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Abstract 

Oral squamous cell carcinoma (OSCC) is a major global healthcare problem. 

OSCC has devastating consequences for many patients diagnosed with the 

disease. Outcomes may be improved if the disease is identified in its precursor 

stages, termed oral potentially malignant disorders (OPMD). Unfortunately, 

histological assessment of OPMD does not reliably predict which cases will 

progress to OSCC. Several candidate biomarkers have emerged in recent 

decades. To date, however, none have been validated for use in clinical 

practice. This study sought to address the continuing need for biomarkers that 

stratify OPMD according to their risk of malignant transformation. 

Our data show that EGFR gene copy number abnormalities correlate with 

malignant transformation in OPMD. EGFR genomic gain was also present in a 

quarter of early-stage OSCC. SOX2 had a heterogeneous expression profile in 

both OPMD and OSCC, limiting its clinical utility. Nevertheless, the pattern of 

SOX2 expression suggests it may be a marker of OSCC stem cells and 

consequently represent a potential chemotherapeutic target. PAX9 is down-

regulated in OPMD and early-stage OSCC. Following a course of chemical 

induction, Pax9-deficient mice were more likely to develop OPMD and OSCC 

than controls. These findings support the hypothesis that PAX9 has a tumour-

suppressor function. In addition to enhanced local sensitivity to chemical 

induction, Pax9-deficient mice were more susceptible to the toxic systemic 

effects of treatment. A modified protocol for chemical induction in Pax9-deficient 

mice is recommended. Paradoxically, our analysis of human tissues showed 

increased PAX9 expression in OPMD that underwent malignant transformation, 

suggesting that, in some circumstances, PAX9 may have a tumour-promoting 

effect. Finally, we summarise the generation of stably transfected cell lines in 

which PAX9 and SOX2 expression may be manipulated by tetracycline 

administration. These cell lines will facilitate future studies of the functional role 

of PAX9 and SOX2 in oral carcinogenesis.  
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Chapter 1. General Introduction 

1.1 Cancer 

The term ‘cancer’ encompasses a group of over 200 diseases characterised by 

the uncontrolled proliferation of abnormal cells (Cancer Research UK, 2010). 

Each year, there are approximately 13 million new cancer cases and 8 million 

cancer-related deaths worldwide (Jemal et al., 2011). In the UK, cancer affects 

more than one-third of the population and accounts for over a quarter of all 

deaths. Excluding non-melanocytic skin cancers, the four commonest cancers 

are those involving the lung, breast, gastrointestinal tract, and prostate gland. 

Lung cancer has the highest mortality rate in the UK (Cancer Research UK, 

2010). Metastatic dissemination of tumour cells to distant sites is the principal 

cause of cancer mortality (Meyer and Hart, 1998). 

Cancers vary in their pathogenesis. However, it is now accepted that most 

cancers develop through a multistep accumulation of genetic alterations 

(Hanahan and Weinberg, 2011). Observations of the ‘adenoma-carcinoma 

sequence’ identified in colorectal cancer informed the first step-wise molecular 

progression model of cancer (Fearon and Vogelstein, 1990). This model has 

been applied to other cancers, including oral cancer (Califano et al., 1996). 

Recent advances in cancer research support the view that key genetic events 

are common to the development of many cancers. These hallmarks include 

altered expression of oncogenes, suppression of tumour-suppressor genes, and 

induction of angiogenesis (Hanahan and Weinberg, 2011). 

1.2 Oral cancer 

1.2.1 Epidemiology 

Oral cancer (OC) is the 13th commonest cancer globally. OC has an annual 

incidence of around 264,000 cases. Each year, OC accounts for up to 130,000 

deaths (Jemal et al., 2011). However, the distribution of OC varies markedly 

around the world. OC is rare in countries such as Japan, Finland, and Greece, 

but is prevalent in Hungary and parts of northern France (Barnes et al., 2005; 

Warnakulasuriya, 2009). The highest incidence of OC is in south-east Asia: it is 

the commonest cancer in Sri Lanka, India, and regions of Pakistan (Indian 
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Council of Medical Research, 2010; International Agency for Research on 

Cancer, 2010). Recently, the incidence of OC has been increasing in the 

developed world. Over the past decade, the incidence in the UK has increased 

by one-third to ~6500 new cases in 2010 (Cancer Research UK, 2010). Similar 

increases have been documented in the USA and parts of Europe, particularly 

among young adults (Schantz and Yu, 2002; Garavello et al., 2010). 

1.2.2 Histological classification of oral cancer 

A diverse spectrum of epithelial, mesenchymal, and haematolymphoid 

neoplasms may present in the oral cavity. However, oral squamous cell 

carcinoma (OSCC) accounts for more than 90% of OC cases. OSCC is a 

malignant neoplasm of the mucosal squamous epithelium. Histologically, OSCC 

is characterised by the formation of keratin and/or the presence of intercellular 

bridges (Barnes et al., 2005). This project will focus specifically on OSCC and 

its precursor lesions. 

OSCC is classified according to its histological differentiation, i.e. the proportion 

of the OSCC that resembles normal squamous epithelium. This classification 

was first described by Broders more than 90 years ago (cited by Gnepp (2009)). 

However, the evidence to date suggests that differentiation does not accurately 

predict the clinical outcome of OSCC (Roland et al., 1992). Many OSCC 

comprise a heterogeneous population of malignant cells that show variable 

differentiation. The majority of OSCC are therefore classified as moderately 

differentiated (Kearsley and Thomas, 1993). 

A multifactorial system for grading OSCC has been described by Jakobsson et 

al (1973). This system assesses differentiation alongside a range of tumour-

host factors, including invasive pattern and peri-tumoral lymphoplasmacytic 

infiltrate. Of these tumour-host factors, invasive pattern has the greatest 

prognostic significance. OSCC with a non-cohesive invasive pattern (comprising 

malignant cells arranged singly or in small nests) behave more aggressively 

than OSCC with a cohesive invasive pattern (Odell et al., 1994). The adverse 

prognostic significance of neural invasion, vascular invasion, and positive 

surgical resection margins is also well documented (Close et al., 1989; 

Slootweg et al., 2002; Rahima et al., 2004). 
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1.2.3 Tobacco and alcohol: major environmental risk factors for OSCC 

OSCC has a multifactorial aetiology. A range of environmental factors may 

precipitate the genetic alterations and subsequent aberrations - in cell growth, 

survival, and migration – that characterise OSCC (Leemans et al., 2011). 

However, tobacco smoking remains one of the most significant risk factors, 

accounting for ~70% of OSCC-related deaths in the developed world. The 

carcinogenic potential of tobacco and alcohol is enhanced through synergistic 

interactions between constituent molecules and metabolites when the two are 

consumed together (Danaei et al., 2005; Hashibe et al., 2009). Recently, it has 

been suggested that all patients diagnosed with either lung cancer or liver 

cirrhosis – attributable to tobacco and alcohol consumption respectively - should 

be screened for OSCC and its precursors as an integral part of their care 

pathway (Salaric et al., 2015). 

Tobacco contains more than 60 distinct carcinogens. These include 

nitrosamines, polycyclic aromatic hydrocarbons, aromatic amines, aldehydes, 

and phenols. Nitrosamines such as NNK (4-methylnitrosamino-1-(-3-pyridyl)-1-

butanone) are among the most significant carcinogens (Hecht, 2003). NNK is 

metabolised via hydroxylation to methyldiazo-hydroxide, which binds to the 

guanine residues of DNA. Guanine residues are also bound by aromatic 

hydrocarbons such as benzopyrene (Hoffman and Wynder, 1986). Chemical 

modification of guanine residues induces nucleotide transversions in critical 

genes such as the tumour-suppressor p53 (Brennan et al., 1995). 

In addition to inhalation via smoking, tobacco may be chewed. Tobacco 

chewing is responsible for the high incidence of OSCC in south-east Asia 

(Jayalekshmi et al., 2009). Chewed tobacco is often combined with other 

substances – areca nut/leaf, catechu, and lime - to form ‘paan’. These 

substances contain molecules that interact to generate further distinct 

carcinogens, such as arecaidine. Arecaidine is formed by hydrolysis of 

arecoline - an alkaloid constituent of the areca nut - by calcium hydroxide in 

lime (Khan et al., 2012). 

Alcohol (ethanol) in its pure form is not currently regarded as a carcinogen. 

Alcoholic drinks, however, may contain carcinogenic by-products, such as 



4 

 

nitrosamines and urethane compounds. Ethanol facilitates the absorption of 

these molecules in the oral cavity (Hashibe et al., 2009). Ethanol is metabolised 

to acetaldehyde by dehydrogenases and the cytochrome p450 system. 

Acetaldehyde induces direct DNA damage. Acetaldehyde also promotes further 

indirect damage by blocking glutathione, hampering the detoxification of other 

carcinogens. Induction of the cytochrome p450 enzyme has the potential to 

activate other pro-carcinogens in both alcohol and tobacco (Hunter et al., 2005). 

1.2.4 High-risk human papillomavirus infection in oral cancer and oro-

pharyngeal cancer 

There is now an established body of evidence to support the role of high-risk 

human papillomavirus (HR-HPV), notably subtypes 16/18, in the aetiology of 

oropharyngeal squamous cell carcinoma (OPSCC) (Thariat et al., 2010; 

Schache et al., 2011; Thavaraj et al., 2011; Robinson et al., 2012). However, 

convincing evidence that HR-HPV infection is significant in the aetiology of 

OSCC has yet to emerge (Lopes et al., 2011; Lingen et al., 2013; McCord et al., 

2014; Nankivell et al., 2014). HR-HPV infection has been detected in a subset 

of OSCC precursor lesions and specific histopathological features have been 

described in these cases (Angiero et al., 2010; Lerman and Woo, 2014). 

However, the proportion of HPV-positive OSCC remains low (~3%), which 

suggests that HR-HPV infection is not a major aetiological agent in OSCC 

formation (Salazar et al., 2014). The role of HR-HPV infection in OSCC 

formation remains unclear. HR-HPV is not a validated prognostic factor for 

either OSCC or its precursors (McCord et al., 2014; Nankivell et al., 2014). 

However, there is emerging evidence that HPV positivity may be a useful 

prognostic indicator in the small proportion of HPV-positive squamous cell 

carcinomas presenting at non-oropharyngeal sites, including the oral cavity 

(Chung et al., 2014). 

Given the contrasting aetiological and prognostic significance of HR-HPV in 

OPSCC and OSCC reported in the literature to date, this project will focus 

specifically on cases of squamous cell carcinoma and its precursor lesions that 

are confined to the oral cavity.  
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1.2.5 The contribution of other infective conditions to OSCC formation 

Although HR-HPV infection has yet to be convincingly implicated in the 

aetiology of OSCC, there are two infective conditions that have a well-

documented association. Chronic hyperplastic candidosis is characterised by 

epithelial hyperplasia and inflammatory changes in both the squamous 

epithelium and lamina propria. These changes enhance the susceptibility of the 

epithelium to carcinogenic nitrosamine compounds that are generated by 

Candida organisms. Tertiary syphilis causes epithelial atrophy, increasing the 

vulnerability of the epithelium to carcinogens; moreover, medicaments 

historically used to treat syphilis, notably arsenic compounds, are now known 

carcinogens (Neville et al., 2009). 

1.2.6 Histopathological staging of OSCC 

Once a histopathological diagnosis of OSCC has been established, the disease 

is staged using the ‘Tumour, Node, Metastasis’ (TNM) classification developed 

by the International Union Against Cancer (Sobin et al., 2009). A numerical 

value is assigned for each of the three domains (Table 1-1). These are 

combined to provide the overall clinical stage (Table 1-2). The clinical stage 

informs treatment decisions. It may be modified following histopathological 

examination of the surgical resection specimen. 

This project will focus specifically on patients with early-stage OSCC. Early-

stage OCCC encompasses patients at both pStage I (pT1 N0 M0) and pStage II 

(pT2 N0 M0). Tumours in this group may therefore measure up to 4 cm in 

maximum dimension; however, they have not metastasised either to cervical 

lymph nodes or to distant sites.  
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Table 1-1 The ‘Tumour, Node, Metastasis’ classification of oral squamous 
cell carcinoma, International Union Against Cancer 

 

Code Description 

T0 
T1 
T2 
T3 
T4a 
 
T4b 

No evidence of tumour 
Tumour 2 cm or less in greatest dimension 
Tumour more than 2 cm but not more 4 cm in greatest dimension 
Tumour more than 4 cm in greatest dimension 
Tumour invades through cortical bone, deep/extrinsic muscles of 
tongue, maxillary sinus or skin 
Tumour invades masticator space, pterygoid plates, skull base, or 
encases internal carotid artery 

N0 
N1 
 
N2a 
 
N2b 
 
N2c 
 
N3 

No regional lymph node metastasis 
Metastasis in a single ipsilateral lymph node, 3 cm or less in 
greatest dimension 
Metastasis in a single ipsilateral lymph nodes, more than 3 cm but 
not more than 6 cm in greatest dimension 
Metastases in multiple ipsilateral lymph nodes, none more than 6 
cm in greatest dimension 
Metastasis in bilateral/contralateral lymph nodes, none more than 
6 cm in greatest dimension 
Metastasis in a lymph node more than 6 cm in greatest dimension 

M0 
M1 

No distant metastasis 
Distant metastasis 

 

Table 1-2 Summary of the component TNM categories of each stage of OSCC 

 

Stage  Tumour Node Metastasis 

Stage I T1 N0 M0 

Stage II T2 N0 M0 

Stage III T3 

T1, T2, T3 

N0 

N1 

M0 

M0 

Stage IVA 

 

Stage IVB 

 

StageIVC 

T4a 

T1, T2, T3, T4a 

Any T 

T4b 

Any T 

N0, N1 

N2 

N3 

Any N 

Any N 

M0 

M0 

M0 

M0 

M1 

 

Adapted from the ‘TNM Classification of Malignant Tumours’, 7th Edition (Sobin et al., 2009). 
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1.2.7 Treatment modalities 

Surgical resection is currently the preferred treatment modality for early-stage 

OSCC. Adjuvant radiotherapy may be used for selected cases (Shah and Gil, 

2009). Surgical removal of OSCC may be debilitating, leaving patients with 

dysfunctions in speech, mastication, and swallowing (dysphagia). Radiotherapy 

is also associated with a range of complications, including mucositis and 

dysphagia (Campos et al., 2014; Szczesniak et al., 2014). Long-term, 

radiotherapy may also result in vasculopathy of the carotid artery, thus 

increasing the risk of cerebrovascular events (Wilbers et al., 2014). These 

functional impairments may impact negatively on social interactions, and thus 

contribute to the development of psychological problems (Zwahlen et al., 2008). 

Whilst both of the current treatment modalities may cause significant aesthetic 

and functional impairments, neither guarantees a complete cure. There is, 

therefore, a pressing need to develop chemotherapeutic agents that either halt 

or reverse the progress of OSCC and its precursor lesions with minimal long-

term impact on patients’ function and aesthetics (Braakhuis et al., 2010). 

1.2.8 Clinical outcomes for patients with OSCC 

Outcomes for patients with OSCC may be improved if the disease is identified 

in its earliest or precursor stages (Goodson and Thomson, 2010). Due to its 

anatomical location, OSCC is amenable to early detection and management 

(Sankaranarayanan et al., 2013). Evidence from high-incidence areas suggests 

that screening programmes may facilitate early detection of OSCC and 

improved patient outcomes (Amit et al., 2013). However, despite the increasing 

standardisation of its management, OSCC is consistently associated with poor 

survival rates in the developed world (Warnakulasuriya, 2009). Alarmingly, 

OSCC mortality rates are actually increasing in parts of Europe (Garavello et 

al., 2010). 

Several factors contribute to poor patient outcomes. Despite efforts to raise the 

profile of OSCC (Mouth Cancer Foundation, 2013), there is generally low public 

awareness of the disease relative to other cancers (Warnakulasuriya et al., 

1999). Lack of awareness is compounded by the clinical course of OSCC. The 

early stages are often painless. An asymptomatic OSCC may therefore achieve 
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a significant size and have already seeded metastases prior to the patient 

seeking help (McGurk et al., 2005). The consequent late-stage presentation 

may preclude complete surgical clearance. This increases the risk of local 

recurrence, which is the major cause of death in advanced cases of OSCC 

(Woolgar et al., 1999). 

1.2.9 Second primary tumours and the phenomenon of ‘field 

cancerisation’ 

Clinical outcomes are further confounded by the high propensity of OSCC to 

form second primary tumours (SPT). SPT develop in up to 36% of patients with 

OSCC (Chuang et al., 2008; Atienza and Dasanu, 2012). SPT thus have a 

higher incidence than primary OSCC, a trend that is consistent across all age 

groups (Bosetti et al., 2011). SPT portend a poor prognosis. In early-stage 

(pStage I and pStage II) OSCC, SPT are the commonest cause of treatment 

failure and death from disease (Day and Blot, 1992; Tsou et al., 2007). 

The development of SPT reflects the phenomenon of ‘field cancerisation’, which 

was first described by Slaughter et al (1953) more than 60 years ago. Field 

cancerisation postulates that potentially malignant changes extend into 

squamous epithelium adjacent to OSCC that appears normal, both clinically and 

histologically. The concept stemmed from the recognition that common 

carcinogens, such as alcohol and tobacco smoke, contact multiple epithelial 

surfaces of the upper aero-digestive tract (Slaughter et al., 1953). 

The concept of field cancerisation is supported by recent insights into the 

genetic and molecular hallmarks of OSCC formation (Braakhuis et al., 2003; 

Braakhuis et al., 2004; Braakhuis et al., 2010; Leemans et al., 2011). Most 

synchronous/metachronous primary OSCC are believed to evolve from a single 

clone of progenitor cells and to have undergone similar genetic alterations 

(Figure 1-1) (Bedi et al., 1996; Scholes et al., 1998; Braakhuis et al., 2004). The 

recognition that pre-cancerous genetic changes extend into apparently normal 

epithelium provides an explanation for the high incidence of SPT (Partridge et 

al., 2000).  
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Figure 1-1 Summary of the genetic progression model of field cancerisation 

A) Initial Phase: Mutation in basal stem cell. B) “Patch” Phase: Clonal expansion of mutant 
daughter cells. C) Expanding Field: Lateral expansion of stem cells and descendants having 
acquired a growth advantage. D) “Second Hit”: Precursor lesion develops within field due to 
secondary mutations and increasing genomic instability. E) Carcinoma Formation: Precursor 
lesion becomes invasive carcinoma. F) Novel “Second Hit”: New precursor lesion independently 
develops at another site within field. G) Carcinoma Excision: Premalignant field and new 
precursor lesion remain. H) Tumour recurrence: Second Field Tumour develop from new 
precursor lesion. 

Adapted from Braakhuis et al (2004).  
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1.2.10 Oral potentially malignant disorders 

A range of precancerous lesions and conditions are recognised in the oral 

cavity. Together, these are termed oral potentially malignant disorders (OPMD) 

(van der Waal, 2009). Clinically, the majority of OPMD present either as white 

(‘leukoplakic’), red (‘erythroplakic’) or mixed red and white (‘speckled 

leukoplakic’) patches (Barnes et al., 2005). Histopathological examination of the 

affected squamous epithelium may reveal a spectrum of changes, ranging from 

squamous cell hyperplasia, through mild, moderate, and severe epithelial 

dysplasia to carcinoma in-situ (Table 1-3). 

Although the 2005 WHO classification is widely recognised and applied by both 

clinicians and histopathologists, there is continuing debate as to how 

precancerous epithelial changes should be conceptualised and classified. Two 

alternative classification systems are currently recognised by the WHO (Barnes 

et al., 2005). In addition to these, a binary classification system has also been 

proposed (Kujan et al., 2006 ). The binary grading system complements the 

WHO Classification by excluding the intermediate category of ‘moderate 

epithelial dysplasia’, which confounds inter-observer agreement. The 

histopathologist assigns a grade according to the overall perceived ‘risk’ of the 

squamous epithelium. The binary system may therefore guide clinicians and 

facilitate critical management decisions (Kujan et al., 2006 ). 

The debate surrounding the classification of epithelial dysplasia highlights the 

subjective nature of interpreting the histological features of precancerous 

lesions and assigning them to precise diagnostic categories. It is recognised 

that this interpretative process is liable to both intra- and inter-observer variation 

(Kujan et al., 2007). So far, no histological features have been identified that 

accurately predict which OPMD will progress to OSCC (Lodi et al., 2006). There 

is therefore a need to develop biomarkers that enhance prognostication and 

direct treatment (Mishra, 2012).  
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Table 1-3 Summary of the current classification systems for epithelial 
dysplasia 

 

2005 WHO 
Classification 

Squamous 
Intra-epithelial 

Neoplasia 
Classification 

Ljubljana 
Classification of 
squamous Intra-
epithelial lesions  

Binary 
Classification 

Squamous cell 
hyperplasia 

- Squamous cell 
(simple) hyperplasia 

- 

Mild dysplasia SIN 1 Basal/parabasal cell 
hyperplasia 

Low-grade 
dysplasia 

Moderate dysplasia SIN 2 Atypical hyperplasia Low-grade OR 
high-grade 
dysplasia 

Severe dysplasia SIN 3 Atypical hyperplasia High-grade 
dysplasia 

Carcinoma in-situ SIN 3 Carcinoma in-situ High-grade 
dysplasia 

Adapted from Barnes et al (2005) and Kujan et al (2006 ). 

 

1.2.11 Genetic and molecular alterations in oral cancer 

Analogous to the progression model that is now accepted for colorectal 

carcinoma (Fearon and Vogelstein, 1990), the genetic alterations characteristic 

of OSCC are understood to occur in a multistep, sequential pattern (Califano et 

al., 1996; Leemans et al., 2011). The spectrum of potentially malignant 

disorders contains common chromosomal, genetic, and molecular aberrations 

that are also present in OSCC (Mithani et al., 2007). A working model for the 

formation of OSCC has been widely accepted. First proposed by Califano et al 

(1996) nearly 20 years ago, this model describes sequential loss of 

heterozygosity (LOH) in chromosomal regions that contain key cancer-

associated genes, and maps these genomic changes to clinical and histological 

precursor lesions. The model draws attention to alterations in the genes 

governing growth promotion (proto-oncogenes) and growth inhibition (tumour-

suppressor genes) (Califano et al., 1996; Forastiere et al., 2001). 

Mutations of proto-oncogenes result in abnormally activated ‘oncogenes’ that 

confer growth self-sufficiency to cells, thus enabling them to escape normal 
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growth control mechanisms (Kumar et al., 2005). Early research into proto-

oncogenes in OSCC focused largely on c-myc (Eversole and Sapp, 1993), K-

ras (Caulin et al., 2004; Vitale-Cross et al., 2004a) and ErbB-1 genes (Wong, 

1987). Ki67 is marker of cell proliferation that has been used in the diagnosis 

and prognostication of breast and prostate cancers, in which the fraction of Ki67 

positive cells correlates with the clinical progression of the disease (Scholzen 

and Gerdes, 2000). Ki67 alterations have also been documented in OPMD. 

However, Ki67 has yet to be validated as a prognostic marker for detecting the 

subset of OPMD that are destined to undergo malignant transformation (Kovesi 

and Szende, 2003). More recent work on OSCC oncogenes has focused on the 

complex protein-kinase B (Akt) pathway (Amornphimoltham et al., 2004; 

Amornphimoltham et al., 2005). There is an increasing body of evidence that 

supports the potential therapeutic significance of this pathway (Czerninski et al., 

2009; Wang et al., 2014). 

The tumour-suppressor genes of greatest significance in OSCC formation are 

p53 and CDKN2A (Hunter et al., 2005; Kumar et al., 2005). CDKN2A encodes 

p16INK4a, which controls the cell cycle through inhibition of cyclin-dependent 

kinases. CDKN2A may be inactivated by promoter hyper-methylation in 

combination with deletions in chromosomal regions 3p and 9p21 (Califano et 

al., 1996; Forastiere et al., 2001). 

p53 encodes a critical tumour-suppressor protein and is mutated in more than 

50% of human cancers (Yuen et al., 2001). p53 mutations are a consistent 

feature of OSCC (Gasco and Crook, 2003). p53 is located on chromosome 17p 

and encodes a transcription factor (p53) that detects DNA damage and other 

stress signals. p53 acts as a ‘gatekeeper’ at the G1 phase of the cell cycle, 

permitting repair of damaged DNA prior to DNA synthesis and triggering 

apoptosis if irreparable DNA damage is detected (Liu and Gelmann, 2002). p53 

mutations therefore result in loss of this critical tumour-suppressor function. This 

confers a significant survival advantage and is frequently an early step in oral 

carcinogenesis (Leemans et al., 2011). p53 is upregulated in human OPMD and 

expression of p53 in suprabasal keratinocytes has been associated with 

malignant transformation (Nylander et al., 2000; Kovesi and Szende, 2003; 

Varun et al., 2014). The carcinogens present in tobacco smoke, one of the 
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major risk factors for OSCC, are associated with an increase in both the number 

and type of p53 mutations (Brennan et al., 1995). 

While Califano’s (1996) genetic progression model continues to frame the 

current molecular understanding of OSCC formation, it remains incomplete. For 

example, the model does not account for the over-expression of epidermal 

growth factor receptor (EGFR) that has been identified in a high proportion of 

OSCC (Grandis and Tweardy, 1993a). The most reliable factors for predicting 

patients’ risk of developing OSCC continue to be their cancer history and the 

presence/grade of epithelial dysplasia. Markers for LOH, chromosomal 

aneuploidy, and aberrant p16INK4a/p53 expression remain adjuncts to these 

clinical and histopathological parameters (Leemans et al., 2011). Advances in 

the field of ploidy analysis are compromised by the questionable probity of 

some studies; initial hopes that the detection of aneuploidy might identify 

epithelium at high-risk of developing OSCC have yet to be widely accepted 

(Klanrit et al., 2007; Torres-Rendon et al., 2009). Doubts have also emerged as 

to the reliability of p53 as a standalone prognostic biomarker (Nylander et al., 

2000; Takeda et al., 2006). Although it remains the mainstay of diagnosis and 

prognostication, the reliability of histopathological examination is itself 

compromised by well-documented intra- and inter-observer variation (Kujan et 

al., 2007). 

There is a continuing need to delineate the genetic alterations and molecular 

events of OSCC formation in order to inform the development of reliable 

diagnostic and prognostic biomarkers. An ideal biomarker should be objectively 

measurable in small biopsy samples, and altered in high-risk tissue in the 

earliest stages of oral carcinogenesis (Wu et al., 2010).  
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1.3 Epidermal growth factor receptor 

1.3.1 Structure and biological function 

Epidermal growth factor receptor (EGFR) is a cell surface tyrosine kinase 

receptor that binds to members of the epidermal growth factor family of 

extracellular protein ligands. These ligands include epidermal growth factor and 

transforming growth factor-α (Herbst, 2004). EGFR is one of four proteins in the 

ErbB family and is expressed in most epithelial tissues, including the oral 

squamous epithelium (Citri and Yarden, 2006). 

Binding of growth factor ligands to the EGFR extracellular domain induces a 

conformational change in the EGFR molecule. The conformational change 

usually involves formation of an active homodimer from two inactive monomers. 

Alternatively, a heterodimer may also be formed through pairing EGFR with 

another member of the ErbB receptor family, such as ErbB2/Her2/neu (Yarden 

and Schlessinger, 1987). Dimerization induces phosphorylation of the tyrosine 

residues located on the internal domain of EGFR. Phosphotyrosines bind to 

downstream signalling in proteins that contain the SH2 (Src Homology 2) 

domain (Molinolo et al., 2009). The activated proteins initiate a range of signal-

transduction cascades, including the mitogen-activated protein kinase (MAPK) 

and protein-kinase B (Akt) pathways. Activation of these pathways stimulate 

DNA synthesis and contribute to a range of cellular processes, including cell 

proliferation (Oda et al., 2005). 

1.3.2 EGFR as a cancer biomarker 

EGFR protein expression and gene copy number are currently used in the 

prognostication of non-small cell lung carcinoma (Nicholson et al., 2001; Hirsch 

et al., 2003). They are also used to predict the response of non-small cell 

carcinoma to EGFR-targeting chemotherapeutic agents (Takano et al., 2005 ). 

EGFR was first heralded as a potential biomarker in OSCC in the early 1990s 

(Grandis and Tweardy, 1993b). EGFR protein is over-expressed in up to 90% of 

OSCC. Furthermore, over-expression of EGFR protein in OSCC is associated 

with poor clinical outcomes (Grandis and Tweardy, 1993a; Grandis, 1998; 

Kumar et al., 2008). Similarly, EGFR genomic gain is also associated with poor 
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clinical outcomes (Chung et al., 2006; Temam et al., 2007). To date, the 

prevalence of EGFR genomic gain that has been reported in OSCC ranges 

from 9% (in pStage I and pStage II OSCC) to 56% (in mixed pStage I – pStage 

IV OSCC) (Freier et al., 2003; Rössle et al., 2013; Ryott et al., 2009). These 

data suggest that EGFR genomic gain is more common in late-stage OSCC 

and may be a relatively late event in oral carcinogenesis. 

In vitro studies have demonstrated that ectopic expression of EGFR is 

implicated in the transformation of normal oral keratinocytes to a malignant, 

immortalised phenotype (Goessel et al., 2005). EGFR is critical to many of the 

cellular processes - such as adhesion, proliferation, and migration – which, 

when disturbed, encode hallmarks of cancer, including invasion and metastasis 

(Normanno et al., 2006; Hanahan and Weinberg, 2011). However, the clinical 

significance of this finding must be interpreted cautiously given the complexity 

of the EGFR pathway (Forastiere, 2007; Gusterson and Hunter, 2009). 

1.3.3 EGFR in oral potentially malignant disorders 

The prevalence of EGFR protein over-expression may limit its clinical utility as a 

biomarker in OSCC. However, it has recently been reported that in OPMD over-

expression of EGFR protein correlates with an increased risk of malignant 

transformation (Ries et al., 2013). There are also data which suggest that 

OPMD with an abnormal EGFR gene copy number are more likely to progress 

to OSCC relative to cases with normal EGFR gene copy number (Benchekroun 

et al., 2010; Poh et al., 2012). These data need to interpreted cautiously: 

abnormal EGFR gene copy number is not regarded as evidence of genomic 

gain in the criteria that are currently validated for the interpretation of non-small 

cell lung carcinoma (Hirsch et al., 2003). However, it is unclear whether criteria 

validated for the interpretation of EGFR gene copy number in a solid tumour, 

and involving a different organ, should be applied to OPMD. The evidence from 

these studies support the contention that EGFR gene copy number 

abnormalities accumulate in the early stages of oral carcinogenesis. Although 

EGFR copy number abnormalities do not amount to genomic gain, it is 

conceivable that they precede genomic gain. Abnormal EGFR gene copy 

number may therefore be a useful diagnostic adjunct for detecting OPMD at an 

elevated risk of malignant transformation. 
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1.4 The SOX gene family 

The SOX (SRY-Box) gene family encode transcription factors that play 

important roles in regulating the development of both vertebrates and 

invertebrates (Bowles et al., 2000). To date, ~30 member genes have been 

identified, each encoding transcription factors which share a 79 amino-acid 

high-mobility group (HMG) DNA-binding domain that was first identified in SRY, 

the mammalian testis-determining factor (Chew and Gallo, 2009). The 30 SOX 

transcription factors are sub-classified into ten different groups according to 

their functional properties, structural motifs, and homology within the HMG 

domain. Outside of their conserved domain, SOX transcription factors include 

variable domains that permit binding to a range of co-regulatory proteins. The 

resulting ‘SOX-partner codes’ are stable transcription factor complexes that 

enable SOX proteins to differentially regulate gene transcription by modulating 

promoter activity (Chew and Gallo, 2009). 

SOX genes have multiple cellular functions, including induction/suppression of 

proliferation and multipotency, and specifying the terminal differentiation of 

progenitor cells from a variety of lineages. During embryonic development, SOX 

genes are among the earliest groups to be expressed (Chew and Gallo, 2009). 

Abnormal SOX gene expression and function has been identified in a spectrum 

of neurological disorders, including tumours. SOX proteins have now been 

validated as diagnostic markers for paediatric medulloblastoma and 

ependymoma (de Bont et al., 2008). 

1.4.1 SOX2 in development 

SOX2 belongs to the SOX B1 subgroup, along with SOX1 and SOX3. Members 

of this subgroup are consistently expressed by central nervous system (CNS) 

progenitor cells but not by mature neuronal cells, indicating their role in 

maintenance of the progenitor state (Chew and Gallo, 2009). This role has been 

further specified as the direction of basal cell ‘fate’ choices, i.e. balancing the 

rates of renewal and differentiation of progenitor cells. SOXB1 subgroup genes 

are therefore important during both tissue morphogenesis and homeostasis. 

SOX2 is known to maintain pluripotency of embryonic stem cells (Masui et al., 

2007). Over-expression of SOX2 may actually inhibit terminal differentiation 
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during neurogenesis (Bani-Yaghoub et al., 2006). In mice, Sox2 plays a vital 

role in patterning of the anterior foregut endoderm (Que et al., 2007) and 

trachea (Que et al., 2009). In the squamous epithelium of the tongue and 

palate, Sox2 expression is strongest in the basal layer where it promotes 

proliferation and stabilisation of progenitor cells (Okubo et al., 2009). Sox2 is 

believed to achieve this through synergistic maintenance of Oct3/4 expression 

(Masui et al., 2007). In neural stem cells, Sox2 is thought to act in concert with 

factors such as c-myc, Oct4 and KLF4 – the so-called ‘Yamanaka’ factors - to 

reprogramme adult cells to induce pluripotency (Takahashi et al., 2007). In the 

adult human brain, SOX2 is understood to perform its pro-mitotic regulatory 

function through the selective up regulation of Notch 1 signalling and expression 

of cyclin-D1, which together promote entry into the cell cycle (Ellis et al., 2004). 

Mutations in SOX2 cause ocular disturbances and are associated with a range 

of learning disabilities, motor dysfunctions, and seizures (Ragge et al., 2005). 

SOX2 mutations have also been implicated in hypoplasia of the anterior 

pituitary gland, with subsequent gonadotropin deficiency (Tziaferi et al., 2008). 

SOX2 deficiency is also implicated in the rare AEG (‘Anophthalmia-Esophageal-

Genital’) syndrome (Williamson et al., 2006). Conversely, SOX2 over-

expression has been identified in a range of CNS tumours, including those of 

astroglial, ependymal, and oligodendroglial lineages (Phi et al., 2008). SOX2 

mutations are also implicated in the tumourigenesis of glioblastoma, an 

aggressive cancer in which it behaves as an oncogene (Pevny and Nicolis, 

2010). 

1.4.2 SOX2 in cancer 

The oncogenic potential of SOX2 has been investigated in human oesophageal 

and lung cancers (Garraway and Sellers, 2006; Bass et al., 2009; Hussenet and 

du Manoir, 2010). Copy number increases of the 3q26-qter chromosomal region 

are found in a majority (60-80%) of squamous cell carcinoma (SCC), including 

those in the oesophagus/head and neck region (Hussenet and du Manoir, 

2010). Analysis of the individual contribution of genes mapping to 3q26-qter 

using a shRNA screen in oesophageal cancer cell lines indicated that SOX2 

was a major contributor to tumorigenesis and may act as a lineage-survival 

oncogene (Bass et al., 2009). 
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In lung cancer (LC), SOX2 is over-expressed in both adenocarcinoma and SCC 

phenotypes (Hussenet et al., 2010; Lu et al., 2010). In mice, up-regulation of 

Sox2 causes hyperplasia of the bronchiolar epithelium and development of 

adenocarcinomas. This is attributed to the Sox2-mediated induction of cyclinD1 

expression and subsequent cell cycle promotion (Lu et al., 2010). SOX2 is thus 

considered a potential chemotherapeutic target for lung cancer (Xiang et al., 

2011). 

SOX2 may also play a role in tumour differentiation. In vivo, up-regulation of 

SOX2 induces expression of markers of squamous differentiation such as p63 

and keratin 6, thus implicating SOX2 in the differentiation pathway of SCC 

(Bass et al., 2009). This is in contrast to previous in vitro studies suggesting that 

increased SOX2 expression contributes to de-differentiation and cellular 

migration (Hussenet et al., 2010; Hussenet and du Manoir, 2010). 

1.4.3 SOX2 in oral cancer 

In normal squamous epithelium, SOX2 promotes epithelial proliferation and the 

stabilisation of basal progenitor cells (Okubo et al., 2009). Over-expression of 

SOX2 has been described in SCC arising at a range of sites, including the lung, 

oesophagus, cervix, and penis (Hussenet et al., 2010; Lu et al., 2010; Maier et 

al., 2011). Up-regulation of SOX2 has been documented in a subset of OSCC 

(Freier et al., 2010; Misuno et al., 2013; Huang et al., 2014). Two studies have 

also reported SOX2 genomic gain in OSCC (Freier et al., 2010; Kokalj Vokač et 

al., 2014). Freier et al (2010) reported that SOX2 gene copy number 

amplification was more common than SOX2 protein over-expression, occurring 

in >50% of OSCC. SOX2 positivity has also been detected in up to 90% of 

OPMD in an isolated study by Qiao et al (2013). The authors also identified co-

expression of SOX2 and Oct4 - a feature not detected in the normal squamous 

epithelium - in up to 60% of OPMD (Qiao et al., 2013). 

There is also evidence that SOX2 over-expression portends poor clinical 

outcomes in OSCC, particularly metastasis to cervical lymph nodes (Du et al., 

2011; Michifuri et al., 2012; Huang et al., 2014). Michifuri et al (2012) drew 

attention to the heterogeneous expression of SOX2 in a group of 80 mixed-

stage OSCC, categorising the SOX2 pattern as either peripheral or diffuse. The 



19 

 

authors identified a positive correlation between the diffuse pattern of SOX2 

staining and risk of metastasis to cervical lymph nodes (Michifuri et al., 2012). 

These findings suggest that SOX2 has an oncogenic function in oral 

carcinogenesis. This contention is supported by earlier functional studies of 

oesophageal and lung SCC (Bass et al., 2009; Hussenet et al., 2010; Hussenet 

and du Manoir, 2010; Lu et al., 2010). There is emerging evidence that 

suggests SOX2 is significant in the maintenance and functioning of oral cancer 

stem cells (CSC) (Boumahdi et al., 2014). Oral CSC show up-regulation of 

SOX2 and OCT4 in vitro (Lim et al., 2011; Bourguignon et al., 2012; Misuno et 

al., 2013). However, further work is required to delineate the contribution of 

SOX2 to the maintenance, survival, and proliferation of CSC (Routray and 

Mohanty, 2014). 

1.5 The PAX gene family 

The PAX (‘paired-box’) gene family comprises a group of nine genes that 

encode transcription factors with crucial roles in embryonic development and 

organ formation (Dahl et al., 1997; Chi and Epstein, 2002; Wang et al., 2008). 

PAX genes have been widely conserved through evolution. They are shared 

between mammalian species and orthologues have been identified in 

organisms as diverse as birds, fish, and frogs (Dahl et al., 1997). PAX genes 

are characterised by a common ‘paired-box’ 128-amino acid DNA-binding 

domain, which was first identified in Drosophila (Bopp et al., 1986; Wang et al., 

2008). The transcriptional activities of PAX genes regulate processes such as 

cellular proliferation, differentiation, migration, and survival (Chi and Epstein, 

2002; Robson et al., 2006). Mammalian PAX genes are classified into four 

subgroups according to the presence or absence of two further regions: a 

homeodomain and octapeptide structural motif (Robson et al., 2006). 

Mostly active during embryogenesis and early growth, expression of PAX genes 

gradually declines following completion of development. Residual expression 

and capacity for re-expression persist into adult life, however, when PAX genes 

are involved in maintaining stem cell pluripotency and directing the regeneration 

of normal or damaged tissues (Chi and Epstein, 2002). Studies of mice with 

either spontaneous or induced mutations of PAX genes confirm their vital role in 
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embryogenesis. Mutants are distinguished by overall reduction in growth, and 

malformation/absence of organs (Dahl et al., 1997; Chi and Epstein, 2002). 

Mutations of PAX genes are known to cause developmental abnormalities in 

humans. For example, PAX3 mutations have been identified in patients with 

Waardenburg syndrome (Wollnik et al., 2003) and deletions of PAX6 are 

implicated in the aetiology of aniridia (Davis et al., 2008). Their involvement in 

stem cell renewal, differentiation, and migration suggests that PAX genes have 

significant potential to contribute to neoplasia - frequently characterised by the 

recapitulation of developmental processes - should their expression become 

dysregulated (Robson et al., 2006). 

1.5.1 PAX9 in development and disease 

In humans, PAX9 is located on chromosome 14q12 and belongs to group one 

of the PAX gene family. It is highly similar to the other member of this group, 

PAX1. In addition to the paired-box domain, both genes are characterised by 

the presence of an octapeptide structural motif and the absence of the 

homeodomain that features in groups II – IV (Peters et al., 1998; Robson et al., 

2006). PAX9 has been identified in a wide range of vertebrates, including 

chicken, mice and zebra fish. 

In mice, Pax1 and Pax9 exhibit similar expression patterns in the sclerotome, 

i.e. the ventro-medial region of somites, which subsequently forms the vertebral 

column (Neubuser et al., 1995). They demonstrate overlapping expression 

patterns in structures derived from the endodermal epithelium of the pharyngeal 

pouches, including thymus, parathyroid glands, ultimobranchial bodies, 

Eustachian tubes, and tonsils. There is extensive Pax9 expression in the neural 

crest-derived mesenchymal tissues that are important in the development of 

teeth and the craniofacial region (Neubuser et al., 1997; Peters et al., 1998). 

The importance of Pax9 function during development has been emphasised by 

a study using transgenic mice in which Pax9 was inactivated. Pax9-deficient 

mice die shortly after birth, display a cleft secondary palate, and lack all teeth, 

highlighting the role of Pax9 in neural crest-derived tissues. Furthermore, 

organs derived from the endodermal pharyngeal pouches - thymus, parathyroid 

glands and ultimobranchial bodies - are also absent (Peters et al., 1998). Tooth 



21 

 

development in Pax9-deficient mutants is arrested at the ‘bud stage’, and the 

expression of other inductive mesenchymal genes such as Bmp4, Msx1, and 

Lef1 is strongly decreased (Neubuser et al., 1995). 

Heterozygous mutations in PAX9 cause familial and sporadic cases of 

hypodontia and oligodontia (Stockton et al., 2000; Mostowska et al., 2003), 

congenital conditions affecting 5-10% of humans in which variable numbers of 

teeth are missing (hypodontia defined as < six teeth, and oligodontia as >six 

teeth, both excluding third molars) (Rose, 1966). The role of Pax9 in facilitating 

dental field patterning and the ‘minimum dosage’ of Pax9 expression required 

for normal dental morphogenesis have been defined using novel mouse models 

for hypodontia and oligodontia (Kist et al., 2005). Reduced levels of wild-type 

Pax9 mRNA resulted in fewer teeth (ranging from hypodontia to severe 

oligodontia) and defective formation of enamel with subsequently increased 

rates of attrition and formation of reparative dentine (Kist et al., 2005). 

In addition to its role in structures derived from the endoderm and neural crest, 

PAX9 has also been implicated in the regional differentiation of the mammalian 

surface ectoderm. This gives rise to the epidermis of the skin, squamous 

epithelium lining the oral cavity, and a range of appendages including lingual 

papillae and salivary glands (Jonker et al., 2004). Although Pax9 expression in 

mice is normally absent in the epidermis, it is continuously expressed in the 

lingual epithelium. Here, it is believed to regulate key aspects of epithelial 

differentiation, notably the morphogenesis of filiform papillae (FP). In mice, FP 

are small, conical structures on the dorsal surface of the tongue that are 

believed to enhance retention of food during mastication. They are 

characterised by a distinctive anterior-posterior polarity that reflects differential 

expression of specific keratins (Iwasaki, 2002). Pax9-deficiency in mice results 

in down-regulated expression of so-called ‘hard keratins’ (e.g. Krt1-5, Krt1-24) 

that form the posterior aspect of FP, and concomitant up-regulation of ‘soft 

keratins’ e.g. Krt2-1, Krt2-17. These ‘soft keratins’ are commonly expressed in 

the epidermis but are absent in normal lingual epithelium, indicating mis-

differentiation of the tongue epithelium into epidermis (Jonker et al., 2004).  
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1.5.2 A potential role for PAX9 in cancer 

In addition to their normal expression in the epidermis in humans, the ‘soft 

keratins’ Krt2-1 and Krt2-17 are over-expressed in dysplastic lesions of the oral 

squamous epithelium (Bloor et al., 2003). This suggests that the underlying 

alterations in the differentiation pathway of epithelium in Pax9-deficient mice 

may be similar to those occurring in epithelial dysplasia (Jonker et al., 2004).  

Our preliminary observations using biopsy samples of the human tongue have 

demonstrated progressive down-regulation of PAX9 expression in dysplastic 

epithelium and the complete absence of PAX9 expression in OSCC 

[unpublished data]. This is consistent with the study by Gerber et al (2002), who 

studied biopsies of the human oesophagus. Using a monoclonal antibody to 

PAX9, which shows nuclear expression in normal oesophageal epithelium, this 

study revealed PAX9 expression to be lost/significantly reduced in a majority of 

cancers and pre-cancerous lesions. Furthermore, it identified an inverse 

relationship between PAX9 expression and clinical course: a decrease in the 

proportion of PAX9-positive cells correlated with an increase in the malignant 

behaviour of lesions. This suggests that PAX9 plays a pivotal role in the 

differentiation of the oesophagus epithelium and provides evidence to support a 

function for PAX9 in cancer (Gerber et al., 2002). 

PAX1 and PAX9 are generally regarded as having a weaker association with 

cancer than other PAX genes due to the absence of the homeodomain that 

characterises groups II – IV (Robson et al., 2006). Group II and group III PAX 

genes have an established role in promoting tumourigenesis. Conserved 

chromosomal translocations have now been identified in several – often 

aggressive – cancers.  These include alveolar rhabdomyosarcoma 

(translocations in PAX3/PAX7), follicular thyroid carcinoma (PAX8) and non-

Hodgkin lymphomas (PAX5) (Robson et al., 2006). The precise mechanisms 

involved are still unclear. PAX5 protein is thought to regulate p53 transcription 

(Stuart et al., 1995) and PAX8 to regulate the apoptosis suppressor Bcl-2 

(Hewitt et al., 1997). To date, however, PAX6 is the only family member directly 

implicated in tumourigenesis in vivo, in the development of a pancreatic cystic 

adenoma in a transgenic mouse (Yamaoka et al., 2000). This finding has led to 
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further work assessing the potential of PAX6 as a chemopreventive target 

(Robson et al., 2006). 

Although the potential role of PAX9 in squamous epithelial cancers is regarded 

as that of a tumour-suppressor gene, there is evidence that ‘driver gene’ 

candidacy cannot be entirely excluded. Together with the transcription factor 

genes TTF-1 and NKX2-8, PAX9 has been identified within the amplified 

chromosomal region 14q13.3 in lung cancer (LC), leading to over-expression of 

all three genes. Furthermore, PAX9 expression contributes to the survival of 

lung cancer cell lines in vitro. This has led to the suggestion that PAX9, in 

combination with TTF-1 and NKX2-8, may act as an oncogene in LC (Kendall et 

al., 2007). There is also evidence that PAX9 interacts with c-myb, a proto-

oncogene that enhances the survival of SCC cell lines and is implicated in the 

pathogenesis of a range of cancers (Lee et al., 2008). These findings are 

consistent with the functions of other PAX family members that have been 

identified using in vitro studies (Muratovska et al., 2003). A follow-up study has 

shown that PAX9 has only minimal prognostic value in predicting lung cancer 

outcome; however, the evidence is complicated by the partial retraction of this 

paper (Hsu et al., 2009). In contrast, other work has identified allelic loss at 

14q13.3 in a subset of LC, suggesting that in certain tumours PAX9 and factors 

such as NKX2-8 may perform tumour-suppressor rather than oncogenic 

functions (Harris et al., 2011). 

1.6  Animal models 

The paucity of reliable biomarkers to identify the pre-cancerous lesions at 

greatest risk of malignant progression has been acknowledged (Kanojia and 

Vaidya, 2006). In part, this reflects the limited availability of suitable animal 

models in which to study the mechanisms of OSCC formation and test 

substances that may halt/reverse these processes (Czerninski et al., 2009). 

While molecular analysis of human biopsy samples is the ideal, tissue from 

each of the multiple stages in the evolution of a particular lesion (i.e. 

hyperplasia, dysplasia, carcinoma in-situ) is usually not available. By contrast, 

tissue from animal models allows each stage of precancerous development to 

be reproduced and made readily available for histological and molecular 

analysis (Herzig and Christofori, 2002; Wong, 2009). 
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Surrogate animal models that are currently recognised to recapitulate the 

conditions of the human oral cavity include the rat tongue and Syrian hamster 

buccal pouch (Eveson and MacDonald, 1978; Kanojia and Vaidya, 2006; 

Mognetti et al., 2006). Mouse models (tongue, oral cavity) have also been 

widely used. They are comparatively advantageous because of the potential to 

easily manipulate the mouse genome and the availability of many mouse 

mutants (Brudno et al., 2004). Spontaneous cases of OSCC are rare in animals 

(Thurman et al., 1997). However, development of OSCC has been induced in 

animal models through several methods: chemical induction, xeno-

transplantation, and transgenesis (Mognetti et al., 2006). 

1.6.1 Chemical induction of OSCC in animal models 

Several chemical carcinogens have been applied to animal models, including 

arecaidine, coal tar, and polycyclic aromatic hydrocarbons such as DMBA (7, 

12-dimethylbenz(a)anthracene and 9,10-dimethyl-1,2–benzanthracene) 

(Kanojia and Vaidya, 2006). DMBA was one of the first carcinogens 

successfully used to induce OSCC in animals (Salley, 1954). However, as a 

potent irritant it caused non-specific inflammation, epithelial necrosis, and 

proliferation of granulation tissue, which together obscured the interpretation of 

precancerous lesions. There is also evidence that OSCC induced by DMBA is 

histologically different to that of human OSCC (Kanojia and Vaidya, 2006; 

Mognetti et al., 2006). Chemical induction using 4-nitroquinoline 1-oxide (4-

NQO) avoids many of these problems and is currently the preferred model for 

studying OSCC carcinogenesis in mice (Vered et al., 2005). 

1.6.2 4-Nitroquinoline 1-oxide (4-NQO) 

4-NQO is a synthetic, water-soluble carcinogen that was derived from quinoline 

in the late 1950s (Nakahara et al., 1957). Initially developed as a possible 

chemotherapeutic agent, it was found that local application induced cancers of 

the skin and labial/lingual mucosa of mice (Fujino et al., 1965). A publication in 

the early 1970s described a comprehensive 4-NQO animal model in which 

topical application of 4-NQO over seven months generated cancers of the hard 

palate, tongue base, gingiva, and stomach in rats (Wallenius and Lekholm, 

1973). 4-NQO is now known to result in a spectrum of pre-cancerous as well as 

cancerous lesions, including hyperplasia, squamous cell papilloma (a benign 



25 

 

exophytic neoplasm), various grades of epithelial dysplasia and, most 

significantly, OSCC (Tang et al., 2004; Kanojia and Vaidya, 2006). Crucially, 

these changes occur in the absence of non-specific inflammatory changes: 4-

NQO is less irritant than other chemical carcinogens such as DMBA, and the 

histology is similar to that of human OSCC (Eveson and MacDonald, 1978). 

Although early studies were confined to topical application, work has since 

shown that systemic exposure to 4-NQO, which can be readily added to 

drinking water, causes similar and more reproducible changes (Tang et al., 

2004). 4-NQO may induce cancers of the lung following subcutaneous injection 

(Imaida et al., 1989). However, following oral ingestion it has a recognised 

fidelity to the oral cavity and oesophagus. Necroscopy studies have failed to 

demonstrate either cancers or precancerous lesions elsewhere in the digestive 

tract (stomach, intestine, and bowel) or other viscera (liver, lungs) of mice (Tang 

et al., 2004). The localisation of 4-NQO induction to the oral cavity and 

oesophagus is attributed to the high concentration of diaphorase, a reductase 

that is required to activate 4-NQO, in the mucosa at these sites (Kanojia and 

Vaidya, 2006). 

1.6.3 4-NQO method of action 

The carcinogenic action of 4-NQO is potentiated by reduction of its nitro group 

to 4-hydroxy-aminoquinoline-1-oxide (4-HAQO). 4-HAQO is implicated in the 

formation of DNA adducts and undergoes further metabolism and acetylation to 

form the seryl-AMP-enzyme complex that introduces quinoline groups into DNA 

(Kanojia and Vaidya, 2006). In vivo, the 4-HAQO metabolite preferentially 

reacts with guanine residues (Tada, 1976). The acetylated metabolite, seryl-

AMP-enzyme complex, also reacts through its 3rd and 4th positions with guanine 

at N2 and C8 respectively (Fronza et al., 1992). It is these adducts, which 

induce a guanine to adenosine substitution, that are implicated in the high 

mutagenicity of 4-NQO (Kanojia and Vaidya, 2006; Vitale-Cross et al., 2009). 

As noted previously, nitrosamines such as NNK (4-(methylnitrosamino)-1-(-3-

pyridyl)-1-butanone) are among the most significant carcinogens in tobacco and 

preferentially bind to guanine residues to induce nucleotide transversions. 4-

NQO is also associated with the induction of p53 mutations (Heniford et al., 

1993) and exertion of potent oxidative stress by producing free-radical oxygen 
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species, such as the superoxide radical. These changes are similar to the 

molecular and genetic alterations induced by tobacco (Hecht, 2003; Kanojia and 

Vaidya, 2006). Additionally, recent evidence has suggested that 4-NQO induces 

up-regulation of the Wnt/β-catenin pathway, inappropriate activation of which is 

implicated in a range of human cancers (Fracalossi et al., 2010). 

Together, the site fidelity of and genetic alterations induced by the 4-NQO 

model simulate key aspects of oral/oesophageal SCC and it is therefore 

considered a valid model for the study of human OSCC. However, despite its 

recognition as the best available experimental system to date, the 4-NQO 

model is associated with certain limitations. In animals, 4-NQO-induced OSCC 

tend to be well differentiated. By contrast, most human OSCC range from 

moderately to poorly differentiated (Nauta et al., 1996). There is a markedly 

reduced tendency for 4-NQO-induced OSCC to metastasize to loco-regional 

lymph nodes in comparison with human OSCC. Conversely, patterns of local 

invasion may be more aggressive, with neural invasion reported as a typical 

finding in 4-NQO models. These suggest underlying differences in the biology of 

cancerous cells generated by the 4-NQO model. Although careful optimisation 

of dosage mitigates this complication, 4-NQO-induced OSCC often exhibits a 

multifocal distribution. Despite the phenomenon of field cancerisation, an initial 

multifocal presentation of OSCC in humans is rare (Hasina et al., 2009). 

1.6.4 Experimental protocols for 4-NQO induction of carcinogenesis in 

mouse models 

Over the past 15 years, workers have attempted to optimise an experimental 

protocol for the 4-NQO model. Parameters such as the duration, site, and 

mechanism of carcinogen application, along with the overall duration of 

treatment and point of sacrifice, have been adjusted (Vitale-Cross et al., 2009). 

Although lesions in the oral cavity may be induced by brushing the mucosa with 

highly-concentrated 4-NQO solutions, administration via drinking water is 

currently preferred due to its ease and reproducibility (Kanojia and Vaidya, 

2006; Vitale-Cross et al., 2009). 

Early studies administering 4-NQO via drinking water used low doses, ranging 

from 10–20 µg/mL, for periods of up to 50 weeks. These dosages induced a 

spectrum of genetic mutations, pre-cancerous lesions, and SCC within the oral 
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cavity (Ma et al., 1999; Ide et al., 2001). Although one study identified dysplastic 

epithelial changes following an exposure time as short as two weeks (Nauta et 

al., 1996), workers have consistently reported a latent period between the start 

of induction and the detection of epithelial dysplasia/OSCC of up to eight weeks 

(Dayan et al., 1997; Tang et al., 2004; Vered et al., 2005). 

Tang et al (2004) were the first to administer a higher dose of 100 µg/mL to 

CBA and C57/Bl6 mice. They demonstrated induction of pre-neoplastic and 

neoplastic lesions in 100% of mice exposed over a 16–week period. This study 

was the first to compare the outcomes of topical and systemic administration of 

4-NQO and to identify the development of oesophageal SCC in addition to 

lesions of the oral cavity. Tang et al (2004) also found that 100% of mice on a 

dosage of 50 ug/mL demonstrated premalignant changes after the same 16-

week period. A more recent study has confirmed the suitability of administering 

a 100 µg/mL dosage, which is not reported to result in undue 

morbidity/mortality. This group found that a sufficient incidence of OSCC was 

induced after as little as eight weeks to enable assessment of a 

chemotherapeutic agent (Hasina et al., 2009). 

1.6.5 The 4-NQO model and chemotherapy 

Chemotherapy may extend the latent period of carcinogenesis and help to 

maintain patients’ quality of life in the terminal stages of cancer. The 4-NQO 

mouse model has been used in a range of studies assessing the action and 

efficacy of chemotherapeutic agents. For example, the MTOR (Mammalian 

Target of Rapamycin) signalling pathway is a recognised therapeutic target. 

Rapamycin administration has been shown to halt progression of precancerous 

lesions and promote regression of OSCC using the 4-NQO model (Czerninski et 

al., 2009). Anti-angiogenic agents, such as ABT-510 and Vandatanib, have also 

been validated in reducing the incidence of dysplasia and OSCC induced by 4-

NQO (Hasina et al., 2009; Zhou et al., 2010). Erlotinib, an inhibitor of the EGFR-

STAT3 signalling pathway, has been shown to result in a 69% decrease in 

epithelial dysplasia/OSCC compared to controls (Leeman-Neill et al., 2011). 

The chemopreventive potential of dietary xanthophylls has also been explored 

using the 4-NQO model, in a study that found both astaxanthin and canthaxin 

consumption to be associated with significantly lower cancer rates than controls 
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(Tanaka et al., 1995). The potent chemopreventive all-trans retinoic acid, an 

isomer of 13-cis-retinoic acid that regulates epithelial cell proliferation, has been 

developed using a 4-NQO model to trial loading microspheres and optimise 

concomitant celecoxib anti-inflammatory therapy (Park et al., 2005). 

1.6.6 Genetic induction of OSCC in mouse models 

Studies using transgenic and knockout mice have contributed to our current 

understanding of tumourigenesis. A range of tumours has been replicated in 

transgenic models, but genetic modifications resulting in OSCC in mice are still 

rare (Mognetti et al., 2006). Transgenic models are limited by poor penetrance 

in mice with heterologous promoters, who may express non-physiological levels 

of the transgene product. Conversely, homozygous knockout mice may fail to 

complete embryogenesis or die shortly after birth (Mognetti et al., 2006). Other 

confounding factors include a tendency to develop multiple primary tumours 

and, later, failure to develop metastases. It may also be difficult to translate 

experimental findings regarding isolated mutations in transgenic models to 

humans, where tumours represent numerous sequential genetic alterations 

(Fearon and Vogelstein, 1990; Frijhoff et al., 2004). 

Notwithstanding these difficulties, transgenic models have been successfully 

used to assess the contribution of specific genetic alterations to the 

development of OSCC. These include a study of the role played by the K-ras 

oncogene in promoting OSCC, in a mouse model that used tetracycline as an 

inducer of transgene expression in basal keratinocytes (Vitale-Cross et al., 

2004b). Transgenic mouse models have also helped to delineate the function of 

Smad4 and p53 mutations in OSCC (Opitz et al., 2005; Redman et al., 2005; 

Bornstein et al., 2009). 

It has been suggested that combining the 4-NQO model with a transgenic 

model in which mice are defective in a certain gene would better reflect the 

complex contribution of genetic and environmental factors during the formation 

of OSCC (Wong, 2009). To date, a limited number of studies have combined 

these models. The role of p53 in 4-NQO-induced OSCC formation has been 

studied by a group who applied the 4-NQO model to mice with a dominant-

negative p53 mutation. Using micro-array and gene mapping analysis, this 

study identified a reduction in p53-dependent apoptosis and cell-cycle arrest 
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pathways that consequently led to increased cell proliferation (Zhang et al., 

2006). A combined 4-NQO/transgenic model has contributed to the evidence 

implicating HR-HPV in the aetiology of OPSCC (El-Mofty, 2007). Application of 

4-NQO to mice transgenic for the HPV oncogenes E6/E7 demonstrated that 

these mutants had significantly increased susceptibility to developing OSCC 

(Strati et al., 2006). Another ‘combined model’ has also been used to test the 

hypothesis that the nucleotide excision repair gene XPA (xeroderma 

pigmentosum group A) has a protective effect during oral carcinogenesis (Ide et 

al., 2001). 

1.6.7 Investigating a potential tumour-suppressor role of Pax9 in OSCC 

A transgenic mouse line, Pax9flox, has been developed that permits conditional, 

tissue-specific inactivation of Pax9 (Kist et al., 2007). Conditional inactivation 

has been achieved by crossing Pax9flox mice with a transgenic strain, K14-Cre, 

which expresses Cre recombinase from the keratin 14 promoter that is active in 

the basal keratinocytes of stratified squamous epithelia (Vasioukhin et al., 

1999). Tongues of conditional Pax9-deficient mutants exhibit fissuring and a 

smooth, discoloured surface macroscopically. Histopathological examination 

and scanning electron microscopy further reveal loss of filiform papillae, 

reduced thickness of the lamina propria, and focal hyperplastic epithelial 

growths (Figure 1-2). One aged Pax9-deficient mutant developed an adenoma 

of the Harderian gland, a specialised lacrimal gland present in mice. Genome 

wide expression analyses of tongue tissue from these mutants have shown 

deregulation of numerous genes involved in epithelial differentiation as well as a 

slight reduction of tumour suppressor gene expression [unpublished data]. We 

therefore hypothesise that exposing Pax9-deficient mice to 4-NQO may induce 

more extensive and more rapid pre-cancerous changes and progression to 

OSCC than in 4-NQO treated control mice. 

1.6.8 Normal lingual microanatomy of the Pax9-deficient mouse 

The normal mouse tongue shares many of its micro-anatomical features with 

the normal human tongue. The dorsal surface is covered by specialised 

mucosa. The ventral surface is covered by non-specialised lining mucosa. 

Squamous epithelium lining both surfaces is separated from the underlying 

musculature by a thin lamina propria. 
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In both humans and mice, the dorsal tongue is lined by specialised squamous 

epithelium that is characterised by orthokeratosis and the presence of 

numerous filiform papillae (Figure 1-2). In humans, the ventral tongue is lined by 

non-specialised squamous epithelium, which is thinner than the dorsal 

epithelium and has a flat basement membrane. In mice, however, the ventral 

epithelium shows orthokeratosis, is only slightly thinner than the dorsal 

epithelium, and has an undulating rete outline. Keratinisation of the ventral 

surface enables the mouse epithelium to withstand greater frictional forces 

during mastication than the human tongue. This variation is likely to reflect the 

mouse diet, which is generally coarser than that of humans. 

The tongue of the Pax9-deficient mouse is characterised by a smooth dorsal 

surface. This is due to failure of development of filiform papillae. Although 

rudimentary, malformed filiform papillae may be detected, they are short and 

sparse (Figure 1-2). The dorsal surface is also characterised by fissures and 

thinning of the lamina propria (Figure 1-2).  
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Figure 1-2 Normal micro-anatomy of the tongue of control (wild-type) and 
Pax9-deficient mice 

A) The dorsal surface of the control mouse. B) Scanning electron microscopy shows well-
organised filiform papillae. C) Filiform papillae are also seen histologically. D) The dorsal 
surface of the Pax9-deficient mouse is relatively smooth and shows fissuring (arrows). E) 
Scanning electron microscopy shows loss of filiform papillae and evidence of fissuring (arrow). 
F) Histologically, there are sparse filiform papillae that are short and malformed. The epithelium 
is thinner than the control (bars). There is also thinning of the lamina propria (arrows).  

H&E images taken at x100 magnification.  
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1.7 Oral keratinocyte cell lines 

1.7.1 Primary culture of normal oral keratinocytes 

In vitro, normal human somatic cells exhibit limited replicative capacity. 

Replicative potential is limited despite optimisation of cells’ nutritional and 

mitogenic requirements (Smith and Pereira-Smith, 1996; Sedivy, 1998). This 

phenomenon is termed senescence. It reflects the erosion of telomeric DNA 

with each successive cellular replication. Telomeres are located at the ends of 

chromosomes and prevent the chromosomes from forming end-to-end fusions. 

When shortened, however, telomeres trigger the onset of senescence. In 

primary culture, cells will generally proliferate at first. However, following ~50 to 

100 successive replications there is sufficient erosion of telomeres to trigger 

senescence (Allsopp et al., 1992). Normal oral keratinocytes undergo 

senescence following an average of three to four passages (Prime et al., 1990). 

Growth in vitro may supported by co-culturing keratinocytes with mesenchymal 

cells, e.g. mitocyn C-treated 3T3 fibroblasts (Rheinwald and Green, 1975). 

Normal, non-neoplastic human fibroblasts may become immortalised and 

successfully evade senescence in vitro (Bodnar et al., 1998). Immortalisation 

occurs due to ectopic expression of the catalytic subunit of telomerase, hTERT. 

The hTERT catalytic subunit is usually expressed only by malignant cells 

(Meyerson et al., 1997). This subunit enables the cells to synthesise telomeres, 

and thus prevent telomere-induced cellular senescence (Feng et al., 1995). 

It has been documented that, in vitro, normal oral keratinocytes may 

spontaneously evade senescence and become immortal (Boukamp et al., 

1988). Immortal keratinocytes are also characterised by the ectopic expression 

of hTERT. However, immortalisation also requires a gain-of-function mutation in 

the p16INK4A gene. There is a complex pattern of p16INK4A protein expression 

that regulates senescence in a pathway that is independent of telomere-induced 

shortening. An oral keratinocyte cell line that exhibits both ectopic expression of 

hTERT and over-expression of p16INK4A has been generated. This 

OKF6/hTERT cell line evades senescence without exhibiting abnormalities of 

either growth or differentiation (Dickson et al., 2000). 
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1.7.2 OSCC cell lines 

Two of the oldest cancer cell lines are derived from the oral cavity (Eagle, 1955; 

Moore et al., 1955). For many years, however, OSCC cell lines have proved 

difficult to culture and characterise (Krause et al., 1981). In vitro, keratinocytes 

derived from OSCC exhibit diverse phenotypes, and may show characteristics 

of both normal and malignant cells (Parkinson, 1989). Useful markers of 

malignancy in vitro include resistance to terminal differentiation (Rheinwald and 

Beckett, 1980), altered expression of TGF-β cell surface receptors (Shipley et 

al., 1986), and changing patterns of oncogene expression (Field and 

Spandidos, 1987). 

By contrast to their clinical behaviour in vivo, cells cultured from OSCC may 

show little or no growth. Lack of growth may be due to inappropriate cell culture 

conditions, or insufficient numbers of cancer stem cells (CSC) (Rheinwald and 

Beckett, 1981). OSCC-derived keratinocytes may be cultured under similar 

conditions to normal keratinocytes. However, OSCC-derived cells vary in their 

dependence on mesenchymal support. Mesenchymal support may actually 

compromise the growth of some OSCC-derived cells. Factors derived from 

OSCC cultures may be cytotoxic to 3T3 cells, further complicating culture 

conditions (Rupniak et al., 1985; Prime et al., 1990). 

Despite the challenges that the primary culture of malignant oral keratinocytes 

presents, a range of OSCC-derived cell lines has now been established (Prime 

et al., 1990; Edington et al., 1995). These cell lines are valuable tools in the 

study of oral carcinogenesis. They have been characterised with regard to the 

expression of cytokeratin, vimentin, and involucrin (Sugiyama et al., 1993; 

Prime et al., 1994a), and tumorigenicity following both subcutaneous and 

orthotopic transplantation in athymic mice (Prime et al., 1994b; Paterson et al., 

2002). They have also been characterised with regard to H-ras and p53 

mutations (Yeudall et al., 1993; Yeudall et al., 1995), inhibitory response to 

TGF-β1 (Prime et al., 1994a), autocrine production of TGF-β isoforms (Fahey et 

al., 1996) and expression of TGF-β cell surface receptors (Prime et al., 1994a). 

Several lines have been successfully transfected with plasmid DNA (Paterson 

et al., 2002). The literature to date suggests that these cell lines will provide 

excellent models of oral carcinogenesis both in vitro and in vivo. 
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1.8 Conclusion 

This review has highlighted the global burden of OSCC, the limitations of the 

treatment modalities currently available, and the consequent need to develop 

biomarkers that improve the management and prognostication of patients with 

OPMD and OSCC. 

The literature suggests that EGFR gene copy number is a potential biomarker in 

OPMD and OSCC. However, the nature, prevalence, and biological significance 

of EGFR gene copy number alterations in the early stages of oral 

carcinogenesis remain unclear. Similarly, there is emerging evidence that SOX2 

may have an oncogenic function in oral carcinogenesis, is critical to the survival 

of cancer stem cells, and correlates with clinical outcomes in OSCC. However, 

there is only a limited number of SOX2 studies available in the literature, 

particularly studies that describe SOX2 expression in OPMD. Evidence from an 

isolated study of oesophageal cancer suggests that PAX9 has a tumour-

suppressor function in the squamous epithelium. To date, however, the role of 

PAX9 in oral carcinogenesis is unknown. 

1.9 Hypothesis 

This study will test the hypothesis that EGFR, SOX2, and PAX9 may be useful 

prognostic biomarkers in potentially malignant disorders and early-stage 

squamous cell carcinoma of the oral cavity. 

1.10 Aims 

1. To determine the expression profiles of EGFR, SOX2, and PAX9 in groups 

of patients with OPMD and early-stage OSCC 

2. To correlate the expression profiles of EGFR, SOX2, and PAX9 with 

patients’ characteristics and clinical outcomes 

3. To determine whether conditional Pax9-deficient mice are predisposed to 

the development of OSCC following exposure to 4-NQO 

4. To develop tools that will facilitate exploration of the functional significance 

of SOX2 and PAX9 in oral carcinogenesis.  
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Chapter 2. Materials and Methods 

2.1 Human tissue samples: oral potentially malignant disorders 

Patients with oral potentially malignant disorders (OPMD) were identified 

retrospectively using two strategies: 

1) attendance at an OPMD clinic, Department of Oral and Maxillofacial 

Surgery, Newcastle-upon-Tyne NHS Hospitals (NUTH) 

2) a search of the electronic database, Department of Cellular Pathology, 

NUTH 

2.1.1 Attendance at an OPMD clinic 

The characteristics and clinical outcomes of a group of 100 patients attending 

an OPMD clinic have been published by Diajil et al (2013). Patients in the study 

presented with an OPMD. Incisional biopsy of the OPMD showed epithelial 

dysplasia. Dysplastic lesions were managed either by surveillance or laser 

excision. The study spanned a 13-year period (1997-2009). Patients were 

followed up for a minimum of 24 months. The study excluded patients who had 

either a history of oral/upper aero-digestive tract malignancy or a previous 

OPMD. 

2.1.2 Electronic database of the Cellular Pathology Department 

A systematic search of the pathology database was carried out using SNOMED 

codes. The search identified a group of patients with oral squamous cell 

carcinoma (OSCC) who had previously undergone a biopsy (or multiple 

biopsies) of an OPMD at the same mucosal subsite. The OPMD was managed 

either by surveillance or laser excision. The search spanned a 13-year period 

(1997 - 2009). The search identified a total of 67 cases in which OSCC was 

preceded by an OPMD. This group was refined by excluding cases with a 

history of oral/upper aero-digestive tract malignancy; OSCC formation at a 

separate mucosal subsite to the index OPMD; less than six months between 

index OPMD biopsy and OSCC diagnosis (the index biopsy may have 

insufficiently sampled an existing OSCC); cases with non-dysplastic OPMD 

diagnosed with specific clinico-pathological entities, e.g. chronic hyperplastic 

candidosis or lichen planus; cases in which the clinical presentation and 
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histological features were suggestive of the clinical entity proliferative verrucous 

leukoplakia (PVL). 

A separate search of the electronic database identified patients with biopsies 

that showed normal oral mucosa. The search spanned a six-year period (2007-

2012) and identified a total of 24 cases. These cases were used as controls for 

immunohistochemical analysis (section 2.4). 

2.1.3 Histopathological specimens 

Haematoxylin and eosin (H&E) stained sections and formalin-fixed paraffin-

embedded (FFPE) blocks were retrieved from the Department of Cellular 

Pathology archive for the OPMD identified by the searches. Cases that satisfied 

the study’s inclusion criteria and had sufficient material for further assays were 

selected for further analysis. Serial 4 µm sections were taken from each block. 

Individual sections were mounted on coated slides (Superfrost Plus, Thermo 

Fisher Scientific, UK). Sectioning was carried out in the Department of Cellular 

Pathology by Biomedical Scientists. 

2.1.4 Histological grading of epithelial dysplasia 

H&E sections were reviewed by two pathologists (Dr M. Robinson and Prof. P. 

Sloan). The grade of epithelial dysplasia was scored independently for each 

case. Epithelial dysplasia was graded using two classification systems: 

1) Squamous Intra-epithelial Neoplasia (SIN) classification (Barnes et al., 

2005) 

2) Binary (low-grade/high-grade) classification (Kujan et al., 2006 ). 

All discordant cases were reviewed at a meeting between the pathologists and 

assigned a single grade by consensus. 

2.1.5 Clinical outcomes 

Clinical outcomes were categorised into four groups: 1) no adverse outcome; 2) 

local recurrence; 3) new lesion; and 4) malignant transformation, after Diajil et al 

(2013). The criteria for each of these categories is summarised in Table 2-1.  
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Table 2-1 Categories of clinical outcome for oral potentially malignant 
disorders 
 

Clinical outcome category Criteria 

No adverse outcome No evidence of local recurrence, new lesion 
formation, or malignant transformation after 
minimum 24-month follow-up period 

Local recurrence Recurrence of epithelial dysplasia at the same 
mucosal subsite 

New lesion Development of a new epithelial dysplasia at a 
separate mucosal subsite 

Malignant transformation Progression from epithelial dysplasia to oral 
squamous cell carcinoma 

 

Adapted from Diajil et al (2013). 

 

2.1.6 Data collection and management 

For each OPMD the following data were collected and entered into an Excel 

spreadsheet: 

 patient’s demographic data (sex and age at initial OPMD biopsy) 

 oral mucosal subsite of the OPMD 

 date of index OPMD biopsy 

 patient’s risk factors (alcohol and tobacco habits) 

 clinical management of the index OPMD (laser excision or surveillance) 

 histological grade of epithelial dysplasia (SIN and binary classification) 

 clinical outcome (Table 2-1) 

 date of any subsequent histological diagnosis (e.g. local recurrence of 

epithelial dysplasia) 

 for the subset of cases that underwent malignant transformation, the 

histological differentiation and pStage of the subsequent OSCC was also 

recorded.  
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2.2 Human tissue samples: early-stage OSCC 

Patient data for the early-stage oral squamous cell carcinoma (OSCC) group 

was collected by Mr M. Kennedy during his Masters’ research project. 

2.2.1 Patients 

Patients were identified retrospectively using a systematic database search. 

The search identified consecutive cases of early-stage (i.e. pStage I/II) OSCC 

managed by the Head & Neck Multi-Disciplinary Teams (HNMDT) at NUTH and 

Sunderland Royal Hospital (SRH). The search spanned an eight-year period 

(2000-2008). The search involved three stages: 

1) A primary search of the DAHNO (DAta for Head and Neck Oncology) 

national cancer database 

2) Data from the DAHNO database was then cross referenced with data 

recorded by HNMDT at NUTH and SRH 

3) Electronic pathology reports archived at the Department of Cellular 

Pathology were used to verify the diagnosis/histological differentiation 

and pStage of each OSCC (the Department of Cellular Pathology 

provides diagnostic pathology services to HNMDT at both NUTH/SRH). 

 

The search excluded cases with: OSCC at pStages III and IV; OSCC of the lip 

and oropharynx; non-surgical primary management (i.e. 

radiotherapy/chemotherapy); a previous diagnosis of head and neck cancer; a 

history of radiotherapy to the head and neck region for non-malignant 

conditions; patients without follow-up. 

The disease status, length of post-surgical follow up, and survival data for cases 

that satisfied the study’s criteria were verified using: 

 Hospital patient administration systems, which record: 

o attendance at outpatient clinics 

o most recent survival in patients discharged from the HNMDT 

o date of death (where applicable) 

 General medical practitioners’ records, to establish survival status of 

patients with no recent hospital follow-up  
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 HNMDT clinic correspondence and records, which record: 

o patients’ treatment 

o local recurrence and other adverse outcomes 

o last known disease status 

 Hospital notes, for a small number of patients for whom survival/disease 

status could not be determined from the other sources above. 

2.2.2 Histopathological specimens 

H&E stained sections and FFPE blocks were retrieved from the Department of 

Cellular Pathology archive. H&E sections were reviewed by one pathologist (Dr 

M. Robinson) to identify a representative block with sufficient remaining material 

for further assays. Blocks were serially sectioned by trained laboratory staff in 

the Department of Cellular Pathology. 

2.2.3 Data collection and management 

For each OSCC, the following data were collected and entered into an Excel 

spreadsheet: 

 patients’ demographic data (sex and age at OSCC diagnosis) 

 the oral mucosal subsite of the OSCC 

 date of the index OSCC diagnosis 

 histological grade of differentiation (Broders’ classification) 

 clinical outcomes (disease-free survival and overall survival) 

 the date of any subsequent histological diagnosis. 
 

2.3 Human tissue samples: OSCC that transformed from OPMD 

The pathology database was used to identify the pStage, histological grade of 

differentiation, and any subsequent diagnoses for patients with OSCC that 

transformed from a pre-existing OPMD. Details of patients’ demographics and 

risk factors were already available from the OPMD database. Clinical follow-up 

data (including overall survival and disease status) was obtained from HNMDT 

meeting records. The data were entered into an Excel spreadsheet.  
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2.4 Immunohistochemical staining and analysis 

2.4.1 Automated immunohistochemistry 

For all human OPMD/early-stage OSCC cases, SOX2 and EGFR 

immunohistochemistry (IHC) was performed on 4 µm sections using an 

automated platform (Ventana Benchmark Autostainer, Ventana Medical 

Systems Inc, USA). Staining was carried out in the Department of Cellular 

Pathology by Biomedical Scientists. SOX2 protein expression was detected 

using a proprietary rabbit monoclonal antibody (anti-SOX2 SP76 clone, Cell 

Marque Corporation, USA). EGFR protein expression was detected using a 

proprietary rabbit monoclonal antibody that binds specifically to the EGFR 

internal domain (anti-EGFR 5B7 clone, Ventana Medical Systems Inc, USA). 

Staining was performed using protocols recommended in the manufacturers’ 

instructions. Morphologically normal squamous epithelium provided a positive 

internal control for each section. A negative control, with primary antibody 

omitted, was performed for each staining batch. 

2.4.2 Manual immunohistochemistry protocol 

During this project, manual IHC was performed in order to detect a range of 

proteins in human, mouse, and cell culture-generated specimens (cell pellets 

and Surepath™ preparations). Details of each antibody and the specimens on 

which they were used are summarised in Table 2-2. 

Whilst optimising the manual staining protocol for each antibody, IHC was 

performed on sections of human normal oral mucosa. 

Once optimised, manual IHC was performed in batches of between eight and 

12 slides. For sections of human OPMD/OSCC and mouse tongues, 

morphologically normal squamous epithelium provided a positive internal 

control for each slide. When IHC was performed on cell culture-generated 

specimens, the batch of slides included one slide with a section of human 

normal oral mucosa as the positive control. 

For each of the antibodies, manual IHC was performed using a commercially-

available kit (DAKO, Glostrup, Denmark).  
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The following description outlines the standard protocol used for manual IHC: 

 Sections de-waxed in fresh xylene (4x 5 mins immersions) 

 Sections hydrated through graded alcohols: 

o 99% (x2), 95%, and 70% (5 mins each) 

 Slides immersed in distilled water (10 mins) 

 Slides transferred to citrate buffer, pH 6 (Sigma-Aldrich, UK) 

 Slides placed in an automated decloaker (MenaPath, A Menarini 

Diagnostics, UK) for antigen retrieval: 

o Heated to 125°C and held at 20-25 psi for 30 secs 

 (TBS rinse*) 

 Periphery of each slide dried carefully and silicone fast well (FastWells, 

Interchim, France) firmly applied 

 Endogenous peroxidase blocked with 300 µl hydrogen peroxide (5 mins) 

 (TBS rinse*) Antibody solutions made up (see Table 2-2). 

 Slides incubated with 300 µl primary antibody solution (45 mins) 

o Incubated at room temperature in a humid reaction chamber 

placed on an automated horizontal rocker 

 (TBS rinse*) 

 PAX9 only: slides incubated with 300 µl secondary antibody (45 mins) 

 (TBS rinse*) 

 Incubated with 300 µl horseradish peroxidase-labelled polymer (30 mins) 

 (TBS rinse*) 

 Incubated with 3,3'-Diaminobenzidine (DAB) solution (5 mins) 

 Rinsed in tap water to stop DAB reaction (5 mins) 

 Sections counterstained in Harris’ haematoxylin (5 secs) 

 Slides placed in Scott’s Bluing solution (30 secs) 

 Sections dehydrated through graded alcohols 

o 70%, 95%, 99% (x2) (5 mins each) 

 Slides immersed in fresh xylene (2x 5 mins) 

 Coverslips placed (Leica CV5030 Coverslipper, Leica, UK). 

* N.B. TBS Rinse: tris-buffered saline (TBS) at pH 7.6 (2x 5 mins)  
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Table 2-2 Summary of antibodies used for each protein assay/specimen by manual immunohistochemistry 
 

Protein 
assay 

Specimens Primary antibody Secondary antibody 

Dilution Details Dilution Details 

PAX9 Human OPMD/OSCC 

Mouse tongues 

Cell pellets 

Surepath™ preparations 

1/40 Pax-9 (7C2) 

Rat Anti-Mouse Monoclonal 

Abcam*  

1/100 Immunoglobulins/HRP P0450 

Rabbit Anti-Rat Polyclonal 

DAKO 

 

SOX2 Mouse tongues 

Cell pellets 

Surepath™ preparations 

1/100 Sox2 (D6D9)  

Rabbit monoclonal 

Cell Signalling Technology 

N/A N/A 

Ki67 Mouse tongues 1/100 Ki67 (SP6) 

Rabbit monoclonal 

Abcam 

N/A N/A 

P53 Mouse tongues 1/50 p53 (7F5) 

Rabbit monoclonal 

Cell Signalling Technology 

N/A N/A 

*Although this PAX9 antibody is now commercially available, we used aliquots of the supernatant generated by hybridoma cells prior to marketing. The precise 
concentration of the antibody was therefore unknown. 
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2.4.3 Digital image analysis of immunohistochemical staining 

Following IHC, slides were scanned using an Aperio CS2 Scanscope™ platform 

(Leica Biosystems, UK) at x20 magnification. For human OPMD/OSCC and 

mouse tongues, the corresponding H&E sections were also scanned. Electronic 

files were uploaded to the Aperio Spectrum system for digital image analysis 

(Spectrum Version 11.1.0.751©, Aperio Technologies, Inc, Leica Biosystems, 

UK). H&E sections were used to guide the annotation of areas on the 

corresponding IHC-stained sections according to morphology (i.e. areas of 

histologically normal epithelium, epithelial dysplasia, and OSCC). Areas were 

annotated using a freehand pen tool (Figure 2-1). Wherever there was sufficient 

material, a minimum of 1000 cells were selected per morphological area. 

Annotated areas were then analysed using two standardised Aperio algorithms 

(nuclear algorithm: PAX9, SOX2, Ki67, and p53; cellular algorithm: EGFR 

(Cregger et al., 2006)). The algorithms generated a range of parameters, 

including the total number of nuclei/cells analysed; the percentage of positive 

nuclei/cells (PPN/PPC); and the percentage of strongly-positive nuclei/cells 

(3+PN/3+PC). These values were exported into an Excel spreadsheet and 

collated prior to statistical analysis.  

http://www.aperio.com/
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Figure 2-1 Digital image analysis using Aperio software 

Areas for digital image analysis were selected using a freehand pen tool (green arrow, red 
outline). The Aperio nuclear algorithm detected and stratified nuclei according to their signal as 
either negative (0, blue), weakly positive (1+, yellow), positive (2+, orange), or strongly positive 
(3+, red). The algorithm used the percentages of 0, 1+, 2+ and 3+ nuclei to calculate the overall 
percentage of positive nuclei (PPN) and the percentage of strongly positive nuclei (3+PN).  

Adapted from a screenshot taken using the Aperio Scanscope software at x100 magnification.  
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2.5 In situ hybridisation for EGFR chromosome 7 

2.5.1 Automated staining 

The EGFR in situ hybridisation (ISH) signal was assessed by a dual colour 

technique using proprietary reagents (INFORM EGFR-Chromosome 7 dual 

colour assay, Ventana Medical Systems Inc, USA). This technique detects both 

the EGFR gene (using silver ISH, seen as black nuclear dots) and chromosome 

7 centromeres (using Ultraview Alkaline Phosphatase Red ISH, seen as red 

nuclear dots) on the same section. Staining was performed by Biomedical 

Scientists in the Department of Cellular Pathology, using the Ventana 

Benchmark Autostainer according to the manufacturer’s instructions. DNA 

probes were omitted from negative controls. 

2.5.2 Scoring and interpretation of ISH-stained sections 

Dual-stained ISH sections were examined independently by two pathologists 

(Dr M. Robinson, Timothy Bates). Morphologically normal squamous epithelium 

was used to calibrate the appearance of disomy (seen as two black dots and 

two red dots). According to the predominant nuclear signal, each case was 

assigned to one of the descriptive categories described for non-small cell lung 

carcinoma (Figure 2-2). Actively dividing and overlapping cells were not 

assessed. All discordant cases were reviewed at a meeting between the 

pathologists and assigned a single grade by consensus.  
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Figure 2-2 Interpretation of dual EGFR gene and chromosome 7 ISH stained 
sections 

EGFR ISH may detect a diverse spectrum of nuclear signals. Normal epithelium is expected to 
show disomy. The in situ hybridisation signals that are interpreted as amounting to genomic 
gain in lung cancer (high polysomy, >15 copies, and clusters) are rare in OPMD. For the 
analysis of the OPMD group, these signals were therefore grouped alongside cases showing 
trisomy and low polysomy in a single ‘abnormal EGFR gene copy number’ category. However, 
for the analysis of the early-stage OSCC group, only the categories currently validated as 
indicating EGFR genomic gain were considered. 

Adapted from ‘Interpretation Guide: Ventana Inform EGFR DNA Probe’, Roche. 
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2.6 Mouse model of oral carcinogenesis 

2.6.1 Experimental outline 

4-nitroquinolone 1-oxide (4-NQO) is a chemical carcinogen that induces 

formation of oral squamous cell carcinoma (OSCC) in mice (Kanojia and 

Vaidya, 2006). This feasibilty study was designed to optimise 4-NQO-induced 

OSCC formation in Pax9-deficient mutant mice. The purposes of the study were 

analogous to those of a phase I clinical trial in humans, i.e. to identify the 

response of Pax9-deficient mutants to 4-NQO treatment, to identify the tolerable 

4-NQO dose range for Pax9-deficient mutants, and to identify any potential side 

effects/systemic toxicity that may be induced by 4-NQO treatment (Cancer 

Research UK, 2013). 

Prior to the 4-NQO experiment, mutant (K14Cre-Pax9flox/flox) and control 

(Pax9flox/flox) mice had been crossed using three different genetic backgrounds: 

C57Bl/6J, FVB/NJ, and a hybrid strain (C57Bl/6J crossed with FVB/NJ). This 

generated similar numbers of Pax9-deficient mutant and control mice. Mutant 

mice were characterised by the tissue-specific inactivation of Pax9 in the oral 

cavity and upper aerodigestive tract. This is due to the K14-Cre promoter 

sequence, which induces transcription of Cre-recombinase. Cre-recombinase 

mediates DNA recombination either side of the floxed Pax9 sequence, and 

effectively excises the Pax9 gene. The mutant phenotype shows loss of filiform 

papillae from the squamous epithelium of the dorsal tongue. The dorsal tongue 

may also show fissuring. Control mice lack the activity of the K14-Cre promoter 

and therefore express normal levels of Pax9. Control mice therefore exhibit a 

wild-type phenotype with morphologically normal tongues that include filiform 

papillae. 

Groups of mutant and control mice were exposed to 4-NQO administrered via 

drinking water. Three different concentrations of 4-NQO were used: 10, 20, 50 

µg/ml. Exposure to 4-NQO was continued for up to 28 weeks. Mice were 

sacrificed humanely at planned intervals for analysis. Any mice that 

unexpectedly became sick as a result of 4-NQO treatment were also sacrificed. 

The experiment was carried out in the Functional Genetics Unit (FGU) at the 

Institute of Genetic Medicine, International Centre for Life, Newcastle University. 
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2.6.2 Preparation of 4-NQO solutions 

The concentration of the stock 4-NQO solution was 50 mg/ml. The stock 

solution was prepared by dissolving 1 g of 4-NQO powder in 20 ml of dimethyl 

sulphoxide (DMSO) (Sigma-Aldrich, UK). 1.5 ml of the stock solution was 

aliquoted into 2 ml Eppendorf tubes. Aliquots were stored at -20ºC in a light-

proof container in the main laboratory. 

The concentration of the experimental 4-NQO solution to be added to the 

drinking water was 5 mg/ml. The experimental solution was made up on 

treatment days. One aliquot of stock 4-NQO solution was added to 13.5 ml of 

propylene glycol (1:10 dilution). The experimental solution was transferred to 

the FGU and stored at 4ºC in a light-proof container prior to treatment. 

2.6.3 4-NQO administration 

Each cage was supplied with a 200 ml drinking water bottle. During the active 

phase of 4-NQO treatment, 4-NQO solution was added to freshly sterilised 

drinking water at the start of each week. 200 ml of autoclaved drinking water 

was poured into a sterile water bottle, which was transferred to a designated 

fume cupboard. Experimental 4-NQO solution was then added using barrier 

tips. The quantity of experimental solution added depended on the final 

concentration of 4-NQO planned for each cage (Table 2-3). Water bottles were 

placed in a light-proof plastic sheath prior to being attached to the cage as light 

exposure may trigger decomposition of 4-NQO (Tang et al., 2004). 

 

Table 2-3 Pipetting protocol for the preparation of 4-NQO drinking water 
 

Final 4-NQO 
concentration 

(μg/ml) 

Volume of 
water (ml) 

Volume of 
experimental 4-

NQO solution (μl) 

Dilution 

50 200 2000 1/100 

20 200 800 1/250 

10 200 400 1/500 
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Any excess 4-NQO drinking water from the previous week was decanted into 

designated 2.5 litre Winchester bottles. These bottles were stored until full. Full 

bottles were sealed and then removed by waste contractors for disposal as 

hazardous chemical waste. 

2.6.4 Health and safety measures during the handling of 4-NQO 

4-NQO is carcinogenic to all mammals, including humans. Personal protective 

equipment was therefore used at all times when handling 4-NQO. This included 

a laboratory coat, nitrile gloves, a face mask, and protective glasses. 

No 4-NQO spillages occurred and no first aid measures were required during 

this experiment. However, emergency plans were formulated in conjunction with 

Newcastle University’s Health and Safety Department, as part of the COSHH 

form risk assessment for the experiment. The emergency measures are 

summarised in the Appendix. 

2.6.5 Cage cleaning and bedding changes 

Cages and bedding were replaced by trained FGU technical staff at least once 

per week. Both were potentially contaminated by 4-NQO. Cage changes were 

therefore carried out in the designated fume cupboard. Bedding was disposed 

of in double-layered clinical waste bags. The bags were incinerated according 

to the FGU’s standard waste disposal protocol. Empty cages were collected in 

autoclave bags. Cages were washed and autoclaved by FGU staff. 

2.6.6 Monitoring of mice during exposure to 4-NQO 

Mice were checked by trained FGU technical staff every day. Any mice that 

showed signs of systemic toxicity (such as hypersalivation, a hunched posture) 

due to 4-NQO treatment were immediately reported to Dr R. Kist. For humane 

reasons, any sick mice were sacrificed prior to completion of the planned period 

of 4-NQO treatment. 

Mice were weighed each week throughout the 4-NQO experiment until they 

were sacrificed. Any mouse that weighed <30% of the normal body weight for a 

mouse of their age was sacrificed for humane reasons. Throughout the 

experiment, mice were also monitored by a veterinary surgeon on a weekly 

basis. This was in compliance with Home Office regulations.  
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2.6.7 Sacrifice for macroscopical and histological analysis 

Mice were sacrificed using the FGU’s standard CO2 gas chamber facility. The 

chamber first was inverted to remove residual CO2. This was to avoid the 

distress that sudden exposure to high concentrations of CO2 may cause the 

mice. The chamber was lined with a paper towel. Mice were placed in the 

chamber and the lid sealed. CO2 was turned on at a low concentration (10-20% 

CO2) until mice became drowsy (usually after ~1-2 mins). The CO2  

concentration was gradually increased to ~50-60%. Mice were left for a further 

2-3 mins until no signs of life were evident. The CO2  was turned off. Firm finger 

pressure was applied to the hind limb of each mouse. If pressure elicited a 

reflex, the lid was sealed and CO2  exposure resumed. When no reflexes were 

elicited, mice were removed for autopsy. 

2.6.8 Autopsy procedures 

Mice were pinned out supine on a cork board and sprayed with 70% ethanol. 

Using sharp-ended scissors, a transverse incision was made in the pelvic 

region. Blunt dissection was then used to separate skin from the peritoneal 

fascia. A sagittal skin cut was made towards the sternum. Resulting skin flaps 

were then pinned laterally. 

The abdominal cavity was accessed through the peritoneal fascia. Each of the 

major organs (stomach, liver, spleen, intestines, kidneys) was inspected. 

The thorax was accessed by fracturing the sternum in the midline using blunt-

ended scissors. The heart, lungs, and oesophagus were inspected. In cases 

with a possible oesophageal tumour, the oesphagus was blunt dissected off 

surrounding thoracic viscera and fixed separately. 

A midline sagittal skin incision was made from the root of the neck towards the 

lower border of the mandible. Skin was blunt dissected away from the cervical 

fascia. The cervical fascia was dissected off the underlying salivary glands. The 

salivary glands were removed for separate fixation. 

A subset of mice showed tumours arising on the buccal mucosa/lip. These were 

dissected off surrounding structures prior to opening the oral cavity. 
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The oral cavity was accessed via bilateral sagittal incisions from the labial 

commissure to the retromolar region. Large, blunt-ended scissors were then 

used to fracture the temporomandibular joint/ramus of the mandible. The 

mandible, tongue, and floor of mouth were then dissected away from the 

surrounding structures and pinned out separately on cork board. 

The tongue was dissected away from the floor of mouth and mandible. Forceps 

were used gently to elevate the tip of the tongue. Sharp-ended scissors were 

used to make a small transverse incision through the lingual frenum. The 

tongue was separated by blunt dissection through this incision, working postero-

laterally towards the tongue base. 

2.6.9 Fixation and cut-up 

All tissue separated from the main specimen (tongue, salivary glands, 

oesophagus, and tumours of the lip/buccal mucosa) was transferred to a 15 ml 

Falcon tube containing 10% buffered formalin. The tissue was incubated at 

room temperature on a rocker for 24 hours to facilitate thorough fixation. The 

main specimen was fixed in 10% buffered formalin and archived. 

Following 24 hours of fixation, tongues were subdivided in the coronal plane. 

Small tongues were bisected into anterior and posterior halves. Larger tongues 

were trisected into anterior, middle, and posterior thirds. In the majority of 

cases, the anterior portion was further bisected in the sagittal plane. 

2.6.10 Processing, embedding, and sectioning 

Each piece of tongue tissue was placed in an individual cassette (except the 

bisected anterior portions, which were placed in a single cassette). The tissue 

was processed in the Department of Cellular Pathology by Biomedical 

Scientists, using a routine overnight processing protool. 

Processed tissue was embedded on the most anterior cut surface (medial cut 

surface for bisected anterior portions). To screen all the tongues, a first-face 

section was cut at 4 µm and stained with H&E. In selected cases, ribbons were 

subsquently cut through all remaining tissue. Every tenth section was mounted 

on a glass slide and stained with H&E. All unstained sections were mounted on 
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coated slides (Superfrost Plus, Thermo Fisher Scientific, UK) for further assays. 

Unstained sections were stored at 4ºC to minimise antigen degradation. 

2.7 Cell Culture Techniques 

For all cell culture techniques, unless otherwise stated, reagents were of 

molecular biology grade and obtained from either Sigma-Aldrich, UK, or Lonza, 

UK. Apart from the lentivirus transfections (section 2.9), all cell culture 

procedures were performed in a level 2 containment tissue culture facility in the 

School of Dental Sciences, using a Safe Flow 1.2 laminar flow cabinet (BioAir 

Solutions, UK). 

2.7.1 Maintenance of oral squamous cell carcinoma cell lines 

Nine commercially-available OSCC-derived cell lines were cultured. The cell 

lines were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM/F12 1:1 

Mixture, with 15 mM Hepes and 0.6 µg/ml L-glutamine). The final DMEM 

solution also contained 10% (v/v) foetal bovine serum (FBS), 10 mL penicillin 

streptomycin, and 0.5 ug/ml hydrocortisone 21-hemisuccinate sodium salt. Cells 

were cultured in 75 cm2 flasks and incubated in a dedicated cell-line incubator 

(InCu Safe, Sanyo Electronics, Japan). The incubator provided a humidified 

atmosphere of 5% CO2/95% air and a temperature of 37ºC. Cells were 

inspected daily for confluence and to screen for contamination using a Leica 

DM IL inverted-phase contrast microscope (Leica Microsystems, UK). The 

culture medium was replenished every three to four days. 

A control OKF6/hTERT cell line was cultured in keratinocyte serum-free media 

with 0.6 µg/ml L-glutamine. The final culture medium also contained 0.2 ng/ml 

human recombinant epidermal growth factor, and 20 µg/ml bovine pituitary 

extract (Life Technologies, Paisley, UK). The OKF6/hTERT cells were 

maintained and subcultured in conditions otherwise identical to the OSCC-

derived cell lines. 

2.7.2 Subculture and cell number determination 

Cells were sub-cultured every five to seven days or whenever ~90% confluent. 

Culture medium was decanted and the cells washed with phosphate-buffered 

saline (PBS). The cells were enzymatically detached from the floor of the flask 
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by incubating with 0.025% (v/v) trypsin solution for 5 mins at 37º C. Trypsin was 

neutralised by the addition of an equal volume of epithelial medium. The cell 

suspension was centrifuged at 1000 rpm for 5 mins at 4˚C (Jouan CR3i 

Multifunction Centrifuge, Thermo Scientific, USA). The supernatant was 

aspirated and discarded. The cell pellet was re-suspended in 5 ml of epithelial 

medium. The cell number was determined by counting the number of cells 

present in 20 µl of cell suspension loaded onto a Bright-Line haemocytometer 

(Hausser Scientific, USA). Cells were counted across sixteen squares in each 

of four quadrants of the haemocytometer. The mean of all four quadrants was 

calculated. The mean was multiplied by 1 x 104 to give the number of cells per 

ml of the cell suspension. The cells were finally re-seeded at a density of 5 x 

105 cells per 75 cm2 flask. 

2.7.3 Long-term cell storage 

Stocks of OSCC-derived and control OKF6/hTERT cell lines were maintained in 

liquid nitrogen for long-term storage. The cell number was determined (as 

above, section 2.7.2). 5 x 105 - 1 x 106 cells were then re-suspended in DMEM 

with 20% (v/v) FBS and 10% (v/v) DMSO. The cell suspension was transferred 

to cryotube ampoules (CRYO-STM, Greiner Bio-one, UK). The cryotubes were 

placed in a -80ºC freezer for 12-24 hours (Ultra Low, Sanyo Electronics Ltd, 

Japan). Cryotubes were then transferred to liquid nitrogen at a temperature of 

approximately -196ºC. The level of liquid nitrogen in the storage container was 

checked on a weekly basis. Fresh liquid nitrogen was added when necessary. 

2.7.4 Retrieval of cells for culture 

To retrieve cells from long-term liquid nitrogen storage, the cryotube ampoules 

were thawed rapidly in a water bath (temperature of 37ºC). The cryotube 

ampoules were quickly sterilised by wiping with 70% alcohol solution. The 

thawed cell suspension was then added to a 10 ml Falcon tube containing 

epithelial medium that had been pre-heated to 37ºC. The suspension was then 

centrifuged at 1000 rpm for 5 mins at 4˚C (Jouan CR3i Multifunction Centrifuge, 

Thermo Scientific, USA). The supernatant was aspirated and discarded. The 

cell pellet was re-suspended in 5 ml epithelial medium. The cell suspension was 
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transferred to a 25 cm2 tissue culture flask. Cells were maintained in culture as 

described in section 2.7.1. 

2.7.5 Mycoplasma testing 

The cell cultures were tested regularly for Mycoplasma infection using a 

proprietary kit (Mycoplasma Plus PCR Primer Set, Agilent Technologies, USA). 

Following subculture, 100 μl of supernatant was aspirated and transferred to a 

1.5 ml Eppendorf tube. The supernatant was heated to 95˚C on a heat block for 

5 mins and then pulsed in a micro-centrifuge for 5 secs at room temperature. 10 

μl of StrataClean resin was added to the supernatant and mixed by gentle 

flicking. The mix was then centrifuged for 5-10 secs at room temperature to 

pellet the resin component. The supernatant was aspirated and transferred to a 

fresh 1.5 ml Eppendorf tube. A standard PCR master mix was made up 

according to the manufacturer’s instructions. For each cell line, 5 μl of the 

treated supernatant was added to 45 μl of the master mix solution. The PCR 

cycle recommended by the manufacturer was run on a T100™ Thermal Cycler 

(BioRad, Berkeley, USA). The PCR product was run on a high grade 2% 

agarose gel with a 100 base-pair ladder. 

2.7.6 Preparation of agarose cell pellets 

Cells from a >90% confluent 75 cm2 flask were enzymatically detached using 

trypsin as for standard subculture (section 2.7.2). Trypsin was neutralised by 

the addition of an equal volume of epithelial medium. The cell suspension was 

centrifuged at 1000 rpm for 5 mins at 4˚C. The cell pellet was then re-

suspended in 10% buffered formal saline, transferred to a 15 ml Falcon tube, 

and incubated for 1 hour at room temperature. The suspension was then 

centrifuged at 10,000 rpm for 10 mins at room temperature. The supernatant 

was aspirated and discarded. The cell pellet was re-suspended in 200 μl PBS 

and transferred to a 1.5 ml Eppendorf tube. 

A 2% agarose gel was made up in PBS. 1 g of agarose powder (SeaKem® LE 

Agarose) was added to 50 ml PBS, and microwaved at a low heat. The agarose 

gel and cell pellet were equilibrated in a water bath heated to 60˚C. Following 

equilibration, 200 μl agarose gel was added to the cell pellet. The pellet was re-

suspended using a glass Pasteur pipette. The agarose cell suspension was 
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gently vortexed and then centrifuged at 13,000 rpm at room temperature. The 

pellet was allowed to cool for 1 hour at room temperature. When firm, the pellet 

was loosened from the sides of the tube by adding a few drops of 10% buffered 

formalin. The pellet was removed from the tube and longitudinally bisected 

using a scalpel. Both halves were placed in a histology cassette and immersed 

in 10% buffered formalin. The cassette was transferred to the Department of 

Cellular Pathology and processed using a routine overnight programme. The 

two halves of the pellet were embedded in wax and serially sectioned at 4 μm 

by Biomedical Scientists. 

2.7.7 Preparation of cell monolayers 

Following subculture, 250 x103 cells were seeded onto glass chamber slides 

(LAB-TEK, Thermo Fisher Scientific, USA). The chambers slides were 

incubated for two to three days under standard conditions until the cells 

were >90% confluent. The slides were transferred to ice and the culture 

medium was decanted. The cell monolayers were rinsed with 2 x PBS washes. 

2 ml of 4% buffered formal saline was added to both chambers and the slides 

were incubated at 37⁰C for 15 mins. The formal saline was removed and the cell 

monolayers washed with 2x PBS rinses. 2 ml PBS was added to each chamber 

and the slides were then stored at 4˚C until required for immunohistochemistry. 

2.7.8 Preparation of Surepath™ slides for immunohistochemistry 

Surepath™ slides were prepared in the Department of Cellular Pathology by 

Biomedical Scientists. Following subculture (2.7.2) the cell pellet was re-

suspended in 10 ml CytoRich® Red alcohol-based fixative (TriPath Imaging, 

Inc, USA). The cell suspension was incubated for 30 mins. The cell suspension 

was then centrifuged for 5 mins at 1500 rpm at 4⁰C (Hettich Centrifuge, DJB 

Labcare Ltd, UK). The supernatant was aspirated and discarded. 1 ml of tris-

buffered water was added to the pellet. The tube was then vortexed for 15 secs 

to disperse and mix the cell pellet. Settling chambers were attached to 

Surepath™ slides. 200 μl of cell suspension was added to each slide. The 

slides were incubated at room temperature for 10 mins. The settling chambers 

were removed and the excess fluid was decanted. Slides were transferred to 
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and stored in a Coplin jar containing 95% alcohol until required for 

immunohistochemistry. 

2.8 Standard transfection of OSCC cell lines using the T-REx™ system 

The transfection of H314 and H400 with the PAX9 over-expression/SOX2 

knockdown constructs was originally planned using the T-REx™ system 

(Invitrogen, Life Technologies, Paisley, UK). The transfections were outsourced 

to a commercial company (Dundee Cell Products Ltd, Whitehall House, 33 

Yeaman Shore, Dundee, DD1 4BJ: No. SC303525). Unfortunately, the 

transfections were unsuccessful and standard transfection of H314 and H400 

with T-REx™ plasmids was eventually abandoned (see Chapter 6, section 6.5). 

Therefore, only a brief overview of the original experimental design and relevant 

methods are summarised here. 

2.8.1 Experimental outline 

The T-REx™ system is a tetracycline-regulated mammalian expression system 

in which the chosen cell line is serially transfected with two separate plasmids. 

The system uses regulatory elements from the E. coli Tn10-encoded 

tetracycline resistance operon (Hillen et al., 1983; Hillen and Berens, 1994). 

The main components include: 

 pcDNA6/TR© - this is the regulatory plasmid that constitutively expresses 

the Tet-repressor (TetR) molecule under the control of the human 

cytomegalovirus (CMV) promoter (Postle et al., 1984) 

 pcDNA4/TO©/lacZ – this is the inducible expression plasmid that 

contains the gene of interest under the control of the human CMV 

promoter and two ‘tetracycline-on’ (TetO) sites 

o this plasmid also contains the lacZ gene, which expresses β-

galactosidase upon induction with tetracycline as a control 

 Tetracycline to induce expression of the gene of interest and the lacZ 

control.  
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In the T-REx™ system, the TetR molecule that is constitutively expressed by 

the regulator plasmid binds to the TetO sequence in the inducible expression 

plasmid. This blocks transcription of the gene of interest. On addition, 

tetracycline binds the TetR molecule. Binding induces a conformational change 

that leads to dissociation from the TetO sequence. Expression of the gene of 

interest is then promoted by the CMV sequence (Yao et al., 1998) (Figure 2-3). 

Generation of the PAX9 pcDNA4/TO©/lacZ plasmid is summarised briefly in 

Chapter 6. The SOX2 pcDNA4/TO©/lacZ plasmid was designed using the 

BLOCK-iT™ inducible shRNAi Entry Vector kit (Invitrogen, Life Technologies, 

Paisley, UK). Addition of tetracycline would lead to expression of SOX2 shRNAi, 

which would knockdown endogenous SOX2 expression. However, generation 

of the SOX2 pcDNA4/TO©/lacZ plasmid was abandoned following failure of the 

initial transfections.  
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Figure 2-3 The T-Rex™ inducible expression system 

1) The regulator plasmid, pcDNA6/TR©, generates high levels of tetracycline-repressor (TetR) 
protein under the control of a cytomegalovirus (CMV) promoter sequence. 2) The TetR molecule 
forms a homodimer that binds to the ‘Tetracycline-on’ (TetO) sequence in the inducible 
expression plasmid, pcDNA™4/TO/lacz. 3) Tetracycline binds with high affinity to the TetR 
molecules and induces a conformational change. There is cleavage of the homodimer and 
dissociation from the TetO sequence in the pcDNA™4/TO/lacz plasmid. 4) The gene of interest 
(PAX9 is shown in this example) is de-repressed and transcription is promoted by the TATA 
box.  
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2.8.2 Cell lines and attempted transfections 

In order to minimise the risk of using contaminated cell lines for the 

transfections, fresh stocks of H314 and H400 cells were sent directly to Dundee 

Cell Products (DCP) from the European Collection of Cell Cultures, Public 

Health England. DCP received the cell lines at passage numbers 15 (H314 - 

#06092003) and 18 (H400 - #06092006). The cell lines were thawed down, 

maintained, and subcultured by DCP Biomedical scientists according to 

standard protocols specified by the ECCC. These are the same protocols as 

those used during the selection of suitable cell lines at Newcastle University 

(see section 2.7). DCP initially used Lipofectamine® 2000 Transfection Reagent 

(Life Technologies, Paisley, UK). Calcium phosphate was also used in later 

attempts at the transfections. Approximately 150-200 µg of plasmid 

pcDNA6/TR© DNA was used to transfect each cell line. Further information 

regarding the experimental difficulties encountered by DCP are described in 

Chapter 6. 

2.9 Lentivirus transfection of cell lines 

The lentivirus transfections were performed in a level 3 containment tissue 

culture facility in the Dermatology Research Laboratory, School of Medicine, 

Newcastle University. The experimental plan for the lentivirus transfections is 

summarised in the Appendix and further discussed in Chapter 6. The following 

sections summarise the standard protocol used for each of the lentivirus 

transfections. 

2.9.1 Transfection of lentivirus-producing 293T cells with target DNA 

sequence 

 Day 1: 293T cells were seeded into 100 mm tissue culture dishes. Cells 

were seeded at a density of 2-3 x 105 cells/ml in 10 ml of complete growth 

medium 

 Day 2: The lentivirus transfection solution was prepared (components 

detailed in Table 2-4). The plasmid solution was added to the calcium 

chloride (CaCl2) solution. The combined plasmid/CaCl2 solution was then 

added drop wise (one drop per second) to the 2x HeBS solution. Air was 

continuously passed through the HeBS solution while adding each drop in 
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order to prevent precipitation. The transfectant solution was incubated for 30 

mins at room temperature before being added drop-wise to the 293T cells. 

 Day 3: The 293T culture medium was aspirated and discarded in a sealed 

container as hazardous chemical waste. 293T cells were gently washed with 

10 ml PBS to eliminate residual precipitate. 15 ml of fresh complete growth 

medium was added gently to avoid disrupting the cells. The plate was 

incubated for three days under standard conditions 

 Day 6: When the 293T cells were >90% confluent, the lentivirus particles 

were harvested from the supernatant. The supernatant was gently aspirated 

from the culture dish, transferred to a sterile 50 ml Falcon tube, and 

centrifuged (2000 rpm, 4˚C, for 20 mins) to pellet cell debris. The 

supernatant was then filtered into fresh 15 ml Falcon tubes through an 

Acrodisc® syringe 0.45 μm filter (Pall Corporation, USA) to remove any 

residual debris. Recombinant lentiviral solution was stored at -80˚C until 

required. 

 

Table 2-4 Pipetting protocol for day 2 lentiviral transfectant solution 

 

Component Quantity 

DNA mixture 

pMD2.G envelope plasmid 

pCMVdeltaR8.91 packaging plasmid 

Lentivirus transfer vector 

Special water  

 

5 μg 

15 μg 

20 μg 

(make up to 250 μl) 

Calcium chloride solution 250 μl 

2x HeBS 500 μl 
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2.9.2 Transduction of OSCC cell line with recombinant lentivirus solution 

 Day 1: The OSCC cell line selected for transfection was sub-cultured under 

standard conditions (section 2.7.2) and the pellet re-suspended. 2 x 104 cells 

were seeded into each well of a six-well plate. Two six-well plates were 

seeded for each cell line 

 Day 4: The OSCC cell line was transduced when cells were 50-70% 

confluent. The transduction solution comprised 3 ml of recombinant lentiviral 

solution; 9 ml of DMEM without penicillin/streptomycin; and 6 μl polybrene. 

The culture media was decanted from the six-well plates and cells were 

rinsed in PBS (x2). 2 ml of lentiviral/DMEM mix was added to each well. The 

plates were centrifuged at 1300 rpm for 1.5 hours. The supernatant was 

decanted and cells washed with 2x PBS. 2 ml culture media was added to 

each of the wells. The transduced cells were incubated under standard 

conditions until >90% confluent 

 Day 7: The transduced OSCC cells were subcultured. 0.5 ml of trypsin was 

used per well. The cell suspension was seeded into a 25cm2 flask and 

incubated under standard conditions. After 24 hours, the culture media was 

replaced with fresh media that contained antibiotic to select transduced 

clones (either 0.5 µg/ml puromycin or 5 µg/ml blasticidin). 

2.9.3 Doxycycline induction and fluorescence imaging 

Following one week of culture in the selection antibiotic (either puromycin or 

blasticidin) the transduced cells were expanded until there were sufficient cells 

for maintenance, characterisation, and long-term storage (2.7.3). 

Cells for initial characterisation were seeded into six-well plates at a density of 1 

x 105 cells per well. At 24 hours, the culture media was replaced and the cells 

treated with doxycycline at six different concentrations: 0, 25, 50, 100, and 500 

ng/ml, and 1 µg/ml. When the majority of wells were confluent, the cells were 

inspected using an inverse fluorescence microscope (Leica DMI4000B, Leica 

Microsystems, UK) and TRITC/CY3.5 (tetramethylrhodamine 

Isothiocyanate/Cyanine) filter (excitation wavelength -532 nm; excitation 

wavelength - 570 nm). Fluorescent images were taken for cases with positive 

signals and to also confirm the absence of a signal in negative cases. Light 
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microscopic images were taken to confirm the relative confluence of the 

induced cells. All images were taken at x100 magnification. 

2.10 Molecular biology and biochemical techniques 

2.10.1 RNA extraction from cultured cells 

Following subculture, cells selected for RNA isolation were seeded into a six-

well plate at a density of 2 x 104 cells per well. The cells were incubated under 

standard conditions. When the cells were >90% confluent, the plates were 

transferred to ice. The culture medium was decanted and cells washed with 

PBS (2x). 1 ml of TRIzol® reagent (Life Technologies, Paisley, UK) was added 

to each well and pipetted vigorously to lyse the cells thoroughly. The lysate was 

transferred to a 1.5 ml Eppendorf tube and stored at -80°C until required. 

2.10.2 RNA purification from the TRIzol® lysate 

A 2 ml phase-lock gel tube (5 Prime, UK) was centrifuged at 11,000 g for 30 

secs. The lysate was added to the tube and incubated at room temperature (5 

mins). 200 μl chloroform was added and the tube was shaken vigorously (15 

secs). Following incubation at room temperature (3 mins) the tubes were 

centrifuged at 11,000 g at 4°C for 15 mins (Centrifuge 5417B, Eppendorf, 

Germany). The aqueous phase was transferred to a non-stick RNAse-free tube 

(Ambion® Life Technologies, UK). 500 µl isopropanol was added and mixed by 

inversion to precipitate the RNA. Following incubation at room temperature (10 

mins) the samples were centrifuged at 11,000 g at 4°C for 20 mins. 

 

The supernatant was decanted and the RNA pellet washed by adding 1 ml of 

70% ethanol. Samples were vortexed and centrifuged at 7,000 g at 4°C for 5 

mins. The supernatant was decanted. The RNA pellet was air-dried for ~5 mins 

and dissolved in 30 µl RNAse-free water. The solution was incubated at 55°C 

for 5 mins with an open lid to facilitate RNA dissolution and ethanol evaporation. 

1 µl RNAse inhibitor was added to each sample. The samples were transferred 

to ice. The RNA concentration was determined (NanoDrop 2000 UV-Vis 

Spectophotometer, Thermo Scientific, UK). Samples were stored at -80⁰C until 

required.  
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2.10.3 Reverse transcription of RNA to generate cDNA samples 

The RNA concentration of each sample was adjusted to 400 ng/µl. RNA 

integrity was checked by running 1 µl of RNA solution on a 1% TBE gel. 5 µl of 

RNA solution was subsequently used for reverse transcription (see first 

reaction, below). The remaining RNA solution was stored at -80⁰C. 

Reverse transcription was carried out using a commercially available kit 

(Precision NanoScript™ Reverse Transcription Kit, Primer Design, 

Southampton, UK). Barrier tips were used throughout. The protocol involved 

two separate reactions: 

1. In the first reaction, 5 µl RNA (400 ng/µl) was added to 3.5 µl nuclease-

free water and 5.5 µl oligodT primer (180 ng/µl), using 0.5 ml RNA free 

Eppendorf tubes. The solution was heated to 70⁰C for 5 mins and placed 

on ice 

2. In the second reaction, the product from the first reaction was added to 

11 µl of mix two (see Table 2-5 for pipetting protocol) and mixed by 

gentle flicking. The mix was heated to 37⁰C for 2 hours, then 70⁰C for 15 

mins to stop the reaction, then cooled and placed on ice. 

 

5 µl of the PCR product was added to 20 µl nuclease-free water to make a 1:5 

diluted experimental solution. The remaining PCR product was retained as a 

stock solution. Both were stored at -20⁰C until required. 

 

Table 2-5 Pipetting protocol for RNA reverse transcription mix two 

 

Reagent Quantity (µl) 

Nuclease-free water 3 

10mM dNTP 1.5 

RNAase inhibitor 0.5 

5x M-MLV reaction buffer 5 

M-MLV RT enzyme 1 

Total 11 
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2.10.4 Semi quantitative reverse transcription polymerase chain reaction 

The primers for PAX9, SOX2, and ACTB reverse transcription polymerase 

chain reaction (RT-PCR) were designed using software from and supplied by 

eurofins mwg operon (Eurofins Genomics, Ebersberg, Germany). For each 

sample, 1 µl experimental cDNA solution (2.10.3) was added to a standard 

master mix (see Table 2-6). 

Table 2-6 Pipetting protocol for PAX9, SOX2, and ACTB RT-PCR 

 

Reagent Quantity (µl) 

cDNA (1:5 dilution) 1 

5 x Green GoTaq buffer (15mM MgCl2) 5 

10mM dNTP 0.5 

Forward primer* 0.5 

Reverse primer** 0.5 

GoTaq-Polymerase (HotStart) 0.15 

Nuclease free water  17.35 

Total 25 

 

*Forward primers: hPAX9-RT1-F; hSOX2-Endo-F2; hACTB-RT1-F 

**Reverser primers: hPAX9-RT1-R; hSOX2-Endo-R2; hACTB-RT1-R 

 

The PCR products were run on a 2% agarose gel (SeaKem® LE Agarose, 

Lonza, UK). The gel was imaged using ultraviolet light (GelDoc-It®2 Imager, 

UVP, Germany). The gel was photographed and saved as a tagged image 

format file (TIFF). The TIFF image was opened and the bands were analysed 

using the densitometry tool. Rectangles of equal size were placed over each 

band (numbers 1 - 30) and the resulting measurements were saved and 

exported into an Excel spreadsheet. The total density was divided by the total 

background and the result was calculated for each gene. Normalisation was 

achieved by dividing the score for PAX9 or SOX2 by the score for ACTB. 

Values were then ranked. 
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2.10.5 Quantitative real-time polymerase chain reaction 

Quantitative real-time reverse transcription PCR (qPCR) was performed to 

analyse DNA amplification during the exponential phase and thus detect 

quantitative differences between the expression of PAX9/SOX2 in each sample. 

Commercially-available TaqMan® probes for PAX9, SOX2, and ACTB were 

added to a TaqMan® Universal Master Mix (both from Applied Biosystems, Life 

Technologies, UK) were used to perform qPCR on cDNA samples from the 

H314 and H400 pTRIPZ™ cell lines. The samples, probes, and master mix 

were pipetted according to the manufacturers’ instructions. Triplicate samples 

were then loaded onto 96-well plates. The plates were run on an Applied 

Biosystems® 7500 Real-Time PCR machine (Life Technologies, UK). 

The fluorescent probes containing each gene of interest (PAX9, SOX2) included 

a reporter dye (FAM-6) at the 5’ end, and a non-fluorescent quencher dye at the 

3’ end. The quencher dye normally suppresses fluorescence of the reporter 

dye. However, during PCR amplification the probes are cleaved by the 5’-3’ 

nuclease activity of DNA polymerase. Reporter and quencher dyes are 

separated, increasing the fluorescence signal. PCR products accumulate with 

each replication cycle. A threshold fluorescence value is determined for each 

cycle - this is the cycle threshold (Ct) value. The Ct value detects the point at 

which fluorescence from accumulated PCR product exceeds the predetermined 

background value. A sample with a low Ct value therefore has a high level of 

the gene of interest as the threshold is achieved early. 

A reference gene, ACTB, was amplified at the same time as PAX9/SOX2. 

ACTB is theoretically expressed at a constant level across all the samples. 

Relative differences in the PAX9/SOX2 levels of each sample were then 

calculated using the comparative Ct method described by Livak and Schmittgen 

(2001). 

1. ∆Ct = Ct(gene of interest) – Ct (housekeeping gene) 

2. ∆∆Ct = ∆Ct(expression) – ∆Ct (control) 

3. 2-∆∆Ct 

These calculations were performed using an Excel spreadsheet. The mean fold 

values were then used to rank samples according to the level of PAX9/SOX2.  



66 

 

2.10.6 Protein isolation from cultured cells 

Following subculture, the cell line selected for protein isolation was seeded into 

a six-well plate (2 x 104 cells per well). The cells were incubated under standard 

conditions until >90% confluent. 

The six-well plates were placed on ice. The culture medium was aspirated and 

discarded. Cells were washed with PBS (2x). 120 µl of RIPA buffer (Sigma-

Aldrich, UK) containing protease inhibitor and sodium deoxycholate were added 

to each well. The cells were scraped off the bottom of the plate using a cell 

scraper (Corning®, Sigma-Aldrich, UK). The cell lysate was aspirated at 

transferred to a 1.5 ml Eppendorf tube. The tube was vortexed for 30 secs. The 

cell lysate was stored at -80°C until required. 

2.10.7 Protein quantification 

Protein samples were thawed on ice and sonicated briefly (3x 3 secs). The 

samples were centrifuged at 13,000 rpm at 4ºC for 10 mins and returned to ice. 

Protein was quantified using the Pierce BCA Protein Assay Kit (Thermo 

Scientific, UK). A 96-well plate was set up with 2 x 25 µl of each template 

sample in rows one and two. 5 µl of protein lysate was added to 70 µl of distilled 

water in row three and mixed thoroughly. 2 x 25 µl aliquots were pipetted into 

rows four and five as triplicate repeats. 200 µl of Pierce solution was added to 

each well. The plate was incubated at 37ºC for 30 mins. The plate was read 

using a SoftMax Pro® Microplate reader (Miratech, UK) at a wavelength of 562 

nm. Data was exported to an Excel spreadsheet to the mean protein quantity for 

each sample. 

Protein samples were aliquoted and diluted to produce a uniform quantity of 

protein. The precise quantity varied according to the range of concentrations 

determined for each cell line. Each aliquot was adjusted by adding RIPA buffer 

(Sigma-Aldrich, UK) to equilibrate the protein suspensions. 4x LDS sample 

buffer and 10x sample reducing agent (NuPAGE®, Life Technologies) were 

then added to each aliquot. Quantities were varied for each sample so that 

every 10 µl contained: 1 µl of 10 x reducing agent; 2.5 µl LDS; and 6.5 µl 

protein sample. 



67 

 

2.10.8 Western blotting 

Protein samples were thawed and heated to 70˚C on a heat block (10 mins). 

Tubes were pulsed briefly to remove condensation and briefly vortexed. Pre-

cast polyacrylamide gels (NuPAGE® Novex® 4-12% Bis-Tris Gels, Life 

Technologies) were placed in a tank filled with running buffer (NuPAGE® MES 

SDS, Life Technologies). 500 µl of antioxidant was added to the central 

chamber of the tank. Protein samples were loaded on the gel with a 10-170 kDa 

protein ladder (PageRuler Prestained Protein Ladder, Pierce Protein Products, 

Thermo Scientific, UK). The gel was run at 200 V for 30 mins. 

The gel was removed and placed on PDVF membrane (Sigma-Aldrich, UK) in a 

transfer cassette lined by sponge and filter paper. The cassette was placed in a 

tank containing transfer buffer (NuPAGE® Transfer Buffer, Life Technologies) 

with 200 ml methanol and 2 ml of antioxidant (NuPAGE® Antioxidant, Life 

Technologies). The tank was placed in an ice bucket. The transfer was run at 

100V for 1 hour. 

The primary antibody solution was made up in a 50 ml Falcon tube. 1 g of 

bovine serum albumin powder and 40 µl of sodium azide were added to 20 ml 

of TBS Tween. The solution was mixed thoroughly. The primary antibody was 

added at a concentration of 1/1000. The PDVF membrane was transferred to 

the antibody solution and incubated overnight at 4˚C on a mixer. 

The secondary antibody solution was made up in a 50 ml Falcon tube. 1 g of 

milk powder was added to 20 ml TBS Tween and mixed thoroughly. The 

secondary antibody was added at a concentration 1/1000. 

After washing with TBS Tween, the membrane was transferred to the 

secondary antibody solution and incubated at room temperature on a mixer (1 

hour). The membrane was washed and placed on cling-film. 2 ml of low 

sensitivity enhanced chemiluminescent substrate (Themo Scientific, UK) was 

added to the membrane drop-wise and incubated for 5-10 mins. 

The membrane was placed between acetate sheets in a transfer cassette. The 

cassette was taken into the dark room. An X-ray film (Kodak, USA) was 

removed and placed on top of the acetate sheet. The cassette was closed an 
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incubated for 1 min. The film was removed and placed in developer for ~30 

secs. A light viewer was used to assess the presence of bands. If bands were 

feint then the film was returned to the developer solution. The film was then 

rinsed in water and placed in fixing solution. The film was rinsed then allowed to 

air dry. 

2.11 Statistical Analysis 

Statistical analysis was performed using SPSS for Windows (version 21, SPSS 

Inc., Chicago, Illinois, USA). The selection and interpretation of specific tests 

was informed by discussion with Dr Simon Kometa, a statistician at Newcastle 

University. 

Continuous data was first explored using a descriptive analysis. This analysis 

generated mean average values and standard deviations for each subgroup. 

The analysis included a Shapiro-Wilk and Kolmogorov–Smirnov tests of 

normality. The Shapiro-Wilk test result was used due to the relatively small 

numbers of cases in each subgroup (<50 cases).  

A Shapiro-Wilk test result of p>0.05 indicated that the data had a normal 

distribution. Normally distributed data were analysed using parametric tests. For 

comparison of multiple subgroups analysis was performed using a one-way 

analysis of variance (ANOVA) test with the Bonferroni correction. Binary 

comparisons were performed using the independent sample T-test. Results 

were considered significant at p<0.05. 

A Shapiro-Wilk test result of p<0.05 indicated that the data significantly deviated 

from a normal distribution. These data were analysed using non-parametric 

tests. For comparison of multiple subgroups analysis was performed using the 

Kruskal–Wallis test with the Bonferroni correction. Binary comparisons were 

performed using the Mann-Whitney U-test. Results considered as significant at 

p<0.05. 

Kaplan-Meier time-to-event analysis was performed using Log Rank (Mantel-

Cox) calculations. For OPMD, adverse outcome or malignant transformation 

were designated as the defined event (=1). For early-stage OSCC, adverse 

outcome or death from disease was designated as the defined event (=1). 
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Cases were grouped according to a range of criteria (e.g. grade of epithelial 

dysplasia; T-category). 

Receiver-operator curves (ROC) were generated by plotting the cumulative 

frequency distribution of a given characteristic (e.g. high grade epithelial 

dysplasia) for detecting a positive result (e.g. malignant transformation). The 

curve plotted the true positive rate against the false positive rate (1-specificity). 

Cases were classified using a binary score (0, 1) according to the characteristic 

under analysis (e.g. low grade epithelial dysplasia = 0; high-grade epithelial 

dysplasia = 1). The ROC indicated the sensitivity of the characteristic in 

detecting the chosen positive result as a function of fall out. Fall out is equal to 1 

– specificity and indicates the probability of a case that is negative for the given 

characteristic having a score of 1. 

Ordinal data generated by the scoring system was analysed by cross tabulation. 

The Kappa test was used to analyse agreement between two independent 

scores (e.g. grade of epithelial dysplasia and EGFR ISH score). The Pearson’s 

Chi-squared test was used to analyse the significance of the distribution of 

cases according to row and column classifiers (Field, 2013). 

2.12 Photomicrography 

All photomicrographs were taken with an Axiocem HRc camera on an Axioplan 

2 microscope using AxioVision software v.4.3 (Carl Zeiss, Germany) and 

processed usng Adobe Photoshop v7.0 (Adobe Systems, Inc.). 

2.13 Ethical Approval 

The study had a favourable ethical opinion from the National Research Ethics 

Service (NRES) Committee North East, Sunderland (REC reference: 

11/NE/0118).  
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Chapter 3. EGFR Protein Expression and Gene Copy Number in 

Potentially Malignant Disorders and Early-Stage Squamous 

Cell Carcinoma of the Oral Cavity 

3.1 Introduction 

3.1.1 Oral squamous cell carcinoma 

Oral squamous cell carcinoma (OSCC) is a major global healthcare problem 

(Jemal et al., 2011). The incidence of OSCC is increasing in the developed 

world, particularly among young adults (Schantz and Yu, 2002; Garavello et al., 

2010). OSCC is associated with poor outcomes. Up to 50% of patients 

diagnosed with OSCC will die of the disease within five years (Barnes et al., 

2005; Warnakulasuriya, 2009). Outcomes for patients with OSCC may be 

improved if the disease is identified in its earliest stages (Goodson and 

Thomson, 2010). Patients diagnosed with OSCC are staged using the ‘Tumour, 

Node, Metastasis’ (TNM) classification that has been developed by the 

International Union Against Cancer, Switzerland (Sobin et al., 2009). This study 

focused on patients with pStage I and II (‘early-stage’) OSCC. An early-stage 

OSCC may measure up to 4 cm in maximum dimension; however, it has not 

metastasised either to regional lymph nodes or distant sites (Sobin et al., 2009). 

3.1.2 Oral potentially malignant disorders 

OSCC may be preceded by clinically-recognisable lesions, termed oral 

potentially malignant disorders (OPMD) (van der Waal, 2009). OPMD 

encompass a broad spectrum of entities, including proliferative verrucous 

leukoplakia, chronic hyperplastic candidosis, and oral submucous fibrosis 

(Barnes et al., 2005). This study focused on lesions that presented clinically as 

either white, red, or mixed white/red patches, and subsequently showed 

epithelial dysplasia on histological examination. There is continuing debate as 

to how the spectrum of changes that characterise epithelial dysplasia should be 

classified. Therefore, this study applied both the ‘Squamous Intra-epithelial 

Neoplasia’ (SIN) classification (Barnes et al., 2005) and the binary ‘high-grade’ 

versus ‘low-grade’ classification described by Kujan et al (2006 ). 
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3.1.3 Epidermal growth factor receptor: a prognostic lung cancer 

biomarker 

Epidermal growth factor receptor (EGFR) is a cell surface tyrosine kinase 

receptor that is expressed in most epithelial tissues (Citri and Yarden, 2006). 

EGFR protein expression and gene copy number are currently used in the 

prognostication of non-small cell lung carcinoma (Nicholson et al., 2001; Hirsch 

et al., 2003) and the prediction of its response to EGFR-targeted 

chemotherapeutic agents (Takano et al., 2005 ). 

3.1.4 EGFR is a candidate biomarker in oral carcinogenesis 

EGFR is considered a candidate biomarker in oral carcinogenesis. Over-

expression of EGFR protein has been reported in up to 90% of OSCC and is 

associated with poor clinical outcomes (Grandis and Tweardy, 1993a; Grandis, 

1998; Kumar et al., 2008). In OPMD, over-expression of EGFR protein is 

associated with an increased risk of malignant transformation (Ries et al., 

2013).  

EGFR genomic gain is associated with poor clinical outcomes in OSCC (Freier 

et al., 2003; Rössle et al., 2013; Ryott et al., 2009). There is evidence that 

OPMD with abnormal EGFR gene copy number are at an increased risk of 

malignant transformation compared to OPMD with normal EGFR gene copy 

number (Benchekroun et al., 2010; Poh et al., 2012). 

3.2 Aims 

The aims of this chapter are: 

1. To summarise the patient characteristics, clinical outcomes, and 

histopathological features of a group of OPMD and a group of early-

stage OSCC cases. These data also underpin the analysis of two novel 

biomarkers, SOX2 and PAX9, which is described in Chapter 4 

2. To describe the profiles of EGFR protein expression and EGFR gene 

copy number in the two groups 

3. To correlate the EGFR protein expression and gene copy number 

profiles with the patient characteristics and clinico-pathological features 

of each group.  
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3.3 Results 

3.3.1 OPMD group: patient characteristics, mucosal subsite, and 

histological grade of epithelial dysplasia 

A total of seventy-eight OPMD satisfied the study’s inclusion criteria and had 

sufficient remaining material for further assays (n = 78). The cases were 

identified using two distinct strategies: 1) attendance at an oral epithelial 

dysplasia clinic; 2) a search of the electronic database at the Department of 

Cellular Pathology. The majority (72%) of cases were identified using the first 

strategy. Both strategies are detailed further in Chapter 2 (section 2.1). 

Overall, the group of OPMD had a male predominance (62.8% males; 

male:female ratio = 1.7:1). The mean age was 58.6 years (range: 30 - 94). The 

majority of patients either smoked tobacco during the study period (i.e. from 

1997 to 2009) or were former tobacco smokers. Similarly, the majority of 

patients either consumed alcohol during the study period or had a history of 

alcohol consumption (Table 3-1). The majority of OPMD presented on the floor 

of mouth or ventro-lateral surface of the tongue. Smaller proportions involved 

subsites such as the buccal mucosa or palate (Table 3-1). 

The epithelial dysplasia present in each OPMD was assigned to a single 

histological grade according to the worst area. Using the SIN classification, 

there was moderate agreement between the two independent scoring 

pathologists (Kappa value - 0.678; 95% confidence interval 0.544 - 0.812). SIN 

1 was the single commonest histological grade. The remaining cases were 

evenly distributed between SIN 2 and SIN 3 (Table 3-1). 

There was also moderate agreement between the two scoring pathologists 

when epithelial dysplasia was graded according to the binary classification 

(Kappa value - 0.697; 95% confidence interval 0.541 - 0.853). By contrast to the 

SIN classification, however, high-grade epithelial dysplasia was the commonest 

histological grade (Table 3-1).  
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Table 3-1 Characteristics of the group of cases with oral potentially 
malignant disorders (n = 78) 

 

Characteristic Number (%) 

Alcohol consumption: 

During study period 

Prior to but not during study period 

None 

Not known 

 

56 (71.8) 

3 (3.8) 

7 (9.0) 

12 (15.4) 

Tobacco consumption: 

During study period 

Prior to but not during study period 

None 

Not known 

 

45 (57.8) 

13 (16.6) 

13 (16.6) 

7 (9.0) 

Mucosal subsite: 

Tongue 

Floor of mouth 

Buccal mucosa 

Masticatory mucosa 

 

36 (46.1) 

29 (37.2) 

5 (6.4) 

8 (10.3) 

Histological grade of dysplasia: 

SIN classification: 

SIN 1 

SIN 2 

SIN 3 

Binary classification: 

High-grade epithelial dysplasia 

Low-grade epithelial dysplasia 

 

 

31 (39.7) 

23 (29.5) 

24 (30.8) 

 

44 (56.4) 

34 (43.6) 

Clinical outcome (end of study period): 

No adverse outcome 

Adverse outcome: 

Local recurrence 

New lesion 

Malignant transformation to OSCC 

 

30 (38.5) 

48 (61.5) 

15 (19.2) 

11 (14.1) 

22 (28.2) 
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3.3.2 Clinical management of and outcomes for patients with OPMD 

Each of the 56 cases identified using strategy 1) were managed by laser 

excision. The majority (54%) of these cases had no adverse outcome. The 

remainder had adverse outcomes, proceeding to develop either a local 

recurrence (26%) or a new dysplastic lesion (20%). Consistent with its design 

and purpose, each of the 22 cases identified by strategy 2) underwent 

malignant transformation. The majority (73%) of these cases had been 

managed by surveillance. 

When OPMD identified using both strategies were combined, the overall 

majority of cases had an adverse outcome (either local recurrence, new lesion 

formation, or malignant transformation). Malignant transformation was the single 

most common adverse outcome (Table 3-1). Kaplan-Meier time-to-event 

analysis did not detect a significant correlation between clinical outcome and 

either patient demographics (age, sex) or risk factors (tobacco/alcohol 

consumption). Similarly, there was no correlation between clinical outcome and 

the mucosal subsite of the OPMD [data not shown]. 

3.3.3 Grade of epithelial dysplasia and clinical outcome of OPMD 

Kaplan-Meier time-to-event analysis did not identify a significant correlation 

between the risk of malignant transformation and grade of epithelial dysplasia 

when stratified according to the SIN classification (Figure 3-1A). By contrast, 

there was a significant correlation when epithelial dysplasia was graded using 

the binary classification. OPMD with high-grade epithelial dysplasia were 

significantly more likely to undergo malignant transformation than cases with 

low-grade epithelial dysplasia (Figure 3-1B). Used in isolation, however, high-

grade epithelial dysplasia showed low sensitivity (72.7%; positive predictive 

value – 36.4%) and low specificity (50%; negative predictive value - 82.4%) for 

detecting the subset of OPMD that were destined to undergo malignant 

transformation. Table 3-4 summarises the sensitivity/specificity values of high-

grade epithelial dysplasia for detecting cases that underwent malignant 

transformation, alongside the corresponding values for EGFR protein 

expression and EGFR gene copy number.  
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Figure 3-1 Kaplan Meier time-to-event analysis showing malignant 
transformation in OPMD stratified according to grade of epithelial dysplasia 

Colour index: Blue line – SIN 1/low-grade epithelial dysplasia; green line – high grade epithelial 
dysplasia (SIN 2 – pale green; SIN 3 – dark green). 

A) There was no correlation between the risk of malignant transformation and epithelial 
dysplasia when cases were graded using the SIN classification (p>0.05, ᵡ2 value - 3.79, 2 d.f.). 
B) By contrast, there was a significant correlation between the risk of malignant transformation 
and epithelial dysplasia when cases were graded according to the binary classification (p<0.05, 
ᵡ2 value - 4.97, 1 d.f.).  
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3.3.4 Clinico-pathological features of OSCC arising from OPMD 

Twenty-two of the 78 OPMD in the study underwent malignant transformation to 

OSCC (Table 3-1). The mean transformation time (i.e. the interval from the 

index OPMD biopsy to the first OSCC diagnosis) was 27.2 months (s.d. - 5.4 

months). The OSCC was managed by surgical excision in 20 cases and by 

chemoradiotherapy in two cases. 

Three of the subsequent OSCC were among the group of early-stage OSCC 

described in the following section (see 3.3.5). The majority of the remaining 

cases were also classified as early-stage OSCC. However, there were three 

cases which involved the alveolar mucosa and showed evidence of bone 

invasion. These cases were therefore classified as category T4, pStage IV. The 

clinico-pathological features of the cases are summarised in Table 3-2. The 

cases had a mean disease-free survival of 43.7 months (s.d. – 8.1 months) and 

mean overall survival of 50.2 months (s.d. - 8.8 months).  
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Table 3-2 Clinico-pathological features of OSCC arising from OPMD (n = 22) 

 

Characteristic Number (%) 

Mucosal subsite: 

Tongue 

Floor of mouth 

Buccal mucosa 

Masticatory mucosa 

 

11 (50) 

7 (32) 

1 (4.5) 

3 (13.5) 

Histological grade of differentiation: 

Well differentiated 

Moderately differentiated  

Poorly differentiated 

 

6 (27) 

13 (59) 

3 (14) 

pStage: 

pStage I 

pStage II 

pStage IV 

pStage unavailable 

 

14 (64) 

3 (13.5) 

3 (13.5) 

2 (9) 

Overall survival: 

Alive: 

Free from disease 

Deceased: 

Free from disease 

With disease 

Lost to follow-up 

 

 

9 (41) 

 

8 (36.5) 

3 (13.5) 

2 (9) 
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3.3.5 Early-stage OSCC group: patient characteristics, mucosal subsite, 

pStage, and histological differentiation 

A total of ninety-two early-stage OSCC satisfied the study’s inclusion criteria 

and had sufficient remaining material for further assays (n = 92). The group had 

a male predominance (58.7% males; male:female ratio = 1.4:1). The mean age 

was 61.8 years (range: 33 - 93). The majority of cases presented on the ventro-

lateral tongue and floor of mouth. Smaller proportions involved subsites such as 

the buccal mucosa, gingiva/alveolar ridge, or palate (Table 3-3). Moderately 

differentiated OSCC was the single commonest group when cases were 

grouped according to tumour morphology. The majority of cases were at pStage 

I (i.e. the tumour had a maximum dimension of <2 cm). 

3.3.6 Clinical outcomes of patients diagnosed with early-stage OSCC 

The overall survival and disease status of patients with early-stage OSCC are 

summarised in Table 3-3. The mean overall survival time was 55.9 months (s.d. 

- 24.4 months). The mean disease-free survival time was 46.8 months (s.d. - 

25.2 months). 

Sixty-seven patients were alive at the end of the study period: 

 Sixty-six of these patients were alive and free from disease. However, 

several patients in this group had been treated for adverse outcomes during 

the study period. These included: 

o Local recurrence (seven cases) 

o Second primary tumour formation (two cases) 

o Regional cervical lymph node metastasis (one case) 

 One patient was alive with disease. This patient had developed a local 

recurrence. The index tumour was a well differentiated squamous cell 

carcinoma arising on the buccal mucosa, pStage I.  
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The remaining 25 cases died during the study period. 

 Fifteen of these patients died free from disease. However, three of these 

patients had been successfully treated for adverse outcomes prior to death. 

These included: 

o Local recurrence (two cases) 

o Regional cervical lymph node metastasis (one case) 

 Ten patients died from disease: 

o One patient succumbed to the index tumour, a moderately 

differentiated squamous cell carcinoma arising on the ventro-lateral 

tongue, pStage II 

o Each of the nine remaining cases experienced adverse outcomes 

subsequent to apparently successful management of the index 

tumour. These included:  

 Local recurrence (two cases) 

 Regional cervical lymph node metastasis (four cases) 

 Loco-regional recurrence (one case) 

 Second primary tumour formation (one case) 

 Distant metastasis (pulmonary metastasis, one case). 

 

The clinical outcomes of early-stage OSCC did not correlate with patient 

characteristics (age, sex); mucosal subsite; or pStage [data not shown]. Kaplan-

Meier time-to-event analysis did not detect a correlation between clinical 

outcome and histological differentiation (Figure 3-2).  
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Table 3-3 Characteristics of the group of cases with early-stage oral 
squamous cell carcinoma (n = 92) 

 

Characteristic Number (%) 

Mucosal subsite: 

Tongue 

Floor of mouth 

Buccal mucosa 

Masticatory mucosa 

 

49 (53.3) 

20 (21.7) 

9 (9.8) 

14 (15.2) 

Histological grade of differentiation: 

Well differentiated 

Moderately differentiated  

Poorly differentiated 

 

20 (21.6) 

63 (68.5) 

9 (9.9) 

pStage: 

pStage I 

pStage II 

 

75 (81.5) 

17 (18.5) 

Overall survival: 

Alive: 

Free from disease 

With disease 

Deceased: 

Free from disease 

With disease 

 

67 (72.8) 

66 (71.7) 

1 (1.1) 

25 (27.2) 

15 (16.3) 

10 (10.9) 
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Figure 3-2 Kaplan-Meier time-to-event analysis comparing overall and disease 
free survival in the group of early-stage OSCC stratified according to 
histopathological differentiation 

Colour index: Blue line – well differentiated; pale green line – moderately differentiated; dark 
green line – poorly differentiated. 

Kaplan-Meier time-to-event analysis showed that histological grade of differentiation in early-
stage OSCC did not correlate with clinical outcome measured in terms of either A) disease-free 
survival (p>0.05, ᵡ2 value - 1.3, 2 d.f.) or B) overall survival (p>0.05, ᵡ2 value – 2.2, 2 d.f.).  
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3.3.7 Normal epithelium: EGFR protein expression and gene copy 

number in normal tissue used as an internal control 

Normal epithelium was annotated for image analysis in a subset of 60 cases (30 

OPMD and 30 OSCC). The mean number of cells analysed per case was 3341 

(range: 661 - 10594). The mean percentage of positive cells (PPC) was 85.3% 

(range: 58.1% - 98.9%). The mean percentage of strongly-positive cells (3+PC) 

was 20.4% (range: 0.8% - 56.1%). Nuclei in the normal epithelium consistently 

showed disomy, the gene copy number signal that is expected for normal, 

healthy epithelium (Figure 3-4C). 

3.3.8 OPMD: EGFR protein expression 

Dysplastic epithelium was annotated for image analysis in each of the 78 

OMPD. The mean number of cells analysed per case was 2455 (range: 1175 - 

9638). The mean PPC was 85.4% (range: 54.8% - 99.7%). The mean 3+PC 

was 33.8% (range: 0% - 68.7%). 

Comparison of image analysis data showed that EGFR protein was over-

expressed in dysplastic epithelium relative to normal epithelium (Figure 3-3 and 

Figure 3-4). The majority (66.6%) of dysplastic areas had PPC values that were 

higher than the mean PPC value of the normal epithelium. However, a pairwise 

comparison showed that the mean PPC values of dysplastic and normal 

epithelium did not differ significantly (p>0.05, Independent T-test). The majority 

(78.2%) of dysplastic areas also had 3+PC values that were higher than the 

mean 3+PC value of normal epithelium. A pairwise comparison showed that 

dysplastic epithelium had a significantly higher mean 3+PC value than normal 

epithelium (p<0.01, Independent T-test, Figure 3-3). 

There was a positive correlation between grade of epithelial dysplasia and 

EGFR protein expression (Figure 3-4). High-grade epithelial dysplasia had a 

significantly higher mean 3+PC value relative to low-grade epithelial dysplasia. 

Similarly, cases with SIN 2 and SIN 3 had a significantly higher mean 3+PC 

value than cases with SIN 1 (One-way ANOVA; Bonferroni correction, Figure 

3-3). 
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Mean 3+PC values did not differ significantly when OPMD were grouped 

according to the four individual clinical outcomes [data not shown]. OPMD with 

adverse outcomes (i.e. local recurrence, new lesion formation, or malignant 

transformation) had a significantly higher mean 3+PC value than cases with no 

adverse outcome (Figure 3-3). However, the difference between the mean 

3+PC values of OPMD that underwent malignant transformation and those 

which did not (i.e. OPMD with no adverse outcome, local recurrence, or new 

lesion formation) was not statistically significant (Figure 3-3). This was 

confirmed by Kaplan-Meier time-to-event analysis (Figure 3-5B). High EGFR 

protein expression (defined as a 3+PC value greater than the mean 3+PC value 

of the normal epithelium) had low sensitivity and specificity for detecting cases 

that were destined to undergo malignant transformation (Figure 3-6 and Table 

3-4). No significant differences in PPC/3+PC values were detected when cases 

were analysed according to patient demographics (age, sex), risk factors 

(alcohol/tobacco habits), or OPMD mucosal subsite [data not shown].
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Figure 3-3 Bar chart comparing the mean EGFR 3+PC values of normal epithelium and OPMD stratified according to grade of epithelial 
dysplasia and clinical outcome 

The mean 3+PC of dysplastic epithelium was significantly higher than the mean for normal epithelium (p<0.01). The mean 3+PC of high-grade epithelial dysplasia 
was significantly higher than the mean for low-grade epithelial dysplasia (p<0.0001). Cases with SIN 2 and SIN 3 had a significantly higher mean 3+PC than cases 
with SIN 1 (p<0.05 and p<0.01 respectively). OPMD with adverse outcomes had a significantly higher mean 3+PC than cases with no adverse outcome (p<0.01). 
However, there was no significant difference between the mean 3+PC values of OPMD that underwent malignant transformation and those which did not (n.s. – not 
significant). 
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3.3.9 OPMD: EGFR gene copy number 

Each OPMD was assigned to either a ‘normal’ or ‘abnormal’ category according 

to its predominant EGFR gene copy number signal. This approach to the 

interpretation of EGFR gene copy number in OPMD has been applied in a 

previous study (Benchekroun et al., 2010). It is further detailed in Chapter 2, 

Figure 2.2. An abnormal EGFR gene copy number signal was detected in a 

total of 16 OPMD (20.5% of cases). 

Fifteen of these cases showed either trisomy or low polysomy (Figure 3-4I): 

 Eight subsequently underwent malignant transformation. Each showed high-

grade epithelial dysplasia (six cases graded as SIN 2; two cases as SIN 3) 

 Seven cases did not progress to OSCC: 

o Two cases had no adverse outcome 

o However, five of these cases had other adverse outcomes: 

 Local recurrence (four cases) 

 New lesion formation (one case). 

One case showed clusters, a signal that is considered evidence of genomic 

gain according to the manufacturer’s scoring system (Figure 3-4L). The patient, 

a 58 year-old male, had a history of both alcohol and tobacco consumption. The 

OPMD biopsy showed high-grade dysplasia (also graded as SIN 3). Malignant 

transformation was diagnosed after a 17-month interval. 

Kaplan-Meier time-to-event analysis detected a significant correlation between 

abnormal EGFR gene copy number and the risk of malignant transformation 

(Figure 3-5). Receiver-operator curve analysis was used to compare the 

reliability of abnormal EGFR gene copy number in detecting cases destined to 

undergo malignant transformation relative to high-grade epithelial dysplasia and 

high EGFR protein expression (Figure 3-6). This analysis showed that abnormal 

EGFR gene copy number was the most reliable marker of malignant 

transformation. Reliability was further enhanced when abnormal EGFR gene 

copy number and high-grade epithelial dysplasia were combined to form a 

single marker (i.e. positive cases had both high-grade epithelial dysplasia and 

an abnormal EGFR gene copy number (Figure 3-5C and Figure 3-6). Overall, 

60% of cases with both high-grade epithelial dysplasia and an abnormal EGFR 



86 

 

gene copy number signal underwent malignant transformation (Figure 3-7). The 

superior detection of this combined marker was confirmed by comparison of 

sensitivity/specificity and positive/negative predictive values of all four markers 

(i.e. high-grade epithelial dysplasia, high EGFR protein expression, abnormal 

EGFR gene copy number, and high-grade epithelial dysplasia/abnormal EGFR 

gene copy number combined). These values are summarised in Table 3-4.  



87 

 

 

Figure 3-4 Comparison of EGFR protein expression and EGFR gene copy 
number in normal mucosa and OPMD 

A) Normal mucosa at the edge of an OPMD biopsy. B) In normal epithelium, EGFR protein 
expression is strongest in the basal/parabasal layers. C) Nuclei of normal keratinocytes show 
disomy. D) Low-grade epithelial dysplasia. E) There is increased EGFR protein expression 
relative to the normal epithelium. F) However, nuclei continue to show disomy. G) and J) High-
grade epithelial dysplasia. H) and K) EGFR protein expression is increased relative to both 
normal epithelium and low-grade epithelial dysplasia. I) The first example of high-grade 
epithelial dysplasia shows low polysomy (3-4 nuclear signals in <40% of cells). L) The second 
example shows clustered EGFR gene copy number signals, consistent with genomic gain. 

H&E & EGFR IHC x100 magnification; EGFR ISH x400 original magnification. 
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Figure 3-5 Kaplan-Meier time-to-event analysis showing malignant 
transformation in OPMD stratified according epithelial dysplasia, EGFR protein 
expression, and EGFR gene copy number 

Colour index: Blue line - low grade epithelial dysplasia, low EGFR protein expression, normal 
EGFR gene copy number; negative combined score. Green line - high-grade epithelial 
dysplasia; high EGFR protein expression; abnormal EGFR gene copy number; positive 
combined score. 
 
A) There was a significant correlation between malignant transformation and high-grade 
epithelial dysplasia (p<0.05, ᵡ2 value - 4.97, 1 d.f.). B) There was a significant correlation 
between malignant transformation and abnormal EGFR gene copy number (p<0.0001; ᵡ2 value - 
13.9, 1d.f.). C) A significant correlation was also identified when abnormal EGFR gene copy 
number and high-grade epithelial dysplasia were combined (p<0.0001; ᵡ2 value - 16.1, 1d.f.). D) 
By contrast, there was no correlation between malignant transformation and high EGFR protein 
expression (p>0.05).   
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Figure 3-6 Receiver-operator curve analysis comparing the detection of 
OPMD destined to undergo malignant transformation by epithelial dysplasia, 
EGFR protein expression, and EGFR gene copy number 

Colour index: Blue – high grade epithelial dysplasia; green – high EGFR protein expression; 
cream – abnormal EGFR gene copy number; purple – combined high grade epithelial dysplasia 
and abnormal EGFR gene copy number; yellow – reference line. 

The combined marker (high-grade epithelial dysplasia and abnormal EGFR gene copy number) 
has the greatest area beneath the curve. This suggests it is the most reliable detector of OPMD 
destined to undergo malignant transformation. Both abnormal EGFR gene copy number and the 
combined category show an asymptotic significance of p<0.05. By contrast, high-grade 
epithelial dysplasia and high EGFR protein expression are not significant at p<0.05, suggesting 
they do not reliably detect OPMD that undergo malignant transformation.  
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Figure 3-7 Diagnostic algorithm showing distribution of OPMD that underwent 
malignant transformation according to grade of epithelial dysplasia and EGFR 
gene copy number signal 

The majority (60%) of OPMD that transformed to OSCC showed both high-grade epithelial 
dysplasia and an abnormal EGFR signal. This was more than double the proportion of cases 
with high-grade epithelial dysplasia and a normal EGFR signal, and more than triple the 
proportion of cases that were negative for both markers (i.e. cases with low-grade epithelial 
dysplasia and a normal EGFR signal).  
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Table 3-4 Detection of OPMD that underwent malignant transformation using 
high-grade epithelial dysplasia, high EGFR protein expression, and abnormal 
EGFR gene copy number 

 

 High-grade 
epithelial 
dysplasia 

High EGFR 
protein 

expression 

Abnormal 
EGFR gene 

copy number 

Combined 
dysplasia/gene 
copy number 

Sensitivity 72.7 72.7 40.9 40.9 

Specificity 50 14.0 87.5 89.1 

Positive 
predictive 
value 

36.4 30.2 56.3 60.0 

Negative 
predictive 
value 

82.4 50.0 79.0 79.0 

 

3.3.10 OSCC arising from OPMD cases: EGFR protein expression 

Malignant transformation occurred in 22 OPMD (section 3.3.4). Biopsy material 

was available for analysis in 21 of these cases. The mean number of cells 

analysed per case was 10,240 (range: 2442 – 30,730). The mean PPC was 

88.5% (range: 66.8 – 99.7%). The mean 3+PC was 37.9% (range: 13.9 – 

68.7%). 

The mean 3+PC for the group of transformed OSCC was significantly higher 

than the mean 3+PC for the normal epithelium (p<0.0001, Independent T-test; 

Figure 3-8). It was also significantly higher than the mean 3+PC for OPMD. The 

difference was significant when comparing both the entire group of OPMD and 

the subset that underwent malignant transformation (p<0.0001, Independent T-

test). However, the mean PPC value for transformed OSCC did not differ 

significantly from the mean PPC of normal epithelium (p>0.05, Independent T-

test). 

The mean PPC and 3+PC values for transformed OSCC were lower than the 

corresponding values for early-stage OSCC (Figure 3-8). However, neither of 

these trends was statistically significant (p>0.05, Independent T-test (PPN) and 

Mann-Whitney U-test (3+PN)).  
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Figure 3-8 Bar chart comparing EGFR protein expression of normal mucosa 
with early-stage OSCC and the group of OSCC that transformed from OPMD 

EGFR protein was over-expressed in both early-stage OSCC and the group of transformed 
OSCC relative to normal mucosa. For early-stage OSCC, both the mean PPC and 3+PC values 
were significantly higher than the corresponding values of the normal mucosa (p<0.0001, 
Independent T-tests). The mean 3+PC of the transformed OSCC group was also significantly 
higher (p<0.0001, Mann-Whitney U-test). Differences between the mean PPC and 3+PC values 
of early-stage and transformed OSCC were not statistically significant.  
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3.3.11 OSCC arising from OPMD cases: EGFR gene copy number 

The majority of the OSCC cases in this subset showed an aberrant EGFR gene 

copy number, either an abnormal signal (seven cases) or EGFR genomic gain 

(five cases). Just less than half of the cases showed a normal EGFR signal 

(nine cases). 

The differences between the EGFR gene copy number category of the index 

OPMD and the subsequent OSCC are summarised in Table 3-5. In one-third of 

cases (seven cases, 33%) the transition from the index OPMD to OSCC was 

associated with a move to a higher EGFR gene copy number category: 

 In five cases, the index OPMD showed a normal EGFR signal which 

progressed in the subsequent OSCC to either an abnormal EGFR signal 

(three cases) or EGFR genomic gain (two cases) 

 In two cases, the index OPMD showed an abnormal EGFR signal which 

progressed in the subsequent OSCC to EGFR genomic gain. 

 

However, in the majority of cases (12 cases, 57.1%) the index OPMD and 

subsequent OSCC showed the same EGFR gene copy number signal: 

 In the single case of OPMD that showed clusters (i.e. EGFR genomic 

gain) clusters were also detected in the subsequent OSCC 

 An abnormal EGFR gene copy number signal was detected in both 

OPMD and OSCC in four cases 

 A normal EGFR signal was detected in seven cases. 

 

In two cases, the index OPMD showed an abnormal EGFR gene copy number 

but the subsequent OSCC showed a normal signal.  
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Table 3-5 Summary of the EGFR gene copy number categories assigned to 
the OPMD that underwent malignant transformation and the subsequent OSCC 

 

EGFR gene copy number signal  

Number (%) 
OPMD OSCC  

Normal Normal 7 (33) 

Normal Abnormal 3 (14) 

Normal Genomic gain 2 (10) 

Abnormal Normal 2 (10) 

Abnormal Abnormal 4 (19) 

Abnormal Genomic gain 2 (10) 

Genomic gain Genomic gain 1 (5) 

Total 21 (100) 
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3.3.12 Early-stage OSCC: EGFR protein expression 

Areas of OSCC were annotated for image analysis in each of the 92 cases. The 

mean number of cells analysed per case was 10219 (range: 578 - 38509). The 

mean PPC was 99.4% (range: 82.7% - 100%). The mean 3+PC was 39.4% 

(range: 0.1% - 79.2%). 

Comparison of image analysis data showed that EGFR protein was over-

expressed in early-stage OSCC relative to the normal epithelium (Figure 3-8, 

Figure 3-9). OSCC had higher PPC and 3+PC values than the corresponding 

mean values for normal epithelium in 98.9% and 73.9% of cases, respectively. 

Pairwise comparisons showed that these differences were both statistically 

significant (p<0.0001, Independent T-test; Figure 3-8). Small differences 

between the PPC and 3+PC values of OSCC stratified according to 

differentiation were not significant (p>0.05, One-way ANOVA with Bonferroni 

correction, Figure 3-9E, H, and K). There was no correlation between the mean 

PPC/3+PC values when analysed according to patient demographics (age, 

sex), OSCC mucosal subsite, or pStage. There was no correlation between 

PPC/3+PC values and either overall or disease-free survival [data not shown]. 

3.3.13 Early-stage OSCC: EGFR gene copy number 

Of the 92 cases in the study, one case was excluded from EGFR gene copy 

number analysis due to technical difficulties that hampered interpretation. 

Satisfactory staining in the remaining 91 cases enabled the scoring pathologists 

to reach a consensus. 

EGFR genomic gain was identified in 23 (24.7%) early-stage OSCC. EGFR 

genomic gain was visualised as either high polysomy (11 cases) or clusters (12 

cases) (Figure 3-9). All of the cases that showed EGFR genomic gain were at 

pStage I. EGFR genomic gain was associated with a reduction in mean overall 

survival time (50.2 months compared to 57.7 months for cases with normal 

gene copy number) and mean disease-free survival (45.6 months compared to 

47.7 months for cases with normal gene copy number). However, Kaplan-Meier 

time-to-event analysis showed that neither of these trends was statistically 

significant (both p>0.05). 
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3.3.14 Correlation between EGFR expression and EGFR gene copy 

number 

There was a positive correlation between EGFR gene copy number and EGFR 

protein expression. EGFR protein expression was significantly higher in OPMD 

with abnormal EGFR gene copy number than in cases with normal EGFR gene 

copy number (p<0.0001, mean values of 49.9% (s.d. - 12.1) and 29.3% (s.d. - 

15.7) respectively). EGFR protein expression was significantly higher in OSCC 

with EGFR genomic gain relative to cases with no genomic gain (p<0.01, mean 

values of 51.2% (s.d. - 21.9) and 35.9% (s.d. - 22.5) respectively).  
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Figure 3-9 EGFR protein expression and gene copy number in normal mucosa 
and early-stage oral squamous cell carcinoma stratified according to 
histopathological differentiation 

A) Normal mucosa. B) EGFR protein expression is strongest in the basal/parabasal layers. C) 
Nuclei of normal keratinocytes show disomy. D) Well differentiated OSCC. E) There is 
increased EGFR protein expression relative to the normal epithelium. F) Nuclei show low 
polysomy. G) Moderately differentiated OSCC. J) Poorly differentiated OSCC. H) and K) EGFR 
protein expression is increased relative to the normal epithelium in the corresponding EGFR 
stains, but intensity is similar to that of the well differentiated OSCC shown in B). I) EGFR in situ 
hybridisation shows high polysomy (3-4 nuclear signals in >40% of cells). L) Clustered gene 
copy number signals are seen in the example of poorly differentiated OSCC. 

H&E & EGFR IHC taken at x100 magnification; EGFR ISH at x400 original magnification.  
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3.4 Discussion 

Oral squamous cell carcinoma (OSCC) is a global healthcare problem (Jemal et 

al., 2011). In the UK, the incidence of OSCC rose by a third during the decade 

to 2010. There are now ~6500 new cases annually (Cancer Research UK, 

2010). In much of the developed world, the increase in incidence has been 

greatest among young adults (Schantz and Yu, 2002; Garavello et al., 2010). 

3.4.1 Patient characteristics and risk factors 

In the present study, most patients with OPMD/early-stage OSCC were in their 

6th to 7th decades. This demographic profile is consistent with the prevalence of 

traditional risk factors that were identified in the OPMD group. Alcohol and 

tobacco consumption are well recognised for their carcinogenic potential and 

synergistic interactions (Danaei et al., 2005; Hashibe et al., 2009). 

Over the past decade, it has emerged that human papillomavirus (HPV) 

infection is significant in the aetiology of a subset of oropharyngeal squamous 

cell carcinomas (Schache et al., 2011; Robinson et al., 2012). There is 

emerging evidence that HPV positivity may have prognostic significance in 

squamous cell carcinoma presenting at non-oropharyngeal sites, including the 

oral cavity (Chung et al., 2014). However, the proportion of HPV-positive OSCC 

is low (~3%). This suggests that HR-HPV infection is not a major aetiological 

agent in oral carcinogenesis (Salazar et al., 2014). Interestingly, however, HPV 

infection has been implicated in the formation of a subset of OPMD (Angiero et 

al., 2010) and specific histopathological features have been described for this 

subset of cases (Lerman and Woo, 2014). However, to date convincing 

evidence for the contribution of HPV infection to OPMD and OSCC formation 

has yet to emerge (Lopes et al., 2011; Lingen et al., 2013; McCord et al., 2014; 

Nankivell et al., 2014). Given the contrasting role of HPV in the formation of 

OSCC and oropharyngeal squamous cell carcinoma, the exclusion of 

oropharyngeal lesions is an important strength of the present study. It seems 

plausible that other risk factors associated with the increased incidence of 

OSCC in young adults are yet to be identified. It is conceivable that future 

studies may show a reduction in the prevalence of alcohol and tobacco 

consumption relative to the present study. 
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3.4.2 Classification and grading of epithelial dysplasia 

The current edition of the World Health Organisation (WHO) Classification of 

Head and Neck Tumours details three systems for classifying epithelial 

dysplasia (Barnes et al., 2005). Of these, the 2005 WHO Classification is most 

widely used by both diagnostic pathologists and clinicians in the UK. The WHO 

Classification is used in the Department of Cellular Pathology and was applied 

to the original diagnosis of OPMD in the present study. However, there were too 

few cases of carcinoma in-situ (CIS) to support valid statistical comparisons. 

The present study therefore applied the ‘Squamous Intraepithelial Neoplasia’ 

(SIN) classification, which combines CIS and severe epithelial dysplasia in a 

single category, SIN 3. 

It is well recognised that the grading of oral epithelial dysplasia is prone to inter-

observer variation (Kujan et al., 2007). Furthermore, it is documented that the 

grade of epithelial dysplasia does not accurately predict clinical outcomes, 

particularly the risk of malignant transformation (Dost et al., 2014). A binary 

system for grading epithelial dysplasia has been developed in an attempt both 

to reduce inter-observer variation and enhance the predictive value of the 

assigned dysplasia grade (Kujan et al., 2006). The present study confirms the 

superior prognostic value of the binary system compared to the SIN 

classification. However, the correlation identified between high-grade epithelial 

dysplasia and malignant transformation in the present study was fairly weak. 

Used in isolation, high-grade epithelial dysplasia had low sensitivity and 

specificity for detecting cases of OPMD destined to undergo malignant 

transformation. This supports the view that there may be fundamental 

limitations to the predictive value of a morphological diagnosis, irrespective of 

the accuracy and reliability of the classification system upon which it is based 

(Kujan et al., 2007; Dost et al., 2014). This in turn highlights the need for 

biomarkers that reliably detect the subset of OPMD that are at greatest risk of 

malignant transformation (Mishra, 2012).  
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3.4.3 Rate of malignant transformation in OPMD 

There is wide variation in the documented rates of malignant transformation in 

OPMD (Liu et al., 2011; Warnakulasuriya et al., 2011; Dost et al., 2014). 

Overall, nearly one-third of OPMD in the present study underwent malignant 

transformation. This rate is considerably higher than the 2.6% reported by 

Warnakulasuriya et al (2011) in a UK-based study of more than 1300 OPMD 

patients. It is also higher than the 7% rate of malignant transformation recently 

reported by Diajil et al (2013), from whose study many of our OPMD cases were 

drawn. This high rate is an artefact of using two different strategies to identify 

OPMD cases. Strategy 2), the retrospective search of the Department of 

Cellular Pathology database, identified OSCC with previous OPMD biopsies. 

Including cases identified by this strategy therefore increased the proportion of 

OPMD that underwent malignant transformation. It is likely that the rate of 7% 

reported by Diajil et al (2013) in a cohort of consecutive cases is a more 

accurate indication of the rate of malignant transformation in OPMD. 

The heterogeneous approach to identifying cases leads to a further limitation of 

the present study: variable management of OPMD patients, with some 

undergoing laser excision, and others being managed by surveillance. The 

majority of the OPMD that underwent malignant transformation were managed 

by surveillance. By contrast, the majority of OPMD managed by laser excision 

had no adverse outcome. The present study was not designed to evaluate the 

clinical efficacy of laser excision in reducing the risk of malignant 

transformation. However, it is conceivable that some cases managed by 

surveillance may not have proceeded to OSCC had they been managed by 

laser excision. 

3.4.4 EGFR protein expression and gene copy number as cancer 

biomarkers 

EGFR protein expression and gene copy number are used in both the 

prognostication of non-small cell lung carcinoma (Nicholson et al., 2001; Hirsch 

et al., 2003) and prediction of its response to EGFR-targeted chemotherapeutic 

agents (Takano et al., 2005 ). Since EGFR protein over-expression in OSCC 

was first documented (Grandis and Tweardy, 1993a) it has been hoped that 



101 

 

EGFR would prove a similarly effective biomarker and chemotherapeutic target 

for patients with OPMD/OSCC. However, the literature to date has consistently 

drawn attention to the complexity of the EGFR pathway and consequent 

limitations of its clinical utility as a biomarker in OSCC/OPMD (Forastiere, 2007; 

Gusterson and Hunter, 2009; Rosin and Califano, 2010). Recently, EGFR gene 

copy number has emerged as a potential biomarker that may complement 

EGFR protein expression (Erjala et al., 2006; Forastiere, 2007); however, the 

prevalence and clinical significance of EGFR gene copy number increases in 

OSCC are not well defined (Chung et al., 2006; Agulnik et al., 2007; Temam et 

al., 2007; Pectasides et al., 2011). Moreover, it remains unclear whether it is 

appropriate to apply criteria validated for the interpretation of EGFR gene copy 

number signals in non-small cell lung carcinomas to other cancers. 

3.4.5 EGFR protein is up-regulated in OPMD and early-stage OSCC 

Our data confirm that EGFR protein expression is increased in the majority of 

OPMD and OSCC (Grandis and Tweardy, 1993a; Ries et al., 2013). The 

ubiquity of EGFR over-expression highlights the critical role played by the 

EGFR pathway in oral carcinogenesis, but limits its clinical utility as a biomarker 

for stratifying patient management. A smaller proportion of OPMD showed 

EGFR over-expression compared to OSCC. The biological significance of this is 

uncertain, but it supports the contention that the effects of EGFR are likely to be 

more significant in the later stages of oral carcinogenesis (Ryott et al., 2009). 

Alternatively, increased EGFR expression may represent a bystander change, 

reflecting, but not driving, tumour progression, which would account for the lack 

of correlation with disease-specific clinical outcomes (Forastiere, 2007; 

Gusterson and Hunter, 2009; Rosin and Califano, 2010). 

The high prevalence of EGFR over-expression in the current study is in contrast 

to data recently reported by Rössle et al (2013). The latter study reported EGFR 

over-expression in just 19.3% of early stage OSCC involving the tongue. 

However, although the study was similar in its focus on pStage I and II OSCC, it 

was limited by subjective semi-quantitative assessment of tissue cores. It is also 

possible that different thresholds were used to define EGFR over-expression to 

those used in the current study. Furthermore, it is our experience that EGFR 
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expression shows tumour heterogeneity and tissue microarray sampling may 

not correlate with measurements taken from whole sections. 

3.4.6 EGFR protein expression correlates with grade of dysplasia but not 

clinical outcome in OPMD 

Our data confirm the positive correlation between EGFR expression and grade 

of epithelial dysplasia reported by Ries et al (2013). In contrast to this earlier 

study, however, we were unable to identify a significant correlation between 

EGFR over-expression and the risk of malignant transformation. This correlation 

has also been  documented in a recent comprehensive study of 148 OPMD 

(Nankivell et al., 2013). Both of these studies analysed whole sections using 

subjective semi-quantitative assessment (Nankivell et al., 2013; Ries et al., 

2013). The absence of a correlation in the current study may reflect the 

application of digital image analysis; as in the study by Rössle et al (2013), it is 

also possible that different thresholds were used to define EGFR over-

expression. On balance, the high prevalence of increased EGFR expression in 

our study makes positive correlations with clinical parameters less likely. 

3.4.7 Detecting significant EGFR gene copy number changes in OPMD 

A fifth of OPMD in the present study showed abnormal EGFR gene copy 

number. Only one case showed unequivocal EGFR genomic gain as defined 

using the current criteria for non-small cell lung cancer. This supports data from 

OSCC EGFR gene copy number studies, which suggest that EGFR genomic 

gain is a late event in oral carcinogenesis (Freier et al., 2003; Rössle et al., 

2013; Ryott et al., 2009). It is striking, however, that the majority of OPMD with 

abnormal EGFR gene copy had adverse clinical outcomes, and over half 

progressed to OSCC. This is in concordance with evidence from two recent 

studies, which suggest abnormal (or, ‘increased’) EGFR gene copy number is a 

relatively early feature of OPMD that are destined to undergo malignant 

transformation and may precede gross EGFR genomic gain (Benchekroun et 

al., 2010; Poh et al., 2012). Both of these studies used fluorescence ISH (FISH) 

rather than the chromogenic ISH (CISH) technique used in the current study, 

but the results are comparable. Benchekroun et al (2010) studied EGFR FISH 

in a subset of 49 OPMD, applying a definition of FISH positivity that 
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encompassed all EGFR gene copy number abnormalities, including trisomy and 

low polysomy. While one case showed EGFR gene copy number amplification 

using conventional criteria, a further 41% of cases showed FISH positivity 

according to their modified criteria. FISH-positive OPMD had significantly higher 

rates of malignant transformation compared to those with normal EGFR gene 

copy number (p<0.001). A recent study by Poh et al (2012) also supports the 

application of a lower threshold for detecting EGFR gene copy number 

abnormalities. In a study of 20 OPMD, one case showed clusters (i.e. EGFR 

genomic gain using the current criteria). However, the authors also reported that 

any gain in EGFR gene copy number was strongly associated with an increased 

risk of malignant transformation, irrespective of whether the genomic gain was 

low or high; EGFR genomic gain was also associated with a reduced time to 

malignant transformation (Poh et al., 2012).  

It is a limitation of the current study that neither EGFR mutation status nor 

downstream targets of increased EGFR gene copy number/protein were 

evaluated. It is conceivable that EGFR gene copy number may represent a 

‘surrogate’ for other genetic and molecular abnormalities and simply reflect 

chromosomal instability. Nevertheless, the positive correlation identified 

between EGFR gene copy number and protein over-expression suggests that 

EGFR genomic gain is likely to be functionally significant. 

3.4.8 Abnormal EGFR gene copy number in OPMD may indicate an 

increased risk of malignant transformation 

Our data suggest that the detection of EGFR gene copy number abnormalities 

may be a useful tool for identifying OPMD at high risk of adverse outcomes, 

particularly malignant transformation. The data indicate that while EGFR gene 

copy number abnormalities are relatively specific for identifying high-risk OPMD, 

they have low sensitivity. Low sensitivity may reflect the temporal relationship of 

the index biopsy to the transformation event, as it is conceivable that EGFR 

gene copy number abnormalities may have accumulated within an altered field 

after the index biopsy. 

Data from the group of OSCC that transformed from OPMD provide some 

evidence to support this hypothesis. The majority of cases in this subset had a 
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higher EGFR gene copy number category in the OSCC relative to the index 

OPMD. The EGFR gene copy number signal of the OPMD was already either 

abnormal or increased in a further one-quarter of cases, and the signal was 

maintained in the subsequent OSCC. The transition from OPMD to OSCC was 

associated with a move to a lower EGFR gene copy number category in just 

two cases. Although it is conceivable that this represents either the selection of 

a different clone, given the marked heterogeneity of EGFR gene copy number 

signal, it is also possible that this represents a sampling error. 

Although low sensitivity may limit the utility of abnormal EGFR gene copy 

number as an isolated biomarker in OPMD, its specificity means that it could 

have added predictive value in the context of a broader panel of more sensitive 

biomarkers. In isolation, grade of epithelial dysplasia does not reliably predict 

clinical behaviour. However, our data show that the reliability of these two 

markers is increased when they are combined. This finding signals the potential 

value of EGFR gene copy number as part of a panel of molecular biomarkers. 

3.4.9 Prevalence and prognostic significance of EGFR genomic gain in 

OSCC 

A quarter of early-stage OSCC in the present study showed EGFR genomic 

gain. This is higher than the prevalence of 9% reported in a recent tissue-

microarray study by Rössle et al (2013). As with EGFR protein expression, 

however, it is our experience that OSCC exhibit heterogeneous ISH patterns. It 

seems plausible that this difference may also reflect a methodological artefact. 

Nevertheless, the proportion of cases with EGFR genomic gain in the current 

study is still towards the lower end of the range of values reported in earlier 

studies (Freier et al., 2003; Ryott et al., 2009). Interestingly, the prevalence of 

EGFR genomic gain in the subset of OSCC that had transformed from OPMD 

was similar to that of the entire early-stage OSCC group. 

Our study did not identify a significant correlation between EGFR genomic gain 

and clinical outcome in OSCC. This is in contrast to a previous study by Temam 

et al (2007), which reported a 9% five-year survival rate for patients with EGFR 

genomic gain compared with 71% five-year survival rate for patients with no 

genomic gain. Although the study used quantitative real-time PCR, its findings 
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have been supported by FISH studies (Freier et al., 2003; Chung et al., 2006). 

However, all of these studies included a wide range of clinical stages (including 

stages III and IV). The absence of a correlation in the present study may reflect 

its narrower inclusion criteria and focus on early-stage OSCC. This 

interpretation is supported by the association between EGFR and late-stage 

OSCC (Grandis and Tweardy, 1993b; Grandis and Tweardy, 1993a). In their 

comparable study of early-stage OSCC of the tongue, Rössle et al (2013) were 

also unable to identify a significant correlation between EGFR gene copy 

number and clinical outcome. 

3.4.10 EGFR-targeted chemotherapeutic agents 

There is evidence to suggest that EGFR gene copy number may help to predict 

the response of head and neck cancers to EGFR-targeted agents. For example, 

high EGFR gene copy number has been shown to predict which patients have 

an increased likelihood of response to erlotinib therapy (Agulnik et al., 2007). 

The present study was not designed to investigate patients’ response to EGFR-

targeted agents or other clinical interventions: none of the patients received 

EGFR-targeted therapy and the OPMD group was heterogeneous, including 

cases managed by surveillance and laser excision (Diajil et al., 2013). Despite 

these limitations, however, our data support the view that a sub-group of OPMD 

and OSCC harbour gene copy number abnormalities. Whether this sub-group 

has differential responses to EGFR-targeted agents or other therapies remains 

to be tested. 
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3.5 Conclusion 

This study highlights the potential clinical utility of EGFR gene copy number 

assessment for predicting malignant transformation of OPMD. Abnormal EGFR 

gene copy number indicates an increased risk of malignant transformation in 

OPMD. In the majority of cases, the transition from OPMD to OSCC is 

associated either with maintenance or accumulation of EGFR gene copy 

number abnormalities or progression to EGFR genomic gain. This supports the 

view that EGFR gene copy number abnormalities continue to accumulate within 

an altered field following an index OPMD biopsy. EGFR genomic gain is present 

in a quarter of early-stage OSCC, but does not correlate with their clinical 

outcomes. Abnormal EGFR gene copy number and EGFR genomic gain 

correlate with increased EGFR protein expression in both OPMD and OSCC. 

However, although EGFR protein expression is over-expressed in the majority 

of OPMD and early-stage OSCC, it does not correlate with clinical outcomes in 

either group. 
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Chapter 4. Expression of Two Novel Biomarkers in Potentially 

Malignant Disorders and Early-Stage Squamous Cell 

Carcinoma of the Oral Cavity 

4.1 Introduction 

The previous chapter detailed the protein expression and gene copy number 

profiles of epidermal growth factor receptor (EGFR) in patients with oral 

potentially malignant disorders (OPMD) and early-stage oral squamous cell 

carcinoma (OSCC). EGFR is an established prognostic and predictive 

biomarker in non-small cell lung carcinoma (Nicholson et al., 2001; Hirsch et al., 

2003; Takano et al., 2005 ). EGFR has been studied as a candidate biomarker 

in oral carcinogenesis since EGFR protein over-expression in OSCC was first 

reported more than 20 years ago (Grandis and Tweardy, 1993a; Grandis and 

Tweardy, 1993b). 

This chapter will examine the protein expression profiles of two novel 

biomarkers, SOX2 and PAX9, in the same two groups of patients, i.e. those with 

OPMD and early-stage OSCC. SOX2 and PAX9 are transcription factors with 

vital roles in the regulation of development and differentiation. SOX2 is a 

potential oncogene in squamous cell carcinoma (SCC) of the lung. There is 

emerging evidence that SOX2 has a similar role in OSCC. By contrast, PAX9 is 

a potential tumour-suppressor gene in oesophageal SCC. To date, the 

expression profile and potential role of PAX9 in oral carcinogenesis has yet to 

be described. 

4.1.1 SOX2 is a potential oncogene in oral carcinogenesis 

The SOX family of genes encode transcription factors that play critical roles in 

the regulation of development. These roles include the induction/suppression of 

stem cell proliferation and maintenance of stem cell pluripotency (Chew and 

Gallo, 2009). 

SOX2 protein is expressed in the normal oral squamous epithelium. It promotes 

epithelial proliferation and the stabilisation of basal progenitor cells (Okubo et 

al., 2009). SOX2 protein is over-expressed in OPMD (Qiao et al., 2013) and 

OSCC (Freier et al., 2010). Genomic amplification of SOX2 has also been 
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detected in OSCC (Freier et al., 2010; Kokalj Vokač et al., 2014). These 

findings suggest that SOX2 has an oncogenic function in oral carcinogenesis. 

This contention is supported by earlier studies of squamous cell carcinoma 

(SCC) of the lung and oesophagus (Bass et al., 2009; Hussenet et al., 2010; 

Hussenet and du Manoir, 2010; Lu et al., 2010). In vitro studies suggest that 

increased SOX2 expression contributes to de-differentiation in SCC (Hussenet 

et al., 2010; Hussenet and du Manoir, 2010). However, SOX2 is also implicated 

in the differentiation pathway of SCC arising in the lung. Up-regulation of SOX2 

induces expression of markers of squamous differentiation, such as p63 and 

keratin 6 (Bass et al., 2009). This suggests that SOX2 may also promote 

squamous differentiation during carcinogenesis. 

4.1.2 PAX9 is potential tumour-suppressor gene in oral carcinogenesis 

The PAX gene family encodes transcription factors that regulate stem cell 

renewal, cellular proliferation, differentiation, migration, and survival. The 

contribution of PAX genes to these processes suggests they may also play 

significant roles in neoplasia (Chi and Epstein, 2002; Robson et al., 2006). 

PAX9 protein is expressed in the squamous epithelium of the oesophagus and 

oral cavity. It is believed to regulate key aspects of epithelial differentiation 

(Jonker et al., 2004). PAX9 expression is lost/down-regulated in oesophageal 

squamous cell carcinoma and its precursor lesions (Gerber et al., 2002). In 

these oesophageal lesions there is an inverse relationship between PAX9 

expression and clinical outcome. A decrease in the proportion of PAX9-positive 

cells correlates with increasing grade of epithelial dysplasia. PAX9 expression is 

lowest in invasive SCC (Gerber et al., 2002). These data suggest PAX9 

functions as a tumour-suppressor gene. 

This hypothesis is supported by in vitro studies of lung cancer. PAX9 is located 

on chromosomal region 14q13.3. A subset of lung cancer cell lines shows allelic 

loss of this region and loss of PAX9 expression (Harris et al., 2011). By 

contrast, other in vitro studies suggest PAX9 has an oncogenic function. PAX9 

interacts with c-myb, a proto-oncogene that enhances the survival of SCC cell 

lines and is implicated in the pathogenesis of a range of cancers (Lee et al., 

2008). PAX9 contributes to the survival of a subset of lung cancer cell lines that 
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show amplification of chromosomal region 14q13.3 (Kendall et al., 2007). These 

findings suggest that PAX9 may perform diverse roles in carcinogenesis, 

analogous to TGF-β (Paterson et al., 2001; Prime et al., 2004). 

4.2 Aims 

The aims of this chapter are: 

 To describe the profiles of SOX2 and PAX9 protein expression in groups 

of patients with OPMD and OSCC. The patient characteristics, clinical 

outcomes, and clinico-pathological features of these groups have been 

described previously in Chapter 3 

 To correlate the profiles of SOX2 and PAX9 protein expression with the   

patient characteristics, clinical outcomes, and clinico-pathological 

features of the OMPD and early-stage OSCC groups.  
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4.3 Results 

4.3.1 Expression of SOX2 and PAX9 proteins in normal squamous 

epithelium 

Normal squamous epithelium was selected for image analysis in 30 OPMD and 

30 OSCC biopsies. 

For SOX2 protein expression, the mean number of nuclei analysed per case 

was 2155 (range: 716 - 5753). The mean percentage of positive nuclei (PPN) 

was 32.5% (range: 0.4% - 72.2%). The mean percentage of strongly positive 

nuclei (3+PN) was 1.2% (range: 0% - 10.7%). 

For PAX9 protein expression, the mean number of nuclei analysed per case 

was 2412 (range: 590 - 7554). The mean PPN was 39.0% (range: 0.1% - 

83.2%). The mean 3+PN was 6.8% (range: 0% - 42.5%). 

4.3.2 SOX2 protein expression in oral potentially malignant disorders 

Dysplastic epithelium was analysed in each of the 78 OPMD. The mean number 

of nuclei analysed per case was 1328 (range: 714 - 2105). SOX2 had a 

heterogeneous expression profile in dysplastic epithelium, varying both between 

and within individual OPMD cases. 

Overall, SOX2 expression was down-regulated in dysplastic epithelium relative 

to normal epithelium (Figure 4-1). The mean PPN was 23.6% (range: 0% - 

88.3%). Dysplastic epithelium had PPN values that were lower than the mean 

PPN value of the normal epithelium in the majority (75.6%) of cases. A pairwise 

comparison showed that, across the group, dysplastic epithelium had a 

significantly lower mean PPN value relative to the normal epithelium (p<0.05, 

Independent T-test). 

However, several OPMD cases showed strong focal expression of SOX2 in the 

dysplastic epithelium (Figure 4-1F). There was also a subset of cases that 

showed strong, generalised over-expression of SOX2 (Figure 4-1H). Many of 

the cells with strong SOX2 expression exhibited basaloid morphology. The 

mean 3+PN for SOX2 was 3.2% (range: 0% - 64.4%). Although the mean 3+PN 

value for dysplastic epithelium was higher than the mean 3+PN value of the 
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normal epithelium (1.2%), this was due to a small subset of cases with very high 

3+PN values. This subset comprised four cases with 3+PN values greater than 

10%. In fact, SOX2 3+PN values of dysplastic epithelium were actually lower 

than the mean 3+PN of normal epithelium in the majority of cases (80.8%). A 

pairwise comparison showed that the difference between the mean 3+PN 

values of normal and dysplastic epithelium was not statistically significant 

(p>0.05, Mann-Whitney U-test; Figure 4-2). 

4.3.3 SOX2 protein expression correlates weakly with histological grade 

of epithelial dysplasia but not with clinical outcome 

Dysplastic epithelium graded as SIN 3 had a significantly higher mean 3+PN 

value than dysplastic epithelium graded as SIN 1 (p<0.05, Mann-Whitney U-

test, Bonferroni correction; Figure 4-2). However, differences between the mean 

3+PC values of other SIN categories were not significant (p>0.05, Mann-

Whitney U-test, Bonferroni correction). Differences between mean PPN values 

were not significant (p>0.05, One-way ANOVA, Bonferroni correction). Neither 

mean PPN nor mean 3+PN values differed significantly when SOX2 expression 

was compared in dysplastic epithelium graded using the binary classification 

(3+PN values shown in Figure 4-2). 

SOX2 expression did not differ significantly according to clinical outcome. 

Pairwise comparisons of PPN and 3+PN values of cases that underwent 

malignant transformation and those which did not (i.e. cases with no adverse 

outcome, local recurrence, or new lesion) were not statistically significant 

(p>0.05, Independent T-test and Mann Whitney U-test). Similarly, comparisons 

of the PPN and 3+PN values of cases grouped according to each of the four 

individual outcome categories were not significant (p>0.05, One-way ANOVA 

and Kruskal Wallis tests, Bonferroni correction; Figure 4-2). Kaplan-Meier time-

to-event analysis confirmed the absence of a significant correlation between 

either the PPN or 3+PN value and the risk of malignant transformation (Figure 

4-3). 

SOX2 protein expression did not differ significantly according to patients’ age; 

sex; alcohol/tobacco habits; or mucosal subsite of the OPMD [data not shown].  
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Figure 4-1 SOX2 protein expression in normal epithelium and oral potentially 
malignant disorders stratified according to histological grade of epithelial 
dysplasia 

A) Normal oral mucosa. B) SOX2 expression is strongest in the basal layer and becomes 
weaker as keratinocytes differentiate and progress towards the surface (arrow). C) SIN 1. D) 
SOX2 expression is variable but generally down-regulated, most noticeably in the basal layer. 
E) SIN 2. F) Variable SOX2 expression is also seen in SIN 2, but there is a focus of strongly-
positive cells (arrowhead). G) SIN 3. H) There is over-expression of SOX2 throughout the full 
thickness of the epithelium. The strongly SOX2-positive cells have a basaloid cytomorphology.  

Images taken at x100 magnification. 
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Figure 4-2 Bare chart comparing the mean SOX2 3+PN values of normal epithelium and oral potentially malignant disorders stratified 
according to grade of epithelial dysplasia and clinical outcome 

The mean SOX2 3+PN values of normal and dysplastic epithelium did not differ significantly at p<0.05. Cases of OPMD with SIN 3 had a significantly higher mean 
3+PN value than cases with SIN 1 (p<0.01). The mean SOX2 3+PN values did not differ significantly when OPMD were stratified according to clinical outcome. 
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Figure 4-3 Kaplan-Meier time-to-event analysis of malignant transformation in 
OPMD grouped according to SOX2 PPN and 3+PN values 

Colour index: Blue line - low SOX2 protein expression (i.e. PPN/3+PN value lower than the 
mean for the normal mucosa); green line - high SOX2 protein expression (i.e. PPN/3+PN value 
greater than mean for the normal mucosa.) 

There was no correlation between SOX2 expression and risk of malignant transformation. A) 
Malignant transformation in OPMD grouped according to SOX2 PPN value (p>0.05, ᵡ2 value – 
0.16, 1 d.f.). B) Malignant transformation in OPMD grouped according to SOX2 3+PN value 
(p>0.05, ᵡ2 value – 0.075, 1 d.f.).   
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4.3.4 PAX9 protein expression in oral potentially malignant disorders 

Dysplastic epithelium was analysed in each of the 78 OMPD. The mean number 

of nuclei analysed per case was 1197 (range: 941 - 1736). The mean PPN was 

24.6% (range: 0% - 72.8%). The mean 3+PN was 3.5% (range: 0% - 30.6%). 

PAX9 protein expression was down-regulated in dysplastic epithelium relative to 

the normal epithelium (Figure 4-4). Dysplastic epithelium had PPN and 3+PN 

values lower than the corresponding mean values of normal epithelium in 

75.6% and 84.6% of cases respectively. Pairwise comparisons showed that 

both the mean PPN and 3+PN values of dysplastic epithelium were significantly 

lower than the corresponding mean values of normal epithelium (p<0.05 

Independent T-test and p<0.01 Mann-Whitney U-test respectively; 3+PN values 

shown in Figure 4-5). 

4.3.5 PAX9 protein expression correlates with clinical outcome and 

detects cases of OPMD destined for malignant transformation 

PAX9 protein expression showed a positive correlation with clinical outcome. 

PAX9 expression was significantly higher in the dysplastic epithelium of OPMD 

with adverse outcomes and, more specifically, the subset of cases that 

underwent malignant transformation. OPMD with adverse outcomes (i.e. local 

recurrence, new lesion formation, malignant transformation) had a significantly 

higher mean PPN value than OPMD with no adverse outcome (p<0.01, 

Independent T-test; Figure 4-5). Both the mean PPN and 3+PN values were 

significantly higher in OPMD that underwent malignant transformation relative to 

cases which did not (i.e. with no adverse outcome, local recurrence, or new 

lesion formation) at p<0.0001 (Independent T-test and Mann-Whitney U-test 

respectively). 

In a comparison of OPMD stratified according to each of the four individual 

outcome groups, cases that underwent malignant transformation had 

significantly higher PPN values than cases with no adverse outcome 

(p<0.0001), local recurrence (p<0.0001), and new lesion formation (p<0.01, 

One-way ANOVA with Bonferroni correction; Figure 4-5). Corresponding 3+PN 

values showed the same trends. Small differences in the PPN and 3+PN values 
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of cases in the three non-transforming groups (i.e. no adverse outcome, local 

recurrence, new lesion formation) were not statistically significant. 

OPMD were assigned to a binary ‘high PAX9’ or ‘low PAX9’ category according 

to whether PAX9 expression was either above or below the mean PAX9 PPN 

for normal epithelium. Kaplan-Meier time-to-event analysis confirmed that there 

was a significant correlation between high PAX9 expression and malignant 

transformation (Figure 4-6B). High PAX9 expression had a stronger correlation 

with malignant transformation than either high-grade epithelial dysplasia used in 

isolation (Figure 4-6A) or in a combined category (i.e. high-grade epithelial 

dysplasia combined with high PAX9 expression, Figure 4-6C). Receiver-

operator curve analysis confirmed that high PAX9 expression was a more 

accurate predictor of malignant transformation than either high-grade epithelial 

dysplasia or the combined category (Figure 4-7). High PAX9 expression also 

had the highest positive predictive value for detecting cases that were destined 

to undergo malignant transformation (Table 4-1). 

PAX9 protein expression did not correlate with the histological grade of 

epithelial dysplasia. Using the binary classification system, the mean PPN value 

of low-grade epithelial dysplasia was significantly lower than the normal 

epithelium (p<0.05, Independent T-test, Figure 4-5). However, the difference 

between the mean PPN values of low and high-grade-epithelial dysplasia was 

not significant (p>0.05, Figure 4-5). PPN values did not differ significantly when 

cases were stratified according to the SIN classification. 3+PN values did not 

differ significantly in either classification [data not shown]. 

PAX9 protein expression did not differ significantly when stratified according to 

patients’ age or sex; alcohol/tobacco habits, or the mucosal subsite of the 

OPMD [data not shown].  
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Figure 4-4 PAX9 protein expression in normal mucosa and oral potentially 
malignant disorders stratified according to grade of epithelial dysplasia 

A) Normal oral mucosa. B) In normal epithelium, PAX9 is weakly expressed in the basal layer 
but becomes more intense as cells begin to exhibit squamous differentiation in the prickle layer 
(arrow). PAX9 expression is then progressively lost as cells migrate towards the surface. 

In dysplastic epithelium, PAX9 expression was generally down-regulated relative to the normal 
epithelium. PAX9 expression was lowest in low-grade epithelial dysplasia (C, D). Although it 
was relatively increased in high-grade epithelial dysplasia, this trend was weak and not 
statistically significant (see Figure 4-5). This was due to variability in the PAX9 expression 
among cases with high-grade epithelial dysplasia. In the first example of high-grade epithelial 
dysplasia (E, F), PAX9 expression is heterogeneous but generally down-regulated relative to 
the normal epithelium. By contrast, the second example of high-grade epithelial dysplasia (G, H) 
shows increased expression of PAX9 relative to normal epithelium. OPMD with increased PAX9 
expression relative to the normal epithelium were more likely to transform to OSCC than cases 
with low PAX9 expression (see Figure 4-5). 

Images taken at x100 magnification.  
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Figure 4-5 Bar chart comparing the mean PAX9 PPN values of normal epithelium and oral potentially malignant disorders stratified 
according to grade of epithelial dysplasia (binary classification) and clinical outcome 
PAX9 expression was significantly down-regulated in dysplastic epithelium relative to normal epithelium (p<0.001). Cases with low-grade epithelial dysplasia had a 
significantly lower mean PPN value than the normal epithelium (p<0.05). The mean PPN values of low-grade and high-grade epithelium did not differ significantly, 
however (p>0.05). Together, OPMD with adverse outcomes had a significantly higher mean PPN value than OPMD with no adverse outcome (p<0.01). Specifically, 
OPMD that underwent malignant transformation had a significantly higher mean PPN value than cases which did not (p<0.0001). The same trend was detected 
when cases that did not transform were compared as a single group (i.e. with no adverse outcome, local recurrence, or new lesion formation combined) and in each 
of their individual outcome groups 
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Figure 4-6 Kaplan-Meier time-to-event analysis showing malignant 
transformation in OPMD grouped according to grade of epithelial dysplasia, level 
of PAX9 protein expression, and a combined category 

Colour index: Blue line - low grade epithelial dysplasia, low PAX9 protein expression, negative 
combined score; green line - high-grade epithelial dysplasia; high PAX9 protein expression; 
positive combined score. 

A) There was a significant correlation between malignant transformation and high-grade 
epithelial dysplasia (p<0.05, ᵡ2 value - 4.974, 1 d.f.). B) There was also a significant correlation 
between malignant transformation and high PAX9 protein expression (p<0.0001, ᵡ2 value - 30.2, 
1 d.f.) C) There was also a significant correlation between malignant transformation and a single 
category which combined cases with high-grade epithelial dysplasia and high PAX9 protein 
expression (p<0.0001, ᵡ2 value - 21.9, 1 d.f.).  
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Figure 4-7 Receiver-operator curve analysis comparing detection of malignant 
transformation by high PAX9 expression, high-grade epithelial dysplasia, and a 
combined category 

Colour index: Blue line - PAX9 protein over-expression; green line - high-grade epithelial 
dysplasia; yellow line – combined PAX9 protein over-expression and high grade epithelial 
dysplasia; purple line – reference line. 

The curve for high PAX9 expression is consistently to the left of the curve for high grade 
epithelial dysplasia. The area beneath the curve for high PAX9 expression is thus larger than 
the area for high grade epithelial dysplasia. Moreover, the asymptotic significance for high 
PAX9 expression is p<0.0001. The asymptotic value for high grade epithelial dysplasia is not 
significant (p>0.1). The combined category is intermediate between the two, being more 
accurately predictive of malignant transformation than high grade epithelial dysplasia but less so 
than high PAX9 expression in isolation. 
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Table 4-1 Detection of OPMD that underwent malignant transformation using 
high-grade epithelial dysplasia, high PAX9 protein expression, and a combined 
category 

 

 

 
High-grade epithelial 

dysplasia 
High PAX9 
expression 

Combined 
category 

Sensitivity 

 
72.7 68.2 50 

Specificity 

 
50.0 92.9 94.6 

Positive 
predictive 
value 

36.4 79.0 78.6 

Negative 
predictive 
value 

82.4 88.1 82.8 
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4.3.6 SOX2 protein expression in OSCC transformed from OPMD cases 

Malignant transformation occurred in 22 OPMD. Biopsy material was available 

for analysis in 21 of these cases. Three cases were among the early-stage 

OSCC group which is described in a following section, 4.3.8. 

The mean number of nuclei analysed per case was 4610 (range: 699 – 11257). 

The mean PPN was 19.1 (range: 0 – 88.9%). The mean 3+PN was 2.9 (range: 

0 – 26.3). The mean PPN of the transformed OSCC group was lower than the 

mean PPN of normal epithelium (32.5%). By contrast, the mean 3+PN of the 

transformed OSCC group was higher than the normal epithelium (1.2%). 

However, neither of these trends was statistically significant (p>0.05, 

Independent T-test (PPN) and Mann Whitney U-test (3+PN)). 

The mean PPN and 3+PN values of the transformed OSCC group were lower 

than the corresponding mean values of dysplastic epithelium. This trend was 

consistent when the transformed group was compared with the dysplastic 

epithelium of all OPMD and the subset of cases that underwent malignant 

transformation. However, neither of these trends was statistically significant 

(p>0.05, Independent T-test (PPN) and Mann Whitney U-test (3+PN)). 

The progression from OPMD to OSCC was not associated with a uniform 

change in SOX2 expression. There were cases in which SOX2 protein 

expression was consistent in both the OPMD and subsequent OSCC biopsy, 

either consistently low (Figure 4-8A, B) or high (Figure 4-8C, D). There were 

also cases in which the SOX2 protein expression was increased in the OSCC 

biopsy relative to the OPMD (Figure 4-8E, F) or decreased (Figure 4-8G, H). 

The mean PPN and 3+PN values of the transformed OSCC group were lower 

than the corresponding values for early-stage OSCC outlined in section 4.3.8. 

However, neither of these trends was statistically significant (p>0.05, 

Independent T-test (PPN) and Mann Whitney U-test (3+PN)).  
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Figure 4-8 SOX2 expression in transforming oral potentially malignant 
disorders and subsequent oral squamous cell carcinomas 

Four contrasting trends in SOX2 expression were detected. In some cases, SOX2 expression 
was consistently low in both the transforming OPMD (A) and the subsequent OSCC (B). In other 
cases, SOX2 expression was consistently high in both OPMD (C) and OSCC (D). Interestingly, 
the strongly SOX2-positive cells shown in C and D were characterised by a basaloid 
cytomorphology in both the OPMD (C) and subsequent OSCC (D). By contrast, there were also 
cases in which malignant transformation was associated with either an increase in SOX2 
expression (E compared to F) or a decrease in SOX2 expression (G compared to H). 

Images taken at x100 magnification.  
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4.3.7 PAX9 protein expression in OSCC transformed from OPMD 

The mean number of nuclei analysed per case was 7558 (range: 1603 – 

22170). The mean PPN was 46.6% (range: 0.02 – 90.1%). The mean 3+PN 

was 8.3% (range: 0 – 40.3%). 

The mean PPN and 3+PN values of the transformed OSCC group were higher 

than the corresponding values for the normal epithelium (39.0% and 6.8% 

respectively). However, neither of these trends was statistically significant 

(p>0.05, Independent T-test and Mann-Whitney U-test; Figure 4-10). 

The mean PPN and 3+PN values of the transformed OSCC group were 

significantly higher than the corresponding values for dysplastic epithelium. This 

trend was consistent when the transformed group was compared with the 

dysplastic epithelium of all OPMD and the subset of OPMD cases that 

underwent malignant transformation. When the transformed OSCC group was 

compared with the dysplastic epithelium of all OPMD, the difference in both 

PPN and 3+PN values were significant at p<0.0001 (Independent T-test and 

Mann-Whitney U-test; Figure 4-10). When the transformed OSCC group was 

compared with the dysplastic epithelium of the subset of OPMD that underwent 

malignant transformation the difference in both PPN and 3+PN was significant 

at p<0.01 (Mann Whitney U-tests). 

The mean PPN and 3+PN values of the transformed OSCC group were 

significantly higher than the corresponding values for early-stage OSCC 

(p<0.0001, Independent T-test and Mann Whitney U-test; Figure 4-10). In the 

transformed OSCC group, over-expression of PAX9 protein was more evenly 

distributed in the invasive component compared to the early-stage OSCC 

group, in which PAX9 expression was heterogeneous (Figure 4-11).  
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4.3.8 SOX2 protein expression in early-stage OSCC 

Areas of OSCC were analysed in each of the 92 cases. The mean number of 

nuclei analysed per case was 6962 (range: 578 - 25806). 

SOX2 had a heterogeneous expression profile in OSCC. The mean PPN was 

30.6% (range: 0% - 93.9%). The mean PPN value of OSCC was therefore 

similar to that of the normal epithelium (32.5%). Although a slight majority of 

early-stage OSCC cases (62.0%) had PPN values lower than the mean for 

normal epithelium, a binary comparison confirmed that the difference between 

the mean PPN values was not statistically significant (p>0.5, Independent T-

test). 

Several cases showed foci of high SOX2 expression in a background of tumour 

cells in which SOX2 expression was variably down-regulated relative to the 

normal epithelium. There were also subsets of cases that showed either 

generalised over-expression or down-regulation of SOX2 (Figure 4-9). The 

mean 3+PN was 8.9% (range: 0% - 64.7%). The mean 3+PN value of early-

stage OSCC was therefore higher than the mean 3+PC of the normal 

epithelium (0.64%). This difference was significant at p<0.01 (Mann-Whitney U-

test). Just over half of early-stage OSCC cases (51.1%) had 3+PN values 

higher than the mean 3+PN of the normal epithelium. 

SOX2 expression in early-stage OSCC was increased relative to the dysplastic 

epithelium. A pairwise comparison showed that the mean 3+PN value for OSCC 

was significantly higher than the value for dysplastic epithelium (p<0.001, 

Mann-Whitney U-test). However, although the PPN value for OSCC was also 

higher than the PPN value for dysplastic epithelium, the difference was not 

statistically significant (p>0.05, Independent T-test).  
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4.3.9 SOX2 protein expression correlates with clinical outcome and 

differentiation of early-stage OSCC 

Early-stage OSCC with adverse outcomes (i.e. local recurrence, cervical lymph 

node metastasis, formation of second primary tumours/pulmonary metastasis, 

death from disease) had lower levels of SOX2 protein expression than cases 

with no adverse outcome (i.e. cases which were either alive and disease-free, 

or who had had died free from disease). Although both the PPN and 3+PN 

values were lower in OSCC with adverse outcomes the difference was only 

statistically significant when comparing PPN values (p<0.05, Mann-Whitney U-

test). 

There was an inverse relationship between SOX2 expression and histological 

differentiation (Figure 4-9). Well differentiated OSCC had the highest levels of 

SOX2 expression, with the highest mean PPN and 3+PN values. SOX2 

expression was relatively decreased in moderately differentiated OSCC and 

lowest in the subset of poorly differentiated OSCC. Poorly differentiated OSCC 

had significantly lower PPN and 3+PN values than moderately differentiated 

OSCC (p<0.01, Mann-Whitney U-tests, Bonferroni correction). 

The subset of OSCC at pStage II had significantly lower PPN and 3+PN values 

relative to those at pStage I. The differences between both values were 

significant at p<0.05 (Mann-Whitney U-test). 

SOX2 protein expression did not differ significantly according to patients’ age, 

sex, or the mucosal subsite of the OSCC [data not shown].  
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Figure 4-9 SOX2 expression in normal epithelium and early-stage oral 
squamous cell carcinoma stratified according to histopathological differentiation 

A) Normal oral mucosa. B) In normal squamous epithelium, SOX2 expression is strongest in the 
basal layer, but becomes weaker as keratinocytes differentiate and progress towards the 
surface (arrow). SOX2 expression was highest in well differentiated OSCC (C, D), where it 
recapitulated the pattern of SOX2 expression in normal epithelium. Variable expression is seen 
in moderately differentiated OSCC (E, F) with foci of strongly SOX2-postive cells (F, 
arrowhead). SOX2 expression was lowest in poorly differentiated OSCC, with complete loss of 
SOX2 expression seen in this example (G, H). 

Images taken at x100 magnification.
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4.3.10 PAX9 protein expression in early-stage OSCC 

Areas of OSCC were analysed in each of the 92 cases. The mean number of 

nuclei analysed per case was 6116 (range: 434 - 15243). The mean PPN was 

11.9% (range: 0% - 78.9%). The mean 3+PN was 0.7% (range: 0% - 9.4%). 

PAX9 protein expression was heterogeneous but generally down-regulated in 

the majority of OSCC compared to the normal epithelium (Figure 4-11). Early-

stage OSCC had lower PPN and 3+PN than the corresponding mean values of 

normal epithelium in 94.6% and 97.8% of cases respectively. Pairwise 

comparisons of the PPN and 3+PN values of OSCC and normal epithelium 

were both significant (p<0.0001, Independent T-test and Mann-Whitney U-test; 

Figure 4-10). 

PAX9 protein expression was also down-regulated in early-stage OSCC relative 

to the dysplastic epithelium. A pairwise comparison of the mean PPN value of 

OSCC and dysplastic epithelium was significant (p<0.0001, Independent T-test; 

Figure 4-10). However, mean 3+PN values did not differ significantly (p>0.05, 

Mann-Whitney U-test). 

4.3.11 Correlation of PAX9 protein expression profile with clinico-

pathological features and clinical outcomes of early-stage OSCC 

Early-stage OSCC with adverse clinical outcomes (i.e. local recurrence, cervical 

lymph node metastasis, formation of second primary tumour, formation of 

pulmonary metastases, death from disease) had significantly lower PAX9 PPN 

values than early-stage OSCC with no adverse outcome (p<0.01, Independent 

T-test). A similar trend was identified when comparing 3+PN values, but the 

difference was not statistically significant (p>0.05, Mann-Whitney U-test). 

OSCC had significantly lower PAX9 expression than normal epithelium 

irrespective of histological grade of differentiation. This trend was the same for 

both the PPN and 3+PN values at p<0.0001. Small differences in the PAX9 

expression levels of each grade were not significant (p>0.05, One-way ANOVA 

and Kruskal Wallis tests with Bonferroni correction). 

PAX9 expression was lower in OSCC at pStage II than OSCC at pStage I. Both 

the mean PPN and 3+PN values for pStage II OSCC were significantly lower 
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than the corresponding values for pStage I OSCC (p<0.05, Mann-Whitney U-

test). 

Neither the mean PPN nor the mean 3+PN value differed significantly according 

to patients’ age, sex, or the mucosal subsite of the OSCC [data not shown].  
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Figure 4-10 Bar chart comparing PAX9 PPN values of normal epithelium, 
dysplastic epithelium, OSCC arising from OPMD (mixed stages), and early-stage 
OSCC 

Early-stage OSCC had significantly lower PPN values than either normal or dysplastic 
epithelium (p<0.0001). By contrast, the group of OSCC that arose from OPMD showed 
significantly higher PPN values than dysplastic epithelium and early-stage OSCC (p<0.0001). 
Early-stage OSCC with adverse outcomes had significantly lower PPN values than OSCC with 
no adverse outcome (p<0.01).  
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Figure 4-11 PAX9 expression in early-stage OSCC and OSCC arising from 
transformed OPMD 

(A, B) Moderately differentiated early-stage OSCC. PAX9 expression is generally down-
regulated relative to the normal epithelium at the surface, particularly at the invasive front 
(arrowhead). (C, D) By contrast, in a moderately differentiated OSCC arising from a transformed 
OPMD, there is strong expression of PAX9 throughout the full thickness of the tumour. 

Images taken at x50 magnification.
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4.4 Discussion 

SOX2 and PAX9 are novel biomarkers in oral potentially malignant disorders 

(OPMD) and early-stage oral squamous cell carcinoma (OSCC). Both are 

transcription factors with vital roles in the regulation of development and 

differentiation. SOX2 is critical to the maintenance and proliferation of stem 

cells, functions which, if dysregulated, may be significant in tumorigenesis (Ellis 

et al., 2004; Masui et al., 2007; Hanahan and Weinberg, 2011). SOX2 is a 

potential oncogene in squamous cell carcinoma (SCC) of the lung. There is 

emerging evidence that SOX2 has a similar role in oral carcinogenesis (Freier 

et al., 2010; Qiao et al., 2013). By contrast, PAX9 is believed to regulate key 

aspects of squamous epithelial differentiation (Jonker et al., 2004). Evidence 

from studies of oesophageal SCC suggests that PAX9 functions as a tumour-

suppressor gene (Gerber et al., 2002). This contention is supported by in vitro 

studies of PAX9 expression in lung cancer cell lines (Harris et al., 2011). 

However, to date there no studies of expression or potential role of PAX9 in oral 

carcinogenesis. 

4.4.1 SOX2 protein expression is heterogeneous but generally down-

regulated in OPMD 

Our data show that SOX2 has a heterogeneous expression profile in OPMD 

and is down-regulated in the majority of cases. To date, the profile of SOX2 

expression in OPMD has been described in an isolated study by Qiao et al 

(2013). SOX2-positivity was detected in 90% of OPMD. Furthermore, co-

expression of SOX2 and OCT4 - a feature not detected in the normal epithelium 

- was identified in 60% of OPMD. Similar trends were also demonstrated in an 

animal model (rat). However, the study was limited by a relatively small sample 

size (n = 20 human OPMD) and semi-quantitative scoring of stained sections. 

Cases were categorised either as SOX2-positive or SOX2-negative, but the 

intensity of staining was not described. Moreover, the authors did not document 

SOX2 expression in the normal human epithelium and were thus unable to 

comment on the relative SOX2 expression levels of OPMD (Qiao et al., 2013). It 

is therefore difficult to compare our data accurately with the results of this study. 
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4.4.2 SOX2 protein expression is up-regulated in early-stage OSCC 

Our data show that SOX2 has a heterogeneous expression profile in OSCC. 

The proportions of SOX2-positive nuclei in OCCC and normal epithelium were 

similar. However, the proportion of strongly SOX2-positive nuclei was 

significantly higher in OSCC relative to normal epithelium. Up-regulation of 

SOX2 in OSCC has been reported in several studies by immunohistochemistry 

(IHC) (Freier et al., 2010; Huang et al., 2014), proteomic analysis (Misuno et al., 

2013) and in situ hybridisation (ISH) (Freier et al., 2010; Kokalj Vokač et al., 

2014). Up-regulation of SOX2 has also been described in squamous cell 

carcinomas of the lung, oesophagus, cervix, and penis (Hussenet et al., 2010; 

Lu et al., 2010; Maier et al., 2011). 

Freier et al (2010) was the first to describe SOX2 over-expression in OSCC. 

However, the authors did not report SOX2 over-expression to be a common 

feature of OSCC: high SOX2 expression was only identified in a small subset of 

cases (18.1%). By contrast, our results show that the proportion of strongly 

SOX2-positive cells was increased in OSCC relative to the normal epithelium in 

over half of cases. The methodology of the previous study differed in its use of a 

polyclonal SOX2 antibody and semi-quantitative system for scoring stained 

sections. Moreover, tissue microarrays (TMA) were used rather than whole 

sections. The heterogeneous pattern of SOX2 expression detected in the 

present study is likely to compromise a TMA-based approach. Interestingly, ISH 

data were more sensitive, detecting SOX2 gene copy number amplification in 

more than half of cases (Freier et al., 2010). 

Three studies document a correlation between high SOX2 expression and poor 

clinical outcome in OSCC, particularly metastasis to cervical lymph nodes (Du 

et al., 2011; Michifuri et al., 2012; Huang et al., 2014). The current study 

identified the opposite trend: OSCC with adverse outcomes had significantly 

lower expression of SOX2 relative to cases with no adverse outcome. The 

reasons for this apparent discrepancy are unclear, but there are several 

possible explanations: 

 Whilst the present study was confined to early-stage OSCC, the 

previous studies also encompassed late-stage OSCC. It is conceivable 
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that SOX2 expression varies between early-stage and late-stage OSCC. 

Our study was not designed to address this possibility. As only a small 

subset of cases proceeded to neck dissection, there were insufficient 

numbers to detect a correlation between SOX2 expression and lymph 

node metastases 

 The previous studies used a range of manual staining methods, by 

contrast to the automated Ventana platform used in the present study. 

These manual methods may have been subject to a range of technical 

variations between runs 

 Each of the previous studies used a different SOX2 antibody. Polyclonal 

antibodies were used in two studies (Michifuri et al., 2012; Huang et al., 

2014). These antibodies are more likely to cross react with other SOX 

family proteins and result in non-specific staining than the monoclonal 

antibody used in the present study 

 The previous studies used semi-quantitative scoring as opposed to 

digital image analysis. In one case, only digitised images of selected 

fields - rather than whole sections - were available to the scoring 

pathologist (Huang et al., 2014) 

 In the present study, 26 cases had adverse clinical outcomes. Our data 

also showed that SOX2 expression was lower in poorly differentiated 

OSCC compared with well- and moderately differentiated OSCC, and in 

pStage II OSCC compared with pStage I OSCC. However, several of 

these groups contained relatively low numbers (poorly differentiated 

OSCC – 9 cases; pStage II – 17 cases). Non-parametric tests were 

used for these comparisons, but it is conceivable that comparisons of 

groups containing higher/similar numbers might generate contrasting 

trends. 

On balance, our finding that low SOX2 expression correlates with adverse 

outcomes in OSCC needs to be interpreted cautiously, as it is in contrast to 

several published studies. Each of these has potential methodological 

limitations relative to the present study. However, they include a greater range 

of clinical stages and are thus more suitably designed to detect a relationship 

between SOX2 expression and clinical outcome in OSCC. 
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Interestingly, heterogeneous SOX2 expression was described by Michifuri et al 

(2012) in 80 mixed-stage OSCC. The authors grouped cases into one of two 

categories according to their pattern of SOX2 expression, either 1) peripheral or 

2) diffuse. The present study includes cases that are consistent with these 

patterns, peripheral (e.g. in Figure 4-9D, well differentiated OSCC) and diffuse 

(e.g. in Figure 4-8D, uniformly high SOX2 expression). However, this 

classification system does not account for cases with generalised down-

regulation/loss of SOX2 expression or the foci of strongly SOX2-postive nuclei 

in cases with variably-intense staining seen in the present study. Interestingly, 

the authors demonstrated a correlation between the diffuse pattern of SOX2 

staining and metastasis to cervical lymph nodes. It is not possible to comment 

on the correlation between staining pattern/clinical outcome in the present study 

due to the small number of cases with uniform staining patterns.  

SOX2 expression was significantly higher in OSCC relative to OPMD in a 

comparison of the two groups combined. In isolation, this finding might suggest 

that up-regulation of SOX2 is associated with malignant transformation in 

OPMD. However, analysis of SOX2 expression in the subset of transforming 

OPMD and their subsequent OSCC did not support this hypothesis, but only 

confirmed the highly variable levels of SOX2 expression at each stage of oral 

carcinogenesis. The striking heterogeneity of SOX2 expression identified across 

all groups in the present study suggests that SOX2 has limited utility as a 

diagnostic or prognostic biomarker in OPMD and OSCC. 

Such consistent variation does however raise several hypotheses as to the 

biological significance of SOX2 in oral carcinogenesis. Firstly, SOX2 may have 

multiple stage-dependent roles in oral carcinogenesis, with a spectrum of 

potential oncogenic and tumour-suppressor functions. Secondly, while some 

OPMD/OSCC may be SOX2-dependent, there may be subsets of cases that 

have acquired alternative mutations and adaptive strategies. Strong SOX2 

expression is associated with a basaloid cytomorphology and several cases 

show foci of malignant cells with intense SOX2 expression. Together, these 

findings suggest a third hypothesis: SOX2 may be significant in the 

maintenance and functioning of cancer stem cells. This hypothesis is supported 

by in vitro analysis that has demonstrated up-regulation of SOX2 and OCT4 in 
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oral cancer stem cells (CSC) (Lim et al., 2011; Bourguignon et al., 2012; Misuno 

et al., 2013). It is also consistent with the contribution of SOX2 to stem cell 

functioning in normal squamous epithelium (Okubo et al., 2009). CSC are 

accountable for resistance to therapy, local recurrence, and metastatic spread 

in head and neck squamous cell carcinoma, and are therefore important 

therapeutic targets (Routray and Mohanty, 2014). Further work is required to 

delineate the contribution of SOX2 to the maintenance, survival, and 

proliferation of CSC. However, the evidence to date suggests that SOX2 may 

be an important therapeutic target in a subset of OSCC and OPMD. It is hoped 

that future in vitro studies utilising the cell lines generated in this project will be 

useful in testing these hypotheses. 

4.4.3 PAX9 protein expression in oral carcinogenesis: two contrasting 

trends 

Our data show that PAX9 has a heterogeneous expression in oral potentially 

malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC). 

Overall, there are two contrasting trends: 

1) PAX9 expression is progressively down-regulated in OPMD and OSCC 

2) PAX9 expression is up-regulated in transforming OPMD and their 

subsequent OSCC. 

4.4.4 PAX9 expression is progressively down-regulated in OPMD and 

early-stage OSCC 

This study demonstrated reduced PAX9 expression in OPMD relative to normal 

epithelium, and reduced PAX9 expression in OSCC relative to OPMD. This 

profile of progressively down-regulated PAX9 expression is consistent both with 

the role of Pax9 in the differentiation of mouse oral squamous epithelium 

(Jonker et al., 2004) and evidence from a study of oesophageal cancer that 

suggests PAX9 acts as a tumour-suppressor gene (Gerber et al., 2002). 

Pax9 is critical to regulating keratin transcription in mouse oral squamous 

epithelium. Specifically, Pax9 determines the relative proportions of ‘hard 

keratins’ (e.g. Krt1-5) and ‘soft keratins’ (e.g. Krt2-1, Krt2-17) in filiform papillae. 

The lingual epithelium of Pax9-deficient mice shows an abnormally increased 
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proportion of soft keratins (Jonker et al., 2004). Soft keratins Krt2-1 and Krt2-17 

are over-expressed in dysplastic lesions of the oral squamous epithelium in 

humans (Bloor et al., 2003). It is postulated that alterations in the differentiation 

pathway of squamous epithelium in Pax9-deficient mice is analogous to those 

occurring in human epithelial dysplasia (Jonker et al., 2004). Our data confirm 

that PAX9 in is also down-regulated in the majority of human OPMD and 

OSCC. They provide some support for the contention that down-regulation of 

PAX9 could induce alterations in the keratin composition of dysplastic 

squamous epithelium. Further analysis of the cytokeratin profile of our samples 

and correlation with PAX9 expression would be required to test this hypothesis. 

However, this overall trend does suggest that PAX9 has a tumour-suppressor 

function. 

Down-regulation of PAX9 expression has been documented in a study of 

squamous cell carcinoma (SCC) and epithelial dysplasias of the human 

oesophagus by Gerber et al (2002). The study demonstrated either loss or 

significantly reduced PAX9 expression in the majority of oesophageal SCC and 

dysplastic epithelial lesions. An inverse relationship between PAX9 expression 

and clinical course was also detected. A decrease in the proportion of PAX9-

positive cells correlated with increasingly malignant behaviour of lesions. This 

inverse trend was also identified in the current study: OSCC with adverse 

outcomes had significantly lower PAX9 expression compared to cases with no 

adverse outcome. However, the opposite trend was identified in OPMD. 

Gerber et al (2002) analysed fewer cases compared to the present study (SCC 

– 36 cases; epithelial dysplasia – 35 cases). The study was further constrained 

by its use of semi-quantitative scoring. PAX9 positivity was recorded but not the 

intensity of staining. Importantly, however, PAX9 immunohistochemical staining 

was performed using the same monoclonal antibody as in the present study, 

which shows nuclear expression in normal squamous epithelium of the 

oesophagus. 

On balance, the present study confirms the overall trend of progressively-

reduced PAX9 expression that has been documented in oesophageal cancer. 

Our data also confirm that PAX9 down-regulation is associated with adverse 

outcomes in OSCC. Together, these trends suggest that PAX9 has a tumour-
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suppressor function (Gerber et al., 2002). There is some evidence from in vitro 

studies to support this hypothesis. A study of lung cancer cell lines has 

demonstrated allelic loss at 14q13.3 and subsequent down-regulation of PAX9 

and other transcription factors such as NKX2-8 in a subset of tumours (Harris et 

al., 2011). 

4.4.5 PAX9 expression is up-regulated in transforming OPMD and their 

subsequent OSCC 

Our results demonstrate PAX9 over-expression in OPMD that underwent 

malignant transformation; PAX9 over-expression was also conserved in the 

subsequent OSCC. This pattern is in contrast to the overall trend identified for 

OPMD and early-stage OSCC, and suggests two different hypotheses: 

1) PAX9 is a critical oncogene that is transiently up-regulated in OPMD 

immediately before, during, and shortly after transformation to OSCC 

2) PAX9 is over-expressed in a subset of OPMD and OSCC, but is not a 

uniform hallmark of oral carcinogenesis. 

Our data show PAX9 over-expression is a more reliable predictor of malignant 

transformation than histological grade of epithelial dysplasia. This finding 

suggests that PAX9 over-expression is an important genetic/molecular change 

during transition from in situ epithelial dysplasia to invasive OSCC. Given the 

wider context of progressively reduced PAX9 expression in OPMD and OSCC, 

it is conceivable that PAX9 is dynamically expressed during oral 

carcinogenesis. PAX9 may be down-regulated in early/low-grade lesions, with 

consequent loss of its tumour-suppressor function. As lesions progress to 

OSCC, PAX9 is over-expressed due to its critical oncogenic function. In 

established lesions, this oncogenic function may be redundant due to the 

acquisition of further oncogenic alterations, particularly those which confer an 

advantageous metastatic capacity. PAX9 expression is thus gradually lost as 

OSCC progresses beyond the initial transformation stage. 

Evidence from in vitro studies supports the view that PAX9 performs oncogenic 

functions. PAX9 interacts with c-myb, a proto-oncogene that enhances the 

survival of SCC cell lines and is implicated in the pathogenesis of a range of 

cancers (Lee et al., 2008). Although Harris et al (2011) identified allelic loss of 



139 

 

chromosomal region 14q13.3 in a subset of lung cancer cell lines, the majority 

actually of lung cancers show amplification of this region. PAX9 and other 

transcription factor genes TTF-1 and NKX2-8 have been shown to contribute to 

the survival of lung cancer cell lines. PAX9 may therefore act as an oncogene in 

lung cancer (Kendall et al., 2007). 

The hypothesis that PAX9 is dynamically expressed in oral carcinogenesis must 

be considered cautiously, however. The present study has a cross-sectional 

rather than longitudinal design. This precludes accurate temporal description of 

PAX9 expression in individual cases. Comparisons are further hampered by 

variation in the numbers of OPMD biopsies for each case and time intervals 

between the index OPMD biopsy and subsequent OSCC biopsy. Previous 

OPMD biopsies were not available for the majority of early-stage OSCC cases 

in our study. It is open to conjecture whether these OSCC, in which PAX9 

expression was significantly lower than the OSCC arising from transformed 

OPMD, were preceded by OPMD with low or high levels of PAX9 expression. 

Animal studies – which are more amenable to uniform longitudinal studies of 

individual cases – may help to determine whether PAX9 expression is truly 

stage-dependent. 

It is conceivable that the majority of early stage OSCC were preceded by 

OPMD with low PAX9 expression. This leads to a second hypothesis, that the 

high PAX9 expression characterises a subset of OPMD and OSCC but is not 

uniformly critical to malignant transformation. Interestingly, ‘normal’ (i.e. 

relatively high) levels of PAX9 expression were reported in oesophageal SCC 

and dysplasias by Gerber et al (2002). It is possible that these oesophageal 

lesions with high PAX9 expression were biopsied at a time when they were 

undergoing malignant transformation, which would support the previous 

hypothesis. However, it may also provide further evidence that OPMD and 

OSCC can be broadly separated into two groups according to their PAX9 

expression profile. 

Together, our data show that the overall trends in PAX9 expression in 

OPMD/OSCC are very similar to those documented in oesophageal SCC and 

squamous epithelial dysplasia. This suggests that PAX9 has an important 

tumour-suppressor function. However, there is also strong evidence to suggest 
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that PAX9 also has an oncogenic function. These functions may be stage-

dependent. Alternatively, either one may predominate in individual cases. It is 

hoped that in vitro studies using the cell lines generated in this project will help 

to determine the precise contribution of PAX9 to oral carcinogenesis. 

Importantly however, our data show that PAX9 over-expression may help to 

identify OPMD at risk of progressing to OSCC. 

4.5 Conclusion 

SOX2 protein has a heterogeneous expression profile in both OPMD and early-

stage OSCC, which may limit its potential as a biomarker. SOX2 expression is 

down-regulated in the majority of OPMD and does not correlate with clinical 

outcome. Conversely, SOX2 expression is generally up-regulated in early-stage 

OSCC. This is consistent with studies of SOX2 expression in squamous cell 

carcinoma of the lung and oesophagus. However, whereas previous studies 

have documented a correlation between high SOX2 expression and poor 

clinical outcome, we found that OSCC with adverse outcomes had significantly 

lower expression of SOX2 than cases with no adverse outcome. In both OPMD 

and OSCC, SOX2 over-expression was associated with foci of basaloid cells. 

These foci may harbour oral cancer stem cells. This supports the hypothesis 

that SOX2 is functionally significant in oral carcinogenesis and is therefore a 

potential chemotherapeutic target in OPMD/OSCC. 

PAX9 expression was down-regulated in OPMD relative to normal epithelium. 

PAX9 expression in OSCC was reduced relative to both normal epithelium and 

OPMD. Furthermore, OSCC with adverse outcomes had significantly lower 

PAX9 expression compared to cases with no adverse outcome. These findings 

are concordant with a study of oesophageal squamous cell carcinoma, and 

support the hypothesis that PAX9 acts as a tumour-suppressor gene. 

Interestingly, PAX9 was over-expressed in the subset of OPMD that underwent 

malignant transformation and in their subsequent OSCC. This apparently 

paradoxical finding suggests that PAX9 may also have an oncogenic function in 

oral carcinogenesis. 
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Chapter 5. Morphological and Initial Molecular Characterisation 

of a Mouse Model of Oral Carcinogenesis 

5.1 Introduction 

5.1.1 Longitudinal studies of oral carcinogenesis 

Longitudinal studies of biomarkers in human subjects facilitate the study of 

disease processes at the cellular and molecular level (Munoz and Gange, 

1998). Patients with oral squamous cell carcinoma (OSCC) and oral potentially 

malignant disorders (OPMD) may have multiple diagnostic biopsies and surgical 

interventions during their management. Biomarkers may be analysed in biopsy 

tissue taken at various stages of OSCC formation, facilitating the longitudinal 

study of oral carcinogenesis. However, longitudinal studies are frequently 

constrained by patient drop out. Increasingly, surgical intervention is regarded 

as the preferred treatment modality for the management of OPMD. This raises 

ethical and potential medico-legal issues around the management of an OPMD 

by surveillance and repeated biopsy (Goodson and Thomson, 2010). Animal 

models are therefore comparatively advantageous for the longitudinal study of 

oral carcinogenesis, as they facilitate the generation and analysis of tissue from 

each stage of OSCC formation (Herzig and Christofori, 2002). 

5.1.2 Mouse models of oral carcinogenesis 

Mouse models of disease are widely used because the mouse genome has a 

history of being successfully manipulated (Brudno et al., 2004). Spontaneous 

OSCC formation in mice is rare (Thurman et al., 1997). OSCC formation may 

be induced chemically by the use of agents such as 4-nitroquinoline 1-oxide (4-

NQO) (Vered et al., 2005). 4-NQO induces a spectrum of precancerous 

changes alongside OSCC formation. The genetic alterations induced by 4-NQO 

are similar to those implicated in human OSCC (Kanojia and Vaidya, 2006). 

Studies using transgenic and knockout mice have made a significant 

contribution to our understanding of human disease. However, genetic 

modifications that result in OSCC formation in mice are rare (Mognetti et al., 

2006). Treating a transgenic/knockout mouse strain with 4-NQO potentially 
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simulates the complex interactions between environmental/genetic factors that 

occur during human oral carcinogenesis (Wong, 2009). 

5.1.3 Pax9 is a candidate tumour-suppressor gene in oral carcinogenesis 

Data from our analysis of human tissue samples, combined with evidence from 

the available literature, suggest that PAX9 has a tumour-suppressor function in 

oral carcinogenesis. Pax9 is conditionally inactivated when Pax9flox transgenic 

mice are crossed with K14-Cre mice (Kist et al., 2007). Aged Pax9-deficient 

mice develop fissures and hyperplastic epithelial lesions [unpublished data]. 

Whilst these lesions do not show morphological features of epithelial dysplasia 

and do not progress to OSCC, it is conceivable that they harbour molecular 

changes that are shared with those occurring in oral carcinogenesis. 

We hypothesise that Pax9 is a tumour-suppressor gene and that exposure to 4-

NQO treatment will induce more extensive pre-cancerous changes and more 

rapid progression to OSCC in Pax9-deficient mice than in controls. This chapter 

outlines the findings of a feasibility study, analogous to a phase I clinical trial, 

(Cancer Research UK, 2013), which is the first to assess the response Pax9-

deficient mice to 4-NQO treatment. 

5.2 Aims 

The aims of this chapter are: 

1. To determine the tolerable 4-NQO dose range for Pax9-deficient mice 

2. To identify potential side effects/systemic toxicity that may be induced in 

Pax9-deficient mice by 4-NQO treatment 

3. To characterise the morphological and molecular features of the oral 

mucosa of Pax9-deficient and control mice following 4-NQO treatment 

4. To characterise the morphological and molecular features of the oral 

mucosa of aged Pax9-deficient mice and compare them with those of 

mice that have been exposed to 4-NQO.  



143 

 

5.3 Results 

5.3.1 Characteristics of the group of mice treated with 4-NQO: sex, 

genotype, genetic background, and phenotype 

Sixty-eight mice were treated with 4-NQO (n = 68). At the start of 4-NQO 

treatment, the mice had a mean age of 33.8 weeks (range: 9 - 57 weeks). The 

other characteristics of these mice are summarised in Table 5-1. 

5.3.2 Weight of mice prior to and following 4-NQO-treatment 

At the start of the experiment, the mice had a mean weight of 25.7 g (range: 

16.5 – 42.3). The mean weight of control mice was 27.0 g (range: 18.5 – 42.3). 

Pax9-deficient mice generally weighed less than controls prior to 4-NQO 

treatment (mean 24.5; range: 16.5 - 33.7). However, the difference between the 

mean weights of Pax9-deficient mice and controls was not significant (p>0.05, 

Independent T-test). 

All mice were weighed following 4-NQO treatment, immediately before autopsy. 

The mice had a mean weight of 31.4 g (range: 11.6 – 52.8). The mean weight of 

the control mice was 35.4 g (range: 20.7 – 52.8). Pax9-deficient mice weighed 

less than controls following 4-NQO treatment (mean 25.5, range: 11.6 – 46.6). 

This difference was significant at p<0.0001 (Independent T-test). Weight loss in 

Pax9-deficient mice was accompanied by a range of other features, which are 

described further in section 5.3.4.  
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Table 5-1 Characteristics of the group of mice treated with 4-NQO (n = 68) 
 

Characteristic Number (%) 

Sex: 

Male 

Female 

 

31 (45.6) 

37 (54.4) 

Genotype 

Wild-type 

Pax9 mutant: 

Phenotype of Pax9 mutants* 

Complete knockout 

Partial knockout 

Normal phenotype 

 

32 (47.1) 

36 (52.9) 

 

19 (52.8) 

11 (30.6) 

6 (16.7) 

Strain: 

Black 6 

FVB 

Hybrid (Black6 x FVB) 

 

35 (51.5) 

17 (25) 

16 (23.5) 

Generation: 

F1 

N2F16 

N3 

N3F1 

N5F9 

 

16 (23.5) 

3 (4.4) 

4 (5.9) 

29 (42.6) 

16 (23.5) 

 
(*N.B. Complete knockout – complete absence of filiform papillae; partial knockout – some 
areas contain normal filiform papillae; normal – no loss of filiform papillae.)  
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5.3.3 Duration of 4-NQO treatment 

The mean duration of 4-NQO treatment was 21.1 weeks (range: 2 – 28 weeks). 

The majority of both Pax9-deficient mice and controls tolerated 4-NQO 

treatment and completed the planned duration of 4-NQO treatment (intervals 

between 22 to 28 weeks). However: 

 Four Pax9-deficient mice became sick soon after beginning 4-NQO 

treatment. They were sacrificed after just two weeks. Of these: 

o Each had a Black 6 genetic background 

o Three cases were treated with 50µg/ml 4-NQO 

o One case was treated with 20µg/ml 4-NQO 

 Ten cases were sacrificed following <20 weeks of 4-NQO treatment: 

o Six of these were Pax9-deficient mice sacrificed on humane grounds 

due to a toxic systemic response to 4-NQO 

o Four were healthy control mice. These controls were sacrificed to 

provide a comparison of the oral mucosa of controls and Pax9-

deficient mice prior to completion of the planned 4-NQO treatment 

 Twelve Pax9-deficient mice tolerated 4-NQO treatment for more than 20 

weeks. However, these mice deteriorated shortly before the end of 

treatment. They were sacrificed for humane reasons at intervals between 22 

and 28 weeks. 

 

The length of 4-NQO treatment and other characteristics of the mice that 

showed a toxic systemic response to 4-NQO treatment are summarised in 

Table 5-2. The characteristics of these mice are detailed in the next section. 

5.3.4 Toxic systemic response to 4-NQO treatment 

The majority of mice (66.2%) were healthy on completion of 4-NQO treatment, 

and showed no evidence of a toxic systemic response to 4-NQO. However, the 

tolerance of mice to 4-NQO treatment varied according to sex, genetic 

background, dose of 4-NQO, and genotype. 

A total of 23 mice showed a toxic systemic response to 4-NQO treatment (Table 

5-2). These mice were characterised by excessive saliva production, which 

caused drooling and matting of the fur around the chin and abdomen. The 
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majority of these mice were otherwise healthy. However, in a subset of nine 

mice excessive salivation was accompanied by: 

 A generalised failure to thrive 

 A reduced growth rate 

 Rapid, extreme weight loss 

 A ‘hunched’ position at rest. 

 

All of these mice were too sick to continue the experiment and were sacrificed 

for humane reasons prior to completion of their planned 4-NQO treatment. At 

autopsy, abdominal examination revealed they had only one kidney. 

Female mice were more likely to develop a toxic systemic response to 4-NQO 

treatment than male mice. 25.8% of females developed excessive salivation, 

compared with 16.2% of males. Similarly, 16.1% of females became sick, 

compared with 10.8% of males. However, cross tabulation showed that the 

association between sex and toxic systemic response was not statistically 

significant (p>0.05, Pearson ᵡ2 value - 1.7, 2 d.f.). 

The majority of the 23 mice that developed a toxic systemic response to 4-NQO 

treatment had a Black 6 genetic background (18 cases, 78.3%). Four FVB mice 

and only one hybrid developed a toxic response. A cross tabulation showed that 

there was a significant association between the Black 6 genetic background and 

the development of a toxic response (p<0.05, Pearson ᵡ2 value - 11.6, 4 d.f.). 

Thirty-seven mice were treated with a 10µg/ml concentration of 4-NQO. At the 

end of treatment, the majority of these mice (31 cases, 83.8%) were healthy. By 

contrast, less than half of the mice treated with 20µg/ml and 50µg/ml 

concentrations of 4-NQO were healthy. Of the twelve mice treated with 50µg/ml 

4-NQO, four became sick and a further three cases developed excessive 

salivation. A cross tabulation showed that the association between 4-NQO 

dosage and development of a toxic systemic response to 4-NQO treatment was 

significant (p<0.01, Pearson ᵡ2 value - 13.6, 4 d.f.). 

The majority (90.6%) of control mice were healthy on completion of 4-NQO 

treatment. There were three control mice among those who showed excessive 

salivation. However, none of the controls became sick or had to be sacrificed 
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prematurely due to a toxic systemic response to 4-NQO treatment. By contrast, 

the majority (55.6%) of Pax9-deficient mice developed a toxic systemic 

response to 4-NQO treatment; less than half of Pax9-deficient were healthy 

prior to sacrifice. Each of the nine mice that became sick as a result of the 4-

NQO treatment was Pax9-deficient. A cross tabulation confirmed that the 

association between the Pax9-deficient genotype and development of a toxic 

systemic response to 4-NQO treatment was significant (p<0.0001, Pearson ᵡ2 

value - 17.2, 2 d.f.).  
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Table 5-2 Summary of the characteristics of the mice that developed a toxic 
systemic response to 4-NQO treatment 
 

Mouse 
number. 

Sex Genotype Strain 4-NQO Condition 
at 

sacrifice Dosage 
(µg/ml) 

Duration 
(weeks) 

846 F Mutant Black6 50 14 Drooling 

925 M Mutant Black6 50 14 Sick 

926 M Mutant Black6 50 23 Drooling 

948 M Mutant  FVB 10 25 Drooling 

960 M Mutant FVB 10 27 Drooling 

965 F Mutant FVB 10 11 Sick 

971 F Control FVB 10 27 Drooling 

977 M Mutant Black6 50 2 Sick 

978 M Mutant Black6 50 8 Drooling 

980 F Mutant Black6 50 2 Sick 

981 F Mutant Black6 50 2 Sick 

983 M Mutant Black6 20 22 Sick 

985 M Mutant Black6 20 23 Drooling 

988 F Mutant Black6 20 23 Drooling 

989 F Mutant Black6 20 22 Drooling 

990 F Mutant Black6 20 22 Drooling 

997 F Mutant Hybrid 20 28 Sick 

1012 M Mutant Black6 20 2 Sick 

1015 F Control Black6 20 23 Drooling 

1016 F Mutant Black6 20 4 Drooling 

1018 F Mutant Black6 20 4 Sick 

1019 F Control Black6 20 22 Drooling 

1030 M Mutant Black6 10 22 Drooling 
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5.3.5 Autopsy features of the lingual mucosa following 4-NQO treatment 

At autopsy, only six mice had macroscopically normal tongues. Each of these 

had a control genotype (Figure 5-1A). 

Keratosis of the lateral surface of the tongue was identified in half of Pax9-

deficient mice, compared with just 15.6% of controls (Figure 5-1D). The 

association between Pax9 genotype and keratosis of the lateral tongue was 

significant (p<0.01, Pearson ᵡ2 value - 8.94, 1 d.f.). Well-defined lesions 

(plaques, papules, and nodules) were identified in the majority of both Pax9-

deficient mice and controls (Figure 5-1B, D). A cross tabulation of discrete 

lesions and genotype was not statistically significant (p>0.05, Pearson ᵡ2 value - 

0.005, 1 d.f.). A total of seventeen cases showed tumours at autopsy (Figure 

5-1D). The majority of these lesions were in Pax9-deficient mice (12 cases, 

71%). However, a cross tabulation showed that the association between 

genotype and the presence of macroscopic tumours was not significant 

(p>0.05, Pearson ᵡ2 value - 2.83, 1 d.f.).  
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Figure 5-1 Macroscopic autopsy features of the tongues of Pax9-deficient 
mice and controls following 4-NQO treatment 

A) Normal dorsal mucosa of a control mouse. B) The dorsal surface of the Pax9-deficient 
mouse shows fissuring towards the tip (arrows). There are several small, well-defined nodules 
(arrowheads). C) Normal ventro-lateral epithelium of a control mouse. D) The Pax9-deficient 
mouse shows diffuse keratosis of the lateral surface. There are several plaque-like lesions 
reminiscent of human leukoplakia (arrowheads). An exophytic tumour projects from the anterior 
ventral surface (arrow, to the right).  

A) and B) taken at 60x magnification; C) and D) taken at 160x magnification.  
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5.3.6 Histopathological features of mouse tongues following 4-NQO 

treatment 

Histopathological examination showed a broad spectrum of features. Individual 

mice were classified according to the most advanced stage of disease (Table 

5-3). A cross tabulation showed that the distribution of mice according to 

genotype and histological diagnosis was statistically significant (p<0.0001, 

Pearson ᵡ2 value – 75.9, 10 d.f.). 

Normal epithelium was seen in 20 cases, with even numbers of Pax9-deficient 

mice and controls (Table 5-3). Nine of the mice with normal epithelium had 

been sacrificed prior to completion of the scheduled 4-NQO treatment. 

However, mice in this group had a range of treatment durations (2 – 28 weeks) 

and 4-NQO concentrations (10, 20 and 50 μg/ml). 

Thirty-eight cases showed epithelial dysplasia. Epithelial dysplasia was 

detected in even numbers of Pax9-deficient mice and controls (Table 5-3). The 

scoring pathologists did not stratify these cases according to grade of epithelial 

dysplasia. However, a wide range of architectural and cytological features were 

observed in both Pax9-deficient mice and controls (Figure 5-2). The shortest 

time to induction of epithelial dysplasia was two weeks. This was in a Pax9-

deficient mouse that had been treated with 20μg/ml 4-NQO and was sacrificed 

prematurely having developed a toxic systemic response to 4-NQO. Epithelial 

dysplasia was also detected in another Pax9-deficient mouse after four weeks 

of treatment with 20 μg/ml 4-NQO. By contrast, control mice sacrificed at four 

weeks (20 μg/ml), six weeks (10 μg/ml), and eight weeks (50 μg/ml) showed 

normal epithelium with no evidence of epithelial dysplasia. 

Oral squamous cell carcinoma (OSCC) was detected in ten mice. The 

histological features and invasive patterns of these tumours were diverse 

(Figure 5-3). The majority arose in Pax9-deficient mice (Table 5-3). The shortest 

time to induction was 22 weeks in a Pax9-deficient mouse treated with 20 μg/ml 

4-NQO. Interestingly, the majority of mice that developed OSCC were treated 

with the lowest dose (10 μg/ml 4-NQO). The shortest time to induction with 10 

μg/ml 4-NQO was 24 weeks.  
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Table 5-3 Summary of the number of Pax9-deficient and control mice 
assigned to each diagnostic category following histopathological examination 

 

Diagnostic 
category  

Pax9-deficient 
mice  

Control Total 

Normal microanatomy 10 10 20 

Epithelial dysplasia 19 19 38 

Squamous cell 
carcinoma 

7 3 10 

Total 36 32 68 
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Figure 5-2 Epithelial dysplasia involving dorsal and ventral tongue mucosa of 
Pax9-deficient mice and controls 

A, B) Both Pax9-deficient mice and controls developed epithelial dysplasia on the dorsal surface 
of the tongue. C, D) Mice with both genotypes also developed epithelial dysplasia on the ventral 
surface of the tongue. A diverse spectrum of architectural and cytological abnormalities were 
observed at both subsites. Epithelial dysplasia was not assigned to a histological grade during 
this project. 

Images taken at x100 magnification.  



154 

 

 

Figure 5-3 Histopathological features of OSCC involving the tongues of Pax9-
deficient mice and controls 
 

A) and B) OSCC shows early invasion of the lamina propria in a control and Pax9-deficient 
mouse respectively. C)  In a control mouse, OSCC has infiltrated the musculature of the tongue, 
extending through nearly the full thickness towards the posterior aspect. D) In a Pax9-deficient 
mouse, although there is an intact surface OSCC infiltrates the musculature of the tongue with 
aggressive, non-cohesive, and sarcolemmal pattern of invasion (arrowhead). 

A), B), and D) taken at x100 magnification; C) taken at x50 magnification. 
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5.3.7 Chronic inflammatory changes and ulceration 

Chronic inflammatory ulceration was detected in four cases. Chronic 

inflammation without ulceration was detected in one further case. 

Ulceration/chronic inflammation was recorded as an incidental finding and the 

mice were categorised according to other ‘worst’ diagnosis according to 

changes elsewhere in the mucosa (Table 5-3). 

5.3.8 Macroscopic tumours arising at other mucosal subsites 

This study focused primarily on squamous cell carcinoma and epithelial 

dysplasia involving the tongue. However, there was a subset of 14 mice in 

which tumours developed at non-tongue oral subsites. The subsites and 

numbers of Pax9-deficient mice and controls affected are summarised in Table 

5-4. An example of one tumour that has been confirmed histologically as an 

OSCC is shown in Figure 5-4. 

5.3.9 Oesophageal squamous cell carcinoma 

The oesophagus of each mouse was examined at autopsy. The majority of 

cases showed no oesophageal abnormality. However, in two Pax9-deficient 

mice the oesophagus was distended by tumour. The tumour had a pale-grey cut 

surface. In these cases, the oesophagus was submitted for histological 

examination. Macroscopically normal oesophagus from one control and one 

Pax9-deficient mouse was also submitted for comparison. 

Histological examination confirmed that both tumours were squamous cell 

carcinoma (Figure 5-5). Interestingly, both mice had appeared systemically well 

prior to autopsy, showing no sign of weight loss. Both were treated with 10µg/ml 

4-NQO and were able to complete the planned duration of treatment (27 weeks 

and 28 weeks). One had a FVB background and one was a hybrid. The FVB 

mouse had also developed OSCC of the tongue. The hybrid mouse showed 

epithelial dysplasia on the tongue but no evidence of OSCC.  
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Table 5-4 Summary of tumours identified macroscopically at non-tongue 
mucosal subsites 
 

Subsite Pax9-deficient 
mice 

Controls Total 

Floor of mouth 3 2 5 

Buccal mucosa 1 1 2 

Lip 2 1 3 

Gingiva 2 1 3 

Oropharynx 1 0 1 

Total 9 5 14 
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Figure 5-4 Oral squamous cell carcinoma arising on the buccal mucosa of a 
control mouse 

This is a section through the anterior buccal mucosa. Squamous cell carcinoma extends from 
the mucosal surface through the full thickness of the lip to undermine the skin. The insert shows 
islands of atypical squamous cells that show keratin formation centrally.  

Main picture taken at x50 magnification, insert at x100 magnification.  
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Figure 5-5 Oesophageal squamous cell carcinoma in a Pax9-deficient mouse 

A) and C) The control mouse shows the normal micro-anatomy of the oesophagus. There is a 
thick wall of muscle and the mucosa has an undulating outline. The squamous epithelium 
shows orthokeratosis. B) In the Pax9 mutant, the normal micro-anatomy is distorted by 
squamous cell carcinoma. The oesophagus is distended with compression and invasion of the 
muscular wall. Carcinoma almost entirely occludes the lumen (arrowhead). D) In the mutant, the 
epithelium is replaced by sheets of malignant squamous cells. 

A) and B) taken at x50 magnification;. C) and D) taken at x200 magnification.  



159 

 

5.3.10 Aged Pax9-deficient and control mice not treated with 4-NQO 

Two aged mice that had not been treated with 4-NQO were sacrificed for 

morphological and immunohistochemical analysis. Both were females and had 

a Black 6 genetic background. Both were aged two years at the time of 

sacrifice. One was a Pax9-deficient mutant with complete knockout phenotype; 

the second was a control. 

The control mouse showed a normal phenotype with the normal complement of 

filiform papillae on the dorsal surface of the tongue (Figure 5-6A). The Pax9-

deficient mouse showed a smooth dorsal surface due to loss of filiform papillae. 

Microscopically, there were a few sparse, abortive filiform papillae (Figure 

5-6B). Keratinocytes in the control showed a nuclear pattern of Pax9 expression 

that was most intense in the prickle cell layer (Figure 5-6C). By contrast, 

keratinocytes in the Pax9-deficient mouse were negative (Figure 5-6D). This 

confirmed site specific Pax9 knock-out in the K14 Pax9flox/flox mouse. The ventral 

surfaces of the control and mutant showed common histological features, with 

an undulating rete profile and light keratosis (Figure 5-6 F, G). Keratinocytes in 

the control mouse showed nuclear expression of Pax9, but were negative in the 

Pax9-deficient mouse (Figure 5-6H, I). 

On the dorsal surface of the tongue, the Pax9-deficient mouse showed 

fissuring. In these areas, the squamous epithelium invaginated and pushed 

down into the lamina propria and musculature of the tongue (Figure 5-7A, B). 

There was some up-regulation of Sox2 in the Pax9-deficient mouse relative to 

the control (Figure 5-7C, D). The control mouse showed nuclear Ki67 

expression in the basal keratinocytes at the tips of rete processes (Figure 5-7E). 

There was slight up-regulation of Ki67 in the Pax9-deficient mouse, notably at 

the apex of the fissure (Figure 5-7F). p53 was negative in the control, but a few 

p53-positive cells were identified in the Pax9-deficient mouse [data not shown].  
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Figure 5-6 Immunohistochemical characterisation of the dorsal tongue 
epithelium of control and Pax9-deficient adult mice not treated with 4-NQO 

A) H&E shows a normal complement of filiform papillae (FF) on the dorsal surface of the control. 
B) FF are absent (arrow) in Pax9-deficient dorsal tongue epithelium and only remnants of the 
mesenchymal papilla can be observed. C) Pax9 is expressed in basal and parabasal layers and 
is strongest in differentiating suprabasal keratinocytes in controls. D) Pax9 is absent in the 
Pax9-deficient mouse. E) and F) the ventral epithelium of the Pax9 deficient mouse and the 
control show similar features. However, whereas there is nuclear Pax9 expression in the control 
G), Pax9 is negative in the mutant. 

Images taken at x100 magnification.  
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Figure 5-7 Comparison of SOX2 and Ki67 immunohistochemistry in the 
fissured tongue of an aged Pax9-deficient mouse and a control 

A) The control mouse shows filiform papillae (FF) on the dorsal tongue. B) In the Pax9-deficient 
mouse, filiform papillae are absent and there is a prominent fissure (arrowhead). C) Expression 
of the oral keratinocyte marker Sox2 is restricted to the basal and parabasal layers in the 
control. D) In the Pax9-deficient mouse, Sox2 expression varies, but is up-regulated in areas. E) 
Expression of the proliferation marker Ki67 is restricted to the basal layer in the control. F) 
There is up-regulation of Ki67 at the apex of the fissure in the Pax9-deficient mouse. 

Images taken at x100 magnification.  
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5.3.11 Selection of 4-NQO treated cases for immunohistochemical 

analysis 

Representative Pax9-deficient and control mice were selected for initial 

molecular analysis by immunohistochemistry. The majority of the mice that were 

selected showed epithelial dysplasia. Three control mice with morphologically 

normal epithelium were analysed as a comparator (Table 5-5). 

5.3.12 Initial molecular characterisation of mice treated with 4-NQO 

Expression of Ki-67, p53, and Sox2 were analysed by immunohistochemistry in 

tongue epithelium from Pax9-deficient mice and controls. Ki67 and p53 were 

analysed as both are up-regulated in dysplastic epithelium relative to normal 

epithelium in human OPMD. Ki67 is a marker of proliferation, and p53 a marker 

of cell damage (Kovesi and Szende, 2003; Varun et al., 2014). Our analysis of 

human tissue samples and the literature to date suggests that SOX2 is a 

marker of cancer stem cells and may have an oncogenic role in OSCC 

formation (Boumahdi et al., 2014). 

The expression of each of the three biomarkers in dysplastic epithelium was 

compared relative to normal epithelium in both Pax9-deficient mutants and 

control mice. On the ventral tongue, both p53 and Sox2 were significantly up-

regulated in dysplastic epithelium relative to the normal epithelium in both Pax9-

deficient mice and controls (Figure 5-8; Sox2 up-regulation shown in Figure 

5-9). Ki67 was also up-regulated in dysplastic epithelium relative normal 

epithelium. However, the difference was not significant in either Pax9-deficient 

mice or controls (Figure 5-8). The same trends were identified in the dorsal 

tongue [data not shown].  
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Table 5-5 Summary of the 4-NQO-treated cases selected for 
immunohistochemical analysis 
 

Mouse ID Sex Genotype 
Age 

(weeks) 
Strain 

4-

NQO 

(µg/m

l) 

Duration 

(weeks) 
Tongue Phenotype 

 

Normal epithelium 

 

1001 F Control 36 Hybrid 10 28 Normal 

1033 M Control 30 B6 10 22 Normal 

1034 M Control 30 B6 10 22 Normal 

 
Epithelial Dysplasia  

 

846 F Mutant 45 B6 50 14 Normal 

922 M Control 38 B6 50 15 Normal 

925 M Mutant 37 B6 50 14 Complete KO 

982 M Control 34 B6 20 23 Normal 

983 M Mutant 33 B6 20 22 Complete KO 

987 F Control 33 B6 20 22 Normal 

988 F Mutant 33 B6 20 23 Complete KO 

989 F Mutant 33 B6 20 23 Partial KO 

1030 M Mutant 29 B6 10 22 Complete KO 

1031 M Mutant 30 B6 10 22 Complete KO 

959 M Control 43 FVB 10 27 Normal 

960 M Mutant 43 FVB 10 27 Complete KO 

973 F Control 43 FVB 10 27 Normal 

974 F Mutant 43 FVB 10 27 Complete KO 

994 M Mutant 36 Hybrid 10 28 Complete KO 

995 F Control 36 Hybrid 10 28 Normal 

997 F Mutant 36 Hybrid 10 28 Complete KO 

998 M Mutant 36 Hybrid 10 28 Complete KO 

999 F Control 36 Hybrid 10 28 Normal 

1004 M Mutant 36 Hybrid 10 26 Partial KO 

 
(Mouse ID - reference identification for internal mouse and Home Office databases; Sex - F = 
female, M = male; Strain - genetic background of mice analysed (hybrid = BL6 x FVB crossed 
mice); Tongue phenotype - either complete or partial knockout or normal Pax9 expression as 
determined by presence or absence of filiform papillae on the dorsal tongue.  
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Figure 5-8 Bar chart comparing mean PPN Ki-67, p53, and Sox2 values of 
normal and dysplastic ventral epithelium of Pax9-deficient and control mice 

The proportion of p53-positive and Sox2-positive nuclei is significantly increased in ventral 
epithelial dysplasia relative to histologically normal epithelium. This trend was identified in both 
controls and mutants (p<0.01 for p53; p<0.05 for Sox2). Ki-67 expression was also up-regulated 
in epithelial dysplasia relative to the normal epithelium, but the differences were not statistically 
significant.  
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Figure 5-9 Sox2 protein expression in normal and dysplastic ventral 
epithelium of control and Pax9-deficient mice treated with 4-NQO 

The proportion of Sox2-positive cells is increased in epithelial dysplasia relative to the normal 
epithelium in both control mice (A and C) and in Pax9-deficient mutants (B and D). 

Images taken at x 200 magnification.  
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5.4 Discussion 

Mouse models of oral carcinogenesis are critical to the evaluation of biomarkers 

and chemotherapeutic targets (Herzig and Christofori, 2002). Chemical 

induction of oral carcinogenesis using 4-nitroquinolone-1-oxide (4-NQO) is a 

well-established technique. 4-NQO has been used in the evaluation of 

chemotherapeutic agents in wild-type mice (Czerninski et al., 2009). It has also 

been used in combined models using transgenic mice to determine the 

contribution of specific genetic alterations to oral squamous cell carcinoma 

(OSCC) formation (Zhang et al., 2006). This feasibility study is the first of its 

kind to induce Pax9-deficient mice using 4-NQO. It is therefore analogous to a 

phase I clinical trial in humans. Phase I trials are designed to identify the 

response to a particular treatment, the safe dose range, and the possible side 

effects of treatment (Cancer Research UK, 2013). This study has identified 

important trends in the susceptibility of Pax9-deficient mice to formation of 

epithelial dysplasia and OSCC in response to 4-NQO treatment. Moreover, this 

study has detected enhanced sensitivity to the systemic effects of 4-NQO in 

these Pax9-deficient mice. It therefore has important recommendations for the 

experimental design of future studies involving larger groups of mice (Cancer 

Research UK, 2013; Understanding Animal Research, 2014). 

5.4.1 Formation of epithelial dysplasia 

Epithelial dysplasia was detected in the majority of both control and Pax9-

deficient mice following 4-NQO induction. The prevalence of epithelial dysplasia 

across the group confirms the experimental reliability of the 4-NQO model 

(Vitale-Cross et al., 2009). It also confirms the inductive efficacy of the three 

dosages used in these experiments (i.e. 10, 20, and 50μg/ml). 

Pax9-deficient mice developed epithelial dysplasia after just two weeks 

following the start of 4-NQO treatment. By contrast, in control mice the shortest 

time from 4-NQO induction to development of epithelial dysplasia was 15 

weeks. Induction of epithelial dysplasia after just two weeks has been reported 

in rats (Nauta et al., 1996). However, the majority of studies using 4-NQO 

induction in mice report an eight week time-lag from the start of treatment to 

development of epithelial dysplasia (Tang et al., 2004; Vitale-Cross et al., 

2004b). 
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This finding provides some support for our hypothesis that Pax9-deficient mice 

are more susceptible to 4-NQO due to the loss of Pax9 tumour-suppressor 

function. However, this finding must be interpreted with caution. A relatively 

small number of mice were sacrificed after a brief duration of 4-NQO treatment. 

In order to confirm that epithelial dysplasia is induced more rapidly in Pax9-

deficient mice, a future experiment would need to schedule the sacrifice and 

autopsy of matched control and Pax9-deficient mice at short, predetermined 

intervals of treatment (e.g. weekly intervals for the first six weeks). Such 

experiments are likely to require considerably larger mouse populations. The 

incremental loss of mice from early in the experiment would otherwise reduce 

the number of cases exposed for a sufficient length of time to develop OSCC. In 

the current experiment, detection of epithelial dysplasia at two weeks was 

essentially an incidental finding, i.e. it was due to the unexpected loss of mice 

early in the experiment due to a toxic systemic response to 4-NQO rather than 

in accordance with the experimental design. 

5.4.2 Grading of epithelial dysplasia 

The scoring pathologists did not categorise cases according to a stratified grade 

of epithelial dysplasia. There is a risk that this approach has failed to identify 

important differences between and trends with Pax9-deficient mice and controls 

regarding the severity of epithelial dysplasia. It is conceivable that Pax9-

deficient mice develop high-grade epithelial dysplasia more frequently (and/or 

more rapidly) than controls. Such trends would not be detected using the 

current binary (i.e. ‘present’ or ‘absent’) classification. However, there is no 

agreed classification system for grading oral epithelial dysplasia in mice. Mouse 

epithelium is thinner than human epithelium. This confounds the direct 

transference of classification systems for human epithelial dysplasia. It is well 

documented that the grading of human oral epithelial dysplasia is subject to 

inter-observer and intra-observer variability (Kujan et al., 2007). It is our 

experience that grading epithelial dysplasia in control mice is challenging. This 

is due to difficulty in distinguishing between normal epithelial and subtle basal 

cell hyperplasia in the thinner mouse epithelium, and the keratinisation of the 

ventral epithelium as part of the normal microanatomy of the mouse tongue. 

Grading is further complicated in Pax9-deficient mice, in which the normal 
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squamous epithelium shows architectural abnormalities. In the context of an 

already abnormal epithelial architecture, it is conceivable that architectural 

changes specifically reflecting epithelial dysplasia may be either overlooked or 

identified erroneously. These issues reflect the difficulties inherent to the study 

of a genetically modified mouse strain with a unique phenotype. They also 

highlight the need for clear guidelines to be developed for the diagnosis and 

grading of epithelial dysplasia in mice. Such guidelines would support 

researchers using the 4-NQO model and potentially bring greater uniformity and 

reliability to the literature. 

There are also potential ethical implications if cases were stratified according to 

the grade of epithelial dysplasia. By using a binary ‘absent’ or ‘present’ 

approach, the methodology used in the present study is consistent with the 

principle of reducing the number of animals required in an experiment to a 

minimum (Understanding Animal Research, 2014). In order to support valid 

statistical comparisons, considerably larger numbers of mice would be required 

in an experiment that stratified epithelial dysplasia according to the World 

Health Organisation (WHO) or Squamous Intraepithelial Neoplasia (SIN) 

classifications (Barnes et al., 2005). 

5.4.3 Formation of oral squamous cell carcinoma 

4-NQO treatment induced OSCC formation in both control and Pax9-deficient 

mice. However, the majority of OSCC arose in Pax9-deficient mice. This 

provides some support for our hypothesis that Pax9 mutant mice are more 

susceptible to OSCC formation than controls due to the loss of the tumour-

suppressor function of Pax9. 

Across all diagnostic categories, the association between genotype and 

diagnosis was statistically significant. However, statistical comparison according 

to genotype within the group of mice that developed OSCC is compromised by 

the small number of cases (n = 10). Further serial sections will be examined as 

the analysis of the tongue tissue continues beyond this project. It is conceivable 

that further OSCC will be identified during this process. Larger numbers of 

OSCC cases would support further statistical analysis. However, our 

macroscopic analysis and initial histological assessment suggest that the 

number of OSCC is not likely to increase substantially as a result of further 
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sectioning. The present data therefore need to be verified by future experiments 

that use standardised conditions on greater numbers of mice. 

The shortest interval from the start of 4-NQO induction to OSCC formation was 

22 weeks. This is concordant with several previous 4-NQO studies in which 4-

NQO treatment has continued for up to 50 weeks (Ma et al., 1999; Ide et al., 

2001). However, it is longer than the eight-week induction interval reported by 

Hasina et al (2009). In that study, a much higher concentration of 4-NQO was 

used (100 μg/ml). Given the strong association with high dosage and toxic 

systemic effects of 4-NQO, this dose is not feasible to use in a population of 

Pax9-deficient mice. Our data show that the maximum dosage in the present 

study (50 μg/ml 4-NQO) resulted in a rapid toxic systemic effect. It is therefore 

likely that treatment of Pax9-deficient mice with 100 μg/ml 4-NQO would result 

in unnecessary suffering or even premature death. This would be in clear 

breach of the principle of ‘refining’ experiments to ensure that any suffering of 

the animals is kept to an absolute minimum (Understanding Animal Research, 

2014). In fact, it is interesting to note that the majority of mice that developed 

OSCC were actually treated with the lowest concentration (10 μg/ml 4-NQO). 

This confirms findings from previous studies that 10 μg/ml 4-NQO is a sufficient 

concentration to induce OSCC formation, albeit over a longer period (Ma et al., 

1999; Ide et al., 2001). 

It is interesting that the majority of mice that developed dysplastic nodules were 

also Pax9-deficient mice. These dysplastic nodules resemble papillary 

squamous cell carcinoma in humans. The precise criteria required in order to 

establish a diagnosis of papillary squamous cell carcinoma in humans is a 

subject of debate (Barnes et al., 2005). Similar lesions have been described 

previously in mice treated with 4-NQO (Czerninski et al., 2009). As with grading 

epithelial dysplasia, however, established criteria for making this diagnosis in 

mice are not available at present. It is conceivable that some of these dysplastic 

nodules may show invasion of the lamina propria on examination of deeper 

levels. It is also possible that had there been a greater interval between the 

cessation of 4-NQO treatment and sacrifice, some of these lesions may have 

developed into conventional squamous cell carcinoma. Future experiments may 

therefore benefit from an increased time interval from the end of 4-NQO 

treatment to sacrifice/autopsy. The experimental model could be further 
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enhanced by examining the oral cavity of mice under anaesthesia at intervals 

during 4-NQO treatment. Mice with nodular lesions could then be selected for a 

longer interval between cessation of 4-NQO treatment and sacrifice. 

5.4.4 Oesophageal squamous cell carcinoma 

The majority of epithelial dysplasias and invasive squamous cell carcinomas 

involved the oral cavity, specifically the tongue. However, two Pax9-deficient 

mice developed squamous cell carcinoma of the oesophagus. This is consistent 

with the site affinity of 4-NQO documented in the literature to date. This affinity 

reflects the high concentration of diaphorase, a reductase that activates 4-NQO, 

in the oesophagus as well as in the oral cavity (Imaida et al., 1989; Kanojia and 

Vaidya, 2006). It is interesting that these mice were otherwise well and did not 

show extreme weight loss, which might have been expected given the extent of 

oesophageal obstruction. Autopsy did not identify tumours elsewhere in the 

gastrointestinal tract. This is consistent with the negative autopsy findings 

beyond the oral cavity/oesophagus documented by Tang et al (2004). 

5.4.5 Non-specific inflammatory changes 

Only a small subset of mice showed non-specific inflammatory changes and/or 

non-specific ulceration as a result of 4-NQO treatment. This is in concordance 

with the literature regarding the method of action for 4-NQO, which is generally 

less irritant than chemical carcinogens such as DMBA (Eveson and MacDonald, 

1978). 

5.4.6 Systemic effects of 4-NQO induction 

Our data show that Pax9-deficient mutant mice are at greater risk of developing 

a systemic response (i.e. excessive salivation, extreme weight loss) to 4-NQO 

treatment relative to wild-type controls. 

The precise mechanism for this increased sensitivity is unclear. Excessive 

salivation was an early sign in all mice that subsequently deteriorated (i.e. 

developed extreme weight loss and a hunched position). However, it did not 

portend a poor prognosis in all cases. Excessive salivation may have had a 

range of effects, to which mice were variably susceptible: 
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 Excessive salivation may result in fluid loss and dehydration 

 Dehydrated mice may subsequently attempt to maintain homeostasis by 

drinking greater quantities of water: 

o In the context of this experiment, where 4-NQO is present in drinking 

water, this would in turn have increased their exposure to 4-NQO 

o This generates a cycle of deterioration: excessive salivation leads to 

increasing water consumption, thus increasing 4-NQO exposure and 

causing a further increase in salivation, and drinking 

o This cycle culminates in a relentless increase in the concentration of 

4-NQO and its metabolites in the bloodstream 

 Finally, it is possible that excessive salivation may have been accompanied 

by loss of appetite/impaired masticatory efficiency. This would contribute to 

weight loss independent of the other systemic effects of 4-NQO. The dental 

abnormalities detected in a minority of cases were mild and unlikely to have 

significantly compromised masticatory efficiency in isolation. 

The mice that deteriorated most rapidly had only one kidney. Impaired excretion 

of 4-NQO may have further contributed to an increase in systemic 4-NQO 

concentration. It was not possible to identify which Pax9-deficient mice had only 

one kidney prior to beginning 4-NQO treatment. The cause of hunching in these 

mice was unclear. It may have reflected either visceral or muscular pain from 

the abdominal region. Mice with one kidney may have developed kidney failure 

due to 4-NQO toxicity. The hunching may also have been related to kidney 

failure. All organs from these mice have been formalin fixed and stored. 

Histological analysis of vital organs, especially the kidney, may provide greater 

insight into the nature of the systemic impact of 4-NQO. Future experiments 

using Pax9-deficient mice must be designed in order to avoid suffering and loss 

from the experiment of this vulnerable subset of mice with only one kidney. One 

possibility would be to assess the presence of both kidneys prior to 

commencing treatment by imaging, such as CT scanning. 

5.4.7 Optimisation of a combined 4-NQO/Pax9 knockdown model 

Over the past 15 years, several workers have attempted to optimise an 

experimental protocol for the 4-NQO model, varying parameters such as the 

duration, site/mechanism of carcinogen application, overall duration of 
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treatment, and point of sacrifice (Vitale-Cross et al., 2009). Our data suggests 

that experiments involving Pax9-deficient mice should include the following 

design considerations: 

1) Genetic background: Our data showed that Pax9-deficient mice with a 

Black 6 genetic background are more susceptible to 4-NQO than 

mutants with a FVB or hybrid background. Although wild-type Black 6 

mice did not demonstrate a heightened sensitivity to 4-NQO, Pax9-

deficient mice with a Black 6 background are at greater risk of suffering. 

The Black 6 background strain should therefore be avoided in future 

combined 4NQO/Pax9 experiments. Other strains such as FVB and 

hybrids should be used where possible as they are more resilient to the 

systemic effects of 4-NQO 

2) 4-NQO concentration: Our data also show that a concentration of 10 

µg/ml 4-NQO was sufficient to induce formation of epithelial dysplasia 

and OSCC. Concentrations greater than 10 µg/ml are associated with 

increased risk of systemic effects. This suggests that there is little 

experimental benefit in using high dosages of 4-NQO. Loss of Pax9 

mutant mice due to the systemic effects of high 4-NQO concentration 

may compromise the overall efficiency of the experiment through attrition 

of the sample population 

3) Sex: Although the difference in response between males and females 

was not statistically significant, our data suggests that males are more 

resilient to 4-NQO than females. In a study of Pax9-deficient mice, males 

may therefore be better candidates for 4-NQO treatment 

4) Interval between cessation of 4-NQO treatment and sacrifice: Future 

experiments may therefore benefit from an increased time interval from 

the end of 4-NQO treatment to sacrifice/autopsy. This would allow 

dysplastic lesions to progress to OSCC while mice are free from the 

potentially toxic systemic effects of the 4-NQO treatment 

5) Oral inspection: In the present experiment, mice were sacrificed either at 

the end of the planned experimental period or due to toxic systemic 

effects of 4-NQO. The decision to sacrifice and analyse the tongue was 

not based upon the clinical appearances following exposure to 4-NQO. 

This could be modified by performing an oral examination of the mice at 
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intervals following the start of 4-NQO treatment. Mice could then be 

selected for analysis according to whether they had developed a 

potentially dysplastic lesion. Alternatively, mice with clinically identifiable 

lesions could continue 4-NQO treatment for a range of different time 

intervals in order to assess the development of specific types of lesion. 

Oral inspection would need to be performed under a brief general 

anaesthesia (GA). GA is performed at the FGU by a number of research 

groups. Although it would add to the complexity of the experiment, there 

are facilities and suitably trained staff to make this modification feasible 

6) Tissue biopsy: Oral inspection could be complemented and enhanced by 

performing a tissue biopsy while the mouse is under anaesthesia. This 

biopsy could take the form of either a brush biopsy or a small punch 

biopsy. The selection of cases would reduce the numbers of mice 

required for the overall experiment. 

5.4.8 Immunohistochemical profile of normal and dysplastic epithelium 

The increase in Ki-67 and p53 observed in the ventral tongue dysplasias 

compared to normal epithelium is consistent with published literature (Nylander 

et al., 2000; Scholzen and Gerdes, 2000; Kovesi and Szende, 2003; Varun et 

al., 2014). That the increase is present in both Pax9-deficient mice and controls 

suggests that Pax9 inactivation does not interfere with the molecular pathways 

of these key genes, as there is no change between the controls and Pax9 

mutants. Conservation of these pathways suggests that the combined Pax9 

mutant mouse chemical carcinogenesis induction model is a suitable model of 

OSCC formation in humans. In both Pax9-deficient and control mice, Sox2 

expression is increased in epithelial dysplasia compared to normal epithelium. 

This supports evidence from the literature that suggests Sox2 may have an 

oncogenic function in oral carcinogenesis (Freier et al., 2010; Qiao et al., 2013; 

Kokalj Vokač et al., 2014).  
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5.5 Conclusion 

This feasibility study has demonstrated that Pax9-deficient mice are more 

susceptible to OSCC formation than controls. This may be due to loss of the 

tumour-suppressor function of Pax9. However, Pax9-deficient mice are also 

more sensitive to the systemic effects of 4-NQO treatment. Based on these 

data, future experiments using a combined 4-NQO/Pax9 knockdown model 

should be performed using mice with a FVB or hybrid genetic background, as 

these are more resilient to the systemic effects of 4-NQO than mice with a Black 

6 genetic background. Pax9-deficient mice should be imaged prior to treatment 

in order to confirm the presence of two kidneys; only mice with two kidneys 

present should be treated with 4-NQO. A concentration of 10 µg/ml is adequate 

to induce OSCC and a range of precursor lesions within a 24-week period. 

Higher concentrations of 4-NQO have an increased risk of causing toxic 

systemic effects, without significantly reducing the length of the experiment or 

inducing either more or a wider spectrum of epithelial lesions. 28 weeks is a 

suitable length of 4-NQO treatment. A longer interval between cessation of 4-

NQO treatment and sacrifice would allow more time for established precursor 

lesions and OSCC to develop, and thus add value to the experiment. Oral 

inspection in conjunction with a biopsy of the lingual mucosa could be used to 

assess the response of the mucosa to the 4-NQO treatment and guide the 

selection of cases for either sacrifice or a further period of 4-NQO treatment. 

Oral inspection could be carried out at intervals e.g. once per month.
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Chapter 6. Generation of Stably-inducible Oral Squamous Cell 

Carcinoma Cell Lines 

6.1 Introduction 

Normal keratinocytes harvested from the oral cavity for primary cell culture 

generally senesce following three to four passages (Prime et al., 1990). Growth 

in vitro may require mesenchymal support, for example by co-culturing with 

mitomycin C-treated 3T3 fibroblasts (Rheinwald and Green, 1975). Malignant 

keratinocytes derived from oral squamous cell carcinoma (OSCC) exhibit 

diverse phenotypes and may show characteristics of either normal or malignant 

cells (Parkinson, 1989). In contrast to their behaviour in vivo, cells cultured from 

OSCC may show little or no growth in vitro. Lack of growth may be due to 

inappropriate cell culture conditions or insufficient numbers of cancer stem cells 

(Rheinwald and Beckett, 1981). OSCC-derived cells vary in their dependence 

on mesenchymal support. Mesenchymal support may actually compromise the 

growth of some OSCC-derived cells (Rupniak et al., 1985; Prime et al., 1990). 

Despite the challenges that the primary culture of malignant oral keratinocytes 

presents, several well characterised OSCC-derived cell lines have been 

established (Prime et al., 1990; Edington et al., 1995). These cell lines are 

valuable tools in the study of oral carcinogenesis. They have been 

characterised with regard to differentiation, behaviour in vitro (Sugiyama et al., 

1993; Prime et al., 1994a) and tumorigenicity following both subcutaneous and 

orthotopic transplantation in athymic mice (Prime et al., 1994b; Paterson et al., 

2002). Furthermore, the cells have been genetically modified to study the 

functional significance of key molecules in oral carcinogenesis (Paterson et al., 

2002). 

The findings reported in Chapters 4 and 5 suggest that PAX9 has a tumour-

suppressor effect and SOX2 has a tumour-promoting effect. This chapter 

outlines the screening of a panel of OSCC cell lines and selection of two lines 

for stable transfection with plasmid DNA targeting PAX9 and SOX2 expression.  
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6.2 Aims 

The aims of this chapter are: 

1. To summarise the identification and selection of a cell line with low 

endogenous PAX9 expression (for transfection with an inducible PAX9 

expression plasmid) and a cell line with high endogenous SOX2 

expression (for transfection with an inducible SOX2 ‘knock-down’ 

plasmid) 

2. To describe the generation of stably-inducible transfectants using 

lentivirus vectors 

3. To demonstrate proof of principle that the expression constructs are 

functional using an exemplar cell line.  
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6.3 Selection of suitable oral squamous cell lines for transfection 

Nine commercially-available OSCC-derived cell lines were screened by 

assessing PAX9 and SOX2 RNA and protein expression. An immortalised 

normal oral keratinocyte line, OKF6/hTERT, was used as a comparator. A long-

term aim is to test the transfected cell lines in an orthotopic mouse model of 

tumorigenesis (Prime et al., 2004). Consequently, the selection strategy 

combined assessment of relative PAX9 and SOX2 expression with 

consideration of the known tumourigenesis of the parent cell line. 

6.3.1 Semi-quantitative RT-PCR analysis comparing relative PAX9 and 

SOX2 RNA expression in each cell line 

RNA was extracted from each of the cell lines. Semi-quantitative RT-PCR 

analysis was then performed to compare the relative endogenous expression of 

PAX9 and SOX2 RNA in each cell line. Expression of PAX9 and SOX2 RNA 

was normalised relative to expression of the housekeeping gene β-actin (ACTB 

RNA). 

PAX9 RNA expression was low in three of the OSCC cell lines: H103, H314, 

and H357. Interestingly, PAX9 expression was also low in the normal 

keratinocyte OKF6/hTERT control relative to several OSCC-derived cell lines 

(Figure 6-1). Only one OSCC cell line, H400, had higher levels of SOX2 

expression than the OKF6/hTERT control (Figure 6-1). Interestingly, none of the 

OSCC-derived cell lines showed a combination of low PAX9 and high SOX2 

expression, the expression profile anticipated in light of our data from human 

and mouse tissue samples.  
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Figure 6-1 Semi quantitative RT-PCR analysis comparing endogenous PAX9 
and SOX2 RNA expression in a range of cell lines 

Row 1) PAX9 RNA expression was lowest in the H103, H314, and H376 cell lines (red arrows). 
Interestingly, PAX9 expression in the OKF6/hTERT control (lane 1) was low relative to several 
of the OSCC-derived cell lines. Row 2) SOX2 expression was highest in the OKF6/Htert control 
and H400 (red arrows). H400 was the only cell line with SOX2 RNA expression that was higher 
than the OKF6/Htert control after normalising against the ACTB housekeeper (shown in Row 3). 
There were similar band intensities for the ACTB housekeeper, indicating consistent quantities 
of total RNA in the samples.  
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H357 was not considered to be an ideal candidate for transfection with the 

PAX9 over-expression plasmid. Although it had low endogenous PAX9 

expression, it does not form tumours following orthotopic transplantation to 

athymic mice (Prime et al., 2004). By contrast, both H103 and H314 are 

tumorigenic in athymic mice (Prime et al., 2004). Although H103 does not form 

metastases following transplantation, both H103 and H314 were considered to 

be potentially suitable candidates for transfection with the PAX9 over-

expression plasmid. In order to confirm the results of the semi-quantitative RT-

PCR analysis, immunohistochemistry was performed on H103 and H314 to 

determine their relative endogenous expression of PAX9 protein. 

For transfection with the SOX2 knockdown plasmid, the results of the semi-

quantitative RT-PCR analysis suggested that H400 was most suitable due to its 

high endogenous expression of SOX2 RNA. H400 was also suitable in terms of 

its documented experimental behaviour. In vitro, it is the most invasive of the 

OSCC cell lines (Robinson et al., 2003). Moreover, it is also tumorigenic 

following orthotopic transplantation in athymic mice (Prime et al., 2004). 

6.3.2 Immunohistochemical analysis comparing PAX9 and SOX2 protein 

expression in H103, H314, H400, and OKF6/hTERT cell lines 

Expression of PAX9 and SOX2 protein was analysed by immunohistochemistry 

in each of the three candidate OSCC cell lines and in the OKF6/hTERT control. 

Immunohistochemistry was initially performed on cell pellets. However, 

repeated attempts were unsuccessful, resulting in either weakly stained or 

completely negative sections [data not shown]. Key variables in the manual 

immunohistochemical staining protocol were manipulated, including the 

conditions used for antigen retrieval and the length/temperature of incubation 

with primary/secondary antibodies. Unfortunately, staining was consistently 

weak, particularly for SOX2 protein. The reason for this was unclear. It is 

possible that PAX9 and SOX2 antigens were damaged during either 

trypsinisation or preparation of the cell pellets. 

As an alternative strategy, immunocytochemistry was performed on cells 

prepared using the Surepath™ technique. Cells were trypsinised and 

transferred in suspension to the Department of Cellular Pathology, where 
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Surepath™ preparations were performed by Biomedical Scientists. Stained 

slides were scanned using the Aperio CS2 Scanscope™ platform and 

underwent digital image analysis. 

Using the Surepath™ preparations, immunostaining for both PAX9 and SOX2 

was stronger than that of the corresponding cell pellets. It confirmed the relative 

expression of PAX9 and SOX2 RNA identified by semi-quantitative RT-PCR 

analysis. PAX9 protein expression was low in H103 and H314 relative to both 

OKF6/hTERT and H400. PAX9 expression was lowest in the H314 cell line 

(Figure 6-2A). SOX2 staining was weaker than PAX9 staining across all the cell 

lines. However, SOX2 expression was appreciably stronger in OKF6/hTERT 

and H400 relative to H103/H314. SOX2 expression was almost entirely absent 

from H314 cells (Figure 6-2B). 

Digital image analysis of the Surepath™ stained slides confirmed that PAX9 

expression was lower in the H314 cell line than in H103 (Table 6-1). By contrast 

to the results of semi-quantitative RT-PCR analysis, SOX2 expression was 

actually higher in OKF6/hTERT relative to H400. However, SOX2 expression in 

the H400 cell line was consistently higher than in either H103 or H314 (Table 

6-1). 

Table 6-1 Summary of digital image analysis of PAX9 and SOX2 protein 
expression by immunohistochemistry in OKF6/hTERT, H400, H103, and H314 cell 
lines 

 

Cell line PAX9  SOX2 

PPN 3+PN Rank* PPN 3+PN Rank** 

OKF6 99.1 37.2 4 50.0 1.06 1 

H400 89.0 35.5 3 18.1 0.371 2 

H103 83.2 1.12 2 4.54 0.0486 3 

H314 77.8 0.289 1 0.550 0.322 4 

*Ranked low to high (1 = lowest; 4 = highest) 

**Ranked high to low (1 = highest; 4 = lowest)   
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Figure 6-2 PAX9 and SOX2 protein expression by immunohistochemistry in 
OKF6/hTERT, H103, H314, and H400 cell lines 

A) PAX9 protein expression was low in both H103/H314 relative to the OKF6/hTERT control line 
and H400. PAX9 expression was lowest in the H314 cell line. B) Across all the cell lines, SOX2 
immunostaining was weak compared to PAX9 staining. However, SOX2 expression was 
appreciably higher in OKF6/hTERT and H400 than in either H103 or H314. SOX2 expression 
was almost entirely absent from the H314 cell line. 

Images taken at x100 magnification.  
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6.3.3 Immunohistochemical confirmation of squamous differentiation of 

the cultured cells 

The cell lines were cultured for several months while the RNA and protein 

assays were performed. The cell lines exhibited differences in cytomorphology. 

In particular, H314 showed a spindle-shaped morphology that was dissimilar to 

that of the OKF6/hTERT control. H400 and H103 were polygonal and more 

closely resembled normal keratinocytes. There was concern that H314 may 

have undergone epithelial-mesenchymal transition during in vitro culture. Loss 

of squamous differentiation would make it an unsuitable candidate for 

transfection with the PAX9 over-expression plasmid. Squamous differentiation 

was therefore verified by immunohistochemistry. Staining was performed on cell 

pellets using the automated Ventana platform in the Department of Cellular 

Pathology. Assays were performed for two markers of squamous differentiation, 

cytokeratin 5/6 (CK5/6) and p63. 

Interestingly, automated immunostaining of the cell pellets was more successful 

than the manual immunostaining for either PAX9 or SOX2. Each of the cell lines 

exhibited strong cytoplasmic expression of the squamous marker CK5/6. Each 

cell line also showed strong nuclear expression of p63 (Figure 6-3). This 

confirmed that despite its spindle-shaped morphology, H314 continued to 

exhibit squamous differentiation. 

6.3.4 Final selection of parent OSCC lines for transfection with PAX9 and 

SOX2 constructs 

It was decided to use H314 for transfection with the PAX9 over-expression 

plasmid, as it had lower endogenous PAX9 expression than H103. H314 was 

also preferable in that it forms metastases following orthotopic transplantation to 

athymic mice, whereas H103 does not (Prime et al., 2004). H400 is tumorigenic 

in athymic mice, and both assays confirmed that it has high endogenous 

expression of SOX2 relative to other OSCC cell lines. H400 was therefore 

selected for transfection with the SOX2 knockdown plasmid. The characteristics 

of the selected cell lines are summarised in Table 6-2.  
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Figure 6-3 Immunohistochemical confirmation of squamous differentiation in 
OKF6/hTERT, H103, H314, and H400 cell lines 

Each of the four cell lines showed strong cytoplasmic expression of CK5/6 and strong nuclear 
expression of p63. The intensity of staining in the H314 line is similar to that in the other OSCC-
derived lines (H103 and H400) and the OKF6/hTERT control. This indicates that H314 retains 
squamous differentiation despite its spindle-shaped growth pattern in vitro. 

Images taken at x100 magnification. 
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Table 6-2 Summary of the selected cell lines and their PAX9/SOX2 expression profiles, donor characteristics, and behaviour following 
orthotopic transplantation into athymic mice 

 

Cell 
line 

Experimental 
aim 

Inducible 
construct 
design 

mRNA Protein Donor characteristics Orthotopic transplantation 

PAX9 SOX2 PAX9 SOX2 Site Lymph node 
metastasis 

Distant 
metastasis 

Tumour 
formation 

Response to 
TGF-β 

Metastasis 

H314 PAX9 tumour 
suppressor 
function 

PAX9 over-
expression 

↓ ↓ ↓ ↓ FOM + - +++ Refractory +++ 

H400 SOX2 
oncogenic 
function 

SOX2 
knockdown 

↑ ↑ ↑ ↑ AP - - ++ Marked 
inhibition 

- 

(FOM – floor of mouth; AP – anterior palate) 

N.B. Both lines were derived from pStage II moderately differentiated squamous cell carcinoma. 
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6.4 Generation of tetracycline-inducible plasmid constructs 

Generation of the PAX9 over-expression cell line was initially planned using the 

T-REx™ system (Invitrogen, Life Technologies, Paisley, UK). The T-REx™ 

system is a tetracycline-regulated mammalian expression system in which the 

chosen cell line is serially transfected with two separate plasmids. The first is 

the regulator plasmid, pcDNA6/TR©, which generates high levels of 

tetracycline-repressor (TetR) protein under the control of a cytomegalovirus 

(CMV) promoter sequence. The second plasmid, pcDNA™4/TO/lacz, contains 

the gene of interest located downstream to a ‘Tetracycline-on’ (TetO) sequence. 

In the absence of tetracycline, the pcDNA6/TR© regulator produces TetR 

molecules which subsequently form a homodimer. The homodimer binds to the 

TetO sequence in the main pcDNA™4/TO/lacz plasmid, blocking transcription 

of the gene of interest. When added, tetracycline binds to the TetR molecules 

and induces a conformational change, forcing cleavage of the homodimer and 

dissociation from the pcDNA™4/TO/lacz plasmid. The gene of interest is 

therefore de-repressed and subsequently transcribed. 

The experimental pcDNA™4/TO/lacz plasmid was constructed in three stages 

(Figure 6-4). In the first stage, human PAX9 cDNA was ligated into the Zero 

Blunt® pCR vector (Invitrogen, Life Technologies, Paisley, UK) alongside a 

Kozak sequence. The plasmid product was expanded through transformation 

into TOP10 chemically competent E. coli (Invitrogen Life Technologies, Paisley, 

UK). In the next stage, the final cassette was constructed by ligating the PAX9-

kozak sequence with internal ribosomal entry site (IRES) and enhanced green 

fluorescent protein (EGFP) sequences in the second vector. The cassette was 

verified by analytical restriction digests and then inserted into the T-REx™ 

pcDNA™4/TO/lacz plasmid in the third stage (Figure 6-4). 
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Figure 6-4 Generation of the T-REx™ tetracycline-inducible PAX9 pcDNA™4/TO/lacz plasmid 

The PAX9/Kozak sequence was expanded and purified, then inserted alongside an IRES-EGFP sequence in the second vector to construct the final cassette. After 
being verified by analytical restriction digests, the cassette was then inserted into the pcDNA™4/TO/lacz plasmid. 

(IRES – internal ribosome entry site; EGFP – enhanced green fluorescence protein; CMV – strong human cytomegalovirus; bGH-pA - reverse primer sequence. The 
red line at the start of the PAX9 sequence indicates the position of the Kozak sequence. Kanamycin and ampicillin antibiotics were used to select successfully 
transformed clones.) 
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6.5 Plasmid transfection of selected cell lines 

The cell line transfections were out sourced to Dundee Cell Products Ltd (DCP). 

In the T-Rex™ system, the first of the serial transfections introduces the 

regulatory tetracycline-repressor plasmid, DNA vector pcDNA6/TR©, into the 

chosen cell line. In order to increase the transfection efficiency, DCP scientists 

first linearized the pcDNA6/TR© vector using the SapI restriction enzyme. 

Further analytical digests were performed to verify that the correct vector was 

being used for the transfections. Approximately 150-200 µg of plasmid vector 

pcDNA6/TR© DNA was used for each transfection. DCP scientists used two 

transfection methods: Lipofectamine® 2000 Transfection Reagent (Life 

Technologies, Paisley, UK) (Felgner and Ringold, 1989) and calcium phosphate 

(Chen and Okayama, 1987). 

6.5.1 Low transfection efficiency of H314 and H400 cell lines 

A control plasmid was used to determine the transfection efficiency of both the 

H314 and H400 cell lines. DCP routinely use a commercially-available control 

plasmid to determine the transfection efficiency of a range of different 

mammalian cell lines. The control plasmid includes a green fluorescent protein 

sequence (Vivid Colors™, Life Technologies, Paisley, UK) that enables 

transfected cells to be detected by immunofluorescence. 

Immunofluorescence following transfection with the control plasmid showed low 

transfection efficiency for both H314 (~1-2%) and H400 (~10-20%). DCP 

reported that a large number of cells were used for the transfections in order to 

increase the probability of transfecting some of the cells. 

6.5.2 Blasticidin selection of transfected clones 

Following transfection with the regulatory pcDNA6/TR© plasmid, the cell lines 

were grown in the antibiotic blasticidin to select the transfected clones. Prior to 

selection, DCP performed triplicate kill curve analysis of the H314 and H400 cell 

lines to determine their blasticidin tolerance. The manufacturer’s recommended 

range of concentrations for use in mammalian cell lines is 1 – 10 μg/ml 

(InvivoGen, Toulouse, France). Scientists at DCP initially established the kill 

curve at a higher range of between 2 and 60 μg/ml.a 



188 

 

Subsequent to their kill curve analysis, DCP used blasticidin at a concentration 

of 10 μg/ml for selection. However, selection with 10 μg/ml blasticidin following 

the first attempt at the transfections was cytotoxic. Following later attempts at 

the transfections, a lower concentration of 5 μg/ml blasticidin was used. 

However, selection at this lower concentration was also cytotoxic. The absence 

of blasticidin-resistant clones, combined with low transfection efficiency of the 

control plasmid, suggested that the transfections had failed to introduce the 

regulator pcDNA6/TR© plasmid into either of the chosen cell lines, 

consequently, it was decided to terminate the transfection experiments. 

6.6 Lentivirus transfection of selected cell lines 

Lentivirus transfections are known to have higher transfection efficiency than 

liposome-based delivery systems (Ambrosini et al., 1999; Wiznerowicz and 

Trono, 2003). Lentivirus transfections were carried out in a level 3 containment 

tissue culture facility in the School of Medial Sciences, Newcastle University, in 

collaboration with the Dermatology Research group. The original experimental 

design was modified in order to maximise the long-term value of this 

collaboration. It was decided to transfect both parent cell lines (H314, H400) 

with both the PAX9/SOX2 knockdown particles and PAX9/SOX2 over-

expression particles. 

Generation of the PAX9 and SOX2 knockdown cell lines involved a single stage 

transfection with pTRIPZ™ lentivirus particles (Thermo Scientific, Life 

Technologies, UK). The pTRIPZ™ particles have a ‘tetracycline-on’ (TetO) 

design. Custom made pTRIPZ™ lentivirus particles were generated by Thermo 

Scientific. The custom made particles contained PAX9 and SOX2 short hair-pin 

inhibitory RNA (shRNAi) sequences downstream to a TetO sequence. In the 

pTRIPZ™ system, addition of tetracycline to transfected cells induces 

transcription of shRNAi to the gene of interest. The shRNAi subsequently 

inhibits transcription of the gene of interest, resulting in knockdown of 

endogenous protein expression. The pTRIPZ™ particles include a puromycin 

resistance cassette to facilitate selection and a red fluorescence protein (RFP) 

cassette to help visualise the transfected clones. 
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Generation of the PAX9 and SOX2 over-expression cell lines involved serial 

transfections with two lentivirus particles. In the first stage, the cell lines were 

transfected with ready-made Tetracycline-repressor lentiviral particles (Amsbio, 

AMS Biotechnology, UK). The lentiviral particles included a blasticidin-RFP 

fusion gene vector that facilitates selection and visualisation of transfected 

clones. The transfected clones subsequently produce tetracycline-repressor 

(TetR) protein. In the second stage, these TetR protein producing clones are 

transfected with custom-made lentiviral particles which contain a 

tetracycline/cytomegalovirus (Tet/CMV) sequence upstream of a PAX9/SOX2 

sequence (PAX9 lentiviral particles - Amsbio, AMS Biotechnology, UK; SOX2 

and non-targeting control particles – addgene, Cambridge, MA, USA). In the 

absence of tetracycline, transcription of PAX9/SOX2 is inhibited by binding of 

the TetR protein to the Tet/CMV sequence. Addition of tetracycline induces a 

conformational change in the TetR protein, which then dissociates from the 

Tet/CMV sequence. The Tet/CMV sequence subsequently promotes 

transcription of the target gene. The custom-made particles also contain a 

puromycin resistance cassette to facilitate selection following the second 

transfection. 

The experimental outline for the lentivirus transfections is summarised in the 

appendix. The cell lines were transfected with non-targeting controls in both the 

knockdown and over-expression experiments. 

6.6.1 Tolerance of parent H314 and H400 to puromycin and blasticidin 

The parent H314 and H400 cell lines were thawed down in the Dermatology 

Research tissue culture facility. When sufficiently expanded, the cells were 

seeded into 24-well plates at a density of 18,000 cells/well. In order to 

determine the tolerance of the parent lines to puromycin and blasticidin, cells 

were treated with variable concentrations of each antibiotic (puromycin 0 – 4 

µg/ml; blasticidin 0 – 10 µg/ml). The cells were treated in two groups: one was 

treated with antibiotic at seeding, the other was treated 24 hours after seeding. 

Antibiotic culture medium was replenished at intervals of 48 and 72 hours. 

Puromycin was required for selection of transfected cells in both knockdown 

and over-expression experiments. H314 was more sensitive to puromycin than 
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H400, with a more rapid cytotoxic response at high concentrations. However, at 

4 day following puromycin treatment, both H314 and H400 cell lines showed a 

cytotoxic response at concentrations at/above 0.5 µg/ml puromycin (H400 

shown in Figure 6-5). This concentration was therefore used for selection 

following transfections. 

Both the H314 and H400 cell lines showed similar tolerance to blasticidin, with a 

cytotoxic response at concentrations above 5 µg/ml [data not shown]. It was 

therefore decided to use 5 µg/ml blasticidin to select transfected clones 

following stage one of the over-expression experiment. This was the 

concentration that had been used by DCP following transfection with 

pcDNA6/TR© plasmid. 

Both antibiotics showed a similar cytotoxic effect at day four, irrespective of 

whether treatment started at seeding or at 24 hours after seeding. 
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Figure 6-5 H400 cells at day four following puromycin treatment at seeding 

At day four, untreated cells and those treated with the two lowest concentrations of puromycin 
(0.05 µg/ml and 0.1 µg/ml) were confluent. Cell growth was reduced at a concentration of 0.25 
µg/ml puromycin; however, there were a few viable cells at this concentration. Puromycin was 
cytotoxic at concentrations of 0.5 µg/ml and above. 

Images taken at x100 magnification.  
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6.6.2 PAX9 and SOX2 knockdown transfections 

H314 and H400 parent cell lines were transfected with PAX9, SOX2, and non-

targeting control pTRIPZ™ lentivirus particles according to the standard 

protocol used in the Dermatology Research tissue culture facility (Chapter 2, 

section 2.9). The transfected cells were seeded into T175 flasks and treated 

with 0.5 µg/ml puromycin. Unfortunately, the cells did not survive following the 

first attempt. There were a number of possible reasons for this: 1) the cells may 

have been trypsinised too soon following transfection; 2) the seeding density 

may have been too low; 3) puromycin selection may have been started too 

early. 

The transfections were repeated under the same conditions. However, following 

transfection the conditions were adjusted in order to give the cells more time to 

recover and increase their probability of surviving puromycin selection. 

Specifically, the cells were 1) incubated for 24 hours in the six-well transfection 

plates prior to being trypsinised; 2) seeded into smaller T25 flasks after 

passaging; and 3) puromycin selection was started 24 hours following seeding. 

The second attempt at transfecting both parent cell lines was successful. At day 

two following the start of puromycin selection, examination under an inverse 

light microscope showed a mixed population of cells that included adherent, 

viable cells and detached, non-viable cells. After one week of puromycin 

selection, the cells were expanded in normal culture medium. At the next 

passage, the transfected cells were seeded into six-well plates at a density of 

1x105 cells per well. At 24 hours, the culture media was replaced and the cells 

treated with doxycycline at six different concentrations (ranging from 0 to 1 

µg/ml). When the majority of wells were confluent (H400 – day four; H314 – day 

six), they were examined using an inverse fluorescence microscope. 

Transfected cells treated with diluent alone were negative. By contrast, each of 

the transfected lines treated with doxycycline at a concentration of 25 ng/ml or 

more showed a red fluorescent signal (H400 SOX2 TRIPZ ™ shown in Figure 

6-6). Cells treated with the highest doxycycline concentration (1 µg/ml) showed 

the most intense signal, but were generally less confluent than cells treated at 

concentrations at/below 500 ng/ml. This suggests that high doxycycline 

concentrations may have a mild cytotoxic effect.  
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Figure 6-6 Immunofluorescence of H400 SOX2 pTRIPZ™ cells after four days 
of induction with doxycycline 

H400 SOX2 pTRIPZ™ cells showed a positive RFP signal at day four following administration of 
doxycycline. Cells treated with the highest concentration (1 µg/ml, top left panel) showed the 
most intense signal, but were less confluent than cells treated at/below a concentration of 500 
ng/ml doxycycline. Cells that were not treated with doxycycline failed to show a red fluorescent 
signal (lower right). The light microscopy image (inset) confirms that this untreated group were 
confluent at the time of imaging. 

Images taken at x100 magnification.  
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6.6.3 PAX9 and SOX2 over-expression transfections 

Amsbio were unable to offer guidelines as to the quantity of the TetR lentiviral 

solution (LVP017-Bsd-RFP) required for the first stage transfection of our 

chosen cell lines. The solution contained a high concentration of lentiviral 

particles (1x 107 IFU/mL). As there had been a high transfection efficiency using 

the pTRIPZ™ system, it was decided to treat each well with a small amount (5 

µl) of the lentiviral particles during the first attempt. H314 and H400 cells were 

seeded into four wells of a six-well plate (100,000 cells per well) for transfection 

with TetR lentiviral particles. The transfection was performed under standard 

conditions as described in Chapter 2, section 2.9. 

Following the transfection, the cells were grown in culture containing 5 µg/ml 

blasticidin to select the transfected cells and induce the RFP cassette. 

However, at day four examination on the immunofluorescence microscope was 

negative [data not shown]. The cells were viable and seemed to be resistant to 

blasticidin. Selection was continued and the cells incubated under standard 

conditions. However, further examination at days six and ten also failed to show 

a positive red fluorescent signal [data not shown]. The negative results were 

interpreted to mean that the transfections had failed due to treatment with an 

insufficient quantity of the lentivirus solution. 

The transfections were repeated using a larger quantity of the TetR lentiviral 

solution. H314 and H400 cells were seeded into two wells of a 24-well plate (1.8 

x 104 cells/well). When suitably confluent, the cells were treated with 40 µl of the 

lentivirus solution. The transfection was otherwise performed according to the 

standard protocol. However, following several days of blasticidin selection the 

cells were again viable in the absence of a positive fluorescence signal. 

Amsbio were contacted for further advice. They reported that the RFP 

sequence was detectable on their microscopes using a modified DS Red filter at 

an excitation of 545 nm and emission of 620 nm. A TRITC filter had been used 

to detect the positive fluorescence signal from the pTRIPZ™ lines. It was 

therefore possible that a positive signal was being missed due to a different 

filter being used. 
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Unfortunately, a DS red filter was not available for use on our inverse 

microscope. The transfected cells were grown as monolayers in chamber 

slides. After three days, the cell monolayers were fixed and mounted with cover 

slips. The slides were then viewed using a DS Red filter in a Nikon confocal 

light microscope system. This detected a weak red signal in each of the 

transfected lines, including the clones originally treated with just 5 µl of the TetR 

lentivirus solution [data not shown]. 

The transfected H314TetR and H400TetR clones subsequently underwent the 

second stage in which they were transfected with lentivirus particles encoding 

PAX9, SOX2, and non-targeting sequences. Following the second transfection, 

cells were selected in puromycin at a concentration of 0.5 µg/ml. After day two 

of puromycin selection, there were mixed populations of cells including 

adherent, viable cells and detached, non-viable cells. Following one week of 

puromycin selection, the cells were expanded, frozen down and archived under 

liquid nitrogen.  
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6.7 Characterisation of H400 SOX2 pTRIPZ cell line 

Full characterisation of the transfected cell lines was outside the remit of the 

thesis; however, proof of principle that the expression constructs were 

functional was explored using one exemplar cell line. This section outlines the 

initial characterisation of H400 SOX2 pTRIPZ™ cell line. 

6.7.1 Semi-quantitative reverse transcription PCR 

The H400 SOX2 pTRIPZ™ line was seeded into a six-well plates and treated 

with doxycycline at the concentrations summarised in section 6.6.1. When 

confluent, RNA was extracted from the cells using Trizol. The RNA was then 

reverse transcribed (Chapter 2, section 2.10.3) and cDNA samples used for 

semi-quantitative PCR analysis. For each sample, two PCRs were performed: 

one using primers that amplified SOX2 and a second using primers that 

amplified the housekeeper β-actin (ACTB RNA). 

The samples were run on a 2% agarose gel. Each showed bands at the 

expected lengths (SOX2 - 191 base pairs; ACTB – 550 base pairs). For SOX2, 

there was an inverse relationship between band intensity and doxycycline 

concentration. The band intensity increased as the doxycycline concentration 

decreased. The untreated H400 SOX2 pTRIPZ™ sample showed the highest 

band intensity, which was similar to that of the non-transfected parent line 

(Figure 6-7A). There was some variation in the intensity of the ACTB band, but 

this did not show a specific correlation with doxycycline concentration (Figure 

6-7B). However, variable ACTB band intensity suggests the samples may have 

contained different quantities of total RNA. 
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Figure 6-7 Gel Doc™ image showing RT-PCR product of H400 SOX2 pTRIPZ™ 
lines treated with doxycycline and two non-transfected parent lines 

A) SOX2 assay. Lanes 1 – 6 show an inverse relationship between SOX2 band intensity and 
doxycycline concentration. The band intensity is lowest in the sample treated with 1 µg/ml 
doxycycline (lane 1, arrowed) and increases as the concentration of doxycycline decreases. 
Band intensity is highest in the untreated sample (lane 6, arrowed), which is similar to that of the 
native H400 cell line samples (lanes 7, 8).B) ACTB assay. The samples show some variation in 
the ACTB band intensity, suggesting they contain variable quantities of total RNA.  



198 

 

6.7.2 Quantitative PCR 

Following semi-quantitative RT-PCR analysis, the cDNA samples were 

amplified by real-time quantitative PCR (qPCR) to provide a more accurate 

assessment of SOX2 knock down in the H400 SOX2 pTRIPZ™ cell line. A 96-

well plate was set up with triplicate repeats for each sample. The plate was run 

on an Applied Biosystems® 7500 Real-Time PCR machine (Life Technologies, 

Paisley, UK). Cycle threshold values were used to calculate mean fold values 

as described in Chapter 2 (section 2.10.5). Samples were then ranked 

according to their mean fold value (Table 6-3). 

The non-transfected H400 parent cell lines had the highest ranking, followed by 

the non-treated H400 SOX2 pTRIPZ™ sample. Overall, the mean fold values 

showed the same trend that had been identified by semi-quantitative RNA 

analysis, i.e. there was an inverse relationship between the mean fold value and 

doxycycline concentration. However, several of the mean fold values did not fit 

this relationship in a continuous pattern. Samples 2 and 5 (treated with 500 and 

25 ng/ml doxycycline) had the same mean fold value, as did samples 3 and 4 

(treated with 100 and 50 ng/ml). These outliers may have been caused by 

variation in the quantity of ACTB RNA. 

Table 6-3 Ranked qPCR mean fold values for H400 SOX2 TRIPZ™ samples 
and two non-transfected H400 parent cell lines 

 

Sample number* Mean fold value Rank** 

1 0.07 6 

2 0.17 4 

3 0.11 5 

4 0.11 5 

5 0.17 4 

6 0.22 3 

7 1.00 2 

8 1.02 1 

*As per lane key in Figure 7; ** Ranked high =1; low = 8  
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6.7.3 SOX2 protein quantification by Western blot 

The transfected lines were seeded into six-well plates and treated with 

doxycycline at the same concentrations as those used for RNA preparation. 

Protein was extracted from the transfected lines using RIPA buffer (Sigma 

Aldrich, UK; Chapter 2, section 2.10.6). Western blotting was performed on 

each of the samples using antibodies to both SOX2 and GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase). 

Analysis of band intensity confirms the inverse relationship between SOX2 band 

intensity (expected band width – 35 kDa) and doxycycline concentration. Band 

intensity is weakest for the sample treated with the highest concentration of 

doxycycline (1 µg/ml) and increases as the concentration of doxycycline 

decreases. Untreated H400 SOX2 pTRIPZ™ had the highest band intensity, 

similar to that of the non-transfected parent lines (Figure 6-8A). The Western 

blot for GAPDH (expected band length of 37 kDa) shows a similar band 

intensity for each sample (Figure 6-8B). This indicates that there were similar 

quantities of total protein in each of the samples. Overall, comparison of relative 

SOX2 protein expression by Western blot confirmed the trends identified by 

comparison of SOX2 RNA. Together, the results indicates that doxycycline 

administration induces knockdown of SOX2 expression in H400 SOX2 

pTRIPZ™.  
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Figure 6-8 Western blot showing SOX2 and GAPDH protein levels in H400 
SOX2 pTRIPZ™ cells treated with doxycycline and non-transfected parent lines 

A) SOX2 assay. At the expected band length of 35 kDa, there was an inverse relationship 
between band intensity and doxycycline concentration. Band intensity is lowest in the sample 
treated with 1 µg/ml doxycycline (lane 1, arrowed) and increases as the concentration of 
doxycycline reduces. Intensity is highest in the untreated sample (lane 6, arrowed), which 
shows a similar band intensity to that of the parent H400 cells (lanes 7, 8).There are non-
specific bands at ~45 and 55 kDa, which show the opposite relationship to doxycycline 
concentration. 

B) GAPDH assay. The Western blot shows similar GAPDH band intensity (expected band 
length 37 kDa) for each sample, indicating that they contained similar quantities of total protein.  
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6.8 Discussion around the limitations of the work carried out to date and 

suggestions for future work 

6.8.1 Endogenous expression of PAX9 and SOX2 in parent OSCC lines  

Identification of suitable OSCC cell lines for transfection relied on two assays, 1) 

semi-quantitative analysis of reverse transcription PCR (RT-PCR) data to 

compare relative RNA expression, and 2) manual immunohistochemistry to 

compare relative protein expression. These techniques were used as they were 

already established in our laboratory and had been optimised on a range of 

other samples (e.g. the protocol for manual PAX9 immunohistochemistry had 

been performed successfully on both human and mouse tissue).  

Quantitative real-time PCR (qPCR) analysis of RNA and Western blot analysis 

of protein levels may have provided more accurate data and helped to 

distinguish more reliably between the endogenous expression of PAX9/SOX2 in 

each cell line. However, protocols for these techniques were not developed at 

that stage in the experiment. To do so may have delayed starting the 

transfections. The protocols used in the initial characterisation of the pTRIPZ™ 

cell lines still require modification (see next points). When these protocols are 

optimised, qPCR and Western blots may be performed on each of the 

candidate OSCC cell lines in order to verify our selection of H314/H400. 

6.8.2 Failure of PAX9 and SOX2 immunohistochemistry on cell pellets 

It remains unclear why PAX9 and SOX2 immunohistochemical staining was 

unsuccessful using cell pellets. This finding is particularly unusual given that the 

cell pellets stained positively for AE1/AE3, CK5/6, and p63 using the automated 

Ventana platform. It may be that the PAX9/SOX2 antigens are more sensitive 

than cytokeratin/p63 either to trypsinisation or specific steps in the preparation 

of cell pellets.  

Since the initial screening of the cell lines, SOX2 immunohistochemistry has 

been optimised on the automated Ventana platform. In future, it will therefore be 

possible to perform SOX2 immunohistochemistry on cell pellets using the 

Ventana platform. Similarly, a new PAX9 antibody that may be suitable for use 
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on the Ventana platform has been now identified. Further work could also be 

carried out to optimise the preparation of the cell pellets. 

6.8.3 Cytoplasmic immunostaining using Surepath™ preparations 

Stronger immunostaining was achieved using Surepath™ preparations 

compared to the cell pellets. However, the expected nuclear signal was 

accompanied by non-specific cytoplasmic staining. This was particularly 

noticeable for PAX9. It may have contributed to the high PAX9 PPN and 3+PN 

values generated by digital image analysis. This non-specific staining may 

reflect cellular disruption caused during trypsinisation or preparation of the 

Surepath™ slides. 

The protocol for preparing the Surepath™ slides has already been optimised for 

use on human cells. It is used regularly in the Department of Cellular Pathology 

for diagnostic immunocytochemistry. It is therefore unlikely that the existing 

protocol can be further optimised to reduce the cytoplasmic staining. If improved 

immunostaining of cell pellets can be achieved by using the Ventana platform, it 

may not be necessary to continue using Surepath™ in future. If Surepath™ 

slides are used again, the immunostaining protocol could be adjusted by 

reducing the antigen and/or DAB incubation times. 

6.8.4 Housekeeper controls for RT-PCT, qPCR, and Western blotting 

During initial characterisation of the H400 pTRIPZ™ line, the housekeeper β-

actin (ACTB RNA) was used as a control for RT-PCR/qPCR whereas GAPDH 

was used for Western blotting. ACTB was chosen as the control for RT-PCR 

and qPCR as the ACTB RT-PCR protocol had already been optimised in our 

laboratory. It had also been used during the screening of candidate OSCC cell 

lines. However, there is anecdotal evidence that ACTB is sensitive to 

doxycycline [Martina Elias, personal communication]. Sensitivity to doxycycline 

may account for the contrast between the consistent ACTB band intensity 

detected while screening native OSCC lines, and the variable band intensity 

detected while characterising doxycycline-treated H400 SOX2 pTRIPZ™ cells. 

It may also account for the aberrant mean fold values detected by qPCR. 

Together, the RT-PCR and qPCR results suggests that doxycycline impacts 
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ACTB transcription and is therefore an unsuitable control for induction 

experiments. 

Western blot analysis showed consistent GAPDH protein band intensity. This 

suggests that the samples had even quantities of total protein and that GAPDH 

is more resistant to doxycycline than ACTB. Further work is required to optimise 

a protocol for RT-PCR and qPCR using GAPDH primers. However, GAPDH 

may be a more suitable housekeeping control in future experiments. 

6.8.5 Quantity and quality of RNA/protein samples 

There has been some difficulty in extracting RNA from the cell lines prior to RT-

PCR and qPCR. The RNA yield from the H314 cell lines has been particularly 

low. The current RNA extraction technique TRIzol® Reagent (Life 

Technologies, Paisley, UK). TRIzol® is used to lyse and extract RNA from 

tissue samples. It may be too strong to extract RNA from cultured cells. An 

alternative reagent designed specifically for extracting RNA from cultured cells, 

such as Reliaprep™ RNA Cell Miniprep System (Promega, UK), may yield 

greater quantities of RNA. Cells could also be grown in larger wells and left until 

they had achieved 100% confluence prior to extracting RNA. 

6.8.6 PAX9 antibody for Western blotting 

SOX2 Western blotting has successfully used the same antibody used for 

manual immunohistochemistry. By contrast, PAX9 Western blotting has been 

unsuccessful to date. The PAX9 antibody used for manual PAX9 

immunostaining is a monoclonal rat antibody produced from hybridoma cell 

lines (Abcam, Cambridge, UK). As it is a cell supernatant, the antibody’s precise 

concentration is unknown. This makes it difficult to calculate appropriate 

dilutions for use in Western blotting. In immunohistochemistry, is effective at a 

1:40 concentration. However, similarly high concentrations have not worked in 

the Western blot. An alternative rabbit monoclonal PAX9 antibody has been 

now identified (D9F1N, Cell Signalling Technology®, US). Further work is 

required to optimise the protocol for this antibody before PAX9 knockdown can 

be verified in either the H314 PAX9 pTRIPZ™ or H400 PAX9 pTRIPZ™ cell 

lines.  
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6.8.7 Polyclonal population of transfected cells 

The transfected cell lines currently comprise a polyclonal population of cells in 

which lentiviral DNA has integrated at different sites in the host genome. 

Depending on the experimental model, it may be preferable to work with a 

polyclonal population as problems arising from specific genome integration sites 

are avoided. However, induction/knockdown of gene expression in a polyclonal 

population can be inefficient. There may also be ‘leaky’ non-specific expression 

in the absence of the inducing agent [Prof. Josef Heidenreich, personal 

communication]. 

As the initial characterisation is incomplete, it is too early to say whether either 

of these potential problems will have a significant impact on our cell lines. 

However, it may prove necessary to work with defined clones in the future. 

Individual clones could be selected by seeding the cells in petri dishes at low 

density. After being selected in a blasticidin/doxycycline culture, cloning rings 

can then be applied around colonies with strongly-positive fluorescent signals. 

When colonies are confluent within the cloning ring, they can then be 

trypsinised and transferred to a 24-well plate for further expansion. It has been 

recommended that a minimum of three clones should be characterised and 

used for functional assays. Using an isolated clone may yield aberrant results 

that reflect the impact of the integration site as opposed to the impact of 

modifying expression of the gene of interest [Prof. Josef Heidenreich, personal 

communication]. 

6.8.8 Functional assays 

Once the polyclonal cell lines have been characterised it will be possible to 

begin functional assays. We plan to analyse basic cellular parameters of the 

transfected cells and compare these with native, non-transfected control lines. 

These parameters include determination of cellular viability, using the MTT 

assay, and cellular proliferation and apoptosis, using fluorescence-activated cell 

sorting (FACS) analysis. In the longer term, the genetic pathways regulating the 

molecular changes identified in the inducible PAX9 and SOX2 OSCC cell lines 

could be delineated by DNA microarray analysis. This would generate genome 
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wide expression profiles, which can be analysed by bioinformatics. Significant 

changes in gene expression can be further validated by qPCR. 

6.9 Conclusion 

This study identified cell lines with low endogenous PAX9 expression (for 

transfection with an inducible PAX9 over-expression plasmid) and high 

endogenous SOX2 expression (for transfection with an inducible SOX2 ‘knock-

down’ plasmid). H314 was selected for inducible PAX9 expression and H400 

was selected for SOX2 knockdown. Poor transfection efficiency using plasmid 

DNA lead to the adoption of an alternative transfection strategy using lentivirus 

vectors. The experimental plan was further modified so that both cell lines were 

transfected with PAX9 over-expression and SOX2 knockdown constructs. 

Using an exemplar cell line, H400 SOX2 pTRIPZ, we have demonstrated proof 

of principle that the expression constructs are functional. Knockdown of SOX2 

expression using doxycycline induction has been confirmed by RNA and protein 

assays. However, the initial characterisation was limited by the use of sub-

optimal housekeeper genes to act as controls, and technical difficulties which 

compromised the quantity and quality of RNA that was extracted from some cell 

lines. The transfected cell lines are currently polyclonal, which potentially limits 

their utility for functional assays and future in vivo experiments. Further work is 

therefore required to optimise the analysis of the transfected cells lines and to 

establish a range of characterised clones for each cell line. 
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Chapter 7. Discussion 

7.1 Introduction 

Oral squamous cell carcinoma (OSCC) is a major global healthcare problem 

(Jemal et al., 2011). The incidence of OSCC in the UK is increasing, a trend 

which is likely to continue as the population ages (Cancer Research UK, 2010). 

OSCC has devastating consequences for many patients diagnosed with the 

disease. Cure is often precluded either by late presentation (McGurk et al., 

2005) or formation of second primary tumours (Day and Blot, 1992; Tsou et al., 

2007). The current treatment modalities for OSCC - surgical resection and 

radiotherapy – are associated with complications and functional impairments 

that may result in psychological problems and even non-cancer-related mortality 

(Zwahlen et al., 2008; Shah and Gil, 2009; Campos et al., 2014; Szczesniak et 

al., 2014). 

Outcomes for patients with OSCC may be improved if the disease is identified 

in its precursor stages, termed oral potentially malignant disorders (OPMD) (van 

der Waal, 2009; Goodson and Thomson, 2010). However, histological 

assessment of OPMD is subjective and does not reliably predict which cases 

will progress to OSCC (Lodi et al., 2006; Kujan et al., 2007). Several candidate 

biomarkers have emerged in recent decades but, as yet, none are validated as 

reliable biomarkers for use in routine diagnostic practice (Nylander et al., 2000; 

Kovesi and Szende, 2003; Varun et al., 2014). 

This study sought to address the continuing need for biomarkers that stratify 

OPMD according to their risk of malignant transformation and thus facilitate 

early detection and management of OSCC (Mishra, 2012). This discussion 

highlights the key findings of this study regarding the classification of epithelial 

dysplasia, and the potential diagnostic utility/functional significance of each 

biomarker evaluated: EGFR, SOX2, and PAX9.  
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7.2 Key findings 

7.2.1 The binary classification of epithelial dysplasia is more predictive of 

clinical course than the SIN classification 

Our data show that the binary classification of epithelial dysplasia is more 

predictive of clinical outcome than the Squamous Intra-epithelial Neoplasia 

(SIN) classification. High-grade epithelial dysplasia correlated with malignant 

transformation in OPMD, whereas SIN 3 did not. The absence of a correlation 

with SIN 3 is likely to reflect the subset of cases that underwent malignant 

transformation but were classified with SIN 2 on morphological assessment. 

There is evidence that removal of the intermediate SIN 2 category, equivalent to 

moderate epithelial dysplasia in the World Health Organisation (WHO) 

classification, reduces inter-observer variation and enhance the predictive value 

of the assigned dysplasia grade (Barnes et al., 2005; Kujan et al., 2006 ). Our 

data support this contention, but must be interpreted with some caution. The 

correlation between high-grade epithelial dysplasia and malignant 

transformation was relatively weak compared with two of the biomarkers studied 

(see sections 7.2.2 and 7.2.9). Used in isolation, high-grade epithelial dysplasia 

had relatively low sensitivity and specificity for detecting cases destined to 

undergo malignant transformation. This supports the view that there are 

fundamental limitations to the predictive value of a morphological diagnosis, 

irrespective of the accuracy and reliability of the classification system upon 

which it is based (Kujan et al., 2007; Dost et al., 2014). 

Our analysis of the mouse model of oral carcinogenesis did not classify cases 

according to a grade of epithelial dysplasia. Rather, cases were categorised 

simply according to whether epithelial dysplasia was present or absent. This 

methodology may have failed to detect subtle differences between Pax9-

deficient mice and controls. For example, it is possible that Pax9-deficient mice 

developed high-grade epithelial dysplasia more frequently/rapidly than controls, 

a trend that our methodology would not have detected. However, there is no 

agreed classification system for grading oral epithelial dysplasia in mice. 

Morphological differences between the oral squamous epithelium of mice and 

humans confounds the direct transference of the human classification system to 
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mice, mainly due to the relatively thin epithelium in the mouse. Initial attempts 

by the scoring pathologists to assign grades of epithelial dysplasia in control 

mice were challenging and not reproducible. In Pax9-deficient mice, dysplasia 

grading was further complicated as the architecture of normal (i.e. non-

dysplastic) squamous epithelium is already altered. For these mice, it is 

conceivable that architectural changes indicative of epithelial dysplasia may be 

either overlooked or identified erroneously. On balance, the risk that our 

methodology resulted in ‘lost’ data was outweighed by the enhanced reliability 

and reproducibility of our simple classification system. Moreover, the approach 

was in keeping with the principle of reducing the number of mice required for 

the experiment to a minimum (Understanding Animal Research, 2014). Many 

more mice would have been required to support valid statistical comparison of 

epithelial dysplasia stratified according to the WHO/SIN classification (Barnes et 

al., 2005). 

7.2.2 EGFR gene copy number abnormalities detect cases of OPMD 

destined to undergo malignant transformation 

OPMD with abnormal EGFR gene copy number were at greater risk of 

malignant transformation than cases with normal EGFR gene copy number. 

Although abnormal EGFR gene copy number used in isolation had relatively low 

sensitivity for identifying cases destined to undergo malignant transformation, its 

specificity was relatively high. The high specificity of abnormal EGFR gene copy 

number indicates that EGFR in situ hybridisation (ISH) may be a useful as part 

of a broader panel of biomarkers. Our algorithms show that when abnormal 

EGFR gene copy number and high-grade epithelial dysplasia were combined 

they were more reliably predictive than either used in isolation. 

Our findings are in concordance with two recent studies which suggested that 

abnormal EGFR gene copy number is an early feature of OPMD destined to 

undergo malignant transformation and may precede gross EGFR genomic gain 

(Benchekroun et al., 2010; Poh et al., 2012). Evidence from both studies 

supported the inclusion of cases with trisomy and low polysomy alongside those 

with EGFR genomic gain as currently defined in the interpretation of EGFR ISH 

signals in non-small cell carcinoma of the lung (Nicholson et al., 2001; Hirsch et 

al., 2003). It remains unclear whether it is appropriate to apply criteria validated 
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for the interpretation of EGFR ISH signals in lung cancer to OSCC and OPMD. 

However, our data show that including cases with trisomy and low polysomy 

provide valuable prognostic information in the context of OPMD. Further work is 

required to establish agreed criteria for the interpretation of EGFR ISH signals 

in cancers and pre-cancerous lesions outside the lungs (section 7.3). 

7.2.3 EGFR genomic gain is present in a quarter of early-stage OSCC but 

does not correlate with clinical outcome 

EGFR genomic gain was detected in a quarter of early-stage OSCC in this 

study. This is higher than the rate reported in a comparable study of early-stage 

OSCC of the tongue (Rössle et al., 2013). The discrepancy may reflect 

methodological differences between the studies, specifically the use of tissue-

microarrays (TMA) rather than whole sections, which risks failure to detect 

EGFR genomic gain in heterogeneous cases (Rössle et al., 2013). Our rate is 

actually towards the lower end of the range reported in previous studies of 

mixed-stage and late-stage OSCC (Freier et al., 2003; Chung et al., 2006; 

Agulnik et al., 2007; Temam et al., 2007; Pectasides et al., 2011; Ryott et al., 

2009). This suggests that EGFR genomic gain is a relatively late event in oral 

carcinogenesis. However, the majority of OPMD with abnormal EGFR gene 

copy in the present study progressed to OSCC, and most of the corresponding 

OSCC biopsies showed a higher EGFR gene copy number category relative to 

the index OPMD. This suggests that the progressive accumulation of EGFR 

gene copy number aberrations is functionally significant in the transition from 

epithelial dysplasia to OSCC. Given the heterogeneity of EGFR gene copy 

number signals, it is conceivable that the low rate identified in early-stage 

OSCC in this study reflects a sampling error. Alternatively, it may also represent 

the selection of different clones as oncogenic genetic changes accumulate 

within the tumour. 

Our analysis did not identify a correlation between EGFR genomic gain and 

clinical outcome in early-stage OSCC. By contrast, a previous study reported 

dramatically reduced five-year survival rates in patients with EGFR genomic 

gain compared to patients with a normal EGFR signal (Temam et al., 2007). 

Although the previous study used quantitative real-time PCR to detect EGFR 

genomic gain, its conclusions have been have been supported by other studies 
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that have assayed for EGFR genomic gain by ISH (Freier et al., 2003; Chung et 

al., 2006). However, each of these studies has examined OSCC at a wide 

range of clinical stages. The absence of a correlation between EGFR genomic 

gain and clinical outcome in the present study may therefore reflect its narrower 

inclusion criteria and focus on early-stage OSCC. Rӧssle et al (2013), in a study 

that was also confined to early-stage OSCC, failed to detect a correlation 

between EGFR gene copy number and clinical outcome. 

7.2.4 EGFR protein over-expression is prevalent in OPMD and early-stage 

OSCC, limiting its clinical utility 

This study confirms that EGFR protein is over-expressed in the majority of 

OPMD and early-stage OSCC (Grandis and Tweardy, 1993a; Ries et al., 2013). 

Our results also show a positive correlation between EGFR protein expression 

and grade of epithelial dysplasia in OPMD. However, we were unable to 

replicate the significant correlation between EGFR over-expression and risk of 

malignant transformation that has been reported in two previous studies 

(Nankivell et al., 2013; Ries et al., 2013). Both earlier studies benefitted from 

whole section rather than TMA analysis. However, they relied upon subjective 

semi-quantitative assessment of EGFR protein expression rather than digital 

image analysis. Different thresholds may also have been used to define EGFR 

over-expression (Nankivell et al., 2013; Ries et al., 2013). On balance, the 

prevalence of EGFR over-expression in OPMD identified in the current study 

makes a positive correlation with clinical parameters unlikely. 

EGFR over-expression was more prevalent in early-stage OSCC than in 

OPMD. The biological significance of this is uncertain. It supports the contention 

that EGFR is more likely to be functionally significant in the later stages of oral 

carcinogenesis (Ryott et al., 2009). However, the literature to date consistently 

draws attention to the complexity of the EGFR pathway. Increased EGFR 

expression may be a bystander change, reflecting, but not driving, oral 

carcinogenesis. This would account for the lack of correlation with disease-

specific clinical outcomes in either OPMD or early stage OSCC. On balance, 

our findings support the view that EGFR protein has limited clinical utility as a 

biomarker for stratifying patient management (Forastiere, 2007; Gusterson and 

Hunter, 2009; Rosin and Califano, 2010). 
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7.2.5 SOX2 protein expression is heterogeneous in OPMD but does not 

correlate with clinical outcome 

SOX2 protein has a heterogeneous expression profile in OPMD, but is down-

regulated in the majority of cases. No correlation was identified between SOX2 

protein expression and clinical outcome in OPMD. 

To date, the profile of SOX2 expression in OPMD has been described in an 

isolated study (Qiao et al., 2013). SOX2-positivity was reported in 90% of 

OPMD. Co-expression of SOX2 and Oct4 - a feature not detected in the normal 

epithelium – was also identified in the majority of OPMD. Similar trends were 

detected in an animal model. However, the study was limited by several factors. 

These include small sample size, semi-quantitative scoring of stained sections, 

and categorisation of cases as either SOX2-positive or SOX2-negative, without 

indicating the intensity of staining. Moreover, the level of SOX2 expression in 

normal human epithelium was not reported as a control, precluding comparison 

of the relative SOX2 expression of OPMD (Qiao et al., 2013). It is therefore 

difficult to compare our data with the results of the previous study meaningfully. 

Further work is required to confirm the findings of our study. However, our 

analysis suggests that SOX2 has limited potential value as a prognostic 

biomarker in OPMD. 

7.2.6 SOX2 protein expression is up-regulated in early-stage OSCC 

SOX2 protein had a heterogeneous expression profile in early-stage OSCC. 

However, in the majority of cases there was a significantly increased proportion 

of strongly SOX2-positive nuclei relative to the normal epithelium. 

Up-regulation of SOX2 has been documented previously in squamous cell 

carcinoma (SCC) of the lung, oesophagus, cervix, and penis (Hussenet et al., 

2010; Lu et al., 2010; Maier et al., 2011). Increased SOX2 expression in OSCC 

has been reported in several studies by immunohistochemistry (IHC) (Freier et 

al., 2010; Huang et al., 2014), proteomic analysis (Misuno et al., 2013) and in 

situ hybridisation (ISH) (Freier et al., 2010; Kokalj Vokač et al., 2014). 

Interestingly, Freier et al (2010) reported that SOX2 was over-expressed in only 

a small subset of cases. The study used a TMA-based approach to tissue 
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analysis; the heterogeneous pattern of SOX2 expression that we observed 

suggests that such data may be unreliable due to sampling limitations. Our data 

show that the proportion of strongly SOX2-positive cells was increased in 

OSCC relative to the normal epithelium in over half of cases, suggesting a ‘gain 

of function’ or an oncogenic effect in at least a proportion of oral cancers. Freier 

et al (2010) reported that SOX2 gene copy number amplification was present in 

more than half of cases. This suggests SOX2 genomic gain may be a more 

homogeneous feature in OSCC and not subject to the limitations of TMA 

analysis and classification.  The proportion of OSCC with SOX2 gene 

amplification is consistent with our SOX2 protein expression assessed by IHC. 

Our analysis shows that OSCC with adverse outcomes had significantly lower 

expression of SOX2 relative to cases with no adverse outcome. This is in 

contrast to three previous studies that show high SOX2 expression correlates 

with poor clinical outcome, particularly an increased risk of metastasis to 

cervical lymph nodes (Du et al., 2011; Michifuri et al., 2012; Huang et al., 2014). 

There are several possible explanations for this discrepancy: inclusion of late-

stage OSCC in previous studies; use of manual staining methods rather than 

the automated platform used in the present study; use of different SOX2 

antibodies, including polyclonal antibodies (Michifuri et al., 2012; Huang et al., 

2014); finally, the use of semi-quantitative scoring as opposed to digital image 

analysis. As an isolated finding, however, the correlation between low SOX2 

expression and adverse outcomes in OSCC detected in our study should be 

interpreted with caution. 

Michifuri et al (2012) also highlighted the heterogeneous profile of SOX2 

expression and proceeded to categorise cases according to whether SOX2 was 

expressed peripherally or diffusely throughout the tumour. Our study includes 

cases consistent with both patterns. However, this binary classification system 

does not account for several cases in our study in which SOX2 expression was 

generally down-regulated/lost or showed a variable staining that was not 

consistent with either pattern. The authors of the previous study reported a 

correlation between the pattern of SOX2 staining and specific clinical outcomes. 

It is not possible to comment on a potential correlation between staining pattern 



213 

 

and clinical outcome in our cases due to the small number with uniform patterns 

and the generalised heterogeneity of SOX2 staining identified.  

7.2.7 SOX2 may be significant in the maintenance and functioning of 

cancer stem cells 

In humans, SOX2 expression was significantly increased in OSCC relative to 

OPMD. In both Pax9-deficient and control mice, Sox2 expression was 

increased in epithelial dysplasia compared to normal epithelium. These findings 

are concordant with the literature suggesting SOX2/Sox2 has an oncogenic 

function in oral carcinogenesis (Freier et al., 2010; Qiao et al., 2013; Kokalj 

Vokač et al., 2014). However, this hypothesis was not borne out by analysis of 

SOX2 expression in the subset of human OPMD that underwent malignant 

transformation and their subsequent OSCC. Analysis of these groups of cases 

further highlighted the heterogeneity of SOX2 expression at each stage of oral 

carcinogenesis, and the limits of its potential diagnostic utility. 

Although the heterogeneous expression profile of SOX2 limits its potential as a 

biomarker, it remains plausible that SOX2 is functionally significant in oral 

carcinogenesis. Its heterogeneous expression has several explanations. It may 

be hypothesised that SOX2 has multiple stage-dependent roles in oral 

carcinogenesis, with a spectrum of oncogenic and tumour-suppressor functions. 

Alternatively, subsets of OPMD/OSCC may be variably dependent on the 

oncogenic function of SOX2, and thus show variable expression of SOX2 

protein. 

Interestingly, previous in vitro studies show that SOX2, along with OCT4, is up-

regulated in oral cancer stem cells (CSC) (Lim et al., 2011; Bourguignon et al., 

2012; Misuno et al., 2013). SOX2 contributes to stem cell functioning in normal 

oral squamous epithelium (Okubo et al., 2009). We noted that SOX2 expression 

was often strongest in foci of tumour cells with a basaloid cytomorphology; it is 

conceivable that these foci contain CSC. Further work is required to delineate 

the contribution of SOX2 to the maintenance, survival, and proliferation of CSC. 

CSC are responsible for resistance to therapy, local recurrence, and metastatic 

spread in head and neck squamous cell carcinoma, and therefore represent 

important therapeutic targets (Routray and Mohanty, 2014). The hypothesis that 
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SOX2 is a marker of CSC suggests it may therefore be an important 

chemotherapeutic target in OPMD/OSCC. The stably-inducible cell lines 

generated in this project will be useful in testing this hypotheses. 

7.2.8 PAX9 has a potential tumour-suppressor function in oral 

carcinogenesis 

This study demonstrated reduced PAX9 expression in OPMD relative to normal 

epithelium. PAX9 protein expression in OSCC was reduced relative to both 

normal epithelium and OPMD. This profile of progressively down-regulated 

PAX9 expression is consistent with the role of Pax9 in the differentiation of 

mouse oral squamous epithelium (Jonker et al., 2004) and evidence from a 

study of oesophageal SCC that suggests PAX9 acts as a tumour-suppressor 

gene (Gerber et al., 2002). 

The study by Gerber et al (2002) demonstrated that PAX9 expression was 

either lost or significantly reduced in the majority of oesophageal SCC and 

dysplastic epithelial lesions. There was an inverse relationship between PAX9 

expression and clinical course: a decrease in the proportion of PAX9-positive 

cells correlated with increasingly malignant behaviour. This correlation was also 

identified in the current study: OSCC with adverse outcomes had significantly 

lower PAX9 expression compared to cases with no adverse outcome.  

Pax9-deficient mice developed epithelial dysplasia more rapidly than controls. 

One Pax9-deficient mutant mouse developed epithelial dysplasia after just two 

weeks of chemical induction. This is less than the eight-week minimum period 

reported in previous studies (Tang et al., 2004; Vitale-Cross et al., 2004b). The 

finding that Pax9-deficient mice are more susceptible to 4-NQO supports the 

hypothesis that Pax9 has a tumour-suppressor function in oral carcinogenesis. 

However, it must be interpreted with caution. Only a small number of mice were 

sacrificed following less than eight weeks of 4-NQO treatment. The detection of 

epithelial dysplasia at two weeks was essentially an incidental finding due to the 

toxic systemic response to 4-NQO in Pax9-deficient mice (see 7.2.10). 

Pax9-deficient mice were more likely to develop OSCC following chemical 

induction than controls. This further supports the hypothesis that Pax9 has a 

tumour-suppressor function. However, statistical comparison is limited by the 
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small number of cases that developed OSCC. Further serial sections will be 

examined as the analysis continues in future projects. More cases of OSCC 

may be identified during this process, supporting statistical analysis. There is 

also scope to verify our findings in future experiments using standardised 

conditions on greater numbers of mice (section 7.3). 

Pax9-deficient mice also had higher rates of dysplastic nodules than controls. 

Dysplastic nodules bear a resemblance to human papillary squamous cell 

carcinoma. However, they lacked the definitive evidence of invasion required to 

group them with the OSCC cases. The precise criteria required in order to 

establish a diagnosis of papillary squamous cell carcinoma in humans is a 

subject of debate (Barnes et al., 2005). Lesions similar to papillary squamous 

cell carcinoma have been described in previous 4-NQO studies (Czerninski et 

al., 2009). However, criteria for making the diagnosis in mice have yet to be 

established. Some of these dysplastic nodules may show invasion of the lamina 

propria on examination of further serial sections. It is also conceivable that had 

there been a greater interval between the cessation of 4-NQO treatment and 

sacrifice, some of these lesions may have progressed to conventional OSCC 

(section 7.3). 

Two Pax9-deficient mice developed oesophageal SCC. This is consistent with 

the site affinity of 4-NQO documented in the literature (Kanojia and Vaidya, 

2006). The number of cases is too small to support statistical analysis. 

However, the finding is consistent with the previous study of human 

oesophageal SCC and lends further weight to the hypothesis that Pax9 has a 

tumour-suppressor function (Gerber et al., 2002). Interestingly, these mice were 

otherwise well and did not show weight loss, which might have been expected 

given the extent of oesophageal obstruction. Consistent with the negative 

autopsy findings documented by Tang et al (2004) there was no evidence of 

tumour formation elsewhere in the gastrointestinal tract. The site specificity 

identified in the present study support the suitability of the 4-NQO model of oral 

carcinogenesis for use in future experiments.  
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7.2.9 PAX9 is over-expressed in transforming OPMD and their 

subsequent OSCC 

Paradoxically, PAX9 was increased in OPMD that underwent malignant 

transformation and high levels were also maintained in the resultant OSCC. 

This contrasts with the evidence outlined in Section 7.2.8, which supports the 

hypothesis that PAX9 has a tumour-suppressor function. There are two possible 

interpretations for this finding. 

Firstly, it may be hypothesised that PAX9 has an oncogenic function and is 

transiently up-regulated in OPMD prior to/shortly after transformation to OSCC. 

Over-expression of PAX9 was more reliably predictive of malignant 

transformation than high-grade epithelial dysplasia. This suggests PAX9 over-

expression is an important event during the transition from epithelial dysplasia 

to invasive OSCC. It is conceivable that PAX9 is dynamically expressed during 

oral carcinogenesis: down-regulation and loss of its tumour-suppressor function 

may be critical to the development of early dysplastic lesions; up-regulation and 

gain of its oncogenic function may be vital to established lesions as they 

progress towards invasion. The oncogenic function of PAX9 may be redundant 

in established OSCC due to acquisition of further genetic changes following 

invasion. This would account for the down-regulation of PAX9 expression that 

we have documented in early-stage OSCC. 

The view that PAX9 has potential oncogenic functions is supported by previous 

in vitro studies (Kendall et al., 2007; Lee et al., 2008; Harris et al., 2011). 

However, the hypothesis that PAX9 is dynamically expressed in oral 

carcinogenesis must be considered cautiously. The present study of human 

tissue is observational and has a cross-sectional rather than longitudinal design. 

This precludes accurate temporal description of PAX9 expression in individual 

cases. Comparison of PAX9 expression in selected cases is also confounded 

by variable time intervals between biopsies, and the variable numbers of 

biopsies performed for each lesion. Previous OPMD biopsies do not exist for 

the majority of early-stage OSCC cases in our study. The latter showed 

significantly lower PAX9 expression relative to the group of OSCC that 

transformed from OPMD. It is open to conjecture whether these early-stage 

OSCC were preceded by OPMD with low or high levels of PAX9 expression. 
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An alternative hypothesis is that PAX9 is over-expressed in a subset of OPMD 

and OSCC, but that over-expression is not uniformly critical to oral 

carcinogenesis. Interestingly, ‘normal’ (i.e. relatively high) levels of PAX9 

expression were reported in a subset of oesophageal SCC and dysplasias by 

Gerber et al (2002). It is possible that these oesophageal lesions with high 

PAX9 expression were biopsied at a time when they were undergoing malignant 

transformation, which would support the previous hypothesis. However, it also 

suggests that OPMD and OSCC may be separated into two groups according to 

whether their PAX9 expression profile is low or high relative to normal 

epithelium; it is thus conceivable that the majority of early stage OSCC in this 

study were preceded by OPMD with low PAX9 expression. 

In conclusion, our data show similar trends in PAX9 expression to those 

documented in oesophageal SCC and squamous epithelial dysplasia. They 

support the hypothesis that PAX9 has a tumour-suppressor function. However, 

there is also compelling evidence to suggest that PAX9 has an oncogenic 

function. These functions may be stage-dependent or, alternatively, either 

function may predominate in individual cases. The cell lines generated in this 

project may help to determine the precise contribution of PAX9 to oral 

carcinogenesis. Importantly, however, our data indicate that PAX9 may be a 

useful biomarker that detects OPMD at high risk of progressing to OSCC. 

7.2.10 Pax9-deficient mice are more susceptible to the toxic systemic 

effects of 4-NQO treatment 

Our data show that Pax9-deficient mice have enhanced sensitivity to the toxic 

systemic effects of 4-NQO than controls. These included extreme weight loss 

and excessive salivation. 

Several mice with excessive salivation deteriorated rapidly. It is possible that 

fluid loss and dehydration were gradually compounded by further intake of 4-

NQO as the mice drank more in an attempt to quench thirst, culminating in a 

cycle of progressive decline. This would have caused a relentless increase in 

the concentration of 4-NQO and its metabolites in the bloodstream. Excessive 

salivation may also have been accompanied by loss of appetite and impaired 
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masticatory efficiency. This would further contribute to weight loss and 

exacerbate the toxic systemic effects of 4-NQO as body mass declined. 

The precise mechanism for the enhanced sensitivity of the Pax9-deficient mice 

is unclear. Toxic systemic effects of 4-NQO have not been documented 

previously. The Pax9-deficient mice that deteriorated most rapidly had only one 

kidney. Impaired excretion of 4-NQO may have further contributed to an 

increased 4-NQO concentration in the bloodstream. The present study was not 

designed to identify which Pax9-deficient mice had only one kidney prior to 

beginning 4-NQO treatment. The cause of hunching in these mice was unclear. 

It may have reflected either visceral or muscular pain from the abdominal 

region. Mice with one kidney may have developed kidney failure due to 4-NQO 

toxicity; the hunching may also have been related to kidney failure. 

Our data confirm the time interval from start of 4-NQO induction to OSCC 

formation reported in several previous studies (Ma et al., 1999; Ide et al., 2001). 

Although it was longer than the interval reported in a study which used a higher 

concentration of 4-NQO (Hasina et al., 2009), our decision to use lower 

concentrations of 4-NQO was justifiable given the greater sensitivity of Pax9-

deficient mice to the toxic systemic effects of 4-NQO. Treating Pax9-deficient 

mice with 100 μg/ml 4-NQO would have resulted in the unnecessary suffering or 

even death of many mice, in breach of the principle of refining experiments to 

ensure that suffering is kept to an absolute minimum (Understanding Animal 

Research, 2014). Importantly, the majority of the mice that developed OSCC 

were actually treated with the lowest concentration of 4-NQO (10 μg/ml). This 

confirms findings from previous studies that 10 μg/ml 4-NQO is sufficient to 

induce OSCC formation, albeit over a longer period (Ma et al., 1999; Ide et al., 

2001).  



219 

 

7.2.11 Future combined 4-NQO and Pax9 knockdown models of oral 

carcinogenesis may be optimised to reduce suffering and improve 

experimental efficiency 

The methodology used in this study drew on key studies in the literature in 

which workers sought to optimise the 4-NQO protocol by varying parameters 

such as the treatment duration and mechanism of application (Vitale-Cross et 

al., 2009). However, our data show that 4-NQO induction in Pax9-deficient mice 

requires specific considerations and modifications.  

Pax9-deficient mice with a Black 6 genetic background were more susceptible 

to the toxic systemic effects of 4-NQO than mice with a FVB or hybrid 

background. The Black 6 genetic background should therefore be avoided in 

future experiments and other, more resilient, strains such as FVB/hybrids 

should be used. For the same reason, male Pax9-deficient mice should be used 

rather than females. Pax9-deficient mice should be imaged to determine the 

number of kidneys present prior to the start of chemical induction. Only those 

with two kidneys present should be treated with 4-NQO. 

A concentration of 10 µg/ml is sufficient to induce OSCC and a range of 

precursor lesions within a 24-week period. Higher concentrations of 4-NQO 

have an increased risk of causing toxic systemic effects, without significantly 

reducing the length of the experiment or inducing either more or a wider 

spectrum of epithelial lesions. There is therefore little experimental benefit in 

using high dosages of 4-NQO. Loss of Pax9-deficient mice due to the systemic 

effects of a high 4-NQO concentration may compromise the overall efficiency of 

the experiment through attrition of the sample population.  
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7.3 Future work 

Since the start of this project, additional cases of OPMD that have transformed 

to OSCC have been diagnosed in the Department of Cellular Pathology. It has 

not been possible to add all of these to the group of OPMD analysed in this 

study. In future, however, the assays carried out in this study could be 

performed on these additional cases. There have also been further cases of 

OPMD that have not, according to our database, subsequently transformed to 

OSCC. There is therefore potential to liaise with clinical colleagues to continue 

with long-term follow-up of these cases, work that was started by Diajil et al 

(2013). Alternatively, our initial findings could be validated by testing a set of 

samples collected and characterised at another unit. This would increase the 

numbers in each outcome group, underpinning further statistical analysis. 

Longitudinal analysis of biomarker expression in specific lesions would facilitate 

testing of the hypothesis that certain biomarkers, including PAX9, are 

dynamically expressed during oral carcinogenesis. 

The clinicians served by the Department of Cellular Pathology are familiar with 

the WHO classification of epithelial dysplasia. It is also the practice of several 

Pathology Consultants to include the corresponding SIN grade in the 

histopathology report. This causes little conceptual ambiguity as the two 

classification are closely related. The main difference is the SIN 3 grade, which 

combines severe epithelial dysplasia and carcinoma in-situ. Our finding that the 

binary classification has greater predictive value suggests that clinicians may 

benefit from inclusion of a binary grade on the histopathology report. This is 

potentially a major change to clinical practice. It risks causing confusing 

clinicians and possibly patients. With this in mind, any such change to practice 

would need to be piloted cautiously following careful consultation with end users 

and stakeholders. The change would also need to be audited in order to 

determine its impact on clinical decisions. 

Our work highlights the need for clear guidelines for the interpretation and 

grading of epithelial dysplasia in mice. Such guidelines would support 

researchers using the 4-NQO model of chemical induction and bring greater 

uniformity and reliability to the literature. Agreed guidelines would also support 

studies of chemically-induced oral carcinogenesis in genetically modified mice. 
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Ideally, however, there is also a need to develop specific criteria for grading 

epithelial dysplasia in each group of genetically-modified mice in which the 

phenotype is characterised by disturbed epithelial morphology. 

Further work is required to develop standardised criteria for the interpretation of 

EGFR gene copy number signals in OPMD and OSCC. Our data support the 

use of a broader ‘abnormal’ EGFR gene copy number category rather than the 

current criteria used to define EGFR genomic gain in OPMD. It remains unclear 

whether it may also be appropriate to use a broader definition in OSCC. EGFR 

gene copy number may help to predict the response of head and neck cancers 

to EGFR-targeted agents. For example, high EGFR gene copy number has 

been shown to predict which patients have an increased likelihood of response 

to erlotinib therapy (Agulnik et al., 2007). The present study was not designed to 

investigate response to EGFR-targeted agents. Whether the sub-groups of 

cases with abnormal EGFR gene copy number or EGFR genomic gain have 

differential responses to EGFR-targeted agents or other therapies remains to be 

tested. 

Future experiments in which Pax9-deficient mice are treated with 4-NQO need 

to consider a modified protocol as outlined in section 7.2.11. The experiment 

may also benefit from an increased time interval from the end of 4-NQO 

treatment to sacrifice/autopsy. This would allow dysplastic lesions to progress to 

OSCC while mice are free from the potentially toxic systemic effects of 4-NQO 

treatment. Mice could also be subject to an intra-oral examination under general 

anaesthesia at specific intervals. This would inform decisions around when to 

sacrifice mice in order to examine analyse lesions. The surveillance could be 

further enhanced by performing oral brush biopsy or a small punch biopsy.  

All organs from the mice sacrificed in this experiment have been formalin fixed 

and archived. Histological analysis of vital organs, especially the kidneys, may 

provide greater insight into the nature of the toxic systemic effects of 4-NQO. 

This work could be carried out in collaboration with either veterinary 

pathologists or specialist histopathologists in the Department of Cellular 

Pathology.  
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The stably-inducible cell lines generated during this project need to be fully 

characterised. The cell lines are currently polyclonal. Specific clones will 

therefore need to be selected and characterised. These defined clones will then 

be used for functional assays. We plan to analyse basic cellular parameters of 

the transfected cells and compare these with native, non-transfected control 

lines. These parameters include determination of cellular viability, using the 

MTT assay, and cellular proliferation and apoptosis, using fluorescence-

activated cell sorting (FACS) analysis. In the longer term, the genetic pathways 

regulating the molecular changes identified in the inducible PAX9 and SOX2 

OSCC cell lines could be delineated by DNA microarray analysis. This would 

generate genome wide expression profiles, which can be analysed by 

bioinformatics. Significant changes in gene expression can be further validated 

by qPCR.  
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7.4 Conclusion 

EGFR protein is over-expressed in OPMD and early-stage OSCC, but does not 

correlate with clinical outcome in either group. By contrast, EGFR gene copy 

number abnormalities are associated with malignant transformation in OPMD. 

SOX2 has a heterogeneous expression profile in both OPMD and OSCC. This 

limits its potential clinical utility as a biomarker. However, the pattern of 

expression supports the hypothesis that SOX2 is a marker of oral cancer stem 

cells. SOX2 may therefore be highly significant in oral carcinogenesis and 

should be considered as a candidate chemotherapeutic target. 

PAX9 is down-regulated in OPMD and early-stage OSCC. Pax9-deficient mice 

are more likely than controls to develop OPMD and OSCC following chemical 

induced. These findings support the hypothesis that PAX9 has a tumour-

suppressor function. Paradoxically, PAX9 is over-expressed in the subset of 

OPMD that underwent malignant transformation. This suggests PAX9 may be 

dynamically expressed and play diverse roles during oral carcinogenesis, 

including an oncogenic function. 

Pax9-deficient mice are more susceptible to the systemic effects of 4-NQO 

treatment. This finding has informed important modifications to the protocol for 

future experiments that involve 4-NQO induction in Pax9-deficient mice. 

The cell lines developed during this project are potentially valuable tools that will 

facilitate further assessment of the role of PAX9, SOX2, and their downstream 

targets in oral carcinogenesis.  
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Appendix 

 

Emergency procedures for dealing with a 4-NQO spillage 
 

4-NQO 
phase 

Action 

Powder 

 

Remove all sources of ignition 

Dampen solid material with acetone 

Wearing gloves, soak up using paper towels 

Place damp towels in a clinical waste bag 

Wash all contaminated surfaces with acetone 

Wash again with soap and water 

Seal all contaminated towels gloves, etc, in a clinical waste bag 

Stock and 
experimental 
solutions 

 

Remove all sources of ignition 

Wipe the conatminated area with paper towels 

Wash all contaminated surfaces with acetone 

Wash again with soap and water 

Seal all contaminated towels gloves, etc, in a clinical waste bag 
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First aid measures for dealing with human exposure to 4-NQO 

 

Site of 
contact 

First Aid 

Eyes 

 

Check for contact lenses and remove if present 

Flush eyes with normal saline (or water if saline is unavailable) for 
between 20 and 30 minutes 

Skin 

 

Immediately flood the affected area with water for at least 15 
minutes 

Remove contaminated clothing. Isolate in a sealed clinical waste 
bag. 

Gently wash with soap and water 

Inhalation 

 

Leave the contaminated area 

Take deep breaths of fresh air 

Monitor for symptoms such as wheezing, coughing, shortness of 
breath, or a burning sensation in the oral cavity or throat 

Ingestion 

 

Do not attempt to induce vomiting 

Drink 1-2 glasses of water to dilute the 4-NQO 

Following administration of first aid seek urgent medical advice 
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Experimental outline for the knockdown lentivirus transfections 
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Experimental outline for the over-expression lentivirus transfections 
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Summary of reagents not otherwise specified in the text 

 

Reagent/ Buffer Source Information 

100bp DNA ladder Promega 
100bp DNA marker for agarose gel 
electrophoresis 

Go-Taq Polymerase and 
Buffer (15mM McCl2) 

Promega - 

10x dNTP Promega dATP, dTTP, dGTP and dCTP mix 

Antibody Diluent Dako-Envision Kit 
Used to dilute antibodies to desired 
dilutions 

Peroxidase blocking solution Dako-Envision Kit Blocking reagent for IHC 

HRP-labelled polymer Dako-Envision Kit Conjugated with secondary antibodies 

DAB substrate buffer Dako-Envision Kit 
1 drop DAB chromagen stain into 1ml 
DAB substrate buffer 

DAB chromagen stain Dako-Envision Kit 

Trizol reagant Invitrogen Used for RNA extraction 

Random Primer (500ng/ml) Promega Used for reverse transcription 

Citric acid buffer Sigma Aldrich 
4.2g Sigma Aldrich citric acid powder in 
2l of distilled H20, corrected to pH 6.0 
using 5M NaOH 

10 x TBS buffer Sigma Aldrich 
87.60g Nacl, 24.24g Trizma base, 
900ml H20, adjusted to pH 7.4 with HCl 

1M EDTA antigen retrieval 
buffer 

Sigma Aldrich 
0.372g Sigma Aldrich EDTA powder, 1l 
distilled H2O, corrected to pH 8.0 using 
5NM NaOH 

Scotts’ bluing solution Sigma Aldrich 
2.0g sodium bicarbonate, 20.0g 
magnesium sulphate, 1000ml dH2O 

 


