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Abstract 
 
HIRA is an evolutionarily conserved histone H3-H4 chaperone that mediates 

replication-independent nucleosome deposition and is important in a variety of 

contexts such as transcription, the response to DNA damage and cellular quiescence. 

Here the genome-wide contribution of HIRA to nucleosome organization in 

Schizosaccharomyces pombe was determined using a chromatin sequencing approach. 

Cells lacking HIRA (hip1Δ) experience a global reduction in nucleosome occupancy 

over the 3’ end of genes, consistent with the proposed role for HIRA in nucleosome 

re-assembly in the wake of RNA polymerase II. In addition, at HIRA-regulated 

promoters, it commonly maintains the proper occupancy of the -1 and +1 

nucleosomes.  Thus HIRA likely exerts its transcriptional regulatory roles through 

assembly/disassembly of specific target nucleosomes. 

 

In addition to transcription-coupled functions, HIRA has been implicated in the DNA 

damage response pathway. Indeed HIRA deficient cells present with increased 

sensitivity to DNA damaging agents and experience delays to the repair of DNA 

double strand breaks. Furthermore, hip1+ exhibits interactions with components of 

both the homologous recombination (HR) and non-homologous end joining (NHEJ) 

repair pathways. HIRA has also been identified as a regulator of nitrogen-starvation 

induced quiescence in S. pombe. Cells lacking HIRA are defective in both their ability 

to maintain and exit quiescence. Consistent with this, quiescent hip1Δ cells fail to 

properly induce MBF-dependent gene transcription in response to the restoration of a 

nitrogen source. 

 

During the course of this study Abo1, a bromodomain containing AAA-ATPase, was 

identified as a factor whose function potentially overlaps with histone chaperones 

such as HIRA. Therefore the contribution of Abo1 to global chromatin architecture 

was also assessed. Consistent with a nucleosome assembly function, abo1Δ cells have 

widespread changes to nucleosome occupancy and positioning in both euchromatic 

and heterochromatic regions of the genome. Furthermore, Abo1 physically interacts 

with the FACT histone chaperone and the distribution of Abo1 on chromatin is 

perturbed by loss of FACT subunits.  
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Chapter 1 

 Introduction 
 

1.1 The nucleosome and chromatin compaction 

 

Eukaryotic genomes are hierarchically packaged into a higher nucleoprotein complex 

termed chromatin. Chromatin is made up of nucleosomes, which are composed of ~146 

base pairs (bp) of DNA wrapped around octamers of core histone variants; two copies 

of each of H2A, H2B, H3 and H4 (Kornberg, 1974; Luger et al., 1997). Related histone 

variants also get incorporated into the nucleosome throughout the life of a cell and 

impact upon chromatin function (Felsenfeld and Groudine, 2003). The central 80 bp of 

the nucleosomal DNA are associated with histone (H3-H4)2 heterotetramers, whereas 

about 40 bp of DNA in the periphery are loosely bound by two histone H2A-H2B 

dimers. The penultimate 10 bp are also assembled by the N-terminal tail of histone H3 

(Ransom et al., 2010). H1 linker histones are further incorporated into chromatin of 

higher eukaryotes, including humans. H1 linker histones help stabilize the chromatin 

structure and aid higher order compaction (Thoma et al., 1979). Histone assembly and 

consequently disassembly is carried out in a stepwise manner, whereby histone (H3-

H4)2 heterotetramers are deposited first, followed by histone H2A-H2B dimers, and 

vice versa in disassembly (Fig 1.1) (Ransom et al., 2010). This structure is likely to 

have evolved in order to overcome the problems created by a continuous increase in 

genome size. While this higher order compaction protects cells against genomic 

instability, it also restricts the access of DNA binding factors to their respective target 

sites. Since all cellular processes, including replication, transcription, and repair, take 

place within this context and require a range of proteins to interact directly with DNA, 

chromatin must be dynamic. It is essential that alternate chromatin states can be 

facilitated within any given cell for a range of cellular processes to take place 

simultaneously. 
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Figure 1.1 Basic overview of assembly of higher order chromatin in a stepwise 
manner.  
Histone (H3-H4)2 tetramers are initially deposited onto DNA, followed by the rapid 
deposition of two H2A-H2B dimers, which form the nucleosome. Once several 
nucleosomes are assembled they are spaced to create phased nucleosomal arrays. Linker 
histones get incorporated and further folding takes place to generate higher order 
structures. Adapted from (Ridgway and Almouzni, 2000). 
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2
 H2A-H2B 
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1.2 Histone modifications 

 

Cells apply several mechanisms that help achieve the required alterations to chromatin. 

Some of the best studied of these are histone modifications. A wide range of histone 

modifications have now been identified and are the focus of numerous on-going studies. 

Histone proteins are mostly globular in structure but contain tails that protrude out 

(Kouzarides, 2007; Bannister and Kouzarides, 2011). These N-terminal tails are the 

targets for the majority of histone modifications (Bannister and Kouzarides, 2011). 

Table 1.1 illustrates the range of post-translational modifications (PTMs), along with 

their associated functions. PTMs can lead to dynamic chromatin changes due to their 

ability to directly perturb the electrostatic interactions between histones and DNA; in 

addition they can also provide a platform for docking proteins (Bannister and 

Kouzarides, 2011). These proteins coined ‘readers’ contain specific domains that allow 

recognition of the histone marks. For example, proteins containing bromodomains are 

able to recognize and bind histone acetylation marks, whereas those with chromo, tudor, 

PHD or MBT domains are able to recognize methylation marks (Bannister and 

Kouzarides, 2011). These proteins are often found in large complexes, containing 

several subunits with combinations of different domains that allow the simultaneous 

recognition of multiple histone marks. Furthermore, the binding of these proteins allows 

recruitment of additional factors, eliciting the desired changes to chromatin structure. 

For instance, triggering the relaxation of chromatin around transcriptionally active sites 

or allowing DNA ends to become accessible to repair proteins during DNA DSB repair.  

 

In order to achieve such a tremendous variability in functional outcome, PTMs act in 

combination with each other, either synergistically or antagonistically, to recruit or 

destabilize varying protein complexes depending on the context. As many different 

types of modifications occur on lysines, some become mutually exclusive, resulting in 

antagonism. For example, H3K36 acetylation and methylation cannot occur 

concurrently as they require the same lysine residue. It has also been demonstrated that 

one modification can be dependent on another, for example methylation of H3K4 and 

H3K79 are entirely reliant on the preceding ubiquitination of H2BK123 (Lee et al., 

2007). This also demonstrates that modifications on different histone tails are too able to 

communicate. Furthermore, the binding of proteins can be disrupted by an adjacent 

modification, such as the case when H3S10 phosphorylation takes place, leading to the 

reduced binding of HP1 to methylated H3K9 (Fischle et al., 2005). Interestingly, the 
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modified amino acids do not have to be adjacent to each other, for instance in S. pombe, 

acetylation of H3K4 prevents the binding of Chp1 to H3K9me2 and H3K9me3 

(Xhemalce and Kouzarides, 2010). It is also possible that the catalytic activity of an 

enzyme becomes compromised by a modification of its substrate site, such as 

isomerisation of H3P38 which leads to the inability of Set2 to methylate H3K36 

(Nelson et al., 2006). In addition, some enzymes are better able to recognize their 

substrates in the presence of a second modification, such as in the case of GCN5 

acetyltransferase, which is better able to identify and bind histone H3 when H3S10 is 

phosphorylated (Clements et al., 2003). As a result of this cross-talk between 

modifications, the chromatin landscape is highly dynamic and regulated at multiple 

layers, making it incredibly complex and sophisticated, ultimately allowing a multitude 

of cellular processes to take place. Some of these examples are illustrated in Figure 1.2.  

 

 

 

Table 1.1 Histone post-translational modifications (PTMs) 

Adapted from (Kouzarides, 2007). 

 
 
 
 
 
 
 
 
 
 
 

Histone Modifications Residues Modified Regulatory Functions 

Acetylation K-ac Transcription, Repair, Replication, 
Condensation 

Methylation (lysines) K-me1 K-me2 K-
me3 

Transcription, Repair 

Methylation (arginines) R-me1 R-me2a R-
me2s 

Transcription 

Phosphorylation S-ph T-ph Transcription, Repair, Condensation 
Ubiquitylation K-ub Transcription, Repair 
Sumoylation K-su Transcription 
ADP ribosylation E-ar Transcription 
Proline Isomerization P-cis > P-trans Transcription 
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Figure 1.2 Effects of histone modifications on each other.  
Histone PTMs co-operate to elicit the desired response. For example, ubiquitination of 
H2BK123 is essential for the methylation of H3K4, phosphorylation of H3S10 prevents 
binding of HP1 on H3K9 and proline isomerization of H3P38 prevents methylation of 
H3K36. In addition, several modifications take place on the same lysine, for instance 
H3K27 and H3K36 can both be methylated and acetylated leading to antagonism 
between the marks. Adapted from (Kouzarides, 2007; Bannister and Kouzarides, 2011). 
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1.2.1 Acetylation 

 

Histone acetylation is perhaps the best studied covalent histone modification, with 

several decades’ worth of extensive research on the subject. The acetylation of lysines 

leads to the neutralization of the lysine’s positive charge, thus weakening the interaction 

between the histone tail and neighbouring molecules, such as adjacent linker DNA 

(Hong et al., 1993) or acidic patches on histones in nucleosomes (Luger et al., 1997). 

For example, acetylation of H4K16 alone is enough to disrupt the 30 nm fibre, leading 

to large structural changes (Shogren-Knaak et al., 2006). In addition, acetylation of 

lysines serves as a docking site for bromodomain containing proteins (readers) which 

can recruit further remodelers to actively alter the structure of the local chromatin 

environment (Dhalluin et al., 1999). Importantly, acetylation of lysines is highly 

dynamic and easily reversible, with acetyl groups having half-lives of only a couple of 

minutes (Waterborg, 2001). As a direct consequence of this, acetylation is highly 

associated with complex signal integration, primarily leading to transcriptional 

activation (Bannister and Kouzarides, 2011). For instance acetylation of H4K16, H3K9 

and H3K14 are all important for appropriate transcription to take place, while their 

deacetylation is required for transcriptional repression (Owen et al., 2000; Zentner and 

Henikoff, 2013). Additionally, acetylation has been shown to play a role in DNA 

replication and DNA damage repair (Zentner and Henikoff, 2013). Indeed, simultaneous 

acetylation of several lysines on histone H4 (K5ac8ac12ac16ac) by Gln is needed for 

the activation of the G2/M checkpoint and for appropriate DNA DSB repair (Megee et 

al., 1995).  

 

The acetylation of lysines is catalyzed by a group of proteins termed histone 

acetyltransferases (HATs) or lysine acetyltransferases (KATs), the two terms are used 

interchangeably, which work by transferring the acetyl group from Acetyl coenzyme A 

(acetyl-CoA) to a lysine residue on histones. HATs are commonly categorized into two 

classes: type-A and type-B HATs. Type-A HATs are a diverse group of proteins that can 

be further classified into three categories based on amino acid sequence homology and 

structural similarities; these are GNAT, MYST and CNP/p300 (Hodawadekar and 

Marmorstein, 2007). These enzymes are generally involved in transcriptional activation 

and can modify numerous lysines on all N-terminal histone tails within the chromatin; 

although GCN5, p300 and Rtt109 (in yeast) can also acetylate the globular core, such as 

H3K56 (Masumoto et al., 2005; Tsubota et al., 2007; Das et al., 2009; Tjeertes et al., 
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2009). Acetylation of H3K56 in yeast is vital for replication-coupled nucleosome 

assembly and is required in response to DNA damage (Masumoto et al., 2005). Type-A 

HATs are also often found as part of large multi-protein complexes, containing several 

other histone modifiers. This provides a further mechanism for regulating their activity. 

For instance, Gcn5 by itself is able to acetylate free histones but not those incorporated 

into nucleosomes, while as part of the SAGA complex it can acetylate nucleosomal 

histones too (Grant et al., 1997). The type-B HATs on the other hand are a small group 

and highly conserved, with sequence similarity to S. cerevisiae HAT1, and are primarily 

involved in acetylating free histones (in particular H4K5, H4K12), prior to their 

incorporation into the chromatin (Parthun, 2007). Overall HATs constitute a large and 

well conserved family; a summary of HATs along with their respective histone 

modifications and functional outcomes is listed in Table 1.2.  

 

Conversely to HATs, histone deacetylases (HDACs) remove the acetylation marks from 

lysines and are commonly associated with transcriptional silencing. A brief diagram of 

some of the well-known antagonisms between these two classes of enzymes is depicted 

in Figure 1.3. HDACs are currently grouped into four distinct categories, class I and II 

are considered “classical”, these proteins require Zn+ for activity, class III contains 

NAD+ dependent proteins (Sirtuins), and class IV is of “atypical” HDACs based on 

their underlying DNA sequence (Yang and Seto, 2007). The Sirtuin family, comprising 

of SIRT1-7 is of interest given as overexpression of Sirtuins is associated with lifespan 

extension in model organisms, as well as tumour development (Saunders and Verdin, 

2007). Unlike HATs, most HDACs do not have high specificity for an individual histone 

mark, nor even for a single type of histone protein. Some exceptions to this are the S. 

pombe Sir2, and Clr3, which specifically remove acetyl groups from histone H4K16, 

H3K9, H3K14 and H3K4, and H3K14 (Shankaranarayana et al., 2003; Kato et al., 

2013; Bjerling et al., 2002; Wiren et al., 2005). Finally, while HATs and HDACs are 

best known for acetylating and deacetylating histones, they also have a number of non-

histone targets, such as p53, c-MYC, Rb1, NF-kB, just to name a few  (Wagner et al.; 

Glozak et al., 2005). HDACs are often misregulated during tumorigenesis; therefore a 

number of HDAC inhibitors are currently being investigated as therapeutic targets (West 

and Johnstone, 2014).  

 

 

 

7 
 



 

Table 1.2 Histone acetyltransferases (HATs) 
HATs Substrate Specificity Functional Outcome 

S. cerevisiae S. pombe  Human   

Hat1 Hat1 HAT1 H4K5ac12ac Histone deposition 
DNA repair 

Gcn5 Gcn5 
 H3K9ac14ac18ac23ac36ac  

H2B 
Transcription activation 
DNA repair 

hGCN5 H3K9ac14ac18ac              
H2B 

Transcription activation 

  
PCAF 

H3K9ac14ac18ac              
H2B 

Transcription activation 

  H4K5ac8ac                        
H3K14ac18ac 

Transcription activation, 
DNA repair 

  CBP H2AK5ac                                
H2BK12ac15ac 

Transcription activation 

  p300 H2AK5ac                                
H2BK12ac15ac 

Transcription activation 

Taf1 Taf1 TAF1 H3 and H4 Transcription activation 

Esa1 Mst1 TIP60 
(KAT5) 

H4K5acK8ac12ac16ac    
H2AK4ac7ac 

Transcription activation 
DNA repair 

Sas3 Mst2*  H3K14ac23ac 
Transcription activation 
and elongation  
DNA replication 

  MYST3 H3K14ac Transcription activation 
  MYST4 H3K14ac Transcription activation 

 Mst2* MYST2 H4K5ac8ac12ac Transcription  
DNA replication 

Sas2 Mst2* MYST1 H4K16ac 
Chromatin boundaries 
DNA repair 
Dosage compensation 

Elp3 Elp3 ELP3 H3  
Hap2   H3K14ac  

Rtt109 Rtt109  H3K56ac 
Transcription elongation 
Genome stability 

  TFIIIC90 H3K9ac14ac18ac Pol III transcription 
  SRC1 H3 and H4 Transcription activation 
  ACTR H3 and H4 Transcription activation 
  P160 H3 and H4 Transcription activation 
  CLOCK H3 and H4 Transcription activation 

* Mst2 is homologous to MYST1-4 proteins found in humans. 

 
 
 
 
 
  

8 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 Opposing actions of HATs and HDACs in S. cerevisiae.  
Diagram indicating some of the opposing actions of HATs (purple) and HDACs 
(orange) in S. cerevisiae where a wide range of substrates and modifying enzymes have 
been characterized. Adapted from (Millar and Grunstein, 2006). 
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1.2.2 Methylation 
 

1.2.2.1 Lysine methylation 

Unlike acetylation, which in addition to recruiting reader proteins can also directly 

affect chromatin structure through altering the charge of histones, methylation does not 

change the charges of the residues. Therefore, methyl marks are thought to act primarily 

as recruitment sites for reader proteins, which can facilitate transcriptional activation or 

repression (Bannister and Kouzarides, 2011; Black et al., 2012). Lysine methylation is 

largely stable and is therefore involved in a wide range of maintenance roles, such as 

heterochromatic silencing and the maintenance of cell identity (Smith and Shilatifard, 

2010). The methyl marks are placed upon histones by histone lysine methyltransferases 

(HKMTs), of which a large number have been identified (Table 1.3). The overwhelming 

majority of HKMTs contain a SET domain and methylate the N-terminal tail of histones 

by catalyzing the transfer of a methyl group from S-adenosylmethionine to a lysine 

residue (Bannister and Kouzarides, 2011). The single HKMT that is able to methylate 

the core globular domain of histones is Dot1 and this protein is without the conserved 

SET domain (Dlakic, 2001; Bannister and Kouzarides, 2011). Overall, HKMTs are 

highly specific enzymes, not only are they involved in the methylation of a specific 

residue but they are also able to mono-, di- or trimethylate the lysine to a varying 

degree, a phenomenon termed product specificity (Del Rizzo and Trievel, 2014). For 

example, the HKMTs DIM-5 in Neurospora crassa and the human G9a are able to 

mono-, di- and trimethylate H3K9, but an exchange of a single phenylalanine to a 

tyrosine residue changes their specificity to generate only H3K9me1 (Collins et al., 

2005). The converse can also be achieved; SET7/9 contains a tyrosine residue in the 

corresponding position where DIM-5 contains a phenylalanine, and upon replacement 

of the tyrosine with phenylalanine, SET7/9 is also able to di- and trimethylate H3K4 

(Zhang et al., 2003).  

 

Lysine methylation is involved in regulating diverse cellular functions. Some marks are 

specifically associated with heterochromatic regions, like H3K27me and H3K9me. 

H3K27me3 is classically involved in the establishment and maintenance of facultative 

heterochromatin over the inactivated X chromosome (Trojer and Reinberg, 2007), 

through its role in recruitment of the Polycomb repressive complex 2 (PRC2), which 

contains the HKMT EZH2. EZH2 is able to maintain the repressive H3K27me3 mark 

leading to the epigenetic inheritance of repressive chromatin (Hansen et al., 2008). 
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H3K9me on the other hand is associated with constitutive heterochromatin, such as the 

centromeric and telomeric regions. Methylation of H3K9me2 and H3K9me3 is 

primarily carried out by SUV39, and they are required for the recruitment of the 

heterochromatin protein HP1. HP1 specifically binds these methyl marks, coats the 

surrounding regions and establishes a transcriptionally silenced microenvironment 

(Bannister and Kouzarides, 2011). In addition to the above mentioned heterochromatin 

marks, methylation of H3K4, H3K36, and H3K79 are all associated with euchromatin 

and active transcription. H3K4 is primarily observed over promoter regions and at the 

TSSs of actively transcribed genes, overlapping with Pol II localization (Barski et al., 

2007; Shilatifard, 2012). H3K4me3 in particular is found to be enriched over the 

promoter regions, while H3K4me2 and H3K4me1 are enriched over the ORF, in 

addition to H3K36me (Fig 1.4) (Millar and Grunstein, 2006; Barski et al., 2007; Soares 

et al., 2014). Methylation of H3K4 is carried out by Set1 in yeast, while there are a 

number of human homologues that split this role between them. In Drosophila 

H3K4me2 and me3 methylation is primarily dependent on the Set1 protein (Wu et al., 

2008; Ardehali et al., 2011; Hallson et al., 2012), but MLL1/MLL2 have also been 

shown to be required for this methylation mark at Hox gene promoters (Wang et al., 

2009). In addition to marking promoter regions, H3K4me1 has been associated with 

functional enhancers in various cell types (Heintzman et al., 2007), although its role 

over these regions is currently not understood. Methylation of H3K4 over enhancers is 

carried out by the monomethyltransferases MLL3 and MLL4 (Drosophila Trr) (Herz et 

al., 2012). Thus methylation is not only required for appropriate transcriptional 

silencing, but can also play an activating role. Until relatively recently methylation was 

thought to be an irreversible event; however in 2004 the first lysine demethylase, LSD1, 

was identified (Shi et al., 2004). LSD1 functions in conjunction with different 

complexes, to mediate the removal of mono- and dimethyl marks from either H3K4 or 

from H3K9. This allows LSD1 to switch between acting as a co-repressor to a co-

activator, respectively (Klose and Zhang, 2007). Another group of proteins have been 

identified as able to demethylate histones, these all contain a Jumonji-C domain and 

have been named JHDMs (Klose and Zhang, 2007). The first of these to be 

characterized was JHDM1A, which specifically removes methyl marks from 

H3K36me2- and H3K36me1-modification states (Tsukada et al., 2006). Finally, the 

JARID1 family of demethylases is responsible for removing methylation marks 

specifically from H3K4 (Liang et al., 2007; Secombe et al., 2007). Several JHDM and 

JARID1 family of demethylases exist, a list of which can be found in Table 1.4.   
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Figure 1.4 Distribution of histone methylation over transcribed regions. 
Illustration of the prevalence of conserved methylation marks over transcribed regions. 
H3K4me3 is primarily observed over the promoter and the +1 nucleosome of the ORF, 
H3K4me2 is principally over the +2 nucleosome and downstream, while H3K4me1 is 
towards the 3’ end of genes, as is H3K36me3. Adapted from (Millar and Grunstein, 
2006). 
 

 
 
 
Table 1.3 Histone methyltransferases (HKMTs) 

HMTs Substrate 
Specificity 

 
Functional Outcome 

S. cerevisiae S. pombe Human   
 

Clr4 
SUV39H1 H3K9 Heterochromatin formation/silencing 

 SUV39H2 H3K9 Heterochromatin formation/silencing 

  G9a H3K9 Heterochromatin formation/silencing 
  EuHMTase H3K9 Heterochromatin formation/silencing 
  ESET/SETDB1 H3K9 Transcription repression 
  CLL8 H3K9 ? 
  MLL1 H3K4 Transcription activation 
  MLL2 H3K4 Transcription activation 
  MLL3 H3K4 Transcription activation 
  MLL4 H3K4 Transcription activation 
  MLL5 H3K4 Transcription activation 

Set1 Set1 hSet1A H3K4 Transcription activation 
hSet1B H3K4 Transcription activation 

  ASH1 H3K4 Transcription activation 
Set2 Set2 SET2 H3K36 Transcription activation, DNA 

damage repair 
  NSD1 H3K36 ? 
  SYMD2 H3K36 Transcription activation 

Dot1  DOT1L H3K79 Transcription activation 
  Pr-SET7/8 H4K20 Transcription repression 
 Set9 

SUV4-20H1 H4K20 DNA damage response 
 SUV4-20H2 
  EZH2 H3K27 Polycomb silencing 
  SET7/9 H3K4 ? 
  RIZ1 H3K9 Transcription repression 
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Table 1.4 Lysine demethylases (KDMs) 

KDMs Substrate Specificity Functional Outcome 

S. cerevisiae S. pombe Human   
Jhd1   H3K36me1me2 Transcription elongation 
Rph1   H3K9 

H3K36me2me3 
Transcription elongation 

Jhd2 Jmj2  H3K4me2me3  
 SpLsd1/ 

Swm1/ 
Saf110 

LSD1/BHC110 H3K4me1me2 
H3K9me1me2 

Transcription activation 
and repression 
Heterochromatin formation 

  JHDM1a/FBXL
11 

H3K36me1me2  

  JHDM1b/FBXL
10 

H3K36me1me2  

  JHDM2a H3K9me1me2 AR gene activation 
spermatogenesis 

  JHDM2b H3K9me  
  JMJD2A/ 

JHDM3A 
H3K9me                       
H3K36me2me3 

Transcription repression 

  JMJD2B H3K9me                       
H3K36me2me3 

Heterochromatin formation 

  JMJD2C H3K9me                       
H3K36me2me3 

 

  JMJD2D H3K9me2me3  
  JARID1A H3K4me2me3 Rb interacting protein 
  JARID1B H3K4me1me2me3 Transcription repression 
  JARID1C H3K4me2me3  
  JARID1D H3K4me2me3 Male-specific antigen 
  UTX H3K27me2me3 Transcription activation 
  JMJD3 H3K27me2me3 Transcription activation 

 

 

1.2.2.2 Arginine Methylation 

 

In addition to lysines, arginines can also be methylated, although to date these 

modifications have been less well characterized. There are three classes of protein 

arginine methyltransferases (PRMTs), type-I, type-II and type-III. Type-I are 

responsible for monomethylarginine (MMA) and asymmetric dimethylarginine 

(ADMA), type-II PRMTs catalyze the formation of MMA and symmetric 

dimethylarginine (SDMA), while type-II can only generate MMA (Wolf, 2009). In 

humans, there are 8 PRMTs, PRMT1, PRMT2, PRMT3, PRMT4/CARM1, PRMT6, and 

PRMT8 are type-I, PRMT5 is the only type-II and PRMT7 is the sole type-III enzyme 
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(Gayatri and Bedford, 2014). There are numerous histone arginine methylation sites; 

however the majority of them remain uncharacterized. One example of arginine 

methylation is that of H3R2me2a by PRMT6, which prevents the methylation of 

H3K4me3 (Hyllus et al., 2007). Therefore it is likely that arginine methylation also 

forms a part in regulation of chromatin through histone (modification) cross-talk.  

 

 

1.2.3 Phosphorylation 

 

Histone phosphorylation takes place on serine (S), threonine (T) and tyrosine (Y) 

residues and is generally a transient modification that occurs in response to extracellular 

signals such as DNA damage (Zentner and Henikoff, 2013). Although initially 

characterized during the 1960s, the readers responsible for recognizing histone 

phosphorylation have only recently been identified. Members of the 14-3-3 family were 

demonstrated to specifically interact with the histone H3S10 phosphorylation mark, 

leading to transcriptional activation (MacDonald et al., 2005). As phosphorylation is a 

transient mark and often occurs next to a methylated residue, it has been proposed that 

phosphorylation acts by affecting the stability of the readers and methyl marks adjacent 

to it. Indeed, there is some evidence that these “phospho-methyl” switches exist, as the 

mitotic release of HP1 from pericentromeric heterochromatin is the consequence of a 

H3S10 phosphorylation by the Aurora B kinase (Fischle et al., 2005; Hirota et al., 

2005). Importantly this allows the dissociation of HP1 without a reduction in H3K9me, 

leading to the rapid establishment of heterochromatin within the daughter cells. Thus 

the “phospho-methyl” switch might contribute to the accurate propagation of epigenetic 

information.  

 

Possibly the best-characterized phosphorylation event is that of serine 139 on H2A.X 

upon DNA damage induction leading to the formation of ɣH2A.X (Rogakou et al., 

1998). ɣH2A.X is formed upon DNA DSBs and is able to spread for kilo bases from the 

break site (Scully and Xie, 2013). It is thought to generate a highly specific chromatin 

environment that is able to recruit DNA DSB repair proteins (Stucki and Jackson, 2006; 

Scully and Xie, 2013), such as MDC1 which is a scaffolding protein and is required for 

the appropriate binding of the MRN complex (Chapman and Jackson, 2008). MRN is 

important for the initial response to DNA DSBs; it is implicated in the recruitment of 

the ATM checkpoint kinase (Lee and Paull, 2004), and its subunit, Mre11, is involved in 
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DNA end resection prior to repair (Stracker and Petrini, 2011). In addition, proteins 

involved in homologous recombination (HR) mediated repair and non-homologous end-

joining (NHEJ) are also recruited by this phosphorylation event, such as Rad50, Rad51, 

BRCA1 (Paull et al., 2000) and 53BP1 (Wang et al., 2002).  

 

 

1.2.4 Ubiquitination 

 

Ubiquitination of histones was first identified some 30 years ago, however until recently 

not much has been known about its function. Broadly speaking ubiquitination of 

histones can lead to structural alterations, such as the eviction of a nucleosome, it can 

also act as a signalling molecule for recruitment of further proteins, and it can function 

to serve as a mark for degradation (Fig. 1.5) (Braun and Madhani, 2012). Perhaps the 

best studied ubiquitination event is the monoubiquitination of histone H2B on lysine 

120 in metazoans (lysine 123 in S. cerevisiae). This ubiquitination event is dependent on 

RAD6 and RNF20/RNF40 (Bre1 in yeast) (Jentsch et al., 1987; Robzyk et al., 2000; 

Hwang et al., 2003; Lee et al., 2007) and is overwhelmingly associated with actively 

transcribed regions (Minsky et al., 2008). H2Bub1 is also involved in facilitating both 

transcription initiation and elongation, possibly through mediating H2A-H2B dimer 

removal in front of Pol II (Belotserkovskaya et al., 2003; Batta et al., 2011). Recent 

work has demonstrated that in vitro ubiquitination of H2B favours disruption to 

chromatin (Fierz et al., 2011), agreeing with a possible role for H2Bub1 in breaking 

nucleosomes in front of Pol II. H2Bub1 is also involved in mediating other histone 

modifications, such as H3K4 and H3K79 methylation by the HMTs COMPASS and 

Dot1 respectively (Briggs et al., 2002; Sun and Allis, 2002). Importantly, this 

interaction is unidirectional, that is, methylation of either of these histone residues has 

no effect on the ubiquitination of H2B (Briggs et al., 2002; Sun and Allis, 2002). 

Although, generally associated with transcription, like many other histone 

modifications, H2Bub1 can also facilitate gene repression. It has been demonstrated 

both in human cell lines and in yeast that H2Bub1 is required for the repression of lowly 

expressed, inducible genes (Batta et al., 2011; Shema et al., 2011). Moreover, recent 

work has proposed that ubiquitination of histones is not only needed for the recruitment 

of various factors, but might also play a role in modulating nucleosome occupancy. In S. 

cerevisiae loss of H2Bub leads to a global decrease in nucleosome occupancy, 

particularly at highly transcribed regions, while deubiquitylation mutants, such as 
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ubp8∆, present with elevated histone levels and nucleosome overaccumulation (Batta et 

al., 2011). Recent findings in S. pombe and in human cells have also demonstrated a 

role for H2Bub1 in the maintenance of transcription from within the core centromeric 

heterochromatin in a cell cyclical manner (G2-M). In the absence of H2Bub1, 

centromeric transcription is reduced and a further elevation of H3K9me levels is seen, 

which leads to an increase in segregation defects (Sadeghi et al., 2014). Finally, other 

residues besides K123 have recently been shown to be ubiquitinated on H2B, including 

K48 and K34 (Geng and Tansey, 2008; Wu et al., 2011). H2BK34ub appears to act 

similarly to K123 that is promotes the methylation of H3K4 and H3K79 (Wu et al., 

2011), while the role of K48ub is not clear.  

 

In addition to H2B, H2A and H2A.Z also undergo ubiquitination. H2AK119ub1 has not 

yet been identified in yeast, but it is conserved in metazoans, and is primarily associated 

with repressive functions. In Drosophila the Polycomb repressor complex (PRC1) is 

responsible for H2AK119ub1 and is required for the maintenance/repression of the 

developmentally regulated Hox genes. Ubiquitination of H2A119 by PRC1 leads to the 

recruitment of PRC2, which is able to read the H2A119ub1 mark, and facilitates the 

subsequent methylation of H3K27 leading to transcriptional silencing (Blackledge et 

al., 2014; Cooper et al., 2014; Kalb et al., 2014). Importantly, the Polycomb complexes 

play an essential role in stem cell reprogramming and differentiation (Prezioso and 

Orlando, 2011; Onder et al., 2012), as well as in cancer development (Ben-Porath et al., 

2008; Ernst et al., 2010; McCabe et al., 2012). Finally, H2A ubiquitination is important 

in DNA damage response pathways. In fact in mammalian cells, ubiquitination of H2A 

and H2AX by RNF168 at K13/15 (Gatti et al., 2012; Mattiroli et al., 2012) and by 

RING1B/BMI1 on K118/119 (Chagraoui et al., 2011; Ginjala et al., 2011) mediate the 

association of 53BP1 and the repair protein BRCA1 with chromatin (Sobhian et al., 

2007; Fradet-Turcotte et al., 2013). Therefore, specific ubiquitination events are also 

responsible for DNA damage repair in mammalian cells.  

 

As mentioned above, further modifications also exist, including SUMOylation, ADP 

ribosylation, β-N-acetylglucosamination, proline isomerization and deimination 

(Bannister and Kouzarides, 2011); however their molecular functions are less well 

understood and will not be discussed here. Overall, PTMs, either individually or in 

combination with each other, can facilitate highly specific molecular responses to 

complex cellular requirements. 
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Figure 1.5 Possible outcomes of histone ubiquitination.  
(A) Monoubiquitination can lead to structural changes, such as a more open chromatin. 
(B) Mono – and polyubiquitination can both serve as docking site for reader proteins, 
leading to further recruitment. (C) Polyubiquitination can lead to degradation via the 
26S proteasome. Adapted from (Braun and Madhani, 2012).  
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1.3 Histone variant exchange  
 

In addition to PTMs, replacing the canonical histones with variants provides an 

alternative mechanism for the regulation of chromatin (Jin et al., 2005; Kamakaka and 

Biggins, 2005). Histone variant exchange takes place independently of replication and 

variants generally fulfil highly specialized roles (Jin et al., 2005), leading to alterations 

of nucleosome structure, dynamics and ultimately accessibility to DNA (Weber and 

Henikoff, 2014).  

 

 

1.3.1 H2A variants 

 

Variants of H2A are the most numerous, although not all conserved between species 

(Table 1.5). H2A.Z is perhaps the best studied of these and is one that’s highly 

conserved. It is distinct from H2A, with only about 60% sequence identity (Weber and 

Henikoff, 2014). Overall, replacement of H2A with H2A.Z leads to slight 

destabilization of nucleosomes in vivo (Weber and Henikoff, 2014). Therefore it might 

not be surprising that H2A.Z has been found to be particularly enriched over promoter 

regions and to an extent over the bodies of actively transcribed genes, especially over 

the +1 nucleosome (Weber and Henikoff, 2014; Weber et al., 2014). In metazoans, 

enrichment of H2A.Z correlates with transcription levels, that is highly transcribed 

regions present with a relative increase in H2A.Z compared to the rest of the genome 

(Weber et al., 2010). Furthermore, studies both in yeast and in humans have 

demonstrated a role for H2A.Z in helping to recruit RNA Pol II to promoter regions 

(Santisteban et al., 2000; Adam et al., 2001; Hardy et al., 2009). In addition to a role in 

transcriptional activation, recent work has also proposed that H2A.Z facilitates 

elongation, as there has been an inverse correlation observed between H2A.Z levels and 

RNA Pol II stalling (Weber et al., 2014). Reduction of H2A.Z led to an increase in RNA 

Pol II stalling, suggestive of a nucleosome barrier (Weber et al., 2014). This suggests 

that H2A.Z-H2B dimers are more easily unwrapped and/or removed during 

transcriptional elongation than H2A-H2B dimers. Finally, a different role has also been 

proposed, in which yeast H2A.Z functions as a barrier between heterochromatin and 

euchromatin, preventing the spread of repressive chromatin into gene rich regions 

(Meneghini et al., 2003).  
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H2A.X is mostly associated with the DNA damage response, and as a result not much is 

known about its other functions in genome organization, although H2A.X incorporation 

into the chromatin is widespread (Millar, 2013) (Section 1.2.3). Another distinct H2A 

variant is macroH2A. macroH2A is restricted to vertebrates where it is preferentially 

associated with transcriptionally silent domains, such as the inactivated X chromosome, 

senescence-associated heterochromatin foci (SAHF) and other large transcriptionally 

silenced euchromatic regions, where it co-localizes with the repressive H3K27me3 

mark (Costanzi and Pehrson, 1998; Zhang et al., 2005; Gamble et al., 2010; Millar, 

2013). Finally, H2A.B variants exist, although they appear to be restricted to mammals 

(Eirín-López et al., 2008). The H2A.B1 homologue in mouse is H2A.Lap1, which has 

been shown to be highly expressed in the testis during meiosis and in post-meiotic 

round spermatids, and is particularly enriched over the TSSs of active genes in round 

spermatids (Soboleva et al., 2012).  

 

 

 

 

 

Table 1.5 The human complement of H2A variants.  

Variant Genes Protein 
isoforms Expression Genomic locations 

H2A.Z H2A.Z.1 H2A.Z.1 Widespread Promoters of Pol II genes and rRNA 
genes, flanking tRNA genes, enhancers, 
transposons,  
pericentromeric  heterochromatin  

 H2A.Z.2 H2A.Z.2.1 Widespread  
  H2A.Z.2.2 Brain, skeletal 

muscle 
 

H2A.X H2A.X  H2A.X Widespread Telomeric heterochromatin, XY body, 
sites of DNA damage, replication 
origins, Pol II genes. 

mH2A mH2A.1 mH2A.1.1 Differentiated 
cells 

Xi, gene-coding sequences and distal 
upstream regions, large domains, TSS 
(differentiated cells). 

  mH2A.1.2 Widespread  
 mH2A.2 mH2A.2 Widespread  
H2A.B H2A.B1 H2A.B1 Testis and other 

tissues 
−1 nucleosome (testis, H2A.Lap1), 
coding regions (HeLa, H2A.B). 

 H2A.B2 H2A.B2   
 H2A.B3 H2A.B3   
Adapted from (Millar, 2013). 
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1.3.2 H3 variants 

The best studied histone H3 variant is H3.3, which is incorporated into the chromatin in 

a replication-independent manner, in contrast to the canonical H3 (Weber and Henikoff, 

2014). As a result of this, H3.3 make up a large proportion of histone H3 content in 

terminally differentiated cells, such as neurons; while only comprise a small fraction of 

the total H3 pool in actively dividing cells (Piña and Suau, 1987; McKittrick et al., 

2004).  H3.3 is enriched primarily at promoters and the bodies of genes, both in active 

and inactive regions. It is also found in the subtelomeric and pericentromeric domains 

and so it is not restricted to highly transcribed regions (Weber and Henikoff, 2014). In 

addition to H3.3, H3.4 variant also exists, although so far it has only been found in the 

testis (Witt et al., 1996). Finally, a centromeric form of H3 exists, CENP-A (CenH3). 

Importantly, in most organisms, it is the incorporation of this histone variant that leads 

to the establishment of the centromeric locus rather than the underlying DNA sequence 

(Müller and Almouzni, 2014). CENP-A is structurally different from the canonical H3, 

in fact they share only ~50% sequence identity. CENP-A presented with high specificity 

for kinetochore proteins, thereby facilitating appropriate chromosome segregation  

during cell division (Talbert and Henikoff, 2010).  

 

1.3.3 Other variants 

 

In addition to the above mentioned and relatively well studied histone variants, there are 

variants for H2B and H1 too. To date a H4 sequence variant has not been found, 

although in Drosophila a gene encoding H4 has been associated with expression 

patterns outside of S phase, characteristic of a variant (Akhmanova et al., 1996). The 

H2B variant, TSH2B, is testis-specific and ChIP-seq analysis has shown is enriched in 

genes required for spermatogenesis (Hammoud et al., 2009). Therefore, it has been 

proposed that this mark prevents the packaging of these regions into protamines (Talbert 

and Henikoff, 2010). Finally, the linker histone H1 has several variants (H1.1, H1.2, 

H1.3, H1.4, H1.5, H5), amongst them is an erythrocyte variant H5, which presents with 

a different structure, and is thought to be primarily involved in differentiation 

(Harshman et al., 2013). Through the process of histone variant exchange another layer 

of control can be imposed on the chromatin structure, to fine-tune responses, whether 

affecting a specific cell type, a particular location in the genome, or exerting their effect 

during a particular cellular process.  
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1.4 ATP-dependent remodelers 
 

Alongside histone modifications and histone variant exchange, ATP-dependent 

chromatin remodelling carried out by the Snf2-type ATPases provides an additional 

layer of control over the chromatin structure by modulating its accessibility. These 

chromatin remodelers utilize the energy generated from ATP-hydrolysis to disrupt 

nucleosome-DNA interactions, move nucleosomes along DNA (nucleosome phasing), 

remove or exchange nucleosomes/dimers or deposit newly synthesized nucleosomes 

(Clapier and Cairns, 2009; Hargreaves and Crabtree, 2011) (Fig. 1.6.A). Although there 

are several proteins involved in chromatin remodelling, often functioning in groups, 

they are generally classified into four categories based on their unique domains, these 

are SWI/SNF, INO80, ISWI and CHD (Fig 1.6.B).  Common to them all is an ATPase 

domain, while the four classes contain motifs unique to each. Briefly, the SWI/SNF 

family of remodelers contain a bromodomain; the ISWI family a HAND-SANT-SLIDE 

(HSS) domain, the Ino80/Swr1 proteins contain an insertion in their ATPase domain, 

while CHD proteins contain a chromodomain and a DNA binding domain (Manning 

and Peterson, 2013). 
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Figure 1.6 Outcomes of chromatin remodelling by ATP-dependent remodelers.  
(A) Remodeler activities can lead to nucleosome deposition, dimer exchange, 
unwrapping, nucleosome ejection, dimer ejection and repositioning/spacing of 
nucleosomes. Adapted from (Clapier and Cairns, 2009). (B) Domain structures of the 
four classes of ATP-dependent chromatin remodelers. All ATP-dependent 
remodelers contain a highly conserved ATPase domain (red), while the four classes each 
contain domains unique to them. Briefly, the SWI/SNF family of remodelers contain a 
bromodomain; the ISWI family contains a HAND-SANT-SLIDE (HSS) domain, the 
Ino80/Swr1 proteins contain an insertion in their ATPase domain, while CHD proteins 
contain a chromodomain and a DNA binding domain.  Adapted from (Manning and 
Peterson, 2013).  
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1.4.1 SWI/SNF (Switch/Sucrose Non-Fermenting) 

  

The first chromatin-remodeler of the Snf2 family of ATPases to be characterized was 

SWI/SNF. The initial screens carried out in S. cerevisiae identified mutants that were 

defective in mating type switching, termed SWI (Stern et al., 1984) and in sucrose 

fermentation, termed sucrose non-fermenting (SNF) (Neigeborn and Carlson, 1984). 

Since their characterization in budding yeast, homologues have been found in all model 

organisms, with a general composition of 8-14 subunits (Clapier and Cairns, 2009). The 

SWI/SNF family contains two complexes in yeast, RSC and SWI/SNF, in Drosophila it 

also includes the Brahma complex, and finally the human family also contain Brahma 

(BRM) and Brahma-related (BRG1) proteins. Characteristic of the SWI/SNF family of 

ATPases is their bromodomain, which allows recognition of acetylated lysines on 

histone tails (Hassan et al., 2002). Overall SWI/SNF is associated with transcriptional 

activation, by generating a chromatin environment that is less compact and thereby 

easily accessible to Pol II (Clapier and Cairns, 2009). Drosophila Brahma localization 

in the polytene chromosomes, for example, coincides with transcriptionally active 

regions, and depletion of Brahma leads to a reduction in Pol II levels, suggesting that 

nucleosome remodelling by Brahma is important in facilitating transcription by Pol II 

(Armstrong et al., 2002). The SWI/SNF complex has been shown to be required for the 

transcriptional activation of histone genes in S. cerevisiae, while the RSC complex is 

associated with repression of transcription outside of S phase (Eriksson et al., 2012). 

The human SWI/SNF complex has also been shown to be involved in regulating the 

transcription of the Vitamin D gene, the estrogen receptor (ER), as well as a number of 

estrogen target genes (Zhang et al., 2007a; Clapier and Cairns, 2009; Jeong et al., 

2009). Also, similarly to yeast, depending on the subunit composition of the human 

SWI/SNF complex, it can mediate both transcriptional activation and repression at the 

same set of gene promoters. For instance BAF170 has been demonstrated to be required 

for the SWI/SNF co-regulatory complex which mediates estrogen-induced activation of 

transcription but not repression; conversely BAF155 was involved in transcriptional 

repression but not activation (Zhang et al., 2007a). Knockdown of the Drosophila 

Brahma also leads to global changes in nucleosome phasing over the ORFs of a subset 

of genes, particularly visible is a shift towards the 3’ in the +3, +4, +5, etc. 

nucleosomes, as well as a decrease in global nucleosome occupancy (Shi et al., 2014). 

In addition, S. cerevisiae RSC, but not SWI/SNF, has been shown to be required for 

phasing of nucleosomes on a global scale (Ganguli et al., 2014). Depletion of RSC 
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results in nucleosome repositioning, with both + and – nucleosomal arrays shifting 

towards the NDR, resulting in a narrow and over occupied NDR (Ganguli et al., 2014). 

Thus both Brahma and RSC are involved in global chromatin maintenance.  

 

 

1.4.2 ISWI (Imitation SWITCH) 

 

Protein complexes containing the ISWI ATPase were first identified in Drosophila, 

including the NURF, CHRAC and ACF complexes (Tsukiyama et al., 1995; Tsukiyama 

and Wu, 1995; Ito et al., 1997; Varga-Weisz et al., 1997). Since then homologues in 

human and in yeast have too been characterized (Corona and Tamkun, 2004). 

Interestingly, ISWI lacks any domains that allow direct interaction with modified 

residues, such as a bromo or a chromo domain, rather it appears to be able to recognize 

nucleosomes (Corona and Tamkun, 2004). In vitro analysis has demonstrated that ISWI 

is able to generate nucleosome arrays from randomly synthesized nucleosomes, thus is 

has the ability to space nucleosomes (Whitehouse et al., 2003). Furthermore, work 

carried out both in vitro and in vivo has demonstrated that all ISWI containing 

complexes can mediate transcriptional activation and repression. In Drosophila ISWI 

function is essential, homozygous mutants of ISWI die during larval or early pupal 

development and present with severe reduction in gene expression in the segmentation 

gene en and the homeotic gene Ubx (Deuring et al., 2000). Furthermore Drosophila 

lacking the function of the NURF subunit, NURF301, showed reduced expression of 

Ubx, as well as an impairment of hsp70 and hsp26 gene induction (Badenhorst et al., 

2002). In addition, work in vitro has shown that the purified NURF complex is able to 

facilitate the transcription of GAL4 from a chromatin template (Mizuguchi et al., 1997). 

It has also been demonstrated that ISWI is not only able to facilitate active transcription, 

but is also required for the generation of silent chromatin. There are two ISWI 

homologues in S. cerevisiae ISW1 and ISW2, and unlike in Drosophila these are not 

essential. Deletion of either of these genes results in de-repression at a number of loci as 

well as loss of silencing over the silent HMR mating type locus (Fazzio et al., 2001; 

Cuperus and Shore, 2002). Recently it has also been demonstrated that the effect of 

ISWI on nucleosomes is on a global scale. Loss of activity of ISWI or NURF301 in 

Drosophila leads to decondensation of the male X chromosome, suggestive of a role in 

dosage compensation and global chromatin organization (Badenhorst et al., 2002). 

Finally, nucleosome maps generated in A. thaliana have demonstrated that double 
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mutants of ISWI (chr11 and chr17) lose global nucleosome spacing from the +1 

nucleosome onwards over the body of protein coding genes (Li et al., 2014), 

demonstrating that the nucleosome spacing function of ISWI is conserved.  
 

 

1.4.3 INO80/SWR-C 

 

INO80 and SWR-C are multi-subunit complexes that catalyze the deposition and 

removal of the histone variant H2A.Z from the +1 nucleosome over the ORFs of protein 

coding genes, and as a result, play an important role in transcriptional control. The 

incorporation of H2A.Z is carried out by the SWR-C complex, while removal of the 

variant is done by INO80 (Kobor et al., 2004; Mizuguchi et al., 2004; Papamichos-

Chronakis et al., 2011). The full INO80 complex is composed of ~15 subunits (Shen et 

al., 2000), while SWR-C is made up of 14 (Mizuguchi et al., 2004; Wu et al., 2005). 

Interestingly, the two complexes share a number of the same subunits (Rvb1, Rvb2 and 

Arp4), with the Ino80 catalytic subunit being the core of the INO80 complex and Swr1 

of the SWR-C complex (Shen et al., 2000; Kobor et al., 2004; Mizuguchi et al., 2004). 

In agreement with their role in facilitating H2A to H2A.Z exchange, and vice versa,  

both SWR-C and INO80 complexes are enriched primarily over the +1 nucleosome 

(in >90% of protein coding genes) (Yen et al., 2013). Previous work has demonstrated 

that SWR-C is able to deposit H2A.Z-H2B dimers directly into nucleosomes, while 

INO80 only has the ability to catalyze the exchange of H2A.Z for H2A specifically 

(Papamichos-Chronakis et al., 2011). However, more recent work has suggested that not 

only is INO80 able to remove H2A.Z from these nucleosomes, it also promotes full 

nucleosome turnover (Yen et al., 2013), possibly by exposing the H3-H4 core of the 

nucleosomes to other remodelers. In the absence of the functional INO80 complex in 

yeast, histone H3 turnover, which corresponds to full nucleosome turnover, is 

significantly reduced (Yen et al., 2013). Thus, either directly or indirectly INO80 

appears to play a role outside of H2A.Z-H2A exchange.  
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1.4.4 CHD 

 

The CHD family of remodelers contain 9 members in higher eukaryotes, but just one in 

S. cerevisiae and two in S. pombe (Hargreaves and Crabtree, 2011). CHD proteins are 

characterized by tandem chromodomains located in the N-terminal region of the protein 

and a Snf2-like ATPase domain in the central region (Delmas et al., 1993; Woodage et 

al., 1997). The best studied member of the CHD family is Chd1, which has been 

associated with a wide variety of roles in general chromatin maintenance. Chd1 purified 

from Drosophila has been shown to be able to assemble nucleosomes in vitro in the 

absence of histone H1 proteins, suggestive of a role for CHD1 in active chromatin 

assembly (Lusser et al., 2005). This agrees with further work in Drosophila, where 

Chd1 localization was found to coincide with transcriptionally active regions of 

chromatin. Furthermore, it has been demonstrated that loss of Chd1 function leads to an 

increase in the heterochromatin protein HP1a levels, while the converse is true when 

CHD1 is overexpressed, resulting in perturbations to higher order chromatin structure 

(Bugga et al., 2013). In addition to its ability to deposit nucleosomes, Chd1 has 

nucleosome spacing activity (Lusser et al., 2005; Pointner et al., 2012; Shim et al., 

2012). Deletion of both Chd1 encoding genes in S. pombe, hrp1+ and hrp3+, leads to a 

complete loss of the nucleosome periodicity over protein coding regions, as 

demonstrated by MNase-sequencing (Hennig et al., 2012; Pointner et al., 2012; Shim et 

al., 2012). Thus CHD remodelers are particularly important in maintaining appropriate 

spacing of nucleosomes over coding regions.  In addition to roles in nucleosome 

spacing, Chd1 in yeast has been demonstrated to play a role in suppressing histone H3 

turnover over the 3’ end of long genes (>1000 bp), essentially stabilizing nucleosomes 

(Radman-Livaja et al., 2012). It has recently been suggested that it does this by 

preventing histone exchange following transcription, that is, it restricts the incorporation 

of histones from the free pool. Indeed, loss of S. cerevisiae CHD1 leads to an increase in 

histone exchange from mid-ORF to the 3’ end, and to a redistribution of nucleosomes 

towards the 5’ end of genes (Smolle et al., 2012). In agreement with a role in 

maintaining nucleosome towards the 3’ end of ORFs, loss of hrp1+ and hrp3+ leads to 

an increase in cryptic antisense transcripts that largely originate from the 3’ end of long 

genes (Hennig et al., 2012; Pointner et al., 2012; Shim et al., 2012).  
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1.5 Histone chaperones 

 

In addition to ATP-dependent remodelers, a distinct group of proteins function in the 

assembly and disassembly of nucleosomes. These proteins have been termed histone 

chaperones. Histone chaperones have initially been described by Laskey et al. (1978), 

and were thought of as acidic proteins that can prevent non-specific interactions 

between DNA, RNA and positively charged proteins, such as histones. However, over 

the years a number of well conserved histone chaperones have been identified, with 

essential roles in cellular processes such as replication, DNA damage repair, 

transcription, and senescence (Burgess and Zhang, 2013). There are diverse groups of 

chaperones that function with the different histone pairs and their roles can vary 

depending on the context, i.e. the same chaperone can function in both assembly and 

disassembly of nucleosomes, as well as in histone variant exchange. Table 1.6 depicts 

some of the well characterized histone chaperones with their respective histone partners 

and brief function.  

 

Table 1.6 Histones and their respective histone chaperones  
Histones Chaperone Nuclear processes 

H2A-H2B FACT Replication, Repair, Transcription 
 Nap1 Transcription 
 Chz1 Transcription 
H2A.X-H2B FACT Repair 
H2A.Z-H2B Nap1 Transcription 
 Chz1 Transcription 
H3-H4 Asf1 Replication, Repair,  

Transcription 
 CAF1 Replication, Repair 
 FACT Transcription 
 Vps75 Replication 
 Rtt106 Replication 
 Spt6 Transcription 
 Nap1 Transcription 
H3.3-H4 HIRA Transcription, Repair 
 Daxx Transcription 
Adapted from (Burgess and Zhang, 2013). 
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1.5.1 Histone H3-H4 chaperones 

 

The process of nucleosome assembly depends on the initial deposition of the core (H3-

H4)2 heterotetramers, followed by the rapid deposition of H2A-H2B dimers. Since (H3-

H4)2 tetramers make up the core of the nucleosome, their initial assembly is likely to be 

rate-limiting. Their assembly is largely dependent on histone chaperones and as a result 

of this a number of H3-H4 histone chaperones have been identified and well 

characterized to date. Some of these include Asf1, CAF1, DAXX, Rtt106, HIRA, Vps75 

and Spt6. A further way of classification is based on their role in replication-coupled or 

uncoupled nucleosome assembly. CAF1, Vps75, Rtt106 are all known to function in 

replication-dependent assembly, while HIRA, DAXX and Spt6 are restricted to 

replication-independent nucleosome deposition only. Asf1 functions in both pathways, 

primarily through partnering with either CAF1 or HIRA (Fig 1.7).  
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Figure 1.7 Schematic diagram of histone deposition by replication-dependent and 
replication-independent histone H3-H4 chaperones.  
During replication-dependent nucleosome assembly newly synthesized histone H3-H4 
dimers are bound by Asf1, which transfers the dimers to CAF-1 or Rtt106, leading to 
the formation of (H3-H4)2, which gets deposited onto newly synthesized DNA. Paternal 
H3-H4 also gets incorporated onto the newly synthesized DNA strand however the 
mechanism behind that is still unclear. During transcription, replication-independent 
nucleosome assembly is primarily mediated by the HIRA complex, which is possibly 
associated with RNA Pol II.  Adapted from (Burgess and Zhang, 2013).  
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1.5.1.1 Asf1 (Anti-silencing function 1) 
 

Asf1 was first identified in S. cerevisiae, where deletion of the gene resulted in de-

repression of genes near the telomeric regions, as well as sensitivity to a number of 

DNA damaging agents (Le et al., 1997). While Asf1 function is not essential in S. 

cerevisiae, it has proven to be critical in other species, including S. pombe, Drosophila 

and chicken DT-40 cells (Sanematsu et al., 2006; Tanae et al., 2012). A temperature 

sensitive asf1 mutant, asf1-33, in S. pombe presents with slow growth, an increase in 

DNA DSBs and sensitivity to DNA damaging agents (Tanae et al., 2012). In addition, 

asf1-33 cells lose silencing over the pericentromeric heterochromatin, and MNase 

digestions resulted in a significantly greater proportion of mononucleosomes compared 

to the wild type, suggestive of a large scale defect in chromatin structure (Tanae et al., 

2012).    

 

Asf1 is thought of as the central histone H3-H4 chaperone, as it is essential in both 

replication-coupled and replication-uncoupled nucleosome assembly. It partners with 

the CAF-1 and HIRA histone chaperones to carry out the specific processes. While 

yeast contains a single Asf1 protein, two paralogs exist in most metazoans, ASF1a and 

ASF1b. Previous work has demonstrated that the majority of CAF-1 and H3.1 

containing complexes interact with ASF1b, while HIRA and H3.3 complexes 

preferentially contain ASF1a (Tagami et al., 2004). However, neither ASF1a nor 

ASF1b has any preferential binding activity to either H3.1 or H3.3, suggesting that the 

specificity comes from CAF-1 and the HIRA/UBN1 complex, respectively (Tagami et 

al., 2004). Importantly, Asf1 has no affinity for binding H3-H4 tetramers; therefore it is 

possible that the major function of Asf1 is to supply histone dimers to CAF-1 and HIRA 

in nucleosome assembly. Indeed, it has been demonstrated that Asf1 binds to histone 

dimers, which get passed to CAF-1 and HIRA respectively, which have the ability to 

assemble them into tetramers prior to incorporation into the chromatin (Liu et al., 

2012).  

 

In addition to a role in nucleosome assembly, Asf1 has also recently been shown to be 

required for appropriate induction of heat stress response genes in A. thaliana. Deletion 

of both of the ASF1 homologues, ASF1a and ASF1b, leads to a severe reduction of heat 

stress response gene induction (Weng et al., 2014). They are both required for promoter 

nucleosome remodelling, as ASF1a/b levels correlate with nucleosome loss and RNA 

30 
 



Pol II recruitment. Furthermore, agreeing with previously published work, ASF1Aa/b 

facilitates H3K56ac, which stimulates transcriptional activation (Weng et al., 2014). 

Acetylation of H3K56 in yeast is through the co-operation of Asf1 with the HAT 

Rtt109, and is important for transcriptional elongation, particularly through 

heterochromatin (Lu and Kobor, 2014). The yeast Asf1 protein has also been 

demonstrated to play a role in repressing histone gene transcription outside of S phase 

(Sutton et al., 2001), while it is also required for appropriate PHO5 and PHO8 gene 

induction and repression, by mediating both nucleosome disassembly and reassembly, 

respectively (Adkins et al., 2004).  

 

 

1.5.1.2 CAF-1 (Chromatin assembly factor-1) 

 

The CAF-1 histone chaperone complex is associated with nucleosome deposition during 

replication. The CAF-1 complex is evolutionarily conserved from yeast to humans, with 

3 highly preserved subunits (p150, p60 and p48 in humans, and Cac1, Cac2 and Cac3 in 

S. cerevisiae, respectively) (Kaufman et al., 1995; Verreault et al., 1996). The p48/Cac3 

subunit of the complex is able to directly interact with histones and has been found in a 

number of chromatin-related complexes, outside of CAF-1 (Loyola and Almouzni, 

2004). 

  

The complex was first purified from human cells and was demonstrated to have 

nucleosome assembly activity on replicating SV40 DNA in vitro (Smith and Stillman, 

1989). Furthermore, in vivo analysis has demonstrated that CAF-1 is primarily 

associated with the H3.1 variant, which is deposited during S phase, making it a bone 

fide replication-dependent chaperone (Tagami et al., 2004). During replication, CAF-1, 

through its p150 subunit gets recruited by the Proliferating Cell Nuclear Antigen 

(PCNA) to sites of DNA synthesis (Shibahara and Stillman, 1999). CAF-1 is then able 

to load newly synthesized, H3K56 acetylated, histone (H3-H4)2 tetramers onto the 

chromatin (Shibahara and Stillman, 1999; Liu et al., 2012; Winkler et al., 2012). During 

its role in histone deposition, CAF-1 co-operates with the Asf1 histone chaperone 

(Asf1b in metazoans) (Sanematsu et al., 2006) and as expected, knockdown of CAF-1 

function leads to a decrease in H3.1 containing nucleosome incorporation (Nabatiyan 

and Krude, 2004).  
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CAF-1 has also been shown to play a role in heterochromatin formation and 

maintenance, as loss of any of the CAF-1 subunits in a number of organisms, including 

S. cerevisiae, S. pombe, Drosophila, and mice, leads to perturbations and loss of 

silencing over heterochromatic regions   (Houlard et al., 2006; Song et al., 2007; Dohke 

et al., 2008). The mechanism appears to be similar between the species; in the absence 

of functional CAF-1 complex, HP1 protein association with chromatin is decreased, 

thus leading to perturbed silencing over these regions (Dohke et al., 2008; Huang et al., 

2010). Evidence from S. pombe suggests that CAF-1 functions by recruiting dislocated 

HP1 from heterochromatin during replication and redistributing it to sites of newly 

synthesized heterochromatic regions (Dohke et al., 2008). Therefore, CAF-1 function is 

also important in epigenetic maintenance of heterochromatin.  

 

 

1.5.1.3 HIR/HIRA (Histone cell cycle regulator) 

1.5.1.3.1 Characterization and composition 

 

Initial identification and characterization of the HIR genes (HIR1, HIR2, HIR3 and 

HPC2) have come from genetic screens in S. cerevisiae for factors required for 

repression of three out of the four histone gene pairs, HTA1-HTB1, HHT1-HHF1 and 

HHT2-HHF2, outside of S phase (Xu et al., 1992; Spector et al., 1997). It was also in 

budding yeast that all subunits of HIR were co-purified in a single complex, with a 

stoichiometry of one copy of Hir1 and Hir3, and two copies of Hir2 and Hpc2 

respectively (Green et al., 2005; Prochasson et al., 2005). Since the initial findings in 

budding yeast, HIR homologues have also been identified in multiple other species, 

including in S. pombe, Drosophila, mice, and humans. Importantly, the single human 

HIRA protein also co-purifies with histone H3.3, as well as three other proteins 

homologous to HIR subunits, Ubinuclein-1 (UBN1), Ubinuclein-2 (UBN2), and Cabin1 

(Tagami et al., 2004). Recent work has also demonstrated that a single HIRA protein, 

similarly to metazoans, is also conserved in A. thaliana along with homologues for 

Cabin1, UBN1 and UBN2 (Nie et al., 2014). Furthermore, similarly to metazoans, the 

A. thaliana HIRA complex has particular affinity to the histone variant H3.3 (Nie et al., 

2014). Thus it appears that the function of the HIRA complex is highly conserved 

throughout evolution. A diagram of HIRA complex composition in some model 

organisms is depicted in Figure 1.8 while Table 1.7 summarizes the key roles of HIRA. 

The single HIRA protein in metazoans is a homologue of the two budding yeast Hir1 
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and Hir2 proteins, while Cabin1 is thought to be the orthologue of Hir3, and Ubinuclein  

(UBN1/UBN2) that of Hpc2 (Balaji et al., 2009; Banumathy et al., 2009). As expected, 

recent work confirmed that HIRA and UBN1 largely co-localize on the chromatin, 

although regions do exist where only the HIRA protein binds (Pchelintsev et al., 2013). 

The function of HIRA upon these regions is not understood; however a report from 

budding yeast suggests that the Hir1 subunit alone is enough to repress the HTA1 

promoter when it's artificially recruited (Spector et al., 1997), so perhaps the subunits or 

a proportion of them can function independently of the extended HIRA complex.  

 

 

 

Table 1.7 HIRA complex subunits and function through evolution.  

Species HIR complex 
subunits Main functions 

S. cerevisiae Hir1, Hir2, Hir3, 
Hpc2 

Regulation of histone gene expression 

  Maintenance of heterochromatin silencing 
  Suppression of spurious transcription 
  Nucleosome assembly (replication-independent) 
S. pombe Hip1, Slm9, Hip3, 

Hip4 
Regulation of histone gene expression 

  Maintenance of heterochromatin silencing 
  Suppression of spurious transcription 
  Transcriptional regulation of inducible genes 
Drosophila dHIRA, yemenuclein-

α 
Histone H3.3 deposition in the male pronucleus 
during sperm decondensation 

human HIRA, UBN1, UBN2, 
Cabin1 

Incorporation of histone H3.3 into nucleosomes 
 SAHF formation 
  Telomere length maintenance via ALT 
Adapted from (Amin et al., 2012).  
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Figure 1.8 HIR complex homologues.  
The HIR complex in S. cerevisiae comprises of four subunits. These are Hir1, Hir2, 
Hir3 and Hpc2. S. pombe also consists of four subunits, with Hip1, Slm9, Hip3 and 
Hip4 respectively. In Drosophila there is a single HIRA protein, which appears to be a 
fusion between the yeast Hir1 and Hir2 proteins, and it interacts with a Hpc2-like 
protein, called Yemanuclein-α. Similarly to Drosophila, the human HIRA complex 
consists of a single HIRA protein and a Hpc2-like homologue Ubinuclein1 and a Hir3-
like protein Cabin1. Adapted from (Amin et al., 2012).  
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1.5.1.3.2 Nucleosome assembly through HIR/HIRA  

 

In vitro assays have demonstrated that the purified HIR complex can assemble 

nucleosomes independently of replication and that it most likely carries this out through 

binding histone H3-H4 pairs, not H2A-H2B (Ray-Gallet et al., 2002; Green et al., 2005; 

Prochasson et al., 2005). In higher eukaryotes the HIRA protein preferentially binds the 

histone H3 variant H3.3 (Tagami et al., 2004), which is associated with transcription 

over replication, demonstrating that HIRA is a replication independent chaperone also 

in these organisms. Further weight is added by the fact that HIRA does not only co-

purify with histone H3.3 but also with ASF1a (Ray-Gallet et al., 2002; Tagami et al., 

2004; Green et al., 2005; Nie et al., 2014), which in higher eukaryotes is the replication-

independent ASF1 homologue. This is conserved throughout evolution. In S. cerevisiae 

loss of any of the four HIR subunits disrupts HIR and Asf1 binding, and in vitro Asf1 

increases the ability of HIR to assemble nucleosomes (Green et al., 2005). Partial 

inactivation of Asf1 function, which specifically reduces the physical association 

between Asf1 and HIR, also reduces the ability of the HIR complex to deposit 

nucleosomes in vivo (Green et al., 2005). In addition, asf1∆hir1∆ double mutants in S. 

cerevisiae present with defects in incorporating histone H3 at the PHO5 promoter to a 

similar degree than either single mutants, further confirming that these two genes act in 

the same pathway (Schermer et al., 2005). Interestingly, recent work has demonstrated 

that when the human histone variants, H3.1 and H3.3 are introduced into yeast, which 

has only a single histone H3 protein, the yeast HIR complex preferentially incorporates 

H3.3 into the chromatin in a transcription dependent manner (Song et al., 2013). H3.1 is 

almost completely excluded from transcriptionally active chromatin (Song et al., 2013). 

The authors have also demonstrated that the choice between H3.1 and H3.3 variants is 

entirely dependent on the HIR complex, as Asf1 allows the indiscriminate deposition of 

both H3.1 and H3.3 (Song et al., 2013). Therefore, the ability of the HIRA complex to 

distinguish between different histone variants is conserved from yeast to humans.   
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1.5.1.3.3 Regulation of transcription by HIR/HIRA  

 

The best studied example of the HIRA complex in regulating gene transcription comes 

from budding yeast, where HIR is amongst the factors required for appropriate 

regulation of histone gene transcription (Amin et al., 2012). Previous work has shown 

that a number of chromatin associated factors are involved in modulating the 

appropriate expression of histone genes, and that it is the interplay between these 

different proteins that leads to appropriate repression and activation. In particular Asf1, 

Rtt106, and HIR have been demonstrated to play a repressive role by creating a 

chromatin environment that prevents Pol II association (Sutton et al., 2001; Fillingham 

et al., 2009). HIR is thought to first bind to the centre of the HTA1-HTB1 promoter 

region and physically associate with Asf1, then recruit Rtt106 (Fillingham et al., 2009; 

Silva et al., 2012). Loss of any of these three factors creates a nucleosome free region 

over the HTA1-HTB1 promoter and leads to inappropriate histone gene transcription 

outside of S phase to a similar extent (Sutton et al., 2001; Fillingham et al., 2009; Silva 

et al., 2012; Zunder and Rine, 2012). HIR in co-operation with Rtt106 is believed to be 

involved in the recruitment of RSC or SWI/SNF to facilitate the repression or activation 

of histone gene transcription respectively (Dimova et al., 1999; Ng et al., 2002; Ferreira 

et al., 2011; Zunder and Rine, 2012). Therefore, the HIR complex is not only involved 

in repressing histone gene transcription, but through recruitment of Rtt106 and 

SWI/SNF it also facilitates appropriate transition leading to histone gene transcription 

(playing a co-activator role) (Fig 1.9). The role of the HIR complex in regulating 

histone gene expression has also been recapitulated in S. pombe, where it was shown 

that deletion of hip1+ leads to transcription of core histone genes outside of S phase 

(Blackwell et al., 2004). Finally, recent work has demonstrated that the HIR complex in 

C. albicans is also involved in repressing histone gene expression outside of S phase 

(Stevenson and Liu, 2013).  In addition to studies linking the HIRA complex to histone 

gene transcription, work carried out in S. pombe and in A. thaliana have both 

demonstrated a need for HIRA in appropriate induction of responsive, environmentally 

regulated genes (Chujo et al., 2012; Nie et al., 2014). In the absence of the functional 

HIRA complex, environmental stress response (ESR) genes ctt1+, gpx1+, gpd1+ and 

tps1+ fail to get induced in S. pombe upon heat stress (Chujo et al., 2012). Therefore, it 

is possible that the HIRA complex plays a role in general transcriptional regulation.  
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Figure 1.9 Repression of HTA1-HTB1 transcription by the HIR complex.  
The HIR complex in S. cerevisiae is involved in binding the histone gene HTA1-HTB1 
promoter, which is required for the appropriate (and sequential) recruitment of Asf1, 
Rtt106 and RSC. The presence of these complexes maintains repression of histone 
genes outside of S phase. Conversely, during S phase RSC is removed and the SWI/SNF 
complex is recruited to remodel the nucleosomes surrounding the promoter regions, 
leading to histone gene transcription.  Adapted from (Zunder and Rine, 2012).  
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1.5.1.3.4 HIRA in transcriptional elongation and repression of cryptic promoters  

 

Genetic analysis of the HIR complex in S. cerevisiae indicated that it is required not 

only for transcriptional activation, but also for transcriptional elongation. Mutations in 

the HIR genes alongside mutations in either POB3 or SPT16 lead to either synthetic 

lethality or extremely poor growth (Formosa et al., 2002). Pob3 and Spt16 have 

previously been shown to be components of the yeast FACT complex, which is 

associated with facilitating transcriptional elongation. In addition, combining HIR 

mutants with mutants of SPT4/5/6 or PAF1, transcription elongation components, also 

leads to synthetic lethality (Formosa et al., 2002). Therefore, it appears that HIR is not 

only important in transcriptional activation but might also facilitate transcriptional 

elongation.     

 

Loss of HIR function leads to the accumulation of cryptic/antisense transcripts (Nourani 

et al., 2006). These transcripts arise from the 3’ end of genes, from so called cryptic 

promoters, which are normally repressed. However, mutations in a number of chromatin 

maintenance genes, where nucleosomes are not properly reassembled over these 

regions, lead to antisense transcription. Cryptic transcription is also observed in S. 

pombe HIRA mutants (Blackwell et al., 2004; Greenall et al., 2006; Anderson et al., 

2009; Anderson et al., 2010); therefore it is possible that HIRA is generally involved in 

the suppression of spurious transcription, most likely through facilitating the re-

assembly of nucleosomes in the wake of RNA Pol II.    

 

 

1.5.1.3.5 Role for HIR/HIRA in heterochromatin silencing 

 

As mentioned previously, assembly and disassembly of nucleosomes throughout a 

variety of cellular processes is essential, and the HIR complex has been demonstrated to 

be a key histone chaperone in nucleosome assembly. One of its roles is maintaining 

heterochromatin structure and silencing. Initial work in S. cerevisiae has found that 

deletion of any of the HIR genes by themselves has no effect on heterochromatin 

silencing over the HM (HMR and HML) loci or over the telomeric regions. However, 

genetic interaction studies have demonstrated that loss of the HIR genes in the absence 

of CAF-1 leads to loss of position-dependent gene silencing that is severely exacerbated 

compared to the cac mutants by themselves (Kaufman et al., 1998). Thus in the absence 
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of a functional CAF-1 nucleosome deposition pathway, HIR becomes necessary for 

heterochromatin maintenance. In heterochromatic silencing, like in other activities, the 

HIR complex functions through the same pathway as Asf1. Loss of HIR genes alongside 

ASF1 does not exacerbate the phenotype of the single mutants, while deletion of ASF1 

alongside components of the CAF-1 complex, leads to similar phenotypes to those 

observed in the hir cac double mutants (Sharp et al., 2001). Not surprisingly, Rtt106 has 

also been shown to play a role through the HIRA/Asf1 pathway in heterochromatin 

silencing (Huang et al., 2005; Huang et al., 2007). In addition to maintaining 

heterochromatin over the HM loci and telomeric regions, HIR has also been implicated 

in preventing the transposition of Ty elements.  A screen carried out in a cac mutant 

background has identified HIR genes as important for the repression of Ty transposition 

(Qian et al., 1998). Since, work has also identified both Asf1 and Rtt106 as being 

important for repression of retrotransposition in cac mutants (Amin et al., 2012).  

 

In addition, work carried out in S. pombe has shown that loss of any of the HIR/HIRA 

subunits leads to loss of silencing within the pericentromeric heterochromatin, the 

mating type locus and over Tf2 retrotransposons (Blackwell et al., 2004; Greenall et al., 

2006; Anderson et al., 2009; Anderson et al., 2010; Yamane et al., 2011), even in the 

presence of functional CAF-1. Hence, in S. pombe the HIRA complex alone plays a 

more central role in heterochromatin maintenance than it does in S. cerevisiae. Finally, 

the A. thaliana HIRA complex is required for the silencing of knox genes, possibly 

through the establishment of heterochromatin (Phelps-Durr et al., 2005). Therefore, the 

HIRA complex is likely to be important in maintaining repressive chromatin structures 

in eukaryotes.  
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1.5.1.3.6 HIRA in development  

 

HIRA is essential in early development, a role which has been found to be conserved 

across species. HIRA protein and mRNA levels were found to be at their peak during 

early stages of development in mice, chicken, Drosophila, zebra fish, Xenopus, A. 

thaliana and gibel carp too (Amin et al., 2012). Mutations of HIRA in mice lead to 

gastrulation defects, abnormal mesodermal development and embryonic lethality by day 

11 (Roberts et al., 2002). HIRA is also essential in the gibel carp, where knockdown of 

HIRA by morpholinos leads to death either during embryogenesis or during larval 

development (Wang et al., 2014). The role of HIRA during the indicated developmental 

stages, along with other histone chaperones is depicted in Figure 1.10.A (Filipescu et 

al., 2013).  

 

The function of HIRA is perhaps best understood during sperm decondensation in the 

male pronucleus in Drosophila (Fig 1.10.B). This is essential for male fertility and for 

embryonic development (Kirov et al., 1998; Llevadot et al., 1998; Loppin et al., 2005; 

Bonnefoy et al., 2007). A point mutation in the Drosophila HIRA gene, termed sesame 

(ssm), leads to sterility in females, suggesting that HIRA is essential for the assembly of 

the paternal chromatin during fertilization. Indeed, ssm mutants are defective in their 

ability to deposit maternal histone H3.3 into the male pronucleus, which remains 

abnormally condensed and fails to assemble on the mitotic spindle (Loppin et al., 2000). 

As a result of this haploid maternal embryos fail to develop, hence the ssm mutation is 

embryonic lethal (Loppin et al., 2000). Similarly to Drosophila, depletion of HIRA in 

both the gibel carp and colour crucian carp leads to a failure in sperm decondensation 

(Zhao et al., 2011). Finally, work in mice has also demonstrated a need for HIRA in 

sperm decondensation and appropriate fertility through its role in histone H3.3 

deposition (Lin et al., 2014). In addition, this study has demonstrated that HIRA 

mediated H3.3 deposition is not restricted to the paternal genome, as when HIRA was 

not functional depletion was also observed in the oocyte (Lin et al., 2014). This 

suggests that remodelling also takes place in the maternal chromosomes and that this is 

also HIRA mediated.     

 

Recently, identification of a Yemanuclein-α mutation in Drosophila, has also 

demonstrated a role for HIRA mediated chromatin maintenance during meiosis. The 

yem1 allele presents with disruptions to chromosome organization on the meiotic 
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spindle, possibly as a result of inappropriate kinetochore function (Meyer et al., 2010). 

In support of this model, Yem1-α localized to the kinetochores during meiosis, while 

yem1 flies were shown to produce diploid eggs following meiosis, indicative of non-

disjunction (Meyer et al., 2010). Consequently, it is possible that the HIRA complex is 

involved in meiosis through a role in the assembly/maintenance of kinetochores. 

Finally, while histone H3.3 and the HIRA complex are generally associated with 

marking active transcription, recent work has demonstrated that in embryonic stem cells 

(ESCs) the HIRA complex and H3.3 are required for the maintenance of repressive 

chromatin over developmentally regulated bivalent genes. Bivalent genes are important 

in ESC differentiation, as they are able to respond rapidly to developmental signals. In 

HIRA depleted cells, H3.3 levels are down and consequently so are H3K27me and 

PRC2 levels, while H3K4me levels remain unchanged (Banaszynski et al., 2013). In 

addition, HIRA physically associates with PRC2 over these regions in ESCs, hence not 

only is HIRA and H3.3 are important for maintaining active transcription but they might 

also play a role in the maintenance of repressive states (Banaszynski et al., 2013) 
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Figure 1.10 Role for HIRA during development 
(A) Role of histone chaperones and their respective histone variants during mouse 
development. Mouse reproduction begins with the fusion of the two gametes (1,2) into 
a zygote (3). This cell acquires totipotency and starts dividing (4,5) giving rise to 
daughter cells that are able to further specialize (6). The diverse cell lineages they 
establish differentiate into the array of tissues in the adult organism (7,8). Among these 
lineages, primary germ cells (PGCs) undergo reprogramming to establish the germline 
of the adult (9), allowing it to produce either male or female gametes. Taken from 
(Filipescu et al., 2013). (B) Condensation and decondensation of sperm 
chromosomes. During the male meiosis sperm gets condensed by replacing the 
canonical histones with variants, as well as protamines. However, following fertilization 
in order for appropriate mitosis to take place pronuclear decondensation must occur. 
During this process, maternal histones replace the variants and protamines are also 
removed.  Taken from (Talbert and Henikoff, 2010).  
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1.5.1.3.7 HIRA and senescence  
 

The HIRA complex, alongside ASF1a, has been shown to also play a role in modulating 

cellular senescence in human tissue cultures. Their roles are thought to be through the 

formation of senescence-associated heterochromatin foci (SAHF) (Zhang et al., 2005; 

Zhang et al., 2007b; Banumathy et al., 2009). SAHF, distinct to senescent cells, contain 

a number of heterochromatic features, including high levels of H3K9me, the 

heterochromatin protein, HP1, and the histone H2A variant, macroH2A (Adams, 2007). 

When senescent cells are observed under the microscope in the presence of a nuclear 

stain, clear, punctuate foci are visible. Remarkably, each individual focus represents a 

highly condensed chromosome (Zhang et al., 2005). There have been several proposals 

as to how SAHF maintains senescence; one of the more popular ones is that it silences 

proliferation promoting genes, such as cyclin A (Zhang et al., 2005; Zhang et al., 

2007b). HIRA and ASF1a are both rate-limiting in SAHF formation, with ASF1a, but 

not HIRA, being required for macroH2A deposition (Zhang et al., 2005). SAHF 

formation is thought to occur in a temporal manner, in which signals such as shortened 

telomeres, oncogenic activation, or persistent DNA damage, provide the initial trigger, 

leading to chromosome condensation. Chromosome condensation requires HIRA and 

ASF1a, and it takes place prior to H3K9me enrichment and HP1 recruitment (Fig 1.11) 

(Zhang et al., 2005).  
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Figure 1.11 SAHF formation is mediated by HIRA and ASF1a.  
Following signals to trigger senescence, the HIRA/ASF1a proteins drive chromosome 
condensation. Chromatin gets hypoacetylated, and H3 methylated on lysine 9. This in 
turn leads to recruitment of HP1, which is dependent on HP1 phosphorylation. Also 
incorporated into condensed chromatin is macroH2A, which does not rely on the HIRA 
complex. Adapted from (Adams, 2007).  
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1.5.1.3.8 HIRA in disease  

 

Previous work has implicated the HIRA complex, in addition to FACT, Asf1, Spt6, and 

Chd1, in maintenance of HIV latency through nucleosome assembly over the HIV 

promoter region. This creates a repressive environment which blocks the access of 

transcription factors to DNA (Gallastegui et al., 2011). In addition, work has implicated 

HIRA in angiogenesis through its role in regulating endothelial genes. Following 

angiogenic signals, HIRA expression is induced in endothelial cells, where it mediates 

the incorporation of K56ac H3.3 over several endothelial genes, such as Vegfr1, Cxcl1, 

Cxcl5, Ereg and Plxdc1 (Dutta et al., 2010). These genes are involved in vascularisation 

and have been demonstrated to play a role in angiogenesis. In the absence of HIRA, 

transcription of these genes is down regulated and so is vascularisation (Dutta et al., 

2010). Therefore, it is possible that inappropriate upregulation of HIRA can lead to 

angiogenesis, hence promoting tumour formation.   

 

1.5.1.4 Other H3-H4 chaperones 

 

Rtt106 is a fungal specific histone chaperone and is best characterized in its role in 

mediating histone gene expression in S. cerevisiae, as described in Section 1.5.1.3.3 and 

Figure 1.9. In addition, Rtt106 has been demonstrated to play a role in nucleosome 

assembly coupled to DNA synthesis in a manner similar to CAF-1 (Figure 1.7). It was 

recently shown that Rtt106 is able to bind (H3-H4)2 heterotetramers in vivo, thus 

similarly to CAF-1, it is able to assemble tetramers prior to deposition onto chromatin 

(Fazly et al., 2012).  

DAXX is a histone chaperone unique to metazoans that has a role in specifically 

depositing the H3.3 variant making it a replication-independent chaperone (Drané et al., 

2010). However, while HIRA is mainly responsible for nucleosome assembly over genic 

loci, DAXX’s activity appears to be restricted to the pericentromeric and telomeric 

regions (Drané et al., 2010).  

Spt6 in S. cerevisiae is essential for reassembly of promoter nucleosomes following 

transcription over the PHO5, PHO8, ADH2, ADY2, and SUC2 genes, facilitating 

transcriptional repression (Adkins and Tyler, 2006). Recent work has also demonstrated  
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that in spt6-1004 mutants, nucleosome loss occurs over coding regions, with highly 

transcribed regions being particularly affected (Ivanovska et al., 2011). Finally, deletion 

of spt6+ in S. pombe leads to a significant reduction in the heterochromatin mark, 

H3K9me2 and in turn to decreased association of the HP1 protein, Swi6 (Kato et al., 

2013). As a result spt6∆ cells present with loss of silencing over the pericentromeric 

regions, a decrease in nucleosomes over the dh-dg repeats, and an increase in Pol II 

occupancy over these regions (Kato et al., 2013). Therefore, the nucleosome reassembly 

function of Spt6 is important globally.  

 

1.5.2 H2A-H2B histone chaperones 

H2A-H2B dimers are incorporated into the nucleosomes following the deposition of 

(H3-H4)2 heterotetramers. As a result of this, H2A-H2B dimers are more dynamic than 

H3-H4 and are involved in fine tuning transcriptional responses. H2A-H2B dimers are 

exchanged more often than H3-H4 for variants and are also differentially remodelled/ 

disassembled during transcription. For example, in low to moderately transcribed genes, 

H2A-H2B dimer loss is more likely to occur, maintaining a hexameric nucleosome, 

while in housekeeping genes and those with high rates of transcription, entire 

nucleosomes get disassembled (Fig 1.12.A and B) (Kulaeva et al., 2013). As a result, 

histone chaperones facilitating H2A-H2B assembly, disassembly and exchange are 

extremely important in facilitating proper transcription. There are a handful of 

conserved H2A-H2B chaperones, but perhaps the best studied one is the FACT 

complex.  
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Figure 1.12 Mechanism of transcription through chromatin by Pol II.  
(A) Following transcription initiation, Pol II undergoes pausing at the +1 nucleosome 
(1), the length of the pause is determined by the ability of enzymes to remodel the 
nucleosome, making it more accessible. This can be achieved by displacement of the 
H2A-H2B dimer or by exchange. It is often here that the H2A.Z variant is incorporated 
in the place of H2A, which leads to reduced Pol II pausing (2). At low to moderately 
transcribed regions, it is likely that dimer exchange will take place and nucleosomes 
will be fully re-assembled before the next round of transcription. (3)  Over highly 
transcribed regions, it is possible that several Pol II enzymes are in close proximity of 
each other, therefore the second Pol II will encounter hexasomes that are already less 
stable than a full nucleosome,  leading to nucleosome eviction (instead of dimer 
displacement). Adapted from (Kulaeva et al., 2013). (B) The possible states of 
assembly/disassembly of the nucleosome. The black arrows indicate established 
reversible steps involved in chromatin assembly and disassembly. The red and purple 
arrows indicate more speculative steps. The respective histone chaperones and ATP 
dependent remodelers have been removed for the sake of simplicity. Adapted from (Das 
and Tyler, 2013).  
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1.5.2.1 FACT (Facilitates Chromatin Transcription) 
 

The FACT histone chaperone is extremely well conserved amongst eukaryotes, with 

two subunits in metazoans, SSRP1 and Spt16. In yeast there are two homologous 

proteins, Pob3 and Spt16. However, while the metazoan SSRP1 contains a HMGB DNA 

binding domain, in yeast a third protein, Nhp6, provides that function to the FACT 

complex (Fig 1.13.A). (S. cerevisiae actually contains two Nhp6 proteins, Nhp6a and 

Nhp6b.) Activity of the FACT complex is essential in most organisms, with S. pombe 

being one of the few where viable pob3+ knockouts can be constructed. FACT has 

initially been characterized as a H2A-H2B chaperone; however emerging evidence now 

suggests that it is also able to bind H3-H4 (Belotserkovskaya et al., 2003; Stuwe et al., 

2008). Thus, it is one of the few chaperones with affinity for all histone pairs. 

Furthermore, FACT has been proposed to act in both replication-coupled and 

replication-independent nucleosome assembly.  

 

1.5.2.1.1 FACT in transcription and nucleosome disassembly  
 

There are two models as to how FACT functions during transcription. First, the dimer 

displacement model proposes that FACT is able to evict H2A-H2B dimers from the 

nucleosome, thus making it accessible to Pol II. The second model is the global 

accessibility model, which suggests that rather than displacing the dimers, FACT is able 

to remodel the nucleosome whilst holding onto the dimers, consequently making the 

nucleosome dynamic and open to Pol II, without loss of H2A-H2B (Fig 1.13.B). Recent 

evidence suggests that the global accessibility model is likely to be correct, although it 

is probable that at highly transcribed regions, with increased Pol II presence, dimers 

and/or nucleosomes are entirely displaced (Hsieh et al., 2013; Kulaeva et al., 2013). It 

was demonstrated in vitro that in the presence of FACT, a single round of transcription 

produces little free DNA and an inverse amount of hexasomes, while transcription 

without FACT produces an increase in histone free DNA with very little intact 

hexasomes (Hsieh et al., 2013). FACT complex purified from yeast was also found to 

enhance accessibility to endonucleases and hydroxyl radicals, while partially protecting 

DNA, and this can occur without displacement of dimers from the nucleosome (Xin et 

al., 2009). Therefore, FACT remodels nucleosomes in such a way that they mimic 

nucleosome free type accessibility to nucleases, without the loss of nucleosomes. 

Furthermore, S. cerevisiae spt16-11 mutants present with a reduced ability to remodel 
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nucleosomes, a phenotype which is suppressed by histone H2A mutants that contain 

mutations affecting their binding to H3-H4 tetramers (McCullough et al., 2011). Hence, 

spt16-11 is rescued by histones that are easier to remodel and spend more time in an 

open conformation, once again suggesting that the major role of FACT is to create 

accessible chromatin for Pol II.  

Although FACT is principally thought to remodel nucleosomes during Pol II passage, it 

is also able to evict them. For example, FACT is required for appropriate transcription 

of inducible and cell cycle regulated genes in S. cerevisiae, through its role in 

nucleosome eviction over the promoter regions (Takahata et al., 2009a; Takahata et al., 

2009b; Xin et al., 2009). Some mutations in FACT reduce nucleosome eviction over 

these regions and consequently lead to a decrease in gene expression (Takahata et al., 

2009a).  
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Figure 1.13 Structure and function of the FACT complex.  
(A) Domains of the FACT complex. Spt16 is characterized by a N-terminal domain 
(NTD), a dimerization domain (DD), which facilitates heterodimer formation with 
Pob3/SSRP1, a middle domain (MD) and a C-terminal domain (CTD). Similarly, Pob3 
and SSRP1 have highly conserved DD, MD and CTD, with SSRP1 containing an extra 
HMGB domain, which facilitates DNA binding. In yeast, the Nhp6 protein contains the 
homologues HMGB domain. Adapted from (Winkler and Luger, 2011; Formosa, 2012). 
(B) Role of FACT in Pol II transcription. The model proposed by Hsieh et al. (2013) 
suggests that during moderate level transcription, FACT destabilizes the nucleosome in 
front of RNA Pol II (1), then as Pol II enters the nucleosome, it partially unwinds 
nucleosomal DNA, while FACT sequentially binds to promoter-proximal (2) and 
promoter-distant H2A-H2B dimers (3). The FACT-dimer interactions allow nucleosome 
survival during transcription, possibly through FACT mediating dimer replacement 
following elongating Pol II (4). Adapted from (Hsieh et al., 2013).  
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1.5.2.1.2 FACT in nucleosome assembly  

 

While both in vitro and in vivo experiments have clearly identified a role for the FACT 

complex in nucleosome disassembly or reorganization leading to a more accessible 

chromatin state, it has also been implicated in nucleosome reassembly following Pol II 

progression (Belotserkovskaya et al., 2003; Jamai et al., 2009; Voth et al., 2014). In 

vitro analysis has demonstrated that FACT has the ability to deposit nucleosomes 

(Belotserkovskaya et al., 2003), and in vivo measurements of histone turnover in S. 

cerevisiae have also shown that FACT depleted cells lose histones at a significantly 

higher rate (Jamai et al., 2009). The loss of nucleosomes is transcription dependent and 

does not affect the incorporation of newly synthesized histones into the nucleosome 

(Jamai et al., 2009). Therefore, FACT plays an important role in the re-assembly of 

nucleosomes in the wake of Pol II. Importantly, the study has found that the spt16-197 

mutants incorporate newly synthesized histone H3 inappropriately, in addition to failing 

to replace old histone H3-H4 tetramers (Jamai et al., 2009). S. pombe FACT mutants 

have also been shown to be depleted of H3 in a transcription-dependent manner, with 

increased loss of H3 seen over highly transcribed regions in a spt16-18 mutant (Choi et 

al., 2012). Hence, FACT is not only a chaperone involved in H2A-H2B 

assembly/disassembly but also has as role to play in H3-H4 reassembly. In addition, 

FACT depleted cells present with an increase in cryptic/antisense and alternate 

transcripts, a finding which has been observed in both budding and fission yeast 

(Kaplan et al., 2003; Cheung et al., 2008; Choi et al., 2012). 

 

FACT has also been associated with the assembly of newly synthesized histones, thus 

acting in a replication-dependent manner. There have been several lines of evidence for 

this; firstly FACT physically associates with a number of replication complex proteins, 

it is essential in almost all eukaryotes, and importantly it can assemble core 

nucleosomes in vitro (VanDemark et al., 2006; Xin et al., 2009; Formosa, 2012). 

Mutants of the FACT complex are sensitive to mutations that affect histone H4K5 and 

H4K12 acetylation, which are marks of newly synthesized histones, as well as to 

mutations in GCN5, which has also been shown to be important in replication 

(VanDemark et al., 2006). Therefore, it is possible that the FACT complex functions in 

nucleosome assembly during replication too. 
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1.5.2.2 Other H2A-H2B chaperones 

 

Nap1 is a chaperone that preferentially binds H2A-H2B in vivo and is involved in 

multiple steps of H2A-H2B deposition onto the nucleosome. Nap1 is a 

nucleocytoplasmic shuttling protein, which is important for the initial import of histones 

into the nucleus. In vitro assays have further demonstrated that Nap1 is able to 

reconstitute nucleosomes, and functions alongside ACF to assemble properly spaced 

arrays (Burgess and Zhang, 2013). Nap1 is also able to chaperone H2A.Z-H2B dimers 

and it is responsible for their import into the nucleus and in maintaining a soluble pool 

of the H2A.Z variant (Straube et al., 2010).    

 

In addition to Nap1, Chz1 is a chaperone specifically associated with H2A.Z-H2B 

dimers (Luk et al., 2007). It is thought that Chz1 functions with the SRW-C complex in 

variant exchange, by presenting the H2A.Z-H2B dimers to SWR-C, which is then able 

to place them into the nucleosome in exchange for a H2A-H2B dimer (Luk et al., 2007; 

Straube et al., 2010).  

 

Finally, Nucleolin is an H2A-H2B chaperone that has primarily been associated with 

rDNA transcription via eviction of the H2A-H2B dimers (Durut and Saez-Vasquez, 

2015). It is also recruited to DNA double strand breaks, where it displaces H2A-H2B 

dimers to facilitate proper repair (Kobayashi et al., 2011; Goldstein et al., 2013).   
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1.6 AAA-ATPases 

 

Although the classical Snf2-family of ATP-dependent remodelers has been extensively 

studied, recently another family of proteins, AAA (ATPases Associated with diverse 

cellular Activities) ATPases have been linked to possess some chromatin associated 

functions. AAA-ATPases are a very large and diverse group of proteins that are 

conserved in all organisms (Ogura and Wilkinson, 2001; Snider and Houry, 2008). 

These proteins are characterized by two conserved ATP-binding domains, so-called 

AAA motifs. Each of these contains a Walker A and Walker B motif, which are 

generally associated with nucleic acid binding. These proteins often form ring shaped 

hexamers and use the energy from ATP hydrolysis to induce conformational changes to 

a wide range of substrates (Bar-Nun and Glickman, 2012). As a result of this, they 

function in a wide variety of cellular contexts and fulfil many essential roles, including, 

but not limited to, protein degradation, DNA replication, membrane fusion events and 

signal transduction (Davey et al., 2002; Bar-Nun and Glickman, 2012). Some of the 

best studied members are linked to protein degradation, such as components of the 19S 

and 26S proteasome, and Cdc48/p97 (Bar-Nun and Glickman, 2012). Over the years a 

small number of these proteins have been found to be involved in chromatin associated 

processes, including Cdc48, ATAD2/Yta7, Pontin/Rvb1, and Reptin/Rvb2. However to 

date ATAD2/Yta7, and its homologues, alone have been shown to be capable of direct 

physical interaction with chromatin subunits and have been demonstrated to fulfil roles 

strikingly similar to histone chaperones.  

 

 

1.6.1 ATAD2/Yta7 

 

Human ATAD2 (also known as ANCCA) is an evolutionarily conserved AAA ATPase. 

These proteins function under diverse cellular contexts with only a minor subset 

involved in nuclear functions. The human homologues, ATAD2 and ATAD2B, have 

primarily been of interest for their association with cancer development and 

progression; however they appear to exert their effect through chromatin maintenance 

roles. Over-expression of ATAD2 is a strong indicator of poor prognosis in various 

cancers, including breast, prostate, lung, liver, and ovarian cancers (Zou et al., 2009; 

Fouret et al., 2012; Salhia et al., 2014; Wan et al., 2014; Wu et al., 2014; Zou et al., 

2014). Recently, the up-regulation of ATAD2 has also been linked to resistance to 
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current cancer therapies (Murakami et al., 2013).  

 

1.6.1.1 Characterization and Composition 

 

ATAD2B is primarily expressed in the testis and the brain, principally during 

development, and has also been demonstrated to be misregulated during tumorigenesis 

(Leachman et al., 2010). An increased expression of ATAD2B, particularly in the 

cytoplasm, has been detected in astrocytomas, glioblastomas and oligodendrogliomas, 

all of which are brain tumours (Leachman et al., 2010). However, there is nothing 

known about the molecular function of ATAD2B, nor is there evidence at this time that 

it directly contributes to tumorigenesis.  

 

Mice, like humans, have two isoforms of ATAD2, which differ by 300 amino acids. The 

shorter version lacks 300 bp from its N-terminal region (Caron et al., 2010). This 

difference might also account for their differential localization; the longer isoform, 

which corresponds to the human ATAD2, is primarily associated with chromatin while 

the shorter one is soluble and can be found in the cytoplasmic fractions (Caron et al., 

2010). ATAD2 contains a bromodomain, which in mammals has been shown to be 

important for binding to acetylated H3 and H4 tails  (Ciró et al., 2009; Caron et al., 

2010). In addition to its bromodomain, ATAD2 posesses two ATPase domains, which 

aid protein multimerization (Caron et al., 2010) (Fig 1.14.A). ATAD2 without an active 

ATPase domain is unable to form multimers and in turn can not bind acetylated H4 

peptides in vitro (Caron et al., 2010).   

 

ATAD2 is conserved throughout evolution, in fact Drosophila appears to be the only 

model organism without a homologue. In S. cerevisiae there is a single ATAD2 protein, 

termed Yta7. Unlike the mouse and human ATAD2, Yta7 does not require its 

bromodomain for recognizing specific acetyl lysine histone marks; rather the Yta7 N-

terminal can recognize the histone backbone, which might allow it to carry out general 

chromatin maintenance functions. Initial biochemical and genetic analysis carried out in 

S. cerevisiae identified Yta7 as a component of a large molecular weight complex that 

interacts with chromatin around the HMR boundary region. It was found to co-purify 

with the Pol ε subunit Dbp4, with various chromatin remodelers such as Dls1, Itc1 and 

Iswi2, as well as histone proteins (Tackett et al., 2005). In a more recent study, Yta7 was 

shown to further co-purify with members of the FACT complex (Spt16 and Pob3), the 
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histone chaperone Rtt106, members of the RSC complex, subunits of the CK2 complex 

as well as further subunits of RNA Pol II (Kurat et al., 2011).  

 

 

1.6.1.2 Regulation of gene expression by ATAD2/Yta7 

 

Current understanding in cancer biology is that genes which are normally expressed in a 

tissue-specific manner are especially potent in causing malignant transformations. 

Furthermore, genes that drive germline differentiation are particularly enriched within 

this group. ATAD2 fits both of these criteria as its normal expression is predominantly 

limited to male germ cells (Caron et al., 2010). ATAD2 has been shown to be a 

transcriptional regulator of estrogen responsive genes as well as of the estrogen receptor 

Erα (Zou et al., 2007). This function of ATAD2 is dependent on its ATPase domain, as 

mutations in this region render ATAD2 defective as a co-activator of estrogen (Zou et 

al., 2007). On the other hand, ATAD2 is also amongst estrogen responsive genes. 

Therefore, up-regulation of ATAD2 leads to a positive feedback loop; resulting in 

amplification of ATAD2 mRNA and protein levels (Fig 1.14.B).  

 

ATAD2 is also responsible for the regulation and activation of androgen responsive 

genes (Zou et al., 2009). Additionally, ATAD2 has been shown to interact with E2F 

transcription factors and is required for the induction of E2F target genes (Revenko et 

al., 2010). Finally, ATAD2 has been shown to interact with MYC and to act as a co-

factor alongside MYC in transcriptional activation (Ciró et al., 2009). Thus, ATAD2 is 

not only required in response to hormonal signals, agreeing with its role in 

development, but is also needed for general regulation of transcription. This makes the 

scope of ATAD2 targets extremely large and diverse, allowing plenty of opportunity for 

malignant transformations.  

 

In addition to studies of cancer cell lines, several groups have demonstrated that the S. 

cerevisiae Yta7 acts both to repress and activate transcription of a variety of genes. 

Initial genetic analysis indicated that YTA7 acts through a functionally overlapping 

pathway with members of the HIR complex, as well as Spt16 (component of FACT) and 

Asf1 (Gradolatto et al., 2008) to suppress histone gene transcription outside of S phase 

(Gradolatto et al., 2008; Fillingham et al., 2009). Yta7 binds to regions of the HTA1-

HTB1 locus, alongside RSC and Rtt106. During S phase Yta7 gets hyperphosphorylated 

55 
 



by the cyclin-dependent kinase catalytic subunit Cdk1 and by the casein kinase CK2 

(Ubersax et al., 2003; Kurat et al., 2011). This phosphorylation event leads to the 

dissociation of Yta7 from the chromatin, which in turn destabilizes RSC. RNA Pol II 

gets recruited and transcription of the loci takes place (Fig 1.15.A). In the absence of 

Yta7 phosphorylation, dissociation of Yta7 is compromised and histone gene 

transcription levels are decreased as a result. Also, in a yta7∆ mutant or in the absence 

of a functional AAA-ATPase domain, positioning of both Rtt106 and RSC is altered, 

leading to the formation of repressive chromatin and once again reduced levels of 

histone gene transcripts (Kurat et al., 2011) (Fig. 1.15.B).  

 

In addition to regulating histone gene induction, Yta7 has been shown to be required for 

optimal induction of non-constitutively expressed genes (Lombardi et al., 2011). 

Microarray analysis of yta7∆ cells grown in rich media revealed a down regulation of 

genes which are required under inducible conditions, such as meiosis and sporulation 

(Lombardi et al., 2011). Furthermore, Yta7, as well as H2A.Z, were required for proper 

GAL gene induction. It is likely that Yta7 acts by removing histone H3 from 

nucleosomes, a hypothesis supported by the fact that yta7∆ cells are sensitive to 

changes to histone dosage. yta7∆ mutants grow better upon deletion of one of the two 

copies of the histone H3-H4 gene pair (Lombardi et al., 2011), indicating that histone 

H3-H4 levels are increased in this mutant. Indeed, H3 chip at the GAL promoter as well 

as digestions of bulk chromatin by MNase suggest that yta7∆ cells are over-

accumulating nucleosomes (Lombardi et al., 2011). 
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Figure 1.14 Structure and function of ATAD2/Yta7.  
(A) Diagram of ATAD2/Yta7 protein domains and folding. Yta7/ATAD2 proteins 
contain a N-terminal domain, which recognizes the histone backbone, two AAA-
ATPase domains and a bromodomain. ATAD2/Yta7 is likely to form a homohexameric 
ring, with the N-terminal and bromodomain facing the opposite direction, and a nuclear 
pore in the middle. (B) Feedback loop of ATAD2 upregulation in tumours. ATAD2 
mediates the expression of estrogen receptor alpha (ERα), the androgen receptor (AR) 
and a number of E2F target genes. It is also regulated by the same factors. Therefore, 
upregulation of ATAD2 leads to a positive feedback loop, increasing the levels of 
proteins that are responsible for its induction, thus leading to amplification of ATAD2 
itself. Taken from (Boussouar et al., 2013).   
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Figure 1.15 The role of Yta7 over the HTA1-HTB1 locus  
(A) The presence of Yta7 over the HTA1-HTB1 locus prevents histone gene 
transcription outside of S phase. In S phase, Yta7 is phosphorylated by Cdk1 and CK2, 
which allows proper recruitment and elongation by RNA Pol II. (B) Outside of S phase, 
Yta7 acts as a boundary element over the histone gene promoter HTA1-HTB1, 
preventing the spreading of repressive chromatin. In the absence of Yta7, increased 
recruitment of Rtt106 and RSC takes place, and heterochromatin-like silencing spreads. 
Adapted from (Kurat et al., 2011; Zunder and Rine, 2012).  
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1.6.1.3 Yta7 as a boundary element 

 

Yta7 was initially identified as a boundary element, restricting the spread of 

heterochromatin independently of the HMR-tRNA genes (Jambunathan et al., 2005). In 

the absence of YTA7, silencing was shown to have increased around the boundary region 

of the HMR locus, suggesting that Yta7 is required to maintain active transcription on, 

and adjacent, to the boundary (Jambunathan et al., 2005; Tackett et al., 2005). The 

ATPase domain of Yta7 is essential for its boundary function (Kurat et al., 2011), and 

although its bromodomain isn’t required for association of Yta7 with chromatin barriers, 

it is required for proper barrier activity (Gradolatto et al., 2009).  

 
 

1.6.1.4 Further associated functions of Yta7 

 

In addition to its role in regulating transcription and maintaining appropriate 

heterochromatin boundaries, Yta7 has been implicated in telomere maintenance too 

(Askree et al., 2004). Loss of YTA7 leads to a shortening of the telomeres by about 50-

100 bp (Askree et al., 2004). Finally, Yta7 physically interacts with the checkpoint 

kinase Rad53 upon MMS induced DNA damage (Smolka et al., 2005). Hence, it might 

play a role in the DNA damage response pathway. Although the molecular function of 

ATAD2 is not particularly well characterized, the fact that the S. cerevisiae homologue 

both physically and genetically interacts with histone chaperones, as well as a number 

of chromatin associated factors, indicates that it is likely to play a role in general 

chromatin maintenance. 

 

Recent work carried out in our lab has also identified two Yta7 homologues in S. 

pombe, termed Abo1 and Abo2 (Murton, 2012). Viable single mutants can be generated; 

however the abo1∆abo2∆ double mutant is inviable (Murton, 2012). Loss of abo1+, but 

not abo2+ results in a mild cell cycle delay, as evident by an elongated phenotype 

(Murton, 2012). In addition Abo1, but not Abo2 is required for repression of 

transcription of Tf2 elements and solo LTRs (Murton, 2012). Similarly, abo1∆ cells but 

not abo2∆ are sensitive to DNA damaging agents, and produce antisense transcripts 

from the hrp1+ loci. Also, Abo1 is required for proper silencing of pericentromeric 

heterochromatin, and silencing of the mating type loci (Murton, 2012). Finally, loss of 

abo1+ leads to segregation defects and reduced spore viability following meiosis 
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(Murton, 2012) Interestingly, the barrier activity that is attributed to Yta7 in S. 

cerevisiae is provided by Abo2 alone, as loss of abo1+ has no effect on the spread of 

heterochromatin (Murton, 2012). Therefore, some of the chromatin maintenance 

functions associated with Yta7 have clearly diverged between the two S. pombe 

proteins. Finally, the phenotypes associated with loss of abo1+ are very similar to that of 

HIRA deficient S. pombe cells. Therefore, it is possible that like HIR and Yta7 in S. 

cerevisiae, HIRA and Abo1 in S. pombe participate in similar pathways.  

 
 
1.7 Project Aims 
 

The conserved AAA-ATPase, ATAD2/Yta7 has previously been associated with 

chromatin regulatory roles; however the precise contribution of this protein to global 

chromatin architecture has not yet been determined. In addition, the HIRA histone 

chaperone has been studied for a number of years and has been well characterized in its 

role in heterochromatin maintenance; nonetheless it is still not clear to what extent it 

contributes to global chromatin architecture. Therefore, the initial aim of the work 

presented here was to determine the nucleosome profiles of S. pombe cells in the 

absence of ATAD2/Yta7 homologue, Abo1, and in cells lacking HIRA. Further 

characterization of the function of Abo1 in chromatin maintenance was undertaken, 

while the role of HIRA in the DNA damage response was characterized. In addition, 

previous work has hinted at a role for HIRA in quiescence exit, therefore the mechanism 

behind HIRA-mediated quiescence maintenance was further explored.   
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Chapter 2 

Materials and Methods 
 

2.1 General laboratory supplies 

General laboratory chemicals, including those that were used to make media were 

purchased from Sigma-Aldrich, Fisher Scientific, BD Biosciences, VWR, Melford, and 

Formedium. 

 

 

2.2 Strains and media 

2.2.1 Escherichia coli 

Cultures of E. coli SURE cells (e14- [mcrA-]Δ [mcrB-hsdSMR-mrr] 171 endA1 supE44 

thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5[kanr] ucrC [F'proAB lacq  Δmis 

Tn10 (TetrO)]) were grown in Luria-Bertani (LB) medium (2% [w/v] Bacto-tryptone, 

1% [w/v] Bacto-yeast extract, 1% [w/v] NaCl [pH 7.2]). Bacto-agar (2% [w/v]) was 

added for solid media. When required, Ampicillin (Sigma) was added to a final 

concentration of 0.1 mg/ml. 

 

2.2.2 Schizosaccharomyces pombe 

S. pombe cells were grown in rich YE5S media (0.5% [w/v] yeast extract, 3% [w/v] 

glucose and 225 mg/L adenine, histidine, leucine, uracil and lysine hydrochloride). 

When required 500 μg/ml Geneticin (G418) was added to the media post sterilisation. 

For selection based on amino acid auxotrophy, cells were grown in Edinburgh minimal 

medium (EMM) (3 g/L potassium hydrogen phallate, 2.2 g/L Na2HPO4, 5 g/L NH4Cl, 

2% [w/v] glucose, 20 ml/L salts [52.5 g/L MgCl2.6H2O, 0.735 g/L CaCl2.2H2O, 50 g/L 

KCl and 2 g/L NaSO4], 1 ml/L vitamins [1 g/L pantothenic acid, 10 g/L nicotinic acid, 

10 g/L inositol and 10 mg/L biotin], 0.1 ml/L minerals [5 g/L boric acid, 4 g/L MnSO4, 

4 g/L ZnSO4.7H2O, 2 g/L FeCl2.6H2O, 0.4 g/L molybdic acid, 1 g/L KI, 0.4 g/L 

CuSO4.5H2O and 10 g/L citric acid] supplemented with the appropriate amino acids. 

Solid media were prepared by the addition of bacto-agar (2% [w/v]). For long-term 

storage cells were kept in 40% glycerol in YE5S and stored at -80˚C. S. pombe strains 

used in this study are listed in table 2.1. 
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Table 2.1 S. pombe strains 
Identification 

Number 

Strain 

Name 
Genotype Source 

CsG156 abo1∆ h- abo1::kanMX This study 

EL313 
spt16-GFP 

h+ Spt16-L-GFP-kanMX ade6-M210 arg3-

D4 his3-D1 leu1-32 ura4-DS/E 

Robin 

Allshire 

EL306 
pob3-HA 

h+ FPH-Pob3 otr1R(dg-glu) Sph1:ade6+ 

ade6-M210 leu1-32 ura4-D18 

Robin 

Allshire 

EL130 
pob3-GFP 

h- pob3-L-GFP-kanMX otr1R(Sph1):ura4+ 

arg3-D4 his3-D1 leu1-32 ura4-DS/E 

Robin 

Allshire 

SW921 
abo1-GFP 

h+ ade6-M210 ard3D4 his3-D1 leu1-32 

ura4-D18 abo1-GFP::kanMX6 

Lab stock 

SW865 
abo1-PK 

h- ade6-M216 leu1-32 ura4-D18 abo1-

PK::ura4+ 

Lab stock 

CsG338 sp16-GFP 

abo1-PK 

h+ spt16-L-GFP-kanMX abo1-PK::ura4+ 

ade6-Mx ura4x leu1-32 

This study 

CsG345 abo1∆  

spt16-GFP 

h- spt16-L-GFP::kanMX abo1::kanMX 

ade6-M21x leu1-32 ura4Dx hisx argx 

This study 

CsG346 abo1∆  

pob3-GFP 

h- pob3-L-GFP-kanMX abo1::kanMX leu1-

32 ura4Dx ade6x his3x arg3x 

This study 

CsG351 pob3-GFP 

abo1-PK 

hx pob3-L-GFP-kanMX abo1-PK::ura4+ This study 

CsG352 abo1-GFP 

pob3∆ 

hx abo1-GFP::kanMX pob3::natMX This study 

CsG360 spt16-18 

abo1-GFP 

hx abo1::kanMX6 spt16-18::kanMX le1-32 

ura4x his3x 

This study 

CsG354 
clr4∆ imr1R 

hx clr4::kanMX imr1R(NcoI)::ura4+ori1 

ura4-DS/E leu1-32 ade6-M21x 

This study 

CsG356 
clr4∆ otr1R 

hx clr4::kanMX otr1R(SphI)::ura4+ ura4-

DS/E leu1-32 ade6-M210 

This study 

SW235 
otr1R 

h+ otr1R(SphI)::ura4+ leu1-32 ade6-M210 

ura4-DS/E 

Lab stock 

SW232 
imr1R 

h+ imr1R(NcoI)::ura4+ori1 ade6-M210 

leu1-32 ura4-DS/E 

Lab stock 

HM489 
abo1Δ otr1R 

h+ otr(SphI)::ura4+ leu1-32 ade6-M216 

ura4x abo1::kanMX 

Lab stock 

SW873 
abo1Δ imr1R 

h+ imr1R(NcoI)::ura4+ori1 ade6-M210 

leu1-32 ura4-DS/E abo1::kanMX 

Lab stock 
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Identification 

Number 

Strain 

Name 
Genotype Source 

CsG363 abo1-GFP 

swi6∆ 

hx abo1-GFP::kanMX6 swi6-kanMX This study 

SW577 hip1∆ h- hip1::ura4+ ura4-D18 Lab stock 

CsG141 set2∆ h- set2::kanMX This study 

CsG142 hip1∆ set2∆ h- set2::kanMX hip1::ura4+ ura4-D18 This study 

CsG1 rad22-YFP h- rad22-YFP::kanMX This study 

CsG2 hip1∆ 

rad22-YFP 

h- hip1::ura4+ ura4-D18 rad22-

YFP::kanMX 

This study 

CsG25 hip1-HBD h+ hip1-HBD(est)::ura4+ ura4-D18 This study 

CsG74 chk1-HA h+ ade6-M704 leu1-32 ura4-D18 chk1-HA Lab stock 

CsG83 hip1∆  

chk1-HA 

hx hip1::ura4+ chk1-HA This study 

CsG103 chk1∆ hx chk1::ura4+ ura4-D18 This study 

CsG104 cds1∆ hx  cds1::ura4+ ura4-D18 This study 

CsG89 

CsG91 

CsG93 

hip1∆ rad3∆ 

hip1∆ chk1∆ 

hip1∆ cds1∆ 

hx hip1::kanMX rad3::ura4+ ura4-D18 

hx hip1::kanMX chk1::ura4+ ura4-D18 

hx hip1::kanMX cds1::ura4+ ura4-D18 

This study 

This study 

This study 

SW201 hip1-GFP h+ ade6-M210 leu1-32 ura4-D18 

hip1GFP::ura4+ 

Lab stock 

CsG136 rad57∆ h+ rad57::ura4+ ura4-D18 leu1-32 his7-

366 ade6-M216 

Tim 

Humphrey 

SW751 rad51∆ h+ rad51::kanMX ade6-Mx leu1-32 ura4-

D18 

Lab stock 

CsG135 rad50∆ h+ smt0 rad50::kanMX ura4-D18 Tim 

Humphrey 

CsG264 exo1∆ h+ exo1::kanMX ura4-D18 ade6x leu1-32 David 

Lydall 

CsG260 hip1∆ rad51∆ hx hip1::ura4+ ura4-D18 rad51::kanMX This study 

CsG158 hip1∆ rad50∆ h- rad50::kanMX hip1::ura4+ ura4-D18 This study 

CsG275 hip1∆ exo1∆ hx exo1::kanMX hip1::ura4+ ura4-D18 This study 

CsG189 ku70∆ h- ku70::ura4+ ura4-D18 ade6x leu1x This study 

CsG195 ku80∆ h+ ku80::kanMX This study 

CsG204 lig4∆ hx lig4::ura4+ ura4-D18 leu1-32 This study 

CsG249 hip1∆ ku80∆ hx ku80::kanMX hip1::ura4+ ura4-D18 This study 

CsG198 hip1∆ ku70∆ hx ku70::ura4+ hip1::kanMX This study 
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Identification 

Number 

Strain 

Name 
Genotype Source 

CsG262 hip1∆ lig4∆ hx hip1::ura4+ lig4::ura4+ ura4-D18 This study 

CsG46 rad3∆ h+ rad3::ura4+ ura4-D18 This study 

FP4 yox1-PK h- yox1::3PK::ura4+ leu1-32 ura4-D18 

his7-366 ade6-M216 

Brian 

Morgan 

FP34 yox1-PK 

rad3∆ 

h- yox1::3PK::ura4+ leu1-32 ura4-D18 

ade6x rad3::ura4+ 

Brian 

Morgan 

CsG265 yox1-PK 

hip1∆ 

h- yox1::3PK::ura4+ leu1-32 ura4-D18 

his7-366 ade6-M216 hip1::kanMX 

This study 

CsG268 yox1-PK 

hip1∆ rad3∆ 

h- yox1::3PK::ura4+ leu1-32 ura4-D18 

ade6x rad3::ura4+ hip1::kanMX 

This study 

AW046 hrp3∆ h+ hrp3::kanMX ade6-M21x  ura4-D18 

leu1-32 

Lab stock 

CsG349 hrp3∆ hip1∆ h- hip1::ura4+ hrp3::kanMX This study 

CsG168 hip1∆ abo1∆ h- hip1::ura4+ abo1::kanMX ura4-D18 This study 

CsG116 atg8-GFP h- atg8-GFP This study 

CsG124 atg8-GFP 

hip1∆ 

hx hip1::kanMX atg8-GFP This study 

CsG243 hip1∆ hht2∆ 

hhf2∆ 

h-  hip1::kanMX hht2/hhf2::ura4+ This study 

CsG300 rum1-HA h- rum1-HA Lab stock 

CsG301 rum1-HA 

hip1∆ 

hx hip1::kanMX rum1-HA This study 

SW7 cig2-HA hx cig2-HA Lab stock 

CsG328 cig2-HA 

hip1∆ 

hx cig2-HA hip1::kanMX This study 

CsG14 hht1∆ hhf1∆ 

hht3∆ hhf3∆ 

h- hht1/hhf1::ura4+ hht2/hhf2::ura4+ 

(otr1R (Sph1):ade6+) 

This study 

CsG15 hht2∆ hhf2∆ 

hht3∆ hhf3∆ 

h+ hht2/hhf2::ura4+ hht3.3/hhf3::ura4+ 

(otr1R (Sph1):ade6+) 

This study 

CsG22 hht1∆ hhf1∆ h-  hht1/hhf1::ura4+ This study 

CsG23 hht2∆ hhf2∆ h-  hht2/hhf2::ura4+ This study 

CsG24 hht3∆ hhf3∆ h-  hht3/hhf3::ura4+ This study 

(ura4x = ura4-D/SE or ura4-D18) (Mx = ade6-M210 or ade6-M216) (his3x = histidine marker 

not determined) (ade6x = adenine marker not determined) (leu1x = leucine marker not 

determined) (hx = mating type not determined) 
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2.2.3 Growth of S. pombe strains   

Cells were cultured in either non-selective, nutrient rich YE5S media or Edinburgh 

minimal media (EMM) with the required supplements. Strains were grown on the 

appropriate agar plates at 30°C for 2-3 days and then stored at room temperature. Liquid 

cultures were prepared by inoculating a single colony or a loop of cells, taken from a 

fresh agar plate, into ~ 5 ml medium. Cultures were grown overnight with shaking at the 

appropriate temperature. Cell number was estimated by measuring the OD595 (OD595 0.1 

≈ 2 x 107 cells/ml). 

 

To induce quiescence entry, exponentially growing cells were harvested by 

centrifugation (3000 rpm for 2 minutes), washed three times in an equal volume of 

EMM-N (EMM medium lacking NH4Cl) and resuspended in EMM-N at an OD595 ~ 

0.3. Cultures were further incubated at 30°C for the indicated times. 

 

2.2.4 Genetic crosses and tetrad analysis 

For genetic crosses freshly cultured strains of opposite mating types were mixed on 

EMMG agar plates (as EMM but 0.5 g/L sodium glutamate used in place of NH4Cl) and 

incubated at 25°C for 48-72 hours. Light microscopy was used to check for spores and 

the correct genotype identified using tetrad analysis. Tetrad dissection was performed by 

micromanipulation of the asci onto YE5S agar plates using a Singer micro-manipulator. 

The spores were incubated at 30°C until colonies were visible and genotypes were 

determined by growth on selective media and/or PCR analysis. Table 2.2 contains the 

PCR primers used for genotyping in this study. 
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Table 2.2 PCR oligonucleotide primers for genotyping 
Primer Name DNA Sequence 5'-3' 

MP ACG GTA GTC ATC GGT CTT CC 

MT1 AGA AGA GAG AGT AGT TGA AG 

MM TAC GTT CAG TAG ACG TAG TG 

hht1_for TGC ATA CCA ACT TGT ATC TAC 

hht1_rev GTA TAA TAC AGG CAA GCA GTC 

hht2_for CCA GAG TAA GTC AGA CAC AAG 

hht2_rev GAA TAA GTC AAG TGA GAA AGC 

hht3_for TAC ATT CCA CAA CAC TCA AGG 

hht3_rev GTA TTC AGC CGT GAT ACA ACG 

abo1_up AAC ACC CTA TAG TTA TCA GGC 

abo1_down AAT AAG CCA AGA GTC GGC TAG 

hip1_inF AAG ACT GCT CTA TTT ACT GCC 

hip1_rev CTA ATA TTC ACA GTG GAA GAC 

lig4_inF TCAGTCATTTGTTCGTGTAGG 

lig4_outR CTGCAGCTTTAATATTACAAC 
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2.2.5 Analysis of cell viability 

Cells were grown in liquid culture at 30°C with shaking until the culture reached an 

OD595 of ~ 0.3. Cell concentration was adjusted to OD595 0.3 in 300 μl of YE5S and 

then cells were subjected to 5-fold serial dilutions in nanopure water. Cells were then 

transferred to agar plates using a 48 pin tool (Sigma). To test for sensitivity to genotoxic 

agents, the dilution series was transferred to YE5S plates supplemented with the 

appropriate agent at the appropriate concentration. To test for UV sensitivity plates were 

irradiated following spotting using a UV Stratalinker with the appropriate dose. Plates 

were incubated for 2-4 days at 30°C. 

 

2.2.6 Yeast flow cytometry 

Approximately 107 cells were harvested and then resuspended in 1 ml ice cold 70% 

ethanol. A 0.3 ml aliquot was transferred into 3 ml of sodium citrate (pH 7.2) in a 15 ml 

Falcon tube, mixed and centrifuged at 2000 rpm in a bench top centrifuge for 5 minutes. 

Pellet was resuspended in 0.5 ml 50 mM sodium citrate (pH 7.2) supplemented with 0.1 

mg/ml RNase A and was incubated at 37°C for 2 hours. Nuclei were stained by addition 

of propidium iodide to a final concentration of 4 µg/ml. Cells were analysed using a 

FACS Canto II flow cytometer (BD Biosciences), data was collected using FACSDiva 

and analyzed using Cyflogic. 

 

 

2.3 DNA transformation 

2.3.1 Transformation of E. coli 

Competent E. coli cells were prepared as previously described (Dainty, 2007) and stored 

at -80°C. An aliquot of the prepared cells (50-100 μl) was defrosted and mixed with the 

transforming DNA. Cells were incubated on ice for 30 minutes, heat shocked at 42˚C 

for 45 seconds, then were placed back on ice for a further 2 minutes. 300 μl of LB was 

added to tubes, which were incubated at 37˚C for 30-60 minutes. Cells were plated onto 

LB agar plates supplemented with Ampicillin and incubated at 37˚C overnight. 
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2.3.2 Transformation of S. pombe 

Cells were cultured in YE5S at 30°C until they reached an OD595 0.5. A 50 ml aliquot of 

cells was centrifuged for 3 minutes at 2000 rpm in a bench top centrifuge. The resulting 

pellet was washed sequentially in 1 ml nH2O, 1 ml LiAc/TE (0.1 M lithium acetate, 10 

mM Tris-HCl [pH 7.5], 1 mM EDTA [pH 8.0]) and resuspended in 1 ml LiAc/TE. A 100 

μl aliquot of cells was mixed with 2 μl of sonicated salmon sperm DNA (10 mg/ml) and 

5-10 μl of the transforming DNA (up to ~1 μg) and was incubated at room temperature 

for 10 minutes.  260 μl of PEG/LiAc/TE was added (40% PEG-4000 [v/v], 0.1 M 

lithium acetate, 10 mM Tris-HCl [pH 7.5], 1 mM EDTA [pH 8.0]) to the mixture and 

cells were incubated at 30°C for a further 30-60 minutes. 43 μl of DMSO was added to 

the cells, which were heat shocked at 42°C for 5 minutes. Cells were washed once in 1 

ml nH2O, resuspended in 250 μl nH2O and then plated onto appropriately supplemented 

EMM agar plates. 

 

 

2.4 DNA isolation 

2.4.1 Plasmid isolation from E. coli 

An LB culture (5 ml) with ampicillin was inoculated with a single colony and grown at 

37°C overnight. DNA isolation was performed using GelElute Plasmid Miniprep 

(Sigma) kit according to manufacturer’s instructions. 

 

2.4.2 Isolation of S. pombe genomic DNA 

A 1 ml aliquot of a saturated overnight YE5S culture was centrifuged at 8000 rpm and 

the resulting pellet was washed with 1 ml dH2O and resuspended in Breakage Buffer 

(10 mM Tris-HCl [pH 8.0], 1 mM EDTA [pH 8.0], 100 mM NaCl, 1% SDS (w/v), 2% 

Triton-X100). 200 µl of glass beads (0.5 mm Biospec) and an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) (pH 8.0) was added to the cells which 

were then disrupted using a mini bead beater (Biospec Products) for 20 seconds on full 

power. 500 µl of Breakage Buffer was added and cells were centrifuged at 13300 rpm 

for 5 minutes. The supernatant was added into a fresh tube containing 0.1 volume of 3 

M sodium acetate (pH 5.2) and two volumes of 100% ethanol. Tubes were incubated at 

-20°C for at least an hour, pelleted and then centrifuged at 13300 rpm for 15 minutes. 
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Supernatant was removed and the pellet was washed in 70% ethanol, dried and 

resusupended in 100 µl of nH2O. 

 

 

2.5 DNA manipulation and analysis 
 

2.5.1 Polymerase chain reaction (PCR) 

The oligonucleotide primers used in this study are shown above in table 2.2. 

S. pombe genomic DNA was extracted as described in section 2.4.2 and approximately 

1 μl (50 ng) was used per 25 μl reaction. A typical reaction consisted of 1x Phusion GC 

buffer (NEB), 20 μM dNTPs, 0.5 μM forward and reverse primers, 50 ng template 

DNA, 1 μM DMSO and 1 U Phusion polymerase (NEB). Standard PCR conditions 

were 95°C for 30 seconds, 35 cycles (95°C for 30 seconds, X°C for 30 seconds, 68°C 

for Y minutes), 68°C for 5 minutes. Where, X was generally set at 4°C below the lowest 

melting temperature of the forward and reverse primers, and Y, the extension time, was 

calculated based upon approximately 30 seconds/kb. 

 

2.5.2 Analysis of DNA by gel electrophoresis 

2.5.2.1 Agarose gel electrophoresis 

Generally DNA was separated on 1-1.5% agarose 1% TAE (40 mM Tris Base, 20 mM 

acetic acid, and 1 mM EDTA [pH 8.0]) gels, unless specified otherwise. DNA was 

stained using 500 ng/ml ethidium bromide. Fermentas 1 kb ladder and NEB low 

molecular weight ladders were used to help determine the size of the DNA products. 

The DNA was then observed using a UV transilluminator and an image captured using 

Quantity-One (BioRad). 

 

2.5.2.2 Contour-clamped homogeneous electric field (CHEF) pulsed field gel 

electrophoresis (PFGE) 

Buffers, enzymes and the agarose were provided in the CHEF Yeast Genomic DNA 

Plug Kit (Bio-Rad). Cultures were grown to about 6x106 cells/ml in 50 ml YE5S 

cultures. Cell number was measured using a Scharfe cell counter (Casy® Cell Counter 

and Analyzer TT).  4x108 cells/ml were washed and resuspended in 1 ml of 0.5 M ice 

cold EDTA (pH 8.0), centrifuged at 6000 rpm for 2 minutes at 4˚C, and resuspended in 
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146 µl cell suspension buffer at room temperature. 7 µl lyticase stock was added and 

immediately mixed.* 84 µl 2% clean-cut agarose at 60˚C was added to the mixture, 

cells were vortexed for 5 seconds and pipetted into two plug moulds and were allowed 

to solidify for 30-60 minutes at 4˚C. Once the plugs had solidified, they were 

transferred to 2 ml Eppendorfs and 188 µl lyticase buffer as well as 7 µl lyticase per 

plug was added. Plugs were incubated overnight at 37˚C without agitation. Plugs were 

washed with 1 ml nH2O and digested overnight in 188 µl proteinase K buffer and 7.5 µl 

proteinase K per plug at 50˚C. Proteinase K solution was removed and plugs were 

washed three times in 330 µl 1x Wash buffer supplemented with 1 mM PMSF. Plugs 

were stored at 4˚C until chromosome fractionation. DNA was separated on 0.6% 

Megabase agarose gel prepared in 1 x TAE (40 mM Tris Base, 20 mM acetic acid, and 1 

mM EDTA [pH 8.0]) using a CHEF DR III system (BioRad). Gels were run on a 

voltage gradient of 2 Vcm-1 for 48 hours at 14˚C, with an induced angle of 106˚ and 

initial and final switch times of 1200 seconds and 1800 seconds respectively. 

Visualization of the DNA was achieved by staining with 250 ml 1 x TAE containing 1 

µg/ml ethidium bromide for 1-2 hours. Images were obtained using the UV 

transilluminator and were captured using Quantity-One (BioRad). 

*For nitrogen starved (G0) cells Sigma lyticase (L2524) at 5 mg/ml in CES buffer 

(20mM citrate/phosphate [pH 5.6], 40 mM EDTA [pH 8.0], 1.2 M sorbitol) was used 

instead. A 10 µl aliquot was added to plugs during overnight incubation in lyticase 

buffer. 

 

2.5.3 Micrococcal Nuclease digestion (MNase) assay 

2.5.3.1 MNase digestion 

Cells were grown to an OD595 =0.75-0.8 in 100 ml YE5S at 30˚C, crosslinked with a 

final concentration of 1% formaldehyde (Sigma F8775) for 20 minutes at 30˚C and 

quenched by the addition of glycine to 125 mM. Cells were washed with CES buffer (20 

mM citrate/phosphate [pH 5.6], 40 mM EDTA [pH 8.0], 1.2 M sorbitol) supplemented 

with 10 mM ß-mercaptoethanol and resuspended in 500 µl CES buffer with 0.5-1.0 mg 

Zymolyase-100T*. Cells were spheroplasted by gentle shaking at 30˚C for up to 45 

minutes, washed with ice cold 1.2 M sorbitol and resuspended in 800 µl NP-S buffer 

(1.2 M sorbitol, 10 mM CaCl2, 100 mM NaCl, 1 mM EDTA [pH 8.0], 14 mM ß-

mercaptoethanol, 50 mM Tris-HCl [pH 8.0], 0.075% NP-40, 5 mM spermidine, 0.1 mM 
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PMSF, 1% Sigma protease inhibitor cocktail [Sigma P8215]). Spheroplasts were 

divided up into four 200 µl aliquots, each mixed with 300 µl of NP-S buffer. MNase 

was added at the indicated concentrations and samples were digested for 10 minutes at 

37˚C. MNase activity was terminated by the addition of EDTA (pH 8.0) and SDS to the 

final concentrations of 50 mM and 0.2% (w/v) respectively. Samples were incubated at 

65˚C overnight with 0.2 mg/ml proteinase K and 10 µg RNase A. DNA was 

subsequently purified by phenol:chloroform extraction followed by ethanol 

precipitation. Samples were resuspended in 30-50 µl nH2O and analyzed on 1.2% 1 x 

TBE gels (89 mM Tris-HCl, 89 mM boric acid, 2 mM EDTA [pH 8.0]). 

 

* Nitrogen starved (G0) cells were incubated in 500 µl of 7 mg/ml lyticase (Sigma L-

5263-200KU) (in CES buffer) and 500 µl of 5 mg/ml lysing enzymes (Sigma L-1412) 

(in CES buffer) on a shaker at 30˚C for  between 2-2.5 hours. 

 

2.5.3.2 MNase dephopshorylation for sequencing 

A set of three MNase treated samples were pooled and the volume adjusted to 80 µl 

with nH2O. 10 µl of T4 polynucleotide kinase buffer (NEB) and 10 µl of native T4 

polynucleotide kinase (NEB MO201S/L 10x) were added. Samples were incubated at  

37˚C for 30 minutes, before the addition of 300 µl of TE (pH 8.0) and an equal volume 

of phenol:chloroform:isoamyl alcohol (pH 8.0). Samples were vortexed for 10 seconds 

then centrifuged for 5 minutes at 13 000 rpm. DNA was precipitated with 0.1 volume of 

sodium acetate (pH 5.2) and 2 volumes of 100% ethanol followed by incubation at -

20˚C for at least 30 minutes. Samples were resuspended in 70 µl of TE (pH 7.5). DNA 

concentration was measured using a Nanodrop Spectraph and samples were analyzed on 

a 1.2% 1 x TBE agarose gels in order to provide a picture for the sequencing service. 11 

µg of DNA was transferred to 52 µl TE (pH 7.5). These samples were used for 

sequencing and used to generate information on nucleosome positioning and occupancy. 

 

2.5.3.3 MNase-sequencing 

Preparation for sequencing was performed by the University of Exeter sequencing 

service. Briefly, DNA fragments were end repaired, 3′-adenylated, and ligated to 

indexed adapters without size selection using Nextflex reagents (Newmarket Scientific, 

UK). Libraries were amplified with 8 cycles PCR using Kapa HiFi PCR master mix 

(Anachem), primers removed with GeneRead size selection protocol (QIAgen) before 
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quantification by Bioanalyser DNA 7500 assay. Libraries were pooled, denatured, 

diluted to 6 nM before clustering in a single lane of a high output Illumina flowcell.  

Sequencing (100 nt) was undertaken on a HiSeq 2500 using TruSeq SBS v3 reagents 

(Illumina). 

 

2.5.3.4 MNase-qPCR 

MNase digests of wild type and hip1Δ cells were performed as described above 

(Section 2.5.3.1). For each strain three biological replicate samples were pooled and 

analysed on 1% TAE agarose gels. Gel slices containing mononucleosomal DNA were 

excised, frozen at -80°C and spun through 0.45 μM Spin-X columns (Costar). Samples 

were phenol extracted and ethanol precipitated and resuspended in TE (pH7.5). dsDNA 

concentration was measured using a Qubit fluorometer (Life Technologies). 20 ng of 

mononucleosomal DNA was used in qPCR reactions using the PrimerDesign 

Mastermix kit. Reactions using genomic DNA were included as a control. 10 µl 

Mastermix, 1 µl Primermix (1:10 dilution), 1 µl DNA, 8 µl PCR grade nH2O were 

added per reaction. Reactions were analyzed using a Rotor Gene 6000 Real-Time 

thermocycler with the following settings: Step 1 10 minutes at 95˚C, Step 2 15 sec at 

95˚C, Step 3 60 sec at 5˚C, steps 2 and 3 are repeated for 50 cycles. A melt curve was 

generated at the end of each run to assess primer specificity. The primers used for this 

analysis are listed in Table 2.3. 
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Table 2.3 MNase-qPCR oligonucleotide primers 
Primer name DNA sequence 5'-3' 
dg_rep_nuc_3759432_for AAT TCG GGT CAT ACT TCG TG 

dg_rep_nuc_3759372_rev CAA TCA TAC TCG AAA AAA AAG AAA TC 

dh_rep_nuc1_3755019_for GTT AAA AGT GGC AGA AAG TG 

dh_rep_nuc1_3755069_rev ATA TGC GTT GGG TTA TCT CA 

dh_rep_nuc2_3756009_for TTC GTT CAA ATG ATA TTA AT 

dh_rep_nuc2_3756069_rev GTG TTT TTT ATA CCT ATT TG 

hht2_-120_for GTA GCG GGG AAG CCG AAA TC 

hht2_-80_rev CAA TCA CAA CCC TAA CCC TG 

Tf2_nuc_85_for GAA CAT TTA ATA AAC CTT TTT GC 

Tf2_nuc_140_rev ATC GAA TTT CCC TAT CTC TG 

hrp1_Nuc_peak_314_for AAT CAT GAA AAT TCT TTC GC 

hrp1_Nuc_peak_371_rev ATC ATC AAA GGC AGA AGA CG 

dbp7_10-80bp_for ACC ATT GCT TCT CAA TTT TG 

dbp7_10-80bp_rev CGA CTA GAC TTC AAG GCT TC 

dbp7_1927-1985_for ATG CGT GAC CTT CAT TTG GG 

dbp7_1927-1985_rev GCG CTT CTC GCA AAG CGA AG 

hrp1_5137-5225_for CTG AGT TAA AAT ACA CAT CTG 

hrp1_5137-5225_rev TAA TAT TCG TCG ACC AAA GG 
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2.5.4 Chromatin immunoprecipition (ChIP) 

For each ChIP reaction, a 50 ml culture was grown to approximately 5x106 cells/ml and 

fixed by the addition of formaldehyde (Sigma F8775) to a final concentration of 1% and 

incubated at room temperature for 15 minutes. Fixation was stopped by the addition of 

glycine to 125 mM. Cells were washed twice with 50 ml ice cold 1 x PBS (137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4), were transferred to 

ribolyzer tubes in 1 ml 1 x PBS, were pelleted and snap frozen in liquid nitrogen. Pellets 

were thawed on ice and 350 µl of ChIP lysis buffer (50 mM Hepes-KOH [pH 7.5], 140 

mM NaCl, 1 mM EDTA [pH 8.0], 1% [v/v] Triton X-100 and 0.1% [w/v] sodium 

deoxycholate) supplemented with 1% yeast protease inhibitors (Sigma P8215) and 1 

mM PMSF was added to the samples, along with 500 µl of glass beads (0.5 mm). Cells 

were disrupted using a mini-beadbeater (Biospec) with 2 x 2 minute pulses with 1 

minute on ice in between. The bottom of the tubes was pierced and lysate was collected 

in a fresh Eppendorf tube by centrifuging at 1000 rpm for 1 minute at 4˚C. Lysates were 

quickly vortexed and sonicated using a cooled Diagenode Twin sonicating waterbath 

with 6 x 5 minute pulses of 30 sec ON/OFF cycle. Following sonication samples were 

cleared by centrifuging at 13000 rpm for 10 minutes at 4˚C; the supernatant was 

transferred to a fresh tube and centrifuged again at 13000 rpm for 10 minutes at 4˚C. 

The supernatant was transferred to a fresh tube and was pre-cleared by incubating with 

rotation at 4˚C for 1 hour using 50:50 slurry of Sepharose protein A beads along with 

ChIP lysis buffer. Beads were pelleted by low speed centrifugation for 2 minutes at 4˚C 

and 300 µl from the supernatant was transferred to a fresh tube. 30 µl of this was 

transferred to another Eppendorf as the whole cell extract (WCE) and was frozen at -

20˚C. To the remaining sample, 25 µl of protein A beads were added along with the 

appropriate antibody (1.5 µl histone H3, 1 µl anti-GFP, 1 µl H3K9me2) and samples 

were incubated overnight with rotation at 4˚C. Beads were pelleted by centrifugation at 

4˚C for 2 minutes in a microfuge. Supernatant was removed and beads were washed 

with 1 ml of each of the following buffers in this order: ChIP lysis buffer for 5 minutes 

at 4˚C with rotation, ChIP lysis buffer with 0.5 M NaCl for 10 minutes at 4˚C with 

rotation, Wash buffer (10 mM Tris-HCl [pH 8.0], 0.25 M LiCl, 0.5% NP-40, 0.5% [w/v] 

SDS, 1 mM EDTA [pH 8.0]) for 10 minutes at 4˚C with rotation and finally TE (pH 8.0) 

for 5 minutes at 4˚C with rotation. Between each wash beads were pelleted at low speed 

and kept cold. On the final wash all supernatant was removed and 100 µl 10% Chelex-

100 resin was added to each IP and 10 µl to each WCE. All samples were incubated at 
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100˚C for 12 minutes, cooled at room temperature, 1.5 µl of 25 mg/ml Proteinase K was 

added to each tube, following which all samples were incubated at 55˚C for 30 minutes 

and then were once more incubated at 100˚C for 10 minutes. Following final incubation 

samples were quickly centrifuged and supernatant was moved into a fresh Eppendorf.  

All IP samples were diluted 1:5 in nH2O, whilst all WCE were diluted 1:400 in nH2O. 

Quantitative-PCR reactions for analysis of ChIP DNA samples were carried out using 

Primerdesign PrecisionFast qPCR Mastermix using the following volumes: 10 µl 

Mastermix, 1 µl Primermix (1:10 dilution), 2 µl DNA, 7 µl PCR grade nH2O. Reactions 

were analyzed using a Rotor Gene 6000 Real-Time thermocycler with the following 

settings: Step 1 10 minutes at 95˚C, Step 2 15 sec at 95˚C, Step 3 60 sec at 60˚C, steps 2 

and 3 are repeated for 50 cycles. A melt curve was generated at the end of each run to 

assess primer specificity. ChIP-qPCR primers used in this study are shown in table 2.4. 
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Table 2.4 ChIP-qPCR oligonucleotide primers 
Primer name DNA sequence 5'-3' 

act1_For GGC ATC ACA CTT TCT ACA ACG 

act1_Rev GAG TCC AAG ACG ATA CCA GTG 

cen_dh_F CCA GAC CAT TAC AAG CAC TAC ATA CG 

cen_dh_R GAA TCT TCT CTT GAA TAA AAC CGC C 

qimr_for CTA ATG CGG AGT AAG GCT AAT C 

qimr_rev TGG ACA GAA TGG ATG GAT ATT G 

qdg_for AAT TGT GGT GGT GTG GTA ATA C 

qdg_rev GGG TTC ATC GTT TCC ATT CAG 

pot1_for GAA GAA CGC ATT CAG CAT CA 

pot1_rev CAA TTT TCG TGC CAA ATC CT 

msh1_for ACA GGA TTT TGT CCG TCC AG 

msh1_rev AGC TGG AAC AAA GCT TCC AA 

tlh1_for TCG TGG TCA TAA ACG CAC AT 

tlh1_rev ATA CTC GGC GAA ATG AAT GG 

adh1_for AAC GTC AAG TTC GAG GAA GTC C 

adh1_rev AGA GCG TGT AAA TCG GTG TGG 

ura4_for TAC CTT TGG GAC GTG GTC TC 

ura4_rev CCC GTC TCC TTT AAC ATC CA 

cnt1_for CAG ACA ATC GCA TGG TAC TAT C 

cnt1_rev AGG TGA AGC GTA AGT GAG TG 

tip41_for CAC GCC TTG TCG TAC GTT TA 

tip41_rev ACG GCA GTC CTT CAA GAG AA 

prm1_for GAT TCG CTG GAG AAA GTT GC 

prm1_rev CGG AGA GAC TGG ATT TCA GG 

tdh1_for TGG CCA AGC CTA CCA ACT AC 

tdh1_rev GAA AGT TGG ATA CCG GCA GA 

ars2004_for CTT TTG GGT AGT TTT CGG ATC C 

ars2004_rev ATG AGT ACT TGT CAC GAA TTC 

ars727_for AAC ATA TAC GGT GAG ATG GGA T 

ars727_rev ATT CGT ATT TTC CAA TGC TT 
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2.5.5 Non-homologues end-joining (NHEJ) assay 

Plasmids based on the pAL19 backbone but containing either two PstI sites (plasmid 

PS) or two EcoRI sites (plasmid PI) were linearized with the appropriate enzymes 

leading to the excision of a linear ~500 bp or ~540 bp DNA fragment respectively 

(Manolis et al., 2001; Pai et al., 2014). The now linear vector was gel purified and 1 μg 

was transformed into logarithmically growing cells (20 ml of OD595 ~ 0.5) as described 

previously (Section 2.3.2), along with an undigested control plasmid (pAL19). All of 

the plasmids contain a LEU2 marker, so NHEJ frequency was calculated as the 

percentage of leu+ colonies arising from cells transformed with the linear plasmid over 

those transformed with undigested DNA. At least three experiments were performed for 

each strain, and the average percentage rejoining calculated. Plasmids used in this study 

are listed in Table 2.5. 

 

Table 2.5 Plasmids used in the NHEJ assay 
Plasmid Description Source 

PS Based on pAL19 plasmid, contains a 500 bp linker 

fragment between two PstI sites 

Tim Humphrey 

PI Based on pAL19 plasmid, contains a 540 bp linker 

fragment between two EcoRI 

Tim Humphrey 

pAL19 Contains a pUC backbone with ars1 and S. cerevisiae 

LEU2. 

Tony Carr 

 

 

2.6 RNA extraction, manipulation and analysis 

2.6.1 RNA extraction 

Cells were cultured in the indicated medium to an OD595 ~0.3, then a 50 ml aliquot was 

centrifuged and the pellet snap frozen in liquid nitrogen and stored at -80˚C until 

required. Pellets were thawed on ice for 5 minutes, resuspended in 750 μl of TES (10 

mM Tris-HCl, 10 mM EDTA [pH 8.0], 0.5% SDS [w/v]) and an equal volume of acidic 

phenol:chloroform (pH 5.2) (Sigma P1944), vortexed for 10 seconds and then incubated 

at 65˚C for 1 hour. Samples were vortexed at 10 minute intervals for 10 seconds. 

Following the 1 hour incubation, samples were placed on ice for 1 minute, vortexed for 

20 seconds and were centrifuged for 15 minutes at 14 000 rpm at 4˚C. The aqueous 

layer was removed into heavy phase lock tubes (5Prime-2302810) containing 700 μl of 
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acidic phenol:chloroform, centrifuged for 5 minutes at 14 000 at 4˚C. The top layer was 

removed and added to light phase lock tubes (5Prime-2302800) containing 

phenol:chloroform:isoamyl alcohol 25:24:1 (pH 6.4) (Sigma P3803) and was 

centrifuged for 5 minutes at 14 000 at  4˚C. The top layer was added to tubes containing 

1.5 ml of 100% ethanol and 50 μl of 3 M sodium acetate (pH 5.2). RNA was 

precipitated at -80˚C for 1 hour or at -20˚C overnight. Samples were centrifuged at 

room temperate for 15 minutes at 13 000 rpm in a microfuge. The supernatant was 

discarded, pellets were washed in 70% ethanol, allowed to air dry then resuspended in 

100 μl of DEPC treated H2O. 

 

2.6.2 RNA Clean-up and concentration 

RNA was extracted as previously described in Section 2.6.1 and was checked for 

degradation by analysis of 5 μl on a 1% TAE agarose gel. Samples were processed by 

using either the Quiagen RNeasy Mini Kit or the Zymo Research RNA Clean & 

ConcentratorTM – 25 according to the manufacturer's instructions. 

 

2.6.3 Quantification of RNA samples 

RNA concentration was determined using a Nanodrop 1000 spectrophotometer (Thermo 

Scientific). Samples were diluted in DEPC treated H2O to a suitable concentration and 

read at an absorbance at 260 nm and 280 nm. Concentration was calculated in ng/μl. 

 

2.6.4 DNase treatment of RNA 

RNA was extracted and cleaned up as previously described in sections 2.6.1 and 2.6.2 

then was DNase treated either using the Ambion TURBO DNA-free™ Kit or using the 

Primerdesign Precision DNase kit (DNASE-50). Using the  Ambion TURBO DNA-

free™ Kit, digestions were carried out under the following conditions: 10 μg RNA, 5 μl 

DNase I Buffer and 1 μl DNase were added, incubated at 37˚C for 30 minutes, a further 

1 μl DNase was added to the mix then samples were left to incubate at  37˚C for another 

30 minutes. 10 μl DNase Inhibitor was added, mixed and incubated for another 2-3 

minutes at room temperature; centrifuged and clear layer was removed to a fresh 500 μl 

PCR grade Eppendorf tube. In case of the Primerdesign Precision DNase method 

digestions were carried out by the addition of 3 μl 10x Precision DNase reaction buffer 

to 30 μl of RNA and 1 μl of Precision DNase. Samples were incubated at 30˚C for 30 
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minutes and DNase was deactivated by incubation at 55˚C for 5 minutes. 

 

2.6.5 Reverse transcription and quantitative PCR (RT-qPCR) 

RNA was extracted and purified as previously described in sections 2.6.1 and 2.6.2 then 

was DNase treated as described in section 2.6.3. Reverse transcription and quantitative 

PCR were carried out as either a one-step reaction using the Primerdesign Precision 

OneStep qRT-PCR Mastermix or were carried out as two-step reactions using 

Invitrogen SuperScript® II Reverse Transcriptase followed by qualitative PCR using 

Roche LightCycler® DNA Master SYBR Green I. Following the  Primerdesign 

Precision OneStep qRT-PCR method, 10 μl Precision OneStepTM qRT-PCR 

Mastermix, 1 μl primer mix (1:10 dilution each), 2 μl RNA, 7 μl RNase-free H2O were 

added per reaction and mixed. SYBR green detection was recorded using a Rotor Gene 

6000 Real-Time PCR machine with the following settings: Step 1 (Reverse 

Transcription) 10 minutes at 55˚C, Step 2 (Enzyme activation – Hotstart) 8 minutes at 

95˚C, Step 3 (Denaturation) 10 seconds at 95˚C, Step 4 (Data Collection) 60 seconds at 

60˚C. Steps 3-4 were repeated 50 times, and at the finish a melt curve was generated to 

help confirm primer specificity. When the two-step method was applied, reverse 

transcription was set up by addition of the following: 6 μl DEPC treated H2O, 10 μl 

Reaction mix (Invitrogen SuperScript® II), 2 μl RNA, 2 μl Enzyme mix (Invitrogen 

SuperScript® II Reverse Transcriptase). PCR settings were the following: 25˚C for 10 

minutes, 50˚C for 50 minutes and 85˚C for 5 minutes. When finished 1 μl RNase H was 

added to mixture and samples were incubated at 37˚C for 20 minutes. qPCR was set up 

by addition of the following: 8.8 μl nH2O, 3.2 μl MgCl2, 4 μl primer mix (1:10 dilution 

of each primer), 2 μl enzyme mix and 2 μl DNA. SYBR green detection was recorded 

using a Rotor Gene 6000 Real-Time PCR machine with the following settings: 10 min 

95˚C then 36 cycles of (15 sec at 95˚C, 10 sec at 55˚C, 15 sec at 72˚C). qRT-PCR 

primers used in this study are listed in Table 2.6. Expression levels were normalized to 

act1+ unless stated otherwise. 
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Table 2.6 qRT-PCR oligonucleotide primers 
Primer DNA sequence 5'-3' 

act1_For GGC ATC ACA CTT TCT ACA ACG 

act1_Rev GAG TCC AAG ACG ATA CCA GTG 

htt2_F ATG GCT CGT ACC AAG CAA AC 

htt2_R AAA TCT TGG GCA ATT TCA CG 

hhf2_F TAA GCC TGC TAT CCG TCG TC 

hhf2_R CCA TAA ATG GTA CGG CCT TG 

hta_for ATC TGC TCA ATC CCG TTC TG 

hta_rev AGA TGA CGG GGA ATG ATA CG 

htb_for GTT GAA GCA AGT TCA CCC TG 

htb_rev TCA AAC GAA CAG CAG TCT GG 

cdc18_F GTT GCA GCT TCA AGT GGT GA 

cdc18_R TTG GCT CAT AGC AGA TGT CG 

sde2_for GCG AAG AAA CCT GCT GAA AC 

sde2_rev AAG TTG AGC CCC TTC GGT AT 

cdt1_for TCA ACA AGT CGC GAG TTA CG 

cdt1_rev CGC GAT GAA TTT TGA ACA GA 

ura3_for ACC CCT GGT CTT CGT AAC CT 

ura3_rev CAA CGA TCA CAC CGT CAA TC 

mis3_for GAA GCG TTC CAT TTC CTC AG 

mis3_rev ATA ACG GCG ACA GTT GTT CC 
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2.6.6 Microarray analysis 

Microarray analysis was performed by Babis Rallis and Sandra Codlin from the group 

of Jürg Bähler, UCL. In brief, Alexa 555- or 647-labeled cDNA was produced from the 

RNA (extracted as described in Section 2.6.1) using a Superscript direct cDNA labelling 

system (Invitrogen) and Alexa 555 and 647 dUTP label mix. The 58 cDNA was then 

purified using an Invitrogen PureLink PCR Purification system. The cDNA was 

hybridized to the array using a Gene Expression Hybridization kit (Agilent). The array 

was an Agilent custom-designed array containing 60-mer oligonucleotides synthesized 

in situ on the array and contained 4x44000 probes. Following hybridization for at least 

17 hours, the array was washed using a Gene Expression Wash Buffer kit (Agilent) and 

scanned in an Agilent Array Scanner. The microarray signal was extracted using 

GenePix. The list of genes 2 fold up or down regulated in hip1∆ cells compared to the 

wild type during quiescence can be found in Appendix A.  

 

 

2.7 Protein extraction, manipulation and analysis 

2.7.1 TCA protein extraction 

Approximately ~4x107 cells were harvested following addition of trichloroacetic acid 

(TCA) to a final concentration of 10%. Cells were resuspended in 200 μl 10% TCA and 

then disrupted using a mini beadbeater (Biospec) with 0.75 ml glass beads (0.5 mm) 

using two pulses of 15 sec with 1 min on ice in between. A further 500 μl 10% TCA was 

added and the lysate was recovered from the beads which was then clarified by spinning 

at 13 000 rpm in a microcentrifuge. The resulting pellet was washed three times in 

acetone, dried and resuspended in 30 μl TCA buffer (100 mM Tris-HCl [pH 8.0], 1% 

[w/v] SDS, and 1 mM EDTA [pH 8.0]). Protein concentration was measured using the 

Pierce BCA Protein Assay Kit (Thermoscientific) as per the manufacturer's instructions. 

 

2.7.2 Whole cell protein extracts 

Cells were cultured in 50 ml YE5S to an OD595 ~0.3 then were centrifuged and washed 

with 1 ml dH2O, snap frozen and resuspended in 100 μl of ice cold Western lysis buffer 

(50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 10 mM Imidazole, 0.5% [v/v] NP-40 

[IGEPAL]) supplemented with 1 mM PMSF, 54 mM NaF, 5 μM NaVO4, 1µl/ml  

aprotinin, 5 μg/ml pepstatin A and 5 μg/ml leupeptin. Added all to screw capped 2 ml 
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tubes containing 1 ml pre-chilled glass beads and disrupted cells with beadbeater 

(Biospec) using two pulses of 30 sec with 1 minute on ice in between. 400 μl of the 

Western lysis buffer mix was added to each sample, then the bottom of the tubes was 

pierced and lysate was collected in fresh Eppendorf by centrifuging at 2000 rpm for 1 

minute at 4˚C. Cell lysate was further cleared by centrifuging in a microfuge at 13 000 

rpm for 10 minutes at 4˚C. The supernatant was removed and protein concentrations 

were measured using Coomassie protein detection reagent (Pierce) as per the 

manufacturer's instructions. 

 

2.7.3 Co-Immunoprecipitation (Co-IP) 

Cells were cultured in 50 ml YE5S to  an OD595 ~0.3 then whole cell extracts were 

prepared as described in section 2.9.2 with the following modification: the Western lysis 

buffer was supplemented with 1% yeast protease inhibitors (Sigma P8215) and 1 mM 

PMSF. Whole cell extracts were pre-cleared with 40 µl pre-washed Sepharose A beads 

for 1-2 hours at 4˚C on rotating wheel. Protein extracts were centrifuged at 2000 rpm 

for 2 minutes at 4˚C and 400 µl supernatant was transferred into fresh Eppendorfs, 

leaving the beads behind. A 40 µl aliquot was removed as a control WCE and stored at  

-20˚C while 40 µl pre-washed Sepharose A beads and 1.5 µl anti-GFP antibody were 

added to the remaining sample and incubated overnight at 4˚C on a rotating wheel. 

Samples were washed 3-6 times in 500 µl of Western Lysis Buffer supplemented with 1 

mM PMSF and 1% protease inhibitors (Sigma P8215). After final wash all buffer was 

removed using a syringe and beads were resuspended in 40 µl 1x Lamelli buffer (0.1% 

ß-mercaptoethanol, 0.0005% Bromophenol blue, 10% glycerol, 2% [w/v] SDS and 63 

mM Tris-Hcl [pH 6.8]).  In the meantime 4 µl of the WCE were mixed with an equal 

volume of 1x Lamelli buffer and all samples were boiled at 100˚C for 3 minutes. 40 µl 

of IP and 8 µl of WCE were analyzed on 9% SDS-polyacrylamide gels (Section 2.7.4). 

 

2.7.4 Western blotting 

Protein extracts were prepared as described in Sections 2.7.1, 2.7.2 and 2.7.3. Protein 

samples were denatured by heating to 100˚C for 2-3 minutes and were resolved by SDS 

PAGE gel electrophoresis. Samples were then transferred onto nitrocellulose 

membranes, were blocked for 10-30 minutes using 10% BSA in TBST (1 mM Tris-HCl 

[pH 8.0], 15 mM NaCl, 0.1% [v/v] Tween 20) and were incubated for either 1 hour or 

overnight at 4˚C with the appropriate primary antibody. The primary antibodies and 
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their relevant secondary antibodies used in this study are shown in Table 2.7. Primary 

antibodies were all diluted in 5% (w/v) BSA in TBST. Following incubation, 

membranes were washed three times in TBST; the appropriate secondary antibody was 

added at a dilution of 1:2000 and the membranes were incubated for up to 1 hour at 

room temperature with shaking. All secondary antibodies were diluted in 5% (w/v) BSA 

in TBST. The membranes were then washed three times in TBST and were developed 

using the Pierce™ ECL 2 Western Blotting Substrate (Thermoscientific) on a Typhoon 

(GE Healthcare) according to the manufacturer's instructions. For histone H3 and H2A 

western blots 2.5 to 5 µg of protein was loaded, while for Atg8, Cig2 and Rum1 blots 20 

µgs were used.  

 

Table 2.7 Antibodies 
Primary Antibodies 

 

Manufacturer (CAT #) 

 
 

Dilution Secondary Antibody 

HA Thermoscientific (26183) 1:1000 mouse 

PK Serotec 1:1000 mouse 

Tubulin TAT1 from CRUK 1:2000 mouse 

GFP Invitrogen (A11122) 1:1000 rabbit 

Histone H3 Abcam (ab1791) 1:1000 rabbit 

Histone H3K9me2 Abcam (ab1220) Not diluted mouse 

Histone H2A Abcam (ab13923) 1:1000 rabbit 
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2.8 Bioinformatics 

 

Bioinformatic analysis was carried out during analysis of chromatin-sequencing data. 

Initial processing of sequence reads was performed by Dr Nick Kent from Cardiff 

University. All scripts used in this study were written by Dr Nick Kent, including those 

used for subsequent analysis in Newcastle. The list of scripts used in this study and their 

functions are briefly described in Table 2.7. Briefly, all initial paired reads were aligned 

to the ASM294v1.17 reference genome using Bowtie 0.12.7 (Kent et al., 2011) with 

command line flags: -n 0 --trim3 75 --maxins 5000 --fr -k 1 --sam. Aligned read pairs 

were sorted according to chromosome and then into a range of size classes based on the 

SAM format ISIZE value (difference between 5’ end of the mate read and the 5’ end of 

the first mapped read) plus or minus 20%. Mono-nucleosome-sized reads are, therefore, 

represented as 150 bp ± 30 bp. In order to define the genomic position of MNase-

resistant chromatin species the mid-point position of the read pairs in a particular size 

class were mapped. Frequency distributions of the mid-point positions were then 

calculated using 10 bp bins. To provide a direct comparison with previously published 

wild-type nucleosome position data set, mono-nucleosome position frequency 

distributions were smoothed by plotting an Epanechnikov kernel density estimate 

(KDE) with h = 30. For all other analyses, frequency distributions were more lightly 

smoothed by taking a 3-bin moving average. All frequency distributions were output in 

the zero-referenced, chromosome base, three-column .sgr format (chromosome number, 

feature/bin position, mid-point frequency value) for rendering with the Integrated 

Genome Browser and for further processing. Average cumulative chromatin particle 

position frequency distributions at, and surrounding, genomic features were calculated 

using the script SiteWriter_CFD, with values for each bin normalised to the average 

cumulative frequency value obtained for all bins within the feature window. To provide 

the comparison of our data with the smoothed nucleosome position map of Shim and 

co-workers the positions of 33874 unambiguous peak summit bins were marked in our 

wild-type KDE mono-nucleosome data set (Table 2.8 script peakmarkerEpKDE_lite) and 

compared with GSM994397_WT.wig replicate data (converted to 10bp binned .sgr 

format). Protein-coding gene transcription start sites (TSS) positions were taken from 

the previously described dataset (Lantermann et al., 2009) and too were replication 

origin positions (Givens et al., 2012). Nucleosome positions were analysed using a 

simple heuristic peak marking process (Table 2.8 script 

Pom_di_nuc_PeakMarkCompare_10bin). Peak summit positions were marked in read-
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depth-normalised wild type, abo1Δ and hip1Δ chromatin particle position frequency 

distribution data sets and then filtered into a list of those that match between data-sets 

and two lists of those do not. The mutant_NOT_WT lists contain peaks that occur in 

different genomic positions, and peaks that exceed a two-fold difference in peak height 

in either data set with processing to exclude threshold artefacts. The scripts used in this 

thesis are available from Dr Nick Kent, Cardiff University. Genic loci used for 

nucleosome alignment of genes described as highly and lowly expressed and solo LTRs 

can be viewed in Appendix B. Also in Appendix B is a list of genes that have come out 

as containing “highly disorganized” dinucleosomes in abo1∆ cells.  

 

 

Table 2.8 Perl scripts 
Script name Brief Description of Function 

Chrgrep.sh Script to group individual chromosome records 

from bowtie-aligned SAM files 

SAMparser.plx This script takes the chrn_info.txt files from 

chrgrep.sh and calculates the centre positions of 

the paired reads for each chromosome within user-

defined size classes (+/- a user-defined window) 

Spombe_Chr_changer.plx This script takes chr1, chr2 format .sgr files that 

display in IGB using the S_pombe_Sep_2007 

Genome Version, and converts the chromosome 

format to I, II etc allowing you to display the sgr 

files in IGB using the S_pombe_May_2012 

Genome Version 

peakmarkerEpKDE_lite.pl This script takes a sgr file as an input, and calls 

peak centre/summit bins above a single, but 

scalable, threshold. It then lists these bin positions 

with a y-axis value proportional to the scaled read 

frequency. The scaling value can be chosen to 

reflect differences in read depth between two 

experiments - either based on total depth or a 

SiteWriter-derived local depth. For simple peak 

counts, just leave at 1.00 

Negativity.plx This script takes any .sgr file and turns all the read 

frequency (col[2]) values negative so that you can 

easily compare them in another state using the IGB 
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SiteWriter_CFD.plx This script takes .txt files containing a list of 

sites/genomic features (these could be TSSs or TF 

sites or whatever you want) and compares it with 

whole-genome, partn .sgr files. It then outputs 

cumulative frequency distribution values over a 

user-specified bin range centered on, and 

surrounding the sites 

Trend_Compare_Stats.plx This script performs a SiteWriter-style cumulative 

frequency calculation over each bin in the 

specified window surrounding each feature, but it 

also outputs a range of values including p-values 

for paired T and Wilcoxon Mann-Whitney tests 

between the two scaled/normalized samples at 

each bin 

Di_nuc_spotter.plx Marks genes or transcripts within which 

"disorganised" tracts of nucleosomes occur in a 

mutant relative to a wild-type condition or similar 

Pom_di_nuc_PeakMarkCompare_10bin.pl This script takes two EQUAL BIN No. 

Part300 .sgr files (A and B) and uses various 

criteria to mark peaks and to describe those peak 

bins that match and do not match between the data 

sets 
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Chapter 3 

Organization of chromatin by an ATAD2 homologue in 

S. pombe 
 

3.1 Introduction 

 

Abo1 is a conserved bromodomain AAA-ATPase, with homology to both the S. 

cerevisiae Yta7 and to the human ATAD2 and ATAD2B proteins. ATAD2 has been 

linked to cancer development and its overexpression in tumour cells is a strong indicator 

of poor survival (Boussouar et al., 2013; Raeder et al., 2013). Therefore, establishing its 

precise mode of action is of considerable importance. Despite this, there is little 

information regarding the molecular function of bromodomain AAA-ATPases. Work 

carried out using S. cerevisiae has revealed roles in regulation of gene expression, 

boundary function, and nucleosome disassembly (Lombardi et al., 2011), but there is 

little evidence that these functions are conserved. Fission yeast provides an attractive 

model for the study of these factors as like humans, it contains two ATAD2 

homologues; Abo1 and Abo2, which show high levels of sequence similarity to their 

human counterparts. Previous work from our lab has demonstrated that loss of abo1+ 

leads to numerous phenotypes that overlap with those of histone chaperone mutants, 

such as an increase in antisense transcription, loss of silencing within heterochromatic 

regions and a cell cycle delay (Murton, 2012). These phenotypes are consistent with an 

important role for Abo1 in global regulation of chromatin. Therefore, the predominant 

aim of the work described in this chapter was to determine whether Abo1 has an effect 

on global nucleosome organization in S. pombe. 
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3.2 Results 

3.2.1 Generating Chromatin-Seq Samples 

 

In order to better understand the chromatin architecture of abo1∆ cells, a sequencing 

methodology was applied which can determine both the occupancy and positioning of 

multiple nucleosome size classes (Kent et al., 2011), thus permitting a high-resolution 

view of chromatin. Chromatin was digested with micrococcal nuclease (MNase), an 

enzyme that preferentially cuts linker DNA and therefore allows the identification of 

nucleosome occupied sequences. MNase digests resulted in pools of DNA, representing 

the different nucleosome size classes, which were visualized on agarose gels (Fig 

3.1.A). Digests derived from wild type and abo1Δ cells presented with highly similar 

molecular weight distributions. Three biological replicates from wild type and abo1Δ 

cells were pooled and sequenced, resulting in 56.3 and 52.7 million aligned paired-end 

reads respectively. The datasets were stratified according to paired read end-to-end 

distance into ranges representing the expected sizes of MNase-resistant DNA species 

(nucleosome particles) in eukaryotic chromatin (Fig 3.1.B). DNA fragments of 150 bp ± 

20% derive primarily from mononucleosomes, whereas those of 300 bp ± 20% originate 

from dinucleosomes and DNA species smaller than 100 bp would represent 

subnucleosomal particles, including unwrapped nucleosomes and transcription factors 

(Kent et al., 2011). Frequency distributions, of the mid-points between paired reads for 

each end-to-end distance class, were then determined across the genome, and peaks in 

these distributions were taken to imply the presence of a positioned chromatin particle.  

 

The quality and reliability of the sequencing data was determined by direct comparison 

to a previously published data set (Shim et al., 2012). Fig 3.1.C illustrates the 

distribution of frequency read peaks at specific loci using the Integrated Genome 

Browser (IGB), where a peak represents a nucleosome. Comparisons of the average 

distribution of nucleosomes from the Shim et al wild type dataset to the samples 

generated in this study are shown in Fig 3.1.D. In this analysis, nucleosome positions 

were defined as the locations of peak summits in mononucleosome position 

distributions. A cumulative frequency distribution of nucleosome positions at, and 

surrounding these wild type nucleosome positions was plotted for each set. All datasets 

resolve into a periodic pattern with an average repeat length of 156 bp arising from 

arrays of S. pombe mononucleosomes. The average amplitude of the nucleosome peaks 
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decays over distance, consistent with statistical positioning of yeast chromatin, and 

agreeing with previously published work (Shim et al., 2012). However, while the two 

wild type datasets overlap, the height of the nucleosome peaks in abo1Δ cells was 

decreased, suggesting that some aspect of chromatin organization is impaired in this 

mutant. 
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Figure 3.1 MNase-seq datasets generated in this study correlate well with 
previously published results. 
(A) Ethidium bromide-stained agarose gels of DNA pools extracted from MNase 
digested wild type and abo1∆ chromatin and used for MNase-sequencing in this study. 
Visible below the 500 bp mark are the mono-, di- and tri-nucleosome bands for each set. 
(B) Frequency distribution of paired read end-to-end size values following MNase-seq 
of DNA shown in Figure A. (C) Genome browser view of (Shim et al., 2012) wild type 
nucleosome occupancy data set plotted in relation to the mononucleosomal (150 bp) 
paired-read mid-point frequency data obtained in this study (all smoothed using an 
Epinechnikov kernel density estimate). (D) Comparison of cumulative frequency 
distributions of mid-point nucleosome (150 bp) positions from Shim et al (2012) wild 
type, as well as the wild type and abo1∆ datasets generated in this study.  
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3.2.2 Abo1 plays a role in appropriate nucleosome organization at coding regions 

 

Next, 4013 protein coding genes were aligned by their transcription start sites (TSS) as 

identified by Lantermann et al. (2009) and nucleosome architecture was determined in 

wild type and abo1Δ cells. Nucleosomes surrounding the TSSs are organized into a 

nucleosome depleted region (NDR) just upstream, and into an ordered array over the 

open reading frame (ORF), downstream of the TSS. The average nucleosome profiles of 

wild type and abo1Δ cells were similar over the NDR and the promoter regions but not 

over the ORF. Cells lacking abo1+ presented with a reduction in amplitude height over 

the nucleosomal peaks throughout the ORF. Conversely, an increase in nucleosome 

occupancy was observed over the linker regions. These distributions suggest that proper 

nucleosome organization over coding sequences is dependent upon abo1+ (Fig 3.2.A). 

In order to determine whether a specific group of genes was disrupted upon loss of 

abo1+, K-means clustering was used to define 9 arbitrary nucleosome peak profiles in 

the abo1Δ dataset. Comparison of the wild type and abo1Δ datasets revealed that no one 

group is dependent upon abo1+, rather that all protein coding gene profiles resolve more 

clearly in the wild type sample (Fig 3.2.B), suggesting that Abo1 impacts upon correct 

nucleosome placement to some extent over  the majority of coding regions. 
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Figure 3.2 Deletion of abo1+ leads to perturbations of nucleosome organization 
over coding sequences.  
(A) Wild type and abo1∆ MNase-seq generated mononucleosomal (150 bp) DNA 
fragments were aligned over 4013 S. pombe protein coding genes, using the TSSs 
identified by Lantermann et al. (2009). (B) Nucleosome position frequency values for 
the coding regions of 4013 S. pombe genes (Lantermann et al., 2009) were k-means 
clustered (k = 9) and displayed with positive values coloured yellow and other values 
coloured blue on the left hand panel. The cluster order was then used to display the 
equivalent wild type frequency values in the right-hand panel. 
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Since the MNase profiles suggested a reduction in global nucleosome occupancy, 

histone protein levels were quantified. Histone H3 and H2A levels were significantly 

decreased in abo1Δ cells compared to the wild type (Fig 3.3). This is not a result of an 

impact of Abo1 upon histone gene transcription as previous analyses have shown that 

histone gene mRNA levels are unaffected by abo1+ deletion (Murton, 2012). In 

addition, when a heuristic algorithm was employed to mark nucleosome peaks, of the 

30021 nucleosome positions that coincided between wild type and abo1∆ cells, 1036 

were at least 2-fold higher in the wild type than abo1∆, while the converse was true for 

only 14. Overall, the data indicates that loss of abo1+ results in a global reduction in 

nucleosome occupancy.  

 

In addition to a drop in nucleosome occupancy, the initial nucleosome alignments 

suggested an effect on positioning. While nucleosome peaks are lower in abo1Δ cells, 

the number of reads corresponding to linker regions increased. This could indicate that 

in addition to a reduction in nucleosome occupancy, a proportion of nucleosomes 

shifted from their preferential sites. To address this issue, dinucleosome peaks were 

compared over coding regions (Fig 3.4.A). A dinucleosome peak will only arise if the 

constituent mononucleosomes are well positioned with respect to each other, therefore a 

shift and/or loss of either mononucleosome will impact greatly upon the dinucleosome 

maps. Indeed, the differences between wild type and abo1Δ dinucleosome maps were 

slightly more pronounced than those seen over mononucleosomal alignments. Figure 

3.4.C illustrates a locus, over the cuf1+ gene, where nucleosomes have become 

particularly disorganized. A heuristic peak finder identified 466 of these loci, where 

abo1∆ cells presented with over 60% 'fuzzy' nucleosomes. Running these genes through 

the Princeton GO term-finder found no functional relationship between them, nor was it 

possible to find a connection based on chromosomal location. Removal of these genes 

and re-aligning the dinucleosome peaks also did not yield a better fit (Fig 3.4.B), 

suggesting that like its role in nucleosome occupancy, Abo1 also has a global effect on 

nucleosome positioning. 
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Figure 3.3 Loss of abo1+ leads to a drop in histone H3 and H2A protein levels. 
Whole cell protein extracts were subjected to western blotting probed with histone H3 
(Abcam) or histone H2A (Abcam) and tubulin antibodies. Histone protein levels were 
normalized to tubulin and fold change shown is of abo1∆ cells relative to the wild type. 
Data are the mean of at least three independent biological replicates; error bars represent 
± SEM (* denotes p<0.05 and ** p< 0.001).  
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Figure 3.4 Loss of abo1+ results in “fuzzy” nucleosomes.  
(A) Average dinucleosome (300 bp) sequence read frequency profiles generated by 
MNase-seq for 4013 S. pombe protein coding genes aligned at the TSSs as described by 
Lantermann et al. (2009). (B) The 466 genes identified previously as possessing 
particularly disorganized dinucleosomes upon loss of abo1+ function were removed 
from the 4013 S. pombe protein coding genes and the MNase-seq generated 
dinucleosome particles (300 bp) were realigned by TSS (Lantermann et al., 2009). (C) 
Comparison of sequence read frequency for dinucleosome particles (300 bp) following 
MNase-seq in wild type and abo1Δ across the indicated region of Chromosome 1. The 
position of matching and non-matching dinucleosome peaks is indicated.  

95 
 



3.2.3 Chromatin organization at Abo1 regulated genes 

 

A recent study by Marguerat et al. (2012) identified the absolute transcript levels of 

genes in S pombe. Based on their measurements of transcript abundance, protein-coding 

genes in the top 10% and the bottom 10% were taken and their nucleosome profiles 

compared to all protein coding genes (Fig 3.5.A). Not unexpectedly, a wider NDR is 

seen in highly expressed genes when compared to the other two datasets, while genes 

with low-level expression had less well-organized nucleosomal arrays over their coding 

regions in addition to a shallow NDR. Microarray analysis comparing abo1∆ cells to 

wild type found that Abo1 typically plays a repressive role in transcriptional regulation. 

In the absence of abo1+, 281 RNAs are upregulated with only 8 down regulated 

compared to the wild type (Jürg Bähler, personal communications). Genes that are 

significantly upregulated overlap with those identified as up in the absence of the 

histone deacetylase clr6+ and in the absence of the hip1+ subunit of the HIRA complex 

(Fig 3.5.B), both of which are associated with repressive functions. Overall, the genes 

that are regulated in an Abo1-dependent manner are mostly expressed at low levels and 

accordingly present with a shallow NDR and less well defined nucleosomal arrays (Fig 

3.5.C). Comparison of wild type and abo1Δ mutant cells revealed that there is nearly a 

complete loss of the +1 nucleosome in abo1Δ cells at Abo1-dependent genes and there 

is also some reduction in the -1 nucleosome over the promoter regions (Fig 3.6.A). The 

depletion of nucleosome occupancy over the promoter region can be confirmed when 

individual genes are inspected. For example, transcription from the grt1+ and the aes1+ 

loci is 2-fold upregulated in abo1Δ cells, and there is a reduction of nucleosomes that 

affect both the -1 and the +1 nucleosomes (Fig 3.6.B and C), demonstrating that Abo1 

also plays a role in nucleosome assembly over specific promoter regions. It is however 

unclear what directs Abo1 involvement in promoter nucleosome assembly in this subset 

of genes. 
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Figure 3.5 Deletion of abo1+ preferentially results in the de-repression of normally 
low level transcribed genes. 
(A) Mononucleosomal particles (150 bp) following MNase-seq were aligned by their 
TSSs for all 4013 S. pombe  protein coding genes identified by Lantermann et al. (2009) 
as well as those identified as the top 10% of highly and top 10% lowly transcribed 
protein coding genes described by Maraguet et al. (2012). (B) Microarray data of 
midlog phase growing abo1∆ cells shows over 280 genes that are upregulated compared 
to wild type. Venn diagrams show overlap between genes that are up-regulated (≥1.5 
fold) in abo1Δ mutants with genes that are up-regulated under the indicated condition, 
along with the significance of the overlaps (based on hypergeometric distribution). (C) 
Comparison of MNase-seq generated mononucleosome particle maps (150 bp) of genes 
transcribed to low-levels as described by Maraguet et al. (2012) and of Abo1-depedent 
genes as identified by microarray analysis aligned by their TSSs as identified by 
Lantermann et al. (2009).  
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Figure 3.6 Nucleosome depletion is visible over the promoter regions of Abo1-
dependent genes. 
(A) Mononucleosome particle maps (150 bp) generated by MNase-seq of Abo1-
dependent genes as identified by microarray analysis in wild type and abo1∆ cells 
aligned by their TSSs as described by Lantermann et al. (2009). (B) and (C) Integrated 
Genome Browser view of MNase-seq generated mononucleosomes (150 bp) over 
individual genes that are Abo1-dependent in wild type and abo1∆ cells.   
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3.2.4 Abo1 is involved in proper nucleosome organization at pericentromeric 

heterochromatin 

 

Nucleosome organization was also investigated at heterochromatic domains in both wild 

type and abo1Δ cells. There are three large heterochromatic regions in S. pombe: the 

pericentromeric regions, telomeres, and the mating type locus (Buscaino et al., 2010). 

Centromeres are organized into two distinct transcriptionally silenced domains, the 

inner domain comprises the central core and the inner portion of the imr repeats. This 

region is associated with CENP-A chromatin and is the site of kinetochore assembly. 

The outer domain flanks the inner region and comprises the outer portion of the imr as 

well as the otr (dg-dh repeats) (Buscaino et al., 2010). This region is assembled into 

heterochromatin that is dependent upon methylation of histone H3 on lysine 9 (carried 

out by the histone methyltransferase Clr4), which in turn is required for the recruitment 

of the HP1 homologue Swi6.  

 

Previous assays from our lab have demonstrated that upon loss of abo1+, silencing of 

the inserted marker gene over these regions is disrupted (Murton, 2012). In the absence 

of abo1+ non-coding centromeric (dg-dh) transcripts accumulate (Murton, 2012). Since 

deletion of abo1+ leads to loss of silencing, histone H3 and histone H3K9me2 levels 

were measured by ChIP-qPCR. Histone H3 levels at dh repeats were slightly but 

significantly decreased in an abo1Δ mutant, while no significant change was observed 

in H3K9me2 levels (Fig 3.7.A and B). It was also possible to assay the spread of 

H3K9me2 by using strains with the ura4+ marker gene inserted into the imr or otr 

regions, in order to determine whether loss of silencing is due to failure of H3K9me2 to 

spread into the marker gene (Fig 3.7.C). It was not possible to detect a significant 

difference between wild type and abo1Δ cells in H3K9me2 enrichment at either dh 

repeats or over the ura4+ marker gene. It should however be noted that H3K9me2 

enrichment was highly variable in abo1Δ cells. Taken together, these results would 

indicate that loss of H3K9 methylation is not the reason for loss of silencing. 

Nevertheless, Abo1 is enriched at heterochromatic regions as demonstrated by ChIP-

qPCR analysis (Fig 3.8.A) and nucleosome maps reveal changes within the outer 

repeats in abo1Δ cells compared to the wild type (Fig 3.8 B), suggesting that Abo1 is 

involved in appropriate assembly and/or maintenance of nucleosomes within 

pericentromeric heterochromatin.  

 

99 
 



The association of Abo1-GFP with heterochromatin in the absence of swi6+ was also 

determined, and it is recruited and/or maintained independently of Swi6 levels at the dh 

repeats and over the imr region (Fig 3.9). The converse is also true; collaborators (Janet 

Partridge, personal communications) have found that loss of abo1+ does not affect 

Swi6-GFP enrichment over the dg-dh repeats, nor does it affect the number of Swi6-

GFP loci visible in the nucleus as demonstrated by fluorescent microscopy examinations 

(Murton, 2012). 
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Figure 3.7 Heterochromatin is also affected by loss of abo1+. 
(A) Histone H3 levels at otr repeats were determined by ChIP-qPCR. IP relative to input 
was determined. Data are the mean of three independent biological replicates and error 
bars represent ±SEM (** indicates p< 0.01). (B) H3K9me2 levels at otr repeats were 
determined by ChIP-qPCR. IP relative to input was determined and mutants were 
normalized to the wild type. Data are the mean of six independent biological replicates 
and error bars represent ±SEM (*** p<0.001). (C) H3K9me2 levels at otr repeats and 
over the inserted ura4+ marker gene were determined by ChIP-qPCR. IP relative to 
input was determined and mutants were normalized to the wild type. Data are the mean 
of at least three independent biological replicates and error bars represent ±SEM (*** 
p<0.001).  
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Figure 3.8 Perturbations to nucleosomes are visible over heterochromatic regions 
in abo1∆ cells. 
(A) Abo1-GFP levels were determined as IP relative to input at the indicated strains 
over the indicted regions by ChIP-qPCR analysis. Data are the mean of four 
independent biological replicates and error bars denote ±SEM. P values were calculated 
relative to the untagged control (* p<0.05; ** p<0.01). (B) Alignment of 
mononucleosomes (150 bp) generated by MNase-seq over the indicated regions of 
centromere 1.  
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Figure 3.9 Abo1-GFP enrichment over pericentromeric regions is unaffected by 
loss of swi6+. 
Abo1-GFP levels were determined as IP relative to input at the indicated strains over the 
indicted regions by ChIP-qPCR analysis. Data are the mean of three independent 
biological replicates and error bars denote ±SEM. (All tagged strains are significantly 
enriched over the untagged control with a p-value of less than 0.05.) 
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3.2.5 A role for Abo1 in nucleosome organization over Tf2 retrotransposons and 

retrotransposon remnants 

 

Next, the chromatin at S. pombe Tf2 LTR retrotransposons was examined. As well as the 

classic heterochromatic regions, distinctly silenced domains exist in S. pombe over 

LTRs and retrotransposons. These elements are transcriptionally silent, but lack both 

H3K9 methylation and Swi6 recruitment. Instead, they rely on CENP-B proteins, 

HDACs and histone chaperones (Hansen et al., 2005; Greenall et al., 2006; Cam et al., 

2008). The S. pombe genome contains 13 full length Tf2 long terminal repeat 

retrotransposons, which present with an increase in expression in the absence of abo1Δ 

as revealed by both microarray analysis and reporter gene measurement of individual 

elements (Murton, 2012). Nucleosome alignments of Tf2 elements have revealed a 

single nucleosome over the 5’ LTR, a nucleosome over the UTR and a nucleosomal 

array over the element ORF. Distinct from most transcribed gene sequences, these 

retrotransposons have a NDR downstream of the TSS. Comparisons of wild type and 

abo1Δ cells showed a reduction in peak height over the LTR, the UTR and the coding 

regions of Tf2 elements suggesting that Abo1-mediated nucleosome assembly occurs in 

all three regions (Fig 3.10.A). In addition to the full length Tf2 elements, S. pombe 

contains ~250 solo LTRs (Bowen et al., 2003). Mononucleosome read sequences over 

95 of these regions were also aligned and compared. This revealed a single nucleosome 

over the LTR with a largely nucleosome free region downstream (Fig 3.10.B). Once 

again, in the absence of abo1+ the height of the nucleosome peak was reduced, 

demonstrating that Abo1-mediated chromatin maintenance takes place at these 

retrotransposon remnants. 
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Figure 3.10 Perturbations to nucleosomes are visible over Tf2 retrotransposons 
and solo LTRs in abo1∆ cells. 
(A) Mononucleosomal particles (150 bp) following MNase-seq were aligned over the 
13 full length S. pombe Tf2 elements by their ATG site as described in pombase. (B) 
Mononucleosomal particles (150 bp) generated by MNase-seq were aligned over 95 
solo LTRs identified in the S. pombe genome by their start sites as described previously 
(Bowen et al., 2003).  
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3.2.6 Abo1 physically associates with the FACT histone chaperone  

 

The MNase profiles suggest that Abo1 functions as a histone chaperone and evidence 

from S. cerevisiae indicates that Yta7 physically and genetically interacts with histone 

chaperones. Preliminary mass spectrometry analysis of Abo1 interacting proteins 

revealed the two subunits of the FACT complex, Spt16 and Pob3, as physically 

associating with Abo1 (L. Subramanian & R. Allshire, personal communications). In 

order to confirm this finding, co-immunoprecipitation analysis of Abo1 with either 

Spt16 or Pob3 was carried out. Strains expressing Spt16-GFP and Abo1-PK or Pob3-

GFP and Abo1-PK were analyzed. In each case the pull-down step was carried out using 

Sepharose A beads coupled to the anti-GFP antibody, then samples were analyzed by 

western blotting, with the anti-PK antibody. The presence of Abo1 was detected only in 

the relevant immunoprecipitated samples indicating that Abo1 physically interacts with 

both Spt16 and Pob3 (Fig 3.11.A and B).     
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Figure 3.11 Abo1 physically interacts with components of the FACT complex.  
(A) and (B) Whole cell protein extracts of the indicated strains were 
immunoprecipitated using Sepharose A beads coupled to the αGFP antibody. WCE 
contains 2% of that used in the immunoprecipitation (IP). The presence of tagged 
proteins was analyzed by western blotting using αPK and αGFP antibodies. The data 
shown here is representative of two biological replicates.  
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3.2.7 Enrichment of Spt16 is increased in the absence of abo1+ at transcriptionally 
silent regions   
 

Next, the effect of loss of abo1+ upon Pob3 and Spt16 chromatin binding was examined. 

Pob3-GFP and Spt16-GFP ChIP-qPCR was carried out in the presence and absence of 

abo1+. No significant difference was noted at actively transcribed regions; however 

there was a small but significant increase of Spt16 levels at the tlh1/2+ genes upon 

deletion of abo1+ (Fig 3.12). tlh1/2+ are located within the subtelomeric regions of 

chromosomes and in the absence of abo1+ tlh1/2+ transcript levels are significantly 

increased (A. J. Whale, personal communications). Therefore, it is likely that FACT 

levels increase at tlh1/2+ loci as a result of corresponding increase in RNA Pol II levels. 

Overall, deletion of abo1+ does not seem to have an impact upon Spt16 and Pob3 

localization at actively transcribed genes. 
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Figure 3.12 Loss of abo1+ leads to an increase in Spt16-GFP levels at the tlh1+ loci.  
Enrichment of Pob3-GFP and Spt16-GFP in midlog phase growing cells was detected 
using ChIP-qPCR analysis at the indicated loci. Data are the mean of at least three 
independent repeats and error bars represent ± SEM (** denotes p< 0.01).  
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3.2.8 Abo1 localization is deregulated at some genes in the absence of functional 

FACT complex 

 

Next, the role of FACT in regulating Abo1 recruitment and localization at transcribed 

genes was probed. Abo1-GFP levels were measured by ChIP-qPCR in the presence and 

absence of pob3+. Upon loss of pob3+, Abo1-GFP levels significantly decreased at the 

act1+ locus, hinting at a role for pob3+ in appropriate Abo1 localization (Fig 3.13). On 

the other hand, further loci inspected, pot1+ and msh1+, showed a small but significant 

increase in Abo1-GFP enrichment, while tlh1/2+ loci displayed no change upon deletion 

of pob3+ (Fig 3.14). As spt16+ is an essential gene in S. pombe, a ts allele (spt16-18) 

(Choi et al., 2012) was utilized to determine the impact of Spt16 upon Abo1 chromatin 

binding. Even at the permissive temperature (30˚C) the spt16-18 strain has phenotypes, 

such as slow growth and an elongated cell shape, suggesting that Spt16 protein function 

is somewhat compromised (data not shown). Abo1-GFP enrichment on the chromatin 

was assayed by ChIP-qPCR again, and its enrichment was significantly reduced at the 

act1+ locus while there was a small but significant increase at pot1+ (Fig 3.14.A), 

similarly to that observed in pob3∆ cells, suggesting that overall Abo1 distribution is 

perturbed. Next, midlog phase growing cells were incubated at the non-permissive 

temperature (37˚C) for 2 hours, as described previously (Choi et al., 2012), and ChIP-

qPCR analysis was carried out to determine whether further loss of FACT function 

would lead to any further changes in Abo1 chromatin association. At the act1+ locus 

Abo1 enrichment was significantly reduced in the spt16-18 mutant compared to the 

wild type (Fig 3.14.B), however there was not a significant change at the pot1+ loci, like 

that observed previously, nor were there any significant changes at a number of other 

loci tested. These results suggest that Spt16 is needed for appropriate Abo1 localization 

to some but not all transcribed regions.  

 

Abo1-GFP enrichment was also probed at heterochromatic regions in the absence of 

pob3+ and in the spt16-18 mutant incubated at the non-permissive temperature. Abo1 

levels did not change significantly over the centromeric region (cnt1), nor over the dh 

repeats and the imr regions (Fig 3.15). Thus it would appear that Abo1 localization is 

FACT dependent only at actively transcribed sequences and more likely at specific loci.  
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Figure 3.13 Deletion of pob3+ alters Abo1-GFP localization over several loci. 
Enrichment of Abo1-GFP in midlog phase growing cells was detected using ChIP-qPCR 
analysis at the indicated loci. Data are the mean of three independent biological 
replicates. Error bars represent ± SEM (* denotes p< 0.05). All tagged samples are 
significantly enriched (p<0.05) compared to the untagged control with the exception of 
abo1-GFP pob3∆ over the act1+ loci (p=0.09686).   
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Figure 3.14 Inactivation of spt16+ alters Abo1-GFP enrichment on chromatin.  
(A) ChIP-qPCR analysis was used to detect Abo1-GFP enrichment at the indicated loci 
in midlog phase growing cells. Data are the mean of at least three independent repeats 
and error bars denote ± SEM (* p< 0.05; ** p< 0.01). All tagged strains are significantly 
different from the untagged control (p<0.05). All tagged strains are significantly 
different from the untagged control (p<0.05). (B) Midlog phase growing cells were 
placed at 37°C for 2 hours, following growth at 30°C, in order to further reduce Spt16 
function as described previously by Choi et al. (2012). ChIP-qPCR analysis was used to 
detect Abo1-GFP enrichment at the indicated loci. Data are the mean of at least three 
independent repeats and error bars represent ± SEM (** denotes p< 0.01). All tagged 
strains are significantly different from the untagged control (p<0.05).  
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Figure 3.15 Loss of FACT function does not affect Abo1-GFP localization on 
heterochromatin.  
ChIP-qPCR analysis was used to detect Abo1-GFP enrichment at the indicated loci in 
midlog phase growing cells. Data are the mean of at least two independent repeats and 
error bars denote ± SEM. All tagged strains are significantly enriched compared to the 
untagged control (p<0.05).  
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3.2.9 Requirement for Abo1 in nucleosome organization extends to replication origins 

 

Based on the connection with FACT, which is known to function both as a replication-

independent and replication-dependent histone chaperone, the role of abo1+ surrounding 

replication origins was examined. Replication origins were aligned either by the 217 

origin of replication complex (ORC) binding sites or by their AT islands as described 

previously (Givens et al., 2012). In agreement with previous observations, a broad NDR 

is observed over replication of origin sites. Loss of abo1+ resulted in increased 

nucleosome occupancy over the NDRs while a reduction in nucleosome occupancy was 

observed over the flanking regions independent of the alignment feature used (Fig 

3.16). These findings suggest another overlap of function between Abo1 and FACT and 

hint at a possible role for Abo1 in replication initiation.  

 

Spt16-GFP and Pob3-GFP enrichment over two replication origins, ars2004 and ars727 

was assayed next. ars2004 is an early-firing replication origin, that is thought to be 

highly active, while ars727 is late firing, with lower activity (Hayashi et al., 2007; 

Givens et al., 2012). ChIP-qPCR analysis of non-synchronous midlog phase populations 

showed that both Pob3 and Spt16 localize to these sites. Upon deletion of abo1+, not 

Pob3, but Spt16 levels are significantly increased at both replication origins tested (Fig 

3.17.A). This would suggest that Abo1 functions to keep Spt16 (FACT) away from 

replication origins; possibly to limit unwanted reorganization around these sites until the 

appropriate time.  

 

Next, Abo1-GFP levels were measured over ars2004 and ars727. ChIP-qPCR analysis 

of these regions showed that Abo1-GFP enriches at both with relative similar levels (Fig 

3.17.B). To determine, whether this is also FACT dependent, spt16-18 cells grown at the 

non-permissive temperature were utilized. Abo1-GFP levels were not significantly 

altered over the replication origins inspected (Fig 3.17.C). Abo1-GFP pob3∆ cells were 

also inspected for Abo1 enrichment over these regions and once again there wasn’t a 

significant alteration in Abo1-GFP levels. Thus Abo1 recruitment to replication origins 

is not dependent upon the FACT complex. 
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Figure 3.16 Loss of abo1+ leads to the over accumulation of nucleosomes over the 
NDR of replication origins. 
Mononucleosomal particles (150 bp) following MNase-seq were aligned over 217 
replication origins either by their AT islands or by binding sites of the pre-replication 
complex previously described (Givens et al., 2012). 
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Figure 3.17 Loss of abo1+ leads to an increase in Spt16-GFP levels at replication 
origins. 
(A) ChIP-qPCR of Pob3-GFP and Spt16-GFP was carried out over two replication 
origins, ars2004 and ars727, in midlog phase growing cells. The data are the mean of 
three independent repeats and error bars denote ± SEM (* denotes p< 0.05; ** p<0.01). 
(B) ChIP-qPCR analysis of Abo1-GFP in spt16-18 cells over two replication origins, 
ars2004 and ars727, in midlog phase growing cells. The data are the mean of at least 
three independent repeats and error bars denote ± SEM. (C) ChIP-qPCR analysis of 
Abo1-GFP in pob3∆ cells over two replication origins, ars2004 and ars727, in midlog 
phase growing cells. The data are the mean of four independent repeats and error bars 
denote ± SEM. All tagged strains are significantly enriched compared to the untagged 
control (p<0.05). 
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3.3 Discussion 

 

The findings described in this chapter demonstrate a requirement for the ATAD2 

homologue, Abo1, in the global regulation of nucleosome organization and suggest a 

role in nucleosome assembly. Chromatin sequencing revealed that abo1+ is required in 

both coding and intergenic sequences for the appropriate occupancy and positioning of 

nucleosomes, a finding which agrees with previous data demonstrating that loss of 

abo1+ leads to the accumulation of both coding and non-coding transcripts (Murton, 

2012). The function of Abo1 extends to heterochromatic regions and accordingly, 

previous findings have demonstrated that it is required for appropriate silencing within 

these regions, as well as for chromosome segregation and meiosis (Murton, 2012). 

 

 

3.3.1. Abo1 Functions in the same pathway(s) as the FACT complex 

 

Nucleosome eviction and deposition are important processes coupled to transcription (in 

addition to replication). Several ATP-dependent remodelers (CHD1, SWI/SNF) and 

histone chaperones (HIRA, Asf1, FACT, Spt6, and Rtt106) have now been shown to 

function in these processes. The requirement for Abo1 in silencing spurious 

transcription as well as in the maintenance of nucleosome organization over genic 

regions would suggest that it also acts in the wake of elongating Pol II, most likely in 

concert with other histone chaperones. The distribution and enrichment of Abo1 would 

also support its role in transcription-coupled nucleosome disassembly/assembly, since it 

is readily enriched at actively transcribed regions. Previous work using S. cerevisiae as a 

model has also found that YTA7 genetically interacts with a number of histone 

chaperones, such as HIRA, FACT, Asf1 and Rtt106, and also co-purifies with several 

chromatin interacting proteins, such as FACT, Rtt106, and RNA Pol II (Gradolatto et 

al., 2008; Gradolatto et al., 2009). The work presented here adds further evidence that 

the interaction between histone chaperones and Abo1 is evolutionarily conserved, as 

Abo1 also co-purifies with the components of the S. pombe FACT complex, Spt16 and 

Pob3. Furthermore, in the absence of pob3+ and spt16+ function, Abo1 enrichment on 

the chromatin is significantly reduced at the act1+ loci, consistent with FACT being 

required for the correct recruitment and/or localization of Abo1 at some actively 

transcribed genes. In contrast, Abo1-GFP levels have increased over the pot1+ and 

msh1+ loci, while there was no change observed over heterochromatic regions, 
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suggesting that Abo1 depends on FACT for appropriate localization primarily over 

sequences with ‘active’ nucleosome turnover. Overall, it would be highly informative to 

obtain a high resolution view of both histone H3 levels and Abo1 binding in wild type 

cells as well as in the pob3∆ and spt16-18 mutants in order to further address this issue.  

 

There are further suggestions that FACT and Abo1 function in the same pathway, as 

deletions of abo1+ and pob3+ are non-additive. Sensitivity assays of DNA damaging and 

oxidative stress inducing agents show that the abo1∆ pob3∆ double mutant is no more 

sensitive than the pob3∆ single mutant (A. J. Whale, personal communications). 

Moreover, deletion of abo1+ and reduced levels of Spt16 lead to the production of the 

same set of intergenic transcripts (A. J. Whale, personal communications) (Choi et al., 

2012). This along with the ChIP data suggests that Abo1 functions downstream of 

FACT and/or that its proper chromatin localization is dependent on the FACT complex. 

This model suggests one of two things; one that FACT and Abo1 co-operate in 

remodeling nucleosomes in front of an elongating Pol II, and that in the absence of 

either nucleosomes are not appropriately remodeled or disassembled, impeding Pol II 

progression, or that Abo1 along with FACT plays a role in nucleosome reassembly 

following Pol II passage. There are arguments for both models and it is also possible 

that like FACT, Abo1 also functions in both assembly and disassembly of nucleosomes.  

 

There are several mechanisms by which Abo1 could function in either or both of these 

processes.  Abo1 is a member of the AAA-ATPase family of proteins, which are 

generally accepted to act as molecular motors that can facilitate the folding/unfolding of 

substrate proteins. Therefore it is possible that Abo1 acts upon the histone octamers and 

uses the energy from ATP hydrolysis to destabilize the nucleosome and consequently 

facilitate nucleosome breathing which in turn allows FACT to remove or remodel 

histone H2A-H2B dimers. Of course by the same mechanism, it would also be able to 

help re-assemble entire nucleosomes or stabilize the partially unfolded nucleosome 

during Pol II progression, and while FACT is thought of as a chaperone involved in 

breaking nucleosomes (Orphanides et al., 1998; Belotserkovskaya et al., 2003; 

Formosa, 2012; Hsieh et al., 2013), it has also been shown to promote the reassembly of 

old histones behind RNA pol II (Jamai et al., 2009), and so it would be interesting to 

determine whether any of these processes are compromised in the absence of abo1+. 

Histone turnover could be measured, which would shed some light on the ability of 

Abo1 to replace nucleosomes following Pol II progression.  
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Interestingly, deletion of the two S. cerevisiae nhp6+ genes (nhp6a and nhp6b) results in 

strikingly similar phenotypes to those described upon abo1+ loss, such as a global 

reduction of occupancy and the fuzziness of nucleosomes (Celona et al., 2011). Nhp6a 

and Nhp6b are high-mobility group (HMG) non-histone chromatin proteins that act in 

conjunction with the FACT complex, although are not essential for all FACT activity 

(Formosa et al., 2001; Ruone et al., 2003). It is thought to act as a factor that catalyzes 

the first of a two-step destabilization of nucleosomes, which allows FACT to bind and 

remove the histone H2A-H2B dimers (Formosa et al., 2001; Ruone et al., 2003). 

However, it is also involved in nucleosome stabilization and assembly following Pol II 

progression and it also acts to modulate the activities, sliding and binding to 

nucleosomes, of other ATP-dependent remodelers, like SWI/SNF (Hepp et al., 2014). 

Deletion of abo1+ along with nhp6+ is synthetically negative, suggesting some 

functional interplay between the two (A.J. Whale, personal communications). It is 

possible that both Abo1 and Nhp6 act to stabilize/destabilize partially unwound 

nucleosomes and although they are functionally similar, loss of both would cause 

greater perturbations. It is also possible that they can both modulate FACT function. To 

this end, it would be possible to measure FACT levels in either of the single mutants and 

in the double mutant to determine whether it is altered in an additive manner. It would 

also be possible to assay FACT activity in nucleosome assembly in vitro with and 

without these proteins present, or in vivo by measuring histone turnover.    

 

Finally, deletion of abo1+ leads to increased levels of Spt16 over replication origins. 

This would suggest that Abo1 is actually involved in prohibiting Spt16 from amassing 

over these regions, either by directly preventing FACT-nucleosome interactions, or 

indirectly, as a result of Abo1 occupying these sites normally. The fact that Abo1 is also 

enriched over replication origins and that in its absence replication origins have altered 

nucleosome profiles hints at a role for Abo1 in replication coupled chromatin 

organization too. Perhaps, by assaying histone H3K56 acetylation patterns, a mark 

which is associated with newly synthesized nucleosomes, in an abo1∆ mutant 

background; it would be possible to determine whether Abo1 has a role to play in 

regulating replication-coupled nucleosome assembly as well. 

 

Deletion of abo1+ also leads to changes to replication origins, and Abo1 itself is 

phosphorylated in a cell cycle dependent manner (A. J. Whale, personal 

communications), further suggesting that it functions in the context of replication. 
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Interestingly, there is evidence that the Drosophila FACT is phosphorylated by CK2 and 

this event prohibits FACT binding nucleosomal DNA, thus weakening its interaction 

with nucleosomes (Tsunaka et al., 2009). As Abo1 is also phosphorylated by CK2 (A. J. 

Whale, personal communications), it would be interesting to determine the outcome of 

this CK2-dependent phosphorylation. There are initial suggestions that Abo1 is also 

removed from the chromatin upon replication fork stalling, an event which is correlated 

with an increase in Abo1 phosphorylation, although this is dependent upon the 

checkpoint kinases Rad3 and Cds1 (A. J. Whale, personal communications). Whether 

this is due to a role in replication or due to a response to a DNA damaging agent is 

difficult to determine. There have also been previous observations that the human 

ATAD2 is removed from the chromatin upon DNA damage induction, in order for repair 

to take place (Kyle Miller, personal communications). It is possible that the general 

principles of protein recruitment and removal on the chromatin are similar between 

DNA damage repair mechanisms and that of replication origins, as has been 

demonstrated with histone chaperone recruitment to both replication forks and DNA 

damage repair sites. Indeed, remodelling of chromatin is required in both scenarios. 

Finally, there is evidence that the S. cerevisiae Yta7 is removed from histone gene 

promoters during transcription, but it is not simply involved in gene repression, as in the 

absence of YTA7, histone gene induction is reduced (Kurat et al., 2011; Zunder and 

Rine, 2012). Thus, it appears that the role of Yta7 (and indeed Abo1 and ATAD2) is not 

simply repressing or activating but rather is context dependent and is regulated through 

different layers.   

 
 

3.3.2 Abo1 and nucleosome positioning 

 

Global mapping of nucleosomes has also revealed a role for Abo1 in correct 

nucleosome positioning over coding sequences. Loss of abo1+ leads to nucleosomes 

becoming disorganized, shifting from their preferred sites, and leading to “fuzzy” 

nucleosomes. This was particularly interesting, as spacing of nucleosomes over coding 

sequences is depleted upon loss of the CHD chromatin remodeling complex subunits, 

Hrp1 and Hrp3. It is unlikely that Abo1 works as a nucleosome 'spacer', as AAA-

ATPases are distinct from the Snf2-family of helicases. However, it is possible that it 

contributes to the localization of these CHD remodelers or other chromatin interacting 

proteins. Preliminary mass spectrometry analysis does indeed indicate that Abo1 
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physically associates with Hrp1. Also in support of this hypothesis, previous work 

carried out using S. cerevisiae demonstrated that Yta7 blocks the inappropriate spread of 

the RSC remodeler into the HTA1 coding sequence (Jambunathan et al., 2005), and the 

human ATAD2 protein mediates the loading of the MLL histone methyltransferase 

complex onto the chromatin (Revenko et al., 2010).  

 

 

3.3.3 Abo1 function extends to heterochromatin 

 

Abo1 is also required for silencing within heterochromatin. Appropriate 

heterochromatin formation and maintenance is essential for the recruitment of cohesin 

proteins to ensure proper chromosome segregation during mitosis (Murton, 2012). 

Mutations that affect heterochromatin exhibit a variety of defects in chromosome 

segregation, a high loss rate of a non-essential minichromosome, and an increased 

sensitivity to the microtubule-destabilizing agent thiabendazole (TBZ). Indeed, loss of 

abo1+ leads to all of the aforementioned phenotypes, as well as to loss of marker gene 

silencing within the imr and otr regions of centromeric repeat sequences, and to an 

increase in Pol II mediated non-coding RNA transcription that arises from within the 

dg-dh repeats of the otr (Murton, 2012). These domains are characterized by high levels 

of H3K9Me2 and the association of the HP1 homologue, Swi6. Abo1 is also enriched 

over these regions suggesting that it is directly involved in heterochromatin 

maintenance, furthermore Swi6 has been identified as a physical interacting partner for 

Abo1 (Motamedi et al., 2008), although, in this study this was not addressed. However, 

deletion of swi6+ had no effect on Abo1-GFP localization at the dh repeats nor the imr 

regions. Quantification of H3K9me2 levels by ChIP-qPCR in wild type and abo1Δ cells 

also showed no significant alterations. The fact that H3K9me2 levels were not reduced 

in abo1Δ cells correlates well with findings from collaborators which suggest that Swi6 

levels remain normal and with previous findings from our group which show that Swi6 

localization is also normal in abo1∆ cells (Murton, 2012). On the other hand, histone 

H3 levels at these regions are decreased in abo1Δ cells and nucleosome mapping 

revealed marked changes in some nucleosomes over these regions, suggesting that loss 

of abo1+ leads to changes in nucleosome occupancy, which apparently is enough to 

cause loss of silencing, despite an increase in H3K9me2 levels and a normal distribution 

of Swi6. It could be useful to determine whether there is a global change in histone 

H3K9 methylation in abo1Δ cells, and also in other histone modification marks. A 
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further connection with respect to heterochromatin maintenance is that FACT has also 

been demonstrated to maintain heterochromatin fidelity. Loss of pob3+ alleviates gene 

silencing at the pericentromeric repeats and at the silent mating-type locus, but not at 

telomeres (Lejeune et al., 2007), similarly to what has been observed in abo1∆ cells. 

Therefore, it is possible that Abo1 functions alongside FACT in heterochromatin 

maintenance too; although based on our ChIP assays it is unlikely to be through FACT 

recruitment of Abo1.  

 

 

3.3.4 Further possible roles to address for Abo1 

 

While this study has largely been focused on the global nucleosome architecture of 

abo1∆ cells, a future direction could be to address its capacity for histone binding and 

exchange. Due to time constraints, it was not possible to measure histone turnover in 

abo1∆ cells, nor was it possible to appropriately asses the relative abundance of all 

histone species in the absence of abo1+. While, it seems likely that total histone H3 and 

H2A levels are decreased in abo1∆ cells, it is not clear whether histone H4, H2B and 

H2A.Z behave the same. Interestingly, previous work carried out in tissue culture found 

that depletion of ATAD2 led to an increase of histone H2A turnover (Caron et al., 2010).  

Although highly speculative, it is possible that a reduction in H2A levels would lead to 

an increase in the histone H2A variant H2A.Z to assemble H2A.Z-H2B dimers, and 

consequently nucleosomes. Therefore loss of ATAD2, and perhaps Abo1, might also 

affect the ratio between H2A and H2A.Z. What is quite fascinating with respect to this 

connection is that H2A.Z is primarily found in the promoter regions and in the +1 

nucleosome of genes and that H2B-H2A.Z containing nucleosomes tend to be loosely 

bound and less stable, impeding Pol II progression to a lesser degree than H2B-H2A 

containing nucleosomes (Weber et al., 2014). Therefore, it might be possible that an 

over accumulation of H2A.Z, in the absence of H2A, would lead to similar nucleosome 

arrays as seen in an abo1∆ mutant, of course this is only speculation. With respect to 

this an increase in H2A.Z could also lead to its mis-incorporation, as in the case in the 

S. cerevisiae ino80∆ mutant, which was found to have spurious incorporation of H2A.Z-

H2B dimers, leading to genomic instability (Papamichos-Chronakis et al., 2011). 

Preliminary mass spectrometry data has indicated that Abo1 physically interacts not 

only with histones H3-H4 but also with H2A, H2B and H2A.Z, as well as with a 

number of H2A interacting factors. Therefore, another avenue of investigation could be 
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the connection between Abo1 and regulation of H2A-H2A.Z levels.  

 

Finally, another connection between Yta7 and H2A.Z comes from evidence in S. 

cerevisiae, which has suggested that Yta7, along with H2A.Z (Wan et al., 2009) and 

Spt16, is required for the induction of inducible genes, indeed Yta7 enriches at the 5’ 

end of these genes (Lombardi et al., 2011). In agreement with these findings, loss of 

abo1+ affects the ability of stress response genes ctt1+, gpx1+ and hsp9+ to become fully 

induced following heat stress (A. J. Whale, personal communications). And so, there are 

several possible roles for Abo1 in chromatin maintenance and the work for the future 

will have to involve teasing out the direct versus indirect consequences of abo1+ loss.  
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Chapter 4 

Global chromatin organization and DNA damage repair by the HIRA 

histone chaperone in S. pombe 

4.1 Introduction 

 

HIRA has previously been implicated in genome-wide chromatin maintenance through 

a role in replication-independent nucleosome assembly. However, its precise 

contribution to nucleosome organization is yet to be determined. Previous work has 

revealed that the absence of functional HIRA results in increased cryptic antisense 

transcription, loss of silencing at heterochromatic regions, and a decrease in viability 

following exposure to a range of DNA damaging agents (Anderson et al., 2009). These 

results are consistent with a general role for HIRA in chromatin maintenance, and also 

suggest that this histone chaperone plays a role in the response to DNA damage. 

Therefore the aim of the work described in this chapter was firstly to determine the 

impact of HIRA upon global chromatin organization, and secondly to characterize the 

role of the HIRA complex in the response to DNA damage.  
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4.2 Role for the HIRA complex in global nucleosome organization  

4.2.1 MNase-seq analysis shows a reduction in nucleosome occupancy in hip1∆ cells 

 

As discussed previously, the HIRA histone chaperone in S. pombe comprises of four 

subunits, (Hip1, Slm9, Hip3 and Hip4) and loss of any of them leads to inactivation of 

the HIRA complex (Blackwell et al., 2004; Greenall et al., 2006; Anderson et al., 2009; 

Anderson et al., 2010). Therefore, all subsequent work was carried out using a hip1∆ 

mutant strain. In order to characterize the contribution of HIRA to nucleosome 

organization genome-wide, the previously described MNase sequencing technology was 

implemented (Section 3.2.1). Three biological replicates from hip1∆ cells, containing 

mono-, di-, and trinucleosomes (Fig 4.1.A), were pooled and sequenced, resulting in 

49.6 million aligned paired-end reads. The data was stratified and particles size selected 

as described previously (Section 3.2.1) and compared to the wild type dataset (Fig 

4.1.B). The average distribution of mononucleosome reads was mapped in both the wild 

type and hip1∆ samples (Fig 4.1.C). Both wild type and hip1∆ mononucleosome reads 

resolved into a periodic pattern with an average repeat length of 156 bp. However hip1∆ 

cells presented with slight changes to nucleosome peak heights similarly to that 

observed in abo1∆ cells (Section 3.2.1), suggesting that some aspect of global 

nucleosome organization is disrupted.  
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Figure 4.1 Frequency distribution of MNase-seq generated chromatin species. 
(A) Ethidiumbromide-stained agarose gels of DNA pools extracted from MNase 
digested wild type and hip1∆ chromatin used for chromatin sequencing in this study. 
Below the 500 bp mark are the mono-, di- and tri-nucleosome bands for each set. (B) 
Frequency distribution of paired read end-to-end size values after MNase-seq of DNA 
shown in figure A. (C) Frequency distributions of mid-point nucleosome positions 
following MNase-seq of wild type and hip1∆ cells.  
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4.2.2 HIRA is necessary for nucleosome organization over the ORFs of protein 

coding genes 

 

Nucleosome organization of wild type and hip1∆ cells was determined over protein 

coding regions as described previously (Section 3.2.2). The average nucleosome 

profiles of wild type and hip1∆ cells were similar over the NDR and the promoter 

region but not over the ORF. hip1∆ cells presented with a reduction in peak height over 

the ORF, particularly toward the 3’ end of genes (+4 nucleosome onwards). Overall, 

these findings suggest that HIRA is involved in appropriate nucleosome organization 

only over the ORF of protein coding regions (Fig 4.2.A), particularly towards the 

transcription termination sites (TTS). In agreement with a role for HIRA in nucleosome 

maintenance over coding regions, Hip1-GFP is readily enriched at the act1+ ORF (Fig 

4.2.B).  

 

The finding that HIRA is required for proper nucleosome organization over ORFs is 

consistent with the finding that HIRA suppresses cryptic antisense transcription from 

within the 3’ end of genes (Anderson et al., 2009). To further investigate this, 

nucleosome profiles over some genes where antisense transcription is known to take 

place were compared (Anderson et al., 2009). A widespread perturbation in nucleosome 

architecture was observed over the gene body of the hrp1+ locus, which extended into 

neighboring regions, including atg12+ (Fig 4.3.A). In order to confirm some of the 

differences in the nucleosome profiles observed in Fig 4.3.A, mononucleosomal DNA 

was isolated from independent pools of MNase digests and a previously described 

quantitative PCR (MNase-qPCR) approach was used to compare the occupancy of some 

specific nucleosomes in the wild type (Infante et al., 2012). The area amplified overlaps 

the center of the peak generated by MNase-seq and the location and name of the 

amplified regions is indicated in Figure 4.3.A. Using two regions, one within the hrp1+ 

gene and one over atg12+, it was possible to independently verify that these nucleosome 

peaks are reproducibly decreased in hip1∆ cells (Fig 4.3.B).  
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Figure 4.2 Loss of hip1+ leads to a drop in mononucleosome occupancy over coding 
regions, particularly towards the 3’ end of genes. 
(A) Mononucleosomal fragments (150 bp) following MNase-seq for 4013 protein-
coding genes were aligned by their transcription start sites (TSSs) as identified by 
Lantermann et al. (2009). (B) ChIP-qPCR analysis of Hip1-GFP enrichment over the 
act1+ loci.  
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Figure 4.3 Loss of hip1+ results in perturbations of mononucleosomes over the 
hrp1+ locus. 
(A) Alignment of mononucleosomes (150 bp) following MNase-seq over the hrp1+ loci 
for wild type and hip1∆ cells (B) qPCR validation of the sequencing data. 
Mononucleosomes were excised from an agarose gel and qPCR was implemented to 
measure sequence reads over the indicated loci from Figure (A). Genomic DNA was 
included as a control. Data is the mean of three technical repeats for a biological 
replicate to the sequenced dataset. Error bars represent ± STDEV.  
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At other genes the influence of hip1+ deletion was much more subtle; however 

reductions in the occupancy of some nucleosomes were detectable at the 3’ end of 

genes, such as dbp7+ (Fig 4.4.A). Once again, MNase-qPCR was implemented to 

measure in an independent biological replicate the relative mononucleosomal DNA over 

the indicated peaks in Figure 4.4.A. In this case, two peaks were picked for qPCR 

analysis, one where no change was suggested by the initial MNase-seq generated map 

and one where a decrease was expected in hip1∆ cells compared to the wild type. 

Indeed the MNase-qPCR results suggest that the amount of DNA was very similar over 

the dbp7_10 region, while a severe reduction in amplification was observed over the 

dbp7_1927 region (Fig 4.4.B). Overall, these findings suggest that relatively subtle 

perturbations of nucleosome occupancy towards the 3’ can be sufficient to allow cryptic 

antisense transcription. These findings are also consistent with other evidence which 

suggests that HIRA functions to restore chromatin that has been disrupted by RNA Pol 

II elongation.   
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Figure 4.4 Loss of hip1+ results in perturbations to mononucleosomes over the 
dbp7+ locus. 
(A) Alignment of mononucleosomes (150 bp) following MNase-seq over the dbp7+ loci 
for wild type and hip1∆ cells (B) qPCR validation of the sequencing data. 
Mononucleosomes were excised from an agarose gel and qPCR was implemented to 
measure sequence reads over the indicated loci from Figures (A). Genomic DNA was 
included as a control. Data are the mean of three technical repeats for a biological 
replicate to the sequenced dataset. Error bars represent ± STDEV.  
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4.2.3 Chromatin structure of HIRA-repressed genes   
 
At a global level HIRA does not appear to influence promoter chromatin (Fig 4.2.A). 

However, previous microarray analysis has identified numerous Pol II genes that are 

repressed by HIRA (Anderson et al., 2009). To analyze their chromatin structure, 

mononucleosome maps of 106 protein coding genes that are at least two-fold up-

regulated in the absence of hip1+ were compared to the complete gene set (4013 protein 

coding genes). HIRA-regulated genes are often transcribed at low levels (Anderson et 

al., 2009) and accordingly, their average nucleosome map presented with a shallow 

NDR and poorly defined nucleosomal peaks (Fig 4.5.A). The average peak of these 

genes is also low, suggesting that HIRA regulated genes are generally associated with 

low nucleosome occupancy. This again is characteristic of poorly expressed/silenced 

genes (Lantermann et al., 2009). Next, wild type and hip1∆ nucleosomal maps were 

compared for HIRA-regulated genes, and in the absence of hip1+, the height of the 

nucleosome peak over the promoter is also reduced (Fig 4.5.B). A reduction in the +1 

nucleosome peak was also evident, suggesting that HIRA is more likely to be involved 

in the maintenance of occupancy of the +1 and -1 nucleosomes at these specific loci.  
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Figure 4.5 Nucleosomal arrays over HIRA-dependent genes are less distinctly 
organized. 
(A) Comparison of MNase-seq generated mononucleosome maps over all 4013 protein-
coding genes aligned by their TSSs, as identified by Lantermann et al. (2009) and of 
HIRA-dependent genes, as identified by previous microarray data analysis (Anderson et 
al., 2009). (B) Alignment of mononucleosomes of HIRA-dependent genes by their TSSs 
in wild type and hip1∆ cells.   

133 
 



4.2.4 Influence of HIRA on the hht2+-hhf2+ promoter 

 

HIRA is known to regulate the transcription of histone genes, as examination of a 

synchronous population shows that histone gene expression is upregulated in hip1∆ 

cells outside of S phase (Blackwell et al., 2004; Takayama and Takahashi, 2007). S. 

pombe has three copies of H3-H4 gene pairs but HIRA mediated repression is thought 

to operate predominantly through hht2+-hhf2+ (Takayama and Takahashi, 2007). 

Therefore nucleosome organization over the region of the hht2+-hhf2+ gene pair was 

compared. In hip1∆ cells a reduction in the nucleosome peak is observed over the 

promoter region, which is where key transcriptional regulators, Ams2 and Teb1 bind 

(Fig 4.6.A) (Takayama and Takahashi, 2007; Valente et al., 2013). MNase-qPCR was 

used to measure in an independent biological replicate the mononucleosome levels over 

this peak, and in agreement with the MNase-seq data, this too indicates that there is a 

reduction in nucleosome occupancy over the promoter region in hip1∆ cells compared 

to the wild type (Fig 4.6.B). It is possible that HIRA regulates nucleosome assembly 

over the promoter sequence of hht2+-hhf2+ which is most likely unstable so that during 

S-phase it can be removed, allowing Teb1 binding, which in turn recruits Ams2, leading 

to an increase of histone gene transcription (Takayama and Takahashi, 2007; Valente et 

al., 2013). In the absence of hip1+ this nucleosome is more likely to be absent, allowing 

for constitutive Teb1 binding and leading to an increase in histone gene transcription.  
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Figure 4.6 Nucleosomes are depleted over the promoter region of the hht2+-hhf2+ 
histone gene pair.  
(A) Comparison of MNase-seq generated mononucleosome maps over the coding 
regions of hht2+ and hhf2+ (histone H3.2-H4.2) gene pair in wild type and hip1∆ cells. 
(B) qPCR validation of the sequencing data. Mononucleosomes were excised from an 
agarose gel and qPCR was implemented to measure sequence reads over the indicated 
loci from Figure (A). Genomic DNA was included as a control. Data are the mean of 
two technical repeats for a biological replicate to the sequenced dataset. Error bars 
represent ± STDEV.  
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4.2.5 Loss of hip1+ results in a drop in histone H3 protein levels 

 

Although histone H3 transcription is derepressed in hip1∆ cells (Blackwell et al. 2004), 

the MNase mapping studies suggest a global decrease in nucleosome occupancy. 

Therefore, the impact of hip1+ deletion on histone H3 levels was determined by western 

blotting (Fig 4.7.A). Histone H3 protein levels were significantly reduced in hip1∆ 

cells, supporting the proposed role of HIRA in histone H3-H4 placement onto the 

chromatin. Not surprisingly, loss of hip1+ has also affected histone H2A levels, but 

rather than a decrease a small but significant increase was observed (Fig 4.7.A). It is 

therefore plausible that some of the phenotypes of hip1∆ cells are a result of histone 

protein imbalance. However, due to time constrains this was not pursued further. Since, 

hip1∆ cells have lower nucleosome occupancy and a reduction in histone H3 protein 

levels it could be predicted that they would be sensitive to further reductions in histone 

H3-H4 dosage. Indeed, deletion of the histone H3.2-H4.2 gene pair, hht2+-hhf2+, along 

with hip1+ leads to a slight reduction in fitness. hht2∆ hhf2∆ hip1∆ cells present with an 

increased sensitivity to the spindle poison thiabendazole (Fig 4.7.B).  

Since HIRA appears to play a role in establishing or maintaining appropriate occupancy 

of nucleosomal sites, another prediction could be that the loss of nucleosome 

positioning in conjunction with the loss of hip1+ would lead to the worsening of 

phenotypes. S. pombe contains two ATP-dependent remodelers of the CHD family, 

Hrp1 and Hrp3, which are responsible for nucleosome spacing and upon deletion of 

both the clearly defined nucleosome arrays over the ORFs are lost (Hennig et al., 2012; 

Pointner et al., 2012; Shim et al., 2012; Touat‐Todeschini et al., 2012). Indeed, the 

combination of deletions of hip1+ and hrp3+ led to extremely slow growing cells, with 

severely abnormal cell morphology (Fig 4.8.A and B).  
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Figure 4.7 Histone H3 protein levels, but not H2A are significantly decreased in 
hip1∆ cells.  
(A) Histone H3 and H2A protein levels were measured in TCA extracted whole cell 
lysates by western blotting. Histone protein levels were normalized to tubulin and fold 
change shown is of hip1∆ cells relative to the wild type. Data are the mean of at least 
three independent replicates, error bars represent ± SEM (* denotes p< 0.05; ** denotes 
p<0.001) (B) Spot tests onto YE5S plates + the indicated damaging agent (12.5 µg/ml 
TBZ, 0.005% MMS, 150 J/m2 UV) of 5-fold serial diluted midlog phase growing cells. 
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Figure 4.8 Loss of both hip1+ and hrp3+ results in synthetic growth defects and 
severely abnormal cell morphology.  
(A) Spot tests of midlog phase growing cells at 30˚C onto YE5S plates following a 5-
fold serial dilution. Plates were further incubated at 30˚C for 3 nights. (B) Cells were 
grown to mid-log phase in YE5S medium at 30˚C then DIC, DAPI and merged images 
were taken using a Zeiss Axiovert microscope under the 100x oil-immersion lens.  
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4.2.6 Loss of HIRA function has a minor effect on pericentromeric heterochromatin 

 

Previously published work demonstrated that HIRA is involved in the silencing of the 

pericentromeric repeats (Blackwell et al., 2004; Greenall et al., 2006; Anderson et al., 

2009; Anderson et al., 2010). Comparison of nucleosome organization over the 

pericentromeric repeats has demonstrated only subtle alterations (Fig 4.9.A). However, 

the reductions and gains in occupancy appear to be specific. An independent pool of 

triplicate MNase digests were used for MNase-qPCR and it was possible to confirm 

some of the changes seen in the mapping data (Fig 4.9.B). This was also the case by 

carrying out histone H3 ChIP-qPCR, which, as expected,  over the indicated region of 

the dh repeat (Fig 4.9.A) did not show any differences between the wild type and the 

hip1∆ mutant (Fig 4.9.C). Hence it appears that loss of HIRA affects only a subset of 

nucleosomes rather than leading to a widespread reduction in nucleosome occupancy. 

However, HIRA does interact with these regions, as demonstrated by the enrichment of 

Hip1-GFP over the dh repeats compared to the untagged control (Fig 4.9.D).  
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Figure 4.9 Minor changes to chromatin are seen around heterochromatic regions 
in hip1∆ cells.   
(A) MNase-seq generated mononucleosome maps of wild type and hip1∆ cells over the 
left outer repeat of centromere 1. (B) qPCR validation of the sequencing data. 
Mononucleosomes were excised from an agarose gel and qPCR was implemented to 
measure sequence reads over the indicated loci from Figure (A). Genomic DNA was 
included as a control. Data are the mean of two technical repeats for a biological 
replicate to the sequenced dataset. Error bars represent ± STDEV. (C) Histone H3 
ChIP-qPCR analysis of wild type and hip1∆ cells over the dh repeats in exponentially 
growing cells. (D) Hip1-GFP ChIP-qPCR analysis of midlog phase cells over the dh 
repeats. 
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4.2.7 Loss of hip1+ leads to a reduction in nucleosome occupancy over Tf2 LTR 
retrotransposons 
 

It has previously been demonstrated that components of the HIRA complex are also 

required for silencing of Tf2 retrotransposons (Greenall et al., 2006; Anderson et al., 

2009). Comparison of mononucleosome maps over the Tf2 long terminal repeat 

retrotransposons in wild type and hip1∆ cells revealed a modest drop in peak height 

over the UTR and the coding regions in hip1∆ cells suggesting that HIRA-mediated 

histone deposition occurs in these regions too (Fig 4.10.A). Once again, MNase-qPCR 

was used to confirm the drop in nucleosome occupancy over the indicated region, and 

once more it was possible to show that the reduction is reproducible using an 

independently generated set of mononucleosomal DNA (Fig 4.10.B).  

In addition, a single mononucleosome peak is visible over the solo LTRs in the S. 

pombe genome, which is also reduced upon loss of hip1+ (Fig 4.10.C), implying that 

HIRA contributes to nucleosome assembly both at retrotransposons and at their 

remnants.  
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Figure 4.10 Perturbations to nucleosomes are visible over Tf2 retrotransposons 
and solo LTRs in hip1∆ cells. 
(A) Mononucleosomal particles (150 bp) following MNase-seq were aligned over the 
13 full length S. pombe Tf2 elements by their ATG site as described in pombase. (B) 
qPCR validation of the sequencing data. Mononucleosomes were excised from an 
agarose gel and qPCR was used to measure sequence reads over the indicated loci from 
Figure (A). Genomic DNA was included as a control. Data are the mean of two 
technical repeats. Error bars represent ± STDEV. (C) Mononucleosomal particles (150 
bp) generated by MNase-seq were aligned over 95 solo LTRs identified in the S. pombe 
genome by their start sites as described previously (Bowen et al. 2003).  
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4.2.8 The MNase maps of regions transcribed by Pol I and Pol III are not affected by 

loss of hip1+ 

 

Other regions of the genome were also inspected to determine whether HIRA is 

required for chromatin maintenance at loci outside of Pol II transcriptional control. 

tRNA genes are transcribed by Pol III and so 171 S. pombe tRNA genes were aligned 

by their TSS and mononucleosome maps were compared between wild type and hip1∆ 

cells. In S. pombe tRNA genes are characterized by a prominent upstream nucleosome 

(centred at -160), another peak over the NDR, a nucleosomal peak over the gene and a 

disorganized array downstream of the transcription termination site (TTS). This 

structure is different from S. cerevisiae where, two well positioned nucleosomes are 

visible both upstream and downstream of the TSS (Kumar and Bhargava, 2013).  There 

were no dramatic changes to tRNA MNase peaks in the hip1∆ mutant compared to the 

wild type (Fig 4.11.A). The internal promoter regions of tRNA genes are bound by 

TFIIIC which in itself is unstable but can recruit TFIIIB to create a stably bound 

complex to tRNA promoter regions (Hamada et al., 2001). Therefore, it is possible that 

the prominent peak upstream of the TSS results from TFIIIB binding with TFIIIC 

downstream of it. In order to explore this possibility the 75 bp size classes were aligned 

over the same region. This group should include reads generated by transcription factors 

stably binding DNA rather than nucleosomes (Kent et al., 2011). Comparison of the 75 

bp particles showed a single prominent peak over the NDR, which was present at 

similar levels in both wild type and hip1∆ mutant samples (Fig 4.11.B), therefore it 

looks like HIRA does not play a role in nucleosome organization over Pol III loci.  

Next rDNA repeat sequences were compared to determine whether Pol I transcribed 

regions are affected by loss of hip1+. rDNA repeats are characterized by apparently 

nucleosome depleted regions over ribosomal RNA genes with well-organized 

nucleosomes in-between (Fig 4.12.A). Similarly to nucleosomes over tRNA genes, 

rDNA repeats were not obviously affected by deletion of hip1+, suggesting that HIRA 

function is not required at these regions.  

Finally, replication origins were compared between wild type and hip1Δ cells, as 

described in Section 3.2.9. Deletion of hip1+ has no effect upon nucleosome 

organization over replication origins (Fig 4.12.B), which is consistent with HIRA being 

a replication-independent histone chaperone.  
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Figure 4.11 No changes to mononucleosomes over the tRNA genes in hip1∆ cells 
(A) Mononucleosomes (150 bp) generated by MNase-seq were aligned over 171 S. 
pombe tRNA genes in wild type and hip1∆ cells. tRNA gene is illustrated by a blue box, 
the NDR with a green box, while the upstream (US) nucleosome is highlighted by a red 
box. (B) TFIIIB at tRNA genes in wild type and hip1∆ cells (75 bp particles).  
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Figure 4.12 No changes to mononucleosomes over rDNA genes and replication 
origins in hip1∆ cells 
(A) View of the complete rDNA repeat sequence using the Integrated Genome Browser 
(IGB). (B) Mononucleosomal particles (150 bp) following MNase-seq were aligned 
over 217 replication origins either by their AT islands or by binding sites of the pre-
replication complex as described by (Givens et al., 2012). 
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4.3 Role for the HIRA complex in DNA damage response 

4.3.1 HIRA function is required for appropriate DNA damage response 
 
Previous work has indicated that the HIRA complex is required for resistance to DNA 

damaging agents (Anderson et al., 2009). Moreover, the genomic DNA of hip1∆ cells 

has higher levels of DNA strand breaks following bleomycin treatment (Anderson et al., 

2009). However, it has not been shown whether HIRA through its role in chromatin 

organization, simply shields the DNA from damaging agents or also plays a role in the 

DNA damage response (DDR). In order to address this, a strain expressing Hip1 fused 

to a hormone binding domain (HBD) was constructed (Boe et al., 2008). In the absence 

of the hormone β-estradiol, Hip1-HBD is sequestered by Hsp90, however upon addition 

of β-estradiol into the medium Hsp90 releases Hip1-HBD, thus leading to rapid 

induction of HIRA function (Fig 4.13.A) (Boe et al., 2008). Utilizing this conditional 

allele, it was possible to determine whether the role of the HIRA complex is primarily 

in protecting from DNA damage (protection) or is also required for the DNA damage 

repair processes (recovery). Midlog phase wild type, hip1Δ, and hip1-HBD cells were 

treated with 0.01% of the alkylating agent methyl methanosulfonate (MMS), which 

induces double strand breaks (DSBs) for 40 minutes either in the presence or absence of 

β-estradiol, following which 5-fold serial dilutions onto YE5S plates +/- β-estradiol 

were carried out and the results analyzed (Fig 4.13.B). As expected, the ability of hip1Δ 

cells to form visible colonies following MMS treatment was severely compromised. 

hip1-HBD cells behaved like hip1Δ cells when β-estradiol was not present in the media 

and also when β-estradiol was supplemented only during MMS treatment but not during 

recovery. In contrast, when β-estradiol was present only on the YE5S plates (i.e. during 

recovery from DNA damage), hip1-HBD cells had comparable growth to wild type 

cells. Overall, these results suggest that HIRA function is not simply required to protect 

the cells from DNA damage, but is also important to allow recovery from DNA 

damage.  
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Figure 4.13 Conditional hip1-HBD strain demonstrates that HIRA is required for 
recovery during the DNA damage response (DDR) 
(A) Hip1 is fused to a ß-estradiol responsive hormone-binding domain (HBD), which in 
the absence of ß-estradiol forms a complex with heat-shock protein 90 (Hsp90), which 
leads to the inactivation of Hip1 by steric hindrance. Addition of ß-estradiol leads to the 
displacement of Hsp90, thus to reactivation of the tagged Hip1 protein. Adapted from 
(Boe et al., 2008). (B) Cultures were grown to midlog phase in the absence or presence 
of ß-estradiol as indicated.  Each culture was then treated with 0.01% MMS for 40 
minutes following which cells were 5-fold serial diluted and spotted onto YE5S plates 
either in the absence or presence of ß-estradiol. Plates were incubated for 3 nights at 
30˚C.  
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4.3.2 HIRA is required for efficient repair of broken chromosomes 

 

To further characterize the role of HIRA in the repair of DSBs, pulsed field gel 

electrophoresis (PFGE) was employed to visualize the repair of broken chromosomes. 

Chromosomal DNA was prepared at various time points after MMS treatment to follow 

chromosome repair. Both wild type and hip1∆ cells were able to repair their 

chromosomes, although in hip1∆ cells repair was delayed. Indeed, even following 24 

hours of damage induction hip1∆ cells harboured unrepaired chromosomes (Figure 

4.14.A). In order to check that the difference between wild type and hip1∆ cells was not 

simply due to the number of cells surviving MMS treatment, total cell number was 

measured during the experiment. Importantly, after 8 hours similar numbers of cells 

were present in the wild type and hip1∆ cultures (Fig 4.14.B). Therefore, the delay in 

repair observed in hip1∆ cells is unlikely to be simply due to reduced viability.  
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Figure 4.14 hip1∆ cells are severely delayed in repairing their chromosomes 
following DNA damage.  
(A) Cultures were grown to midlog phase at 30˚C in YE5S, were treated with 0.01% 
MMS for 40 minutes then chromosomal DNA integrity was analyzed by pulse-field gel 
electrophoresis (PFGE) at the indicated times. Data shown are representative of three 
independent biological replicates. (B) Measurements of total cell number for the 
experiment shown in Fig A.  
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4.3.3 Negative genetic interactions between hip1∆ and components of the HR repair 
pathway  
 
Homologous recombination (HR) mediated repair is a conserved DSB repair pathway 

and is the preferred choice of repair for S. pombe cells due to the fact that they spend the 

majority of the cell cycle in G2 (Ferreira and Cooper, 2004). A list of HR components 

and their homologues in both S. cerevisiae and in human are listed in Table 4.1, while a 

basic overview of the steps of HR and the respective proteins catalysing them are 

depicted in Figure 4.15. HR is initiated by extensive resection of the 5′ end of the DSBs 

to generate a 3′ single-stranded DNA (ssDNA) overhang, which is recognized and 

bound by RPA. Rad51 binds to the ssDNA, creating a nucleofilament, and initiates 

strand invasion of the sister chromatid or homologous chromosome. Strand invasion 

initiates formation of a D-loop, within which DNA synthesis takes place, and DNA 

repair can either take place by synthesis-dependent strand annealing (SDSA) or through 

the formation of a Holliday Junction (HJ). In the event of SDSA, the invading strand is 

expelled and anneals to the broken chromosome end, and no cross-over occurs between 

the chromosomes. If repair takes place through formation of a HJ then the free 3’ end 

anneals to the D-loop, resulting in a double HJ (dHJ). The resulting dHJs can either be 

dissolved through the action of helicases, such as Rqh1 and Top3, resulting in non-

crossover product formation, or resolved by resolvases, such as Eme1 and Mus81, 

leading to the formation of either crossover or non-crossover products (Li and Heyer, 

2008).  
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Table 4.1 Components of homologous recombination (HR) repair pathway 
 
 S. pombe S. cerevisiae Humans 

Resection Mre11-Rad50-Nbs1 
(MRN Complex) 
Ctp1 
Exo1 
Rqh1 
Dna2 

Mre11-Rad50-Xrs2 
(MRX Complex) 
Sae2 
Exo1 
Sgs1 
Dna2 

MRE11-RAD50-NBS1 
(MRN Complex) 
CTP1 
EXO1 
BLM1 
DNA2 

ssDNA Binding RPA (lrg su Rad11) RPA (lrg su Rfa1) RPA (lrg su RPA70) 

Homologous 
pairing and 
strand exchange 

Rad51 
Rad52 
Rad54 
Rti1 
Rad55-Rad57 
(Rlp1, Rd11, Sws1) 
? 
Mnd1-Hop2 
Swi5-Sfr1 

Rad51 
Rad52 
Rad54 
Rad59 
Rad55-Rad57 
? 
Mnd1-Hop2 
Sea3-Mei5 

RAD51 
RAD52 
RAD54 
? 
RAD51B-RAD51C 
RAD51D-XRCC2 
BRCA2 
MND1-HOP2 
SWI5-MEI5 

Inhibition of 
Rad51 Filament 
Formation 

Fbh1 
Srs2 
 

? 
Srs2 

FBH1 
RTEL 

DNA Synthesis PCNA, Pol δ, Pol ε PCNA, Pol δ, Pol ε PCNA, Pol δ, Pol ε 

HJ Dissolution Rqh1-Top3 Sgs1-Top3 BLM-TOPIIIα 

HJ Resolution Mus81-Eme1 
? 
Slx1-4 

Mus81-Mms4 
YEN1 
Slx1-4 

MUS81-EME1 
GEN1 
SLX1-4 

Taken from (Deegan, 2012).   
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Figure 4.15 Schematic diagram of homologous recombination (HR) mediated 
repair.  
Schematic representation of homologous recombination mediated DNA damage repair 
in S. pombe. Following formation of a DSB, the DNA ends are resected to form 3’ 
ssDNA overhangs. This ssDNA is bound by RPA, followed by replacement with Rad51 
to form a nucleofilament. The nucleofilament invades the homologous DNA template 
and forms a D-loop. DNA synthesis is primed within the D-loop, by the invading strand. 
When repair proceeds by SDSA, the invading strand in expelled from the homologous 
duplex DNA and re-anneals to the second end of the break, resulting in a non-crossover 
product. If repair proceeds by DSBR, the second end of the break anneals to the D-loop 
forming a double Holliday junction (dHJ). This can either be dissolved through the 
action of helicases resulting in non-crossover product formation, or resolved by 
resolvases resulting in the formation of either crossover or non-crossover products. 
Taken from (Lorenz and Whitby, 2006).  
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In order to assay whether HIRA plays a role in HR the hip1Δ allele was combined with 

mutations in genes involved in HR. Single hip1∆, rad50∆, exo1∆ and rad51∆ mutants 

along with hip1∆rad50∆, hip1∆exo1∆, and hip1∆rad51∆ double mutants were exposed 

to a range of DNA damaging agents (UV, MMS, bleocin) following growth to mid log 

phase. UV induced DNA damage causes the formation of pyrimidine dimers, which 

lead to distortion of the DNA structure impeding transcription and replication. Bleocin 

is a radiomimetic, which similarly to ionizing radiation, causes DNA DSBs. In 

agreement with previous reports, loss of resection components exo1+ and rad50+ leads 

to mild DNA damage sensitivities, while deletion of rad51+ leads to high sensitivity 

even at very low doses of DNA damaging agents. However, loss of exo1+, rad50+ and 

rad51+ all exacerbated the hip1Δ phenotype (Fig 4.16). In fact, generating a hip1Δ 

rad51Δ double mutant was particularly challenging; the cells were severely elongated, 

slow growing and a large portion of the population inviable. That the phenotypes of HR 

deficient mutants are exacerbated by hip1+ deletion suggests that HIRA function is 

separate from, or at least not restricted to, HR-mediated DSB repair.  
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Figure 4.16 Genetic analysis of hip1∆ cells with components of the homologous 
recombination repair pathway.  
Cells were grown in liquid YE5S to mid-log phase at 30˚C then undergone 5-fold serial 
dilutions and were spotted onto YE5S plates with the indicated DNA damaging agents 
at the indicated concentrations. Plates were incubated at 30˚C for 3 nights.   
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4.3.4 Negative genetic interactions between hip1∆ and components of the NHEJ 

repair pathway 

 

The genetic interactions between hip1∆ and components of the HR pathway suggest a 

role for HIRA in DNA damage repair by non-homologues end-joining (NHEJ). In S. 

pombe NHEJ is predominantly restricted to the G1/G0 phases of the cell cycle (Mochida 

and Yanagida, 2006). NHEJ is activated by binding of the Ku proteins, Ku70-Ku80 

heterodimers, to sites of DNA DSBs, thereby protecting DNA ends from resection. The 

localization of Ku dimers facilitates processing of DNA ends and subsequent ligation by 

the Ligase 4 (Lig4), Xlf1 and XRCC4 complex. A basic representation of NHEJ in S. 

pombe is depicted in Figure 4.17.  

 

The ability of hip1Δ cells to complete NHEJ was measured next. Cultures were grown 

to mid-log phase then starved for nitrogen for 24 hours. This causes cells to round up 

and arrest with 1C DNA content. In this state S. pombe cells are dependent upon NHEJ 

for DSB repair (Ferreira and Cooper, 2004).  Following the arrest cells were treated 

with UV, as described previously (Mochida and Yanagida, 2006), and their ability to 

mediate chromosome repair was observed by PFGE. DNA damage repair takes longer 

when cells are in this G0 state, agreeing with previous findings (Mochida and Yanagida, 

2006), but wild type cells restored their chromosomes within 24 hours, while hip1Δ 

cells did not (Fig. 4.18.A). This suggests that HIRA is important for efficient NHEJ. 

Next, a plasmid rejoining approach was also implemented to measure NHEJ efficiency 

(Barbet et al., 1992; Pai et al., 2014). In this assay a plasmid carrying the S. cerevisiae 

LEU2 marker gene is linearized by restriction digestion as described in Section 2.5.5. 

Logarithmically growing cells are then transformed with either the linearized or the 

uncut plasmid and the NHEJ frequency determined by calculating the percentage of leu+ 

colonies arising from cells transformed with the linear plasmid over those transformed 

with the uncut plasmid (Fig 4.18.B). A control for this assay was the lig4Δ strain, which 

is unable to complete NHEJ. Percentage re-joining was calculated in wild type, hip1Δ, 

and lig4Δ cells. hip1Δ cells had only about 30-40% re-joining efficiency of wild type 

cells suggesting a role in NHEJ. lig4Δ cells, as expected, had around 5-10% percentage 

re-joining of the wild type (Fig. 4.18.C).  

 

In order to further investigate the relationship between the NHEJ repair pathway and 

HIRA, the hip1∆ allele was combined with mutations in NHEJ genes. While NHEJ 
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mutants are not particularly sensitive to DNA damaging agents, combining the ku70Δ, 

ku80Δ, and lig4Δ mutants with the hip1Δ allele, led to the enhancement of hip1∆ DNA 

damage sensitivity (Fig. 4.19). This suggests that the function of HIRA is not restricted 

to the NHEJ repair pathway. Overall, these results indicate that HIRA is required for 

recovery from DSBs irrespective of whether the lesions are repaired by HR or NHEJ. 

Therefore it is possible that HIRA is common to both of these repair pathways, or that it 

acts independently of both and functions in checkpoint activation/maintenance or in 

chromatin assembly and/or disassembly around the damage sites. 
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Figure 4.17 Schematic representation of the non-homologous end-joining pathway 
in S. pombe cells. 
Ku70-Ku80 heterodimers bind break sites and retain chromosome ends in close 
proximity to each other. DNA ligase 4 and XRCC4, with the help of Xlf1, ligate the 
broken DNA ends together. Adapted from (Deegan, 2012).  
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Figure 4.18 hip1∆ cells are severely delayed in repairing their chromosomes using 
NHEJ following DNA damage.  
(A) Quiescent cells were treated with 150 J/m2 dose of UV then chromosomal DNA 
integrity was analyzed by PFGE at the indicated times. The image shown here is 
representative of two biological replicates. (B) Diagram of plasmid re-joining assay 
adapted from (Deegan, 2012). A LEU2 containing plasmid was linearized with the 
EcoRI or PstI restriction enzymes. Midlog phase cells were transformed with either 1 
µg of uncut control plasmid or the linearized plasmid. NHEJ frequency was calculated 
as the percentage of leu+ colonies arising from cells transformed with linear plasmids 
over those transformed with the undigested DNA. (C) NHEJ assay was performed and 
percentages of leu+ colonies were calculated as described in Section 2.5.5. Data are the 
meant of at least 5 independent biological replicates and error bars represent ± SEM (* 
denotes p< 0.05; ** denotes p<0.001).  
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Figure 4.19 Genetic analysis of hip1∆ cells with components of the non-homologous 
end-joining pathway. 
Cells were grown in liquid YE5S to mid-log phase at 30˚C then undergone 5-fold serial 
dilutions and were spotted onto YE5S plates with the indicated DNA damaging agents 
at the indicated concentrations. Plates were incubated at 30˚C for 3 nights.  
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4.3.5 Genetic interactions between hip1∆ and the checkpoint pathways 
 
Previous work has shown that the DNA damage checkpoint pathway is important in 

cells in which the Asf1 histone chaperone is defective (Sharp et al., 2005). As HIRA 

interacts with Asf1, the interaction between HIRA and the checkpoint pathways was 

explored. The major checkpoint pathways in S. pombe are illustrated in Figure 4.20.A. 

Upon DNA double strand breaks (DSBs) and replication fork collapse, Rad17 helps to 

recruit the 9-1-1 complex, composed of Rad9, Rad1, and Hus1, to sites of DNA strand 

breaks. Two phosphatidylinositol 3′ kinase-like kinases, Tel1 and Rad3, also localize to 

these sites. The recruitment of Rad3 is thought to be through its interaction with Rad26 

and is essential for triggering checkpoint arrest. Rad3 (ATR) is the central sensor 

kinase, which leads to the phosphorylation of the effector kinases, Chk1 and Cds1. 

Chk1 activation is mediated by the protein kinase Crb2 upon DNA damage, while Cds1 

phosphorylation depends on Mrc1 in response to replication stress (Harrison and Haber, 

2006). There is however some redundancy between Chk1 and Cds1, as in the absence of 

Chk1, Cds1 becomes phosphorylated in response to DNA damage and vice versa; Chk1 

becomes activated upon replication stress in the absence of Cds1 (Boddy et al., 1998; 

Zeng et al., 1998; Froget et al., 2008). Phosphorylation of either Chk1 or Cds1 leads to 

the phosphorylation of Cdc25, which results in the binding of Rad24, a 14-3-3 protein, 

involved in the nuclear export of Cdc25. Removal of Cdc25 stops Cdc2 from becoming 

active and leads to a G2-phase cell cycle arrest (Rhind and Russell, 2000). Furthermore, 

both can phosphorylate Mik1, which is most likely necessary for extended cell cycle 

arrest (Baber-Furnari et al., 2000). Since HIRA appears to play a role in DDR, genetic 

interactions between hip1∆ and multiple components of the checkpoint pathways were 

assayed by constructing double mutant strains and performing sensitivity assays. Spot 

tests were carried out on plates containing either hydroxyurea (HU), which causes 

replication stress, or containing the DNA damaging agent MMS. While the phenotypes 

of the hip1Δcds1Δ and hip1Δchk1Δ strains were reminiscent of the hip1Δ single 

mutant, 1oss of rad3+ was additive with loss of hip1+. hip1Δ rad3Δ cells were 

particularly slow growing and sensitive to both MMS and HU (Fig 4.20.B). Therefore, 

loss of HIRA exacerbates some problems associated with an impaired checkpoint 

pathway.  
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Figure 4.20 Genetic analysis of hip1∆ cells with components of the DNA damage 
checkpoint pathway. 
(A) Diagram of the DNA damage checkpoint pathways in S. pombe. Adapted from 
(Deegan, 2012) (B) Cells were grown in liquid YE5S to mid-log phase at 30˚C then 
undergone 5-fold serial dilutions and were spotted onto YE5S plates with the indicated 
agents at the indicated concentrations. Plates were incubated at 30˚C for 3 nights.  
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Since hip1∆ cells display some sensitivity to DNA damaging agents that are similar to 

those of checkpoint mutants, and since the loss of checkpoints reduces the fitness of 

hip1∆ cells, checkpoint activation was next investigated. In response to DNA damage, 

Chk1 is phosphorylated by Rad3, which leads to the inhibition of cell cycle progression. 

Chk1 phosphorylation was measured by western blotting following MMS induced DNA 

damage. Both wild type and hip1∆ cells were able to phosphorylate Chk1 following 

MMS treatment, thus HIRA is not required for DNA damage checkpoint activation 

(Fig. 4.21.A). However, it was still possible that the phosphorelay is compromised 

downstream, and so a downstream target of Rad3 was also investigated. Yox1 has 

previously been shown to regulate MBF-dependent genes and is phosphorylated in 

response to DNA damage, which is dependent on Rad3 and Cds1 (Purtill et al., 2011). 

Deletion of hip1∆ had no effect on Yox1 phosphorylation, confirming that the DNA 

damage checkpoint response is efficient in the absence of HIRA (Fig. 4.21.B). 
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Figure 4.21 Checkpoints are triggered at comparable times in hip1∆ and wild type 
cells. 
(A) Mid-log phase cultures at 30˚C growing in YE5S were treated with 0.01% MMS for 
40 minutes then pellets were collected at the indicated times for protein extractions. 
Chk1-HA was detected using α HA antibody. Western blots presented above are 
representative of three biological replicates. (B) Cells were treated as described above. 
Following western blotting Yox1-PK was detected using α PK antibody. rad3∆ cells 
were included as a control. Data presented above are representative of two biological 
replicates.  
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4.3.6 Checkpoint release is comparable between wild type and hip1∆ cells 

 

Since HIRA function is not required for checkpoint activation, its role in checkpoint 

maintenance and release was investigated next. Release from the checkpoint was 

monitored in wild type, hip1∆ and rad3∆ cells. Cells were treated with a low dose of 

UV, in order to avoid cell death, and septation was monitored for up to 3 hours at 15 

minute intervals. Previous work has shown that wild type cells stop dividing following 

30 minutes and remain arrested for up to 2-3 hours (Wang et al., 1999). On the other 

hand rad3∆ cells do not arrest and level of septated cells in the population doesn’t drop. 

It was possible to see a clear reduction in septation index in both wild type and hip1∆ 

cells following 60 minutes which lasted for ~120-150 minutes. In contrast rad3∆ cells 

did not arrest (Fig 4.22). Therefore, the kinetics of checkpoint trigger and release appear 

to be highly similar in wild type and hip1∆ cells. Given that hip1∆ cells appear to repair 

DNA more slowly than wild type, it is possible that cells lacking HIRA are released 

from the checkpoint arrest without completing DNA repair.  
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Figure 4.22 Cell cycle arrest is of comparable length between hip1∆ and wild type 
cells. 
Midlog phase growing cultures were treated with a 100 J/m2 UV dose, following which 
septation index was determined as the proportion of calcofluor white stained septa 
within cells over the total number of cells. This value was then normalized to the 
untreated samples. Data are the mean of three independent biological repeats and error 
bars represent ± SEM.  
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4.4 Discussion 

 

The findings described in this chapter demonstrate that the HIRA complex plays a role 

in the maintenance of nucleosome occupancy, particularly towards the 3’ ends of genes, 

thereby in agreement with a possible role in nucleosome re-assembly coupled to 

transcription. In addition, the role HIRA plays during DNA damage was explored, and 

findings presented in this chapter hint at a role in chromatin re-establishment following 

DNA damage repair too.  

 

 

4.4.1 Global impact of HIRA upon nucleosome architecture  

 

Here a high resolution sequencing methodology was implemented to assess the impact 

of HIRA on global chromatin architecture. It was demonstrated, in agreement with 

previous findings, that HIRA plays a role in nucleosome maintenance in both 

euchromatic and heterochromatic regions. Cells lacking the hip1+ subunit of the HIRA 

complex have reduced histone H3 protein levels and a global reduction in nucleosome 

occupancy. Unexpectedly, given the phenotype of HIRA mutants the mapping did not 

reveal drastic changes to nucleosome organization; rather a decrease in occupancy was 

visible towards the 3’ end of ORFs. HIRA, in S. pombe at least, is likely to be required 

for nucleosome re-assembly over transcribed regions but is unlikely to play a role in 

determining the sites of occupancy, which is consistent with the mapping data. 

Interestingly, of all remodeler and histone chaperone mutants whose nucleosomes have 

been mapped in the past, none were found to alter the position of the +1 or +2 

nucleosomes hinting at the biological importance of these sites.  

As discussed in Section 1.5.2 and summarized in Figure 1.11, the overwhelming 

majority of nucleosomes do not get disassembled during transcription; however it is 

important to remember that a small proportion do. An estimated 10% of nucleosomes 

get completely disassembled during transcription, independently of replication, of 

which 5% get turned over independently of both transcription and replication (Jackson, 

1990). In light of this, it is perhaps less surprising that the impact of HIRA on 

transcriptionally active sites is relatively little. It is still worth to keep in mind, that 

HIRA could facilitate the re-assembly of nucleosomes in the 5-10% of the population 

where disassembly does take place.  
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4.4.1.1 HIRA exerts its function through organizing the 3’ end of genes 

 

Consistent with the suggestions that HIRA plays a role in nucleosome maintenance are 

previous reports, which have demonstrated an overall more “open” genome in HIRA 

mutants (Anderson et al., 2009). The data presented here suggests that HIRA is 

responsible primarily for nucleosome organization over the ORF, following the +5 

nucleosome onwards, which corresponds to approximately 700 bp and downstream in 

the gene. Given that the average gene in S. pombe is between 1,407–1,446 bp in length 

(Wood et al., 2002), HIRA exerts its function primarily in the middle to the 3’ end of 

genes. This observation also fits with data demonstrating that cells lacking HIRA 

present with increased cryptic antisense transcription, a phenotype associated with 

failure to re-assemble nucleosomes (Anderson et al., 2009; Yamane et al., 2011). Thus, 

the genome wide mapping of hip1∆ cells presented here adds further evidence to the 

notion that HIRA functions during transcription elongation. It would be possible to 

implement ChIP-seq and measure HIRA levels at genic regions, as it would be 

interesting to determine whether there is an enrichment of HIRA over the 3’ end of 

genes relative to the 5’. It would also be possible to measure the transcript levels 

towards the 5’ and the 3’ end of genes in hip1∆ cells to determine whether there is any 

particular dependency on HIRA towards the 3’, as our data suggests.  

 

 

4.4.1.2 Possible role for HIRA, Set2 and CHD remodelers in preventing cryptic 

transcription through repressing histone trans exchange over the 3’ end of genes 

 

Histone trans exchange is the process of replacing nucleosomal ‘parental’ histones with 

histones from the free pool. This process is thought to be limited during transcription, as 

an increase in new histone incorporation would lead to loss of paternal PTMs that are 

associated with specific modifications, and could result in disturbances to chromatin 

structure (Li et al., 2007; Das and Tyler, 2013). There has been some evidence from S. 

cerevisiae that promoter regions and the surrounding nucleosomes undergo high 

turnover, whereby histones from the free pool get incorporated (termed H3 trans 

exchange), which is facilitated by Asf1, not HIRA (Rufiange et al., 2007). It might be 

possible that this feature is conserved in S. pombe and the nucleosomes closest to the 

NDR are reliant on Asf1 (and possibly another histone chaperone, like Rtt106) for 
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assembly. This would also suggest, and agree with a lot of previous findings, that the 

major role of HIRA during transcription in S. pombe is through the re-assembly or 

maintenance of parental nucleosomes over the bodies of genes. With regards to this 

point, several groups have now illustrated that H3 trans exchange is dependent on 

transcription, whereby an increase in H3 trans exchange is more likely to occur over 

highly transcribed regions (Dion et al., 2007; Rufiange et al., 2007). If HIRA played a 

role in H3 trans exchange during transcription than one would expect more of a 

disruption over highly transcribed regions compared to all others. However, if the role 

of HIRA during transcription is generally restricted to re-assembly of old nucleosomes 

over the gene bodies, than the effect of loss of HIRA would be no worse than observed 

over all TSS. Indeed, the latter is true, there is no more of a reduction in nucleosome 

occupancy over the top 10% highly transcribed genes as defined by (Marguerat et al., 

2012), than already observed over all TSS (Fig 4.23) (if anything there is less of an 

effect). I would rather propose that HIRA plays a role in the prevention of histone trans 

exchange, either directly or indirectly.  

Interestingly, in co-operation with HIRA, Chd1 has also been implicated in the 

assembly of H3.3 containing nucleosomes in a replication-independent manner in 

Drosophila (Radman-Livaja et al., 2012). In addition, there have been numerous 

implications that the S. cerevisiae Chd1 protein also functions in the suppression of 

cryptic transcripts, in addition to or through, its nucleosome spacing activity; the 

mechanism is currently unknown (Pointner et al., 2012; Radman-Livaja et al., 2012). It 

has been demonstrated however that it’s involved in suppressing histone trans exchange 

during Pol II elongation, and that this appears to be through Set2 mediated 

trimethylation of H3K36, which recruits Chd1 (Smolle et al., 2012). Set2 is essential for 

the methylation of H3K36, which in turn is necessary for appropriate function of the 

Rpd3S histone deacetylase complex, S. pombe Clr6, which is required to maintain 

nucleosomes in a hypoacetylated state following Pol II progression. In the absence of 

Set2, methylation of H3K36 is lost, nucleosomes become hyperacetylated, chromatin 

organization becomes disrupted, leading to the accumulation of cryptic transcripts 

(Smolle et al., 2012). Loss of CHD1 led to an overall redistribution of nucleosomes 

towards the 5’ end of genes, suggesting that normally Chd1 plays a role in maintenance 

of nucleosomes towards the 3’ end (Smolle et al., 2012). Also, Set2 was demonstrated 

to exert its function in preventing cryptic transcription primarily over lowly expressed 

long genes (Li et al., 2007). This suggests that Chd1 and Set2, similarly to HIRA, 
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primarily function to maintain nucleosome organization towards the 3’ end of genes, at 

least in budding yeast. If Set2 and Chd1 function in the prevention of histone trans 

exchange, through H3K36 methylation, and HIRA functions in the re-assembly of 

paternal nucleosomes, than deletion of either set2+ or one of the CHD1 homologues, 

hrp1+ or hrp3+, alongside hip1+ would be expected to exacerbate the HIRA phenotypes. 

Indeed, double mutants of both hrp3∆hip1∆ and set2∆hip1∆ (Figure 4.8 and 4.23.C) 

were considerably less fit than either of the single mutants, suggesting that Set2 and 

Hrp3 become central when HIRA is not functional. Also, while deletion of set2+ 

exacerbated the growth defect of hip1∆ cells in rich media, loss of gcn5+, which 

acetylates H3K36, has previously been suggested to improve it (Roguev et al., 2008). 

Indeed, in the absence of DNA damaging agents, hip1∆gcn5∆ cells behaved the same as 

either of the single mutants (data not shown). It would be interesting to confirm this by 

measuring cryptic transcripts, in the double mutants and compare them to the respective 

singles. However, it is difficult to say to what extent the increase in cryptic transcription 

is responsible for the reduction of cellular fitness that has been observed in the double 

mutants. It is possible that loss of both HIRA and Hrp3 activity affects a region outside 

of the 3’ end of genes, as mentioned in Section 4.2.5. It could therefore be informative 

to determine whether the double mutants present with any pronounced defects in the 

nucleosome ladders generated by MNase digestions. However, it is possible that either 

directly or indirectly HIRA prevents histone trans exchange.  
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Figure 4.23 HIRA functions towards the 3’ end of genes.  
(A) Mononucleosomal fragments (150 bp) following MNase-seq for 4013 protein-
coding genes were aligned by their transcription start sites (TSSs) (Lantermann et al., 
2009). (B) Mononucleosomal fragments (150 bp) following MNase-seq for top 10% 
highly expressed protein-coding genes were aligned by their transcription start sites 
(TSSs) (Lantermann et al., 2009; Marguerat et al., 2012). (C) Spot tests of the indicated 
strains were carried out following 5-fold serial dilutions of cells grown in YE5S to 
exponential phase. Plates were incubated for a further 3 nights at 30˚C.  
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4.4.1.3 Possible nucleosome re-assembly role of HIRA independent to its function in 

transcriptional regulation  

 

Also, worth noting, that previous work on the histone chaperone Spt6 has demonstrated 

that its role in nucleosome assembly over the bodies of genes is independent of its role 

in transcription regulation at promoters. That is, loss of SPT6 though altered the 

nucleosome maps generated over the bodies of genes, did not correlate with steady state 

transcriptional increases (Ivanovska et al., 2011). Rather, transcriptional changes were a 

result of the effect of Spt6 over specific promoter regions and/or the +1 nucleosome 

(Ivanovska et al., 2011). This once again, is what has been observed upon loss of HIRA 

function. While on the global scale it wasn’t possible to detect any changes to the -1 

nucleosome, the NDR, and the +1 nucleosome, we did see them in a subset of genes that 

are transcriptionally upregulated in HIRA mutants, as previously demonstrated by 

microarray analysis (Blackwell et al., 2004; Anderson et al., 2009). Thus, HIRA 

function in promoter remodelling and therefore regulating transcription, is distinct from 

its role in nucleosome remodelling throughout transcription elongation. Both of these 

roles have been characterized independently in the past, but here is an actual read-out 

provided for the structural differences, supporting this notion.       
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4.4.2. HIRA is required for appropriate DNA damage repair  

 

At the start of this study, there was little evidence linking the HIRA complex to DNA 

damage repair directly. However, there have been numerous reports demonstrating a 

role for the CAF-1 histone chaperone in appropriate restoration of chromatin following 

DNA damage repair (Gaillard et al., 1996). Subsequently to DNA damage induction, 

nucleosomes are evicted from the chromatin, possibly to allow repair proteins to sites of 

damage (Berkovich et al., 2007; Ikura et al., 2007). While eviction of nucleosomes is 

important in appropriate repair, replacement of the displaced nucleosomes is equally 

imperative for proper resumption of transcription. Studies carried out both in vitro and 

in vivo have demonstrated that following DNA damage repair, a higher than usual 

proportion of newly synthesized histones get incorporated into the nucleosomes 

compared to the parental histones (Polo et al., 2006). As expected therefore the 

incorporation of newly synthesized histones is dependent on the histone chaperone 

CAF-1. In CAF-1 knockdown cells in vivo, H3.1 deposition is lost, while checkpoint 

activation, transcription of repair factors and DNA double strand break repair 

completion are appropriate. Hence, the function of CAF-1 is following DNA damage 

repair completion, in re-establishing the chromatin environment (Polo et al., 2006).  

 

During the course of this study, it has been demonstrated that indeed HIRA also 

functions in DNA damage repair in mammalian cells (Polo, 2014). HIRA was shown to 

function independently of the repair machinery, and was demonstrated to be necessary 

for transcription restart following UVC damage (Adam et al., 2013). The study revealed 

that HIRA localizes to sites of UVC irradiation along with CAF-1, but not ASF1, NAP 

and DAXX (Adam et al., 2013). Furthermore, in addition to histone H3.1, H3.3 is also 

deposited at sites of DNA DSBs, an action that is carried out principally by HIRA.  

 

Similarly to the results obtained from studies in tissue culture, the work presented here 

suggests a role for HIRA in the DNA damage response independently of DNA damage 

repair and checkpoint activation. In hip1∆ cells both checkpoint activation, as 

demonstrated by Chk1 phosphorylation, and repair of chromosomal DNA, as measured 

by PFGE, has taken place, albeit restoration of chromosomes with slower kinetics. It is 

possible that the HIRA complex in yeast is also required for appropriate disassembly of 

nucleosomes following DNA damage, thus allowing rapid access to repair proteins. It 

would be possible to address this issue by measuring the recruitment of repair proteins 

172 
 



following DNA damage induction. A rapidly inducible system is now available in S. 

pombe, which could help facilitate future work on the subject (Pai et al., 2014).  

 

It is also possible that HIRA is required for the transcription of repair genes, similarly to 

its role in transcriptional activation of stress-response genes (Chujo et al., 2012). To 

address this point, it would be possible to measure transcript levels of repair genes 

known to be induced upon DNA damage repair, either by microarray analysis or by 

qRT-PCR. However, genetic analysis of hip1∆ with a range of repair mutants would 

suggest that it isn’t a failure to induce these genes that’s required from HIRA in repair. 

hip1∆ in combination with all mutants tested, including checkpoint, was significantly 

more sensitive to a range of DNA damaging agents than any of the single mutants, 

which isn’t necessarily what would be expected if HIRA is required for the transcription 

of these genes.       

 

Based on the results obtained throughout this study, as well as the recently published 

data on the role of HIRA in the DDR pathway, it is rather likely that the function of 

HIRA is through its role in nucleosome assembly (Fig 4.24). In order to confirm this, 

the association of Hip1 to sites of damage could be assayed by ChIP to establish its 

pattern of localization. Histone H3 could also be measured following repair completion 

in wild type and hip1∆ cells, which would help to determine whether nucleosomes have 

been replaced properly in hip1∆ cells.  
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Figure 4.24 Role of histone chaperones in histone dynamics in response to DNA 
damage. Nucleosome disorganization after DNA damage is followed by nucleosome re-
assembly with de novo histone deposition and potential recycling of displaced histones. 
FACT, ASF1 and Nucleolin have so far been demonstrated to promote histone exchange 
and histone eviction while de novo deposition following repair completion is thought to 
be mediated by CAF-1 and HIRA. ASF1 is possibly involved in recycling old histones 
and presenting them to CAF-1 and HIRA for deposition, although this mechanism 
remains unclear. Adapted from (Polo, 2014).  
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Chapter 5 

Maintenance of Quiescence by the HIRA Complex in S. pombe 
 

5.1 Introduction  

 
5.1.1 Cellular Quiescence vs. Senescence 
 

Cells that have exited the cell cycle into G0 may exist in one of two alternative states, 

quiescence or senescence. The difference between these states is not always obvious, 

and often is inadequately defined. However, there is one essential difference, which is 

that the cell cycle arrest is reversible in quiescent cells while it is not in senescent cells 

(Heinrichs, 2008; Blagosklonny, 2011; van Deursen, 2014). When referring to the G0 

phase, quiescence is possibly the more appropriate term, as the majority of cells in 

complex multicellular organisms are believed to be quiescent rather than senescent 

(Heinrichs, 2008; Blagosklonny, 2011; van Deursen, 2014). Figure 5.1 shows a 

simplified diagram of the differences between proliferating, quiescent and senescent 

cells. In tissue culture, quiescence can occur as a result of serum, growth factor or 

nutrient withdrawal, and the arrest takes place in the absence of growth promoting 

pathways (Demidenko and Blagosklonny, 2008). On the contrary, senescence appears to 

take place in the presence of growth stimulation, for example an active mTOR pathway, 

coupled with cell cycle arrest for example through the activity of cyclin dependent 

kinase inhibitors (CDKIs) (Dulić et al., 1993; Wong and Riabowol, 1996; Demidenko 

and Blagosklonny, 2008). Two of the most common CDKIs upregulated in senescent 

cells are p21 and p16 (Campisi, 2001; Braig and Schmitt, 2006). Fibroblasts or retinal 

pigment epithelial cells which have been arrested by serum starvation are quiescent as 

they can be stimulated to re-enter the cell cycle by inactivation of p21. In contrast, 

inactivation of p21 does not stimulate cell cycle re-entry for these cells if they have 

been arrested in the presence of serum. In this case these cells are senescent 

(Demidenko and Blagosklonny, 2008). Also it has been shown that cell cultures arrested 

by ectopic overexpression of p21 are quiescent for the initial 3-4 days of arrest 

(reversible) but become senescent following that (irreversible arrest), a transition which 

has been measured by proliferative potential (PP) (Chang et al., 2000; Demidenko et al., 

2009). Overall, there are clear biochemical differences between quiescent and senescent 

cells, some of which include the hyperactivation of proliferation promoting genes plus 

genes responsible for cell cycle arrest in senescent cells, while proliferation promoting 
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genes are down regulated during quiescence (Campisi and d'Adda di Fagagna, 2007; 

Blagosklonny, 2011). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5.1 Schematic of proliferating vs. quiescent vs. senescent cells. 
(A) Proliferating cells respond to serum and growth factors to induce mTOR and other 
proliferation promoting genes that lead to cell division. (B) Removal of serum/growth 
factors alongside inhibition of the TOR pathway leads to quiescence. (C) In the 
presence of serum and growth factors, as well as an active TOR pathway and cyclin 
dependent kinase inhibitors cells undergo senescence. Adapted from (Blagosklonny, 
2011).  
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5.1.2 Roles of Cellular Quiescence  

 

Quiescence is extremely important in complex multicellular organisms. In humans for 

instance, the majority of cells are in a quiescent state, i.e. some fibroblasts, 

lymphocytes, stem and satellite cells (Blagosklonny, 2011; Sousa-Victor et al., 2014). 

Some further cell types are in a state termed locked/deep quiescence, which involves the 

silencing of proliferation promoting genes alongside active CDKIs (Blagosklonny, 

2011). Some of the cell types in this category include adipocytes, neurons and 

cardiomyocytes (Blagosklonny, 2011; Lin et al., 2012). Perhaps the most important 

group of cells on the list above are stem cells. Stem cells are undifferentiated, long-lived 

cells with the capability to produce differentiated/tissue specific daughter cells (Cheung 

and Rando, 2013). They are important for tissue regeneration in response to tissue 

damage, and loss of stem cells is associated with aging phenotypes, including muscle 

deterioration and immunosenescence (Fulop et al., 2014; Sousa-Victor et al., 2014). 

Stem cells are often quiescent for prolonged periods (Cheung and Rando, 2013) and 

loss of quiescence results in stem cell depletion, which compromises tissue 

regeneration, leading to aging. At the cellular level, aging, or cellular senescence, can be 

triggered as a result of a number of factors, including an increase in DNA damage, 

dysfunctional telomeres, decreased mitochondrial function, strong mitogenic signals or 

changes in chromatin structure (Di Leonardo et al., 1994; Ogryzko et al., 1996; Serrano 

et al., 1997; Herbig et al., 2004; Campisi and d'Adda di Fagagna, 2007; Benson et al., 

2009). As a result, distinguishing senescent and quiescent cells is essential. There has 

been work carried out on characterizing the transcriptome of different quiescent cell 

types (Blanpain et al., 2004; Fukada et al., 2007; Forsberg et al., 2010; Martynoga et 

al., 2013), as well as epigenetic analysis (Martynoga et al., 2013) and while a global 

view is useful, there is still a limited understanding of the molecular mechanisms, 

particularly of individual factors, that play a role in the process of quiescence and its 

maintenance.  

 

Quiescence is also believed to play a role in tumour development (Wells et al., 2013). It 

is well known that pathogenic proliferation leads to tumorigenesis; however what is less 

well understood is the role quiescence plays during cancerous transformations. 

Following metastatic dissemination, metastatic dormancy, which is thought to be a 

quiescent state, allows cancerous deposits to lie undetected for years after the primary 

tumours have been removed. These cells maintain the capacity to proliferate, often 
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leading to further malignancies and death (Wells et al., 2013). It will therefore be 

important to determine the molecular differences between ‘healthy’ quiescent cells and 

those of a ‘cancerous’ nature. With that in mind, it is essential to understand the 

molecular mechanisms regulating quiescence entry, maintenance and exit, in order to 

fully understand tumorigenesis and to begin the pursuit of differentiating cancerous 

quiescent cells from healthy ones.  

 

 

5.1.3 Quiescence in S. pombe  

 

As outlined above, quiescence is crucial for the success of complex organisms. It has 

been highly conserved throughout evolution and plays a key role in not only protecting 

cells from uncontrollable cell growth, but in unicellular eukaryotes it aids cell survival 

during harsh environmental conditions, such as nutrient limitation. This is not dissimilar 

to cultured mammalian cells, whereby serum withdrawal leads to cellular quiescence 

(Nilausen and Green, 1965; Larsson et al., 1985; Gos et al., 2005). Therefore, the 

molecular basis of quiescence can be investigated in single celled organisms and indeed 

they have been exploited due to the ease of genetic manipulation over the years (Roux 

et al., 2010).  

 

The yeast, Schizosaccharomyces pombe provides a good model as it shares key 

pathways with higher eukaryotes, including humans. G0 quiescent states in S. pombe can 

be triggered by several methods, most commonly by carbon or nitrogen exhaustion. S. 

pombe cells respond in different ways to nitrogen depletion. If cells of the opposite 

mating type are available then a program of sexual development can be triggered 

(conjugation, meiosis, and sporulation) (Masayuki et al., 1997). Alternatively, if only 

one mating type is present, S. pombe cells can enter a G0 quiescent phase during which 

cell growth stops, allowing an alternate mechanism for cell survival under 

environmental duress (Su et al., 1996). Nitrogen starved cells enter the G0 phase with 

1C DNA content from G1 phase of the cell cycle post two rounds of cell division 

(Figure 5.2) (Su et al., 1996; Sajiki et al., 2009). These G0 cells can remain viable for 

weeks to months, similarly to mammalian cells (Su et al., 1996). They are round in 

shape and are smaller than actively dividing cells (Su et al., 1996). Furthermore, they 

have some of the key features of G0 quiescent cells including a reduction in cell size, 

chromosomes that are in a pre-replicative state, down regulation of protein synthesis to 
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a low maintenance mode and diminished ribosome biogenesis (Su et al., 1996; 

Shimanuki et al., 2007; Sajiki et al., 2009; Yanagida, 2009). In contrast to this, cells that 

exhaust their carbon supplies during batch culture growth, enter a G0 state (often called 

stationary phase) with a 2C DNA content. These cells are elongated rather than round 

and unlike nitrogen starved G0 cells do not retain viability for extended periods 

(Yanagida, 2009; Roux et al., 2010). Nonetheless, this approach has been used as a 

system for the study of chronological aging (Roux et al., 2010).  

Nitrogen starved G0 cells, have been studied to determine the behaviours and changes of 

gene expression that occur in quiescence. Some of the molecular changes that happen 

during early stages of quiescence entry include a major remodelling of the nucleosomes 

in order to allow differential transcription to take place (Kristell et al., 2010). It has also 

been shown that the sub nuclear position of specific regions is remodelled (Kristell et 

al., 2010).  

 

 
Figure 5.2 Schematic of the vegetative cell cycle and G0 arrest upon nitrogen 
removal in S. pombe 
S. pombe cells enter the quiescent phase with 1C DNA content from G1 phase of the cell 
cycle post two rounds of cell division, during which cell size is dramatically reduced. 
Upon replenishment of nitrogen in the media, cells elongate and re-enter the cell cycle 
following 8-12 hours. Adapted from (Yanagida, 2009).  

179 
 



Microarray analysis has also been employed to define the relative changes to gene 

expression. Genes associated with cell cycle progression; growth and proliferation are 

down regulated while genes that provide resistance against stress, those involved in 

autophagy and nitrogen recycling are relatively transcriptionally induced (Shimanuki et 

al., 2007). Notably, genes involved in ribosome biogenesis are almost instantaneously 

silenced following nitrogen removal, concurrently genes involved in pyrimidine salvage 

and nucleotide catabolic processes are up-regulated (Shimanuki et al., 2007). More 

recent work has measured the absolute transcript and protein levels in proliferating and 

quiescent cells, and has found that the entire transcriptome and proteome shrinks 

(Marguerat et al., 2012). Thus genes that appeared to be upregulated in quiescence are 

simply just less down regulated than the majority of genes (Marguerat et al., 2012).  

In mammalian quiescent cells nucleosome remodelling at specific sites takes place 

(Coisy et al., 2004), along with a significant increase in the repressive histone 

H4K20me2 and H4K20me3 marks (Evertts et al., 2013). Considering the changes to 

chromatin that take place during quiescence entry, and which will therefore have to be 

reversed during exit, it is reasonable to consider that histone chaperones may play a role 

in these processes. Indeed, the HIRA complex, in addition to regulating nucleosome 

density and recovery following DNA damage repair, has also been associated with 

senescence in higher eukaryotes (Zhang et al., 2005; Ye et al., 2007; Zhang et al., 

2007b), including humans, while other studies have suggested a requirement for the 

HIRA complex in quiescence (G0) following nitrogen starvation (Kanoh and Russell, 

2000; Blackwell et al., 2004; Mizuki et al., 2011). However, this remains largely 

unexplored and therefore, the aim of the work presented in this chapter was to 

determine the role of the HIRA complex in G0 cells.  
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5.2 Results 
5.2.1 Loss of HIRA function leads to diminished viability of S. pombe cells following 

G0 arrest 

To induce quiescence, cells were grown in minimal medium (EMM) until OD595 ~0.3, 

washed three times in minimal medium lacking nitrogen (EMM-N) and resuspended in 

EMM-N. Cell viability was monitored by determining the ability of cells to grow on 

rich (YE5S) agar. Spot tests of 5-fold serial dilutions showed that deletion of any of the 

four HIRA subunits, hip1+, hip3+, hip4+ or slm9+ leads to a reduction in cell viability, 

which was particularly pronounced by 96 hours in quiescence (Fig 5.3.A). Given that 

wild type cells retain viability for months this is a striking defect.  

In order to determine whether wild type and hip1∆ cells arrest appropriately following 

nitrogen removal, FACS analysis was carried out. As expected, cycling cells presented 

with 2C DNA content but upon nitrogen depletion arrested with a clear 1C DNA peak. 

This was also the case in the hip1∆ mutant cells (Fig 5.3.B). Therefore, it appears that 

loss of hip1+ does not prevent proper cell cycle arrest in G0. Microscopic examination 

showed that both wild type and hip1∆ cells decreased in cell volume and ‘rounded up’ 

following removal of nitrogen from the media (Fig 5.4). hip1∆ mutants were slightly 

elongated compared to the wild type, as is the case in proliferating cells.  

Previous work has demonstrated that autophagy is a key process during nitrogen 

starvation; in fact autophagy is primarily responsible for providing the nitrogen source 

for cells during G0 (Kohda et al., 2007). Furthermore, components of the autophagy 

pathway have been shown to be sensitive to nitrogen starvation (Takeda and Yanagida, 

2010; Takeda et al., 2010). Therefore the possibility that autophagy is defective in 

hip1∆ cells was investigated. A method to measure autophagy has recently been 

implemented which utilizes an Atg8-GFP fusion protein: once nitrogen is removed from 

the media, Atg8-GFP gets conjugated to the autophagosomal membrane and the GFP 

molecule is cleaved via proteolysis (Mukaiyama et al., 2009). This cleavage leads to the 

release of free, and stable, GFP molecules that can be detected by immunochemical 

assays (Mukaiyama et al., 2009). Therefore, western blotting was employed to 

determine whether Atg8-GFP cleavage takes place appropriately in hip1∆ cells 

following G0 arrest. Wild type and hip1∆ cells presented with comparable levels of free 

GFP molecules following 24 hours in quiescence (Fig 5.5), suggesting that autophagy is 

not impaired in hip1∆ cells.  
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Figure 5.3 Cells lacking HIRA remain slightly elongated following nitrogen 
starvation induced quiescence.  
(A) The indicated strains were grown to midlog phase and then subjected to nitrogen 
starvation. At the indicated time points cells were subjected to five fold serial dilutions 
and then spotted onto YE5S. Plates were further incubated at 30˚C for 3 nights. (B) 
hip1∆ cells arrest with 1C DNA content FACS analysis of wild type and hip1∆ cells in 
midlog phase and following 24 hours in quiescence. Nuclear staining was carried out 
using Propidium iodide (PI). Data is representative of two independent biological 
repeats.  
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Figure 5.4 Cells lacking HIRA remain slightly elongated following nitrogen 
starvation induced quiescence.  
Midlog and nitrogen starved cells (24 hrs) were stained with DAPI then examined under 
the microscope. DIC, DAPI and merged images were taken using a Zeiss Axiovert 
microscope under the 100x oil-immersion lens.  
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Figure 5.5 Autophagy is induced appropriately upon nitrogen removal from the 
media.  
Atg8-GFP and free GFP levels were measured by western blotting at the indicated 
conditions. Data is representative of two independent biological repeats.  
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5.2.2 Cells lacking hip1+ attempt to re-enter the cell cycle following 24 hours in G0  
 

In order to provide a quantitative measure of viability as a function of time in G0, the 

ability of individual cells to form colonies when seeded onto rich agar plates was 

monitored. Over 80% of wild type cells formed visible colonies after 24 hours in G0 and 

as expected overall viability did not decline after 96 hours. On the other hand, only 

~40% of hip1∆ cells managed to form visible colonies following 24 hours in G0, a 

percentage which declined to near ~5% by 48 hours and to 0% by 96 hours (Fig 5.6.A). 

Cells that did not form visible colonies were subjected to microscopic analysis. These 

cells were categorized based on their morphology into three groups, ‘G0’, ‘elongated’ 

and those that have managed to form ‘microcolonies’ (Fig 5.6.B). This revealed that a 

further ~40% of non-viable hip1∆ cells following 24 hours in G0 have elongated upon 

nitrogen replenishment, and a further ~4% have formed microcolonies (Fig 5.6.B). 

These results suggest, that at least following 24 hours in quiescence, the majority of 

hip1∆ cells attempt to re-enter the vegetative cell cycle. In contrast, following 96 hours 

in quiescence hip1∆ cells overwhelmingly remain in a G0 state, suggesting that these 

cells have lost the ability to respond to environmental signals and do not attempt to re-

enter the cell cycle.  
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Figure 5.6 The majority of hip1∆ cells attempt to re-enter the cell cycle after 24 
hours in G0. 
(A) Individual cells were transferred onto YE5S plates during midlog phase and 
following 24 and 96 hours in quiescence. YE5S plates were incubated at 30˚C for 3-4 
days in order to allow the formation of visible colonies. Data is representative of four 
independent biological replicates. (B) Percentage viability of cells in (A) and 
classification of cells, based on morphology, that have failed to enter the vegetative cell 
cycle.  Data are the mean of four biological replicates. 
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In order to determine whether cells that have failed to re-enter the cell cycle were 

actually metabolically inactive (dead), Phloxine B staining was implemented. Phloxine 

B is a dye that stains cells pink/red when they are metabolically inactive/dead, and is 

commonly used to determine cell viability in yeast (Umeda et al., 2005). Surprisingly, 

microscopic analysis of cell viability as determined by Phloxine B staining, suggests 

that the overwhelming majority (89 %) of hip1∆ cells are metabolically viable even 

after 12 days in quiescence (Figure 5.7.A and B). Therefore, it appears that these cells 

have become prematurely senescent, rather than dead.  

 

Finally, for further confirmation that the immediate growth response to nitrogen 

replenishment is appropriate, cell length was measured in both wild type and hip1∆ 

cells following 24 hours in quiescence and following 8 hours of nitrogen re-feeding (Fig 

5.8.A and B). Wild type cells were similar in length to previously described 

observations (Shimanuki et al., 2007), while hip1∆ cells were slightly elongated both in 

G0 and in the vegetative cell cycle, agreeing with the previous observations (Blackwell 

et al., 2004). Significantly, like wild type, hip1∆ mutants enlarged following nitrogen 

replenishment (Fig 5.8.A and B). This is in agreement with the results described above 

and suggests that the initial response to nutrients is largely intact in hip1∆ cells 

following 24 hours in quiescence.  
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Figure 5.7 Phloxine B staining of hip1∆ cells indicates that the majority of these 
cells are viable even following 9 days in quiescence  
(A) Cells were grown to mid-log phase in EMM medium at 30˚C then were nitrogen 
depleted and further incubated in EMM-N media for the indicated times at 30˚C. Images 
were taken of DIC and of Phloxine B stained cells under the 60x oil immersion lens. (B) 
Cell viability was calculated based on Phloxine B staining.  
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Figure 5.8 Cells lacking HIRA increase in cell length in response to restoration of 
nitrogen. (A) Cells were grown to mid-log phase in EMM medium at 30˚C then were 
nitrogen depleted and further incubated for 24 hours at 30 ˚C, following which cells 
were washed and resuspended in YE5S. DIC, DAPI and merged images were taken at 
the indicated times using a Zeiss Axiovert microscope under the 100x oil-immersion 
lens. (B) Cell length in Figure A was measured using Zeiss Axiovision during 
quiescence and following 8 hours of nitrogen replenishment.  Error bars represent ± 
SEM.  
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5.2.3 Chromatin remains intact in cells lacking HIRA 

 

Based on the role of the HIRA complex in replication-independent histone chaperone 

activity, one possible hypothesis was that hip1∆ cells progressively lose nucleosomes as 

a result of transcription during quiescence, thus disrupting chromatin to a degree that 

renders large regions of the genome dysfunctional. This seemed like a reasonable 

possibility due to the fact that the replication-dependent chaperones, like Caf1, would 

no longer be able to reset the chromatin during replication. Interestingly, the defect in 

quiescence is specific to HIRA mutants, as none of the other histone chaperone mutants 

tested, including nap1∆, pcf2∆ (CAF subunit), and rtt106∆ were sensitive to nitrogen 

removal. Indeed, the only other chaperone mutant that was particularly sensitive was 

asf1-33. This is not surprising as Asf1 is known to act with the HIRA complex (Malay 

et al., 2008; Yamane et al., 2011). In order to address the status of the chromatin in 

hip1∆ cells, bulk chromatin DNA was MNase digested as described previously (Section 

2.5.3.1). Figure 5.9 shows that both wild type and hip1∆ cells presented with clear 

MNase generated nucleosome ladders, thus suggesting that the integrity of chromatin in 

hip1∆ cells is largely maintained, even after 96 hours in G0. It should be noted however 

that bulk DNA digestions do not rule out locus specific nucleosome alterations.  
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Figure 5.9 MNase digestions of wild type and hip1∆ cells following 24 and 96 hours 
in quiescence. 
(A) and (B) Chromatin from the indicated strains under the indicated conditions was 
treated with increasing concentrations of MNase. DNA was purified and samples were 
run on 1.5% TAE agarose gels. Data are representative of three biological repeats.  
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Previous work has shown that HIRA represses histone gene transcription outside of S 

phase, but total histone H3 protein levels are decreased during vegetative growth in 

hip1∆ cells (Section 4.2.5). However histone levels have not been investigated in hip1∆ 

cells during quiescence. Therefore qRT-PCR analysis was first applied to measure 

histone mRNA levels in hip1∆ cells following 24 hours in quiescence. All histone genes 

tested (H3, H4, H2A and H2B) showed an increase in transcript levels compared to the 

wild type (Fig 5.10.A.). Conversely, total histone H3 protein levels were slightly 

reduced in hip1∆ cells compared to the wild type (Fig 5.10.B). Due to time constraints 

H2A levels have not been measured in quiescent cells. However, overall there does not 

appear to be a stark decrease or alteration in histone protein levels, nor in chromatin 

integrity that could by itself warrant the severe phenotype associated with HIRA 

deficient cells in quiescence.  

 

Genetic analysis was also carried out between the hip1∆ allele and combinations of 

deletions of the histone H3-H4 gene pairs. hip1∆ and histone H3-H4 single and double 

mutants were compared to determine whether these mutants phenocopy the HIRA 

quiescence phenotype. Deletion of two histone H3-H4 gene pairs (either hht2∆ hhf2∆ 

hht1∆ hhf1∆ or hht2∆ hhf2∆ hht3∆ hhf3∆) did not result in a change in viability 

compared to the wild type in quiescence (Fig 5.11.A and B). In fact, the only time a 

clear reduction in viability was observed was when hht2+ and hhf2+ were deleted in 

combination with hip1+. These triple mutants had a significantly decreased life span 

compared to the hip1∆ single mutant or to the hht2∆ hhf2∆ double mutants (Fig 5.11.C). 

Thus simply reducing histone dosage does not phenocopy the G0 defect of HIRA 

mutants.  
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Figure 5.10 Histone gene transcription is upregulated, while histone H3 protein 
levels are reduced in hip1∆ cells compared to the wild type 
(A) qRT-PCR analysis of histone gene transcription in G0 hip1∆ cells. Data shown 
represents fold-change relative to the wild type. Data are the mean of three biological 
replicates and error bars represent ± SEM (*p<0.05; **p<0.01; ***p<0.001). (B) 
Western blot analysis of histone H3 protein levels in quiescent cells. Quantification of 
the blots is shown in the right hand panel and data represents fold-change relative to the 
wild type. Data are the mean of two biological replicates and error bars represent ± 
SEM (*p<0.05). 
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Figure 5.11 Deletion of histone gene pairs does not phenocopy the HIRA quiescence 
phenotype. (A) Spot tests of wild type and the indicated mutant cells during 
quiescence. 5-fold serial dilutions were carried out at the indicated times, cells were 
spotted onto YE5S plates and were further incubated at 30˚C for 3 nights. (B) Individual 
cells were transferred onto rich YE5S agar plates at the indicated times in quiescence. 
Plates were incubated at 30˚C until colonies were visible. The images are representative 
of three biological replicates. (C) Percentage viability of experiments in Figure B. Data 
are the mean of three biological replicates and error bars represent ± SEM.   

195 
 



5.2.4 Over 850 genes are mis-transcribed in hip1∆ cells during quiescence  

 

Microarray analysis was carried out in collaboration with Jürg Bähler’s group (UCL) to 

compare the transcriptome of wild type and hip1∆ samples following 24 hours in 

quiescence. Deletion of hip1+ leads to the upregulation of 598 genes compared to the 

wild type in G0. The genes that were upregulated in the absence of hip1+ are enriched 

for ‘unannotated’ gene ontology (GO) terms, with 284 in this category according to the 

Princeton GO term finder, with a p-value of 1.09e-293. Indeed these genes encode 

antisense transcripts and non-coding RNAs. Amongst the genes upregulated in the 

hip1∆ are the histone genes, including hta1+, htb1+ and hht2+ encoding histones H2A, 

H2B and H3 respectively, confirming the previous qRT-PCR results. Also upregulated 

are components of the RNAi pathway, including ago1+, dcr1+ and hrr1+, possibly as an 

adjustment to the increase in ncRNAs. Thus, similarly to midlog phase cells, HIRA is 

primarily required as a repressor of transcription (Kanoh and Russell, 2000; Blackwell 

et al., 2004; Greenall et al., 2006; Anderson et al., 2009; Anderson et al., 2010; Mizuki 

et al., 2011). However, 253 genes were at least two-fold down-regulated in the absence 

of hip1+. According to the Princeton GO term finder; these belong to 12 functional 

categories, with the majority of them unannotated, while the rest are primarily involved 

in pheromone sensing and conjugation. The GO terms significantly enriched according 

the GO term finder, in the two-fold down-regulated genes, are listed in Table 5.1. The 

full list of genes that are at least two fold up or down-regulated in hip1∆ cells compared 

to wild type can be viewed in appendix A. While a large number of genes are mis-

transcribed in the absence of hip1+ their relative contribution to the reduced viability 

seen in hip1∆ cells is not known. It is possible that the transcriptional changes observed 

here contribute to the reduced fitness of the hip1∆ mutant; however proliferating cells 

experience similar disruption to global transcriptome without compromised viability. 

Therefore it is unlikely that these changes to the transcriptome are responsible for the 

‘premature senescence’ that is seen in these cells.  
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Table 5.1. GO terms of genes that are at least 2 fold down-regulated in the absence 
of hip1+ relative to the wild type following 24 hours in quiescence  

Gene Ontology Term 
Number of 

Genes 
p-value 

Unannotated 52 3.99e-66 

Cellular response to pheromone 12 9.95-e06 

Pheromone-dependent signal conjugation with 

cellular fusion 

9 2.46e-05 

Response to pheromone 12 3.09e-05 

Signal transduction involved in conjugation 

with cellular fusion 

10 5.83e-05 

Response to pheromone involved in conjugation 

with cellular fusion 

10 0.00013 

Cell surface receptor signalling pathway 11 0.00022 

G-protein coupled receptor signalling pathway 10 0.00043 

Positive regulation of G-protein coupled 

receptor protein signalling pathway 

5 0.00096 

Positive regulation of signal transduction 

involved in conjugation with cellular fusion 

5 0.00096 

Positive regulation of pheromone-dependent 

signal transduction involved in conjugation with 

cellular fusion 

5 0.00096 

Cellular response to organic substance 13 0.00936 
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5.2.5 Restoring HIRA function during quiescence exit rescues cell viability 

 

The conditional hip1-HBD allele was once again utilized to address whether HIRA 

function is required at any particular stage during quiescence (entry, maintenance and/or 

exit). hip1-HBD cells were grown to midlog phase in EMM, nitrogen starved and plated 

onto YE5S agar at various time points as described previously. The presence of ß-

estradiol in the media was manipulated to control whether HIRA function was present 

or absent during proliferation, entry into G0, G0, and exit from quiescence. The addition 

of ß-estradiol after 96 hours in quiescence partially rescued the viability of hip1-HBD 

cells irrespective of whether HIRA function was present prior to that stage, suggesting 

that HIRA is important for successful re-entry into the vegetative cell cycle (Fig 5.12) 

hip1-HBD cells also re-entered the cell cycle similarly to wild type cells when HIRA 

function was active during quiescence and switched off during exit. These results 

therefore imply that HIRA is required for appropriate maintenance of quiescence, in 

addition to quiescence exit, but not for entry into quiescence, agreeing with previous 

observations. 
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Figure 5.12 Restoring HIRA function during quiescence exit rescues cell viability.  
The indicated strains were grown in EMM either in the presence or absence of ß-
estradiol, then were depleted for the nitrogen source and resuspended in EMM-N media 
with or without ß-estradiol. Cells were incubated at 30˚C for up to 96 hours during 
which five-fold serial dilutions and spot tests were carried out daily onto YE5S plates or 
YE5S plates supplemented with ß-estradiol. Plates were further incubated at 30˚C for 3 
days, until colonies were visible.   
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5.2.6 Increased DNA DSBs in hip1∆ cells during quiescence exit 

 

It has been shown that cells deleted for tdp1+, which encodes a tyrosyl-DNA 

phosphodiesterase, die in quiescence as a result of accumulation of DNA damage (Ben 

Hassine and Arcangioli, 2009). This manifests as elevated levels of DSBs during the 

first round of DNA replication. As cells lacking HIRA are sensitive to DNA damaging 

agents, and have been shown to have defects in repair during G0 (Section 4.3.4), the 

possibility that this might be the case in hip1∆ cells was addressed. In order to measure 

DSBs, Rad52 foci formation was monitored. Rad52 is involved in homologous 

recombination during HR-mediated repair. Here, a Rad52-YFP fusion protein was 

utilized and the numbers of cells with distinct Rad52-YFP foci were counted as the 

percentage of the total number of cells. Previous work has shown that in the absence of 

a functional Asf1 histone chaperone, Rad52 foci levels increase during midlog phase 

(Tanae et al., 2012). Therefore, Rad52-YFP foci level were measured during midlog, 

following 24 hours in G0 and again following 4 hours of nitrogen replenishment. 

Similarly to asf1-33 mutants, loss of hip1+ leads to an increase in Rad52-YFP levels, 

from ~11% to ~17%, a small but significant increase (Fig 5.13). Moreover, hip1∆ cells 

entered the G0 state with unrepaired DSBs as evident by the presence of Rad52-YFP 

foci at around 8%, while Rad52 foci were largely absent in wild type cells. Upon 

attempted re-entering into the cell cycle, hip1∆ cells had increased DSBs compared to 

the wild type cells. However the level was no more than seen prior to G0 arrest. This 

suggests that hip1∆ cells do not accumulate large amounts of DNA damage during 

quiescence. Therefore, the defects of tdp1∆ and hip1∆ cells are distinct.  

200 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.13 Cells lacking HIRA enter and exit quiescence with elevated levels of 
DSBs.  
Rad52 foci were calculated as a percentage of the number of nuclei. Data are the mean 
of three biological replicates; in each experiment at least 200 nuclei were counted for 
each strain. Error bars represent ± SEM (**p<0.01; ***p<0.001). 
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5.2.7 Loss of hip1+ leads to diminished activation of cell cycle regulated genes 

following restoration of a nitrogen source 

 

Next, gene expression during re-entry into the cell cycle was investigated. Upon 

nitrogen replenishment ribosome biogenesis, along with the induction of metabolic 

genes takes place almost immediately (Shimanuki et al., 2007). Therefore, mRNA 

levels of genes involved in metabolism were measured by qRT-PCR to determine 

whether the induction of growth genes is appropriate in hip1∆ cells. ura3+ and mis3+ 

have both been previously characterized as genes that get induced rapidly upon nitrogen 

replenishment (Shimanuki et al., 2007) and indeed in both wild type and hip1∆ cells 

following 1 day in quiescence their levels increase rapidly, suggesting that induction of 

‘growth’ genes is appropriate in the hip1∆ mutants (Fig 5.14.A and B).   

 

Genes involved in cell cycle control are also induced upon nitrogen replenishment. In 

order to address whether the transcription of these genes gets induced appropriately, 

cdc18+ mRNA levels were measured in the first instance. The expression of cdc18+ is 

induced prior to S phase via the action of cell cycle regulated MBF transcription factors.  

cdc18+ encodes the homologue of the mammalian CDC6 and along with Cdt1 is 

required for the assembly of the pre-replicative complex (Kelly et al., 1993; Nishitani et 

al., 2000; Yanow et al., 2001) during late G1 phase. In mammalian cells CDC6 is 

removed from replication origins during G0 but not during G1 and its re-synthesis and 

loading are important for quiescence exit (Kingsbury et al., 2005; Coller, 2007). In wild 

type S. pombe cells, a significant increase in cdc18+ mRNA transcript levels was 

observed following nitrogen replenishment. On the other hand, there was no significant 

increase in cdc18+ mRNA levels detected in hip1∆ cells following the addition of 

nitrogen. At all times points measured (except at G0 and following 120 minutes), there 

was a significant difference between cdc18+ mRNA levels in the wild type and hip1∆ 

samples (Fig 5.15.A). cdt1+ mRNA levels were also measured in independent 

experiments. Following 90 minutes of nitrogen replenishment cdt1+ mRNA levels 

increased several fold in the wild type compared to the G0 samples and while a small 

increase was also seen in hip1∆ cells, it was significantly lower than the induction seen 

in the wild type (Fig 5.15.B). Therefore, it appears that transcriptional induction of both 

cdc18+ and cdt1+ is compromised in hip1∆ cells. This suggests that HIRA is required for 

the induction of MBF-dependent genes upon re-entry into the cell cycle.  
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Figure 5.14 Transcriptional induction of growth genes is appropriate in hip1∆ cells 
following exit from G0. 
(A) and (B) qRT-PCR analysis of metabolic gene transcription in wild type and hip1∆ 
cells following nitrogen replenishment of G0 cells starved for 24 hours. Data shown 
represents fold-change relative to the wild type time 0 samples. Data are the mean of 
four biological replicates and error bars represent ± SEM.  
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Figure 5.15 Transcriptional induction of cdc18+ and cdt1+ is compromised in hip1∆ 
cells following exit from G0. 
(A) qRT-PCR analysis of cdc18+ gene transcription in wild type and hip1∆ cells 
following nitrogen replenishment of G0 cells starved for 24 hours. Data shown 
represents fold-change relative to the wild type time 0 sample. Data are the mean of six 
biological replicates and error bars represent ± SEM (* p<0.05; **p<0.01). (B) qRT-
PCR analysis of cdt1+ gene transcription in wild type and hip1∆ cells following nitrogen 
replenishment of G0 cells starved for 24 hours. Data shown represents fold-change 
relative to the wild type time 0 sample. Data are the mean of two biological replicates 
and error bars represent ± SEM (**p<0.01).  
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During quiescence the cyclin dependent kinase inhibitor Rum1 accumulates, blocking 

the cell cycle (Moreno and Nurse, 1994). Upon nitrogen replenishment, Rum1 is 

degraded, leading to the accumulation of the cyclin dependent kinase Cdc2, as well as to 

the downstream transcription and translation of the G1/S-specific cyclin cig2+. Increased 

Cig2 levels help to usher the cells into S-phase (Mondesert et al., 1996). In order to 

check that the above observed failure to induce cdc18+ transcription is not a result of the 

failure of hip1∆ cells to degrade Rum1, western blotting was utilized and Rum1 protein 

levels were measured. Rum1 was present at high levels during quiescence (24 hours), 

but as expected was degraded within hours following nitrogen replenishment 

(Shimanuki et al., 2007). Indeed, Rum1 levels were completely undetectable following 

3.5 hours in wild type samples (Fig 5.16.A). Rum1 was also degraded in hip1∆ cells at a 

comparable rate. Preliminary data (Fig 5.16.B) also indicates that Rum1 degradation is 

appropriate following 96 hours in quiescence. Therefore, not surprisingly, defects in the 

degradation of Rum1 or upstream events are unlikely to be responsible for the HIRA 

quiescence phenotype. 

 

Next, Cig2 protein levels were measured. Cig2 is a G1-S phase specific cyclin whose 

expression is also MBF dependent and is required for appropriate S phase transition 

(Mondesert et al., 1996). It has previously been demonstrated that deletion of cig2+ 

leads to a delay in S phase following quiescence exit (Mondesert et al., 1996), not 

unlike that seen in the absence of the HIRA complex (Blackwell et al., 2004). Previous 

work has also demonstrated an inverse relationship between Rum1 and Cig2 levels 

(Shimanuki et al., 2007); therefore Cig2 protein levels were also measured by western 

blotting. Agreeing with previous observations, Cig2 protein levels were undetectable 

during quiescence in both wild type and hip1∆ samples, with an increase following 1-2 

hours of nitrogen replenishment in wild type cells. hip1∆ cells presented with increased 

Cig2 levels relative to G0 levels but to a lesser degree than wild type cells (Fig 5.17.A). 

Preliminary data (Fig 5.17.B) also indicates that following 4 days in quiescence Cig2 

levels are not induced in hip1∆ cells until 24 hours of nitrogen replenishment, whereas 

in wild type cells Cig2 induction takes place following 2-3.5 hours, suggesting a severe 

delay in cell cycle induction. Consequently, it seems highly likely that the HIRA 

complex is required for the appropriate induction of a subset of cell cycle regulated 

genes, and it is very possible that a proportion of the phenotypes associated with loss of 

HIRA are a result of the failure to re-start the transcription of these genes following 

quiescence. 
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Figure 5.16 Rum1 protein levels are degraded both in wild type and hip1∆ cells at 
comparable rates. 
(A) Western blot analysis of Rum1 protein levels in wild type and hip1∆ cells following 
exit from 24 hours in quiescence. Data is representative of three independent biological 
repeats. (B) Western blot analysis of Rum1 protein levels in wild type and hip1∆ cells 
following exit from 96 hours in quiescence. Data is of a single experiment.  
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Figure 5.17 Cig2 protein levels are induced to a lesser extent in hip1∆ cells than in 
the wild type.  
(A) Western blot analysis of Cig2 protein levels in wild type and hip1∆ cells following 
exit from 24 hours in quiescence. Data is representative of four independent biological 
repeats. (B) Western blot analysis of Cig2 protein levels in wild type and hip1∆ cells 
following exit from 96 hours in quiescence. Data is of a single experiment.  
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5.3 Discussion 
 

The findings described in this chapter demonstrate a role for the S. pombe HIRA 

complex in the maintenance of nitrogen starvation induced quiescence. Previous work 

has noted that loss of HIRA subunits leads to a delay in re-entry into the cell cycle 

following nitrogen depletion as indicated by FACS analysis (Blackwell et al., 2004), but 

the basis of this remained unexplained. Here is some evidence demonstrating that HIRA 

deficient cells are severely compromised in their ability to re-enter the cell cycle 

following quiescence. This is likely to be due to two things; first cells lacking HIRA fail 

to appropriately induce MBF-dependent genes upon nitrogen replenishment from early 

G0, and second these cells are likely entering premature senescence rapidly following 

G0 entry. Previous work has characterized a number of mutants that are sensitive to 

nitrogen starvation induced quiescence, however it should be noted that the hip1∆ 

phenotype is extremely severe.  

 
 
5.3.1 HIRA deficient cells are unlikely to age rapidly due to a simple reduction in 
histone levels  
 

One of the key findings in this chapter was that HIRA deficient cells age rapidly upon 

quiescence entry and apparently enter a permanent senescent state within days. Previous 

work has demonstrated that reduced histone levels are associated with aging 

phenotypes, while an increase in histone dosage can lead to life-span extension (Feser et 

al., 2010). During normal replicative aging in budding yeast, histone transcript levels 

increase while a drop in histone protein levels is observed. Mutation of the histone 

chaperone ASF1 leads to a decrease in histone transcription and histone protein levels 

and cells age rapidly, while deletion of HIR1 in S. cerevisiae increases both histone 

mRNA and protein level, and leads to life-span extension (Feser et al., 2010). In light of 

these results and due to the finding that in S. pombe hip1∆ cells present with a decrease 

in both histone H3 protein levels and a drop in nucleosome occupancy, the contribution 

of histones to the aging phenotype was addressed. Histone H3-H4 gene pairs are 

encoded by three highly similar genes and two pairs were knocked out in combination 

and their viability in quiescence was assessed. Surprisingly, it did not appear that loss of 

two histone H3-H4 gene pairs phenocopied the hip1∆ quiescence phenotype, suggesting 

that while low histone content might contribute to aging, in quiescent S. pombe at least, 

it is not the major determinant in cellular senescence. Also in support of this is the fact 

that other histone chaperones did not have the same phenotype as HIRA mutants, in fact 
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loss of the CAF1 subunit, cac2+, or deletion of nap1+ and nap2+ had no obvious effect 

on cell viability, suggesting that the role of the HIRA complex in quiescence 

maintenance is more specific than just its ability to maintain histone protein levels. 

However, it still would be beneficial to investigate whether increasing histone dosage in 

hip1∆ cells helps to rescue the quiescence phenotype at all.  

 
 
5.3.2 Role for the HIRA complex in regulating MBF genes  
 

A surprising but interesting finding of this work was that loss of hip1+ did not affect the 

majority of molecular functions tested, for example Rum1 degradation was normal and 

so was the induction of growth/metabolism specific genes following nitrogen 

replenishment after 24 hours in quiescence. However, the HIRA complex is required for 

the timely induction of at least three MBF-dependent genes; cdc18+, cdt1+ and cig2+. 

Although the HIRA complex is generally thought of as a repressor of transcription, 

previous work in S. pombe has demonstrated that under specific contexts it is also 

required for gene activation, for example during low dose stress responses (Chujo et al., 

2012). HIRA has also been associated with a cell cycle regulatory role, as is plays a role 

in S-phase specific regulation of the core histone genes (Blackwell et al., 2004); 

furthermore HIRA itself gets phosphorylated in a cell-cycle specific manner (Hall et al., 

2001) in human cell cultures by a cyclin-Cdk2 kinase (either cyclin A or cyclin E). As 

expected, this phosphorylation event is confined to cycling cells, as quiescent cells are 

not phosphorylated (Hall et al., 2001), and, importantly, it coincides with late G1 to S 

phase entry (Hall et al., 2001). Moreover, ectopic expression of HIRA leads to S phase 

arrest, suggesting that the HIRA complex is responsible for progression through S phase 

(Hall et al., 2001). These findings also agree with the work presented here, which 

suggests that exit following 24 hours in quiescence is largely but not completely 

dependent on the HIRA complex. The fact that S phase specific genes are delayed in 

expression and those HIRA deficient cells still elongate and enter S phase, but then 

arrest coincide with these previous findings. What is interesting is that hip1∆ cells are 

slightly delayed going through S phase in cycling cells but are viable, while this is not 

the case following extended periods in quiescence. This strongly suggests that there is a 

switch in the mechanism behind gene induction and cell cycle regulation following 

quiescence. However, as to what this may be or how it might be established is currently 

unknown. It is possible that the HIRA complex is directly involved in activating 

transcription of cdc18+, cdt1+ and cig2+ possibly by remodelling the nucleosomes 
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around the promoter regions. It has however not been possible to measure whether this 

is the case. Hip1-GFP ChIP-qPCR has been carried out over the MCB box of cdc18+ but 

there was only a relatively small enrichment to start with that did not increase upon 

nitrogen replenishment. It is of course possible that HIRA primes these regions but the 

remodelling event is rapid, and the interaction between HIRA and the chromatin is 

transient. However, in order to properly address whether HIRA is physically required 

around these regions it would be essential to optimize the ChIP protocol for components 

of the HIRA complex. Unfortunately, due to time constraints it was not possible to 

complete the experiments. An additional way to address whether HIRA plays a role in 

nucleosome remodelling around these regions would be to generate a nucleosome map 

of wild type and hip1∆ cells in quiescence and following nitrogen replenishment (15-30 

minutes) when rapid remodelling is most likely to take place. Alternatively, it would be 

possible to implement the MNase-qPCR technique to generate a view of a single 

nucleosome; in this case that would be the nucleosome over the MSB box of cdc18+ or 

cdt1+.  

 

 
5.3.3 Attempts to isolate suppressor mutations  
 

It could also be useful to determine whether over-expression of cdc18+, cdt1+ or a 

downstream target, like cig2+, is sufficient to rescue the quiescence phenotype of hip1∆ 

cells. A strain constitutively expressing cdc18+, cdc10-4 was crossed with hip1∆ to help 

determine whether this was the case. However, the cdc10-c4 strain is very slow growing 

and therefore meaningful analysis of hip1∆ cdc10-c4 was not possible. It would be 

more appropriate to perhaps place cig2+ under an inducible promoter and only express it 

during the required times. Current work is being carried out to determine whether 

deleting negative regulators of the MBF genes, yox1+ and nrm1+, are able to rescue the 

HIRA quiescence phenotype.  

 

Another possibility for future work could involve testing a library of deletion mutants to 

identify knockout alleles that rescue hip1∆ cells. Throughout this study a number of 

genes have been crossed with the hip1∆ mutant strain to generate double mutants, 

which have been tested for quiescence viability. These included rad3∆, gcn5∆, rtt109∆, 

abo1∆ and abo2∆, some of which have previously been indicated to rescue the hip1∆ 

mutant to a degree; however throughout this study abo1∆ was the only gene deletion 

that partially rescued hip1∆ viability (Fig 5.18.A, B and C). The basis of this partial 
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rescue is currently unknown but it hints at a role for Abo1 in quiescence maintenance 

too, or perhaps suggests that the HIRA complex is important in preventing Abo1 from 

carrying out certain functions. Due to time constraints it was not possible to follow up 

this genetic interaction, but it would be interesting to learn more about the function of 

Abo1 in hip1∆ cells and to determine the molecular basis of this rescue. 
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Figure 5.18 Deletion of abo1+ partially rescues hip1∆ cells in quiescence.  
(A) Spot tests of the indicated strains during midlog phase and at the specified times in 
quiescence at 30˚C onto YE5S plates following a 5-fold serial dilution. Plates were 
further incubated at 30˚C for 3 nights. (B) Individual dissections of cells onto YE5S 
plates during mid-log phase and following 24, 48 and 96 hours in quiescence. Cells 
were grown at 30˚C until colonies were visible. Data is representative of four 
independent biological replicates. (C) Percentage viability of cells in (B).  
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5.3.4 HIRA and senescence  

 

In human cells, it has previously been demonstrated that the HIRA complex is also 

required during senescence (Zhang et al., 2005; Ye et al., 2007; Zhang et al., 2007b; 

Banumathy et al., 2009). Therefore it is possible that perhaps in S. pombe, cells in the 

absence of the HIRA complex become prematurely senescent. Senescent cells by 

definition do not enter the cell cycle. Of course whether senescence establishment 

would be through a direct role of the HIRA complex, i.e. it is actively required to 

determine quiescence vs senescence or whether HIRA deficient cells are purely deemed 

too sick to proliferate and so enter senescence as an alternative path is currently not 

known. Interestingly, recent work has demonstrated that old yeast cells present with an 

overall nucleosome depleted genome and that the nucleosomes particularly affected are 

within overwhelmingly silenced or low level transcribed regions (Hu et al., 2014). 

These findings are strikingly similar to the MNase-seq profiles of hip1∆ cells; therefore 

it is possible that hip1∆ cells are generally ‘aged’ and enter quiescence as old cells. 

Should this be the case further nucleosome loss would be expected along with a 

continuous increase in mRNA levels. Although MNase digestions of bulk chromatin did 

not reveal a difference between wild type and hip1∆ cells, it is possible that MNase-seq 

following 24 and 96 hours in quiescence would find a further drop in nucleosome 

occupancy compared to cycling cells.  

 

In tissue cultures a feature of senescent cells is the down regulation of E2F genes via 

creation of a heterochromatic environment that includes the recruitment of the 

retinoblastoma protein (Rb), loss of histone H3 acetylation and an increase in histone 

H3K9 methylation (Adams, 2007). This recruits HP1 and macroH2A. HIRA and Asf1 

have been shown to be required for this process, possibly by removing histone H3-H4 

and allowing the incorporation of macroH2A (Zhang et al., 2005; Zhang et al., 2007b; 

Banumathy et al., 2009). In S. pombe a point mutation in the HIRA subunit hip3+, hip3-

1, leads to a global increase in histone H3K9me3 levels, a hallmark of heterochromatin 

(Mizuki et al., 2011). In addition, senescence is often thought to be triggered by DNA 

damage in cells (Toussaint et al., 2000; Campisi, 2001; Campisi and d'Adda di Fagagna, 

2007), and indeed hip1∆ mutants enter quiescence with unrepaired DSBs. Also 

important is that senescent cells remain metabolically active (Di Leonardo et al., 1994; 

Ogryzko et al., 1996; Serrano et al., 1997; Herbig et al., 2004), although they lose their 

proliferating potential, as is the case in hip1∆ mutants. It might be possible to determine 
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whether these cells are truly senescent by searching for markers that are conserved 

between organisms. Furthermore, if hip1∆ cells become senescent then controlled over-

expression of MBF genes should not be able to rescue the quiescent phenotype 

following 96 hours. Finally, if these cells indeed just enter senescence prematurely, than 

mutants that rescue the hip1∆ quiescence phenotype might be those that prevent cells 

from entering into senescence in the first place.  

 

Therefore there are two arguments, which are likely to not be mutually exclusive, that 

suggest that the HIRA complex plays a role in gene activation following quiescence and 

that in the absence of the complex senescence is prematurely triggered. If HIRA was 

only required for re-entry into the cell cycle then one would expect to see an initial drop 

in cell viability but would not expect that drop to further increase as a function of time, 

while if the cells become senescent then the number of cells unable to re-enter the cell 

cycle would increase over time, which is what has been observed in hip1∆ cells. It could 

therefore be postulated that the HIRA complex functions in two different steps, firstly it 

is amongst the factors required for S-phase specific gene activation, a function that 

might become prominent during quiescence exit and it is also required for appropriate 

maintenance of quiescence, possibly through a contribution to chromatin maintenance.  

 

  

214 
 



Chapter 6 

General Discussion 
 

Proper chromatin maintenance is important in all eukaryotes, as a compromised 

chromatin structure can lead to highly toxic environments with deregulated 

transcription, an increase in inter- and intra-chromosomal translocations, and an 

increase in DNA double strand breaks. All of these alterations lead to unstable genomes, 

which become highly prone to uncontrolled proliferation and tumour development; in 

fact genomic instability is the hallmark of cancer. As a consequence of this, proteins that 

can modulate or alter chromatin structure have long been of interest. Amongst these are 

ATP-dependent remodelers, histone chaperones, and covalent modifiers of histones.  

 

 

6.1 Abo1 – A regulator of global chromatin architecture 

 

ATAD2/Yta7 belong to the AAA-ATPase family of proteins, which until recently have 

been thought of as molecular motors, whose primary function is in protein degradation. 

ATAD2/Yta7 are unique in that they can directly interact with chromatin and contain a 

bromodoamin, which is traditionally associated with the ability to bind acetylated 

lysines. While, there is generally a lot of interest in chromatin modifiers, the role of 

ATAD2/Yta7 to date has not been well characterized. The study presented here aimed to 

address whether the S. pombe homologue, Abo1, has a role in global chromatin 

maintenance. Indeed, it was possible to demonstrate that Abo1 is necessary for proper 

nucleosome maintenance, over both eu- and heterochromatic regions. The data suggests 

that Abo1 facilitates either the stability of nucleosomes during Pol II passage or it plays 

a role in the re-assembly of any partially/fully disassembled nucleosomes. However, 

based on the current data available, it is not yet possible to distinguish between the two. 

It will therefore be important to determine whether Abo1 has in vitro nucleosome 

assembly activity and whether this is dependent upon the AAA-ATPase and 

bromodomain regions.  

 

It would also be interesting to determine whether the Abo1-FACT interaction is 

conserved in mammalian cells. FACT is currently a drug target in cancers (Gasparian et 

al., 2011), therefore determining the nature of the interaction in mammalian cells could 

be beneficial in drug targeting, perhaps drugs designed to deactivate FACT could also 
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work on cancers with upregulated ATAD2 levels, and/or vice versa.  

 

There remain a number of further outstanding questions with regards to the regulation 

of Abo1 itself. For example, Abo1 appears to be removed from the chromatin following 

replication arrest, which happens to coincide with phosphorylation of Abo1 (by Rad3 

and Cds1) (A. J. Whale, personal communications). This is also conserved, as S. 

cerevisiae Yta7 gets phosphorylated by Rad53 (Smolka et al., 2005). Abo1 is also 

phosphorylated during the cell cycle, and similarly to S. cerevisiae it is also 

phosphorylated by CK2 (A. J. Whale, personal communications) (Kurat et al., 2011). 

Therefore, determining whether this is conserved in mammalian cells, and if so, then 

understanding the specific role of these phosphorylation events is likely to be key in the 

full understanding of Abo1 function. As there have been suggestions that 

phosphorylation of Yta7/ATAD2 leads to its removal from its target sites, it would be 

valuable to determine whether this is a general mechanism for controlling 

ATAD2/Abo1/Yta7 levels and if so then perhaps this mechanism could be exploited in 

order to reduce ATAD2 binding to its target loci during tumorigenesis.  

 

 

6.2 Transcription through chromatin  

 

As a result of the link between HIRA and transcriptional control, in this study, the role 

of HIRA on global chromatin architecture was assessed. It was demonstrated, in 

agreement with previously attributed functions, that HIRA plays a role in maintaining 

nucleosome occupancy following transcription, thereby contributing to proper 

chromatin architecture. In the absence of functional HIRA, global histone H3 protein 

levels are decreased, overall transcription is increased and the genomes become highly 

sensitive to DNA damaging agents. S. pombe lacking HIRA function present with strong 

phenotypes that are typically linked to severely compromised chromatin. Yet, 

sequencing of chromatin revealed only relatively mild changes on a global scale. This 

could be interpreted to suggest that either HIRA is important at a few sites, where 

deregulation of transcription leads to the phenotypes associated with cells lacking 

HIRA, or that it is through small but numerous alterations throughout the genome that 

add up to compromise chromatin integrity. It would be interesting to determine whether 

the role for HIRA over transcriptionally active regions is conserved. At this time, there 

isn’t a global nucleosome map available of HIRA knockdown mammalian cells, which 
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could be highly informative.  

 

New evidence is emerging that nucleosomes do not get disassembled during 

transcription, rather remain as stable but dynamic structures, with only the H2A-H2B 

dimers removed/remodelled. It is therefore possible that the contributions of H3-H4 

histone chaperones like HIRA are only required in the case of the small number of 

nucleosomes which get completely disassembled. There also appears to be tremendous 

redundancy amongst chromatin proteins, and so it is also possible that HIRA becomes 

particularly important when another chromatin protein becomes compromised. Finally, 

evidence from this study and from others suggests that HIRA becomes critical when 

transcription is severely perturbed and nucleosomal arrays need to be re-set. Such is the 

case following DNA damage repair, senescence entry, and quiescence exit, as all of 

these processes require large-scale remodelling of chromatin.  

 

6.3 HIRA and the DNA damage response pathway  

 

As DNA double strand breaks (DSBs) are highly genotoxic lesions and cells lacking 

HIRA function are strikingly sensitive to a wide range of DNA damaging agents, the 

role HIRA plays during the DNA damage response pathway was investigated. It was 

possible to demonstrate that HIRA, similarly to the CAF-1 histone chaperone, functions 

independently of the major DSB repair and checkpoint pathways, and that it is likely to 

exert its role following repair completion. The study presented here illustrates the 

importance of HIRA during recovery following DNA damage repair, which goes 

beyond protecting from the genotoxic agents themselves. It has become increasingly 

clear that HIRA, like other histone chaperones, is essential for the re-start of the cell 

cycle following arrest and that this is likely through a role in nucleosome assembly over 

the affected regions, priming the cells for transcriptional restart (Adam et al., 2013; 

Polo, 2014). This role appears highly conserved, as cells from S. cerevisiae to humans 

lacking HIRA, are sensitive to agents that cause DNA strand breaks. It would be 

interesting to determine the signals that recruit HIRA to DNA strand breaks, is it simply 

the presence of naked DNA, or does it, like Asf1, physically associate with some/any of 

the repair/checkpoint proteins. It would also be interesting to establish whether cells 

lacking HIRA are able to replace nucleosomes following DNA damage repair in S. 

pombe, for example is CAF-1 able to do this? Could CAF-1 in co-operation with Asf1, 

Rtt106, and Spt6 be able to deposit H3-H4 tetramers over the repaired lesions, and if so 
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than what is the role of HIRA that makes it essential for proper recovery? In mammalian 

cells, it is the ability of HIRA to establish transcriptionally competent chromatin by 

depositing the histone variant H3.3, but in S. pombe no variants of H3 exists, therefore 

the question remains how does HIRA do this? There is an example in S. cerevisiae 

where FACT and Spt6 are required for the disassembly of the CLN3 promoter 

nucleosome, which is required for the START of the cell cycle (Morillo-Huesca et al., 

2010). Our findings, which suggest that HIRA is required for the proper induction of 

cdc18+, cdt1+ and cig2+ following quiescence exit, might also be true for the re-start of 

the cell cycle following arrest after DNA damage. Should this be the case, then perhaps 

examining the state of specific nucleosomes could prove to be informative.  

 

 

6.4 Restart of the cell cycle following quiescence by HIRA 

 

In addition to a role in the DNA damage response pathway, HIRA was found to be 

sensitive to quiescence arrest. In complex multi-cellular organisms, the majority of 

differentiated cells, as well as stem cells, spend their life in a quiescent state. Loss of 

quiescence maintenance can either lead to uncontrolled proliferation, therefore 

tumorigenesis or to cellular senescence, which is associated with premature aging. In 

light of the importance of the quiescent state, the mechanism behind quiescence 

maintenance by HIRA was assessed. Cells lacking HIRA were strikingly sensitive to 

quiescence and undergo premature senescence within the fraction of the time of the wild 

type strain. It was possible to demonstrate that HIRA fulfils two key functions during 

this state; firstly it is required for efficient re-entry into the proliferative cell cycle 

probably via transcriptional induction of MBF-dependent genes, and secondly it is 

responsible for preventing the cells from entering senescence. The mechanism behind 

this second role is still unclear. Its role in the regulation of MBF-dependent genes could 

be through recruiting factors necessary for transcription initiation or could be by 

disassembling promoter nucleosomes, thereby creating a permissive environment for 

binding of MBF transcription factors. However, to date there has been no direct in vitro 

evidence demonstrating that HIRA can disassemble nucleosomes. In mammalian cells it 

is thought to lead to gene activation by incorporating the histone H3.3 variant, which is 

more permissible for transcription than other variants. Therefore, addressing this 

question further could be very exciting and could lead to uncovering a novel role for 

HIRA.  

218 
 



 

It would also be interesting to determine the overarching roles of histone chaperones 

during cell cycle progression. The repression/activation of histone gene expression in S. 

cerevisiae for instance is controlled at the level of promoter assembly/disassembly by a 

number of factors (Figures 1.9 and 1.15), is it possible that other cell cycle specific 

genes are regulated in a similar manner? If that is the case, then are the same group of 

proteins involved? During the course of this work, the effect of loss of abo1+, asf1+ and 

rtt106+ was determined on quiescence viability. Of the three, loss of asf1+ presented 

with severe phenotypes, comparable to that of cells lacking HIRA, while abo1∆ cells 

presented with mild sensitivity to quiescence and rtt106∆ mutants grew similarly to 

wild type. This question therefore remains open, but it wouldn’t be entirely surprising if 

further work on the subject identified a number of chromatin maintenance factors as 

being required for the proper re-entry into the vegetative cell cycle following 

quiescence. The question also remains as to whether this is a conserved process. In 

mammalian cells HIRA primarily localizes to promoter regions and enhancers, and its 

role in generating a transcriptionally permissive environment is conserved. However, 

similarly to findings in yeast, a recent study using tissue culture has found that HIRA 

does not modulate all promoters to the same extent; rather its role in activation is highly 

specific (Soni et al., 2014). As to what determines this specificity remains unclear and 

could be of interest for future work.     
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Appendix A – Microarray analysis of genes misregulated in the absence of hip1+ 
following 24 hours in nitrogen starvation induced G0 
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SPNCRNA.1506 
SPNCRNA.1587 
SPNCRNA.1673 
SPNCRNA.1687 
SPNCRNA.1546 
SPNCRNA.1529 
SPNCRNA.1531 
SPNCRNA.1539 
SPNCRNA.1535 
SPNCRNA.1577 
SPNCRNA.1579 
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SPNCRNA.451 
prl15 
prl14 
prl11 
meu3 
SPAC19G12.09 
SPBC24C6.08c 
SPBC21C3.19 
SPAC5H10.04 
med13 
grx2 
SPAC4H3.03c 
mug4 
SPCC663.14c 
clr4 
pof3 
SPCC1919.12c 
SPBC530.06c 
hsp9 
SPAC977.14c 
SPAC6F6.04c 
SPBPB2B2.18 
mug86 
SPACUNK4.17 
SPCC663.06c 
SPCC777.03c 
SPBC8E4.02c 
SPCC13B11.03c 
SPCC11E10.07c 
SPBC800.12c 
ght3 
SPACUNK4.15 
mug97 
gst2 
ast1 
SPBC359.01 
mok12 
SPCC330.06c 
SPAC750.06c 
SPAC186.05c 
SPBC1683.12 
SPBC582.10c 
crp79 

 

SPNCRNA.818 
SPNCRNA.803 
SPCTRNAASN.05 
SPCTRNAILE.09 
arp8 
SPAC212.01c 
rik1 
SPAC1399.01c 
SPAC2E1P3.01 
SPAC4F10.16c 
SPAPB24D3.08c 
sen1 
rhp42 
SPCC4B3.06c 
mug132 
SPCC188.09c 
apm4 
meu6 
dak1 
tea2 
SPAC19G12.04 
SPBC800.11 
SPCC777.04 
rrg9 
gal10 
bgs2 
SPAC212.04c 
meu7 
hta2 
kap113 
SPAC977.15 
adn3 
mok14 
SPCC320.06 
SPAC1635.01 
ppk6 
SPBC2A9.02 
SPAC11D3.09 
SPAC23H3.15c 
eri1 
get4 
SPCC1281.07c 
SPAC1F8.04c 

 

SPBTRNALEU.10 
SPBTRNAGLY.08 
SPBTRNALEU.09 
snoR69b 
sno12 
snoR47 
SPATRNAILE.02 
SPCTRNAARG.10 
SPBTRNAILE.06 
SPCTRNAVAL.10 

 

SPCC1450.09c 
SPAPB24D3.07c 
SPBC17D1.07c 
SPCC663.08c 
SPBC1685.05 
SPAC6C3.03c 
cta5 
SPCC569.03 
inv1 
meu17 
SPBC28E12.02 
rdh54 
SPAC18G6.05c 
gut2 
myh1 
SPBC1198.01 
rsv1 
SPAC11D3.01c 
SPBC17G9.12c 
SPAC57A7.05 
SPAC186.06 
mde2 
SPBPB2B2.11 
ght7 
rga9 
SPCC417.11c 

 

SPBC685.03 
meu8 
SPCC794.01c 
mug35 
fft2 
SPAC5H10.12c 
 
 
 
 

 

SPNCRNA.1565 
SPNCRNA.1559 
SPNCRNA.499 
snoU14 
snR30 
sno20 
snR91 
snoZ16 
SPNCRNA.402 
pck1 
SPCC70.08c 
cid11 
zym1 
SPBC56F2.03 
pho1 
SPBC215.11c 
ppk31 
SPAC22E12.03c 
SPCC13B11.04c 
exo5 
dak2 
SPBPB2B2.09c 
tae1 
cds1 
cta3 
amt3 
SPAC4F10.17 
spo6 
mcp5 
hrp3 
gst1 
mug79 
ssa1 
SPAC212.02 
whi5 
SPAC12B10.10 
SPAC27F1.05c 
bud6 
SPAC5H10.05c 
ctf18 
gld1 
SPAC186.03 
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2x Down-regulated 
SPNCRNA.1562 
SPNCRNA.1415 
SPNCRNA.993 
SPNCRNA.1512 
map1 
mfm1 
SPCC24B10.03 
SPCC188.05 
tim11 
SPAC4H3.12c 
mug177 
SPNCRNA.1209 
omt3 
SPNCRNA.1232 
sme1 
SPNCRNA.1000 
SPNCRNA.217 
SPNCRNA.608 
SPNCRNA.534 
SPNCRNA.988 
SPNCRNA.380 
SPNCRNA.585 
SPNCRNA.658 
SPNCRNA.460 
cdr1 
mlh1 
pvg5 
SPCC4B3.02c 
SPAC22A12.06c 
ogm1 
SPAC869.04 
SPBC4C3.04c 
csn4 
SPAC644.05c 
mug103 
pmp1 
bet3 
SPBC23E6.10c 
pas1 
SPBC1604.09c 
fta6 
SPBC409.08 
SPBCPT2R1.10 
SPAC869.03c 
SPCC1795.12c 
ste6 
SPBC4F6.14 
dbp3 
str1 
SPAP14E8.02 
ppk33 
hem13 
laf2 
sst4 
SPBPB8B6.06c 

psk1 
cgs1 
vps20 
SPBTRNAGLY.09 
tam6 
fmc1 
gas1 
mug134 
wsc1 
SPAC630.10 
SPAC24H6.11c 
SPAC105.02c 
SPBC691.04 
pab1 
SPCC18.17c 
SPAC5D6.13 
SPAC15A10.09c 
pof4 
SPAPB1A10.08 
SPAC4A8.07c 
arv1 
SPCC553.12c 
ste11 
SPAC4G9.20c 
SPAC11D3.03c 
SPAC11D3.04c 
SPCC737.04 
ppk14 
isp5 
pyk1 
SPBC25H2.10c 
SPAC19G12.05 
leu2 
urg1 
isp4 
mam4 
SPBC25B2.08 
SPAC23H4.04 
SPCC1322.09 
spb1 
SPAC227.01c 
SPBC543.02c 
str3 
SPAC1687.08 
SPAC1687.07 
pop3 
rrp8 
SPAC56F8.07 
snoZ5 
SPBC18A7.01 
SPCC18.15 
SPAC977.11 
has1 
SPNCRNA.454 
SPCC23B6.02c 

mge1 
SPAC15A10.07 
SPAC11D3.17 
aur1 
rrn3 
SPAC18G6.12c 
mam2 
tfb5 
matmc_1 
dni2 
SPBC1711.16 
SPAC144.01 
SPBC21C3.17c 
snR97 
SPBC19F8.03c 
spe2 
mei2 
spk1 
mug176 
rav2 
SPAC227.11c 
scw1 
mis13 
SPCPB1C11.03 
snR33 
apc10 
SPBC3E7.11c 
SPAC16A10.01 
uge1 
ppk1 
SPBPB21E7.04c 
sfp1 
but2 
SPBC3B8.06 
mac1 
toc1 
put4 
cdt1 
SPBC27.01c 
SPCC70.03c 
SPAC5H10.03 
dea2 
SPAC922.04 
SPBC1105.18c 
SPCC594.02c 
gpd2 
srw1 
SPBC83.13 
pmr1 
prz1 
gcv2 
SPBC17G9.06c 
ibp1 
byr1 
pis1 

SPAC227.06 
mfm2 
SPAC513.04 
gpa1 
set7 
mae2 
SPAC1805.02c 
SPBP4H10.14c 
SPCC16C4.22 
SPNCRNA.1055 
ams2 
SPCC1020.08 
mcs6 
SPBC13A2.04c 
cdc18 
SPAC22F8.04 
SPAC22F8.05 
SPAC23C11.06c 
SPBC244.02c 
gmh2 
hip1 
SPNCRNA.642 
rnp24 
omh1 
SPNCRNA.775 
SPNCRNA.1448 
SPNCRNA.1378 
SPNCRNA.1452 
SPNCRNA.863 
SPNCRNA.994 
SPNCRNA.1652 
SPNCRNA.817 
SPNCRNA.1254 
pet117 
SPAC227.19c 
SPNCRNA.717 
SPNCRNA.1058 
SPNCRNA.298 
SPNCRNA.586 
SPNCRNA.577 
SPNCRNA.1107 
SPNCRNA.945 
SPNCRNA.111 
cox20 
SPNCRNA.1182 
SPNCRNA.1203 
SPNCRNA.106 
SPNCRNA.1102 
SPCC550.15c 
SPAC13C5.05c 
mpg1 
cek1 
rgs1 
SPNCRNA.78 
SPNCRNA.77 
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SPBC16G5.09 
SPAC22A12.16 
SPBC27B12.02 
erg25 
SPAC328.09 
mae1 
mam1 
SPAC14C4.01c 
new2 

 

gcv3 
SPCC330.03c 
oar2 
SPAC1687.14c 
sec73 
SPBC15C4.06c 
SPBP22H7.03 

  SPAC212.10 

pac2 
SPCC757.12 
SPCC757.13 
SPBC839.14c 
snu23 
SPNCRNA.73 
rpc10 

  prl59 

SPNCRNA.75 
mmd1 
SPAC2H10.01 
SPBC146.08c 
mph1 
SPNCRNA.71 
SPNCRNA.72 

  frp1 
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Appendix B. Datasets used for MNase-sequencing  

1. List of solo LTRs used in alignments. 
Chromosome 
Number 

Unique identifier Alignment Start 
Site (0) 

Orientation 

chrI LTR1 28124 F 
chrI LTR2 54499 F 
chrI LTR3 397370 R 
chrI LTR4 617366 F 
chrI LTR5 670131 R 
chrI LTR6 1004892 F 
chrI LTR7 1118434 F 
chrI LTR8 1142619 F 
chrI LTR9 1266166 R 
chrI LTR10 2012006 F 
chrI LTR11 2174235 R 
chrI LTR12 2186786 F 
chrI LTR13 2474583 R 
chrI LTR14 2605356 F 
chrI LTR15 2694225 R 
chrI LTR16 2844091 R 
chrI LTR17 2854057 F 
chrI LTR18 2942286 R 
chrI LTR19 3190954 F 
chrI LTR20 4140896 R 
chrI LTR21 4897866 R 
chrI LTR22 4939621 F 
chrI LTR23 4941720 F 
chrI LTR24 5021560 F 
chrI LTR25 5066762 R 
chrI LTR26 5325497 R 
chrI LTR27 5496655 R 
chrII LTR28 4835 F 
chrII LTR29 93860 R 
chrII LTR30 96619 R 
chrII LTR31 99378 R 
chrII LTR32 102137 R 
chrII LTR33 458478 F 
chrII LTR34 676281 F 
chrII LTR35 847051 R 
chrII LTR36 942476 F 
chrII LTR37 1079189 F 
chrII LTR38 1826267 F 
chrII LTR39 2012648 R 
chrII LTR40 2081276 R 
chrII LTR41 2163463 F 
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chrII LTR42 2340297 R 
chrII LTR43 2380161 F 
chrII LTR44 2636814 F 
chrII LTR45 3106180 R 
chrII LTR46 3283208 R 
chrII LTR47 3489651 R 
chrII LTR48 3490610 R 
chrII LTR49 3659390 R 
chrII LTR50 3676727 F 
chrII LTR51 4047404 F 
chrII LTR52 4217977 F 
chrII LTR53 4231522 F 
chrII LTR54 4297025 R 
chrII LTR55 4409793 F 
chrII LTR56 4437498 F 
chrII LTR57 4437850 F 
chrII LTR58 4481842 R 
chrII LTR59 4508064 R 
chrIII LTR60 43111 F 
chrIII LTR61 114382 F 
chrIII LTR62 257531 R 
chrIII LTR63 287053 R 
chrIII LTR64 298890 R 
chrIII LTR65 382003 R 
chrIII LTR66 489396 R 
chrIII LTR67 499951 F 
chrIII LTR68 614910 F 
chrIII LTR69 701782 F 
chrIII LTR70 954537 F 
chrIII LTR71 1176592 R 
chrIII LTR72 1207147 F 
chrIII LTR73 1400870 F 
chrIII LTR74 1530150 F 
chrIII LTR75 1574724 F 
chrIII LTR76 1579526 R 
chrIII LTR77 1582318 R 
chrIII LTR78 1632545 R 
chrIII LTR79 1684578 F 
chrIII LTR80 1716629 R 
chrIII LTR81 1741307 R 
chrIII LTR82 1862384 R 
chrIII LTR83 2017345 R 
chrIII LTR84 2040788 F 
chrIII LTR85 2083919 F 
chrIII LTR86 2108631 R 
chrIII LTR87 2120137 R 
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chrIII LTR88 2145096 F 
chrIII LTR89 2148502 R 
chrIII LTR90 2159089 R 
chrIII LTR91 2180475 F 
chrIII LTR92 2210988 R 
chrIII LTR93 2220754 R 
chrIII LTR94 2230688 R 
chrIII LTR95 2422329 F 
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2. Top 10% highly expressed protein coding genes (Marguerat et al., 2012). 
Chromosome 
Number 

Unique identifier Alignment Start 
Site (0) 

Orientation 

chrII SPBC32F12.11 2807637 F 
chrII SPBC19C2.07 1688332 F 
chrII SPBC1815.01 2201208 F 
chrIII SPCC13B11.01 1591327 F 
chrI SPAC4H3.10c 3846655 R 
chrI SPAC26F1.06 5174638 R 
chrIII SPCC1223.02 1838485 F 
chrI SPAC1F8.07c 103580 R 
chrII SPBC26H8.01 3939420 F 
chrII SPBC14F5.04c 4159425 R 
chrIII SPCC1739.13 2057066 F 
chrI SPAC6F6.07c 2746658 R 
chrII SPBC106.18 413556 F 
chrII SPBC839.15c 627506 R 
chrIII SPCC794.09c 269479 R 
chrI SPAC664.05 1711170 F 
chrII SPBC1709.05 1106447 F 
chrI SPAC1071.10c 3876086 R 
chrI SPAC23A1.10 4095149 F 
chrI SPAC1071.07c 3868989 R 
chrII SPBC32H8.12c 1477314 R 
chrII SPBC16G5.14c 4239336 R 
chrIII SPCC24B10.21 939926 F 
chrIII SPCC576.08c 2096008 R 
chrIII SPCC576.09 2096558 F 
chrIII SPCC622.18 1437153 F 
chrI SPAC6B12.15 2439532 F 
chrI SPAC926.04c 3891098 R 
chrI SPAPB15E9.01c 3991477 R 
chrII SPBC18E5.06 2083868 F 
chrII SPBC14F5.05c 4162528 R 
chrIII SPCC417.08 1685650 F 
chrI SPAC1805.13 2794938 F 
chrI SPAC959.08 3400542 F 
chrII SPBC800.04c 259998 R 
chrI SPAC9.09 1478412 F 
chrII SPBC29A3.04 2045495 F 
chrI SPAC18G6.14c 2242523 R 
chrII SPBC18E5.04 2081514 F 
chrIII SPCC1393.03 798248 F 
chrI SPAC17A5.03 1756109 F 
chrI SPAC6G10.11c 3238362 R 
chrI SPAPB1E7.12 3319260 F 
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chrI SPAC26A3.04 3337748 F 
chrI SPAC15E1.03 3722471 F 
chrI SPAPJ698.02c 4037620 R 
chrIII SPCC18.14c 1981891 R 
chrI SPAC22H12.04c 898949 R 
chrI SPAC23A1.08c 4093772 R 
chrI SPAC23A1.11 4097334 F 
chrI SPAC694.05c 4208847 R 
chrI SPAC1F7.13c 4251463 R 
chrI SPAC4F10.14c 4860619 R 
chrI SPAC1006.07 5085532 F 
chrII SPBC354.12 578723 F 
chrII SPBC3D6.02 1268477 F 
chrII SPBC17G9.07 2180906 F 
chrII SPBC365.03c 2503750 R 
chrII SPBC336.10c 2759237 R 
chrII SPBC56F2.12 4088141 R 
chrII SPBC16A3.08c 4283938 F 
chrIII SPCC5E4.07 656625 F 
chrII SPBC1685.02c 499026 R 
chrII SPBC18H10.14 1793928 F 
chrII SPBC685.07c 2780653 R 
chrIII SPCP31B10.08c 540791 R 
chrIII SPCC576.03c 2085722 R 
chrI SPAC8C9.08 3655144 F 
chrII SPBC28F2.03 1576311 F 
chrI SPAC1F12.02c 3810034 R 
chrIII SPCC613.05c 89570 R 
chrII SPBP8B7.06 3643189 F 
chrIII SPCC24B10.09 917864 F 
chrII SPBC3B9.13c 4009384 R 
chrIII SPCC576.11 2099856 F 
chrII SPBC685.06 2778923 F 
chrII SPBC23G7.15c 2128440 R 
chrIII SPCC962.04 553165 F 
chrIII SPCC1183.08c 612565 R 
chrI SPAC8E11.02c 3384221 F 
chrIII SPCC1281.06c 1394865 R 
chrI SPAPB8E5.06c 4918991 R 
chrIII SPCC1682.14 400761 F 
chrI SPAC3G6.13c 5402233 R 
chrI SPAC1A6.04c 1077518 R 
chrII SPBC1685.10 517344 F 
chrI SPAC26H5.10c 4142339 R 
chrIII SPCC330.14c 138575 R 
chrI SPAC589.10c 3108885 R 
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chrI SPAC24C9.12c 3071102 R 
chrI SPAC521.05 849486 F 
chrI SPAC23C11.05 2140503 F 
chrI SPAC2C4.16c 4287431 R 
chrIII SPCC16C4.13c 691657 R 
chrI SPAC4G9.16c 2284216 R 

 

 

3. Top 10% low-level expressed protein coding genes (Marguerat et al., 2012). 
Chromosome 
Number 

Unique identifier Alignment Start 
Site (0) 

Orientation 

chrIII SPCC4F11.05 2010426 F 
chrI SPAC1F8.04c 93871 R 
chrII SPBPB2B2.01 4457742 F 
chrI SPAC2E12.05 5063258 F 
chrI SPAC750.05c 5567565 R 
chrII SPBPB2B2.12c 4487496 R 
chrII SPBPB2B2.19c 4505257 R 
chrII SPBC1348.02 7663 F 
chrII SPBC359.04c 119803 R 
chrIII SPCC576.17c 2113660 R 
chrI SPAC22G7.03 731938 F 
chrII SPBC17D1.07c 3344541 R 
chrII SPBCPT2R1.01c 4507540 R 
chrII SPBCPT2R1.04c 4514667 R 
chrI SPAC2G11.05c 817916 R 
chrII SPBC106.08c 388806 R 
chrII SPBC36.02c 840579 R 
chrI SPAC4H3.08 3841540 F 
chrI SPAC4F10.05c 4838311 R 
chrII SPBC685.05 2777829 F 
chrI SPAPB17E12.10c 1282776 R 
chrI SPAC1805.07c 2786148 R 
chrII SPBC18H10.09 1786501 F 
chrII SPBC18H10.11c 1790736 R 
chrII SPBC1271.01c 371978 F 
chrII SPBC1105.17 3538582 F 
chrI SPAC1B3.11c 4950071 R 
chrII SPBC18H10.10c 1789088 R 
chrI SPAC4G8.11c 783267 R 
chrI SPAC513.02 2911657 F 
chrI SPAC16A10.05c 3089362 R 
chrI SPAC15A10.05c 3686777 R 
chrI SPAC4H3.04c 3836101 R 
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chrI SPAC17C9.05c 4490378 F 
chrI SPAC27D7.13c 4536686 R 
chrII SPBC1348.01 5386 F 
chrI SPAC6B12.06c 2420894 R 
chrII SPBC16E9.07 1926374 F 
chrI SPAC22F3.12c 679812 F 
chrI SPAC1556.04c 3801068 R 
chrII SPBC1683.09c 162372 R 
chrII SPBC1773.13 310702 F 
chrII SPBC21B10.12 1649671 R 
chrI SPAC688.06c 3119170 R 
chrII SPBC18E5.08 2088238 F 
chrII SPBC15D4.11c 3031431 R 
chrII SPBC1604.18c 3898065 F 
chrII SPBPB2B2.05 4466651 F 
chrIII SPCC364.01 486011 R 
chrIII SPCPB1C11.02 2072907 F 
chrI SPAC1565.03 1294381 F 
chrII SPBC83.12 1531988 F 
chrI SPAC32A11.01 2445257 F 
chrI SPAC3A11.06 3462098 R 
chrIII SPCC1494.09c 2343890 R 
chrI SPAC20G4.02c 4817740 R 
chrI SPAC23H3.12c 2515985 R 
chrI SPAC19G12.04 4049553 F 
chrI SPAC19G12.13c 4070840 R 
chrI SPAC27D7.03c 4514964 R 
chrI SPAC18B11.03c 311918 F 
chrI SPAC630.07c 359051 R 
chrI SPAC3C7.09 2083358 F 
chrII SPBC36.01c 835352 R 
chrII SPBC16E9.03c 1921745 R 
chrII SPBC3B9.22c 4006355 R 
chrIII SPCC962.05 554379 F 
chrI SPAC7D4.09c 2622466 F 
chrI SPAC11H11.02c 4778521 R 
chrII SPBC3B9.17 4020309 F 
chrII SPBC215.04 4030555 F 
chrI SPAC11D3.05 114026 F 
chrI SPAC1002.01 1798347 F 
chrI SPAC16E8.02 3504068 F 
chrI SPAC11E3.08c 5297733 R 
chrII SPBP35G2.04c 970048 R 
chrII SPBC685.02 2772768 F 
chrI SPAC12G12.16c 315655 F 
chrII SPBC11B10.06 1494857 F 
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chrII SPBC21B10.11 1650658 R 
chrII SPBC12D12.06 2316043 F 
chrI SPAC13C5.06c 435996 R 
chrI SPAC823.16c 2610917 R 
chrI SPAC30C2.03 4637119 F 
chrI SPAC186.01 5527572 F 
chrII SPBC800.11 275671 F 
chrII SPBC106.02c 376983 R 
chrII SPBC409.12c 1163209 R 
chrII SPBC16E9.06c 1926201 R 
chrII SPBC609.04 3166458 F 
chrIII SPCC736.02 313147 F 
chrI SPAC343.03 1643082 F 
chrI SPAC3A11.04 3466335 R 
chrII SPBC1703.04 2921241 F 
chrII SPBC2D10.13 2988635 F 
chrII SPBC317.01 3625865 F 
chrII SPBC3B9.09 4002946 F 
chrII SPBC685.04c 2777112 R 
chrII SPBC16C6.10 4349614 F 
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4. List of genes with particularly disorganized dinucleosome peaks in abo1∆ cells 
SPAC25B8.03 SPAC16C9.04c SPAPB24D3.07c SPAC5H10.05c SPBC336.14c 
SPAC17C9.13c SPAC1687.03c SPAC31G5.09c SPAC1F5.10 SPBC19C7.05 
SPAC12B10.03 SPAC1687.15 SPAC26H5.11 SPAC139.04c SPBC19C7.11 
SPAC1834.09 SPAC1687.19c SPAC25B8.02 SPAC22A12.03c SPBP4H10.17c 
SPAC1B3.06c SPAC56F8.10 SPAC29E6.01 SPAC607.09c SPBC25H2.14 
SPAC1B3.07c SPAC22A12.01

c 
SPAC22F8.11 SPAC18G6.15 SPBC17D11.06 

SPAC2E12.03c SPAC6F12.12 SPAC1952.06c SPAC13D6.03c SPBC2G2.15c 
SPAC11E3.09 SPAC3H1.14 SPAC890.08 SPAC19A8.15 SPBC16D10.02 
SPAC18B11.04 SPAC23H3.05c SPAC29A4.14c SPAC23H3.14 SPBC317.01 
SPAC31A2.11c SPAC7D4.03c SPAC977.10 SPAC31G5.02 SPBC1347.12 
SPAC2F7.04 SPAC6F6.05 SPAC1F8.04c SPAC1B1.02c SPBC16A3.10 
SPAC1D4.13 SPAC1B2.04 SPAC11D3.14c SPAC1F12.04c SPBC16C6.03c 
SPAC1687.13c SPAC3G9.09c SPAC5H10.08c SPAC4H3.10c SPCC320.10 
SPAC10F6.17c SPAC3G9.07c SPAC23C4.14 SPAC1071.13 SPCC548.06c 
SPAC57A10.09c SPAC2F3.01 SPAC5D6.07c SPAC2F3.05c SPCC338.16 
SPAP27G11.12 SPAC2F3.16 SPAPB1A10.04c SPAPB15E9.01c SPCC584.14 
SPAC1610.04 SPAC458.04c SPAPB1A10.15 SPAC26H5.08c SPCC584.02 
SPAC110.04c SPAPJ691.02 SPAC140.04 SPAC683.02c SPCC576.03c 
SPAC9G1.04 SPAC11E3.15 SPAC4F8.03 SPAC17C9.15c SPCC830.03 
SPAC607.05 SPAC750.07c SPAC589.06c SPAC144.14 SPCC613.04c 
SPAC732.01 SPAC11D3.06 SPAC589.07c SPAC4F10.18 SPCC4G3.19 
SPAC15F9.03c SPAC5H10.06c SPAC3A11.11c SPAC14C4.15c SPCC364.01 
SPAC6B12.03c SPAC5H10.11 SPAC926.07c SPAC1039.08 SPCC1672.01 
SPAPB2B4.05 SPAC13G6.03 SPAC926.08c SPAC977.17 SPCC16C4.05 
SPAC2E1P3.02c SPAC1751.04 SPAC2F3.14c SPAC5H10.04 SPCC1393.08 
SPAC31G5.08 SPAC1751.02c SPAC25B8.08 SPAC12G12.10 SPCC24B10.21 
SPAC16A10.02 SPAC227.14 SPAC23D3.12 SPAC2F7.07c SPCC550.07 
SPAC1071.12c SPAC4G8.03c SPAC16.05c SPAC1296.05c SPCC417.08 
SPAC25G10.01 SPAC1A6.05c SPAC27D7.04 SPAC139.01c SPCC1442.05c 
SPAC17C9.11c SPAC30D11.07 SPAC144.18 SPAC20G8.03 SPCC18.07 
SPAPYUG7.03c SPAPB1A10.08 SPAC922.03 SPAC1002.16c SPCC965.05c 
SPAC19B12.02c SPAC6C3.08 SPAC869.10c SPAC20H4.02 SPCC330.04c 
SPAPB8E5.07c SPAC23H3.07c SPAC1F5.07c SPAC13F5.05 SPCC970.05 
SPAC1952.07 SPAC4A8.10 SPAC12G12.09 SPAC18G6.10 SPCC1183.02 
SPAC1250.02 SPAC7D4.14c SPAC3H8.10 SPAC22H10.08 SPCC1183.03c 
SPAC3G6.03c SPAC8F11.04 SPAC22F3.08c SPAC8F11.09c SPCC1183.10 
SPBC119.09c SPBC582.04c SPBP4G3.03 SPAC750.01 SPCC622.05 
SPBC216.03 SPBC428.02c SPBC1773.08c SPAC57A10.05c SPCC1223.04c 
SPBC1709.05 SPBC1709.10c SPBC1773.16c SPAP27G11.03 SPCC1919.06c 
SPBC32H8.11 SPBC725.17c SPBC1271.12 SPAC343.13 SPCC1919.15 
SPBC28F2.04c SPBC3D6.02 SPBC1271.05c SPAC20H4.07 SPCC790.02 
SPBC16E9.03c SPBC11B10.03 SPBC428.14 SPAC13F5.04c SPCC1235.17 
SPBP23A10.08 SPBC1215.02c SPBC428.19c SPAC17G8.07 SPCC4G3.18 
SPBC23G7.08c SPBC17G9.13c SPBC354.03 SPAC6F6.09 SPCC1672.05c 
SPBC24C6.10c SPBC16H5.03c SPBC3H7.12 SPACUNK4.19 SPCC645.04 
SPBC1921.06c SPBC36B7.04 SPBC1711.16 SPAC6G9.03c SPCC965.06 
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SPBC3E7.05c SPBC1921.07c SPBP18G5.02 SPAC926.03 SPCC794.09c 
SPBP19A11.07c SPBC3E7.12c SPBC32F12.06 SPAC323.05c SPCC553.05c 
SPBP4H10.07 SPBC32F12.02 SPBC17D1.04 SPAC23A1.10 SPCC594.04c 
SPBC1703.08c SPBC19C7.10 SPBC3B8.06 SPAC694.05c SPCC24B10.05 
SPBC30D10.11 SPBC215.09c SPBC1105.06 SPAC17C9.02c SPCC13B11.01 
SPBC1778.04 SPBC16G5.03 SPBC887.02 SPAC29A4.02c SPCC18.13 
SPBC19F8.07 SPBC1683.06c SPBC3B9.13c SPAC4D7.04c SPCC1739.15 
SPBC25H2.18 SPBC800.05c SPBC1652.01 SPAC186.04c SPCC830.07c 
SPBC3B8.07c SPBC1271.09 SPBP4G3.02 SPAC750.02c SPCC613.03 
SPBC2G2.05 SPBC947.08c SPBPB2B2.10c SPAC977.14c SPCC794.01c 
SPBC1718.03 SPBPJ4664.04 SPBPJ4664.06 SPAC18B11.09c SPCC1529.01 
SPBC887.03c SPBC119.04 SPBC30B4.01c SPAC3H8.06 SPCC4B3.12 
SPBC19F5.03 SPBC1734.11 SPBC30B4.02c SPAC1687.10 SPBC1773.01 
SPBC1604.07 SPBC1734.12c SPBC9B6.11c SPAC30D11.02c SPBC1685.12c 
SPBC215.10 SPBP22H7.03 SPBC3H7.01 SPAC1565.08 SPCC14G10.01 
SPBC1289.11 SPBP22H7.09c SPBC29A3.03c SPAC9.11 SPCC1393.06c 
SPBC1348.05 SPBC3H7.13 SPBC365.09c SPAC3C7.14c SPCC1919.11 
SPBC359.06 SPBC14C8.05c SPBC6B1.09c SPAC23C11.14 SPCP20C8.01c 
SPBC1683.11c SPBC36B7.09 SPBC1703.07 SPAC13D6.01 SPCC569.09 
SPBC902.02c SPBC365.05c SPBC30D10.05c SPAC4G9.20c SPCC569.03 
SPBC36.10 SPBC32F12.17 SPBC4B4.02c SPAC823.14 SPBC1198.08 
SPBC83.09c SPBP4H10.19c SPBC16D10.03 SPAC1805.01c SPBC800.13 
SPBP16F5.06 SPBC2D10.20 SPBP8B7.13 SPAC1805.08 SPCC31H12.02c 
SPBC16E9.01c SPBC1778.08c SPBC215.05 SPAC688.13 SPCC31H12.06 
SPBP23A10.10 SPBC20F10.04c SPBC215.11c SPAC1486.10 SPCC191.09c 
SPBC14C8.04 SPBC3B8.04c SPBC543.10 SPAC3A11.13 SPCC1223.14 
SPBC32F12.07c SPBC13A2.03 SPBC1289.16c SPAC323.02c SPCC1494.09c 
SPBC1778.07 SPBC887.18c SPBC1348.14c SPAC323.03c SPCC1827.04 
SPBC776.16 SPBC21C3.18 SPBC1683.09c SPAC323.06c SPBCPT2R1.01

c 
SPBC32C12.02 SPBC211.01 SPBC530.02 SPAPB8E5.02c SPBC1683.07 
SPBC56F2.12 SPBC16G5.06 SPBC646.06c SPAC1B3.15c SPBC29A10.03c 
SPBC3F6.04c SPBC16G5.07c SPBP35G2.09 SPAC4D7.02c SPBC4F6.09 
SPBC1289.06c SPBC16E9.12c SPBC409.16c SPAC4D7.10c SPCC1450.08c 
SPBPB2B2.13 SPBC1711.10c SPBC83.04 SPAC29B12.11c SPCC330.02 
SPBC1348.01 SPBC17G9.05 SPBC83.11 SPAC186.01 SPCC550.02c 
SPBPB21E7.02c SPBC19G7.14c SPBC18H10.11c SPBPB21E7.09 SPCC622.21 
SPBC1773.15 SPBC12C2.03c SPBC18H10.17c SPBC1198.03c SPBC16D10.09 
SPBC106.15 SPBC29A10.14 SPBC18H10.18c SPBC1198.14c SPBC365.03c 
SPCC1795.06 SPCC550.12 SPBC19G7.06 SPBC15D4.01c SPCC13B11.02c 
SPCC553.10 SPCC1322.02 SPBC19G7.13 SPBC15D4.07c SPCC1183.08c 
SPCC364.02c SPCC1322.05c SPBC12C2.09c SPBC1718.07c SPCC830.07c 
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The impact of the HIRA histone chaperone upon
global nucleosome architecture

Csenge Gal1, Karen M Moore2, Konrad Paszkiewicz2, Nicholas A Kent3,*, and Simon K Whitehall1,*

1Institute for Cell & Molecular Biosciences; Newcastle University; Newcastle upon Tyne, UK; 2Biosciences, College of Life & Environmental Sciences; University of Exeter; Exeter, UK;
3Cardiff School of Biosciences; Cardiff University; Cardiff, UK

Keywords: Chromatin, heterochromatin, HIRA, histone chaperone, nucleosome assembly, S. pombe

HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly
and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have
used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome
organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy
at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA
polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the ¡1
nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for
nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic
(dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for
normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role
in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.

Introduction

Nucleosome assembly is believed to occur in a step-wise man-
ner whereby the deposition of an (H3-H4)2 tetramer is followed
by the assembly of 2 flanking H2A-H2B dimers.1,2 This process
is regulated by a structurally diverse group of proteins termed his-
tone chaperones.1,2 Traditionally, these proteins have been classi-
fied as either H3-H4 or H2A-H2B chaperones based upon their
histone binding specificity, although some chaperones such as
FACT are able to bind both H3-H4 and H2A-H2B.1 During S-
phase nucleosomes are removed ahead of the replication fork and
then reassembled onto newly synthesized DNA. However other
processes such as transcription, recombination and repair also
result in the loss of nucleosomes from DNA which necessitates
histone chaperones that mediate replication–independent nucleo-
some assembly.3 Furthermore, it is now established that in addi-
tion to their traditional assembly function, histone chaperones
can also mediate nucleosome disassembly and histone exchange.
Indeed the central role played by histone chaperones in nucleo-
some dynamics is becoming increasingly recognized.2

The HIRA (or HIR) complex is an evolutionarily conserved
H3-H4 histone chaperone that is implicated in a range of pro-
cesses including embryonic development, angiogenesis, cellular

senescence and aging.4 The human complex is composed of
HIRA in association with UBN1 and CABIN15-7 and similarly
yeast HIRA proteins (Hir1 and Hir2 in Saccharomyces cerevisiae
and Hip1 and Slm9 in Schizosaccharomyces pombe), are stably
associated with orthologs of CABIN1 and UBN1.8-11 HIRA co-
operates with another H3-H4 chaperone, Asf1 to mediate repli-
cation-independent nucleosome assembly.4 Consistent with this,
in higher eukaryotes HIRA is associated with the histone variant
H3.3 which is deposited into chromatin independently of DNA
synthesis.6

The modulation of chromatin structure by HIRA has been
implicated in multiple aspects of transcriptional regulation. In
some contexts HIRA is necessary for transcriptional activation.
For example the induction of Vegfr1 in human endothelial cells
in response to angiogenic signals is HIRA-dependent.12 Similarly
in fission yeast, HIRA subunits are recruited to promoters of spe-
cific genes in response to environmental stress. Inactivation of
HIRA compromises nucleosome eviction and transcriptional
induction at these genes.13 Conversely, HIRA has also been
shown to be required for transcriptional repression. S. cerevisiae
Hir1 and Hir2 were initially characterized as repressors of histone
gene expression,14 a role which is conserved in other organ-
isms.15,16 Furthermore, HIRA is required for the integrity of
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silent chromatin in a variety of systems. In fission yeast HIRA/
Asf1 spreads across heterochromatic regions via association with
the Heterochromatin Protein (HP1) ortholog, Swi6, to maintain
a silent state.10,15,17 In human fibroblasts HIRA/Asf1a is required
for the formation of senescence associated heterochromatin,18

and furthermore HIRA interacts with PRC2 and is implicated in
the maintenance of the repressive H3K27me mark at develop-
mentally regulated genes in mouse embryonic stem cells.19

HIRA also suppresses the expression of retroelements. Mutation
in HIRA components alleviates silencing of S. pombe Tf2 LTR
retrotransposons10,20 and human HIRA was revealed as one of a
group of chromatin assembly factors that suppresses HIV-1 provi-
ral expression to maintain latency.21 Other studies have also sug-
gested a global role for HIRA in transcriptional elongation and the
suppression of cryptic promoters. In S. cerevisiae hir mutations are
synthetically lethal when combined with mutations in the yFACT
complex which facilitates transcription elongation.22 Furthermore
inactivation of the HIRA complex results in increased levels of
spurious transcripts from cryptic promoters in ORFs.20,23,24 The
genomes of cells defective in HIRA function also exhibit increased
accessibility to DNA damaging agents and nucleases.20,25 Taken
together the data indicate that the HIRA histone chaperone plays
an important role in maintaining the global integrity of chroma-
tin.20,25 Given this we have identified the impact of the fission
yeast HIRA complex on genome-wide nucleosome architecture.
Using a chromatin-sequencing approach26 we have mapped
changes to nucleosome position and occupancy in cells lacking
HIRA function. We find that HIRA is required for normal nucle-
osome occupancy over ORFs, at some promoters, and also at het-
erochromatic repeats. As such, HIRA plays an important role in
the maintenance of global nucleosomal architecture.

Results

We employed a chromatin sequencing technology26 to deter-
mine the impact of the HIRA histone chaperone complex on
genome-wide nucleosome occupancy and positioning. With this
approach, chromatin is treated with micrococcal nuclease
(MNase) to generate ladders of MNase-resistant DNA which is
then subjected to sequencing. The resulting datasets are then
stratified based on paired read end-to-end distance into ranges
representing the expected sizes of MNase resistant DNA species
in eukaryotic chromatin. Thus read pairs of 150 bp (C/¡ 20%)
derive primarily from mono-nucleosomes, whereas read pairs of
300 bp (C/¡ 20%) derive from di-nucleosomes. Frequency dis-
tributions of the read midpoints can then be mapped to the
genome and the peaks in these distributions used to infer the
presence of positioned chromatin particles in the cell popula-
tion.26 Therefore chromatin derived from fission yeast cells lack-
ing HIRA function (hip1D) was digested with MNase to
generate a DNA ladder with a highly similar molecular weight
distribution to our wild type control sample (Fig. 1A and B).
Three biological replicate samples were pooled and sequenced
which generated data sets for wild type and hip1D comprising of
56.3 and 49.6 million reads, respectively.

We first compared the average distribution of nucleosomes
mapped in our wild-type data-set with that from a previously
published study.27 A cumulative frequency distribution of nucle-
osome position at, and surrounding nucleosome positions was
plotted to assess how closely the datasets matched. This revealed
that the distribution from our wild-type data set is coincident
with the previously published wild-type nucleosome data-set and
is distinct from a MNase-digested genomic DNA control27

(Fig. 1C). These control comparisons, suggest that the nucleo-
some positions we map are accurate and that our wild-type data
set agrees well with published work.

HIRA and the integrity of chromatin associated with ORFs
As HIRA has been linked to a variety of aspects of transcrip-

tional control,4 we examined the impact of deletion of hip1C

upon the chromatin surrounding the transcription start-sites (TSS)
of protein coding genes. Typically chromatin in these regions is
organized with a nucleosome depleted region (NDR) followed by
a well ordered nucleosome array that extends from the TSS and
packages the transcribed region.28 In comparison, promoter
regions are generally associated with lower nucleosome levels.
Figure 2A shows a comparison of average nucleosome positions
surrounding TSS in wild-type and hip1D cells. Loss of HIRA did
not result in any changes to the NDR or the C1 nucleosome peak
indicating that HIRA is not required for the maintenance of chro-
matin structure around the 50 end of genes, at least at a global
level. Nonetheless, the amplitudes of the nucleosome peaks from
C4 onwards were reduced indicating that HIRA does contribute
to the maintenance of chromatin associated with ORFs.

The reduction in the average peak height in the hip1D mutant
was suggestive of a decrease in nucleosome occupancy and consis-
tent with this view western blotting revealed a significant reduc-
tion in histone protein levels in cells lacking HIRA (Fig. 2b).
Based upon this finding we predicted that the hip1D allele would
show a strong genetic interaction with mutations in hrp3C which
encodes a CHD ATP-dependent remodeler that controls nucleo-
some spacing.27,29 Analysis of a hip1D hrp3D double mutant
revealed that this strain was extremely slow growing and had
severely elongated cell morphology (Fig. 2C; Fig. S1) Therefore
as predicted, loss of correct nucleosome spacing exacerbates the
growth defects associated with HIRA inactivation.

HIRA suppresses aberrant transcription from the bodies of
genes20 and so the global perturbation to genic chromatin that is
observed in the hip1D strain is consistent with this finding. To
further investigate this we analyzed the nucleosome profiles of a
group of genes which have been shown to produce cryptic tran-
scripts when HIRA function is absent.17,20 At the hrp1C locus
loss of HIRA function resulted in marked changes to the MNase
profile which extended throughout the entire gene and into the
neighboring genes (atg12C and pap1C) (Fig. 3A; Fig. S2). In con-
trast, the other genes we inspected exhibited relatively modest
changes to their nucleosome profiles in the hip1D background
(Fig. 3B; Fig. S3). An example of this is the dbp7C gene, where
changes to nucleosome occupancy were mainly observed at the
30-end of the gene and downstream of the transcription termina-
tion site. It therefore appears that relatively small changes to
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nucleosome architecture
may be sufficient to result
in increased levels of cryptic
transcripts.

In order to confirm
some of the differences in
the nucleosome profiles that
were observed in Fig. 3A
and B, mononucleosomal
DNA was isolated from
independent pools of
MNase-digested DNA and
a quantitative PCR (qPCR)
approach30 was used to
compare the occupancy of
some specific nucleosomes
in the wild-type and hip1D
samples. Similar to the
results from the genome-
wide mapping studies, the
qPCR analysis also indi-
cated that occupancy of
nucleosomes near hrp1C

(designated hrp1_5137)
and the 30 end of the
dbp7C gene (dbp7_1927)
were reduced in hip1D
whereas the occupancy of
nucleosome located at the
50 (dbp7_10) was similar in
wild type and hip1D.

Impact of HIRA on
chromatin at promoters

In addition to the sup-
pression of spurious tran-
scription initiation, HIRA
represses expression from
numerous bona fide RNA
polymerase II (Pol II) pro-
moters. Indeed the expres-
sion of approximately 4%
of fission yeast genes is
increased by loss of HIRA
function.20 We first com-
pared the chromatin organization of these ‘HIRA-repressed’ genes
with the complete set of S. pombe coding genes. HIRA-repressed
genes were found to have obvious differences in their chromatin
organization as average nucleosome peaks associated with the cod-
ing sequences of these genes were poorly ordered and the height of
the peaks was lower than the global average (Fig. 4A). This sug-
gests that the coding sequences of HIRA-repressed genes are associ-
ated with a lower than average nucleosome occupancy.
Furthermore, the NDR of the HIRA-repressed gene set was both
narrower and shallower when compared to the average promoter.
These features are known to be characteristic of genes that have a

low level of expression,31 a finding which is in agreement with our
previous microarray analyses which revealed that HIRA target
genes overlap significantly with lowly expressed genes.20 We next
determined the impact of hip1C deletion upon chromatin architec-
ture of HIRA-repressed genes. Loss of hip1C resulted in a reduc-
tion in the height of the ¡1 nucleosome peak and subtle shift in
its position which suggests that HIRA promotes the proper occu-
pancy of the ¡1 nucleosome, a finding which is consistent with
the repressive function of HIRA at these promoters (Fig. 4B).

We next examined the histone H3-H4 genes hht2C-hhf2C

as their expression outside of S-phase is repressed in a

Figure 1. Paired-end mode chromatin-seq of wild type and hip1D mutant S. pombe. (A) Ethidium-stained gel separa-
tion of DNA pools extracted from MNase digested S. pombe chromatin used for chromatin sequencing in this study.
Mono-, di- and tri-nucleosomal bands are visible. (B) Frequency distribution of paired read end-to-end size values
after chromatin-seq of DNA shown in (A). (C) Nucleosomes in wild type cells (wt chromatin) were defined as the posi-
tions of 150 bp size class particle frequency peak summits (frequency value >25). This procedure marked 60, 658
putative nucleosome positions in the S. pombe genome. The 150 bp size class particle frequency distribution cen-
tered on, and surrounding (C/¡1200 bp) each of these positions was then summed and normalized to the average
frequency value occurring in the C/¡1200 bp window. The wavelength of the peak pattern should be equal to the
S. pombe nucleosome repeat length. Comparison to a previously published MNase-treated naked DNA (genomic
DNA) dataset and a wt chromatin data set 27 is shown.
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HIRA-dependent manner.32 hht2C-hhf2C are divergently tran-
scribed from a short promoter, and analysis of our MNase
profiles revealed the presence of a ¡1 nucleosome peak in
the center of this region. Since the majority of fission yeast
cells in an asynchronous culture will be in G2, this chroma-
tin configuration is likely to represent a repressed promoter
state. Consistent with this hypothesis the promoter nucleo-
some peak occludes the AACCCT box which is a binding
site for the GATA-type factor, Ams2 and the Myb domain
protein, Teb1, which activate the transcription of histone
genes.32,33 Interestingly, both the MNase profiles and qPCR
analysis of mononucleosomal DNA indicated that deletion
of hip1C resulted in a marked reduction of this peak, sug-
gesting that HIRA promotes the occupancy of this promoter
nucleosome to suppress the inappropriate expression of his-
tone genes (Fig. 4C and D).

HIRA is not required
for chromatin architecture
at Pol I- and Pol III-
transcribed genes

As HIRA has a global
impact upon the chroma-
tin associated with Pol II-
transcribed genes we exam-
ined whether it was also
required for chromatin
organization at Pol I and
Pol III genes. We analyzed
the chromatin configura-
tion surrounding Pol III-
transcribed tRNA genes. In
S. cerevisiae tRNA genes
are typically nucleosome
free and flanked by nucleo-
somes positioned upstream
(US) and downstream
(DS).34 In comparison, it
has been suggested that
many tRNA genes in S.
pombe (like those in resting
human CD4C T cells) are
associated with nucleo-
somes.34 Plots of the aver-
age mono-nucleosome
(150 bp) profile of 171 S.
pombe tRNA genes aligned
by TSS are consistent with
this earlier report as we
detected a peak centered at
C20 relative to the TSS
(Fig. 5A). At this global
level we were able to detect
an upstream (US) nucleo-
some peak positioned at
¡160 bp but we found lit-
tle evidence of a down-

stream nucleosome array. Loss of HIRA did not impact upon the
US nucleosome although we did note some reduction in the
height of the peak located at C20 bp. tRNA genes have internal
promoter elements that are binding sites for TFIIIC which in
turn directs the assembly of TFIIIB upstream of the transcription
start-site. TFIIIB acts as the initiation factor by bringing Pol III
to DNA.35 In order to see if HIRA has any global impact upon
Pol III transcription factor binding we examined the profile of
75 bp particles as it has been demonstrated that these particles
result from the protection of DNA by transcription factors rather
than by nucleosomes.26 Comparison of average 75 bp profiles
revealed the presence of a prominent peak immediately upstream
of the TSS which given its position is likely to result from TFIIIB
binding (Fig. 5B). Loss of HIRA function did not impact upon
this peak suggesting that it does not globally affect TFIIIB occu-
pancy at tRNA genes.

Figure 2. HIRA is required for normal nucleosome occupancy at Pol II transcribed genes. (A) Average nucleosome
(150 bp size class particle) sequence read frequency profiles for 4013 S. pombe genes aligned at the transcription
start site (TSS). (B) Whole cell extracts were subjected to western blotting with histone H3 (Abcam) and tubulin anti-
bodies. An example of the primary data is shown along with a quantification of histone H3 levels normalized to tubu-
lin (right). Data are the mean of 9 independent repeats and error bars represent §SEM. *** indicates P < 0.001 t-test.
(C) Strains, NT5 (wt), AW046 (hrp3D), SW700 (hip1D), CsG349 (hip1D hrp3D) were grown in YE5S medium until they
reached an OD595 D 0.2–0.3. Cultures were subjected to five-fold serial dilution, spotted onto YE5S agar and incu-
bated for 4 d at 30�C.
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Figure 3. HIRA and nucleosome architecture in gene sequences. (A) Nucleosome (150 bp) sequence read frequency profiles of a 6.1 kb region of chro-
mosome 1 (bp 2194720 to 2200820). The positions and orientation of the hrp1C, atg12C and pap1C genes are indicated below. (B) Nucleosome (150 bp)
sequence read frequency profiles of the dbp7C gene relative to the TSS. (C) The occupancy of specific nucleosomes was estimated by qPCR analysis of
mononucleosomal DNA as described in the Materials and Methods. An equivalent amount of genomic DNA was analyzed as a control. The positions of
the nucleosome peaks under analysis and the PCR primers are indicated in (A and B). The level of occupancy in hip1D relative to wild type is shown.
Data is the mean of 2 technical qPCR repeats.
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Recently, the HIR complex has been implicated in the repres-
sion of rDNA transcription in S. cerevisiae.36 We therefore ana-
lyzed the MNase profiles of S. pombe rDNA repeat sequences.
This suggested that Pol I-transcribed genes are nucleosome free
while the intergenic regions are associated with well-positioned
nucleosomes. However, loss of HIRA did not have a marked
affect upon the MNase profiles of these regions (Fig. 5C) and so
we find no evidence to suggest that HIRA is required for the
maintenance of nucleosome architecture at Pol I genes in fission
yeast. We also examined nucleosome profiles surrounding repli-
cation origins which were aligned as described previously.37 In
agreement with previous studies,31,37 a wide nucleosome

depleted region (NDR) was detectable over the origin center.
This feature was also readily detectable in hip1D cells and indeed
the average MNase profile of wild-type and hip1D cells surround-
ing origins was strikingly similar (Fig. S4) suggesting that HIRA
does not contribute to the global organization of chromatin at
replication origins.

Impact of HIRA upon nucleosome organization
in silent chromatin

Loss of any one of the subunits of the HIRA complex alle-
viates heterochromatic silencing at the cryptic mating (mat)
type locus and also at pericentromeric repeats.8,10 These

Figure 4. Impact of HIRA on promoter nucleosome profiles. (A) Average nucleosome profiles for 4013 S. pombe genes aligned at the transcription start
site (TSS) compared to the nucleosome sequence read frequency profile of a set of 107 HIRA-repressed protein-coding genes.20 (B) Average nucleosome
profiles of a set of 107 HIRA-repressed genes in wild type and hip1D cells. (C) Comparison of the nucleosome profile at the hht2C-hhf2C locus in wild
type and hip1D cells. The positions of the coding sequences are indicated by solid blue boxes while 50 and 30 UTRs are represented by open boxes. Posi-
tions of hht2C-hhf2C transcription start-sites, termination sites and the AACCCT box are as described by Takayama and Takahashi.30 (D) Occupancy of
the hht2C-hhf2C ¡1 nucleosome (¡1 nuc) was determined by qPCR analysis of mononucleosomal DNA. The position of the PCR primers and peak are
indicated in (C). The level of occupancy in hip1D relative to wild type is shown. Data is the mean of 2 technical qPCR repeats.
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heterochromatin domains are enriched for methylation of his-
tone H3 lysine 9 (H3K9me) which directs the assembly of
chromodomain proteins such as the HP1 ortholog, Swi6.38

Hip1 interacts with Swi6 and also the histone chaperone
Asf1, which is required for nucleosome occupancy in hetero-
chromatin.17 We therefore examined the impact of hip1C

deletion upon the nucleosome profile at pericentromeric dg-dh
repeats. This revealed that loss of HIRA resulted in changes
to specific peaks rather than a uniform reduction in occu-
pancy across the entire repeat region (Fig. 6A and B). Consis-
tent with this, qPCR analysis also indicated that occupancy of
specific dg and dh nucleosomes (designated dh_nuc and
dg_nuc) were reduced in the absence of HIRA (Fig. 6C).
This suggests that HIRA is required to maintain the proper
occupancy of a subset of nucleosomes within heterochromatic
domains and that this is required for transcriptional silencing
in this region.

HIRA is also required for silencing the expression of all 13
intact Tf2 LTR retrotransposons.20 The mechanism of silencing
of these elements is distinct from heterochromatin as although it
requires HIRA, it is independent of H3K9me.10,39 Plots of aver-
age nucleosome profiles of these LTR retrotransposons showed
that they have a nucleosome architecture which is distinct from
typical RNA Pol II-transcribed genes. At Tf2 promoters
(50 LTRs), a peak overlapped the TSS and the NDR was located
downstream (rather than upstream) of the TSS (Fig. 7A). Inter-
estingly, deletion of hip1C had very little affect on the nucleo-
some peak adjacent to the TSS however we noted that hip1D
cells had reduced C1, C2, and C3 nucleosome peaks (relative to
the NDR). qPCR analysis also indicated that deletion of hip1C

resulted in a reduction in the occupancy of the C2 nucleosome
(Fig. 7B). These findings suggest that the nucleosomes down-
stream of the TSS may play a role in repression of Tf2
retrotransposons.

Figure 5. Nucleosome architecture at Pol III and Pol (I)genes. (A) Average nucleosome (150 bp size class particle) sequence read frequency profiles for
171 S. pombe tRNA genes aligned at the transcription start site (TSS). (B) Average 75 bp size class particle sequence read frequency profiles for 171 S.
pombe tRNA genes aligned at the transcription start site (TSS). (C) Nucleosome (150 bp size class particle) read profile over an rDNA repeat. The positions
of the 28S, 5.8S and 18S rRNA genes are indicated.
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Discussion

Here we have determined the global impact of HIRA upon
nucleosome architecture and in agreement with previous evi-
dence, find that this histone chaperone plays roles in the mainte-
nance of both euchromatic and heterochromatic regions of the
genome. We demonstrate that cells lacking HIRA (hip1D)

experience a global reduction in nucleosome occupancy. This is
consistent with previous studies which revealed that the genomes
of fission yeast HIRA mutants are more accessible to DNA dam-
aging agents.20 Similarly in mammalian cells, HIRA depletion
results in increased sensitivity of the genome to nucleases.25

The co-ordinated replacement of nucleosomes that are
displaced by elongating Pol II is necessary for maintaining the

integrity of chromatin
structures associated with
gene sequences.40 The
finding that cryptic intra-
genic transcripts increase
in the absence of HIRA20

is consistent with its pro-
posed role in chromatin
reassembly in the wake of
Pol II. Our data adds fur-
ther support to this
hypothesis, as average
MNase profiles revealed
that hip1D cells have a
global reduction in nucleo-
some occupancy which
was most pronounced
toward the 30 end of gene
sequences. Reduced levels
of specific nucleosome
peaks were also detectable
at individual genes where
loss of HIRA results in
increased cryptic transcrip-
tion. However there are

Figure 7. Nucleosome structure of Tf2 LTR retrotransposons. (A) Average nucleosome (150 bp) sequence read fre-
quency profile for the 50 region of Tf2 elements aligned relative to the translation start site (ATG). (B) The occupancy
of a specific Tf2 nucleosome was estimated by qPCR analysis of mononucleosomal DNA as described in the Materials
and Methods. An equivalent amount of genomic DNA was analyzed as a control. The position of the nucleosome
peak and the PCR primers are indicated in (A). The level of occupancy in hip1D relative to wild type is shown. Data is
the mean of 2 technical qPCR repeats.

Figure 6. Loss of HIRA perturbs nucleosome architecture at centromeric repeats. (A and B) A schematic diagram of centromere 1 is shown along with the
average nucleosome (150 bp) sequence read frequency profiles of the indicated regions of the dg and dh repeats. (C) The occupancy of specific dh and
dg repeat nucleosomes was estimated by qPCR analysis of mononucleosomal DNA as described in the Materials and Methods. An equivalent amount of
genomic DNA was analyzed as a control. The positions of the nucleosome peaks under analysis are indicated in (A and B). The level of occupancy in
hip1D relative to wild type is shown. Data is the mean of 2 technical qPCR repeats.
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also some regions of the genome which are more severely per-
turbed in the absence of HIRA. Indeed marked changes to both
the occupancy and positioning of nucleosome peaks were evident
surrounding the hrp1C locus. Why specific regions of the genome
show a greater dependency upon HIRA than others is currently
not clear.

Comparison of average nucleosome plots aligned by TSS in
wild-type and hip1D cells did not reveal a global impact of HIRA
upon chromatin at promoters. However when we analyzed the
profiles of a set of HIRA repressed genes20 we found that hip1C

is required for the normal occupancy and positioning of the ¡1
nucleosome. This set of genes has a chromatin structure that is
characteristic of lowly expressed genes31 which is consistent with
transcript profiling of HIRA mutant cells.20 Taken together this
suggests that HIRA commonly functions to maintain a closed/
repressive chromatin structure at these genes. This was also evi-
dent at the hht2C-hhf2C promoter where HIRA is required for
full occupancy of the ¡1 nucleosome peak. S. pombe has 3 H3-
H4 gene pairs however HIRA-mediated repression of histone
gene expression is believed to operate predominantly through
this gene pair.32 Interestingly, the ¡1 nucleosome peak occludes
the proposed binding site for the Ams2 and Teb1 activators sug-
gesting that remodelling of this nucleosome may be required dur-
ing transcription activation. Reduced occupancy of this
nucleosome in the absence of HIRA would be expected to facili-
tate binding of activating transcriptions factors. While the expres-
sion of ams2C is limited to G1/S,41 the expression of teb1C is
constitutive.42 Therefore the absence of HIRA may allow
increased Teb1 binding and thus expression of hht2C-hhf2C out-
side of S phase. Our results suggest that HIRA is required for a
‘closed’ chromatin configuration at some promoters and similarly
in S. cerevisiae Hir1 has been shown to be necessary for chroma-
tin re-assembly at the PHO5 promoter during the switch from
active transcription to repression.43 While these results indicate
that HIRA plays roles in promoting nucleosome occupancy, in
other contexts it is also involved in mediating nucleosome evic-
tion. HIRA subunits are recruited to specific stress-responsive
promoters to facilitate nucleosome removal and gene induc-
tion.13 Furthermore, the MNase profiles suggested that the occu-
pancy of some nucleosomes is increased in the absence of HIRA.
Therefore, in common with other histone chaperones, HIRA
seems capable of mediating both nucleosome assembly and
disassembly.2

Chromodomain HP1 proteins such as Swi6 are hallmarks
of heterochromatin. It has been proposed that these factors
provide a platform for the assembly of other chromatin mod-
ifying proteins (including HDACs, ATP-dependent remodel-
ers and histone chaperones) which enforce silencing of the
underlying repeat sequences.38 HIRA is one of these effectors
as its correct localization at heterochromatic repeats is depen-
dent upon Swi6.17 Previous studies have shown that changes
to nucleosome positioning perturb heterochromatin func-
tion.44 Here we present data which indicates that the changes
in nucleosome occupancy associated with loss of HIRA nega-
tively impact upon heterochromatin silencing. Our MNase
profiles indicate that loss of HIRA results in changes to

specific nucleosomes rather than a uniform reduction across
pericentromeric dg-dh repeats. Nonetheless, that cells lacking
HIRA have increased levels of centromeric ncRNAs and
defective trans-gene silencing,10,15,17 implies that these
changes are sufficient to impair heterochromatin function and
allow increased access of Pol II to repeat sequences. We note
that a similar situation has been reported for Hrp3 because
loss of this CHD remodeler results in dysfunctional hetero-
chromatin without producing dramatic changes upon nucleo-
some architecture.27

HIRA has been linked to the regulation of both LTR retro-
transposons and retroviruses.20,45,46 That loss of HIRA function
leads to a dramatic increase in expression of Tf2 LTR retrotrans-
posons prompted comparison of MNase profiles of these ele-
ments. Tf2 50-LTR regions are associated with a single
nucleosome which overlaps the TSS. HIRA does not have an
effect upon this nucleosome but is required for the full occupancy
of the nucleosomes downstream of the transcription start-site.
This suggests that chromatin structure in this region is important
for maintaining silencing of Tf2 retrotransposons. Interestingly,
analysis of HIV-1 expression has demonstrated that a nucleosome
downstream of the TSS is important for mediating Pol II pausing
and suppressing basal expression.47 While the integrity of this
region is dependent upon the FACT histone chaperone, other
analyses revealed that HIRA is also required for the suppression
of HIV-1 proviral expression and the maintenance of latency.45

Given the parallels between Tf2 and HIV-1 it will be interesting
to determine whether Pol II pausing is required for silencing of
Tf2 elements.

Materials and Methods

S. pombe strains
Routine culture and genetic manipulation was performed as

previously described.48 The strains used in this study were 972
(h¡), SW577 (h¡ hip1::ura4C), NT5 (h¡ ade6¡ ura4-D18 leu1–
32), AW046 (hC hrp3::kanMX ade6¡ leu1–32 ura4-D18),
SW700 (h¡ hip1::ura4C ade6¡ ura4-D18 leu1–32), CsG349
(h¡ hip1::ura4C hrp3::kanMX ade6¡ ura4-D18 leu1–32).

Histone levels
Approximately »4 £ 107 cells were harvested following addi-

tion of trichloroacetic acid (TCA) to a final concentration of
10%. Cells were resuspended in 200 ml 10% TCA and then dis-
rupted using a beadbeater with 0.75 ml of glass beads using 2
pulses of 15 sec with 1 min on ice in between. A 500 ml aliquot
of 10% TCA was added, the lysate was recovered from the beads
which was then clarified by spinning at 13 000 rpm in a micro-
centrifuge. The resulting pellet was washed 3 times in acetone,
dried and resuspended in 30 ml 100 mM Tris-HCl (pH 8.0),
1% w/v SDS, and 1 mM EDTA. Samples were analyzed on
SDS-PAGE gels and subjected to protein gel blotting using anti-
histone H3 (Abcam ab1791) and anti-tubulin (TAT-1)
antibodies.
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MNase digestion of chromatin
Cells (100 ml) were grown to OD595 D 0.75–8.0 in YE5S at

30�C, crosslinked for 20 min at 30�C using 1% formaldehyde
and quenched by the addition of glycine to 125 mM. Cells were
washed once in CES buffer (50 mM citric acid/50 mM
Na2HPO4 [pH 5.6], 40 mM EDTA [pH 8.0], 1.2 M sorbitol
and 10 mM b-mercaptoethanol) and resuspended in 500 ml of
CES buffer with 0.5mg Zymolase 100-T. Cells were sphero-
plasted at 30�C for up to 1 h and then washed twice with ice
cold 1.2 M sorbitol. Spheroplasts were then resuspended in
800 ml NP-S buffer (1.2 M sorbitol, 10 mM CaCl2, 100 mM
NaCl, 1 mM EDTA pH 8.0, 14 mM b-mercaptoethanol,
50 mM Tris [pH 8.0], 0.075% NP-40, 5 mM spermidine,
0.1 mM PMSF, 1% Sigma Protease inhibitors cocktail [Sigma
P8215]). Spheroplasts were then divided into 4 200 ml aliquots
and each aliquot was mixed with 300 ml of NP-S buffer. Three
aliquots were digested with between 75–187.5 units of MNase
(USB) for 10 min at 37�C. The fourth was retained as an undi-
gested control. MNase digestion was terminated by adding
EDTA [pH 8.0] to a final concentration of 50 mM and SDS to
0.2%. Reactions were incubated at 65�C overnight with 0.2 mg/
ml proteinase K and 10 mg RNAse. DNA was purified by
extracting twice with phenol:chloroform followed by ethanol pre-
cipitation (0.1 volumes of 3 M sodium acetate followed by 2 vol-
umes of ethanol). Pellets were washed in 70% ethanol and
resuspended in water containing 10 mg/ml RNase and incubated
at 37�C for 30 min. Triplicate digests were pooled and treated
with 100 U unmodified T4 polynucleotide kinase (NEB) for
30 min at 37�C to remove 30-phosphate groups left by MNase.
DNA was extracted once more with phenol:chloroform, re-pre-
cipitated with sodium acetate and ethanol, washed with 70% eth-
anol, dried and re-suspended in TE (pH 7.5).

Chromatin-seq
DNA fragments were end repaired, 30-adenylated and ligated

to indexed adapters without size selection using Nextflex reagents
(Newmarket Scientific, UK). Libraries were amplified with 8
cycles PCR using Kapa HiFi PCR master mix (Anachem), pri-
mers removed with GeneRead size selection protocol (QIAgen)
before quantification by Bioanalyser DNA 7500 assay. Libraries
were pooled, denatured, diluted to 6 nM before clustering in a
single lane of a high output Illumina flowcell. Sequencing
(100 nt) was undertaken on a HiSeq 2500 using TruSeq SBS v3
reagents (Illumina).

Bioinformatics
Paired reads were aligned to the ASM294v1.17 reference

genome using Bowtie 0.12.7 49 with command line flags: -n 0
–trim3 75 –maxins 5000 –fr -k 1 –sam. Aligned read pairs were
sorted according to chromosome and then into a range of size
classes based on the SAM format ISIZE value (difference between
50 end of the mate read and the 50 end of the first mapped read)
plus or minus 20%. Mono-nucleosome-sized reads are, therefore,
represented as 150 bp § 30 bp. To define the genomic position
of MNase-resistant chromatin entities we mapped the mid-point
position of the read pairs in a particular size class. Frequency

distributions of the mid-point positions were then calculated
using 10 bp bins. Frequency distributions were lightly smoothed
by taking a 3-bin moving average. All frequency distributions
were output in the zero-referenced, chromosome base, 3-column
.sgr format (chromosome number, feature/bin position, mid-
point frequency value) for rendering with the Integrated Genome
Browser50 and for further processing. Average cumulative chro-
matin particle position frequency distributions at, and surround-
ing, genomic features were calculated using the script
SiteWriterCFD as described previously,26,51 with values for each
bin normalized to the average cumulative frequency value
obtained for all bins within the feature window. To provide the
comparison (Fig. 1c) of our data with the smoothed nucleosome
position map of Shim and co-workers27 the positions of 33874
unambiguous peak summit bins were marked in our wild type
KDE mono-nucleosome data set (using script PeakMarker-
EpKDE) and compared with GSM994397_WT.wig replicate
and GSM994402_genomicDNA.wig data (converted to 10bp
binned .sgr format). Protein-coding gene transcription start sites
(TSS) positions were as described by Lantermann et al.31 Repli-
cation origin positions were as described by Givens et al.37

qPCR analysis of mononucleosomal DNA
MNase digests of wild type and hip1D cells were performed as

described above. For each strain 3 biological replicate samples
(independent from those used for sequencing) were pooled and
analyzed on 1% TAE agarose gels. Gel slices containing mononu-
cleosomal DNA were excised, frozen at -80�C and spun through
0.45 mM Spin-X columns (Costar). Samples were phenol
extracted and ethanol precipitated and resuspended in TE
(pH7.5). dsDNA concentration was measured using a Qubit
fluorometer (Life Technologies). 20 ng of mononucleosomal
DNA and was used in qPCR reactions using the PrimerDesign
Mastermix kit. Reactions using the equivalent amount of geno-
mic DNA were included as a control. The primers used for this
analysis are listed in Table S1.
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DNA double-strand break (DSB) repair is a highly regulated process performed

predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR)

pathways. How these pathways are coordinated in the context of chromatin is unclear. Here

we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in

fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility,

reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36

acetylation increases chromatin accessibility, increases resection and promotes HR.

Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while

Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36

modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1

when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR

prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway

choice.
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D
NA double-strand breaks (DSBs) if unrepaired or
inappropriately repaired can lead to cell death or genomic
instability1. To prevent such undesirable outcomes,

cells employ the evolutionarily conserved non-homologous end
joining (NHEJ) or homologous recombination (HR) repair
pathways to restore genome integrity. During NHEJ, the broken
ends are protected by the Ku70/80 heterodimer, which in
mammalian cells facilitates recruitment of the DNA-dependent
protein kinase (DNA-PKcs). This facilitates processing of
damaged DNA ends and subsequent ligation of the compatible
ends through the activity of the conserved DNA ligase 4, XLF,
XRCC4 complex2. HR is initiated by resection of the 50 end of the
DSB to generate a 30 single-stranded DNA (ssDNA) overhang.
This is bound by replication protein A (RPA), and, during mitotic
recombination, a Rad51 nucleofilament is formed promoting
strand invasion of the sister chromatid or homologous
chromosome, which is used as a repair template before second
end capture3. DSB repair pathway choice is influenced by a
number of factors including cell cycle phase. In yeast, NHEJ is
restricted to G1, while HR operates in S and G2 phase cells when
a sister chromatid is available as a repair template4–6. DSB

resection is a critical determinant of repair pathway choice and is
highly regulated as inappropriate pathway deployment can result
in pathological consequences1.

Here we have investigated the role of histone H3 lysine 36
(H3K36) modification in DSB repair pathway choice. H3K36
methylation is associated with numerous functions7. In
Saccharomyces cerevisiae, SET (Su(var)3-9, Ez, Trithorax)
domain-containing 2 (Set2) is responsible for mono, di and
trimethylation of H3K36 (ref. 8). In humans, H3K36 methylation
is catalysed through the activities of eight distinct enzymes, while
SETD2/HYPB uniquely catalyses the trimethylation of H3K36
(ref. 9). Importantly, SETD2 has recently been classified as a novel
tumour suppressor, suggesting a role in genome stability10–14.
Links between histone H3K36 methylation and DSB repair have
been identified in yeast and human cells15–17. These findings
support a role for H3K36 methylation in promoting efficient
NHEJ, although the molecular basis of this is unknown. A role for
H3K36 methylation in promoting HR has also been recently
described18. Histone H3K36 residues can also be acetylated,
which in S. cerevisiae is performed by the Gcn5 histone
acetyltransferase (HAT)19. Gcn5 is the catalytic subunit of
the SAGA, ADA and SLIK chromatin-modifying complexes
that post-translationally modify histones and regulate gene
expression20. Gcn5 has also been associated with DSB repair in
yeast and human cells, and these data suggest a possible role in
HR21–24. Structurally, H3K36 residues can be either methylated
or acetylated raising the intriguing possibility that these exclusive
marks might drive distinct biological effects within chromatin19.
As NHEJ and HR pathways can exhibit an antagonistic
relationship25,26, we have investigated the functional interplay
between these H3K36 modifications in regulating DSB repair
pathway choice in fission yeast.

Here we identify a role for Set2-dependent H3K36 methylation
in facilitating NHEJ. In contrast, we find Gcn5-dependent H3K36
acetylation promotes HR. Together our findings support a role
for an H3K36 chromatin switch in coordinating DSB repair
pathway choice in fission yeast.

Results
Set2 methyltransferase suppresses homologous recombination.
To determine a possible role for H3K36 modification in DSB
repair, we examined the effect of deleting Set2 on damage
sensitivity. set2D cells was found to exhibit modest sensitivity to
both the radiomimetic bleomycin and ionizing radiation (IR)
compared with wild-type cells, indicating a role for Set2 in the
cellular response to DSBs (Fig. 1a,b). To investigate the role of
Set2 methyltransferase activity in the DNA damage response, a
highly conserved arginine within the catalytic SET domain was
mutated to glycine (set2-R255G) within the endogenous set2þ
gene, which was predicted to disrupt the methyltransferase
activity (Fig. 1c)8,27. No H3K36me3 was observed in set2D cells,
indicating an absolute requirement for Set2 in H3K36
trimethylation in fission yeast, as previously described28

(Fig. 1d). Substantially reduced levels of H3K36me3 were
observed in the set2-R255G mutant compared with wild type,
indicating that this residue is required for optimal H3K36
methylation (Fig. 1d). To investigate a possible role for Set2 in
DSB repair, we used a DSB assay to quantitate marker loss
profiles and thus repair responses to a site-specific DSB within a
non-essential minichromosome29 (Supplementary Fig. 1). This
revealed that deletion of set2þ resulted in significantly elevated
levels of gene conversion (GC) (72% P¼ 0.02), compared with
wild type (55%) (Fig. 1e and Table 1). HO induction in a
set2-R255G background resulted in a very similar DSB repair
profile to set2D with significantly elevated levels of GC
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Figure 1 | Set2 is required to suppress HR and for resistance to

DNA-damaging agents. (a) 10-fold serial dilutions of wild-type, set2D,

set2-R255G and rad51D strains on YE6S, YE6Sþ 5 mg /ml bleomycin.

Plates were incubated at 32 �C for 3 days. At least two biological replicates

were performed. (b) IR survival curve for wild-type (Wt) and set2D strains.

Means±s.e. of three experiments are shown. (c) A schematic of the

structure of Set2 with SET (ASW) domain shown with amino-acid

sequences indicating arginine residue mutated in SET domain of the set2-

R255G mutant. (d) Western blot analysis of H3K36me3 levels in wild-type

(Wt), set2D and set2-R255G cells. (e) Percentage DSB-induced marker loss

in wild type (Wt), set2D and set2-R255G containing Ch16-RMGAH. The

levels of NHEJ/SCC, GC, Ch16 loss and LOH are shown. Means±s.e. of

three experiments are shown. * represents significant difference compared

with wild-type (Po0.05, t-test). See also Supplementary Fig. 1 and Table 1.

(f) set2D cells are sensitive to bleomycin in combination with rad51D.

Fivefold serial dilutions of wild-type (Wt), set2D, rad51D and set2D rad51D
cells were grown on YE6S and YE6Sþ0.3mg /ml� 1 bleomycin.
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(70% Po0.01), compared with wild type (Fig. 1e and Table 1),
thus identifying a role for Set2 methyltransferase activity in
suppressing HR repair. Consistent with an HR-independent role
for Set2 in DSB repair, a double mutant set2D rad51D exhibited
acute sensitivity to bleomycin compared with the single mutants
(Fig. 1f), indicating that Set2 is required for survival in the
absence of HR.

Set2 methyltransferase is required for canonical NHEJ. As HR
and NHEJ can compete during DSB repair25,26, the increased
HR observed in the set2D and set2-R255G backgrounds could
have arisen from reduced NHEJ, which may have been masked
by sister chromatid conversion (SCC) in our DSB assay
(Supplementary Fig. 1). Consistent with a role for Set2 in
NHEJ, lig4D was found to be epistatic with set2D in response to
bleomycin (Fig. 2a). Further, quantitating colony survival
indicated that the set2D lig4D double mutant phenocopied the
sensitivity of set2D to bleocin (Fig. 2b). These data support a role
for Set2 in canonical NHEJ. However, as set2D was more sensitive
than lig4D, Set2 must also perform an additional NHEJ-
independent function in response to DNA damage. The ability
of Set2 to repair a DSB by NHEJ was further assessed using a
plasmid-rejoining assay, in which recircularization of linearized
LEU2 plasmids by NHEJ allows stable propagation of leuþ
colonies. LEU2 plasmids linearized with PstI (30 overhang), EcoRI
(50 overhang) or PvuII (blunt) were transformed into wild-type,
lig4D, and set2D cells and the number of leuþ colonies
quantified. Plasmid rejoining was impaired in set2D cells
compared with wild-type cells (Fig. 2c). Plasmid rejoining was
also impaired in the set2-R255G strain (Supplementary Fig. 2).
These results together define a role for Set2 methyltransferase
activity in promoting canonical NHEJ and are consistent with
impaired NHEJ in set2D cells leading to increased HR. No
significant changes in gene expression of NHEJ or HR repair
genes were observed in set2D cells in the absence or presence
of damage, suggesting a direct role in NHEJ. (Supplementary
Fig. 3a,b).

To determine the mechanism by which Set2 promotes NHEJ,
we investigated whether H3K36me-interacting proteins (readers)
functioned in NHEJ. In S. cerevisiae, co-transcriptional methyla-
tion of H3K36 by Set2 leads to recruitment of the Rpd3S HDAC
complex, which deacetylates histones in the wake of elongating
PolII30. However, analysis of alp13D or clr6-1, which disrupt the
equivalent deacetylase complex in S. pombe31,32, failed to disrupt
NHEJ (Supplementary Fig. 4a,b), indicating that Set2 functions
independently of the Clr6 HDAC complex to promote NHEJ.
To further investigate the role of Set2 in promoting NHEJ and
suppressing HR, we considered a possible role for Set2 in
protecting DSB ends from resection. To test this, levels of RPA
foci were investigated following exposure to 50 Gy IR using a
construct in which the large subunit of RPA was GFP-tagged

(Rad11-GFP)33. As expected, loss of end-protection in ku70D
cells leads to increased Rad11-GFP foci following DSB
induction34 (Supplementary Fig. 5). Similarly, an increase in
Rad11-GFP foci was observed in a set2-R255G mutant
background compared with wild type (Fig. 2d), suggesting a
role for Set2 methyltransferase activity in preventing break-
induced ssDNA formation analogously to Ku70, thus providing
an explanation for the increase in HR in the absence of Set2. We
also observed increased level of RPA levels in G1-arrested set2D
cells compared with G1-arrested wild-type cells (Supplementary
Fig. 6).

We next investigated whether H3K36 methylation was induced
in response to a site-specific DSB. Chromatin immunoprecipita-
tion (ChIP) analysis revealed that H3K36me3 levels increase in a
Set2-dependent manner following HO-induced DSB induction
(Fig. 2e). Given the loss of end protection and increased HR
observed following Set2 loss, we examined a possible role for
Set2-dependent H3K36 methylation in Ku recruitment to a DSB.
ChIP analysis revealed a significant reduction in the levels of
Ku80-myc associated with a HO-induced DSB in a set2D
background (Fig. 2f). Together these findings support a role for
Set2-dependent H3K36 methylation in Ku recruitment to break-
sites thereby facilitating NHEJ.

H3K36 methylation and acetylation are mutually inhibitory.
Lysine residues in proteins can be methylated or acetylated in a
mutually exclusive manner. As loss of Set2 led to DSB end
deprotection and increased HR, we investigated whether these
events were associated with loss of H3K36 methylation and
increased H3K36 acetylation. In budding yeast, H3K36 is acety-
lated by the Gcn5 histone acetyltransferase (HAT)19. To examine
the relationship between H3K36 modifications, levels of H3K36
methylation and acetylation were analysed from nuclear extracts
of wild-type, set2D or gcn5D cells by western blot analysis. In
contrast to wild type, H3K36ac was undetectable in gcn5D cells,
thus defining an evolutionarily conserved role for Gcn5 as the
H3K36 HAT in fission yeast, as in budding yeast (Fig. 3a)19. In
the absence of Set2, H3K36ac levels were elevated compared with
wild type (Fig. 3a). As expected, no H3K36me3 was observed in
set2D cells, consistent with Set2 being essential for H3K36
methylation (Figs 1d and 3b). Surprisingly, H3K36me3 levels
in gcn5D cells were much higher than that observed in wild-
type cells (Fig. 3b). Thus, Gcn5-dependent H3K36ac inhibits
H3K36me3, indicating that these H3K36 modifications are
mutually inhibitory.

Gcn5 promotes HR and suppresses NHEJ. As Gcn5-dependent
H3K36ac inhibits Set2-dependent H3K36me, which our data
indicate is required for NHEJ, we investigated whether Gcn5
facilitated HR repair. We found that gcn5D cells exhibited mild
sensitivity to bleomycin (Fig. 3c) consistent with a role for Gcn5

Table 1 | Analysis of DSB repair outcomes in different genetic backgrounds.

Genetic background % NHEJ/SCC P-value % GC P-value % Ch16 loss P-value % LOH P-value

Wild type (Ch16-RMGAH) 20±2.3 – 55±2.3 – 17±1.4 – 7±1.0 –
set2D (Ch16-RMGAH) 16±4.6 0.57 72±3.4 0.02 5±2.2 0.02 5±1.5 0.09
set2-R255G (Ch16-RMGAH) 12±1.8 0.24 70±1.8 o0.01 12±1.7 0.10 5±0.1 o0.01
Wild type (Ch16-RMYAH) 4±0.8 – 67±1.4 – 20±0.8 – 8±0.6 –
gcn5D (Ch16-RMYAH) 33±1.6 o0.01 45±3.0 o0.01 14±1.5 0.18 6±0.1 0.04
gcn5D lig4D (Ch16-RMYAH) 23±1.5 o0.01 56±1.5 0.02 14±2.2 0.07 6±o0.01 0.03
set2D gcn5D (Ch16-RMYAH) 21±1.4 o0.01 71±1.7 0.65 5±0.2 0.01 2±0.3 o0.01

For each genetic background the assay was repeated three times (with independent isolates), such that 41,000 colonies were scored. Mean±s.e. of the three experiments are shown. A single blank
vector control was also analysed in each genetic background to give a spontaneous level of Ch16 loss, which was subtracted to calculate the break-induced values shown above. P-values (t-test) are
against wild type Ch16-RMYAH unless otherwise stated.
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in DSB repair35. Microarray analysis previously performed on
gcn5D cells did not identify any alteration in the transcription of
DSB repair genes36, suggesting a direct role for Gcn5 in DSB
repair. Therefore, a role for Gcn5 in DSB repair was further
examined using the DSB assay (Supplementary Fig. 1). DSB
induction in a gcn5D background resulted in significantly
increased levels of NHEJ/SCC (33%, Po0.01) and significantly
reduced GC (45%, Po0.01) compared with wild-type cells
(Fig. 3d and Table 1). These results identified a role for Gcn5 in
promoting efficient HR. Further, these results contrasted with
those observed following loss of Set2 methyltransferase.

To investigate when Gcn5 acts during HR, the kinetics of
Rad51-CFP foci were analysed in gcn5D cells following treatment
with IR. gcn5D cells exhibited a striking reduction in Rad51-CFP

foci 30–60 min following treatment with 50 Gy IR, compared
with wild-type cells (Fig. 3e). Following this initial decline, the
percentage of cells with Rad51-CFP foci increased again 120 min
after damage. Importantly, Rad51-CFP expression was not
affected in gcn5D cells (Supplementary Fig. 7). These data
indicated that gcn5D cells, although still able to recruit Rad51, did
so much less effectively than wild-type cells, indicating a role for
Gcn5 in HR before strand invasion (synapsis). To further address
the presynaptic role of Gcn5, the recruitment of RPA subunit
Rad11-GFP to ssDNA following exposure to 50 Gy IR was
examined. In contrast to wild-type cells, the levels of Rad11-GFP
foci were reduced in gcn5D cells at earlier time points (Fig. 3f).
Therefore, Gcn5 functions presynaptically during HR to promote
ssDNA formation following DSB induction. We noted that again,
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Gcn5 loss exhibited an opposite phenotype to that observed in a
set2-R255G background (Fig. 2d).

Given the reduced ssDNA formation following DSB induction,
we further addressed whether DSB repair was associated with
elevated levels of NHEJ in a gcn5D background. To confirm
whether NHEJ was increased following DSB induction in the
gcn5D mutant (Fig. 3d), repair in a gcn5D lig4D double mutant
was assessed using the DSB assay (Supplementary Fig. 1). The
proportion of NHEJ/SCC colonies was reduced in a gcn5D lig4D
background (23%) compared with gcn5D (33%) consistent with

10% of this population being attributable to NHEJ in a gcn5D
strain (Table 1). This level is significantly greater than the NHEJ/
SCC level in wild-type cells (4% Po0.01), and thus represents a
significant increase in NHEJ in the gcn5D mutant. A similar
profile was observed in a gcn5D set2D double mutant (Table 1).
Further analysis by the plasmid-rejoining assay indicated that
gcn5D cells exhibited consistently increased rejoining of a PstI
linearized plasmid compared to wild-type cells, although this
appeared to depend on the presence of a 30 overhang, as the same
was not observed for an EcoRI-linearized plasmid (Fig. 3g).
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As gcn5D exhibited mild sensitivity to DNA damage compared
with rad51D (Fig. 3c), we tested whether Gcn5 functioned
redundantly with other HAT complexes to facilitate the DNA
damage response. We found that deletion of gcn5þ together with

genes encoding the histone acetyltransferase Hat1 (ref. 37), Nto1
(a subunit of the NuA3/Mst2 complex)35, Eaf6 (a subunit of both
NuA3 and NuA4)35 or Eaf7 (a subunit of the NuA4 complex)38

resulted in a striking increase in bleocin sensitivity compared with
the single mutants (Fig. 3h). These findings support a key role for
Gcn5 in facilitating the DNA damage response in conjunction
with other HAT complexes. These findings are consistent with
and extend previous observations35,37,39.

Role for H3K36 modification in DSB repair. To test the role of
H3K36 modification in DSB repair, we tested the sensitivity of an
H3K36R mutant to DSB-inducing agents. No H3K36me3 was
detected in H3K36R cells (Fig. 4a). The H3K36R mutant exhibited
increased sensitivity to bleomycin (Fig. 4b) compared with wild-
type or control cells (H3.1D H3.3D) that retained an intact copy
of the H3.2 gene. H3K36R mutant cells were elongated after 6 h
exposure to bleomycin, in contrast to wild-type cells, consistent
with a checkpoint-dependent cell cycle delay resulting from failed
DSB repair (Fig. 4c). Further, the H3K36R mutant exhibited
increased IR sensitivity compared with wild-type or H3.1D H3.3D
controls (Fig. 4d). In addition, the H3K36R mutation did not
affect total histone H3 levels (Supplementary Fig. 8). These
findings are in accordance with a role for H3K36 modification in
DSB repair.

H3K36 modification and chromatin accessibility. To address
how H3K36 modification might affect DSB repair, we probed
chromatin accessibility. Lysine acetylation neutralizes the positive
charge on histones and thus weakens interactions between his-
tones and DNA. Thus, more open chromatin arising from lysine
acetylation may facilitate resection and subsequent DSB repair by
HR. Conversely, lysine methylation might compact chromatin
thereby inhibiting resection and promoting NHEJ. We therefore
tested the global effect of deleting set2þ or gcn5þ on chromatin
accessibility to micrococcal nuclease (MNase) following exposure
to bleocin, as previously described35. We used the percentage of
DNA that has a low molecular weight DNA (otetranucleosome,
B600 bp) as a measure of chromatin accessibility. Deleting set2þ
resulted in an increase in the level of low molecular weight DNA
fragments, consistent with increased chromatin accessibility
following DNA damage. In contrast, deleting gcn5þ resulted in
reduced levels of MNase fragments of 600 bp or less, consistent
with reduced chromatin accessibility in response to DNA damage
(Fig. 5a–c). No obvious difference in DNA accessibility was
observed in wild-type, set2D or gcn5D backgrounds in the
absence of DNA damage (Fig. 5d). These findings are consistent
with Set2 and Gcn5 regulating DSB repair pathway choice
through modulating H3K36 methylation/acetylation status and
subsequently chromatin accessibility to DSB repair factors.

H3K36 modification is cell cycle regulated. In fission yeast, DSB
repair pathway choice is cell cycle regulated, with NHEJ being
utilized during G1, while HR is employed in S and G2 phases6.
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This prompted us to investigate whether H3K36 modification was
cell cycle regulated. Following arrest in G1 by nitrogen starvation
and release into the cell cycle (Fig. 6a), levels of chromatin bound
H3K36 methylation and acetylation were determined by western
blot. Cells with an increased 1C DNA content exhibited strikingly
high H3K36me3 levels, while H3K36ac levels were low (Fig. 6a,b).
Cell cycle progression resulted in a significant reduction in
H3K36me3 levels after 2 h, whereas levels of H3K36me2 and
H3K36me1 increased, consistent with S-phase progression
(Fig. 6a). H3K36ac levels also increased with progression
through S-phase, peaking at 5 h when the majority of cells were
in G2 (Fig. 6b). These results indicate that modification of the
H3K36 residue is cell cycle regulated. Further, the peak of
methylation in a 1C population and acetylation in S/G2 is
consistent with Set2-dependent H3K36 methylation being
required for NHEJ, and Gcn5-dependent H3K36 acetylation
being required for HR. The protein levels of Set2-myc and
Gcn5-myc are constant during the cell cycle (Supplementary
Fig. 9).

Discussion
Our findings support an H3K36 modification-mediated switch in
coordinating DSB repair pathway choice in fission yeast. We
define roles for Set2-dependent H3K36 methylation in reducing

chromatin accessibility, reducing DSB resection and promoting
NHEJ through Ku recruitment. In contrast, Gcn5-dependent
H3K36 acetylation increases chromatin accessibility, increases
DSB resection and promotes HR. Accordingly, loss of Set2
results in increased Gcn5-dependent H3K36Ac, open chromatin,
increased resection and increased HR, while loss of Gcn5 results
in increased Set2-dependent H3K36me, closed chromatin,
reduced resection and increased NHEJ. The role for H3K36
modification in coordinating DSB repair was further confirmed
by the observation that H3K36R mutation was sensitive to
bleomycin and IR. Moreover, we found H3K36 modification to be
cell cycle regulated with chromatin-bound H3K36me3 peaking in
G1 where NHEJ occurs while H3K36 acetylation peaked in S/G2
phase when HR predominates. Together these findings support
an H3K36 chromatin switch in coordinating DSB repair pathway
choice in fission yeast.

How might a switch in chromatin states dictated by H3K36
coordinate DSB repair pathway choice? Here we consider two
non-exclusive models suggested by these and other findings. In
the first ‘recruitment’ model, Set2-dependent H3K36 methylation
is required to recruit the Ku70-Ku80 heterodimer to the break-
site thereby promoting NHEJ. In contrast, Gcn5-dependent
H3K36 acetylation may be refractory to Ku recruitment and
could instead function to recruit HR factors. In this respect, Set2
may promote Ku recruitment through potential readers of the
H3K36me mark. However, we found that neither Clr6, the Rpd3
homologue, nor Alp13, a subunit of the Clr6 HDAC complex II,
exhibited defects in NHEJ. Instead, alp13D and the temperature-
sensitive clr6-1 allele were acutely sensitive to bleomycin31,32, and
the set2D alp13D double mutant exhibited increased sensitivity,
thus indicating a distinct function for the HDAC complex II in
the DSB response. Other currently unknown H3K36me readers
may promote Ku recruitment. Alternatively, H3K36me may
recruit Ku indirectly through other chromatin factors. In this
respect, components of the RSC chromatin remodelling complex
physically interact with Ku80, and RSC has previously been
shown to be required for loading of Ku onto breaks40,41.
However, it is possible that Ku, which has a strong affinity for
duplex DNA ends in vitro42, binds DNA ends independently of
chromatin or associated factors in vivo.

In a second ‘chromatin accessibility’ model, the distinct H3K36
chromatin states control end resection at a break-site via
chromatin accessibility. Here, Set2-dependent H3K36me is
proposed to promote closed chromatin, protecting ends from
resection, thereby facilitating Ku recruitment or retention, and
NHEJ. In contrast, Gcn5-dependent H3K36Ac is proposed to
promote open acetylated chromatin and/or increased histone
exchange, thus facilitating resection, reducing Ku binding or
recruitment, and thus increasing HR. Consistent with this model,
Set2 has been shown to suppress histone H3 and H4 acetylation
by preventing histone exchange during transcription in
S. cerevisiae. Increased histone exchange in the absence of Set2
facilitates histone acetylation thereby leading to increased cryptic
transcripts43,44. In the context of DSB repair, increased histone
exchange may facilitate transient nucleosome removal or the
dynamic incorporation of histone variants thereby facilitating
resection at DSBs. Indeed, a recent study using budding yeast
characterizing the impact of chromatin on in vitro resection
found that efficient resection by Sgs1-Dna2 required nucleosome-
free regions adjacent to the DSB, while resection by Exo1 was
completely blocked by nucleosomes. Moreover, incorporation of
the histone variant H2A.Z was found to enhance resection45.
Thus, Set2 may promote NHEJ through reducing chromatin
accessibility to the resection machinery. The increased levels of
Gcn5-dependent H3K36ac and damage-induced nucleosome
mobility in a set2D background, together with increased ssDNA
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formation following IR leading to increased HR compared with
wild-type, are consistent with such a model (Fig. 7).

Our findings support an early role for Gcn5-dependent
H3K36Ac in facilitating HR. Loss of Gcn5 alone exhibited a
modest sensitivity to DNA damaging agents; moreover, both
Rad11 and Rad51 foci formation were delayed rather than
abrogated in the absence of Gcn5. However, Gcn5 was found to
play a critical role in the DNA damage response in conjunction
with other HATs, including Hat1, NuA3 and NuA4, which have
been previously associated with the DNA damage response
and DSB repair35,39,46. Recently, recruitment of chromatin
remodelling enzymes to a DSB was found to be dependent on
the early steps of HR, while inhibited by NHEJ in budding
yeast47. We speculate that Gcn5 may function early in HR
in conjunction with other HATs to promote recruitment of
ATP-dependent remodelers, repair factors and/or to increase
DNA accessibility, thus promoting resection and HR.

Importantly, H3K36 methylation is associated with DSB repair
in other organisms. Indeed, roles for Set2-dependent H3K36
methylation in transcription-coupled DNA damage checkpoint
activation in S. cerevisiae are reported in an accompanying
manuscript48. Moreover, a H3K36 modification switch may help
coordinate DSB repair pathway choice in humans. H3K36
dimethylation was reported to be increased at DSBs and to
enhance NHEJ through recruiting NBS1 and Ku70 repair factors
in a METNASE-dependent manner17. In contrast, a role for
SETD2-dependent H3K36 trimethylation in facilitating HR in
actively transcribed regions has recently been described49,50.
Here, SETD2-dependent H3K36 trimethylation promotes HR
through constitutive recruitment of Lens Epithelial Growth
Factor p75 (LEDGF) to chromatin. In response to DNA
damage, LEDGF recruits C-terminal binding protein interacting
protein (CtIP), which promotes resection, thereby facilitating HR
repair18. However, while LEDGF is present in higher eukaryotes,
it is not evolutionarily conserved in budding or fission yeasts.
Interestingly, Set1-dependent H3K4 methylation at DSBs also
promotes NHEJ through Ku recruitment in budding yeast51.

Thus, histone methylation plays an important role in facilitating
NHEJ. How these methylation events are coordinated, and their
functional antagonism through demethylation and acetylation is
of considerable interest.

The cell cycle regulation of H3K36 modification is surprising
given the wide range of functions associated with H3K36
methylation. However, this finding is consistent with observations
recently reported in human cells52 and indicates that H3K36 cell
cycle modification is evolutionarily conserved. How H3K36
modification is coordinated through the cell cycle and the
functional implications for such regulation are currently
unknown. The interplay between H3K36 acetylation and
methylation has previously been proposed to regulate gene
expression19. Here we show that this H3K36 chromatin switch
helps to control DSB repair pathway choice in fission yeast. This
chromatin switch, in concert with the complex networks that
control DSB repair, ensures that the fidelity of the genome is
maintained, preventing deleterious chromosomal rearrangements
as a consequence of misuse of repair mechanisms.

Methods
Yeast strains, media and genetic methods. The strains used in this study are
listed in Supplementary Tables 1 and 2. Standard media and growth conditions
were used throughout this work53. Cultures were grown in rich media (YE5S) or
minimal media (EMM) at 32 �C with shaking, unless otherwise stated.

Site-specific DSB assay. Cells were grown exponentially in liquid culture for 48 h
in the absence of thiamine (-T) to derepress HO endonuclease expression from the
REP81X-HO plasmid. The percentage of colonies undergoing NHEJ/SCC (argþ
HygR adeþ hisþ ), gene conversion (argþ HygS adeþ hisþ ), minichromosome
loss (arg� HygS ade� his� ) or LOH (argþ HygS ade� his� ) was calculated (see
also Supplementary Fig. 1). To determine levels of break-induced minichromosome
loss, background minichromosome loss at 48 h in blank vector assays was sub-
tracted from break-induced minichromosome loss at 48 h in cells transformed with
pREP81X-HO. More than 1,000 colonies were scored for each time point, and each
experiment was performed three times using three independently derived strains
for all mutants tested.

Fluorescent microscopy. Asynchronous cultures were treated with þ /�
5 mg ml� 1 bleomycin (1 h 26 �C), before being fixed in methanol. Samples
were rehydrated and stained with 40 ,6-diamidino-2-phenylindole (DAPI) before
examination using Zeiss Axioplan 2ie microscope, Hamamatsu Orca ER camera
and micromanager software. For visualization of Rad11-GFP and Rad51-CFP foci,
cells were irradiated with 50 Gy IR using a 137Cs source with a dose rate of 2.8 Gy
per minute, before being fixed and visualized as above.

Serial dilution assay. A dilution series for the indicated mutants was spotted onto
YE6S plates and YE6S with the indicated concentration of MMS, bleomycin or
bleocin. Plates were incubated at 32 �C for 2–3 days before analysis.

Ionizing radiation survival curve. Logarithmically growing cells were irradiated
by using a 60Co source at a dose rate of 31 Gy min� 1. Irradiated and unirradiated
cells were plated on YE6S and incubated at 32 �C for 4 days before colonies were
counted.

Survival analysis. Exponential cultures were obtained in liquid YE6S medium
inoculated with a single colony picked from a freshly streaked (YE6S) stock plate
and grown overnight at 32 �C with vigorous shaking. Cells were counted micro-
scopically and only cultures with between 2� 107 and 4� 107 cells ml� 1 were
used. Cells were resuspended in YE6S at a density of 2� 107 cells ml� 1, and serial
dilutions were made and B200 cells were plated on YE6S plates with the indicated
dose of bleocin as well as an untreated control. Plates were incubated for 3 days at
32 �C and then scored.

Quantitative chromatin immunoprecipitation (qChIP). Chromatin immuno-
precipitation (ChIP) was performed as previously described54. In brief, cells were
grown at 32 �C in Edinburgh Minimal Medium (EMM) supplemented with
0.25 mg/ml uracil, to induce Purg1. One hundred millilitres of cells at O.D.595¼ 0.4
were fixed in 1% formaldehyde (Sigma F8755-25ML) for 20 min at 24 �C with
shaking. The reaction was quenched by adding 125 mM glycine for 5 min. Cells
were lysed using a bead beater (Biospec Products), and cell lysates were sonicated
in a Bioruptor (Diagenode) (15 min, 30 s On and 30 s Off at ‘High’ (200 W)
position). For all ChIPs, 30 ml Protein G Dynabeads (Life Technologies) were used
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along with 3.5 ml ActiveMotif anti-H3K36me3 antibody (cat# 61101) or 1.5 ml anti-
myc 9B11 (Cell Signaling), as appropriate. ChIPs were analysed by real-time PCR
using Lightcycler 480 SYBR Green (Roche) with primers specific to the indicated
regions. All ChIP enrichments were calculated as % DNA immunoprecipitated at
the locus of interest (relative to the corresponding input samples) and normalized
to % DNA immunoprecipitated at the act1 or fbp1 locus. Data averaged over at
least two biological replicates are shown. Error bars represent s.d. values from at
least two biological replicates. The primers used for qPCR analysis are listed in
Supplementary Table 3.

Micrococcal nuclease digestion of chromatin. One-hundred milliliters of cells
were grown to mid-log phase in YE5S at 30 �C, treated with 3 mg ml� 1 bleocin for
1 h, crosslinked with a final concentration of 1% formaldehyde (Sigma F8775) for
20 min at 30 �C and quenched by the addition of glycine to 125 mM. Cells were
washed with CES buffer (50 mM citric acid/50 mM Na2HPO4 (pH5.6), 40 mM
EDTA (pH 8.0), 1.2 M sorbitol, 10 mM b-mercaptoethanol) and resuspended in
500ml CES buffer with 0.5 mg Zymolyase-100T. Cells were spheroplasted by gentle
shaking at 30 �C for up to 45 min, washed with ice cold 1.2 M sorbitol and
resuspended in 800 ml NP-S buffer (1.2 M sorbitol, 10 mM CaCl2, 100 mM NaCl,
1 mM EDTA (pH 8.0), 14 mM b-mercaptoethanol, 50 mM Tris-HCl (pH 8.0),
0.075% NP-40, 5 mM spermidine, 0.1 mM PMSF, 1% Sigma protease inhibitor
cocktail (Sigma P8215)). Spheroplasts were divided into four 200 ml aliquots, each
mixed with 300 ml of NP-S buffer. MNase was added at the indicated concentra-
tions, and samples were digested for 10 min at 37 �C. MNase activity was termi-
nated by the addition of EDTA (pH 8.0) and SDS to the final concentrations of
50 mM and 0.2%, respectively. Samples were incubated at 65 �C overnight with
0.2 mg ml� 1 proteinase K and 10mg RNase A. DNA was subsequently purified by
phenol:chloroform extraction followed by ethanol precipitation.

Plasmid rejoining assay. The plasmid rejoining assay was performed as
previously described55. In brief, the cohesive-ended substrates for the NHEJ assay
were prepared by excision of a B500 bp PstI fragment or B700 bp PvuII fragment
from PS (p100) or a B540 bp EcoRI fragment from PI (p101) followed by gel
purification of the remaining linear vector. Logarithmically, growing cells (20 ml of
OD595 0.5) were transformed with 1 mg of undigested control plasmid pAL19 or
linear DNA using the lithium acetate method. As the plasmids contain a LEU2
marker, NHEJ frequency was calculated as the percentage of leuþ colonies arising
from cells transformed with linear plasmid over those transformed with undigested
DNA. At least three experiments were performed for each strain, and the average
percentage rejoining calculated.

Microarray analysis. Microarray analysis was performed as previously descri-
bed56. In brief, Alexa 555- or 647-labelled cDNA was produced from the RNA,
using a Superscript direct cDNA labelling system (Invitrogen) and Alexa 555 and
647 dUTP label mix. The cDNA was then purified using an Invitrogen PureLink
PCR Purification system. The cDNA was hybridized to the array using a Gene
Expression Hybridization kit (Agilent). The array was an Agilent custom-designed
array containing 60-mer oligonucleotides synthesized in situ on the array and
contained 4� 44,000 probes. Following hybridization for at least 17 h, the array
was washed using a Gene Expression Wash Buffer kit (Agilent) and scanned in an
Agilent Array Scanner. The microarray signal was extracted using GenePix.

Analysis of cell cycle-regulated histone modifications. The wild-type yeast
strain was arrested in G1 using nitrogen starvation57 and released from the block.
Samples were taken over a 5-h time course. The samples then underwent the
histone acid-extraction method to purify histones for analysis by western blotting
as previously described58. In brief, one litre of cells were collected by centrifugation.
The cell pellet was resuspended in spheroplasting buffer (1.2 M Sorbitol, 20 mM
Hepes pH 7.4, 1 mM PMSF, 0.5 mg ml� 1 Leupeptin, 0.7 mg ml� 1 Pepstatin)
containing 10 mM dithiothreitol (DTT) and 2 mg ml� 1 Zymolyase 20-T (MP
Biomedicals) and then incubated in a 32 �C water bath until 90% of cells had lost
their cell walls. Cells were centrifuged and resuspended in Nuclei Isolation Buffer
(0.25 M Sucrose, 60 mM KCl, 14 mM NaCl, 5 mM MgCl2, 1 mM CaCl2, 15 mM
MES, pH 6.6, 0.8% Triton X-100, 0.7 mg ml� 1 Pepstatin, 1 mM PMSF,
0.5 mg ml� 1 Leupeptin) on ice water for 20 min. After spinning and washing,
most of the chromatin was in the pellet. Histones were extracted by resuspending
the pellet in 10 ml of cold 0.4 N H2SO4. Protein extracts were made by TCA
extraction and analysed by western blotting as previous described58. H3 tri-methyl
lysine 36 (aH3K36me3) (Abcam 9050), H3 di-methy lysine 36 (aH3K36me2)
(Abcam 9049), H3 mono-methyl lysine 36 (aH3K36me1) (Abcam 9048) and H3
lysine 36 acetylation (Active Motif 39379) were used at a dilution of 1:1,000.
An antibody directed against H3 (Abcam1791) was used as a loading control.
Anti-rabbit horseradish peroxidase-conjugated secondary antibodies (Amersham
Bioscience) were used at a dilution of 1:10,000. For clarity, western blots were
cropped to show the band of interest in the main figures. However, corresponding
uncropped scans can be found in Supplementary Fig. 10 and Supplementary
Fig. 11.
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