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Abstract 
 

Cancellable biometrics endeavour to hide the appearance of a biometric image into a 

transformed template which prevents the outsider from recognising whom the biometric 

belongs to. Current research into cancellable biometric methodologies concentrates on the 

details of biometric traits. This approach has a drawback which cannot possibly be 

implemented with other biometric technology.  

To address this problem, this thesis contributes to development of a novel concept for the 

feature transformation of biometric technology, especially for fingerprints, by utilizing 

several matrix operations to provide an alternative algorithm in order to produce multi-

implementation of the cancellable system. The matrix operations generate the feature element 

of the input fingerprint image in an irrevocable form of output fingerprint template by 

ignoring the type of biometric traits unique to fingerprints; thus, the cancellable algorithm can 

be implemented in different biometrics technologies. The implementation offers a new 

concept in generating a cancellable template by considering a sequential procedure for the 

fingerprint processing, in order to allow the authentication process to succeed in 

authenticating an enquired input. For example, a region of interest (RoI) step is required to 

provide a square form input to support the system working in a matrix domain. Meanwhile, 

the input fingerprints are mostly in rectangular form. 

This thesis contributes a new approach to selecting a certain area of a fingerprint by utilizing 

the density of ridge frequency and orientation. The implementation of these two enhancement 

steps reduces the excision process of this significant region of the fingerprint by avoiding the 

involvement of a non-feature area. Meanwhile, to avoid obtaining an un classified fingerprint, 

this thesis offers a new approach to the fingerprint image classification process entailing three 

requirements in classifying the fingerprint: the core point and its number, ridge frequency, 

and ridge direction; whilst the tented arch (TA) is only an additional requirement. The 

proposed idea increases both the percentage accuracy in classifying fingerprints and time 

consuming of the system. For Example, the accuracy of the fingerprint classification 

improves from less than 41 per cent of the fingerprint to 86.48 per cent in average for all of 

databases. 
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Chapter 1 

1. Introduction 

1.1. Biometrics 

Biometrics is a method of identifying human uniqueness based on one or several 

features of either physical or behavioural characteristics. The physical characteristics relate to 

the human body, such as fingerprints, the face, shape of the hand or palm, iris, retina, DNA, 

or even human smell. Conversely, behavioural characteristics relate to human features, for 

instance sound, typing rhythm, or the way a person walks. These characteristics are used to 

identify humans based on the basic concepts of uniqueness, permanence, and collectivity. 

Thus, the basic idea of biometric science is to use part of the human body as the key 

or sign to obtain detailed information. This is either from the person whose part body part is 

being used, or from someone who has a certain relationship with them. In computing science, 

biometrics is specifically used as a requirement in managing private access and also in 

controlling access given to an individual. In addition, it can also be used to identify a person 

in a group which is under supervision. 

One of the main biometric technologies that has been studied in detail is fingerprints. 

Fingerprints can be defined as ‘a trace or an imprint of friction of contraction in most or all of 

the surface of the human fingers’. The friction of contraction can be found on the palm of 

one’s hand, fingers and toes, and on the skin of one’s foot. It consists of one, or more of 

contraction unit that is connected to the imprint of the skin. This contraction is also known as 

‘dermal contraction’.  
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Nowadays, the acquisition process of a fingerprint from its source is conducted 

through direct fingerprint reading, also known as live fingerprint reader. This technology 

relies on the principles of thermal and optical as well as silicon and ultrasonic sensing [1], 

[2], [3] and is mostly used to read the fingerprint. It is based on the concept of changes to the 

reflection in the area where a person’s finger touches the surface of the reader. All readers 

that use optical technology consist of a source and a light sensor, and moreover a source of 

specific reflection that can change a reflection if pressure occurs. Several of the type of 

readers are equipped with processing equipment and a chip memory. The sensor used in this 

technology is based on DC capacitance from fingers, and contain a layout of a capacitor with 

a square shape that is implanted on the silicon chip. One side of the capacitor’s plate is on the 

finger, while the other side, which contains a small area made from metal, is on the surface of 

the chip, so that the finger is opposite the chip’s surface. 

Another type of fingerprint reader technology is based on ultrasound, however, this is 

less frequently used [4]. The initial concept of this technology is to use the ultrasound to 

observe the surface of the pictures. The ultrasonic sensor will start moving and reading the 

entire fingers for one or two seconds, as soon as the user place the fingers on a piece of glass 

that is on the reader. The results will be saved in a particular unit in a database. This database 

will be used when the application system for fingers requires confirmation by matching the 

database with the fingers. If the fingers are recognized as one of the collection in the 

database, the application system will accept them as the owner of the fingerprint. Otherwise 

the application will state that it is an impostor. This process is known as the authentication 

process of the fingerprint, and furthermore is also called the process of matching fingerprints. 

Fingerprint matching techniques can be classified into two categories: minutiae-based 

and correlation-based [5]. In the minutiae-based technique, the initial concept of matching the 

fingerprint is achieved by obtaining the minutiae before arranging the placement, and then 
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ascertaining the connection between the minutiae and the fingers. Conversely, the correlation 

based technique requires the exact location during the registration process. In addition, it is 

also affected by the rotation and movement of the image [3], [6], [7], [8]. 

In this research, matrix operations are the main rule utilized in generating the 

cancellable fingerprint template. The matrix operations are used to produce a transformed 

template of fingerprint which is irrevocable to the original image of fingerprint. This 

irrevocability factor is needed to protect the information of fingerprint to be compromised by 

impostor. Initially, if a fingerprint is being processed in the matrix domain, then each pixel of 

the image describes what the image is. This means that no noise is allowed as a part of the 

image because the existence of noise may add specific information to the fingerprint feature. 

In relation to the cancellable fingerprint, at the end of this process is the authentication step, 

where even a small amount of noise will significantly affect the quality of the cancellable 

feature and result in low precision in subsequent verification.  

Thus, an early process to be accomplished in establishing a fingerprint is the 

enhancement process. The result of this process will provide a fingerprint feature with the 

precise value of all of its information, so that when it is mathematically processed with 

matrices operations, there will be no unnecessary values contained within it. The result of 

these operations will be the input of the cancellable system that is going to be created. 

 

1.2. Cancellable Biometrics 

The advances in information technology and increases in security concerns have 

encouraged the rapid development of automatic personal identification systems in biometrics. 

Biometric technology that accurately and automatically identifies a person based on their 
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physical and behavioural distinctions is considered to be crucial, given the need for 

something reliable and capable of distinguishing whether the biometric owner is real or bogus 

[9]. This technology is more preeminent than the token-based method or even other 

knowledge-based methods which are based on traditional concepts, given that biometric 

technology offers a particularly comfortable and secure process for its users. 

Proving a person’s uniqueness using biometric technology is reliable, as human 

physical characteristics are very difficult to imitate or falsify, compared with other methods 

that use security codes and passwords, but requires a significant amount of important 

memory. Biometric authentication can be located in various applications, such as in network 

access and the workplace, log-on applications, data protection, the long distance access of 

resources, website network security, e-government and e-commerce. Furthermore, biometric 

technology will be needed to provide electronic banking services, as well as other financial 

and investment transactions. In addition, retail sales, law enforcement, health and social 

services also require this technology. It is expected to play an important role in clarifying a 

person’s validity in larger scale trading networks that require authentication and protection 

for its applications. 

The implementation of biometric technology, whether on its own or combined with 

other technologies such as smart cards, digital signatures and encrypted biometric keys, has 

already been implemented in many areas. Thus, personal authentication through biometric 

technology presents a new challenge in protecting personal data, which cannot be established 

using traditional authentication methods. Moreover, users’ biometric data relating to health 

and personal information will not be able to be changed, to be processed, or even illegally 

distributed without the approval of eligible users [10], because during the cross-matching 

process the system will also detect the invalidity of subjects that are registered by the eligible 

users. Besides this if someone’s biometric data is stolen by ineligible users, the biometric 
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security system will be able to verify the identity of the impostor. This is possible since the 

biometric data is permanent and interconnected with the data owner. Nevertheless, it is 

undeniable that someone will lose his/her privacy as a consequence of using biometric data. 

Due to a number of issues related to users’ privacy and security, many recent studies 

have attempted to find a method to protect biometric systems from the possibility of misuse 

by improving certain points that are considered to be deficient [11]. The security in this 

method will have to be able to improve its security system, while efficiently running the 

matching process and ensuring that it continues to identify appropriate biometric data. The 

fact that biometric data is permanent and unique, as it is not owned by two or more persons, 

means that offences against one’s personal data is less likely to happen, as in a traditional 

system where a person’s identification, such as ID and PIN (personal identification number) 

can be cancelled and remade. 

Another approach proposed to protect biometric data is the biometric cryptosystem 

[12]. This technology embeds key information onto the feature of biometrics as an additional 

information about it. This information could not be revealed without a successful 

authentication procedure. However, this technology has drawbacks related to unstable 

recognition performance caused by the unreliable production of the key information [13]. 

With regards to sharing personal biometric data in public, for instance with 

commercial companies, enforcement agencies, and government agencies, security and 

privacy systems in biometric technology have been vastly improved by implementing 

cancellable biometric technology [13], [14]. This is based on the fact that biometric data do 

not vary much over time (permanence) and are very rarely shared by two people (uniqueness) 

where privacy violations could occur if biometrics are misused or stolen. Traditional methods 

for identifying people, for example, ID and personal identification numbers (PINs), can be 
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cancelled and reissued if the above privacy issues are compromised; however, this is not 

possible with biometric data. Furthermore, there are privacy concerns about sharing biometric 

data with commercial companies and law enforcement or government agencies. 

Cancellable biometric technology uses biometric data that is intentionally transformed 

instead of using the original biometric data in order to identify a person. The initial concept 

of cancellable biometrics is that the system or the eligible user can automatically nullify the 

registered data if his/her biometric data is being misused. The data in the cancellable 

biometrics has to be different from the initial data and cannot be easily reconverted into its 

original version, although the method of prior data transformation is known, and, moreover, 

that the transformed version of the original data has been submitted. The original data can be 

transformed into various types of data; however, the quality of the data does not decrease 

compared to its fundamental version.  

These advantages have motivated researchers in the biometric security field to find a 

new and enhanced approach to generating a cancellable biometric template. A consideration 

of the various possibilities to produce an algorithm for the cancellable biometric is a principle 

reason for us to discuss the cancellable technology in this thesis. 

 

1.3. Thesis Aims and Objectives 

The main aim of this work is to produce a novel approach to the generation of 

cancellable biometric features, particularly in fingerprint technology, by providing an 

alternative method to produce a cancellable template that is able to be implemented not only 

using one specific biometric technology. Theis aim can only be successfully achieved by first 
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understanding the basic requirements of a cancellable fingerprint. The objectives of these 

requirements are: 

- Produce a novel approach in generating cancellable biometric features, 

particularly in fingerprint technology. 

- Provide an alternative method to produce a cancellable template that is able to be 

implemented not only for fingerprint technology but for another biometric 

technologies as well. 

- Provide all supporting fingerprint process algorithms, for instance fingerprint 

enhancement and core-point identification to produce a dependable cancellable 

fingerprint template. 

 

1.4. Contributions 

With current cancellable biometric methodologies, research is focusing onto the 

details of biometric traits. Hence, the resulting algorithms cannot possibly be implemented in 

other biometric technologies. For example, a cancellable fingerprint using the rotation and 

orientation of the minutiae approach is not appropriate for generating cancellable face, iris, or 

retina.  

- Based on this disadvantage, a novel concept of utilizing matrix operations is 

introduced in this thesis, to give an alternative algorithm which can produce a multi-

implementation cancellable biometric. The methodology developed in this thesis is 

not limited to the proposed fingerprint only, as it is also able to be used for other 

biometric technologies, for instance face, or palmprint. 
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- This research proposes a new concept with the aim of producing a cancellable 

template. The concept requires a sequential procedure to guarantee that an established 

and a queried biometric feature are compatible with an accepted one and incompatible 

with a rejected one. This framework makes any applicant of this proposed approach to 

be able to analyse less performance of the system.  

- In generating the cancellable template, several requirements should be provided as an 

input. One of the requirements is an input image form that is improved in a square 

form shape and furthermore, a region of interest (RoI) algorithm is needed to select a 

particular area of the fingerprint. In this thesis, a new method is applied by utilizing 

the density of ridge-frequency and –orientation. The implementation of these two 

enhancement steps reduces the excision of the important region of the fingerprint and 

avoids involving the featureless area. 

- To avoid obtaining an un-classified fingerprint, there are three principal requirements  

of the proposed fingerprint classification image process: the core point and its 

number, ridge frequency, and ridge direction; whilst the tented arch (TA) is only an 

additional requirement. The proposed idea enhances the percentage accuracy in 

classifying the fingerprint.  

 

1.5. Thesis Outline 

The thesis is organised into seven chapters. The first chapter presents an introduction 

to this thesis and describes what biometrics and cancellable biometrics. This is followed by 

the aims and objectives, thesis methodology and its contributions. In addition, the outline of 

the thesis is also described in detail to illustrate its contents. 
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Chapter 2 focuses on producing cancellable biometrics along with the requirements 

needed to achieve a reliable cancellable template, such as being non-invertible and re-issuing 

and the authentication of performance. The existing cancellable biometric approaches are 

considered so as to illustrate the uniqueness of the algorithm proposed in this thesis. 

Nevertheless, the matrix operations used in this research are discussed as well. 

Chapter 3 discusses fingerprints as a biometric technology requiring several methods 

in order to produce a reliable cancellable template; such as, fingerprint enhancement, core-

point identification, region of interest, fingerprint classification, minutiae extraction and 

fingerprint authentication. 

Chapter 4 presents an innovative approach to generating a cancellable fingerprint 

template using several matrix operations.  A description of each operation is explained 

algebraically to illustrate how the operation works. Moreover, the methodology for this 

exclusive approach will be introduced along with results that indicate that the method is 

reliable enough to generate a cancellable template. 

Chapter 5 analyses the requirements regarding pre-processing, core point 

identification, and region of interest, fingerprint classification, and minutiae extraction, in 

order to support this distinctive approach, which produces a dependable cancellable biometric 

methodology. 

Chapter 6 focuses on a performance evaluation of the approaches discussed in 

chapters 4 and 5, such as the evaluation of error rates, time taken and the requirements for 

matrix operations. 

Chapter 7 presents the overall conclusions of the thesis and moreover provides some 

guidance for future work that has emerged from this research. 
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Chapter 2 

2. Cancellable Biometrics 

2.1. Introduction 

The use of representations of identity such as passwords and ID cards is no longer 

sufficient, as these can easily be shared or compromised. The security requirements in an 

authentication system based on biometric technologies have to be the benchmark of the 

system, as its characteristics will be permanently associated with the eligible user and cannot 

be cancelled or withdrawn when used inappropriately. Someone’s biometric characteristics 

cannot easily be replaced. So if an impostor misuses it, the data will be lost forever.  As a 

result, there is a possibility that the user will lose all access to the application using that 

particular biometric data. In order to overcome this problem, the susceptibility of the 

biometric system needs to be systematically identified and recognized [15], [16]. Thus, 

protecting biometric information has become one of the main concerns, as well as a major 

challenge to researchers, in this field. 

Cancellable biometric is a concept where its biometric template is protected by 

combining both the security system and replacement features in the biometric system. The 

main idea of this system is the transformation of the cancellable biometric and the changing 

of all images and features before proceeding to the matching process, whilst still maintaining 

the natural characteristics of the cancellable scheme. An appropriate cancellable biometric 

system has to have the following standards: to be distinctive and reusable, and with 

unidirectional transformation and performance [17]. 
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The transformation process implemented in various biometric technologies has 

several functions such as: face identification [18], [19], [20], [21], signature identification 

[22], [23], iris identification [24], [25], [26], [27], and voice identification [28], [29]. Many 

recent papers consider that fingerprints are one of the technologies that are being widely 

discussed for use in biometric systems [30], [31], [32], [33] & [34].  

Three types of transformation have been recommended for implementation [30] with 

fingerprint images: Cartesian transformation, polar transformation and image folding 

transformation. However, the former two types have a disadvantage in relation to the 

boundary issue. If the original minutiae point is away from its boundary and then divides the 

area of the feature, as a result of minor distortion to the image alignment or if the original 

fingerprint image is damaged, then the transformed version of the minutiae points will be 

placed far from where it is supposed to be. Meanwhile, the third method relates to the 

functional use of smoothing a local value to flip a fingerprint feature over the space.  

Local smoothing function has been used to create a cancellable fingerprint template 

by maintaining the original geometric connection (rotation and movement) between the 

registered template and the questionable template after the transformation process is 

conducted [33]. Therefore, the result from the template transformation can be used to identify 

a person without requesting the alignment of the image fingerprint that is being used as an 

input. However, this security method is in sufficient as protection for biometric data. For 

example, an impostor might narrow down the candidates of the original minutiae design 

based on limitations in the orientation continuity of the minutiae feature and the local 

smoothing process of the transformation function.  

Several investigations have been conducted regarding this issue. For instance, the 

conversion of a fingerprint into a binary-string area is based on its minutiae series [34]. The 
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representations of binary numbers are transformed into an anonymous representation using a 

unique personal key. According to the author, not only is the transformation non-invertible, 

but also when it is misused by someone else, the template will disappear and can be renewed 

by entering a different key. One of the advantages of this representation is that existing 

methods, for instance bio-hashing could be implemented. 

Alternatively, a secure method has been introduced to produce a template of a 

cancellable fingerprint [35]. This method extracts a local image of the fingerprint filled with 

minutiae in small pieces and subsequently transforms them into projection matrices without 

changing the space between each minutia in those small pieces. However, the disadvantage 

of this method is the poor accuracy of the transformation results. It can be noted that [36] 

presents an idea in constructing a cancellable biometric system and secure sketches, in order 

to protect the privacy of the biometric template while supervising the matching process 

between the protected and referenced data. The standard process in cancellable biometrics is 

to perform a transformation to create an unchangeable image and to produce a matching 

process for those transformed images. In this technique a correction system is used on the 

sketches which can be secured from the cancellable biometric system, resulting in a 

procedure that supervises the appropriate matching process. 

The geometric transformation system of the minutiae position has also been proposed 

to create a template of cancellable fingerprints [37], which is useful in an alignment process. 

In order to create a template of the cancellable fingerprint, a supervising parameter over the 

encryption of minutiae features is conducted on the surrounding area of minutiae. 

Subsequently, all the encrypted minutiae will be superimposed to form a protected template. 

The parameters used to control minutiae encryption are created from the arranged minutiae 

geometric. Compared with the parameters where the algorithms for the cancellable templates 
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use the information from the minutiae that have to be encrypted, this minutiae encryption can 

guarantee the solidity of the non-invertibility concept. 

 

2.2. The Non-Invertible Issue 

In non-invertible transformation systems, a function, for example B, is designed to 

transform the original biometric image into a new image within the scope of the domain 

feature or signal. The B will serve as a key factor in protecting the cancellable template, as 

well as determining if the template is non-invertible, reusable and variable. In view of the fact 

that function B is not directly related to the original biometric image, then function B does 

not have to be kept confidential. 

his non-invertible transformation has been used where the fingerprint data is 

transformed by the order of the three functions of non-invertible transformation [30]. As 

shown in Figure 2.1, the three transformation functions are based on the Cartesian polar 

concept and the surface folding transformation of the existing minutiae. 

In general, the three transformation functions in Figure 2.1 enable more than one 

minutia to be mapped onto the same points within the same transformation domain. This is 

also known as many-to-one mapping. For example, two or more cells can be mapped into a 

single cell in the Cartesian transformation, so that when the impostor discovers the key and 

the transformation between the cells, the owner of the original cell will not be discovered, as 

each minutia can refer to one of the cells at large. Therefore, this method provides certainty 

over the resulting templates of non-invertible transformation. 
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Figure 2.1. Cancellable Templates from Different Transforms (adopted from [30]) 

 

However, it has been argued [38] that the transformation and the choice of parameters 

in this approach might decrease or even abolish the characteristic of many-to-one mapping on 

which the non-invertible functions will depend, which will result in the reversion of the 

original biometric feature. It has been shown [39] that the surface folding transformation can 

be reversed to its original form if two transformed original templates are compromised. 

A further study [40], the author presents a method of hashing minutiae information for 

fingerprints and conducted the matching process in a new domain. Computationally, it is 

quite complicated to reconstruct the original features because of the hashing value, as the 

results from this method have a one way characteristic of transformation. Meanwhile, a 

geometric transformation has been proposed [41] to create a key-dependent non-invertible 

cancellable template for minutiae fingerprints. In this method the first factor to determine is 

the core-point and where a line passes over that particular core-point. However, since the 
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minutiae that are above the line reflect symmetrically below, this means that the template of 

the transformation contains some information from its original template. 

Cancellable biometrics offers a solution to protect the user’s privacy, as the client will 

never be identified in the authentication process. This will guarantee that the protection of 

template can be obtained at a feature level by using support from data in a non-invertible 

transformation [42]. 

 

2.3. Re-Issuing 

Biometrics automatically identifies and verifies someone based on his/her physical, 

biological, and/or behavioural characteristics. Compared with traditional identification and 

verification methods, biometrics is not only considered to be comfortable for its users, but 

also minimizes the number of impostors and is more secure. Biometrics is also associated 

into: the security system, through intelligent, and a security forces.  

Nevertheless, there are several concerns related to the application of biometrics in 

everyday life, such as security and privacy issues, along with the question of ensuring that it 

is standardized. The principal concern is the issues that relate to biometric data security. 

Unlike traditional identification methods, it is difficult to re-issue a person’s biometric data. 

Therefore, cancellable biometrics allows the system to re-issue the user’s biometric data by 

mixing up the biometric features before continuing to the matching process. The mixing 

parameters can easily be changed to prevent the data being misused. Figure 2.2 demonstrates 

how a system of cancellable biometrics re-issues the original biometric image. 
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Figure 2.2. Re-Issuing in Cancellable Biometrics 

 

2.4. Accuracy Performance  

A problem will occur in the biometric authentication system when the data associated 

with the biometric features is misused. Unlike with biometrics system, physical 

authentication systems using a form of token such as a key or an ID can easily be cancelled or 

replaced with a new token, whenever the token is lost or misused. Conversely, it is  not 

possible to change or to replace the data in a biometric system. 
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The performance evaluation of systems based on the biometric authentication is a 

vital issue. Authentication systems will run the process by comparing the live biometric data 

from the owner, which can belong to the owner or to others, with the original reference 

template made by the system during the registration procedure. Matching the biometric 

information entails calculating the degree of similarity between the live data in question and 

the registered reference template. The results from this comparison process will be scored.  

The false acceptance rate (FAR) and false rejection rate (FRR) are the important basic 

performance measures of the matching process. The values of the rates for a threshold of 

tolerance, however, combine levels of FAR and FRR in considering the security and 

convenience of a biometric-based authentication system. In practice, the most challenging 

aspect is to obtain a zero score for FAR and FRR. If the FAR score is higher, the system will 

be more likely to recognize impostor data as genuine. If the FRR result is high the live data of 

the owner will be recognized as an impostor, and vice versa. The impact of rejection in a 

biometric system therefore becomes the main focus of discussion, and another index of 

performance has been introduced where the point of FAR and FRR will be equal [43]. This 

point is known as the equal error rate (EER), and a system will be considered as perfect if the 

EER score is zero. 

 

2.5. Matrix Operations  

The objectives of this research are to produce a cancellable template for fingerprints 

based on the similarity between the non-invertible need for the fingerprint template in the 

cancellable system to be non-invertible and a non-invertible matrix in the matrices 

operations. A template can be categorized as a cancellable template when it is non-invertible 
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to the original image. This also applies to the matrices. The matrices cannot be inverted when 

satisfying three conditions. Firstly, there is at least one zero row. Subsequently, there is a row 

that is a multiple of another row; and finally, the matrix form is not a square. 

The first requirement can be achieved by using an elementary row operation (ERO), 

where a selected row is multiplied by zero. Meanwhile, for the next requirement, it is rare to 

find a row in the image system which is a multiple of another row; hence, it can be created 

using ERO. 

Furthermore, to ensure that the obtained cancellable matrix is completely masked and 

to be able to meet the final requirement of the non-invertible matrix, each element of the 

transformed matrix is multiplied by an arbitrary matrix/element in this research. This process 

is called the Kronecker product or tensor product operation. By using this process, the 

outcome comprises those matrices, and contains more numerous elements and an adjustable 

matrix form (whether a rectangle or square matrix). 

 

2.5.1. Elementary Row Operations (ERO) 

Generally, Elementary Row Operations (ERO) can be defined as a multiplication and 

addition force that is imposed on the matrix rows. The three operations corresponding to the 

operations in rows of EROs are multiplied in the following way: a row by a non-zero 

constant; interchanging two rows; and then adding a multiple of one row to another row [44].  

The purpose of these operations is to acquire a solution in algebra or to obtain a new 

form of matrix. For example, an arbitrary system of m linear equations in n unknowns can be 

written as: 
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𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

⋮ 

                                              𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚   (2.1) 

wherex1, x2, x3, …,xn are the unknowns and the subscripted a’s and b’s denote constants.  

The above equation can be simplified by writing down only the constant values in the form of 

a rectangular matrix as follows: 

 

                                                   [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] [

𝑥1
𝑥2
⋮
𝑥𝑛

] = [

𝑏1
𝑏2
⋮
𝑏𝑚

]  (2.2) 

By using the three operations above, the unknown variables can be derived. 

 

2.5.2.  Kronecker Product (KP) Operation 

The definition of the Kronecker product or tensor product can be noted as follows 

[45]. Suppose 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑝×𝑞. Then the Kronecker product of A and B is defined as 

the matrix: 

 

    𝐴⊗𝐵 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
] ∈ ℝ𝑚𝑝×𝑛𝑞 

Obviously, the same definition holds if A and B are complex-valued matrices.  
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There are two advantages that can be obtained using this operation. First of all, it is 

able to change the value of each element of the original matrix. Secondly, if B has any kind of 

matrix form, this means that a new larger matrix can be generated with different dimensions. 

 

2.6. Summary 

In this chapter, the discussion has centred on the reasons why security is more 

important for biometric-based authentication systems than for non-biometrics systems. The 

main reason is that a biometric is permanently associated with a user and cannot be revoked 

or cancelled if compromised. In this case, if a biometric identifier is stolen and misused, it is 

lost indefinitely and possibly for every application where that biometric is used. In order to 

avoid any potential security crisis, vulnerabilities in the biometric system must be identified 

and addressed systematically. Cancellable biometrics has been a challenging but essential 

approach to protecting the privacy of biometric data. Therefore, protecting biometric 

information is a major concern. 

According to [30], there were eight places in the generic biometric system that is 

vulnerable to be compromised. For example, some attacks can be perpetrated at the sensor 

level and at the feature extractor level by presenting a fake biometric at the acquisition 

process or resubmitting a sensor stored digitized biometrics signals. Meanwhile, in overriding 

the feature extraction process, the feature extractor is attacked using a Trojan horse, so that is 

produces feature sets pre-selected by the intruder. 

Other attacks are related to the biometric templates generated by the feature extractor 

module, which are stored in the database or matched against previously stored templates. The 

biometric templates are the targets of the attacks either at the database level or at the 



21 
 

interconnecting channel level. Finally, the matcher and the output to the device application 

can be attacked to override the system decision. 

Cancellable biometrics is a concept where the biometric template is secured by 

incorporating protection and replacement features into the biometrics. Fundamentally, 

cancellable biometrics alter the biometric images or features before being matched. The 

variability in distortion parameters offers the scheme its cancellable nature. A superior 

cancellable biometrics formulation must fulfil four requirements: to be distinctive and 

reusable, with unidirectional transformation and performance. 

Based on these requirements, cancellable biometrics allows the system to re-issue the 

biometrics for a user. The key idea of cancellable biometrics is to distort the biometric 

image/signal/features before matching. The distortion parameters can easily be changed, 

which provides the cancellable nature of the scheme.  

The performance evaluation of biometric-based authentication systems is an 

important issue. The authentication session compares a live biometric sample provided by the 

user with the user’s reference template generated by the system during the enrolment 

procedure. This biometric matching determines the degree of similarity between the live 

submitted biometric sample and the reference template. 
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Chapter 3 

3. Biometric Fingerprint 

3.1. Introduction 

In this research, fingerprint technology is utilized as an input for the cancellable 

algorithm. This is influenced by the fact that a biometric fingerprint has centain unique 

features, such as minutiae, pore, core-point, ridge and valley, and the fingerprint itself. These 

features and traits provide particular information related to the owner so that no single other 

person has identical information. This uniqueness encouraged us to select fingerprint 

technology to provide the input for the cancellable algorithm. 

In the previous chapter, it was stated that a cancellable template could be established 

by utilizing several matrix operations that are inverse operations; for instance, the Kronecker 

product operation and the elementary row operation. These operations yield a disguised 

transformed template so as to recognize an impostor. Using these matrix operations requires a 

quality-enhanced image as an input to ensure that there is no missing feature information 

whilst the cancellable template is being generated.  

For fingerprint technology, a qualifying image can be obtained by implementing a 

pre-processing step to provide an enhanced fingerprint input for the cancellable fingerprint 

algorithm. This stage can minimize the possibility of obtaining false-feature information 

caused by noise, scars, unclear ridges/valleys, and so on. Another fingerprint processing step 

needed is core-point identification as a reference point to select a certain region for the 

fingerprint input. Moreover, the core-point is also utilized as an important requirement in the 
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classification step. The classification of a fingerprint is also utilized to reduce the time taken 

during the authentication step, especially for the identification process. By classifying the 

type of fingerprint, for instance, whorl, arch, tented arch, right loop, or left loop, this provides 

a simple way to reduce the number of fingerprints which need to be compared.  

Furthermore, the core-point is needed for several other purposes as follows. Firstly, it 

means that a correct decision can be made with regards to which class a fingerprint is related 

to. Actually, in class determination, the core-point is at the centre of the fingerprint ridge plot 

pattern. Secondly, the core-point can be used as the core of the region of interest (RoI) of a 

registered fingerprint. Normally for fingertips, the core is positioned in the centre. Therefore, 

if the selection of the RoI uses the core-point as a zero coordinate, this is very useful in 

recognising all of the fingerprint features. Furthermore, by using the core-point as a point 

reference for a fingerprint, it helps to locate the minutiae details precisely in their own data 

positions during the authentication step. 

Minutiae extraction is used as one of the inputs for the cancellable system. After 

minutia extraction, data on minutiae position will be dispersed in a row/column projection to 

specify the certain location of the minutia. The method used in spreading the minutia 

information is by collecting all minutiae caught in the extraction process afterwards and 

placing it all in a data table. Subsequently, for authentication purposes, it will be difficult to 

achieve a faster and efficient process, as a step-by-step initialization process is needed to 

check an enquiry minutia again a registered one. Otherwise, if the core point is used as a 

reference point, then the time taken can be reduced because the position of the minutia can be 

directly confirmed with the original one without firstly identifying the position of each 

minutia.  
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In this research, the possibility of establishing a cancellable fingerprint by using an 

enhanced fingerprint image such as with minutiae extraction is determined as well. The 

reason for this is that the minutiae observed by the naked eye do not show up as a fingerprint 

any more, and only appear as scattered figured points. However, implementing an improved 

minutiae extraction approach is required to omit false-recorded information for fingerprint 

recognition. 

As previously mentioned, the RoI is required to ensure that all feature extraction such 

as minutiae are entirely covered. Furthermore, the RoI is also required to make certain that 

the input from the fingerprint will be in square form. Naturally, the fingerprint obtained from 

an acquisition process is a non-square fingerprint image. Meanwhile, a mathematical 

operation in matrices operations mostly requires a square form of matrix. Therefore, the 

cropping and selection of the region is necessary, even though a non-square output is 

produced later to obtain a dependable cancellable template. 

Similarly to all issues of authentication of biometric output, a cancellable proposed 

algorithm will be worthless if it cannot recognize which enquiry fingerprint is valid and 

which one is an impostor. This means that it cannot be claimed that the cancellable 

fingerprint reliable without knowing how good it is in successfully passing the authentication 

process. Recently in the field of fingerprint research, minutia extraction has been 

acknowledged to be one of the most appropriate methods for authenticating an enquiry 

fingerprint. If more minutiae being accepted, as confirmed minutia, in the authentication 

process, This means that the authentication failure rate will be lower [19]. This justification is 

based on the fact that minutiae are an extraction of the unique links and furrows of the 

fingerprint, known as termination and bifurcation, means that each distinct fingerprint has its 

own unique minutiae pattern. 
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3.2. Fingerprint Enhancement 

Given that the quality of fingerprint input is important, researchers have been 

encouraged to propose various approaches to fingerprint enhancement. For example, a 

Laplacian-like image pyramid has been used to spoil the form of the original fingerprint and 

to turn it into interconnected pieces with different special scales [46]. On an image level, 

where the filtering direction comes from symmetrical linear features, a contextual smoothing 

process the has to be conducted. 

One of the enhancement fingerprint algorithms that has been accepted as a key 

reference is based on the principle of image convolution using Gabor filters to apply local 

ridge orientation and ridge frequency [47]. The main steps of this algorithm cover the 

normalization of the ridge orientation calculation, ridge frequency calculation and filtering. 

In order to facilitate various fingerprint applications, such as matching fingerprint 

[48], [49], and fingerprint classification [50], the fingerprint enhancement approach based on 

the Gabor filter can be taken into consideration. The Gabor filter is a type of band-pass filter 

that has two characteristics: being frequency-selective and orientation-selective [51]. The 

average values of those filters can effectively impose specific frequency and orientation 

values. The fingerprint is known to have characteristics of local ridge orientation and ridge 

frequency, and the enhancement algorithm benefits from the regulation of its spatial structure 

by applying Gabor filters to match local ridge orientation and frequency. Therefore, in this 

research, the Gabor filter is used so that ridge frequency and ridge orientation are utilized in 

various fingerprint processing step. 
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An alternative method to improve the quality of fingerprint features has been 

proposed which is known as the Fourier directional filtering technique [52]. In this research, 

the image enhancement process starts by computerizing the orientation image. This is 

different to previous techniques, which work in the spatial domain and involve spatial 

convolution toward an image through filters, as well as estimating ridge orientation using 

continuous estimation from its direction. However, this new proposed method operates in the 

frequency domain and allows the system to use only 16 groups of directions in calculating the 

orientation [52].  

The approach to local estimation is called gradient-based, and has been studied by 

various researchers [53], [54], [55], and [56]. The dominant orientation is computerized using 

the gradient in the surrounding neighbourhood environment since gradient operators such as 

Premitt and Sobel [57] are sensitive to noise and pores (a fingerprint feature within the ridge). 

Many techniques have been introduced from the field of orientation, in order to 

overcome the noise issue in the fingerprint. One that is commonly used is the smoothing 

process, based on the low-pass filter method [54]. Although this method is simple and 

effective, the size of the filtering window is the most critical parameter. A larger window will 

eliminate the noise better, while a smaller window will protect the correct orientation in the 

high curvature area. Several publications recommend using the multi-resolution of orientation 

areas in order to overcome this issue [58], [59], [60], and [61]. Unfortunately, the smoothing 

process cannot fix the correct orientation area if the noise is worse or hidden.  

Various studies have implemented the smoothing process of the orientation area by 

using a Markov Random Field (MRF) or an energy minimization approach [62], [63], [64]. 

The limitation with this algorithm is that the orientation variable is connected to a small area 

of the image and can be represented by a single dominant orientation. However, the MRF 
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model with a small neighbourhood or small connection can only utilize the structure of a 

fingerprint that contains the main information [65], [66]. In addition, poor quality fingerprints 

cannot be used in this method. 

Furthermore, several mathematical models have been proposed by a number of 

researchers with the purpose of describing all of the orientation area of the fingerprint. In 

addition, several models are commonly used, such as the polynomial [67], and Fourier series 

[68]. The models that are explicit consider single points and rely on their extraction. 

Nevertheless, the extraction of hidden single points contributes to the problems that might 

occur during the process. Due to this, the orientation field estimation approach [69], [70], 

[71], [72] is used as an input to specify the single points that are manually marked. 

 

3.3. Core-Point Identification 

The core-point application has obviously been used in the process of fingerprint 

classification and matching, no matter how precise or inaccurate its placement is. The core-

point is also needed to calculate the number of ridge lines between the core and other 

reference points, such as the delta point. The direction of curvature (DC) technique is used to 

detect the raw core-point, while the geometry of region (GR) technique has been used to find 

the correct core-point by introducing the region of interest, in order to increase the accuracy 

of the core fingerprint [73]. Based on the similarity of ideas related to fingerprint 

classification, it has been argued that this approach should be based on how enhanced and 

reliable the image is of the orientation of the fingerprint [74]. 
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Another approach proposed for finding the core-point detects the curvature in the 

fingerprint through the filtering complex method [75]. Here, the complex filter will be 

applied to the field ridge orientation from the result image of the original fingerprint.  

 

 

 

                                                 (a)                               (b)                             (c) 

Figure 3.1. Core point detection using ridge frequency and ridge orientation steps of a fingerprint 

(a)Original fingerprint; (b)Ridge frequency step; (c)Ridge orientation step 
 

 

In this thesis, ridge frequency and ridge orientation processes are utilized to identify 

the core of the fingerprint. The pattern created from these two steps helps the developed 

algorithm to recognize and analyse the central of the fingerprint by optimizing the 

intersection of each patterns. The intersections trace a spotted area that is identified as an 

estimation of the core point. Decision to choose a point as a core is based on peak-sharp 

pattern form on the spotted area. 

 

3.4. Region of Interest 

In order to determine the desired working area and to more focus on the process of the 

analysis of part of the selected image, the selection of a certain area of an image, which is 
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also known as the region of interest (RoI), is also required. This stage of image processing 

can combine, extract, remove and transform the area resulting from the selection process into 

an image window. In biometrics, this selection process is needed to select numerous 

biometric characteristics that are accurate and contain less noise objects. For example, a 

fingerprint is normally obtained as a result of scaning process. This means that the fingerprint 

not only contains the information but is also surrounded by noise that becomes the 

background of the fingerprint.  

Therefore, this selection procedure requires a determination that is used as a reference 

in choosing the desired proper area. As an example, in several cases of fingerprint, full 

fingerprint recognition is not needed as it only requires information about the delta and core-

point sighting of that fingerprint. This is shown in Figure 3.2. 

 

 

 

Figure 3.2. Fingerprint and its Core-point (circle) and Delta (triangle) 

 

The RoI is obviously required as well when the field work domain is in matrix form. 

As is generally known, working in the matrices field usually requires a square-form image. 

Meanwhile, a fingerprint recognition input is mostly available in non-square form. Thus, 

implementing the RoI is an important step. 
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One author has proposed a new image-based fingerprint matching method for various 

rotations and translations of fingerprint input [76]. This approach combines the directions of 

ridges as a prominent feature component and describes the fingerprint in terms of the 

directional energies. The area of a particular radius that is detected around the reference point 

is used as the RoI for feature extraction. 

Another proposed application of the RoI is as an accurate object detector [77]. In this 

paper, the author discussed the approach used to determine the location of an object through 

selecting and classifying areas from the main object. The determination of the targeted area 

based on its similarity and also its spatial neighbourhood citations is also discussed. 

 

 

 

 

 

Figure 3.3. Region of interest step 
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3.5. Fingerprint Classification 

The first scientific study to thoroughly discuss finger classification was conducted by 

Sir Francis Galton in 1880 [78]. The classification process was introduced as the average of 

fingerprint indexing to speed up the process of locating a fingerprint in the database. In the 

last 10 years, Edward Henry has renewed Galton’s work by introducing the concept of the 

core-point and delta of the fingerprint to meet the needs of fingerprint classification [79].  

 

 

 

 

 

 

(a) Arch  (b) Tented Arch  (c) Left Loop 

 

 

 

 

 

(d) Right Loop  (e) Whorl  (f) Twin Loop Whorl 

Figure 3.4. Examples of the five commonly used fingerprint classes under the Galton-

Henry classification scheme 

 

Even though the Galton-Henry scheme offers several benefits, such as being 

interpretable by humans and entailing the rigid segmentation of a database, only a small 
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number of classes can be automatically applied to the system. As an example, most of the 

automatic systems [80], [50], [81], [82], [83] can only classify fingerprints into six classes as 

shown in Figure 3.4. 

Conversely, there are many fingerprints that cannot be easily distributed into classes 

and which cannot even be classified properly by an expert because of the ambiguity of the 

fingerprint features. Therefore, the Galton-Henry scheme that separates a fingerprint database 

into interpretable classes for humans will not be free from error. Moreover, this scheme does 

not offer fingerprint selectivity for a larger database. In fact, it is unnecessary for the 

automatic system to sort the database into fingerprint classes that can be interpreted by 

humans.  

In the Automatic Fingerprint Identification System (AFIS), the purpose of the 

classification process is to reduce the area that needs to be searched. This purpose can be 

achieved by sorting the database into fingerprint machine-generated classes in the feature 

area, as long as the search is consistent and reliable. For example, some indexing fingerprint 

techniques [84], [85] can clear up the search area more efficiently than the scheme used by 

Galton-Henry.  

The classification techniques that are regularly being proposed [19], [86], [87] do not 

classify the database in the beginning, but represent each fingerprint with a numerical feature 

vector. Moreover, it gives a query fingerprint where a class is formed by regaining part of the 

fingerprint that has feature vectors in the database, in which the database has the proximity 

value with the query fingerprint. Although these techniques can classify fingerprints into a 

number of fingerprint classes, a query fingerprint is still required to be compared with all the 

fingerprints in the database, which can be time consuming for larger databases. This issue can 
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be prevented by using a technique combining groups of data in the fingerprint retrieval 

framework [87], [88]. 

 

3.6. Minutiae Extraction 

Minutiae can be either of the termination or bifurcation types. A minutia is considered 

to be the bifurcation type if the end-point of the fingerprint ridge/valley has one input and two 

outputs, or vice versa. Meanwhile, it is considered to be the termination type if the 

ridge/valley has stopped at one end-point. Before the minutiae extraction stage, the 

fingerprint enhancement process is conducted if the fingerprint is assumed to include noise. 

This usually depends on the result of the quality extracted measurement, which is performed 

automatically [89], [90], [91], [92]. 

Most of the recent minutiae-based automatic fingerprint matching systems referred to 

by Jain et al. [7], and Maio and Maltoni [93] were proposed at the end of the 1990s. Jain et al. 

recommend a fascinating idea in matching performance, as long as the image quality of the 

fingerprint input is good. Meanwhile, compared with Jain et al., Maio and Maltoni offer a 

complete and robust approach so that the system can be more adapted to noise. 
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Figure 3.5. Examples of the minutiae extraction of two different fingerprint database sources (FVC 2002 

and BRC) 

 

 

3.7. Summary 

In this chapter, the first subject discussed concerned the production of a dependable 

cancellable fingerprint that requires a fingerprint input with improved quality, so as to ensure 

that no feature information is missing from the fingerprint. That is why for most fingerprint 

image processes, including generating a cancellable fingerprint using matrices operations, 

two stages important in order to ensure success are image enhancement, such as by 

normalization, binarization, or quality mark-up and feature extraction such as by minutiae 

extraction, core-point identification, or pore extraction. 

However, the performance of a fingerprint feature extraction and matching algorithm 

heavily depends upon the quality of the input of the fingerprint image. In reality, fingerprint 
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images are rarely of perfect quality. Given that the quality of a fingerprint image is not able to 

be measured objectively, it roughly corresponds to the clarity of the ridge structure in the 

fingerprint image. It can be judged as a qualifying image when it has well-defined ridges and 

valleys, and is of high contrast. Images may be degraded and corrupted with an element of 

noise due to many factors, including variations in skin and impression conditions. 

Because a biometric property is an intrinsic trait of an individual, it is difficult to 

confidentially duplicate and virtually impossible to share. Moreover, the biometric properties 

of an individual can only be lost in the case of a serious accident. Even though automated 

biometrics can help alleviate the problems associated with the existing methods of user 

authentication, an assailant might still be able to locate several weak points in the system, 

making it vulnerable to attack. The problems with biometric authentication systems occurs 

when the data associated with a biometric feature has been compromised.  

In the next chapter, a novel methodology to generate a cancellable biometric is 

discussed in detail. The relevant methodology is introduced in term of generating a 

cancellable fingerprint feature. 
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Chapter 4 

4. Matrix Operations and Cancellable Fingerprint 

4.1. Introduction 

The main aim in generating cancellable biometrics is the production of a reliable 

revocable biometric template. A cancellable biometric is needed to protect an authorized 

persons information from an impostor. One way of doing this is by randomizing the original 

biometric feature to generate a vague image. In this thesis, the disguising process is achieved 

using three matrices operations: the elementary row operations (ERO), the Kronecker product 

(KP) operation and an inverse matrix operation. 

This idea is to deliver one of the cancellable biometric approaches, because using 

ERO, KP, and inverse operations can allow several alternatives in randomizing the original 

image as long as it is able to satisfy the three requirements of non-invertible matrices: 

1. At least one row or column of the original matrix should be of zero (0) value.  

2. The original matrix must be modified into a non-square matrix form.  

3. It must be ensured that none of the rows is a multiple of another row. 

Meanwhile, the Kronecker/tensor product is used to provide a large, non-invertible 

and totally different cancellable biometric image when compared with the original biometric 

image. 
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4.2. Basic Idea of Generating Cancellable Features 

A feature can be categorized as cancellable when it is non-invertible to the original 

image. The same thing applies to matrices. The matrix cannot be inverted when satisfying 

three situations: 

1. There is one zero row at least.  

2. There is a row that is a multiple of another row.  

3. The matrix form is not a square. 

The first requirement can be achieved using the elementary row operation (ERO), 

where a selected row is multiplied by zero. Meanwhile, for the next requirement, given that it 

is rare to find a row in an image system which is a multiple of another row, this can be 

created by using ERO. Furthermore, to ensure that the obtained cancellable matrix is 

completely masked and to be able to meet the last requirement for the non-invertible matrix, 

in this research each element of the transformed matrix is multiplied by an arbitrary 

matrix/element. This process is called the Kronecker product or tensor product operation. By 

using this process, the outcome is that both matrices have numerous elements and an 

adjustable matrix form (whether a rectangular or square matrix). 

As matrices are used in this field, then there should be no noise at all because the 

existence of noise may add specific information to the biometric feature. The noise on the 

fingerprint can be occurred when the surface of the scanner in the acquisition process is 

unclear. This is relevant for a cancellable biometric, since the final stage of this system is the 

authentication process and even a small amount of noise will significantly affect the quality 

of the cancellable feature and will certainly result in low precision during the verification 
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process later on. Thus, the early process to be undertaken towards the result of the established 

fingerprint is an enhancement step. The enhanced fingerprint will provide a feature with the 

precise value of fingerprint information so that when it is extracted to domain matrices, no 

unnecessary values will go into it. After following several fingerprint steps, the cancellable 

input image will be produced by several matrices operations.  

In view of the fact that it is already in a matrix domain, then the next issue to be 

discussed is how to build the cancellable biometrics system using an input matrix A. Firstly, 

matrix A will be inverted as the first step in disguising the real feature. This idea is an initial 

step, as it will be considered whether directly inversing matrix A is effective or, conversely, 

inversing matrix A after another matrix operation. The next step will be to determine whether 

to apply the rlementary row operation (ERO) to matrix A to obtain a zero-value row or to 

apply the Kronecker Product (KP) operation. It is also necessary to determine how many zero 

rows are required to achieve the required maximum non-invertible matrix. Besides the use of 

ERO to obtain zero rows, another method to be considered in this research is the use of ERO 

to create rows that are the multiples of other rows. 

After implementing the ERO operation with matrix A, the result of this operation can 

be named matrix K. This will then go through a KP operation to produce a KP matrix, where 

every initial element is unrecognizable. Let us name this matrix M. In this KP operation, 

matrix K will be multiplied by a tensor factor that can be in the form of a matrix or integer 

with a constant value called B.  The form and value of factor B will be further investigated in 

this research. For example, if factor B is a matrix, then the value can be taken from the 

numbers given by a person who has registered his biometrics when registering as an authentic 

person for a biometric whose cancellable feature is being created. In this research, the steps 

using ERO and KP will be analysed as well, including whether the use of ERO in the 

beginning and KP afterwards is better, or vice versa. The result of this process will be a 
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cancellable matrix of matrix A, which will be seen specifically as matrix C which is a 

cancellable template. 

 

4.3. Matrix Implementation 

The above processes can be illustrated using the following mathematical steps. It can 

be noted that the original input matrix A is a three-by-three matrix. The first alternative step 

that is used is to invert the original matrix, so as to disguise it.  

 A
-1

=
1

|A|
adjA  (4.1) 

 

Supposing A  = [
2 5 7

3 2 0

8 9 6

],  (4.2) 

where |A|=11, and 

 

adjA= [

12 33 11

-18 -44 21

11 22 -11

],  (4.3) 

so that, 

   

           A
-1

=

[
 
 
 

12

11
3 -

14

11

-
18

11
-4

21

11

1 2 -1 ]
 
 
 

, (4.4) 
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To obtain the Kronecker product (KP), another matrix should be determined. In order 

to provide more of an overview, there are two alternatives for that matrix; firstly, a non-

square form matrix B  observed as in the matrix below 

 

B= [
11 11

0 0

11 11

].  (4.5) 

 

The reasons for establishing this matrix are firstly to show why a non-square matrix 

cannot be inverted; and secondly, why if there is at least one zero row, the matrix cannot be 

inverted as well. Furthermore, A
-1⨂B=

[
 
 
 

12

11
3 -

14

11

-
18

11
-4

21

11

1 2 -1 ]
 
 
 

⨂ [
11 11

0 0

11 11

]= 

                            KP =

[
 
 
 
 
 
 
 
 
 12 12

0 0

12 12

33 33

0 0

33 33

-14 -14

0 0

-14 -14

-18 -18

0 0

-18 -18

-44 -44

0 0

-44 -44

21 21

0 0

21 21

11 11

0 0

11 11

22 22

0 0

22 22

-11 -11

0 0

-11 -11]
 
 
 
 
 
 
 
 
 

; (4.6) 

where KP matrix is a 9 x 6 form (non-square matrix). 

A matrix can be said to have an inverse if A.A
-1

 = I; where I is a matrix identity. 

Meanwhile, a matrix is able to be a matrix identity if the diagonal elements of the matrix are 

1 (one), whereas the other elements are 0 (zero). Based on this requirement, the matrix 
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identity should be a square form matrix. Since 9 by 6 is not a square form matrix, this proves 

that the KP matrix does not have an inverse. 

The next alternative is a non-square form matrix B observed as the matrix below: 

 

B= [
11 11 11

0 0 0

11 11 11

]. (4.7) 

 

That, A
-1⨂B=KP=

[
 
 
 

12

11
3 -

14

11

-
18

11
-4

21

11

1 2 -1 ]
 
 
 

⨂ [
11 11 11

0 0 0

11 11 11

] 

 

  KP  =

[
 
 
 
 
 
 
 
 
 12 12 12

0 0 0

12 12 12

33 33 33

0 0 0

33 33 33

-14 -14 -14

0 0 0

-14 -14 -14

-18 -18 -18

0 0 0

-18 -18 -18

-44 -44 -44

0 0 0

-44 -44 -44

21 21 21

0 0 0

21 21 21

11 11 11

0 0 0

11 11 11

22 22 22

0 0 0

22 22 22

-11 -11 -11

0 0 0

-11 -11 -11]
 
 
 
 
 
 
 
 
 

  (4.8) 

Currently, the form of the matrix KP is square (9 by 9). This 9 by 9 matrix can be 

inverted when KP.KP
-1

 = I. In this case, the matrix identity can be symbolized as matrix C 

and the KP
-1

 as matrix P: where,  
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  C   =

[
 
 
 
 
 
 
 
 
C11 C12 C13

C21 C22 C23

C31 C32 C33

C14 C15 C16

C24 C25 C26

C34 C35 C36

C17 C18 C19

C27 C28 C29

C37 C38 C39

C41 C42 C43

C51 C52 C53

C61 C62 C63

C44 C45 C46

C54 C55 C56

C64 C65 C66

C47 C48 C49

C57 C58 C59

C67 C68 C69

C71 C72 C73

C81 C82 C83

C91 C92 C93

C74 C75 C76

C84 C85 C86

C94 C95 C96

C77 C78 C79

C87 C88 C89

C97 C98 C99]
 
 
 
 
 
 
 
 

 

     

=

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1]
 
 
 
 
 
 
 
 

; (4.9) 

From the matrix above, it is clear that the diagonal elements of C should be 1 and the others 

0. 

 The computation can be simplified by firstly checking the diagonal elements of 

KPxKP
-1

 or KP x P (C11, C22, C33, C44, C55, C66, C77, C88, C99); where,  

 C11 =  (12xP11) + (12xP21) + (12xP31) + (33xP41) + (33xP51) + (33xP61) + (-14xP71) + 

(-14xP81) + 

    (-14xP91) (4.10) 

 

 C22 = (0xP12) + (0xP22) + (0xP32) + (0xP42) + (0xP52) + (0xP62) + (0xP72) + (0xP82) + 

(0xP92) 

  = 0  ===> this means that C ≠ I ( matrix C is not equal to matrix identity); (4.11) 
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In summary, it can be said that matrix KP is a non-invertible matrix. 

Referring to the explanation in the two previous sub sections above, it is obvious that 

matrix operations such as the elementary row operation (ERO) and Kronecker product 

operation (KR) can be implemented to generate a cancellable biometric. This is based on a 

similar approach between a cancellable biometric and a non-inverted matrix. In the former 

field, a cancellable method can be said to be successful when the yield image is not able to be 

retransformed into the original image. The same goes for the latter field. In the matrix 

domain, if the goal is to obtain a revocable matrix, then the non-inverse matrix requirement 

should be fulfilled to make the matrix non-invertible.  

 

4.4. Algorithm Outline 

A feature can be categorized as a cancellable feature when it is non-invertible to the 

In this novel research, the first step to be achieved is to prove that implementing several 

matrix operations to produce a revocable biometric image can be used as a novel approach in 

the cancellablity field. Therefore, in this research step, pre-processing steps have thus far not 

been discussed.  

Nevertheless, a good quality input image is obviously required, as the work will be 

undertaken in a matrix domain. Consequently, a recent method related to this issue 

isdiscussed in the next chapter of this thesis. Generally, the outline of this proposed research 

is as shown in Figure 4.1. whereas the input of cancellable is the result of all of the 

fingerprint pre-processing steps used in this research. 
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Figure 4.1. Three approaches in generating a cancellable image using several matrix operations 

(a) the first alternative procedure; (b) the second alternative procedure; (c) the third alternative 

procedure 

 

 

4.5. Experimental Results and Discussions 

In this work, the fingerprint has been chosen arbitrarily as the first biometric input. 

Three different benchmark fingerprint databases are used to verify to what extent the 

enhancement algorithm is appropriate for implementation. Those databases are: FVC 2002, 

DB1_B to DB4_B [94]; FVC 2004, DB1_B to DB4_B [95]; and BRC, 
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DBI/DBII/Training/Test [96]. In this case, images of BRC are utilized as follows, especially 

in generating a cancellable biometric: 

 

 

(a) 

 

(b) 

 

(c) 

 

 

 

 

(d) 

Figure 4.2. Implementation result of the first procedure of the research outline 

(a) Fingerprint original image 240 x 320 pixels; (b) Image as yield of inverse operation (240 x 240 pixels); 

(c) Kronecker Product operation’s image with B as a multiplied matrix is  

a square matrix (720 x 720 pixels); (d) Kronecker Product operation’s image with C as a multiplied 

matrix is a non-square matrix (480 × 720 pixels); 

 

 

To implement the matrix operations with a fingerprint, these operations have been 

implemented in accordance with three different procedures. As shown in the notes for Figure 

4.2., a fingerprint with 240 × 320 pixels is used as the input. As the algorithm is implemented 

in the matrix domain, a square form of input is needed to be processed in all of matrices 
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operations, and so the input feature is cropped independently into 240 × 240 pixels of image. 

Using the BRC (Biometric Reseach Centre) database in this first experiment helps us to 

simplify the cropping process. Given that the foreground of the image is the fingerprint, the 

square form is obtained by selecting a point starting from 0 to 239 pixels from each side of 

the image. 

In the first step, the cropping feature should be imposed as an inverse operation to 

camouflage the original feature of the fingerprint (Fig. 4.2(b)). Naturally, this step can be 

utilized to disguise the appearance of the original fingerprint because each pixel in the 

fingerprint is transformed into a different value. Thus, this means that it is already a new 

feature. This condition is helpful if the appearance of the feature is not similar to the 

appearance of a fingerprint feature so as to mislead and deceive an imposter. 

Nevertheless, the feature imposed by the inverse operation is enough to restrict an 

imposter from knowing the original feature of the fingerprint or the appearance of the feature 

of the fingerprint. By re-inverting the inverted image, original feature can be recontructed 

again. Consequently, another matrix operation, the KP operation, is conducted in order to 

improve the blurring of an inverted transform feature by expanding every pixel in the feature 

(Fig. 4.2(c) and (d)). The expanding processes are accomplished by magnifying the inverted 

feature with an arbitrary form of matrix/image. The arbitrary matrix/image could be m x m 

(square form) or m x n (not square form). 

Nevertheless, to strengthen the blurring process, the ERO operation is applied to into 

the image of the KP operation by determining several rows/coloumns of the matrix to be 

transformed to zero by implementing the following approach. 
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𝑓(𝐴) = 𝑚𝐴 + 𝑛𝐶, 𝐴 = 1,… ,𝑚 if 𝑚 < 𝑛 and 𝐴 = 1,… , 𝑛 if 𝑚 > 𝑛; 𝐶 ∈  ℝ; (4.12) 

where :  f(A) is the row which becomes zero, 

 A is the selected row, 

 m and n are a row and coloum. 

The above equation helps to determine which row the ERO is applied to and restrains 

this matrix operation due to the excessive number of zero rows. Basically, the ERO’s yield 

feature is quite similar to the KP’s feature, although it is different in value. This similarity 

helps to divert an imposter if they try to invert a cancellable feature to detect the original 

version of the fingerprint. In this step, the ERO yields a cancellable fingerprint feature 

(Figure 4.3). 

 

 

 

Figure 4.3. Image as a result of elementary row operation (the cancellable fingerprint image) 
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Futhermore, the way to confirm the reliability of the cancellable feature is similar to 

the method used to ascertain the original matrix in the matrix domain. Thus, inverting the 

targeting matrix is known as the ultimate matrix. Based on this theory, the matrix of the 

image in Figure 4.3 is imposed using the inverted step. As a result, the cancellable 

matrix/image cannot be obtained again. This means that this cancellable biometric approach 

is successful. 

Mathematically, a non-square arbitrary matrix in the KP operation can yield a 

cancellable feature as it cannot be inverted to determine the original. However, this result is 

still not eligible, given that someone can predict the value of the arbitrary matrix by 

extracting the value of each pixel in the KP’s yield feature. 

 

 

(a)  

 

(b)  

Figure 4.4. Another approach to the procedure of the proposed research outline (720 × 720 pixels) by 

exchanging the placing combination of the Kronecker operation 

(a)The Kronecker result of [input ⊗ B matrix]; (b) The Kronecker result of [B matrix ⊗ input] 
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Subsequently, another approach with the outline algorithm is shown in Figure 4.4. In 

this alternative approach, a KP operation is applied to a cropped fingerprint input by first 

using a square form arbitrary matrix to manipulate the value of each pixel in the fingerprint. 

Two different procedures are implemented in this step. The first one, the input, which can be 

called matrix I, is magnified by matrix G (g × g), which is the arbitrary matrix. This process 

will cause a pixel from the input matrix to expand G times from the original one. Visually, 

this step gives an identical fingerprint image to the original, although in a large square form 

as shown in Figure 4.4 (a). 

The subsequent process is obtained by calculating the arbitrary G matrix with an I 

matrix. It reduplicates matrix I into g number of the I matrix. In Figure 4.4(b), nine I matrices 

with different intensities are composed forming a large square form. Similarly to the previous 

procedure, the display of this KP operation product is still a copy of the original fingerprint. 

This means that a person is still able to recognize whom the fingerprint belongs to. 

Meanwhile, for a non-square arbitrary matrix approach, termed as a K (m × n) matrix, 

the KP operation results are shown as follows. 

 

 

(a) 

 

(b) 

Figure 4.5. Result of the KP operation in the second alternative procedure of the research outline (480 × 

720 pixels) 
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It can be noted that the result is not different in appearance, as the arbitrary matrix is 

in a square form. The KP figures expand as a large number of rectangular rows and columns 

of the K matrix. Meanwhile, details of the original fingerprint still exist in the pictures. 

After imposing the KP operation, in the second method, the KP yield figure is 

inverted and the ERO operation applied. However, by using the same formula (4.52) with the 

first process in the ERO step, this procedure’s aim is to change the position and number of 

several rows or columns of the fingerprint KP yield image. The valuesof several rows change 

to zero whilst a few rows have values different from the original. The result of this ERO 

process is known as a cancellable feature for the second procedure, shown in Figure 4.6(a) 

and (b). 

 

 

(a) 

 

(b) 

Figure 4.6. Images of the cancellable algorithm 
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 Based on the fact that, visually, the fingerprint is still able to be observed using the 

second approach, even though it produces a cancellable feature as well (see Figure 4.6.), it is 

recommended not to use this method. In an earlier discussion, one of the objectives of this 

research is to generate an unseen biometric image; thus, the first procedure is still 

recommended to be used as an algorithm. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.7. the third rocedure of the research outline 

(a)an image of the input of fingerprint; (b)an image of the cancellable template with a square form; (c)an 

image of the cancellable template with a non-square form 

 

The third procedure involved inverting the cropped image and then to continue by 

changing the matrix form of its result using the KP operation. This procedure aims to find a 

distinguishing feature as early as possible to camouflage the original fingerprint features. 

Figure 4.9 (c) shows an rectangular form of a fingerprint as a cancellable feature of a 

fingerprint after imposing the KP operation (m × n arbitrary matrix). Actually, this process 
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has a benefit in terms of time complexity since it undergoes no ERO step, wherein the latter 

step sometimes consumes 30 to 40% of all the required time to generate the cancellable 

fingerprint. However, this step has a disadvantage, especially if the arbitrary matrix in the 

process is identified by an imposter. 

 

4.6. Summary 

In this chapter, it is noted that the proposeed approach can be relied upon to generate 

a cancellable template. It can be said that if the information data of the input of the fingerprint 

is not similar to the cancellable template, the proposed cancellable template is irrevocable. In 

fact, there are three procedures that can be used to produce it: firstly, by inverting-enlarging-

rotating the image matrix as can be observed in Figure.4.8. 

 

 

Figure 4.8. Illustration flow of the first procedure of the research outline 
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Figure 4.9. Illustration flow of the second procedure of the research outline 

 

The second procedure is enlarging-inversing-rotating the image matrix (Figure 4.9.), 

and the last is by inversing-charging the matrix form (Figure 4.10.). Nevertheless, based on 

the results for all procedures, the first method is preferred for the algorithm so as to acquire 

the cancellable biometric template. 

 

 

Figure 4.10. Illustration flow of the third procedure of the research outline 

 

Furthermore, the pre-processing stage plays an important role, especially when the 

verification step is implemented as illustrated in Figure 4.11. It is shown that the matrix in 
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Fig.4.11(a), which is a matrix with an enhanced process, has a different information data 

compared to the matrix in Fig.4.11(b) which is using B pre-processing algorithm.  

 

 

(a)  (b) 

Figure 4.11. Illustration of the Importance of Pre-Processing Step for Fingerprint. 

Deviation value occurs (red square): (a) The pre-processing matrix of an A pre-processing 

algorithm; (b) The pre-processing matrix of an B pre-processing algorithm 

 

At the moment, there is an element of matrix in the original image, as a result of a pre 

processing step that does not have value as to what it is; therefore,  the image will be rejected 

in the verification process. This is because in this procedure, each of the element values 

describe what the image is, no matter what. 

 

1 1 0 0 0 1 

0 0 1 1 1 0 

1 1 1 1 1 1 

1 1 0 0 0 0 

0 0 1 1 0 1 

0 0 1 0 1 1 

1 1 0 0 0 1 

0 0 1 1 1 0 

1 1 1 1 1 1 

1 1 0 1 0 0 

0 0 1 1 0 1 

0 0 1 0 1 1 
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Chapter 5 

5.Dependable Cancellable Fingerprint 

5.1. Introduction 

In this research, the steps in fingerprint processing are: fingerprint pre-processing, 

core-point identification, Region of Interest (RoI), fingerprint classification, minutiae 

extraction and fingerprint authentication. These are implemented to acquire a dependable 

cancellable fingerprint. The pre-processing step is required to provide a better quality 

fingerprint as an input for the cancellable fingerprint algorithm. This stage can minimize the 

possibility of obtaining false-feature information caused by noise, scars, or unclear 

ridges/valleys. The core-point is needed as a reference point to select a certain region for the 

fingerprint input. Moreover, the core-point is also utilized as an important requirement in the 

classification step. 

Producing a cancellable fingerprint using matrices operations demands a square form 

image as an input. Given that most fingerprint recognition images are not square form, it is 

vital to implement the RoI step. Moreover, this stage is able to omit an ineffective part of the 

fingerprint image so that only a true feature is extracted during the feature extraction process. 

Fingerprint classification aims to split fingerprints in a database into different types 

based on their pattern combinations. This step is required because by classifying a fingerprint 

as either a registered or verified one, the time consumption problem in the authentication 

process might be alleviate. Moreover, fingerprint classification can become more accurate in 

recognising the authenticity of a fingerprint. 
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Nevertheless, the possibility of establishing a cancellable fingerprint by using an 

enhanced fingerprint image such as by minutiae extraction needs to be determined as well. 

The reason for this is that minutiae are not visible to the naked eye and appear as a scattered 

set of points. However, implementing an improved minutiae extraction approach is required 

to omit false recorded information for fingerprint recognition. 

Furthermore, the performance of a fingerprint feature extraction and matching 

algorithm depends heavily upon the quality of the input image. In reality, fingerprint images 

are rarely of good quality. As the quality of a fingerprint image cannot be measured 

objectively, it roughly corresponds to the clarity of the ridge structure in the fingerprint 

image. An image can be judged as qualifying image when it has well-defined ridges and 

valleys and high contrast. However, images may be degraded and corrupted with elements of 

noise due to many factors including variations in skin and impression conditions.  

 

5.2. Fingerprint Enhancement 

The aim of fingerprint image enhancement is to improve the quality of fingerprint 

input to make further operations easier. If it is presumed that the fingerprint images acquired 

from sensors or other media are not of sufficient quality to increase the contrast between the 

ridges and furrows and to connect falsely broken points of the ridges due to noise caused by 

the use of ink, enhancement methods are helpful in maintaining superior accuracy in 

fingerprint recognition. 

In this research, although a novel fingerprint enhancement technique is not required, 

this general step is needed to compare the results from a cancellable fingerprint with and 

without an enhancement step. Nevertheless, several methods have been proposed for 
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enhancing the quality of fingerprint images. Firstly, the background and foreground regions 

of the fingerprint image should be separated using an image segmentation step. The next step 

is to standardize the intensity value in the image by adjusting the range of grey-level values 

into a desired range of values. This step is called image normalization. 

Furthermore, ridge orientation and frequency are important to consider in fingerprint 

recognition as well. Ridge orientation is a fundamental step in the enhancement process, in 

order to effectively improve the quality of the fingerprint image. Moreover, the subsequent 

Gabor filtering stage relies on local orientation. In addition to the image orientation, the local 

ridge frequency step is another important process that is used in constructing the Gabor filter. 

The last two steps are binarization and thinning processes. Binarization is the process 

that converts a grey level image into a binary image. This improves the contrast between the 

ridges and valleys in the fingerprint image, and consequently facilitates the extraction of 

minutiae. The final stage is the thinning process. This step is a morphological operation that 

successively erodes away the foreground pixels until they are one pixel wide. 

 

5.3. Core-Point Identification 

In this research, the core-point is the key to moving to the next steps of fingerprint 

processing. The core-point is required to select a particular region used in extracting the 

fingerprint features and in producing a cancellable template. Moreover, the core-point is the 

main requirement for classifying each fingerprint into a classification type. The core-point is 

required both in fingerprint classification and fingerprint matching using either the spatial 

domain [97] or a transformed domain [98], even though the precise core position is rarely 
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correct in a poor quality fingerprint. There are two techniques used to find the core position: 

the geometry of region technique and the detection of curvature technique.  

In this research, in addition to implement these two approaches, the accuracy of core 

point identification is optimized by considering a pattern analysis of the ridge frequency and 

ridge orientation processes. The intersection pattern on these processes directs the 

identification system to analyse the position of the core by determining a peak-sharp pattern 

from the spotted area.  

 

5.4. RoI 

The region of interest procedure is utilized to select a full-information area of a 

fingerprint by positioning the core-point as a reference point to cover all the features which 

exist in the fingerprint image, which is based on several requirements as follows: 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 5.1. RoI procedures for fingerprint image with an un-centred core-point 
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a. The core-point is a reference point for the RoI. However, the core-point is not always 

a centre point in a fingerprint image. 

b. Suppose the fingerprint size is x by y. If  x > y, create a horizontal line passing the 

core point. Make a vertical line at the right side of the core to find the densest 

ridge/valley based on the ridge frequency value along the vertical line. 

c. A similar procedure is implemented to the other side of the core-point 

d. Lengthen the horizontal line into both vertical lines. 

e. This horizontal line will be the length of a square RoI. 

f. Create two horizontal lines above and beneath the core-point and do the same 

procedure as in steps c and d. 

g. Place the square RoI in the middle of these two vertical lines and two horizontal lines. 

h. Hence, this is the RoI for the fingerprint. 

 

  

 

 

 

(a) (b) (c) 

Figure 5.2. Another RoI result 

(a) Fingerprint after core-point detection step; (b) Selection a specific region with core-point as a 

reference point; (c) Fingerprint with new region of interest 
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5.5. Fingerprint Classification 

Fingerprint classification is needed to decrease time consumption in the authentication 

step. In the authentication process, a query fingerprint will be checked by comparing it with 

all the fingerprints in the database. If the database is very large, this step can become a 

“bottleneck” in terms of speed. This would not be acceptable in a busy online application 

such as a bank, an office, and in terms of security. Therefore, the classification step assists 

systems to reduce the number of fingerprints that need to be authenticated. 

The unusual distribution of fingerprint classes based on human interpretation will then 

decrease the efficiency of the fingerprint classification process. Instead of combining the 

fingerprint based on its visual appearance to generate more classes, such as tented, arc tented, 

right loop, left loop, and whorl; a classification scheme will be consistently distributed to the 

same classes. This scheme can basically be implemented in the long term, as a result of 

different impressions from the same fingerprint. However, there are fingerprints that always 

can be separated without a consideration of the quality of the database, although they are 

located near the classification boundary. In the end, these fingerprints are misclassified due to 

the wide variation of different impressions over the same fingerprints. To overcome this 

issue, the fingerprints are not pre-classified; however, they are associated with the vectors of 

the numerical features. In addition, the classes formed will be given a query fingerprint by 

regaining part of a fingerprint that has a feature of vectors in the database, in which the 

database has proximity to the query fingerprint. This approach is also called continuous 

classification [19], [75], [99]. Field orientation is commonly used in building the vectors of 

the numerical features containing local orientations [80], [99], [87], [88]. Furthermore, the 

average range of the fingerprint is also used as an assisting feature in some studies [75], [77].  
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In this research, the tented arch (TA) and core position on the fingerprint are used as 

requirements to decide which group the fingerprint belongs to. To improve accuracy, the 

direction of the looping furrow is determined to anticipate that the original fingerprint image 

does not have a core or that the core is undetected along the process. This step is maximized 

by using another approach, using ridge frequency and ridge direction, whilst the TA is just an 

additional requirement. The ridge orientation step helps the system to recognize the direction 

of the furrow. Meanwhile, the ridge frequency step is used to pattern the orientation of the 

fingerprint ridge using a likelihood approach. 

 

5.6. Minutiae Extraction 

Minutiae are one of the fingerprint features, and the minutiae extraction process has 

two distinctive characteristics, bifurcations and end-point characteristics. Bifurcations can be 

obtained if one of the fingerprint ridges meets the other two in a node. Meanwhile, the end-

point is counted when the ridge plot has discontinued. In order to extract minutiae from the 

enhanced fingerprint image, a method that is commonly used is the crossing number (CN) 

concept [100], [101], [102].  
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(a) End Point (b) Bifurcation 

Figure 5.3. Examples of a ridge ending and bifurcation. 

 

This method involves using the skeleton of the ridge furrow of the fingerprint where 

the pattern of the ridge is an eight-connected. Minutiae are extracted by scanning the local 

neighbourhood for each ridge pixel. The scanning process utilized is an image with a 3 x 3 

window size. After this step, the value of the crossing number is computed by scanning the 

neighbouring pixels with an anti-clockwise rotation. The computation will calculate a half 

value of the difference among each pair of neighbourhood pixels [103]. 

 

𝑃4 𝑃3 𝑃2 

𝑃5 𝑃 𝑃1 

𝑃6 𝑃7 𝑃8 

 

 
Figure 5.4. Eight Neighbourhood pixels scanned in an anti-clockwise direction of CN 

 

By using CN value characteristics, as shown in Table 5.1, the pixel ridge is achieved 

after it is classified as an ending ridge, bifurcation, or non-minutiae point. After computing 
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the CN value for the pixel ridge, the pixel from the new image can then be classified based on 

of its CN value.  

 

Table 5.1. Properties of CN 

Crossing 

Number 

Properties 

0 Isolated point 

1 Ridge ending point 

2 Continuing ridge point 

3 Bifurcation point 

4 Crossing point 

 

 

  
(a) (b) 

Figure 5.5. The candidate of ridge ending and ridge bifurcation (illustration using the properties of CN) 

 

 

5.7. Experimental Results 

In this research, three different databases are used to check to what extent the 

algorithm is appropriate to be implemented. Those databases are: FVC 2002, DB1_B to 

DB4_B; FVC 2004, DB1_B to DB4_B; and BRC, DBI/DBII/Training/Test. The results are 

as follows. 



64 
 

 

5.7.1. FVC 2002 Database 

The FVC 2002 database provides four different types of fingerprint image from three 

different scanners and the SFinGE synthetic generator to collect fingerprint data as shown in 

the following table. 

 

Table 5.2. FVC 2002 Scanners/Technologies for Each Database 

 
 

Database Technology Used Scanner Used Image Size 

(Resolution) 

DB1 Optical Identix TouchView II 388x374 (500 dpi) 

DB2 Optical Biometrika FX2000 296x560 (569 dpi) 

DB3 Capacitive Precise Biometrics 100 SC 300x300 (500 dpi) 

DB4 Synthetic SFinGE v2.51 288x384 (500 dpi) 

 

In FVC2002, each database has 10 different fingerprints from 10 different individuals, 

which for each fingerprint consists of eight different acquisition processes. Two requirements 

are implemented along with the collection process to manage a similar result for every 

volunteer, which is a maximum rotation of not more than 35 degrees and a non-null overlap 

between any two impressions of the same finger. 

For this research, one fingerprint from each database was randomly selected to 

compare with the results from the implemented fingerprint processes. The processes are 

fingerprint enhancement, core-point identification, RoI, fingerprint classification, minutiae 

extraction, the cancellable fingerprint from an enhanced-RoI input, and a cancellable 

fingerprint of the minutiae feature. The fingerprint enhancement step is required to obtain an 

enhanced fingerprint input with the aim of generating a cancellable fingerprint. The 
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enhancement process reduces noise and unexpected information contained in the fingerprint. 

Core point identification is needed as a reference point in the RoI step and as one requirement 

in the fingerprint classification process. Meanwhile, the RoI is required because a certain 

form of fingerprint is needed as an input for the cancellable process.  

 

Table 5.3. Results for Fingerprint images of the  FVC2002 database 

 

 
 Original 
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0
3

_
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Right Loop 

 
  

 

To make sure that the identification process of the fingerprint is not too time 

consuming, there is one particular requirement for the fingerprint classification. By 

classifying the fingerprint before transforming it into another form in the cancellable step, the 

fingerprint is already verified. Consequently, the scanning process for all the fingerprints in 

the database is not required. Meanwhile, the minutiae extraction process is conducted as well 

to generate the cancellable template. 
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5.7.2. Database FVC 2004 

Similar to the FVC2002, the FVC2004 database has four types of database as well. 

These databases are collected using three commercially available scanners and a synthetic 

generator SFinGe. 

 

Table 5.4. FVC 2004 Scanners/Technologies for Each Database 

 

 

Database Technology Used Scanner Used Image Size 

(Resolution) 

Fingerprint 

Condition 

DB1 Optical CrossMatch V300 600x480 

 (500 dpi) 

Dried 

DB2 Optical Digital Persona 

U.are.U 4000 

328x364 

 (500 dpi) 

Dried 

DB3 Thermal Sweeping Atmel FingerChip 300x480 

 (512 dpi) 

Moistened 

DB4 Synthetic 

Generator 

SFinGE v3.0 288x384 

 (about 500 dpi) 

Moistened  

 

 The same processing steps are implemented for this FVC2002 database. The results of 

the fingerprint processes are as follows. 

 

Table 5.5. Results for Fingerprint images of the FVC2004 database 

 

 

 

Original 

Image 

RoI Classification Minutiae 

Extraction 

Cancellable 

Template 
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D
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5.7.3. Database BRC 

The BRC database contains two databases, DBI and DBII. DBI consists of a small 

training dataset and a large test dataset. The following table provides detailed information of 

these databases. 

Table 5.6. BRC database detail information 
 

 

Database Resolution Image Size #Fingers #Images per finger 

per session 

#Images 

DBI: 

Training 

~1,200 dpi 320x240 35 3 210 

DBI: 

Test 

~1,200 dpi 320x240 148 5 1,480 

DBII ~1,200 dpi 640x480 148 5 1,480 

 

The DB1 database has an image size smaller than the two other databases. Therefore, 

several images do not exhibit the core point and tented arch in the same appearance of the 

image. Accordingly, the implementation of the Galton-Henry algorithm [78], [79] in the 

fingerprint classification step cannot be performed because this approach requires the core 
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point and tented arch to appear concurrently. Consequently, a new approach is proposed to 

classify fingerprints in the databases.  

 

Table 5.7. Results for fingerprint images of BRC databases 
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5.8. Discussion 

 From the experimental results shown in Tables 5.3.; 5.5.; and 5.7., it can be seen that 

the fingerprint enhancement step can improve the quality of the fingerprint by removing 

noise (FVC2004/DB3_B/105_3), sharpening ridges (FVC2002/DB2_B/106_3), and 

confirming ridge/valley patterns (FVC2004/DB4_B/107_5). The proposed enhancement 

approach is able to interpret a disconnect ridge caused by a scar in the normalization function 

(as shown in Figure 5.7). This function identifies the ridge regions of a fingerprint image and 

returns a mask identifying this region.  It also normalises the intensity values of the image so 

that the ridge regions have zero mean and a unit standard deviation. This function breaks the 
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image up into blocks of size b × b and evaluates the standard deviation in each region. If the 

standard deviation is above the threshold it is deemed part of the fingerprint. Note that the 

image is normalised to have a zero mean and unit standard deviation prior to performing this 

process, so that the threshold specified is relative to a unit standard deviation. 

  

 

(a) 

 

(b) 

Figure 5.6. Enhancement process results for: 

(a) fingerprint 101_1 of FVC2004 DB1_B database; (b) fingerprint 104_8 of FVC2002 DB1_B database; 

Up-left : original image 

Up-right : ridge orientation 

Down-left: filter applying for enhancing the ridge pattern 

Down-right: enhancement result 
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Therefore, it is clear that the improvement in the quality of the fingerprint for the all 

three databases is significantly reliable. Dividing images into blocks and determining the 

standard deviation for each block is an essential step in the decision to predict the pattern of 

ridges and valleys. However, this approach does not proceed if the fingerprint shows damage 

with scattered scratches or is stacked with another image (Figure 5.6. (b)). Moreover, the 

enhancement process is useful for making sure that all the fingerprint features are established 

in the next step. For instance, in a cancellable fingerprint implementation, an enhanced 

fingerprint can ensure that each pixel of the fingerprint has a precise value. Thus, if the 

cancellable algorithm using matrices operations is implemented, there is no pixel aversion to 

avoid a false matching process. 

 

See the 
difference

 
 

Figure 5.7. the enhancement process omits the noise in the original fingerprint image 
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An enhanced result is expected to avoid misdetection of the fingerprint features and a 

mismatch in the authentication stage. The improved result is counted as well in generating the 

cancellable fingerprint, especially the matrices operations approach. In the early proposed 

research for the cancellable fingerprint, it is mentioned that the enhancement process for the 

fingerprint is required to avoid an additional unexpected pixel in the cancellable template, as 

shown in Figure 5.7. This noise definitely has an effect during the confirmation step of an 

enquiry fingerprint. 

Furthermore, as shown by the surface pattern graphic below, it can be observed that 

noise in the original fingerprint is reduced after the enhancing procedure. When the 

enhancement process is not used, the surface graphic illustrates various elements on the 

fingerprint. Meanwhile, after enhancement, the value on the surface of the fingerprint is 

identical and only patterns of the fingerprint exist on the surface. 

  

  
(a) (b) 

Figure 5.8. Comparison results between an original fingerprint  

(a) and an enhanced fingerprint;  

(b) above graphics are for surface pattern whilst bellows are for frequency. 
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Based on the results from the core-point step, in a special case, to find the core of the 

fingerprint image of one database; BRC DBII image 3_2_1.jpg; the region of interest (RoI) is 

required to avoid detecting a false core-point. Initially, the RoI is needed to generate a 

square-form fingerprint image in generating the cancellable fingerprint using matrices 

operations. In this research, the stage when the RoI is implemented is after the core-point has 

been detected as a reference point and when a region as a certain working area should be 

chosen to either extract the fingerprint features or generate a cancellable fingerprint. 

 

 
 

Figure 5.9. Core-point identification result for 

(a) Without fingerprint pre-processing step 

(b) With fingerprint pre-processing step 

  

 As mentioned earlier, the RoI aims to select a particular area of the fingerprint to 

avoid noise and to support the generation of the cancellable fingerprint, which is required in a 

square form of the matrix/image. From the table of results for each of the databases above, it 

can be seen that the RoI process reduces the coverage area of the fingerprint. This means that 

the RoI stage can omit several features of the fingerprint. However, the RoI experiment and 

two previous experiments, fingerprint enhancement and core-point detection, all demonstrate 

that selecting a certain particular region of the fingerprint is valuable in reducing unimportant 

areas or features of the fingerprint. By using the core point as a reference point for the RoI 

process, this ensures that the requirements are met for the next steps: fingerprint classification 

(needed for core-point and delta) and cancellable fingerprint (square form input image).  
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 In this RoI stage, this research proposes a new approach to selecting a particular 

region. As mentioned earlier, the core-point is utilized as a reference point. Starting from this 

point, a horizontal or vertical line is stretched to the end of an area, which has a very dense 

ridges frequency and orientation pattern. This line is the length of the square form area of the 

fingerprint. The process is shown as Figure. 5.10. 

 

   
 

(a) 

 

(b) 

 

(c) 

Figure 5.10. Step process of RoI; 

(a) enhanced fingerprint with core-point; (b) ridge frequency (each block illustrate the dense of the ridge 

of fingerprint); (c) ridge orientation (the furrow illustrate the direction of the ridge of fingerprint) 

 

 In Figure 5.10, it is seen that the red line crosses through the core-point of the 

fingerprint. These lines, vertical or horizontal, will find an area filled with ridges by using 

ridge frequency and orientation processes. In the meantime, the green lines are the end-area 

that contains the densely populated ridges. Moreover, both these green lines will be the length 

of the square RoI, as illustrated by the blue rectangle. 

 Furthermore, for fingerprint classification, the process is implemented using three 

different benchmark databases, the FVC2002, the FVC2004 and the BRC DBI. Based on the 
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examples of the five commonly used fingerprint classes under the Galton-Henry 

classification scheme, the classification results for the three databases are as follows. 

a. FVC2002 

In this database, there are 320 fingerprints divided into four different sub-databases, 

which each sub-databases consist of 10 types of fingerprints from 10 different 

individuals. Each fingerprint has 8 different acquisitions of a fingerprint. 

 

Table 5.8. Fingerprint Classification for the FVC2002 Database under the 

Galton-Henry Classification Scheme 

 

No. Type of Classification Percentage 

1. Arch 0.00 

2. Tented Arch 0.00 

3. Left Loop 10.31 

4. Right Loop 18.44 

5. Whorl 15.31 

6. Twin Loop Whorl 7.19 

 

Meanwhile, the percentage of the classification based on the existence of the 

fingerprint type is as follows. 

 

Table 5.9. Fingerprint Classification for the FVC2002 Database based on  

the Existence of the Fingerprint 

 

No. Type of Classification Percentage 

1. Classified 51.25 

2. Unclassified 5.94 

3. Indicated as Left/Right Loop 41.56 

4. False Classification 1.25 
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b. FVC2004 

This database has the same division and total number of fingerprints as FVC2002. 

 

Table 5.10. Fingerprint Classification for the FVC2004 Database under the 

Galton-Henry Classification Scheme 

 

No. Type of Classification Percentage 

1. Arch 2.50 

2. Tented Arch 2.50 

3. Left Loop 16.87 

4. Right Loop 5.31 

5. Whorl 21.87 

6. Twin Loop Whorl 10.00 

 

Meanwhile, the percentage of the classification based on the existence of the 

fingerprint type is as follows. 

 

Table 5.11. Fingerprint Classification for the FVC2004 Database based on  

the Existence of the Fingerprint 

 

No. Type of Classification Percentage 

1. Classified 59.06 

2. Unclassified 1.56 

3. Indicated as Left/Right Loop 35.94 

4. False Classification 3.44 

 

c. BRC DBI 

Allotment in the BRC database is different from that in the two previous databases. 

This database has 1480 types of fingerprints, which are divided into two different sub 

types for each type and five different fingerprints in one sub-type. 
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Table 5.12. Fingerprint Classification for the BRC DBI-Test Database under the 

Galton-Henry Classification Scheme plus Four New Types of Fingerprint 

 

No. Type of Classification Percentage 

1. Arch 2.57 

2. Tented Arch 0.00 

3. Left Loop 1.89 

4. Right Loop 1.01 

5. Whorl 12.43 

6. Twin Loop Whorl 12.91 

7. Type 1 (Microphone) 0.68 

8. Type 2 (Solar Whorl) 2.09 

9. Type 3 (Closed-Left Loop) 1.15 

10. Type 4 (Loop-Whorl-Arch) 0.47 

 

The percentage of the classification based on the existence of the fingerprint type is as 

follows. 

 

Table 5.13. Fingerprint Classification for the BRC DBI-Test Database based on  

the Existence of the Fingerprint 

 

No. Type of Classification Percentage 

1. Classified 34.80 

2. Unclassified 17.30 

3. Indicated as Left/Right Loop 36.82 

4. False Classification 11.08 

 

 The classification process is conducted by implementing the fingerprint classes 

proposed by Henry-Galton. There are six different classes used in the Henry-Galton 

classification scheme which are arch, tented arch, left loop, right loop, whorl and twin loop 
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whorl. All these categories are classified based on the appearance of the core and delta of 

each fingerprint.  

 However, if this approach is used for all the benchmark databases then less than 41% 

of the fingerprints have the possibility of being classified, since not all of the fingerprint 

images have a tented arch (TA). For example, in the BRC DBI-Test, there are only 21.55% of 

the 1480 fingerprint images have a TA. Meanwhile, FVC2002 and FVC2004, have 37.19% 

and 40.31% fingerprint images respectively. Therefore, in this fingerprint classification 

image process, there are three requirements: core point and its number, ridge frequency and 

ridge direction, whilst the TA is merely an additional requirement. 

 In this experiment, for the FVC2002 database, of 320 fingerprint images, only 51.25% 

of them are classified. Meanwhile, 5.94% are unclassified for several reasons such as 

no/unidentified core, no/unidentified TA, and unclear ridge/valley. Nevertheless, 35.94% of 

the input fingerprints are indicated as left/right loop classes and 1.25% are judged to be false 

classifications. This false classification happens because the fingerprints do not have some of 

the required conditions. For instance, some fingerprints do not have either the core or TA; 

therefore, it is difficult to identify the fingerprint either as left/right loop or tented arch 

classes. In another case, several fingerprints have an uncertain number of core points. Thus, it 

is classified just as a whorl class and not a twin loop whorl. Finally, a short ridge-line after 

the core and false-core identification can result in a false classification as well for all classes. 

Particularly for the likely left/right loop classes, this decision is based on the core position 

and upper and lower ridge furrow form and direction, as can be noted in the following 

pictures. 
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(a) 

 

(b) 

 
 

(c) 

Figure 5.11.  Ridge orientation of fingeprint 101_1.tif (FVC2002 DB1_B); It’s indicated as right loop 

class fingerprint 

  

 Figure 5.11. (c) shows how a fingerprint without a TA is indicated as either a left/right 

loop class fingerprint. In the above fingerprint, by using the left up-angle as a predicted core-

point, the pattern of ridge furrows is shown by red and blue arrows. The ridge pattern shown 

by the red arrow is straight and to the right-hand side, whilst the other side illustrated by the 

blue arrow is a curved line and to the left-hand side. Thus, this fingerprint is likely to be a 

right loop class fingerprint, and vice versa. 
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 Furthermore, for FVC2004, as shown in Table 3.7., the percentage of classified 

fingerprints is slightly higher than for FVC2002. This is because the fingerprint input size in 

FVC2004 is bigger, so that fingerprint details like the core and TA are better covered than in 

FVC2002. Nevertheless, since the acquisition quality of FVC2004 is lower than 2002, the 

percentage of false classifications in FVC2004 is higher than in FVC2002. 

 Meanwhile, in the BRC DBI-Test case, as the size of the fingerprints is smaller than 

in the two previous databases, it does not provide enough detailed information to classify the 

fingerprint core, TA and sufficient ridge length after the core. This causes the percentage of 

false classifications and unclassified fingerprint to be higher than with the two other 

databases, as shown by the Table 5.14. 

 

Table 5.14. The comparison results of three different databases in terms of classified, 

unclassified, indicated as left/right loop and a false classification decision. 

 

No. Classification Decision FVC2002 FVC2004 BRC DBI Test 

As a percentage 

1. Classified 51.25 59.06 34.8 

2. Unclassified 5.94 1.56 17.3 

3. Indicated as left/right loop 41.56 35.94 36.82 

4. False classification 1.25 3.44 11.08 

 

 

However, in this database, it is found four new fingerprint types are found as follows. 
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(a) (b) (c) (d) 

Figure 5.12. Indicated as a new type of fingerprint (beside Henry-Galton fingerprint classes) 

 

In summary, the fingerprint classification process is influenced by the quality and the 

feature of the fingerprint. If the fingerprint acquisition provides a superior quality image, or at 

least the image enhancement step improves the quality, then the detailed information required 

to classify the fingerprint as well as for the covered region is available, Moreover, to improve 

the number of classified fingerprints, the use of the tented arch (TA) as a requirement can be 

maximized by using instead the ridge frequency and ridge direction, so that the TA is just an 

additional requirement. 

 In the feature extraction step, the experiment still uses three different benchmark 

databases. The results demonstrate that the proposed extraction approach works well for all 

the databases. It can be seen that the algorithm progressively separates each type of minutiae; 

bifurcation (blue square symbols) and end point (red square symbols), and removes the false 

minutiae as well. However, it is recognized further that this algorithm has to be improved to 

obtain a higher accuracy results for all the different databases. The drawback is that this 

approach still counts the boundaries of the input as part of the minutiae extraction. This 

“additional minutiae” will increase the threshold error level in the authentication step. 
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(a) (b) 

Figure 5.13. Frequency Display for Cancellable Result of Fingerprint 107_6 of Database 2002 DB3 

(a) For an enhanced fingerprint input 

(b) For minutiae input 

 

 

Finally, in this research, minutiae features are determined as an input to generate the 

cancellable template. This idea has the basis that minutiae are already an unknown object and 

information for the impostor. When the minutiae comparing to a fingerprint image, the 

minutiae are initially only coloured dots which are displayed without the fingerprint, as 

shown in Figure 5.13. 

 

5.9. Summary 

In generating cancellable fingerprints, there are several steps that are required. Firstly, 

enhancement is required to improve the quality of the fingerprint. A superior enhanced 

feature will make large amounts of information possible such as minutiae, core point, and 

fingerprint classification. The presence of this information is very important because, in this 

cancellable approach, there is a step where some of the parts will be modified or reduced. 
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It is possible to use minutiae as an input to generate the cancellable template feature. 

The information about bifurcations and end points that is illustrated by the coloured dots can 

deceive an impostor as the minutiae do not look like a fingerprint. This helps us to implement 

either the second or the third method for the cancellable research outline described in the 

previous chapter, so as to generate the cancellable feature. 

To obtain a dependable cancellable feature, several fingerprint processes are required: 

fingerprint enhancement, core-point identification, region of interest (RoI), fingerprint 

classification and minutiae extraction. Based on the results from all the experiments, the 

following conclusions can be drawn:  

(1) Fingerprint enhancement is required to produce a clear input for all the subsequent 

fingerprint processes. For example, an enhanced fingerprint provides a clear input image to 

avoid a false core-point detection and false minutiae extraction. Moreover, a fingerprint input 

free of noise is useful to avoid establishing an unimportant pixel in a cancellable fingerprint 

template by using matrices operations.  

(2) In this research, the core-point detection approach is not only appropriate for one 

type of database. It can be implemented with different types of databases. This improvement 

in results is achieved if the input is an enhanced image. Otherwise, if a poor quality image 

becomes the input, the proposed approach detects a false core-point. As the core-point is 

utilized in the RoI and fingerprint classification steps, this result has an impact to achieve a 

progressive result and vice versa.  

(3) A novel approach is proposed to select a particular area in the RoI step, in order to 

accommodate the needs of a square input form for the cancellable fingerprint and the need to 

omit unimportant areas for the minutiae extraction step. Even though the RoI stage reduces 
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the area of the fingerprint, this step is required so that noise in the fingerprint image can be 

eliminated.  

(4) Minutiae extraction gives an alternative possibility for use as an input for the 

cancellable fingerprint template, given that its appearance is not like an initial fingerprint. 

Moreover, minutiae information describes common data differently from mere fingerprint 

data. Based on these points, the performance evaluation of all applications is determined in 

the following chapter to achieve better results. Furthermore, the idea of using minutiae 

extraction as an input to generate a cancellable template is also analyzed. 
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Chapter 6 

6. Performance Analysis 

6.1. Introduction 

The assessment of reliability in a biometric system cannot be separated from 

performance evaluation. Each approach implemented in biometrics, such as fingerprints will 

obviously provide a different result depending on the type of database utilized in the research. 

Previous researchers have proven that the performance of the matcher drastically decreases 

when the fingerprints to be compared originated from sensors with different resolutions 

[104]. The performance of the method proposed here is analyzed using eleven different 

databases which have different sizes, resolutions and characteristics, which are the FVC2002 

(databases 1, 2, 3, and 4), FVC2004 (databases 1, 2, 3, and 4), and BRC (database I, test and 

training; and database II). For the FVC2002 and FVC2004 databases, there are ten different 

fingerprints with eight different acquisition processes. Meanwhile for the BRC database, 

there are ten kinds of fingerprints with six different enrolments. 

 

6.2. Error Rates  

The authentication step evaluates the ability of the proposed method to authenticate 

whether the inputs of the fingerprint are a genuine owner or an impostor. This categorizing 

process validates the genuine nature of the fingerprint by implementing various steps, as a 

score for both an established fingerprint and the input fingerprint as an enquiry fingerprint. 
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The first step is by directing the the input into its fingerprint classification group to shortage 

the identification process. Next is by calculating the distance between core and tent arch (TA) 

of the fingerprint. The third step is by scoring a minimum and maximum distances of matrix 

values of minutiae between an original fingerprint registered in database and several 

fingerprints from the same owner as information to calculate the distance value of each pixel 

of the fingerprint, so that variant possibility of a genuine fingerprint can be decided later even 

when the acquisition process of each fingerprint is taken differently. The next step is by 

evaluating the scoring of minimum and maximum distances of matrices values of minutiae 

between the genuine data and a false data to score the value to reject an input. The last step is 

by setting a cut-off value of accepted and rejected decision as a result of the third and the 

fourth steps. 

The evaluation starts by determining an equal error rate (EER) for each database. This 

characteristic is a point where two types of rates, the genuine accepted rate (GAR) and false 

acceptance rate (FAR) intersect with the same value. The GAR is the percentage of genuine 

fingerprint features that are accepted during an authentication step. Meanwhile, the FAR is 

the percentage of impostor fingerprint features that are accepted in the same step.  

Furthermore, in term of recognizing the minimum level of FAR, a threshold for the 

acceptance rate is assigned which varies from 0 to 100 per cent with interval of 5 per cent. 

The level chosen is named as the cut-off point. This means that a fingerprint would be 

rejected if the acceptance level was higher. The cut-off level for each database would be 

different depending on the quality of the original fingerprint images. 

In the FVC2002 DB (1, 2, 3, 4) and FVC2004 DB (1, 2, 3, 4), there are ten different 

owners of fingerprints each of which consists of eight different acquisition directions. This 

means that there are 80 types of fingerprints in this database, where one of those is selected as 
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the owner represented in the database. From the 79 fingerprints which are left, only seven are 

categorized into accepted, rejected, false accepted, and false rejected, while the remaining 72 

are completely rejected and are not included in those categories as a result of the 

implementation of the classification step. Seven fingerprints are accepted since their 

acceptance rates are higher than the cut-off value. 

This step not only saves time during the process, but also helps the system to reduce 

the number of fingerprints needing to be to analyzed. During this stage, an enquiry input will 

be grouped into its particular class so that an inappropriate fingerprint would be rejected 

automatically before proceeding to the matching step. Given that each fingerprint in the same 

database is already categorized into its own class, the percentage EERs for the databases are 

illustrated in the following eight tables (Tables 6.1 - 6.8). 

 

Table 6.1. EER values for FVC 2002 DB1 

 

 

Fingerprint EER FAR Cut-off point 

101 0.063 0.125 0.425 

102 0.125 0.250 0.275 

103 0.063 0.125 0.075 

104 0.063 0.125 0.375 

105 0.250 0.500 0.275 

106 0.063 0.125 0.125 

107 0.063 0.125 0.475 

108 0.125 0.250 0.475 

109 0.125 0.250 0.475 

110 0.063 0.125 0.225 

 

  

In Table 6.1, it can be noted that the EERs vary, with values of 0.063 and 0.125; and 

0.250 for the cut-off point which varies from 0.075 to 0.475. The higher value of the cut-off 
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point indicates that the fingerprint is in a better condition to achieve good error rate. This 

means that fingerprint 107 is superior to the other fingerprint in terms of error, as it has a 

lower EER. Figure 6.1 demonstrates the fingerprints that are used as established input in the 

FVC2002DB1 database. 

 

     

     

Figure 6.1. Original RoI fingerprint of FVC2002DB1 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 

 

 

Table 6.2. EER values for FVC 2002 DB2 

 

 

Fingerprint EER FAR Cut-off point 

101 0.125 0.250 0.375 

102 0.125 0.250 0.375 

103 0.063 0.125 0.275 

104 0.063 0.125 0.475 

105 0.063 0.125 0.325 

106 0.125 0.250 0.375 

107 0.063 0.125 0.375 

108 0.188 0.375 0.525 

109 0.063 0.125 0.125 

110 0.063 0.125 0.325 
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Table 6.2 shows the error rates of the FVC2002DB2 database. It can be seen that 

fingerprint 104 has an improved position in its error rate, as it has the highest cut-off point for 

a better EER. Its value is the same within the DB1 database, which gives an EER of 0.063 

with a cut-off point of 0.475. Figure 6.2 shows the fingerprints that are used as an established 

input in the FVR2002DB2 database. 

 

     

     

Figure 6.2. Original RoI fingerprint of FVC2002DB2 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 

 

 

Table 6.3. EER values FVC 2002 DB3 

 

 

Fingerprint EER FAR Cut-off point 

101 0.063 0.125 0.075 

102 0.063 0.125 0.325 

103 0.188 0.375 0.425 

104 0.063 0.125 0.275 

105 0.063 0.125 0.075 

106 0.125 0.250 0.375 

107 0.063 0.125 0.375 

108 0.188 0.375 0.525 

109 0.188 0.375 0.325 

110 0.063 0.125 0.175 
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For the FVC2002DB3 database, fingerprint 107 has an enhanced result in acquiring a 

superior error rate. It has a cut-off point of 0.375 for the lower EER of 0.063. Similarl to the 

DB2 database, the EERs from DB3 are spread among three values of 0.063, 0.125 and 0.188. 

However, the database has the highest cut-off point which is lower than those for the two 

previous databases. It appears that DB3 does not have a better error rate qualification than 

DB1 and DB2. Figure 6.3 shows the fingerprints that are used as an established input in the 

FVR2002DB3 database.  

 

     

     

Figure 6.3. Original RoI fingerprint of FVC2002DB3 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 

 

Table 6.4. EER values for FVC 2002 DB4 

 

 

Fingerprint EER FAR Cut-off point 

101 0.125 0.250 0.275 

102 0.125 0.250 0.325 

103 0.063 0.125 0.425 

104 0.063 0.125 0.225 

105 0.063 0.125 0.325 

106 0.063 0.125 0.075 

107 0.125 0.250 0.325 

108 0.125 0.250 0.325 

109 0.063 0.125 0.225 

110 0.063 0.125 0.125 
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As with the three previous databases, the FVC2002DB4 database has the lowest EER 

at 0.063. However, it has the lowest EERs compared with the other databases of 0.063 and 

0.125. In addition, fingerprint 103 has a superior error rate compared to the others, attaining 

an EER of 0.063 for a 0.425 cut-off point position. 

 

     

     

Figure 6.4. Original RoI fingerprint of FVC2002DB4 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 

 

 

Overall, the technology used in the FVC2004 database is similar to that of the 

FVC2002 database, except for the DB3database. In FVC2002DB3, the technology that is 

used is capacitive, using a Precise Biometrics 100 SC scanner. Meanwhile, in FVC2004DB3 

the technology has changed to a thermal sweeping application using an Atmel FingerChip 

scanner. Despite the similarity amongst the three other databases, all the databases in 

FVC2004 use different scanners to acquire the fingerprint.  
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Table 6.5. EER values for FVC 2004 DB1 

 

 

Fingerprint EER FAR Cut-off point 

101 0.063 0.125 0.075 

102 0.063 0.125 0.075 

103 0.063 0.125 0.175 

104 0.063 0.125 0.375 

105 0.063 0.125 0.125 

106 0.063 0.125 0.525 

107 0.063 0.125 0.175 

108 0.063 0.125 0.375 

109 0.063 0.125 0.125 

110 0.125 0.250 0.075 

 

 The lowest EER in FVC2004DB1 is 0.063, which is similar in all databases in 

FVC2002. Almost all of the fingerprints in FVC200DB1 give this EER value except for 

fingerprint 110. The cut-off point in this database varies from 0.075 to 0.525. Furthermore, 

fingerprint 106 has an improved error rate, receiving an EER of 0.063 with a cut-off point 

value of 0.525. Figure 6.5 demonstrates the fingerprints that are used as an established input 

in the FVR2004DB1 database. 

 

 

     

     

Figure 6.5. Original RoI fingerprint of FVC2004DB1 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 
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Table 6.6. EER values for FVC 2004 DB2 

 

 

Fingerprint EER FAR Cut-off point 

101 0.125 0.250 0.075 

102 0.063 0.125 0.125 

103 0.125 0.250 0.175 

104 0.063 0.125 0.175 

105 0.063 0.125 0.025 

106 0.375 0.750 0.025 

107 0.063 0.125 0.075 

108 0.250 0.500 0.025 

109 0.063 0.125 0.075 

110 0.063 0.125 0.125 

 

In table 6.6, it seems that fingerprint 104 has an enhanced error rate compared to the 

others with an EER of 0.063 and a 0.175 cut-off point value. Compared with the previous 

database, the value of the highest cut-off point of the FVC2004DB2 database is lower than 

the others. The noise captured on the fingerprint during the acquisition process could reduce 

the number of matching fingerprints. This could cause the cut-off point value to become 

higher. Figure 6.6 shows the fingerprints that were used as an input in the process. 

 

     

     

Figure 6.6. Original RoI fingerprint of FVC2004DB2 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 
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Table 6.7. EER values for FVC 2004 DB3 

 

 

Fingerprint EER FAR Cut-off point 

101 0.063 0.125 0.075 

102 0.063 0.125 0.075 

103 0.063 0.125 0.025 

104 0.063 0.125 0.075 

105 0.063 0.125 0.075 

106 0.063 0.125 0.125 

107 0.063 0.125 0.175 

108 0.063 0.125 0.025 

109 0.188 0.375 0.275 

110 0.125 0.250 0.075 

 

 

The error rate for the FVC2004DB3 database is the same as in the FVC2004DB2 

database, where the EER is 0.063 and the cut-off point of 0.175. Fingerprint 107 has the best 

error rate. This is affected by the condition of the fingerprint from the FVC2004DB3 

database, which was moistened. A moistened fingerprint produces features with various type 

of noise. This condition results in a number of matching fingerprints in this database.  It 

decreases the quality of fingerprint matching in authentication as it is difficult to match the 

enquiry fingerprint with the established one, so that the value of the cut-off point has to be 

lowered to obtain a superior EER. Figure 6.7 describes the appearance and condition of 

fingerprints in FVC2004DB4 that were used as an input for the system. 
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Figure 6.7. Original RoI fingerprint of FVC2004DB3 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 

 

 

Table 6.8. EER values for FVC 2004 DB4 

 

 

Fingerprint EER FAR Cut-off point 

101 0.063 0.125 0.025 

102 0.125 0.250 0.375 

103 0.063 0.125 0.175 

104 0.125 0.250 0.375 

105 0.063 0.125 0.275 

106 0.063 0.125 0.275 

107 0.063 0.125 0.325 

108 0.125 0.250 0.175 

109 0.063 0.125 0.125 

110 0.063 0.125 0.175 

 

Although FVC2004DB4 has the same fingerprint condition as DB3 and, moreover, 

the cut-off point for a better error rate in DB4 is slightly higher than in DB3 ( 0.325 for DB4 

and 0.175 for DB3), fingerprint 107 has a superior error rate with an EER of 0.063 and a cut-

off point of 0.325. The appearance of the fingerprint inputs for the FVC2004DB4 database is 

shown in the Figure 6.8. 
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Figure 6.8. Original RoI fingerprint of FVC2004DB4 used as the established database; 101 to 110 start 

from the top left corner and circulate clockwise. 

 

 

Meanwhile for the BRC family database, each of them contains sixty fingerprints in 

total. As with the FVCs families, these total numbers come from ten different people with 

each person possessing six different kinds of fingerprints. Tables 6.9 - 6.11 provide 

information in relation to the EER of each fingerprint in the DB1 Test database, DB1 

Training and DB2.  

 

Table 6.9. EER values for BRC DB1 Test 

 

 

Fingerprint EER FAR Cut-off point 

1 0.083 0.167 0.175 

2 0.250 0.500 0.825 

3 0.083 0.167 0.625 

4 0.083 0.167 0.425 

5 0.083 0.167 0.325 

6 0.083 0.167 0.675 

7 0.167 0.333 0.425 

8 0.167 0.333 0.625 

9 0.083 0.167 0.225 

10 0.333 0.500 0.775 
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Referring to Table 6.9, fingerprint 6 has the best error rate compared to the other 

fingerprints with an EER of 0.083 and a threshold value of 0.675. Overall, the BRCDB1 Test 

database has a better qualification of fingerprint in the matching step based on the highest 

cut-off point value shown in the above table, where the system could have had an acceptance 

of fingerprints of 100% when the threshold was assigned a matching requirement of 82.5%. 

 

     

     

Figure 6.9. Original RoI fingerprint of the BRCDB1Test used as the established database; 1 to 10 start 

from the top left corner and circulate clockwise. 

 

 

Table 6.10. EER values for BRC DB1 Training 

 

 

Fingerprint EER FAR Cut-off point 

6 0.083 0.167 0.625 

9 0.083 0.167 0.575 

11 0.083 0.167 0.425 

13 0.083 0.167 0.375 

16 0.167 0.333 0.525 

18 0.083 0.167 0.175 

34 0.083 0.167 0.025 

41 0.083 0.167 0.275 

42 0.083 0.167 0.225 

47 0.083 0.167 0.275 
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Fingerprint 6 has a better error rate in the BRCDB1Training database and also has a 

better cut-off point, even though it is not as good as the BRCDB1Test database. Fingerprint 6 

has an EER of 0.083 and a cut-off point level of 0.625. 

 

     

     

Figure 6.10. Original RoI fingerprint of the BRCDB1Training used as the established database; 6, 9, 11, 

13, 16, 18, 34, 41, 42, and 47 start from the top left corner and circulate clockwise. 

 

 

Table 6.11. EER values for BRC DB2 

 

 

Fingerprint EER FAR Cut-off point 

1 0.250 0.500 0.475 

2 0.167 0.333 0.825 

3 0.083 0.167 0.675 

4 0.083 0.167 0.425 

5 0.167 0.333 0.425 

6 0.167 0.333 0.625 

7 0.167 0.333 0.625 

8 0.083 0.167 0.525 

9 0.167 0.333 0.325 

10 0.083 0.167 0.225 
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Fingerprint 3 in the BRCDB2 database has an error rate as good as fingerprint 6 in 

BRCDB1Test database, with an EER of 0.083 and a cut-off point of 0.675. Moreover, based 

on the data from the EER and the cut-off point obtained, the BRCDB1Test database and 

BRCDB2 have almost similar values in quality and matching level. Both databases have the 

best matching rate at 82.5% and the best error rate at 0.083/0.675. Figures 6.9 and 6.11 

illustrate the input of fingerprints used for both databases. 

 

     

     

Figure 6.11. Original RoI fingerprint of BRCDB2 used as the established database; 1 to 10 starts from the 

top left corner and circulate clockwise. 

 

6.3. Evaluation of Time Taken 

The second issue to be evaluated is the time needed to execute the proposed 

algorithm. Time consumption is a critical issue to be determined given that there are two 

different inputs of the fingerprints adopted in generating a cancellable feature and its 

authentication process. This first combination of input is the cancellable step; core-point step; 

classification step and authentication step using an original fingerprint image. The second is 

the cancellable step; core-point step; classification step; RoI step and authentication step 
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using a cropped input. Furthermore, the total times for each combination are compared, in 

order to see which combination is better. The proposed approach has been tested using Intel 

Core i5-2430M CPU@2.40GHz; 4.00 GB installed RAM; and MATLAB version 7.10.0 

(R2010a). 

 

Table 6.12. Time needed for the FVC 2002 database (in seconds) 

No. Steps 

Time Needed 

DB1 DB2 DB3 DB4 

Original RoI Original RoI Original RoI Original RoI 

1. Cancellable 0.8589 0.4834 1.1610 0.5269 0.8333 0.4825 0.9826 0.4765 

2. Core-time 0.5542 0.4099 0.9232 0.4190 0.6627 0.3837 0.7814 0.3789 

3. Classification 0.7269 0.5048 0.7592 0.5255 0.6941 0.4811 0.6855 0.4751 

4. RoI  0.2316  0.2538  0.2320  0.2291 

5. Authentication 0.000187 0.000130 0.000204 0.000142 0.000187 0.000130 0.000184 0.000128 

Total 2.140187 1.62983 2.843604 1.725342 2.190287 1.57943 2.449684 1.559728 

Time Different (%) 

(Original and RoI) 
23.85 39.33 27.89 36.33 

 

Table 6.13. Time needed for the FVC 2004 database (in seconds) 

No. Steps 

Time Needed 

DB1 DB2 DB3 DB4 

Original RoI Original RoI Original RoI Original RoI 

1. Cancellable 1.0951 0.4842 0.7731 0.4738 1.0568 0.4903 0.8942 0.4873 

2. Core-time 0.8709 0.3850 0.6148 0.3768 0.8218 0.3805 0.7111 0.3875 

3. Classification 0.6966 0.4829 0.6820 0.4725 0.6878 0.4772 0.7009 0.4860 

4. RoI  0.2328  0.2280  0.2357  0.2343 

5. Authentication 0.000187 0.000130 0.000183 0.000127 0.000190 0.000132 0.000188 0.000131 

Total 2.662787 1.58503 2.070083 1.551227 2.566590 1.583832 2.306388 1.595231 

Time Different (%) 

(Original and RoI) 
40.47 25.06 38.29 30.84 
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Tables 6.12 - 6.14 illustrate the time taken by the system to execute all of the research 

steps. From each table, the comparison among different sub-databases in the same database is 

shown to provide a different percentage between the original input and RoI input, in order to 

show which input can provide more efficient use of time to run all the steps. 

 

Table 6.14. Time needed for the BRC database (in seconds) 

No. Steps 

Time Needed 

DB1 Test DB1 Training DB2 

Original RoI Original RoI Original RoI 

1. Cancellable 0.5049 0.4943 0.4762 0.4750 0.6159 0.5262 

2. Core-time 0.4015 0.3931 0.3787 0.3777 0.4898 0.4184 

3. Classification 0.7120 0.4929 0.6842 0.4737 0.7584 0.5247 

4. RoI  0.2380  0.2287  0.2535 

5. Authentication 0.000191 0.000133 0.000184 0.000128 0.000203 0.000142 

Total 1.618591 1.618433 1.539284 1.555228 1.864303 1.722942 

Time Different (%) 

(Original and RoI) 
0.0057 -1.04 7.59 

 

  

Overall, it is obvious that the system using the RoI input consumes less time than an 

original input except for the BRCDB1Training database, even though this system has one 

more step included in the process (the RoI step). The size of the input fingerprint significantly 

contributes to reducing the time taken for the procedure. Table 6.15 shows the contribution of 

size differences to the time taken by the process. 
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Table 6.15. Correlation between the size differences of the input fingerprint and  

time taken by the process (%) 

 
DB1 DB2 DB3 DB4 

Size Time Size Time Size Time Size Time 

FVC2002 43.13 23.85 53.95 39.33 41.11 27.89 51.21 36.32 

FVC2004 54.86 40.47 38.08 25.06 53.38 38.29 45.30 30.84 

 DB1 Test DB1 Training DB2 
 

Size Time Size Time Size Time 

BRC 1.81 0.0057 0.25 -1.04 14.04 7.59 

 

 Table 6.15 clearly shows the relationship between the size of the input fingerprint and 

the time taken to complete all the processes. A larger input would require more time. 

However, in this research case, it can be argued that the size difference should not be too 

narrow, such as in the BRCDB1Training database, because a system that uses a fingerprint of 

the RoI size needs the RoI selection step in its process. This means that it would demand 

more time to execute the process. Nevertheless, Table 6.15 proves that this case is not a huge 

obstacle in this research. 

 

6.4. Evaluation of Matrices Operations Requirements 

6.4.1. The Size of the Arbitrary Matrix of the KP Operation 

Another parameter considered in the performance of the system is the size of the 

arbitrary matrix that is used to produce a cancellable feature for the fingerprint. The reason 

for this is because the size of that matrix could affect the time consumed in running the 

process. Therefore, various in matrix size ware simulated to check its influence on the time 

taken for the running of the process for the FVC2002, FVC2004 and BRC databases. 
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Figure 6.12. Illustrating the correlation between the size of the arbitrary matrix and  

time taken for the process 

  

4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000

1 3 5 7 9 11 13 15 17 19 21 23 25

D
at

a 
B

as
e

 (
x1

0
-4

 s
e

c)
 

Matrix Size 

Correlation of the Size of the Arbitrary 
Matrix and Time Taken 

FVC2002

FVC2004

BRC



103 
 

Figure 6.12 shows a simulation trend by increasing the size of the matrix started from 

1 × 1 until 25 × 25 while recording the time consuming along the simulation. During the 

simulation, it is established that the time taken would tend to increase, in addition to there 

being a rise in the size of the matrix. However, at matrix 3 × 3, the trend tends to lower 

before rising again at matrix 4 × 4. Therefore, the size of the arbitrary matrix used in this 

research is matrix 3 × 3. 

 

6.4.2. The Zero Rows and Column of ERO Operation 

  In the ERO operation, the most important issue to be discussed is the best number of 

zero rows and columns needed to make sure that the cancellable template is safe from 

impostors. The analysis is completed by undertaking several simulations involving increasing 

the number of zero rows, improving the number of zero columns, and using the zero rows and 

columns simultaneously, while increasing the number of zero rows and columns as well. 

These simulations are performed starting from one until n/3 rows/columns, where n is the 

size of the input of the fingerprint. The reason for choosing n/3 as the limit to increase the 

number of rows and columns is because this would lose the detailed information of the 

fingerprint feature. Figures 6.13 – 6.20 illustrate all of the simulations completed in the 

research. 
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-13.2515 -48.5150 -62.6468 -50.0396 -16.3391 24.1932 54.9296 63.7668 

14.1556 -28.0481 -57.4675 -62.1471 -40.5157 -1.9108 37.4970 62.6071 

39.7504 -1.8382 -41.5896 -63.1917 -59.4876 -29.4826 12.6003 49.4918 

58.7400 25.1083 -18.0617 -54.2500 -66.9095 -51.6159 -15.1277 27.3705 

67.7559 47.9171 9.0100 -34.3391 -62.9618 -65.2899 -40.8292 -0.0031 

65.3777 64.5113 35.1631 -8.5376 -48.4109 -68.1412 -60.0694 -27.9643 

54.2384 69.3609 55.6404 18.7757 -25.8578 -59.8850 -69.6673 -51.7492 

32.5657 63.1902 67.3054 43.1696 0.9109 -41.9890 -68.1936 -67.5786 

 

Figure 6.13. Illustration of the original feature of the fingerprint 
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58.7400 25.1083 -18.0617 -54.2500 -66.9095 -51.6159 -15.1277 27.3705 

67.7559 47.9171 9.0100 -34.3391 -62.9618 -65.2899 -40.8292 -0.0031 

65.3777 64.5113 35.1631 -8.5376 -48.4109 -68.1412 -60.0694 -27.9643 

54.2384 69.3609 55.6404 18.7757 -25.8578 -59.8850 -69.6673 -51.7492 

32.5657 63.1902 67.3054 43.1696 0.9109 -41.9890 -68.1936 -67.5786 

 

Figure 6.14. One row of the original feature of the fingerprint replaced by zero row 

 

 

 

 

 

 

 

-13.2515 -48.5150 -62.6468 -50.0396 -16.3391 24.1932 54.9296 63.7668 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

39.7504 -1.8382 -41.5896 -63.1917 -59.4876 -29.4826 12.6003 49.4918 

58.7400 25.1083 -18.0617 -54.2500 -66.9095 -51.6159 -15.1277 27.3705 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

65.3777 64.5113 35.1631 -8.5376 -48.4109 -68.1412 -60.0694 -27.9643 

54.2384 69.3609 55.6404 18.7757 -25.8578 -59.8850 -69.6673 -51.7492 

32.5657 63.1902 67.3054 43.1696 0.9109 -41.9890 -68.1936 -67.5786 

 

Figure 6.15. Two rows of the original feature of the fingerprint replaced by zero rows 
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-13.2515 -48.5150 -62.6468 -50.0396 -16.3391 24.1932 54.9296 63.7668 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

39.7504 -1.8382 -41.5896 -63.1917 -59.4876 -29.4826 12.6003 49.4918 

58.7400 25.1083 -18.0617 -54.2500 -66.9095 -51.6159 -15.1277 27.3705 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

65.3777 64.5113 35.1631 -8.5376 -48.4109 -68.1412 -60.0694 -27.9643 

54.2384 69.3609 55.6404 18.7757 -25.8578 -59.8850 -69.6673 -51.7492 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Figure 6.16. Three rows of the original feature of the fingerprint replaced by zero rows 

 

 

-13.2515 0.0000 -62.6468 -50.0396 -16.3391 24.1932 54.9296 63.7668 

14.1556 0.0000 -57.4675 -62.1471 -40.5157 -1.9108 37.4970 62.6071 

39.7504 0.0000 -41.5896 -63.1917 -59.4876 -29.4826 12.6003 49.4918 

58.7400 0.0000 -18.0617 -54.2500 -66.9095 -51.6159 -15.1277 27.3705 

67.7559 0.0000 9.0100 -34.3391 -62.9618 -65.2899 -40.8292 -0.0031 

65.3777 0.0000 35.1631 -8.5376 -48.4109 -68.1412 -60.0694 -27.9643 

54.2384 0.0000 55.6404 18.7757 -25.8578 -59.8850 -69.6673 -51.7492 

32.5657 0.0000 67.3054 43.1696 0.9109 -41.9890 -68.1936 -67.5786 

 

Figure 6.17. One column of the original feature of the fingerprint replaced by zero row 

 

 

-13.2515 0.0000 -62.6468 -50.0396 0.0000 24.1932 54.9296 63.7668 

14.1556 0.0000 -57.4675 -62.1471 0.0000 -1.9108 37.4970 62.6071 

39.7504 0.0000 -41.5896 -63.1917 0.0000 -29.4826 12.6003 49.4918 

58.7400 0.0000 -18.0617 -54.2500 0.0000 -51.6159 -15.1277 27.3705 

67.7559 0.0000 9.0100 -34.3391 0.0000 -65.2899 -40.8292 -0.0031 

65.3777 0.0000 35.1631 -8.5376 0.0000 -68.1412 -60.0694 -27.9643 

54.2384 0.0000 55.6404 18.7757 0.0000 -59.8850 -69.6673 -51.7492 

32.5657 0.0000 67.3054 43.1696 0.0000 -41.9890 -68.1936 -67.5786 

 

Figure 6.18. Two columns of the original feature of the fingerprint replaced by zero rows 
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-13.2515 0.0000 -62.6468 -50.0396 0.0000 24.1932 54.9296 0.0000 

14.1556 0.0000 -57.4675 -62.1471 0.0000 -1.9108 37.4970 0.0000 

39.7504 0.0000 -41.5896 -63.1917 0.0000 -29.4826 12.6003 0.0000 

58.7400 0.0000 -18.0617 -54.2500 0.0000 -51.6159 -15.1277 0.0000 

67.7559 0.0000 9.0100 -34.3391 0.0000 -65.2899 -40.8292 0.0000 

65.3777 0.0000 35.1631 -8.5376 0.0000 -68.1412 -60.0694 0.0000 

54.2384 0.0000 55.6404 18.7757 0.0000 -59.8850 -69.6673 0.0000 

32.5657 0.0000 67.3054 43.1696 0.0000 -41.9890 -68.1936 0.0000 

 

Figure 6.19. Three columns of the original feature of the fingerprint replaced by zero rows 

 

-13.2515 0.0000 -62.6468 -50.0396 0.0000 24.1932 54.9296 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

39.7504 0.0000 -41.5896 -63.1917 0.0000 -29.4826 12.6003 0.0000 

58.7400 0.0000 -18.0617 -54.2500 0.0000 -51.6159 -15.1277 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

65.3777 0.0000 35.1631 -8.5376 0.0000 -68.1412 -60.0694 0.0000 

54.2384 0.0000 55.6404 18.7757 0.0000 -59.8850 -69.6673 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Figure 6.20. Illustrating the combination of the zero row and column of the image 

 

 The ERO operations initially produces no difference in the appearance of the 

cancellable template, the speed of the general process, and the matching performance of the 

process. All of the results are identical to the results discussed in the previous section. For 

example, the unchanged look of the cancellable template occurs because the minutiae are the 

feature used to generate the cancellable template. Figure 6.21 illustrates how the augmenting 

process of the zero rows/columns does not affect the appearance of the cancellable template. 
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Figure 6.21. The unchanged appearance of the fingerprint features after the augmenting process of  

the zero row and column in the image  
 

 

6.5. Discussion 

In this chapter, for the FVC2002 and FVC2004 databases, the performance for one 

fingerprint is examined against seven variants of itself and 72 variants from the other 

fingerprints. Meanwhile, for the BRC database, the evaluation of one fingerprint is completed 

against five variants of itself and 54 variants from the others. This research exploits 820 types 

of fingerprint. Thus, based on the previous results, several observations can be highlighted as 

follows. 

The performance of a biometric system cannot be separated from the authentication 

stage. This stage becomes important because it aims to check the authenticity of a fingerprint. 
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Therefore, the system can decide which input of the fingerprint should be either accepted 

(genuine) or rejected (impostor). However, it has become commonplace in the authentication 

step that not all the accepted or rejected fingerprints are true genuine cases and true 

impostors. These conditions are known as false genuines and false impostors.  A false 

genuine and impostor would create a problem if the corresponding rates (EERs) are very 

large. Hence, the fingerprint with the lowest EER has a chance of becoming a better 

fingerprint in the database. However, the EER is not the only requirement to acknowledge 

which fingerprint has a superior error rate. In this research, the threshold value is also 

determined as a parameter to understand which fingerprint in the same database has the 

lowest error rate. The reason for this is because the cut off value would show an exemption 

level for the authentication system to decide on the authenticity of the fingerprint. 

Finding an error rate for each fingerprint in the database is required to discover the 

characteristics of the database when the proposed algorithm is applied. Tables 6.1 - 6.8 show 

that the lowest level error rate for the FVC2002 and FVC2004 databases is 0.063. 

Meanwhile, the highest EER and the threshold of each EER could be dissimilar. In terms of 

the threshold score, the highest score would represent the better condition of the fingerprint. 

If a fingerprint has a high cut off score, it means that the enquiry fingerprint would be 

recognized by the system as an authorized fingerprint even with a high qualification matching 

score. However, the cut off rate does not become a priority in deciding which fingerprint has 

a better error rate; however, the EER with the lowest score does. For example, in the 

FVC2002DB2 database, fingerprint 4 has an improved error rate with an EER score of 0.063  

and a 0.475 cut off score; compared with the other fingerprints. Notwithstanding this, 

fingerprint 108 has the highest threshold score of 0.525. Similarly, fingerprint 107 in the 

FVC2002DB3 database has a better error rate with an EER score of 0.063 and a threshold 
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score of 0.375. However, fingerprint 108 has a threshold score of 0.525 which is 40% higher 

than that of fingerprint 107. 

Obviously, the FVC2002 (DB1, DB2, DB3, DB4), FVC2004 (DB1, DB2, DB3, 

DB4), and BRC (DB1Test, DB1Training, DB2) databases use different scanners to obtain 

fingerprint images. Based on the EER score, the threshold score, and the type of scanner used 

to acquire the fingerprint, it is apparent that the clarity of the input of fingerprints plays an 

important role in minimizing the error rate. In other words, the quality of the fingerprint 

influences how many fingerprints would be classified as genuine owners or impostors and 

how minimal the error rate is. For example, the highest threshold score for FVC2002DB1; 

DB2; DB3; DB4, FVC2004DB1; DB2; DB3; DB4, BRCDB1Test; Training and DB2 

databases are 0.475, 0.525, 0.525, 0.425, 0.525, 0.175, 0.275, 0.375, 0.825, 0.625, and 0.825 

respectively. Referring to these scores, it can be seen that the scores for the BRC databases 

are better than the other databases since their fingerprints are better image quality. 

In order to evaluate the time taken in executing the algorithm, this research offers two 

possible types of input for the fingerprint. The first type is through using the original 

fingerprint as an input, while the second type is by selecting a particular area of the original 

fingerprint to reduce any unneeded features captured by the algorithm process. The latter type 

requires an additional step, specifically the RoI selection process, to select a desired area of 

the fingerprint. It is obvious that an extra step would require additional time to complete the 

algorithm. However, in this research, the size of the input of the fingerprint plays an 

important role in reducing the time consumed. For example, Tables 6.12 - 6.14 compare the 

two types of fingerprints. The additional step of the process does not affect the total time 

taken for execution. In Table 6.15, it is clearly seen that the reduction in size results in less 

time taken except for the BRCDB1 Training database. The latter case occurred because the 
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size difference between the original input and the RoI input is only 0.25%, and therefore, the 

time required for the RoI input is 1.04% more than the original input.  

Furthermore, the discussion with regards to some of the prerequisite for the matrices 

operations should not be a part of these two following cases, such as the size of the arbitrary 

matrix that is used in the KP operation; and the number and placing of the zero rows or 

columns on the fingerprint matrix in the ERO operation. In relation to the former one, it 

should not be a part of the time needed either if the size of the arbitrary matrix is large or 

small. Figure 6.12 clearly shows that the time consumed by the process would increase when 

the size of the arbitrary matrix is enlarged. However, at the point at which the size of the 

matrix is 3 x 3; the taken time is reduce slightly by approximately 3.68% for the FVC2002, 

0.0339% for the FVC2004, and 1.54% for the BRC databases. Meanwhile, Figures 6.13 to 

6.20 illustrate the zero rows and columns, and the replaced rows and columns of the feature 

of the fingerprint. Initially, these procedures do not have an impact on the results at all. The 

appearance of the template of the cancellable fingerprint is still the same as in the figures 

shown in the two previous chapters, as long as the numbers of zero rows or columns are not 

more than a third of the size of the rows/columns of the original matrix. Likewise, the speed 

and matching performance of the process are no different.  

 

6.6. Summary 

The aim of this chapter has been to evaluate the performance of the proposals 

discussed in the two previous chapters. Hence, three kinds of evaluation of error rates, time 

taken and matrices operations requirements are performed to check the performance with the 

eleven different databases of the fingerprint. One of the evaluations shows that each database 
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has its own characteristics depending on the type of fingerprint acquired from the database 

scanner. If the fingerprint scanner produces a fingerprint with a good qualification, the error 

rate and the threshold of the database can be reliable. 

Furthermore, the time consumed by the execution process depends on the size of the 

input of the fingerprint. The time taken would be reduced if the size is smaller. Subsequently, 

for a small input fingerprint, even though the RoI step would be added to the algorithm, the 

total time used for the process would not significantly change with the proviso that the size 

reduction of the input is not too slight.  

Meanwhile, regarding the implementation of the matrices operations, this procedure 

does not change the results for or the characteristics of the cancellable template, as long as 

the requirements of the matrices operations are not excessive. 
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Chapter 7 

7. Conclusion and Future Work 

   This chapter summarises the main aspects of the research work undertaken in 

generating the template for a cancellable fingerprint. The main contributions planned and 

targeted in Chapter 1 have been completed and are summarized. Nonetheless, there is still 

additional research that needs to be conducted in the future. Hence, recommendations are 

made as guidance to implementing this approach with other applications and to increase the 

efficiency and quality of the cancellable template. Overall, however, the work described in 

this thesis has satisfied the aims and objectives mentioned in Chapter 1. 

 

7.1. Conclusion 

Establishing a cancellable template for a biometric technology such as fingerprint 

technology is a considerable challenge, especially related to the reissuing ability, multi-

application implementation and dependablity. The implementation of several matrix 

operations and requirements for several fingerprint algorithms becomes a continuous work to 

complete these three important issues. Matrix applications such as the KP operation, ERO 

operation and Inverse operation can be used as a solution to solve the first two issues. 

Meanwhile, a sequence of steps of fingerprint enhancement, core-point identification, region 

of interest, fingerprint classification, and minutiae extraction processes can be utilized to 

resolve the third issue. In Chapter 1, these issues have been discussed as a challenge to be 
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taken on and overcome. As documented in this thesis, the aims and objectives have been 

fulfilled by the present research.  

A novel approach is proposed to produce a cancellable fingerprint template exploiting 

several matrices operations. The KP, ERO and Inverse operations are implemented in the 

algorithm to obtain a reliable cancellable template. This new idea is based on the principle of 

achieving a non-invertible matrix. A matrix cannot be inverted as long as the matrix 

possesses certain criteria, having at least one zero row/column, having a non-square form, 

and having a row that is a multiple of another row.  

The three matrix operations need an appropriate procedure in order to satisfy these 

three requirements. The KP operation is a procedure used to enlarge the size of an input by 

taking the tensor product of it with an arbitrary matrix, which will then change the value of 

each pixel of the original input. This procedure can disguise the appearance of the fingerprint 

since the original element of the fingerprint has been replaces. ERO provides a procedure to 

perform several matrix operations, such as rotating, conversing, multiplying and changing 

each element of the matrix. Meanwhile, the inverse operation could transform a matrix into 

one with a different value. Three different orders of matrix operations have been introduced 

to analyze which can provide an improved method to produce a high-quality cancellable 

template, which are Inverse-KP-ERO procedure; KP-Inverse-ERO procedure; and Inverse-

KP procedure. Based on the research results, the first procedure is more secure in terms of 

protecting the template to be inverted, so as to find the original source of the fingerprint. 

In terms of producing a dependable cancellable template, several fingerprint 

processing steps are implemented by exploiting eleven different databases of fingerprints, 

FVC2002DB1; DB2; DB3; DB4, FVC2004DB1; DB2; DB3; DB4, BRCDB1Test; Training; 

DB2. The first process is fingerprint enhancement. This is needed so as to produce a clear 
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input for all fingerprint processes. For example, an enhanced image of a fingerprint is very 

helpful in identifying the correct core-point and avoiding a false core-point detection and 

false minutiae extraction. Moreover, a noise-free input fingerprint is useful in avoiding 

carrying over unimportant pixels into the cancellable fingerprint template. In this research, 

the core-point detection approach is appropriate not only for one type of database, but can 

also be implemented with different types of databases. This improvement is achieved if the 

input is an enhanced image. Otherwise, if a poor quality image becomes the input, the 

proposed approach detects a false core-point. Given that the core-point is also utilized in the 

RoI and fingerprint classification steps, this result has an impact in yielding a progressive 

result.  

A novel approach is proposed to select a particular area in the RoI step to 

accommodate the needs of a square input form for a cancellable fingerprint and the need to 

omit unimportant areas for the minutiae extraction step. Even though the RoI stage reduces 

the area of the fingerprint; this step is required to discard noise evident in the fingerprint 

image. In the classification of the fingerprint image, there are three requirements: the core 

point and its number, ridge frequency, and ridge direction; whilst the TA is only an additional 

requirement. In this thesis, for the FVC2002 database, only 51.25% out of 320 fingerprint 

images are classified. The false classifications happen because the fingerprints do not meet 

some of the required criteria.  

Finally, a short ridge-line after the core and false-core identification can lead to false 

classifications in all classes. For likely left/right loop classes especially, this decision is based 

on the core position and upper- and lower-ridge furrow form and direction. Furthermore, for 

FVC2004, the percentage of classified fingerprints is slightly higher than for FVC2002. This 

is because the fingerprint input size in FVC2004 is bigger, so that fingerprint details like the 

core and TA are better covered than in FVC2002. Nevertheless, as the acquisition quality of 
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FVC2004 is lower, so then the percentage of false classifications in FVC2004 is higher than 

in FVC2002. Meanwhile, in the BRC DBI-Test case, as the size of the fingerprints are 

smaller than in the two previous databases detailed information to classify the fingerprint 

core, TA and enough ridge length after the core is not provided. This causes the percentages 

of false classifications and unclassified fingerprints to be higher than with the two other 

databases.  

The performance for one fingerprint from databases FVC2002 and FVC2004 was 

examined against seven variants of itself and 72 variants from other fingerprints. This means 

that eighty fingerprints were assessed in total. One is used in the database as an authorized 

fingerprint. Meanwhile, for the BRC database, the evaluation of one fingerprint was 

performed against five variants of itself and 54 variants from the others. Thus, this research 

exploits 820 types of fingerprints.  

In this thesis, the performance of a biometric system cannot be considered separately 

from the authentication stage. This stage is important because it checks the authenticity of a 

fingerprint. Subsequently, the system can decide which input of a fingerprint should be either 

accepted (genuine) or rejected (impostor). However, it has become commonplace during 

authentication that not all the accepted or rejected fingerprints are true genuines and true 

impostors. These conditions are known as false genuines and false impostors, which create a 

problem if their rates (EER) are very high. Hence, the fingerprint with the lowest EER has a 

chance of becoming a better fingerprint in the database. However, the EER is not the only 

requirement in acknowledging which fingerprint has a better error rate.  

In this research, the cut-off point value is also determined as a parameter to recognize 

which fingerprint in the same database has the lowest error rate. This is because the cut-off 

point value shows an exemption for the authentication system to decide the authenticity of the 
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fingerprint. Finding an error rate for each fingerprint in the database is required to discover 

the characteristics of the database after the proposed algorithm is applied to it. Based on the 

experiment conducted, the lowest error rate level for databases FVC2002 and FVC2004 is 

0.063. Meanwhile, the highest EER and the cut off value for each EER could be dissimilar.  

In terms of the cut-off point score, the highest score would represent the better 

condition of the fingerprint. If a fingerprint has a high cut-off point, it means that the enquiry 

fingerprint would be recognized by the system as an authorized fingerprint, even with a high 

qualification matching score. However, the threshold rate does not become a priority in 

deciding which fingerprint has a better error rate; however, the EER with the lowest score 

does. Obviously, databases FVC2002 (DB1, DB2, DB3, DB4), FVC2004 (DB1, DB2, DB3, 

DB4), and BRC (DB1Test, DB1Training, DB2) use different scanners to obtain the 

fingerprint images. Based on the EER score, the cut-off point score, and the type of scanner 

used to acquire the fingerprint, it is obvious that the clarity of the input of a fingerprint plays 

an important role in minimising the error rate. In other words, the quality of fingerprints 

influences how many would be classified as belonging to an impostor and how minimal the 

error rate is.  

In terms of evaluating the time taken to execute the algorithm, this research has 

undertaken the evaluation by offering two possible types of input for the fingerprint. The first 

is the use of the original fingerprint as an input, and the second involves selecting a particular 

area of the original fingerprint to remove any unneeded features captured during the 

algorithm process. The latter type requires an additional step, namely the RoI selection 

process, to select a desired area of the fingerprint.  

It is obvious that an extra step would require additional time taken to complete the 

algorithm. However, in this research, the size of the input of the fingerprint plays an 
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important role in reducing the length of time that it takes. In fact, the additional step of this 

process does not affect the total time taken for execution, except for database BRCDB1 

Training. Furthermore, the time consuming by the process would increase when the size of 

the arbitrary matrix is enlarged as well. Meanwhile, initially, the zero rows/columns 

procedures do not have an impact on the cancellable results at all. The cancellable fingerprint 

template still appears the same as long as the numbers of zero rows or columns are no more 

than a third of the size of the rows/columns of the original matrix. Similarly, the speed and 

matching performances of the process are no different. 

To conclude, this thesis has presented an alternative approach to producing a 

cancellable template of a fingerprint. Several supporting requirements are also introduced to 

standardize the procedure, in order to complete this new cancellable approach. This approach 

has an advantage which is not possessed by other cancellable algorithms in that it can be 

implemented with other biometric technologies. Furthermore, the comparison among all 

databases shows that the BRC databases show better qualification in term of error rates and 

the cut off level. 

7.2. Recommendations for Future Work 

Based on the research presented in this thesis, there are other possibilities for further 

research investigation, which should be initiated as follows. 

- A challenge for future work will be to implement all of the proposed algorithms and 

procedures into a different biometric technology. However, it is obvious that other 

biometric technologies will need different procedures during execution, which will 

need to be carefully specified. 
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- In this thesis, the RoI procedures are required because the cancellable algorithm needs 

a square image. In addition, it is unavoidable that this procedure removes a fraction of 

the original fingerprint. This means that some information related to the feature of the 

fingerprint is lost. Therefore, in future work, acquiring a square shape without 

diminishing the whole surface of the fingerprint needs to be considered by selecting 

and adjusting the RoI input, rather than by decreasing area of the original image. 

- The proposed RoI procedure assigns the core-point as a reference point to select the 

desired region of the fingerprint. The procedure does not position the core at the 

centre of the selection area, based on the fact that no fingerprint in any database has 

its core-point precisely at the centre of the fingerprint. Therefore, in the future work, it 

is quite important to position the core in the middle of the RoI, and thus the selected 

RoI would cover the entire surface of the fingerprint. 
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Appendix 

A. 1. Elementary Row Operation 

Numerous methods are available for locating a complete solution for a given linear 

system. The first is Gaussian elimination. This method involves systematically replacing 

most of the coefficients in the system with simpler numbers (1’s and 0’s) by using elementary 

row operations (ERO) to obtain the complete solution. 

In the Gaussian elimination procedure, the basic step to undertake is to examine each 

column of an augmented matrix of the given system from left to right in rotation. 

Subsequently, if possible, a special entry as a reference entry is chosen and converted to 

value 1 in each column, and then the entries below the reference are of zero out later. The 

reference will be changeable from column to column, starting from the row above onto the 

row below. This means that each new reference entry will occur on a row below. There are 

three operations that are allowed to be used on the augmented matrix in the Gaussian 

elimination method i.e.: 

(I) Multiplying a row by a nonzero scalar,  

(II) Adding a scalar multiple of one row to another row,  

(III) Switching the positions of two rows in the matrix. 

For example, if the following system of linear equations as follows: 
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{

4x-4y-12z=32

6x-3y-9z=19

2x-4y-17z=41

; (A.1)

  

Then the augmented matrix of this system is: 

 

[
4 −4 −12
6 −3 −9
−2 −4 −17

|
32
19
41
]; (A.2) 

 

The following step is to perform row operations on this matrix to give it a simpler 

form, proceeding through the columns from left to right. Starting with the first column, 

choose element matrix (1,1) as the first reference entry and place the value 1 in this position. 

It is observed that the row containing the current reference entry is currently the reference 

row. When placing 1 in the matrix, a type (I) operation can be performed to multiply the 

reference row by the reciprocal of the reference entry. In this case, it is multiplied by 0.25 for 

each element of the first row: 

 

type(I) operation:(1)←
1

4
(1); (A.3) 

 

[
1 −1 −3
4 −2 −6
2 −4 −17

|
8
19
41
]; (A.4) 
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Subsequently, all the entries below this first reference entry should be converted to 0. 

As each entry is changed to 0, it is called the target, and its row is called the target row. To 

change a target entry to 0, type (II) row operation can be used. 

 

(II):(target row)←(-target value)×(reference row)+(target row); (A.5) 

For example, to zero out (target) the element (2, 1) entry, the type (II) operation is used as 

follows: 

  

(2)  ←(-6)  × (1)  + (2); (A.6) 

 

(-4) x (row1) -6 6 18 -48 

(row2) 6 -3 -9 19 

(sum) 0 3 9 -29 

 

The resulting sum is now substituted in place of the old row 2, producing a 

 

type (II)operation: (2)  ← (-6)  × (1)  + (2); 

 (A.7) 

 

 

[
1 −1 −3
0 3 9
2 −4 −17

|
8
−29
41

]; (A.8) 
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Note that even though row 1 was multiplied by -4 in the side calculation, row 1 itself was not 

changed in the matrix. Only row 2, the target row, was altered by this type (II) row operation. 

Similarly, to target the element (1, 3), that is, to convert it to 0, and thus, row 3 

becomes the target now, and another type (II) row operation is used. Row 3 is replaced with 

(-2) x (row 1) + (row 3). This gives: 

type (II)operation: (3) ← (-2) × (1) + (3);  (A.9) 

 
 

Side Calculation 

(-3) x (row1) -2 2 6 -16 

(row3) 2 -4 -17 41 

(sum) 0 -2 -11 25 

 

 

Resulting Matrix 

 

[
1 -1 -3

0 3 9

0 -2 -11

|
8

-29

25

]; (A.10) 

 

Hence, the row operation for the first column is completed. The next target is for the 

second column. The reference entry for this column must be beneath the previous reference, 

so element (2, 2) is chosen as the new reference entry. A type (I) operation is performed on 

the reference row to convert the reference entry to a value of 1. Multiplying each entry of row 

2 by 1/3 (the reciprocal of the reference entry): 



139 
 

 

type (I)operation: (2) ← 
1

3
(2); (A.11) 

 

  Resulting matrix =[

1 -1 -3

0 1 3

0 -2 -11

|

8

-
29

3

25

]; (A.12) 

A type (II) operation now is used to target the element (3, 2) and row 3. 

 

type (II)operation: (3) ← 2 × (2) + (3); (A.13) 

 

 

Side Calculation 

(2) x (row2) 0 2 6 -(58/3) 

(row3) 0 -2 -11 25 

(sum) 0 0 -5 17/3 

 
 

Resulting Matrix 

 

[
1 -1 -3

0 1 3

0 0 5

|

8

-29 3⁄

17 3⁄
]; (A.14) 

 

The last matrix corresponds to: 
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{
 

 
x-y-3z=8

y+3z=-
29

3

5z=
15

3

; (A.15) 

 

After Gaussian elimination, the columns having no reference entries are often referred 

to as non-reference columns, while those with pivots are called reference columns. It should 

be noted that the columns to the left of the augmentation bar correspond to the variables x1, 

x2, and so on, in the system. The variables for the non-reference columns are called 

independent variables, while those for reference columns are dependent variables. If a given 

system is consistent, solutions are established by letting each independent variable take on 

any real value whatsoever. The values of the dependent variables are then calculated from 

these choices. 

These row operations can be concluded as follows [105]. If a row operation R is 

performed on a matrix A, the resulting matrix by R(A) is represented as: 

Let A and B be matrices for which the product AB is defined.  

If R is any row operation,  

then  

 R(AB)=(R(A))B (A.16) 

Meanwhile,  

if  

 R1,…,Rn are row operations,  

then  

 Rn (… (R2(R1(AB)))…) = (Rn (… (R2(R1(A)))…))B (A.17) 
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Part 1 of this theorem asserts that whenever a row operation is performed on the 

product of two matrices, the same answer is obtained by performing the row operation on the 

first matrix alone before multiplying. Part 1 is proved by considering each type of row 

operation in turn. Part 2 generalizes this result to any finite number of row operations and is 

proved by using part 1 and induction. 

 

 

Figure A.1. Illustration of ERO 

 

 

A. 2. Kronecker Product 

A.2.1. Definition and Examples 

Let A ϵ Rm×n, B ∈ Rp×q. Then the Kronecker product (or tensor product) of A and B is 

defined [17] as the matrix: 
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 A ⊗B= [
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

] ∈ Rmp×nq; (A.18) 

 

Obviously, the same definition holds if A and B are complex-valued matrices. For example,  

1. Let 𝐴 =  [
1 2 3
3 2 1

] and 𝐵 = [
2 1
2 3

]. Then 

 A⊗B= [
B 2B 3B

3B 2B B
]= [

2 1 4 2 6 3
2 3 4 6 6 9
6 3 4 2 2 1
6 9 4 6 2 3

]; (A.19) 

Note that B ⨂A ≠A⊗B. 

 

2. For any B ∈ Rp×q,   

 I2⨂B= [
B 0

0 B
]; (A.20) 

Replacing I2 by In yields a block diagonal matrix with n copies of B along the diagonal. 

 

3. Let B be an arbitrary 2 x 2 matrix. Then: 

 B ⊗ I2= [

b11 0

0 b11

b12 0

0 b12

b21 0

0 b21

b22 0

0 b22

]; (A.21) 

The extension to arbitrary B and In is obvious. 
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Figure A.2. Illustration of KP operation 

 

4. Let x ∈ Rm,  y ∈ Rm. Then 

 x ⊗ y = [x1yT, …, xmyT]T= [x1y
1
, …, x1y

n
,x2y

1
, …, xmy

n
]

T
 ∈ Rmn; (A.22) 

 

5. Let x ∈ Rm,  y ∈ Rm. Then 

  x ⊗ y = [x1y, …, xmy]T= [

x1y
1

⋯ x1y
n

⋮ ⋱ ⋮
xmy

1
⋯ xmy

n

]= xyT ∈ Rm×n; (A.23) 

 

A.2.2. Properties of the Kronecker Product 

Let A ∈ Rm×n,  B ∈ Rr×s,  C ∈ Rn×p, and D∈ Rs×t 

Then: 
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 (A ⊗B)(C ⊗D)=AC ⊗BD (∈Rmr×pt); (A.24) 

Simply verify that: 

  (A⊗B)(C ⊗D)= [
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

] [

c11B ⋯ c1pB

⋮ ⋱ ⋮
cn1B ⋯ cnpB

] 

                                                   = [

∑ a1kck1BDn
k=1 ⋯ ∑ a1kckpBDn

k=1

⋮ ⋱ ⋮
∑ amkck1BDn

k=1 ⋯ ∑ amkckpBDn
k=1

] 

                                                   = AC ⊗ BD; (A.25) 

 

where: 

1. For all A and B, 

  (A⊗B)T=A
T⊗BT (A.26) 

 

2. If  A∈Rn×n and B∈Rm×m are symmetric, then A ⊗B is symmetric. 

3. If A and B are non-singular,  

 (A⊗B)-1=A
-1

 ⊗B-1; (A.27) 

Using property 1, simply note that: 

 (A⊗B) (A
-1⊗B-1)=I⊗I=I (A.28) 
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4. If A∈Rn×n and B∈Rm×m are normal, then A⊗B is normal. 

Proof: 

       (A⊗B)T(A⊗B)=(AT⊗BT)(A⊗B) 

            =A
T
A⊗BTB 

            =AA
T⊗BBT 

  =(A⊗B)(A⊗B)T; (A.29) 

 

5. If A∈Rn×n is orthogonal and B∈Rm×m is orthogonal, then A⊗B is orthogonal. 

Example:  

Let A= [
cos θ sin θ

-sin θ cos θ
] and B= [

cos ϕ sin ϕ

-sin ϕ cos ϕ
] (A.30) 

 

Subsequently, it is easily observed that A is orthogonal with eigenvalues e±jθ and B is 

orthogonal with eigenvalues e±jϕ . Then the 4x4 matrix A⊗B is also orthogonal with 

eigenvalues e±j(θ+ϕ)and e±j(θ-ϕ). 

6. Let A∈Rm×n have singular value decomposition UA∑
A

V
A

T
 and let B∈Rp×q have singular 

value decomposition UB∑
B

V
B

T
. Then (UA⊗UB)(∑A

⊗∑
B
)(VA

T⊗VB
T) yields a singular 

value decomposition of A⊗B (after a simple reordering of the diagonal elements of 

∑
A
⊗∑

B
 and the corresponding right and left singular vectors). 
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7. Let A∈Rm×n have singular values σ1≥…≥σr>0, and  

let B∈Rp×q have singular values τ1≥…≥τs>0.  

Then A⊗B (or B⊗A has rs singular values σ1τ1≥…≥σrτs
>0 and  

 rank(A⊗B)=(rank A)(rank B)=rank(B⊗A). (A.31) 

 

8. Let A∈Rn×n have eigenvalues λi,i∈n, and  

let B∈Rm×m have eigenvalues μ
j
,j∈m.  

Then mn eigen values of A⊗B are λ1μ
1
,…,λ1μ

m
, λ2μ

1
, …,λ2μ

m
,…,λnμ

m
 (A.32) 

 

Moreover, if x1, …, xp are linearly independent right eigenvectors of A corresponding to 

λ1,…,λp
(p≤n) and, 

z1, …, zq are linearly independent right eigenvectors of B corresponding to 

μ
1
,…,μ

q
(q≤m),  

then xi⊗zj∈Rmn are linearly independent right eigenvectors of A⊗B corresponding to 

λiμj
, i∈p, j∈q. 

Proof: the basic idea of the proof is as follows: 

       (A⊗B)(x⊗z)=Ax⊗Bz 

         =λx⊗μz 

    =λμ(x⊗z) (A.33) 
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In general, if A and B have Jordan form decomposition given by P-1AP= JA  and 

Q
-1

BQ= JB, respectively, then the subsequent Jordan-like structure is as follows: 

         (P⊗Q)-1(A⊗B)(P⊗Q)= (P-1⊗Q
-1) (A⊗B)(P⊗Q) 

     = (P-1AP)⊗(Q
-1

BQ) 

                                   =JA⊗JB (A.34) 

 

A Schur form for A⊗B can be derived similarly. For example, suppose that P and Q are 

unitary matrices that reduce A and B respectively, to Schur (triangular) form, i.e., 

PHAP= TA and Q
H

BQ= TB (and similarly if P and Q are orthogonal similarities reducing 

A and B to real Schur form). Then: 

        (P⊗Q)H(A⊗B)(P⊗Q)=(PH⊗Q
H)(A⊗B)(P⊗Q) 

               =(PHAP)⊗(QH
BQ) 

   =TA⊗TB (A.35) 

 

9. Let A∈Rn×nand B∈Rm×m. Then:  

b. Tr(A⊗B)=(TrA)(TrB)=Tr(B⊗A) (A36) 

c. det(A⊗B)=(detA)m(detB)n=det(B⊗A) (A.37) 
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A. 3. Inverse Matrix Operations 

In a matrix domain, whether or not a given 𝑛 × 𝑛 (square) matrix A has a 

multiplication inverse matrix (that is, a matrix A
-1

 such that AA
-1

 = In) must be considered. 

Interestingly, not all square matrices have multiplicative inverses, although most do. 

 

A.3.1. Inverses of Larger Matrix 

Let A be an n×n matrix. Then, the method for finding the inverse of a matrix (if it 

exists) (inverse method) is as follows [106]: 

Step 1: Augment A to an n×2n matrix, whose first n columns constitute A itself and 

whose last n columns constitute In. 

Step 2: Convert [A|In] into reduced row echelon form. 

Step 3: If the first columns of [A|In] cannot be converted into In, then A is singular. Stop. 

Step 4: Otherwise, A is non-singular, and the last n columns of the augmented matrix in 

reduced row echelon form constitute A
-1

. That [A|In] row reduces to [In|A
-1]. 

For example, 

 A= [

4 2

-2 0

8 1

-4 1

1 4

3 -1

2 0

6 -2

] (A.38) 

 

Beginning with [𝐴|𝐼4] and simplifying the first two columns, obtains: 
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1 0 2 - 1 2⁄

0 1 0 3 2⁄

0 0 0 - 11 2⁄
0 0 0 1

||

0 - 1 2⁄ 0 0

1 2⁄ 1 0 0

-2 - 7 2⁄ 1 0

1 2⁄ 5 2⁄ 0 1

 (A.39) 

 

Continuing on to the third column, it can be seen that element (3, 3) is zero. Thus, a 

type (I) operation cannot be used to make the pivot 1. As the element (4, 3) is also zero, no 

type (III) operation (switching the pivot row with a row below it) can make the pivot non-

zero. In summary, there is no way to transform the first four columns into the identity matrix 

I4 using the row reduction process, and therefore the original matrix A has no inverse. 

 

A.3.2. System Solving using the Inverse of the Coefficient Matrix 

AX = B corresponds to a system where the coefficient matrix A is square. If A is non-

singular, then the system has a unique solution (X=A
-1

B). Meanwhile, if A is singular, then 

the system has either no solutions or an infinite number of solutions. Hence, AX = B has a 

unique solution if and only if A is non-singular.  

Proof:  

If A is non-singular, then A
-1

B  is a solution for the system AX = B because 

A (A
-1

B) = (AA
-1)B= InB=B . To show that this solution is unique, suppose Y is any 

solution to the system; that is, suppose that AY = B. Then both sides of AY = B on the left by 

A
-1

 can be multiplied to get: 

       A
-1(AY)=A

-1
B ⟹ (A

-1
A)Y= A

-1
B 
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           ⟹           InY= A
-1

B 

    ⟹              Y= A
-1

B (A.40) 

Therefore, A
-1

B is the only solution of AX = B. 

Conversely, if A is singular then rank (A) ˂ n, and so not every column of A becomes 

a pivot column in the row reduction of the augmented matrix[A|B]. Thus, it can be presumed 

that AX = B has at least one solution. Then this system has at least one independent variable 

(which can take on any real value), and hence, the system has an infinite number of solutions. 

 


