stochastic models,

one would be able to determine the impact of graph weighting on prediction quality.

One could dynamically weight the model-derived RDG with with current propensities

values and the SDG with computed partial-propensity values. Predictor training

data would be generated by performing multiple SSA runs, taking “snapshots” of

algorithm performance for a range of graph propensity weightings. This training

methodology should incorporate a method to produce a set of samples for each model

that maximises the variation in SSA performances and attempt to find “winning”

graph propensity weighting configurations for every SSA if possible.

9.5.2 Increasing SSA adoption

As previously discussed, the SSA is typically underutilised for biochemical modelling.

The ssapredict software produced as a contribution of this thesis aims increase SSA

accessibility by focussing on ease-of-use and providing simulation functionality for an

uploaded model. Future research needs to investigate exactly why scientists overlook

the SSA, including an anthropological study of biochemical modelling. In place of

speculation, a comprehensive appraisal of SSA usability should generate research

targets that improve the adoption of stochastic modelling and simulation.
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9.5.3 Scaling up the SSA

Biological models are becoming more finely detailed and intricate to match reality,

but this comes at the detriment of computational performance when executing such

systems with the SSA. Furthermore, scientists increasingly wish to simulate models of

large systems such as biofilm formation involving millions of bacterial cells. Whilst

this thesis has introduced techniques to improve computational performance by

ascertaining which algorithm is most applicable to a particular class of model, this

is not a solution that would allow the SSA to cope with ultra-large systems that

scientists may wish to investigate.

The SSA is inherently difficult to parallelise for a single algorithmic instance but has

natural parallel independence of individual runs [23]. However, a model of especially

high complexity may be intractable for a single run. Biological systems are composed

of cells, which encapsulate stochasticity at the micro-scale yet are elements of large

systems at the macro-scale. Therefore, it is possible to parallelise SSA runs within a

single large model composed of many cells by treating each cell as an independent

stochastic simulation. This would be an agent-based system where a global timestep

can be passed to each simulation run to synchronise the system. Furthermore, in-

teraction between cells can be handled by a physics engine to generate a physically

realistic model that could include soft-body simulation and fluid dynamics. Other

forms of cellular inter-process communication such as quorum sensing and conjuga-

tion would also be available. Several groups have embarked upon using deterministic

agent based models with rigid-body physics to simulate bacterial colonies [142–144].

These simulations integrate some elements of stochasticity but an important “next

step” is to integrate the SSA to generate more realistic simulations of large scale

biological systems.



Appendix A

Statistical Methods

A.1 Pearson product moment correlation coe�cient

The Pearson product moment correlation coefficient r is a measure of the linear

relationship between two variables X and Y [145]. The formula for calculating the

coefficient r is shown below:

r =

Pn
i=1(Xi � ¯X)(Yi � ¯Y )pPn

i=1(Xi � ¯X)

2
pPn

i=1(Yi � ¯Y )

2
(A.1)

The calculated Pearson correlation coefficient r will be a value in the range [�1,+1].

A value of r = +1 indicates a perfect positive linear relationship between the vari-

ables X and Y , whilst r = �1 reveals a perfect inverse relationship. Values of r close

to 0 imply that there is no linear relationship between the two variables.

185
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A.2 Mann-Whitney U test

The Mann-Whitney U test [146] is an ordinal non-parametric measure of the similar-

ity of two random variables x and y. The null hypothesis of the test is that the two

samples are equivalent. Non-parametric statistical measures do not require a fixed

parameter set or specific probability distribution. The test relies on the calculation

of a U statistic introduced by Wilcoxon [147]:

U = mn+

m(m+ 1)

2

� T (A.2)

The T statistic is calculated as the sum of the ranks of y given the sorted sequence

of x and y. The terms m and n are the sample sizes of x and y respectively. The U

statistic can be calculated for both samples by switching which are represented by x

and y. The significance of the result can be calculated from the sample size and U

statistic.

A.3 Kruskal-Wallis H test

The Kruskal-Wallis H test [148] is an ordinal non-parametric measure of the sim-

ilarity of group mean rankings. This test can be considered an extension to the

Mann-Whitney U test (see Appendix A.2) to compare more than two groups. The

null hypothesis of the test is that the mean rankings of the groups come from the

same distribution. The test relies on the calculation of a H statistic [149]:

H =

12

N(N + 1)

✓X
(Tg)

2

ng

◆
� 3(N + 1) (A.3)

The first step is to rank the combined data from all the groups. N is the total number

of samples of the combined group data. Tg is the sum of the ranks of a data from a
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group g. ng is the number of samples from a group g. A p-value can be computed by

sampling the chi-squared distribution.

A.4 Shapiro-Wilk test

The Shapiro-Wilk test [150] is a test of population normality. The null hypothesis

of this test is that the population is normally distributed. The test relies on the

calculation of a W statistic [151]:

W =

[

P[n/2]
i=1 an�i+1(yn�i+1 � yi)]2Pn

i=1(yi � ȳ)2
(A.4)

The an�i+1 variable is calculated using tabulated coefficients from the original 1965

paper [150]. If the calculated p-value is less than the chosen alpha value, the null

hypothesis is rejected and the population is not normally distributed.

However, the original Shapiro-Wilk test is only suitable for populations with up

to 50 samples. Royston extended the test to deal with large sample sizes (up to

n = 2000) [152]. This extended test was computationally expensive because of

the requirement of large matrix manipulations [153]. Furthermore, there were no

guarantees given regarding the accuracy of the updated formulation. Approximately

a decade later, Royston introduced an approximated version of the Shapiro-Wilk

test that has widespread adoption in modern statistical software packages such as R

[153, 154]:

W =

(

P
aiyi)2P

(yi � ȳ)2
(A.5)

The a variable is approximated/estimated such that a = (a1, ..., an) where (n �

1)

�1
2
P

aiyi.
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A.5 Spearman’s rho rank correlation test

The Spearman’s rank correlation test (also known as Spearman’s rho) is a non-

parametric measure of the relationship between two ranked variables x and y. It can

be used as a replacement for the Pearson product moment correlation coefficient (see

Appendix A.1) when a non-parametric statistic is required. The test measures how

monotonic the relationship is between the two variables. A monotonic relationship

is when the variables only either have increasing or negative relationship (and the

relationship direction does not change). A value of ⇢ = +1 indicates a perfect positive

monotonic relationship between the variables X and Y , whilst ⇢ = �1 reveals a

perfect negative monotonic relationship.

⇢ = 1� 6

P
d2i

n(n2 � 1)

(A.6)

The variable d is the difference between the ranking variables (di = xi � yi).



Appendix B

Statistical Classification

B.1 Linear regression

Linear regression is a method to model a linear relationship between a “response”

variable and one or more “controlled” variables. For a single controlled variable x,

one generates a linear equation ŷ = a + bx which finds the value of the response

variable ŷ with the smallest error possible [155]. Least squares estimation is used to

minimise errors for fitting a linear data relationship. To be precise, the sum of square

of the errors (between fitted value ŷi and respective data point yi) is minimised for

all data points:

Sum of squares =
nX
(yi � ŷi)

2 (B.1)

The coefficient of determination r2 can be calculated for linear regression models.

This gives an indication of the quality of the fit between the model and data points:

r2 = 1�
P

(yi � ŷi)2P
(yi � ȳi)2

(B.2)
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Linear regression is a type of predictor, it will generate a response variable for a set of

controlled variables. However, one can use linear regression as a classifier by using

the fitted response variables for rankings.

B.2 Linear Support Vector Classifier

Linear support vector classifier (LinearSVC) is an implementation of support vector

machines (SVM) using a linear kernel. SVM [156] is a supervised learning technique.

Supervised learning requires data that has been labelled as samples of the target

classes.

x

x

1

2
2||w||

w x 
- b

 =
 1

.

w x 
- b

 =
 -1

.

w x 
- b

 =
 0

.

b

w

F I G U R E B . 1 : Optimal hyperplane (solid line) and margins (dashed lines) for SVM
trained with 2 classes (class samples shown as circles in plot). Taken from [157].

SVM computes an optimal hyperplane(s) through a dataset, which separates the

classes. A hyperplane is a (n� 1)-dimensional subspace of the n-dimensions of the

dataset. An optimal hyperplane is a hyperplane that divides the space with maximal

margin (separation) between the classes. Figure B.1 shows an optimal hyperplane

(shown as a solid line) through a (hypothetical) SVM trained dataset containing
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data samples from 2 classes (shown as circles). Two parallel vectors (dashed lines)

demarcate the maximal margins between the hyperplane and the classes. The subset

of class samples that lie on the margins are known as the support vectors.

A hyperplane that separates classes is represented by the equation [158]:

f(x) ⌘ w · x� b = 0 (B.3)

Thus to use this equation as the decision rule, one needs to find the normal vector w

and offset b. These values can be found using quadratic programming.

B.3 Logistic Regression

Logistic regression [159] is a binary classification method meaning it can predict 2

classes y 2 {0, 1} given a set of controlled (i.e. feature) variables. This method is

closely related to linear regression (see Appendix B.1) but instead uses a sigmoid

function for the linear model:

ln

✓
p(x)

1� p(x)

◆
= a+ bx (B.4)

Instead of measuring a y variable (as in linear regression), the probability p of a

particular class is computed. The linear model is fitted using the maximum-likelihood

method. Logistic regression can be extended to become multi-class so that it can

predict 3 or more discrete class values. This can be achieved using a one-versus-rest

scheme where the classifier is run k times (where k is the number of classes). This

means that standard logistic regression is performed for each class in the feature

space whilst treating the all other classes as single class.
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B.4 k-Nearest Neighbour Classification

k-Nearest Neighbour (k-NN) [160] classifier is a simple non-parametric instance-

based “lazy learning” method [161]. The principle behind this method is to compare

an input sample q to training data D and return the k most similar instances. The

class of q is then determined from the class ownership of the returned instances.

The closest neighbours can be judged by iterating over the training examples and

measuring feature distance, for example using the Minkowski distance:

d(q, x) =

 
nX

i=1

|qi � xi|p
!1/p

(B.5)

where xi 2 D and p = 2 is equivalent to Euclidean distance. The predicted class of

the input sample can be computed by simply returning a (uniform) majority vote, or

for finer accuracy using a weighted distance voting scheme:

vote(yj) =
kX

c=1

1

d(q, xc)
2
1(yj, yc) (B.6)

where class yj is assigned a vote by the neighbour xc. 1(yj, yc) returns 1 is the class

labels match and 0 if not. The value of n affects the influence of distant neighbours

[162].

B.5 k-fold Cross-validation

k-fold Cross-validation is method to evaluate the quality (i.e. the accuracy) of a

classifier for a dataset D [163]. The principle behind k-fold cross-validation is to

assign training and test sets to a dataset and ensure that each sample is evaluated

once. The dataset D is first partitioned into k mutually exclusive subsets Dt where

t = {1, 2, ..., k}. The classifier is tested on a fold Dt using D \ Dt as the training set.

Each of the k folds are evaluated in turn to ensure all samples have been evaluated.
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The mean accuracy (and standard deviation) of the k classifier evaluations can then

be generated.
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