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Abstract

Composite repairs evolved as popular choice for rehabilitation of oil and gas pipelines
from corrosive material loss. However, corrosion can develop into local through-wall
defects. In this case, fluid pressure acts directly on repairs, forms blisters and applies
stresses on repair-pipe interface bonds. A practical model is needed to evaluate and
design composite repairs against interface failure.

This study investigated fracture mechanics aspects of failure through crack pro-
pagation along the repair-pipe interface. Thick fibre-reinforced plates were examined
as repairs for circular ‘sharp-edged’ through-holes in stiff metal substrates. Blister
formation and propagation onset were analysed. Energy release rates were investig-
ated as measure of interface failure.

Two types of blister tests were conducted; using fluid pressure and shaft-loading
with different punch heads. A novel method of determining energy release rates in
pressure blister tests was developed. Digital image correlation was used to track
blister volumes, which are directly related to energy release rates.

Existing and newly derived analytical solutions for each test method were com-
pared with measurements and simulations using the virtual crack closure technique.
Energy release rates were found to be influenced differently by repair, defect and
shaft geometries. Contrary, critical loads could be plotted as function of defect size
to repair thickness ratio.

To reduce geometry dependence, ‘volumetric’ energy release rates were intro-
duced by adjusting for defect and repair geometries. Similar to load curves, these
are functions of defect size to repair thickness ratios, potentially simplifying fracture
criteria. Shaft-loading could not be recommended as general fluid pressure replace-
ment, because of differences between the test methods.

Design criteria against debonding by ISO/TS 24817 [1] and ASME PCC-2/4 [2]
based on energy release rates were reviewed against results presented. An improve-
ment to the formulation in the standards was suggested. An alternative process for
qualification and dimensioning was proposed based on empirical formulations for
volumetric energy release rates and critical loads as design criteria.
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A,AC Area, Crack face area

a,∆a Crack length, crack increment

b Width / Distance point load
to crack tip

C Compliance

C1...4 Polynomial constants

D Flexural rigidity

Dij , Dm
Material parameter, Damage
parameter

E,E Young’s modulus, Matrix

e, f, g, h(x) General line functions

F,G(x) Image set functions

G Shear modulus

G Energy release rate

h Height

I Moment of inertia

J/L/M/I J/L/M/I -Integral

Ks Shear correction factor

K Stress intensity factor

M Bending moment

N Membrane stress

P Pressure

PC , PS
Point on hexagon corner,
sphere

p Uniform load (area)

Q Shear / transverse Force

q, q0
Uniform load (line), annular
line punch load

r, ϕ, z polar coordinates

R,R0, R
′
0

Radius; Defect, Contact zone,
Equivalent contact zone

···········································································

Symbol Description

S Static moment

t Repair thickness

u, v, w Deflection in x, y, z direction

X,Y, Z Nodal forces in x, y, z direction

Symbol Description

α, β Dundur’s parameters

Γ, ΓA,V
Contour (line), Contour
(domain; area, volume)

γ Volumetric ERR

γrz Shear strain

∆ Increment / Difference /
Displacement

ε, ε1,2 Strain, Principal strain

ε Bi-material constant

ϑ Phase angle, mode III vs I+II

κ Stiffness factor / General factor

λ Dimensionless (crack) length

ν Poisson’s ratio

Π Energy

σ Stress (normal)

τ Stress (shear)

φ Fibre volume fraction

ϕ Crack tip angle, polar
coordinates (r, ϕ, z)

χb,m
Normalised ERR; bending,
membrane

χNSSD Correlation function

ψ Phase angle, mode I vs II

Ω Blister surface domain

ω crack notch opening angle

xv



Sub-/Super Description

x Average value

x̂ Normalised value

xT Transposed value

x+,− Above, Below crack face

x‖ Fibre direction

x⊥ Transverse to fibre direction

x0
Default value / Punch value
(e. g. R0)

x1,2,3 Local coordinate direction

xa Axial

xan Annular

xaux, x
aux Auxiliary

xb bending

xC Central / Corner node

xc
Critical / Elastic-plastic
yield / Crack opening value

xCC Concave

xCV Convex

xd Dissipative

xdb Deformation based solution

xdef Defect

xext External

xf Fibre

xh Circumferential (Hoop)

·····························································

Sub-/Super Description

xI,II,III Modes I, II, III

xi,j,k Counting variables

xk Kinetic

xlb Load based solution

xlive Under live pressure

xM Moment

xm
Membrane / Measured /
Matrix Material / Midside
node

xmax,min Maximum, Minimum value

xn
Single mode nominal
(net-section) failure

xnp Near-point solution

xp
Potential (strain) / Point
load / Elastic-plastic zone

xpun Punch

xQ Shear force

xr,ϕ,z Polar coordinate direction

xrep Repair

xS Superimposed

xs Shear / Steel

xt,T Total

xu Ultimate tensile strength

xx,y,z Global coordinate direction

xy Elastic zone

xvi



Chapter 1. Introduction and motivation

Production facilities in the oil and gas industry undergo a great amount of stress
cycles, corrosion and wear. In particular pipelines, of which risers [3] are most
stressed, have to be durable enough to withstand structural, thermal, abrasive and
corrosive loads of both a static and a cyclic nature. Structural loads can be tensile,
compressive, bending and pressure. While tensile forces are imposed from e. g.
the pipe’s own weight [4], wave movement [5] or tensioning platforms [6], bending
moments originate from the shape in which a pipe is laid out [7]. The environ-
ment of a pipeline creates additional pressure loads, like soil weight [8] and water
pressure. The predominant pressure load is in most cases the pressure of the trans-
ported medium (e. g. ca. 200 bar inside high pressure, long-distance, gas pipelines
[9]). Furthermore, high gradients of temperature between transported media and
environments as well as maximum and minimum temperature ranges can envelope a

Figure 1.1: Metal clamps ready for deployment
to oil fields in Vietnam (courtesy of Merit Tech-
nologies Sdn Bhd)

temperature difference of more
than 200 ◦C. Failures could occur
through excessive loads and fatigue.

However, this study focuses on
failure through internal erosive and
corrosive material deterioration and
the external repair methods against
this type of failure.

Design lifetimes of pipelines can
span decades, typically 20 years and
longer. Because failures of pipelines
and pressure vessels in the hydro-
carbon industry are dangerous and
expensive, pipelines have to be pro-
tected from deterioration and, when a failure is imminent, must be repaired. Main-
tenance of oil and gas pipelines is subject to a number of limitations and challenges.
Full replacements of damaged pipe sections would have to be done after a shut down
of the production, although shut down times are time consuming and expensive.

Therefore, repair methods were developed to carry out pipeline rehabilitation
alongside continuing production activities. Welding patches on defect areas is a
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(a) (b)

Figure 1.2: (a) Composite shell clamp (courtesy ACS Australia Pty. Ltd. and Petronas
Research Sdn. Bhd.), (b) WTR Technowrap 2K wet hand laminate on T-
section (courtesy of WTR Ltd.)

standard measure for the repair of metals in many industries [10]. However, welding
is less feasible as a repair technique for oil and gas pipework, as health and safety
regulations do not permit any hot work next to flammable and explosive media. A
typical repair for oil and gas pipelines is a metal clamp as presented in figure (1.1).
Repair clamps are mainly built to contain leakages. Commonly custom built for a
specific pipe or section of a pipe, metal clamps can be difficult to deploy, because of
their size and weight.

1.1 Composite repair methods

Fibre-reinforced composite material repair applications have risen to be a strong
competitor to the already established solutions, such as metal clamp repairs. The
reasons are their potential advantages in corrosion resistance, fatigue performance,
strength, stiffness, thermal insulation, damping and weight reduction [11] combined
with often easier and faster deployment, which altogether lead to a reduction in
costs.

Recently, a repair clamp, similar to the standard metal clamps, was invented
made out of glass reinforced epoxy composites (fig. 1.2a) providing an improvement
in weight, corrosion resistance and costs [12].

In contrast to repair systems that are produced in a factory and later assembled
mechanically, other composite material repair techniques have emerged that are
partly made at site. One of the leading composite repairs solutions is the Clock
Spring© sleeve, providing a permanent repair for containment as well as structural
reinforcement. Clock Spring© repairs are cylindrically precured glass fibre rein-
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Product Company Country

A+ Wrap™ Pipes Wrap Inc USA
Aquawrap® Stork Netherlands
Armor Plate® Armor Plate Inc USA
Black Diamond® Citadel Technologies USA
Bolder Wrap Comptek Structural Composites Inc USA
Carbon-Ply CRS ITW Polymer Technologies USA
Clock Spring© Clock Spring Company LP USA
CompoSol® IMG Composites Ltd UK
DiamondWrap© Citadel Technologies USA
DuraWrap® ENECON Corporation USA
Fortec™ PROKEM France
Furmanite Composite Repair Furmanite Corporation UK
Hydrowrap® Argosy International Inc USA
Helicoid epoxy sleeve™ Merit Technologies Sdn Bhd Malaysia
LOCTITE Composite Repair Henkel AG & Co. KGaA Germany
Perma-Wrap® WrapMaster Inc USA
Pipeassure® PETRONAS Malaysia
PowerSleeve® Stork Netherlands
Rapp-It Alatas Singapore Ptd Ltd Singapore
StrongBack® Nixus International USA
SuperWrap Belzona Polymerics Ltd UK
Tyfo® Fibrwrap® Systems Fyfe Co LLC USA
Technowrap 2k™ Walker Technical Resources Ltd UK
Viper-Skin™ Neptune Research Inc USA
Wrap Seal Plus™ SealXpert™ Products Singapore
· · · · · · · · ·

Table 1.1: List of some wrapped composite pipe repair sleeve products on the market.

forced polyester or vinyl ester resin composites, which are wound around a pipe
with additional adhesive between the layers [13]. Another product was developed
by Alexander [14], who used a combination of wet laminated carbon fibre cloth and
precured carbon half shells.

Beside precured composite repair solutions, most common today are wet lamin-
ate composite repairs, although an unreinforced epoxy filler can be enough for some
applications [15]. Typically, robust non-crimp fabric (NCF) cloth tapes are manually
impregnated with high viscosity epoxy resins and wound around the damaged pipe
section. An advantage of in situ laminated repairs over other repair methods is the
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flexibility of application to any size and on complex shaped sections. An example
of a complex shape (i. e. T-section) of a pipe repaired with an in situ laminate is

Figure 1.3: Prepreg glass epoxy repair sys-
tem Pipeassure® (courtesy of Petronas Re-
search Sdn. Bhd.)

shown in figure (1.2b).
Pre-impregnated (‘prepreg’) systems,

such as Petronas’ Pipeassure composite
repair system (fig. 1.3), are available on
the market to enhance quality assurance
of impregnation and fibre volume frac-
tion. Adversely to mixing resins for in
situ impregnation, prepregs have to be
cooled with, for example, dry ice until
application to prevent premature cur-
ing.

Glass fibre is predominantly used as
the reinforcement, while carbon fibre
[16] and aramid are more rare. Carbon
fibre repairs always need an additional
layer of glass as isolator to avoid gal-
vanic corrosion. Mainly epoxy resins,
but also vinyl ester [17] and urethane
[18] are utilised as matrix material. Two
component resin systems that react at ambient temperature are favoured for their
reduced complexity of the repair process, but also activation by heat, UV light [19]
or water [18] may be necessary. Some available composite repair products of the
described types are listed in table (1.1).

1.2 Corrosion in oil and gas production

The general cases of corrosion (fig. 1.4) are distinguished in uniform, galvanic,
crevice, pitting and erosion corrosion as well as dealloying and stress corrosion crack-
ing [20]. Also microbes can be the cause for local material deterioration. Uniform
corrosion is what is usually referred to as general corrosion of a metal across its sur-
face. Chemical reactions can form a protective film on the surface, but also separate
molecules from the solid metal. The latter process provides access to the pristine
metal for further corrosive reactions and therefore leads to a degradation and thin-
ning of the material.

In contrast to uniform corrosion, highly localised defects are the result of pit-
ting corrosion as shown in figure (1.5a). A passivation layer on a metal surface can
become damaged, which allows pitting corrosion to start and mitigate through the
material. Pits grow, when a critical solution, mass-transport and electro potential
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Figure 1.4: Overview off different types of corrosion; [23]

gradient between the surface and the bottom of the pit (fig. 1.5b) is reached in com-
bination with the right material [21]. Otherwise the pit growth might not become
autocatalytic and the pit surface repassivates. The general principle behind pitting
corrosion can be described as related to galvanic corrosion by creating a very small
anodic area (i. e. the pit bottom) in conjunction with a comparatively vast cath-
odic area (the majority of the solids surface). Pit shape and penetration rates vary
strongly dependent on the material [22].

Closely related to the pitting corrosion is the crevice corrosion [24]. A small fis-
sure between two materials, e. g. between a screw cap and its substrate or between
a coating and a pipe wall, develops a complex chemical ambience that can be vastly
different to the surroundings [21]. The complex chemical reactions of the crevice
corrosion are based on a number of variables [25]. Yet, the mechanisms behind
crevice corrosion are not fully understood and several mechanisms are likely to act
together [26].

Galvanic corrosion occurs when an electrical contact between two dissimilar
metals is established by an electrolyte. One metal becomes the cathode that takes

(a) (b)

Figure 1.5: (a) SEM photograph of failure due to pitting corrosion, [27] (b) Diagram of
pitting corrosion; [21]
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electrons from the other metal that acts as the anode. Consequentally, the cathodes
overall corrosion rate is lowered, while the anode’s reduction rate is accelerated.
Apart from the potential difference between both metals, the electrolytes solution
constituents, the chemical reactions and metal characteristics are important as well
as the surface conditions and geometry factors [28]. Dissimilar metals on pipelines
can, for instance, be weld seams or fittings.

To summarise, the main cause for corrosion is the availability of specific chemic-
als (e. g. oxygen, sulphur, chloride) and compounds of those, in regards to corrosion
promotion as well as prevention. The variation of the chemical mixtures of crude
oils between reservoirs, as illustrated in table (1.2), imposes a challenge in corrosion
prevention and repair. Additionally, physical factors impact the corrosion rates, in
particular temperature, flow characteristics and solid particles. Furthermore, dis-
similar materials acting as anode and cathode are essential for galvanic corrosion.

Crude Source Parrafins
[% vol.]

Naphthenes
[% vol.]

Aromatics
[% vol.]

Sulphur
[% wt.]

API Gravity
(° API)

Light Crudes

Saudi Light 63 18 19 2.0 34
South Louisiana 79 45 19 0.0 35

Beryl 47 34 19 0.4 37
North Sea Brent 50 34 16 0.4 37
Lost Hills Light 50%

Aliphatics
– 50 0.9 >38

Mid range Crudes

Venezuela Light 52 34 14 1.5 30
Kuwait 63 20 24 2.4 31

USA West Texas sour 46 32 22 1.9 32

Heavy Crudes

Prudhoe Bay 27 36 28 0.9 28
Saudi Heavy 60 20 15 2.1 28

Venezuela Heavy 35 53 12 2.3 24
Belridge Heavy 37% Aliphatics 63 1.1 14

Table 1.2: Properties of whole crude oils from world wide reservoirs; [29]
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1.3 Failure in oil and gas pipes

The first design criterion for repairs of pressure vessels in general is the need to
restore radial and axial strength. Loads on pipelines are created by the internal
fluid pressure, the weight of the pipe and the curvature from its depositioning. Also
the environment can impose stresses on the material through pressure from soil or
water, but also from waves, currents, vortex induced vibrations and movements of
connected vessels [30].

These influences lead to a stress combination of tension, compression, bending
and pressure. Alexander and Ochoa [31] highlighted the importance of stress test-
ing CFRP repaired steel risers not just on burst pressure, but also on tension and
bending. Long life-times and cyclic loads from environmental influences and inten-
tional and undesired production cycles, such as slugging [32], lead to fatigue failure.
Particularly, welded joints of pipe segments near the touchdown point of risers are
vulnerable to fatigue failure [33]. In the case of composite tubing and repairs, ex-
pedited by the elevated temperatures of transported products in oil and gas, creep
becomes an additional factor in the long term design considerations [34].

The work presented focuses on loads induced by the internal pressure on the pipe.
Possible failures due to excessive internal or external pressure are burst or collapse
respectively, of which the latter is more common for flexible tubing and internal
linings [35], but can also happen on the pipe underneath a repair [36].

Unreinforced polymer liners are rarely designed to take up structural loads, but
rather for fluid containment [37] and protection of the structure from corrosive me-
dia. Accumulation of gases and fluids in-between the liner and the pipe wall can
lead to corrosion on the surrounding metal pipe [38] or to the collapse of the liner
in the event of a depressurisation of the pipeline, introducing potential damage to
the liner [39].

Yet, only external repairs were under investigation for the study presented, which
is why only burst failure is of interest. General burst failure safety of pipes under
pressure is designed from the well known Barlow’s formula equation (1.1). The cir-
cumferential hoop stress σh for a given pressure P is dependent on the radius R and
the thickness t and is twice as large as the axial stress σa equation (1.2).

σh = P
R

t
(1.1)

σa = P
R

2t (1.2)

The standards ISO 24817 [1] and ASME PCC2-4 [2] distinguish between the scen-
arios, whether a pipe wall contributes to the load bearing or not. In the event of
the pipe wall’s contribution becoming negligible, the wall thickness of a repair trep

has to exceed the minimum for hoop and axial stress accordingly to equations (1.3)
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and (1.4) respectively.

tmin,h = 1
ehEh

(
PR− νF

π2R

)
(1.3)

tmin,a = 1
ea

(
F

π2REa
− PRν

Eh

)
(1.4)

Often repairs are applied on a pipe with a wall thickness capable of bearing parts of
the load. The required minimum repair thickness and the strain in the composite
repair for a chosen repair thickness can be calculated with equations (1.5) to (1.7).

tmin,h = R

σmax
· Es

Eh
· (P − Ps) (1.5)

tmin,a = R

σmax
· Es

Eh
·
(

F

π2R2 − Ps

)
(1.6)

eh = PR

Ehtrep
− σmaxts
Ehtrep

− PliveR

(Ehtrep + Ests)
(1.7)

Here the subscripts denote steel ‘s’ and the composite elastic moduli in axial ‘a’
and hoop ‘h’. The maximum allowable working pressure Ps before repair, the in-
ternal pressure at the time of repair application Plive, the allowable stress σmax and
axial loads F are applied. Detailed explanations can be found in the standards.
This study investigates external composite repairs for internally corroding pipes, in
which the thinning of the pipe wall is assumed to continue until total loss of wall
thickness. However, the loss of pipewall through corrosion can be a local problem
as is shown in greater detail in chapter 1.2 and [40], so that a repair only has to
take over parts of the loads although a leak could be present. Another important
aspect of the repair design, therefore, is the capability to contain the transported
fluids and gases.

Polymers are susceptible to permeation [41] with varying rates depending on the
matrix material. Permeation cannot be avoided but reduced and has to be evalu-
ated [37] to stay within permissible limits. Usually permeation rates need greater
attention in the design of polymer or composite pipework and polymer liners rather
than repairs, because of the large difference in exposed area.

Composite repairs are commonly rated ‘safe fail’ against excessive pressures.
While the fibres bear the main loads, the matrix carries shear and out-of-plane
loads, transfers loads between the fibres and keeps the fibres aligned. Consequen-
tially, matrix cracking does not imply a burst failure, as the fibres may still be intact.
Weepage through the repair is a clear sign of matrix cracking and the cracking it-
self can be detected, for instance, by acoustic emission [42]. Therefore, composite
repairs offer a benign failure mode through matrix cracking occurring long before
fibre breakage [43] in contrast to the catastrophic failure mode of a sudden rupture
of pipes made from steel.
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Composite repairs are less likely to fail through interlaminar debonding, but the
adhesion of the repair to the substrate is a critical design criterion. When the bond
strength is too low to withstand the crack opening forces, a crack in the interface
between repair and pipe would form. Stresses around a crack tip may reduce through
crack forming, if the opening force on the crack area remains constant. But because
the internal pressure on a pipe would remain the same and thus even increase the
force on the open crack surface, a crack would continue propagating depending on the
load cycles of the pipe. Every time the crack surface increases, bond energy would be
set free and have to be carried by the remaining, decreased adhesive area. Ultimately,
a critical energy level would be reached when the remaining adhesive joint area is
too small to absorb the released energy and the bond would fail catastrophically.
As a result the fluid would leak out at the side of the repair. An investigation of
the fracture mechanics of bonded repairs made from vinyl ester and glass fibre NCF
was published by Mableson et al. [17].

The critical strain energy release rate (ERR) is the energy released from a new
debonded crack area for a specific load and geometry. The standards of ISO 24817 [1]
and ASME PCC2-4 [2] provide the engineer with an analytical solution to calculate
the ERR needed for a repair-substrate bond with a repair of a particular thickness
under working pressure. More detailed descriptions of the analytical solution of
the standards are presented in chapter 2.4. Further explanations and the research
undertaken for this study about the fracture mechanics of the bi-material interface
adhesion of external composite repairs on pressurised steel pipes can be found in the
following chapters.
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Chapter 2. Fracture mechanics for blister tests

2.1 General fracture mechanics

Although fracture can be investigated on different levels up to atomic scales, the
work presented is based on fracture mechanics of continuum mechanics. Two dimen-
sional cross-section, perpendicular to the crack plane, are analysed. By examination
of infinitesimally long sections of the crack front, the crack path of the section can be
approximated as straight and the crack area as rectangular. Therefore, three dimen-
sional crack curvatures can be analysed as two dimensional problems, reducing the
complexity of analytical expressions used. Numerical methods are able to determine
the change in fracture behaviour along a crack contour by discretisation into a large
number of idealised two dimensional calculations with a small step width.

Two different, yet related values are a measure for the probability of crack
propagation. One of which is the ‘fracture toughness’ or ‘stress intensity factor’
K in

[
Pa
√

m
]
, while the other is referred to as ‘energy release rate’ G in

[J/m2
]
.

Both are related to each other through equations (2.1) and (2.2) for a single mode
fracture as long as yielding around the crack tip remains on a small scale [44].

G= d
dA [Πext − Πp − Πd − Πk] (2.1)

with Πext — external work
Πp — potential/strain energy
Πk — kinetic energy
Πd — dissipated energy

and A — created crack area

GI = K2
I

E ′
, GII = K2

II
E ′

, GIII = K2
III

2G (2.2)

with E ′


E ; plane stress

E

1− ν2 ; plane strain
(2.3)

In this study, materials were evaluated that are less ductile than necessary to
result in large zones of yielding, such as fibre reinforced epoxy polymers and steel.
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Figure 2.1: Mode I crack tip polar stress distribution; [45]

Thus the assumption of a small inelastic zone around the crack held. While the
stress intensity factors are derived from the stresses and strains around a crack tip,
the energy release rate G is defined as the released energy in relation to a crack
opening. This energy criterion for crack propagation was published by Irwin and
Kies [46] and is comparable to the energy criterion of Griffith [47] (cf. sec. 2.1.3).
As G is dependent on the size of the crack opening, an infinitesimal small opening
is assumed.

Similar to any other physical phenomena, cracks propagate along the path of
smallest resistance or, in other words, seek to maximise the energy release rate in
order to reach the lowest energy level. In a homogeneous, isotropic material the
need to maximise the energy release rate leads to a change in crack propagation
direction. The ratio of stresses in crack transverse tensile, in-plane and out-of plane
shear is expressed as the fracture modes I, II and III respectively. For instance, a
crack angled to the orientation of principal stress would start to propagate such
that the crack path becomes perpendicular to the principal stress direction, thus,
becoming a pure mode-I crack propagation [48]. However, in scenarios like interface
cracks or delamination between layers in a composite material the crack path is
confined. No change in direction of the crack growth occurs, as the propagation
along an interface between two layers needs less energy than transverse through
the layers. As a result, the crack propagation does not develop into a steady pure
mode-I fracture, but continues as mixed-mode. The phase angles are a measure for
the ratio of the fracture modes of the general form:

ψ = arctan
(
KII

KI

)
, ϑ = arctan

[
KIII√

K2
I + K2

II

]
(2.4)

Further details on the calculation of phase angles can be found among others in
[48–50].

With the general formulation for the compliance C as the division of deflection
over load, the energy Π can be written for a crack surface under fluid pressure P as
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equation (2.5). Inserting the opened crack surface dA = 2πR dR and equation (2.5)
in equation (2.1) results in equation (2.6), which is explained in further detail in
chapter 2.4. This solution is comparable to, for example, the solution for a DCB
sample (2.7) of width b under load F with crack length a by Irwin and Kies [46].

Π = −P
2C

2 (2.5)

G= P 2

4πR
dC
dR (2.6)

G= F 2

2b
dC
da (2.7)

The compliance can be expressed as the ratio between deflection per force or volume
per pressure.

C = y

F
(2.8)

C = V

P
(2.9)

2.1.1 Stress field analysis of crack tips

Williams [51], Westergaard [52], Irwin [53] and Sneddon [54] published fundamental
solutions for calculation of stress fields and stress intensity factors in isotropic, linear
elastic material. Anderson [55, tables 2.1–2.3] summarised general solutions for the
stress intensity factors of all three fracture modes for which two different general
approaches exist. Asymptotic near-crack tip stress fields can be examined as well as
the full-field stress in the material around a crack. Zhender [44] presented a detailed
overview over different solutions for both approaches.

Stress concentrations in the vicinity of cracks, first quantified for elliptical holes in

σy

σc

ry
rp

x, r

v+

v−

elastic

elastic-plastic

Figure 2.2: Difference between a theoretical sharp and actual blunt crack tip with
1√
r
stress singularity, [45], shown together with the plastic zone of first (ry)

and second-order (rp) approximations, [55]
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Figure 2.3: Plastic zones
around a crack-tip for the
three modes calculated
from the elastic solution
[55], which were validated
through FEA by Dodds
et al. [57]

flat plates by Inglis [56], show an asymptotic increasing behaviour towards the crack
tip. At the crack tip the stress field is singular with 1/√r, which was first shown as
universal by Williams [51]. While a mathematical examination of an ideally sharp
crack tip would therefore result in an infinitely high stress, actual material under-
goes plastic deformation where the stress exceeds the critical stress level. Observing
real crack tips reveals that plasticity at the crack tip yields in a blunt, rather than
a sharp crack tip.

The plastic zone can be approximated as rp ∼K2
/σ2

c
. Irwin and Kies [46] approx-

imated the plastic zone radius rp equation (2.10) based on the critical yield stress
σc. Presuming a degradation in load bearing capabilities within the plastic zone
Irwin and Kies corrected the stress intensity factor through increasing the original
crack length by the plastic zone correction length ry.

rp = K2
I

πσ2
c

(2.10)

ry = K2
I

6πσ2
c

(2.11)

Another simplistic plastic zone correction for linear elastic fracture mechanics was
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developed by Dugdale [58] and Barenblatt [59]. Known as yield strip model, a
classical finite crack inside an infinite material under remote stress is superimposed
with a crack with closure stresses at the crack tip. The crack length in the latter
case is increased across the plastic zone at which the closure stresses are applied.
Choosing the length of the plastic zone such that the stress intensity factors of both
cracks are balanced yields equation (2.12).

rp = π2σ2a

8σc
= πK2

I
8σ2

c
(2.12)

However, for a crack of length a the near-crack tip stress distribution in the elastic
annulus in between rp < r � a can be approximated as equation (2.13) with f(ϕ)
being a universal, dimensionless, polar coordinate function of ϕ. Replacing σ0 =
σxx = σyy, σ0 = τxy or σ0 = τyz in equation (2.13) results in K0 becoming KI,
KII or KIII respectively.

K0 = lim
r→0

√
2πr σ0f(ϕ = 0) (2.13)

Correspondingly, the fracture toughness KI,II,III can be written as a function of the
crack opening deflections at the crack tip v, u and w respectively with ϕ = ±π [45].

KI = v
2G
k + 1

√
2π
r
f(ϕ = ±π) (2.14)

KII = u
2G
k + 1

√
2π
r
f(ϕ = ±π) (2.15)

KIII = w
G

2

√
2π
r
f(ϕ = ±π) (2.16)

with plane strain: k = 3− 4ν

plane stress: k = (3− ν)
(1 + ν)

The formulations above for the stress field around a crack tip can be developed into
an expression of the stress intensity factors for a specific crack and solid geometry.
The general form for cracks under a stress equation (2.17) or a point load equa-
tion (2.18) contain the variables for the crack size a or the distance between point
load and crack tip b. The shape function Y changes depending on the load and solid
geometry setup. [

KI

KII

]
=
[
σ

τ

]
√
πaY (2.17)

[
K±I
K±II

]
=
[
P

Q

]
√
πbY (2.18)
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In the case of a single mode fracture scenario the critical stress intensity factors
for crack propagation can be regarded as material properties (2.19). However, this
does not apply for mixed-mode fracture scenarios and is discussed in more detail in
section 2.1.3.

KI = KIc , KII = KIIc , KIII = KIIIc (2.19)

2.1.2 Interface fracture and delamination

Bi-material interface cracks and delaminations of composites are different from crack
growth in isotropic materials, which were discussed in the previous section, by the
oscillatory singular stress field near a crack tip, which was first discovered by Wil-
liams [60] and continued by several research groups. Cherepanov [61] demonstrated
the oscillatory behaviour for pure elastic assumptions. A Green’s function solution
was derived by Rice and Sih [62] for a finite interface crack. Cracks in a non-
homogeneous plane were investigated by Erdogan [63] and an oscillatory area of the
order of 10−6 of the crack size was determined. England [64] and Malyshev and
Salganik [65] showed that the oscillatory behaviour leads to interpenetration of the
crack faces, which is physically wrong, and the size of the contact zone was estim-
ated in the order of 10−4.

The assumption of a small frictionless contact zone of the order of 10−4↔−7

between two crack faces in front of a crack tip was further investigated by Comninou
et al. [67], who were also evaluating contact zones with friction [68]. Gautesen and
Dundurs [69] build on [67], which was only solved for a Dundurs’ parameter β ≈ 0.5
[70], and derived exact solutions across the entire range of β. Dundurs discovered
that for isotropic bi-materials the plane problem of the elasticity is dependent on
the two dimensionless parameters α and β (2.20) with the bimaterial constant from
[60] as a relation of both as shown in equation (2.22). The Dundurs’ parameters can
be explained as being the measure of the mismatch of the plane tensile moduli (α)
and of the in-plane bulk moduli β. Dundurs’ parameters α and β vanish, if both
materials are of equal stiffness or incompressible respectively. The uniqueness of the
contact zone shape problem was proven by Shield [71, 72].

α = G1 (κ2 + 1)−G2 (κ1 + 1)
G1 (κ2 + 1) +G2 (κ1 + 1)

β = G1 (κ2 − 1)−G2 (κ1 − 1)
G1 (κ2 + 1) +G2 (κ1 + 1)

(2.20)

with κk =


3− 4νk

3− νk
1 + νk

(2.21)
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ε = 1
2π ln

(
1 + β

1− β

)
(2.22)

Atkinson [73] introduced a circumventing solution to the oscillatory problem by
creating a thin ‘adhesion layer’, so that either the crack can grow within this iso-
tropic layer or that the crack can grow in the interface between the extra adhesive
layer and the original material. Latter option would work under the assumption
of anisotropic adhesive layer with a modulus that continuously varies between both
materials in a way that at both boundaries the modulus of the interfacing material
and adhesive layer are equal. A study on parameters recommended for this extra
adhesive layer was presented in [74].

Although it is possible through the approaches by Comninou and Atkinson to
avoid interpenetration problems, Aravas and Sharma [75] have proven that the prob-
lem of crack face overlap is irrelevant, when the contact zone is smaller than the
process zone or the inelastic zone.

The singular form equation (2.23) of the near tip stress field at an interface crack
tip between dissimilar isotropic materials was determined by Rice et al. [76]. The two
singularity types combined are (a) the coupled oscillatory field scaled by a complex
K and (b) the non-oscillatory field scaled by a real KIII [49].

σ
(k)
ij = 1√

2πr

[
<(Krie)Σ(1)

ij (ϕ, ε) + =(Krie)Σ(2)
ij (ϕ, ε) + KIIIΣ(III)

iz (ϕ, ε)
]

(2.23)

with (i, j = r, ϕ)

The angular functions Σ(1,2)
ij (ϕ, ε) are listed in the appendix of [76] and Σ(III)

ij (ϕ, ε)
in [77], containing the polar coordinates (r, ϕ), the bimaterial constant ε and k

indicating the number (1, 2) of the upper and lower material. Arabic sub- and
superscripts {1, 2, 3} are used for the < and = parts in contrast to the Roman
{I, II, III} that indicate real values associated with stresses. For crack propagation
along the interface (i. e. ϕ = 0) the dimensionless angular functions are equivalent
to the tensile stress, in-plane shear and out-of-plane shear. Deng [77] also provided
the functions Ui(ϕ) for the asymptotic formulation of the displacement (2.24) [50].

u
(k)
i =

√
r

2π

[
<(Krie)U (1)

i (ϕ) + =(Krie)U (2)
i (ϕ) + KIIIU

(III)
z (ϕ)

]
(i = r, ϕ) (2.24)

The complex stress intensity factor (2.25) according to Banks-Sills [50] assembles
from the real K1,2, which are not linked with the tension and shear stresses. The
energy release rate of the interface (if) is derived from Irwin in equation (2.26).

K= K1 + iK2 (2.25)

GT,if = 1
H1

(
K2

1 + K2
2
)

+ 1
H2

K2
III (2.26)
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1
H1

= 1
2 cosh2 πε

(
1
E1

+ 1
E2

)
(2.27)

1
H2

= 1
4

(
1
G1

+ 1
G2

)
(2.28)

1
Ek

=


1− ν2

k

Ek
plane strain

1
Ek

generalised plane stress
(2.29)

Phase angles are defined as a measure of the stress ratios and the stress intensity
factor ratios. The phase angle ψ (2.30) is the ratio between in-plane shear and
normal stress in interface direction and the phase angle ϑ (2.31) is the ratio of the
out-of-plane shear to the in-plane shear and normal stresses. Here, L̂ is an arbitrary
length that is suggested to be comparable to the crack tip process zone [48] and the
size of L̂ was evaluated by [49] for its influence on the phase angle.

ψ = arctan
[
=(KL̂iε)
<(KL̂iε)

]
= arctan

[
σ12

σ22

]
ϕ=0,r=L̂

(2.30)

ϑ = arctan
[√

H1

H2

KIII√
K2

1 + K2
2

]
= arctan

[√
H1

H2

σ32√
σ2

22 + σ2
12

]
ϕ=0,r=L̂

(2.31)

Stress intensity factors in front of the crack tip (ϕ = 0) can be written as

K=
√

2πr
riε

[√
D22

D11
σ22 + iσ12

]
ϕ=0

(2.32)

Further details on the derivation and the material parameters D11, D22 can be found
in [78]. Accordingly, formulations for σ(k)

ij , u(k)
i , ψ, ϑ, K and GT,if were derived for

anisotropic [79, 80] and other types of materials [81] that lead to the energy fracture
criterion in equation (2.33) as recently summarised by Banks-Sills [50].

Additionally, Mohammed and Liechti [82] investigated into corner angles in bima-
terial interfaces that can also contain stress free surfaces. Fleck et al. [83] summarised
the crack path development in a brittle adhesive layer between substrates depend-
ing on residual stress, T-stress, KI/KII and the stiffnesses of adhesive layer and
substrates.

While the methods above are based on the linear elastic fracture mechanics
(LEFM), Shih and Asaro [84] numerically obtained elastic-plastic results for small
to large scale yielding based on the deformation theory. Yet, first to publish results
on plastic deformation at a crack tip were Rice and Rosengren [85] and Hutchinson
[86, 87] with an asymptotic field near a crack tip in a power-law hardening material,
as later reviewed and analytically solved by Wang et al. [88]. The HRR solution
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(named after Hutchinson, Rice and Rosengren) can be seen as the fundaments of
non-linear fracture mechanics.

Yang et al. [89] presented a complete analytical solution of the first two terms of
the HRR under mode-I (plane strain) or mode-II (plain stress) loading. Shih [49]
compares different elastic and plastic methods and concludes that the domain of
validity of separable asymptotic solutions of the HRR type appears to be too small
to be of relevance. Østby et al. [90] highlighted the plastic hardening mismatch
between dissimilar bi-material and its influence on the near tip stress field in small
scale yielding. Lee and Kim [91] investigated into asymmetric J-integrals for plastic
hardening mismatches. Recently, Belhouari et al. [92] published a study on the in-
teraction between an interface and a crack that runs along, parallel or angled to an
interface. A study was undertaken by Strom and Parmigiani [93] on the transition
from penetration to deflection of a crack growing perpendicular towards an interface
of dissimilar material.

Elastic-plastic analyses are less convenient in practice than LEFM approaches,
which are mainly applicable to brittle materials. Composites and bi-materials with
ductile behaviour need corrections for the plastic zone around the crack tip, when
analysed by LEFM, as has been discussed for isotropic materials in section 2.1.1.
Both plastic zone corrections by Irwin and Kies [46] as well as by Dugdale [58] and
Barenblatt [59] apply for interface fracture mechanics. Yi et al. [94, 95] presented
the effect of different loadings on the plastic zone size and the crack tip opening
displacement with a mixed-mode Dugdale model [96] in comparison to FEA and the
Irwin model. For the first time, Fan et al. [97] analysed most recently the elastic-
plastic fracture behaviour of a curved interface crack and presented a solution based
on the mixed-mode Dugdale model for the plastic zone size and the crack tip opening
displacement.

Although oscillations due to changing fluid pressure in pipelines occur in long
term, dynamic fracture mechanics of interface bonds lies outside the scope of this
study. Further details on dynamic and other non-classical fracture mechanics prob-
lems, such as under compression along crack face, buckling or residual stresses, for
interface cracks and extending literature were presented recently in [98].

2.1.3 Energy fracture criteria

The onset of an unstable crack growth defines the critical energy release rate, so that
the released energy exceeds the energy bearing capability of the remaining material.
This is known as the energy fracture criterion by Griffith [47] that was adjusted
independently by Irwin [99] and Orowan [100] to extend the validity of Griffith’s
model beyond ideally brittle materials. This energy fracture criterion can also be
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da with flat R curve,
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∆ and load P driven; [55]

explained as a crack becoming unstable, when the driving force exceeds the material
resistance to crack extension [55].

An ideally brittle material would exhibit a flat resistance curve, which has a
unique Gc as illustrated in figure (2.4a). For other materials the resistance curves
vary as illustrated in figure (2.4b), where a rising R curve is plotted that can be
observed for ductile materials. Similar, the ERR is typically not linearly related to
the crack size; for instance, G∼ a2 for a DCB test and G∼ a4 for a PBT. Fig-
ure (2.4b) also demonstrates the difference between load and displacement controlled
experiments. Load control leads to unstable crack growth, because the decreased
intact material size has to bear continuously increasing loads. In contrast, under
displacement control the load is relaxed with every increase in crack size.

In single mode fracture G∼K2 as illustrated in equation (2.2) and analogously
GIc can be seen as a material property for pure mode-I fracture as is KIc [45].
Equivalent to equation (2.19), a critical energy release rate can be used as fracture
criterion for single mode fracture. In particular composite materials and interface
debonding undergo mode mixes during crack propagation. A simple correlation like
equation (2.19), however, cannot describe mix-mode situations sufficiently. Many
different fracture criteria have been developed, which in itself illustrates that the
different hypotheses of those criteria cannot be applied on any type of material and
load-geometry scenario.

One class of criteria is based on physical relationships, such as the maximum
tangential (or hoop) stress criterion (Erdogan and Sih [101], Williams and Ewing
[102] and for dynamic Yoffe [103]), the maximum tangential principal stress (Maiti
and Smith [104–106]), the maximum tangential strain (Wu [107]), the minimum
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strain energy density criterion (or S-criterion, Sih [108]), the maximum strain en-
ergy density criterion (or T-criterion, Theocaris et al. [109]) and the kinking crack
model (Hussain et al. [110], extended for bi-material by Wang et al. [111]).

All those criteria do not account for the microscopic failure mechanism, which lim-
its the spectrum of possible applications and the validity for scenarios of |KII| �KI

[45]. In the same way, all criteria yield similar results for small |KII| or pure mode-I
as well as all are invalid for pure mode-II. Nevertheless, the angles of deflection of
the crack direction that can be estimated from the fracture criteria listed above are
usable, even in the case that the fracture criteria are not.

Differences between crack growth within isotropic homogeneous materials to crack
growth along interfaces of dissimilar materials were previously discussed in sec-
tions 2.1.1 and 2.1.2. Banks-Sills and Ashkenazi [112] compared four fracture cri-
teria for LEFM of interfaces and further developed one into the three dimensional
energy fracture criterion [113, 114] of equation (2.33), which is dependent on the
average, complex, critical mode-I ERR and the phase angles. The averaged GIc is
evaluated from tests through equation (2.34).

Gif,c = GIc
(
1 + tan2 ψ

) (
1 + tan2 ϑ

)
(2.33)

GIc = 1
H1

[
<(KL̂iε)

]2
(2.34)

Because no criterion was proven to be ideal across the range of possible materials
and load-geometry configurations, a second class of ‘non-local’ criteria was proposed
that utilise two parameters. As one of the first, Newman [115] proposed the two-
parameter fracture criterion in equation (2.35). Newman’s TPFC combines the
fracture parameter m and the single mode fracture toughness with the nominal
(net-section) failure stress σn, which must not be larger than the yield stress, and
the nominal stress of the section at plastic deformation σu, which is equivalent to
the ultimate tensile strength for tensioned plates or 1.15 times larger for pressurised
cylinders.

Kc = KIc

1−m
(
σn/σu

) , (σn ≤ σc) (2.35)

Leguillon [116] developed the ‘coupled criterion’ in equation (2.38) that combines
the general critical energy release rate criterion (2.36) with critical stress criterion
(2.37). Here, C(ω, ϕ0) [117] is a scaling term dependent on the notch opening angle
ω and the crack kinking angle ϕ0. The singularity exponent 1/2 ≤ α ≤ 1 becomes
1/2 for a crack (ω = 0) and 1 for a straight edge (ω = π). With sϕ(ϕc) = 1 the
general form of equation (2.38) can be simplified to equation (2.39). Applied on a
corner of a rectangular geometry such as a lap joint interface [118], the critical stress
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intensity factor can be expressed as equation (2.40).
It incorporates the dimensionless crack length λ = l/t and the initial crack jump

length λc, in contrast to the LEFM assumption of an infinitesimally small initial
crack length. The finite fracture mechanics (FFM) [119] requires a minimum initial
crack length ∆a > 0 that acts as a material constant defined as L = ∆a/2 [120].

Gc ≤ G= dΠp

dA (2.36)

σc ≤ σ ((or) τc ≤ τ) (2.37)

K≥Kc =
(

Gc

C(ω, ϕ0)

)1−α(
σc

sϕ(ϕ0)

)2α−1

(2.38)

K≥Kc =
(

Gc

C(ω, ϕ0)

)1−α

σ2α−1
c (2.39)

K≥Kc =
(

λcGc

C(λc)− C(λ0)

)1−α(
σc

sϕ(−λc, ϕ0)

)2α−1

(2.40)

Similar to Leguillon, a coupled stress–energy criterion for FFM was presented by
Cornetti et al. [121], which differs from the criterion of Leguillon, because it is not
based on a point-wise stress criterion. The formulation by Cornetti et al. is similar
to the line method (LM) that can be found in [122, 123]. The crack extension
∆a and the failure load σf are the two unknowns for both necessary conditions of
equation (2.41). A derivation for pull-push shear tests as single mode-II test can be
found in [124] and mix-modes were discussed in [125].

∫ a+∆a

a

σy(x) dx = σc∆a

∫ a+∆a

a

K2
Ic(a) da = K2

Ic∆a

(2.41)

Weißgräber and Becker [126] continued on the work of Leguillon and Cornetti et al.
and defined a criterion (2.42) for the failure load Ff . Its principle is to solve the
functions for the stresses and the incremental (or average) energy release rate G

towards the smallest load where both conditions are satisfied and thus the crack
lengths a of both criteria coincide. Recently, Perelmuter [127] extended the non-
local criteria to large scale process zones.

Ff = min
F,a

{
F‖f(σij(xi)) ≥ σc , ∀xi ∈ Ωc ∧ G(A = ∆A) ≥ Gc

}
(2.42)

However, a lack of confidence exists in fracture criteria established on physical
relationships. Therefore, a third type of criteria is based on simple mathematical
formulations (2.43), whose variables are partly determined from experiments. The
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critical total ERR criterion definition of GTc = GIc + GIIc + GIIIc or a sole depend-
ence on GIc as in equation (2.44) are less complex, yet often not a good enough
characterisation.

f(GI, GII, GIII, GIc, GIIc, GIIIc, . . .) ≥ fc (2.43)

f = GT

GIc
≥ 1 = fc , f = GT

GTc
≥ 1 = fc (2.44)

Some of the most common criteria were summarised by Shahverdi et al. [128] and
can be found in proprietary FEA software [129]. Piece-wise linear fracture criteria
compare each mode’s ERR with its single mode critical (2.45).

A quadratic polynomial criterion is shown in equations (2.46) and (2.47) with the
fitting parameters a, b and c determined through least square fit.

f = GI

GIc
+ GII

GIIc
+ GIII

GIIIc
(2.45)

f = a
G2

II
GI

+ b
GII

GI
+ c

1
GI

(2.46)

GT = A

(
GII

GT

)2

+B

(
GII

GT

)
+ C (2.47)

The bilinear fracture criterion presented in equation (2.48) was invented by Reeder
[130], which is the only type of fracture criterion that produces a discrete curve. The
parameters ξ and ζ have to be determined as the best fit of the toughness against
the mode mix data. To reduce the input parameters necessary and subsequently the
tests to determine those, Davidson and Zhao [131] presented a derivation called the
limited bilinear criterion.

f =


GI − ξGII

GIc
, for GII

GI
<

1/ζGIc − GIIc

GI + ξGII

ζGII − GI

GIIc
, for GII

GI
>

1/ζGIc − GIIc

GI + ξGII

(2.48)

An exponential hackle criterion [132], based on the hackle angle parameter N , can
be written for the ERR as [130]

f = GI + GII

(GIc − GIIc) eγ(1−N) (2.49)

N =

√
1 + GII

GI

√
E11

E22
(2.50)

Here, γ is arbitrarily adjustable to the model and geometry investigated. Another
similar criterion presented in [130] is the exponential stress intensity factor ratio
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criterion. This was translated to equation (2.51) to accommodate the ERR rate
instead of the SIF and also contains the material parameter η.

f = GI + GII

(GIc − GIIc) e
η

√
GI
GII

(2.51)

A criterion (2.52) based on the mode-I–mode-II interaction can be found in [130, 133].
In this criterion, the magnitude of i determines the interaction rate of both modes
with each other.

0 =
(
GI

GIc
− 1
)(

GII

GIIc
− 1
)
− i
(
GI

GIc

)(
GII

GIIc

)
(2.52)

i =
[
κ+ ϕ

(
GI

GI + GII

)]
(2.53)

Benzeggagh and Kenane [134] developed the criterion in equation (2.54) that was
later modified by Reeder [135] to the modified B-K fracture criterion in equa-
tion (2.55).

f = GT

GIc + (GIIc − GIc)
(
GII + GIII

GT

)η (2.54)

f = GT

GIc +
(

(GIIc − GIc)
GII

GT
+ (GIIIc − GIc)

GIII

GT

)(
GII + GIII

GT

)η−1 (2.55)

One of the most common and versatile fracture criteria is the power-law fracture
criterion [137] shown in equation (2.56). The three power exponents α, β and γ are

Gc

Mode-mix ratio GII/GT

DCB, Mode I
MMB, Mode I/II

ENF, Mode II

GIc

GIIc

B-K criterion (2.54)

experimental
mean value

0 0.2 0.4 0.6 0.8 1

Figure 2.5: Determination of the B-K fracture criterion through DCB, MMB and ENF
tests; from [136]
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constants and have to be determined through a curve fit.

f =
(
GI

GIc

)α
+
(
GII

GIIc

)β
+
(
GIII

GIIIc

)γ
(2.56)

It becomes obvious from the number and variety of fracture criteria as well as
the fact that no criterion developed into a dominant position over the other criteria,
that one simple, universal fracture criterion does not exist. Every criterion needs
a number of different tests conducted with several specimens tested, in order to
determine different parameters such as single mode fracture toughness and curve
fits as illustrated in figure (2.5). The standard test procedures to obtain single and
mixed-mode fracture toughness are described in the following chapter.

2.2 Interlaminar fracture energy tests

The standardised test procedures for interface or interlaminar fracture energy were
developed to determine the critical single mode fracture toughness KIc..IIIc and crit-
ical ERRs accordingly. Typically, a double cantilever beam (DCB) test is undertaken
to measure KIc. In a DCB test (fig. 2.6) as recommended by the BS ISO 15024 [138]
and other standards [139–141], the load pulls the upper and lower side of the pre-
cracked edge of the beam apart, while the other edge remains free, which results in a
pure crack tip opening displacement. Results can be obtained through the modified
beam theory or the compliance calibration method [44].

The most common method to determine the mode-II fracture toughness is an
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Figure 2.6: Double cantilever beam (DCB) with pre-crack and piano hinges for load
application; from BS ISO 15024 [138]
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Figure 2.7: End notched flexure (ENF) test; [44]

end notch flexure (ENF) test [142] or the calibrated end-loaded split (C-ELS) as the
proclaimed equivalent from the BS ISO 15114 [143] standard. The latter performs
an initial calibration by inversing the test setup when clamping the cracked and
loading the intact end of the beam. The actual mode-II test has the intact end fixed
and the cracked end displaced. The ENF test is the same apart from that the test
setup is identical to a 3-point bend test. The result in both cases is an in-plane
shear stress on the crack tip.

Often knowledge about the critical ERR for single mode loading is not sufficient to
evaluate the fracture potential in a mixed mode situation. Data for the development
of a fracture criterion valid across a range of mode-mixity can be obtained from
a mixed mode bending (MMB) test as standardised in ASTM D6671 [144]. The
specimen is put under a combined DCB and ENF loading through an eccentrically
pin-jointed lever arm, which imposes a central point load on the beam through
the bending load applied at the cracked end. This complex setup is illustrated in
figure (2.9).
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S
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P2h

b

Figure 2.8: Single leg bending (SLB) test; [44]
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Figure 2.9: Mixed mode bending (MMB) specimen in test rig; from ASTM D6671 [144]

Less complex than the MMB is a single leg bending (SLB) test [145]. An SLB
test setup is comparable with an ENF apart from the lower half of the pre-cracked
end is missing and the load is applied solely on the top half. However, it is not
possible to investigate a variety of mode mixes with an SLB, because its limitation
to a single mode mix of GII/GT ≈ 0.4 [44].

The three tests of DCB, CELS and SLB are sufficient to determine the mix-
mode ERR fracture criterion as presented in [131]. All test methods need to be
pre-cracked first, in order to create a more natural crack tip. The specimen width
must be w � t to obtain a central region wide enough under plane strain condition.
In contrast, the crack tip edge is stress free, followed by a small region of parabolic
stress increase. A wider specimen provides a larger area of constant stress and
therefore the influence of the edge can be marginalised. As the discussed tests and
their respective calculations are based on the classical beam theory, the specimen
length must be large compared to the beam thickness. Further explanations and
detailed mathematical formulation about standard fracture test methods can be
found in the respective standards or the literature [44, 55].

The fundamental solutions for peel tests were summarised by Thouless and Jensen
[146]. The resilience of an adhesive bonding to peel stress is lower than against any
other load scenario. However, peel is mainly a problem for thin, elastic or very low
modulus materials. Kinloch et al. [147] corrected ERR formulations for the energy
dissipation through plastic bending of the peeling arm and developed a model that
considers root rotation of the peel front. Specimens under peel load can additionally
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undergo a large range of mode phase angles [146].

2.3 Analytical Determination of Fracture Energy of SLBTs

In the following sections 2.3.1 and 2.3.2 different analytical solutions for circular
plates are discussed. Fixed edges are assumed as boundary conditions along the
crack contour. The plates are under load by a single central force or circular sur-
face load with near-zero radius as well as annular line loads for investigation of
shaft-loaded blister tests. Different load setups were investigated, because of the
differences in punch geometries used. First descriptions of the contact mechanics
of elastic solids were published by Heinrich Hertz [148]. Sneddon [149] presented
formulae for the determination of the penetration of a punch with arbitrary profile.
Solutions for pressure loads across the full crack surface in the case of a pressurised
blister test are discussed in chapter 2.4.

2.3.1 Point loading

Malyshev and Salganik [65] studied plexiglass lapjoints and circular plexiglass plates
on rigid substrates bonded by epoxy adhesives. They solved the determination of
the energy release rate from the law of energy conservation (2.57). Alteration of
their own fracture energy solution for cantilever beams bonded to a rigid substrate,
towards circular plates yielded a solution for circular bending plates under stress
by a central point load. The energy release rate can be derived accordingly as
equation (2.62) dependent on the load F and the flexural rigidity D (2.107) of
the plate and is labelled with ‘lb’. Neither the deformation nor the crack opening
influences this solution.

G= F∂w − ∂Π
∂A

(2.57)

with ∂Π — stored potential energy (2.58)

w0 = FR2

16πD (2.59)

Π = 8πDw2

R2 (2.60)

from Malyshev and Salganik Glb = F 2

32πD = 3 (1− ν2)F 2

8πEt3 (2.61)

from O’Brien et al. Glb = 3 (1− ν2)F 2

8π2Et3
(2.62)
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Equation (2.62) originates from equation (2.61) by Malyshev and Salganik, but was
corrected to the presented version through O’Brien et al. [150]. In contrast to the
‘load dependent’ equation (2.62), Malyshev and Salganik also derived a solution
(2.63), which is dependent on the deformation w and crack radius R instead of the
load (label: ‘db’).

Gdb = 8Dw2

a4 = 2Et3w2

3 (1− ν2) a4 (2.63)

The combination of ‘load based’ equation (2.62) and ‘displacement based’ equa-
tion (2.63) in equation (2.64) is labelled as ‘cb’ and does not contain the flexural
rigidity as separate factor. The same result can be found in [151, 152] with a more
detailed description of its deduction.

Gcb = Fw

2πR2 (2.64)

Sheplak and Dugundji [153] observed that a transition between plate bending and
membrane stretching occurs within the range of 1 < β < 20 of the non-dimensional,
normalised membrane stress. Komaragiri et al. [154] proposed a similar dimen-
sionless parameter λ (cf. eq. 2.69). While [153] studied pressurised blister tests,
Wan [151] investigated the transition behaviour for shaft-loaded blister tests. In
accordance with [153], Wan introduced the dimensionless parameters for normal-
ised radius, deflection slope, membrane stress and applied load of equations (2.65)
to (2.68) respectively.

r̂ = r

R
(2.65)

ϕ̂ = dW
dr̂ = R

t

dw
dr (2.66)

N̂ =
√
NR

D
(2.67)

p̂ = FR2

2πD (2.68)

λ =
√

[12 (1− ν2)]3 FR
2

Et4
(2.69)

The membrane stress N is determined as shown in equation (2.70), [151]. For
pure plate bending the membrane stress N becomes negligible and N̂ → 0. The
result is the classical solution of equation (2.59) for a clamped plate over the radius
in equation (2.73) or equivalent in the normalised form of equation (2.74). Wan
deduced this solution through the slope (2.72), which was build from modified bessel
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functions of the first and second kind.

N = Et

2R2 (1− ν2)

∫ R

0

(
dw
dr

)2

r dr = Et3

2R3 (1− ν2)

∫ 1

0
ϕ̂2r̂ dr̂ (2.70)

ϕ̂ (r̂) = p̂

N̂2

1− N̂K1

(
N̂
)

I1

(
N̂
)

 I1

(
N̂ r̂
)

+ N̂K1

(
N̂ r̂
)
− 1
r̂

 (2.71)

ϕ̂b = p̂r̂

2 ln r̂2 (2.72)

w (r) = FR2

16πD

[
1−

( r
R

)2
+
( r
R

)2
ln
( r
R

)2
]

(2.73)

Φ̂ (r̂) =
∫ 1

0
ϕ̂ dr̂ = p̂

8
[
1− r̂2 + r̂2 ln r̂2] (2.74)

Williams [152] was first to show the elastic solution for membrane stretching. In the
case of membrane stretching as sole deformation, N̂ → ∞. The slope’s maximum
moves towards the centre and approaches infinity, though being zero at the plate
centre.

ϕ̂m = − p̂

N̂2r̂
(2.75)

Φ̂ (r̂) = − p̂

N̂2
ln r̂ (2.76)

Based on the relations of equation (2.1) and equation (2.6), Wan [151] also gives an
expression for a normalised ERR, χ, for point loaded blisters as shown in equa-
tion (2.77). The pure bending energy release rate Gb is the same as in equa-
tion (2.64). In this case with N̂ → 0, the normalised ERR χb = 1/2, while for
N̂ →∞ under pure membrane stretching χm = 1/4.

χ = GA

Fw0
(2.77)

χ = χb + χm = ϕ̂′2

4p̂Φ̂0
+ N̂4

24p̂Φ̂0
(2.78)

G= Gb + Gm = M2

2D + N2 (1− ν)
Et

(2.79)

for pure bending: Gb = 1
2
Fw0

πR2 ⇒ χb = 1
2 (2.80)

for pure membrane: Gm = 1
4
Fw0

πR2 ⇒ χm = 1
4 (2.81)
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Pressure across a minimised surface is another approach for an analytical
plate bending solution under a central point load as shown in figure (2.10), which
was deduced by Al-Maskari [155]. Within the same assumptions as described in the
preceded paragraphs, a plate deformation under bending from a central surface load
p0 with near-zero radius R0 can be aproximated according to Young and Budynas
[156, tab. 11.2., case 17]. An uniform load (2.82) over a very small, circular, central
area with radius R0 (2.83) is assumed instead of an ideal point load F . Concen-
trated loads or loads across a very small area result analytically in very high stress
concentrations. It was shown that replacing the actual radius R0 of the area with
an ‘equivalent radius’ R′0 aproximates the actual stress concentration more precisely
[157].

F = p0πR
2
0 (2.82)

for r > R′0 and R0


>
t

2 ; R′0 = R0

<
t

2 ; R′0 =
√

1.6R2
0 + t2 − 0.675t

(2.83)

The deflection curve is calculated from equation (2.84) with the maximum deflection
in the centre at r = 0 yielding equation (2.85).

wb,np = F

16πD

[
R2 − r2

(
1 + 2 ln

(
R

r

))]
(2.84)

wb,np,max = FR2

16πD (2.85)

F

Rpunch

2R

2R0
p0

r

t

z

Q

M

w

ϕ

w(0) = max
ϕ(0) = 0

w(r) = 0
ϕ(r) = 0
M(r) = max

Figure 2.10: Circular plate under a near point load by a hemispherical punch

30



The opened crack area dA is derived from equation (2.86).

dA
dR = dπR2

dR = 2πR ⇒ dA = 2πR dR (2.86)

Inserting equation (2.84) in equation (2.6) produces the energy release rate as equa-
tion (2.87) within the limits of the classical plate bending theory.

Gb = F 2

4πR ·
∂C

∂R
= F 2

4πR
2 (R2 − r2)

16πDR (2.87)

Shear can not be omitted [158], because of the small R/t ratio that usually has
to be assumed for corrosion repairs. The deflection due to shear can be found from
Castigliano’s theorem of equation (2.88). The strain energy as result of shear stress
is the integral of the shear force over the radius in combination with the area, shear
modulus and the shear correction factor Ks. Young and Budynas [156, chap. 8.10]
listed shear correction factors for various cross-sections. Their derivation is presen-
ted in section 2.4.2.

ws,np = ∂Us

∂P
(2.88)

Πs,np = Ks

2AG

∫ R

0
Q2 dr (2.89)

with Ks = 6
5 for rectangular cross-sections (2.90)

The difference in shear deflection for central surface loads with small radii can be
assumed to be similar to the shear deflection of central annular line loads with small
radius. The derivation of the shear deflection for the near-point solution can be
calculated under this assumption from equation (2.99).

ws,np(r) = 6
5

( r
R

)2
ln
(
R

r

)
p0R

2

2tG = 6Fr2R2

10πR2
0R

2tG
ln
(
R

r

)

= 6Fr2

10πR2
0tG

ln
(
R

r

)
(2.91)

The total deflection due to bending and shear is summed up in equation (2.92).
Inserting equation (2.92) in equation (2.8) yields the compliance.

wt,np = wb,np +ws,np = F

16πD

[
R2−r2

(
1+2 ln

(
R

r

))]
+ 6Fr2

10πR2
0tG

ln
(
R

r

)
(2.92)

The energy release rate for the ‘near-point’ loading solution ‘np’ is obtained
from the partial derivative of the compliance C with respect to R as shown in
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Figure 2.11: Circular plate under annular load by a flat punch

equation (2.6).

Gnp = F 2

4πR ·
∂C

∂R
= F 2

4π2R2

(
2 (R2 − r2)

16D + 6r2

10R2
0tG

)∣∣∣∣
r=R0

= F 2

4π2R2

(
3
(
1− ν2

xy
)

(R2 −R2
0)

2Ext3
+ 3

5tG

)
(2.93)

2.3.2 Annular line load

In contrast to a hemispherically capped punch, the load distribution of a flat punch
can be assumed to be a surface load across the full punch head. However, experi-
ments and FE analysis proves that, due to the plate bending stiffness of reinforced
polymers, the plate lifts of the flat punch head’s main surface area. The plate re-
mains rested on the edge of the punch. The gap becomes more pronounced with
an increase in punch diameter. Therefore, a new solution based on plate bending
due to an annular line load, illustrated in figure (2.11), was derived from Young and
Budynas [156, tab. 11.2, case 9b]. Assumptions about the contact area and congru-
ently the applied load case can be simpler than those made for the contact area of
a hemispherically capped punch as outlined in studies of [148, 149] and others. The
resulting deflection curve of equation (2.100) and it’s derivation is described in the
following section.

For a general formulation the plate bending deflection under an annular load can
be written as equation (2.95) with separate summands for the central deflection
wC,an, the deformation due to moments wM,an and transverse shear force wQ,an. The
load F is defined as line load q0 around the circle of the punch radius R0. The
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deformation in the centre of the plate, where r = 0, is shown in equation (2.96).
It is clear that after substitution of the two different variants of force load of equa-
tion (2.94) and equation (2.82) the central deflection wC,an in equation (2.96) of an
annular load is identical to the deflection of a central point load wb,np, which was
derived in equation (2.84) in the previous paragraph.

F = q02πR0 (2.94)

wb,an = wC,an + wM,an + wQ,an (2.95)

wC,an = F

16πD

[
R2 −R2

0

(
1 + 2 ln

(
R

R0

))]
(2.96)

Another term is introduced to describe the deflection wM,an under influence of the
moment in the plate centre MC resulting in equation (2.97). Finally, the transverse
shear force Q is considered through equation (2.98). The transverse shear influences
the total deflection for a radial coordinate r within the annular section of the plate
between punch contour and plate edge, thus R > r > R0.

wM,an = MCr
2

2D (1 + ν) = − Fr2

16πD

[(
R0

R

)2

− 1 + 2 ln
(
R

R0

)]
(2.97)

wQ,an = Qr3

4D

{[(
R0

r

)2

+ 1
]

ln
(
r

R0

)
+
(
R0

r

)2

− 1
}
〈r −R0〉 (2.98)

〈r −R0〉


> 0 ; wQ,an = Fr2

8πD

{[(
R0

r

)2

+ 1
]

ln
(
r

R0

)
+
(
R0

r

)2

− 1
}

(r −R0)

6 0 ; wQ,an = 0

Shear needs to be taken into account similar to the solutions of point loaded plate
bending (cf. eq. 2.91). Again, the total deformation wt,an in equation (2.100) consists
of both, a bending and shear term.

ws,an = 6r
5R ln

(
R

r

)
q0R

tG
= 6FRr

5 (2πR0)RtG ln
(
R

r

)

= 6Fr
10πR0tG

ln
(
R

r

)
(2.99)
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wt,an(r) = wb,an(r) + ws,an(r)

= Fr2

16πD

{[
R2

r2 −
R2

0
r2

(
1 + 2 ln

(
R

R0

))]
−

[(
R0

R

)2

− 1 + 2 ln
(
R

R0

)]
+

2
([(

R0

r

)2

+ 1
]

ln
(
r

R0

)
+
(
R0

r

)2

− 1
)}

+

6Fr
10πR0tG

ln
(
R

r

)

(2.100)

The energy release rate for plates bending under an annular load is deduced
as presented above from the compliance C. The compliance is differentiated with
respect to the radius R. Comparison of the newly derived solution from the work
presented of equation (2.101) with the formerly used point load expression in equa-
tion (2.93) reveals the difference between both, which is the factor

(
1−R2

0/R2
)
on

the bending deflection.

Gan = F 2

4πR ·
∂C

∂R

= F 2

4πR

(
r2

16πD

[
2 (R2 −R2

0)
r2R

− 2 (R2 −R2
0)

R3 + 0
]

+ 6r
10πR0tGR

)

= F 2

2π2R2

(
1

16D

[(
R2 −R2

0
)
− r2

(
1− R2

0
R2

)]
+ 3r

10R0tG

)∣∣∣∣∣
r=R0

= F 2

4π2R2

(
3
(
1− ν2

xy
)

2Ext3
(
R2 −R2

0
)(

1− R2
0

R2

)
+ 3

5tG

)
(2.101)

2.4 Analytical formulation for pressure blister tests

The standards of ASME [2] and ISO [1] provide the user with engineering formula-
tions to design repairs against the different types of failures, which were pointed out
in chapter 1. The present study is focussed on the interface fracture energy release
rate of circular defects. In the following chapter, the equation for repairs of circular
defects is derived and compared to the formulation (2.102) given in the standards,
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which originates from Mableson et al. [17]. Limitations of the analytical formula-
tions are highlighted at the end leading to the common test method of pressure
blister tests.

G= 1
(ftf)2P

2
[

(1− ν2)
E

3
32t3min

R4 + 3
16Gtmin

R2 + (1− ν2)
πE

R

]
(2.102)

The strain energy release rate G (ERR) is the energy released dΠ over a corres-
ponding opened crack area dA, which is assumed to be a ring. The released energy
can be expressed through the pressure P acting from underneath on the repair and
the compliance C of the repair. The compliance is dependent on the pressure as
well as the volume of the blister, which is generated underneath the repair by the
pressure.

G= −dΠ
dA with Π = −P

2C

2 and dA = 2πR dR (2.103)

G= 1
4πRP

2 dC
dR replacing C = V/P (2.104)

G= 1
4πRP

dV
dR (2.105)

Consequently, knowledge of the blister volume is the key to calculate the ERR.
For an analytical derivation of the volume it is necessary to define the formulation
for the deflection of the blister. The classical plate bending theory of thin plates,
also known as Kirchhoff–Love plate theory, was extended from the Euler-Bernoulli
beam theory and therefore has to comply with the same assumptions [159]:

1. Elastic, homogeneous and isotropic material

2. Initially the plate is flat

3. Small deflections of the midplane compared to the thickness

4. Normals of the midplane stay straight and normal to the midplane after de-
formation

5. Stress normal to the midplane is small enough to be negligible σz � σx, σy

(plane stress condition)

6. The midplane is free of stress and strain

This leads to the restraint that the influence of shear is omitted. As a result, the
CPT applies only for thin plates (10 ≤ R/t ≤ 100). To overcome this limitation sev-
eral higher order solutions were proposed of which the earliest and most well-known
came from Reissner [161, 162] and Mindlin [163]. Both appear similar, yet they
are distinctively different, which was summarised by Wang et al. [164]. Reissner’s
theory assumes a linear bending stress distribution superimposed by a parabolic
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Figure 2.12: Difference in shear deformation between different order plate theories; [160]

shear stress distribution. His theory permits a non-linear transversal displacement
variation and a variation of the thickness itself. In contrast, Mindlin’s approach
assumes a linear variation of displacements in out of plane direction in combination
with inextensibility of the thickness. As another consequence Mindlin, contrary
to Reissner, ignores the normal stress σz. Therefore, Reissner’s theory cannot be
categorised as first-order shear deformation plate theory (FSDT). Figure (2.12) dis-
plays the differences in shear deformation of the different plate theories.

ASME PCC2-4 and ISO 24817 both present the same equations based on an
FSDT approach. The FSDT is merged from the CPT and from an additional correc-
tion term for shear. The main difference between CPT and FSDT is the abandoning
of the constraint of normal lines to stay orthogonal to the midplane after deforma-
tion, although the restriction of lines to stay rectilinear and inextensible remains.

2.4.1 Classical plate theory

The general CPT formulation (2.106) for an axisymmetric thin plate under uni-
form load p0, shown by Timoshenko and Woinowsky-Krieger [165, chap. 3], has to
be solved for the particular boundary conditions of a clamped edge. Ventsel and
Krauthammer [159, chap. 4.3] summarised the derivation (2.106). For a fixed edge
the assumptions of a zero-slope (ψ(r) = 0) of surface deflection around the edge
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Figure 2.13: Circular plate under uniform load

(r = R) and in the centre (r = 0) lead to the equation (2.108). The bending
deflection without shear influence is labelled as wb.

w(r) = p0r
4

64D + C3r
2 + C4 (2.106)

with D = Et3

12 (1− ν2) (2.107)

wb(r) = p0

64D
(
R2 − r2)2 (2.108)

with wmax = p0R
4

64D maximum deflection in the centre (2.109)

2.4.2 CPT extension to FSDT

Transverse normal and shear stresses are neglected in the CPT, but the FSDT can
overcome limitations of the CPT. Through allowing the cross-section of the plate to
become angled to the normal of the plate as illustrated in figure (2.13), the angle of
the cross-section ϕr changes with the shear strain γrz. In the following paragraphs all
terms dependent on the tangential coordinate ϑ are omitted under the assumption
of a quasi-isotropic material. The radial shear strain for an axi-symmetric plate
can be derived from [166, chap. 10.]

γrz = ∂w0

∂r
+ ϕr (2.110)

Here, ϕr is the total angle, which is composed of the angle known from the CPT
ψr = ∂w0

∂r
and the shear strain induced angle (cf. fig. 2.12). In accordance with [159],

a potential function is introduced of the form

ϕr = ∂ω(r)
∂r

(2.111)
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The new potential function ω(r) is closely related to the bending deflection w(r)
through

w(r) = ω(r)− D

Gt
∇2ω(r) (2.112)

with ∇2f = ∂2f

∂r2 + 1
r

∂f

∂r
under negligance of ϑ (2.113)

Because of the change of the cross-section angle, the boundary conditions of the
angle ψr need to be applied to the new angle ϕr equivalently. Assuming a zero-slope
around the fixed edge r = R of the plate bending equation (2.109) as boundary
condition yields

ϕr(R) = γrz(R)− ∂w0(R)
∂r

= 0 (2.114)

with γrz(R) = 0 (2.115)

⇒ 0 = ∂w0(R)
∂r

= p0R
3

32D + C3R (2.116)

⇒ C3 = −p0R
2

32D (2.117)

In order to solve equation (2.112) the remaining unknown constant C4 must be
determined. Firstly, ∇2ω(r) has do be derived

∇2ω(r) = p0R
2

4D + 4C3 (2.118)

The plate bending equation (2.112) can be written as equation (2.119) and solved
for the constant C4 through the boundary condition of no deflection w(R) = 0 at
the fixed edge along the crack tip.

w(r) = p0r
4

64D −
p0R

2

32D r2 + C4 −
p0

4Gt

(
r2 − R2

2

)
(2.119)

C4 = p0R
4

64D + p0R
2

8Gt (2.120)

w(r) = p0

64D
(
R2 − r2)2 + p0

4Gt
(
R2 − r2) (2.121)

In equation (2.121) it becomes obvious that the first part is equal to equation (2.108),
while the second part derives from the FSDT. It can be referred to as deflection due
to shear w∗s .

w∗s (r) = p0

4Gt
(
R2 − r2) (2.122)

The simple stress formulation for shear (τu = Q
A
) yields in a uniform load across the

face and differs from the actual, parabolic stress distribution τ p of a transverse shear
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stress. Shear correction factors can account for the difference and thus were applied
on ws. In general, transverse shear can be calculated, as presented by [167] and in
equation (2.123), as a function of the bending moment M , the static moment S, the
moment of inertia Ixx and the width b. In the case of a transverse load instead of a
bending moment, dM

dz is replaced by a single load Q or a pressure q.

τ = dM
dz

S

bIxx
(2.123)

S = Az = b

(
t

2 − z
)
z + t

2
2 =

(
t2

4 − z
2
)
b

2 (2.124)

Ixx = bt3

12 (2.125)

Equations (2.123) to (2.125) in combination with τu = Q
A

leads to the actual shear
stress distribution, which can be written as

τ prz (z) = 3qr
2t

[
1−

(z
t

)2
]

= 3
2τ

u
rz

[
1−

(z
t

)2
]
, − t2 ≤ z ≤ t

2 (2.126)

The ratio of the strain energies for linear and parabolic stress distributions [166]
gives the shear correction factor Ks.

Πu
s = 1

2G

∫
A

(τurz)
2 dA = q2

r

2Gt (2.127)

Πp
s = 1

2G

∫
A

(τ prz)
2 dA = 3q2

r

5Gt (2.128)

Ks = Πp
s

Πu
s

= 6
5 (2.129)

Applying equation (2.129) on equation (2.122) results in the corrected shear deflec-
tion ws.

ws(r) = Ksw
∗
s (r) = 3p0

10Gt
(
R2 − r2) (2.130)

2.4.3 FSDT extension for crack opening by material compressibility

Finally, a third correction term is introduced for a ‘penny-shaped’ crack (fig. 2.14)
inside an infinite thick elastic solid, i. e. an equivalent of the plane strain condition.
The crack is opened by an internal pressure acting along both surfaces of the crack.
Sneddon [54] derived this theory from the previous work of Griffith [47, 168] and
Orowan [169]. For a constant internal pressure over the full circular crack area in
a three dimensional crack, Sneddon [54, eq. 3.3.2] developed an expression for the
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Figure 2.14: Orthogonal deflection of surface of ‘penny-shaped’ crack in semi-infinite
material.

crack surface displacement in radial (2.131) and orthogonal direction (2.132). The
radial deflection vanishes for incompressible material (Poisson’s ratio ν = 0.5). The
standards only consider crack opening deflections orthogonal to the plane of the
crack, because the assumption of a clamped edge is similar to infinitely stiff and
incompressible material behaviour in radial direction.

uc(r) = −2 (1 + ν) (1− 2ν)
3πE RIr (2.131)

wc(r) = 4 (1− ν13ν31)
πE

p0
√
R2 − r2 (2.132)

2.4.4 Energy release rate determination from extended FSDT

All three deflections for bending wb (2.108), shear ws (2.130) and crack opening wc

(2.132) have to be integrated over the area of the crack as presented in the general
form in equation (2.133). Their sum yields the total volume in equation (2.137).

V (r) = 2π
r=R∫
r=0

w(r)r dr (2.133)

Vb(r) = (1− ν2
12)π

16Et3
PR6 (2.134)

Vs(r) = 3π
20G13t

PR4 (2.135)
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Vc(r) = 2π
r=R∫
r=0

P
4 (1− ν13ν31)

πE33

√
R2 − r2r dr

= P
8 (1− ν13ν31)

E33

[
−1

3
√
R2 − r23

]r=R
r=0

= 8 (1− ν13ν31)
3E33

PR3 (2.136)

Vtotal = Vb + Vs + Vc

= 2πP
[

(1− ν2
12)

32Et3
R6 + 3

40G13t
R4 + 4 (1− ν13ν31)

3πE33
R3
]

(2.137)

Substituting equation (2.137) in equation (2.105) yields a result similar to the earlier
presented equation (2.102) of the standards. Identical to the standard and Williams
[170] is the bending term I with E =

√
E11E22 under the assumption of quasi-

isotropic material behaviour. The shear term II was altered by applying the trans-
verse shear modulus G13, which was not specified in the standard. Additionally, the
shear correction factor has been applied as described in section 2.4.2. Finally, the
compression crack opening term III is adjusted through application of the transverse
Poisson’s ratios and Young’s modulus, in contrast to the standards that use the
in-plane values.

G= 1
2RP

2 d
dR

[
(1− ν2

12)
32Et3

R6 + 3
40G13t

R4 + 4 (1− ν13ν31)
3πE33

R3
]

(2.138)

G= P 2
[ I︷ ︸︸ ︷

3 (1− ν2
12)

32Et3
R4 +

II︷ ︸︸ ︷
3

20G13t
R2 +

III︷ ︸︸ ︷
2 (1− ν13ν31)

πE33
R

]
(2.139)

Understanding of the derivation of equation (2.102) and equation (2.139) is also
necessary to recognise its limitations. These are partially equivalent with those
known from the CPT, the shear correction term and the compression crack opening
correction. However, a few additional limitations are imposed and a summary of all
assumptions of the analytical solution is listed below:

1. Repair material:

• Linear-elastic, homogeneous, isotropic

2. Substrate material:

• Infinitely stiff for Vb and Vs

• Vc assumes symmetry about the crack plane, i. e. equal to repair material

41



3. Geometry

• Initially the repair and substrate disks are assumed to be ‘flat’ plates and
consequently, the area of the pipe, affected by the defect, is assumed to
be small compared to the circumference

• The crack defect is an axis-symmetric through-hole with sharp edges at
the bond interface

4. Blister forming

• Small deflections of the midplane compared to the thickness

• Normals of the midplane stay straight and are inextended after deform-
ation

• Stress normal to the midplane is small enough to be negligible σz � σx, σy

(plane stress condition)

• The midplane is free of stress and strain

• ‘Clamped edge’ results in a zero deflection slope around the edge for the
CPT expression and a zero deflection for the shear correction.

• Constant pressure over the full crack area

It becomes obvious that the assumptions made for the analytical solution are partly
oversimplifications of the problem or even contradictory to composite materials.
This illustrates the need to investigate into the validity and quality of the analytically
made estimates.
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Chapter 3. Numerical simulation of fractures

3.1 Overview of fracture simulation methods

In chapter 2 an overview across different analytical ways of energy release rate
and stress intensity factor calculations was given. Typically, multiple simulation
approaches are possible to solve a problem and, consequently, a large number of
different FE techniques to obtain G or K were developed. The following chapter
provides a summary of available methods and explains the applied ‘virtual crack
closure technique’ in greater detail in 3.3.

Apart from the VCCT, ANSYS supplies the option based on a domain integral
method after [171, 172] for a conservation law J-integral simulation, which is one
of the most important parameters for fracture characterisation. Closed contour
integrals (or surface integral in 3D) are equivalent to Gand K for elastic material,
but in contrast to other methods closed contour integrals may be applied for elastic-
plastic fracture behaviour [45, 173]. However, only total ERRs and SIFs can be
calculated and fracture of interfaces between dissimilar media cannot be evaluated.

The J-integral, invented by Rice [174], was shown to be a valid approximation of
the stress field around a crack-tip by Hutchinson [86] and Rice and Rosengren [85].
A contour around a crack tip can describe the difference in potential energy from
a crack propagation. Closed contour integrals are independent of the path of the
contour for stationary cracks or cracks with ∆a� rp (cf. fig. 2.2). They vanish when
the contours envelope homogeneous material without singularities, discontinuities or
flaws [175].

The same rules apply for the domain integral method, which computes the area
or volume instead of the line or surface for 2D or 3D simulations respectively. Due
to its higher compatibility with the solution process of FEA, domain integrals are
numerically more efficient than line integrals, in particular for 3D simulations. The
J-integral calculation with the domain integral equation (3.1) consists of the strain
energy density U with the Kronecker delta, the displacement vector u with the stress
σ within the domain ΓA and traction t acting on the crack face area AC [175, 176].

J = G=
∫
ΓA

(
σij
∂ui1
∂x1

− Uδ1i

)
∂q1

∂xi
dΓA −

∫
AC

tjuj1q1 ds (3.1)

ANSYS uses interaction integrals to calculate stress intensity factors. Interaction
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integrals (known asM -integral or I-integral), initially developed by Chen and Shield
[177], are another extension of the J-integrals capable of computing the mixed mode
stress intensity factors through the work of Stern et al. [178] and Yau et al. [179].
Two equilibrium states are superpositioned in the interaction integral method; the
actual boundary value problem and an auxiliary solution of the asymptotic crack
tip displacement. A concise summary of the history of interaction integrals can
be found in Daimon and Okada [180] together with an improvement to employ
quadratic tetrahedral elements. The superposition can be expressed analytically as
equations (3.2) to (3.8) [181, 182]

u(0) = u(1) + u(2) (3.2)

σ(0) = σ(1) + σ(2) (3.3)

~K
(0)

= ~K
(1)

+ ~K
(2)

(3.4)

G(0) − G(1) − G(2) = 1
4

[
~K

(1)T
E ~K

(2)
+ ~K

(2)T
E ~K

(1)
]

(3.5)

with the asymptotic solutions for

a) [KI = 0,KII = 1,KIII = 0]
b) [KI = 1,KII = 0,KIII = 0]
c) [KI = 0,KII = 0,KIII = 1]

the SIFS can be separated to:E11 E12 E13

E21 E22 E23

E31 E32 E33


K

(1)
II

K(1)
I

K(1)
III

 = 2 ·

G
(0)
a − G(1) − G(2)

a

G(0)
b − G(1) − G(2)

b

G(0)
c − G(1) − G(2)

c

 (3.6)

and the equivalent expression for the domain integral of the superpositioned state
(JS); a sum of the actual (J) and the auxiliary (Jaux) domain integral as well as the
interaction integral (M).

JS = J + Jaux +M (3.7)

The interaction integral M is derived as [181]

M =
∫
ΓV

[
σiju

aux
j1 + σaux

ij uj1 −
1
2
(
σjkε

aux
jk + σaux

jk εjk
)
δ1i

]
qi dΓV

+
∫
ΓV

[
σiju

aux
j1 + σaux

ij uj1 −
1
2
(
σjkε

aux
jk + σaux

jk εjk
)
δ1i

]
i

q dΓV

−
∫
AC

(
τju

aux
j1 + τ aux

j uj1
)
q ds

(3.8)
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Other integrals noteworthy are the L-integral [183] and the mutual work differ-
ence integral [184]. The conservation law integrals J , L and M were interpreted
by [185] as the ERRs for a translational, rotational or expanding crack growths.
Paluszny and Zimmerman [186] published a meshing approach applicable with integ-
ral methods to automatically adapt arbitrary mesh geometries for mesh-independent
crack fronts and propagations.

The virtual crack extension method (VCE) (3.9) was simultaneously developed
by Parks [187] and by Hellen and Blackburn [188] and is another way of calculating
single mode SIFs. Shifting the position of the nodes at and next to the crack tip,
instead of opening node connections, results in a change of the master stiffness matrix
per crack unit length dKi/da in-between the two contours Γ0 and Γ1. No change can
be found inside Γ0 or outside Γ1 because the elements remain unchanged, if they are
not within the band between the contours. All stiffness matrices Kc

i of the elements
Nc between both contours are summed up and multiplied with the vector of the
nodal displacements ~u. Parks [189] and Hellen [190] showed a VCE solution for
non-linear materials, Matos et al. [191] were first to publish the VCE for bi-material
interface fracture and Ikeda et al. [182] added anisotropy.

G≈ −1
2~u

T
Nc∑
i=1

dKc
i

da ~u (3.9)

The eXtended Finite Element Method (XFEM) was introduced by Belytschko
and Black [192] and Moës et al. [193] and offers the advantage of crack growth
through an arbitrary FEM mesh independent of a potential crack path. Based
on the partition-of-unity the nodes next to the crack path become enriched with
additional near-tip asymptotic shape functions and a discontinuity field using gen-
eralised Heaviside step functions and singular functions [194]. Belytschko and Black
summarised the advantages over alternative mesh-independent crack propagation
methods as the compatibility with FE technology and software, being applicable
to non-linear problems and fewer computational expense compared to continuous
FEM remeshing operations. Although XFEM is most efficient for elastic 2D prob-
lems, because the singular function can be determined analytically, the XFEM was
applied for 3D problems [195] and non-linear materials undergoing strain hardening,
thermal softening, visco-plasticity and ductile damage [194].

Other mesh-geometry based FEM models are the nodal-force method [196], the
body force method [197] and the extrapolation or displacement correlation technique
[198].

Cohesive zone models (CZM) use an additional set of elements at the crack in-
terface, which do not inherit material but rather can be understood as the cohes-
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ive forces acting between the material elements under load. ANSYS supplies the
INTER202→205 elements for 2D, 3D, lower- and higher-order elements. Because
the elements are only ‘inserted’ in the interface, CZM interface elements are line
elements for 2D and surface elements for 3D simulations.

The approach taken by the CZM is the equivalent of the analytical modelling
of the crack tip zone by Dugdale [58] and Barenblatt [59] and therefore an option
to simulate non-linear material behaviour. Additionally, no initial crack has to be
present and an initial crack may have a vanishing ERR [199]. Traction-separation
laws are the measure for the separation, where the area under the traction over
separation curve is equivalent to the energy required for the crack separation. Mod-
els based on the exponential model by Xu and Needleman [200] are most common,
but for instance bilinear CZM laws can be found as well [201]. A comprehensive
review of different traction-separation laws was published by Park and Paulino [202]
together with a general overview of publications on the topic of CZM.

Originally, crack propagation with the CZM was confined to the mesh geometry
and arbitrary crack propagation was achieved with a fine mesh and interface ele-
ments between all continuum elements [200]. This limitation was partly overcome
through application of a smeared CZM with embedded discontinuities, a standard
discrete CZM with adaptive discontinuities [203] and the partition-of-unity method
[204], better known from the XFEM, as has been reviewed by [205]. A comprehens-
ive comparison between LEFM and nonlinear FM using J-integral methods and
CZM was conducted by Bittencourt [206].

ANSYS offers the functionality of exponential (equations (3.10) to (3.11)) and
bilinear (equations (3.12) to (3.13)) traction laws that need additional input of ma-
terial constants such as maximum stresses and separation, but also provides the
option to utilise the VCCT with a fracture criterion instead. Xie and Biggers in-
vestigated using interface elements in conjunction with VCCT for 2D [207] and 3D
[208, 209] with arbitrarily shaped crack fronts.

σ = eσmax
v

vI
e
− v
vI e

−
(
u
uII

)2

(3.10)

τ = 2eσmax vI
u

u2
II

(
1 + v

vI

)
e
− v
vI e

−
(
u
uII

)2

(3.11)

with vI at σmax for no shear separation
and uII =

√
2u at τmax for no normal separation

σ = Knv (1−Dm(λ)) (3.12)

τ = Ktu (1−Dm(λ)) (3.13)

with Kn,t as the normal and tangential cohesive stiffness
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λ as the non-dimensional effective displacement jump
and Dm as a damage parameter

The boundary element method (BEM), also known as displacement discontinuity
method (DDM) [210], meshes the surface of a volume and employs boundary integral
equation (BIE) formulations. Compared to FEM in which the full volume is meshed
and differential equation (ODE/PDE) formulations are employed, using BEM with
the fast multipole method (FMM) leads to the number of nodes being smaller by a
magnitude and consequentially faster computation time. In exchange, BEMmemory
requirements are larger, because matrices are fully populated and non-symmetrical.
Hypersingular (traction) BIE [211] and dual BIE formulations are common methods
today to simulate cracks [210] and with several approaches to evaluate SIFs in 2D,
3D and for anisotropic bi-material interface problems [212].

An arbitrary crack propagation imposes difficulties to structurally meshed simu-
lations. The advantage of no mesh employment is offered by a third class of simu-
lation techniques that envelopes meshless methods with (a) predefined background
mesh for integration, (b) realtime local cells for integration or (c) no mesh at all.
Generally, ‘meshless’ methods are more stable and accurate to solve with increasing
support from a mesh [213]. This behaviour is mainly due to the integration schemes,
which affect convergence behaviour, and the number of integration points needed.

Meshless methods are more computationally expensive in defining the shape and
weight functions and are more complex in the application of boundary conditions
compared to FEM. In contrast, the preprocessing of a standard mesh generation
is more complex than a meshless discretisation that only requires nodal inform-
ations. Furthermore, the adaptation to a change in geometry is more computa-
tionally expensive for a geometry based mesh since meshless methods only need
randomly distributed nodes without element connectivity. Other advantages are a
smooth, higher-order field approximation and therefore, in contrast to FEM, the
stress field obtained does not need additional smoothing. Originating from the
smoothed particle hydrodynamics method (SPH) [214], a number of different mesh-
less methods have been developed since the early ’90s such as the reproducing kernel
particle method [215], the h−p cloud method [216] and the meshless local boundary
equation [217] amongst others that were summarised by [213, 218, 219].

Important additions are the moving least square approximations and the parti-
tion of unity [220] into the Galerkin weak form yielding the element-free Galerkin
method (EFGM) by Belytschko et al. [222] and the Petrov-Galerkin weak form yield-
ing the meshless local Petrov-Galerkin approach (MLPG) by Atluri and Zhu [223].
In contrast to the EFGM, the MLPG does not use any form of mesh, takes the trial
and test functions from different spaces and evaluates a local symmetric weak form
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within a local subdomain [217]. Another approach to overcome weaknesses in FEM
and meshless methods is a coupling of both in order to use the strengths of each.
For instance, finite elements are used for the main volume and the boundaries, while
meshless methods are used for areas of changing geometries [224, 225].

A nonlocal continuum model, called Peridynamics, was proposed by Silling [226]
that integrates forces per unit reference volume in an equation of motion as an
interaction between ‘material particles’ [227] in a nonlocal region (the ‘horizon’)
around every material particle individually [228]. Peridynamics was shown to be
powerful in modelling the damage and fracture beyond the limitations of standard
continuum mechanics and in particular the modelling of composite materials has
gained attention over the past decade, following the work of Xu et al. [229] (for a
brief review see Hu et al. [230]).

A novel approach of describing crack fronts with a level set model (LSM) was
developed [231] and first applied for XFEM by Stolarska et al. [232]. Further de-
velopments for meshless methods were conducted by Zhuang [213] and an LSM ad-
aptation was published in [233] for mesh independent arbitrary crack growth across
geometry-meshes under avoidance of stress singularities and CZM. The LSM can be
visualised as two surfaces (i. e. the ‘sets’) of which the intersection (where one set
is ‘level’ to the other) represents the crack front.

3.2 Pressure Volume Method (PVM)

A simple method to calculate the ERR for PBTs was developed and published in
Linden et al. [234]. This method utilises the principle of the compliance expression
of the ERR as described in chapter 2.1. The difference in volume dV per new crack
face area dA for a given pressure P yields the ERR (3.14).

G= P

2 ·
dV
dA (3.14)

A mechanical structural FE analysis has to be employed to obtain the deflection
of the blister under pressure. The volume may be calculated separately after the
FE simulation from the deflected x-, y- and z-coordinates of the nodes or within its
postprocessor using ‘soft’ elements for the volume to expand. In the specific case of
ANSYS APDL the second option would involve saving the deformed geometry with
the UPGEOM command, followed by the line *GET,par,ELEM,n,VOLU to obtain the
new volume of the elements (for detailed information regarding the programming
see [129, 235, 236]).

The advantage of this method is its simplicity, that it can be applied for dissimilar
materials and that no extra fracture mechanics simulation method of those shown
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Figure 3.1: Crack tip opening displacement for a 4-noded, linear, rectangular element

in chapter 3.1 has to be implemented, which makes it easy to use with any FEA
package. Disadvantageous is the limitation to PBTs and that no distinction between
fracture modes can be achieved. While the PVM was used in the early stage of this
project, the majority of the results were obtained through the VCCT in order to
evaluate the mode mixity.

3.3 Virtual Crack Closure Technique (VCCT)

The modified or virtual crack closure technique was first published by Rybicki and
Kanninen [237] in 1977. Later, Raju [238] proved the validity of the equations and its
applicability on a collapsed crack tip mesh. The VCCT originates from the related
crack closure integral method [239]. Both are based on the assumption by Irwin
and Kies [46] that the released energy per extension of a crack is equivalent to the
energy required to close the opened crack (cf. chap. 2).

In the case of the crack closure method, the opening of the crack is performed
throughout two simulation steps. The second step differs from the first by the
disconnection of the first pair of facing elements after the crack tip, resulting in a
larger crack area for the second step. Equation (3.15) shows the relation between
the released energy ∆E and the forces (X, Z) and deflections (u, w), with step
indices 1 and 2.

∆E = 1
2 [X1∆u2 + Z1∆w2] (3.15)

Other methods of solving the crack closure integral are the crack closure integral
with local smoothing (CCI-LS) [240] and the universal crack closure integral (UCCI)
[241], yet the focus of the following section is on the VCCT as the method applied
in this study. In contrast to the CCI, the virtual crack closure technique does not
require a second step, because it is assumed that for small crack extensions ∆a
the loads and displacements at and around the crack tip stay almost constant.
Analogous, the released energy for a crack extension a+ ∆a is identical to a+ 2∆a,
although the VCCT is not crack length independent. Therefore, it is possible to
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utilise the forces at the crack tip node and the deflections of the nodes in front of
the tip from the same simulation step.

The type of force needed from FEA for the equations in this section are the global
nodal forces [242], unless extra highlighted otherwise. In general FEA three types
of forces can be obtained: element forces and nodal reaction forces. The latter can
be examined locally or globally, i. e. under sole contribution to the node’s force by
one element or by several elements of the node, respectively. In a crack opening
simulation the global nodal reaction force is calculated from the upper or lower half
of the total number of elements connected to the node in question. The global nodal
reaction force vanishes, when both halves contribute to the calculation.

While some of the earlier described fracture mechanic approaches for FEA yield
solely the total energy release rate, the VCCT allows the total energy release rate
to be split into the three different modes. The calculations for a three-dimensional,
linear (4-noded) element are shown in equations (3.16) to (3.18). Examples and
equations for different types of elements were summarised by Krüger [239] and are
listed in the following paragraphs for completeness. Deflections from nodes on the
upper face are labelled ‘+’ and on the lower face ‘−’. For a two-dimensional model
unit thickness 1 is assumed and GIII is disregarded.

GI = − 1
2∆aZ

(
w+ − w−

)
(3.16)

GII = − 1
2∆aX

(
u+ − u−

)
(3.17)

GIII = − 1
2∆aY

(
v+ − v−

)
(3.18)

GT = GI + GII + GIII (3.19)

Linear elements are in most cases less desirable than higher order elements, because
of the necessity for an increased number of elements and thus higher calculation
time in order to achieve the same accuracy of higher-order elements.

Quadratic shape function elements are commonly used instead, which incorpor-
ate a midside node between the corner nodes yielding an 8-noded element for 2D
applications. The VCCT calculation of the linear elements is extended for the addi-
tional set of midside nodes as shown in equations (3.20) to (3.21). In this case the
deflection of the corner nodes (c) of the open faces are combined with the force on
the corner node of the crack tip. Equivalent, the midside nodes’ (m) deflection of
the open face is multiplied with the force at the midside node of the closed face in
front of the crack tip.

GI = − 1
2∆a

[
Zc
(
w+
c − w−c

)
+ Zm

(
w+
m − w−m

)]
(3.20)
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GII = − 1
2∆a

[
Xc

(
u+
c − u−c

)
+Xm

(
u+
m − u−m

)]
(3.21)

In chapter 2.1 the singular stress distribution near a crack tip was discussed.
Midside node elements can be improved for the particular use in crack opening
simulation as ‘singularity elements’ by derivation to quarter-point elements [238,
243, 244]. Singularity elements are more capable of accurately simulating the 1/√r
stress field singularity. In quarter-point elements the midside nodes are at 1/4 of
the distance from the crack tip node to its next corner node, contrary to midside
nodes at 1/2. In ANSYS, this can be achieved by ‘manually’ moving the adjacent
midside nodes of the crack tip corner node to the quarter position or with the KSCON
command for a collapsed mesh of singular elements (cf. sec. 3.3.2). The latter method
yielding triangular elements involves the collapse of three nodes on the crack tip first
or the utilisation of six-noded singular elements, which were presented by [245, 246].
Raju [238] gives the solution for the ERR calculation applicable to rectangular and
triangular 8-noded singularity elements.

GI = − 1
2∆a

[
Zc
{
t11
(
w+
c − w−c

)
+ t12

(
w+
m − w−m

)}
+

Zm
{
t21
(
w+
c − w−c

)
+ t22

(
w+
m − w−m

)}] (3.22)

GII = − 1
2∆a

[
Xc

{
t11
(
u+
c − u−c

)
+ t12

(
u+
m − u−m

)}
+

Xm

{
t21
(
u+
c − u−c

)
+ t22

(
u+
m − u−m

)}] (3.23)

with t11 = 6− 3π
2 , t12 = 6π − 20 , t21 = 1

2 , t22 = 1 (3.24)

De Roeck and Abdel Wahab [247] presented formulations for the use of collapsed 3D
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Figure 3.2: Crack tip opening displacement for an 8-noded, quadratic, rectangular ele-
ment
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Figure 3.3: Derivation of singular element for crack tip at node 3 from 8-noded quadratic
rectangular yielding quadratic singular

prism shaped singular elements among other types of elements. Using prisms for 3D
VCCT simulations would significantly reduce the complexity of the mesh generation,
as automatic meshing algorithms would be sufficient. The element formulations were
adopted by Chiu and Lin [248] and extended for crack tip faces under pressure.

Nairn [242] described a generalised version of the VCCT that allows the side-
nodes to be placed arbitrarily and mixed. Additionally, Nairn’s method corrects
an error in [238] for the application of traction forces on the crack faces. The
formulation for GII is obtained by replacement of Z, w and σ0 with X, u and τ0. For
midside node elements equation (3.25) is equal to equation (3.20) with the additional
traction term of −σ0/3

(
wm + wc/2

)
.

GI = 1
2t∆a


∆wc

 −R
1− 2R
1−R

−RNM−1K

 · Z

+

∆wm

 1
1
1

−NM−1K

 · Z


− σ0

3

(
3− 4R

4 ∆wc + ∆wm
)

(3.25)

Nairn introduced new vectors and matrices for geometry, shape and fitting functions
for equation (3.25). Also the nodal edge forces in z direction as the vector Z were
introduced. More details about the terms and specific solutions for quarter-point
elements and for axisymmetric problems can be found in [242]. Recently, Muthu
et al. [249] published a method that employs the VCCT in an element-free Galerkin
calculation.

3.3.1 Aspects of VCCT simulations

Mesh generation is the main disadvantage of the VCCT, which is labour intens-
ive in the standard way of application. The mesh has to have a line of element
edges aligned along the desired crack tip. The elements have to be rectangular
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or hexahedral elements of the types discussed above. Research was undertaken to
overcome limitations emerging from the required highly controlled mesh generation.
Xie and Biggers [208, 209] published an approximating VCCT method to simulate
an arbitrary crack front across a mesh of rectangular elements that is unaligned to
the crack front, which was similarly approached and validated by Liu et al. [250].
Okada et al. [251] applied an averaging VCCT calculation that allows for a generic
automatic meshing with triangular or tetrahedral elements along the crack tip.

Agrawal and Karlsson [252] showed a study about the influence of the crack tip
element size on the ERR and mode mixity in particular. The crack tip element size
is important, because the ERR is dependent on the crack size and simultaneously
the crack size can change with the element size along the tip. This problem occurs
whenever the crack is not embedded within material, but starts at a plane face or any
form of edge geometry, such as a V-notched specimen, a lap joint or the investigated
rectangular geometry of the defect edge between repair and metal substrate as shown
in diagram (5.1). In this case minimising the crack tip element size affects the
resulting ERR with two superimposing factors. The ERR changes with the change
in crack size and with the larger stresses on the elements, which alter with the
1/√r stress singularity discussed in section 2.1.1. Therefore, a range of different
element sizes have to be simulated to converge the ERR result for a single datum.
Venkatesha et al. [253] published a ‘generalized modified crack closure’ method that
allows to obtain the converged value within one simulation.

Additionally, the oscillatory behaviour of interface cracks of dissimilar materials
(cf. sec. 2.1.2) must be avoided by a sufficiently large element size [254].

The VCCT was applied in interface crack investigation in numerous cases [252,
255–261]. Kattamis et al. [262] simulated the ERR of laser induced blister forma-
tion with linear rectangular 2D elements. Guo et al. [263] utilised the VCCT with
axisymmetric shell elements to investigate into the delamination of thin polymeric
films under pressure or point loads. Residual stresses were considered and the bend-
ing to stretching transition documented for an arbitrary interface failure ERR of
G= 100 J/m2. Guo et al. did not obtain bending and stretching values for different
specimen thicknesses, but in regards to the state of bending or stretching of thin
films during an increase in load. The VCCT formulation for shell elements (3.26)
was extended with the moment M and the rotation angle ϑ.

The VCCT applied for dynamic loading can be found in [264] and with utilisation
of interface elements in [265].

G= 1
2∆a (Zc∆wc +Xc∆uc +Mc∆ϑc) (3.26)
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Figure 3.4: Collapsed mesh of 32 quarter-point elements around crack tip

3.3.2 Application of the VCCT

ANSYSr does not supply the user with methods to overcome limitations concern-
ing the mesh generation, nor are elements other than rectangular linear (PLANE182,
SOLID185) and midside node elements (PLANE183, SOLID186) supported for VCCT
calculations. For automatic quarter-point element meshing, ANSYS provides the op-
tion of generating a collapsed mesh around a central node by the command KSCON,
yielding a circular pattern of elements as shown in figure (3.4). The calculation of
the ERR presented from equation (3.22) onwards has to be implemented manually.
A comparison between the manually implemented calculations and ANSYS integ-
rated routines was undertaken with linear and quadratic midside node elements and
has proven that both yield identical results.

For plane strain or plane stress models typically the areas of the crack opening are
identical for symmetric meshes, irrespective of the area investigated being the area
of the element faces in front, behind or an average of both. Although, as explained
before, the impact of a small change in crack length (i. e. a crack opening) is regarded
negligible, an axisymmetric model also results in different area sizes depending on
the radius. For this reason the ERR might vary noticeably with a change in crack
length and through the element faces chosen as new crack area, in contrast to plane
strain and stress models. To obtain the same result for the ERRs in the axisymmetric
case by manual calculation and through ANSYS, the area of the crack opening has
to be calculated from the average of the lengths of the element before and after the
crack tip node.

For the simulation of flat punches (cf. fig. 4.2) it is necessary to apply an edge
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Figure 3.5: Influence of the element type and size; Size of elements normalised over
defect radius; b) shows Plane183 elements with midside and quarter-point
nodes from a collapsed mesh with 8 and 32 elements around the crack tip

fillet of the size of at least three elements. A sharp edge would lead to a single
node applying force on a single element, leading to unnaturally high distortion and
convergence problems for the simulation.

The effects of the different element types were analysed and are presented in
figure (3.5). Element sizes in form of the length lelem of the element faces at the
crack interface were normalised against the critical length, the radius R, as lelem/R.
Figure (3.5a) illustrates the advantage of quadratic formulations over linear equa-
tion elements. In particular, the oscillatory behaviour of small linear elements is
undesirable. Figure (3.5b) shows that midside node elements and quarter-point ele-
ments are different for large size elements, but converge towards the same result.
An increase in elements for a collapsed mesh does not further improve the result.
It was concluded, that midside node elements are sufficient for fracture simulations
and the additional effort for the manual implementation of a quarter-point element
mesh generation and ERR calculation in the ANSYS code was not justified. Simil-
arly, Shivakumar et al. [266] showed that the VCCT yields accurate results without
the need to employ singularity elements.

Therefore, calculations were conducted with PLANE183 elements for axisym-
metric 2D modelling of the tests described in chapters 4 and 5. Since analytical
solutions solely account for quasi-isotropic materials and because the ERR results
of anisotropic and orthotropic materials were evaluated in an early PVM study and
considered to be similar enough to quasi-isotropic materials, axisymmetric 2D mod-
els were chosen over 3D models for the lower computational effort. Consequentially,
repair laminates were approximated as quasi-isotropic with mixed moduli as shown
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in section 5.3.2.

For the studies presented a convergence was achieved by solving the models with
varying crack tip element sizes similar to figure (3.5). In order to reduce computation
time, the minimisation of the elements was kept within reason. In exchange, an
extrapolation with a second order polynomial fit was applied to obtain the ERRs
for an infinitesimally small initial crack under consideration of the stresses at the
elastic-plastic zone (fig. 2.2).

Not only the tested specimens were simulated, but also an array of input variables
investigated, such as different geometries. As a consequence, it was necessary to run
a number of simulations too large to be undertaken individually and manually. An
automation of the full process was realised through a MatLab programme steering
the input variables, writing the ANSYS input file, calling ANSYS in batch mode
and ultimately managing the output. For this purpose, a general ANSYS input file
was written manually and later modified within MatLab according to the respective
variables of the current run. A database file was constructed and extended with
every simulation. Subsequently, it was fed into a second MatLab based programme
dedicated to the analysis of the data, the calculation of the extrapolation and the
generation of graphical outputs.
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Chapter 4. Shaft-loaded blister test (SLBT)

4.1 Introduction to shaft-loaded blister test

Most of the established fracture toughness tests focus on fracture in isotropic ma-
terial [267–270], adhesion between two solids [139, 271, 272], interlaminar fracture
of composites [138, 143] or bi-material fracture of thin films on substrates (see
chapters 4.2 and 5.1 and [146, 147]). With increasing use of composites in vari-
ous applications and a greater variety of material combinations, the research on
bi-material, interface fracture behaviour between composites and metals has intens-
ified over the past two decades.

The particular application of an external composite repair on a corroded pipe wall
needs to take the general geometry of the defect into account. Circular and slotted
defects were assumed to simplify the problem. Standard test methods for mode I,
II or mixed mode fractures, often applied for general determination of a materials
fracture toughness, evaluate rectangular plates and beams of which a summary is
given in chapter 2.2. In the case investigated throughout this study, the geometry
of a repair across a circular defect is better described as an axisymmetric plate with
a fixed end around the edge. Alternatively, the repair of a slotted defect may be
represented by a plate with fixed ends and plane strain condition along the length
of the slot.

To simulate a corrosion defect more accurately, a circular blister test can be con-
ducted. In general, a blister test comprises of a top layer bonded onto a substrate.
The term ‘repair plate’ will be used throughout this work instead of ‘top layer’,
which is typically found in the literature. The substrate is stiffer than the repair,
but contains an artificial defect. Circular shapes are the most widely used, but other
defect shapes such as straight and U-shaped slots can also be found. Defects could
be machined through-holes or pre-delaminations by using, for instance, Teflon tape.
The repair plate covers the defect and is detached from the substrate throughout
the course of the test.

The force needed to detach the repair from the substrate can be a fluid pressure
or a mechanical force from a punch, driven into the centre of the defect. Shaft-loaded
blister tests (SLBT) simplify the test and measurement procedure, compared to pres-
surised blister tests, with the drawback of dissimilar loading. In contrast to fluid
pressure, a punch produces a more localised, central force on the repair. Changes in
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the load situation are reflected by the deflection curve of the blister. SLBTs have the
advantage of non-catastrophic crack propagation in the interface between substrate
and repair, hence allowing the measurement of a number of data points along the
continuous crack growth path. Finally, the mechanical properties of the repair can
be determined [273, 274].

Many applications for blister tests are fracture toughness evaluations of coatings
and thin films, ranging from protective coatings of large metal structures to mech-
anics of microelectronics. Membrane plate theories are the predominant analytical
solutions for these types of applications. Instead, specimens for standard single and
mixed mode fracture toughness tests are dimensioned as thin plates in accordance
with the classical plate theory. However, corrosion defects can be highly localised
(cf. chap. 1.2) and thus the ratio of the thickness of a repair per defect radius can
be outside the limits of the classical plate theory.

The work presented analyses thick fibre reinforced polymer laminates as repair
plates. Shaft-loaded blister tests were performed using punches with flat and hemi-
spherical heads. The following chapter provides a review of SLBT research, outlines
analytical solutions and compares 1) experimental measurements, 2) analytical res-
ults and 3) FEA results. Finally, the fracture toughness evaluation through SLBT
is compared with the pressurised blister tests, presented in chapter 5, to validate
SLBTs for pressure applications.

4.2 Review of shaft-loaded blister test research

Malyshev and Salganik [65] were the first to develop a shaft-loaded blister test by de-
bonding a thin plexiglass plate from a metal substrate with a punch. Several types
of SLBTs can be found, but one of the most common is conducted with a hemi-
spherically capped cylinder as punch [273, 275, 276]. Depending on the investigated
material and the radius of the hemisphere, the contact zone can change throughout
the loading and plastic deformations can occur. Both contact zone and plastic de-
formation need to be taken into account for the analytical calculation [150, 277, 278].

Flat capped punches are typically used in an ‘inverted’ blister test [279, 280], in
which the investigated film debonds from the punch. The punch is bonded to the
film and pulls, while the film is clamped around the edge. Relatively little work is
published that uses a flat punch pushing against a repair plate in a standard blister
test [281, 282]. Hemispherical heads are favoured to avoid high accumulations of
stress at the sharp edges of flat capped punches, which would result in yielding and
rupture of the film. Axisymmetric flat punch and plate shapes are often used, but
rectangular shapes may also be found for plane strain models [283, 284].

Theoretical and numerical studies were conducted on different punch and repair
plate geometries, leading to different boundary conditions for the analytical solu-
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tions at the centre of the plate [285–287].
Since most of the work investigated thin films, coatings and membranes, the

strength of interfacial adherence could reach the structural strength of the invest-
igated material. Consequently, research for SLBTs focussed on topics such as non-
linear material behaviour [288], transitions between plate and membrane states
[288], transition from bending to stretching [275, 289, 290], plastic deformation
in the punch/film contact zone [150, 291] and residual stresses in the specimen
[279, 292, 293]. The listed topics are less critical for thick and reinforced repair
plates, as the material behaviour in general remains linear-elastic. Plastic mater-
ial deformation can be expected in localised zones of high stress concentration. A
typical example are the small punch/plate contact areas of hemispherical punches,
which can lead to matrix cracking of FRP composite plates.

By constraining the specimen in radial direction, i. e. clamping the repair plate
around the defect edge, it is possible to determine material properties with SLBTs.
This test is also known as the clamped blister test (CLBT), where no crack growth
occurs and the blister deflection due to the loading leads to the elastic modulus of
the specimen [294, 295].

Different constraints are also used to control the blister shape and propagation.
However, constraints are only applicable for pressurised blister tests. An overview
of constraint pressurised blister tests is given in chapter 5.1.

4.3 SLBT evaluation process through experiments and simulations

Experimental testing of fracture energy with the shaft-loaded blister test was per-
formed to obtain load and displacement data and material properties. Obtained
data was used for comparison between and as input for analytical calculations and
FE simulations.

The SLBT conducted in the present study was a circular blister test of a simply
supported disk. No additional boundary conditions on the blister formation were
applied. The tested disk specimens consisted of a metal substrate containing a
central defect with a composite ‘repair’ laminate bonded on top. The defect was a
circular through-hole with sharp edges at the repair interface. Three different hole
diameters were investigated.

Geometries and materials were used in accordance with the pressurised blister
test presented in chapter 5. However, only the bi-axial, non-crimp, E-Glass fabric
was evaluated in combination with WTR Technowrap 2K epoxy resin. In order
to measure crack growth by optical means from a change in translucency at the
debonded area as shown in figure (4.1), it is essential to manufacture repair layers
that are translucent to some extent. Glass fibre reinforced epoxy laminates provide
a translucency, which is dependent on the fibre orientation, residual air in the poly-
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(a)

(b)

(c)

Figure 4.1: Top side view of SLBT specimen with glass epoxy repair after test with (a)
the artifical defect area, (b) the debonded crack area and (c) the remaining
intact bond area

mer matrix, the resin type and additives, and can range to full opaqueness. Carbon
and aramid fibre laminates are always opaque and were not included in the study in
order to retain the option to measure crack growths. The laminates were reduced to
quasi-isotropic stack-ups. Test specimens were prepared as described in chapter 5.3,
which also contains a description of the determination of the material properties.

Punches with a hemispherical and flat cap were used to push through the hole in
the substrate against the repair plate (fig. 4.2). For every hole diameter one specific
punch was manufactured, in order to harmonise the punch/plate contact area ratio
between all specimens. The punch radii were 1mm smaller than the radii of the
holes.

A universal strength testing machine (USTM) drove the punch and the force was
recorded from the USTM’s load cell. Cross-head displacements were recorded from
the USTM and from a linear transducer. The cross-head displacement speed was
2 kN/min and the total displacements were 2 and 3mm.

Finite element simulations were carried out for the purpose of

a) investigation of the validity of the previously presented analytical solu-
tions in chapter 2.3 for the determination of the energy release rate across
a range of variables

and

b) determination of the energy release rates of every actual test under use of
the respective material properties, geometries, displacements and shaft-
loads; to be compared with the virtual equivalent loading from a fluid
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(a) (b)

Figure 4.2: Example of contact areas of an (a) hemispherical and (b) flat punch, obtained
from FE simulation

pressure.

The FEA simulations were undertaken with ANSYS 14.5 Mechanical APDL and
energy release rates were obtained from virtual crack closure technique simula-
tions. More detailed descriptions of the finite element techniques are presented
in chapter 3.3.

The two main variables investigated are the punch geometry and the repair plate
under load. Commonly, flat capped and hemispherical punch heads are found, both
of which were studied for various radii. Minimum sizes were smaller than 10% of the
defect radius, while the maximum punch radius reached about 95%. Thus, almost
point loads were achieved as well as nearly all of the defect area was filled out by
the punch in order to mimic a surface load.

The dimensions of an investigated repair plate are one of the most important
measures for the applicability of a plate theory, which are typically only valid for
a number of assumptions (cf. chap. 2.4). For reasons of simplification, all analyt-
ical solutions presented are based on the classical plate theory. When a radius to
thickness ratio of less than 10 is present, solutions derived from the CPT yield in-
creasingly less acceptable results, as made assumptions do not apply. Therefore, R/t
ratios of the repairs are studied from within the lower boundary of CPT validity to
thicknesses of 4.5 times the defect radius.

By applying the material properties, specimen and punch geometries as well as
failure loads and displacements as inputs for FE simulations, it was possible to
obtain the mode I, II and the total energy release rate for each test. Furthermore,
every test was simulated another time with an equivalent surface pressure replacing
the shaft-loading. This study enabled a comparison between SLBTs and PBTs to
evaluate, if SLBTs can provide an alternative test to the more complex PBT.

61



4.4 SLBT results

The shaft-loaded blister study contained two parts. Firstly, the analytical solutions
described in chapter 2.3 were validated over a range of changing variables. Res-
ults obtained are presented in section 4.4.1. Secondly, a number of disk specimens
were tested in order to obtain actual material properties, failure loads and displace-
ments. Test results are displayed and explained in section 4.4.2 before the results
are discussed in chapter 4.5 and the analytical expression that yields the best fit is
highlighted.

4.4.1 Comparison of analytical solutions against FEA
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Figure 4.3: (a) GFEA of mode I, II and total from SLBT with hemispherical punch for
varying punch radius in relation to the size of the defect (normalised over
the mean of GT),
(b) Difference between the analytical solutions of point load based, near-point
load and annular line load to GT, obtained by FEA

Hemispherical punch heads show almost no change in energy release rate over
a change in radius of the punch head. The energy release rate mode ratio remains
constant. Both are displayed in figure (4.3a). Here, the energy release rate is plotted
against the punch head radius Rpun, which is normalised against the defect radius
Rdef . The energy release rates (mode I, II and total) are normalised against the
average of GT.

Because a change in punch head radius does not significantly alter G, a further
study across a range of different defect radius to repair thickness ratios was under-
taken for a constant Rpun/Rdef ratio.

Furthermore, figure (4.3b) compares three analytical solutions previously de-
scribed in chapter 2.3 for a punch radius variation. Only the point load based
(lb, cf. equation (2.62)), the near-point load (np, cf. equation (2.93)) and the annu-
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lar line load (an, cf. equation (2.101)) solutions are shown, because the displacement
based (db, cf. equation (2.63)) and the combination (cb, cf. equation (2.64)) solutions
strongly disagree with the FEA results.

It becomes clear that all three formulations yield similar results for loads, which
converge towards a point. Simultaneously, the difference between the analytical
solutions and the FEA simulation minimises towards point loads. As Glb is inde-
pendent from defect or punch radii, it stays constant.

Investigating the variation of the radius to thickness ratio for a small diameter
punch, figure (4.4a) reveals that the mode II energy release rate remains constant.
The total energy release rate changes with GI, but the change appears shallower for
increased R/t.

Again, examining the same analytical formulations in figure (4.4b) as above, it
can be observed that Glb is most valid for R/t within the limits of the classical plate
theory. For a small hemispherical punch, both Gnp and Gan are applicable over a
wider range of R/t than Glb, with a small advantage for Gan.
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Figure 4.4: (a) GFEA of mode I, II and total from SLBT with hemispherical punch for
varying plate radius to thickness ratio (normalised over the mean of GT),
(b) Difference between the analytical solutions of point load based, near-point
load and annular line load to GT, obtained by FEA

Flat punch heads yield a variation in energy release rate over a change in punch
radius, in contrast to hemispherical punch heads. An example of this change is il-
lustrated in figure (4.5). While the load and geometry remains constant, apart from
the punch radius, it becomes obvious that the total energy release rate reduces.
Mode I and II ratios converge with larger punch radii and switch for radius ratios
near to 1.

To evaluate the quality of the presented analytical solutions, FE simulations
were carried out along a matrix of two variables. The first variables of defect radius
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Figure 4.5: Energy release rate changes with variation of radius of flat punch head in
relation to the defect radius.

to thickness ratio Rdef/t is a measure of the general validity of plate theories. For in-
stance, a ‘thin plate’ as known from classical plate bending theories (cf. chapter 2.4)
would be applied within the limits of 10 ≤ R/t ≤ 100. The second variable is the
variation of the punch radius set in relation to the defect radius, Rpun/Rdef .

When evaluating the mode mix of the simulated energy release rates over the
array of variables, the results from figure (4.5) are confirmed in figure (4.6). Ad-
ditionally, it can be observed that mode I is not just the dominant mode for large
punches, but is also increasingly important with the relative ‘thickening’ of the re-
pair plate before dropping off again close to reaching a nearly infinitely thick plate.
In reverse, mode II becomes more dominant when approaching classical plate theory
limits and a point loading.

The results showing the respective analytically obtained result for the energy
release rate GX (with X: lb, db, cb, np or an) in comparison to the FE simulated
total energy release rate GFEA are presented in 3D surface plots.

As some analytical solutions yield large variations to the simulated results, the
natural logarithm was applied on the energy release rate comparison GX/GFEA.
Thus, large deviations of analytical results to FE are ‘compressed’, yet unsuitable
for the particular case. In contrast, differences within acceptable limits of ±10%
=̂ ln

[
GX/GFEA

]
= ±0.1 are nearly linear after taking the logarithm.

Another advantage of the logarithmic fraction is the equal weighting of over and
under estimation of the analytical result in terms of visual evaluation. In other
words, a ten times larger analytical value would yield GX/GFEA = 10, while 0.1
would be the result of a ten times smaller value. Therefore, normal graphs appear
to the eye biased. On the contrary, the natural logarithm of the ideal scenario when
GX = GFEA is 0. Both, GX/GFEA values that are larger and smaller than 1, appear
with the same magnitude, although remaining distinguishable through a positive or
negative sign.
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Figure 4.6: Change in fracture mode mix for an SLBT with flat capped punch. The grey
plane indicates the 50% GI,II division of GT. (n. b.: maximum of Rdef/t at
front corner of coordinate system)

For further simplification of the interpretation of the graphs, a grey plane is dis-
played at the zero–level as an additional visual aid, indicating an ideal fit. Closer
fits are highlighted by the colour green, though, the colour scaling of the plots across
the full range of results are skewed. For a higher comparability, another set of plots
is presented only displaying results within the limits of ±0.4 and thus all resulting
in the same colour scale. Finally, those reduced plots are also displayed in 2D with
the intention to provide the reader with another overview to clarify the range of
validity.

It must be noted that only the 2D plots are presented with unified axes. The
other plots show axes directions that are adjusted for the best possible view of a 3D
surface on paper.
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Results from the load based formulation for point loads (cf. eq. 2.62) are
shown in figure (4.7)ff. Best agreement between the energy release rate obtained
through FEA and the load based solution can be found for small punch to defect
radii. Closer to the lower boundary of Rdef/t = 10 for the classical plate theory
the load based solution provides a wider area of validity, which is best displayed
in figure (4.8b). Thus, the load based analytical solution is the most robust for
determination of the energy release rate when loading a ‘thin plate’ with a ‘small’
punch.
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Figure 4.7: Range of validity of the analytical point load based solution, as shown in
equation (2.62), for an SLBT with flat punch along the variables of punch to
defect radius ratio and defect radius to thickness ratio. Compared to FEA
results.
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Figure 4.8: Range of validity of the analytical point load based solution,
(a) Magnification of figure (4.7) to z-axis limits −0.4 ≤ z ≤ 0.4
(b) 2D visualisation of figure (4.8a)
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Results from the displacement based analytical equation (cf. eq. 2.63) are
similar to the load based equation results in terms of the most reliable results,
which can be achieved for a ‘small’ punch loading a ‘thin’ plate. When comparing
figure (4.7) with figure (4.9) it can be observed that the maximum absolute values
of the displacement based solution are about e8 times larger than the results of the
load based solution. The area across the investigated variables, which is in close
agreement with the results obtained by simulation as shown in figure (4.10b), is
smaller than the equivalent of the load based expression as well.
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Figure 4.9: Range of validity of the analytical displacement based solution, as shown in
equation (2.63), for an SLBT with flat punch along the variables of punch to
defect radius ratio and defect radius to thickness ratio. Compared to FEA
results. (n. b.: x- and y-axis maximum at front corner of coordinate system)
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Figure 4.10: Range of validity of the analytical displacement based solution,
(a) Magnification of figure (4.9) to z-axis limits −0.4 ≤ z ≤ 0.4 (n. b.: x-
and y-axis maximum at front corner of coordinate system)
(b) 2D visualisation of figure (4.10a)
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Dependent on both, displacement and load, is the analytical combination
solution of equation (2.64). As expected, elements of both previously presented
results reflect in the results of the combination equation. For instance, a similar,
yet smaller, characteristic spike can be found at (x, y) = (0, 0) analogous to the
displacement based equation results. The average magnitude is more similar to the
load based equation results, which also yields a closer fit for punch sizes that con-
verge to a point load. However, the combination formulation results appear valid
along a larger range of punch to defect size ratios.
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Figure 4.11: Range of validity of the analytical combination solution, as shown in equa-
tion (2.64), for an SLBT with flat punch along the variables of punch to
defect radius ratio and defect radius to thickness ratio. Compared to FEA
results. (n. b.: x- and y-axis maximum at front corner of coordinate system)
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Figure 4.12: Range of validity of the analytical combination solution,
(a) Magnification of figure (4.11) to z-axis limits −0.4 ≤ z ≤ 0.4 (n. b.: x-
and y-axis maximum at front corner of coordinate system)
(b) 2D visualisation of figure (4.12a)
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The near-point load analytical solution from equation (2.87) shows a com-
paratively small magnitude of difference to the FEA simulation results in figure (4.13).
Almost the full range of investigated variables yield results that are within ±0.4 and
thus plotted in figure (4.14a). The best fit can be expected from small punch to
defect size ratios. Good agreement can be found within the investigated area of
approximately:

1.75 ≤ Rdef

t
≤ 11

0.1 ≤ Rpun

Rdef
≤ 0.4

Two different effects, described in more detail in chapter 4.5, result in the invalid
areas of ‘large’ punch diameter and small defect size against plate thickness ra-
tios. Because both effects counterbalance each other for some combinations of
the two variables, the analytical near-point load solution yields acceptable results
around Rdef/t = 2.
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Figure 4.13: Range of validity of the analytical near-point load solution, as shown in
equation (2.93), for an SLBT with flat punch along the variables of punch
to defect radius ratio and defect radius to thickness ratio. Compared to
FEA results. (n. b.: Rpun
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maximum at front corner of coordinate system)
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Figure 4.14: Range of validity of the analytical near-point load solution,
(a) Magnification of figure (4.13) to z-axis limits −0.4 ≤ z ≤ 0.4 (n. b.:
Rpun
Rdef

maximum at front corner of coordinate system)
(b) 2D visualisation of figure (4.14a)
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The new proposed annular line load solution provides the largest region that
yields valid results. Analytically related to the near-point load solution figure (4.15)
shows a similar, yet closer fitting result compared to figure (4.13). The effect of
large punch diameters that create problems in the near-point solution appears to be
solved. The annular line load formulation predominantly underestimates the energy
release rate, although on a small scale compared to the other analytical solutions
presented. The valid range of variables can be read from figure (4.16b) and can be
summarised as:

Rdef

t

Rpun

Rdef
2 0.1 · · · 0.5
... ↔ ...

11 0.1 · · · 0.7

In analogy to the near-point analytical solution, the annular line load expression
loses validity for ‘thick’ plates with approximately Rdef/t < 1.7.
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Figure 4.15: Range of validity of the analytical annular line load solution, as shown in
equation (2.101), for an SLBT with flat punch along the variables of punch
to defect radius ratio and defect radius to thickness ratio. Compared to
FEA results. (n. b.: Rpun
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Figure 4.16: Range of validity of the analytical annular line load solution,
(a) Magnification of figure (4.15) to z-axis limits −0.4 ≤ z ≤ 0.4 (n. b.:
Rpun
Rdef

maximum at front corner of coordinate system)
(b) 2D visualisation of figure (4.16a)
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4.4.2 Experimental evaluation

Diagrams with load against displacement curves are shown in figure (4.17) with two
different radius to thickness ratios between (a) and (b). Measured pressures of four
specimens are displayed as an example with each diagram containing two curves,
one for each punch type. From figure (4.17a) and figure (4.17b) it becomes obvious,
that a steeper increase in load and, at the point of failure, a sharper transition
from linear-elastic bending to crack propagation is forced by a flat relative to a
hemispherical punch head. After the crack initiation phase, both punch types result
in nearly identical propagation in terms of propagation speed, load increase per
propagation length and critical load.

P

Pc,flat

w/wmax

Flat

Hemispherical

crack initiation

(a)

P

Pc,flat

w/wmax

Flat

Hemispherical

crack initiation

(b)

Figure 4.17: Measured load over displacement curves for SLBT specimens. Here, w is
the displacement of the punch head and normalised over the maximum
displacement of the test. The load P normalised over the critical crack
initiation load of the specimen tested under load of a flat punch. While
(a) and (b) are different in geometry, the graphs within each are the same
geometry, but tested with a different type of punch.

Another distinction between flat and hemispherically capped punch heads is re-
vealed in figure (4.18). The figures (4.18a) to (4.18d) are a comparison of specimens
tested with hemispherical and flat punch heads with the respective ‘virtual’ equi-
valent of a fluid pressure blister test. Figure (4.18a) illustrates, that a hemispher-
ical punch yields circa two times larger total energy release rates than the same
amount of surface pressure. In contrast, flat punch loaded specimens, as shown in
figure (4.18c), produce about a third of GT compared to the respective pressurised
test configuration.

Differences can also be found in the proportion of mode I and mode-II fracture
energy. Specimens of this study, which were tested with a hemispherical punch,
yielded on average a 35% GI fraction of GT (cf. fig. 4.18b). Pressure tested virtual
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Figure 4.18: GT normalised over the mean GT of the SLBT (a, c) and the GI
GT

ratio
between mode-I and GT of the corresponding simulation (b, d) are plotted
as comparison of actual shaft-loaded blister tests for hemispherical punch
heads (a, b) and flat punch heads (d, c) against pressurised blister tests,
obtained through FEA

specimens show a more even division into GI and GII. Flat punch driven specimens,
however, exhibit roughly the opposite ratio of the hemispherical punch tests. Here
in figure (4.18d), GI is on average 70% of the total energy release rate.
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4.5 SLBT discussion

The work presented showed substantial discrepancies in strain energy release rates
between the two types of punch geometries and the pressurised blister tests. One
reason for those discrepancies could be the ratio of GI and GII. Inherent differences
in the loading scenarios are likely to be the cause.

If assuming uniform surface pressure, the applied plate bending of the circular
repair plate results in an additional membrane stretching or shear stress, depending
on the plate thickness. The resulting deformations at the crack tip are similar in
normal as well as tangential direction to the crack plane.

The load of a flat punch is applied through its edge onto the repair plate, because
the bend repair plate rests on the punch head’s edge, while lifting off from the punch
head’s top surface (cf. fig. 4.2b). With increasing punch diameter the load becomes
increasingly dissimilar to a point load. Because the plate is mainly in contact with
the punch head’s edge, the loading is ideally mimicked by an annular line load.

For decreasing punch diameters, the energy release rate and its mode mix con-
verges towards the expected result of an ideal point load. In this case the total
energy release rate can be accurately determined through the ‘load based’ and the
‘near-point’ analytical solutions.

For larger size flat punches only the annular line load solution, which was de-
veloped throughout the study presented, approximates GT sufficiently. Increasing
the radius leads to an increasingly dominant deflection normal to the crack plane
at the crack tip, while the overall bending is comparatively moderate. Hence, the
in-plane shear mode-II fracture energy is twice as large as GI for a small flat punch
radius, but decreases non-linearly with increasing the radius. GI becomes larger
than GII at a ratio of Rpun/Rdef > 0.9.

Changing Rdef/t affects the mode mix of specimens tested with a flat punch in a
similar way to hemispherical punch heads. As expected ‘thinner’ repair plates lead
to less transverse shear and higher normal in-plane loads and thus the GII proportion
is larger.

Hemispherical punch heads are almost unaffected by a change in punch radius,
which is assumed to be partly due to two effects. Loading a repair plate with a
hemisphere results in a contact zone, which is dependent on the hemisphere’s radius
and the elasticity of the plate.

Apart from the theoretical case of infinitely stiff materials, a hemisphere allows
the plate to mould around the hemisphere’s contour. Therefore, a continuous ‘sur-
face pressure’ is applied across the contact zone (cf. fig. 4.2a) and no part of the
plate can lift off the punch as observed for a flat punch. However, this contact zone
spreads over only a fraction of the punch area, so that an increasing punch radius
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still results in a much smaller area under load. It can be assumed that with further
increase of the radius of the hemisphere, the behaviour is going to match the flat
punch results more closely as the punch heads’ geometries are more similar.

Larger Rdef/t ratios show the expected change in mode mix. The theoretical
maximum defect radius over an infinitesimally small thickness would be described
as a ‘membrane’ and thus only provide an in-plane normal load. As this load acts
tangentially to the crack plane, the consequence would be a pure mode II fracture
and GI would vanish.

In general, the loading of a hemispherical punch is rather more similar to a pres-
surised repair plate than a flat punch loading. Despite the overall similarity, a fluid
pressure acts on the whole surface including the crack tip and its vicinity. In reverse,
a hemispherical punch head produces more tangential and less normal stress at the
crack tip than a pressure. As a consequence, the differences in mode mix and GT

occur.

The fundamental dissimilarities in loading scenarios between the two types of
punch heads as well as a fluid pressure are the root cause for the discrepancies
presented, in terms of the magnitude of GT and the mode mix ratio of GI,II.

Results presented in chapter 4.4 question the interchangeability of SLBTs for
PBTs. At least the assumption of a direct compatibility for the total strain energy
release rate between SLBTs and PBTs does not seem to be correct. Thus, a simple
fracture criterion does not appear to be sufficient to compare SLBT fracture beha-
viour with PBTs. Further investigation in complex fracture criteria could overcome
those limitations.

However, complex fracture criteria typically need to employ more precise inform-
ation about critical stresses and critical fracture toughness or energy release rates
for single mode fractures as well as knowledge about the stress field and the energy
release rates of the mix mode failure of the actual test. This seems challenging for
an SLBT, which is applied as a simplifying replacement for the PBT.

The investigated analytical solutions yield diverging results. For instance, the
load based equation fits for small punch radii, and in particular for hemispherical
punch head results. Since equation (2.62) does not contain any information about
the displacement and radii, it is limited to application on scenarios similar to those
of point loads on CPT type plates.

While the displacement based solution seems difficult to apply, the combination
formulation of equation (2.64) has a wider field of application. However, because
the influence of the displacement based exceeds the load based at nearly point load
scenarios, its fit is inferior to the load based at small Rpun/Rdef .

The near-point load analytical solution provides a comparatively good fit. Yet,
it was possible to improve the solution through the annular line load formulation.
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Its limitations are the least narrow of all other solutions, while providing a similar
quality in areas where the other formulations show their best fits.
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Chapter 5. Pressurised blister test (PBT)

5.1 Review of pressurised blister test research

Several techniques are commonly used to measure strain energy release rates (ERR).
The interlaminar tension mode-I ERR, GI, can be measured with a double cantilever
beam (DCB) test, the interlaminar sliding shear mode-II, GII, with an end notched
flexure (ENF) test and combinations of both modes can be obtained through a single
leg bending (SLB) or a mixed-mode bending (MMB) test (cf. chap. 2.2). All these
methods test long, flat, rectangular specimens.

In contrast, this study proposes a way of measuring the mixed-mode ERR for an
axis-symmetric specimen, in order to mimic actual corrosion defects more closely.
For the evaluation of FRP-metal bi-material specimens, a pressurised blister test
(PBT) was chosen in this study.

First introduced by Dannenberg [296], different pressure blister tests were de-
veloped, which differ substantially from each other. The Dannenberg [296] test
comprised a slot defect in order to obtain an oblong shape blister, while using
mercury to pressurise the film. Williams [170] presented the first circular pres-
surised blister test, developed an analytical expression for plane stress/strain and
axisymmetric blister forming and set them in relation to the ‘penny-shaped’ crack of
Sneddon [54]. Williams and his colleagues extended the work by proposing a model
considering the energy stored in the adhesive layer [297], described an approximate
analysis for estimation of cohesive-adhesive failure [298] and an investigation in the
transition between different plate thickness types [299]. Another study on adhesive
and cohesive failure for thick epoxy plates under plain strain condition was carried
out by Andrews and Stevenson [300] presenting analytical solutions for both cases.
Cotterell and Chen [301] conducted an investigation in the transition zone between
membrane and plate material elastic behaviour [302]. Jensen [303] investigated into
the effect of the mode mixity for pressurised blister tests of thin-films and plates
around the transition zone from membrane to plate behaviour.

Most publications investigated thin films, membranes and coatings, which was
amongst others shown by [304, 305], who reviewed existing analytical solutions. For
this reason, work was conducted on specification of non-linearities, plasticity [306],
transitions between plate-membrane and bending-stretching [302] as well as resid-
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ual stresses [263, 292]. For instance, Juss and Mertiny [307] assessed the adhesion
between a polyurethane liner top layer on an epoxy resin substrate applying an
elastic stretching analysis.

One typical challenge in PBTs is the unstable crack growth which allows for only
one measurement [301]. Constrained blister tests (CBT) increase the control over
the blister shape and the crack growth, although only applicable when testing thin
films, membranes and coatings. Already Dannenberg [296] used a slotted groove to
guide the propagation resulting in an oblong blister shape. Similar are island blister
tests, first proposed by Allen and Senturia [308] and altered by Dillard and Bao [309]
to a peninsula test. In an island or peninsula test cracks grow in a defined radial or
longitudinal direction respectively. Both tests benefit from a reduced stress level in
the film and therefore less plastic deformation throughout the test [310]. Another
variant of a CBT comprises a vertical constraint of the blister deflection [311, 312].
The major advantages of this type of CBT are again a lower stress peak in the
film as well as non-catastrophic crack growth. As CBTs require a more complex
manufacturing process [313] and plastic deformation is no concern for thick and re-
inforced materials, additional constraints were assessed not to be required for the
tests throughout the study presented.

An unconventional pressurised blister test was developed by Wan and Mai [314].
To achieve a stable crack growth the blister was pressurised by encapsulating a
working gas of specific volume and pressure underneath the thin film. Lowering the
external pressure allowed the blister to form and propagate. Figiel and Lauke [315]
showed the difference in propagation between a stiff and a compliant polymer film
for a PBT. Laser-induced blister tests were simulated with VCCT by [262] and meas-
ured with DIC by [316]. Little work was published on thick films [317]. Gent and
Lewandowski [318] analysed the impact of different thicknesses, while later Briscoe
and Panesar [319] summarised solutions for the ERR determination of infinitely
thick to thin top layers.

A gap in the published research of blister tests seems to exists on the topic of
thick and reinforced layers. This study aims to minimise this gap by investigating
into pressure blister tests of composite repairs for steel substrates.

5.2 Pressurised blister test setup

The specimens were made by laminating a fibre reinforced polymer (FRP) com-
posite as repair on top of a steel substrate with a defect (cf. chap. 5.3). Load was
applied by water pressure from the substrate side. The data obtained was used for
comparison against the analytical solution provided by the standard. The key for
the ERR analysis is the volume, which grows underneath the specimen. Analytically
this is shown in chapter 2 and chapter 2.4. Studies were published on the meas-
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urement of blister deformation and propagation, but the majority of these studies
investigated in unreinforced thin films and membranes. A review of shaft-loaded
blister tests was carried out and is presented in chapter 4.2. The published research
on pressurised blister tests was reviewed and a summary is given in chapter 5.1.
Analogous to the DCB, ENF, SLB and MMB tests the measurements were often
carried out with a single camera recording the crack propagation. The thin films,
therefore, had to be translucent enough for the crack propagation to be visualised.

Compared to the proposed method of uniform fluid pressure on an opaque, thick,
FRP plate, the published research differs substantially in methodology, analysis and
results as shown in chapters 4.2 and 5.1. Consequently, a novel method to measure
the ERR had to be developed. A single camera recording the crack propagation was
considered insufficient, because (a) the composite repairs are often too opaque to
see the crack propagating and (b) the compliance of the total system in combination
with the brittle behaviour lead to an abrupt and catastrophic failure. As a result,
crack propagation could not be utilised and instead the deflection and volume of the
blister was chosen. The critical ERR was assumed to be a function of the maximum
load and maximum volume before failure. To the best of our knowledge, this study
is the first to measure the critical ERR for this combination of specimen type and
loading.

The water pressure was applied by a piston-cylinder rig. A standard strength
testing machine was driving the piston to compress the water in the cylinder, con-
nected through a short pipe with the rig holding the specimen. A more detailed
description of the test setup is given in chapter 5.4.

Several challenges were associated with the actual volume measurement. Trials
to measure the blister volume from the displacement of the piston proved difficult,
because of the compliance of the overall system and the comparatively small mag-
nitude of the blister volume. Furthermore, the repair’s bottom surface could not be
accessed, due to the design of the pressure application. Hence, an assumption had
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Figure 5.1: Diagram of blister formation under fluid pressure
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to be made that the outer surface sufficiently reflects the deformation of the inner,
pressurised surface. Otherwise, measuring the maximum deflection of the blister,
without further knowledge of the blister shape, would have required the calcula-
tion of the ERR through an analytical solution. This would have led to matching
two dependent variables, when comparing the results of measurement and analyt-
ical solution. Hence, a different method to measure the volume of the blister was
required.

The non-contact deformation and strain measurement method of 3 dimensional
digital image correlation (3D DIC) was identified as a suitable alternative to meas-
ure the deflection of the repairs top surface, which was linked to the blister volume.
Few studies have applied DIC on blister measurements and one study was identi-
fied, which evaluated the ERR [320]. Hailesilassie and Partl [320] evaluated the ERR
of a pressurised blister under a orthotropic, polymer modified, bitumen membrane
with 3D DIC. Despite using the volume and pressure to determine the ERR, the
volume was only derived analytically through measuring the blister radii and max-
imum height. Grohs et al. [321] applied 3D DIC on a proton exchange membrane
under pressure to measure applied stress. Fedorov et al. [316] created pressure in-
between a metal substrate and a polymer coating with an infrared pulsed LASER
until delamination occurred. Fedorov et al. monitored the stress-fields and relaxa-
tion of the ridge shaped blister with DIC.

The presented work was carried out using the Correlated Solutions software VIC-
Snap for image capturing purposes and VIC-3D™ 2012 for the digital image correl-
ation calculation.

5.3 Specimen manufacturing and material property evaluation

5.3.1 Manufacturing Process

Bi-material specimens used in the described test series were made of a composite
repair bonded on top of circular metal substrates, which were made of ASTM A36
type steel. With a diameter of 170mm and a thickness of 15mm the steel substrates
were designed to accommodate enough space for a blister above defects of various
sizes and to withstand the applied pressure with little elastic deformation. Artificial
defects were machined into the centre of the substrates. For through-hole defects
an additional metal plug was necessary to seal the defect against penetrating resin
throughout the repair manufacturing.

Surface preparation is important to improve the quality of a bond. In the
present study the surface preparation was done in accordance with BS EN ISO
8501 [322] and SSPC–SP10/NACE No.2 [323]. The metal substrate was grid blas-
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ted to a roughness of Rz ≥ 65 µm to increase the bonding area. Grid blasting
was followed by a thorough cleaning of the surface with compressed air and acet-
one. An additional treatment with silane was abandoned in order to reduce the
number of variables in the test. However, surface treatments with primers or ad-
hesion promoters, such as titanate, chlorinated polyolefin, silane or silica-coatings,

Figure 5.2: Speckle pattern ap-
plied on specimen (top), magni-
fied to pixel level (middle) and re-
duced to binary (bottom)

can improve the quality of the bond, as it was
shown in a number of studies [324–326]. An over-
view of coupling agents is provided by Abel [327]
and Petrie [328].

Materials used for the repair were E-Glass,
Kevlar 49 Aramid and Carbon HT fibres. Both,
E-Glass and Kevlar 49, were available as bi-axial,
non-crimp fabric, while Carbon HT was supplied
as bi-axial, woven fabric. Cutouts of the fabric
were made with a laser cutter. Quasi-isotropic
(QI) and orthotropic (OT) layups were manufac-
tured with WTR’s Technowrap 2K epoxy resin
system used as the polymer matrix. After a hand
lamination process the repairs were compressed
and left for a 24 h cure at room temperature, fol-
lowed by 150 ◦C for 3 h to reach the full strength
of the material. Excess resin was removed before
the application of a speckle pattern.

White spray paint was applied in a thin layer
as prime coating. Using a different type of
nozzle, black speckles were carefully sprayed on.
Figure (5.2) shows an example of a speckle pat-
tern applied to a specimen in the top image. The
middle figure presents the same speckle pattern
in a magnified view of the pixel level and the
binary image thereof shown below. Other meth-
ods of applying speckle patterns are powdering
[329], stamping, lithography [329], printing [330]
or painting [331]. It is without implication for
the correlation, if black speckles are applied on
a white background or vice versa.

More important for a good speckle pattern
quality for DIC is a matt finish and a random
speckle distribution with a high uniqueness in
terms of size and shape. An increase in unique-
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ness can be achieved by a higher contrast and larger speckles in relation to the
subset size and therefore more pixel per speckle. However, more pixel representing
larger speckles decreases the resolution as does a larger subset size. An increase
in speckles in the pattern and a great variation in shape would result in a quality
improvement [332].

Additionally, the recording situation determines the contrast and resolution and
thereby also the ideal speckle size. Distance, zoom and aperture are important for
the depth of field (DOF) (cf. chap. 5.4). Furthermore, the light situation in com-
bination with the sensor type (here: 8-bit CCD) influences the ultimate quality of
a speckle pattern. Insufficient or excessive light would result in an under- or over-
exposed image. Due to this loss of information, measurement uncertainty of the
correlation and errors would increase [333], while the accuracy would decrease.

Several statistical methods for speckle quality assessment were proposed over the
past decade [334–338]. In this study the speckle quality was assessed through the in-
tensity histogram and the confidence margin during test preparation. An adjustment
of correlation and interpolation methods was carried out by means of a convergence
study regarding the yielded volume during post-processing to evaluate the ideal cal-
culation configuration. As an example figure (5.14) shows the convergence of the
volume over an increasing subset size for different interpolation ‘stiffnesses’ in the
volume calculation (cf. chap. 5.6).

5.3.2 Material Analysis

After testing, the composite repairs were analysed for their individual material prop-
erties. The fibre content and orientation of the laminate were known from the man-
ufacturing process. In contrast, the amount of polymer varied for each repair plate
according to the thickness. Consequentially, after a specimen was tested, the repair
was fully detached to measure its thickness and weight. Knowledge of the repair
dimensions was necessary for the derivation of the fibre volume fractions (φ).

Assuming standard properties for the employed fibre material, it was possible
to calculate the properties of every single uni-directional (UD) ply with the rule of
mixture (5.1) for fibre (f) and matrix (m). Within this rule it is assumed that fibre
and matrix contribute to the overall modulus by mixing the individual moduli (Ef‖,
Em) depending on φ [339, chap. 8]. The single ply’s Young’s modulus parallel to the
fibre orientation (E‖) can be approached as a parallel arrangement of springs (fibres
and matrix) with different stiffnesses. On the contrary, the single ply’s Young’s
modulus orthogonal to the fibre direction (E⊥) can be seen as a serial alignment of
springs.

Because the theoretical analytical solution of mixed transverse and shear moduli
increasingly differs with higher fibre volume fractions compared to empirically ob-
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tained material properties, the theoretical solutions were altered. The semi-empirical
equations for the transverse Young’s modulus (5.2) was adjusted according to Puck
and Schürmann [340] and for the shear modulus (5.3) following the work of Förster
and Knappe [341]. From the work of Foye [342], the single ply transverse Poisson’s
ratio (ν⊥⊥) for composites is corrected for the strain constraint of the matrix through
the fibres (5.7).

E‖ = Ef‖ · φ+ Em · (1− φ) (5.1)

E⊥ = Em

1− ν2
m
· 1 + 0.85 · φ2

(1− φ)1.25 + Em

(1− ν2
m) · Ef⊥

(5.2)

G⊥‖ = Gm ·
1 + 0.4 · φ0.5

(1− φ)1.45 + Gm

Gf⊥‖

· φ (5.3)

G⊥⊥ = E⊥
2 (1 + ν⊥⊥) (5.4)

ν‖⊥
E⊥

=
ν⊥‖
E‖

(5.5)

ν⊥‖ = φ · νf⊥‖ + (1− φ) · νm (5.6)

ν⊥⊥ = φ · νf,⊥⊥ + (1− φ) νm

 1 + νm − ν⊥‖
Em

E‖

1− ν2
m + νm · ν⊥‖

Em

E‖

 (5.7)

This again leads into the calculation of the laminate properties through the classical
laminate theory. The CLT combines the stiffness of all layers with respect to the
layer’s orientation into one global laminate stiffness matrix ([A]), by assuming the
layer stackup as a parallel arrangement. The engineering constants were derived
(5.8) from the compliance matrix ([A]−1).

Gibson [343] presented an extension of the CLT for the calculation of the through-
thickness elastic constants of laminates. This novel method overcomes the CLT’s
weakness in estimating the material properties of thick laminates and laminates with
transverse anisotropic plies. The solutions for orthotropic (OT) and quasi-isotropic
(QI) under the assumption of transverse isotropy of the single UD ply were applied
in this study and are shown in equations (5.9) to (5.15). In this study the CLT
was not employed to calculate failure. The engineering moduli and Poisson’s ratios
were needed for the analytical solution of the volumes and the ERRs (as described
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in chapter 2.4) as well as the FE analysis.

Ex = 1
(A−1)11 · t

; Ey = 1
(A−1)22 · t

; Gxy = 1
(A−1)66 · t

νxy = − (A−1)12
(A−1)22

; νyx = − (A−1)12
(A−1)11

(5.8)

Orthotropic laminates:

νxz,OT = φ0
ν‖⊥

(
1− ν⊥‖νxy

)
+ ν⊥⊥

(
ν‖⊥ − νxy

)
1− ν‖⊥ν⊥‖

+ φ90
ν‖⊥

(
ν⊥‖ − νxy

)
+ ν⊥⊥

(
1− ν‖⊥νxy

)
1− ν‖⊥ν⊥‖

(5.9)

νyz,OT = φ0
ν‖⊥

(
ν⊥‖ − νyx

)
+ ν⊥⊥

(
1− ν‖⊥νyx

)
1− ν‖⊥ν⊥‖

+ φ90
ν‖⊥

(
1− ν⊥‖νyx

)
+ ν⊥⊥

(
ν‖⊥ − νyx

)
1− ν‖⊥ν⊥‖

(5.10)

Ez,OT =
[

1
E⊥
−
ν2
‖⊥

E‖
− ν2

⊥⊥
E⊥

+ φ0

(
ν‖⊥νxz

Ex
+ ν⊥⊥νyz

Ey

)

+ φ90

(
ν‖⊥νyz

Ey
+ ν⊥⊥νxz

Ex

)]−1
(5.11)

Gxz,OT =
(
φ0

G‖⊥
+ φ90

G⊥⊥

)−1

Gyz,OT =
(

φ0

G⊥⊥
+ φ90

G‖⊥

)−1

(5.12)

Quasi-isotropic laminates:

νxz,QI =
(1− νxy)

[
ν‖⊥

(
1 + ν⊥‖

)
+ ν⊥⊥

(
1 + ν‖⊥

)]
1− ν‖⊥ν⊥‖

(5.13)

Ez,QI =
(

1
E⊥
−
ν2
‖⊥

E‖
− ν2

⊥⊥
E⊥

+ νxz

2Ex

(
ν‖⊥ + ν⊥⊥

))−1

(5.14)

Gxz,OT = Gyz,OT = 2
(

1
G‖⊥

+ 1
G⊥⊥

)−1

(5.15)

5.4 DIC test setup

For the DIC composite repair blow-off test a specimen, which was prepared as
described in chapter 5.3, was clamped in a test rig. While the top side of the
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Figure 5.3: Dependence of the magnitude of error on the stereo angle for three different
lenses; [344]

rig was open to allow for stereo imaging, the bottom side was connected to water
pressure. Additionally, a vent was integrated to allow for breathing trapped air out
of the system. The water pressure was applied by a piston-cylinder compressor,
which was driven by a standard strength testing machine. Because a single camera
is limited to detecting 2 dimensional in-plane deformations, a stereo system had to
be set up.

It is possible to build a single camera stereo system through complex optical
instruments, such as a combination of rotating and/or fixed mirrors [345]. Because
of the increased complexity of a single-lens stereo system and ultimately the decrease
in resolution, a conventional two-camera stereo system was chosen. A pressure
transducer recorded the load acting on the repair. The chosen camera, AVT Pike
F-421B [346], featured a CCD progressive sensor with a resolution of 2048× 2048 px
and a maximum frame rate of 16Hz with a maximum bit depth of 14 bit for A/D
conversion.

The cameras were operated at an aperture size of f12 and an exposure time
of around 20ms with a recording speed of 5Hz. The sensor was set to an 8 bit
digitisation. As one test took several minutes until failure, this recording speed was
considered fast enough to gain a sufficient resolution over time. The load increase
of the strength testing machine varied between 2.5–5 kN/min, depending on the
thickness of the laminate. The system was set up with a 30° angle between the
cameras and at a distance of approximately 200mm to the specimen. With an
angle of 25° as lower limit for 3D measurements (fig. 5.3), an increase in angle
reduces the width bDOF of the focused area [347].

In photography, the area of acceptable sharpness is denominated as depth of field
(DOF). The combination of the DOFs of two cameras with an angle 180° > γ > 0◦

results in a rhombus. The depth dc of a single camera depends on the lens, the
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sensor, the aperture and the focal length. The width bDOF and the depth dDOF of
the combined DOF is explained in figure (5.4) and equations (5.16) to (5.19). While
the width bDOF is important to focus on an area sufficiently large to record the full
diameter of the blister, the deflection of the blister must lie within the depth dDOF.

lim
γ→180◦

dDOF ↗∞ ⇒ bDOF↘ dc (5.16)

lim
γ→0◦

dDOF ↘ dc ⇒ bDOF↗∞ (5.17)

dDOF = dc cos(α)−1 (5.18)

bDOF = dDOF
sin(β)
cos(α) (5.19)

Two computers collected the data simultaneously. Computer one was dedicated
to operate the cameras and save the images, using the software VIC-Snap. The
software from Correlated Solutions features calibration, camera control and image
recording capabilities as well as external analogue signal reading. One signal channel
was interpreted as an analogue trigger.

Computer two read the pressure and the cross head displacement. It also sent out
an analogue trigger and ramp signal to computer one, while reading the signals by
itself. A rectangular function built the analogue trigger signal, which was translated
by computer one in a trigger signal for the cameras. A sawtooth wave with 1.5V/min
increase running from −10V → +10V was used as ramp signal. All operations of

(a) (b)

Figure 5.4: DOFs of two single cameras and the combination thereof resulting in the
rhombus shaped DOF of the stereo-camera system for (a) 30° and (b) 60°
stereo angle
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Figure 5.5: Diagram of test setup, (PT: pressure transducer, LT: linear transducer for
cross-head displacement measurement)

computer two (i. e. reading and sending signals, timing and data management)
were controlled by a LabView programme, which was developed for this study.
Computer two was equipped for use with LabView with an NI cDAQ-9172 compact
data acquisition system with two NI 9219 analogue input modules and one NI 9264
analogue output module from National Instruments.

Every image pair was automatically linked with a time stamp and all readings
from the analogue signal inputs. Therefore, the ramp signal, recorded by both
computers, connected the applied pressure with the corresponding images. Their
speckle distribution were correlated to the first pair of images, which were made in
a stress free state. Computation of deformation and strains from the images was
done during postprocessing, described in chapter 5.6, after the test was finished.

5.5 Fundamentals of Digital Image Correlation

Digital image correlation (DIC) is a widely used method to measure deformation
and strain [348, 349]. In a first of two assumptions for DIC the deformation of the
material correlates to the change of a pattern of light intensity (i. e. grey scale values
of a black and white speckle pattern) between two images, taken at different stress
levels. Secondly a sufficient variation of contrast across each subregion is presumed
to be achieved, in order to be able to identify point-pairs on the reference image and
its dependent image to evaluate local deformations [350, chap. 20.2].

Digital images of CCD cameras supply one grey scale value for every discrete
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pixel of the sensor matrix. However, in order to compare the reference image with
a deformed image, a non-digital grey scale distribution over the pixel array is re-
quired. Typical methods to approximate values between the full integer coordinates
are bi-linear, polynomial [351] and cubic b-spline interpolations [352]. Any inter-
polation introduces an error into the results. Similarly, an interpolation over the
grey values between the known pixels imposes a phase error on the measured strain
[353, chap. 5.6.1.]. The cubic b-spline is the least affected of the stated algorithms,
though b-splines need to be corrected as well.

As interpolation filters can improve the error, optimised recursive pre-filters based
on the b-spline transformation are applied on the b-spline interpolation [354]. In-
creasing the number of coefficients of the filter improves the interpolation at the
expense of calculation effort. The present study utilised a cubic b-spline interpol-
ation with an optimised 8-tap filter for minimal phase errors. Another benefit of
higher-order b-spline filters is the improved amplitude attenuation of interpolations
across noise [353, chap. 5.6.2.]. Recently, Crammond et al. [332] applied an edge
detection detection, combining a Gaussian filter to reduce noise and a calculation of
the second spatial derivative with the Laplacian operator followed by 2D alpha shape
technique, that results in closed contours around detected speckles. This morpho-
metric method improves the control of the recognition of patterns that otherwise
can be difficult to analyse, for instance, because of little contrast in the grey levels.

Corresponding pixels in both images can be identified by comparison of a random
pattern on the specimen, but the pattern must contain speckles of a high uniqueness.
For an enhanced uniqueness an increased size, isotropic alignment, non repetitive,
high contrast and random form of the speckles are important. Speckle areas of about
4× 4 px are a reasonable size, as speckles that are smaller require increased subset
sizes in order to identify unique patterns. A description of the pattern application,
which was employed throughout this study, is given in section 5.3.1.

Images are split in subsets to perform local searches for matching points between
the pictures. Every subset correlation yields one data point. Therefore, being com-
parable to averaging over the subset area, an enlarged subset size decreases the
spatial resolution. Smaller subsets are capable of detecting larger strain gradients,
but can result in higher inaccuracies dependent on the speckle pattern [330, 336, 338]
(cf. chap. 5.6). It is assumed that the deformation field in every subset is continuous
[350, chap. 20.6]. A novel approach by Poissant and Barthelat [355] avoids discon-
tinuities by automatic subset splitting, for instance enabling an easier measurement
of crack openings.

Subsets are shifted in x- and y-direction along the image by the step width.
Therefore, the total number of data points is dependent on the step width. The
step width must be smaller than the subset dimensions for a sufficient overlap of the
adjacent subsets.
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Two subsets are compared through a cross-correlation (5.20), which is a standard
measure to compare two signals at different points in time. In this case the two
signals to correlate are the grey scale values of the images before (F ) and after (G)
deformation (fig. 5.6). VIC-3D provides three different correlation criteria: sum
of squared differences (SSD), normalised sum of squared differences (NSSD) and
zero-normalised sum of squared differences (ZNSSD). An overview of the different
optimisation criteria can be found in Sutton et al. [353, chap. 5.4 and tab. 5.1] and
Tong [356]. In this study the NSSD criterion was chosen (eq. 5.21), as it is unaffected
by scale of light intensity and provides a higher convergence rate than the ZNSSD.
The cost function χNSSD = 1 for perfectly matching patterns and χNSSD = 0 for
mismatching patterns. Correlations are considered to be a match, if the cost function
χNSSD > 0.999, while χNSSD < 0.990 are valued as a low quality match [350, chap.
20.6.1].

χ2
NCC =

∑
FG√∑
F 2
∑
G2

(5.20)

χ2
NSSD =

∑(∑
FG∑
G2 G− F

)2

(5.21)

Several algorithms are commonly used to solve non-linear minimization problems,
such as steepest descent (gradient search) [357, 358], Newton-Raphson [359, 360],
coarse-fine [361] and more recently the Levenberg-Marquardt [362, 363] algorithms.
To assist the iterative algorithms, a seed point has to be set by the user. The more
accurate the initial guess of the unknown parameters of the algorithms, the faster
and more accurate the algorithms will converge. The outdated integer displacement
search for the initialisation of the parameters [364] was replaced by the more re-
cent method of using optimised correlation coefficients [365]. However, the later
developed method also assumes neighbouring points to be similar. Therefore, a seed
point should be chosen in an area of little deformation to obtain an accurate set
of initial parameters. A novel, automated, feature extraction method with usage of
scale-invariant feature transformation (SIFT) could overcome those limitations in

Figure 5.6: Mapping through correlation χ between speckle pattern before F (x, y) and
after G (x∗, y∗) deformation.
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(a) (b)

Figure 5.7: a) Subset on image before deformation, b) Subset corrected with shape func-
tion (red) on image after deformation; image of actual applied speckles, nu-
merical deformation for magnified illustration

the future [366].
Furthermore, the coordinate vector of the deformed subset has to be replaced by

a shape function. Deformations can be composed of extension, compression, shear
and rotation in all three dimensions. Consequentially, the specimen can undergo
out-of-plane deformations as well as a level of general distortion, which leads to
high residuals of the sum of squares χ for simple mapping algorithms. Applying
subset shape functions, such as affine linear, polynomial (e. g. quadratic) for 2D or
homographic for 3D DIC, into the matching algorithm adjusts the deformed subset’s
shape for a better match with the distorted image [367, 368]. Instead of copying the
simple square of the reference subset, the deformed subset can become a complex
distorted shape (fig. 5.7). An error from decorrelation can therefore be eliminated.

Additional smoothing can become necessary, if the data is superimposed by a
high level of noise. The method applied was a 90% centre-weighted Gaussian filter
as decay filter over both; the locations z of the points and the displacements w. A
smoothing algorithm is always applied on the result of the correlation and therefore
on the data points of the subsets. Respectively, the diameter of the smoothing in
pixels is the product of step size × filter size.

Sutton et al. [369] showed that out-of-plane translation and rotation can be meas-
ured with a stereo system without introducing measurable, full-field, strain errors.
A two camera stereo-system was used for 3D DIC (cf. chap. 5.4). Instead of an inde-
pendent camera calibration the full stereo-system was calibrated [350, chap. 20.9.1].
This leads to one camera being defined as the master and the other as the slave.

Cross-camera image matching is supported by the implementation of the ‘epipolar
constraint’. Any object point projected on the image planes in a stereo-vision is con-
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strained through the epipolar constraint as shown in the diagram of figure (5.8). The
epipolar lines are constructed by an intersection plane, which is spun between the
object point and the two camera coordinate system origins, and the image planes.
Hence, the cross-camera matching problem is reduced to a search along the epipolar
baseline [353, chap. 4.2.2]. For the extension of 2D DIC to the third dimension the
subsets of both cameras are matched with the same correlation processes as used
for conventional 2D DIC. The utilised software VIC-3D 2012 first correlates the
reference images of master and slave. Afterwards images from the master camera
are matched with the master reference image and images from the slave camera are
matched with the slave reference image. Later no further correlations between the
cameras are made throughout the process.

GCOS

C1COS x1

y1

z1

C2COS
x2

y2
z2
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Q

p2

q2

p1 = q1IP1
IP2

epipolar baseline
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Figure 5.8: Two-camera stereo-system with global (GCOS) and camera coordinate sys-
tems (C1,2COS), object (P , Q) and projection points (p1,2, q1,2) on image
planes (IP1,2) with epipolar baseline and constraint lines for point P

5.6 Postprocessing of DIC data

As a result of the measurement, two sets of image pairs had to be analysed per test.
One of which was recorded for the calibration of the camera system, while the other
one was generated throughout the test run. An excel file linked the images with
their respective time and analogue channel readings. Correlated Solutions’ VIC-3D
software processed the camera calibration, calculated the deformations and strains
before writing the results in MatLab output files. The post-processing of the x-, y-
and z-deformation data of the stressed and unstressed situations was programmed
in MatLab for this study and is described in the following paragraphs.
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Figure 5.9: Process of determination of pure blister deformation from the total deform-
ation.

During testing the repair plate surface is generally not ideally transverse to the
axis of the camera system. Therefore, the deformation data of a plate contains a
substantial proportion of deformation in x- and y-direction. Because it was required
that the deflection was mainly described by a deformation in z-direction, the data
set (Ω) was initially rotated around the x- and y-axis into the x–y plane (horizontal).
Hereby, it was possible to reduce the deformed (d, figure (5.11a)) with the unde-
formed state (ud) to the pure deformation data (pd, equation (5.22), figure (5.11b))
solely based on the deflection in z-direction. Disregarding surface asperities as a
result allows for the main step, which is the separation of the pure deformation
data into the pure plate bending displacement (pp, figure (5.12b)) and the pure
blister displacement (pb, equation (5.23), figure (5.13)). This process is illustrated
in figure (5.9).

Ωpd = Ωd − Ωud (5.22)

Ωpb = Ωpd − Ωpp (5.23)

An automated iterative rotation was programmed to achieve a near-horizontal
plane of the repair plate. The unstressed plate was the reference for the evaluation
of the rotation angle for both data sets. Kurtosis and standard deviation of the
z-value of the undeformed plate were the critical measure for the iteration. It was
assumed that an ideally flat plate after rotation would lie perfectly in the x–y plane
and therefore all z-values would be zero.
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For the rotation’s assessment, the kurtosis (γ) was used as a measure of the
peakedness of the frequency distribution of z-values around a mean of zero (i. e.
γ � 0 ⇒ repair plate surface ≈ x–y plane). The standard deviation (STD, µ) was
used as a complementary measure to summarise the variation of the z-values around
a mean of zero with µ = 0 indicating no variation (see histogram in figure (5.10)).
Because errors occur around the edges of the measured surface, the STD was replaced
with the inter-quartile range (IQR) to avoid their influence on the rotation.

The rotation angle, obtained by the iteration, was applied on both the deformed
and undeformed plate. Another translational displacement of the pure deformation
data was applied after rotation. The data was moved horizontally until the point of
maximum blister deflection coincided with the centre of the investigated area. The
most reliable method to determine the point of maximum blister deflection in the
Ωpd data set was the search for the maximum of the first principal strain (ε1) of the
blister. The point of maximum blister deflection became the new origin of the x–y
plane, which guaranteed the blister to be sufficiently central inside the investigated
blister area. The plate was then moved vertically, so that the z-mean of the full
range of data points (subsequently referred to as ‘nodes’) coincided with the x–y
plane.

Because of the limitation, that the cameras can only measure the outer surface
of the repair, no direct data about the pure plate deformation was available. How-
ever, the repair plate deformation outside the defect area was assumed to cohere
closely with the substrate deformation underneath. Furthermore, to obtain the
blister volume the virtual substrate surface across the defect area had to be known.
The virtual substrate deformation data was obtained by interpolating across the un-
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Figure 5.10: Change of distribution of z-distance between the measured points and the
camera origin of one plate; (red) original, (blue) rotated around x-axis, then
(green) rotated around y-axis
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Figure 5.11: (a) Rotated and translated, (b) Deformed plate after subtraction of the
undeformed state

known defect area with utilization of the deformation data outside the defect area
as supporting points.

Hence, at first all of the data was disregarded across an area above the defect,
which was chosen slightly wider than the defect area itself. Subsequently, numerical
errors and measurement artefacts, in particular around the edges, were disregarded
to increase the interpolation quality. All missing nodes were obtained by interpol-
ating over the remaining ring shaped data set plotted in figure (5.12a) using the
MatLab function ‘gridfit’ by D’Errico [370]. This function is based on the idea of an
interpolating surface in the form of a plate with a certain stiffness and a force pulling
the plate towards the nodes. The programme’s description [370] of the interpolation
is in parts adopted for this thesis to provide the reader with a brief overview of the
interpolation algorithm.

The function applies a bi-linear method (also known as linear tensor product),
which is widely used in digital image interpolation (e. g. [371, 372]). Bi-linear inter-
polations are the product of two linear functions and therefore non-linear themselves.
An arbitrary point between four known points was interpolated by initially calcu-
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Figure 5.12: (a) Pure plate deformation excluding blister area as base for interpolation,
(b) Interpolated pure plate deformation
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Figure 5.13: Pure blister deflection with superposed (a) principal strain ε1 and (b) von
Mises strain

lating the linear interpolation between the two sets of two known points in one
coordinate direction. Subsequently, the two resulting interpolation points are the
new set for the final interpolation in the second direction.

f(PI1) = x2 − x
x2 − x1

f(P11) + x− x1

x2 − x1
f(P21) (5.24)

f(PI2) = x2 − x
x2 − x1

f(P12) + x− x1

x2 − x1
f(P22) (5.25)

f(Q) = y2 − y
y2 − y1

f(PI1) + y − y1

y2 − y1
f(PI2) (5.26)

This can be generalised for the total data set as a linear algebraic problem of the
form

Ax = y (5.27)

with x ∈ Rn being a vector with the length of the number of grid nodes n. The
matrix A ∈ Rm×n has the same number of columns, but with rows m ≥ n equivalent
to the nodes supplied by the original data set and corresponding to the vector of the
supplied data points y ∈ Rm. The amount of unknown grid nodes was higher than
the number of given data nodes, leading to an ‘ill-posed’ equation. This problem
can be determined with the search for the minimum of the Euclidian norm ‖·‖, also
known as the approximate solution of the least-squares problem [373].

Additionally a method was applied to control the ‘stiffness’ of the solution and
with it the smoothness of the result. It is expressed in another linear equation:

Bx = 0 (5.28)

Both, equation (5.27) and equation (5.28), were combined and scaled, so that the
matrices A and B have a unit 1-norm. Equation (5.29) is a version of the Tikhonov
regularisation [374, 375]. Tikhonov extended the least-squares problem with a pen-
alised method by the addition of a ‘stiffness’ factor κ and a regularisation operator
B ∈ Rp×n, p ≤ n [cf. 373, eq. 1.3]. Smaller κ values allow for larger gradients,
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Figure 5.14: Change of volume by ‘stiffness’ κ variation of plate interpolation over subset
size

i. e. the interpolation can follow smaller geometries, while larger κ yield a smoother
surface. Deviating the ‘stiffness’ factor κ from the standard of 1 yields an increased
difference in volume for smaller subset sizes as can be seen in figure (5.14). That is
caused by a larger scatter of local deformations for calculations with smaller subsets.

min
x∈Rn

{
‖(Ax− y)‖2 + κ ‖Bx‖2} (5.29)

The selection of the subset size was carried out by evaluating the volume in regard
to an increasing subset size (fig. 5.14). An image correlation with a small subset
size contains more numerical inaccuracies [336] and therefore shows more artefacts
and a rougher surface. This agrees with Pan et al. [376], who presented a similar
approach to evaluate the ideal subset size based on the sum of squares of subset
intensity gradients (SSSIG), and Sun and Pang [377], who introduced the concept
of a subset entropy. Ultimately a subset size of 51× 51 px was selected in this study.

The interpolated substrate deflection data was written in an x–y coordinate grid
with strictly positive gradients in x- and y-coordinate direction. The spacing of the
grid was obtained by averaging over each column or row for x- and y-coordinates
respectively. Both x–y grids, the original DIC data and the interpolated, differed
from each other. A triangular volume integration algorithm would have neglected
the difference of position in the x–y plane between two corresponding nodes of
pure deformation and pure plate bending. Thus, a computationally more expensive
method was developed and applied to calculate the volume, as described in the
following paragraphs.

Hexahedrons were build between the nodes of the blister and the virtual substrate
surface, which sum up to the blister volume. A convex hexahedron with planar
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Figure 5.15: Hexahedron (black wire frame) spun between nodes on the two surfaces of
blister and virtual substrate; one possible split for the 3D simplex (tetra-
hedron, green) shown inside

faces has an analytical and unique solution by splitting it up in five tetrahedrons as
illustrated in figure (5.15). It is possible to split a hexahedron up in two different
ways. If all faces are plane, the volumes of both possible splits are equal. However,
the faces of the hexahedrons were not plane and the average of both splits had to
be taken. The analytical solution for the volume of a 3-simplex (tetrahedron) can
be written as

V = 1
6

∣∣∣∣∣∣det

~a~b
~c

∣∣∣∣∣∣ = 1
6

∣∣∣(~a×~b) · ~c ∣∣∣ (5.30)

Hexahedrons can be self-intersecting or negative in volume around the edge of
the blister. Being rather a numerical error than actual geometry the volumes of
those hexahedrons were set to zero. In rare cases hexahedrons were concave, when
the blister and virtual substrate surfaces were close to each other. Because equa-
tion (5.30) is limited to convex hexahedrons, a method had to be developed to
generate convex out of concave hexahedrons. This method is presented for the 2D
case in figure (5.16) and can be extended from concave tetragons to concave hexa-
hedrons for 3D applications as described in the following paragraph.

In a first step the centre (PCG) of all corner nodes (PC) of the hexahedron was
determined through the mean of all node coordinates.

PCG =

8∑
1
PC

8 (5.31)

The centre point was then made the centre of an auxiliary sphere, of which the radius
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was larger than the maximum distance between the centre and the nodes. Naturally,
every PC of a hexahedron is linked through a vector with its three neighbouring PCs.
A vector addition of those three yields another vector, which was based on the PC

pointing away from the hexahedron towards the sphere. These vectors defined eight
new nodes PS on the sphere, so that every node PC of the hexahedron has a mirrored
node PS on the sphere. Nodes from one hexahedron face combine for a new convex
auxiliary hexahedron with their mirrored counter parts.

The mirrored nodes build a convex hexahedron themselves that encloses the con-
cave and its auxiliary convex hexahedrons. The volumes of the enclosing and the
auxiliary hexahedrons were obtained through the same process of splitting each
hexahedron into its 3-simplex volumes as described in equation (5.30). Through
the number of volume calculations alone, the computational effort was more than
8 times higher for a concave compared to a convex hexahedron. As only relatively
few concave hexahedrons occurred, the additional total computation time was not
substantially increased.

Figure 5.16: 2D illustration of the calculation of a concave (CC) tetragon ttCC (black
tetragonal area). Construction of four mirrored nodes PS,a..d on auxiliary
circle (light grey circular area), which become the nodes of one new enclos-
ing, auxiliary, convex tetragon (dark grey tetragonal area), and construction
of four auxiliar, convex (CV) tetragons ttCV,a..d with two original nodes and
two mirrored nodes each (e. g. PC,a, PC,b, PS,a, PS,b).
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Subtracting the sum of volumes of the auxiliary hexahedrons (Vaux) from the
volume of the enclosing hexahedrons (Venc) resulted in the volume of the concave
original hexahedron (Vhex) (5.32). All hexahedron volumes combined add up to the
total blister volume (5.33).

Vhex =
∑

Venc −
∑

Vaux (5.32)

Vblister =
∑

Vhex (5.33)

5.7 DIC measurement results

The curve of the measured volume over the applied pressure, exemplary shown in
figure (5.17), is in its shape analogue to stress-strain curves of brittle polymers like
epoxy resins. A smaller and sharper plastic transition would be expected for a tensile
test of composite materials. However, the larger plastic transition suggests that, as
expected for a transversely loaded specimen, the matrix is dominant in the overall
material behaviour in out-of-plane direction. A linear-elastic increase in volume is
followed by a plastic transition until ultimately crack propagation occurs. The crack
propagation itself was not recorded, because of the rapid and catastrophic nature of
the propagation.

The point of crack propagation, marked with an ‘×’, has proven to be less con-
sistent throughout the range of tested specimens than the transition point between
linear-elastic and plastic material behaviour. For this reason, the transition point
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Figure 5.17: Measured blister volume for increasing pressure
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Figure 5.18: (a) Measured total ERR against the corresponding simulated ERR,
(b) percentaged Bland-Altman plot: STD=0.14, Kurt=3.33, Skw=0.23,

Var=0.019

was chosen as input for comparison with FEA simulations and analytical calcula-
tions. The transition point was determined by a search for the point, when the
volume changed by more than 5%. The linear interpolation line of the linear-elastic
part and its 5% deviation are plotted in figure (5.17) as solid and dotted lines re-
spectively.

While the shown example of figure (5.17) was taken from the middle of all speci-
mens in terms of generated volume, noise was more pronounced in measured curves
of very small volumes. Smoothing algorithms, as described in chapter 5.5, were suc-
cessfully applied on the correlation before the volume calculation for specimens with
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Figure 5.19: (a) Measured total ERR against the corresponding ERR from the stand-
ards solution, (b) percentaged Bland-Altman plot: STD=0.20, Kurt=4.89,

Skw=-1.33, Var=0.041
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Figure 5.20: (a) Measured total ERR against the corresponding ERR from the mod-
ified standards solution, (b) percentaged Bland-Altman plot: STD=0.17,

Kurt=4.87, Skw=-1.22, Var=0.029

a increased amount of noise. Typically, noise had to be erased from tests with small
deformations as the noise to signal ratio on the measurement became too large.

The full set of data is plotted in the figures (5.18) to (5.20), each comparing the
measured ERR to the FEA simulated or analytically obtained results. Figure (5.18a)
displays the measured data plotted over its equivalent simulated result. The black
diagonal line indicates an ideal fit and is therefore denoted as GT,FEA.

For further statistical analysis, the second diagram, figure (5.18b), shows a mean-
difference plot, also known as Bland-Altman plot [378]. This type of plot is most
practical to illustrate the difference between two measurement methods. Here, the

P
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ar
]

R/t [1]
Figure 5.21: Measured critical pressure with respect to a change in geometry
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plot type was modified to show instead the percentage of the difference being plotted
over the mean. The modification implies that a y-axis value of 0.2 is equivalent to a
20% difference between both methods. Bland-Altman plots are only valid for normal
distributed data, which is true for all data sets presented, as can be understood from
the mean and median being almost identical.

The comparison between the measured ERR and the total ERR from FEA sim-
ulation shows acceptable agreement. A linear correlation between both methods
of ERR determination is found in figure (5.18a). Though the data is scattered, a
normal distribution of the scatter is displayed in figure (5.18b) and the majority of
data points lies within an approximately ±20% difference with a standard deviation
of about 0.137.

The results obtained through the analytical solutions from the standards and the
modified solution appear similar as displayed in figures (5.19) and (5.20) respect-
ively. Figure (5.19b) reveals that the analytical formulation from the standards
yields the largest scatter with a standard deviation of about 0.202 with most data
points lying within approximately ±30%. Compared to the standards solution, the
scatter is reduced for the modified standards solution to a standard deviation of
about 0.171. However, the standard deviation from the FEA simulation, as presen-
ted in the paragraph above, is the smallest. Similarly, the variation for the modified
standard lies in-between both. In contrast, the mean offset is larger than the other
results.

The change of the measured critical pressure Pc is documented in figure (5.21)
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Figure 5.22: Influence of radius and thickness on the mode mix; Simulations undertaken
with pressure calculated through the curve fitting function f(R/t) = Pc;
Arrows indicate directions of increasing values
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Figure 5.23: Influence of radius and thickness on G; Simulations undertaken with pres-
sure calculated through the curve fitting function f(R/t) = Pc; Arrows
indicate directions of increasing values

107



as a function of the geometry of the defect and repair. With smaller defect radius
R or increasing repair thickness t the critical pressure increases hyperbolically. A
curve fit of the function of the obtained data displayed in figure (5.21) was achieved
through:

Pc(R, t) =
(

95
(
R

t

)−1.07

− 1.5
)

bar (5.34)

The mode-I and mode-II portion of the total ERR was obtained through a VCCT
simulation displayed in figure (5.22). One set of material properties averaged from
all quasi-isotropic glass fibre specimens was used for the simulation, which was run
across a range of radii and thicknesses similar to those of the tested specimens. The
failure pressure Pc was calculated with the function in equation (5.34). For larger
R/t the mode mix converges at approximately 45% of the total ERR for GI.

The radius and the thickness impact the ERR in different ways. Figure (5.23) was
derived from the same number of simulations presented in figure (5.22). It becomes
clear that the change of the result is not going to be the same for an equivalent
change of R or t. Therefore, different ERRs can be achieved for constant R/t.

5.8 DIC measurement discussion

In general, a measurement can be regarded as reasonable accurate, if the results are
within about a ±15% difference [379]. Aerospace applications, for instance, rely on a
high reproducibility of the composite parts in terms of materials and manufacturing
in order to achieve the desired material properties. In contrast to the highly con-
trolled lab environments, which are needed to achieve high repeatability, composite
repairs in the oil and gas industry have to be applied in the field under often harsh
and demanding conditions. As a result, the usual requirements for such applications
focus more on long-term reliability and easy manufacturing, but less on high-end,
highly stiff and strong lightweight constructions. Surface preparation, fibre volume
fractions, fibre orientations, pollution and matrix gas content are some of the factors
that are important for a high quality composite part, which are difficult to control in
a rough environment like oil and gas production. Therefore, a relatively high scatter
in quality must be assumed and safety factors must be chosen accordingly. Some of
the scatter can be recognised in the preceding section in figures containing measured
data such as figure (5.21) on the variation of the critical pressure in comparison to
the fitted curve.

The results presented from the DIC measurements, the FEA simulation and the
two analytical solutions show acceptable agreement. As expected, the FEA simula-
tions cohered closest with the measured data. The encountered scatter of ±20% is
reasonable for oil and gas composite parts. It proves that FEA simulations under
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usage of the VCCT are valid, yet the boundary conditions need careful consider-
ation. Consequentially, it is possible to obtain the ERR of a PBT through FEA
without the need of analytical solutions. Additionally, VCCT simulations provide
the ratio between the different fracture modes. It was shown in figure (5.22) that at
least for R/t > 3 an approximated GI/GT ≈ 0.40-0.45 can be assumed.

Simulating actual tests with FEA and the VCCT yields more accurate results
than employing analytical equations. Yet, because the analytical solutions investig-
ated agree with the measured ERR within the presented limits, it seems sensible to
calculate the ERR analytically with an additional safety factor, to account for the
inaccuracies of the analytical formulations and the fluctuation in repair quality.

Although the measured curves of the volume over pressure show a pronounced
part of plastic deformation, the pressure increase throughout the plastic deformation
is comparatively small. It appears to be a feasible option to simulate or calculate
specimens with the recorded failure pressure, without the extra expenditure of a DIC
measurement. An average reduction factor could be applied on the failure pressure
to account for the plastic deformation.

Furthermore, it was shown in chapter 2.4 that the ERR formulation of the stand-
ards can be improved by correcting the shear term. In the standards the ERR for-
mulation (2.102) is treated like a design criterion using GTc against failure through
interface fracture. The study of the influence of R and t on the ERRs indicates
that the simple fracture criterion of a critical ERR, as proposed in the ASME and
ISO standards and discussed in chapter 2.4, is not sufficient. In contrast to the
failure pressure, it is impossible to find one curve describing the critical total ERR.
The development of a criterion for one defined geometry could help to obtain a
standardised ERR.

It can be concluded that digital image correlation is a feasible method to track
the volume building underneath a blister. The ERR can be derived from the volume
with a simple equation and yields results similar to those of the analytical solution
and the VCCT, which proves the validity of all three independent methods. In
future work, DIC measurements could be improved by implementing the recently
presented approach by Zhou et al. [380] of using adaptive translational subset offsets.
Benefiting from all subset points coinciding with full integer points in the image,
induced errors from interpolations can be avoided. Another advancement would be
the adoption of the development by Cofaru et al. [381] of a method for adaptive vari-
able subset shapes, overcoming limitations imposed by constant rectangular shaped
subsets used in current DIC software. Both, which are not yet implemented in the
software used for this study, are going to offer lower measurement errors in later
releases.

In the case that no precise information about the fracture mode mix is needed,
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analytical solutions can be adopted, especially if a more complex measurement
method like the DIC is assessed as too expensive. The VCCT increases the under-
standing with more accurate results and the added information about the different
fracture modes at the cost of additional FEA simulation time.
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Chapter 6. Comparison of SLBT, PBT and analytical
solution

6.1 General summary

The study presented had the aim to improve the understanding of the interface frac-
ture between composite repair and metal substrate in blister tests of repairs against
leaking oil and gas pipes. The standards of ASME [2] and ISO [1] provide formu-
lations and procedures for the evaluation of failure scenarios outlined above. These
formulations and procedures were reviewed within this study and the investigations
presented led to changes and new developments being proposed in order to improve
the existing standards.

For this purpose, shaft- and pressure loaded blister test methods have been eval-
uated for their viability for the qualification of repair systems. Literature was found
presenting research on typically unreinforced thin plates or membranes as top layers
bonded on an infinitely stiff substrate, but a gap in research published was identi-
fied about thick plates and fibre-reinforced specimens. With composite repairs of
pressured pipes as the application under investigation, this study focused on thick,
fibre-reinforced laminates as top layers resembling composite repairs. Circular sharp-
edged defects were assumed and primarily quasi-isotropic glass fibre-reinforced ep-
oxies were used as repair material.

Accurate analytical solutions were established to provide cost and time efficient
tools for the determination of energy release rates (ERR). The validity of existing
and novel developed analytical expressions for shaft-loaded blister tests (SLBT) and
pressure blister tests (PBT) was evaluated. As a consequence, the best formulation
for a test with a hemispherical punch (SLBT-H) was identified, a new equation for
the calculation of the ERR for a flat punch test (SLBT-F) was derived and the shear
term of the ERR formulation of the standards for PBTs was corrected.

Two types of FEA simulations were performed for comparison with the analytical
solutions. The first simulation employed was the new development of the pressure-
volume method (PVM). It was designed as a simple method to simulate the ERR
without the need to implement complex fracture simulations in the programme.
The second and more sophisticated simulation method was the virtual crack closure
technique (VCCT). Yet, the VCCT was the main simulation method used, because
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of its advantages over the PVM in terms of universality of application and the
capability of distinction of fracture modes. Both methods were explained in detail
and a comprehensive review of alternative simulation techniques was presented.

Additionally, a programme was written in order to automate the generation of
input files, the batch running of the FEA and the post-processing and evaluation of
the data obtained. The automation allowed for a large number of simulations across
an array of different variables to be performed. From this extensive data set it was
possible to show the impact of shaft, repair and defect geometries on the resulting
ERR.

To verify the FEA simulations, specimens were tested with SLBT-F, SLBT-H
and PBT for various defect sizes, repair thicknesses and materials. A novel method
was introduced, using digital image correlation, to measure and track the volume
and pressure in a PBT. The data was subsequently used to calculate the ERR
and, to the best of the author’s knowledge, it represents the only published direct
way of measuring the ERR with a PBT and is one of only few works published
utilising digital image correlation (DIC) to measure a blister volume. A software
programme was written for the numerical post-processing of the DIC data and the
main procedures are described in detail in this thesis.

Based on the results of the measurements and the FEA simulations the meth-
ods of the ASME and ISO standards were revised. A discussion of all results, of
the relation between the test methods investigated and of the implications on the
standards derived from these findings can be found in the following chapter. As
one consequence, an alternative procedure for the qualification and dimensioning
of composite repairs was proposed. For this purpose, a derivative of the ERR was
introduced that adjusts the ERR for the repair-defect geometry. As a result, the
ERR can be fitted with a function of the variable ‘defect radius over thickness’.
Subsequently, a function for the critical pressure was derived that is dependent on
the VERR. Because the units of the new value change to energy per volume, it was
interpreted as the energy released in relation to the volume deformed and therefore
the name volumetric energy release rate (VERR) was proposed.

6.2 Discussion of pressure and shaft-loaded blister test results

One question raised leading to the study presented was the compatibility between
shaft-loaded and pressurised blister tests. The measured data from the tested spe-
cimens of the SLBTs in chapter 4 and the PBT tested specimens measured with
DIC, described in chapter 5, are presented in figures (6.1) to (6.3). The equivalent
critical ‘pressure’ of the SLBT specimens was calculated from the measured force
on the shaft and the defect area. Plotting the critical pressure over the geometry
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figure (6.1) shows that in terms of resulting strength no distinct difference between
the three test methods can be found. Yet, it could be argued that a flat punch
(SLBT-F) results in a load curve slightly higher than the pressurised specimens
(PBT) and hemispherically capped punches (SBLT-H) yield a curve slightly below
that of a PBT.

A more pronounced difference can be observed in figure (6.2), where the total
ERR resulting from a hemispherical punch head is larger than the more similar PBT
and SLBT-F. In chapter 4.5 the influence of different punch geometries and their
comparison to blister tests using fluid pressure on the ERR and the mode mix was
discussed and it was concluded that the three methods are not always interchange-
able. While the mode mix is different between all three methods, the PBTs’ load
displacement curves (5.17) share more similarities with those of the SLBT-H (4.17).
Additionally, the accuracy of the calculation for the SLBT-H is higher than for the
SLBT-F, because the punch size is less critical, provided the radius is large enough
to avoid major plastic deformation (i. e. matrix cracking at the contact). It was
also shown that neither is comparable in the mode mix. However, taking the graphs
presented in this chapter into account, which show the load and ERR over geometry,
it must be concluded that SLBT-Fs are more suitable as alternative to PBTs. Yet, it
has to be recommended to conduct PBTs, if knowledge about the ERR is required.

Within the scope of the study was the validation of the fracture criterion provided
by the standards of ASME and ISO. In chapters 5.7 and 5.8 the ERR was demon-
strated not to be simple in its interpretation as a fracture criterion, due to its
dependence on the repair-defect geometry. Consequently, it was discussed that a
fracture criterion as provided by the standards based on GTc and treated like a KIc
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Figure 6.1: Measured critical pressure of all tested specimens plotted against the change
in geometry
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Figure 6.2: (a) The difference in distribution between the three different means of blister
fracture testing; (b) The energy release rate of all tested specimens plotted
against the change in geometry

criterion cannot be recommended.

In order to develop an alternative procedure for the qualification and dimension-
ing of a repair system, an ERR derivative independent of the geometry would be
advantageous. To the best of the author’s knowledge, no normalisation of the ERR
against the geometry has been published to date, that preserves the inherent char-
acteristics of the ERR. Wan [151] derived a normalisation of the ERR presented in
equations (2.78) to (2.81). This approach ultimately removes every variable (F , w,
R and π) from the formulation of the ERR. The conversion leads to a normalised
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Figure 6.3: The VERR of all tested specimens plotted against the change in geometry
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ERR for plates of χb = 0.5 and for membranes of χm = 0.25, which are the scalar
factors in the respective ERR formulations.

From the results of this study an alternative normalisation based on the geometry
was introduced, in which the ERR is multiplied by the thickness and divided through
the defect area as written in equation (6.1). This normalisation by geometry leads
to a change in units to energy per volume instead of area and could be interpreted
as the energy released per material volume under deformation. Therefore, it is pro-
posed to denominate γ as volumetric energy release rate (VERR). Relationships
such as GT = GI + GII + GIII remain valid for the VERR.

γ = G
t

A
= Pt

2A
dV
dA

[
J

m3

]
(6.1)

The ERR appears widely scattered along R/t in figure (6.2), but after normalisation
the VERR falls on curves (6.3) comparable to the distribution observed with the
critical pressure in figure (6.1). Both the data of the critical pressure Pc and the
total VERR γT, can be fitted with a power law curve of the form f(x) = ax−b +
c. Figure (6.3) suggests that the three test methods investigated can be fitted
with similar, yet different curves. Comparable to figure (6.2), total VERR results
from loading with a flat punch appear to be closer to a PBT than those from a
hemispherical punch. An evaluation of the ‘ideal’ simulated results shows that the
different curves of figure (5.23) all become one curve in figure (6.4) verifying the
normalisation proposed.

Both fitting curves presented in figure (6.6a) and figure (6.6b) were derived as a
power law with R/t as variable and logically can be expressed as one function linking
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Figure 6.4: The VERR of the simulated results from the study presented in figures (5.22)
to (5.23) plotted against the change in geometry
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Figure 6.5: The critical pressure as function of the critical VERR

P and γ:
f(R/t) = Pc = aPx

−bp + cp , g(R/t) = γT = aγx
−bγ + cγ (6.2)

⇒ Pc(γ) = aP

(
−bγ

√
γ − cγ
aγ

)−bp

+ cp (6.3)

The critical pressure achievable can directly be read from the VERR in figure (6.5).

With the advantage of a 2D curve instead of a 3D surface (fig. 5.23) necessary
to explain the ERR behaviour sufficiently, the safe/fail classification of a repair
is simplified and described in the following paragraph. The steps of a possible
procedure to qualify repair systems and to calculate the dimensioning required for
a given repair scenario could be summarised as follows:

1. Assumption of the mode mix (cf. fig. 5.22) GI/GT =

0.45 R/t ≥ 4

0.05R/t+ 0.25 R/t < 4

2. Determination of the critical energy release rate by:

a) If the ratio R/t ≥ 4 or is assumed to be constant in all repair scenarios,
then it is sufficient to conduct one set of MMB tests for the specific R/t
ratio. The SLB provides a ratio of GI/GT ≈ 0.6 and consequently cannot
be recommended.

b) If different ratios R/t < 4 can be encountered it is necessary to determine
a full fracture criterion, preferably B-K or power law (cf. sec. 2.1.3). A
number of samples per data point have to be tested to measure GIc with
DCB tests, GIIc with ENF tests and SLB or MMB for supporting data
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Figure 6.6: Determination of regions of safe operation for an arbitrary chosen critical
Pc = 50bar and γT = 1000 (n. b. the optional log scaling of γ)

points across different mode mixes to evaluate the formulation of the
criterion as shown in figure (2.5).

3. A series of samples must be tested in a PBT for a range of probable R/t ratios
to measure Pc and GT and to calculate γT

4. Knowing the distribution of Pc and γT over R/t it is possible to fit a curve with
a power law (f(x) = ax−b + c)

5. The area of safe operation can be determined by the point on the fitted curves
crossing the maximum working pressure or the critical VERR obtained in
point 2 and by equation (6.1).

Following point 5, the regions of safe and unsafe operation were drawn in figure (6.6)
exemplary for an arbitrary Pc and γTC. The outlined procedure would have to be
conducted once for every repair system as part of its qualification. Subsequently,
the obtained curves could be used in an actual repair scenario for the dimensioning
of the repair or estimation of its residual safety.

For application on an already applied repair with a blister starting to form, the
approximate delamination size would have to be measured in the field. Together
with the known repair thickness, it can be evaluated whether the repair approaches
its critical VERR. In the case of a new repair, the repair thickness necessary would
be calculated based on the maximum working pressure and the expected defect size
known from an NDT measurement [40, 382].
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6.3 General conclusion

From the work presented the following conclusions can be drawn:

1. Analytical formulations exist for the calculation of the ERR for SLBTs and
PBTs that yield satisfactory results. However, it was shown that specific
formulations have to be employed depending on the type of loading and the
geometries of punch, defect and repair. For ‘thin plates’ (ratio R/t > 10) in an
SLBT-H the load based solution is most suitable for any punch radius. For the
calculation of ‘thicker’ repair plates the near-point solution would be preferred
under the assumption of a small punch-defect radius ratio (Rpun/Rdef < 0.3).
This assumption is true in the majority of cases as the contact zone of a
hemispherical punch is small compared to its radius. The introduced annular
line load solution was proven to be the most accurate option for SLBT-F. A
correction of the shear term of the PBT formulations provided by the standards
was proposed and demonstrated to improve the existing solution.

2. The PBT with DIC measurement was developed and proven to be a feasible
method to measure the ERR. The corrected analytical solution and the VCCT
simulation were validated by the DIC-PBT method to yield accurate results.
Through the knowledge gained, the DIC does not have to be employed for
additional tests. Instead the less expensive and complex methods of FEA
and analytical formulations can be used. If no precise information about the
mode mix is necessary the analytical solution is sufficient. The mode mix
was investigated and graphs presented, which can be used to estimate the
mode ratio. Otherwise, the VCCT is a feasible type of simulation for interface
fracture and can be extended with the CZM for a crack propagation simulation
along a predefined crack face for relatively small additional expense.

3. SLBTs behave differently for different punch geometries. The punch head ra-
dius of an SLBT-H is critical if too small, because of matrix cracking at the
contact zone, but produces an almost constant ERR regardless of the size.
In contrast, a flat punch SLBT-F yields changing ERRs and mode ratios for
different punch radii and is less accurate when calculated with analytical solu-
tions. Despite being less convenient, a flat punch would be recommended
over an SLBT-H to mimic a PBT. However, the data presented suggests that
neither is ideal enough as a substitute for PBTs, because of the distinct dif-
ferences in the ERR and its mode ratios, although the measured failure loads
of all three tests coincide.

4. Through the PBTs, it was found that the ERR is dependent on the radius of the
defect and the thickness of the repair, but not via the relation R/t. The fracture
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criterion provided in the standards effectively utilises GTc, which was shown
by the data presented to be inadequate. A fracture criterion, such as B-K or
power law, could not be derived, because the mode mix ratio is approximately
constant at GI/GT ≈ 0.45 for all R/t > 4. However, a volumetric energy release
rate (VERR) was introduced that is the ERR adjusted for the repair-defect
geometry. The VERR provides the advantage that the dependence on R and t
for h(R, t) = G is converted to a dependence on R/t for g(R/t) = γ comparable
to the function of the critical pressure. Therefore, the critical pressure can be
written as function of the VERR in the form e(R/t) = Pc = f(γ).

5. The procedure proposed for the qualification and dimensioning of composite
repairs extends the existing recommendation by the standards, as it improves
the understanding of the impact of the repair-defect geometry on the crack
propagation, ultimately making hydrocarbon production more safe. It may be
possible to omit the evaluation of the ERR and, instead, to design a repair
solely based on a fitting curve of the critical pressure, as demonstrated in
figure (6.6a).

6.4 Future work

Further investigations are necessary to improve the understanding of the geometry
not only of the repair but also of the defect, moving on from circular defects with
sharp edges to different shapes. As corrosive or abrasive material deterioration
causes defects of various shapes, this topic could be of interest for future research,
while the study presented only investigated in circular ‘sharp-edged’ through defects.
In particular, questions arise about thin remaining thicknesses of the substrate at-
tached to the repair within what was regarded as defect area in the study presented.
A large remaining thickness was already partly under investigation [383], although
not from an interface fracture point of view. In this context, the standards [1, 2]
classify a remaining thickness of 1mm as a ‘leak’ that has to be repaired. Extending
the work presented with an investigation of full pipe sections would link the re-
search closer to the field application. The DIC test method presented could provide
a powerful tool for the measurements of such pipe section tests. The development
of an in-situ coupon-test could support the characterisation of an applied repair and
increase safety against leakage. Additional research on the VERR would be needed
to fully understand the relation between energy and volume as well as its physical
implications.
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