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Abstract
Proof automation is a common bottleneck for industrial adoption of formal meth-
ods. Heuristic search techniques fail to discharge every proof obligation (PO), and
significant effort is spent on proving the remaining ones interactively. Luckily,
they usually fall into several proof families, where a single idea is required to dis-
charge all similar POs. However, interactive formal proof requires expertise and
is expensive: repeating the ideas over multiple proofs adds up to significant costs.

The AI4FM research project aims to alleviate the repetitive effort by “learning”
from an expert doing interactive proof. The expert’s proof attempts can give rise
to reusable strategies, which capture the ideas necessary to discharge similar POs.
Automatic replay of these strategies would complete the remaining proof tasks
within the same family, enabling the expert to focus on novel proof ideas.

This thesis presents an architecture to capture the expert’s proof ideas as a high-
level proof process. Expert insight is not reflected in low-level proof scripts, therefore
a generic ProofProcess framework is developed to capture high-level proof infor-
mation, such as proof intent and important proof features of the proof steps taken.
The framework accommodates branching to represent the actual proof structure
as well as layers of abstraction to accommodate different granularities. The full
history of how the proof was discovered is recorded, including multiple attempts
to capture alternative, failed or unfinished versions.

A prototype implementation of the ProofProcess framework is available, includ-
ing integrations with Isabelle and Z/EVES theorem provers. Two case studies illus-
trate how the ProofProcess systems are used to capture high-level proof processes
in examples from industrial-style formal developments. Reuse of the captured
information to discharge similar proofs within the examples is also explored.

The captured high-level information facilitates extraction of reusable proof
strategies. Furthermore, the data could be used for proof maintenance, training,
proof metrics, and other use cases.
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CHAPTER 1
Introduction

1.1 Extracting interactive proof strategies

The research presented in this thesis has its origins and directions (and funding)
within the AI4FM research project, which aims to “learn” from experts doing
interactive proof to improve automation in formal verification [AI4, BGJ09, BGJ10,
JGB10, FJ10]. The scope is specifically narrowed to proofs encountered in formal
industrial-scale developments (rather than proofs in formalised mathematics),
which exhibit repetition and similarities.1

Formal specification and verification are used to increase assurance in software
and hardware systems, particularly in high-integrity, safety- and business-critical
applications. Verification is performed by discharging relevant (often automati-
cally generated) proof obligations (POs), which establish properties about the speci-
fications and the developed system. For widespread adoption of formal methods,
proof automation is key. The current generation of theorem provers feature pow-
erful AI techniques and advanced heuristics: as a result, they can discharge or
assist with a large proportion of these POs. Unfortunately, a small proportion of a
very large number is still a very large number. The residual POs require manual,
interactive proof and command a large development effort.2

This significant interactive proof effort is the problem that the AI4FM project
aims to address. Rather than trying to discover general automated reasoning

1An extended motivation of this research is presented in Chapter 2, particularly in Section 2.1.
2For example, the residual 8% of interactive POs in the Paris Metro Line 14 development com-

prise 2250 POs and have taken over seven man-months to complete [Abr07] (see also Section 2.1.4).
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heuristics or trying to tweak the formal model with the hope of making it more
suitable for the provers, the aim is to accept the challenging POs and assist with
the interactive proof construction. A particular opportunity arises from the ob-
servation that POs in industrial-style formal developments can be grouped into
“families”. In each family of POs, usually a single proof idea is necessary and all
other POs in the family are discharged “in a similar way”. Reusing this single idea
within the family would improve the automation of interactive proof—this is the
goal of the AI4FM research project:

Hypothesis HAI4FM We believe that it is possible to extract strategies from successful
proofs that will facilitate automatic proofs of related POs.

An expert would construct proofs interactively and the AI4FM system would
capture and “learn” his strategy, which could be replayed automatically or would
be easily adaptable by non-expert users. This “learning” in general should not
be equated with machine-learning. In fact, the best scenario would see the expert
do an interactive proof of a single PO within a family. Then the AI4FM system
would learn his strategy and discharge other similar POs automatically. With a
single source proof to learn from, generalisation is a more suitable approach than
machine-learning. To facilitate this, it is necessary to ascertain the expert’s idea
on discovering the proof: the questions of what constitutes “the idea” and how to
capture it are the focus of this PhD research.

1.2 Thesis contribution

Simply put, the main goal of this work is to provide a rich data source about interac-
tive proof, so that strategies can be subsequently extracted. Low-level proof scripts
(particularly constructed in the procedural proof style preferred in industrial-scale
developments) do not carry enough information to facilitate this: they provide
instructions to the theorem prover rather than describe the proof. There is a need
for a holistic approach at a higher level of abstraction, capable of capturing an
expert’s proof insight as well as the particulars of driving the proof. Developing
such an approach is the aim of this PhD research:

Hypothesis H1 Enough information can be collected from interactive proofs to facilitate
understanding of expert’s high-level reasoning as reusable proof strategies.
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1.2. Thesis contribution

The main questions arising from the hypothesis include: what constitutes the
important and sufficient information about the expert’s proof and the correspond-
ing high-level ideas; how can they be represented; and how does it relate to the
actual theoremprover commands. This thesis presents the following contributions
to address the questions:3

1. A generic ProofProcess model to describe an expert’s proof process is intro-
duced. It uses proof intent tags and sets of proof features to describe high-level
proof steps. The model supports complex proof structure and granularity,
enabling description at different levels of abstraction. Abstract proof steps
encapsulate the low-level steps within reasoning systems (e.g. actual theo-
rem prover commands). Multiple proof attempts capture the process of proof
discovery.

2. Novel facets of the proof process are considered as important proof features.
Not limited to just the current goal, the proof features also capture “meta-
information”: e.g. the use of lemmas and their features, proof origin, prove-
nance, specification domain, proof guidance and more.

3. An extension of the core ProofProcess model to capture proof history is pre-
sented. While not on the critical path to strategy extraction, this additional
data can facilitate a variety of other use cases.

Unfortunately, the task of automatically obtaining the expert’s actual proof
insight resembles mind-reading. Some of the high-level description of the proof
process needs to be manually provided by the expert during the interactive proof.
However, there are opportunities for automatic analysis—the second hypothesis
describes this research direction:

Hypothesis H2 Certain information about the proof process can be inferred automati-
cally, via analysis of the proof context and previous proofs.

This thesis presents approaches and ideas to infer some information about the
proof process via analysis of low-level proof commands:

3The list of thesis contributions is continued within this section, highlighted using shaded
areas in the text.
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4. A non-invasive approach to infer proof branching structure via analysis of
goal term changes is presented.

5. An approach to identify diverging proof attempts, recognise proof re-runs
and extend existing attempts with new proof steps is introduced.

6. Approaches to automatically infer or derive various types of proof features
are proposed.

7. Contributions to the development of an abstract model of proof strategies
and a high-level description of the AI4FM “system” as part of the AI4FM
Newcastle team. Work jointly published in [FJV14, JFV13, FJVW13, FJVW14].

The proposed comprehensive description of an expert’s interactive proof pro-
cess uses a large number of data points. Furthermore, the target industrial-scale
proofs can be of notoriously large size and involve complex proof objects. Tool-
based solutions are needed to support the development and evaluation of the
proof process capture approach as well as to provide the captured data for strat-
egy extraction (i.e. the main goal of this work).

Implementation of a proof process capture system forms amajor part of the con-
tributions. Furthermore, an objective of building a generic framework is achieved
by providing integrations with two different theorem proving systems.

8. A prototype implementation of the ProofProcess framework to capture inter-
active proof process has been developed. The system features a generic core
for recording, storing andmanipulating the data with an accompanying user
interface based on the Eclipse platform.

9. A reusable File History framework has been made available, which provides
an efficient solution to record proof script history in a prover-aware manner.
It can be used independently of the ProofProcess system.

10. A ProofProcess framework integration with the Isabelle theorem
prover [NPW02] has been built. It tracks the asynchronous proof con-
struction and records details about the interactive proof.
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11. A ProofProcess framework integration with the Z/EVES theorem
prover [Saa97] has been built. It tracks the interactive proof process
and captures the prover-specific details.

12. A general-purpose Isabelle/Eclipse prover IDE for the Isabelle theorem prover
has been released. It provides infrastructure for the Isabelle ProofProcess inte-
gration but is also used standalone.

13. The tools from the Community Z Tools project [MU05] have been improved, in-
cluding a new integrationwith the Z/EVES thereomprover. This is joint work
with Leo Freitas at Newcastle. The developments provide infrastructure for
the Z/EVES ProofProcess integration but the tools are also used standalone.

The proposed proof process capture approach and the developed systems
need to be evaluated. The ProofProcess model aims to describe any proof. Thus
rather than looking at small and fine-tuned examples, the evaluation should con-
sider real-world proofs, which can be inefficient and “ugly”. A particular interest
lies in the interplay between general-purpose, well-known proof strategies and
domain- or problem-specific proof steps. Furthermore, the different approaches
to highlighting the key features of the proof context that trigger the expert to take
a particular proof strategy need to be explored. This thesis contributes case stud-
ies covering these questions. The case studies provide high-level descriptions of
different proofs and then propose how the captured proof process information is
reused to construct proofs of similar lemmas.

14. A case study in capturing a high-level proof process description using Is-

abelle/HOL is presented. The case study uses the proposed abstractions to
describe a procedural style proof of a lemma from a formal development of
a heap memory management specification.

15. The case study also shows how similar proofs can be constructed using anal-
ogy. The captured high-level proof process information is reused to guide
the proof, suggest analogous concepts and infer new proof steps required to
bridge the proof differences.
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16. A second case study in capturing high-level proof process using Z/EVES is
presented. It covers a proof by an inexperienced user from a formal devel-
opment of a separation kernel specification. The case study demonstrates
that a high-level description helps understanding and streamlining the proof.
Furthermore, the case study shows that even an awkward proof can spawn
reusable proof strategies.

17. Additional use-cases for the captured proof process data are proposed in the
areas of proof metrics, proof maintenance and tutoring, etc.

Publications

Some of the work presented in this thesis as well as contributions to the wider
AI4FM research have been previously published or presented in the following:

• Leo Freitas, Cliff B. Jones, and Andrius Velykis. Can a system learn from
interactive proofs? In Andrei Voronkov and Margarita Korovina, editors,
HOWARD-60. A Festschrift on the Occasion of Howard Barringer’s 60th Birthday,
pages 124–139. EasyChair, 2014. [FJV14]4

• Andrius Velykis. Capturing and inferring the proof process (Part 2: Archi-
tecture). In Alan Bundy, Dieter Hutter, Cliff B. Jones, and J Strother Moore,
editors, AI meets Formal Software Development, number 12271 in Dagstuhl
Seminar Proceedings, pages 27–27. Schloss Dagstuhl, 2012. [Vel12a]

• Andrius Velykis. Inferring the proof process. In Christine Choppy, David
Delayahe, and Kaïs Klaï, editors, FM2012 Doctoral Symposium, Paris, France,
August 2012. [Vel12b]

• Cliff B. Jones, Leo Freitas, and Andrius Velykis. Ours is to reason why.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, Theories of Pro-
gramming and Formal Methods - Essays Dedicated to Jifeng He on the Occasion
of His 70th Birthday, volume 8051 of LNCS, pages 227–243, Shanghai, China,
September 2013. Springer. [JFV13]

4[FJV14] has been submitted in early 2012, but the publication took a long time to appear.
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• Leo Freitas, Cliff B. Jones, Andrius Velykis, and Iain Whiteside. How to say
why (in AI4FM). Technical Report CS-TR-1398, School of Computing Science,
Newcastle University, October 2013. [FJVW13]

• Leo Freitas, Cliff B. Jones, Andrius Velykis, and Iain Whiteside. A model for
capturing and replaying proof strategies. In Dimitra Giannakopoulou and
Daniel Kroening, editors, VSTTE 2014, volume 8471 of LNCS, pages 183–199.
Springer, 2014. [FJVW14]

The implementations and tools developed during this research are open-source
and available at the following:

• ProofProcess framework and prover integrations source code is available at
http://github.com/andriusvelykis/proofprocess.

• Isabelle/Eclipse has been released and is available from its website at
http://andriusvelykis.github.io/isabelle-eclipse.

• Community Z Tools improvements including the Z/EVES integration are avail-
able from the CZT website at http://czt.sourceforge.net.

1.3 My journey5

The journey to create and let go of this volume of text in front of you and the ideas
inscribed within (as well as the tens of thousands of lines of code safely versioned
in Git repositories) has not been direct. In this section, I would like to mention
several key moments that have determined the direction of my PhD research, the
results of which are presented in this thesis.

The scope of the AI4FM project of which I am a member is very large and
challenging. From the outset, the work has been partitioned between the two
principal research teams: the Newcastle team provides the proof analysis, proof
description and the specification of the overall system; whereas the Edinburgh
team builds upon the previous experience with proof planning and AI to define a
strategy language and how strategies are extracted (“learned”) from the proofs.

I have a background in software engineering in industry as well as experience
with formal specification and proofs using the Z notation and Z/EVES (e.g. [VF10]).

5This section iswritten in the first person, as the journey throughPhD research is quite personal,
whereas the research results now belong to the world.
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Because of this, I was eager to utilise my skills in the proof analysis task, which
has culminated with this thesis on capturing proof process. I am extremely grateful
to my colleagues, who have been very supportive of this direction and allowed
me to indulge in tool development. However, with the opportunity also came the
responsibilities: I have inserted myself into the critical path within the project of
“crunching” the interactive proofs to facilitate strategy extraction. One could try
drawing parallels between the scope of the task and the page count of this thesis.

An important decision to my work has been the choice of theorem provers.
The Rodin toolset has been at the centre of the motivation for this research project.
However, the lack of experience with the toolset within the project has mitigated
against the use of it. Instead, we looked into proofs done using the Z/EVES prover:
it is small and we have access to a number of industrial-style proofs done by the
members of AI4FM (myself included). The strategy language developments by
the AI4FM Edinburgh team, however, have been building upon the implemen-
tation of IsaPlanner and used the more popular but more mathematics-oriented
Isabelle prover. Eventually Isabelle became the prover of choice within the project,
with new formal verification experiments in AI4FMbeing done using Isabelle/HOL.
However, this choice increased the challenges in my work due to Isabelle’s power,
expressivity and the blistering pace of development. I have designed and devel-
oped the ProofProcess framework to be generic and support both provers. Building
an extensible platform and anticipating future extensions to other provers, such as
the Rodin toolset, required more effort but resulted in a better-designed, modular
and reusable framework.

The choice of the theorem provers6 resulted in a significant effort being spent
on infrastructure development. Z/EVES did not have a convenient API to access
the data, whereas Isabelle has beenmigrating to a new Isabelle/Scala API during the
period of this research. Furthermore, the proposed architecture of proof process
capture goes beyond any proof script style, thus therewas no obvious functionality
to reuse and new tools needed to be developed.

Development of the general-purpose theorem proving infrastructure as well
as building the new proof process capture functionality (and the theoretical ap-
proach) on top of it means that my research, rather than being a pin-point advance-
ment of the overall knowledge, is about building a platform. This is a very exciting
task, but it appears that finishing and nicely wrapping-up such work within the

6And maybe the eagerness to build new things.

10



1.4. Thesis outline

timespan of a single PhD research is quite impossible. Nevertheless, this research
has identified a number of additional use cases for the captured proof process
data as well as opportunities for further extending and polishing the current sys-
tem. For the next step of tackling the “learning from the expert” problem, the
foundations of a proof process capture platform are in place.

The developments of proof strategies and the overall AI4FM system in both
AI4FM teams have influenced the direction of how my ProofProcess system was
developed. In fact, it now sits conveniently in the middle between the abstract
model where strategies are described using high-level metadata and the graph-
based implementation of strategies that can be used to replay them, developed in
AI4FM Newcastle and Edinburgh, respectively. The large scope of the research
and coming from the different sides of the problem prolongs the “meeting in the
middle” in AI4FM. However, the ProofProcess architecture, proof process abstrac-
tions as well as the low-level links to the theorem prover conveniently position my
research results to bridge this gap.

1.4 Thesis outline

This thesis is organized into four main parts: motivation, architecture, implemen-
tation and evaluation. The listing of thesis contributions above follows the same
structure. The following outline provides a brief overview of each part.

The next chapter completes Part I and extends the introduction by presenting
a detailed motivation for this PhD research. It argues that industrial-style formal
verification proofs are amenable for strategy reuse. Furthermore, the chapter
provides an overview of the related work in representing and reusing proofs and
proof strategies.

Part II proposes an architecture and a model to capture the interactive proof
process and the expert’s high-level insight associated with it. It discusses how a
proof process capture system could work; and what comprises a high-level de-
scription of a proof process (and how it is represented). Furthermore, a proof
history extension is proposed and ways to infer proof process abstractions auto-
matically are discussed. Finally, the discussion on proof strategies links this work
with other developments within AI4FM.

The proposed architecture is implemented as the prototype ProofProcess frame-
work, which is described in Part III. The description covers the implementation of
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the generic core framework as well as the integrations with the Isabelle and Z/EVES

theorem provers.
Part IV provides sizeable descriptions of two case studies used to evaluate the

proposed proof process capture framework. Each case study features a high-level
description of an industrial-style proof and a discussion on how this information
can be reused for similar proofs. The case studies also provide more details about
their respective prover integrations. Furthermore, the last chapter summarises the
results presented in this thesis and presents an outlook for future research based
on the foundations laid in this thesis. It also explores further opportunities to use
the captured proof process data.

Finally, Appendix A presents the formal proof process models from the archi-
tecture description in a single place for a quick overview.
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CHAPTER 2
State of the art

and related work
The AI4FM project and this PhD research aim to improve the automation of inter-
active proof in areas where general heuristics are insufficient. The idea is to cap-
ture and benefit from experts’ high-level reasoning, stepping back from low-level
proof tactics. This chapter provides an extended motivation for this research with
the argument that industrial-type proofs encountered during formal analysis and
verification of software are amenable to capturing, extracting and reusing proof
strategies. Furthermore, this chapter outlines the background and related work:
what are the challenges of interactive formal verification; how proofs and proof
strategies are represented and abstracted; and how previous proofs are reused to
improve automation.

2.1 Formal verification of software

The increasing ubiquity of computer systems in everyday life increases the pres-
sure to produce higher quality software. Formal methods enable the industry to
increase confidence in the developed software, via formal specification, analysis
and verification. However, in order to increase the uptake of formal methods,
particularly beyond safety-critical or business-critical applications, research and
development are needed to improve the automation, usability and availability of
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techniques, tools and experience of using formal methods. This section presents
an overview of formal development and verification of software systems as well as
challenges arising in applying them in an industrial setting, particularly from the
complexity and size of the formalmodels, the number of proof obligations, etc. An
important observation for the AI4FM research is that proofs can be grouped into
“families” that use the same proof idea: a phenomenon enabled by the automated
generation of proof obligations, similarities in data structures, etc. The existence
of such similarities and proof families raises the opportunity to reuse these proof
ideas and has been the trigger for the AI4FM project as well as this PhD research.

2.1.1 Formal methods in industry

Computer systems are taking over many aspects of everyday life, from things
people interact with directly (computers, phones, cars) to foundations support-
ing modern life (e.g. infrastructure controllers, financial systems, communication
protocols, etc.). Hardware and software systems grow in scale, functionality and
are becoming very complex. The increasing reliance on computer systems and
their ubiquity mean that even subtle errors can manifest as extremely expensive1

system failures or threaten human safety.

Avoiding errors, particularly in safety-critical and high-integrity applications,
is a major goal of software engineering: developers need to be able to construct
systems that are reliable despite their complexity. A notion of correct software
emerges: systems that are constructed with full assurance and knowledge of what
they do, how they do it and why they work.

One way of achieving such goals is by using formal methods, which are math-
ematically based languages, techniques and tools used throughout the life cycle
of software and hardware computer systems. The mathematical nature of formal
methods enables users to produce precise and unambiguous documentation for
domain modelling, requirements engineering, specification, design, development,
testing and maintenance. Formal verification can be used to reason about proper-
ties of themodel and to achieve the necessary confidence about the system and the

1For example, an error in the floating point unit of the Intel Pentium processor [SB94] cost the
company $475 million. Rueß et al. [RSS96] show that formal specification and verification can be
done to prove correctness of this non-trivial division algorithm and its hardware implementation,
whereas testing alone would not likely have caught the error. Following this, formal verification
has been performed for subsequent processors at Intel [OZGS99, Har06], AMD [MLK98], etc.

14



2.1. Formal verification of software

development process. The use of formal methods does not guarantee correctness,2

but goes a longway towards increasing understanding of a system, revealing incon-
sistencies and incompleteness, and clarifying the ambiguities [CW96, WLBF09].

The use of different formal methods in industry is well documented by Clarke
and Wing [CW96] as well as in a recent survey by Woodcock et al. [WLBF09].
Furthermore, case studies are available from one of the largest “deployments” of
formal methods in industry as part of the DEPLOY research project [DEPa, RT13].
The surveys show that the use of formal methods helps detect faults, improves the
quality of the software as well as confidence and understanding of it. Furthermore,
in many cases the project cost has been reduced by the use of formal methods,
particularly the time spent on system integration and testing.

The documented successes, however, come mostly from using formal meth-
ods as a specification tool: i.e. to model and mathematically specify the system,
execute and inspect the formal model, etc. However, verification of systems, ei-
ther by model-checking the specification or using formal proof to reason about its
properties, is undertaken less frequently.3 Surveys highlight that users in industry
prefer model-checking their specifications or employing other “push-button” so-
lutions. However, model-checking is inherently limited when verifying complex
models due to state explosion. Formal proof, on the other hand, requires exper-
tise and good tool support to be used successfully. Even then, verifying formal
specifications using interactive proof is a time-consuming effort.

Formal verification of software, nevertheless, is the goal of the research com-
munity that leads towards achieving the ideal of correct software. Further improve-
ments in formalmethods techniques, application, automation, and—particularly—
tools are needed for successful uptake in industry. Tony Hoare has proposed
the Grand Challenge in Verified Software, uniting researchers as part of a global
long-term Verified Software Initiative to advance the state of art in formal verifi-
cation [Hoa03, HM05, JOW06, BHW06, SW08].

The research described in this thesis andwithin thewider AI4FMproject aligns
with these goals: the aim is to improve the automation of formal verification by
reusing interactive proof ideas. The following sections provide more background
information about formal specification and verification via interactive proof.

2The concept of correctness in formal verification is used to state that the system matches the
specification. Validating that the specification represents what the user intended is another task.

3For example, approximately 20% of the surveyed projects used formal proof, 35% usedmodel-
checking, as reported in [WLBF09].
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BirthdayBook
known : PNAME
birthday : NAME 7→DATE

known = dom birthday

(a) State of a birthday book.

AddBirthday
∆BirthdayBook
name? : NAME; date? : DATE

name? 6∈ known
birthday′ = birthday ∪ {name? 7→ date?}

(b) Operation to record a new birthday.

Figure 2.1: Specification of a birthday book “system” in Z notation. Refer to
[Spi92] for details on the specification and the Z notation.

2.1.2 Formal specification and verification

A committee of researchers led by Leavens [LAB+06] laid out a roadmap towards
achieving the verified software grand challenge via enhanced programming lan-
guages and formal methods. At the core of this research direction is formal spec-
ification and correctness by construction [HC02]: systems are constructed by pro-
ducing specifications at each level of abstraction, with verification at each level of
refinement, from requirements or domainmodelling to implementation in code or
hardware. The survey in [LAB+06] provides an overview of the state of the art, ap-
proaches and future directions to formal specification and verification. Instead of
repeating them, only the aspects contributing to similarities in verification proofs
are discussed here, as they provide the opportunities for proof reuse.

Formal specification languages such asVDM[Jon90], Z [Spi92,WD96], B [Abr96],
or Event-B [Abr10] provide notations to specify a mathematical model of the sys-
tem. Such a model consists of a definition of a state space, which describes the
involved concepts and their properties, as well as operations that manipulate the
state and describe the behaviour. Structuring mechanisms to construct models
resemble structures in programming languages (e.g. classes and procedures).

A classic example that models an abstract system to record birthdays using
the Z notation [Spi92] is listed in Figure 2.1. The state of the system is specified
as a collection of variables, describing the important concepts. System properties
can be specified as invariants: e.g. the BirthdayBook state requires that all known
names have birthdays recorded for them in Figure 2.1(a). The system behaviour
can be specified using operations: relations between the before- and after-state of a
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system. For example, in Figure 2.1(b), the process of adding a new birthday entry
is specified by stating that the birthday map in the after-state (birthday′) consists
of the before-state birthdays with the new entry added. Furthermore, to ensure
correct execution, an operation precondition requires that the new name is not yet
known in the system.

Industrial-scale formal specifications [CB08, DEPb] feature significantly more
variables, complex invariants and properties. The formal methods often provide
mechanisms to describe system components in amodular manner: e.g. the smaller
components are self-contained in regards to their variables and properties—the
high-level components are then constructed out of the smaller oneswith properties
spanning multiple components.

Proof obligations

The process of constructing the formal specification unambiguously using mathe-
matical concepts helps to gain insight and better understanding about the specified
system. However, to verify the correctness of the specification, the properties of
interest should be specified as proof obligations (POs) with an associated formal
proof. Such proof obligations could be used to answer questions about system be-
haviour (e.g. checking that heap memory allocation followed by the deallocation
of the same region gives back the original heap memory structure) or verify the
key system properties (e.g. that there are no deadlocks), etc. The main types of
POs are discussed below.

The proof obligations would be specified mathematically as predicates over
some scope of the overall specification.4 The formal proof would use the defini-
tions from the specification and the semantics of the underlying formal notation
to produce an argument that the proof obligation can be discharged within some
logic framework. For better assurance, the proofs are mechanised using theorem
provers: the proof can be discovered automatically or constructed interactively.

In addition to proving important properties about the system, other types of
proof obligations are used to ensure that the specification is constructed correctly,
that the formal development process is adequate, etc. These proof obligations
can be generated automatically from the specifications: the following paragraphs
discuss the main types.

4The question of whether the specified proof obligation means exactly what the user intends
still needs to be raised—an absolute correctness cannot be guaranteed.
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Partial functions and well-definedness

Partial functions are used to specify and reason about computer programs: e.g.
mathematical division, lookups in finite data structures such as arrays or maps,
partially-terminating recursive functions, etc. Some formal approaches [BCJ84,
BBM98] tackle partiality by using a three-valued logic, where predicates can be
true, false or undefined. Other proof frameworks tackle the issue by ensuring that
all partial functions are well-defined at the point of their use [Abr10, Saa97].

In the latter case, well-definedness proof obligations (also called “domain
checks”) are generated for applications of partial functionswithin the specification.
Discharging such proof obligations requires showing that the available invariants
or operation preconditions restrict the arguments of partial function applications
to the domain where the function is defined. If the specification lacks such pre-
conditions, the proofs cannot be completed.

Operation satisfiability

Operation satisfiability proof obligations require showing that operation precon-
ditions are strong enough to make the postconditions feasible. These proofs are
also known as feasibility proofs. Satisfiability proofs ensure that the operation be-
haviour is known and valid for all preconditions that allow the operation. The
general shape of the satisfiability proof obligations in VDM (adapted from [Jon90,
Appendix E]) is the following:

∀σ ∈ Σ · pre-OP(σ) ⇒ ∃σ′ ∈ Σ · post-OP(σ, σ′)

Such proof obligations can be generated automatically for each operation within
the formal specification. The proofs generally follow the same pattern of finding
an instantiation that satisfies the precondition. In many cases, the instantiation
can be directly derived from the operation specification.

Refinement

Key to the correct-by-construction formal system development are refinements be-
tween specifications [Hoa72, Jon90, Mor94, BvW98]. The approach enables con-
struction of system specifications at appropriate levels of abstraction. Refinement
relationships between specifications ensure that the concrete representation of the
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system correctly refines the more abstract ones. This provides a link between the
abstract system description and the low-level implementation.

Layering the system specification is beneficial to tackling the system complex-
ity and introducing additional details gradually during the system development
process. Furthermore, properties can be proved at the abstract level and preserved
at the low-level implementation via the refinement process. The approach is well
supported by the established formal methods, albeit attitudes about the number
of refinement steps differ when it comes to proof.

To ensure that the refinement is correct, a relationship between the specifica-
tions needs to be established and it be shown that the corresponding data struc-
tures and operations preserve the properties of the abstract specification. In some
approaches, the refinement steps are done by a series of small transformations,
guaranteeing refinement correctness [Mor94], or the refinement steps are small
enough that the proofs can be found automatically [ABH+10]. In other cases (the
posit-and-prove approach [Jon90, Abr96]), the refinement steps correspond to im-
portant levels of abstraction, rather than being chosen to simplify the proofs. To
show that the refinement between two specifications is correct, a number of proof
obligations are used (adapted below from [Jon90, Appendix E]).

Given the states Abs and Rep from the abstract and representation (refined)
specifications, respectively, retrieve function retr:Rep→ Abs establishes the rela-
tion from the concrete to the abstract. The adequacy proof obligation is used to
show that every abstract case is represented:

∀a ∈ Abs · ∃r ∈ Rep · retr(r) = a

Furthermore, the corresponding refined operationsmust be valid wherever the ab-
stract ones are, and their results must fall within the scope allowed by the abstract
specification: i.e. refined operations must have (possibly) wider preconditions and
narrower postconditions. The following proof obligations are used to show this:

∀r ∈ Rep · pre-AOp(retr(r)) ⇒ pre-ROp(r)
∀r, r′ ∈ Rep ·

pre-AOp(retr(r)) ∧ post-ROp(r, r′) ⇒ post-AOp(retr(r), retr(r′))
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The refinement proof obligations are established and proved for all data structures
and operations between the specifications.

2.1.3 Theorem proving

Mechanised theorem proving is used to construct a machine-checked argument
about posited POs. Industrial-scale formal developments are too large to be able
to construct hand-written proofs or rely on manual inspection for verification.
Furthermore, mechanising the proofs may uncover issues with the specification.
For example, the original development of the Mondex specification used hand-
written proofs [SCW00]. Redoing proofs with a theorem prover (e.g. see [JW08])
uncovered problems with the specification, such as missing invariants, etc.

The many aspects and techniques of mechanised theorem proving are covered
in depth by Robinson and Voronkov [RV01] as well as more recently by Harri-
son [Har09]. Both handbooks focus on automated reasoning, but also provide
extensive overviews of interactive theorem proving. Automated theorem proving
is preferred for industrial applications, however significant interactive proof effort
still remains, as discussed in the next section.

Interactive proof is the focus of the research described in this thesis and within
the AI4FM research project. Geuvers [Geu09] provides an introduction to interac-
tive theoremproving, the history of the subject and an overview of various provers.
Some of the main concepts relevant to this thesis are outlined below.

Correctness of a proof in mathematics can be determined by reducing it to a
series of very small steps, each of which can be verified simply and irrefutably.
Achieving such proof granularity, however, is infeasible in human proofs, thus
proofs in mathematical texts are usually of a higher level. When it comes to
computer-mechanised proofs, there are several approaches to ensuring the cor-
rectness. A theorem proving system could produce an “independently checkable
proof object” (e.g. proof term [BN00]), which could be verified by another (smaller
and better-understood) prover. Alternatively, the LCF approach [GMM+78] uses
a small kernel of inference rules, which implementation can be verified for correct-
ness. All proofs are constructed using this kernel: advanced tactics can be built on
top of it that use only the low-level inference rules to ensure correctness.

The proofs in formal verification comprise proof scripts: a collection of proof
commands. The proof scripts do not necessarily correspond to the proof in logic.
They are instructions to the theorem prover on how to rediscover the proof. Some
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proof tactics involve automated proof search: adding new lemmas can derail a
proof that had previously been successfully found.

Interactive proof representation and abstraction is central to the research de-
scribed in this thesis. Section 2.2 continues the overview of interactive theorem
proving, proof strategies, proof explanation, etc.

2.1.4 Verification challenges

Proof obligations (and associated proofs) in formal verification of computer sys-
tems are not difficult mathematically. Nevertheless, the sheer number of proof
obligations that need interactive proof (and expertise required to discharge them)
in industrial-size formal developments is a significant obstacle for industry to
widely embrace the use of formal methods.

Abrial [Abr07] reports on two developments in the railway domain: formal
development and verification of safety-critical parts of software for a Paris Metro
line and a driverless shuttle train at a Paris airport. The formal developments
were done using the B formal method with Ada code generated from the specifi-
cation. The verification amounted to 27,800 and 43,610 proofs in respective cases.
Even though most of the proof obligations were discharged automatically by the
underlying automated theorem provers, the remaining 8% of proofs were done
interactively, amounting to over seven man-months of effort for the verification
of the Metro line (the figures are 3% and over four man-months for the airport
shuttle—a lower figure due to improved tool automation).

Similar figures are reported in the results of the DEPLOY project [RT13]. Pilot
verification of a “start-stop” system in a car consisted of over 4,000 POs, with about
10% of them requiring interactive proof. Similar exercise in a business information
systems domain saw 20–30% of POs requiring interactive proof, a case study in
microprocessor verification had this number at 36% (over 1,700 interactive proofs).

Even good levels of automation leave a large absolute number of interactive
proofs to discharge. The engineer experiences reported in [RT13] indicate an over-
whelming preference for “push-button” solutions: either by model-checking or
automated theorem proving. Interactive proof requires expertise in theorem prov-
ing, and switching to interactive proof is perceived as friction to the overall formal
development and system design process. Any improvement to formal verification
automation levels is welcomed by industry.

Improvements in automated theoremprovers ormodel-checking can help raise
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the level of automation in formal verification. More powerful computers and
available memory help with automated proof search or accommodate larger state
space for model checking. Furthermore, using more powerful provers can help:
Schmalz [Sch12] uses Isabelle/HOL with fine-tuned proof tactics as an automated
theorem prover for the Rodin toolset, discharging 76–95% of the proofs.

However, certain aspects of the industrial-style proofs limit the success of the
current-generation automated theorem provers. For example, higher-order func-
tions encountered in specifications or finding non-trivial instantiations (e.g. in
satisfiability proofs) are difficult to tackle automatically. Furthermore, industrial-
style developments feature a large number of new concepts (data structures, vari-
ables): new lemmas need to be added about their properties. This would increase
automation, but discovering such lemmas is another difficult task, as reported by
industrial partners in DEPLOY [RT13]. Furthermore, in large-scale specifications,
adding new lemmas for every new datatype results in a very large number of
lemmas, which can choke automated proof search.5 Other partners in DEPLOY

report that adjusting the model (e.g. using set operations instead of quantifiers)
improves automation [RT13]. Adjusting the model to be more amenable to proof,6

however, poses the risk of making a mistake in the specification as redefinition
may no longer align to what it was originally intended to specify.

Bourke et al. [BDKK12] discuss the experiences and challenges of large-scale
formal verification that involves extensive interactive proofs: the pervasive system-
level verification of Verisoft [AHL+08], and the operating system microkernel ver-
ification in the L4.verified project [KEH+09], among others. Both projects use the
Isabelle/HOL theorem prover; the L4.verified repository consists of 390,000 lines of
proof with 22,000 lemmas (POs), the Verisoft project has published about 500,000
lines of proof with 8,800 lemmas. This represents an effort of a very large scale:
verifying the microkernel in L4.verified took about 20 person-years in total: nine
person-years invested in formal language frameworks, proof tools, automation
and prover libraries; verification proof was 11 person-years (cf. the implementa-
tion of the microkernel was 2.2 person-years) [KEH+09].

The experiences from these verification efforts echo the previous reports about

5The Rodin toolset [ABH+10] implements filtering heuristics to remove “unrelated” lemmas
from automatic proof search.

6 Additional abstraction layers, preconditions or invariants could constrain the proof search
and increase automation levels. In case of actual issues with the model, Ireland and Llano et
al. [IGLB13, Lla12] propose reasoned modelling critics that suggest how the model can be changed
in some cases of failed proofs.
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the importance of automation to improve productivity. Domain-specific automa-
tion is needed for industrial-scale developments: the researchers have developed
custom proof tactics to achieve this. Proof style and proof comprehension are
important to avoid reinvention of proof strategies and ease the introduction of
new proof engineers to the project. Interestingly, the OS developers eventually
elected to learn interactive theorem proving and contributed to the overall proofs
(cf. proof-averse engineers in DEPLOY). The average time to become productive
with interactive proof is reported to be two to three months, having advice and
training from existing formal methods experts [AJK+12].

In addition to the interactive proof effort needed for the formal verification,
significant work is needed to redo the proofs when the specification changes. This
occurs when verification identifies errors in the specification, which has to be
reverified after fixing, or when the requirements or the design change, altering
the specification. Furthermore, introduction of new features can affect existing
components and their proofs need to be redone. Klein et al. [KEH+09] report that
in the worst case, a change affecting less than 5% of the code base required redoing
proofs equivalent to 17% (one person-year) of the entire original proof effort. The
issue has also been identified by DEPLOY partners [RT13] and some steps towards
the automation of reverification have been done [Meh08] (see also Section 2.3).

2.1.5 Proof families

Interactive proof in industrial-scale formal verification raises significant challenges.
However, there are opportunities to reuse proof ideas where proofs can be clus-
tered into “families”. In each family of proofs, usually a single high-level proof
idea is needed: all other POs in the family are discharged “in a similar way”.7

The properties of industrial-type formal verification described earlier give rise
to a lot of similarities in proofs. For example, the automatically generated proof
obligations produce goals of the same shape: e.g. when proving operation satisfia-
bility, proofs always feature search for instantiations of operation post-conditions.
Refinement proof obligations between two layers of abstraction use the same re-
trieve function, thus proofs involve the same definition, etc.

The way formal specifications are constructed also gives rise to similarities,
stemming from the same definitions being featured in proofs. Large developments

7Anecdotal evidence from a DEPLOY project partner showed that out of 100 residual interactive
proofs in an industrial application, five were distinct with difficult proofs, while the remaining 95
“followed the pattern” of one of these five but still required a manual proof.
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feature complex, nested data structures that are built up of smaller components.
The same state has a number of operations describing its behaviour: all these
operations will share variables and invariants coming from the definition of the
state and the datatypes (e.g. two operations differ only by a couple of predicates
describing different behaviours, but have a large number of common invariants
from the state definition). Such construction of formal specification results in
proofs that feature a lot of the same definitions and predicates. To improve the
automation of interactive proof, lemmas can be defined on the datatypes that
encapsulate the important properties. However, in general, the similarities in
proof arising from featuring the same concepts are significant.

Proof families could also be identified in reverification of a specification. When
the specification changes, its proofs are affected. However, the change may affect
only part of the goal and the unaffected parts would be discharged in the same (or
similar) pattern to the earlier proof. Furthermore, the specification changes may
require adjusting definitions or lemmas used in the proof, but the general idea
may remain the same: the new proof would follow the same idea as the original.

The large number of similarities results in theorem proving experts replicating
the smaller number of actually new proof ideas for similar proofs. This is different
from mathematical proofs, where the problem is usually small but difficult. The
opportunity to reuse proof ideas within proof families provides the main motiva-
tion for the AI4FM research project and, consequently, for the research described
in this thesis. Capturing proof ideas for reuse is the main problem: this thesis fo-
cuses on proof abstraction to capture the proof insight. The next section provides
an overview of how proofs are represented and abstracted in related research.

2.2 Proof representation and abstraction

To reuse interactive proofs, the embodied proof ideas need to be captured, ex-
tracted and encoded as strategies for replay. This section discusses how proofs are
constructed, represented and abstracted in interactive theorem proving. Further-
more, existing approaches to encode reusable proof ideas are presented.

2.2.1 Proof style

Harrison [Har96] provides an overview and discussion on interactive proof style,
particularly on differences between procedural and declarative styles. Procedural
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proofs instruct the theorem prover more or less explicitly on how to advance the
proofs and normally consist of a sequence of proof tactics. When constructing a
declarative proof, the user states the facts to be proved and the theorem prover
fills in the gaps automatically (if possible).

When comparing the styles, Harrison [Har96] concludes that the declarative
style of constructing interactive proof has many advantages, particularly in re-
gards to readability and maintainability. Procedural proofs are difficult to com-
prehend without re-running them, whereas declarative proofs state what needs
to be proved explicitly. Improvements or changes to proof tactics or the proof
context can derail a previous procedural proof and inspecting “what should have
happened” is difficult as proofs need to be re-run. Declarative proof, on the other
hand, signposts the proof and the user always knows what facts need to be proved
and may adjust the automation to reach them.

Nevertheless, when it comes to formal verification (the “big, ugly, concrete
proofs” [Har96], rather than “clean” mathematical proofs), Harrison comes to the
conclusion that the procedural style is more suitable. Formal verification users
tend to ignore the proof after the prover accepts it, hence reducing the importance
of readability. Furthermore, such proofs feature large terms and quoting them
explicitly in the declarative style may be out of the question. Furthermore, the
procedural style supports customised and parameterised proof tactics that are
fine-tuned to deal with the particular verification problems or within the given
domain. In addition to these arguments, procedural proof style can be easier for
proof discovery, even blind exploration. In the industrial context, this approach
may be easier for proof engineers to try common proof strategies and see where
they take the proof, rather than devise proof plans for the declarative approach.

Another distinction in proof style is the proof direction: backward vs. forward
chaining. The backward style goes from the conclusion to the premises, replacing
the goal with sub-goals that need to be proved. The forward style starts with the
premises and builds up the argument until the conclusion goal is reached. The
proof direction often aligns with the particular proof style: e.g. procedural proofs
usually employ backward reasoning, where each tactic application transforms the
open goal and produces sub-goals for the next tactic to tackle; forward reasoning is
easier to encode in a declarative style, where subsequent facts are stated explicitly,
then handpicked and building up to the final goal. Some systems support a mixed
style of reasoning: e.g. mural [JJLM91] allows construction of the proof from both
directions, neatly visualised as actual forwards and backwards directions in a
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natural deduction style; Isabelle/Isar supports switching between the styles, where
a declared forward reasoning fact can be proved in a procedural backward style.

The research presented in this thesis focuses on industrial-style formal verifi-
cation proofs, which, as argued earlier, tend to be procedural and employ back-
ward reasoning. However, some of the concepts proposed in this thesis, such as
proof process abstraction using insight and important proof features or proof his-
tory capture (Chapters 4–5), would improve proof readability and maintainability
(identified as disadvantages of the procedural proof style by Harrison [Har96]).

2.2.2 Representing proofs

Proof scripts are rarely adequate to represent the proof process or capture expert
insight on constructing proofs. They are aimed at providing instructions to the
theorem prover on how to discover the proof. More structured approaches, such
as the Isabelle/Isar proof language [Wen02], target the declarative proof style and
provide a human-readable proof document, trying to replicate the style of mathe-
matical proofs. Other approaches discussed here expand on the low-level proof
script with information about the wider proof process, provide enhanced repre-
sentations or different focus on the proof.

Denney et al. [DPT06] introduce hiproofs (hierarchical proofs) to express the
hierarchical structure of tactics used by a theorem prover to construct a proof tree.
The representation introduces a containment relationshipwithin parts of the proof
tree, providing decomposition of tactics responsible for constructing the proof. A
diagrammatic notation to represent hiproofs is also proposed, depicting tactic calls
and the underlying proof tree. The authors restrict hiproofs to a tree structure and
provide appropriate semantics for what is a valid hiproof, how they are folded
and unfolded, etc. The focus is on proofs in formal logic, rather than in the various
theorem prover implementations, hence the restrictions on the representation.

Hiproofs are further developed by Aspinall et al. [ADL10]. A hiproof syntax
is introduced and the graphical representation is formalised. This enables defin-
ing tactics for hiproofs—hitacs (discussed further below). Furthermore, White-
side [Whi13] defines additional hiproof constructs (e.g. swap to swap goals) as
well as providing a normal form for hiproofs.

Hiproofs provide a clean representation for proofs, identifying sequences of
proof steps, proof branches as well as a hierarchy over the proof tree to represent
higher-level tactics. In fact, the proof process tree structure proposed in this thesis
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(Section 4.3) is inspired by hiproofs. The proposed ProofProcess tree structure
relaxes some restrictions to support real-life theorem provers (i.e. the implementa-
tions, from which hiproofs shy away): e.g. multiple input goals are permitted; the
structure enables encoding proof branch merges and thus, technically, no longer
represents just trees; non-deterministic proof steps are permitted (steps without
a fixed arity of output goals), etc. Furthermore, the ProofProcess structure focuses
on higher- and lower-level proof steps rather than actual prover tactics as envisaged
by Denney et al. [DPT06].

Some work has been done to capture hiproofs automatically from tactic-based
theorem provers. Obua et al. [OAA13] present two tools: Tactician and HipCam to
record hiproofs in the HOL Light theorem prover. Both can extract the tactic (and
their sub-tactic) calls as well as the corresponding construction of the actual proof
tree. The implementations approaches differ, but both are invasive: the Tactician

tool requires modifying proof tactics used in the proof, whereas the HipCam tool
modifies the kernel of the HOL Light prover to access details about proof structure.

Autexier et al. [ABD+06] step away from traditional proof scripts and propose
a richer “proof data structure” (PDS) for theΩmega [BCF+97, SBB+02] system. For
each lemma, the system utilises a directed acyclic graph structure to represent its
proof. The proof is encoded in a reductive representation (each justification step
reduces a goal to sub-goals). Furthermore, the lemmas used in a proof are linked
within a wider proof forest: i.e. a goal that has already been proved previously
would be linked to that previous proof.

Furthermore, PDS provides facilities for capturing facets of a proof process: in
particular, the support for proof granularity and alternative attempts. The Ωmega

system focuses on proof planning, thus different granularity can be used to provide
a high-level proof sketch and then refine its steps with lower-level proof plans.
For each goal, the proof structure supports recording alternative justifications, e.g.
recorded at a different granularity, or completely different attempts altogether.
Refer to [ABD+06] for the full description of PDS.

Using different proof attempts for proof development as well as constructing
an argument using hierarchically structured justifications in a natural deduction
proof has been supported by the mural system [JJLM91]. Users could switch be-
tween unfinished attempts when exploring the proof. However, when the proof
is finalised, the other attempts are cleaned up.
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2.2.3 Proof strategies

When it comes to improving automation of interactive theorem proving, the main
focus is on capturing and encoding the general patterns in proof so that they can
be reused efficiently. Proof tactics can be considered low-level implementations
of reusable proof ideas, whereas proof planning or proof strategies8 often denote
higher-level encoding of proof ideas.

Proof planning

Proof planning [Bun88, Bun91] utilises high-level specifications (proof methods) of
general-purpose proof tactics (or any proof steps) to construct proof plans. A
proof planner uses the methods to discover a proof plan: a high-level encoding of
a strategy to construct the proof. A proof plan can be used to guide the theorem
prover, significantly reducing the need for search. Associated with some proof
methods are collections of proof critics [IB96]. They provide common patches to
help with recovery from a failed application of the method. Rippling [BBHI05] is
a powerful proof method in proof planning, very successful in inductive proofs.
Furthermore, tool support is available for the various proof planning techniques,
namely the IsaPlanner [DF03] tool for the Isabelle theorem prover [NPW02] or the
Ωmega system [BCF+97]. IsaPlanner implements proof planning and rippling tech-
niques with automated proof search.

From proof tactics to strategies

Tactic-based theorem provers provide general-purpose tactics that encode com-
mon reasoning patterns or proof search algorithms. Users can extend the system
by constructing new tactics; for LCF-based systems, new tactics are constructed in
a sound way using the existing tactics or the minimal inference kernel. However,
writing such tactics is not trivial and usually requires switching to a prover’s imple-
mentation language (e.g. tactics for Isabelle are written using theML programming
language). This can deter users and problem-specific reusable tactics are written
only when the need is obvious and the benefit is substantial.9 Research on tactic
languages focuses on improving the state of the art of developing new proof tactics.

8There is no canonical definition of proof strategies, different research uses the name to encode
ideas of varying levels of abstraction.

9For example, for the formal verification of the seL4 microkernel containing 22,000 lemmas and
proofs, only 10 to 20 new tactics have been developed [BDKK12].
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Aspinall et al. [ADL10] propose a tactic language for hiproofs: Hitac. The
language supports proof search by providing constructs to assert the control flow
(match the current goal), alternate tactics or call them recursively, etc. Evaluation
ofHitac tactics constructs hiproofs, preserving the link between the tactics and the
low-level proof tree. Whiteside [Whi13] extends the tactic language with lemma
applications and uses it within his generic declarative proof language Hiscript.

Proof-oriented tactic languages are becoming more prominent in popular the-
orem provers. Eisbach [MWM14] is a proof method language for Isabelle/Isar,
whereas Ltac [Del02] and Mtac [ZDK+13] are tactic languages for the Coq theorem
prover. These languages integrate with the logic and proof language of respective
theorem provers as well as providing concepts to specify pattern matching on
goals, combining other tactics or proof methods, backtracking and other proof
search functionality, etc. Autexier and Dietrich [AD10, Die11] propose a tactic lan-
guage for declarative proof, used in the Ωmega proof planning system. Whereas
previously mentioned tactic languages are used for procedural-style tactics, Au-
texier and Dietrich propose a declarative way of writing tactics. When executed,
such tactics generate a declarative proof script that is then checked by the prover.

In an approach similar to proof planning, Heneveld [Hen06] suggests specify-
ing when tactics can be applied using a proof feature language—the combination
of tactic with features would represent a strategy. The proof feature information
is then actively used to suggest applicable proof strategies or run them automati-
cally (cf. tactic languages above, where users can create new tactics but use them
manually and explicitly). During a proof, multiple strategies could be triggered by
the same set of proof features, so different weights are given to determine which
one is the most applicable. Given a set of features and schemas, the weights could
be learned automatically.

¦ ¦ ¦

With increasing availability of user-friendlyways to specify proof strategies within
theorem provers, users have more opportunities to reuse proof ideas. However,
identifying and specifying reusable strategies is still a difficult, manual task.10

Furthermore, current support for pattern matching and control flow is limited to
the current goal only—other information, such as availability of suitable lemmas
or proof process meta-information, is not accessible for strategy definitions.

10For example, Melis and Siekmann [MS99] utilise students and call for a consortium of inter-
ested researchers or organisations to encode reusable mathematics as proof planning methods.
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2.3 Proof reuse

Existing attempts to reuse previous proofs can be seen as taking either the “formal
methods” or the “artificial intelligence” route. The former aims to generalise or
otherwise adapt a proof for similar problems. The latter is useful with a large
corpus of available proofs: they are data-mined for common patterns that can
be extracted as general-purpose reusable strategies. This section provides a brief
overview of the research in these directions.

2.3.1 Proof generalisation and analogy

Reusing proofs for sufficiently similar ones requires generalisation of the source
proof, which would make target proof obligations (POs) instantiations of the gen-
eralisation. Felty and Howe [FH94] describe a generic approach to generalisation
that uses metavariables to generalise variables in source POs. These metavariables
can be instantiatedwith single variables or complex expressions in the target proof,
allowing replay of the source proof. Johnsen and Lüth [JL04] take generalisation
further by suggesting that PO assumptions are made explicit and then abstracting
over function symbols and type constants in addition to metavariables. With this
approach, source proof reuse becomes generally applicable: e.g. proofs about one
data type can be reused with other types. Higher-order anti-unification [KSGK07]
can be used to generalise terms from different domains and create analogies based
on the least general generalisation. These generalisation approaches are illustrated
with small examples of proof reuse, usually about proofs in mathematical theory
(set, group theory, data types, etc). More research is needed to apply them for POs
arising in industrial-scale formal methods applications.

Reif and Stenzel [RS93] present a method (implemented within the KIV sys-
tem [BRS+00]) to reuse program verification proofs in certain cases when changes
in the initial program require the proofs to be redone. The approach reuses old
proof fragments (proof subtrees) by moving them to new positions, correspond-
ing to the new positions of program text fragments. The approach targets syntax-
driven program verification and requires user interaction for non-reusable parts.
Similarly, Mehta [Meh07, Meh08] extends the Rodin toolset to support the reuse of
old proofs when a model change triggers PO regeneration. The approach reuses
original proof skeletons, which contain reasoner calls (e.g. rule applications) as
well as dependencies of hypotheses for each call. Supported PO changes include
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adding/removing unused (explicit) hypotheses and variable renaming.
Using analogy for proofs can help reuse a proof of a source theorem to construct

the proof of a similar target theorem. For example, Vadera [Vad95] implements a
proof follower for themural theoremproving system. To reuse a proof, first a symbol-
to-symbol mapping is established between the source and target theorems. This
mapping is then used to perform a backward proof of the target theorem by anal-
ogy with the source proof. The approach can suggest which lemmas to use based
on which lemmas were used in the original proof: they are either found in the
library, or the user is asked to fully instantiate them. The matching between lem-
mas and terms used in the proofs is quite strict to avoid diverging from the source
proof, however some restrictions are loosened in particular cases (e.g. lemma hy-
potheses are ignored if an exact analogous lemma cannot be found). However,
strictness of matching and close following of the proof makes the use of the proof
follower quite limited.

Melis andWhittle [MW99] have foundmore success in using analogy for proofs
when working at a higher level of abstraction of proof plans. The approach aims to
produce a proof plan of the target theorem that is similar to a given source theorem.
Proof plans carry additional information about proof, such as justifications of why
a particular proofmethodwas selected by the proof planner. When trying to replay
the same proof method, these justifications are checked to determine whether the
method applies in the target proof. If they fail, a gap is left in the proof plan
for the user to fill in interactively. Furthermore, the additional high-level proof
information in proof plans is used to constrain the analogy mapping (rather than
forcing a strictmatching by default) or to suggest new lemmas needed by the target
proof plan. Finally, special heuristics are provided to reformulate the source proof
plan to make it applicable during replay. The proposed approach is implemented
for the CLaM [BvHHS90] proof planning system and the results show improved
automation in inductive theorem proving [MW99].

2.3.2 Data-mining proofs

Reusing previous proof information by data-mining for common patterns has seen
the most success in automated theorem proving (ATP). A significant problem
to automated proof search is premise selection: large sets of available lemmas
explode the search space. The MaLARea system [USPV08] has been successful in
ATP large-theory competitions by employing a machine learning component to
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determine the most suitable lemmas. The approach tries to match the symbols
(constants, functions, etc.) and the structure of each conjecture with lemmas that
have been used in the successful automated proof of that conjecture.

The ideas are taken furtherwith theMaSh tool [KBKU13]: themachine-learning
component for Isabelle’s Sledgehammer tool. Sledgehammer can send the current
proof context to multiple automated theorem provers and then provide a list of
lemmas comprising found proofs that can be reconstructed within Isabelle. The set
of features characterising each lemma is extended in MaSh to include type informa-
tion, the theory to which the lemma belongs, the kind of rule (e.g. simplification),
whether the fact is local, whether any quantifiers exist, etc. The set of proofs on
which the tool performs data-mining is filtered to exclude basic logic facts, auto-
matically derived definition proofs, and proofs involving more than 20 lemmas.
Interestingly, human-constructed proofs are not the best candidates for learning:
to improve success, ATP-constructed versions of proofs are preferred (and can be
explicitly re-run by the user).

Data-mining existing proofs has also been tried for interactive theoremproving
with the aim of extracting proof strategies. This approach follows an assumption
that certain sequences of low-level proof steps (e.g. procedural proof tactics or
lemma applications) form reusable strategies: i.e. if a similar problem is encoun-
tered, the expert would take the same proof steps. Therefore machine-learning
techniques are employed to find the common patterns of proof step sequences.

Jamnik et al. [JKPB03] use this approach to learn new proof methods in mecha-
nised mathematics (set, group theory) from proofs constructed using the Ωmega

proof planner. The proofs and discovered patterns consist of sequences of lemma
applications. The learning algorithm uses the least-general generalisation of a set
of well-chosen example proofs.

Duncan [Dun07] uses data-mining to find proof patterns within the libraries
of the Isabelle theorem prover. The expressivity of available tactics, however, raises
obstacles to using proof scripts as the data source. For example, advanced proof
search tactics such as auto are used with different effect in various situations,
thus treating them as atomic would make data-mining miss a lot of patterns. Fur-
thermore, tactic parameters (e.g. quantifier instantiations) would over-specify the
source proofs and should be ignored. To circumvent the expressivity of proof
scripts, Duncan uses low-level proof term representations of each proof, constructed
using lemmas combined with low-level inference rules.

Both Jamnik et al. [JKPB03] and Duncan [Dun07] generalise the found proof
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patterns into tactics/proof methods that can be used in interactive proof. How-
ever, there are some limitations to the success of the approach. For example, the
identified new proof tactics in [Dun07] are comprised of quite general low-level
lemmas, such as implication introduction impI or modus ponens mp. The created
tactics, therefore, are very general-purpose and involve basic theorem proving
concepts that users learn quite quickly anyway. The approach is not successful for
domain- or problem-specific strategies. Strategies identified in [JKPB03] are more
interesting, but require a good selection of source proofs from which to learn: i.e.
all proofs have to be from the same family.

Komendantskaya and Heras [KHG13, HK14] combine conjecture features and
the tactic-based learning into a more comprehensive approach in the ML4PG tool
(with results on learning from Coq/SSReflect [GM10] proofs). The selection of
proof features characterising each proof step is limited: the principle ones are
the three top symbols, names and a number of tactics, and number of subgoals.
Pattern recognition tools require that the number of selected features is limited
and fixed, thus selecting appropriate ones is important. ML4PG uses clustering
machine-learning algorithms to discover patterns in proofs. It can be used to
identify patterns in proof libraries or to suggest which proofs are similar to the
currently started one. However, the approach requires the user to take the initial
steps in the proof so that similar ones are suggested. Furthermore, some of the
clusters contain lemmas and proofs where similarity is not always obvious or
useful. ML4PG does not attempt to generalise the found clusters into tactics but
defers to the user to recognise the similarity and perform the proof by analogy.
Finally, the success of learning is higher when a small number of tactics is used
(e.g. as in the SSReflect library). For expressive theorem provers, the number of
different tactics makes finding patterns difficult.

¦ ¦ ¦

The success of learning proof strategies in the context of interactive proof is quite
limited. The extracted strategies are too general, it is difficult to capture when
they need to be applied, and the expressivity of theorem provers is an obstacle
to identifying patterns. Furthermore, data-mining requires a corpus of available
proofs from which to learn. Using this approach for a new problem is difficult:
problem-specific strategies cannot be learned from a single or a handful of proofs.

The success of analogical reasoning in proof planning [MW99] shows that us-
ing higher-level information about proof is important. Capturing such high-level
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insight from an expert doing interactive proof would facilitate proof reuse. Fur-
thermore, this information could also be useful for machine-learning approaches
as new or improved characterising features. For example, rather than using the
top three symbols, it would be more accurate to use the user-tagged ones, or the
ones actually affected by the proof. Capturing this high-level insight about an
expert’s proof process is the aim of the research presented in this thesis.

2.4 Strategy reuse in AI4FM

The development of proof strategies and their reuse within the AI4FM research
project (to which the research presented in this thesis also belongs) emphasises
the importance of proof meta-information and abstraction. The proposed proof
strategies provide a high-level description of how to advance matching proofs.
This description utilises various proof meta-information to encode strategy ap-
plicability and replay. The particular strands of AI4FM research most relevant to
this thesis are the development of an abstract formal model of the AI4FM system,
which includes the proposed strategy representation (e.g. in [FJVW14]) as well
as the proof-strategy graphs [GKL13], which provide a a concrete representation of
proof strategies and their replay functionality.

This work is closely related to the research presented in this thesis: the aim
of the proposed proof process capture system is to facilitate extraction of proof
strategies within the wider AI4FM system. The thesis presentation follows this
direction of information flow: Chapters 3–6 present the architecture of the proof
process capture system, followed by the discussion in Chapter 7 of the “strategies
side” of AI4FM and how the captured proof process information can be reused in
the form of proof strategies.
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CHAPTER 3
Capturing proof insight

This research aims to capture how an expert does interactive proof so that strate-
gies can be “learned” and reused for similar proofs. The similarity between proofs
encountered in formal verification can rarely be attributed solely to their syntactic
resemblance, but rather to the existence of a “general idea” to discharge proofs
within the same family. To extract this idea as a reusable proof strategy, it is im-
portant to look at the proofs more holistically and at a higher level of abstraction
than just the low-level commands of the final proof script.

This part presents an architecture and a high-level approach to capturing the
whole interactive proof process. This chapter argues that abstraction is important to
record the high-level proof insight while preserving the links to the actual proof
commands. This enables transferring proof knowledge between similar proofs
rather than trying to copy the proof scripts. An interaction model to capture
such data is also proposed. It couples background “snooping” of prover informa-
tion with having the expert, who is doing the proof, mark the important features
and insight. Chapters 4–5 explore the model of the captured proof process data,
together with extensions to record—and re-run—the full proof history. Some of
this high-level data can be inferred automatically, either through special heuristics
or by learning from previously captured proofs: Chapter 6 explores some of the
approaches. Finally, Chapter 7 discusses how the captured information can be
used to extract reusable proof strategies.
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3.1 Requirements and overview

The need for a comprehensive proof process capture arises from the limited effec-
tiveness of the proof scripts as the source for strategy extraction. The view within
the AI4FM project is that the “reusability” of proofs lies somewhere higher than
the proof script commands, specifically within the high-level proof insight and
ideas that lead the expert user to finishing the proof. During interactive proof, the
expert materialises these ideas by selecting low-level prover commands that are
verifiable by the theorem proving system. The high-level insight, unfortunately,
rarely survives this translation and is at best represented within the proof script
in some form of free-style comment. While some of the insight may be recon-
structible via inspection, it is more sensible to capture and record it while the
proof is being developed and the proof direction is fresh in the expert’s mind.

To extract and replicate the expert’s approach to tackling a specific proof as
reusable proof strategy, it is important to capture the key proof aspects that have
shaped the decision process. In interactive proof, the direction taken in the proof
is affected by a number of proof features, including the current goal1 and hypothe-
ses,2 the available proof context and other conditions. Identifying, capturing and
structuring all these important factors is the main goal of this PhD research as
described in the H1 hypothesis (repeated here):

Enough information can be collected from interactive proof to facilitate under-
standing of experts’ high-level reasoning as reusable proof strategies.

The name proof process is used in this thesis to label the comprehensive account of
all this important information spanning the whole proof development: an expert’s
proof process is the story of how the proof(s) were discovered. A full account of
a particular proof process needs to capture higher-level features of the proof at
various levels of abstraction, portray the full proof development, as well as record
how the proof is mechanised within a particular theorem proving system. The
most important facets of a proof process are listed below:

• Proof granularity: the same proof can be described at several different layers
of abstraction: from high-level proof plan to actual prover commands (proof

1The word “goal” in this thesis usually means the goal and hypotheses (i.e. what the expert
sees in the theorem prover), particularly when used by itself. When talking about specific parts of
the “goal”, it is differentiated from the hypotheses/assumptions that are used to prove the goal.

2The words “hypothesis” and “assumption” are used interchangeably in this thesis.
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tactic steps). The different layerswould be linked compositionally, i.e. several
lower-level proof steps constitute a single higher-level step. Capturing and
interpreting a proof at some arbitrary (even variable) granularity would
benefit proof description and reuse, e.g. a proof strategy for similar proofs
could have the same high-level proof steps but alternative steps at lower
levels of abstraction in each proof.

• Proof structure: proof scripts rarely make the proof branches of independent
sub-goals (e.g. the base and step cases of inductive proofs) distinctive. The
proof steps are normally3 written in a linear fashion and produce a proof
script as a sequence of proof commands. Identifying and capturing a correct
proof structure provides a clearer indication of a user’s intent as well as
yielding a better separation of possibly reusable parts of the proof.

• Multiple proof attempts: a development of a single proof often involves mul-
tiple attempts at the goal. These can include failed attempts (versions of the
proof that are either stuck or just unfinished) as well as different successful
versions. All attempts are valuable: a “cleaned up” proof may be more ele-
gant but less general, more efficient but too reliant on automation, while the
original success may represent a clumsy but more reusable attempt. Further-
more, failed attempts may still contain generally reusable proof strategies.

• Proof step intent: high-level description of the expert’s proof direction. The
proof steps are translated to prover commands in the proof script, however
these low-level commands often fail to describe what the proof step actually
does. Proof tactics are mainly generic and can be used in a variety of situa-
tions. By capturing the high-level description of a proof step (especially when
proof commands are grouped into a single high-level step), the meaning of
the step is defined more clearly. The intent can be a simple tag that gives
a name to the underlying reasoning of the proof step. By complementing
the intentwith further proof insight abstraction via proof features (below), an
abstract description of a proof step can be captured.

• Proof features: everything that drives the expert’s choices. The “why” infor-
mation about each proof step is particularly important to capture for strategy
reuse: “why is a particular proof step taken”, “what is required for such a

3For example, the apply-style proofs in Isabelle, all proofs in Z/EVES, etc.
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proof step”, “what is the expected feature of the step result”, etc. The col-
lection of such proof step triggers, preconditions and postconditions would
provide an abstract specification of a proof step that could be mechanised
and reused for similar proofs. The proof features describing such impor-
tant information can be the shape of the goal, the available lemma, certain
datatypes or record structures, and many more facets of the proof environ-
ment. Such information is usually readily available in the expert’s mind
during the proof process, however deducing it from the finished proof is
difficult, even for the same person doing the proof. Capturing the proof
features, either automatically or via user interaction, is of high importance
to construct useful proof abstractions.

• Validity of proof abstractions and prover-specific encodings: all proof process
abstractions must be justified by verified steps within a theorem proving sys-
tem. The link with the underlying prover must be established within other
facets of the proof abstractions as well, e.g. the validity of recorded proof
branch structures, the definitions of proof features would include terms and
proof objects from the proof state and the proof context, the links with actual
proof script text could also be recorded, and so on.

The following brief examples (the shaded text and the associated figures) aim
to illustrate some of these facets of a proof process, however refer to Chapter 4
for the full discussion. Also, for more detailed examples, refer to case studies in
Chapters 11–12. The example proof fragments below are taken from the case study
in Chapter 11, particularly lemma dispose1_disjoint_above, listed in Figure 11.4.

Figure 3.1 outlines the different granularity of a high-level “zooming” proof
step. When it is most abstract, it is a single Zoom step, but can be decomposed
into two high-level proof steps: Expand definition and Cleanup. Each of these
can be further unpacked, revealing lowest-level proof commands in Isabelle/HOL:
apply (unfold F1_inv_def) and apply (elim conjE). Various abstractions
of proof steps are also listed in Figure 3.2.

The capture of proof process structure transforms a linear proof script fragment
in Figure 3.2(a) in to a tree structure in Figure 3.2(b), separating proof commands
that tackle individual sub-goals. Furthermore, each proof step is given an intent
(bold font in each box ), describing the actual high-level idea of the proof step.
These can talk about the general proof approach (e.g Trivial assumption) or be
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Zoom

Expand definition

unfold F1_inv_def

Tactic application

Cleanup

elim conjE

Tactic application

...

Figure 3.1: “Zooming” steps from the proof of lemma dispose1_disjoint_above.

specific to the actual problem domain (e.g. Show disjointness of above region).
All high-level proof steps are justified by the actual verified theorem prover com-
mands ( blue boxes ), ensuring the validity of the captured proof process.

Within each proof step, the proof features describe what triggered it, why
the particular proof step was taken. For example, the Zoom step records Pre-
ferred level of discourse (nat1_map) feature (among others), indicating that com-
plex function definitions should be expanded to the “maps” level. The Split
disjointness proof step (step H7) records the specific goal shape (Goal shape
(disjoint (?s1 ∪ ?s2) ?s3)) and the availability of a matching lemma (Used
lemma (disjoint_union)) as key features. For details, see ProofProcess steps H1
and H7, respectively, in Chapter 11.

During the proof discovery process of each lemma, the proof process of each
different attempt is captured in the same style. Figure 3.3 lists some possible
attempt types on a sample formal proof process.

Some of the proposed abstractions, such as the different granularity, the explicit
proof structure as well as proof intent descriptions of high-level proof steps can
be accommodated within established proof structures such as hiproofs [DPT06].4

However, the full account of a proof process, including the capture of full proof
development asmultiple attempts aswell as abstraction via proof features requires
more elaborate approaches to proof organisation and structure. Chapter 4 presents

4The proof intent would be encoded within composite nodes in hiproofs.
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...
apply (subst locs_add_size_union)
apply assumption
apply (simp add: nat1_map_def)
apply (rule disjoint_union)
apply (erule disjoint_subset)
apply (erule locs_ar_subset)
apply (subst locs_region_remove)
apply assumption
apply assumption
apply assumption
apply (rule disjoint_diff)
done

(a) Extract from the proof script.

subst locs_add_size_union

simp add: nat1_map_def assumptionrule disjoint_union

subst locs_region_remove

rule disjoint_diff assumption a a

Discharge lemma assms...

Trivial... Tr.. Tr..Show set remove is disjoint

erule disjoint_subset

erule locs_ar_subset

Split disjointness

Discharge lemma assumptions

Nat1 typing Trivial assumption

Split contiguous locs regions

Zoom

Show disjointness of above region

Show removed region is disjoint

Show disjointness of 
disposed region

Show subset of disjoint 
is disjoint

Show disjointness separately

...

(b) Captured ProofProcess data.

Figure 3.2: Fragment of proof process capture for lemma dispose1_disjoint_above.
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• Lemma feasibility-po-20

– Attempt: blind failed

– Attempt: unfinished

– Attempt: failed subgoal A

– Attempt: failed subgoal A (different failure)

– Attempt: successful

– Attempt: successful, cleaned-up

– Attempt: successful, alternative, using new lemma

– . . .
Figure 3.3: Sample lemma proof attempt types.

such an approach and an abstractmodel to capture and accommodate the required
proof process abstractions.

The focus on abstraction (high-level proof steps and descriptions, important
proof features, etc.) to describe an expert’s proof process comes from the AI4FM
approach to extracting proof strategies and assisting the user with similar proofs.
The aim is that as soon as an expert user completes a single proof in a family of
similar proofs, an attempt can be made to solve the other proofs within the same
family automatically—“in a similarmanner”—i.e. with the extracted strategy from
the first proof. In an ideal scenario, this would require the expert user to do only
the “new” different proofs without wasting effort on similar ones. The possible
availability of just a single proof as the source for strategy extraction undermines
the use of the majority of AI methods (e.g. machine learning). Therefore, the
captured proof process abstractions serve as a way to generalise the single proof
into a reusable proof strategy. Note that when the collection of captured proof
process data grows, AI methods could be used to further generalise the strate-
gies or extract new ones. However, the focus is on generalising strategies from a
small number of proofs rather than data-mining from a large corpus of data. The
approach aims to find strategies reusable within a family of proofs rather than
hunting for too-generic and obvious strategies that are applicable everywhere (cf.
data-mining strategies from proof scripts in Section 2.3.2).

The proposed abstractions provide a generic approach to capturing and rep-
resenting a high-level proof process. The combination of proof intent and proof
features together with abstractions of proof steps and structure can be used to
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describe proofs within different theorem proving and reasoning systems. The use
of these abstractions provides a basis for a generic framework to record, represent
and analyse proof processes. Note that the differences in logics, “ways of doing
proof” and basic definitions make the interworking of proof processes from dif-
ferent provers unlikely:5 i.e. the data captured or strategies extracted from one
theorem proving system are likely to be ineffective (even unusable) in another.
Nevertheless, the proposed high-level proof concepts are generic and thus enable
design of generic proof process analysis techniques as well as reuse of implementa-
tion components. The framework applications (implementations) need to provide
integration with selected theorem provers to capture and represent their proof
process using the proposed high-level concepts. A specific implementation would
also record the appropriate low-level details (e.g. term representations, proof com-
mands, etc.) and provide the functionality to interpret and manipulate the prover-
specific information. The implementations of generic framework components can
be reused for shared platforms: e.g. the prototype ProofProcess systems for Isabelle

and Z/EVES share a large number of components (see Section 8.3.1).
The proposed abstractions of an interactive proof process would provide a

high-level view of how a proof is achieved. Chapter 4 presents details of a model
to represent the captured proof process with the required high-level features. It
forms the basis of a proof process capture system.6 Recording all the proof process
data, however, is not a straightforward activity. Therefore, before delving into the
details of the proof process representation, it is important to discuss how such a
system would work to capture both the high-level proof insight and the necessary
details. The next section proposes a three-way interaction model between the
theorem proving system, the user and the proof capture system to achieve this.

3.2 Interaction: the prover, the expert and the apps

The aim of the ProofProcess7 system is to “follow” the user doing interactive proof
and be able to record all necessary details from the theoremproving system aswell
as to capture the input about the high-level insight from the user. This requires

5These differences would prevent the use of a single proof process database for different theo-
rem provers without additional translation effort.

6This part focuses on the abstract architecture of a proof process capture system. The prototype
implementation of the proposed system is described in Part III.

7The ProofProcess name is used to refer to both the proposed architecture and the prototype
implementation of the proof process capture system/framework.
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the system to capture “live” data from both the prover and the user doing proof
as well as perform further analysis to “make sense” of how the proof is advanced
and completed. This section proposes an interaction model that describes how
such a system would work, what would be captured from the prover and where
user input is expected. Furthermore, interaction with other systems that would
utilise the captured data is also explored.

The aim within the AI4FM project is to “learn” from the person doing interac-
tive proof and reuse this knowledge to discharge similar proofs automatically. The
success of learning a good proof strategy thus depends on a successful proof be-
ing constructed as well as on the person doing the proof: awkward proofs would
yield awkward strategies. Figure 3.4 presents an example scenario where a theo-
rem proving expert is called in to produce a proof, which is used to extract a proof
strategy for the engineers to reuse later. The scenario describes an industrial setting
where there is a more prevalent distinction between a theorem proving expert and
an engineer, who does the formal specification, but is less capable or less fond of
proving difficult theorems.8 From such examples, it is convenient to talk about an
expert doing the proof, but it can certainly be the case that an engineer working on
proofs behaves as the expert and provides excellent—and reusable—proof insight.

In the context of this thesis, the notion of “expert doing proof” is used to
emphasise the ideal scenario where the captured proof process information de-
scribes good, generalisable proof attempts with enough high-level insight marked.
The information captured during the interactive proof will serve as the source
for strategy extraction and other uses. Thus the quality of the captured informa-
tion, and, in turn, the quality of the extracted strategies, can be assumed to be
only as good as the proof process of the user doing the actual proof. If the proof
process is convoluted and not general enough, or if it lacks certain properties of
generalisation or high-level insight, it affects the possibility of detecting reusable
strategies. Nevertheless, these cases do happen and the framework accounts for
the whole proof process, including the non-optimal proof attempts with missing
abstractions, even failed attempts. These cases can also be useful: e.g. the missing
abstractions might be inferred during post-capture analysis (see also Chapter 6),
while the failed attempts may contribute partial strategies for other proofs. In gen-
eral, a proof process capture system would provide a progressive enhancement of

8Anecdotal evidence from industrial partnerships suggests that engineers and modellers
strongly prefer automatic push-button solutions (e.g. model-checking, automatic theorem provers,
etc.) to interactive theorem proving.
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3. Capturing proof insight

A formal specification of a software component is developed in an industrial set-
ting by an engineer familiar with the problem domain. To verify the formal speci-
fication, a theorem proving system is used. Proof obligations (POs) are generated
about the properties of the specification to be discharged using the prover. A sig-
nificant proportion of the POs are discharged automatically by the prover using
existing heuristics, but a large number of difficult POs remain (see Section 2.1). The
engineer lacks skills in theorem proving and has limited experience with formal
proofs to construct these proofs interactively.

An expert is called to obtain the missing interactive proofs. For an open PO,
the expert is able to determine the correct proof direction, choose the appropriate
proof commands and define the necessary additional lemmas (e.g. generic lemmas
as well as ones specific to the formal model). All this process is recorded by an
AI4FM proof process capture system. The expert specifies the high-level proof
steps and marks the important proof features for each one. The proof process
capture system is able to construct a high-level representation of the proof with
important proof insight marked, all the while preserving information about the
actual proof commands used in the prover. Next, this data is generalised further
to create a strategy of how the proof had been achieved.

With the strategy of the first proof being available, the expert can tackle other
“new” proofs without wasting effort on proofs similar to the first one. The similar
proofs can be completed by the engineer using the AI4FM tools to replay the ex-
tracted strategies. An appropriate strategy, if available, is suggested to the engineer
at any point in the proof. The non-matching steps are either adapted automat-
ically, or the engineer is asked to provide certain adjustments manually (e.g. to
define a similar lemma). Furthermore, when the formal specification changes, the
extracted strategies may be reused to adjust the existing proofs without needing
to call the expert in.

Figure 3.4: A scenario of strategy extraction from an expert’s proof.
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(1)

(3)

(2)(4)

Figure 3.5: AI4FM proof capture process.

functionality: certain basic information can be captured and inferred automatically
(e.g. from the prover data, via goal analysis or from previous proof process data),
while user input and assistance would be most beneficial and almost required (at
least initially) for complex high-level insight (proof intent and features).

Figure 3.5 provides an overview of how AI4FM—particularly the ProofProcess

system proposed in this thesis—tracks expert interactions with a theorem proving
system. The symbols, clockwise, depict the expert (lightbulb—for inspiration), the
proof process capture system (AI4FM logo: recycling deductions) and the prover
(cogwheel around the turnstile symbol). The basic interaction between the expert
and the prover is marked by the horizontal arrows. The ProofProcess system “lis-
tens” to this interaction and also captures additional expert guidance. The specific
interactions comprise the following (numbered in Figure 3.5):

1. Track the expert’s interactions with the theorem proving system.

2. Collect the proof results from the expert’s actions.

3. Ask the expert to provide high-level proof process information.

4. Suggest important high-level features and strategies to the expert.

The next sections explore these interactions in more detail: tracking the prover
communication as well as capturing the expert’s high-level insight.

3.2.1 Wire-tapping theorem prover

Integration with the theorem prover enables the proof process capture system
to access the low-level details about the proof being done. By intercepting and
recording the communication between the expert and the prover, both sides of the
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proof can be captured: the proof commands chosen by the expert as well as the
results of these proof commands from the prover. These directions are represented,
respectively, by arrows 1 and 2 in Figure 3.5.

Tracking proof activities

In the majority of proof assistants, the expert’s interactions consist of editing the
proof script (and the formal specification) and then “submitting” it to the prover
for verification. The proof part includes selecting conjectures to prove and then
choosing proof commands (tactics) and their parameters to discharge these goals.
In addition to direct proof activities, the expertmay add new lemmas or definitions
needed for the proof or even change the existing ones either to fix mistakes or to
make it more amenable to proof. As these activities are captured by the proposed
system, the overall record would resemble the actual proof script, but the histor-
ical dimension (see Chapter 5) would also provide details on the progress and
direction: i.e. how the proof script was submitted to the prover, which definitions
were added in relation to which proof, when backtracking happened, etc.

If proof assistants provide “advanced” interactivity, capturing such user inter-
actions would yield further information. For example, the user interface to the
Z/EVES theorem prover allows selecting part of the goal so that matching lemmas
are suggested. The user can select one of the lemmas to be applied (inserted in the
proof script and submitted to the prover). Capturing this interaction would help
understand the proof process better: e.g. that the user is interested in a particular
part of the goal, that the lemma was suggested by the prover, etc. Other advanced
interactivity could include, for example, proof “wizards”, invocation of automated
proof tools, searching for lemmas on the side, consulting documentation, etc. All
this is part of the overall proof process and can help infer the high-level ideas.

When capturing the proof being constructed, it is important to focus on the
proof “as the expert sees it”, rather than on the mathematical representation of the
proof. The low-level proof representations, such as proof terms in Isabelle, are useful
to verify proof correctness, but they do not reveal how the proof was discovered.9

Recording the proof commands and their results, however, focuses on how the
expert sees the proof, what is considered for taking the particular proof steps. A

9Proof terms [BN00] capture the low-level λ-structure of proofs and can be constructed by the
Pure inference kernel in Isabelle. The representation, however, uses low-level inference rules. The
proof trees are usually massive; and advanced proof tactics can add a large number of inferences
during proof search, losing relationship with the high-level proof ideas.
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proof process representation based on proof commands and user activities has
close ties with the expert’s reasoning process and lends itself better to generalisa-
tion using high-level proof steps and other proposed abstractions (see Chapter 4).
Similar approach to annotate proof commands when describing proofs is also
taken by other tools (see Section 13.4.2).

Extracting proof details

To capture the effects of expert interactions, the system records how the proof
state changes in the prover, e.g. by tracking the before- and after-goals of each
successful proof step or marking the failed ones. The prover is also queried for
other proof details, in particular what lemmas have been used by the chosen proof
tactics, what constitutes the proof context, etc. In most theorem proving systems,
the interaction between the expert and the prover can be recorded automatically.
Modern proof assistants (e.g. Isabelle, Z/EVES Eclipse) provide application program-
ming interfaces (APIs) that allow implementing proof capture systems as add-ons
to the theorem provers.10 The integration can be described as “wire-tapping” the
prover communications, where the proof process capture system is notified of
every prover event and is able to query the necessary data to record.

However, further analysis of the captured proof process data would require a
deeper link with the prover. For example, to check if a term is of some given shape,
term unification needs to be performed, whichmay require internal theoremprover
functionality and logic manipulation capabilities as well as the associated proof
context to interpret the terms. The theorem prover integration needs to account
for this. At the extreme, the theorem prover system itself would need to be altered
to expose details necessary for exhaustive capture of important information.11

“Wire-tapping” the interaction between the expert and the theorem prover
enables the capture of low-level details about the proof, including the proof com-
mands and their results. This process can be done automatically with little impact
on the theorem prover performance, e.g. if run as a low-priority activity. The
expert may continue doing interactive proof as usual, while additional informa-
tion is captured alongside with little overhead. The recorded proofs can then be

10Chapters 9 and 10 describe integration of the ProofProcess system with Isabelle and Z/EVES
theorem provers, respectively. The Proviola tool also intercepts communication to capture proof
data (see Section 13.4.2).

11Examples of similar tools: Tactician requires modifying proof tactics used in the proof; HipCam
modifies the kernel of the HOL Light theoremprover to access details about proof structure [OAA13]
(both are used to capture hiproofs in HOL Light).
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subjected to further analysis, where appropriate abstractions would be inferred
(further discussed in Chapter 6). Some of this can be done automatically, in other
cases manual intervention is needed to complete the data or confirm the analysis
results. The next section proposes how an expert would interact with the proof
capture system to provide this information.

3.2.2 Consulting the expert

Arrows 3 and 4 in Figure 3.5 represent the user interaction of the proposed Proof-

Process system. Users are expected to assist with the generalisation of the captured
proof process. While some aspects of the proof process can be inferred from the
proof results automatically, getting the high-level proof insight “out of the expert’s
head” is not straightforward—if at all possible. Example 3.4 describes a common
scenario where an expert is called to do the difficult proofs. The expert’s efforts
initially are directed towards “new” proofs, which do not have already-captured
“siblings”. In these cases, assistance from the AI4FM or similar tools is very lim-
ited to non-existent: the expert has to work mostly from scratch (the cases where
something is available are discussed later in the section).

Getting user input

The main interaction scenario with the expert would involve the ProofProcess sys-
tem prompting the expert on “why are you doing this?” (arrow 3 in Figure 3.5).
The expert would have opportunities to provide high-level insight information
aboutwhy the proof is progressing in the chosen direction while doing the interac-
tive proof. This involves generalising and naming the proof steps (e.g. an expert’s
proof step may consist of several prover commands) as well as identifying specific
proof features that trigger and support the chosen proof direction. Example proof
features include a specific term that exists in the goal, the fact that a special lemma
is key to progress (the existence of the lemma as well as its features is important),
and so on. Refer to Section 4.2 for examples of different proof features proposed
in this thesis as well as Chapters 11–12 for more detailed case studies.

The optimal user interface to capture user input is under consideration, but
options can range fromattention-grabbing prompts (e.g. the expertwould be asked
to name the proof step or mark the important proof features, possibly with some
suggestions available) to some less intrusive solutions. An example of the latter is
displaying the captured low-level proof process within the proof assistant UI. The
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data would be pre-populated with suggested high-level insight, which the expert
could adjust or supplementwith additional proof features during the proof. A less
intrusive solutionwould avoid breaking the concentration of the expert during the
proof, butmightmiss out on some immediate details. In any case, the expertwould
be able to group the proof commands into higher-level steps, select-and-mark the
important proof features in the captured goal terms, and so on. Alternatively
(or interchangeably), a top-down approach to proof process development could
also be taken: i.e. the expert would first postulate high-level proof steps and then
develop appropriate proof commands to “instantiate” the high-level steps in the
prover. In both approaches, the end result would be a proof attempt consisting
of high-level insight as well as low-level proof commands. Both abstraction and
instantiation of the proof process are needed to extract the reusable strategies.

Suggesting to the user

The reverse arrow in the interaction between the expert and the ProofProcess sys-
tem mainly represents the automatic suggestions about high-level aspects of the
captured proof process—the activity of “inferring the proof process” (arrow 4 in
Figure 3.5). The red arrow colour indicates the analysis (and possibly “learning”)
activities taking place to produce these suggestions.12 The suggestions can be
produced by analysing the proof state or even by drawing from how the expert
marked previous similar proofs.

One of the aims of this research, as proposed in the H2 hypothesis, is to in-
vestigate how certain aspects of proof process capture can be automated. The
automated generalisation of the proof process is of particular interest: identifica-
tion of important proof features, suggestion of proof intent and other abstractions.
For example, the important terms in the goal (variables, expressions, predicates)
can be “guessed” automatically by comparing the goal differences in a proof step,
or by looking at the parameters of a proof command. Similar analysis of the proof
context can be done to find important lemmas and other proof features. Such anal-
ysis can be done even when the expert starts from scratch with a proof, thus help-
ing from the very beginning. The inferred features would speed up the process
of collecting the high-level proof information considerably, as the expert would
spend less time marking the features and therefore would be more inclined to do
it. However, such algorithms can be overzealous in producing suggestions: i.e. all

12Cf. other proof capture interactions discussed earlier are blue in Figure 3.5, as they represent
a more straightforward recording of formal proof process.
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possible important proof features would be suggested. The expert would still need
to select the ones that are actually important and discard the rest. Therefore, the
system would produce suggestions rather than provide a fully automatic solution.
In addition to trimming the selection of suggestions, the expert would also need
to mark the other proof features that the ProofProcess system lacks support to infer.

Other suggestions about the current proof process can be attempted by looking
at the previously captured proof processes. The system may find patterns among
the previously captured data, which can be matched against the current proofs.
For example, if the proof command apply (elim conjE)was tagged asCleanup
proof intent in a previous proof (e.g. in Figure 3.1), when the same command is
used again, the same proof intent could also be suggested. Similarly, the same
proof features can be marked automatically for the same proof commands, and so
on. Section 6.6 continues the discussion on matching with existing proof data.

Eventually, an extracted proof strategy (or multiple) may match the current
goal. The user would select a preferred one for replay. If successful, the proof
would be completed automatically, with its results captured again, this time pop-
ulated with high-level information directly from the strategy. Strategy replay in-
teractions are discussed further in Section 7.1.

Capturing the appropriate abstractions about the expert’s interactive proof
process is key to the AI4FM approach to learning proof strategies. In the worst
case, a fresh proof idea would require the expert to mark all high-level proof
steps and important proof features manually. However, there are avenues where
certain high-level information can be inferred automatically. Chapter 6 explores
the various approaches to inferring (parts of) the proof process in more detail. The
perfect ProofProcess system would leverage the automation capabilities and infer
as much of the proof process as possible, making the proof process capture and
the subsequent strategy extraction an easy and useful effort to the expert.

3.2.3 Apps for the captured proof process

The captured proof process data represents a comprehensive description of an
interactive proof process. This information is useful beyond strategy extraction:
different standalone applications could benefit from the data.

The core proof process capture functionality can be extended to provide further
dimensions of interactive proof. Support for recording the order and timestamps
of proof steps would allow measuring of the formal proof activities (Section 13.4.3)
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Figure 3.6: ProofProcess system and the proof process (PP) data apps.

as well as facilitating a “fly-through” over the whole proof development as an
alternative to inspection of individual proofs. Linking the captured data with
actual proof script files can facilitate a closer UI integration as well as allowing
automatic “animation” of the expert (Section 5.2). These are just several areas of
application where the use of captured proof processes is envisaged. Furthermore,
in most cases, recording the additional information could be performed in a fully
automatic fashion, without affecting the expert doing the proof or the core proof
process capture activities.

In the face of these opportunities to record a comprehensive account of the inter-
active proof process, the role of the proposed ProofProcess system can be extended
to support different uses of data. The captured proof process data would comprise
a chronicle of proof development, providing data to answer the whats, hows, whens
and other questions about formal proof. Some of the different uses of the proof
process system and the captured data are discussed further in Section 13.4. This
section only outlines the interaction between the ProofProcess system and these
proposed applications.

Figure 3.6 depicts some of the mentioned applications for the captured proof
process data. The wide range of independent applications suggest that rather than
building the proof process capture as a single-purpose component (source for
strategy extraction) within some massive AI4FM system, the ProofProcess system
can be positioned as a standalone application. The strategy extraction then becomes
one of the “apps”13 to use the captured data; and the overall interaction model

13Similar to howmobile “apps” (applications) in smartphones are often designed to fulfil narrow
task sets, rather than being large, Swiss Army knife style applications.
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resembles a service-based architecture.
As illustrated in Figure 3.6, the ProofProcess system itself can be considered as

two applications: the system to capture and analyse the proof processes as well as
a repository (database) to store and access them. A database-like solution would
be needed to store the different proof attempts and other historical proof data
as well as to accommodate the sheer quantity of proof processes accumulated
during a longer use. Furthermore, such separation between capture and storage
is warranted when implementations differ: e.g. the capture may require a close
prover integration and would likely be implemented within the same platform as
the prover, while the database solution may be more generic. Finally, accessing
the captured data in a generic way requires a set of APIs to be defined. Some
applications, such as strategy extraction, would traverse the whole of captured
data to generalise the proof processes into strategies or run machine learning
techniques for the same purpose. Others, such as proof maintenance or proof
metrics, would be more interested in querying for specific proofs or proof features
(see Section 13.3.4 for further discussion on querying proof processes).

The proposed ProofProcess system is more than just a “step” within the AI4FM
approach. Proof process capture is central to a number of different possible appli-
cations, of which identifying reusable strategies makes up just a small subset. A
generic source of data about formal proof can help the users actually doing the
proof as well as the people who want to know more about how it is done.
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CHAPTER 4
Recording

proof processes
To succeed in learning and reusing expert’s proof ideas, a recording of the in-
teractive proof process must capture the proof insight as abstractions over proof
commands, as well as the intended proof structure together with the full history
of proof development, rather than just the final low-level proof script. This chapter
proposes a model of a proof process that provides said abstractions.

The ProofProcess model has been developed to represent generic high-level in-
teractive proof processes. It acts both as the domain model and an abstract data
structure used in the framework. This chapter describes the main features of dif-
ferent proof processes and provides a VDM [Jon90] specification of the abstract
model. The proposed abstractions include high-level descriptions of proof insight
(proof intent and features), arbitrary granularity of proof steps, proof structuring
capabilities as well as identification of different proof attempts that comprise the
full proof development. These describe the high-level—“human”—view of the
proof process. The validity of the captured high-level proof is ensured by linking
it with what actually happened in the theorem prover (proof commands and re-
sults verified by the prover). The model ensures that the abstract proof process is
justified by the actual proof steps.

The ProofProcess model provides generic high-level abstractions that are the-
orem prover-independent, but allows for prover-specific extensions to capture
the necessary details. There can be many ways to describe proof attempts—the
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provided abstractions aim to accommodate any proof process and any proof struc-
ture. Designing a generic proof process capture framework that is applicable for
different theorem provers is one of the goals of this PhD research.

The model described in this chapter focuses on representing and recording the
proof process. It is extended to support recording of proof history in Chapter 5.
Ideas on inferring parts of the proof process are explored in Chapter 6, while
Chapter 7 discusses how proof process data can be used to extract proof strategies.

4.1 Proof intent

An expert’s insight during the proof is the most valuable part of the proof process
capture. It is rarely available within the finished (and likely “polished”) proof
scripts. Thus existing catalogues of formal development data1 are of limited use-
fulness in terms to high-level proof insight.

A finished proof script normally lacks information about “how” or “why” a
particular proof command was used. Understanding proofs requires up-to-date
knowledge on proof commands, lemmas, and definitions used. Even then, one
often needs to re-run the proof script and inspect every goal change in the attempt
to recover the general idea of the original proof process. The loss of information
about high-level insight encumbers the human comprehension of existing proofs.
The information cannot be recovered by machines either: e.g. strategy extraction
from proof scripts by data-mining is limited (Section 2.3.2).

Proof script comments can sometimes serve to record basic proof ideas for hu-
man consumption. A proof author can record the high-level proof plan as an
associated text, explaining the strategy and reasoning. However, without links to
specific proof steps and additional parsing, this information is not mechanisable
and thus is difficult to use for proof automation. Furthermore, the proof insight
includes proof structure, abstraction, associated proof elements (lemmas or sub-
terms) and other features. Recording all this as plain-text comments would lose
links between proofs and their meta-information.

This thesis proposes to capture the high-level proof insight as combinations of
proof intentwith proof features,2 recorded for each proof step. Proof intent assigns

1Archive of Formal Proofs for Isabelle [KNP]; the Verified Software Repository [BHW06]; numerous
Event-B examples from the DEPLOY project [DEPb]; formalised base libraries of theorem provers
(e.g. Isabelle/HOL); etc.

2Proof features are described in Section 4.2.
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a name to each proof step, describing its high-level purpose. It can be considered
as a tagging mechanism for proofs, providing human-readable descriptions for
proof commands. The names of proof intents are expected to follow the style
one would use to describe the same proof verbally, e.g. they would be answers to
questions about the “why” and “how” of the proof process, such as:

• Why have these proof steps been chosen?

• How is the proof intended to continue?

• What are the high-level parts of the said proof?

The name “intent” has been chosen because the collection of such descriptions
would tell a story of how the expert intends to complete a proof—the high-level
proof plan. Note that the foresight about how the proof is expected to progress
is not prescribed: the intent can equally well be assigned after completing (and
fully understanding) the proof. Supplementing the proof with intent information
this way would still produce a story of the intended proof process for other similar
proofs, hence the name.

A collection of proof intents would build up a vocabulary of how proof is done.
It could be specific to a single proof development, restricted to a certain theorem
prover or specification domain, or even collect all possible ways of “doing proof”
across different systems and domains. Concepts from mathematical proof and
general proof strategies would directly translate to a number of generic intents, e.g.
Induction step case,3 Rippling [BBHI05], etc. In general, however, the expected
proof intents will be specific to either the actual formal development, the spec-
ification domain, conventions of the chosen formal method, type of conjecture,
particulars of using the theorem prover, or the expert’s personal proof style. Such
proof intents are much better suited to the approach proposed in this thesis and
AI4FM. For example, proof intents specific to the conjecture type or to the current
specification describe strategies used to discharge proofs in these specific fami-
lies. They are not likely to be applicable to generic problems, however. Learning
strategies specific for these proof families would improve automation in situations
when programming generic heuristics is not worthwhile.

This thesis is not advocating that capture, learning and replay of strategies is
somehowsuperior to developing andprogramming generic heuristics or advanced

3Proof intent names in this thesis are typeset in bold, e.g. Intent name.
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tactics. Where generic strategies can be identified, developing direct automation
techniques would be a better approach than learning the proof strategies from
the expert. However, learning strategies can be beneficial for the various prob-
lems and proofs not covered by the generic approaches. These actually include
the majority of formal developments: even if the essence of the proof is a simple
induction or application of the rippling strategy, getting down to the essence of the
proof or filling in the gaps of the generic strategy would still be domain-specific
and require corresponding specific intents to describe it.

Proof intent is a quite generic concept, which enables arbitrary “tagging” of
proof steps with names representing high-level proof insight. Some examples
of intent types are listed in Figure 4.1 (also refer to case studies in Chapters 11–
12 for details on actual proof intents used in their proofs). No restrictions are
placed on the proof abstraction represented by intents: they can range from very
broad proof activities to quite detailed strategy tags. For example, the same proof
can be marked with Induction intent or a combination of Induction base case
and Induction step case proof intents. These proof intents represent different
levels of abstraction and even suggest nesting: e.g. step and base cases would be
contained within the Induction intent. Furthermore, the same proof step can be
tagged with multiple intents, each describing a particular facet of the proof step.
For example, intents Show disjointness of disposed region and Show subset of
disjoint is disjoint in Section 11.2.4 describe the same high-level proof step: its
location within the proof as well as its set-theoretical meaning.

In addition to the “contains” relationship between proof intents of varying
abstraction, other relationships can be proposed. Proof intents could be organised
into a taxonomy using a “specialises” relationships between them, such as:

• Peano N induction specialises Induction;

• Complete N induction specialises Induction;

• Structural induction specialises Induction.

The specialisation allows the establishment of structure within the vocabulary
of proof intents. Furthermore, it suggests possible alternative proof intents when
extracting proof strategies.

In the ProofProcess model, proof intents are represented as an open set of tags.
The set may be pre-populated with names for generic proof steps, but mainly will
be populated during proof process capture with custom user intents.
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General proof:
Induction, Set up induction, Base case, Step case, Expand definition,
Insert lemma, . . .

Specialised proof (also some examples in [FW14]):
One-point witnessing, Invariant breakdown,Hidden case analysis, . . .

Proof scope management:
Zoom (expand definitions selectively until the preferred level of dis-
course), Extract sub-state, . . .

Datatype (e.g. set-theoretical):
Show set remove is disjoint, Show subset of disjoint is disjoint, Nat1
typing, . . .

Domain/specification:
Show disjointness of disposed region, intents specific to rail/automo-
tive/aero/other domains, . . .

Conjecture types:
Existential precondition (for feasibility proof obligations),Typewitness-
ing (for axiomatic checks), . . .

Formal method/prover:
Expand schema, Expand operation, Trivial assumption, Substitute as-
sumption equality, . . .

Making theorem prover “happy”:
Reorder assumptions, Bridge types, Split on lemma assumptions, Do
backward proof (e.g. simulate a backward proof step when the prover
does not support it), . . .

Other:
Prove automatically/blindly, Cleanup, user-specific approaches to do-
ing proof, . . .

Figure 4.1: Examples of proof intent types.
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Intent = token

ProofStore :: intents : IntentId m−→ Intent
. . .

In the abstract model, the actual representation of intent is not important, hence
the token type. Proof intents are reusable: the same high-level strategy in different
proofs would be marked with the same intent.

This section proposed using proof intent as tags for expert’s high-level ideas
about the proof process. During strategy extraction, they will become names of
strategies and sub-strategies (see Chapter 7). Intents provide abstraction over
proof commands (steps) and give a high-level overview of the proof. Further in-
formation about the high-level insight of the proof process, in particular what
describes the underlying proof strategy, are recorded as proof features, which com-
plement the proof intent information.

4.2 Abstraction using proof features

Proof features provide instruments tomark important details about each proof step.
There is a lot of information associated with each proof step: e.g. the starting goal
and proof context, the proof command(s) used, the resulting goal and the new
proof context, etc. Proof features provide abstraction over all this information by
highlighting only the key details and possibly generalising them further.

Complementing proof intents, which name the expert’s high-level proof steps
(strategies), proof features record particulars about what triggered the expert to
choose each proof step, what is used or needed by the proof step, and what are
the key results. Some examples of proof features are listed in Figure 4.2, but many
other types of proof features are expected (see also case studies in Chapters 11–12
for examples). Therefore the mechanism is open-ended and is designed to record
all relevant information about the proof process in a generic manner.

In the ProofProcess model, proof features are represented as named predicates
with parameters that can include any type of proof object: e.g. goal terms, lemmas,
etc. The model distinguishes between reusable proof feature definitions (names)
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Syntactic/existential:
Has symbol (

⋂
), Top symbol ( ⇒ ), Goal term (extpid′),

Not (Assumption term (extpid′)), . . .

Generalised shape:
Assumption shape (?p1 ∧ ?p2), Has shape (locs_of ?d(?n+ ?m)),
Goal shape (?f (?e): N1), . . .

Parameterised:
Type (x, Z), Subterm shape (?s, ?a ⇒ ?b), . . .

Lemma use:
Used lemma (disjoint_union), Lemma shape (ran ?a = ?b ⇒ ?a = ?c), . . .

Link before/after states:
Measure reduction (), predicates involving variable before/after states, . . .

Datatype meta-information:
Data invariant (F1_inv), Operation schema (DeleteAllProcesses), . . .

Structural (complex datatypes, functions):
Contains (PTab′, extpid′), Contains (finite(), insert()),
Type (student, ?rec_type : : lastName :Char∗), . . .

Proof context/environment:
Origin (Feasibility PO), Provenance (Expand definition),
Domain (Automotive), Key datatype (PTab), . . .

Proof guidance:
Preferred level of discourse (nat1_map), Focus symbol (−C), . . .

Proof command configuration:
Disabled lemma (subst_App), Simplifier depth (2), . . .

Proof structure:
In case split (), Case number (# 1), Number of goals (0), . . .

Arbitrary/user notes, comments:
After relaxing break (), Consult textbook (), No idea where to start (), . . .

Figure 4.2: Examples of proof feature types.
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FeatureDef and their instances Feature, which instantiate feature definitions with
parameters for each proof step: e.g. goal terms, lemmas,4 etc.

Feature :: name : FeatureId
params : FeatureParam+

. . .

FeatureParam = Term | . . .

ProofStore :: features : FeatureId m−→ FeatureDef
. . .

In the text, proof features are written in a free style, as feature names with param-
eters in parentheses, e.g. Goal shape (?x ∈ ?S).

The choice of named predicates to represent proof features gives good flexibil-
ity in supporting various types of proof features. The flexibility in representation
is important, because there are many different things (and ways of describing
them) that can influence the expert’s proof process. For example, a specific proof
direction can be triggered because the goal has a certain function symbol (e.g. Top
symbol (

⋂
) proof feature) or because the expert had a coffee and went for a quick

walk (Relaxing break () feature).5 The latter humorous proof feature is used to em-
phasise that it is impossible to anticipate everything that affects the proof process.
Loosely phrased, it is important to be able to record everything relevant to the proof
process for any possible proof intent.

The requirement for proof features to be expressive (so that unknown types of
proof features can be recorded) is countered by the need tomechanise them for use
in automated scenarios. In order to be able to infer proof features automatically
(Chapter 6) or to use them in strategies (Chapter 7), the different proof feature
types need to be known and implemented in the system (e.g. to be able to check
if a proof feature matches a goal). Named predicates allow for the encoding of
necessary parameters for mechanised proof features: e.g. the name of a proof
feature identifies its implementation in the system, which expects a certain order,

4Lemmas are also considered to be Terms within the system. See Section 4.6 for details.
5The latter proof feature was suggested by J Strother Moore during Dagstuhl Seminar 12271:

AI meets Formal Software Development in 2012. When asked about what triggers him to take a specific
proof strategy, he explained that sometimes when stuck in a proof, he goes for a walk and figures
out the way to proceed with the proof while walking.
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number and types of parameters.6 Named predicates can also be used to record
unknown (“custom”) proof features with arbitrary names and parameter lists.

4.2.1 Types of proof features

Similar to Intent, proof feature definitions FeatureDef constitute a vocabulary of
proof features for a captured proof process. Some of the different proof feature
types and their scope are explored below.

FeatureDef = KnownFtr | CustomFtr | . . .

KnownFtr = TermFtr | ShapeFtr | UsedLemmaFtr | ContextFtr | . . .

Proof features can cover anything available in the proof context, both the actual
proof objects within the theorem prover and meta-information about the proof
that might only be available in the expert’s mind. This is needed to match the
context that the expert considers when doing proof: the problem conjecture itself,
all the tools and techniques available, the facts and lemmas already established,
knowledge about the specification, conjecture, its datatypes and functions, knowl-
edge about the prover, its configuration, techniques and workarounds, and more.
The primary source for important features is the current open conjecture or goal
(the before-state of the proof step). The available (and suitable) lemmas as well as
other proof elements will also be a source of important proof features. Moreover,
proof features in the after-state of the proof step (i.e. after the proof command is
applied to the open proof state) would record what outcome has been expected
from the proof step taken: this information would afterwards specify what results
the extracted strategy should produce. The proof feature examples in Figure 4.2
give a glimpse of how this proof context could be described. Several proof feature
categories are discussed further in the following paragraphs.

Proof features will be generalised during strategy extraction to specify when
a strategy is applicable to the goal. Chapter 7 discusses strategies in more detail,
but some ideas on how specific feature types could be generalised in strategies are
also discussed in the following paragraphs.

6It is necessary to ensure that a proof feature is marked with a correct number, order and types
of parameters to match the implementation. This could be enforced by advanced UI solutions,
suggested via proof feature descriptions or worked around by flexible parsing of parameters.
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Existential (term, symbol) features

One of themain triggers of choosing a proof step is that a certain term or function ex-
ists within the goal. These terms are often targets of the selected proof commands,
e.g. they are rewritten to simpler expressions. The examples could include fea-
tures such as Has symbol (

⋂
) (or a specialised “top” version, e.g. Top symbol ( ⇒ )).

FeatureGoal term (extpid′) marks the existence of a certain term (extpid′) in the goal,
and so on. Often the existence feature needs to be specialised to indicate that a
certain property or type of a term is important: e.g. Inductable (x), Type (x, N1), etc.

TermFtr = ExiSymFtr | TopSymFtr | ExiTermFtr | TypeFtr | . . .

Proof features in general are quite open-ended and their meaning is denoted
by the human-interpreted feature name. This approach gives flexibility in defin-
ing features but may impact automation of their reuse (see discussion on custom
features later in the section).

In strategies, these proof features are likely to be used as-is, i.e. if the same sym-
bol or term is found in a similar proof (and other proof features align), the same
strategy would be suggested. However, one avenue of generalising is replacing
the indicated symbol with a similar one: e.g. set union ∪ with sequence concate-
nation a. For particular problems involving set union or sequence concatenation,
high-level proof strategies can be similar.

Shape features

Some of these features could be defined in a more formal manner by using a
term shape to describe the term or function. Term shape is defined by using place-
holders7 in place of all irrelevant term parts. For example, some of the features
mentioned above can be redefined using term shapes: Has shape (

⋂
?S), Goal

shape (?a ⇒ ?g), Subterm shape (x, ?n:N1). To be able to use this information in
strategy replay, some pattern matching functionality must exist to check whether
a term matches the recorded shape. Luckily, such functionality often is available
within theorem provers.8

7Placeholders are written with a leading question mark: e.g. ?var.
8For example, Isabelle supports defining and instantiating schema terms natively.
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ShapeFtr = MainTermShapeFtr | SubTermShapeFtr | . . .

In addition to being easier tomechanise, shape features are already generalised
for use in proof strategies. In using the shape features, the expert indicates that
the encoded properties of terms are important, not the existence of the terms them-
selves. Thus the extracted strategies would match goals with the same properties,
e.g. having the same sub-term shape, the same type, etc. While it may be possible
to generalise even further and replace the function symbols in shapes with similar
(alternative) ones, it would be better just to go with the expert.

Used lemma features

During proof, suitable lemmas or axioms are used to transform open goals. There-
fore these lemmas—their properties in particular—need to be recorded as impor-
tant proof features. The used lemma features capture both the fact that a lemma is
needed to advance the proof, as well as why the lemma is needed: e.g. how the
lemma applies to the goal, what goal transformations it provides, and other prop-
erties.

The fastest way is to mark the fact that a particular lemma was used in a proof
step, e.g. Used lemma (locs_add_size_union). This records that the lemma was im-
portant to the proof. The use of a lemma may have been a deliberate choice of the
expert: e.g. it could have been manually selected and used in the proof command
such as apply (subst locs_add_size_union).9 In other cases, the lemma may
have been used automatically by an advanced proof tactic such as simp or auto
in Isabelle. After inspection, the expert may mark some lemmas among the used
ones as particularly important to the success of the automated step.

Furthermore, it may beworthwhilemarking the lemma propertieswhichmade
it suitable for the application. This is easier if the lemma was selected on purpose,
as the expert already knows why it was needed. By indicating the important
properties of the lemma, e.g. Lemma shape (ran ?a = ?b ⇒ ?a = ?c),10 the expert
generalises its use. However, if the lemma was used automatically, figuring out
which of its properties are important can make the overhead of marking the proof

9See Section 11.2.2 in the heap case study for details on the actual use of this lemma.
10This lemma shape indicates that the link between range of a map (ran ?a) and the whole map

(?a) is important. See Section 12.2.2 in the kernel case study for details on the actual use of the
lemma and its properties.
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features too big. Nevertheless, marking the fact that a particular lemma was used
may be enough, or the important proof features may be learned or generalised
automatically afterwards.

The used lemma proof features can also be usedwith named local assumptions
and hypotheses, which can be treated as lemmas within the proof process. This
results in a more general version of the captured proof process: for similar proofs,
it would not matter whether the lemma is standalone or one of the hypotheses.

UsedLemmaFtr = UsedLemmaNameFtr | UsedLemmaShapeFtr | . . .

In the extracted proof strategies, used lemma features would indicate that a
lemma is needed for a successful strategy application. In many cases, the exact
same lemma is reused and the user would replay the strategy without issues.
Otherwise, a similar lemma may be needed. The used lemma features provide
hints about the shape of the expected lemma, which the user could easily add (or
it could be generated automatically).

Structural features

Composite terms, such as complex function definitions, named record data struc-
tures, and others, can contribute to interesting proof features. In the goal, such
terms are often featured unexpanded, as function or record names: e.g. finite(S),
where finite() is a constant definition; PTab ⇒ nextupid ∈ Z, where PTab is a
Z schema [WD96]. The actually important terms may be nested within these defi-
nitions or be otherwise related to their structure, thus proof features are needed
to describe the structure of proof objects.

For example, say an instance of the record

Person :: firstName : Char∗

lastName : Char∗

is used in a goal unexpanded as student :Person. If the important term in a proof
step is a field of this record (e.g. student.lastName), this must be recorded in a proof
feature. Such an approach, however, requires marking terms nested within the
definition of records. Situations like these often occur in industrial-style proofs
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(Section 2.1), where deeply-nested data structures are used to represent software
or domainmodels. Proofs about them frequently involve sub-termswithin records
(e.g. verification of security properties when a data field changes) and the proof
process must capture this information. Analogous situations arise for composite
functions: i.e. when the way a function is defined is important to the proof.

The most basic of such structural features record that one definition is con-
tained within another, e.g. Contains (PTab′, extpid′) indicates that the extpid′ vari-
able can be reached by expanding the PTab′ schema; feature Contains (finite(),
insert()) notes that finite() is defined in terms of the insert() function; etc.

Some structural proof features can be defined using special types or shapes,
which allow encoding structural information. For example, to indicate that term
student having lastName field is the important feature, one could specify:

Type (student, ?rec_type : : lastName :Char∗).

Alternatively, an approach similar to used lemma features can be employed.
The record or function definition can be considered to be a lemma that replaces
the record name with its contents.11 Proof features about composite terms then
would link the definition lemma and its important properties with the goal term.

After-state features

The after-state proof features can be used to record the important results of the
proof step. This is not a separate category of features: after-state proof features
are mostly the same types, just indicated on the goals and proof context that are
the results of applying the proof step.

The proof features mentioned before are most concerned with what triggers
a proof step (e.g. shape of the goal term) or what are the prerequisites for the
execution of a proof step (e.g. existence of a suitable lemma). With after-state proof
features, the proof process covers all facets of a proof step. The need for after-state
proof features arises when advanced proof tactics are used. Powerful proof search
tactics can apply lemmas multiple times or perform unsafe goal transformations.
The after-state proof features allow marking the important terms within the result
goal, thus indicating what outcomes are expected from the proof strategy.12

11This is actually the case in Isabelle, where definition (∗_def ) lemmas are generated automati-
cally for each definition.

12Specifying after-state proof features is not necessary for simple, deterministic proof tactics.
For example, simple lemma application always transforms the goal in the same way.
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Using after-state proof features in proof strategies requires running the strate-
gies to produce the results onwhich the proof features are then evaluated. Because
of this, matching strategies requires more effort: e.g. a strategy is applied in the
background, the proof features are evaluated but may not match, thus the strategy
itself would not match.

Proof context features

In industrial-style proofs (Section 2.1), most of the proof effort is spent on dis-
charging proof obligations (POs) about the posited formal specification. The POs,
such as operation feasibility proofs, data reification proofs, etc., are often automatically
generated according to the chosen formal method. The generated POs are of a
similar shape and their proofs follow similar high-level strategies for each type:
e.g. feasibility proofs involve finding witnesses for operation after-states.

The proof origin features indicate where the conjecture originates, such as the
type of the proof obligation: e.g. Origin (Feasibility PO). Other important proof
context features can indicate the domain of proof (e.g. strategies in proofs about
railway systemsmay find little reusability within the aerospace domain), mathemat-
ical taxonomy (e.g. the proof involves set-theoretical constructs), etc.

The provenance features can indicate how the sub-goal was reached in the proof.
For example, the Provenance (Expand definition) feature records that Expand def-
inition proof step (strategy) was used to produce the current sub-goal. This in-
formation highlights the order of strategies: e.g. the expert indicates that the new
proof step is chosen because it needs to follow a previously applied proof step.

ContextFtr = OriginFtr | ProvenanceFtr | DomainFtr | . . .

Most of the proof context features would be used directly in strategies. These
proof features would be matched against the proof context, not the goal. The
information, however, can be readily available: the conjecture origin can bemarked
automaticallywhen the POs are generated, the domain can be set once for thewhole
formal development, while the provenance would be updated automatically as
strategies are replayed or the expert advances the proof manually. Matching these
proof features would then amount to just checking for existence of corresponding
information on the conjecture.
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Custom proof features

The goal of proof features is to capture all relevant details about the proof process.
The paragraphs above outline several “standard” proof feature categories, which
are often encountered during proof and are prime candidates for implementing
within proof process capture and replay systems. Covering other cases, custom
proof features aim at capturing “everything else” that does not fall into some
predefined feature categories, or simply is not yet implemented within the system.

At the most general, every proof feature could be treated as a “custom” one
and the following discussion would apply to them. A “vanilla” proof capture
system would register all features without any mechanisation support, treating
each one as an uninterpreted named predicate. This would be useful to build up
the vocabulary of features and implement the most popular ones afterwards, or
to do research on how proofs are described.

Having a system with a well-mechanised set of “standard” proof features still
leaves space for the use of custom ones. The standard proof features may be inad-
equate in representing certain concepts in a way that the expert intends. For ex-
ample, a Preferred level of discourse (nat1_map) feature is used to indicate that proof
should be done at the “maps” level (see Section 11.2.1 for the actual example).
Term, shape or structural features are problematic to represent this requirement,
because the captured concept is quite far reaching. It means that the higher-level
definitions, e.g. ones that contain the “maps” terms, need to be expanded to re-
veal these terms. However, the other definitions may already be at the “maps” or
even lower level, so they should not be touched (or even wrapped into “maps”-
level concepts). The proof feature captures the idea successfully, but it is hard to
mechanise it accurately or use a combination of other proof features to replace it.

The expert doing the proofmay also use non-conventional descriptions of proof
details. For example, a proof feature may be domain-specific, adhering to some
personal style, or simply “fishing” for adequate words to describe the concepts
(e.g. marking list concatenation as “addable”). Taking it even further, the custom
features may be used akin to comments, as arbitrary notes to capture the proof idea
(e.g. After relaxing break () feature).

The custom proof features provide extensibility to the framework but limit the
machine parsing and automatic reuse capabilities for such features. Nevertheless,
the arbitrary definitions still have significant interactive use. For example, if a
strategy is extracted from a proof and is reused in an interactive setting, the user
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may consult the list of proof features, which include the custom ones. If the custom
proof feature is defined in a human-readable form, the user may easily recognise
the semantics and infer how to advance similar proofs. Furthermore, the semantics
to custom proof features could be added afterwards, e.g. by programming their
semantics into the proof capture system or by using machine learning with term
details to learn the properties.

CustomFtr :: name : Text
template : ParamTemplate

ParamTemplate = token

The custom features are modelled simply as uninterpreted text names. To
ensure consistency of how many and what parameters need to be recorded for
specific custom proof features, a parameter template can be defined. For the previ-
ously discussed types of proof features, such information could be modelled in a
similar way, or could be prescribed and checked by the implementing system.

4.2.2 Using proof features

Proof features provide an abstraction over the detailed proof context when cap-
turing the proof process. The mechanism allows identifying and marking parts
of the proof context that are important to the proof steps, instead of recording or
referencing all available prover data. The proof features and proof intent provide
a static view of the proof process that can be inspected without interpreting and
analysing the goal and proof context. The captured proof process information can
be queried without re-running the proof to access the proof context. Furthermore,
proof features eliminate the noise of available proof information by highlighting
only the important parts. All this comprises an abstract “specification” of the
captured proof process, which could be generalised to a strategy, adapted and
reused for similar proof processes. Compare this with inspection of a finished
proof script: understanding its underlying proof process will likely require in-
teractively re-running the prover and making sense of the goal transformations
and the available proof context. In the case of proving very large conjectures and
goals, spotting “what has changed” in a proof step can be laborious, where proof
features would quickly pinpoint the important terms.

70



4.2. Abstraction using proof features

Obtaining proof features

Proof intent and proof features augment the proof process captured from the
prover by recording the high-level proof insight. Asking the expert doing proof to
mark proof intent and features is the easiest approach to acquiring this data. How-
ever, certain aspects of this information can be captured and inferred automatically.
For example, the important terms in the goal can be identified by examining the
differences between input and output goals in a proof step. In addition to proof
context analysis techniques, the previously captured proof process data could also
be consulted. By identifying similarities between the captured and current proof
processes, new proof features could be inferred by analogy from the proof features
of the captured process. Chapter 6 discusses proof process inference techniques in
detail. The distinction between the proof features marked manually by the expert
and inferred automatically by the proposed system is represented in the model.

Feature :: . . .

type : User | Inferred

The origin of how the feature has been marked is important for the treatment of
and trust in features during their reuse. A user may be mistaken in the analysis
and assign an incorrect feature (e.g. mark something as being commutative, when
it is not). However, user-set features embody the actual expert insight and may
indicate the most important features that drove the proof step. On the other hand,
while automatically inferred features may be more robust, they may pollute the
proof process with unnecessary data. Furthermore, treatment of learned features
(e.g. when the user marks the feature initially and it is then inferred for a similar
proof) is also interesting. If the learning (and matching) process can be trusted,
these features could carry the significance of the user’s initial selection.

“Language” of proof features

This thesis does not propose a formal “language” for proof features, instead opting
for a somewhat freestyle notation for recording them. A partial reason is that proof
process capture gives rise to data about how proofs can be described. Avoiding
a prescribed language allows users to capture proof process detail in their own
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way. Furthermore, a formal language would add to the overhead of describing
the proof, which may deter users from supplying the data.

Nevertheless, the proof feature recording has some simple language features.
Negation is expected, as some concepts are easier to describe using it. For example,
marking that a certain function is eliminated by the taken proof step can use a
Not (Has symbol (

⋂
)) proof feature on the after-state of the proof step.

A set of proof features for a proof step should be treated as conjoined: i.e. the
expert marks it important that the goal Has symbol (

⋂
) and Used lemma (Inter_eq)

is available. Other predicate operators, however, are not needed for proof capture:
e.g. a disjunction of proof features would mark alternatives, but is not needed for
a choice that has already been done.

Operators such as disjunction would be part of proof feature languages in
strategies (Chapter 7), where different sets of proof features can describe different
matching scenarios for when a strategy is applicable. A richer language for proof
features in strategies would be used to accommodate results of strategy extraction.
For example, the disjoint sets of proof features would be extracted from two sepa-
rate instances (proof processes) of applying the same strategy. However, during
proof process capture, a simple negation and conjunction are enough to describe
the already-happened scenarios.

The set of proof features on a proof step should be considered as a whole. This
means that the same terms or placeholders (?var) in different proof features but on
the same proof step represent the same thing. Therefore a number of properties
can be marked as proof features on the same term—this link will be preserved
during generalisation and strategy extraction. For example, if the expert marks
Type (x, N), Assumption shape (x ∈ ?S) and Assumption shape (?S 6= { }), when
the strategy is extracted, it requires there to be a natural number variable, with
available assumptions about the same variable being in some set, which is not
empty. However, the same term in before- and after-states is considered to be
different: a link proof feature between the before- and after-states needs to be
established in this case.

Proof features as hints

The amount and precision of proof features specified when capturing the proof
process affects the quality of extracted strategies. However, marking the proof
features manually is a significant overhead to the proof process. The initial goal of
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the ProofProcess system is to provide a framework for capturing the proof process
information at the level that the expert deems appropriate—the user marks the
important parts of the proof.

Marking everything contributing to the strategy selection is laborious. However,
it gives the most precise description of what the expert considers necessary for
successful strategy application. Nevertheless, a smaller number of particularly
important proof features may suffice in many cases. This is particularly true for
manual strategy reuse: humans are good at spotting patterns and extrapolating,
thus by glancing at just the key features, one could easily infer the related proof
features necessary for successful strategy reuse.

Furthermore, it can be helpful to consider what is enough to distinguish a
strategy among the others. For example, having just two or three proof features
marked can already be precise enough to narrow down to a single applicable strat-
egy during strategy reuse. Furthermore, instead of being exhaustive in laboriously
marking all corner cases of a particular strategy application, it may be easier just
to give hints about when it is generally applicable. When it comes to replay, the
lack of corner cases may make the strategy match where it should not, but a quick
glance from the user or a replay “in the background”would show that the strategy
does not work here and it would not be selected for replay.

Treating proof features as hints about the proof process reduces the overhead
spent on marking them during proof process capture, but may still produce suc-
cessful strategies. However, experiments are needed to verify the best way of
describing a proof step with minimal overhead.

4.2.3 Collecting proof step abstractions

The ProofInfo structure encapsulates the high-level insight about each proof step
using the proposed proof intent and proof feature abstractions. This information
can be captured at any level of abstraction (see Section 4.3).

ProofInfo :: why : [IntentId]
inFeatures : Feature-set
outFeatures : Feature-set
narrative : Text
. . .
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Recording proof intent is optional: this allows for cases when the strategy under-
taken by the expert is not worth recording or cannot be named or described. It can
be still be argued, however, that no strategy is also a strategy. For example, a Prove
blindly proof intent would mark parts of proof as less-than-optimal candidates
for learning and reuse.

Proof features for each step are split according to their precedence: inFeatures
capture preconditions about the proof step, e.g. what are the important parts of the
goal or available lemmas, etc.; outFeatures cater for the occasional need to record
what is expected of the proof step, i.e. the after-state proof features.13

Furthermore, it is anticipated that not all insight or additional information
about why the proof step is taken can be captured by the proof intent/features
mechanism. Further comments can be recorded within the proof process as ad-
ditional narrative. While not useful for automatic reuse, the narrative can carry
convenient description of the proof process: e.g. it could explain how a particular
intent is to be interpreted within the proof step. It also acts as a fallback for the
proof process capture approach, enabling the recording of additional information
that is yet unsupported by the system or the approach in general.

A significant proportion of captured high-level information about the proof
process comes directly from the expert. The thesis argues that the quality of ex-
tracted strategies depends on the quality of the captured data and indirectly on
the level of expertise that the user possesses. To differentiate among experts (or
even among the choices of the same expert), proof information score can be used.
It aims to introduce some proof step measure, enabling the rankings of different
attempts or proof steps. The score could be used to record the expert’s confidence
in selecting the intent and proof features, differentiate between the levels of exper-
tise among the users, mark “negative evidence” on strategies leading to dead-ends
in proofs (though the strategies could still be successful on their own), etc.

ProofInfo :: . . .

score : Score

Score = token

13The in/outFeatures naming of proof feature sets corresponds to the in/outGoals for prover
steps (Section 4.3.3).
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Proof intent provides abstraction over low-level proof commands by providing
high-level insight description to a proof step. Proof features capture important
proof process details in an abstract way, aiming to pinpoint relevant particulars
of the proof goal and related proof objects, while hiding irrelevant noise within
proof results. During strategy extraction, proof features can be used to describe
when a strategy should be suggested and applied for replay by matching on the
current goal and proof context (see Chapter 7). The next section proposes how
these concepts can be used to describe a particular proof process as collections of
proof steps at the desired level of abstraction.

4.3 Proof structure

A proof of some conjecture can be seen as a collection of proof steps transforming
the open goals of the conjecture until proven. The proposed proof intent and
features can be used to provide abstract descriptions of each proof step. The way of
structuring proof into such proof steps, however, can vary: the expert’s insight on
achieving the proof can be expressed at different levels of abstraction. This thesis
proposes a tree-like structure to construct an accurate and flexible description of
the whole proof. The ProofTree structure enables proof step decomposition (via
ProofSeq), yielding different levels of abstraction, aswell as recording of branches in
the proof (via ProofParallel) when different sub-goals can be tackled independently.

ProofTree = ProofEntry | ProofSeq | ProofParallel | ProofId

The ProofEntry records represent actual proof steps as leaves of the tree structure.
Finally, ProofId elements are used for “plumbing” in special cases of complex proof
structures (see Section 4.3.7).

This structure is used to record a single proof and thus provides a simple way of
expressing how a proof is advanced. If several ways of tackling the same proof are
available (attempted), they are recorded as different Attempts (Section 4.4), each
comprising a single proof recording. Furthermore, the structure is only concerned
with recording “how a single proof happens” and extended information such as
possible alternative proof steps, capturing proof step repetition and others are left
for strategies (Chapter 7). The strategies, however, will extract their information
from recorded proof trees—the ones proposed in this section. For example, an
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expert may record that to discharge a goal with three conjunctions, its proof re-
quires three steps of “∧-elimination”. Since that is how the proof is done, three
subsequent (even though the same) steps of “∧-elimination” would be recorded.
When a strategy is extracted from this proof record, however, it may recognise a
repeating single step instead. Such a strategy would then be applicable for conjec-
tures with a varying number of conjunctions, while the proof record stays true to
what actually happens for the particular conjecture.

4.3.1 Proof step sequences

A proof can be viewed as consisting of several top-level proof steps. The exact
way of identifying what are the main steps depends entirely on the expert. Fur-
thermore, each of these “top” steps can be viewed as a collection of more detailed
sub-steps. Such recursive decomposition allows the specification ofmultiple layers
of abstraction. The decomposition is modelled as a proof sequence structure:

ProofSeq :: info : ProofInfo
steps : ProofTree+

The expert’s insight at each level of decomposition is recorded using info. Other
proof tree structures also accommodate such ProofInfo data, thus enabling capture
of arbitrary abstractions over the proof. Furthermore, at least one child proof step
must be indicated in the decomposition. This links the introduced high-level proof
abstractions with the actual proof justifications (via the leaf ProofEntry element,
see Section 4.3.3).

From the top-down perspective, ProofSeq provides “grouping” of lower-level
proof steps. The constructed groups can be arbitrary: e.g. every low-level proof
step (a ProofEntry element) can be wrapped into its own ProofSeq group. Such
ProofSeq that contains a single proof step can be thought of as decoration, as it
serves to add metadata rather than to group its steps. This approach enables
recording multiple sets of proof intent with features for the same captured proof
step. The flexibility enables specifying different facets of the high-level insight.
For example, intents Show disjointness of disposed region and Show subset of
disjoint is disjoint in Section 11.2.4 give a domain-specific description as well as a
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set-theoretical meaning to the same proof step. For each different set of high-level
information, the proof step can be wrapped into an additional ProofSeq element.

Other approaches include grouping a number of low-level proof steps into
a single high-level ProofSeq step. This is particularly useful when several proof
commands are needed to perform a single higher-level proof step (e.g. to work
around theorem prover limitations). Finally, the grouping can continue until there
is just a single ProofSeq element representing the whole proof. A single “top”
element represents a high-level proof step of the overall strategy of doing the
particular proof.

4.3.2 Parallel proof branches

When a proof step produces several sub-goals, these are often tackled indepen-
dently. For example, proof via induction produces two distinct cases: the base case
and the step case. Each case can be proved independently and the order of doing
so is not important. Proof branches in the model are captured using a parallel proof
structure:

ProofParallel :: info : ProofInfo
branches : ProofTree-set

where
inv-ProofParallel(mk-ProofParallel(info, branches)) 4 branches 6= { }

The parallel split allows the capture of the associated insight information via info
and requires at least one branch to be indicated. Each branch is a fully-featured
proof tree and can have further step decompositions and parallel proof splits. The
order of the branches is not important: each branch can be proved independently.

4.3.3 Proof step justification

The ProofEntry represents the lowest abstraction of a proof step. It is no longer
decomposable and captures details about goal transformation and the justification
of the proof step.
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ProofEntry :: info : ProofInfo
step : ProofStep

ProofStep :: inGoals : Term+

outGoals : Term∗

justification : Justification

Like other proof tree elements, ProofEntry accommodates ProofInfo abstractions.
At the lowest level, this is a good place for automatically-inferred or captured
proof process information for each low-level proof step (e.g. proof commands).
For example, the prototype ProofProcess system implementation (Part III) currently
tags each ProofEntry with a Tactic application intent and populates the narrative
field with the textual representation of the used proof command.

The ProofStep structure records what the low-level proof step actually does (i.e.
the goal transformations) as well as the justification for the proof step (discussed
later). The inGoals capture open goals that are transformed by the proof step. Then
outGoals record the results of the proof step: the remaining sub-goals. Input goals
are considered to be discharged if there are no goals remaining: len outGoals = 0.
Goal representation using sequences accommodates for different theorem provers.
Some provers, such as Isabelle, identify separate sub-goals, while others, such as
Z/EVES, always operate on a single goal.14 Using sequences can encode both
representation styles, thus both representations are allowed within the framework
and a proof is complete when no goals are remaining.15 The goals are recorded
in a prover-specific Term representation (see Section 4.6), though eventually there
may be little need to know the actual goals: the important parts of the goal would
be lifted to a higher level of abstraction using proof features (Section 4.2).

The aim to encapsulate each proof step as standalone requires recording both
the target and result goals (named in/out goals in this thesis) for each proof step.
Each proof step could contribute a new small strategy, thus allowing independent
self-contained analysis of a proof step is beneficial for strategy extraction. Further-

14A special command (cases) is used in Z/EVES to split a single goal into multiple sub-goals,
but the prover then focuses on just one of them. Another command (next) then can be used to
switch to the proof of the next sub-goal. Otherwise all goal transformations produce a single
output goal.

15Z/EVES outputs a “true” goal after the proof is done, but the Z/EVES ProofProcess integration
does not capture this as a new remaining sub-goal.
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more, recording in-goals is necessary for parallel proof tree branches, since it is
important to know which goals were actually tackled by each parallel branch.

Each proof step must provide a justification to establish trust that the goal trans-
formation is correct. Justifications are used to link the high-level abstractions with
the theorem prover (or other reasoning systems) in order to validate the proof
process. For higher-level proof steps, justifications of inner proof steps would
be collected to ensure a correct chain of in/outGoals transformations. In general,
justifications can be of different types or from different reasoning systems, even
within the same proof process.

For example, a proof step can be Trusted with respect to some source out-
side the system: e.g. a mathematics book, a proof expert, etc. Furthermore, a
prover-independent proof can be recorded by providing some inference steps (e.g.
NaturalDeduction) as justification. However, the system is designed to be used in
conjunction with proof assistants thus the majority of justifications ought to come
from the underlying theorem provers. In these cases, Justification captures the
actual proof commands (tactics) used by the expert to advance the proof within
the theorem prover, including command configuration and context—the full proof
trace. It should deterministically (and hopefully minimally) record everything nec-
essary to “re-run” the proof step. For example, a Z/EVES trace would record the
goals, applied tactic, used lemmas, case number and other information (see Sec-
tion 10.2.2 for details). Proof commands in other theorem provers would capture a
similar set of details. When outside tools such as SMT solvers are called, the trace
may contain the goal (or the prepared SMT input) as well as SMT configuration
that was used, and so on. Links with theorem provers are described in Section 4.6
and prototype implementations are discussed in Part III.

Justification = Trusted | Gap | ProofTrace

ProofTrace = NaturalDeduction | IsabelleTrace | ZEvesTrace | . . .

The Gap justification allows indicating proof steps that are not discharged. By
indicating “gaps” in the proof, one can partially construct the high-level view of
the proof and justify it in a non-linear fashion. Each gapwould record an unproven
goal transformation. Proof steps with Gap justifications can also be used to record
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the yet-unattempted proof branches, in order to ensure correct model invariants
(discussed later).

The proposed proof tree structure can be used both in top-down and bottom-up
perspectives. In a top-down approach, a high-level proof plan is defined first that
can then be decomposed into more detailed steps—until the actual proof steps are
used as justification. In a bottom-up approach, existing proof script commands are
abstracted and grouped into higher-level proof steps until a high-level description
is reached. The latter may actually be the preferred modus operandi when doing
proof exploration: i.e. when the proof plan is not clear at the start of the proof. By
performing the proof somewhat “blindly” and examining the results, the expert
may spot the actual high-level proof insight and record these abstractions on the
existing proof steps. In both cases the resulting proof tree structure would capture
an abstract view of the proof that is justified by the actual proof steps.

4.3.4 Recording proof structure

An example featuring a very simple inductive proof recorded using the proposed
proof tree structure elements is given in Figure 4.3.16 Depending on the level of
abstraction that this proof tree is examined at, the proof can be described as:

• Single step proof Inductive proof;

• Two-step proof: Prepare induction step followed by an Induction step;

• Seven-step proof that only records the low-level proof commands used (all
ProofEntry elements);

• Any partial decomposition in between the single and seven-step proof above.

This shows that the expert has capabilities to describe the proof at all intended
levels of abstraction.

The proposed proof tree structure is quite similar to hierarchical proof trees:
hiproofs [DPT06] or the Proof Data Structure (PDS) used in the Ωmega proof as-
sistant [ABD+06]. Hiproofs provide a graphical notation and semantics for a
proof tree structure that supports proof tactic decomposition and branching. Iso-
morphism between hiproofs and the ProofProcess tree structure can be shown by
matching tactics with intents, boxes with ProofSeq and branches with ProofParallel
elements. The proposed ProofProcess structure, however, departs fromproof tactics

16The case studies (Chapters 11–12) feature examples of more complex proof tree structures.
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ProofSeq: Inductive proof

• ProofSeq: Prepare induction

– ProofEntry: Simplify

– ProofEntry: Extract inductive variable

• ProofSeq: Induction

– ProofEntry: Apply induction rule

– ProofParallel: Induction cases

∗ ProofSeq: Base case
· ProofEntry: Simplify

· ProofEntry: Use hypothesis

∗ ProofSeq: Step case
· ProofEntry: Rewrite using lemma

· ProofEntry: Use hypothesis

Figure 4.3: Sketch example of a ProofTree with recorded intents.

and allows more flexible abstraction with proof intent and features as well as sup-
porting different justification options. The visualisation manner of hiproofs using
boxes for abstractionwould also serve to render the proof process structure equally
well. The PDS structure also shares many similarities but is more complex and
includes implementation features. The alternative proof steps in the ProofProcess

model are captured using multiple Attempts (Section 4.4), whereas PDS encodes
them directly into the proof graph.

4.3.5 Flattening the proof tree

Both the ProofSeq and ProofParallel are tree-node structures in the sense that they
contain a number of children sub-trees. However, the semantics of each differ:

• ProofSeq provides decomposition into a sequence of proof steps. The “input”
of a ProofSeq is also the “input” of its first sub-step, while the “output” of the
last sub-step becomes the “output” of the whole ProofSeq.
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• ProofParallel represents independent branches and the “input” of the par-
allel split is partitioned among the branches (each consumes some input
sub-goals). The results of each branch are then again collected to represent
the “output” of the overall parallel split. For the whole ProofParallel to be dis-
charged, each of its branches must be discharged. If there are goals remain-
ing in any of the branches, they become the open goals after the ProofParallel.

The “flattening” of the composite proof steps is used to examine goals, features or
other details about the abstract step, since the actual goals are recorded in the leaf
ProofEntry elements. The following VDM specification outlines the flattening of
“input” and “output” goals as described above.

inGoals :ProofTree→ Term+

inGoals(ptree) 4 given by cases below17

inGoals(mk-ProofEntry(info,mk-ProofStep(in, out, justif ))) 4 in

inGoals(mk-ProofSeq(info, steps)) 4 inGoals(hd steps)

inGoals(mk-ProofParallel(info, branches)) 4

let brGoals = [inGoals(b) | b ∈ branches] in dconc brGoals

outGoals :ProofTree→ Term∗

outGoals(ptree) 4 given by cases below

outGoals(mk-ProofEntry(info,mk-ProofStep(in, out, justif ))) 4 out

outGoals(mk-ProofSeq(info, steps)) 4

let last = steps(len steps) in outGoals(last)

outGoals(mk-ProofParallel(info, branches)) 4

let brGoals = [outGoals(b) | b ∈ branches] in dconc brGoals

17ProofId cases are given in Section 4.3.7.
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Flattening proof features poses a more difficult problem. Proof features of an
abstract proof step would be collected in a similar manner to in/outGoals, but at
every level of abstraction. For example, a ProofSeq would add inFeatures from its
first element to itself, and so on recursively. However, some of the proof features
from “middle” steps in a ProofSeq list would also make sense at the abstract level:
the used lemma features, or proof features on sub-terms that have not been changed
by the previous proof steps. More research needs to be done to precisely identify
the proof features that are eligible for inclusion in the higher-level proof step.

4.3.6 Overall status of a proof

A single proof step is considered discharged (justified) if there are no outstanding
goals: len outGoals = 0. The same check can be used for higher-level proof step
abstractions by flattening the proof step as described above. So for any proof step,
it would be defined as following:

isDischarged :ProofTree→ B

isDischarged(ptree) 4 len outGoals(ptree) = 0

This means that the overall status of a proof (whether it is discharged, or what
goals are remaining in a partial proof) depends on the status of the last proof
step. If the last proof step is a parallel split (ProofParallel), then the collection of
unfinished goals at the ends of branches comprise the status of the overall proof.

The ProofSeq invariant ensures that all intermediate goals between proof steps
are accounted for: each proof step consumes all output goals of the previous step.

ProofSeq :: . . .

where
inv-ProofSeq(mk-ProofSeq(info, steps)) 4

∀i ∈ inds steps · i > 0 ⇒ inGoals(steps(i)) =m outGoals(steps(i-1))18

18Here =m is a multiset equality, as the order must be ignored.
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Accounting for all proof goals in the representation introduces interesting sce-
narios when ProofParallel elements are involved. As proof branches can be unfin-
ished (or even not started), special measures need to be taken into account for all
goals, and to handle unfinished branches after a ProofParallel element. The next
section explores the different scenarios and approaches to handling them.

4.3.7 Unfinished proof branches

The proposed ProofTree structure mixes both ProofSeq and ProofParallel tree nodes
within the same tree. These elements enable describing a branching structure
with grouping capabilities within the same tree. Even more, they can be used
for basic merging of proof branches; and (with extra “plumbing” extensions) can
support quite complex proof structures in general. This section discusses several
scenarios arising in handling unfinished proof branches in ProofParallel elements,
and how they can be addressed using an additional ProofId element to “export”
proof branches outside their ProofParallel node.

Merging branches

Using a tree representation for proofs captures the hierarchical nature of how the
goals are transformed: each proof tactic takes a single goal as an input and either
discharges it, or produces one ormore sub-goals. Each of these is then transformed
further by subsequent proof tactics. Many approaches (e.g. hiproofs [DPT06]) use
a pure tree representation: i.e. each tactic takes only a single input goal; each
sub-goal is transformed individually.

When it comes to proof assistants and advanced proof tactics, a pure tree struc-
ture cannot always be preserved as the proof is advanced. For example, consider
the auto proof command in the Isabelle theorem prover (illustrated in Figure 4.4).
This proof command can act on all open sub-goals at once. If there are two sub-
goals A and B currently open, applying the auto proof command can transform
them both and produce a single goal C as a result. This sub-goal is a result of
transforming eitherA or B (the other one would have been discharged completely).
Unless the proof process capture is able to trace how the proof state changes inside
the prover, it is very hard to determine to which goal, A or B, to attach the goal C.
Furthermore, the expert actually perceives that all goals are affected, even though
they would have been transformed individually by the theorem prover. As the
proposed ProofProcess system aims to capture the proof process “as the expert sees
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auto

rule ... rule ...

rule ...

...

Prove all

Prove individually

Prove first Prove second

Split into sub-goals

A B

C

(a) Graphical representation.

ProofSeq: -

• . . .

• ProofSeq: Split into sub-goals

• ProofParallel: Prove individually

– ProofSeq: Prove first

– ProofSeq: Prove second

• ProofSeq: Prove all (ProofEntry:
auto)

• . . .

(b) ProofProcess tree structure fragment.

Figure 4.4: Merged proof branches using auto proof command in Isabelle.

it”, the proof step corresponding to the auto application would have two inGoals
and a single outGoal. If A and B sub-goals come from different proof branches, the
single auto step has to be represented as a merge point for A and B.19

The automerging example can be represented using the ProofProcess tree by
adding a proof step after the ProofParallel element (illustrated by Figure 4.4). The
branches with goals A and Bwould be left unfinished within the ProofParallel, and
the auto proof step that follows “consumes” them both. The actual merging is
performed by matching the outGoals of the parallel step (comprised of outGoals of
its branches) and the inGoals of the following auto proof step.

Similar situations arise when capturing proofs from other systems. While in
Isabelle a merge of proof branches happens because the expert perceives a proof
command transforming multiple branches, in Z/EVES a merge can be done explic-
itly within the proof. For example, a proof goal can be split into branches using
a cases proof command in Z/EVES [MS97]. Then each proof branch can be ad-
vanced individually, switching to the next one using a next proof command. The
branch can be switched even if it is not finished. Using the next proof command at

19Actually, if A and B sub-goals have not yet been split within a ProofParallel but are a result of
a previous single proof step, it would be represented as a normal ProofSeq list instead of a merge
point. The ProofProcess architecture allows proof steps to transform multiple goals at once, so the
new step would simply consume everything the previous proof step produced. To have a merge
point, each proof branch A and B has to have been advanced individually.
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the last branchwill close the case split andwill merge all unfinished branches back
into a single goal. To support this, the proof process capture must accommodate
merge points in the proof structure.

As illustrated in Figure 4.4, a basic merge point can be represented using just
the standard ProofSeq and ProofParallel elements. However, for more complex sit-
uations (e.g. when one proof branch is not attempted at all), an extra structural
element is needed. The following paragraphs introduce the ProofId element and
discuss its use for different scenarios.

“Plumbing” using ProofId elements

The ProofId element is used for structural purposes only, as the last element of
an unfinished ProofParallel branch. ProofId does not represent a proof step and
thus does not transform proof goals: i.e. it is an equivalent of a mathematical Id
function. The element is used to carry proof goals to the next step that actually
transforms them, in a sense “exporting” a proof branch outside the ProofParallel.
Thus it has only one field, goals.

ProofId :: goals : Term+

When considered during proof “flattening” (Section 4.3.5), the list of goals repre-
sents both the in- and out-goals of a ProofId element:

inGoals(mk-ProofId(goals))) 4 goals

outGoals(mk-ProofId(goals)) 4 goals

As explained earlier, the linking of proof steps after a ProofParallel split (i.e. as
part of a merge point) is done by matching the remaining goals of ProofParallel
branches and the input goals of the following steps. In general, this can lead to
quite complex scenarios where multiple goals are consumed by multiple proof
steps (discussed later).

In order to simplify the handling of where each goal goes, the implementation
of a prototype ProofProcess system also uses ProofId elements to record a reference
to the next ProofEntry element that handles its goals (i.e. “continues” the branch).
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It enables a more efficient and a more deterministic resolution of relationships
between proof steps (see Section 8.6). As the simplified ProofProcess tree struc-
ture representation does not show proof goals, the ProofEntry reference of ProofId
elements is displayed to illustrate how goals match (e.g. as in Figure 4.5).

Complex merging scenarios

Even simple cases of branch merging are rare in interactive proofs, whereas com-
plex cases are more of a thought exercise rather than actually “seen in the wild”.
However, the ProofProcess framework aims to capture any possible proof structure
and must accommodate the complex cases. Figure 4.5 presents a scenario where
each goal from unfinished proof branches is consumed in a criss-cross manner.

Consider a proof with two branches, each of which has two out sub-goals: A(→
A1,→ A2) and B(→ B1,→ B2). Now consider some arbitrary proof steps, which
in goals come from different proof branches: P(← A1,← B1) and Q(← A2,← B2).
Figure 4.5(a) illustrates the proof step links of matching goals. The links can be
represented in a ProofProcess tree structure using sequential ProofParallel proof
steps, with ProofId elements linking the correct proof steps (listed in Figure 4.5(b)).

Unclaimed proof branches

A ProofParallel element represents proof branches that transform individual sub-
goals. However, in an unfinished proof, some of the proof branches may be yet-
“unclaimed”: i.e. other sub-goals have been transformed, but some are left un-
touched since the initial introduction.

For example, consider that the previous proof step had three sub-goals A, B
and C, and the ProofParallel has branches accounting for onlyA and B as each one’s
inGoals (illustrated in Figure 4.6). Branch C is “unclaimed” as there are no proof
steps transforming it yet. The issue is that the ProofSeq invariant introduced in
Section 4.3.6 fails because the inGoals() of a ProofParallel (A and B) do not match
the outGoals() of the previous step (A, B and C). To construct a correct ProofProcess

tree, a new branch needs to be added to account for goal C. One way to instantiate
such a branch is via a ProofEntry element with a Gap justification, indicating that
there is a “gap” in the proof. Alternatively, the branch could have a ProofId element
with goal C, representing that nothing has been done with the goal, but satisfying
the invariant by providing “accountability” of all proof goals.
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P Q

A

A

B

B

P Q

(a) Graphical representation.

ProofSeq: -

• ProofParallel: -

– ProofSeq: A

∗ ProofEntry: A

∗ ProofParallel: -
· ProofId:  ProofEntry: P

· ProofId:  ProofEntry: Q

– ProofSeq: B

∗ ProofEntry: B

∗ ProofParallel: -
· ProofId:  ProofEntry: P

· ProofId:  ProofEntry: Q

• ProofParallel: -

– ProofSeq: P (ProofEntry: P)

– ProofSeq: Q (ProofEntry: Q)

(b) ProofProcess tree structure fragment.

Figure 4.5: Complex inter-linking of proof steps.

rule ...

...
Split into sub-goals

A B C

rule ... rule ...

Prove first Prove second

Prove individually

Figure 4.6: ProofParallelwith an “unclaimed” proof branch.
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Grouping partial branches

When discussing proof branches, it is easy to consider a significant split in a proof
with large parts of the proof being tackled independently. For example, an induc-
tion proof can be partitioned into significant base case and step case parts. However,
new sub-goals frequently are just side-conditions to the “main” proof step. Con-
sider an application of a lemma. If the lemma has a number of assumptions,
applying it introduces new sub-goals to prove that these assumptions hold. In
many cases, these assumptions are trivial. However, it still takes an extra proof
step to discharge them before continuing with the main proof. For illustration, see
instances of Discharge lemma assumptions in Figure 3.2(b) or the more detailed
discussion in Section 11.2.3.

Such side-condition proof branches are captured in the proof process using
a ProofParallel element, because the assumptions are handled independently of
the main goal. However, all branches are nested within a ProofParallel element
equally, hiding the “main” proof branch among the side-condition branches. Such
a structure prevents the highlighting of certain top-level steps, since the high-level
steps on the “main” proof branch would be nested within the ProofParallel.

To circumvent this, the “main” proof branch can be “exported” outside the
ProofParallel by keeping the branch unfinished but recording the subsequent proof
steps after the ProofParallel element. This would bring the subsequent steps back to
the top level of the proof tree, where they could be grouped accordingly to indicate
the high-level direction in the “main” proof branch. The side-conditions will be
hidden within the ProofParallel element, preserving the appearance of a mostly
linear proof process. Section 11.2.3 of the heap case study provides a detailed
example of such rearranging of the captured proof process tree structure.

Support for graph structures

As shown earlier, the ProofTree structure can be used to represent a merge of proof
branches, no longer preserving a pure tree structure. With ProofId elements that
can record references to where the proof branch “continues”, the structure can
actually support directed acyclic graphs (see Section 8.6).

The tree structure still remains as the main focus of the proof process capture:
it is closer to the actual proof, is more suitable to represent high-level grouping of
proof steps and is more useful in the majority of proof process styles. However,
supporting graph structures facilitates the capture of more complex proof process
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structures, even though they are harder to present to the user sensibly. For exam-
ple, the prototype support for declarative Isabelle/Isar proof utilises this capability
to link proof steps introducing new assumptions with proof steps that actually
use them (Section 13.3.5). More details on converting between a ProofProcess tree
structure and a graph structure are available in Section 8.6.

¦ ¦ ¦

The proposed ProofTree structure allows the recording of a single view of a partic-
ular successful or partial proof. Proof branches can be identified and proof steps
can be captured at multiple levels of abstraction. The next section extends the
structure to capture the whole proof process by distinguishing between multiple
different attempts of the same proof. Note that the discussion on defining a gen-
eral view of a family of proofs (e.g. with alternative or repetitive steps) belongs to
strategies and their extraction (Chapter 7), not to the recording of proof processes.

4.4 Multiple attempts

Discovering a proof of a conjecture is rarely a straightforward first-attempt effort
of writing down the perfect final proof script. An expert may attempt several ideas
and approaches to tackling a specific proof, including backtracking after failed at-
tempts to some previous step or even starting afresh. The stories of “fighting with
the theorem prover” are common where the proof (together with the associated
lemmas and definitions) gets “massaged” to fit the expected format of the theorem
prover or the used formal method. Finally, after discovering a proof, it is refined,
cleaned-up and otherwise polished to achieve the final proof script. All this in-
formation comprises the story of how the expert found a particular proof and
contains valuable proof insight. To learn from this proof process and reuse it for
similar proofs, the proposed system aims to capture the whole proof development.

An important argument for capturing all versions of a proof is the loss of the
original proof insight during proof clean-up. Even when following a high-level
proof plan, the actual proof often includes exploratory steps of how specific proof
commands or lemmas suit the particular proof. The proof may go in smaller steps,
feature less automation, resulting in a sub-optimal proof script. The eventual
discovery of the proof provides the expert with a better view of the problem.
With this knowledge, the proof script is often “cleaned” giving way for better
automation and performance, general lemmas and more advanced proof script
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commands. For example, a detailed proof with multiple proof commandsmay get
replaced by an equivalent single super-command. In Isabelle proofs, a structured
Isabelle/Isar proof may get replaced by an unstructured series of tactic applications
or a suitable lemma, and vice versa.

A proof clean-up can indeed produce a more general proof (e.g. via extraction
and use of a general lemma) and result in a more general strategy. However, often
valuable proof process information is lost. The expert’s insight may be captured
more accurately within the original “slow” proof (e.g. the problem could be parti-
tioned into significant proof steps with important features marked), rather than
by the polished final super-command. The strategy extracted from the original
proof may be more amenable for reuse: e.g. when most of the proof can be reused
directly and only some sub-steps need to be adapted. A strategy extracted from
a super-command, however, might produce an unfavourable proof state when
reused: finding out where the strategy diverged would be difficult without taking
the smaller steps.

The proposed system aims to accommodate all versions of the proof for a
conjecture: the original discovery, the polished final version, alternative, different
solutions, and others (some examples are listed in Figure 3.3). Different attempts
could also represent different abstractions of the proof, particularly where the
different abstractions cannot be related in a compositional manner: i.e. the cases
not supported via the ProofTree structure (see Section 4.3).

Unfinished and discarded proof attempts can also carry valuable proof insight.
The expert may see the proof going in a direction that would not be possible (or
would be very difficult) to finish, and may choose to backtrack to some previous
step, then take the proof in another direction. Such failed attempts may still con-
tain generally applicable proof steps. Thus failed, abandoned or not-yet-finished
attempts should also be captured as part of the proof process.

An Attempt is modelled as a rooted ProofTree containing a recording of a single
actual proof. As explained above, the proof tree may be unfinished: i.e. there may
be outstanding goals in the last proof step(s) of the proof tree.

Attempt :: proof : ProofTree
derivedFrom : AttemptId
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The relationship between attempts (i.e. when a new attempt diverges from a pre-
vious backtracked attempt) can be recorded in the derivedFrom field. This allows
specifying some precedence between attempts. In general, however, proofs con-
tained within each can be viewed as an independent attempt of the same proof.
The relationship between attempts can then be established independently by com-
paring the proof trees for common proof steps.

An argument can be raised for capturing proof insight at the attempt level.
These would include high-level features or intent of the whole attempt, e.g. mark-
ing the whole thing as a “blind” or “guided” proof attempt. This information can
easily be represented on the root ProofTree node within an Attempt. For example,
a root ProofSeq element would define high-level insight of the whole attempt as if
it was a single-step proof. Then it would be decomposed into lower level proof
steps of how the proof is actually done.

All attempts of the same proof are collected in a Proof structure, which repre-
sents the proof process record of a single proof task (conjecture being proved).

Proof :: goals : Term+

label : [Name]
attempts : AttemptId m−→ Attempt

where
inv-Proof (mk-Proof (goals, label, attempts)) 4

∀a ∈ rng attempts · inGoals(a.proof ) =m goals

The conjecture, for which proof attempts are recorded in the Proof structure, is
captured as a collection of goals. Each attempt provides a proof tree for these
goals. Each proof record can be given a label value: e.g. to record the name of a
corresponding conjecture (lemma, theorem, proof obligation, etc).

When collecting proof attempts, the goals rather than the label dictate which
Proof structure is used to host an attempt. This is to ensure that all attempts are
actually of the same proof. The Term type of proof goals is expected to reflect
changes of goal terms, proof context or associated libraries (see Section 4.6 for
details). Thus, for example, if some sub-term of the goal changes, it will make a
different goal that is being proved. The proof attempt would then be captured in a
separate Proof structure. Furthermore, while label could be employed to partition

92



4.5. Collecting proof processes

the attempts according to some criteria, from the query and reuse perspective all
these attempts would still be of the same proof and may serve better for proof
search if collected together.

Note that the ProofProcess model and the proposed system are not concerned
with the provability of conjectures (i.e. whether a conjecture is actually a theorem).
Nor does it aim to ensure correctness and completeness of the captured proof at-
tempts. The proposed system aims to capture the proof process, not to become a
theorem prover. Thus incorrect definitions, unfinished or failed proof attempts are
expected as part of the overall captured proof process since they do appear dur-
ing interactive proof. When a strategy is extracted, the proposed AI4FM system
would use the strategy to drive some underlying theorem prover automatically,
thus all steps would be verified at the theorem prover level and incorrect proof
strategies would not proceed. Furthermore, as described earlier, even failed at-
tempts or strategies used for incorrect conjectures can yield generally applicable
proof insight, which could be reused for similar proofs of correct conjectures. The
Score information has been proposed to include considerations about the expert’s
trust in the chosen strategy. However, in general, the initial system is designed
with the assumption of a perfect expert. If the captured proof process is of low
quality, the extraction and reuse of its strategies would be negatively affected.

The rarely-straightforward process of proof discovery is captured in the pro-
posed system as a series of proof attempts. Similar provisions for storing alterna-
tive versions of parts of proof are also available in the PDS data structure used
by the Ωmega theorem prover [ABD+06]. The ProofProcess model, however, sup-
ports not just the alternative versions of a proof, but also captures unfinished or
failed attempts as well as aims to record the whole proof development including
backtracking and diverging of the proof with a better strategy. Refer to Section 6.3
for further discussion on when a new attempt is derived and how backtracking is
recognised in the proposed system.

4.5 Collecting proof processes

The recorded proof attempts are the key information about interactive proof pro-
cess for the purposes of proof strategy extraction. The proof insight and important
features are recorded within each proof attempt, thus extracting strategy infor-
mation would require querying (Section 13.3.4) over the set of recorded proof
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processes, clustering them into families (if available)20 and generalising over proof
features and intents (see Chapter 7 for further details on strategy extraction).

The ProofProcess model does not enforce much structure on how the captured
proof processes are to be arranged—the different implementations would choose
how the proof processes are aggregated or what further relationships are impor-
tant between the captured information. Thus at the top level all recorded proof
processes are collected into a database-like ProofStore object:

ProofStore :: proofs : Proof -set
intents : IntentId m−→ Intent
features : FeatureId m−→ FeatureDef

The ProofStore represents an arbitrary collection of proofs with their attempts to-
gether with associated vocabularies of reusable proof intent and feature definitions.

The concept of ProofStore is abstract by design to allow for different partition-
ing of proof process collections by different implementations. For example, if
ProofStore is taken to represent a database of recorded proof process data, the
scope of the database can vary for different use cases. One could choose to use
a separate proof store for each verification project,21 which would allow having
separate strategies for each project domain. Alternatively, there could be a single
ProofStore per user and the strategies would represent the style of proof that per-
son employs. A globally shared proof process store would allow for the recording
and querying of proof processes from several users: they could employ strategies
originated by their colleagues.

Refinements of ProofStore could also choose to introduce some partitioning and
relationships between collections of captured proof processes. For example, the
proof processes could be partitioned into bodies of knowledge, each representing
a specification that gives rise to the conjectures being proved (e.g. each body rep-
resenting a single theory in Isabelle). Additional relationships could be established
to record how one theory specialises (extends) others, when related theories are
morphisms of each another or possess a “fuzzy” similarity, etc. Such arrangements
would give more structure to the captured proof process information, but would

20The proposed system is expected to extract some strategies from just a single proof, but more
source proofs would help with generalisation.

21The prototype implementation of the ProofProcess system currently establishes a single
ProofStore database per Eclipse project.
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also introduce overhead to ensure consistency of the organisation, e.g. when the
specifications are refined and conjectures are moved around. Furthermore, a parti-
tioned proof process store would impact search capabilities: which proof process
stores are to be queried, how the relationships between them are followed, etc.
All this additional information needs to be recorded as metadata. In the current—
flat—ProofStore model, information about partitioning could be recorded as proof
features on relevant proof attempts: the proof context features would be suitable
for this purpose (see ContextFtr in Section 4.2.1). The proof process search would
then trim the search space by matching on appropriate origin proof features.

4.6 Linking with a theorem prover

The abstract model as well as the core of the proposed ProofProcess system are
designed to be generic and applicable to different theorem provers. Thus the main
concepts are designed to be prover-independent and provide a generic framework
to capture, represent and define abstractions of an interactive proof process. The
proof tree structure aims to represent proofs done in different proof systems and
reasoning frameworks. The combination of proof intent and proof features focuses
on capturing high-level proof insight by abstracting the prover-specific details.

While the framework aims to be generic, the actual proof processes would still
be based on interaction with theorem provers.22 Prover-specific data links the
proof process abstractions with what actually happens in the prover. This infor-
mation is very important to extract executable strategies or enable post-collection
analysis of the proof process. The system needs to provide a generic solution to
include prover-specific information. In the ProofProcess model, prover-specific de-
tails are accommodated via two points of abstraction: Term and ProofTrace. The
Term concept is used to provide different representation capabilities for logic terms,
lemmas and other prover objects, while the ProofTrace represents prover-specific
details of a proof step: tactics, proof commands, etc.

4.6.1 Recording terms

Terms (e.g. predicates or expressions in proof goals, their sub-terms, etc.) in dif-
ferent theorem provers and proof systems are not represented in a uniform way

22Themodel actually allows any reasoning framework to be the basis and source of the captured
proof processes: e.g. manual natural deduction proofs could be encoded just as easily by employing
some established formal notation for terms and recording inference rules for proof steps.
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and may have different meanings and assumptions associated with them. The
differences span from definitions of the same concepts to treatment of function
partiality (e.g. functions and maps are total in Isabelle but by default partial in
VDM) and even to logic fundamentals (e.g. tri-value Boolean operators in VDM).
Development of a uniform representation for terms that could cover different proof
systems is therefore not feasible in general. Instead, the ProofProcess model and the
proposed system opts for keeping the terms specific to their proof systems. This
would enable different proof systems to reference the terms within the captured
proof processes with richness appropriate for correct term representation.

The prover-specific terms approach does introduce an obstacle in that different
proof systems would be unable to interpret terms recorded by other systems. This
is a design decision: the captured proof process information and the extracted
strategies from one system would be limited to reuse within the same system.23 Al-
lowing strategies to be reusable between different proof systems is not very feasible
anyway given the possible fundamental differences in logic and term represen-
tation. Some success is expected, however, at the very abstract level of general
proof insight. Proof intents and features could provide enough abstraction over
prover-specific information to extract skeletons of high-level proof plans that would
be reusable across different provers. Alternatively, there could be translators to
convert terms captured from one prover to be understood by another.

In the ProofProcess model, actual term representations would be defined in
prover-specific extensions of the model.24 At the abstract level, the model does
not require knowing the contents of term representations, which are modelled as
an uninterpreted given type Term:

Term = token

The abstract notion ofTerm at this level is used to represent various different prover-
specific concepts, such as the following:

• Goal terms and sub-terms: predicates, expressions, other complex terms or
combinations of sub-terms, etc.

23The reuse could be limited even to the same version of a theorem proving system, especially
when serious changes occur in the development of a theorem prover or its base proof libraries.

24See Sections 9.2 and 10.2.1 for prototype extensions supporting terms in Isabelle and Z/EVES
theorem provers, respectively.
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• Definitions of lemmas, operators, functions and other parts of the formal
specification.

• Term shapes to represent terms with placeholders.

• Other prover items available in proof context, tactic configurations, etc.

ThisTermdata is referenced as parameters of proof features, marking the important
parts of the proof process (Section 4.2).

4.6.2 Coping with specification change

When choosing representations for prover-specific Terms, it is important to con-
sider their consistency when the current proof context changes. The captured
proof process data is “old” by its nature: each previous step is a snapshot of what
has happened in the theorem prover. With every new proof attempt the old proof
records diverge from the current specification. The definitions or concepts used
by previous proofs may no longer be available in the current version of the speci-
fication. The divergence is even quicker with the associated proof context, which
changes with every step.

Because of this change, each Term must record enough information about the
proof context and related proof objects to allow for standalone inspection and inter-
pretation. This standalone analysis would happen, for example, when the current
proof attempt is compared for similarities with proof process data from older cap-
tured attempts. The matching algorithms would need to interpret and compare
terms recorded at different points of formal development. Several points about
possible term representation options are discussed in the following paragraphs.

There are different options for choosing a specific representation for the Term
object, in particular the term itself. One way would be to use indices as in the
mural system [JJLM91]. This would allow for simple and unique references of
terms, however the whole snapshot of theory would need to be carried along to
know what each index is mapped to.

For many formal notations and provers, a simplistic approach of recording a
term would be using its plain-text representation: e.g. terms in Z specifications
of the Z/EVES theorem prover could be represented as Z Unicode or LATEX repre-
sentations. However, a plain text representation of a term would mean different
things at particular points of formal development. To illustrate the issue, consider
Z schemas. A plain-text term, such as a goal predicate, would reference some
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Z schema using just its name. The issue is that during formal development, the
schema itself can easily change (e.g. adding new fields or invariants, changing
properties, etc.) while keeping the same name. This means that all terms refer-
encing the schema would also change their internal representations. The same
issue would apply for functions, operators, lemmas or other definitional concepts,
which definitions could change.25 To ensure the correct references of terms within
the proof process, the Term type has an assumption that when internal representa-
tion of a term changes, the change must be recorded and taken into account when
comparing these Terms. The same applies for lemmas: two proof features refer-
encing the same lemma are different if the lemma has changed between them. If a
strict approach is taken, two instances of the same specification, if based on differ-
ent versions of the base theory library, would have to be assumed to be different,
unless some way existed to ensure that the meaning of the term had not changed
in regards to using it in the proof process. Sets of terms from different proof
languages/systems are assumed to be disjoint, since showing semantic equality
would prove very difficult.

The possibility of change in the internal representations of recorded terms
means that when terms are analysed, they are “matched” rather than checked for
equality. Theword “match” is used in this thesis to emphasise that all comparisons
of terms and other proof process data are rarely absolute and involve “fuzzy”
checks. The use of proof features can help with coping with changes in definitions:
e.g. structural features (Section 4.2.1) can be used to mark the parts of schemas,
lemmas and definitions that are important to the proof process. If changes occur
in other parts of the definition, the terms would still be comparable. However, the
parameters of such proof features would again be Terms and may have change-
prone internal representations of their own.

The need to record all proof context and associated definitions can be relaxed
at the term level by limiting the reuse of the recorded proof process and extracted
strategies. For example, if the ProofProcess framework is to be used with a single
version of a theorem prover and base libraries, it is not necessary to record internal
definitions in these libraries as they will not change. The theorem prover would
have the same versions of definitions when matching terms. Current versions of
the prototype systems presented in this thesis actually employ this simplification
by focusing on specific versions of Isabelle and Z/EVES theorem provers.

25Although base libraries of theorem provers are unlikely to change at least within the same
version of a theorem prover.
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4.6.3 Proof step trace

The ProofTrace data is used to capture prover-specific information about a proof
step. It serves as justification of an abstract proof step (see Section 4.3.3) and is
used to represent actual prover steps in the model. Recording prover-specific
details about a proof step is important to enable executable strategies to be extracted.
The abstractions presented in this chapter allow for the recording of high-level
proof insight, which would comprise the extracted high-level strategies. However,
during replay (strategy reuse), it is important to know how the high-level proof
step is to be achievedwithin the prover. The AI4FM system is expected to drive the
theorem prover automatically when replaying a strategy. The “prover-meaning”
of abstract proof steps is recorded as a trace of low-level information about proof
commands, tactics and configurations used.

Consider a proof step that sets up induction in a proof. It may be captured as
Apply induction rule proof intent with important features that an inductive vari-
able i1 exists in the goal and a lemma L1 is available with an appropriate induction
principle. This could be extracted as a step within a strategy. When the strategy is
reused for a similar proof, the systemmay recognise matching features: e.g. that a
similar inductive variable i2 exists and an appropriate induction lemma L2 is avail-
able. However, just the abstract strategy steps do not contain enough information
how to “apply” the strategy to the goal. One way would be to encode the logic
within the systems, e.g. how to realise an induction step. However, this is not very
feasible as all possible tactics would need to be encoded and the experts would
have to stick to a prescribed set of intents. A more flexible way is to capture what
was done for the abstract proof step originally: e.g. in an Isabelle/HOLproof such in-
duction set-up could be done using the command apply (induct i1 rule:L1).
During strategy extraction this could be generalised and when the strategy is
reused, the system would figure out that the command needs to be adapted to
apply (induct i2 rule:L2), which would advance the proof automatically.

The actual representation of what constitutes enough information to describe
how a proof step is done within a theorem proving system—the ProofTrace—is not
uniform across different provers. Concrete representations would be provided by
prover-specific extensions of the model, e.g.:

ProofTrace = NaturalDeduction | IsabelleTrace | ZEvesTrace | . . .
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It is assumed that each proof trace captures enough information to be “replayable”:
e.g. the proof command, used tactic and its parameters, also configuration options
about the prover and the proof context (e.g. simplifier depth in Isabelle).

ProofTrace may also be used to record details used by other extensions of the
proposed system (in addition to strategy extraction). For example, the proof trace
could record the position of its proof command within the proof script:

IsabelleTrace :: . . .

source : [TextLoc]

TextLoc :: filePath : File
offset : N
length : N

Recording such informationwould establish a parallel between the captured proof
process and the proof document that is actually being developed. Also, it is used
by the proof history capture to reference old versions of specifications and proof
documents. The link between the captured proof process and the proof scripts
would be beneficial from the user interface perspective, e.g. indicating how the
captured information corresponds to what has been input to the prover; as well as
a fail-safe for recording the proof process: the associated proof scripts would be
preserved in case further inspection is needed for the proof process. The next chap-
ter elaborates this further by proposing a full extension of proof process capture
to accommodate the recording of the history of proof development.
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CHAPTER 5
Proof history

Proof history constitutes an important part of the full account of how proofs are
developed. Capturing the order, timing and other details about proof activities
alongside the high-level proof process provides new opportunities for proof pro-
cess analysis and strategy extraction, as well as expanding the possible uses of the
captured data into different applications.

Section 5.1 presents an approach to recording proof history as high-level proof
activities as well as linking the captured proof steps with the proof scripts where
they originate. This establishes a historical dimension to the static proof process
view. Section 5.2 proposes how the captured proof timeline can be used to re-
run the full proof development: i.e. to “animate” the expert. This enables testing
of new analysis techniques or retroactive refining of the captured data. Other
interesting opportunities using the proof history include proof explanation and
proof metrics, which are discussed in Sections 13.4.2 and 13.4.3, respectively.

5.1 Recording proof history

Proof history is designed as an add-on to the core ProofProcess model (Chapter 4).
The core model provides a static view of the captured proof process, with the aim
to facilitate extraction of proof strategies. Neither the core model nor the strategy
extraction require proof history: proof attempts aim to be self-sufficient candi-
dates with enough high-level information for strategy extraction. Proof history
is therefore a modular extension to the core proof process capture and provides
additional opportunities for the automation of strategy extraction as well as for
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other applications, such as proof metrics. The modular design is repeated in the
prototype implementation (Section 8.3).

5.1.1 Abstract proof log

Proof history can be recorded at two levels: as a log of abstract proof activities as
well as a history of proof script changes (Section 5.1.2). A high-level ProofLog is
simply a sequential account of various important formal development Activities.

ProofLog :: activities : (Activity× Timestamp)∗

Timestamp = N

Each activity is timestamped to provide a time-based perspective to inspect the
captured proof process rather than just a precedence-based one. This could pro-
vide some insight into proof durations and similar metrics (see further discussion
in Section 13.4.3). The notion of Activity within the log can be taken to represent
any important action in the development of the formal specification and associ-
ated proof scripts. For example, new proof steps are recorded using ProofActivity
entries, providing a link between the log and the static proof process trees.

Activity = ProofActivity | DefActivity | . . .

ProofActivity :: proofStep : ProofEntry

Other activities to track within the ProofLog can include introduction of new def-
initions (datatypes, functions, lemmas) in the formal specification (DefActivity),
changes to the specification, etc.

For example, a proof log tracking all proof and specification activities would
reveal that lemma L1 was introduced and proved while in the middle of some
bigger proof P0. A timeline of such a scenario could be as follows:

1. ProofP0 is in progress (ProofActivity entries logged for each proof command);

2. Definition of lemma L1 is added to the specification (newDefActivity logged);

3. Proof P1 of lemma L1 done (ProofActivity entries for P1);
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4. Proof P0 continues, now using lemma L1.

While the log reveals how the lemma came to be, it is not technically required for
the strategy extraction. The proof process would record the successful attempt
with a used lemma proof feature that lemma L1 (and its important features) was
required to advance the proof. The fact that it was added in the middle of the
proof is not important: the similar proofs may need a similar lemma to be added
or the lemma could be already available. However, while the time account is not
mandatory for strategies, it will facilitate other uses. For example, a “movie” of the
formal development process could visualise the lemma addition (Section 13.4.2).

ProofLog is a top-level concept similar to ProofStore. Using several proof logs
would be subject to similar considerations as the use of ProofStore: i.e. there can
be different logs per-project, per-user, etc. (cf. Section 4.5). Note that in the case
of multiple users (e.g. global proof store and log), the sequential activity log may
be insufficient to record simultaneous activities, calling for more advanced log-
ging solutions. In general, the ProofLog would be paired with the corresponding
ProofStore, as is implemented in the prototype system (see Section 8.4.3).

Proof activity log can be captured automatically, by recording proof steps (new
definition commands, etc.) as they are sent to the prover. The proof history would
capture all proof development, including backtracking, failed attempts, fixing
definitions, etc. Some manual proof management facilities could be of use, e.g. to
drop unnecessary proof activities or to “clean-up” the history. In general, however,
logging would be done in the background without user interference.

5.1.2 Proof script history

The abstract proof log records only certain high-level information (i.e. activities)
about how the development of a formal specification and proof progresses. An
additional low-level link between the proof scripts1 and the captured proof process
can be established by recording the proof script history and positions of proof steps
within. One of the benefits of recording detailed proof script changes is to allow
the re-running of the captured proof automatically within the theorem prover.
This would allow running additional analysis and enriching the captured data
after the expert has finished working on the proof (discussed in Section 5.2).

1The notion of “proof script” used in this thesis denotes files that can contain the statements
of the formal specification alongside the proof commands: i.e. they are not just for proofs. For
example, Isabelle theory files mix definitions and proofs within the same file.
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Details about the proof script can be recorded within the ProofTrace data (Sec-
tion 4.6.3), which already captures prover-specific information about the proof
command used. For example, it can record the position of the proof step within a
proof script, if available. The actual representation would be prover-specific: e.g.
the source field within IsabelleTrace can indicate the position of the proof command
text within the Isabelle proof script file:

ProofTrace = NaturalDeduction | IsabelleTrace | ZEvesTrace | . . .

IsabelleTrace :: . . .

source : [TextLoc]

TextLoc :: file : File
offset : N
length : N

ZEvesTrace :: . . .

source : [TextLoc]

The location of a proof command is recorded as the offset and length of the text
comprising the command within the text file (as TextLoc record). This approach is
applicable for all text file-based formal specifications and proof scripts: e.g. Z Uni-
code or LATEX specifications used in Z/EVES, etc. Other theorem proving systems
(e.g. Rodin toolset [ABH+10]) use different representations for their proof docu-
ments, thus integration with such TP systems would use different representation
for recording proof step locations. The general requirements about referencing
proof source (e.g. the need for version history, etc.) would be similar, however.

Recording the proof script source must be done considering proof history:
the proof scripts change during proof development. The captured proof process
data preserves old attempts, which would reference old versions of the proof
script. Therefore the TextLoc.file cannot reference the “working copy” of the proof
document. Instead, the proof commandmust reference the exact state of the proof
script at the moment of execution. The expert may backtrack, alter, even discard
the old proof commands. Capturing this process and preserving the history of
proof script files is important to achieve the correct link between the proof process
and the proof scripts.
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The File type abstracts the location of the proof source, because the file contents
can be referenced and accessed in different ways: e.g. the file versions may be
stored in the file system, in a database, within a version control system, etc. Fur-
thermore, the abstract model assumes that File references ensure the consistency
between the contents of the file and the proof steps they are referenced from: i.e.
that a correct file version is used; that loading the file version would reinstate
the same version of the proof state, etc. Section 8.7 presents a generic File History

framework to automatically record proof history and provide suitable File refer-
ence implementations. The framework provides an approach to capture versions
of text-based proof script files in a prover-aware, performance-optimised manner.
Alternative implementations of file history provision are also discussed.

In general, proof script history can be recorded automatically, provided a “log-
ging” framework to capture different versions of the proof script files is available
(e.g. the File History framework in Section 8.7). The proof command text positions
are normally available from the proof assistant: such information is used to high-
light the status of the commandduring proof (e.g. whether any errors occur during
command execution). The recording of command positions would also benefit
the ProofProcess system user interface: e.g. the captured proof process could be
highlighted (overlaid or otherwise marked) in the proof script. The established vi-
sual relationship between what is written in the proof script and what is captured
would benefit the user. Another important use—re-running the captured proof
scripts—is discussed in the next section.

5.2 Re-animating captured proof

Re-animating the captured proofs is an interesting use of all the captured proof
process information. The high-level proof process information (Chapter 4) pro-
vides a static view of distinct proof attempts, which can be leveraged for extracting
reusable proof strategies. Capturing the relationships with the actual proof scripts
as well as recording the time perspective will enable users to inspect and automat-
ically recreate the full proof development process leading to these results.

The ability to automate the actions that the expert has performed previously
would also be useful during the development of the proof process capture system
itself. It would enable the testing of different hypotheses and techniques about
automatically inferring the proof process. Some of the techniques are explored in
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Chapter 6, however implementing and putting them to use can require significant
additional development effort, upgrades in the theorem prover API, etc. With the
full proof history being captured and the ability to re-run it later, users can start
performing proof capture with minimal proof inference capabilities (e.g. while
the system is still in development). When new functionality to infer the high-level
proof process is subsequently added, the already-captured proof process could
be re-run to upgrade the data using the additional system capabilities. Also, as
a future-proofing measure, this would allow capture of additional data from the
prover: e.g. if it becomes clear that some unanticipated aspects of the proof are
also important and need to be captured. Finally, the approaches of inferring proof
intent and proof features could be evaluated by re-running the manually-marked
proof process and comparing how the automatically inferred data relates to what
had been marked manually by the expert.

5.2.1 Re-running proof attempts

Proof process capture aims to record a sufficient static view that can be inspected
without running the underlying theorem prover and recreating the original proof
state. This includes significant low-level information such as target and result
goals, associated proof command configuration, etc. Furthermore, the proof in-
tent and features capture high-level proof insight that is more suited for human
consumption. This information is enough for a standalone high-level inspection
of the captured proof process.

However, the theorem prover can be required if further prover details are
needed. For example, while the rendering of captured goals can be captured
initially, examining or extracting sub-terms from within the goals may require
prover functionality. Thus if the user wishes to inspect the goal in detail, “zoom
into” certain definitions, partition the goal or perform other similar actions, the
prover and an associated proof context are needed.2 To enable such a detailed
inspection, the correct proof context needs to loaded, which can be achieved by
re-running the proof up to the point of interest. This will feed the required proof
data (e.g. associated definitions, other formal specification elements) to the prover.

To re-run a proof attempt up to some recorded proof step (i.e. “load” a particu-
lar proof state), the proof script indicated as the source of the step’s proof trace (e.g.

2The proof features are intended to capture some of the important proof context (e.g. particular
goal details, definitions of important functions, etc.), but the full proof context recording is neither
feasible nor actually needed for the standard use cases.
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IsabelleTrace.source) is used. The TextLoc reference contains both the proof script
file and the end location (= offset+ length) of the text to submit to the prover. Sub-
mitting the referenced version of the proof script to the prover would produce the
expected proof result.

When re-running a single attempt, several additional things need to be consid-
ered. The theorem proving system and base theory libraries used to re-run the
proof should match the system and libraries of the original proof process record-
ing. Furthermore, if the linked proof script is part of a larger development (e.g.
it imports other formal specification files, such as parent theories in the Isabelle

prover), correct versions of these related files need to be resolved. If the prover,
base libraries or related files differ from the original recording, the proof results
are likely to differ as well.

5.2.2 Re-running full proof development

Re-running the full proof development can be used to “animate” the expert. Rather
than just getting the final version through the prover, this would recreate the
actions of the expert from the beginning to the final version. Full re-run is suited
for automatic analysis techniques as well as to view a full “movie” of how the
proof has been developed. The latter can be used for teaching and training in
interactive theorem proving and is discussed further in Section 13.4.2.

Automatic proof analysis techniques can range from recognising the proof
structure or identifying important terms within the goal to using previously cap-
tured data to infer high-level insight: i.e. identifywhat the expert is doing andwhy.
Chapter 6 proposes several approaches and techniques to infer the proof process
information automatically. As such techniques are developed, they will become
more powerful and more accurate in inferring the correct proof process. Proof his-
tory capture and re-run capabilities accommodate such incremental development:
they allow running the proof as it waswithout asking the expert to redo the proof
manually. For example, the captured proof structure could be refined retroactively
by developing better proof process “parsers” and re-running the original proof.
All proof insight manually marked by the expert (proof intents, proof features,
etc.) needs to be carried over during such refinements of the captured data.

Furthermore, full re-run accommodates the development of new techniques
that work on data currently not captured by the ProofProcess system. For exam-
ple, say it becomes apparent that intermediate backtracking (e.g. when the expert
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leaves one proof unfinished to discharge a helper lemma) is important to captur-
ing the proof process. Re-running the full proof development with new analysis
functionality would enable capture of this.

Full re-run of the captured proof process uses the sequential log of user interac-
tion activities recorded in theProofLog (Section 5.1.1). EachProofActivity references
a particular proof step: this provides an ordering of proof steps. Each proof step in
turn has information about the corresponding proof script version and command
location. With this data, re-run functionality knows how much of which proof
script to submit to the prover. Backtracking is indicated by new versions of the
proof script: the new content replaces the old one in the prover. The sequential
log of activities would also ensure that all dependencies are consistent: i.e. the
proof steps of the “parent” proof script would have been submitted earlier than
those of the “child” and the order would have been reflected in the ProofLog.

¦ ¦ ¦

The proposed extensions to capturing proof history alongside the static high-level
insight provide a number of opportunities to inspect and re-evaluate the expert’s
interactive proof. Particularly, it can be used to test approaches about inferring the
proof process automatically. The next chapter proposes some ideas about inferring
the proof process structure, identifying important parts of the goal and otherwise
trying to figure out automatically what the expert is doing.
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CHAPTER 6
Inferring

proof processes
Obtaining a high-level description of how an expert does an interactive proof can
be seen as a case ofmind reading. Chapters 3–4 identifywhat constitutes a descrip-
tion of an expert’s proof process and propose a model to capture and record the nec-
essary information. While low-level proof information such as proof commands
or goal changes can be queried from a theorem prover, capturing the high-level
insight in the expert’s mind is difficult. The system can ask the expert to indicate
the high-level proof structure as well as provide proof intent and proof feature
descriptions manually. Unfortunately, this introduces a significant overhead to
capturing the proof process. Inferring some of the high-level information auto-
matically would lessen the burden on the expert as well as improve the available
high-level proof process data to facilitate strategy extraction.

Investigating how the proof process capture can be automated is one of the
aims of this PhD research as described in the H2 hypothesis (repeated here):

Certain information about the proof process can be inferred automatically, via
analysis of proof context and previous proofs.

This chapter proposes several techniques to infer the high-level proof process ab-
stractions: from identifying the proof structure and new attempts to inferring
proof intents and important proof features for certain known types or by compar-
ing with previously captured data. The prototype ProofProcess system (Part III)
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implements the proposed proof structure capture as well as identification of back-
tracking and new proof attempts. Building and evaluating the functionality for
inferring proof intents, proof features and matching with previously captured
proof process data, however, is left for future work.

6.1 Analysis of captured data

As per the proposed interaction model (Section 3.2), the ProofProcess capture sys-
tem obtains data from the theorem prover and from the user. This includes the
user’s proof commands as well as the current goal and proof context, the corre-
sponding results and other data. Constructing a high-level proof process from this
low-level stream of data requires automatic analysis and manual intervention.

The goal of the AI4FM research is to increase the automation of interactive
proof by learning strategies from an expert. The extra effort spent on manually
specifying important proof process information can be justified, as it could be
outweighed by the success in automating similar proofs by strategy reuse, or at
least by suggesting hints on how to proceed with the proof based on previously
captured information. However, more automation in inferring the proof process
by analysing the incoming data would go a long way towards better usability of
the system. By “filling in” the repetitive parts, it could incentivise the expert to
ensure that an adequate high-level description of the proof process is captured.

There is no measure to define when a “perfect” proof process is captured. In
fact, it can be argued that providing hints rather than a full abstract “specification”
of the proof process is more efficient for strategy reuse within a family of proofs
(Section 4.2.2). In general, the captured proof process data can be continuously en-
hanced. The “poorest” proof process consists of a stream of proof commands and
proof results from the theorem prover: this information is readily available. Any
and all higher-level structure or meta information can be added afterwards, en-
hancing the quality of the captured proof process as well as facilitating extraction
of better, more precise proof strategies. When discussing automatic analysis and
inferring capabilities, the process can be partitioned into three parts:

• Incoming data: the system “wire-taps” and records the submitted proof
commands and the prover output results. Immediate analysis can be done
to recognise the proof attempt: whether the user is backtracking, doing a
new proof or continuing a proof attempt. Then the proof structure can be
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inferred by investigating the results of the proof commands. The expert is
presented with a structured representation of the captured proof data.

• Together with the expert: proof intent, features and other high-level infor-
mation can be inferred for the newly-added proof steps. This data is suggested
to the expert. Inferring proof features can produce significant noise, with
certain types not important to the current proof, or low trust in how well a
previous proof matches the current one.

The expert approves the actually important inferred information among the
suggestions. Furthermore, the expert may want to adjust the earlier-inferred
proof structure to match the high-level insight. Finally, inferring some data
may need input from the expert: e.g. the expert marks some proof features
manually, then some of the associated ones are inferred automatically.

• Post-capture: the captured proof process data is recorded and stored for
future access: either to extract proof strategies or for other uses. Additional
analysis can be done on this body of data. For example, using machine-
learning to infer certain data would require running it on a large dataset
and may take a long time. Furthermore, new algorithms can be developed
post-capture and re-run to enhance the captured proof process data.1

Unfortunately, the expert is not present when inferring the information post-
capture and cannot approve the new data. Therefore the quality of the data
generated using post-capture analysis depends on the quality of the inferring
functionality and trust in it.

The ability to consult the expert to verify the inferred proof process information
allows for the use of broader algorithms and more “guesswork” when producing
the suggestions. Other parts can be inferred quite deterministically and thus can
be run automatically. The following sections describe some of the approaches.

6.2 Inferring proof structure

Inferring the proof structure from the incoming low-level proof data is mostly con-
cerned with recognising the proof branches. Proof sub-goals can be discharged
independently, using separate branches of proof commands. Identifying the proof

1Proof history (Chapter 5) captures enough information to re-run the full proof development,
enabling such delayed development of new analysis functionality.
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branches facilitates the clear description of the user’s intent. Separation of inde-
pendent parts of the proof also helps facilitate their individual reuse.

Proof scripts often consist of linear sequences of proof commands. Even when
a proof structure is revealed internally, the “overview” representation is still a
simple sequence of commands.2 Theorem provers track which goals are changed
by proof commands internally, but this information might not be presented to
the user. For example, when constructing a proof in Isabelle, the user sees all
open sub-goals at once. When a proof command is submitted, some of the goals
may change, others remain the same. By default, the proof commands operate
on the first sub-goal. However, some proof commands (e.g. auto or simp_all)
can transform all goals at once; or the user can explicitly restrict commands to
particular goals. Inferring the proof structure entails tracking which goals are
transformed and untangling the proof commands into a tree structure.

The proposed ProofProcess system aims to work as an add-on to theorem prov-
ing systems rather than an invasive replacement. The API provided by the provers
is often limited in regards to howmuch internal structure can be extracted. There-
fore the proof structure needs to be inferred from the prover output (i.e. what is
displayed to the user). A simple approach is to track the goal changes and match
the input goals of a proof step with the output goals of the previous one.

Consider a proof with three open sub-goals (e.g. using Isabelle): A, B, C. A user
submits a proof command P to the prover. The result contains only two sub-goals:
D and C. Goal C remains the same after the proof step, which indicates that it
is not affected by the proof command.3 Therefore the proof step only transforms
goals A and B, resulting in a new sub-goal D. This information is recorded for
each ProofStep: P(inGoals: [A,B], outGoals: [D]). Goal D is discharged by a subse-
quent proof command Q(inGoals: [D], outGoals: [ ]), which leaves C unchanged. It
is finally discharged by a proof command R(inGoals: [C], outGoals: [ ]). Figure 6.1
illustrates this scenario.

By tracking the affected goals, the system can identify the scope of each proof
command. Afterwards, the input and output goals of two subsequent proof steps
can be compared. A branching point is identified when some of the output goals
are not “consumed” by the subsequent proof step (e.g. proof step K in the example

2To improve proof overview in proof script files, users sometimes performmanual indentation
of proof commands to illustrate “nested” proof branches.

3Collisions (i.e. that exactly the same goal was the result of transforming some other goal)
should be rare and are therefore ignored.
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K

...

A B C

P

Q

R

D

(a) Graphical representation.

...
apply K // result goals: A, B, C
apply P // result goals: D, C
apply Q // result goals: C
apply R // result goals: none
done

(b) Proof script fragment.

Figure 6.1: Branching by tracking affected goals.

above, because P only consumes two sub-goals). The chain of proof commands
is then followed ahead and proof commands are assigned to the proof branch
(e.g. proof step P starts the branch, proof step Q continues the same branch as it
consumes all output goals of P). When a proof step consuming an earlier open goal
is encountered, it starts a newproof branch (e.g. proof stepR), parallel to the earlier
recorded ones. Tracking goal changes can be done recursively for further branches
within branches: the analysis can infer complex proof structures. A merge point is
identified when input goals of a proof step come from different proof branches:
i.e. they match output goals of last proof steps in different branches.

The example in Figure 6.1 features a proof command that “consumes” two
sub-goals and produces a single one. As discussed in Section 4.3.7, without access
to internal goal tracking in the prover, it is difficult to infer which of the goals
were discharged completely, and which produced the residual sub-goal. However,
recording two sub-goals being transformed into a single sub-goal aligns to how the
user perceives the proof via the prover output. In the majority of cases, however,
only a single sub-goal is affected and the number of proof branches is the same as
the number of output goals. The approach presented here works well with both
the straightforward and the complex structures.

The proposed approach of inferring proof structure by tracking goal changes
is simple and can be used for different theorem provers. It does not need changes
to the theorem prover internals or proof command definitions. While not entirely
accurate in terms of how goals are transformed internally (i.e. whenmultiple goals
are affected), it captures the structure as the user perceives it.

Other systems aim to follow the prover very closely when capturing the proof
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structure. For example, the Tactician and HipCam tools are used to capture hiproofs
in HOL Light proofs [OAA13]. This requires following how the sub-goals are trans-
formed by proof tactics, extracting the proof structure along the way. Their func-
tionality is invasive to the prover: Tactician requires modifying proof tactics used
in the proof, HipCam modifies the kernel of the HOL Light theorem prover. Note,
however, that they can capture the nesting of proof tactics as well (i.e. if a tactic
utilises other tactics within), warranting a deeper integration.

Inferring the branching structure is not needed in some other theorem provers
as the information is readily available. For example, when a case split is done
in Z/EVES proofs, the prover outputs a “case number” indicating which proof
branch is active. Nested proof branches are identified by a sequence of numbers,
e.g. “case 2.1.3”. This information can be utilised to identify proof branches in the
captured ProofProcess structure. This is helpful to the user as well, since Z/EVES

proof scripts are the usual sequences of proof commands. Other systems provide
the proof structure information via add-ons,4 or a tree representation is used as the
default user interface.5 The existing functionality can be reused when capturing
the proof process structure in such cases.

Inferring proof branching structure can be done by tracking how proof goals
change, or by querying the prover directly. Inferring proof step grouping structure
(i.e. how high-level proof steps abstract over sequences of lower-level ones) is a
more difficult problem. The high-level proof steps are marked by the expert, thus
to infer them, it is necessary to look at how previous proofs were structured. The
approach would be similar to inferring proof intent or features by comparing with
the previously captured data, which is discussed in Section 6.6.

6.3 Recognising proof attempts

Proofs attempts are used to capture the full proof development: failed proof direc-
tions, successful alternative proofs, clean-ups of already-discovered proofs, and
so on (Section 4.4). Each proof attempt is a self-contained proof process structure,
so when a user backtracks in the proof and searches for a new direction, it needs
to be recognised and captured as a new attempt in the system.

Identifying a new attempt requires comparing the captured proof process data
of the current proofwith previously captured proof attempts. Some considerations

4For example, the proof tree visualisation in Coq [Tew11], the PVS prover [ORS92], etc.
5For example, in the Ωmega theorem prover [SHB+99], the Rodin tool [ABH+10], etc.
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in recognising whether an attempt is new are listed below:

• Proof re-runs do not create new attempts. Large developments spanmultiple
days: a user would re-run the existing proofs upon resuming work. To avoid
populating the captured proof process database with copies, re-runs do not
spawn new attempts: existing attempts are used instead.

• Proof process data is used for attempt comparison. Re-run matching cannot
rely on low-level proof script information such as command locations, order
of steps, etc. A user may split the proof script into different files, re-order
theorems and proofs in the proof script, add comments or delete text, etc.
Such changes do not alter the proof or the proof process, thus the same
attempt is recognised. The captured proof process provides an abstraction
of the low-level proof and is used for attempt comparison.

• Order of branches is ignored. The ProofParallel structure captures branches
as a set: from the abstract point of view, it is not important which goal was
attempted first. Reordering of individual branches (i.e. lists of proof steps
comprising the branches) does not spawn a new attempt.6

• An attempt is extended when the new proof wholly matches it but has addi-
tional steps. Instead of producing a new attempt, the existing one is extended
with new proof commands. All new attempts are built up in this way: when
a new proof step is submitted, the whole of the current proof is matched to
an existing attempt which is extended with the new proof step.

• If the current proof is “shorter” than a previously captured attempt, it is not a
new attempt yet. In many cases, this is an old proof being re-run. Sometimes
the user may inadvertently start re-doing the proof in the same way as it was
done before. By matching with a previous attempt, the system can inform
the user about treading an old path.

• A new attempt is recognised if it diverges from all existing attempts on the
same proof. It may match an existing one in the majority of the proof, but,
for example, one branch employs a different proof step. This indicates the
user has backtracked the proof in this branch and has taken a new direction,

6In the prototype ProofProcess system, commands that “do nothing” are ignored during proof
capture. For example, the prefer and defer proof commands in Isabelle are used to reorder the
sub-goal list. Since the branch order is not important in proof process capture, they are ignored.
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constituting a different attempt. The proof attempts can be compared to
identify an actual point where the proof diverges, but this information is not
recorded explicitly in the ProofProcess model.

• When a new proof attempt is created, the appropriate high-level insight is
copied from the previous one. The expert may have indicated the high-level
proof steps and marked the proof features for the majority of the proof: this
information is duplicated in the new attempt (where the attempts match).

• There can be cases when the user wishes to record an alternative set of high-
level insight on the same proof: e.g. indicate different high-level steps, etc.
This can be supported by allowing manual duplication of an attempt and
adjustment of the information.7

• If the specification changes significantly (e.g. a function is redefined, etc.),
even if the goal looks the same, a different thing is being proved. This results
not just in a new attempt, but in a whole new proof (see Section 4.6.2).

The prototype ProofProcess system recognises new proof attempts and provides
basic proof re-run matching. Graph-subgraph isomorphism is used to compare
proof attempts and identify new ones as well as re-runs or extensions of previous
attempts. Support for transferring high-level proof process information between
the attempts is limited, however. Section 8.6.2 provides more details.

6.4 Inferring proof intent

Proof intent is a user’s description of a high-level proof step, abstracting over
low-level proof commands to convey the idea of what the proof step actually is
intended to do (Section 4.1). Inferring this information requires looking at exam-
ples from previous proofs. The only proof intent candidates that could be inferred
“from scratch” are high-level descriptions of proof commands or related math-
ematical concepts: e.g. whenever an induct tactic is used in Isabelle, the proof
step could be tagged with Induction intent. Following it, the subsequent proof
branches could be identified as Induction base case and Induction step case, etc.

The general problem is similar to inferring proof features by “learning” from
the previously captured proof processes (discussed in Section 6.6). Nevertheless,

7Manual deletion of attempts is also useful, as the user may wish to discard attempts of little
value (e.g. when unsure about which proof command needs to be used and trying all of them).
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it may be easier to infer proof intents than features. Intent tags are parameterless,
therefore they do not need to be matched to corresponding parts of the goal or the
proof context. Furthermore, they are used to describe what the proof step does,
suggesting a strong correlation between the proof command and the intent.

For example, if the proof command apply (elim conjE) (conjunction elimi-
nation) was tagged as Cleanup proof intent in a previous proof (see Section 11.2.1
for example), when the same command is used again, the same proof intent could
also be suggested. The proof intent suggestions could be linked to tactics (e.g.
the induct tactic discussed above) or to lemmas explicitly listed by the proof
commands: e.g. the application of lemma disjoint_union is always used to Split
disjointness in the heap case study (Section 11.2.2).

6.5 Inferring proof features

Proof features mark the important parts of the proof, highlighting the triggers,
prerequisites and expected results of each proof step (Section 4.2). They provide
flexible instruments to mark everything important to the proof. However, this
flexibility means that inferring them automatically is difficult in general.

Furthermore, inferring proof features exhaustively can generate a lot of noise:
only a small subset of all possible proof features are important to each step. For
example, the Top symbol () proof features are easy to infer for each proof step.
The number of proof steps triggered by the existence of a certain top symbol
would be small, however. Selecting only the actually significant proof features is
as important as precisely defining the proof features themselves.

The best selection of proof features can be inferred by looking at the examples
of previously captured proof processes. This approach is discussed further in
Section 6.6. This section discusses particular proof feature types that could be
inferred automaticallywithout previous data. These inferred proof featureswould
be suggested to the user for confirmation to avoid polluting the captured data with
unimportant ones. Some ideas on how to narrow down the set of suggested proof
features by tracking the changes in goals are also explored.

6.5.1 Known goal feature types

Certain proof feature types (e.g. the existential features in Section 4.2.1), are simple
to define and encode within the system. Their evaluation is deterministic on any
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proof goal. For example, the Top symbol () feature would always match to the top
symbol (operator, function definition, etc.) of the goal. The Has symbol () feature
would yield a list of all symbols appearing in the goal. Such proof features can be
inferred by evaluating all known (implemented) feature types on the current goal.

A massive list of suggested proof features, however, would not be helpful. For
example, the system suggests every symbol in the goal as an important feature
according to theHas symbol () feature type. This cannot be the case and the expert,
instead of marking the important features manually, has tomanually reject most of
the suggestions. Such a scenario is counter-productive and the inferring of proof
features brings no benefit. Instead, the list needs to be trimmed down with more
accurate suggestions: e.g. only suggest the symbols within the changed parts of
the goal (Section 6.5.3) or compare to what was done in previous proofs.

The approach to extract certain “known” proof features from the goal has been
employed in other systems to learn strategies ormatch predefined strategies on the
current goal (e.g. in [Hen06, GM13, KHG13, HKJM13]). The number of supported
proof feature types, however, is normally very small or the proof features are very
narrowly defined (e.g. type of the main argument, top symbol, etc). Nevertheless,
the issue of noise from proof features is cited.

Shape proof features (Section 4.2.1) provide more flexibility but also introduce
more complexity in inferring them. However, if a list of “known shapes” existed,
inferring proof features with these shapes would be of similar complexity as with
proof features of other known types. For example, the system could check if the
Has shape (?a ∩ ?b) feature matches the current goal and suggest it as important.
The list of known shapes could be collected from previous proofs. However, the
noise issues would be the same as earlier. Inferring new shapes is a very difficult
problem and such proof features are better left for the expert to mark manually.

6.5.2 Proof context features

Proof context features capture that the expert’s strategy is related to a particular
type of conjecture (origin features), is domain-specific (domain features), depends
on previous proof steps (provenance features), etc. (Section 4.2.1). Rather than
inferring them from scratch, these proof features can be easily derived or replicated
from a single selection. However, proof context features are subject to generating
noise as well: they might be important only for a small number of proof steps.

Proof obligations (POs) are often generated automatically according to the used
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formal method. The specific PO type can be recorded upon generation. When it
comes to proof, this information can be used to record the origin proof features:
the PO type remains the same for every proof step, e.g. Origin (Feasibility PO).

The domain of a proof step usually only needs to be indicated once. Then the
whole proof and even the whole formal development would be done within the
same domain and the proof feature would be repeated: e.g. Domain (Automotive).

The provenance proof features can be suggested by looking at the preceding
proof steps. For example, if the expert has indicated the intent of the earlier proof
step as Expand definition, the system could suggest the Provenance (Expand defi-
nition) proof feature for the current proof step.

6.5.3 Goal analysis for important terms

Agoodway to identify what comprises the important features of a particular proof
step is to investigate what the proof step actually does in the proof. If there was a
prover API to trace the internal execution of a proof command, this information
could be collected. The prover knowswhich hypotheses or lemmas are used, what
goal terms are transformed, which proof context objects are referenced, how proof
tactics are executed, etc. However, this information is normally not exposed for
external access. Furthermore, supporting such tracing would have a significant
overhead, resulting in a prover slowdown and increased memory requirements.

Some information about “what a proof command does”, however, can be ap-
proximated by analysing the proof goals, the proof command and the available
proof context. For example, by comparing the input and output goals of a proof
step, one can identify the differences (i.e. the parts of the goal that have changed).
If a sub-term has been transformed by a proof step, it is a good candidate to
bear important proof features. This approach can be particularly useful in large
industrial-style proofs. The goals in these proofs can have a very large number of
predicates (e.g. see Figure 12.5 for a “small” example), most of which are not used
in a particular proof.

Comparing goals for differences, however, does not reveal proof step “depen-
dencies”. For example, a hypothesis can be instrumental to transforming the
goal—yet it is unchanged between the input and output goals. Further steps are
needed to identify such related parts of a goal. A similar problem is encountered
in [Meh07], where hundreds of hypotheses in proof obligations are filtered to anal-
yse which of them were used in the proof. The ones actually used are extracted
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from the constructed proof tree. The knowledge is then used to check whether a
proof reuse is possible (e.g. if only unused hypotheses have changed).

Isolation of the affected terms (i.e. either changed or used by the proof step) in
the goal suggests locations of important proof features. This can be used to reduce
the noise of automatically inferred proof features (Section 6.5.1). Furthermore, the
informationwould be useful during the interactive proof as well: it would help the
expert identify affected parts in a large goal. Basic comparison of goals to identify
the changed parts is implemented in the prototype ProofProcess system. The user
can “filter” the goals when marking the important proof features (Section 8.2.3).

6.5.4 Used lemmas

Used lemma proof features capture the fact that a lemma is needed for the proof
step aswell as its important properties (Section 4.2.1). Inferring such proof features
entails tracing the use of lemmas in the prover and identifying the important ones.

Lemmas explicitly indicated in the proof commands are prime candidates to be
marked as important: e.g. the lemma disjoint_union in an Isabelle proof command
apply (rule disjoint_union). The expert has selected the lemma particularly
for the proof command.

Identifying which lemmas are important in automatic proof steps (e.g. simp
tactic in Isabelle, prove tactic in Z/EVES, etc.) requires obtaining the used lemmas
from the prover. Z/EVES theorem prover outputs all used lemmas with each proof
step: a sample output is listed in Figure 12.7. In other systems, accessing this
information may require additional functionality. For example, lemmas used by
the simplifier in Isabelle could be parsed from the simplifier trace or extracted from
the constructed proof tree representation.8

An automatic proof step can use a large number of lemmas during rewriting
or simplification. Marking all of them as important is infeasible. Also, an expert’s
high-level insight rarely considers low-level lemmas used by the prover. Therefore,
after tracing lemma use, it is important to filter them to a smaller number that
would be suggested to the expert for confirmation. For example, user lemmas (i.e.
belonging to the developed specification) would usually be preferred to system
or library lemmas. Firstly, the user lemma may actually be written specifically for
this proof (or this family of proofs). Secondly, the library lemmas would also be

8Obtaining the simplifier trace or the proof tree representation requires explicitly enabling
these features in Isabelle and introduces an additional processing overhead.
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available for similar proofs: missing one of them among the important ones may
not actually hinder the reuse of the extracted strategy.

Tracing important used lemmas and suggesting them to the user can facilitate
proof process capture. The information is helpful during the interactive proof as
well: the user can inspect what the automatic proof tactic has done; whether a
particular lemma has actually been used; etc.

6.6 Matching with previous proof processes

Inferring the proof process aims to improve the automation of capturing adequate
details about the proof process. This chapter proposes approaches to infer certain
proof process information via analysis of the incoming data or by querying the
prover. Another approach to infer information about the current proof process is
to compare it with the previously captured proof process data.

Ideally, as the expert is doing a “new” proof, the ProofProcess system could
find that the chosen proof steps are similar to some previous proof. It might sug-
gest “You seem to be doing Induction similar to proof X”. The expert would confirm
whether the suggested proof intent is correct. Proof features could be inferred in
a similar manner: the system would identify which proof features are marked for
a previous proof, then automatically mark them for the current one.

The overall approach is almost identical to how proof strategies are generalised
and replayed. Instead of learning proof strategies from the expert doing proof,
the system learns how to infer high-level information from the expert doing proof.
In both cases, the current goal would be matched against the previously captured
and (possibly) generalised proof process data. Matching can be done against the
whole proof, or against any sub-proof (sub-strategy) at any level of abstraction.
If a match is found, the existing information is reused to either replay a strategy
or to infer the intent, proof features, etc. Extracting and replaying strategies is
discussed further in Chapter 7.

In the context of a full AI4FM system (i.e. with support for capturing, extracting
and replaying strategies), proof strategies would pre-empt the expert doing a
manual proof step. For every goal, the expert would be presented with a list of
matching strategies (if available). Selecting a strategy would replay it, executing
the underlying proof step. If successful, the new proof process would be marked
according to the strategy description (Section 7.1). In this scenario, there is no
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need to infer the proof process, as the strategy replay supersedes the functionality.
However, there are still opportunities for inferring proof process by analogy.

For example, there may be no good suggestions of matching strategies; use of
custom proof features will prevent automatic matching of strategies; or the expert
may take a manual proof step without looking at strategies at all. Matching proof
processes can be more accurate than matching strategies, because of the extra
hindsight available: the expert has already done the proof step, thus proof features
about the proof command and the resulting goal can be used for an accuratematch.

The availability of the proof command is particularly useful. For example,
when the same proof command is used, the same proof intent should be suggested
and the same proof features should be attempted. If this fails, the expert may start
marking the important features manually and as enough context is established,
the ProofProcess system may recognise similarities with the previously captured
data and suggest the remaining proof features.9

9For example, the Gmail email service from Google has a feature called “Don’t forget Bob”: if
the user always messages Jane, William and Bob together but the current email only includes Jane
and William as the addressees, the system suggests to also include Bob based on previous history.
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CHAPTER 7
Proof strategies

Extracting and reusing general proof strategies is the ultimate goal of the AI4FM
research project. A perfect AI4FM system would generalise the high-level ideas of
a proof into a reusable strategy—and then apply it automatically where it matches
the conjectures and goals. The overall process can be split into smaller parts:
capturing the proof process, extracting the proof strategies and replaying them to
discharge other proof goals. Each of these parts still represents a very complex
research problem and requires significant effort on developing the theory and
the involved concepts, implementing the approach including integration with
theorem provers as well as running extensive experiments.

This thesis is concerned with the first part: capturing an expert’s proof process,
particularly the high-level ideas involved in finding the proof. The other chapters
in this part propose an architecture to perform the capture, whereas the description
of the prototype implementation and the case studies evaluating the approach
follow in Parts III and IV, respectively. The topics of extracting and replaying the
proof strategies are outside the scope of this thesis. Nevertheless, the overall thesis
would be lacking if its description of proof process capture was to be presented
without at least a brief overview on how the captured information is to be used.

This chapter aims to present the “strategies” side of the AI4FM research and
how it links with the proof process capture. Section 7.1 outlines how the proposed
AI4FM system interacts with the user and the theorem prover. Section 7.2 presents
an abstract model specifying what a strategy is, its context and the overall environ-
ment involved in proof process reuse. Furthermore, proof-strategy graphs—a tool
(with implementation) to encode proof strategies—is described in Section 7.3.
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Thesis contributions

The research presented in this chapter has been done by other researchers within
the AI4FM project. Aside from the explicitly mentioned shared work and con-
tributions, this research is the work of other people and thus is not part of the
PhD research. However, discussion of proof strategies here establishes how the
captured proof process data is used to facilitate strategy extraction and replay.

The author of this thesis has contributed to the development of the AI4FM
interaction approach (Section 7.1) as well as the abstract model of proof strate-
gies and the wider AI4FM system (Section 7.2). An early (unpublished) abstract
model of the “state” of proofs, proof context and proof strategy was developed by
Jones, Freitas and Velykis (thesis author). Subsequent publications [FJV14, JFV13,
FJVW13, FJVW14] evolved the initial model. The ProofProcess model of this thesis
(Chapter 4) has evolved in another direction in order to accommodate proofs as
they are encountered and perceived in proof assistants. Parallel to this, the author
continued contributing to the evolution of the abstract model as well.

The development of proof-strategy graphs and the Tinker tool (Section 7.3) has
been done by Grov, Kissinger and Lin [GKL13, GKL14]. The thesis author only
has developed a basic integration between the ProofProcess system and these tools.

7.1 Replaying strategies: interaction

The AI4FM system has always been envisioned as an “assistant” to the theorem
proving process. It is not intended to replace the theorem prover, but rather help
the user with choosing a suitable high-level direction in the proof. Even in the
cases where the AI4FM system would be able to find a strategy that completes
the proof automatically, it would do so by “driving” the theorem prover in the
background rather than fully constructing the proof.

The architecture of the proof process capture system outlines how it “listens”
and tracks the interactions between an expert user and the theoremproving system
(Section 3.2). The system is there to help the user, however it should not interfere
with how the user does proof, neither should it enforce a new approach to theorem
proving. The same approach is taken when using the captured and extracted
information: strategy replaying is there as an additional functionality to assist the
user but does not replace the familiar interaction with the theorem prover.

Figure 7.1 outlines how an AI4FM system interacts with the theorem proving
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(1)(3)

(2)(4)

?

Figure 7.1: AI4FM proof strategy replay process.

process. The symbols, clockwise, depict the user (hardhat to emphasise support
for an “engineer” level user), the proof replay system (AI4FM logo: recycling de-
ductions) and the theorem proving system (cogwheel around the turnstile sym-
bol). The basic interaction between the expert and the TP system is marked by
the horizontal arrows. The AI4FM system “listens” to this interaction but can
also “drive” the theorem prover and present relevant information to the user. The
specific interactions comprise the following (numbered in Figure 7.1):

1. Adapt and replay proof strategies on the current goal by matching proof
features of the strategy with the current goal and proof context.

2. Track prover output tomatchwith available strategies; follow the application
of proof strategies and adapt them or select alternatives in case of failure.

3. Present matching strategies and important features to the user. Automation
may not always be possible and suggesting available strategies to the user
may help find successful proofs manually.

4. The engineer might be able to assist if automatic attempts (just) fail; proof
strategies may require certain proof features to be available: e.g. the strategy
requires a lemma similar to one captured in the original proof process. The
engineer may be able to provide one.

The following sections explore these interactions inmore detail: how the strategies
come in to existence, how the system interacts with the theorem prover and how
the user interacts with the AI4FM system.
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Proof
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Figure 7.2: AI4FM proof capture, extraction and replay process.

7.1.1 Extracting strategies

Figure 7.1 does not depict strategy extraction, only their use. However, extraction
is not portrayed in proof process capture either (see Figure 3.5). Learning from
the captured proof process to produce reusable proof strategies could be seen as
a third facet of the AI4FM approach: proof capture produces the data, whereas
proof replay “consumes” strategies and is not concerned with extraction.

There can be different approaches to extracting proof strategies, from using
machine learning to find patterns in the captured high-level data to generalising
(or just straight using) the proof features of a single captured proof process (see
Section 7.3.3 for a brief discussion on generalising a captured proof process). The
immediacy of the extraction also depends on the approach: e.g. if the captured
proof process data is extensive, it may be better to run machine learning later
when the system is idle to avoid impact on theorem proving speed. Alternatively,
if the strategy can be generalised quickly, such turnaround may allow reuse of the
strategy immediately after it has been first employed.

The “modular” approach to capture, extraction and replay suits the proposed
interaction model (see Figure 7.2 for illustration). Strategy replay advances the
proof. The new parts of the proof can be captured by the proof process. The
captured proof process is added to the existing pool of captured data—strategy
extraction can use it to extract better strategies. The (possibly) new strategies are
again available for replay.

In fact, during the proof capture of strategy application, the high-level proof
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metadata can be reused from the strategy replay, but it is not technically a re-
quirement (illustrated by a dashed arrow in Figure 7.2). The user could supply
additional proof information to strategy application: indicating the specific differ-
ences, changing the proof intent, etc. Depending on these interactions, strategy
extraction would create a new proof strategy, adapt or generalise the existing one
(e.g. by adding alternative branches, new proof features, etc.), or leave the strategy
as-is if it was replayed without changes.

7.1.2 Driving the theorem prover

Strategy replay does not aim to replace the theorem prover, instead the AI4FM
system “drives” the theorem prover by sending proof commands, which represent
the high-level proof ideas. Using strategies does not compromise the soundness
of the proof, which still depends on the theorem prover verifying it.

The most non-intrusive way of using the strategies is generating a proof script
for the user. During proof process capture, the low-level proof commands are
recorded along with the high-level proof information. Thus when a strategy is
extracted, it has information about which low-level proof commands represent the
high-level proof steps. When the user plays a strategy, the corresponding proof
commands could be inserted into the proof script and submitted to the prover.

Such an interaction model allows the user to easily switch between using the
strategies and doing the familiar interactive proof process. For example, the user
could query for strategies when stuck and replay one of them, which would insert
one or more proof commands into the proof script. If this gets the user over the
obstacle, he may choose to continue with interactive proof, or select a new strategy.

However, close interaction with the theorem prover is necessary for stream-
lined and automated work in the AI4FM system. The system needs to track the
current goal, the proof context and other proof information to be able to sug-
gest matching strategies. Furthermore, the strategy matching process may need
theorem proving capabilities to evaluate proof features, perform unification, etc.
Finally, the system may continue applying matching strategies automatically, in
the background, to find a full proof of the current conjecture. In this case, the
system may suggest to the user that a proof has been found and insert all proof
commands into the proof script, completing the proof. A “batch mode” in an
AI4FM system would find appropriate strategies and generate proof scripts for a
set of problems at once.
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By generating a proof script rather than using a new representation for strategy
replay, the system positions itself as an assistant, rather than a primary theorem
proving tool. The proofs would still be reproducible for other users without access
to the proof process capture and replay systems.1

7.1.3 Role of the user

The user can use the strategies to help with the proof, but is also required to help
strategy replaywhen it finds difficulty. The systemwould offer severalways to play
the strategies: do a slow single-step strategy application, where a new strategy is
searched for andmanually selected by the user after each proof step; find thewhole
proof automatically and suggest the composed multi-step strategy to the user; run
a “batch” mode on a set of conjectures and try to find full strategies for each one,
inserting the corresponding proof scripts automatically. In case of failures, the
system would construct a high-level proof of how much was achieved so that the
user could quickly familiarise himself with how the proof was attempted. Also,
the system could suggest the strategy it was attempting at the point of failure—the
user may find a way to fix it or enter a newmanual proof step, after which strategy
application could be resumed. The heap case study in Chapter 11 provides some
examples of manual intervention during strategy replay.

When selecting a strategy, several may be available that match the current goal.
TheAI4FMsystemwould rank them for applicability, depending on the previously
learned weights, the proof context, etc. However, the final decision would be up
to the user in selecting the best strategy. The user’s selection may influence the
future weights of the strategy as the system would learn the best ones.

In certain cases of strategy replay, some strategy prerequisites may not be avail-
able. For example, if a strategy requires a lemma of certain shape, a corresponding
one may be unavailable for similar proofs. In these cases, the system would notify
the user that a lemma is needed for the strategy to continue and even suggest its
important features. The user would formulate and prove the appropriate lemma
and then continue with the strategy. Furthermore, there are tools to generate such
lemmas automatically (see discussion on lemma discovery in Section 13.3.3) and
the user might not actually be required.

1The current implementation of the Tinker tool (see Section 7.3) takes over theorem prover
interaction when replaying proof strategies with its own graphical interface. However, underneath
it still applies standard Isabelle proof tactics, thus generating a proof script from the result would
not be difficult.
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Furthermore, the architecture for proof process capture acknowledges that the
high-level ideas about how the proof is advanced are not always automatable (e.g.
custom features in Section 4.2.1). User input is needed to utilise the strategies in
these cases. For example, the user manually tags the conjecture origin as “fea-
sibility proof”. This allows strategies designed for feasibility proofs (and thus
requiring this proof feature in a conjecture) to match the current goal. Similarly,
the user may mark the important proof features to narrow the strategy matching:
e.g. highlight a certain operator and get strategies involving it to be suggested.

In case of a partial strategy match (e.g. when some proof features of a strategy
are too restrictive), the user may still choose to replay it. However, if successful,
the user would specify additional proof features that made the strategy successful
for the current proof. These could be used to produce a better generalisation of
the strategy during the extraction process. Alternatively, the user could derive a
new strategy from applying the partially-matched one: its application would be
given a new proof intent, new proof features, etc.

The user may disregard the automatic strategy replay facilities altogether. The
suggested strategies could be used as a guide to the manual interactive proof pro-
cess. The userwould still benefit from the suggested high-level ideas on the current
conjecture but may choose a new approach or just different proof commands to
advance the proof. This interaction—learning from the high-level captured proof
process—is illustrated in Figure 7.2 by a dashed half of the interactive proof arrow.

7.2 Abstract model of strategy replay

The proposed AI4FM system to learn and replay strategies is a complex one. In
particular, the complexity arises from the lack of a clear notion of howpeople prove
theorems, how the high-level proof ideas can be represented and what constitutes
a strategy that can reuse these high-level ideas for similar proofs. Some narrower
parts of the system have been identified to enable their design and prototype
implementation: e.g. the proof capture system proposed and implemented in this
thesis; or the mechanisation of proof strategies and replay (see proof-strategy graphs
and the Tinker implementation in Section 7.3).

However, the design of the overall AI4FM system is developed by starting with
a formal model of the system, which specifies its state (including identifying im-
portant parts of the proof, strategy, context, etc.) and the system functionality as
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operationsmanipulating the state. The task of designing a system to deduce/re-use
(high-level) proof strategies can be compared to that of designing a “programming
language”—it is better to design a programming language from its state. This
approach is similar to that taken when developing the mural theorem proving
system [JJLM91]: after formalising the model of the system, its implementation
was straightforward.

The full development of this abstract model is ongoing: refer to the publica-
tions [FJV14, JFV13, FJVW13, FJVW14] for further details about the model, includ-
ing its evolution over the publication history. This section presents the main ideas
about strategies from this formal model. The author of this thesis has contributed
to the development of the overall model as part of this PhD research.

7.2.1 Anatomy of a strategy

At the core of an abstract model is the tandem of Conjecture and Strategy. A
Conjecture represents a single goal and its associated context (including the high-
level metadata). A Strategy in the model represents a “single-step”2 abstract proof
step that can match and transform a Conjecture. Typically, a strategy just decom-
poses a proof task to several (hopefully simpler) conjectures. At the high-level,
Conjecture represents the proof side of the theorem proving process, whereas
Strategy embodies the idea of when and how to advance it.

The strategy and its properties can thus be modelled as the following VDM
record (see [FJVW14] for the overall model):

Strategy :: intent : [Why]
by : (ConjId | ToolIP)
weightings : MTerm m−→ N
mvars : mvar∗

specialises : [StratId]

The first component in a Strategy is the intent, modelled as a Why token. It has
a dual purpose:

2“Single-step” strategy means that it represents a single high-level strategy step and does not
contain other strategies (cf. “multi-step” strategies that consist of a tree/graph of other high-level
strategies). “Single-step” strategies in the abstract model can actually involvemultiple prover steps,
advanced proof tools or smart use of conjectures to simulate multiple proof steps.
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• The intent describes what the strategy does;

• It is added to the provenance of a conjecture, linking strategy definition with
its instance (application).

Both the strategy intent (Why type) and the proof process step Intent (Sec-
tion 4.1) are used for the same purpose: to capture a high-level description (a kind
of tag) of an abstract proof step. During strategy extraction, the captured proof
process intent would be used to populate the intent field of strategies, identifying
individual high-level ideas.

Next, the by field models the contents of a proof strategy: i.e. what it does. The
ConjId references other conjectures, representing the conjecture that is used to do
natural deduction inference. This allows the modelling of natural deduction proof
process and strategies within the abstract model. The ToolIP datatype represents
various theorem proving tools available within modern theorem proving systems:

ToolIP :: name : {Sledgehammer, SMT, Simplify, Tinker, · · · }
script : token

A ToolIP entry in a strategy specifies that the strategy calls an external tool
to advance the proof: its name and configuration (the script field) is recorded to
enable the actual strategy replay. Playing a strategy means launching the proof
method defined by the by field. The script field in ToolIP is yet unspecified, since
different tools would require different configuration data.

The information required to extract the contents of the proof is captured in the
ProofProcess architecture as the ProofTrace datatype (Section 4.6.3). It records the
actual proof step in various theorem proving systems, including prover context
and configuration details. During strategy extraction, this information would
populate the content of the strategies.

The weightings and mvar fields of the abstract Strategy model are used to de-
scribe the matching parameters of a strategy. Datatype MTerm (“matching term”)
describes the features of the strategy, particularly when it should be used. The
mvars (“matching variables”) are bindings allowing to use matching information
in strategy configuration. The MTerms are used to match the strategy with a
Conjecture, thus they are discussed in detail below, after establishing what con-
stitutes required information about conjectures.
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Finally, the specialises field in Strategy is used to specify relationships between
strategies. By utilising this field, a “taxonomy” of strategies can be established:
e.g. a Peano N induction specialises Induction proof.

7.2.2 (Meta-)information about conjectures

The concept of Conjecture in the abstract model represents each proof task (both
top-level lemmas or theorems and sub-goals within their proofs). However, in
addition to the goal predicate, the Conjecture captures various associated meta-
information about the goal:

Conjecture :: what : Judgement
role : {Axiom, Trusted, Lemma, Subgoal, · · · }
justifs : JusId m−→ Justification
provenance : (Origin | Why)∗

emphTps : TyId m−→ N
emphFns : FnId m−→ N
other : · · ·

In theConjecture record, the proof goal itself is captured in thewhat field. Its ab-
stract Judgement type allows for different goal representations in various theorem
proving systems: e.g. the goal can be a sequent, equation, etc.

As the proof tasks can arise from different scenarios, the role field captures the
role of each one: e.g. a top-level lemmawould be taggedwithLemma role, whereas
its proof sub-goals would have Subgoal roles. Furthermore, the model allows
conjectures specified as axioms; or ones that do not need the proof (Trusted): e.g.
if their correctness is well known or the proofs are available in textbooks.

There can be multiple attempts to prove the same conjecture: the justifs field
captures the different Justifications. A Justification represents a single step in the
proof, recording what proof method was used (by field) and the resulting new
goals (with conjectures):

Justification :: by : (ConjId | ToolOP)
with : ConjId∗
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The details (and high-level meta-information) about each sub-goal is then cap-
tured within the corresponding Conjectures, referenced using their ConjIDs. By
following these references, a full proof tree can be constructed. However, the justi-
fications do not have to lead to a complete proof. For example, when a conjecture
is first generated, there are no justifications for it. Also, the user may start one
proof justification, leave it aside and try another, then come back and complete
the first proof. Checking whether a proof is complete would require a transitive
check following the justifications.

The proposed architecture for proof process capture (Chapter 3) implements
and elaborates on the ideas in this abstract model of Conjecture. Some of the
particular differences in modelling the proof process are historical, but both spec-
ifications can be seen as two very similar sides of the same model.

The Judgement data type corresponds to in goals in a ProofStep (Section 4.3.3).
Multiple proof attempts on a top-level conjecture are modelled using the Attempt
datatype; while the branching tree structure of the proof is captured via the
ProofParallel element (Section 4.3). These parallels between the specifications con-
firm that the same concepts are modelled, however the focus is slightly different:
the abstract model presented here aims to abstract away from theorem proving
systems, proof scripts and how the proof is achieved in particular cases—instead
modelling the proof process in general. The ProofProcess architecture described
in this thesis aims to represent how the human expert perceives the proof: e.g.
recording different attempts at the top-level, capturing proof steps not intermedi-
ate goals, etc. The information can be translated between the two models, thus
using models appropriate for each situation is actually preferred (i.e. modelling a
strategy replay system vs a proof process capture system).

The remaining fields of the Conjecture record try to explicitly identify the dif-
ferent points of important meta-information about the conjecture. The provenance
field tracks how the conjecture came to be: i.e. what were the strategies applied
that led to this particular goal. Provenance represents the Origin of the conjecture
(e.g. it is a feasibility proof obligation) as well as the list of proof steps as Why
intents, recording the path taken by the expert. This trace of intents requires the
expert to identify each proof step with an appropriate strategy. The emphTps and
emphFns (“emphasised types and functions”, respectively) capture that the expert
would explicitly mark certain parts of the goal with varying importance, hinting
towards the strategy search to focus on these features. Other important proof
feature types about the conjecture or the proof context (known unknowns) are also
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anticipated, hence the other field in the Conjecture record.
The abstract model aims to explicitly identify the important features of a con-

jecture. The ProofProcess architecture enables marking any proof information as
important by using the general concept of proof features (Section 4.2). The meta-
information listed in the Conjecture record above, including the role field, could be
recorded using proof features within the ProofProcess data. The open-ended way
of modelling proof features as named predicates avoids changing the core model
(and the corresponding implementation) to support new types of features.

7.2.3 Matching strategies

The richmeta-information about aConjecture is modelled to enable strategymatch-
ing on these features. The matching properties of a strategy (i.e. when a strategy
should be applied) are modelled using theMTerm (“matching term”) constructs:

Strategy :: · · ·
weightings : MTerm m−→ N
mvars : mvar∗

· · ·

The use of a weightingsmap recognises that a single strategy can have different
levels of suitability for a given conjecture: the natural number describes the utility
of the current strategy for progressing the proof, if thatMTerm is satisfied.

A basic MTerm is a proposition built from negation (¬ ), conjunction (∧) and
an unbounded set of atomic (paramaterised) predicates. The MTerm is evaluated
over the whole of Conjecture and the atomic predicates can refer to the properties
of the goal (Judgement) as well as the high-level meta-information (e.g. provenance
checks, existence of certain emphasised functions, etc.).

In the proposed ProofProcess architecture, the high-level information associated
with each goal is captured as proof features. Furthermore, the strategy extraction
process would generalise the proof features—they would constitute theMTerms of
the strategy. These two lives of a proof feature enable strategy matching even for
custom proof features: for example, a user highlights the My-proof-feature(params)
custom proof feature during the proof capture. Strategy extraction would likely
fail to generalise on an unknown proof feature, thus it could be copied verbatim
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to a proof strategy: My-proof-feature(params) would now constitute part of the
MTerm within a strategy. When doing a similar proof, the user highlights My-
proof-feature(params) on a new conjecture, which triggers a match with an MTerm
in the extracted strategy and leads to strategy replay, even though the proof feature
is not interpreted by the system.

The weightings map for matching proof strategy enables modelling multiple
(disjunctive) scenarios in which a strategy is applicable (including partial match-
ing). For example, all permutations of the MTerm feature set could be included
in the weightings map, with MTerms that have less features resulting in a weaker
numerical weight. This allows a strategy to match the goal when some proof fea-
tures do not exist or are not satisfied, however a low weight would indicate lower
confidence in the success of replaying the current strategy.

The weightings are used to rank strategies by value for any given conjecture.
Matching in a single strategy must therefore return the highest ranking MTerm
(that matches the conjecture) in the weightingsmap. The actual numerical weights
of strategy matching could be refined using machine learning techniques, based
on success and failure of strategy applications.

In addition to specifyingMTerms that determine when a strategy is applicable,
the mvars (“matching variables”) are used to parametrise the strategy application.
The contents of the strategy could depend on specific parameters (e.g. the MTerm
would match a goal that has an existentially quantified predicate, where a candi-
date witness is also available within the goal). The strategywould use thematched
witness as a parameter to the proof command that instantiates the quantifier (e.g.
apply (rule_tac x = ?y in exI) in Isabelle/HOL). The mvars are used to bind
variables matched by the strategy for use in the strategy configuration. Several
examples ofMTerms matching and binding are listed in [FJVW14].

¦ ¦ ¦

The abstract model of the AI4FM system aims to identify what constitutes a strat-
egy, how to describe when it should be used, what information is needed about
the conjectures to facilitate reuse of high-level proof ideas and other related con-
cepts. For full details, including structuring of proof process and strategy data
into theory bodies, refer to recent AI4FM publications [FJVW13, FJVW14].

The proof process architecture proposed in this thesis aligns with the wider
development of the strategy capture, learning and replay system: the specific links
and corresponding data structures are identified in this section. The next section
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presents a development of a concrete graph-based strategy replay system within
the AI4FM project as well as how the ProofProcess system integrates with it.

7.3 Proof-strategy graphs

Proof-strategy graphs (PSGraphs) have been developed as part of AI4FM to pro-
vide a concrete representation for proof strategies and their replay functionality
(strategy evaluation). At the basic level, proof-strategy graphs provide a robust
representation for encoding composite proof tactics. The concepts and functional-
ity, however, are general enough to describe high-level proof strategies.

This section provides a brief overview of proof-strategy graphs, their repre-
sentation and evaluation. Implementation of PSGraphs is available in the Tinker

tool, which also provides a user interface to inspect PSGraph evaluation and to
construct new strategies within the system. For full details about the formalism
and the implementation, refer to relevant publications [GKL13, GKL14].

Furthermore, this section highlights parallels between the captured ProofPro-

cess data and the PSGraph strategy representation. Integration between the sys-
tems is discussed, including possibilities to generalise the captured data into strate-
gies: i.e. how strategies can be extracted from the captured proof process and
generalised further into highly-reusable forms.

7.3.1 Graphical strategy language

Proof-strategy graphs (PSGraphs) is a formalism that represents proof strategies as
graphs, specifically string diagrams. String diagrams consists of boxes (graph nodes)
that are connected using typed wires (graph edges), which need not be connected
to a box at both ends. When encoding proof strategies, the boxes represent prover
tactics (or nested PSGraphs—see below). Thewires carry information about inputs
and outputs of each tactic. This information, formalised as goal types, ensures that
goals are “piped” correctly between tactics: i.e. that an output goal in one tactic
matches the linked input goal of the following tactic. The open wires represent
inputs and outputs of the overall strategy. A graphical representation of a proof
strategy allows use of graph rewriting to formalise and perform strategy evalu-
ation or transformation. It also provides a clear view of what the strategy does,
particularly during a step-by-step evaluation. Full formal details about PSGraphs,
including semantics of strategy evaluation are available in [GKL13].
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Figure 7.3: Proof-strategy graph for rippling strategy (see [GKL13] for details).

Goal types

Figure 7.3 depicts an example PSGraph representing the rippling [BBHI05] proof
strategy. Each box represents either a low-level tactic in a theorem prover, or a
high-level proof step, which in turn is represented as a nested PSGraph (e.g. the
“fertilise” step). The wires in Figure 7.3 are labelled with goal types, each of them
representing properties about the goal and serving as tactic inputs and outputs.

Goal types are specified as predicates over goals. A basic language to specify
goal types is outlined in [GKL13], including a number of atomic goal types such as
top-symbol(x1, . . . , xn) (top symbol of the goal is one of x1, . . . , xn), inductable (struc-
tural induction is applicable), hyp-embeds, measure-reducible, etc. The goal types
language allows more complex goal types to be constructed: e.g. the can-ripple
goal type in Figure 7.3 is a conjunction of hyp-embeds and measure-reducible, mean-
ing that it requires the hypothesis to embed in the goal and the rippling measure
towards the hypothesis to be reducible.

Goal types represent the same matching information in strategies as MTerms
in the abstract model (Section 7.2.3). Furthermore, both representations are anal-
ogous to proof features in the proposed ProofProcess architecture, where proof fea-
tures are used to capture high-level information about the proof steps. During
strategy extraction, the proof features would be transferred and generalised to
constitute goal types of corresponding proof strategy steps.

Atomic goal types are implemented within the system, thus must be known
in advance. Composite goal types must be constructed out of them. Currently,
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there is no support for custom (unknown) goal types (proof features). The basic
goal types, as described in [GKL13], are evaluated over the proof state: i.e. the
properties can describe the actual open goal term, available facts, shared meta-
variables. Also, provision for relational properties is available, where goal types
can link the parent goal and possible children goals (akin to the out proof features
in the ProofProcess architecture). Furthermore, a more advanced clausal goal type
is being developed that will generalise some mechanics of goal types as well as
permitting expression of additional proof process properties, matching and bind-
ing variables (as required byMTerms andmvars in Section 7.2.3), and writing more
general parametric proof strategies. The clausal goal type will also provide more
support for passing, querying and constraining additional user-provided data,
building up towards custom proof features.

Strategy evaluation

To prove a goal using a strategy encoded as a PSGraph, the goal is wrapped into a
special goal node and added to a matching graph input wire. Then graph rewriting
is used to transform the graph by “pushing” the goal node through wires with
matching goal types and applying the tactics in boxes (see [GKL13] for details).

When a goal node reaches a box, the prover tactic represented by the box is
applied and one or more output goals are produced. These goals are matched
with the goal types of the output wires, determining the direction for each of them.
Note that if an output goal does not match any of the output wires, the strategy
fails. However, in contrast to standard tactic application, using PSGraphs allows
pin-pointing the reason why the strategy evaluation has failed as well as what is
expected of the goal after the tactic execution.

When the goals are matched with corresponding goal types, the process con-
tinues as the goal nodes are piped further through the graph. The goal type
specifications on wires ensure that only the right “types” of goals are accepted.

Non-determinism is permitted in strategy evaluation. A tactic can performnon-
deterministically (e.g. when alternative strategies are available in a graph tactic—
see below), or a sub-goal can match more than one goal type. In these cases,
the search space would expand as the evaluation branches to accommodate all
possible outcomes. Note, however, that appropriate goal-type definitions with
narrower predicates could help in minimising the non-determinism.
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Strategy hierarchies and combinators

Strategy hierarchies (nested strategies) in PSGraphs are represented in the sameway
as prover tactics: as boxes. A special tactic—graph tactic—is used to embed nested
PSGraphs into tactic boxes. These hierarchical nodes can be labelled explicitly.
When extracting strategies from the captured ProofProcess data, proof process
intent data can be used to label corresponding strategy steps. The hierarchical
structure of PSGraphs allows replication of the different levels of abstraction in
the captured proof process.

Furthermore, a hierarchical node can hold a number of alternative nested strat-
egy graphs. The order in which they are evaluated can be given by specifying an
alternation style: e.g. OR style would indicate non-deterministic choice of a nested
strategy (actually branching the evaluation to check all possibilities),ORELSE style
would evaluate the nested strategies in turn until the first success, etc.

The hierarchical nodes in PSGraphs allow specification of alternative proof
strategy steps. The alternatives can be collected from the captured ProofProcess

data, for example by grouping the different proof steps with the same proof in-
tent. This works well when the same intent is used to describe the same high-level
strategy, hence marking them as alternatives even when the low-level tactics differ.

Graph combinators are used to build new strategy graphs from existing ones.
They can specify sequential strategies (THEN combinator), parallel partitioning of
goals (TENSOR combinator), repetitive application of strategy (REPEATα combi-
nator to repeat application while the output goal matches α goal type), etc. THEN
and TENSOR combinators correspond to ProofSeq and ProofParallel data structures
in the ProofProcess tree (Section 4.3), thus allowing direct mapping during strategy
extraction. The repetition combinator, however, is not required when capturing
the proof process. The captured data represents the actual proof process, where
strategy repetition is recorded as one or more sequential instances of the actual
strategy being applied. However, when extracting the strategy, this can be gener-
alised into strategy repetition, improving reusability of the strategy.

By using graph combinators and hierarchical nodes, a high-level strategy can
be described as a proof-strategy graph. The low-level proof tactic steps would be
wrapped into hierarchical nodes with labels recording the high-level intent. These
can be combined into larger multi-step proof strategies with branching, repetition
and alternative proof steps. However, at all levels of abstraction, goal types would
govern correct “piping” of goals during strategy evaluation. Furthermore, each
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hierarchical strategy is justified by actual prover tactic steps at the lowest level.

7.3.2 Tinker: implementation of proof-strategy graphs

The first implementation of PSGraphs, the Tinker tool,3 provides a generic, theorem
prover independent framework to specify and evaluate PSGraphs. The Tinker tool
is implemented in Poly/ML, which allows easier integration with a number of
theorem prover systems. Currently, integration with Isabelle and ProofPower theo-
rem provers is available, providing special proof methods/functions to evaluate a
specific PSGraph for the open goal. Refer to [GKL14] for details on the architecture
and implementation of the tool.

The integration with theorem provers is done as an extension, so users can still
use other proof commands: the Tinker tool appears as yet another proof method.
When used automatically, the selected PSGraph is evaluated as much as possible
to transform the current goal. The proof is constructed within the theorem prover,
ensuring its correctness. Furthermore, an interactive evaluation of the PSGraph
can be launched. This provides a graphical user interface to step through the
evaluation, useful for “debugging” the strategies. However, manually selecting
the wires for sub-goals or otherwise influencing the execution is not supported
at the moment. Finally, the graphical interface can also be used to create new
PSGraph strategies (including hierarchical nodes), by specifying prover tactics
and goal types from a given selection of supported ones.

Strategy search

Currently Tinker supports evaluating a single multi-step proof strategy, encoded as
a PSGraph. When executing the appropriate proof method in the theorem prover,
the user indicates the strategy that is to be used for the current goal.

Searching for a matching strategy is not supported at the moment. Further-
more, changing to a different strategy midway in the proof is also not possible,
as the strategy execution continues until success or failure. However, the basic
building blocks for the functionality are there. When sub-goals are directed to
matching wires, goal-type matching is performed. This can be extended to run on
the current goal (e.g. as if there is a single super-PSGraph that combines all known
PSGraphs with the TENSOR combinator) and select an appropriate wire leading
to a matching strategy. Furthermore, the evaluation is done with standard prover

3Tinker website and source code are available at http://ggrov.github.io/tinker/.
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tactics, thus exporting the used proof commands or just the proof state would
allow selection of a new strategy after terminating the execution of another.

The approach to non-determinism in Tinker means that alternative strategies
would be searched exhaustively via branching (OR), or sequentially in some order
until first success (ORELSE). The abstract description of proof strategy matching
usingMTerms in Section 7.2.3 proposes using weightings to guide the proof search
when using strategies. These, however, are not supported at the moment in Tinker.
Examining the different approaches to strategy replay (multi-step vs single-step
and search, exhaustive search vs weighted matching, etc.) is among the future
directions of AI4FM research.

Integration with proof process capture

The PSGraphs formalism and implementation in Tinker provide ways of encod-
ing and replaying proof strategies. However, the issue of creating good reusable
strategies still exists. The ProofProcess system can provide data on how the expert
achieves the proof, which could be generalised into strategies that can be encoded
and replayed as PSGraphs.

The previous section highlighted a number of parallels between the captured
proof process data and the strategies. Proof intents can be used to label hierarchi-
cal strategies as well as group alternative ones. Important proof features, either
inferred automatically or marked manually by the expert, can make up the goal
type predicates and describe proof strategy matching. The branching structure of
the captured proof can be translated to the strategy branches, etc.

A captured proof process attempt can directly become a strategy when con-
verted to a PSGraph. To support that, a provisional interface between the ProofPro-

cess system and the Tinker tool has been developed. It can export captured proof
process data of each proof attempt, encoding the branching and grouping struc-
ture, tactics used, intents and proof features, etc. When imported into Tinker, this
becomes a proof-strategy graph, representing the proof attempt as a very specific
instance of a strategy. To improve reusability, this strategy should be generalised
further (Section 7.3.3 elaborates more on generalisation). Furthermore, other in-
tegration features are also planned: e.g. exporting the proof attempts live, while
doing the proof; using Tinker to generate proof feature suggestions, etc.

141



7. Proof strategies

7.3.3 Generalising proof strategies

Proof strategy generalisation can be done via multiple vectors: generalising proof
features and tactics, discovering patterns in the strategy, introducing alternative
steps, etc. All these aim tomake the strategymore reusable to handle similar proofs
to the one that gave rise to the strategy. However, generalisation has an important
property that any valid proofs within a strategy should also be valid within the
generalised one. This preserves links between the captured or replayed proofs as
instances of strategies: each proof can be seen as a very specific refinement of the
general strategy and vice versa.

Automated strategy generalisationwithin the PSGraphs framework is explored
by Grov and Maclean [GM13]. They start at the lowest level: with a single proof
of a goal. At each proof step, the goal and proof state are lifted to derive their goal
types. This is done by matching predefined goal type functions on the goal. How-
ever, this approach generates a lot of noise: not all proof features are important.
The excess proof features (goal types) clutter the generalisation. Deferring to the
expert doing the proof for identification of important proof features would limit
the noise and highlight the genuinely important ones. The ProofProcess frame-
work employs this approach to collect high-level proof process data, which will
be passed to the strategy extraction.

With the proof abstracted using goal types, these can be used to generalise
further or identify patterns in the strategies [GM13]. The authors propose several
automatic generalisation techniques:

• Proof tactics with arguments (e.g. subst or rule in Isabelle/HOL) can be
generalised by taking a union of lemmas used in the arguments.

• Alternatively, proof tactics could be wrapped into a graph tactic, making
them alternative steps. However, the proof search would be widened as
both alternatives would be explored. This approach can also be used for
generalising high-level proof steps, by wrapping strategies with the same
intent into a single graph tactic as alternatives.

• Goal types can be generalised by computing the most general type for two
existing goal types (similar to anti-unification [Plo69]). There can be multiple
variants of generalised goal types for the same existing ones.

• A single goal type can be weakened by making its description more general.
Again, there can be multiple variants of weakening for the same goal type.
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When an expert is using the ProofProcess framework to capture the proof process,
he could mark the important proof features as already generalised. For example,
the shape proof features use placeholders to describe an important shape, already
generalised to use with different variables. These proof features could be used
directly in strategy specification.

Goal types can also be used to discover loops in a strategy [GM13]. When the
goal type on an output wire matches (“is a subtype of”) the goal type on an input
wire of the same tactic, a loop can be extracted. The loop is represented using
a REPEAT combinator on the goal type. A subsequent non-matching (orthogonal
in [GM13]) goal type would become the termination condition of the loop.

¦ ¦ ¦

Proof-strategy graphs and their implementation as the Tinker tool allow specifica-
tion of proof strategies with high-level abstractions such as goal types. The strate-
gies can be replayed on goals in the Isabelle or ProofPower theorem provers. The
system is being developed to supportmore advanced goal types, better integration
with proof process capture and reuse of user-provided high-level information.

Extracting general proof strategies is a difficult task. This section presents
several approaches to generalising proof features, proof steps and identifying
patterns. The approach is still young: implementation requires proof feature types
to be predefined, all goals need to be carefully marked with proof features, etc.

The ProofProcess framework has been designed to allow the expert to provide
any data he feels important to describe the proof process and the high-level insight.
Collecting all this information helps in populating the list of proof feature types as
well as giving ideas of how different proofs are constructed. The mechanisation of
this information can follow. However, in the interim—and even long-term—the
captured proof process data can still be used manually. The next section briefly
explores the “manual” extraction and reuse of proof strategies.

7.4 Reuse by analogy

This chapter presented an overview of proof strategies: what comprises them, how
to specify when strategies should be used, what are the approaches to strategy
replay as well as how to extract strategies from the captured proof process infor-
mation. The research done in the AI4FM project aims to automate the process of
extracting and replaying proof strategies, however much still needs to be done.
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Nevertheless, even without the machinery to extract and reuse strategies, the
captured proof process information can help “engineer” users to tackle similar
proofs. While difficult to mechanise, most of the proof features are easy for a
human user to comprehend and manually adapt for similar proof steps. A human
user can spot proof feature or tactic generalisations or even leapfrog a gap in the
strategy—all of which may require advanced heuristics or massive datasets for
machine learning to replicate automatically.

Strategy reuse by (manual) analogy—i.e. when the user manually creates a
new proof, analogous to an existing one—is the most basic approach to strategy
extraction and replay. When dealingwith a new proof, the user would sift through
the selection of existing proofs to find one with a similar goal. Then, by looking
at how the previous proof was done, the user could replicate the approach with
the new goal. The captured high-level proof process information would highlight
the important properties and guide the user through the previously taken proof
steps to discover the new proof. Strategy extraction would be done in the user’s
head via theoretical/intuitive generalisation, while replay would be himmanually
typing the adapted proof commands in the proof script.

This approach highlights the self-sufficiency of a proof process capture system.
By providing means to mark high-level information, the system makes it easier to
adapt and reuse the expert’s insight. Even without subsequent strategy extraction
or automatic replay functionality, new users can benefit from the captured infor-
mation. However, the “repetition” effort for similar proofs is not really helped by
this approach as the user has to manually retype the proof commands. Neverthe-
less, the benefit is obvious for other use cases: e.g. when an “engineer” needs to
reuse the proof ideas of the “expert”.

The main issue with manual reuse is finding the matching strategies. If the
database of captured proof process data is large, it can take a long time to scour
the list of attempts for a matching one. Furthermore, new searches for matching
strategies may be needed midway through the proof or even after each step.

The list of similar previous proofs can be narrowed by matching proof fea-
tures. Such functionality is also needed for “inferring” the proof process: e.g. to
suggest proof features when a proof process is being captured (see Section 6.5).
Furthermore, proof feature matching is a core part of automated strategy search
and replay (this time with generalised proof features). Therefore matching proof
features is among the principal goals when “learning proof from the expert”.

The manual reuse of the captured proof process, as described here, is used in
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the case studies listed in Chapters 11–12. The case studies describe how the proof
process of some lemma is captured. The captured data is then reused to prove
similar lemmas. The search part there is simplified, as the user already knows
which proof is being reused and the overall list of captured strategies is small. The
matching and generalisation are done intuitively. The case studies illustrate that
the manual reuse is viable and successful as well as inform further research on
automated techniques to replicate the process.
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Implementation
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CHAPTER 8
ProofProcess framework

The architecture of the proposed proof process capture system is described in
Part II, covering how high-level proof insight can be captured by abstracting the
interactive proof process as well as how such a capture systemwould work. A pro-
totype implementation of the core ideas outlined in the architecture is available as
the ProofProcess framework,1 described in this part. The implementation includes
a generic core that focuses on data representation and manipulation, storage and
proof process analysis as well as generic user interface components. Prototype
integrations with Isabelle [NPW02] and Z/EVES [Saa97] theorem provers are avail-
able, described in Chapters 9 and 10, respectively. They “wire-tap” the provers
and provide prover-specific data representation and analysis functionality.

The proposed architecture describes various aspects of proof process capture,
including streamlined user interactions for data input or advanced automation
facilities to reduce manual effort. A perfect ProofProcess system would be mostly
invisible, crunching the proof process data from the prover in the background,
while the user is doing interactive proof. The captured data would be presented
conveniently, seamlessly intertwined with what the user is doing in the theorem
prover, but also enabling the user to explore the captured details or the historical
data in a natural manner. When manual input is required, the user would be able
to easily query the prover for information about the proof context, link the proof
data with the captured proof process, mark and manipulate the proof features
and other high-level proof process information. Furthermore, the system would

1The ProofProcess framework and theorem prover integrations are open-source. All source
code is available at http://github.com/andriusvelykis/proofprocess.
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always be one step ahead, suggesting possible proof features or other abstractions.
Finally, the captured proof process would yield proof strategies, which the user
could reuse immediately.

Unfortunately, implementing such a perfect ProofProcess system is an enormous
engineering effort. Polishing the user interaction, designing automation facilities
and implementing extraction and replay of proof strategies requires a large de-
velopment team and significant resources. Lacking that, the prototype system
focuses on data representation and capture with basic manual input functionality.
However, the system is designed to be generic and extensible, where support for
additional features leading towards the perfect system can be added in a modular
manner. Some of these features (e.g. the graph view of the proof process data) are
already implemented as very basic proofs of concept.

In general, the implementation follows the ideas outlined in the architecture
(Part II) quite closely. Therefore, rather than repeating them, this chapter describes
the details of challenges and solutions in realising these ideas. These include how
the data is represented and stored in the system, howfile history is recorded aswell
as how a generic proof capture system is built and organised. Chapters 9–10 de-
scribe how the core framework is integrated with the theorem provers, how proof
data is intercepted and analysed. They also cover additional infrastructure devel-
opment to support the integration, namely the Isabelle/Eclipse and CZT+Z/EVES

systems. Before delving into the details, the next sections present an overview of
the current prototype system and how it is used.

8.1 Implementation overview

Size and system requirements

The prototype implementation is not large: the core functionality together with
both theorem prover integrations totals approximately 15k (15,000) Scala source
lines of code (sloc), implemented in almost 900 commits. This number does not
include the implementation of the data structures, which are generated automati-
cally from an EMF model and total ~30k sloc.

Supporting the ProofProcess framework implementation, the Isabelle/Eclipse

prover IDE is of a similar size (~12k Scala sloc, 600 commits, see Section 9.4).
Quantifying the contributions to CZT (Section 10.3) is difficult, but the project itself
is much larger (~300k Java sloc, developed since 2002 by a number of contributors).
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When capturing proof process data for the case studies presented in this thesis,
the systems were given 1GB of memory. The underlying platform components
(Eclipse and Scala as well as CZT and Isabelle) have quite high system requirements
and more memory would be recommended if needed or if faced with large formal
specifications and proofs.

Early versions of the prototype system had difficulty handling larger amounts
of captured proof process data. As reported in Section 8.5, after an intensive day of
work, the system would crash with an out-of-memory error even when allocated
8GB of memory or more. This has been addressed in later versions by using a
database with dynamic loading and unloading, thus memory requirements are
sensible (e.g. 1GB of memory is enough for the case studies).

The system tracks the expert doing interactive proof and captures a lot of data
about it, including all proof attempts and details about the goals, etc. All this infor-
mation is stored in a database, which size thus depends on the size of the project,
the number of attempts, the size of the goals, etc. When using early versions of
the system, captured proof process data in databases reached sizes of 20GB or
more after a day of work. However, this has also been solved using data compres-
sion (see Section 8.5.4): captured data from the separation kernel Z specification
(see [Vel09] and Chapter 10) totalling ~8k sloc (1300 Z/EVES proof steps) requires
database size of approximately 60MB (single attempt on all proofs).

The computation overhead of capturing the proof process data is difficult to
quantify. However, because of low-priority processing, it should not affect the
user’s work with the prover. Nevertheless, a user of early versions of the system
reported perceived slowdown of the user interface after extended use, which has
not been fully investigated.

Usage

The ProofProcess system has been trialled by the author and another researcher
withinAI4FM (Leo Freitas) during its development. Themain proof developments
it was used with include the heap case study (~5k sloc in Z/EVES, ~6k sloc in
Isabelle/HOL, see [FJVW13]), the separation kernel case study (~8k sloc in Z/EVES,
see [Vel09]), and several other developments of similar size. The prototype system
captured the low-level proof process data, identified different attempts, recorded
proof history, etc. Since marking of high-level proof insight was not supported
in earlier versions, the majority of captured data is low-level. Furthermore, the
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aforementioned scalability issues were identified and rectified.
These case studies are industrial-style formal developments, however their size

is small in comparison to the ones done in industry. No large-scale evaluation of
the system with actual industrial-size formal developments has been done.

8.2 Using the system

The development of the ProofProcess system is driven by the need to test the model
and ideas about capturing an expert’s interactive proof process: both the high-level
insight and the associated low-level proof data. When dealing with industrial-
style proofs (Section 2.1), instantiating a model as a whiteboard or pen-and-paper
exercise becomes infeasible. Even replicating the proof process in an electronic
document is difficult, particularly when it comes to linking with low-level proof
data. Tool support with links to a theorem prover is necessary when capturing
large proof processes. Furthermore, data from a number of earlier industrial-style
formal developments is available (e.g. the mechanisation of the Mondex smart card
specification using Z/EVES in [FW08]) and running the proofs through a tool could
yield good examples of proof processes.

The focus of the prototype implementation is, therefore, on data capture, repre-
sentation andmanual manipulation. The first priority is provision of data for strat-
egy extraction. The tool enables the testing of the accuracy and descriptiveness of
the proof process model, how such data could be generalised into strategies. The
necessary abstractions would be provided manually. Improving the automation
to infer the proof process (Chapter 6) is only a subsequent step.

However, even though some of the current functionality of the system is at a
prototype level, the design anticipates it growing into a fully fledged proof capture
system. Hence it is a ProofProcess framework: a solid generic base system for proof
process representation and capture, which can be extended by other systems.

8.2.1 Recording proof data

The ProofProcess system aims to eventually become a non-intrusive proof assistant.
It would assist users with capturing and reusing the proof process, but would
not force them to work in a prescribed way. Figure 8.1 presents a screenshot
of an Isabelle/Eclipse application with the ProofProcess system running alongside
and capturing the proofs. Some parts of the ProofProcess user interface can be
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Figure 8.1: Screenshot of Isabelle/Eclipse with the ProofProcess system.

seen (e.g. particularly the Proof Process view in the top-right corner), however a
significant part of the application (and especially the generic framework) is used
in the background and does not have much user interaction.

The majority of the “screen estate” of the application is kept for the theorem
prover functionality.2 The user does interactive proof with the familiar tools and
the ProofProcess system does not aim to take over that. For example, in Isabelle/E-

clipse, the formal specification, lemmas and the proof commands are entered using
the main proof script editor. These are processed automatically by the theorem
prover: its results are displayed in the editor as well as in the Prover Output view
for the highlighted command. Other proof assistants work in a similar manner.

The ProofProcess system subscribes to proof change events using the observer
pattern: i.e. “wire-taps” the prover communication. Upon each notification, the
change events are scheduled to be analysed. By using parallel processing tech-
niques, the analysis work is offloaded to a lower-priority job, thus the user can

2More precisely, to the functionality of the proof assistant that provides user interface to the
theorem prover: e.g. Figure 8.1 shows the Isabelle/Eclipse prover IDE for the Isabelle theorem prover.
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Figure 8.2: Screenshot of the Proof Process view with a ProofProcess data tree.

focus on the theorem proving with little effect on processing speed. Proof process
tracking can be disabled temporarily using a toggle button: the user can work
with the prover as if the add-on was not there. This only turns off the new data
tracking, the user can still interact with the captured data.

8.2.2 Viewing the captured data

Currently the main point of interaction with the captured proof process data is
the Proof Process view.3 Figure 8.2 presents a screenshot of this view with some
captured data listed. The Proof Process view displays all captured data in a tree
structure. At the root of the tree is a ProofStore, which contains Proof s. Each Proof
can have multiple Attempts with individual proof trees within, etc. Refer to Sec-
tion 8.4 formore details about howproof process data is structured. As this dataset
can get large, a search field allows for filtering of the displayed proof data.

3Views in Eclipse are application parts (represented aswindow tabs) used to display information
related to open editors.
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As proof process data is captured, the Proof Process view is constantly updated
and can track the “latest” proof element. For example, as the user is submitting
the proof commands to the prover, the last-submitted command is highlighted
in the tree with a small delay. This improves the awareness of how the captured
data corresponds to what the user is doing. Furthermore, the tree presentation is
tuned to improve readability: e.g. intermediate elements are omitted or flattened,
data is visualised using labels and icons, etc.

Some proof process information is inferred immediately after capture: e.g.
recognising the proof branching structure or matching the attempt (Sections 6.2–
6.3). New data is presented to the user assigned to a correct attempt and with a
basic structure. However, the user has to supply other proof process abstractions.

The Proof Process view provides actions to manipulate the proof process struc-
ture as well as to assign proof intent and mark proof features. They are available
in the context menu, as shown in Figure 8.2. Users can group or ungroup proof
steps: grouping introduces higher-level proof steps, e.g. a sequence of steps can
be grouped into one. A single proof step can be “grouped” to provide a decoration
step to assign additional meta-information. Furthermore, proof branches can be
reordered within a ProofParallel element: they belong to a set and the order is not
important, but providing a particular order in the tree can help with readability.

8.2.3 Marking proof insight

Proof insight (proof intent and proof features) can be marked for every proof step,
at any level of abstraction (see Section 4.2.3). The Mark Features dialog is used to
view and enter this data (Figure 8.3). The proof intent can be selected from the list
of existing ones (e.g. if the same high-level step is used) or a new intent name can
be provided. A convenient dialog (Figure 8.4) combines searching and entering a
new name—it is used to select proof intents or proof feature names.

The Mark Features dialog provides an overview of the proof step: it lists the
in/out goals and proof features, i.e. the before- and after-state of a proof step. For
high-level proof steps, in/out goals are collected from their underlying low-level
steps by “flattening” the proof tree (Section 4.3.5). Furthermore, the goal presenta-
tion can be filtered to show only the changed parts. The in/out goals of a proof step
are compared and the parts of the goal that are the same are hidden. Then only
the parts that have changed are left on display, pinpointing the important terms in
the goal (see Section 6.5.3). Figure 8.5 shows how lemma insertion is emphasised
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Figure 8.3: Screenshot of theMark Features dialog (Z/EVES proof process data).

Figure 8.4: Screenshot of proof intent selection.
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Figure 8.5: Filtered view of goals in theMark Features dialog (cf. Figure 8.3).

Figure 8.6: Screenshot of sub-term selector.

using goal filtering—compare it with the unfiltered goals in Figure 8.3.

Current facilities to mark proof features are quite basic. A proof feature is
recorded by selecting a proof feature definition (in the same way as intents are
selected) and adding parameter terms. When terms within the goal are used as
proof feature parameters, the system facilitates the sub-term selection by breaking
down the goal term and allowing the user to “dig” into the term tomark the impor-
tant sub-terms (see a screenshot in Figure 8.6). A “generic” version of a sub-term
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(schema-term, term with placeholders) is also generated for selection by simply
replacing the terms with placeholder variables. The sub-term and schema-term
selection is provided by the prover-specific extensions: e.g. Z/EVES ProofProcess

knows how to break down Z predicates into constituent predicates and further.
More sophisticated user interface solutions can be imagined (and wished for):

e.g. a user would select sub-terms directly in the proof assistant; the placeholders
would have more variability or allow to generalisation on types, sub-terms, etc.
However, extra choices would add overhead to marking the proof features—and
would not necessarily improve their quality; or waste effort on generalising them
when specific ones would have sufficed for solving the proof family. Alternatively,
the expert could be faster by entering details as text, which could be parsed against
the proof context and goals to resolve the terms and disambiguate the text input.

Parameters for other proof feature types (Section 4.2.1) are not supported at
the moment. As a workaround, a temporary StringTerm parameter is available to
enter parameters as text.

Using the available tools in the prototype ProofProcess system, an expert can
capture the interactive proof andmanually provide the high-level insight. The pro-
totype system supports the proposed expressiveness of proof intent and proof fea-
tures when describing the proof process. The expert (and the AI4FM researchers)
can explore the best approaches to describing a proof process and extracting
reusable strategies from it.

8.2.4 Supporting functionality

A significant part of the provided functionality in the ProofProcess system is not
directly visible to the user. The captured data is collected and stored within a
database, preserving data on various previous proof attempts. Furthermore, full
proof history is recorded and versions of proof scripts are saved to enable future
functionality in “animating” the expert by replaying the proof scripts. These are
discussed in more detail within this chapter.

The captured data can have many uses: some examples in addition to strategy
extraction are explored in Section 13.4. The prototype implementation also pro-
vides a couple of options to export the data. Exporting the captured proof process
as plain text prints out a large text document with the selected attempts and their
proof trees. The high-level insight information is included for each proof step.
Furthermore, Isabelle ProofProcess supports the exporting of proof trees in a format

158



8.3. Structure and design

Figure 8.7: Screenshot of the Proof Process Graph view.

that can be imported into the Tinker tool [GKL14] as a step towards providing
data for strategy generalisation. In general, the captured data can be accessed and
manipulated using standard EMF tools and the available APIs (see Section 8.3.2).

The Proof Process Graph view is a proof-of-concept on rendering the captured
proof process data as a graph structure (Figure 8.7). It uses the Eclipse Zest visual-
isation toolkit to render the graph representation of data (Section 8.6). The view
helps in identifying the relationships between the low-level proof steps and proof
branches in a complex structure. Higher-level abstractions are not supported in
the current version. Eventually, the aim is to support both the tree and graph views
of proof process data, where graph representation would be similar to Figure 11.5
or to the hiproofs/higraphs rendering style (e.g. in IsaPlanner [DF03]).

8.3 Structure and design

This implementation of the proof capture system focuses on building a generic
platform rather than hacking together a quick system to test the model. Producing
a generic, prover-independent framework is an objective of this PhD research. The
prototype proof process capture support for two theorem provers, Isabelle and
Z/EVES, shows how the approach and the generic core functionality can be reused.

This section outlines the overall structure of the system: the main components,
their dependencies and the modularity of the design. Furthermore, the software
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Project PP
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Z/EVES PP

Community Z Tools
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Isabelle PP

Isabelle capture Z/EVES capture

Figure 8.8: Structure of the ProofProcess (PP) system.

platform on which the prototype system is implemented is presented.

8.3.1 Component systems

The aim to reuse the proof process capture functionality with different theorem
provers leads to a modular design of the ProofProcess system. The system fea-
tures a generic core together with (currently) two prover-specific extensions in-
tegrating with Isabelle and Z/EVES theorem proving systems. Figure 8.8 pro-
vides an overview of the ProofProcess system structure. The figure lists the main
components and identifies their dependencies. The arrows between components
indicate their dependencies: e.g. Project ProofProcess depends on ProofProcess Core.

Such a structuring of the components enables identification of subsystems along
the lines of the dependencies. The components comprising the generic base of
the ProofProcess framework occupy the central region of Figure 8.8: they are in-
dependent of any theorem prover. Furthermore, Isabelle/Eclipse or CZT+Z/EVES

extensions, which have also been developed during this PhD research, can be used
standalone (without the ProofProcess add-ons) as general-purpose tools for formal
specification development and theorem proving. Two main applications, Isabelle

ProofProcess and Z/EVES ProofProcess, collect their respective components into full
proof process capture systems.4

4In general, separate systems would be used to capture proofs from different theorem provers,
e.g. Isabelle ProofProcess and Z/EVES ProofProcess would be two distinct applications. However,
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The main components listed in Figure 8.8 provide a convenient structure to dis-
cuss the whole ProofProcess framework. This structure is preserved at all levels of
design and implementation: data structures, core functionality, user interface, etc.
It is convenient to present the implementation details of the ProofProcess system in
this chapter along similar lines: this chapter covers the generic framework, whereas
prover integration details are discussed in Chapters 9–10. Before delving into
the details of some of the ProofProcess system features, the following paragraphs
present an overview of the main components.

ProofProcess Core

The core modules provide the main data structures to represent a generic proof
process with the accompanying functionality to manipulate and present it:

• Core data structures to represent a generic proof process. The data structures
closely follow the ProofProcess model proposed in Chapter 4.

• Proof attempt recognition: proof re-runs, extending with new steps and
diverging attempts (Section 6.3).

• Alternative graph representation of ProofProcess proof tree structures and
conversion facilities between the two representations (Section 8.6).

• Goal-based proof structure analysis (Section 6.2).

• All UI components to view and manipulate the captured proof process data.

• Proof feature identification and marking (Section 8.2.3).

Project ProofProcess

The “project” component hosts further generic functionality: a ProofStore imple-
mentation to provide separate storage of proof process data for each Eclipse project,
as well as a ProofLog to record the history of proof activities. This functionality
extends the main core but takes certain implementation decisions, hence it lives
outside of ProofProcess Core to allow for different implementations in the future.
Section 8.4 provides more details.

the implementation allows packaging both within the same IDE that runs two different theorem
provers and shares the ProofProcess components.
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File History

The file history component provides storing and tracking of the history of proof
script file changes. It is used to reference the actual proof script text from the
captured proof process. Rather than capturing every minor edit, the file history
is optimised for linear proof scripts and only records significant changes. The
functionality is only concerned with text files, thus making it a generic standalone
component without any dependencies on the ProofProcess components (therefore
it does not carry the ProofProcess name). Section 8.7 provides further details on
the proof history design and implementation.

Isabelle ProofProcess and Z/EVES ProofProcess

The integration components provide prover-specific extensions to the base Proof-

Process framework. These include representation of terms, details about the actual
proof steps, etc. Furthermore, these components provide “wire-tapping” (Sec-
tion 3.2.1) of the theorem proving system to query, parse and record the ongoing
proof details. Further details are available in Chapters 9–10.

Isabelle/Eclipse

Isabelle/Eclipse provides an Eclipse-based prover IDE (PIDE) for the Isabelle theo-
rem prover. It supports interactive proof document authoring with asynchronous
proof checking. Isabelle ProofProcess currently builds upon Isabelle/Eclipse to “wire-
tap” the prover, however the main dependencies are on Isabelle directly (particu-
larly the Isabelle/Scala API). The dependency is highlighted using a dashed arrow
in Figure 8.8. This means that integration via other Isabelle PIDEs (e.g. Isabelle/-

jEdit) would not be difficult. Isabelle/Eclipse has been developed as part of this PhD
research and is discussed in Section 9.4.

Community Z Tools + Z/EVES

Community Z Tools (CZT) provides a set of tools to develop formal specifications in Z
notation. During this PhD research,5 CZT (particularly CZT Eclipse) have been signif-
icantly improved. The major upgrades include support for Z/EVES proofs within
Z specifications, linking with the Z/EVES theorem prover to check the proofs, close

5The work on CZT and Z/EVES theorem prover has been done together with Leo Freitas.
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UI integration to facilitate the theorem proving process and many more improve-
ments. The Z/EVES integration provides an API to communicate with the prover
as well as tracking and displaying the prover results in an Eclipse-based IDE. The
Z/EVES ProofProcess integration utilises this link with Z/EVES via CZT to capture
the proofs. Section 10.3 provides further details on the improvements to CZT and
the Z/EVES integration.

¦ ¦ ¦

The clear dependencies between the components aim to support other extensions
in the future or different implementation decisions. Furthermore, the develop-
ment of proof analysis, user interface, proof process data manipulation and other
functionality does not depend on particular theorem provers and provides ex-
tension points for prover-specific data. A major part of the implementation code
therefore can be shared between proof capture systems for different provers.

8.3.2 Software platform

The ProofProcess system is developedusing Scala and Java programming languages
on top of the Eclipse platform [Eclb]. The data structures are realised using the
Eclipse Modeling Framework (EMF) [SBPM08]. Eclipse provides an excellent extensible
application platform, which sees increasing adoption in industry and academia
as the platform of choice for industry-grade tool development.

Eclipse platform

The software platform choice for developing a generic proof process capture frame-
work is influenced by opportunities to adapt it to the different existing theorem
provers. A platform with widespread usage can help avoid porting the system
onto different platforms. The theorem provers and formal tools are developed
using different languages, such as Lisp (ACL2, PVS, Z/EVES), StandardML (Isabelle,
HOL), Java (Rodin tool), etc. Nevertheless, most agree when it comes to providing
user interfaces to the theorem provers. Emacs used to be the default platform, to
which most of the theorem provers provided interfaces. For the next generation
user interfaces, most provide Eclipse platform plug-ins as interface to the prover
(e.g. Proof General Eclipse, Rodin tool, ACL2s, CZT Eclipse, alloy4eclipse, etc). The Proof-

Process system is developed as a set of Eclipse plug-ins with the aim of making
future integrations with the available proof assistants easier.
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Eclipse provides an extensible application development platform. It makes de-
veloping quality applications easier. The plug-in model simplifies adding new
components to supplement the existing functionality. Developers can focus on
implementing new functionality or new user interface components rather than
figuring out how tomake systems coexist. Furthermore, the platformprovides con-
venient facilities for parallel processing, which are utilised to analyse the captured
proof data. Finally, the Eclipse platform has a myriad of extensions for various
domains. Reusable components or even whole frameworks built on top of Eclipse

can be reused in new applications: e.g. the Eclipse Modeling Framework facilitates
model-based software development.

EMF data structures

The proposed ProofProcess model (Chapter 4) is realised within the system using
the Eclipse Modeling Framework (EMF) [SBPM08]. EMF provides code generation
facilities, various serialisation and scalability options (from files to databases), as
well as close integration with Eclipse platform UI components.

EMF is the core aroundwhich a large number of modelling projects have grown
within the Eclipse community. Model-driven development effort is very large,
with many industrial applications using EMF-based data.6 This results in a good
availability of various EMF-based tools and reusable components. Furthermore,
EMF can be used standalone if a non-Eclipse implementation is required.

The existing support for model-based development as well as opportunities
for future extensions using the standard EMF APIs allows focusing on the model
itself during the research. However, Section 8.5 describes some of the data-related
issues that still need solving when capturing and storing proof process data.

The ProofProcess model is translated to a corresponding EMF model that closely
matches the proposed representation. EMF code generation is used to produce Java
source code for these data structures (both the interfaces providing data encapsula-
tion as well as the implementation classes). EMF supports modular design of data
structures via model extensions: e.g. the prover-specific data models for Isabelle

and Z/EVES extend the EMF model of the core proof process data structures.
Mapping all prover-specific data to custom EMF models is not feasible and

native representations are used where available. For example, both Z/EVES and

6The Rodin toolset is an example in the area of formal development and proof: the Event-B
specifications and other data structures are implemented using EMF.
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Isabelle integrations provide XML serialisation facilities for their terms. The native
term data structures are used together with the EMF data structures seamlessly.

Plug-in organisation

Eclipse platform and EMF provide good modularity support via extensible data
models and clear Eclipse plug-in dependencies. Thus the ProofProcess system is
implemented as a modular application (currently consisting of 26 plug-ins7) and
achieves clear separation of concepts. The high-level dependencies between logical
components of the ProofProcess systems are illustrated in Figure 8.8. The actual
dependencies between the plug-ins are more fine-grained. Such dependencies
allow for a very modular structure, where data structures are independent of the
algorithms to manipulate them, which in turn do not depend on the user interface
plug-ins that invoke them.

The plug-in names indicate the component they belong to and follow the
general pattern of org.ai4fm.proofprocess[.componentname][.type], where
componentname has the following values for the main components:

• omitted for ProofProcess Core, i.e. simply org.ai4fm.proofprocess[.type];

• project for Project ProofProcess;

• isabelle for Isabelle ProofProcess;

• zeves for Z/EVES ProofProcess.

The File History framework, because of its independent nature, skips the proofpro-
cess designation for its plug-ins: org.ai4fm.filehistory.

Each component can consist of four plug-ins, which allow partitioning of the
component’s code according to its function and use: the data structures, gener-
ated code to manipulate them, core algorithms and user interface code. Such a
partitioning into plug-ins allows achieving fine-grained dependencies that lead to
a modular system implementation. The plug-in types are reflected in the plug-in
names (the [.type] qualifier) and are the following:

• omitted (e.g. org.ai4fm.proofprocess.isabelle): pure data structures.

The data structure plug-in contains the EMF models of components’ data
structures. The generated Java source code for each EMF model is also placed
into the same plug-in. The model may extend some other EMF model (e.g.

7Source code is available at http://github.com/andriusvelykis/proofprocess.
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ProofProcess Core) and thus would depend on the plug-in containing that
model. In addition to the data structure source code, the plug-in contains
serialisation facilities for custom EMF data types (e.g. the serialisation of
Isabelle terms). Otherwise any other code to generate or manipulate the data
structures goes into the *.core plug-in.

• *.core: source code for UI-independent functionality.

The core plug-in contains source code for the main algorithms, definitions
and general functionality that can involve generation and manipulation of
the data structures, proof process analysis, proof parsing, theorem prover
communication, etc. This plug-in is independent of (neither contains nor
references) any user interface source code. Having UI-independent plug-ins
aims to allow the reuse of their functionality in applications built using dif-
ferent UI toolkits. Furthermore, the analysis functionality contained within
such plug-ins could, for example, be running on some remote server without
any user interface capabilities (so-called headless execution). Plug-in depen-
dencies include the associated data structures plug-in as well as data/core
plug-ins from component dependencies.

• *.edit: editing and viewing support for the generated data structures.

EMF models provide a number of code generation options. In addition to
generating the classes of defined data structures (as described above), code
generation can be used to create support classes for editing and viewing these
data structures. This code is closely aligned to the Eclipse UI frameworks and
therefore is placed in a separate *.edit plug-in.

• *.ui: user interface code.

Separating the user interface from the core functionality gives clearer code
structure as well as allowing possible code reuse in applications using dif-
ferent UI toolkits. The user interface code builds upon the UI frameworks
available in the Eclipse platform. The actions defined at the UI level normally
call the functionality defined in the *.core plug-ins and visualise the results.

Coding and release engineering

The source code of the prototype system mostly uses the Scala programming
language [OSV08]. Scala is an object-functional programming language and has
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strict type system as well as functional programming concepts well suited for data
manipulation. Furthermore, it interfaces easily with Java libraries and code, such
as the generated EMF data structure classes or the Eclipse components.

The build process of the ProofProcess system is streamlined and uses Maven

project management and build tools. They enable nightly builds of the applica-
tions, which are released automatically. The applications, Isabelle ProofProcess or
Z/EVES ProofProcess, can be used standalone or installed as add-on components
using the standard Eclipse software installation and update mechanism. An online
software update system is available for the ProofProcess plug-ins.

8.4 Data representation

The ProofProcess model proposes data points to describe an interactive proof pro-
cess and capture the high-level insight. In the prototype implementation, these
data structures are realised using EMF. This section lists the particulars of how the
data is represented as well as some of the implementation decisions taken.

8.4.1 Core data structures

The core data structures follow the proposed abstract model (Chapter 4) quite
closely. The abstract model is translated into a corresponding EMF model, from
which actual Java classes and interfaces representing the data structures are gen-
erated. Figure 8.9 shows the UML class diagram of the core data structures.

The core data structures focus only on the main concepts of proof process cap-
ture, providing a generic kernel for the ProofProcess framework. Systems imple-
menting this base framework need to provide their extensions to the data model.
These would include the required data specialisations (e.g. prover-specific im-
plementations of Term, Trace, etc.) as well as additional data representation and
functionality, if needed.

The prototype ProofProcess system extends the base model in several directions
(Figure 8.10). Some of the more generic8 extensions, related to how the core data
is embedded and accessed in the system, form the Project ProofProcess component.
Figure 8.11 lists the data structure extensions provided by the component. The

8Generic here is taken to mean that the extensions are applicable to both Isabelle and Z/EVES
prototype proof capture systems (and possibly some other future implementations). The prover
integrations themselves provide further independent extensions, representing their own terms
and proof steps (e.g. see Sections 9.2 and 10.2).
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following sections discuss some of the extensions: the specialisation of ProofStore
and the add-on of ProofLog.

8.4.2 Project proof store

The core data structures listed in Figure 8.9 form a hierarchical structure along the
containment relationships (thick lines). A containment reference indicates that the
referenced objects are containedwithin the parent one. The containment hierarchy
controls the life-cycle of EMF data and is needed to store it. Data objects exist as
long as their container does: so a proof tree cannot be stored without a proof
attempt to which it belongs.

The ProofStore serves as the root container for the proof process data and
records the top-level objects: Proof s, Intents and Features. Section 4.5 describes
the abstract model of ProofStore and argues that the collection of captured proof
process data could be structured and partitioned in different ways, depending on
the implementing system. The Project ProofProcess component provides one such
implementation, by storing proof process data on a per-project basis.9

Projects in Eclipse IDE provide a logical way of structuring resources (source
files, configuration, etc.) within the IDE. A project often corresponds to some
folder in the file system that contains all associated files. Both Isabelle/Eclipse and

9During data analysis and manipulation, an abstract ProofStore interface is used, allowing
different implementations to be swapped in without changing the analysis code.

169



8. ProofProcess framework

Z/EVES Eclipse adhere to this Eclipse convention and use projects for structuring
the formal specification files and proof scripts. The Project ProofProcess provides
a simple approach to storing the proof process data captured from proofs: each
project gets allocated a corresponding proof process data repository that is used for
that project only. This approach is better suited as a prototype solution, as it makes
inspecting the captured data easier and the analysis scope smaller. Furthermore,
one of the goals of AI4FM is to work with families of proofs, which are expected
to be found within the same formal development (i.e. the same project).

The usage of per-project proof store is recorded by providing an extension to the
ProofProcess Core model. The Project data type extends the ProofStore (Figure 8.11).
The relationships to Proof s, Intents and Features are established within ProofStore
(Figure 8.9, which provides the default implementation of using lists for each data
collection). However, because the Java interface of ProofStore is used everywhere to
access the data, other future extensions can disregard the default implementation
and provide more sophisticated partitioning and management of proof stores.

Accessing proof store data

The proof store provides both storage and access to the proof process data. It
is used when the proof process is being captured (e.g. to register new proof at-
tempts) as well as to view or query the captured data. The current implementation
accesses the stored data directly, by traversing the objects containedwithin the root
ProofStore (in this case—the Project extension). For example, when a new proof
command is captured, the data is traversed in reverse to find the latest matching
Attempt within a matching Proof in a ProofStore. The current support for viewing
the data mainly involves displaying the captured data in all its entirety: a full
record of the ProofStore contents (Section 8.2.2). Developing a suitable proof query
API (rather than exhaustive traversal) is left for future work (Section 13.3.4).

Because of the modular design of the ProofProcess system components, the
root ProofStore is accessed from different places: e.g. data capture functionality is
independent from data viewing, but both need to work on the same proof store.
The Project ProofProcess component provides anAPI to access the project instance of
the ProofStore. Furthermore, in the case of a new project, a new proof store for it is
created on the firstwrite of the data to avoid empty repositories. This functionality
is conveniently hidden behind the API, simplifying the ProofStore usage. In the
current implementation, ProofStores are stored in individual repositories within an

170



8.4. Data representation

embedded database on the user’s local computer. Refer to Section 8.5 for details
about data persistence.

8.4.3 Proof activity log

In addition to theProjectproof store, the Project ProofProcess component also houses
several other generic extensions to the core modules. One of them is the proof
activity history, collected in a simple sequential log. Section 5.1.1 proposes the
ProofLog structure as a basic way of recording the time dimension of the proof
process. The logwould consist of a sequential account of different activities related
to the development of formal specification and proofs.

Project ProofProcess provides a rudimentary implementation of such a proof log.
Figure 8.11 lists the proof logging classes provided by Project ProofProcess, namely
the ProofLog and its list of Activities. A special activity representing a proof step is
also provided: ProofActivity. It references the actual proof step (ProofEntry) in the
proof attempt. Further extensions could provide other Activities to the proof log:
e.g. to record specification changes, new definitions, etc.

The ProofLog is normally populated by the prover “wire-tapping” code, which
can use it to register the events happening in the prover. Each activity is also
timestamped, which may prove useful for calculating metrics about the proof
process (see Section 13.4.3).

ProofLog is a root data structure that is constructed alongside the core proof
process data. It is closely related to the ProofStore, whose activities it represents.
Therefore certain implementation details, related to ProofLog storage and loading,
are almost the same as with the Project/ProofStore described above. Project Proof-

Process ensures a single ProofLog per project and provides an API to access and
populate it. In fact, ProofLog and ProofStore are loaded in pair to ensure consistency
of data between the two structures.

Proof history logging supplements the static view of the proof process defined
in ProofProcess Core. It is designed as a separate component add-on to the core
data structures. The aim is to minimise the core structures for implementations
that do not require proof history logs. ProofLog is technically independent of the
project proof store and could eventually be split off into a separate component,
representing a smaller reusable module (for implementations that need the log
but utilise a different ProofStore implementation). Currently it is hosted in Project

ProofProcess for convenience and in order to avoid too many small modules.
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8.5 Data persistence

Captured proof process data covers the whole duration of a formal proof devel-
opment. It needs to persist between proof sessions and be available afterwards
for querying. The captured data can stay useful for a long time: even after ex-
tracting proof strategies, it may be needed for further analysis, or, in case of proof
maintenance (Section 13.4.2), may be accessed after a prolonged period of time.
Furthermore, the data needs to “live” outside the actual proof development re-
sources. The proof scripts can change, be discarded and cleaned up. The captured
proof process data is an account of all this development and must be separated
from the changing artefacts.

The choice to represent ProofProcess data structures using EMF conveniently
presents several good solutions to data persistence. This section presents some of
the options explored in the implementation of the prototype ProofProcess system
as well as several issues that have been overcome.

8.5.1 Initial XML file storage

EMF includes a powerful framework to store its data structures [SBPM08, Chap-
ter 15]. The framework provides a flexible API that allows different implemen-
tations of model storage. XML serialisation is the default implementation and is
supported out of the box. This approach was selected as the initial persistence
option for the captured proof process data within the ProofProcess framework.

The main “storage” item within EMF persistence is a resource. In this case, a
resource represents a single XML file. Within this resource, EMF objects are stored.
A resource can have one or more EMF objects as its root elements. When an EMF

data object is saved (serialised to XML in this case), all of its contents are also
saved. If there are any references to EMF objects that are not serialised, these
dangling references are dropped, resulting in a possibly inconsistent model. The
ProofProcess data structures are modelled in a way that all data is contained within
some parent container, with ProofStore being the root container that is added to
the persistence resource (see Section 8.4.2). The other roots of proof process data,
ProofLog (Section 8.4.3) and FileHistoryProject (Section 8.7), also get allocated their
own individual resources (XML files).

The API available to use XML serialisation for EMF models is simple and
straightforward. To implement a per-project proof store (see Section 8.4.2), a special
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XML file is allocated within each Eclipse project. The file is used to store and load
proof process data. The XML representations of EMF data structures are derived
from the defined EMF model, thus no additional storage schemes need to be de-
vised for the prototype ProofProcess system.

Unfortunately, due to the large amount of data and its throughput speed in
capturing proof process, the XML file persistence had major issues within the pro-
totype ProofProcess system. The biggest issue was system performance in loading
the captured data from the files. To access the data, the whole file needs to be
loaded into memory. This results in very long loading times and massive memory
usage. In just a day of normal use, the captured data would grow to such a size
that the application was crashing during file loading with an out-of-memory error,
even when multiple gigabytes of memory were allocated to its use. Additionally,
writing and reading very large proof process data files started causing intermit-
tent data corruption errors. If a file became corrupted, the default EMF persistence
implementation had issues recovering the data, since the XML encoding became
invalid. This usually meant that the file was no longer usable and the data it
contained was lost.

The issues plagued early users of the prototype ProofProcess system, with them
either losing the data to corruption or having their applications crashwhen loading
the large data files. The default XML file persistence solution was lacking for this
use case, thus a different persistence framework was sought.

8.5.2 CDO with database

Storing large EMF data models is a common problem within the Eclipse commu-
nity. A number of frameworks are available that utilise databases for saving and
dynamically loading the data. Connected Data Objects (CDO) [Ecla] is one of the
most established frameworks. It provides both repository and persistence func-
tionality: i.e. CDO governs how the data is structured and storedwithin a database,
as well as how it is loaded within the application. A large variety of back-end
databases with different configurations are supported: the storage can be dis-
tributed, located in a remote central server or locally as an embedded database
within the application.

The most beneficial CDO feature for capturing and inspecting proof processes
is the dynamic loading of saved data. The storage procedures of the generated EMF

data structures are changed to become lazy: i.e. references to other data objects are
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only resolved upon request. When a data object is loaded, its references to other
objects are not resolved—they are loaded dynamically upon access. For exam-
ple, the initial loading of ProofStore constructs the data object itself, but its Proofs
are loaded into memory only when requested at some later time. This approach
requires minimal memory expenditure when the scope of data inspection is not
exhaustive. For example, if some proof is not of interest to the analysis code, its
contents (e.g. attempts) do not need to be loaded into memory. Furthermore, the
dynamic loading is coupled with dynamic unloading of EMF data: i.e. data that is
no longer used can be unloaded to reduce thememory consumption. The dynamic
loading of EMF data significantly improved use of the prototype ProofProcess sys-
tems. The allocated memory requirements to capture and inspect proof process
data are significantly lower and the application no longer crashes when dealing
with large data sets. Even with smaller sizes of allocated memory, the data would
be swapped in and out during access to avoid out-of-memory crashes.

Switching the persistence solution from XML files to CDO database within
the prototype ProofProcess system was quite quick and straightforward. The data
structures inherit the CDO functionality and APIs by simply introducing a new
parent class to all of them. The actual data storage implementation uses the H2

database [H2]. The H2 database provides good integration with CDO and features
a small and efficient Java-based engine, which makes it easy to use as an embedded
system. The H2 engine is packaged within the ProofProcess system and provides
an embedded database solution. This simplifies the usage of the system, since
users do not need to establish or configure any database provision—they can just
start using the system. Furthermore, an embedded system removes database com-
munication overhead, especially when compared with a remote database solution,
resulting in a fast solution to data storage. The physical storage for the embed-
ded H2 database is allocated locally within the user’s workspace and is shared
between all projects. As mentioned in Section 8.4.2, each project gets allocated its
own repository within this database, partitioning the proof process data per-project.
Within the repository, the data organisation follows the standard EMF structure as
with XML files: there can be several EMF resources in a repository, each of which
can contain one or more EMF objects.

When using CDO, the regular data manipulation does not change. Data struc-
tures retain all EMF properties and APIs. Therefore no data capture or analysis
code needs changing, as it operates directly on the data structures and is not con-
cerned with persistence. However, when it comes to synchronising concurrent
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data editing (e.g. manually manipulating the proof process data while new proof
steps are being analysed), CDO provides a rich API that supports transactions.
Within the ProofProcess system, each viewing or proof tracking component has
its own transaction. When one of these commits new data, the notifications are
propagated via CDO, ensuring data consistency and avoiding data races.

Furthermore, a transaction can be rolled back completely or to some save point.
These are beneficial within user interface code: e.g. when the user edits the data,
the changes are applied directly to the data structures; but if the user decides to
cancel these changes, a transaction can be rolled back without worrying about a
complex undo implementation. A user is able to see live how the changes affect
the overall model and discard the changes if not satisfied.

The transactional nature of CDO persistence also helps with ensuring data con-
sistency. CDO can verify and repair if data corruption occurs within the database:
e.g. if the application was not closed gracefully, etc. This seems to solve the data
corruption issue that plagued the proof process data saved in XML files.

8.5.3 Data evolution

Data evolution is concerned with changes in the data models themselves. Data
models evolve to account for changes in the modelled domain, when new features
are needed, etc. During development of the ProofProcess model and the prototype
system, the evolution was mostly related to representing prover-specific data. The
model was extended incrementally to accommodate new types of data that is
being captured (e.g. the specific details of prover command configurations), to
generalise (or specialise) existing representations of the captured data, etc. In a
number of cases, the evolution was supplemental: i.e. it added something to the
model without major changes to the existing relationships.

When the model changes, instances of that model (the already captured proof
process data) need to be brought up to date with the new model. This is not
a trivial exercise, even for minor changes in the model. The data models are
used to configure the persistence of the modelled data. For example, loading
an XML file with old instances of the data may fail because the de-serialisation
process cannot find values of some attributes which have been newly added to
the model. With XML files, the persistence framework can be configured to either
ignore such missing values or provide default ones, thus giving a basic approach
to “upgrading” the old data. For more complicated cases, there exist EMF model
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evolution frameworks that support defining migration rules during data upgrade.
Unfortunately, the issue of model mismatch is more serious with CDO and its

underlying database. The data models are used to define the storage schemes
within CDO, i.e. how the data objects are mapped into the external database. This
creates appropriate data tables in a relational database, where table colums repre-
sent data attributes, etc. Thus a change in an EMF model must be matched with
corresponding changes to the underlying database schemes. This is a difficult
general problem: no programmatic solutions currently exist for EMF and CDO.

To support evolution of the ProofProcess model, a simple solution has been
implemented within the prototype ProofProcess system. It takes advantage of the
reflection API available for EMF models and allows simple data migration between
different versions of the model.

The ProofProcess system carries the full history of versioned ProofProcess EMF

models. They can be used to load legacy data, evenwhen the current version of the
model is not compatible with the saved data. Loading the data in such a manner
produces a dynamic instance of the model that is inspected andmanipulated using
the reflection API.10 The dynamic EMF is a powerful part of the framework that
allows construction and instantiation of the models during runtime. It enables
manipulation of the data without having the generated classes.

The dynamic models enable the loading of legacy data. Before use, however,
the data needs to be converted to instantiate the current version of the model
and its generated classes. Using the reflection API, the matching classes in the
current version of the model are found for the legacy data structure and the data is
converted. Finally, the issue of upgrading the tables in the underlying database is
solved by “brute-force”: a fresh new repository is created with the updated model
definitions and the old one is dropped altogether. The converted data is placed in
the new repository and used henceforth until the next model evolution.

8.5.4 Data compression

Capturing an expert’s proof process with all required details can result in large
amounts of data. Therefore, implications of the storage space occupied by this
data need to be considered. The data is normally serialised into XML form, which
is quite verbose in representation. This is, however, not a significant issue for

10For example, instead of calling Proof.getAttempts(), the EObject.eGet(attemptsRef) is
used by passing the resolved “attempts” attribute reference.
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the proof process data structures themselves. They are quite small and occupy a
reasonable amount of space when stored. The main issues with excess size were
encountered when recording prover-specific terms: e.g. goal predicates, etc.

Both Isabelle ProofProcess and Z/EVES ProofProcess integrations encode terms
using XML(-like) native representations. Isabelle provides encoding of its terms
into YXML format [WB], whereas Z/EVES ProofProcess utilises CZT facilities to seri-
alise terms into ZML (an XML markup for Z specifications) [UTS+03]. These save
the ProofProcess system from re-implementing proof representation by utilising
the available serialisation facilities provided by the theorem proving systems.

The terms, however, can be of a very large size, especially for industrial-style
proofs involving complex data structures. When serialised with all their details
into XML-based representation, such terms produce text strings of substantial
sizes. Since the terms make up the majority of the captured proof data, they
immensely inflate the overall size of the stored proof process data. Early users of
the prototype ProofProcess system reported their proof process databases easily
reaching sizes of 20GB and more.

Data size explosion is avoided by using ZLIB [DG96] compression during term
serialisation. The algorithm is available as part of the Java libraries. The algorithm
is used to compress the produced XML text representing the term into a byte array.
The byte array is then converted to a text string using the Base64 encoding [IET06],
which is written to the database as the final representation of the term data. A
reverse algorithm is followed to decompress this data.

Compressing the terms achieves size reductions of 90-95% for each term seri-
alisation. The only downside is a small performance penalty when accessing or
writing the native term representation. Because of the dynamic loading of CDO

data, the representation is accessed only when needed, therefore reducing the
number of times decompression is invoked.

8.6 Graph representation for proofs

The captured proofs are recorded using tree structures (Section 4.3). This repre-
sentation provides a convenient way to introduce hierarchy and high-level insight
in the proof, identifying higher-level proof steps that encapsulate the low-level
ones. However, for certain analysis functionality that deals with relationships
between low-level proof steps, the tree structure can be unwieldy. The difficulty
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particularly arises for complex proof structures: e.g. merging of proof branches,
Isabelle/Isar declarative proofs (Section 13.3.5), etc. To accommodate this, the Proof-

Process system supports converting proof trees to and from graph representation.

8.6.1 Constructing proof graphs

The system supports directed acyclic graphs that consist of proof steps (ProofEntry
data structures) as graph nodes. The graph edges between proof steps normally
capture the proof structure: e.g. proof branches, dependencies between proof
steps, etc. The high-level proof information is retained on the side: e.g. as a map-
ping for each ProofEntry to its high-level proof insight. The proof graph imple-
mentation uses Graph for Scala libraries [Emp].

Proof graphs are constructed during the initial proof process capture. For
example, when capturing Isabelle proofs, the linear proof script is analysed and
transformed into a basic graph structure by tracking goal changes (Section 6.2).
When performing this analysis, it is clearer to use a graph structure to link proof
steps according to how goals are “consumed”. Afterwards, when the whole proof
structure has been processed, the graph can be converted to a ProofProcess tree.
Using graphs is even more beneficial when constructing a proof structure for an
Isabelle/Isar proof, where assumption introductions are linked to their use later in
the proof, producing very complex structures (see Section 13.3.5).

The bi-directional conversion between the Scala graph and a ProofProcess tree
structure is available. The algorithms actually abstract the tree structure: e.g.
they can be used with non-EMF implementations of proof process trees. Conver-
sion from a graph to a tree uses ProofParallel elements to encode multiple outgo-
ing edges from a proof step: each edge corresponds to a separate proof branch.
Merge points (Section 4.3.7) are realised in the tree structure by leaving unfinished
branches within a ProofParallel element. However, to ensure deterministic resolu-
tion of graph edges afterwards and to improve the efficiency of the conversion,
ProofId elements (Section 4.3.7) are used to encode merge point graph edges. Each
unfinished proof branch ends with a ProofId element that contains a reference to
the ProofEntry step that “continues” the branch.

8.6.2 Attempt matching

Captured proof commands are evaluated against the existing proof attempts to
identify whether they constitute a new attempt, a proof re-run or an extension of
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a previous attempt (see Section 6.3). This analysis compares low-level proof steps
while ignoring the order of proof branches and some other structural information.

The prototype implementation utilises graph-subgraph isomorphism checks to
match proof attempts. For example, a new proof is captured as a proof graphGnew.
Then it is compared to existing proof attempts for the proof. The comparison is
done in reverse: i.e. by first comparing with the latest attempt.

During the comparison each proof attempt is converted into a corresponding
proof graph Gk∈1..n. If subgraph isomorphism is found (e.g. Gk is an isomorphic
subgraph to Gnew), the new attempt extends the existing one. This happens when
additional proof steps are added to the current proof. In this case, the attempt is
extended with new steps and care is taken to preserve all proof meta-information
(e.g. marked proof features). If the subgraph isomorphism check fails, the same
comparison is performed in another direction. For example, if Gnew is an isomor-
phic subgraph to Gk, the new attempt has already been tried before and the user
is re-running an old proof.

When subgraph isomorphism cannot be established, a new attempt is logged.
This occurs when the user backtracks and attempts a new proof direction. The di-
verged attempt can happen at the very start of the proof (completely new attempt)
or by backtracking several steps. In the latter case, there is a need to preserve exist-
ing proof meta-information already available on the older (backtracked) attempt.
To match entries in the new attempt with the old one, amaximum common subgraph
isomorphism problem must be solved.

The subgraph isomorphism resolution is implemented using a fast VF2 algo-
rithm [CFSV04]. No existing implementations of the algorithm for Scala graphs
were available, so a reusable implementation was done by the thesis author. How-
ever, no algorithms are currently available for Scala graphs to solve the maximum
common subgraph isomorphism. Therefore preserving high-level information
when deriving a new attempt is limited in the prototype implementation.

8.7 Recording file history

This section presents the File History framework for recording changes in text-based
proof script files in a prover-aware manner. It is optimised for linear proof script
files that are “submitted” to the prover for processing: the framework aims to
efficiently capture a minimal set of proof script versions while preserving validity
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of proof commands referencing particular versions. Linear proof scripts that are
checked by the prover are standard among a number of popular theorem prover
systems, including Isabelle and Z/EVES, whose integration is provided by the pro-
totype implementation of the ProofProcess system.

The need to record the version history of proof scripts is part of the overall prob-
lem of capturing proof history (Chapter 5): the proof steps are linked with the
contents of actual proof scripts, which have to be consistent when proofs change.
Proof history preserves old versions of proof attempts, thus corresponding ver-
sions of proof scripts also need to be recorded. The File History framework serves
this need by providing an approach to track proof script versions efficiently.

The framework is quite generic, as it can be used for recording the history of
different text-based proof scripts fromdifferent theoremproving systems. This sec-
tion describes the architecture of the framework as well as details of the important
algorithms. The particulars of how the File History framework is realised within
the prototype ProofProcess system implementation are highlighted. Furthermore,
alternative solutions to proof script history capture are also explored.

8.7.1 File versions

The history of each file is recorded on a per-project basis. A project here represents
some arbitrary collection of files:

FileHistoryProject :: files : FileId m−→ FileEntry

Implementations could employ different approaches to reference files within a
FileHistoryProject. For example, the FileId could represent different file pathswithin
the project, identifying files by their location. This approach is used by the pro-
totype ProofProcess system implementations: file history is tracked for each file
location with the separate file history mechanism for each Eclipse-project (see Sec-
tion 8.7.5). Different requirements would warrant other choices: e.g. if renamed
files are expected to preserve version history, path-based identification would not
be a suitable choice.

Each file history is represented as a sequence of different file versions.
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FileEntry :: versions : FileVersion∗

where
inv-FileEntry(mk-FileEntry(versions)) 4

∀i, j ∈ inds versions ·
i < j ⇒ versions(i).timestamp ≤ versions(j).timestamp

The last version in the sequence always represents the latest file version: i.e. if the
latest version is the same as some previous version but different from the current-
last one, it becomes the new-last version in the sequence. Thus a full history of
document evolution is recorded, not just a set of distinct versions. The invariant
specifies this requirement for incremental version history.

Each file version records the file contents and the version’s save-time.

FileVersion :: contents : File
timestamp : Timestamp
. . .

The way of storing the contents of a file version needs to suit each implementa-
tion. For example, the file system or a database solution can be used. The File
reference would thus represent a file system path or a database access location,
respectively. When using file system storage, different options can be chosen to
prevent file name clashes: e.g. the prototype ProofProcess system uses universally
unique identifier (UUID) [ISO08] names for each file version; other systems may
choose incremental naming based on the original file name, etc.

The reference of file version contents is the same as that to be used in TextLoc.file
when recording the location of a proof step source file (Section 5.1.2). The different
File implementations mentioned above also apply to resolving the source of the
proof step. The File abstraction acts as a link between the File History framework
and the proof process capture. However, proof process capture does not have a
direct dependence on the File History: the File reference can be provided in other
ways; and the FileHistoryProject is just one possible independent implementation
that can be used alongside the ProofStore and ProofLog structures.

181



8. ProofProcess framework

8.7.2 File version synchronisation

During proof development, new commands are added to the proof script file, or
the existing commands are changed and even deleted. To avoid capturing every
minor edit of the file, the recording of file versions is done by tracking how the
proof commands are “submitted” to the theorem proving system. A concept of
synchronisation point is used to mark how much of the file has been processed
successfully by the prover. The syncPoint is the end position of the last proof
command that has been “submitted” to the prover and produced results.

FileVersion :: . . .

syncPoint : N
. . .

The analysis and comparison of synchronisation points between the new and the
last version allow the recording of only the important version changes and thus
minimise the total number of file versions being saved. The following example
illustrates the algorithm to determine which file version to save when the proof
script is changed.

Consider a proof script version F1 with a number of commands submitted up
to a synchronisation point s1. Now the user changes some parts of the file and
submits the new commands or re-submits the changed ones. F2 denotes the new
file with the new synchronisation point s2 after the last submitted commands.

Figure 8.12 outlines the algorithm that compares the old file version (F1, s1)

with the “current” version (F2, s2) and either updates and uses the old version
reference or creates a new version. The goal is to avoid creating new versions
unnecessarily. However, old file version references must remain valid.

The algorithm checks whether the old version can be used without saving a
new version: e.g. if the file contents have not actually changed, only the “submit”
(synchronisation) point has. This happens when more commands are submitted,
or a (part of) proof is re-submitted. In this case, the old version is reused with the
(possibly) larger synchronisation point now saved (line 2). The consistency of old
references is preserved because the version contents have not changed.

The synchronisation points come into use from line 3 in Figure 8.12. If the
contents in both versions match up to the synchronisation point (i.e. the beginning
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1 if F1 = F2 // if the same file
2 then use (F1,max(s1, s2)) // keep the last version with the later sync point
3 else if F1(s1) = F2(s1) // if the last sync point content matches
4 then if s2 ≤ s1 // if submitted within the last sync
5 then use (F1, s1) // keep the last version
6 else replace (F2, s2) // replace the last version with new contents
7 else new (F2, s2) // create new version

Figure 8.12: File version synchronisation algorithm.

of the file is the same), then the references to the old file version are not in danger,
because the file has changed after the point on which previous versions depend.
If the new synchronisation point is smaller than the previous one, it indicates re-
submission of some of the commands: the old version reference is kept (line 5). If
the synchronisation point is larger, the contents can be replaced with the new file
(line 6). However, all previous references are still valid with the new contents, as
their text is the same. Finally, if the file is changedwithin the previously-submitted
part, this signals backtracking and a new version is created (line 7).

The use of synchronisation points reduces the number of versions saved. It
“squashes” different versions of a linear incremental development of the proof
script: i.e. if the new commands are added and submitted sequentially, the last
version is constantly replaced, resulting in a single final version with all the com-
mands having been saved eventually. The incremental positions of proof step
traces would remain valid within the contents of the final file version.

Synchronisation optimises the file history of linear proof scripts and records
only significant changes (e.g. backtracking). The approach can also work for au-
tomated parallel proof script checking.11 For example, proof branches may be
processed independently and in parallel. This can cause later branches to be “sub-
mitted” and processed faster than ones typeset earlier. The linearity of proof ver-
sion synchronisation points could be preserved by inspecting all commands of the
proof: the synchronisation point would be the last command that has everything
before it processed successfully, e.g. stop on error or “unfinished” results.

11Automated parallel proof checking is supported in the newest versions of Isabelle/jEdit and
Isabelle/Eclipse proof assistants.
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8.7.3 Improving synchronisation performance

Version synchronisation algorithm outlined in Figure 8.12 can require two com-
parisons of file contents: whether the whole file is the same (line 1) and whether
the synchronisation area is the same (line 3). To compare contents, files must
be loaded and then compared character-by-character in their entirety to ensure
equality. File I/O operations are very slow compared to in-memory calculations,
thus avoiding themwhere possible would improve performance significantly. Fur-
thermore, the files may be of a large size and the performance of character-based
comparison slows down in linear time for the file size. The “current” contents of
the proof script file are normally already available in the memory via the proof
assistant API, therefore loading issues affect the last saved file version.

To avoid loading the file version for comparisons, a checksum representing the
contents can be calculated for the compared text. The checksum provides a fixed-
size bit string for the text with a practically-non-existent probability of collision (i.e.
when the same checksum is calculated for different inputs). Instead of comparing
thewhole text, only checksums are compared: if they are equal, the text is assumed
to be equal as well. The checksums for both the whole file (checksum field) and for
the synchronisation area (syncChecksum) are stored.

FileVersion :: . . .

checksum : Checksum
syncChecksum : Checksum

SHA-256 [NIS12] cryptographic hash function, for example, can efficiently calcu-
late a checksum (hash) of the file contents with (practically) no collisions. Many
implementations are available: a default Java implementation of SHA-256 has
been used in the prototype implementation of the File History framework within
the ProofProcess system. The checksums are calculated when first saving the new
file versions and then compared during synchronisation. The benefit of using
checksums is even more significant because the last version is preserved during
re-submission of previous proofs and the same checksum is used many times.
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8.7.4 Alternative solutions

The File History framework is a generic way to automatically record minimal file
histories that capture all important changes of the proof scripts. It is used to
provide distinct file versions to be referenced from proof step traces. However,
other approaches could be employed by different implementations.

A file versioning system could be discarded altogether: e.g. if the proof trace
locations are only used to highlight captured proof process within the current
proof script. The proof steps would point to locations in the actual proof script
files, but old proof step locations would be invalid. However, this would not
support re-running proofs (Section 5.2).

A very basic solution would be to save the then-current proof script file copy
for each proof step. This would avoid the necessity of synchronising different
versions, but would pollute the storage with numerous versions of the proof script
carrying minimal differences. Proofs could still be re-run to some extent, but
following the version history would be difficult.

Finally, some general-purpose version control systems could be employed
to provide file versioning. For example, the Git distributed version control sys-
tem [Git] provides a fast source file management solution. Integration with such
a system, however, may pose more difficulties. Furthermore, such systems are
more tuned to manual version management, whereas support for “on-the-fly” ver-
sioning (e.g. when the user does not save the proof script but submits parts of it
to the prover) may be more limited. If a version control system is used, the File
references in proof trace would need to indicate both the file path and the revision
to be queried within the system.

8.7.5 Implementing proof history tracking

The file versions recorded by the File History framework are used to link the cap-
tured proof commands with their locations in the corresponding proof scripts.
The prototype implementation currently utilises the file system to store the dif-
ferent versions of files for each project. Each file version is assigned a random
UUID name: e.g. a new version of a file ProcessTableProofs.zed is saved as
f835f495-7d53-4d56-89fa-553d2d772e54 (no extension). This provides an ef-
ficient structureless way of storing new versions of various files. Paths to the
particular file versions are stored within a corresponding TextLoc, linking proof
steps with the actual proof script.
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Figure 8.13: UML class diagram of File History data structures.

Implementation of the high-level proof history tracking closely follows the pro-
posed architecture (Chapter 5). The prototype system employs a basic implemen-
tation of a ProofLog that records ProofActivity entries for each proof step (see Sec-
tion 8.4.3). A separate ProofLog is established for each Eclipse-project, mimicking
the organisation of the proof scripts into such projects.

The proposed architecture of the File History framework is also replicated in the
implementation. Figure 8.13 lists the data structures provided by the prototype im-
plementation. A FileHistoryProject structure is established for each Eclipse-project
to track all formal development files within the project. The files are identified by
their paths (locations); each location tracks a list of file versions. This structure
provides a link between a file path, which can encode some folder structure in the
project, and the UUID-named file version that is stored in a flat structure.

File history is tracked for every submitted proof command. During standard
interactive proof, the commands are written one-by-one and submitted to the
prover. At each point, the proof script is compared with the proof history and a
new (or updated) version of the proof script may be saved. If a large number of
proof commands are submitted at once (e.g. re-submitting the proof, or running
in a “batch” mode), the behaviour of the prototype system remains the same for
simplicity: the proof script file is synchronised for every submitted proof com-
mand. Optimisations could be done to accommodate a “batch” mode, but the file
history synchronisation is efficient (Section 8.7.3) and processing in the theorem
prover can take a long time anyway compared to the file history checks.

8.7.6 Re-running proof history

Section 5.2 discusses how the captured proof history can be used to re-run the
proofs, to “animate” the expert. However, the prototype ProofProcess system does
not provide re-running functionality at themoment due to limited PhD research re-
sources and time. Nevertheless, the proof history is collected alongside high-level
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proof processes as described, therefore the data and the expert effort is available
for future implementations.

One of the requirements for re-running full proof development identified in
Section 5.2 is ensuring that correct versions of associated proof scripts are used. For
example, if a particular version of a proof script depends on others, it is important
to load their correct versions to preserve consistency of the overall development.
The correct versions of associated files can be located via the FileHistoryProject
structure. An easy approach would be to use all files within the FileHistoryProject
that have versions with the same (or older) timestamp as the proof script in ques-
tion. This would recreate the full project structure as it was during the original
recording and should be resolved correctly by the prover, given that the file loca-
tions are adhered to. Since the imported files are normally processed before the
current one, the correct versions of related files would have been captured by the
File History framework.

8.8 Integrating with theorem provers

The ProofProcess framework is designed as a platform for building proof process
capture functionality for a theorem proving system and is not a standalone appli-
cation. Therefore, rather than adapting theorem provers to suit the ProofProcess

system, one would reuse generic framework components and build a new proof
capture add-on to the prover. An overview of tool components in Section 8.3
shows that the end-user applications are Isabelle ProofProcess and Z/EVES Proof-

Process, which reuse and extend the framework functionality. This approach is
similar, for example, to the Eclipse platform: developers of new IDEs can select
and adapt relevant generic components as well as supplement them with custom
functionality to create the final product.

Requirements for future ProofProcess integrations are discussed in various
places within this thesis when describing the details of the ProofProcess frame-
work architecture and implementation. Some key guidelines on how to build a
new ProofProcess integration are reiterated here:

• Provide prover-specific implementations of Term and ProofTrace data struc-
tures, encapsulating details about prover terms and commands (proof steps),
respectively. These abstract data structures serve as extension points of the
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core ProofProcess model. The core data structures and their manipulation
functionality can be reused within integrations.

• Provide prover-specific implementation of Loc (locations of proof commands
within proof scripts). If the prover uses text-based representation, the File

History framework can be reused (Section 8.7).

• Select to use the existing per-project proof store (see Section 8.4.2) or develop
an alternative proof store representation (as discussed in Section 4.5). The
same considerations would be used for proof activity logging.

• Select to reuse the underlying database functionality: a convenient API is
available for instantiating the embedded database. If prover terms have large
representations, consider providing a compressed serialisation option when
saving to the database.

• Implement prover “wire-tap”: track and record user and prover activities.
It is convenient to implement this using an observer pattern on the prover:
e.g. when the prover processes new commands, record them together with
the corresponding results. Parsing the prover data into the ProofProcess data
structures as well as the Term and ProofTrace implementations is needed. All
this functionality is specific to each prover.

• If applicable, reuse the functionality to infer proof process structure and
recognise proof attempts (Sections 6.2 and 6.3) as well as other analysis and
proof inferring functionality within the ProofProcess framework. In other
cases, custom implementations would be used: e.g. the Z/EVES ProofProcess

integration employs prover-specific proof structure analysis, based on proof
branch indices reported by the prover (see Section 10.2.2).

• If building upon the Eclipse platform, generic user interface components can
be reused. They work with the core data structures and thus can be used
directly. Prover-specific extensions need to be provided for manipulation
of terms and proof traces: e.g. to break down a term into sub-terms (see
Section 8.2.3).

8.8.1 Prover requirements

The ProofProcess framework aims to accommodate different theorem provers by
providing generic, reusable components and functionality. The framework uses
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a progressive enhancement approach to supported functionality: if more and better
data is available from the prover, the analysis and inferring capabilities of the
framework capture better proof process information.

To support good proof process capture, theorem provers should have the fol-
lowing functionality (the details about these requirements are discussed in corre-
sponding architecture and implementation sections of this thesis):

• Provide details about entered proof commands, including mapping them
to the proof script, capturing command parameters, etc. Furthermore, help
with handling the expressiveness of the proof language (syntactic sugar,
alternative ways of stating the same commands, proof script styling, etc.).

• If applicable, capture other proof assistant user interactions such as querying
for theorems, inspecting the proof context, other user interface actions, etc.

• Provide details about proof command results, such as the full list of goals.
Isabelle truncates the list of goals by default if it is too large.

• Track detailed goal changes in order to avoid non-determinism in inspecting
the effects of proof commands. This is relevant when proof commands can
affect multiple goals.

• Provide a canonical representation for prover terms (e.g. goals and their
subterms, etc.); or provide a matcher for different representations to check
when two terms are equivalent.

• Retrieve details about prover terms: variable types, function definitions, etc.

• Inspect and query the proof context, prover configuration, available lemmas
and definitions for each proof command.

• Track used lemmas, definitions and concepts within proof commands.

• Provide basic manipulation functionality for the captured terms: e.g. extract
sub-terms, perform pattern matching or unification, etc.

• If needed for advanced analysis, provide basic automated prover function-
ality at any proof command (e.g. some proof feature implementations may
utilise the prover).

• Support executing queries andpossibly “drive” the prover in the background
without affecting the user doing the interactive proof.
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The described functionality is often available within the theorem prover, but an
appropriate API is needed to access it from the proof process capture components.
For example, one could perform most of these functions in Isabelle/ML, however
the functionality is not available in the Isabelle/Scala API that is used in Isabelle

ProofProcess (see Section 9.1.2).
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CHAPTER 9
Integration with Isabelle

Integrating the generic ProofProcess framework with the Isabelle [NPW02] theorem
prover enables the capture of a user’s interactive proof when using this popular
theorem proving system. The core framework (Chapter 8) is prover-independent,
therefore extensions are needed to link it with theorem provers. The Isabelle Proof-

Process extension provides support for prover-specific data when describing the
interactive proof process: terms, proof command information, etc. Furthermore,
it “wire-taps” the prover communication and tracks the user’s interactive proof.
The system automatically populates the low-level proof process details, performs
further analysis such as inferring the proof structure, and so on.

Isabelle is a powerful and popular1 LCF-style theorem prover. Isabelle/HOL, its
most widespread instance, provides a higher-order logic theoremproving environ-
ment that is used for a variety of applications. Isabelle comes with a large theory
library of formally verified mathematics that can be used in formal specifications
and proofs. Furthermore, the Archive of Formal Proofs [KNP] contains a vast collec-
tion of formal verification developments spanning various domains. The proofs
from the base library and the extended collection could be considered for cap-
ture and generalisation to high-level proof processes. However, the majority of
these examples are quite mathematical and do not demonstrate the properties of
industrial-style proofs (Section 2.1), which are the target of this research. Never-
theless, recent formal developments using Isabelle/HOL, such as the verification
of the seL4 microkernel [KEH+09], provide examples of industrial-style proofs.

1Prior experience with Isabelle among the AI4FM project researchers has been a factor in de-
termining the initial provers to use within the project.
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Chapter 11 presents a case study of capturing and reusing an expert’s high-level
proof process for a family of lemmas. It is part of the formal development of a
heap memory manager specification using Isabelle/HOL.

Furthermore, other tools are available for Isabelle for replaying proof strategies,
which could be extracted from the captured proof process data. IsaPlanner [DF03]
is a proof planning tool. Tinker [GKL14] is another tool from theAI4FMproject that
encodes and replays proof strategies using proof-strategy graphs2 (Section 7.3).

The ProofProcess system integration with Isabelle and proof data tracking are
built on Isabelle/Scala API. Section 9.1 discusses how the link between the prover
and the ProofProcess system is implemented. The proof capture system is currently
built on the standalone Isabelle/Eclipse proof assistant, which has been developed
during this research. It is presented in Section 9.4. However, adding support for
other Isabelle proof assistants such as Isabelle/jEdit [Wen12] would not be difficult.

9.1 Recording interactive proof

The Isabelle integration utilises the recent Isabelle/Scala layer to implement the
tracking and capture of the interactive proof. The Isabelle/Scala layer is now part
of the default interaction with the Isabelle prover. It is developed to facilitate new
ways of constructing a proof interactively: e.g. as an asynchronously checked proof
document instead of the classic read-eval-print interaction [Wen12].

Isabelle/Scala provides a strongly-typed API to access prover output and is
being updated with every new Isabelle release. However, it focuses on supporting
the functionality of graphical proof assistants rather than providing a universal
API to the theorem prover. Section 9.1.2 discusses how using such an API affects
the implementation of proof process capture. Before that, the next section reviews
how Isabelle proof tracking is implemented in the Isabelle ProofProcess: particularly,
how proofs are captured from an asynchronously processed proof document.

9.1.1 Capturing asynchronous proof

The proof document approach to Isabelle interaction provides powerful and user-
friendly proof checking capabilities, particularly in the area of parallel processing
of proof theories and proofs. The prover interaction is a move forward from the
classic read-eval-print approach, allowing the user to develop a proof document

2The captured Isabelle proof process data can be exported to Tinker from the ProofProcess system.
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that is being checked asynchronously rather than focusing on a single command.
Furthermore, the interactionmodel allows parallel processing of the proofs to reap
the benefits of multi-core processors available in modern computers. The oppor-
tunities for parallelism are plenty: the branches of the theory dependency graph
can be processed in parallel; individual proofs can be delegated to separate pro-
cesses (later proofs assume that their dependencies hold—the overall consistency
is ensured only at the end); parts of structured Isabelle/Isar proof can be checked
independently; etc [MW10]. Processing the eligible parts in parallel can speed up
the overall evaluation significantly.3

From the implementation perspective, Isabelle/Scala provides a simple API of
a proof document model for prover interaction, hiding the internal communication
between the Isabelle/Scala and Isabelle/ML (the theorem prover implementation)
layers [Wen12]. As the user edits the proof document within the proof assistant
(e.g. Isabelle/Eclipse), the document model is updated accordingly, triggering the
submission of the new proof commands to the prover. When the commands are
processed, their results are returned to the Isabelle/Scala layer and populate the
document model. The graphical proof assistant receives a notification to update
the UI according to these results.

The ProofProcess system integration utilises the document model to “wire-tap”
the prover communication. It registers to receive notifications when the com-
mands are processed. As soon as a notification about changed commands is re-
ceived, the system schedules the analysis of these commands as a low-priority task
to avoid slowing down the actual proof processing. Each analysis request carries
the current snapshot of the document model. Snapshot data is immutable, thus a
delayed analysis is not affected by subsequent changes to the document model.
The snapshot data is queried to record the proof process details as it carries proof
command results, goal terms and other proof information.

When capturing proof process data, the asynchronous processing presents
some issues in recognising what the expert is actually doing. First, the order of
proof evaluation is frequently non-deterministic: i.e. a proof branch appearing later
in the proof can finish evaluation before the results of an earlier calculation become
available. Furthermore, the processing jumps over incomplete or erroneous proof
commands and continues processing the remainder of the document (after a short
delay), even if the subsequent proof commands belong to another proof. Such

3Matthews and Wenzel [MW10] report processing speedup of 5-6 times for sample Isabelle
theories when using 8 processor cores.
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processing produces a non-linear stream of data about the proof process, which
does not reflect what the expert is actually doing.

To normalise the proof process capture, Isabelle prover events are filtered. The
Isabelle/Scala API reports results of every processed command as they become
available. This allows the prover IDE to render proof results “on the fly” within
the proof document so that the user is aware of how the proof progresses. For
performance reasons, the results are batched to some extent, but each batch does
not necessarily represent a continuous sequence of commands. Upon receiving a
notification about a new batch of results from processed proof commands, Isabelle

ProofProcess performs the following filtering steps:

1. Identify all proofs containing the changed (reported) commands.

2. Collect full proof scripts (all proof commands) of each of these proofs. The
proof scripts are collected from the user’s proof document and may contain
commands that are as yet unprocessed.

3. Select the minimal continuous sequence of proof steps with valid, processed
commands: i.e. start from the beginning of the proof and select only the
proof steps that have already been processed by Isabelle (their results are
available) and are not erroneous.

4. Use the minimal valid proof attempt for proof process analysis.

Such an approach prevents the pollution of proof process data with interim proof
results. For example, when a user is editing a proof command, it may be erroneous
or fail to produce valid results. The asynchronous processing nevertheless contin-
ues processing the subsequent commands, which rarely advance the proof in the
expected direction. Thus by taking the minimal valid sequence of commands, the
interim results of the eager proof processing are filtered out.

Furthermore, the minimal sequence approach addresses the parallel process-
ing issues. For example, if a command later in the proof is reported before the
earlier ones are finished, these results will be ignored initially, since the earlier
unfinished commands will break the minimal valid sequence of commands. How-
ever, when these are eventually processed, the whole proof will be analysed again,
including the results of the previous batches. This will ensure that the proof is
processed in its entirety and closely matches the expert’s proof process, rather
than the order of parallel processing.
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Each minimal valid proof attempt is analysed by Isabelle ProofProcess to in-
fer its proof structure. For Isabelle proofs, goal-change analysis is done to infer
proof branching and merge points (Section 6.2). The current implementation of
proof process capture mainly supports procedural, apply-style Isabelle proofs. Such
proofs are used in industrial-style formal developments: e.g. the verification of
the seL4 microkernel [Tru14].4 However, Isabelle proofs can switch between the
procedural and declarative approaches mid-proof, thus rudimentary support for
processing declarative Isabelle/Isar proofs and even inferring the proof structure is
available in the prototype implementation. Section 13.3.5 provides more details
and establishes future work on providing full support for declarative proofs.

Inferring the proof structure of Isabelle proofs produces a low-level proof graph
(Section 8.6) that is used to match against existing proof attempts in order to iden-
tify whether it is a new attempt, an extension of one, or just a re-run of a previous
proof (Section 8.6.2). If the processed proof commands result in a new or extended
proof attempt, the captured data is added to the proof process database and pre-
sented to the user, who can mark the high-level proof process insight.

9.1.2 Working with limited API

The Isabelle ProofProcess integration offers different parsing capabilities for Isabelle

data, which depend on how much information is provided by the theorem prov-
ing system. The current API provided by Isabelle/Scala is quite limited5 in regards
to the actual proof query andmanipulation. Isabelle/Scala has been developed first
and foremost to support user interfaces for proof assistants, notably Isabelle/jEdit

and afterwards Isabelle/Eclipse. Because of this focus, the API is concerned with
rendering the proofs and their results, rather than supporting querying and ma-
nipulation of the actual proof search and construction. The latter functionality is
mostly available via the Isabelle/ML APIs, which have a different interaction model
for the user code. Figure 9.1 provides a rough overview of these Isabelle APIs.

The difference between Isabelle/ML and Isabelle/Scala APIs means that differ-
ent results can be achieved depending on which APIs are used to query and
record the proof process data. Isabelle/Scala allows easy interception of the prover

4During personal communication, the authors of the seL4 microkernel verification shared that
it is infeasible to use declarative Isabelle/Isar proofs for formal development on such a scale. For
example, the goals are too large to be useful in a declarative approach.

5Isabelle ProofProcess integration currently supports and requires Isabelle2013. The missing
Isabelle/Scala API as discussed in this thesis may appear in future versions of Isabelle.
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- ...
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Figure 9.1: Isabelle APIs.

communication via the observer pattern. The data that is being sent to/from the
prover can be parsed, structured and recorded. However, this data mostly repre-
sents instructions on how to render particular facets of the current proof. Signif-
icant details about the actual proof objects and what happens in the prover are
omitted from the output. For example, the actual goal terms as used within the Is-

abelle prover get “printed” to a structure that is easy to render in a human-readable
form. However, they no longer possess the original structure. While some of the
information is still available within the rendered term (e.g. fully qualified names of
functions or types of variables—see Section 9.2), the original data structures are
lost in Isabelle/Scala APIs. These and other missing details are important to proof
process analysis, therefore their absence limits the options of what can be done
with the proof process recorded in this manner.

Isabelle/ML APIs, on the other hand, allow querying the internal representations
of the proof process as well as accessing other details about the proof context. The
data includes all necessary details to construct the proofs and hence provides a
much richer account of what is happening in the prover.6

Unfortunately, because of the way Isabelle/Scala API works, retrieving the in-
ternal representations is not straightforward. The current API does not allow for
querying of the proof information at arbitrary places within the proof document.
The execution is stateless and asynchronous within the prover and only the proof
output is stored within the prover IDE for stateful access. Therefore, to access cer-
tain data for each proof command (e.g. the internal representation of goals), this
data needs to be part of the prover output.

Currently this is achieved within the ProofProcess system by patching the user’s
Isabelle installation. The changed code supplements the prover output with data of
interest: e.g. when the goals are output for display, their internal representations

6Even using Isabelle/ML APIs is not enough to access all information in certain cases. For exam-
ple, accessing proof terms (low-level λ-structure of proofs [BN00]) requires that they are explicitly
enabled and uses HOL-Proofs as the base logic rather than just HOL.
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are also sent via the tracing mechanism. This way the user does not see the addi-
tional output if tracing is turned off within the prover IDE, but the ProofProcess

system is able to capture it. Extra development effort has gone into streamlining
and automating the patching process within the ProofProcess system: the user only
needs to confirm the action, then the selected Isabelle installation is patched and
re-built automatically.

Such a workaround is not ideal as users do not appreciate changing the prover
itself. The patches are only concerned with outputting data and do not introduce
additional functionality. However, it would be preferable to avoid such interven-
tion altogether. This is also a very brittle solution as patches need to be adjusted
when new Isabelle versions are released.

A perfect solution would see improvements in the Isabelle/Scala API so that
arbitrary queries could be executed at any point of the proof document. This
would allow the ProofProcess system to query for term details “in the background”
without patching the system. Simulating such interaction by inserting necessary
commands directly into the proof document is complicated: the new commands
invalidate the subsequent proof state and all subsequent proof commands need
to be re-evaluated. This would severely slow down the proof processing.

The development of Isabelle/Eclipse, Isabelle ProofProcess and the usage of Is-

abelle APIs involved communication and collaboration with key Isabelle devel-
opers. The work has led to improved APIs in some Isabelle releases. Following
discussions, APIs to query internal proof states are expected to be available in
future versions of Isabelle. This would provide an “official” way to access internal
data from within ProofProcess system without the need to patch the prover.

Isabelle/Scala APIs for third-party applications such as the ProofProcess system
are still young and keep changing in each release. The development of Isabelle/E-

clipse and the ProofProcess system required significant effort to be spent on chasing
a moving target of new Isabelle releases.7 Working with the developers on more
matureAPIs and designingmore robust parsing algorithms is necessary to achieve
better and easier integration with future versions of Isabelle.

Themajority of Isabelle ProofProcess functionality is built using the Isabelle/Scala

APIs. It follows the approach of the least intrusive capture of proof process. Patch-
ing the Isabelle installation is an intrusive operation, but provides richer data. To
support both options, the ProofProcess system follows a “progressive enhancement”

7During this PhD research, a number of new Isabelle releases have been published:
Isabelle2011→2011-1→2012→2013→2013-1→2013-2→2014.
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approach: basic functionality is available using just the Isabelle/Scala APIs, but
richer analysis can be done if Isabelle/ML patches are allowed.

An argument could be raised for developing the proof process capture sys-
tem using the Standard ML language and integrating directly with the Isabelle/ML

APIs. However, building a generic proof process capture framework is one of the
objectives of this research. The current integration solution has been chosen be-
cause of the need to also integrate with the Z/EVES theorem prover (Chapter 10),
requirements for data persistence, low-priority processing, non-intrusive integra-
tion with the proof assistants and good UI to manipulate the captured data, as
well as the author’s experience with Eclipse and the Java programming language.
Furthermore, the Isabelle/Scala API has emerged as the default Isabelle interface
for proof assistants; it is being actively developed, thus the required functionality
is expected to appear in the future.

9.2 Recording terms

Isabelle ProofProcess provides prover-specific representation for Isabelle’s terms and
proof commands as well as encoding this information within the proof process
data during proof capture. Because of the limitations of the Isabelle/Scala API as
discussed earlier, two representations for Isabelle’s terms8 are available:

• MarkupTerm: rendered terms;

• IsaTerm: internal representation as used by the Isabelle prover.

A class diagram listing the term implementations is presented in Figure 9.2.
Both term representations wrap the native data objects, provided via the Is-

abelle/Scala API. Furthermore, textual representation is recorded in both cases,
to facilitate the human inspection of the data. For example, decrypting the inter-
nal structure with fully qualified names of functions can be difficult for humans,
while reading P =⇒ Q is straightforward. The text representation of the term is
recorded in the display field provided by the DisplayTerm class that both term im-
plementations extend. The following sections explore each representation in more
detail. For illustrations of the different representations, refer to Figures 9.3 and 9.4

8Terms in this context are taken to mean expressions, predicates, variables, their sub-terms and
other constructs written in Isabelle’s logic. This should not be confused with proof terms [BN00],
which represent the low-level λ-structure of Isabelle proofs.
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Figure 9.2: UML class diagram of Isabelle ProofProcess basic terms.

forMarkupTerm and IsaTerm, respectively. Each figure presents the corresponding
representation of a simple lemma: (x: :nat) ∈ S =⇒ S 6= {}.

9.2.1 Rendered term (MarkupTerm)

The rendered term is the initial representation of Isabelle terms within the ProofPro-

cess data structures. Their contents are parsed from the default prover communica-
tion using the Isabelle/Scala API. To capture Isabelle terms using this representation,
no alterations to the theorem prover are needed. The information that comprises
rendered terms is produced by the prover and is used by the proof assistant (e.g.
Isabelle/Eclipse) to display the terms in rich, human-readable form. The Isabelle

ProofProcess integration parses the terms from this prover output and uses them
in recording the proof process.

Figure 9.3 provides an example of the rendered term content. The representa-
tion is mainly the term output string that is annotated with rendering and cross-
referencing information. The information is structured into an XML document,
which links the associated information with the corresponding parts of the term.
The XML structure follows the printed output: e.g. the lemma x ∈ S =⇒ S 6= {}
is encoded sequentially within the XML in Figure 9.3 at lines 10 (x), 14 (∈), 22 (S),
27 (=⇒), 36 (S), 40 ( 6=), 43 ({}).

The details about variables include their typing information, whether they are
fixed, etc. The types, function symbols and other constants also have their fully
qualified names recorded: e.g. 6= is defined as not_equal in the HOL theory (see
HOL.not_equal at line 39 in Figure 9.3). The representation also carries some
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<term>
<block indent="0">

<xml_elem xml_name="typing">
<xml_body>

<entity def_end_offset="854" def_file="~~/src/HOL/Nat.thy"
def_line="36" def_offset="851"
kind="type_name" name="Nat.nat" ref="383441">nat</entity>

</xml_body>
<fixed name="x">

<free>x</free>
</fixed>

</xml_elem>
<entity def_file="~~/src/HOL/Set.thy" kind="constant" name="Set.member"...>
<delimiter>∈</delimiter>

</entity>
<xml_elem xml_name="typing">
<xml_body>

<entity kind="type_name" name="Nat.nat"...>nat</entity>
<entity kind="type_name" name="Set.set"...>set</entity>

</xml_body>
<fixed name="S">

<free>S</free>
</fixed>

</xml_elem>
</block>
<entity def_file="pure_thy.ML" kind="constant" name="==&gt;" ref="137">

<delimiter>=⇒</delimiter>
</entity>
<block indent="0">

<xml_elem xml_name="typing">
<xml_body>

<entity kind="type_name" name="Nat.nat"...>nat</entity>
<entity kind="type_name" name="Set.set"...>set</entity>

</xml_body>
<fixed name="S">

<free>S</free>
</fixed>

</xml_elem>
<entity def_file="~~/src/HOL/HOL.thy" kind="constant" name="HOL.not_equal"...>
<delimiter> 6=</delimiter>

</entity>
<entity def_file="~~/src/HOL/Set.thy" kind="constant" name="Set.empty"...>
<delimiter>{}</delimiter>

</entity>
</block>

</term>

Figure 9.3: MarkupTerm representation of (x: :nat) ∈ S =⇒ S 6= {}.
Note: the XML presented here has been cleaned up for readability and space saving
reasons. The removed elements are <block>, <break> and other similar layout elements.
Attributes within some <entity> elements have also been trimmed.
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layout information: e.g. which parts of the term are to be grouped when the terms
span multiple lines to display. This information is represented using <block> and
<break> tags, which have been mostly trimmed from Figure 9.3.

The rendered term does carry some important details about Isabelle terms, par-
ticularly the types of variables and the fully qualified names of function symbols
and other constants. This representation is easily accessible by “wire-tapping” the
communication between the prover and its IDE.

Unfortunately, the actual structure of the term is not captured by the rendered
representation, making it difficult to decompose such terms (e.g. to separate as-
sumptions and goals) or to perform even the simplest manipulations. Any such
operations would require parsing the text and inferring the term structure. The
actual representation of the term (i.e. the one used by IsaTerm) could be queried for
theMarkupTerm from the prover. The rendered term could be “parsed” within the
prover using the associated proof context. However, doing this with the current
Isabelle/Scala API9 would require workarounds such as temporarily modifying the
current proof document to access the proof context at the desired location.

Goal-change analysis that is used to infer Isabelle proof structure (Section 6.2)
can utilise the MarkupTerm representation in the majority of cases. Terms can be
compared for equality, because the rendered representations of equal terms are
equal themselves. They can be used to follow goal changes across proof steps. This
allows inferring the basic proof structure within the procedural, apply-style Isabelle

proofs. However, using them to infer the structure of a declarative Isabelle/Isar proof
is more difficult, as simple term manipulation is required there (see Section 9.2.3).

The MarkupTerm representation is used to display goals within the prover out-
put and to annotate processed proof commands. For example, when a proof com-
mand is processed by the prover, the command results (e.g. outstanding goals) are
displayed as the prover “output”. These goals are rendered using the described
XML structure and can be captured as MarkupTerms by the ProofProcess system.
Furthermore, the processed command and its parameters are also “marked up”:
i.e. the terms are enrichedwith type and cross-reference details as explained above.
This allows capture ofMarkupTerm representation for proof command details.

However, sinceMarkupTerms are captured from the “display” information, they
are susceptible to user configuration on how results are visualised. For example, by
default Isabelle limits the number of goals presented to the user to ten. Therefore,

9As of Isabelle2013.
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if more goals are produced as the result of a proof command, some of them are
trimmed and are not captured by the ProofProcess system if running without in-
depth prover querying (i.e. without the IsaTerm parsing).

9.2.2 Internal term (IsaTerm)

The internal representation of Isabelle terms supports logic operations and can be
manipulated more easily. Furthermore, it is more robust: i.e. this representation is
not affected by rendering changes between different versions of the Isabelle prover.
However, retrieving this representation for goal and command parameter terms
is more difficult and requires adjustment of the Isabelle installation.

Figure 9.4 provides an example of the internal term representation for the same
simple lemma as with the rendered term (cf. Figure 9.3). This representation is
used to denote terms within the base Isabelle/Pure framework. The Pure logic
encodes a simply typed λ-calculus and provides logic operations to manipulate
such terms. Other Isabelle logics build upon the base Isabelle/Pure framework. The
base term encoding and supporting implementation of logic operations as well as
other functionality are available within the Isabelle/ML API. The Isabelle/Scala API
mirrors the term encoding,10 however the libraries providing logic operations or
other functionality are not yet available within Isabelle/Scala.11

Like the rendered representation presented above, the internal representation
records fully qualified names of the included constants and provides the full type
information. However, its structure is superior in representing sub-terms: i.e. it
captures function applications; expands the abbreviations to provide a normalised
representation (e.g. 6= is encoded as HOL.Notwrapping a HOL.eq); etc. The struc-
ture makes it easy to extract sub-terms: e.g. by taking the contents of the function
application (App) arguments. Sub-term identification is needed for ProofProcess

analysis: e.g. for sub-term selection in proof features, etc.
To capture IsaTerm representations, the Isabelle system needs to be patched (see

Section 9.1.2). For goal terms, the Isabelle/ML code that outputs the goal after pro-
cessing the proof command is supplemented: for every result goal it also outputs
its internal term representation via the tracing mechanism. When the output is
parsed by Isabelle ProofProcess during analysis, this internal representation is used
to record the proof step goals.

10Defined in isabelle.Term class in Isabelle/Scala.
11As of Isabelle2013.
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App(
App(

Const(==>,
Type(fun, [Type(prop),

Type(fun, [Type(prop), Type(prop)])])),
App(

Const(HOL.Trueprop,
Type(fun, [Type(HOL.bool), Type(prop)])),

App(
App(

Const(Set.member,
Type(fun, [Type(Nat.nat),

Type(fun, [Type(Set.set, [Type(Nat.nat)]),
Type(HOL.bool)])])),

Free(x,
Type(Nat.nat))),

Free(S,
Type(Set.set, [Type(Nat.nat)]))))),

App(
Const(HOL.Trueprop,

Type(fun, [Type(HOL.bool), Type(prop)])),
App(

Const(HOL.Not,
Type(fun, [Type(HOL.bool), Type(HOL.bool)])),

App(
App(

Const(HOL.eq,
Type(fun, [Type(Set.set, [Type(Nat.nat)]),

Type(fun, [Type(Set.set, [Type(Nat.nat)]),
Type(HOL.bool)])])),

Free(S,
Type(Set.set, [Type(Nat.nat)]))),

Const(Orderings.bot_class.bot,
Type(Set.set, [Type(Nat.nat)]))))))

Figure 9.4: IsaTerm representation of (x: :nat) ∈ S =⇒ S 6= {}.
Note: the structure in the example is a print-out of Scala datatypes. To improve readabil-
ity, the List(elem1, elem2) structure is represented as [elem1, elem2], or omitted
altogether if empty: e.g. Type(Nat.nat) is actually Type(Nat.nat, List()).
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¦ ¦ ¦

The duality of term representation within Isabelle ProofProcess appears because
of restrictions within the Isabelle APIs. Currently, a “progressive enhancement”
approach is used during proof capture, where functionality is improved if bet-
ter data is available. For example, MarkupTerms have been used during initial
development and are still the default term representation. However, capturing
IsaTerms enhances the functionality and enables better analysis techniques. Com-
parison and analysis involving mixed data (both MarkupTerm and IsaTerm data) is
not possible at the moment. Eventually, if the Isabelle APIs provide the necessary
functionality, IsaTerms will become the default representation of Isabelle terms and
will not require patching the prover.

9.2.3 Normalising goals in declarative proof

Formal proofs in Isabelle can be very expressive, particularly when constructed
using the Isabelle/Isar [Wen02] proof environment. It enables authoring of declara-
tive and structured proofs: i.e. where assumptions and goals used in the proof are
declared explicitly. This approach is very well suited for mathematical proofs and
produces human-readable proof documents. Furthermore, Isabelle/Isar is more
suitable for a forward proof style, where facts are posited and then used to prove
subsequent ones. The procedural style is more aligned with the backward proof
style, where proof tactics transform the open goal and produce sub-goals.

The current ProofProcess system focuses on capturing the procedural proofs.
However, the flexibility of declarative proof and opportunities to control the proof
context tempt users to switch to Isabelle/Isar proofs in certain cases, even if the other
proof is done in procedural, apply-style. To avoid system failure when such a proof
style is encountered (sometimes mid-proof), rudimentary support for recording
Isabelle/Isar proofs is implemented within the prototype system. Refer to Sec-
tion 13.3.5 for more details.

A particular issue encountered when parsing Isabelle/Isar proof goals is the
need to normalise the goal representations. The explicit declaration of assump-
tions within the Isar declarative proofs allows them to be chosen manually to build
up the proof context within proof steps. These assumptions are used to prove the
goal, but are presented to the user separately. An example of prover output for a
declarative proof step in Isabelle/HOL is listed in Figure 9.5(a). The assumptions
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proof (prove): step 18

using this:
ss 6= X
∀s∈p. ∀t∈p. s = t ∨ s ∩ t = {}
ss ∈ p
X ∈ p

goal (1 subgoal):
1. ss ∩ X = {}

(a) Declarative Isabelle/Isar proof step.

ss 6= X =⇒
∀s∈p. ∀t∈p. s = t ∨ s ∩ t = {} =⇒
ss ∈ p =⇒
X ∈ p =⇒
ss ∩ X = {}

(b) Full goal.

Figure 9.5: Sample output of a declarative Isabelle/Isar proof step.

(listed under using this:) have been declared (and possibly proved) previously.
They are selected explicitly to prove the listed goal ss ∩ X = {}. Figure 9.5(b)
displays the exact same goal but with assumptions embedded within.

When recording proof process results of a declarative Isabelle/Isar proof, the
captured goal terms are normalised. Furthermore, the explicit assumptions are
recorded. The assumption selection (and especially their declaration) is an impor-
tant feature of the expert’s proof process: e.g. when replaying such strategy, it may
be important to establish and select similar assumptions.

Within declarative proof steps as illustrated by Figure 9.5, the assumptions and
goals can be separated. This means that the ProofProcess capture records them as
separate terms, using either MarkupTerm or IsaTerm representations for each one.
To normalise the goal terms aswell as tomark the assumptions, Isabelle ProofProcess

uses additional term representations: JudgementTerm and AssumptionTerm, respec-
tively. They wrap the captured base term representations. Figure 9.6 provides a
class diagram depicting these data structures.

The JudgementTerm structure encodes the goal as a list of assumptions with a
single goal term. During normalisation, the explicitly declared assumptions are
added to the ones already existing within the goal. Any duplicate assumptions
are trimmed. TheAssumptionTerm is used to wrap the actual terms of the explicitly
declared assumptions. Both JudgementTerm andAssumptionTerm are used to record
goal terms within in/outGoals fields of the ProofStep structure (Section 4.3.3). The
recording of assumptions allows the inference of a richer proof structure, namely
the dependency of each proof step on previous steps that declare the required
assumptions. Refer to Section 13.3.5 for more information on how proof structure
of such proofs can be captured, analysed and represented.
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Figure 9.6: UML class diagram of Isabelle ProofProcess goal terms.

9.3 Recording proof steps

Capturing the Isabelle proof step chosen by the user requires the parsing of the
details entered in the proof document. The proof command can consist of the
chosen proof method (e.g. tactic) as well as its configuration, e.g:

apply (induct_tac k rule: nat_less_induct)

Here, the user has chosen to use the induction tactic HOL.induct_tac on some
variable k using the induction rule Nat.nat_less_induct. The proof commands
can be of varying complexity and different tactics utilise different configuration
options. To capture the user’s proof step, it is important to parse and record the
proof command itself as well as all of its configuration, which normally contains
the important parts of the selected proof strategy.

When a proof command is processed by the prover, it gets annotatedwith addi-
tional details: e.g. the referenced objects are identified with fully qualified names,
the parameter terms are given structure (see term parsing above), certain parts of
the proof command are marked up as well. This information is normally available
via the Isabelle/Scala API to enhance the proof command rendering within the
prover IDE. Isabelle ProofProcess uses it to parse the command details.

The data structures used to represent Isabelle proof traces and capture proof
command details are listed in Figure 9.7. The large number of proof tactics avail-
able within Isabelle with different configuration options have led to using a generic
approach to representing a proof command: the NamedTermTree structure. The
structure represents a hierarchy of named lists of terms. This allows the encoding
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Figure 9.7: UML class diagram of Isabelle ProofProcess proof command trace.

NamedTermTree(apply, [], [
NamedTermTree(HOL.induct_tac, [IsaTerm(k)], [

NamedTermTree(rule, [NameTerm(Nat.nat_less_induct)], [])])])

(a) apply (induct_tac k rule: nat_less_induct)

NamedTermTree(by, [], [
NamedTermTree(HOL.simp, [], [

NamedTermTree(add, [NameTerm(Big_Operators.setsum_Un_disjoint)], []),
NamedTermTree(del, [NameTerm(Set.Un_Diff_cancel)], [])])])

(b) by (simp add: setsum_Un_disjoint del: Un_Diff_cancel)

Figure 9.8: Proof command encoding usingNamedTermTree(name, terms, branches)
structures. Lists are represented using square brackets [].

of different proof command configurations within the same structure rather than
creating explicit data types for each proof method.

The proof command itself is a NamedTermTree, where each nested branch rep-
resents a particular proof command. The proof command, in turn, records the
named command parameter lists as its branches, and so on. Figure 9.8 lists exam-
ples of such proof command representations.
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Furthermore, to represent certain proof command arguments, new term data
structures are defined within Isabelle ProofProcess (see Figure 9.7):

• NameTerm: denotes a named lemma or proof fact within a command. For
example, when lemmas are explicitly indicated within a proof command,
their names are recorded asNameTerms (see the encoding of induction lemma
Nat.nat_less_induct in Figure 9.8).

• NamedTerm: records introduction of named facts in to the proof context
in Isabelle/Isar declarative proofs. For example, an assumption command
assume conj: "A ∧ B" introduces the named fact that can be referenced in
the proof later. ANamedTerm records both the introduced term (e.g. “A ∧ B”
here as MarkupTerm or IsaTerm) as well as the name given to it (e.g. ‘conj’).

• InstTerm: records term instantiations:12 e.g. in rule application
apply (rule_tac x="a - b" in exI).

Some of the data structures presented here are still in development and may
change eventually when the ProofProcess functionality evolves: e.g. instead of cap-
turing just the lemma name (NameTerm), its full representation should be recorded
to account for possible definition changes (see Section 4.6.2).

¦ ¦ ¦

Parsing of Isabelle terms and proof commands provides basic capture of low-level
proof process data with opportunities for future analysis. Implementing more
advanced proof process analysis functionality, however, requires use of the prover
functionality in many cases. The limitations of the current Isabelle/Scala APIs
hinder such implementations.

Nevertheless, the core ProofProcess functionality is supported by Isabelle Proof-

Process: the expert’s interactive proof is recorded; the proof structure is inferred
automatically and new attempts are recognised; afterwards the expert can mark
the high-level insight on the captured data by indicating high-level proof steps,
proof intent and marking the appropriate proof features.

12To access the instantiation information, Isabelle/ML APIs are used and require patching of the
Isabelle system.
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Figure 9.9: Screenshot of Isabelle/Eclipse.

9.4 Isabelle/Eclipse prover IDE

Isabelle/Eclipse13 is a prover IDE for the Isabelle theorem prover. A screenshot
of the system is presented in Figure 9.9. Isabelle/Eclipse has been developed to
support the functionality and usability of the ProofProcess system. It is part of the
infrastructure of the ProofProcess system, and although it does not directly solve
the problem of capturing the proof process, part of the PhD research time has
been spent on developing such infrastructure.14

The ProofProcess system works as an add-on to proof assistants. It “wire-taps”
the communication between the user actions and the theorem proving system.
Isabelle/Eclipse provides the said proof assistant functionality for doing interac-
tive proof, which is then captured by the ProofProcess system. Alternative proof
assistant implementations exist for Isabelle, however, but have not been selected:

• Isabelle/jEdit [Wen12] has recently become the default prover IDE for Isabelle.
13Released and available at http://andriusvelykis.github.io/isabelle-eclipse/. The

latest release is for Isabelle2013.
14In a similar manner, the improvements to the Community Z Tools and the development of

Z/EVES Eclipse constitute the infrastructure developments for Z/EVES theorem prover integration
(see Section 10.3).
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9. Integration with Isabelle

However, when Isabelle/Eclipse development started, Isabelle/jEdit was still in
its infancy. Furthermore, the prototype ProofProcess system is developed on
the Eclipse platform (Section 8.3.2) and integrating it with jEdit would require
reimplementing the user interface components. Nevertheless, the Isabelle

ProofProcess integration mostly depends on Isabelle/Scala and, apart from
porting the UI, extra development to support Isabelle/jEdit would be small.

• Proof General/Eclipse [WAL05] provides a generic Eclipse-based interface to
Isabelle. Unfortunately, it is no longer actively developed and the communi-
cations protocol it uses to interact with Isabelle is being phased out.

• Proof General/Emacs was the default proof assistant interface for Isabelle until
Isabelle/jEdit made it obsolete. As with Proof General/Eclipse, its communica-
tions protocol is being phased out. Furthermore, its dependency on Emacs,
LISP programming language requirement, limited user interface extensibil-
ity and other development obstacles make it infeasible to use as the basis for
the ProofProcess system.

Isabelle/Eclipse is similar to Isabelle/jEdit in terms of functionality. It builds on
the same proof document interaction model as well as other proof assistant support
functionality provided by the Isabelle/Scala layer. However, as the name suggests,
the overall prover IDE functionality is built on the Eclipse platform and adheres to
the platform’s conventions and user interface paradigms. Isabelle/Eclipse enables
the user to author formal specifications and proofs and supports convenient type-
setting with text completion suggestions, selector for mathematical symbols and
syntax colouring. It provides inspection of proof results and proof progress, links
to definitions, the overview of the specification, etc. More information about the
Isabelle/Eclipse prover IDE and its features is available on its website [Vel]. Links
to download the tool or access the source code are also listed there.

The initial prototype of the Isabelle/Eclipse prover IDE was developed early in
the PhD research. A full-featured final version supporting Isabelle2013 has been
released to users with the aim to maintain support for newer Isabelle versions in
parity with the Isabelle/jEdit prover IDE. The application can be used standalone
(without the ProofProcess add-on) and has received interest from a number of re-
searchers: e.g. it is usedwithin the COMPASS project, to provide Isabelle integration
to the Symphony IDE tools [CCL+14].
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CHAPTER 10
Integration with Z/EVES

This research focuses on capturing proofs from industrial-style formal develop-
ments, where proofs often fall into families according to common high-level proof
ideas. Integration of the generic ProofProcess framework with the Z/EVES [Saa97]
theorem prover enables capture of the proofs from industrial-style formal specifi-
cations developed using the Z notation and verified using Z/EVES.

The Z notation [Spi92, WD96] is a formal specification language, aimed at
mathematically describing and modelling computer and other systems. It is used
in the industry to formalise systems that require good assurance: e.g. the CICS

transaction processing system from IBM [HK91], the Mondex smart card [FW08],
the Tokeneer ID station for the NSA [CB08], etc. There are not many theorem prov-
ing systems that support the Z notation because of its expressiveness. The Z/EVES

theorem prover is one: it has been used successfully to mechanise and verify
formal industrial-style Z specifications (e.g. [FW08, FWF09, BFW09, VF10]). The
availability of a large corpus of such industrial-style proofs as well as the prior
experience with using Z/EVES among the AI4FM project researchers has led to
selecting Z/EVES for capturing proof processes and learning the experts’ strategies.

The Z/EVES theorem prover provides a small number1 of tactics, resulting in
a small proof vocabulary when capturing proof processes. Z/EVES proof scripts
are linear and proof is mainly constructed in a backward proof style. The scope
of what a user can do with a prover is quite small, allowing easier ProofProcess

integration, since the different prover-specific details that need to be captured are

1Compared with Isabelle, for example.
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10. Integration with Z/EVES

limited. However, the limitations in expressivity often cause the user to construct
proofworkarounds: e.g. adjusting the definitions to a form that is better supported
by the prover, or just “fighting the prover” in general. The case study in capturing
an expert’s proof process using Z/EVES (Chapter 12) features such workarounds.

The Z/EVES ProofProcess integration functionality is built on the Community Z

Tools (CZT) [MU05], which provide a development environment for Z specifica-
tions and the integration with the Z/EVES prover. Section 10.1 describes how the
ProofProcess system “wire-taps” the Z/EVES prover communication, whereas Sec-
tion 10.2 presents the prover-specific data structures used to encode the low-level
proof information. To support the proof process capture as well as the general
usability of Z/EVES, extra development effort has gone into improving CZT and
developing an integration to the Z/EVES theorem prover via a modern IDE. Sec-
tion 10.3 provides an overview of these infrastructure developments.

Thesis contributions

The development of the Z/EVES ProofProcess integration, which description com-
prises themajority of this chapter, is sole work of the thesis author. The integration
enables capturing proof process information from formal developments that use
Z notation and the Z/EVES theorem prover.

Section 10.3 outlines improvements to CZT that are equal parts joint work to-
gether with Leo Freitas. These developments comprise necessary infrastructure
to facilitate the aforementioned proof process capture developments.

10.1 Recording interactive proof

To capture interactive proof, the Z/EVES ProofProcess utilises the API available as
part of CZT integration with the Z/EVES theorem prover. This integration pro-
vides a document model abstraction (similar to that in Isabelle/Scala) that can be
queried for proof results and provides notifications when new proof commands
are processed. Furthermore, a modern Z/EVES Eclipse prover IDE is used to de-
velop the specifications and proofs, submit them to Z/EVES and inspect the results.
Section 10.3 describes the CZT and Z/EVES integration in more detail.

User interaction with the prover is linear, with a manually controlled proof
process (cf. automatic asynchronous proof checking in Isabelle):

1. User enters new proof commands (or formal specification definitions);
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10.1. Recording interactive proof

2. CZT parses and type-checks the proof script and the specification;

3. If the entered proof commands are valid, the user submits them to the prover;

4. Z/EVES processes the proof command and responds with a new proof goal
and proof step details. If the command fails, an error message is returned;

5. The prover response is added to the document model and presented within
the user interface;

6. Upon editing the proof script, the proof is backtracked to the edit location.

Overall, the Z/EVES ProofProcess integration is similar to that of Isabelle Proof-

Process (see Section 9.1), stemming from the similarities in the prover interfaces.
The Z/EVES ProofProcess utilises the document model and prover notifications to
“wire-tap” the communication and record details about the interactive proof pro-
cess. When commands are processed, the results are scheduled for analysis as a
low-priority task. To support the analysis, a snapshot of the specification and its
results is taken: this data is cloned and therefore does not change during analysis.

The integration with CZT provides the necessary tools to implement the proof
process data analysis. For example, when CZT parses the specification or the proof
commands, it provides annotations about the types of parameters, links to function
or schema definitions, etc. All “internal” representations as well as additional
analysis, editing or logic manipulation functionality are available to the extending
tools such as the ProofProcess system. Furthermore, the Z/EVES responses are
also parsed by CZT, providing the same support for extracting, analysing and
manipulating the proof step details.

Z/EVES responses consist of new proof goals and additional details about the
proof step: a list of lemmas used by proof commands, proof case numbers, etc.
These are captured as part of the Z/EVES proof step trace (Section 10.2.2). Proof
case numbers are used to infer the proof structure: proof steps with different
case numbers belong to different proof branches. The resulting low-level proof
graph (Section 8.6) is matched against the existing proof attempts and added to
the captured proof process database. The expert can then mark the high-level
insight for the captured proof process.
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Figure 10.1: UML class diagram of Z/EVES ProofProcess data structures.

10.2 Recording prover-specific details

When recording the interactive proof process, the Z/EVES ProofProcess provides
prover-specific representation for Z/EVES terms and proof commands. Native CZT

representation is used for terms (goal predicates, expressions, parameters, etc.).

10.2.1 CZT terms

At the core of CZT is the XML markup for Z specifications (ZML) [UTS+03], speci-
fied as XML Schemas for different dialects. ZML provides a structure to Z speci-
fications and can be used as an interchange format for Z tools [MU05]. The data
structure carries all necessary details to reconstruct the Z specification and can
be supplemented by further annotations, such as typechecking information, etc.
Furthermore, CZT provides a programmatic representation (Java interfaces and
classes) for these data structures as an annotated syntax tree (AST). The AST is gen-
erated automatically from the ZML definitions.

Z/EVES ProofProcess uses the AST representation to manipulate and analyse Z
and Z/EVES terms. Furthermore, when the captured proof process data is saved
into the database, the terms are serialised to their ZML representation for storage.
Figure 10.1 lists the data structures provided by Z/EVES ProofProcess integration:
the AST representation is listed as czt.Term. The CztTerm class wraps the native
CZT term for embedding within the ProofProcess data structures. Furthermore,
the CztTerm extends DisplayTerm, which is used to provide a human-readable
representation of the contained term. It is used for human inspection only.
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10.2. Recording prover-specific details

Z/EVES ProofProcess also usesUnparsedTerms (Figure 10.1) as a fall-back solution
for integration limitations. In certain cases, Z/EVES responds with an “unprintable
predicate” message. This signals a conversion problem between Z/EVES and the
underlying EVES prover engine: prover results cannot be rendered as a Z predi-
cate. Such a situation can happen when, for example, the goal contains multiple
existentially-quantified variables and only some of them are instantiated. Often a
follow-up rewrite command transforms the goal to something that can again be
rendered as a Z predicate. Furthermore, UnparsedTerms are used when CZT fails
to parse Z/EVES results: such a situation, however, should be reported so that it
can be fixed in new CZT versions. UnparsedTerms are artefacts of the limitations
of the prover integration. They disrupt the proof process analysis as such goals
cannot be part of it. Although unavoidable in general, such cases are rare.

Having the full power of CZT as part of Z/EVES ProofProcess enables the analysis
and manipulation of the captured proof process data. For example, proof-of-
concept implementations are available to break down the goal term into sub-terms
or to provide schema terms for marking proof features (Section 8.2.3). However,
proof analysis involving prover functionality (rather than term analysis) is more
difficult to implement because the Z/EVESprover is outside CZT and to do anything,
appropriate queries and proof context need to be sent to the prover.

10.2.2 Proof step trace

Current Z/EVES proof command representation is straightforward but limited.2

Figure 10.1 presents the implementation of the ZEvesTrace class that encodes proof
step details. The proof command is not decomposed and instead captured using
its textual representation in the cmdText field. However, adding support for proof
command details would not be difficult as this information is available within the
parsed and typechecked specification in CZT.

With results of every proof command, Z/EVES outputs the lemmas that have
been used by the proof step. Z/EVES supports three types of lemmas for automated
use: assumption rules, forward rules and rewrite rules. The first two are used to
introduce temporary assumptions to the proof context, whereas rewrite rules are

2During this PhD research, the focus shifted from the Z/EVES prover to Isabelle. Support for
capturing Isabelle proof details, including an attempt on capturing declarative Isabelle/Isar proof
(Section 13.3.5), has been a priority in order to facilitate strategy extraction and integration with the
Tinker tool [GKL14] within AI4FM. Therefore fully developing the Z/EVES ProofProcess integration
is left for future work.
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used to transform the goal by rewriting [MS97]. An example listing of lemma
use within a proof step is available in Figure 12.7. Z/EVES ProofProcess currently
collects the names of all lemmas used by the proof step and records them within
ZEvesTrace. This information can be presented to the user or used to infer used
lemma proof features (Section 6.5.4).

Finally, the ZEvesTrace structure records the proof case number. These num-
bers are output by Z/EVES to identify proof branches when case split occurs. For
example, a conjoined goal can be proved by showing that each conjunct holds. The
case split can be done in Z/EVES using the cases proof command. Afterwards,
only a single goal with one of the conjuncts is presented to the user. However,
the proof case “1” is indicated to show that this is part of a proof branch. The
user can switch to the next proof branch goal using the next proof command: the
proof case number changes accordingly. Furthermore, if nested case splits are
encountered, the case number is extended to indicate this: e.g. case “1.2”.

Proof case information is used by the Z/EVES ProofProcess to infer the low-level
proof structure. Proof commands from different proof cases are separated into
individual branches (Section 6.2). The user can “complete” a case split even if
the proof branches are unfinished: the remaining goals are combined. This is
represented as a merge point in the captured ProofProcess structure (Section 4.3.7).

¦ ¦ ¦

The current Z/EVES ProofProcess integration supports the core ProofProcess func-
tionality: the expert’s interactive proof is recorded; the proof structure is inferred
automatically and new attempts are recognised; afterwards the expert can mark
the high-level insight on the captured data by indicating high-level proof steps,
proof intent and marking the appropriate proof features. Furthermore, the avail-
ability of the CZT API allows implementation of advanced proof process analysis
features in the future and improves the automation of capturing the proof process.

10.3 Community Z Tools

The Community Z Tools (CZT) project [MU05] is building a set of tools for editing,
typechecking and animating formal specifications written in the Z specification
language, with some support for Z extensions such as Object-Z, Circus, etc. These
tools are all built using the CZT Java framework for Z tools. As part of the integra-
tion with the ProofProcess system, the available CZT infrastructure was improved
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Figure 10.2: Screenshot of Z/EVES Eclipse with the ProofProcess system.

and extended to provide an interface to the Z/EVES theorem prover. The result-
ing modern CZT IDE with Z/EVES integration is presented in Figure 10.2. The
infrastructure works have been done together with Leo Freitas, a colleague in the
AI4FM project and a CZT contributor. This section highlights the main features.

10.3.1 Integrating the Z/EVES prover

The standard user interfaces to the Z/EVES theorem prover are old and limited:
there is a command-line read-eval-loop style interaction as well as a Python-based
graphical user interface. The command-line interface is cumbersome to use inter-
actively and is most useful for batch-processing Z specifications. The Python UI
utilises an internal socket-based protocol that uses XMLmessages to communicate
with the theorem prover. However, the user interface is not extensible and crashes
when used in modern operating systems.3

3Z/EVES is no longer developed, thus issues arising as platforms evolve remain unaddressed.
However, there are talks with the original developers about providing an alternative open-source
theorem prover with similar functionality and communications protocol.
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To circumvent the user interface limitations and support extensibility, an inter-
face to the Z/EVES prover has been implemented as part of Community Z Tools. This
integration is based on the reverse-engineered XML communications protocol and
provides a Java interface via CZT to interact with the prover.

A new “zeves” dialect has been developed for CZT to support typesetting of
Z/EVES specifications and proof scripts. Z/EVES uses an older, pre-standardisation
version of the Z notation, which is slightly different than the ISO-Z [ISO02] no-
tation used by default in CZT. Furthermore, the dialect extends the Z notation to
support writing proof scripts using all Z/EVES proof commands. With the new
dialect, Z/EVES proof scripts can be parsed and typechecked using CZT: e.g. via
the CZT command-line, CZT plug-ins for jEdit or the modern Eclipse-based CZT IDE.

The parsed specification can be submitted to the prover by encoding the com-
mands in XML-based messages. The communications protocol has been reverse-
engineered from the Z/EVES Python UI. A translator has been implemented from
the AST to the Z/EVES XML encoding.

When developing the prover interface, ideas have been drawn from the imple-
mentation of the Isabelle/Scala layer [Wen12] for the Isabelle prover. The Z/EVES

communications protocol is encapsulated by a strongly-typed JavaAPI. This API is
used to establish socket-based communication to the prover process, send prover
messages and receive proof results. The results (e.g. new proof goals or error mes-
sages) are collected in a document model abstraction. When the results are received,
user interface components are notified: they use the information in the document
model to present the fresh results to the user.

An API has also been developed to control the proof script submission to the
prover. New proof commands can be submitted “up to a point” or individually.
Furthermore, the proof can be backtracked to an arbitrary earlier location. The
submission to the prover is done in a linear manner, though: the API encapsulates
the underlying read-eval-loop interaction.

With the API in place, additional extensions have been developed to improve
theorem proving in Z/EVES. Advanced proof tactics can be specified by combining
the basic proof commands in Z/EVES. Furthermore, support for section manage-
ment has been added. Sections in the Z notation can be used to split the for-
mal specification into parts (e.g. into different files). Each section can specify on
which other sections it depends, etc. The concept is similar to theories in Isabelle.
Unfortunately, Z/EVES does not support them and expects a single specification
file containing all the definitions and proofs. With the CZT integration, section
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dependencies are resolved before submitting to the prover and “flattened” for
submission to the prover, simulating a single specification.

In addition to providing an API to parse and process proofs in Z/EVES, new
user interface components have been developed as part of CZT Eclipse to provide a
prover IDE. They include displaying the progress and the results within the proof
script editor, providing a prover output view to inspect proof results, actions
to easily select proof commands (including lemma application suggestions for
selected terms), controlling what is submitted to the prover, displaying a list of
proved and unproved theorems, etc. Some of these features are seen in Figure 10.2.

10.3.2 Improvements to CZT

Some of the otherwork on CZT has been done to improve the general infrastructure,
usability and extensibility of the tools, thus indirectly benefiting the ProofProcess

system that builds on top of it:

• Improvements to the Eclipse-based CZT IDE. The existing Z specification en-
vironment has been upgraded and streamlined: better document outline,
more consistent file management, fine-tuning of the specification editor and
Z characters selection, etc. Furthermore, the user interface for the Z/EVES

prover integration is available as Eclipse plug-ins. The ProofProcess system
also builds upon this.

• Rework of the overall CZT build process and module organization. Module
dependencies have been fine-tuned to enable a minimal set of libraries for
each application. The build process has become easier and almost fully
automatic. This enables provision of continuous integration, nightly builds,
downloads and updates. Users no longer need to wait for the next release
and can easily use nightly builds. The improvements were also needed to
facilitate the inclusion of CZT libraries within the ProofProcess system.

• New proof obligation (PO) generator that is integrated in the CZT IDE. It
facilitates verification of industrial-style formal specifications.

• Rework of the section manager to enforce transactional updates. The section
manager is at the core of CZT: it manages dependencies between sections and
stores the data for the current one as well as all its parents, ensuring that all
data relationships are accounted for. This work has been to streamline the
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sectionmanager so that section reuse ultimately becomes possible. Currently
each editor re-checks all of its parent sections. The section data cannot be
shared because it can be polluted by subsequent sections. With transactional
updates, dependencies between data are clearer and easier to manage.
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Evaluation and use
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CHAPTER 11
Capturing proof about
memory deallocation

CASE STUDY

In order to evaluate the approach of describing and capturing high-level proof
processes, as proposed in this thesis, examples are required. A formal develop-
ment of a heap memory manager specification [JS90, Chapter 7] has provided a
good case study within the AI4FM project [FJVW13]. The problem consists of
modelling a heap memory storage as well as memory allocation and deallocation
operations. Its formal development includes several layers of refinement. Formal
verification effort involves proving data refinement, operations feasibility, well-
formedness and other properties. Refer to [FJVW13] for further details as well as
mechanisations in both Isabelle/HOL and Z/EVES provers.

This case study presents proofs of three similar lemmas arising within the for-
mal development of the heap specification using Isabelle/HOL.1 One of the lemmas
is proved interactively and its proof is captured using the ProofProcess systemwith
high-level descriptions and abstractions as proposed in this thesis. This informa-
tion represents the expert’s high-level insight and could then be reused to prove
the remaining “sibling” lemmas.

1The standard Isabelle/HOL libraries have been supplemented with some VDM data structures
and operators, e.g. definitions and lemmas for domain subtraction −C operator for maps.
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11. Case study: memory deallocation

A holistic evaluation of the ProofProcess framework would have strategies ex-
tracted from the captured data, whichwould then be used to prove similar lemmas
automatically. Unfortunately, such tool chains (aswell as the necessary techniques)
are not available yet within AI4FM. Therefore, the evaluation presented here and
in Chapter 12 illustrates how this process would happen. Sections 11.3–11.4 reuse
the captured proof process information manually as if strategies would have been
extracted. The success of the approach is repeated in the subsequent case study
of separation kernel verification using Z/EVES in Chapter 12.

The overall heap memory manager case study and the lemmas presented in
this chapter are of smaller scale than full industrial formal developments and
proofs. These particular lemmas and their proofs have been selected because they
can illustrate different facets of the proof process capture approach and other
ideas presented in this thesis. Examples from real industrial proofs would require
significantly more background to establish, would be much larger to present and
would likely fail to demonstratemore than several interesting abstractions or proof
features. Furthermore, the full-scale evaluation of the ProofProcess system and
the approach with real industrial proofs has not been done. Nevertheless, these
case studies are representative of industrial-style formal developments (see also
Section 2.1). The approach, ideas and tools should scale to industrial-size proofs.

11.1 Modelling the heap and memory deallocation

The core of the heapmanager specification consists of a heapmemory storage data
structure as well as two main operations: memory allocation (NEW) and deallo-
cation (DISPOSE).2 The AI4FM attempt builds upon the original specification
in [JS90, Chapter 7]. The intention is to preserve the original specification where
possible and avoid changing the model just to make the proofs easier. The AI4FM
approach tries to tackle proof complexity via strategies rather than model changes.
Thus model changes of the heap specification mostly comprise error correction
and clearer abstractions [FJVW13].

The proofs described in this case study (Sections 11.2–11.4) are about mem-
ory deallocation in refined specification—the DISPOSE1 operation. This section
provides a brief overview of the concepts involved (see [FJVW13] for full details).

2The words deallocate and dispose are used interchangeably. Disposing a previously allocated
region of heap memory returns its locations back to the pool of free (available) memory.
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11.1. Modelling the heap and memory deallocation

free locs f

free

l1
 f(l1) 

free

l2
 f(l2) 

allocatedallocated allocated

Figure 11.1: Map f :Free1 of free heap locations.

The main heap data structure is modelled as a map Free1 = N m−→ N1
3 of

free (unallocated) memory regions (illustrated by Figure 11.1). Each free memory
region is represented as a mapping from the start location to the non-empty size
of the region. The regions must be separate (i.e. there cannot be two abutting free
regions—they must be joined into a single contiguous region) and cannot overlap.
The restrictions are specified as invariants on Free1.

Memory deallocation operationDISPOSE1(d, s) returns a previously allocated
memory region (location d, size s) to the free memory pool. The operation has
a precondition that the disposed memory region is currently allocated, i.e. it is
disjoint from (does not overlap with) the free regions map f . The postcondition,
however, is more complicated due to the non-abutting requirement on the result-
ing free regions map f ′. If the disposed region abuts existing free regions from
either side of it, all these regions must be joined together into a single contiguous
region within f ′. The four cases are: (1) the region d 7→ s4 does not abut any exist-
ing free regions; (2) abuts from either above; or (3) below; or (4) from both directions.
These cases are illustrated in Figures 11.2, 11.3, 11.16, and 11.20, respectively.

The feasibility proof of DISPOSE1 posits that given the operation precondi-
tions, its postconditions are satisfiable and all after-state invariants hold. The heap
map f ′ gets updated with the new disposed (and possibly merged) free region;
and the previous abutting (now merged) region is removed from it. One needs to
show that the updated map f ′ is still disjoint and separated.

This case study focuses on a family of lemmas used in the DISPOSE1 proof.
They show that the updated heap map f ′ is disjoint: i.e. none of the regions are
overlapping. Such a conjecture appears in each of the DISPOSE1 cases.

The non-abutting case ofDISPOSE1(d, s) (Figure 11.2) is straightforward: new
mapping is added directly without any merging and removals: f ′ = f ∪ {d 7→ s}.
The goal that f ′ is still disjoint is then trivially shown from the operation precondi-

3The number ‘1’ indicates the first level of refinement—the full development [FJVW13] has
two levels of refinement: abstract ‘0’ and more concrete ‘1’.

4The heap regions in this section will be presented as a mapping start_loc 7→ size.
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Figure 11.2: DISPOSE1(d, s): no free regions abut the disposed area.
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Figure 11.3: DISPOSE1(d, s): free region abuts above the disposed area only.

tion, which requires the region d 7→ s to be disjoint from f (i.e. can only deallocate
a non-free region).

Lemmas of the remaining three cases—“above”, “below” and “both”—are pre-
sented in full below. Their proofs are captured using the ProofProcess framework.
The captured information includes the proof scripts in Isabelle/HOL enriched with
proof process metadata.

11.2 Proof of disjointness in “above” case

The “above” case of DISPOSE1(d, s) describes memory deallocation when an ex-
isting free memory region abuts the disposed region d 7→ s from above (illustrated
by Figure 11.3). The above region hence starts at the location d+ s and its size can
be queried from the heap map via f (d+ s). The DISPOSE1 operation makes the
following changes:

1. The original entry about the above region is removed from f : specified using
the domain subtraction operator {d+ s} −C f .

2. The disposed region is merged with the above and added to the updated
map f . The new region starts at d and is of the combined length of both
regions. Thus the updated map f ′ = ({d+ s} −C f ) ∪ {d 7→ (s+ f (d+ s))}.
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11.2. Proof of disjointness in "above" case

lemma dispose1_disjoint_above:
"F1_inv f =⇒
disjoint (locs_of d s) (locs f) =⇒
d + s ∈ dom f =⇒
nat1 s =⇒
disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))"

1 apply (unfold F1_inv_def)
2 apply (elim conjE)
3 apply (subst locs_add_size_union)
4 apply assumption
5 apply (simp add: nat1_map_def)
6 apply (rule disjoint_union)
7 apply (erule disjoint_subset)
8 apply (erule locs_ar_subset)
9 apply (subst locs_region_remove)

10 apply assumption
11 apply assumption
12 apply assumption
13 apply (rule disjoint_diff)
14 done

Figure 11.4: Lemma dispose1_disjoint_above with proof.

Proving feasibility of the DISPOSE1 operation involves showing that the result
heap f ′ satisfies the invariants of Free1. One of these is the disjointness invariant:
i.e. showing that the heap regions in the result map are disjoint from one another.
After simplification,5 this goal is collapsed to show that the disposed region of the
heap is disjoint from the other free heap locations:

disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))

The first argument describes the disposed-and-merged region d 7→ s+ f (d+ s)
(see Figure 11.3). The set of locations comprising this merged region is specified
using the locs_of(start, size) function. The second argument represents the
set of all unchanged locations in the original heap map f , i.e. minus the replaced
above region. The locs(map) function collects the set of all remaining free heap lo-
cations from the mapping. This goal is extracted as lemma dispose1_disjoint_above
(Figure 11.4). The lemma assumptions come from DISPOSE1 preconditions (e.g.
the disposed region d 7→ s is disjoint from the original map f ) and the before-state
invariant on f . The lemma is proved using Isabelle/HOL: its apply-style proof is
listed in Figure 11.4.

5The lemmas discussed in this section form the critical parts of corresponding proofs. The full
feasibility proofs in Isabelle/HOL including steps leading to the lemmas can be viewed in [FJVW13].
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11. Case study: memory deallocation

The presented proof uses lower-level, deterministic proof tactics, rather than
the more automated auto, blast, etc. This approach gives a better illustration of
the proof strategy for the purposes of this thesis. It should be noted that neither
of the standard automatic tools in Isabelle (including Sledgehammer) can find a
proof for this lemma initially. However, the automatic theorem provers used by
Sledgehammer are successful after several initial manual steps (e.g. after using the
locs_add_size_union lemma).

Figure 11.5 shows an overview of the dispose1_disjoint_above proof as captured
by the ProofProcess framework. The actual proof script commands (listed in Fig-
ure 11.4) are parsed into a structural proof, recognising branches in the proof
that discharge independent goals. The user provides additional proof metadata
by indicating proof intents at several levels of abstraction. Furthermore, the user
marks the important parts of the proof as proof features (not pictured in Figure 11.5).
Finally, proof steps record the whole proof transformation: the starting goals of
each step, details about the proof commands, as well as the resulting goals after
tactic execution. Figure 11.6 shows a screenshot of the Isabelle ProofProcess tool
with a fragment of the captured proof process data displayed. The rest of the
section presents the ProofProcess data and its capture step-by-step.

11.2.1 Appropriate level of discourse in proof

The proof of lemma dispose1_disjoint_above depends on certain properties of the
data structure (the map f of free heap regions). These properties are specified as
part of the data type invariant on f. The invariant predicate is available among
the assumptions of lemma: F1_inv f. However, the invariant is not expanded
by default and thus the properties are not directly available for use in the proof.
The initial step is to unfold the invariant definition and introduce the predicates
contained within as assumptions to the proof.

Abstract “zoom” step

Industrial-style formal developments usually involve modelling of complex data
structures and their properties as invariants on data types. Such invariants of-
ten consist of (e.g. a conjunction of) smaller invariant predicates, mirroring the
development of composite data structures from smaller components. To avoid un-
necessary explosion of proof detail, invariant definitions are expanded (unfolded)
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11.2. Proof of disjointness in "above" case

H1: Zoom

H2: Expand definition

unfold F1_inv_def

Tactic application

H3: Cleanup 

elim conjE

subst locs_add_size_union

simp add: nat1_map_def assumptionrule disjoint_union

subst locs_region_remove

rule disjoint_diff assumption assm a

H15: Discharge lemma assms...

Trivial... Triv.. Tr..
H16: Show set remove is 

disjoint

erule disjoint_subset

H10: Tactic appl...

erule locs_ar_subset

H11: Tactic appl...

H7: Split disjointness

Discharge lemma assumptions

H5: Nat1 typing H6: Trivial assumption

H4: Split contiguous locs regions

H14: Zoom

H12: Show disjointness of above region

H13: Show removed region is disjoint

H8: Show disjointness of 
disposed region

H9: Show subset of 
disjoint is disjoint

Show disjointness separately

Figure 11.5: Simplified6 ProofProcess tree of lemma dispose1_disjoint_above.
Legend:

• ‘Tactic application’ (blue box) : prover commands as ProofEntry elements.
The apply() text in the commands is skipped for legibility.

• Intent (bold, red box) : ProofSeq elements.
• Intent (bold italic, green box) : ProofParallel elements.

6Proof structure and intents are shown. Details are listed in corresponding ProofProcess steps
(e.g. H16). Some tree elements without ProofProcess metadata have been suppressed for legibility.
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11. Case study: memory deallocation

Figure 11.6: Screenshot of Isabelle ProofProcess showing fragments of the captured
proof process of dispose1_disjoint_above.

gradually to obtain the necessary predicates at appropriate levels of proof. This
“zooming” of definitions is the initial step of the dispose1_disjoint_above proof.

Step H17 lists the details about the initial Zoom step of the proof. The user
marks the proof to indicate that the first activity is to “zoom” the definitions to
an appropriate level, introducing necessary assumptions. The Zoom step is an
abstract one: in the current proof, the actual “zooming” requires two proof steps in
Isabelle/HOL. Therefore, stepH1 groups these child steps (H2–H3) using a ProofSeq
structure. They are examined later in this section.

The ProofProcess framework allows marking the proof at different layers of ab-
straction. The Zoom step groups8 the actual proof commands required to achieve

7The ProofProcess step details are presented in a structured format. The letter ‘H’ in step
numbering is for “heap” proof process steps.

8Figure 11.5 provides a visual overview of grouping, different levels of abstraction and other
relationships between proof steps.
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11.2. Proof of disjointness in "above" case

Intent: Zoom ProofSeq
Narrative: Expand the invariant to do proof with concepts it defines.
In features:

• Data invariant (F1_inv) — F1_inv is a data invariant definition.

• Preferred level of discourse (nat1_map) — Prove at the “maps” level. To select
nat1_map as preferred level of discourse, one would need to “see inside F1_inv”.

Out features: (none)a

Children:
• (H2) ProofSeq: Expand definition . . .

• (H3) ProofSeq: Cleanup . . .

In goals (flattened):
1. F1_inv f =⇒

disjoint (locs_of d s) (locs f) =⇒
d + s ∈ dom f =⇒
nat1 s =⇒
disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))

Out goals (flattened):
1. disjoint (locs_of d s) (locs f) =⇒

d + s ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))

aIn subsequent ProofProcess step details, empty sets of features will be omitted altogether.

Step H1: Zoom

the desired proof result. Such abstraction provides a higher-level overview of the
proof: hiding the actual proof steps but communicating the user’s intent. Fur-
thermore, it allows for several “implementations” of the proof strategy. There are
numerous different proof commands in Isabelle/HOL to perform unfolding of an
invariant definition. Each of them can be recorded as “implementing” the same
zooming intent. When extracting a strategy, these different steps would constitute
alternatives on how to zoom in a proof.

When grouping several proof steps using a ProofSeq, the ProofProcess system
provides a “flattened” view of the actual proof in regards to the higher-level step.
For example, step H1 lists the in/out goals of the proof step. The goals are derived

231



11. Case study: memory deallocation

by flattening the inner structure of a proof step (Section 4.3.5): the in goals come
from the first proof step and the out goals from the last step within a ProofSeq.

The flattened in/out goals of H1 show the goal transformation by an abstract
Zoom step: the invariant predicate F1_inv f is replaced by its constituent pred-
icates in the assumptions. This presentation omits any intermediate proof states
and provides a “bigger picture” of how the proof advances. Furthermore, it allows
recording out features9 over the whole abstract step.

Capturing zooming proof features

TheZoom stepwas chosen as the initial proof step to avoid expanding the invariant
later for every case split. The predicates within F1_inv definition, namely the
type of the heap map nat1_map f, are hidden by the definition. This indicates
that the invariant predicate is at a level too high for the proof. One of the proof
features in H1 marks that the preferred level of discourse is at the level of nat1_map
definition: i.e. the expert wants to do proof at the “maps” level, not at the invariant
level. This proof feature could be inferred by matching the assumption predicates
(and their contents) with the definitions used by the goal: e.g. definitions that
appear unexpanded in the goal might not need expanding. The user could mark
this feature by “drilling down” into the invariant via the user interface to see what
level of expansion would suit the goal definition.

Another proof feature in H1 marks the F1_inv definition as a data invariant.
This aims to emphasise the different role that the function plays in comparison to
other similar function definitions.10 For example, dealing with data invariants in
proofs frequently involves expanding them to access predicates within. On the
other hand, general functions (e.g. locs) are supplemented with various lemmas
about their properties to avoid “zooming” into function definitions. Thus dealing
with a data invariant often requires a corresponding Zoom proof step.

No out features are marked for the H1 step. They are useful when automated
proof tactics are used, e.g. auto in Isabelle/HOL. Such tactics can perform multi-
ple proof steps and their outcome depends on which lemmas are available. The
out features can be used to mark the expected result of a strategy involving an
automated proof step. During strategy replay, matching just the in features is not
enough: the strategy needs to be executed for out feature matching on the results.

9Out proof features (Section 4.2.3) record the expected results of a proof step. Not used in H1.
10The data invariants as well as most general functions in the heap example are encoded as

Isabelle/HOL constant definitions.
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11.2. Proof of disjointness in "above" case

The multi-thread proof checking in Isabelle would serve well for this use case,
allowing matching of the out features “in the background”. On the other hand,
deterministic proof strategies transform the goal in a predetermined way and dur-
ing replay would produce the expected result, if successful. Since matching on
out features requires executing the proof commands, it is preferable to describe
deterministic strategies using in proof features. The Zoom steps (H1)—as well as
the majority of the dispose1_disjoint_above proof—use deterministic proof tactics,
thus out features are omitted from the captured proof process.

Proof features as strategy hints

The two proof features recorded in step H1 give a “hint” on when to use the
proof strategy. They suggest that zooming is used because there is a data invariant
definition (F1_inv f) in the conjecture that is not at the preferred level of discourse
for the proof. Such a hint would be enough to extract into an initial strategy: try
zooming by unfolding the data invariants when they are above the preferred level
of discourse for the proof. Such a strategy is sufficient for reuse in the “sibling”
lemmas dispose1_disjoint_below and dispose1_disjoint_both (see Sections 11.3–11.4).
However, in more complex proofs such a strategy would be too unrestricted: e.g. it
would unfold all data invariants, when a more fine-grained control of zooming is
needed. Upon encountering this, the expert would add additional proof features
to indicate the important features of the fine-grained zooming. This information
would be used to refine the Zoom strategy.

The amount and precision of proof features specifiedwhen capturing the proof
process affects the quality of extracted strategies. However, marking the proof fea-
tures manually is a significant overhead to the proof process. The initial goal of
the ProofProcess system is to provide a framework for capturing the proof process
information at the level that the expert deems appropriate—the user marks the
important parts of the proof. For manual strategy recall and reuse, marking a
minimal number of particularly important features can be enough. Furthermore,
advanced proof analysis algorithmsmay correctly suggest common proof features,
thus reducing the overhead of marking themmanually (e.g. compare the function
definitions in the goal and the assumptions to derive the preferred level of discourse).
Rather than generalising to strategies immediately, the user just tags the actual
proof as it is. The data can then be collected to try machine learning, sophisti-
cated generalisation algorithms or other approaches to extract good strategies (see
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11. Case study: memory deallocation

Chapter 7). It is not necessary to consider the general cases for the intents and
proof features immediately. On the first occasionwhen the strategy does not apply
correctly, the user may adjust the proof feature set to a better fitting one and let
the strategy extraction make sense of these additional examples.

Expanding invariant definition

The abstract Zoom step in the current proof is realised by two lower-level proof
steps: Expand definition and Cleanup. Each corresponds to a single proof com-
mandused by the expert in Isabelle/HOL. The overviewof the captured ProofProcess

data for each step is listed respectively in steps H2 and H3.
Isabelle ProofProcess captures every proof command as aProofEntry element and

populates the intent automatically: each entry is tagged as a Tactic application.
The user provides high-level descriptions for each command by “wrapping” the
ProofEntry steps into ProofSeq elements and indicating the additional proof intents
and features (see Figure 11.5 for illustration). Alternatively, the user could replace
the Tactic application intent with other metadata directly on the ProofEntry data
element. The differences between these approaches are insignificant and this sec-
tion collapses the ProofProcessdetails of the decoratingProofSeq and the underlying
ProofEntry/Tactic application into a single presentation (e.g. in step H2).

The first actual proof step of dispose1_disjoint_above is expanding the definition
of F1_inv to access predicates within. The proof uses unfold F1_inv_def tactic
to achieve this. Step H2 lists the captured ProofProcess data for this proof step. The
proof step is decorated with a ProofSeq containing a slightly higher-level descrip-
tion, namely the Expand definition intent and an associated proof feature.

The higher level description serves several purposes. It gives an at-a-glance
view of what the proof command is trying to achieve. Some proof commands are
self-explanatory (e.g. the unfold tactic)—others can be cryptic. A human-readable
explanation can tell a better story of how the proof is achieved. Furthermore, the
high-level description allows recording alternative proof commands to achieve the
same goal. For example, here the proof command apply (unfold F1_inv_def)
can be replaced with apply (simp only:F1_inv_def) yielding the same result.
A proof expert can use different proof commands to represent similar actions. The
same intent marks them as alternatives for strategy extraction.

The single proof feature of step H2 marks F1_inv for expansion. A trivial ex-
tracted strategywould be that F1_inv invariant definition can always be expanded.
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11.2. Proof of disjointness in "above" case

Intent: Expand definition ProofSeq (as decoration)a

Narrative: Expand invariant definition.
In features:

• Has symbol (F1_inv) — Expand the F1_inv definition.

Children:
• ProofEntry: Tactic application apply (unfold F1_inv_def)—expanded as
“goals” and “proof step” next.

In goals:
1. F1_inv f =⇒

disjoint (locs_of d s) (locs f) =⇒
d + s ∈ dom f =⇒
nat1 s =⇒
disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))

Proof step:

Command: apply (unfold F1_inv_def)

Tactic: Pure.unfold

Used lemmas: HEAP1.F1_inv_def

Source: Offset 1116, length 28 in
file files/650f7fd1-5518-40b6-9321-cd01709fa0ba

Out goals:
1. Disjoint f ∧ sep f ∧ nat1_map f ∧ finite (dom f) =⇒

disjoint (locs_of d s) (locs f) =⇒
d + s ∈ dom f =⇒
nat1 s =⇒
disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))

aA ProofSeq that contains a single proof step can be thought of as decoration, as it serves to add
metadata rather than to group its steps.

Step H2: Expand definition

This simplistic approach actually works well for “sibling” lemmas: i.e. the F1_inv
invariant definition always needs to be expanded there. When dealingwith proofs
involving different datatypes, however, the trivial strategy would no longer apply.
The expert could manually select the new datatypes to be expanded in the proofs.
That strategy would then apply for its “siblings”. Alternatively, strategy could be
generalised to apply to different datatypes. Proof analysis algorithms could try to
infer additional properties about the more general strategy: e.g. that the F1_inv is
a constant definition in Isabelle/HOL; that there is a definitional lemma F1_inv_def
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11. Case study: memory deallocation

that can expand the predicates within; etc. Strategy extraction via generalisation
could use these proof features to produce a generic strategy that suggests expan-
sion of any constant definitions in Isabelle/HOL. The proof features on a Zoom step
(H1) could provide further hints to strategy extraction: e.g. restricting these ex-
pansions to datatype invariant functions only. Note that the proof process capture
and strategy extraction should be viewed as separate applications: there can be
different approaches to extract appropriate strategies using the captured data.

Each proof step captured by the ProofProcess framework is self-contained. It
records both in and out goals: i.e. the proof state before and after the proof com-
mand execution. Goals in step H2 record the unfolding of F1_inv definition: the
predicate F1_inv f is replaced by its contents:

Disjoint f ∧ sep f ∧ nat1_map f ∧ finite (dom f).

Recording proof commands

Proof command details are also recorded within the ProofEntry structure. The
Isabelle ProofProcess system captures fully qualified configuration details of the
proof command: i.e. the tactics used, their parameters, lemma instantiations, etc.
Some of these are listed for the Expand definition step H2. In addition to pars-
ing the proof command, the system could capture further information about the
proof environment and other hidden information: e.g. the lemmas that a simpli-
fier tactic has access to (simpsets)—and actually uses; the maximum search depth
of automatic tactics; etc. This information links the higher-level proof process
description with its “implementation” in the prover. It will be used to drive the
prover during strategy replay. The information can also be used to infer additional
proof features: e.g. by scanning the used lemmas of a proof command to mark the
particularly important ones as proof features.

Furthermore, each step records the source of a proof command: i.e. its location
within a proof script, as part of the proof history capture (see Chapter 5). The proof
scripts are versioned and their historical change is collected. Linking the proof
history with the captured proof process data enables opportunities to animate the
expert doing this proof in the future (see Section 5.2).

Goal cleanup

The next proof step—Cleanup—breaks down the unfolded invariant predicate
into separate assumptions by eliminating conjunctions. Step H3 provides an

236



11.2. Proof of disjointness in "above" case

Intent: Cleanup ProofSeq (as decoration)
Narrative: Cleanup assumptions—eliminate conjunctions in the assumptions.
In features:

• Assumption shape (?p1 ∧ ?p2) — Match a conjunction in one of the assumptions.

In goals (filtered):
1. Disjoint f ∧ sep f ∧ nat1_map f ∧ finite (dom f) =⇒

?p1 =⇒ ?p2

Proof step: apply (elim conjE) . . .
Out goals (filtered):

1. ?p1 =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
?p2

Step H3: Cleanup

overview of the proof process data captured for it. Conjunction elimination is a
general and frequently used proof step; it splits a conjoined predicate piecewise,
allowing the individual use of its parts. This is particularly useful when dealing
with complex invariants, when the proof requires specific properties (parts of the
invariant) rather than the whole thing.

The Cleanup intent in H3 signals that the conjunction elimination “cleans up”
the results of an expansion of an invariant definition. The proof step can easily be
used generally, without invariant definition expansion preceding it. Then it can
be viewed as a normalisation of assumptions in a conjecture—still a groundwork,
“cleanup” step. There would be more such general “cleanup” steps: e.g. elimina-
tion of existential quantifiers in assumptions, etc. During strategy extraction, they
would become alternatives in the Cleanup strategy. However, the alternatives are
not mutually exclusive. All applicable “cleanup” steps should be executed as long
as they match the goal. For example, both conjunction elimination and quantifier
elimination should be performed if applicable. The repetition may continue: a
quantifier eliminationmay producemore predicates that can be split up further us-
ing conjunction elimination. Thus the extracted Cleanup strategy would contain
a loop that would keep applying various Cleanup steps as long as they match.

Conjunction elimination is performed because one of the assumptions contains
conjoined predicates. This is marked as an important proof feature in H3. The

237



11. Case study: memory deallocation

Assumption shape specifies the shape of a particular assumption term: i.e. that one
of the assumptions matches the term ?p1 ∧ ?p2, where ?p1 and ?p2 are term
placeholders. This basically specifies that there must be an assumption with a top-
level conjunction. Alternatively, this could be specified using a Top symbol feature,
requiring that the top symbol in an assumption is a conjunction. See Section 4.2
for further discussion on different proof feature types. The apply (elim conjE)
command will eliminate all top conjunctions in all assumptions. As a trigger, it is
enough to mark that at least a single top conjunction symbol exists.

The goals in step H3 are presented in a filtered view. In such presentation,
only the changed parts of large goals are presented to the user. The ProofProcess

system compares the in and out goals and calculates the differences. This can be
used by proof analysis to infer the important proof features: the changed goal
parts make very good candidates! Furthermore, the user can have a more focused
view to inspect the goal changes. The large number of predicates in industrial-size
proofs canmake the goals unmanageable. The filtered view shows only the affected
goal terms and thus is a more accurate representation of “what has happened”,
i.e. the proof process. Other proof step details in H3 (and in the majority of the
subsequent proof steps) are omitted to avoid unnecessary clutter in the thesis.
They are captured in the same manner as described earlier.

The combination of Expand definition and Cleanup steps achieves the proof
state expected by the abstract Zoom step: the invariant F1_inv f is expanded and
its properties (particularly nat1_map f) are available as assumptions. This brings
all parts of the goal to the preferred level of discourse: maps.

11.2.2 Partitioning the problem

The expert proves lemma dispose1_disjoint_above by partitioning the problem into
two parts. The merged region d 7→ s+ f (d+ s) is split back into its constituent
parts: i.e. regions d 7→ s and d+ s 7→ f (d+ s). The disjointness of each region is af-
terwards proved separately. Twomain proof steps—Split contiguous locs regions
(H4) and Split disjointness (H7)—perform the partitioning of the goal within the
proof. Both of these steps use additional lemmas, which are assumed to be already
available to the proof.11

11Additional lemmas used in this proof have been developed during the initial hand-proof of the
problem (see [FJVW13, Section 3.2.3]) and are assumed to be available. Discovering needed lemmas
is a different problem outside the focus of this thesis (see Section 13.3.3 for a brief discussion).
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11.2. Proof of disjointness in "above" case

Intent: Split contiguous locs regions ProofSeq (as decoration)
Narrative: Split the locs region of added lengths into their constituents.
In features:

• Has shape (locs_of ?d (?n + ?m))

• Used lemma (locs_add_size_union)

• Lemma shape (
locs_of ?d (?n + ?m) = locs_of ?d1 ?n1 ∪ locs_of ?d2 ?n2)

In goals:
1. disjoint (locs_of d s) (locs f) =⇒

d + s ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of d (s + the (f (d + s)))) (locs ({d + s} −C f))

Proof step: apply (subst locs_add_size_union) . . .
Out goals (filtered)a:

1. ?assms =⇒ nat1 s
2. ?assms =⇒ nat1 (the (f (d + s)))
3. ?assms =⇒ disjoint (locs_of d s ∪ locs_of (d + s) (the (f (d + s))))

(locs ({d + s} −C f))

a?assms variable denotes the same assumptions as in goals.

Step H4: Split contiguous locs regions

Splitting heap regions

An overview of the captured proof process structure in Figure 11.5 illustrates how
the proof is advanced. The Split contiguous locs regions step transforms the
main goal but also produces additional sub-goals. These are side-conditions to
the application of lemma locs_add_size_union to split the merged region. The side-
conditions, however, are simple and quickly proved as individual proof branches.

The approach of this proof step, as described by its intent, is to split the loca-
tions of themerged region into two sets. The regionwasmerged from two abutting
regions, thus it can be split again to apply different proof strategies for each re-
gion. The partitioning uses locs_add_size_union (Figure 11.7) to do the location
arithmetic: a region of added lengths is split at the addition point to a union of
two constituent sets of locations. The side-conditions (region lengths are non-zero:
n,m ∈ N1) are used to prevent empty regions of heap memory in the model. Refer

239



11. Case study: memory deallocation

lemma locs_add_size_union:
"nat1 n =⇒ nat1 m =⇒
locs_of d (n + m) = locs_of d n ∪ locs_of (d + n) m"

Figure 11.7: Lemma locs_add_size_union.

to [FJVW13, Section 3.2.3] for further discussion on using N1 sizes in the model.
The proof features of H4 mark the addition of sizes within the location calcula-

tion as well as the usage of the appropriate lemma. These proof features are very
model-specific, they capture important properties involving the locs_of function.
The expert’s usage of locs_add_size_union lemma is recorded in two ways (with
Used lemma and Lemma shape features), illustrating how lemma usage could be
marked within the ProofProcess framework in general.

Capturing lemma use

The Used lemma proof feature records just the fact that the particular lemma has
been used. This simple feature could be inferred automatically in a number of
cases: e.g. by parsing the command parameters, which indicate lemmas used by
the tactic, extracting from the simplifier trace, etc.

Automatic tactics (e.g. simp, Sledgehammer) may use a larger number of lem-
mas in a single step. Some filteringmay be necessarywhen automatically inferring
the important used lemmas from the used lemma set. Model-specific used lem-
mas may be better candidates for selecting automatically rather than general ones
from the Isabelle/HOL library. Furthermore, the overhead of simply selecting an
important lemma manually is low. An expert could quickly select these features,
especially given a pre-filtered list of lemmas used in the proof step.

Basic recording of used lemma names reduces the initial proof capture over-
head, but defers the analysis of why and how the lemmas were used. There are a
number of opportunities to automate this analysis, e.g. try to infer the important
properties of the lemma by machine-learning all of its uses, analyse differences
when disparate lemmas are used for similar goals, etc. Furthermore, if a manual
strategy replay by analogy is opted for, a user would see that a particular lemma
was previously used with the strategy. He may quickly realise whether the lemma
can be reused, adapted or a similar lemma generated for the strategy replay.

The Lemma shape proof feature describes the particulars of the used lemma
that were important to the proof step. In H4 this proof feature records that a
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11.2. Proof of disjointness in "above" case

lemma is available to partition the set of the region’s locations. It is deliberately
vague: a region of a certain added size (to match the goal) is equal to a union
of some other regions. It marks the general idea of this proof step: partitioning a
region into its constituents. When reusing this strategy, the required lemma may
not match exactly and the partitioning may need to be adjusted for the proof to
succeed. Having a quite general lemma shape allows the proof strategy to search
for matching lemmas or even generate new ones according to the captured shape.

Marking the Lemma shape proof features can incur a significant overhead to
proof process capture. The expert needs to identify how the lemma represents
the general idea, what shape may be the most useful. A lemma shape that is too
specific (i.e. “we need exactly this lemma”) is not useful: Used lemma proof features
should be used to signal that the same lemma is needed. Lemma shape features are
better suited when similar lemmas are anticipated for strategy reuse.

The Lemma shape features are important for automatic strategy reuse, especially
when similar (vs. exactly the same) lemmas are needed in similar proofs. They can
be used to guide lemma discovery to accommodate different datatypes (e.g. the
different representation of heap regionsmay require a differentway of partitioning
the locations set). The important lemma shapes can be marked manually by the
user or be the result of additional automatic analysis of the Used lemma proof
features as described earlier.

From the proof features and intent in H4, the expert’s strategy could be de-
scribed as follows: “if there is a heap region of a compounded size, use a lemma
to split its set of locations into two”. The size shape requirement could be gen-
eralised: e.g. it may be enough to record that if there is a lemma that can split a
region into two, use it. However, there may be too many lemmas matching this
general description and the strategy would match the goal too frequently.

Proving lemma side-conditions

The proof command in H4 applies the lemma locs_add_size_union using the subst
tactic. The tactic replaces the merged region with the union of disposed and above
region locations. However, subst tactic does not simplify the lemma assumptions
automatically: each becomes a new sub-goal after the proof step. Thus there are
three separate out goals after executing the proof step. Since the proof assumptions
do not change and each sub-goal gets the same original ones, step H4 uses an
?assms variable instead for legibility.
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11. Case study: memory deallocation

Intent: Nat1 typing ProofSeq (as decoration)
Narrative: Show that the type of map application is correct, particularly that it is nat1

(not supported directly by Isabelle).
In features:

• Goal shape (nat1 (the (?f ?e))

• Assumption shape (nat1_map ?f)

• Assumption shape (?e ∈ dom f)

• Used lemma (nat1_map_def)

In goals:
1. disjoint (locs_of d s) (locs f) =⇒

d + s ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
nat1 (the (f (d + s)))

Proof step: apply (simp add: nat1_map_def) . . .
Out goals: X (none)

Step H5: Nat1 typing

Each sub-goal is proved separately: lemma side-conditions are finished by
single proof steps H5 and H6; whereas the main proof continues in a separate
branch H7 (see Figure 11.5 for illustration). Even though the Isabelle proof script
handles the goals in a certain order, the ProofProcess framework discards the order
of the proof branches. Reordering of proof steps that affect different sub-goals
does not change the tree representation.

The Nat1 typing proof step (H5) proves the side condition of applying lemma
locs_add_size_union. It requires that the after region’s length is of correct type, i.e.
f (d+ s) ∈ N1.12 This can be readily inferred from the definition of free locations
map f :Loc m−→ N1,13 which ensures that all range elements in this map are of N1

type. Since the above region already belongs to the map (d + s ∈ dom f), the
goal follows. However, automatic unfolding of nat1_map definition is disabled to
prevent the prover from applying it too eagerly. Thus the proof step uses the sim-
plifier tactic with nat1_map_def added explicitly, discharging the goal completely.

12This is the second sub-goal of Split contiguous locs regions (H4) proof step.
13The Loc m−→ N1 map of free heap locations is encoded as the nat1_map function.
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11.2. Proof of disjointness in "above" case

Intent: Trivial assumption ProofSeq (as decoration)
In features:

• Goal shape (?g)

• Assumption shape (?g) — The goal is among the assumptions.

In goals (filtered):
1. ?p1 =⇒ nat1 s =⇒ ?p2 =⇒ nat1 s

Proof step: apply assumption . . .
Out goals: X (none)

Step H6: Trivial assumption

Since this proof branch is complete, the proof step has no out goals.
The proof features in H5 capture the expert’s strategy of proving the type of

map application. In the specific case of N1 typing, a direct strategy would prove
that map application is of the nat1 type by using the lemma nat1_map_def. To
narrow the strategy matching, the proof features also require the goal element to
belong to the nat1_map map already. A more sophisticated strategy extraction
could generalise on the types and lemmas used to provide a generic “type of
map application” strategy. For example, the nat1, nat1_map and nat1_map_def
definitions could be replaced with corresponding ones of some placeholder type,
to be instantiated to a concrete type during strategy replay.

The other side-condition of lemma application is trivial.14 The goal (to show
that the disposed region’s size is nat1 s) is already given among the assumptions.
This goal is discharged by the Trivial assumption proof step (H6), using the
assumption tactic in Isabelle/HOL. This tactic is generic and the proof features
in H6 capture its requirements: the goal must appear among its assumptions.

Partitioning disjointness proof into regions

With lemma side-conditions dealt in separate branches, the main proof contin-
ues by partitioning the problem into two subgoals, one for each region (disposed
and above). The previous proof step has taken apart the locations of each region
into a union-set. Now the Split disjointness proof step can partition the disjoint-
ness proof of this union into proving disjointness of each region separately. The
captured proof process details are listed in step H7.

14This is the first sub-goal of the Split contiguous locs regions (H4) proof step.
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Intent: Split disjointness ProofSeq (as decoration)
Narrative: Split the set union within disjoint() into separate cases.
In features:

• Goal shape (disjoint (?s1 ∪ ?s2) ?s3) —One of the disjoint arguments is a set
union.

• Used lemma (disjoint_union)

• Lemma shape (
?P1(?s1) =⇒ ?P2(?s2) =⇒ disjoint (?s1 ∪ ?s2) ?s3)

In goals:
1. disjoint (locs_of d s) (locs f) =⇒

d + s ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of d s ∪ locs_of (d + s) (the (f (d + s))))

(locs ({d + s} −C f))

Proof step: apply (rule disjoint_union) . . .
Out goals (filtered)a:

1. ?assms =⇒ disjoint (locs_of d s) (locs ({d + s} −C f))
2. ?assms =⇒

disjoint (locs_of (d + s) (the (f (d + s)))) (locs ({d + s} −C f))

a?assms variable denotes the same assumptions as in goals.

Step H7: Split disjointness

lemma disjoint_union:
"disjoint s1 s3 =⇒ disjoint s2 s3 =⇒ disjoint (s1 ∪ s2) s3"

Figure 11.8: Lemma disjoint_union.

The partitioning of disjointness proof is performed using the disjoint_union
lemma (Figure 11.8). It states that if two sets are individually disjoint from the
third one, their union is also disjoint. TheSplit disjointnessproof step applies this
lemma as a backward proof step using the rule tactic. Each lemma assumption
becomes an individual sub-goal. Proving each sub-goal is not trivial: Figure 11.5
shows captured proof sub-trees of each sub-goal branch.

The captured proof process details of this proof step are analogous to the previ-
ous lemma application proof step H4. The proof features include the shape of the

244



11.2. Proof of disjointness in "above" case

goal15 as well as the used lemma features. The Lemma shape proof features tries
to generalise the shape to allow for different assumptions, while still narrowing
where the strategy is to be applied: i.e. on disjointness of set-union.

11.2.3 Proof process branch structuring

The branching proof structure is represented using ProofParallel tree elements,
which group independent proof branches. The grouping allows satisfaction of
a ProofProcess tree invariant (Section 4.3.6), which requires that all out goals of a
proof step are matched by the in goals of the following step. ProofParallel ensures
the correct “plumbing” by collecting the in goals of its branches to match the
multiple out goals of the previous proof step.

All sub-goals encountered in the proof of dispose1_disjoint_above are proved
independently,16 their proofs comprising separate branches. Sibling branches can
be grouped further for descriptive purposes using nested ProofParallel elements.
For example, the ‘ProofParallel: Discharge lemma assumptions’ element groups
the side-condition branches together. This separates the “main goal” from the
lemma side-conditions in the proof process tree.

Figure 11.5 illustrates the proof process branches graphically, but omits some
purely structural ProofSeq and ProofParallel elements for legibility. An accurate
structural overview of the captured ProofProcess tree elements is instead available
in Figure 11.9. The figure uses parentheses to provide a compact representation
for ProofEntry elements nested within their parent ProofSeq elements.

Structural elements without metadata

Some of the captured proof process tree elements are purely structural, necessary
to construct a well-formed ProofProcess tree structure. For example, a sequence of
proof steps is always contained within a ProofSeq element; whereas independent
branches handling different sub-goals are collected within a ProofParallel element.
These elements may have empty descriptions with no proof intent or other meta-
data (marked as ‘-’ in Figure 11.9).

15Application of rule tactic requires the goal to match at the top level, while the earlier subst
tactic could perform substitutionswithin goal terms, hence the difference betweenGoal shape feature
here and Has shape earlier.

16In general, the ProofProcess structure allows a proof step to transform (“handle”) multiple
goals at once. For example, an application of auto tactic in Isabelle/HOL transforms all open goals.
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11. Case study: memory deallocation

ProofSeq: -

• ProofSeq: Zoom

– ProofSeq: Expand definition (ProofEntry: unfold F1_inv_def)

– ProofSeq: Cleanup (ProofEntry: elim conjE)

• ProofSeq: Split contiguous locs regions
(ProofEntry: subst locs_add_size_union)

• ProofParallel: -

– ProofParallel: Discharge lemma assumptions

∗ ProofSeq: Nat1 typing (ProofEntry: simp add: nat1_map_def)

∗ ProofSeq: Trivial assumption (ProofEntry: assumption)

– ProofSeq: -

∗ ProofSeq: Split disjointness
(ProofEntry: rule disjoint_union)

∗ ProofParallel: Show disjointness separately
· ProofSeq: Show disjointness of disposed region . . .

· ProofSeq: Show disjointness of above region . . .

Figure 11.9: Partial ProofProcess tree structure of dispose1_disjoint_above.

Tagging a proof process structure with proof intents and features assists with
strategy extraction, provides appropriate description, etc. However, doing this
can create a significant overhead (naming things is a very hard problem!) and thus
should be used where beneficial, rather than exhaustively. For example, the root
‘ProofSeq: -’ element in Figure 11.9 has empty metadata. The expert chose not to
provide an abstraction for the whole proof, as he had deemed it to be too general
(e.g. along the lines of Prove this lemma). Such intent is not very useful: even
at the most abstract level it is easier to consider the proof as a sequence of steps.
On the other hand, one could argue that a root-level intent could tag the overall
strategy of this proof: e.g. Prove by partitioning heap regions. If such a strategy
appeared within some larger proof, it may be useful to have a name for it.

A similar approach is taken when annotating ProofParallel elements: proof
metadata is recorded if the branching itself constitutes an important proof step.
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11.2. Proof of disjointness in "above" case

Otherwise, it is better to tag its branches directly. For example, ‘ProofParallel: -’
after the Split contiguous locs regions step (Figure 11.9) diverts the interest to its
branches, which have detailed descriptions. A suitable proof intent here would go
along the lines of Discharge side-conditions and continue partitioning, which is
not very useful. On the other hand, ‘ProofParallel: Show disjointness separately’
provides an appropriate high-level name for the last part of the proof.

Exporting branches out of a ProofParallel element

The basic ProofProcess tree structure uses self-contained proof steps (trees). A
proof tree element at any level is by itself a full proof tree, as if its goals were
initial goals in the proof. However, such a structure can sometimes interfere with
marking high-level proof steps. For example, the proof of dispose1_disjoint_above
could be described as a sequence of the following high-level steps:

1. Zoom

2. Partition into regions

3. Show disjointness separately

The Partition into regions proof step would encompass the lower-level Split con-
tiguous locs regions and Split disjointness proof steps. Unfortunately, the cap-
tured proof process structure as depicted in Figure 11.9 would not allow such
grouping. The Split disjointness step is nested within a ProofParallel element:
grouping it would include its branches wholly within the abstract step (see Fig-
ure 11.10 for illustration).

To circumvent theProofParallelnestingwhen grouping proof steps (and support
advancedproof process structures), the branch goals can be “exported” outside the
ProofParallel element. Any out goals of an unfinished branch in a ProofParallel are
treated as out goals of the whole ProofParallel element. This can then be followed
by the next proof step, handling the exported goals.

Figure 11.11 outlines this alternative structure of the proof: the ProofParallel of
lemma side-conditions (H5 and H6) is now treated as part of the Split contigu-
ous locs regions proof step. The “main goal” branch, however, is not finished
within the ProofParallel element and is therefore exported outside it. The Split
disjointness step can follow the ProofParallel and allow the desired grouping.

To support complex ProofProcess tree (graph) structures, the exported branches
must end with a ProofId element. It records the actual ProofEntry element that
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ProofSeq: -

• ProofSeq: Zoom . . .

• ProofSeq: Partition into regions

– ProofSeq: Split contiguous locs regions . . .

– ProofParallel: -

∗ ProofParallel: Discharge lemma assumptions . . .

∗ ProofSeq: -
· ProofSeq: Split disjointness . . .

· ProofParallel: Show disjointness separately . . .

Figure 11.10: Grouping proof steps within ProofParallel.

ProofSeq: Prove by partitioning heap regions

• ProofSeq: Zoom . . .

• ProofSeq: Partition into regions

– ProofSeq: Split contiguous locs regions

∗ ProofEntry: subst locs_add_size_union

∗ ProofParallel: Discharge lemma assumptions
· ProofSeq: Nat1 typing (ProofEntry: simp add: nat1_map_def)

· ProofSeq: Trivial assumption (ProofEntry: assumption)

· ProofId:  ProofEntry: rule disjoint_union

– ProofSeq: Split disjointness
(ProofEntry: rule disjoint_union)

• ProofParallel: Show disjointness separately

– ProofSeq: Show disjointness of disposed region . . .

– ProofSeq: Show disjointness of above region . . .

Figure 11.11: Alternative ProofProcess tree structure of dispose1_disjoint_abovewith
exported branch and ProofId element to accommodate advanced grouping.
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Intent: Show disjointness of disposed region ProofSeq (as decoration)
Narrative: Show that the disposed region is disjoint from the untouched heap regions.
Children:

• (H9) ProofSeq: Show subset of disjoint is disjoint . . .

In goals: Same as in step H9.
Out goals: X (none)

Step H8: Show disjointness of disposed region

“continues” the branch outside the ProofParallel. In contrast to other proof tree
elements, the ProofId only references the ProofEntry but does not “contain” it. The
referenced element is contained within the next proof step, be it the ProofEntry
itself, ProofSeq or a new ProofParallel. This breaks the strict tree structure, but
enables complex proof process structures, including merges of separate branches,
arbitrary handling of multiple sub-goals, etc. The ProofProcess system utilises
ProofId elements to support conversion between a tree structure anddirected graph
representation used for attempt matching (see Sections 4.3.7 and 8.6 for details).

11.2.4 Finishing the proof for each region

After partitioning the disjointness goal, the proof of dispose1_disjoint_above con-
tinues in two separate branches, each proving disjointness of one of the regions:
disposed and above. The goal for each region requires a different strategy: a quick
overview of the captured proof process information for these remaining proof
steps is presented below.

Different names for the same proof step

The overall abstract proof step encapsulating both proof branches records its in-
tent as Show disjointness separately (see Figure 11.9). It is a ProofParallel step,
containing both branches as high-level proof steps: Show disjointness of dis-
posed region (step H8) and Show disjointness of above region (step H12). This
provides a high-level model-specific description of the proof process. The proof
process capture approach proposed in this thesis encourages recording both the
generic and the model-specific proof strategies. The former represent general ap-
proaches to doing interactive proof and involve mathematical concepts, whereas
the latter describe how particular problems about the specification are tackled.
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Intent: Show subset of disjoint is disjoint ProofSeq
Narrative: Show that if a set is disjoint from something, its subset is also disjoint.
In features:

• Assumption shape (disjoint ?s1 ?s2)

• Goal shape (disjoint ?s1 ?s3)

Children:
• (H10) ProofEntry: erule disjoint_subset . . .

• (H11) ProofEntry: erule locs_ar_subset . . .

In goals (flattened):
1. disjoint (locs_of d s) (locs f) =⇒

d + s ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of d s) (locs ({d + s} −C f))

Out goals: X (none)

Step H9: Show subset of disjoint is disjoint

However, the strategies of proving disjointness of each region are quite general
(they are reused for proofs of “sibling” lemmas in Sections 11.3–11.4). Therefore,
each proof branch is tagged with additional proof intent and features, this time
focusing on the names and properties of the generic strategy.

The proof of Show disjointness of disposed region makes use of the precon-
dition that the removed region is disjoint from the original heapmap. The strategy
proves that even when some region is removed from the heap map (the map be-
comes a subset of the original), the disjointness still holds. The expert names this
strategy Show subset of disjoint is disjoint: its details are listed in step H9.

This abstract strategy proof step is “wrapped” by the Show disjointness of
disposed region element (see step H8), which thus becomes its decoration. By
stacking multiple ProofSeq elements as decorations (each ProofSeq has only a single
child), the structure allows providing different proof process information for the
same proof step at any level of abstraction. Thus one can simultaneously tag a
proof treewith proof-specific description aswell as generic strategymetadata. The
goal flattening means that all these elements would share the in and out goals.
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11.2. Proof of disjointness in "above" case

Under-specified proof features

The proof features in the abstract proof step Show subset of disjoint is disjoint
(H9) are quite vague: they link disjointness of a set in the assumptions and the
goal. The proof features do not talk about ?s3 being a subset of ?s2, which is
the actual requirement of the proof strategy. In general, proving that a set is a
subset of another is a proof task and it should not be part of the proof feature
matching. It may require multiple proof steps, additional lemmas, etc. For this
reason, the proof features under-specify the matching, only requiring disjointness
with the same set ?s1. The AI4FM system is not aiming to be a theorem prover,
thus the strategy suggestion does not always have to be correct. Proof feature
matching is intended to narrow the search space in automatic replay—or suggest
possible strategies when the user selects suggested strategies manually. The AI4FM
system relies on the underlying theorem prover to verify strategy application. For
example, if a user selects a strategy that fails, he may need to adjust the strategy,
add missing lemmas or select a different strategy altogether.

However, if the expert requires the marking of the subset relationship as an
important feature, the ProofProcess framework allows doing that with custom proof
features (Section 4.2.1). For example, the proof feature could be Subset (?s3, ?s2),
indicating that a subset relation should exist between the sets, i.e. ?s3 ⊆ ?s2.
However, using this proof feature automatically for strategy replay would require
that the ProofProcess system supports such a proof feature type: i.e. there is some
implementation of Subset() feature checking. Otherwise (which is the general case
for custom proof features), such a proof feature is uninterpreted and its name,
parameters and the parameter order are arbitrary. Nevertheless, the custom fea-
tures would still be useful for manual replay: the user would see that the strategy
required a “subset” relation between the sets in the previous proof. Hewould able
to comprehend that a subset relation is required and may already know whether
it holds and hence whether the strategy is applicable.

Proving a disjoint subset

The actual proof of Show subset of disjoint is disjoint (H9) consists of two steps
in Isabelle/HOL. They are no longer wrapped into individual ProofSeq elements to
indicate some higher-level steps. The expert has chosen Show subset of disjoint is
disjoint as the lower-level abstract proof step, which is realised in two Isabelle steps
(captured as ProofEntry elements). The proof steps and their goal transformation
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Intent: Tactic application ProofEntry
In goals (filtered):

1. disjoint (locs_of d s) (locs f) =⇒ ?p1 =⇒
disjoint (locs_of d s) (locs ({d + s} −C f))

Proof step: apply (erule disjoint_subset) . . .
Out goals (filtered):

1. ?p1 =⇒ locs ({d + s} −C f) ⊆ locs f

Step H10: Tactic application: erule disjoint_subset.

lemma disjoint_subset:
"disjoint s1 s2 =⇒ s3 ⊆ s2 =⇒ disjoint s1 s3"

Figure 11.12: Lemma disjoint_subset.

Intent: Tactic application ProofEntry
In goals (filtered):

1. ?p1 =⇒
nat1_map f =⇒ ?p2 =⇒
locs ({d + s} −C f) ⊆ locs f

Proof step: apply (erule locs_ar_subset) . . .
Out goals: X (none)

Step H11: Tactic application: erule locs_ar_subset.

are listed as H10 and H11.

The first step (H10) applies lemma disjoint_subset (Figure 11.12) as a backwards
proof step. The lemma states the main fact of this proof strategy: if a set is disjoint
from another, it is disjoint from its subset as well. The in goal of step H10 is
to show that the disposed region d 7→ s is disjoint from the map of “untouched”
heap regions (i.e. with the above region removed). Among the assumptions is the
precondition of the DISPOSE1 operation: the disposed region is disjoint from the
original heap map. By applying the lemma backwards, the goal holds if it can be
proven that the “untouched” heap map is a subset of the whole heap map (stated
as the out goal of step H10). The erule tactic in addition to applying the lemma
also consumes its matching assumptions: they are removed from the goal.

The last step H11 of the proof branch shows the subset relation between the
heap states. Domain subtraction −C removes a region from the map but keeps the
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11.2. Proof of disjointness in "above" case

lemma locs_ar_subset:
"nat1_map f =⇒ locs (S −C f) ⊆ locs f"

Figure 11.13: Lemma locs_ar_subset.

Intent: Show disjointness of above region ProofSeq (as decoration)
Narrative: Show that the above region (shifted by s) is also disjoint.
Children:

• (H13) ProofSeq: Show removed region is disjoint . . .

In goals: Same as in step H13.
Out goals: X (none)

Step H12: Show disjointness of above region

rest of the mappings the same. Therefore it removes the region’s locations but the
other locations are preserved. Hence the set of locations with the region removed
is a subset of the full heapmap. This goal is actually stated as lemma locs_ar_subset
(Figure 11.13), which is used to finish the proof in step H11.

Multiple proof intents of this proof branch suggest that an extracted proof
strategy could be used in different situations. For example, the user may turn to
using it when dealing with similar proofs involving the disposed region. On the
other hand, the more general strategy is suggested for dealing with disjointness
of arbitrary sets. The vague proof features allow the strategy to match whenever
set disjointness appears among assumptions and in the goal. In contrast to the
previous proof steps, this strategy would be “implemented” by two consecutive
Isabelle/HOL proof commands.

Proving disjointness of the above region

The proof branch showing disjointness of the above region is captured in a similar
fashion. The whole branch is tagged with two intents: Show disjointness of
above region (step H12) and Show removed region is disjoint (step H13). As
previously, the first intent is used as a description of this part of the proof (also it
suggests a strategy when dealing with the above region in similar proofs), whereas
the second intent marks a more general strategy for proving disjointness.

The goal of this proof branch (see step H13) is to show that the above region
is disjoint from the rest of the heap (i.e. the original heap locations map with the
above region removed). The main proof idea here is that there is a map where all
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Intent: Show removed region is disjoint ProofSeq
Narrative: Show that a removed region is disjoint from the rest of the heap.
In features:

• Goal shape (disjoint (locs_of ?l ?s) (locs ({?l} −C ?f)))

Children:
• (H14) ProofSeq: Zoom . . .

• ProofParallel: -

– (H15) ProofParallel: Discharge lemma assumptions

– (H16) ProofSeq: Show set remove is disjoint . . .

In goals (flattened):
1. disjoint (locs_of d s) (locs f) =⇒

d + s ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of (d + s) (the (f (d + s)))) (locs ({d + s} −C f))

Out goals: X (none)

Step H13: Show removed region is disjoint

regions are disjoint from one another (there are no overlapping regions). Thus
when one region is removed from this map, the locations of remaining regions are
still disjoint from the removed region. This idea is captured with the intent Show
removed region is disjoint and proof features in step H13.

The proof branch consists mainly of two proof steps: Zoom (step H14) and
Show set remove is disjoint (step H16). However lemma application in the Zoom
step has several side-conditions to prove, resulting in a more complex proof pro-
cess structure to accommodate these additional proof branches (see Figure 11.5
for an overview illustration).

Zooming to set-level reasoning

The “zooming” step here is quite different from unfolding invariant definitions
in the first step of the proof (see step H1). However, the general idea remains the
same: the goal is taken to a lower level of discourse, replacing higher level concepts
with lower level counterparts. The Zoom step H14 moves from map operators
(particularly domain subtraction −C) to the set-theoretical level. To achieve this,
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11.2. Proof of disjointness in "above" case

Intent: Zoom ProofSeq (as decoration)
Narrative: Replace domain anti-restriction with set subtraction operation.
In features:

• Has shape (locs (?s1 −C ?f)

• Used lemma (locs_region_remove)

Out features:
• Has shape (locs ?f - locs_of ?s1 ?l1) — Result uses set-theoretical rather
than map operations (domain subtraction).

• No symbol (−C)
In goals (filtered)a:

1. ?assms =⇒ disjoint (locs_of (d + s) (the (f (d + s))))
(locs ({d + s} −C f))

Proof step: apply (subst locs_region_remove) . . .
Out goals (filtered):

1. ?assms =⇒ d + s ∈ dom f
2. ?assms =⇒ Disjoint f
3. ?assms =⇒ nat1_map f
4. ?assms =⇒ disjoint (locs_of (d + s) (the (f (d + s))))

(locs f - locs_of (d + s) (the (f (d + s))))

a?assms variable denotes the same assumptions as in step H13.

Step H14: Zoom

lemma locs_region_remove:
"s ∈ dom f =⇒
Disjoint f =⇒ nat1_map f =⇒
locs ({s} −C f) = locs f - locs_of s (the (f s))"

Figure 11.14: Lemma locs_region_remove.

lemma locs_region_remove (Figure 11.14) is used. It replaces the domain subtraction
with set removal: the set of locations of a map with a region removed is the same
as if the locations of the region were removed from all locations of the map. The
lemma has several assumptions: e.g. that the regions do not overlap (are disjoint).
All necessary assumptions are already available in the main goal. Set-theoretical
formulation of the goal allows using more general lemmas about set disjointness
in the last step of this proof (see step H16).

The proof features in step H14 capture that domain subtraction is used when
calculating locations as well as the use of lemma locs_region_remove. Furthermore,
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11. Case study: memory deallocation

lemma disjoint_diff: "disjoint s2 (s1 - s2)"

Figure 11.15: Lemma disjoint_diff .

this proof step illustrates one usage of out features. They require that after applying
this proof step, a set difference operator is used instead of the domain subtraction,
which is no longer part of the goal (No symbol() feature). To match this strategy,
both sets of features should be evaluated: first, the in features are matched and
if they are successful, a “lookahead” of lemma application and the out feature
matching needs to be performed.

This proof step can match the goal quite frequently. For example, it would
apply to the majority of steps within the proof of lemma dispose1_disjoint_above.
However, early “zooming” to set-theoretical level may not be desirable, especially
where lemmas about higher-level concepts are available. To avoid applying this
strategy too often, it could have a low ranking in score (see Section 4.2.3). Thus
other, more specific, strategies would have a higher ranking and hence priority
over this one. Alternatively, if the strategy applies too frequently, the expert may
choose to narrow it down. Thiswould require identifying other important features
of the goal that indicate such a strategy is needed: e.g. suitable lower-level lemmas
being available, manual marking of Preferred level of discourse features, etc.

As in step H4, the subst tactic applies the lemmawithout handling its assump-
tions automatically. These become additional sub-goals in the proof step (see out
goals in step H14). They are trivial because all assumptions are already avail-
able. To differentiate from the main goal, the side-conditions are grouped into a
ProofParallel element indicating their intent: Discharge lemma assumptions. The
proof commands are analogous to step H6: apply assumption in each case.

Show set remove is disjoint (H16) is the final step in this proof branch. It uses
the lemma disjoint_diff (Figure 11.15) to prove a simple property about sets: set
subtraction partitions the original set, thus the subtracted part and the remainder
are disjoint. This lemma matches the goal in full and does not have any assump-
tions. Applying it with the rule tactic completes the goal. This strategy is quite
general and can be used when proving disjointness of sets in various proofs.
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11.2. Proof of disjointness in "above" case

Intent: Discharge lemma assumptions ProofParallel
Narrative: Discharge lemma assumptions introduced by the subst tactic.
Children:

• ProofSeq: Trivial assumption . . .

• ProofSeq: Trivial assumption . . .

• ProofSeq: Trivial assumption . . .

In goals (filtered)a:
1. ?assms =⇒ d + s ∈ dom f
2. ?assms =⇒ Disjoint f
3. ?assms =⇒ nat1_map f

Out goals: X (none)
a?assms variable denotes the same assumptions as in step H13.

Step H15: Discharge lemma assumptions

Intent: Show set remove is disjoint ProofSeq (as decoration)
In features:

• Goal shape (disjoint ?s1 (?f - ?s1))

• Used lemma (disjoint_diff)

In goals (filtered):
1. ?assms =⇒ disjoint (locs_of (d + s) (the (f (d + s))))

(locs f - locs_of (d + s) (the (f (d + s))))

Proof step: apply (rule disjoint_diff) . . .
Out goals: X (none)

Step H16: Show set remove is disjoint

11.2.5 Reviewing and reusing the captured proof process

This section presents the proof of lemma dispose1_disjoint_above and how a descrip-
tion of its proof process is captured and represented. The case study illustrates a
number of features of the ProofProcess framework and the ideas presented in this
thesis. The proof structure and high-level description serve as guides to how the
proof was achieved, removing the requirement of parsing the proof commands
and running the theorem prover to traverse the results. A quick glance reveals
that the proof is done by first “zooming” into the definitions; then partitioning
the problem into proofs about individual regions; and finally proving disjoint-
ness of each region (above and disposed) separately. Furthermore, one can expand
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high-level proof steps to take a more detailed view: e.g. to figure out the expert’s
ideas on proving the disjointness of each region. The marking of important proof
features as well as the filtered view of the goals cuts through the clutter of indus-
trial style proof and helps in identifying the particulars of the strategy taken to
complete the proof. Finally, full recording of goals for each step enables inspection
of proof sub-trees as each proof process tree element is self-contained.

The main use of the captured proof process data is for extracting reusable
proof strategies—the principal goal of the AI4FM research project. Unfortunately,
strategy extraction and replay functionality is not yet available from AI4FM. Thus
this case study takes a simplified approach to strategy extraction and replay: it
assumes that the user performs amanual interactive proof but utilises the captured
proof process data. Thus the strategies are more akin to “the way it was done
previously”. The user manually generalises or adapts them for similar proofs.

The whole captured proof process can be thought of as a single multi-step
strategy. However, its proof steps (including the lower-level ones) can also be con-
sidered to be separate strategies. In the case of multi-step strategies, the user could
select one and follow its proof step structure as long as the proof features match
and the strategy succeeds. For example, when dealing with a lemma similar to
dispose1_disjoint_above, the user could follow the same approach: i.e. “zooming”,
partitioning the problem into regions, etc. If stuck, he would query for newmatch-
ing strategies and select another one to follow. Or, if a new proof step is needed,
he could resume the earlier strategy after doing this proof (Section 11.3.3 shows
how an additional proof step is used in a strategy). A strategy is resumed by
matching its remainder as a sub-strategy. Alternatively, strategy matching could
be re-evaluated after every step. For example, after doing an initial step of one
strategy, another strategy may be a better match. Identifying the best strategy
replay approach is among the future research topics within AI4FM.

Although some of the proof steps captured in this case study are somewhat
generic, the overall proof process, as expected, is quite specific to the problem.
Therefore, the strategies are also quite problem-specific. However, the main idea
within AI4FM is to assist with proving proof families. A single captured proof pro-
cess could be enough to reuse in similar proofs within the same family. Such proof
families often share the data structures, problem facets and proof approaches.
Therefore strategies being too problem-specific is not a disadvantage of the AI4FM
approach. To illustrate this, the captured proof process information and strate-
gies are used to prove “sibling” lemmas of dispose1_disjoint_above. The following
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Figure 11.16: DISPOSE1(d, s): free region abuts below the disposed area only.

Sections 11.3 and 11.4 present these lemmas; and how their proofs are discovered
by using the strategies captured in proving dispose1_disjoint_above.

11.3 Proof process reuse for “below” case

The “below” case of heap memory deallocation operation DISPOSE1(d, s) is to
some extent a mirror image of the “above” case. It describes the scenario when an
existing memory region abuts the disposed region d 7→ s from below (illustrated
by Figure 11.16). Using location d as a reference point, the location b of the below
region’s start can be expressed by the formula b+ f (b) = d: i.e. the below region
starts at b, has the size f (b) (as queried from the heap map) and ends at location d,
where the disposed region abuts.

Analogous to the “above” case, the DISPOSE1 operation removes the below
region from the original map f of free heap regions, merges the below and disposed
regions, then adds the merged region back to the heap map. This produces an
updated map f ′ = ({b} −C f ) ∪ {b 7→ f (b) + s}. Proving the disjointness part of the
invariant entails showing that the regions within this updated heap map are not
overlapping. The proof boils down to demonstrating that the new disposed-and-
merged region b 7→ f (b) + s is disjoint from the “untouched” regions of the original
heap map (i.e. f minus the replaced below region):

disjoint (locs_of b (the (f b) + s)) (locs ({b} −C f))

This goal is extracted as lemma dispose1_disjoint_below (Figure 11.17). The as-
sumptions of this lemma include the definition of the below region’s location
(b + the (f b) = d) as well as preconditions of DISPOSE1 and the before-state
invariant on f . Figure 11.17 also lists the proof script in Isabelle/HOL. This section
describes how this proof was discovered via reuse of proof process information
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lemma dispose1_disjoint_below:
"F1_inv f =⇒
disjoint (locs_of d s) (locs f) =⇒
b ∈ dom f =⇒
nat1 s =⇒
b + the (f b) = d =⇒
disjoint (locs_of b (the (f b) + s)) (locs ({b} −C f))"

1 apply (unfold F1_inv_def)
2 apply (elim conjE)
3 apply (subst locs_add_size_union)
4 apply (simp add: nat1_map_def)
5 apply assumption
6 apply (rule disjoint_union)
7 apply (subst locs_region_remove)
8 apply assumption
9 apply assumption

10 apply assumption
11 apply (rule disjoint_diff)
12 apply (erule ssubst)
13 apply (erule disjoint_subset)
14 apply (erule locs_ar_subset)
15 done

Figure 11.17: Lemma dispose1_disjoint_below with proof.

and strategies captured when proving the “above” case (Section 11.4).17 The final
ProofProcess tree structure of the “below” proof is visualised in Figure 11.19. It can
be helpful to use it as the guide for the proof description in this section.

11.3.1 Selecting initial strategy

The “mirrored” memory deallocation case involving the below region means that
the proof goal and the proof itself are very similar to the “above” case. However,
small differences and the “mirrored” effect means that a blunt “copy-paste ap-
proach” to proof reuse does not work in this case. Instead, the higher-level idea
and matching proof branches need to be followed to complete the proof.

Consider that lemma dispose1_disjoint_below is being attempted by a user who
wishes to use the captured proof process (and possibly the extracted strategies) to
help with proving this lemma. This user may be a different one from the expert
who has done lemma dispose1_disjoint_above. One of the use cases for the AI4FM
project is that the “engineers” use the strategies captured from an “expert’s” proof
process. Thus the user may be unfamiliar with how the proof was done originally.

17The presentation of the new proof process is less verbose than in Section 11.4 as there are a
lot of similarities.
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Furthermore, adapting the proof script to the current lemma (even rearranging
appropriate branches) may be not straightforward. Similarly, the original user
may have encountered this “sibling” lemma after a significant period of time and
cannot easily recall how the proof was done (or easily parse the original proof).
Finally, even if the user does recognise the similarities and would know how to
complete the proof, using the strategies may be faster (e.g. click to select and run a
strategy), involve more automation or simply allow operating at a higher level of
abstraction. Whatever the situation, consider that the user seeks assistance from
the previously recorded high-level ideas right from the start of the proof.

When faced with a proof goal, the user would select an appropriate strategy
from a selection of matching ones. While the eventual goal of the AI4FM system
is to select and run the strategies automatically, for this exercise consider that the
user selects a strategy manually (and adapts it to suit the problem). The selection
of matching strategies is provided for the user based on the state of the goal and
additionally inferred (or user-marked) proof features.

Zooming as previously

The initial proof step Zoom (H1) from the previous proof process technically does
not match the bare-bones initial goal of dispose1_disjoint_below. The “zooming”
strategy relies on meta-information about the goal, namely that F1_inv is an in-
variant function and the preferred level of discourse is lower than the level of
datatype invariants. This information is not available in the “vanilla” goal, hence
the Zoom strategy would not match. To enable matching, the user may manually
mark these proof features. However, an inexperienced user may not do that as an
initial goal, especially if other proof strategies match outright (see below). Never-
theless, as mentioned in the capture of the previous proof process, some of these
features could be inferred automatically. The preferred level of discourse could
be decided by comparing definitions in the assumptions and the goal; the tagging
of F1_inv as an invariant definition could be inherited from the previous proof
(as it is the same function) or be done when the specification is constructed.

With the level of discourse proof features inferred, theZoom (H1) strategywould
match the initial goal. However, the later stepSplit contiguous locs regions (H4)18

or the lower-level “zooming” step Expand definition (H2) would also match.
18Zoom and Split contiguous locs regions work on different parts of the goal, the former on

assumptions, the latter on the goal. In the proof, either could go first: the initial “zooming” is done
to avoid expanding definitions on demand for each proof branch.
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Selecting any of these proof steps would advance the proof. However, in gen-
eral, an ordering of these strategies would help the user by suggesting “better”
strategies first. The ordering could be machine learned from previous examples
or determined using some heuristics. One approach would be to follow the struc-
ture of the previously captured proof process.

The priority of Zoom over Expand definition is suggested by the abstraction
relation: “zooming” is the more abstract step, whereas expanding definitions
is its constituent. Thus, if a more abstract step is available, it should be taken.
If an abstract step fails midway (or altogether), the inner steps could be tried
independently to adjust themore abstract strategy or introduce intermediate steps.

Similarly, the captured proof process suggests a precedence relationship be-
tween Zoom and Split contiguous locs regions: the latter follows the former in
a previous proof. This precedence would be reflected in the matching strategy
order: i.e. “Zoom should go first because it went first previously”.

In addition to matching strategies of proof steps, one could check if a “whole
proof strategy” matches: i.e. if there is a previous proof that matches the current
one. When capturing the proof of dispose1_disjoint_above, the expert chose not to
name the overall proof strategy or mark any of its features (see Figure 11.9 and
the related discussion). However, some of it can be done automatically, e.g. by as-
signing the intent Proof of dispose1_disjoint_above. When the user reuses such
a strategy, he is literally “doing the proof as previously”. Furthermore, the proof
features of this abstract strategy would come via flattening of its inner proof steps:
it would get the discourse features from the “zooming” and the required goal
shape features from region splitting steps. In the end, this strategy would have
more matching proof features for dispose1_disjoint_below than the individual proof
steps, making it themost suitable for the initial selection. Using this strategywould
involve applying the inner proof steps until an actual Isabelle/HOL proof command
is resolved. Thus it would start by doing a Zoom step, particularly its “implemen-
tation”: Expand definition step and the associated apply (unfold F1_inv_def)
proof command, followed by the Cleanup step (H3).

Capturing strategy application

Both the dispose1_disjoint_above and dispose1_disjoint_below lemmas are very simi-
lar and have the same F1_inv f assumption, thus the high-level Zoom proof step
succeeds and produces exactly the same results in this proof, i.e. the expansion of

262



11.3. Proof process reuse for "below" case

invariant assumptions:

1. disjoint (locs_of d s) (locs f) =⇒
b ∈ dom f =⇒
nat1 s =⇒
b + the (f b) = d =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of b (the (f b) + s)) (locs ({b} −C f))

The application of proof strategy and the resulting proof development are
again captured by the ProofProcess system.19 It is recorded as a proof attempt with
an appropriate ProofProcess tree structure. However, since the system knows about
the strategy being used, it can group proof steps into abstract ones automatically,
tag the correct intents and mark the matching proof features. The resulting proof
process metadata links the strategies with their instances (i.e. the proofs generated
by applying the strategies). Furthermore, it improves the descriptive quality of
the captured proof process: another user inspecting the proof in the future would
benefit from the additional information. Also, the current user gets feedback on
how the strategy progresses and is able to review the proof changes easily.

If the “whole proof strategy” was selected initially, the replay would continue
by following the proof steps automatically. The correct brancheswould be resolved
by matching corresponding proof features. The automatic strategy replay would
try to advance the proof as far as possible. While doing this, it would also recreate
the higher-level proof process structure, thus allowing the user to easily orient
himself if the automatic strategy application gets stuck. However, for the purposes
of describing a more detailed strategy replay in this thesis, consider that the user
reins in the automatic application and reviews each larger step.

11.3.2 Following the strategy branches

After the Zoom step is applied, only a single proof strategy (from the previous
proof) matches the goal: Split contiguous locs regions (H4). Even if there were
more matching proof steps, this strategy would have priority as it directly follows
the previously applied proof step (Zoom) in an earlier proof.

The Has shape (locs_of ?d (?n + ?m)) proof feature in step H4 matches the
current goal: there is a region with a summed size, where ?n = the (f b) and

19The strategy replay in this section is actually a thought exercise, i.e. a description of scenarios
of how such a system would work.
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?m = s. The addition is important as it allows splitting the region in two, as in the
previous proof. The used lemma proof features also match, since the same lemma
locs_add_size_union suits the current goal.

Applying the Split contiguous locs regions strategy splits the merged region
into the set-union of each region as previously (see step H4 for details):

1. ?assms =⇒ nat1 (the (f b))
2. ?assms =⇒ nat1 s
3. ?assms =⇒ disjoint (locs_of b (the (f b)) ∪ locs_of (b + the (f b)) s)

(locs ({b} −C f))

The order of side-conditions differs from the previous proof, because the order
of operands in the merged region’s size is flipped (cf. step H4). Regardless, the
branching structure of the captured proof process abstracts over the proof step
order and allows correct matching of the branches. Each branch records its own
goals and proof features, thus giving rise to self-contained strategies. Furthermore,
the ProofParallel element collects all branches into a set, disregarding the order.

During an automatic strategy replay, a ProofParallel element produces a very
narrow strategy search scope: if the strategy matches, it is enough to match the
brancheswith the subgoals, otherwise othermatching strategies from other proofs
could be queried. In a manual setting, the user would be presented with all match-
ing strategies, but the ones corresponding to proof branches within the followed
strategy would have priority: e.g. “here is a matching strategy for this branch from
the overall previous proof you have been following”.

The search within parallel branches for matching strategies produces a correct
order of proof steps that Isabelle/HOL expects. The current open sub-goals are
handled by doing the Nat1 typing (H5) first, followed by Trivial assumption
(H6) and finally continuing the main proof with the Split disjointness (H7) proof
branch. The splitting strategy again matches the goal: the goal is concerned with
showing disjointness of two sets of region locations joined via set union. The exact
same lemma disjoint_union as in stepH7 applies to this goal thus the proof strategy
is replayed successfully, resulting in the following goals:

1. ?assms =⇒ disjoint (locs_of b (the (f b))) (locs ({b} −C f))
2. ?assms =⇒ disjoint (locs_of (b + the (f b)) s) (locs ({b} −C f))

Up to this point, the replayed strategy has been applied successfully, producing
a proof process very similar to the previous one: first zooming into the definitions,
then partitioning the problem by splitting adjacent regions into separate goals.
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Proving disjointness of each region individually is where the differences between
this and the previous proof appear.

11.3.3 Adapting the strategy

Following the strategy, after splitting the disjointness, it forks into separate proofs
of disjointness of each region: i.e. Showdisjointness of disposed region (stepH8)
and Show disjointness of above region (step H12). Even if the user has not been
following the strategy application closely, he can use this information to draw
a high-level picture of the current proof: the remaining goals require showing
disjointness of the below and the disposed regions. The below region is easily iden-
tifiable in the goal: b 7→ f (b). The disposed region, however, is expressed in the
terms of the below region’s location: b+ f (b) 7→ s. This will require an additional
proof step (discussed later). Regardless of the different variables and expressions,
a high-level description of the previous proof helps the user infer what the current
goal predicates represent.

Proving disjointness of the below region

Now the user is facing each goal separately. The first goal is concerned with
showing disjointness of the below region:

1. disjoint (locs_of d s) (locs f) =⇒
b ∈ dom f =⇒
nat1 s =⇒
b + the (f b) = d =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of b (the (f b))) (locs ({b} −C f))

The user chooses to continue with the overall strategy of the proof of lemma
dispose1_disjoint_above and a matching strategy is applied: Show disjointness of
above region (H12). This strategy matches perfectly: the goal shape is as required,
i.e. showing disjointness of a region from amapwhere the same region is removed
(see step H13 for proof feature details). As the strategy application advances the
proof, its proof process is captured and inherits details from the strategy: the
overall step is tagged Show disjointness of above region, with a Show removed
region is disjoint (H13) step nested within. A small issue is that the strategy
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replay names this proof branch “above”. The user corrects the discrepancy by
manually changing the proof intent to Show disjointness of below region.

The proof intents in the ProofProcess framework do not carry semantic informa-
tion that can be easily understood by the strategy replay algorithms. Tagging the
branches “above” or “below” is helpful for human reading, but in general they
are just arbitrary names. Strategy replay would just copy the intent, because that
is the strategy that is actually being replayed. However, after the user corrects
the intent, there are now two strategies with the same proof features but different
names (intents). To differentiate, the user could add additional proof features: e.g.
Has goal term (d + s) for the “above” case and Has goal term (b) for the “below”
one. These proof features could also be learned afterwards: e.g. by trying to iden-
tify differences in goals between the same strategies with different intents. The
additional proof features would impact matching if some other region appeared
that requires the same strategy (neither “above” nor “below”). However, these
strategies could still be suggested as “good enough” due to partial matching.20

The remainder of this proof branch is proved by applying the inner proof steps
of Show removed region is disjoint (H13). The domain subtraction involving the
below region is replaced by set subtraction in the Zoom step (H14), then the lemma
side-conditions are discharged trivially and finally Show set remove is disjoint
(H16) completes the proof branch. The proof details are exactly the same as in the
previous proof, only the above region’s location d + s is replaced with the below
region’s counterpart b. Refer to steps H13–H16 and their descriptions for details.

Identifying strategy misalignment

The second proof branch requires showing disjointness of the disposed region:

2. disjoint (locs_of d s) (locs f) =⇒
b ∈ dom f =⇒
nat1 s =⇒
b + the (f b) = d =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of (b + the (f b)) s) (locs ({b} −C f))

Unfortunately, the proof strategy extracted from the previous proof does notmatch
the current goal and the strategy replay gets stuck. The proof features in stepShow

20The inner Show removed region is disjoint strategy would still match perfectly and the user
would be able to finish the proof even if losing the reuse of higher-level description.
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11.3. Proof process reuse for "below" case

subset of disjoint is disjoint (H9) require that the first disjointness argument in
the goal (locs_of (b + the (f b)) s) has an assumption about its disjointness
with another set (in this case a larger set of map locations). However, the assump-
tion here refers to the disposed set by using its start location expressed as d (i.e.
disjoint (locs_of d s) (locs f)).

Unfortunately, no other extracted strategies match the goal, thus the user has
to perform a manual proof step to continue the proof. The high-level proof infor-
mation from the previous proof hints at what needs to be done. First, the replay of
the overall strategy suggests that this proof branch should be handling the disposed
region. Thus the user is not puzzled too much by encountering a region with start
location of b + the (f b) and size s: he can recognise it as a different way of
defining the disposed region. Furthermore, he can inspect what was done in the
previous proof andwhat were the important proof features that enabled the Show
subset of disjoint is disjoint strategy. He can identify that the obstacle lies with
different ways of denoting the disposed region: the strategy will match as soon as
the start locations d and b + the (f b) in the assumption and the goal are made
the same. The recorded proof features narrow down the work for the user and
hint at where the proof could be fixed.

New proof step to align with the strategy

To align the disjointness goal with the assumption, the user notices that there is
already the fact b + the (f b) = d among the assumptions. Term substitution
can be performed to replace b + the (f b) with d in the goal. This is done in
Isabelle/HOL using the apply (erule ssubst) proof command, which performs
a substitution from the assumptions and “consumes” the assumption fact.

The manual proof step is captured by the ProofProcess framework and the
user marks additional metadata to indicate the high level idea. Some of the
captured details are presented in steps H17 and H18. First, the user’s intent is
tagged as Use below definition (H17): i.e. he uses the definition of the below re-
gion (b + the (f b) = d) to obtain the disposed location d. Furthermore, he
notices that the substitution strategy is generic andmarks an additional intent and
proof features as Substitute assumption equality (H18). This way both problem-
specific and generic proof step intents are captured. Proof features in step H18
describe the generic strategy: use substitution when the goal contains an expres-
sion for which there is an equality fact among the assumptions.
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11. Case study: memory deallocation

Intent: Use below definition ProofSeq (as decoration)
Narrative: Use the definition of below (b) to get to the disposed location d.
Children:

• (H18) ProofSeq: Substitute assumption equality . . .

In goals: Same as in step H18.
Out goals: Same as in step H18.

Step H17: Use below definition

Intent: Substitute assumption equality ProofSeq (as decoration)
Narrative: Substitute equality in assumptions to sub-term in the goal.
In features:

• Assumption shape (?t1 = ?t2)

• Has shape (?t1)

In goals (filtered):
1. ?p1 =⇒

b + the (f b) = d =⇒
?p2 =⇒
disjoint (locs_of (b + the (f b)) s) (locs ({b} −C f))

Proof step: apply (erule ssubst) . . .
Out goals (filtered):

1. ?p1 =⇒ ?p2 =⇒
disjoint (locs_of d s) (locs ({b} −C f))

Step H18: Substitute assumption equality

Continuing the strategy

After performing the substitution, the user gets a familiar goal:

1. disjoint (locs_of d s) (locs f) =⇒
b ∈ dom f =⇒
nat1 s =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of d s) (locs ({b} −C f))

The goal involves showing disjointness of a subset (locations of {b} −C f), when
disjointness of a larger set (locations of the full heap f) is assumed. This goal is
matched by the Show subset of disjoint is disjoint (step H9) strategy. Thus the
overall strategy of the previous proof is resumed and the proof is completed.
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11.3. Proof process reuse for "below" case

. . .
ProofParallel: Show disjointness separately

• ProofSeq: Show disjointness of below region

– ProofSeq: Show removed region is disjoint . . .

• ProofSeq: Show disjointness of disposed region

– ProofSeq: Use below definition

∗ ProofSeq: Substitute assumption equality (ProofEntry: erule ssubst)

– ProofSeq: Show subset of disjoint is disjoint

∗ ProofEntry: erule disjoint_subset

∗ ProofEntry: erule locs_ar_subset

Figure 11.18: Partial ProofProcess tree structure of dispose1_disjoint_below.

On strategy resume, both the problem-specific Show disjointness of disposed
region (H8) strategy and its nested generic Show subset of disjoint is disjoint
(step H9) strategymatch (they are different names for the same proof branch). The
new proof step in the current proof, however, is not generic: the substitution of be-
low definition is part of the proof about the heap region. To represent that, the user
adjusts the grouping in the ProofProcess structure of this proof: the substitution
step precedes the generic step (see Figures 11.18 and 11.19 for illustration).

By adding a new proof step, the user has adapted the proof strategy of showing
disjointness of the disposed region. The same proof intent indicates that Show
disjointness of disposed region, as encountered in the current proof, contributes
an alternative strategy. Both versions could be generalised into a single strategy
with alternative steps: i.e. Show disjointness of disposed region can optionally
perform a substitution of the below definition, but always uses the Show subset
of disjoint is disjoint step to finish. The optional step contributes alternative
proof features to the matching and thus the strategy should match both when
substitution is needed and not.

Reviewing proof reuse

Reuse of strategies for the proof of lemma dispose1_disjoint_below has been highly
successful. However, the previous lemma dispose1_disjoint_above is extremely
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H1: Zoom

H2: Expand definition

unfold F1_inv_def

Tactic application

H3: Cleanup

elim conjE

subst locs_add_size_union

simp add: nat1_map_def assumptionrule disjoint_union

subst locs_region_remove

rule disjoint_diff assumption a a

H15: Discharge l. assms...

Trivial... Tr.. Tr..
H16: Show set remove is 

disjoint

H7: Split disjointness

Discharge lemma assumptions

H5: Nat1 typing H6: Trivial assumption

H4: Split contiguous locs regions

H14: Zoom

H12: Show disjointness of below region

H13: Show removed region is disjoint

erule disjoint_subset

erule locs_ar_subset

erule ssubst

Show disjointness separately

H8: Show disjointness of 
disposed region

H17: Use below definition

H18: Substitute 
assumption equality

H9: Show subset of
disjoint is disjoint

Figure 11.19: Simplified ProofProcess tree of lemma dispose1_disjoint_below.
The legend is available in Figure 11.5. Underlined intents mark the
new/changed proof strategies cf. Figure 11.5, italic step numbers (e.g. H7)
indicate ProofProcess step reuse.

270



11.4. Generalising strategies in "both" case

similar, thus a lot of similarity in the proof is expected. Yet this is the goal of
AI4FM: help with similar proofs by reusing high-level strategies. Figure 11.19 vi-
sualises the captured ProofProcess structure of the current proof. In the majority of
the proof, due to the fact that proof process branches are unordered, it is almost
an exact replica of the previous proof (cf. Figure 11.5). The underlined proof tree
elements highlight the changed parts, particularly the additional proof step Use
below definitionwithin the Show disjointness of disposed region proof branch.

The large degree of similarity between the proofs raises the question ofwhether
lemmas could be used to generalise specific parts of the proof. For example, if an
expert notices he is repeating proof steps a lot, maybe there is a general lemma that
can be introduced to complete the repeating proofs. Producing general lemmas
of good quality leads to a better proof library, but doing this is a significant effort
and requires good theorem proving and abstraction skills. Therefore the expert
would need to spend extra effort to discover the initial proof as well as generalise
it for future problems. Furthermore, in industrial settings, the quality of a proof
library is not as important as getting the proof done: duplicate applications of
proof strategies is an acceptable solution. Finally, the differences in proofs may
be minimal but significant enough (and deep in the proof) to prevent reusable
general lemmas at the top level. The AI4FM project focuses on reusing the high-
level ideas: strategy replay as in the proof of dispose1_disjoint_below is an example
of the success of this approach.

The proof of dispose1_disjoint_below reuses the extracted proof strategies with
minimal additional intervention by the user. Its proof is again captured by the
ProofProcess framework and contributes additional instances of the strategies as
well as generalises some of the existing strategies. The successful proof steps
contribute back to the pool of available strategies and can be reused immediately.
The following section continues reuse of the proof strategies within the same
family of proofs and tackles the “both” case of heap memory deallocation.

11.4 Generalising strategies in “both” case

The final “both” case of DISPOSE1(d, s) describes a scenario when an isolated re-
gion of heap memory is wholly deallocated. In this case, free memory regions are
both below and above the disposed region d 7→ s. As a result of the operation, the re-
gions aremerged and a single region spanning thewidths of all constituent regions
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free locs f

b
 f(b) 

d + s
 f(d + s) 

f'

b
f(b) + s + f(d + s)  

d = b + f(b)

s  
below above

Figure 11.20: DISPOSE1(d, s): free regions abut below and above the disposed.

replaces them within the map of free heap locations f (illustrated by Figure 11.20).
As in the “below” case, the starting location b of the below region is expressed
using the location d as a reference point: b+ f (b) = d. Furthermore, the location
and size of the above region are calculated as d+ s and f (d+ s), as previously. The
merged region starts at location b and spans all three regions: f (b) + s+ f (d+ s).
Finally, the resulting heap map of the DISPOSE1 operation in the “both” case is
f ′ = ({b, d+ s} −C f ) ∪ {b 7→ f (b) + s+ f (d+ s)}: i.e. both affected existing regions
(below and above) are replaced by the merged region.

As previously, this case study focuses on proving disjointness of the resulting
map. The crux of this problem is specified as lemma dispose1_disjoint_both: show-
ing that the new disposed-and-merged region b 7→ f (b) + s+ f (d+ s) is disjoint
from the “untouched” regions of the original heap map (f minus the replaced
below and above regions). The lemma and its proof are listed in Figure 11.21.

Dealing with two abutting regions in the lemma results in extra proof effort:
the proof is significantly longer than the previous ones (cf. Figures 11.4 and 11.17).
This section highlights some facets of how this proof was discovered via reuse of
previously captured proof process information. Furthermore, the differences from
previous proofs, additional manual proof steps, and how they influence extracted
proof strategies, are discussed. Figure 11.22 (and its extensions in Figures 11.24
and 11.25) provides an overview of the final ProofProcess tree structure of this
proof and can be helpful when following the discussion in this section.

11.4.1 Partitioning the problem

Lemma dispose1_disjoint_both belongs to the same proof family as its “siblings” cov-
ering the “above” and “below” cases. This means that the high-level proof ideas
from one proof can be reused in another within the same family. Section 11.3 has
shown how the proof strategies from the “above” case are reused in proving the

272



11.4. Generalising strategies in "both" case

lemma dispose1_disjoint_both:
"F1_inv f =⇒
disjoint (locs_of d s) (locs f) =⇒
b ∈ dom f =⇒
d + s ∈ dom f =⇒
nat1 s =⇒
b + the (f b) = d =⇒
disjoint (locs_of b (the (f b) + s + the (f (d + s))))

(locs ({b, d + s} −C f))"

1 apply (unfold F1_inv_def)
2 apply (elim conjE)
3 apply (subst locs_add_size_union)
4 apply (simp add: nat1_map_def)
5 apply (simp add: nat1_map_def)
6 apply (rule disjoint_union)
7 apply (subst locs_add_size_union)
8 apply (simp add: nat1_map_def)
9 apply assumption

10 apply (rule disjoint_union)
11 apply (rule disjoint_locs_widen1)
12 apply assumption
13 apply (subst locs_region_remove)
14 apply assumption
15 apply assumption
16 apply assumption
17 apply (rule disjoint_diff)
18 apply (elim ssubst)
19 apply (erule disjoint_subset)
20 apply (erule locs_ar_subset)
21 apply (subst nat_add_assoc[symmetric])
22 apply (erule ssubst)
23 apply (rule disjoint_locs_widen2)
24 apply assumption
25 apply (subst locs_region_remove)
26 apply assumption
27 apply assumption
28 apply assumption
29 apply (rule disjoint_diff)
30 done

Figure 11.21: Lemma dispose1_disjoint_bothwith proof.
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“below” case. The strategies have matched well, particularly because both lemmas
are almost mirror images of each other. The same approach is taken when proving
the current “both” case of disjointness: proof features from extracted strategies are
matched with the current goal, then an appropriate strategy is selected from the
matching ones. The selection is based on the progress within the overall strategy,
the order of strategies in the previous proof, etc.

Initial zooming

The presence of two replaced regions in the “both” case requires additional mea-
sures later in the proof (compared with previous proofs). However, the initial
proof steps follow the same high-level ideas: the extracted strategies match well.
The Zoom proof step (H1) again starts the proof as it is the initial proof step of
both previous proofs (Section 11.3.1 discusses how the initial strategy is selected).
This proof step unpacks the assumptions within the F1_inv invariant definition.

During the selection of Zoom as the initial proof step, the user would see
both “above” and “below” overall proofs as matching strategies, among others.
However, the actual strategies of each proof are almost exactly the same. To con-
solidate this information, the user could give them both the same top-level intent:
e.g. Prove disjointness by partitioning regions, to indicate that it is actually the
same strategy. The only difference—names of proof branches Show disjointness
of above region and Show disjointness of below region—would create an alter-
native choice within the strategy: e.g. after splitting there would be two branches,
one for the disposed region and one for either the above or below region. Ascertain-
ing the right balance between ever-generalising proof strategies and recording
separate strategies is part of the future work of the AI4FM project.

First split of regions

The next move within the strategy is to partition a region of added lengths into
sub-regions. This is realised via two high-level proof steps: Split contiguous locs
regions (step H4) and Split disjointness (step H7). The first step matches the
disjointness goal of a region with a summed size. It partitions the region at that
size point and sets up the proof features for the second step: Split disjointness.
This step then splits the partitioned region into two sub-goals, each of which
requires proof of disjointness of an individual sub-region.
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11.4. Generalising strategies in "both" case

The goal of dispose1_disjoint_both, however, involves three regions. The splitting
steps partition the full merged region (b 7→ f (b) + s+ f (d+ s)) into two, i.e. the
“bottom” (b 7→ f (b) + s) and “top” (b+ f (b) + s 7→ f (d+ s)) parts:

1. ?assms =⇒ disjoint (locs_of b (the (f b) + s)) (locs ({b, d + s} −C f))
2. ?assms =⇒ disjoint (locs_of (b + (the (f b) + s)) (the (f (d + s))))

(locs ({b, d + s} −C f))

At this point, however, the overall strategy can no longer be followed. Previ-
ously, after partitioning the regions, the branches were identified as the disposed
region and the other (e.g. above or below) region. However, in this case, neither
strategy matches the goal and the branches cannot be identified automatically. For
the disposed branch, the strategy would expect a matching assumption for the first
disjoint argument (see step H9); or at least that the start location references the
disposed region’s start d via the definition of below (as generalised from step H17).
Neither of these match the goals—actually the disposed region has not been iso-
lated yet. Furthermore, the above/below branch does not match either: the heap
map removes two regions at once, whereas the strategy Show removed region is
disjoint (H13) expects just one.

Second split of regions

Nevertheless, even though the overall strategy is stuck, the user can continue by
querying for othermatching strategies for this goal. The first goal ismatched by the
Split contiguous locs regions (step H4) strategy. The goal again contains a region
with a summed size that can be partitioned into sub-regions. The user recognises
that this whole proof branch still involves a merged region consisting of the below
and disposed regions. Thus the whole proof branch is tagged as Show disjointness
of bottompart and starts off by partitioning the bottompart’s regions. Figure 11.22
shows how two instances of region splitting are performed (with slightly different
yet trivial side conditions) to fully partition the problem.

The double splitting in this proof is required to partition three regions into
individual branches. In general, this can be extrapolated for even more regions,
requiring continued splitting of the merged region until it is fully partitioned. The
proof steps involved in the actual splitting represent the same strategy, thus at
a high level this can be treated as a repetition of the said strategy. The repetitive
nature could be captured during strategy extraction, depending on the approach
taken. For example, the proof-strategy graphs (PSGraphs) support repetition in
strategy definitions (Section 7.3). This would make it possible to explicitly specify
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...
H1: Zoom

subst locs_add_size_union

rule disjoint_union

H4: Split contiguous locs regions

...
Nat1 typing

...
Nat1...

...

Show disjointness of
above region

rule disjoint_union
...

Trivial...
...

Nat1...

subst locs_add_size_union

...

Show disjointness of 
disposed region

...

Show disjointness of
below region

Discharge lemma assms...H7: Split disjointness

Show disjointness separately

Show disjointness of bottom part

H4: Split contiguous locs regions

H7: Split disjointness Discharge assms...

Show disjointness separately

Figure 11.22: Partial ProofProcess tree of lemma dispose1_disjoint_both.
This figure shows the top level of the tree, branches are presented separately:

• Show disjointness of below region continues in Figure 11.24.
• Show disjointness of disposed region is exactly the same as in Fig-

ure 11.19.
• Show disjointness of above region continues in Figure 11.25.

The legend is available in Figure 11.5.
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that a strategy should be tried multiple times: e.g. until the regions can no longer
be partitioned. However, this would increase the complexity of proof strategies, es-
pecially if the repeating part is difficult to isolate. Thus, alternatively, the approach
employed here is viable. The user follows a non-repeating strategy until it gets
stuck. Then a newmatching strategy is sought, resulting in the same strategy being
found and applied again from the start. The separation of concerns between data
capture by the ProofProcess framework and its “applications” of strategy extraction
and replay allows for different approaches to be explored and implemented.

11.4.2 Extending region strategies

After splitting the bottom part, the user is left with three goals (two new ones and
one from the previous split):

1. ?assms =⇒ disjoint (locs_of b (the (f b))) (locs ({b, d + s} −C f))
2. ?assms =⇒ disjoint (locs_of (b + the (f b)) s) (locs ({b, d + s} −C f))
3. ?assms =⇒ disjoint (locs_of (b + (the (f b) + s)) (the (f (d + s))))

(locs ({b, d + s} −C f))

The last goal (from the previous split) has not been affected by the last split thus it
is treated as a branch separate from the whole Show disjointness of bottom part
proof (see Figure 11.22 for illustration).

Reusing proof for the disposed region

An existing strategy now matches the second goal: the generalised Show dis-
jointness of disposed region strategy can substitute the b+ f (b) = d definition
using the Use below definition strategy (H17) and subsequently prove disjoint-
ness of the disposed region d 7→ s using the Show subset of disjoint is disjoint
strategy (H9). In fact, the second goal is exactly the same for the purposes of this
strategy as the disposed region branch in the “below” case (see Section 11.3.3 and
Figure 11.19). By selecting the Show disjointness of disposed region strategy,
the user completes this proof branch and tags it appropriately.

Goal shape mismatch for the below region

The other goals are not matched by any existing strategy and the user has to take a
manual proof step. For assistance with finding a correct way forward, the user can
check what strategy should go here compared to previous proofs. Previously, after
splitting the regions (and discarding the disposed region branch), the remaining
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strategy was one of Show disjointness of below/above region. A quick glance at
the first goal shows that it involves the below region b 7→ f (b). Thus even though
the strategy does not match, the user can inspect the proof features of the Show
disjointness of below region strategy to see why it does not apply.

The proof features (actually specified on the nested Show removed region is
disjoint (H13) strategy) do not match the current goal because they have been
specified too strictly. The required goal shape allows only a single region to be
removed from the heap map in the second disjointness argument:

Goal shape (disjoint (locs_of ?l ?s) (locs ({?l} −C ?f))).

In the current goal, however, two regions are removed ({b, d + s} −C f). Unfor-
tunately, the goal shape features in Isabelle/HOL are limited to simple placeholders
and use unification to perform matching. It is not possible to describe the con-
dition of “a location must be among the regions removed from the heap map” as
needed here. Theorem proving would need to be used to show that the location
is among the removed regions.

Regardless, even if proof feature expression was not a limiting factor here, han-
dling multiple regions requires additional proof steps within the strategy. Thus
as the user adds these manual steps, they are recorded as strategy alternatives
and would match subsequent encounters of this new case. Again, the argument of
aiming for the most general strategy versus having specific strategies for different
cases presents itself. Finding the best approach is left for future research.

Dropping goal argument to align with strategy

By examining the expected proof features, the user can identify that he needs to
drop one of the regions from the second disjointness argument. Then he would
have a goal that matches the strategy, making it possible to continue the proof as
previously. Furthermore, a future AI4FM system could be able to suggest how
to perform this by attempting automatic lemma discovery (Section 13.3.3): it is
knownwhat shape the goal should be from the proof features aswell aswhat it is at
the moment; lemma discovery functionality could generate various permutations
and check for counterexamples and proof automatically.

The lemma needed here is disjoint_locs_widen1 (Figure 11.23). It shows that the
disjointness property holds if an additional region is dropped from the heap map:
i.e. if a set is disjoint from the locations of a map containing more regions, it is still
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Intent: Widen disjoint ProofSeq (as decoration)
Narrative: Widen a disjoint argument by dropping a domain subtraction argument.
In features:

• Goal shape (disjoint ?s (locs ({?p, ?q} −C ?f)))

• Subterm has shape (?s, ?p)

• Used lemma (disjoint_locs_widen1)

• Lemma shape ( disjoint ?s (locs ({?p} −C ?f)) =⇒
disjoint ?s (locs ({?p, ?q} −C ?f)))

In goals (filtered):
1. ?assms =⇒ disjoint (locs_of b (the (f b))) (locs ({b, d + s} −C f))

Proof step: apply (rule disjoint_locs_widen1) . . .
Out goals (filtered):

1. ?assms =⇒ nat1_map f
2. ?assms =⇒ disjoint (locs_of b (the (f b))) (locs ({b} −C f))

Step H19: Widen disjoint

lemma disjoint_locs_widen1:
"nat1_map f =⇒
disjoint s (locs ({p} −C f)) =⇒ disjoint s (locs ({p, q} −C f))"

Figure 11.23: Lemma disjoint_locs_widen1.

disjoint if some of the regions are removed. The only side condition (nat1_map f)
describes the type of map f and is required for locs function to be defined. The
number 1 in the lemma name signals that the first element in the removed set is
retained when applying the lemma backwards.

The user can compare the current goal and the proof features of the expected
strategy for hints when creating lemma disjoint_locs_widen1. Furthermore, the
proof of this lemma can be found automatically using the Sledgehammer tool in
Isabelle. Thus the user has a good chance of discovering the necessary manual
step and advancing the proof without employing the expert. The application of
lemma disjoint_locs_widen1 in a backward proof step is captured in step H19. The
proof step replaces the current goal with the assumptions in the lemma, essentially
“dropping” the unnecessary second region from the goal. The side condition is
trivial as the assumption nat1_map f is already available.

The user tags this proof step asWiden disjoint andmarks the important proof
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...

rule disjoint_locs_widen1

assumption a arule disjoint_diff

subst locs_region_remove

assumption

Discharge lemma assumptions

Trivial assm... Tr.. Tr..H16: Show set remove is disjoint

H14: Zoom Discharge lemma assumptions

Trivial assumption

H12: Show disjointness of below region

H20: Show removed region is disjoint

H19: Widen disjoint

Figure 11.24: ProofProcess tree of “below” branch of lemma dispose1_disjoint_both.
Continues the main tree from Figure 11.22.

features: i.e. that the goal involves a domain subtraction operation with a two-
element set, as well as that the first set element (?p) is the important one. The
latter is captured by the Subterm has shape() proof feature, which requires that ?p is
found within ?s (the first disjointness argument). Furthermore, the used lemma
is also captured, including the important shape.

After dropping the unnecessary domain subtraction argument, the widened
disjointness goalmatches theShow removed region is disjoint (stepH13) strategy
and the previous Show disjointness of below region strategy can be resumed.
The reuse of Show removed region is disjoint completes the proof.

Adjusting the strategy

Widen disjoint (H19) is a quite generic proof step. The user rearranges the group-
ing of the captured proof process structure to include itwithin the genericShow re-
moved region is disjoint step (step H20, also see Figure 11.24). The proof features
of the extended Show removed region is disjoint step are also changed to mark

280



11.4. Generalising strategies in "both" case

Intent: Show removed region is disjoint ProofSeq

Narrative: Show that a region is disjoint from the rest of the heap with the region
itself removed.

In features:

• Goal shape (disjoint (locs_of ?l1 ?s) (locs ({?l1, ?l2} −C ?f)))

Children:

• (H19) ProofSeq: Widen disjoint . . .

• ProofParallel: -

– ProofSeq: Discharge lemma assumptions
∗ ProofSeq: Trivial assumption . . .

– (Analogous to H13) ProofSeq: - . . .

In goals (flattened):
1. disjoint (locs_of d s) (locs f) =⇒

b ∈ dom f =⇒
d + s ∈ dom f =⇒
nat1 s =⇒
b + the (f b) = d =⇒
Disjoint f =⇒
sep f =⇒
nat1_map f =⇒
finite (dom f) =⇒
disjoint (locs_of b (the (f b))) (locs ({b, d + s} −C f))

Out goals: X (none)

Step H20: Show removed region is disjoint (with widening). See Figure 11.24
for illustration. Apart from step H19 and its side-condition proof, the rest of
the inner proof steps are analogous to H13.

this specific instance of the strategy: i.e. the removed region is the first one in a
two-region removal from the heap map.

During strategy extraction, the new proof feature and an additional Widen
disjoint step would specify an alternative matching and replay path for the strat-
egy, thus generalising it with an additional case. Addition of more matching cases
is not the nicest way of generalising strategies, however, as discussed previously,
some proof cases are difficult or impossible to generalise without involving theo-
remproving. Furthermore, handling several casesmay be enough to cover strategy
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reuse within the entire family of proofs, thus achieving the initial goal without
extracting “perfect” strategies.

By reusing a strategy for the disposed region and extending one for the below
region, the user finishes the proof of each region’s branch and therefore the overall
branch of the “bottom part” (see Figure 11.22 for illustration).

Aligning parentheses for the above region

The remaining proof goal originated in the initial region splitting:

1. ?assms =⇒ disjoint (locs_of (b + (the (f b) + s)) (the (f (d + s))))
(locs ({b, d + s} −C f))

By the process of elimination, the user can deduce that this proof branch is con-
cerned with the above region, since disjointness of both below and disposed regions
have been proved. However, its start location is defined in terms of the below region
(b+ f (b) + s), which complicates the proof and requires manual proof steps.

Substituting part of this expression with the assumption b+ f (b) = d has al-
ready been done in the “below” case (see step Use below definition (H17)), how-
ever the strategy does not match here immediately due to misaligned parentheses.
To enable substitution, the parentheses around the addition in the start location
expression (b+ (f (b) + s)) need to be changed to match the expression in the as-
sumption (i.e. to (b+ f (b)) + s). This is performed by using the associativity of the
addition operator: in Isabelle/HOL the addition associativity of natural numbers is
available as lemma nat_add_assoc[symmetric].21 The captured proof process
details about this step are listed in H21.

The proof features of step H21 capture the mismatch between the goal and
the assumption. This allows stricter control on where the strategy would match
(i.e. “only perform associativity substitution if there is an assumption that can
be utilised after the associativity is performed”) rather than marking a generic
associativity proof step that would apply too frequently and unnecessarily. The
specific aim tomatch the assumption is also captured by the intentGet assumption
shape. The fact that associativity is actually used is captured by the Lemma shape()
proof feature, which specifies the associative nature of the addition operator.

Strategy extraction could generate different reusable strategies from this proof
step. The application of associativity of addition on natural numbers can be ex-
tracted directly from this problem. However, if the extraction substituted the

21The [symmetric] attribute gives a symmetric form of the associativity lemma, which is
needed for the desired addition shape.
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Intent: Get assumption shape ProofSeq (as decoration)
Narrative: Transform the goal to match the shape in assumption.
In features:

• Assumption shape (?m + ?n = ?x)

• Has shape (?m + (?n + ?k))

• Lemma shape (?m + (?n + ?k) = (?m + ?n) + ?k)

In goals (filtered):
1. ?p1 =⇒ b + the (f b) = d =⇒ ?p2 =⇒

disjoint (locs_of (b + (the (f b) + s)) (the (f (d + s))))
(locs ({b, d + s} −C f))

Proof step: apply (subst nat_add_assoc[symmetric]) . . .
Out goals (filtered):

1. ?p1 =⇒ b + the (f b) = d =⇒ ?p2 =⇒
disjoint (locs_of (b + the (f b) + s) (the (f (d + s))))

(locs ({b, d + s} −C f))

Step H21: Get assumption shape

addition operator with a different one, this would result in a different strategy.
For example, by replacing addition with multiplication, this strategy could be
reused in a quite different proof, where multiplication associativity is required.

11.4.3 Adapting strategy from the same proof

After correcting the placement of parentheses, the Use below definition (H17)
strategymatches the remaining goal. After replaying this strategy, the above region
becomes defined in the familiar manner, using the d+ s start location:

1. ?assms =⇒ disjoint (locs_of (d + s) (the (f (d + s))))
(locs ({b, d + s} −C f))

The rest of the proof goes analogously to the Show removed region is disjoint
(H20) strategy. It first drops the unnecessary region from the heap map’s domain
subtraction (thus widening the argument). Then the proof continues to show that
this region is disjoint from the other regions. Figure 11.25 illustrates the captured
ProofProcess structure of the above region’s branch.

However, unlike step H20 (particularly its inner step Widen disjoint (H19)),
the important region to retain is now the second element in the domain subtraction
set. The user needs to adjust the strategy to match the current goal. As a straight-
forward approach, the user can inspect how the proof was done previously and try
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11. Case study: memory deallocation

subst nat_add_assoc[symmetric]

erule ssubst

rule disjoint_locs_widen2

assumption a arule disjoint_diff

subst locs_region_remove

assumption

...

H12: Show disjointness of above region

H17: Use below definition

H21: Get assumption shape

H18: Substitute assumption equality

H20: Show removed region is disjoint

H19: Widen disjoint

Discharge lemma assumptions

Trivial assm... Tr.. Tr..H16: Show set remove is disjoint

H14: Zoom Discharge lemma assumptions

Trivial assumption

Figure 11.25: ProofProcess tree of “above” branch of lemma dispose1_disjoint_both.
Continues the main tree from Figure 11.22.
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lemma disjoint_locs_widen2:
"nat1_map f =⇒
disjoint s (locs ({q} −C f)) =⇒ disjoint s (locs ({p, q} −C f))"

Figure 11.26: Lemma disjoint_locs_widen2.

to replicate the idea: i.e. introduce a new lemma that retains the second argument.
The lemma is copied and adapted trivially as disjoint_locs_widen2 (Figure 11.26);
its proof can be found automatically using Sledgehammer.

Alternatively, the user could follow the approach used previously: see what
proof features are expected and try to bridge towards them rather than adapting
the strategy and the proof features. In this case, he could use the insert_commute
lemma from the Isabelle/HOL library to flip the set elements and continue with the
strategy, having made d+ s the first element in the set.

Furthermore, the user is adapting or reusing a strategy that was introduced
earlier within the same proof. The proof process capture is expected to work “live”
along with the expert doing either manual proof or strategy replay. AI4FM tools
could run in the background analysing data as it is captured and extracting proof
strategies. Thus a strategy used earlier in the proof could be available for reuse
later within the same proof, assisting the user as soon as possible.

The small adjustments to the Show removed region is disjoint strategy in the
above region’s branch contribute to yet another alternative case of this strategy.
They now cover cases when the removed region is removed by itself, as well as
with another region in any order. Otherwise the strategy is replayed without any
changes and completes the proof branch as well as the whole proof.

¦ ¦ ¦

The case study presented in this chapter illustrates how the ProofProcess framework
captures proof process data. More generally, it gives examples of how interactive
proof can be described and structured at an abstract level, how to capture key fea-
tures of proof steps, etc. Furthermore, the captured information is reused to assist
with similar proofs, extract reusable strategies and extend them with additional
instances of strategy application. This case study in Isabelle/HOL uses determinis-
tic and basic proof tactics, enabling a clearer description of the proof process. The
next case study uses the Z/EVES theorem prover with more automated tactics and
a less “tidy” proof. The success of the approach is investigated when dealing with
awkward proof strategies.
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CHAPTER 12
Capturing proof about

kernel properties
CASE STUDY

This case study presents the capture of proof processes from a formal development
of a separation kernel specification using the Z/EVES theoremprover. The previous
case study in Chapter 11 used an expressive Isabelle/HOL prover to capture and
reuse a quite detailed and well guided proof. The proofs presented here use more
automation and are less controlled. However, the case study shows that even
awkward proofs can provide reusable strategies.

The integration of the prototype ProofProcess system with the Z/EVES theorem
prover aims at supporting “industrial style” formal developments and evaluating
proof process capture and strategy reuse in such scenarios. Furthermore, the inte-
gration provides access to an existing corpus (and experience within the AI4FM
project) of industrial-type proofs (see Chapter 10 for more details).

The Z/EVES theorem prover [Saa97] is simpler in its scope of available tactics
than Isabelle, thus part of the proof is “fighting” the prover: limited expressivity
gives rise to strategies that work around the prover’s shortcomings. The Z nota-
tion [WD96] can be used to construct specifications of complex models, however
proving lemmas about them involves strategies for managing the complexity and
scope of the proof and guiding the prover. The case study of the heap specification
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development in Isabelle/HOL (Chapter 11) gives a step-by-step description of how
the ProofProcess framework is used to capture the proof process. Then it shows
how the information can be reused as strategies to prove similar lemmas. The case
study presented in this chapter does not go into as much detail. Instead it peeks
into the Z/EVES integration and the capture of an industrial-type proof process
with its struggles and strategies.

This case study describes a proof of a theorem from a formal development of a
separation kernel specification. It comes from an earlier work by the author of this
thesis: full details (specification, proof scripts, justifications, etc.) are available in
[Vel09, VF10]. The specification and the proof are not “tidy” or “nice”: the case
study aims to present a capture of a formal proof that is more real-world than one
polished for an academic paper. The proof has been done by an “engineer-level”
user (i.e. with limited theorem-proving experience) and without fine-tuned lem-
mas that could have improved the automation. Because of all this, the proof is
quite clumsy and involves a number of proof steps working around the limitations
of the prover as well as the complexity of the data structure rather than it being an
actually difficult proof. Nevertheless, such properties are frequent among indus-
trial style formal developments yet the proof strategies are useful, reusable and
necessary to help with similar proofs. Like in the previous case study, the exam-
ples are of smaller scale than those in real industrial formal developments, but
serve well to illustrate proof process capture, reuse of awkward proof strategies
and the Z/EVES integration.

12.1 Modelling a process table

The formal development and verification of a separation kernel specification un-
dertaken in [Vel09] covers several main components of the kernel: a process table,
a process queue and a scheduler. For full details about the model, separating prop-
erties and all justifications, please refer to the Master’s thesis [Vel09] as well as the
original development by Craig [Cra07]. This case study focuses on the process
table PTab and an operation to delete all processes stored there DeleteAllProcesses.
Formal verification includes checking that this operation clears associated data
structures correctly, specified as theorem tDeleteAllExtpid (Figure 12.3). Its proof
is captured and analysed in this case study.

A process table in an operating system kernel stores a registry of processes and
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12.1. Modelling a process table

PTab
nextupid : UPID
extpid : UPID 7→ PID
pidext : PID 7→UPID
used, free : F PID
tss : PID 7→ TSS
devmap : DevNo 7� PID
state : PID 7→ PSTATE
ptype : PID 7→ PTYPE
msgq : PID 7→MsgQ
devmsg : PID 7→ (GPID×MSG)
devrpy : PID 7→MSG
cdseg : PID 7→ SDesc
dsseg : PID 7→ SDesc

free = PID \ used
used = dom state = dom ptype = dom tss
∃ dprocs,uprocs : FPID |

dprocs = ptype ∼ L{dproc} M ∧
uprocs = ptype ∼ L{uproc} M •

dprocs = ran devmap = dom devmsg = dom devrpy ∧
uprocs = dom cdseg = dom dsseg = dom msgq = ran extpid

pidext = extpid ∼
∀ u : UPID | u ≥ nextupid • u 6∈ dom extpid

Figure 12.1: Process table schema PTab.

their associated attributes. The process table is modelled as a Z schema1 PTab and
presented in Figure 12.1. At the core of a process table are process identifiers PID:
the specification partitions them into the used and free registers (modelled as fi-
nite sets F PID). Furthermore, the process table supports translation between
the externally visible “user” process identifiers UPID and the internal PIDs by
storing the extpid mapping (modelled as a partial function extpid : UPID 7→ PID
and its mirrored mapping pidext). Various process attributes are recorded using
individual maps: e.g. state : PID 7→ PSTATE records the state of each process.

The kernel distinguishes between user and device processes, which have some
different attributes. The type of a process can be either uproc (user) or dproc (de-
vice), recorded in the ptype mapping. Then, based on this mapping, the process
table ensures that specialised attributes are recorded for exactly the appropriate
processes: e.g. devmap only includes device processes, while extpid only includes
user processes. All of the described conditions are recorded as invariants within

1This case study assumes that the reader is familiar with the Z notation [WD96], though the
majority of Z concepts utilised here are quite straightforward and/or explained briefly.
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DeleteAllProcesses
∆PTab

used′ = ∅

Figure 12.2: DeleteAllProcesses process table operation.

the PTab schema (Figure 12.1, refer to [Vel09] for full details). The attribute parti-
tioning is achieved by using a relational image of an inverse of the ptype mapping:
e.g. uprocs = ptype ∼ L{uproc} M gives a set of all user process identifiers.

This case study focuses on the DeleteAllProcesses operation, which clears the
data in a process table by deleting all used processes. This operation is specified
as the DeleteAllProcesses schema (Figure 12.2). The operation schema describes
a relation between the before and after states of the data structure (schema PTab).
The ∆PTab statement includes the variables of the before state of PTab and its after
state PTab′ (all after state variables are decorated with a prime ′ symbol). The
operation does not restrict any variables here except for ensuring that the set of
used processes after the operation is empty: used′ = ∅. In general, an operation
should avoid erroneous underspecification by specifying the relations between
the before and after states for all involved variables. However, in this particular
case, the invariant of PTab ensures that all other variables are also cleared if used′

is empty.2 By specifying only the minimal set of restrictions, future proofs are
simplified. However, to achieve assurance in the overall specification, the correct
deletion of the process table data needs to be verified separately.

12.2 Proof of correct process data deletion

To verify that the associated process data is cleared when all processes are deleted,
a theorem stating the property of interest is conjectured and proved. For example,
theorem tDeleteAllExtpid states the property that after executingDeleteAllProcesses,
the after state of the external process identifier mapping is also empty: extpid′ = ∅.
This theorem and its proof in Z/EVES are presented in Figure 12.3. By inspect-
ing the invariants in PTab, this fact is quite easy to verify: if used′ is empty, so
is the domain (and thus the mapping itself) of ptype; then the uprocs set is also

2The next available UPID variable nextupid would still be underspecified. However, after
clearing the process table, nextupid can be chosen arbitrarily, therefore this underspecification is
good and allows the implementation to choose a preferred allocation scheme.
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12.2. Proof of correct process data deletion

theorem tDeleteAllExtpid
DeleteAllProcesses ⇒ extpid′ = ∅

proof tDeleteAllExtpid
invoke DeleteAllProcesses;
invoke ∆PTab;
invoke predicate PTab′;
prenex;
use gEmptyRan[Z, Z][A := UPID, B := PID, P := extpid′];
rearrange;
rewrite;
split ran extpid′ = {};
cases;
simplify;
next;
simplify;
apply extensionality to predicate ran extpid′ = {};
prove;
next;

Figure 12.3: Theorem tDeleteAllExtpid and its proof in Z/EVES.

empty, since there are no more processes at all registered within ptype; from the
empty uprocs set, the range (and thus the mapping itself) of the extpidmust also be
empty, concluding the proof. However, guiding the Z/EVES theorem prover to this
conclusion requires a larger number of proof steps, as illustrated in Figure 12.3.

The remainder of this section describes how this proof is achieved and em-
phasises several strategies taken by the user. The proof process is captured using
the Z/EVES ProofProcess system and annotated by the user with high-level proof
information. Figure 12.4 shows an overview of the captured proof as a ProofProcess

tree data structure, highlighting the high-level proof intents and their relationships
as well as listing the actual proof commands. This section discusses the important
proof steps, captured high-level strategies and other proof information. Details of
the captured proof process data (e.g. proof features) are listed in individual “boxes”
representing the ProofProcess steps (e.g. see step K1). Furthermore, the case study
highlights how this data is captured and represented in the framework, particu-
larly focusing on the Z/EVES integration.

12.2.1 Expanding definitions

Industrial-style specifications model and describe complex systems, which con-
sist of multiple interacting components. Modularity is an important feature of
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K1: Zoom

K2: Expand schema

invoke DeleteAllProcesses

Tactic application

invoke ∆PTab

invoke predicate PTab'

prenex

use gEmptyRan ...

rearrange

rewrite

K3: Expand operation

K4: Expand schema

Cleanup

K5: Existential elim.

K6: Bridge predicate data 
structures

K7: Insert lemma

K8: Drop lemma 
assumptions

split ran extpid' = {}

cases

simplify

next

simplify

Contradiction cases

K12: Use lemma conclusion

K10: Select case

K11: Use assumption

Prove negated assumption

K13: Select case

K14: Cleanup

apply extensionality ...

prove

next

K18: Prove at element level

K16: Zoom

K17: Prove automatically

K19: Finish split

K15: Do backwards proof

K9: Split on lemma 
assumption

Figure 12.4: Simplified ProofProcess tree of theorem tDeleteAllExtpid.
The legend is available in Figure 11.5.
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12.2. Proof of correct process data deletion

such specifications, as it separates concepts and allows different people to work
on separate parts of the specification. Component properties are encapsulated;
components themselves are bundled into larger systems with higher-level proper-
ties spanning the constituents. Accessing properties of lower-level components in
a proof requires expansion of appropriate definitions.

In Z notation, schemas can be used to model such components: low-level com-
ponents would be specified using schemas that define important variables and
properties about them. Another schema can then include lower-level schemas and
specify properties using their variables. This approach is used when specifying
operations in Z notation: the before and after states of a data structure schema can
be viewed as two sub-components of an operation schema, where an operation
describes how variables in these schemas are related. For example, the operation
DeleteAllProcesses includes ∆PTab, which is a shorthand for including both PTab
and PTab′, then specifies a relation3 describing the properties of the operation: i.e.
clearing the used′ variable (see Figure 12.2).

As sketched earlier, the proof of theorem tDeleteAllExtpid echoes the order of
the clauses between variables of the process table. These relations are specified as
invariant predicates on the PTab′ schema. The primed PTab′ schema has the same
set of predicates as PTab, only with primed after-state variables. To access these
predicates in the proof, encapsulating definitions need to be expanded.

A simple strategy is to “expand everything”. Unfortunately, such an approach
is not feasible in industrial-style proofs due to the large number of variables
and predicates involved. For example, the DeleteAllProcesses operation includes
two instances of PTab schema—a total of 28 variables—yet larger schemas can
include many more. As is illustrated later, even the simple proof of theorem
tDeleteAllExtpid has very large proof goals despite careful expansion guidance.

In the proof of tDeleteAllExtpid, schema and type expansion is needed right
from the start. The initial goal is to show that after executing DeleteAllProcesses,
variable extpid′ becomes empty:

DeleteAllProcesses ⇒ extpid′ = ∅

The specification of the operation (as well as the before and after states with their
properties) is hiddenwithin theDeleteAllProcesses schema name. It is impossible to

3In this particular case the relation is not concerned with the before state, only with variables
in the after state schema.
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Intent: Zoom ProofSeq
Narrative: Expand the schemas until the desired level of discourse is reached.
In features:

• Goal term (extpid′) — The conclusion has the variable extpid′, hence need to expand
the schemas (zoom) until we can reason about it.

• Not (Assumption term (extpid′)) — Variable is not visible among the assumptions.

• Preferred level of discourse (extpid′) — Prove at “extpid′ level”
(alternative feature).

Out features:
• Assumption term (extpid′) — The variable is available among the assumptions.

Children:
• ProofSeq: Expand schema . . .

• ProofSeq: Expand operation . . .

• ProofSeq: Expand schema . . .
In goals (flattened):

DeleteAllProcesses ⇒ extpid′ = ∅

Out goals (flattened): Listed in Figure 12.5.

Step K1: Zoom

reason about extpid′ being empty, since nothing else can be said about the variable
at this level of discourse.

To reveal the necessary concepts, the user needs to “zoom” to an appropriate
level of discourse in the proof. At an abstract level, the zooming can be described
as a high-level proof step Zoom, details of which are captured by the ProofProcess

framework and are listed in step K1. The out goal of step K1 is listed separately in
Figure 12.5 due to its size.

Marking and (not) generalising the important features

The high-level idea captured in the proof step is to expand the minimum amount
of definitions (schemas) to be able to reason about the goal term extpid′. The proof
step K1 records this using proof features: the in features capture that extpid’ is a
goal term but it is not visible among the assumptions, as Goal term (extpid′) and
Not (Assumption term (extpid′)), respectively. Furthermore, it marks the important
outproof features of a successful strategy application: i.e. that the required variable
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PTab ∧
nextupid′ ∈ UPID ∧
extpid′ ∈ UPID 7→ PID ∧
pidext′ ∈ PID 7→UPID ∧
used′ ∈ FPID ∧
free′ ∈ FPID ∧
tss′ ∈ PID 7→ TSS ∧
devmap′ ∈ DevNo 7� PID ∧
state′ ∈ PID 7→ PSTATE ∧
ptype′ ∈ PID 7→ PTYPE ∧
msgq′ ∈ PID 7→MsgQ ∧
devmsg′ ∈ PID 7→GPID×MSG ∧
devrpy′ ∈ PID 7→MSG ∧
cdseg′ ∈ PID 7→ SDesc ∧
dsseg′ ∈ PID 7→ SDesc ∧
free′ = PID \ used′ ∧
used′ = dom state′ ∧
dom state′ = dom ptype′ ∧
dom ptype′ = dom tss′ ∧
(∃ dprocs : FPID; uprocs : FPID •

dprocs = ptype′ ∼ L{dproc} M ∧
uprocs = ptype′ ∼ L{uproc} M ∧
dprocs = ran devmap′ ∧
ran devmap′ = dom devmsg′ ∧
dom devmsg′ = dom devrpy′ ∧
uprocs = dom cdseg′ ∧
dom cdseg′ = dom dsseg′ ∧
dom dsseg′ = dommsgq′ ∧
dommsgq′ = ran extpid′) ∧

pidext′ = extpid′ ∼ ∧
(∀ u : UPID | u ≥ nextupid′ • u 6∈ dom extpid′) ∧
used′ = ∅
⇒
extpid′ = ∅

Figure 12.5: Out goal of Zoom step (K1). Also the goal after executing the
invoke predicate PTab′ proof command in the proof of tDeleteAllExtpid.
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is available among the assumptions.
Such proof features make a somewhat blunt tool for recording the overall

high-level idea and can be directly read as “reveal any statement about the goal
variable in the assumptions”. However, they do record the main idea—that the as-
sumptions are lacking for reasoning about the goal variable—and may be enough
for the majority of reuse cases for this strategy. Furthermore, because of the way
schemas are constructed and packaged, revealing some fact about a variable may
reveal all important facts about it (i.e. all predicates about some variables may be
packaged together within the same schema, which expansion would conveniently
reveal everything). When it comes to the amount and precision of the recorded
proof features, in most cases it would not be necessary to be exhaustive with spec-
ifying all corner cases. Within a family of proofs, several well-placed hints may be
enough to trigger the correct strategy reuse.

Step K1 also records the described idea with an alternative proof feature: Pre-
ferred level of discourse (extpid′). The “zooming” strategy can be described with the
preferred level of discourse: i.e. by marking the level of definition at which the proof
should be performed (see also examples in Chapter 11). In step K1, the user marks
that the proof is to be done at the level of extpid′ variable, i.e. that other definitions
containing it should be expanded. Automating the reuse of this proof feature,
however, would require extra functionality from the ProofProcess framework, be-
cause the Preferred level of discourse() proof feature is open-ended. Nevertheless,
such a proof feature would point a human user of the strategy replay in the correct
direction. Furthermore, the proof features could be combined as in step K1: the
simple proof features described earlier would match automatically and the strat-
egy would be suggested to the user during replay. He could then manually verify
the proof features: seeing the “preferred level of discourse” feature would hint at
the high-level idea more precisely than captured by the mechanics of “does not
have a variable before—has the variable after strategy” features.

Either way, the ProofProcess framework captures proof process with hindsight:
proof features mark the important parts of this particular proof. The challenges of
generalising them for strategy reuse could be postponed: e.g. advanced algorithms
of strategy extractionmight fill in the gaps and generalise the strategy successfully;
additional proofs with minor variations of the proof features might be captured
to feed into the generalisation; the simple strategies will match too eagerly in the
replay and the user will fine-tune them; etc.

The same generalisation argument applies to marking the proof features. In
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12.2. Proof of correct process data deletion

the heap case study (Chapter 11), many proof features were marked generalised
(e.g. as shape proof features). This yields more information for strategy extraction
as the proof features directly construct the extracted strategy. However, it also
steps away from recording “how the proof was achieved”: i.e. the separation of
proof process capture and the strategies. Marking the important proof features
with the actual terms and variables in the goal is simpler: e.g. the system could
facilitate the process by enabling the user to just click the important sub-term
and include it in the proof feature. See Section 8.2.3 for more details on how the
prototype ProofProcess system allows the marking of sub-terms. By quickly (and
seamlessly) marking the actual important terms, the user is recording his proof
process and deferring the strategy generalisation. The data can then be picked
up for strategy extraction: an algorithm may decide that the actual term itself is
important; or that it (or its parts) can be generalised for a more widely applicable
strategy; eventually it could be combinedwith other examples of the same strategy
or fine-tuned further manually.

Actual zoom steps

The Zoom proof step (K1) captures the abstract proof step that expands the nec-
essary definitions containing the extpid′ variable. While it would be possible to
replicate the step using a single Z/EVES proof command, the actual zooming is
done in three Z/EVES proof steps.

First, the user is faced with the initial goal:

DeleteAllProcesses ⇒ extpid′ = ∅

There is not much to do at this level, other than expand the DeleteAllProcesses
schema using the invoke DeleteAllProcesses proof command. The invoke com-
mand in Z/EVES expands the given schema by replacing its name with inlined
schema contents. In this case, the DeleteAllProcesses name is replaced with its
definition (listed in Figure 12.2).

The user marks this proof step as Expand schema intent (see proof step K2).
Actually, this is a generic (albeit trivial) proof strategy: if goal assumptions con-
sist of a single schema definition, expand it. The user highlights the schema as
the important feature: Assumption schema (DeleteAllProcesses). In a similar way to
how invariant definitions are marked as proof features in the heap case study (see
step H1 in Chapter 11), metadata about the specification can be useful here. When
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Intent: Expand schema ProofSeq (as decoration)
Narrative: A single top-level schema in the assumptions, expand it.
In features:

• Assumption schema (DeleteAllProcesses)

• Operation schema (DeleteAllProcesses)
In goals:

DeleteAllProcesses ⇒ extpid′ = ∅

Proof step: invoke DeleteAllProcesses . . .
Out goals:

∆ PTab ∧ used′ = ∅ ⇒ extpid′ = ∅

Step K2: Expand schema

specified, the DeleteAllProcesses schema could be marked as representing an op-
eration.4 Thus by adding this proof feature (Operation schema (DeleteAllProcesses)),
strategy extraction can be more eager in applying the schema expansion to other
operations. This would expand the use of the extracted strategy from just single-
schema assumptions to proofs involving operation schemas, e.g. if there are addi-
tional predicates within the operation, such as in precondition verification.

Predicates about the goal variable are not revealed by the expansion, however:

∆ PTab ∧ used′ = ∅ ⇒ extpid′ = ∅

The next step is to unpack the before and after states of the process table ∆ PTab.
The delta notation is a shorthand for including the standard and primed versions
of a Z schema. It has little value in proofs (apart from compacting the notation)
and should normally be expanded. Step K3 captures this very generic strategy.
Expanding ∆ PTab introduces conjoined schemas PTab ∧ PTab′:

PTab ∧ PTab′ ∧ used′ = ∅ ⇒ extpid′ = ∅

Finally, the last “zooming” step expands PTab′ to reveal the predicates about the
extpid′ variable (step K4). In this step, the proof command invoke predicate
PTab′ is used to narrow the expansion to only the after state schema PTab′. The
user marks this proof step as an additional instance of the Expand schema intent.
Its proof features record that the expansion takes place because PTab′ contains the

4The fact that a schema represents an operation can also be inferred by checking for before and
after states within the operation schema.
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Intent: Expand operation ProofSeq (as decoration)
Narrative: Expand ∆PTab.
In features:

• Assumption shape (∆ ?Scha)
In goals:

∆ PTab ∧ used′ = ∅ ⇒ extpid′ = ∅

Proof step: invoke ∆ PTab . . .
Out goals:

PTab ∧ PTab′ ∧ used′ = ∅ ⇒ extpid′ = ∅

aThe ?var notation with the leading question mark is used to indicate placeholder variables
in the ProofProcess system. It should not be confused with var? (trailing question mark), which
denote input variables in Z notation.

Step K3: Expand operation

Intent: Expand schema ProofSeq (as decoration)
Narrative: Only expand PTab′, because it contains extpid′.
In features:

• Contains (PTab′, extpid′)
In goals:

PTab ∧ PTab′ ∧ used′ = ∅ ⇒ extpid′ = ∅

Proof step: invoke predicate PTab′ . . .
Out goals: Listed in Figure 12.5.

Step K4: Expand schema

extpid′ variable within: Contains (PTab′, extpid′). The conjecture is only concerned
with primed variables (used′ and extpid′) and does not use any before state infor-
mation. Because of that, it is not necessary to expand the PTab schema. Each PTab
instance contains 14 variables as well as predicates relating to them. Thus, where
possible, one should avoid unnecessary expansion that would clutter the proof
goal. There is enough clutter from just the necessary expansion: the goal after this
proof step is already massive for such a small problem (see Figure 12.5).

The Contains() proof feature requires the system to “peek” inside the schema.
When dealing with complex data structures, the important variables and their
properties are frequently hidden under layers of abstraction or composition. The
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user often has an intuition about the data structures and thus can include their
contents in the high-level reasoning process, even though they are not directly
visible in the goal. The intuition needs to be captured using proof features, thus
first-class support for complex data structures is needed in the AI4FM system. It is
not enough to select from apparent sub-terms. When capturing the proof process,
the usermay need to highlight the important parts containedwithin schemas, data
types or function definitions. Similarly, when replaying strategies with such proof
features, the system needs to match the proof feature with the goal by delving into
the definitions and matching the contents.

Furthermore, in more complex proofs it is often preferable to avoid expanding
further than some level of schemas. For example, the goal may already be very
large and introducing an extra 14 variables and their predicates by expanding
the PTab schema makes it unmanageable, particularly if only a single predicate
is required from the PTab definition. Instead of expanding, additional lemmas
could be specified that introduce the encapsulated properties as forward proof
rules, in the form SchemaRef ⇒ P,5 where P is a predicate about a variable
containedwithin the SchemaRef schema (e.g.PTab ⇒ nextupid ∈ Z). Furthermore,
Z/EVES allows tagging these rules as forward rules (frule) and will apply them
automatically during simplification [MS97]. This is useful for the most frequently
used properties, but introducing too many lemmas can encumber the theorem
prover and limit the effectiveness of its automatic tactics.

The “zooming” steps in this case study are quite simple and contribute straight-
forward generic strategies for reuse. The strategies are easy to remember for users
of all levels of expertise, i.e. they are not “expert” strategies that “engineer”-level
users need the system to learn. Nevertheless, these strategies are encountered
widely in similar proofs. Thus if they are “learned” and applied automatically by
the AI4FM system, it would save a lot of time doing (and redoing) similar proofs
and the user could focus on the “difficult” parts of the proof.

Cleanup modelling artefacts

The invariant of the PTab schema (Figure 12.1) includes a large existentially quan-
tified predicate about the dprocs and uprocs variables. These variables are derived
from the ptype variable and represent device and user processes, respectively. To
avoid including derived variables at the top level, they are existentially quantified.

5The forward rules can also be stated in an equivalent form ∀ SchemaRef • P.
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Intent: Existential elimination ProofSeq (as decoration)
Narrative: Eliminate existential quantifiers from assumptions.
In features:

• Assumption shape (∃ ?var • ?P)
In goals (filtered):

?p1 ∧
(∃ dprocs : FPID; uprocs : FPID •

dprocs = ptype′ ∼ L{dproc} M ∧ uprocs = ptype′ ∼ L{uproc} M ∧
dprocs = ran devmap′ ∧ ran devmap′ = dom devmsg′ ∧ dom devmsg′ = dom devrpy′ ∧
uprocs = dom cdseg′ ∧ dom cdseg′ = dom dsseg′ ∧ dom dsseg′ = dommsgq′ ∧

dommsgq′ = ran extpid′) ∧
?p2 ⇒ ?p3

Proof step: prenex . . .
Out goals (filtered):

?p1 ∧
dprocs ∈ FPID ∧ uprocs ∈ FPID ∧
dprocs = ptype′ ∼ L{dproc} M ∧ uprocs = ptype′ ∼ L{uproc} M ∧
dprocs = ran devmap′ ∧ ran devmap′ = dom devmsg′ ∧ dom devmsg′ = dom devrpy′ ∧
uprocs = dom cdseg′ ∧ dom cdseg′ = dom dsseg′ ∧ dom dsseg′ = dommsgq′ ∧

dommsgq′ = ran extpid′ ∧
?p2 ⇒ ?p3

Step K5: Existential elimination

In a proof, the existential quantifiers in assumptions can be eliminated, giving ac-
cess to these variables directly. The prenex proof command in Z/EVES eliminates
these quantifiers—the captured details of this proof step are listed in step K5. The
Existential elimination proof step is quite generic: the proof features only require
an existential quantifier among the assumptions.

At the higher level, this proof step represents a cleanup of modelling artefacts:
the existential quantifier is important when modelling, but can be eliminated dur-
ing the proof. Thus the user introduces additional intent Cleanup by wrapping
the proof step K5 (see Figure 12.4). By tagging all similar strategies as Cleanup,
the user would capture a collection of model cleanup activities that could be per-
formed where applicable.

12.2.2 Bridging data structures

After zooming to an appropriate level of discourse, the existing predicates about
extpid′ can be used in the proof. As sketched at the beginning of this section,
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theorem grule gEmptyRan [X,Y]
∀A : P X; B : P Y • ∀P : A↔ B • ran[X,Y] P = {} ⇒ P = {}

Figure 12.6: Theorem gEmptyRan.

proving the goal mainly requires following the relations between the variables
(particularly between the domains and ranges of map variables). Unfortunately,
with the existing set of lemmas, the automatic Z/EVES proof commands (e.g.
prove [by rewrite] and prove by reduce [MS97]) are unable to complete the
proof automatically. The user has to perform manual steps to advance the proof.

The strategy taken here is to nudge the Z/EVES prover towards the intended
proof by manually instantiating some of the previously sketched steps, in par-
ticular, to link the extpid′ term in the goal and its range ran extpid′ used in the
assumptions. This can be achieved using lemma6 gEmptyRan (Figure 12.6), which
has been created and proved beforehand. It proves that if the range of a relation
is empty, so is the relation itself. In a backward-style proof, this would mean that
the goal of extpid′ = {} holds if ran extpid′ = {} can be shown to be true.

The user employs lemma gEmptyRan by inserting it into the proof manually as
an additional assumption and cleaning up its assumptions.7 The high-level proof
step that represents these activities is captured in the ProofProcess framework as
step K6 with the Bridge predicate data structures intent. The overall high-level
idea of this step is to introduce the crux of the gEmptyRan lemma as a new assump-
tion. The filtered out goal of step K6 lists the added assumption. This is actually
achieved by two high-level steps (three Z/EVES proof commands): inserting the
lemma first and then dropping most of its assumptions that trivially hold. These
proof steps are captured as Insert lemma (step K7) andDrop lemma assumptions
(step K8), respectively.

Inserting bridging lemma

The Insert lemma (K7) step lists the important proof features that have triggered
the user to insert lemma gEmptyRan. Furthermore, the in/out goals provide a

6The words lemma and theorem are used interchangeably in this thesis, just as they are in both
Isabelle and Z/EVES theorem provers.

7Lemma gEmptyRan is specified as an assumption rule (grule) with expectation that it will
be used by Z/EVES automatically where applicable to introduce additional assumptions. Unfortu-
nately, its form does not matchwell with the way it is used in the kernel development and therefore
it is mostly used manually by explicitly inserting into the proof.
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Intent: Bridge predicate data structures ProofSeq
Narrative: Link the goal (extpid′ = ∅) with the assumption terms (ran extpid′).
Children:

• (K7) ProofSeq: Insert lemma . . .

• (K8) ProofSeq: Drop lemma assumptions . . .
In goals (flattened, filtered):

?p1 ⇒ ?p2

Out goals (flattened, filtered):a

?p1 ∧
(ran extpid′ = {} ⇒ extpid′ = {})
⇒

?p2

aThere are additional rewriting side-effects to the goal not shown here—see step K8 and the
related discussion.

Step K6: Bridge predicate data structures

filtered view of the goal change (some of the important parts of the goal are high-
lighted even though they do not change). The proof features highlight that having
extpid′ in the goal and ran extpid′ among the assumptions warrants the use of the
gEmptyRan lemma, which links them.

The important lemma shape is captured in a relaxed style: i.e. it is important
that the lemma introduces some relationship between variables—it is left to the
user to select the most appropriate one. An unrestricted specification of the proof
feature captures the user’s idea that it is important to link the variables even though
the exact solution to the proof does not present itself yet. For example, if the proof
features required Goal shape (extpid′ = ?c) and Assumption shape (ran extpid′ = ?b),
they would not match the current goal, since the fact ran extpid′ = {}, as required
by the lemma, is not established in the current goal. Therefore, if the strategy was
reused for other proofs, the user would receive a hint to “find some relationship
between ran x and x”, and selecting the best matching relationship would either
be left to the user or would be based on some additional proof features.

When extracting a proof strategy from such a proof step, termination needs
to be considered. Here the user knows that lemma introduction is needed and
marks the important proof features to capture this idea. However, none of the
proof features capture the negative facts: e.g. that the lemma has not been inserted
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Intent: Insert lemma ProofSeq (as decoration)
Narrative: Use a suitable lemma gEmptyRan that bridges extpid′ and ran extpid′.
In features:

• Goal term (extpid′)

• Assumption term (ran extpid′)

• Used lemma (gEmptyRan)

• Lemma shape (ran ?a = ?b ⇒ ?a = ?c)
In goals (filtered):a

?p1 ∧
dommsgq′ = ran extpid′ ∧
?p2 ⇒ extpid′ = ∅

Proof step: use gEmptyRan[Z, Z][A := UPID, B := PID, P := extpid′] . . .
Out goals (filtered):

(UPID ∈ P Z ∧ PID ∈ P Z ∧ extpid′ ∈ UPID↔ PID ∧
ran extpid′ = {} ⇒ extpid′ = {}) ∧

?p1 ∧
dommsgq′ = ran extpid′ ∧
?p2 ⇒ extpid′ = ∅

aThe predicates about extpid′ and ran extpid′ would also be filtered in the system but are shown
here to highlight the important parts.

Step K7: Insert lemma

beforehand. Automatic application of a strategy with only this set of features
will run endlessly. After inserting the lemma, the proof features in step K7 will
match again—and will insert another copy of the lemma. Approaches to avoid
such looping include inferring additional proof features about “negated effects of
the proof step” or calculating a fixed point of strategy application (e.g. if facts no
longer change, the strategy should not be applied).

The Z/EVES proof command use inserts the given lemma with provided in-
stantiations at the top of assumptions. As shown in the out goal of step K7, no
simplification has been done to discharge the lemma assumptions (particularly
the type considerations). This is done in the next proof steps.

Cleaning up lemma insertion

Lemma gEmptyRan links ran extpid′ being empty with the whole extpid′ being
empty. By showing the former, the overall proof will be complete, since the latter
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(extpid′ = {}) is the overall goal. However, ran extpid′ = {} is not established
here. Nevertheless, other assumptions of lemma gEmptyRan—the types of the
variables—are either already available or can be easily shown. Discharging them
simplifies the overall goal.

The cleanup is performed using two Z/EVES proof commands: rearrange
and rewrite. The first one reorders the hypotheses in the goal so that “simpler”
ones appear before more complicated ones. This improves the effectiveness of the
rewriting/reduction commands [MS97]. In the current proof, rearranging moves
the inserted lemma (a complicated hypothesis involving an implication) below the
type hypotheses, thus allowing the follow-up rewrite command to benefit from
them when discharging the lemma assumptions.

Step K8 captures the pair of rearrange and rewrite commands as a single
proof step with the intent Drop lemma assumptions. The proof features high-
light that an implication (inserted lemma) appears among the assumptions, which
would be cleaned up with the proof step. Furthermore, to make sure that an ap-
propriate effect is reached, the out features record the result of the proof step: some
of the conjuncts in the implication have been proved and hence dropped from the
goal. The proof features describe the current proof (i.e. four lemma assumptions
before the step—only a single one remaining afterwards). When a strategy is ex-
tracted from this captured proof step, a “perfect” heuristic would figure out that
the strategy basically requires the number of assumptions to decrease to qualify
as a successful application of theDrop lemma assumptions strategy. Such heuris-
tics could be encoded in the strategy extraction algorithm, however the user may
choose not to do any manual generalisations during the proof process capture.

Tactic side-effects and lemma usage

The rewrite proof command applies all possible rewrite rules to the goal. Us-
ing such a command may change other parts of the goal, as happens in step K8.
The filtered goals show that in addition to dropping the lemma assumptions, the
prover replaces dom state′ and dom ptype′ with empty sets, because used′ = {}
and these sets are transitively equal to the used′ set. To avoid such side effects, the
user could be more selective with the proof commands, only applying them to a
narrow sub-term, e.g. using the following command:

with predicate (extpid′ ∈ UPID↔ PID ∧ UPID ∈ P Z ∧
PID ∈ P Z ∧ ran extpid′ = {} ⇒ extpid′ = {}) rewrite;
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Intent: Drop lemma assumptions ProofSeq
Narrative: Prove that lemma assumptions hold, dropping them.
In features:

• Assumption shape (?a1 ∧ ?a2 ∧ ?a3 ∧ ?a4 ⇒ ?g1)

Out features:
• Assumption shape (?a4 ⇒ ?g1)

Children:
• ProofEntry: rearrange . . .

• ProofEntry: rewrite . . .
In goals (filtered):

(UPID ∈ P Z ∧ PID ∈ P Z ∧ extpid′ ∈ UPID↔ PID ∧
ran extpid′ = {} ⇒ extpid′ = {}) ∧

?p1 ∧
used′ = dom state′ ∧
?p2 ∧
dom state′ = dom ptype′ ∧
dom ptype′ = dom tss′ ∧
?p3 ∧
used′ = ∅ ∧
⇒

?p4

Used lemmas: weakening and others (all listed in Figure 12.7).
Out goals (filtered):

?p1 ∧
used′ = dom state′ ∧
used′ = {} ∧
?p2 ∧
{} = dom ptype′ ∧
{} = dom tss′ ∧
?p3 ∧
(ran extpid′ = {} ⇒ extpid′ = {})
⇒

?p4

Step K8: Drop lemma assumptions
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• Rewrite rules: applicationInDeclaredRangeFun, weakening, rel sub, power sub,
notInRule, diffEmptyRight, nullFinite, emptyDefinition

• Forward rules: KnownMember$declarationPart, fNextupidUPIDType, knownMember,
PTab$declarationPart, fNextupidType, fPTabDprocsPowerUsed, fPTabUprocsPowerUsed,
fPTabDomPidext, fDevmsgMaxType, fCdsegMaxType, fDssegMaxType, [internal
items]

• Assumptions: relDefinition, notin$declaration, uproc$declaration, ran$declaration,
dproc$declaration, rimg$declaration, gSDescType, gGPIDMaxType, MsgQ$declaration,
pinj type, gDevNoType, TSS$declaration, select 2 1, select 2 2, setminus$declaration,
finset type, dom$declaration, inverse$declaration, pfun type, gPIDMaxType,
gPIDFinType, gPIDIsFinset, gPIDNotEmpty, gUPIDMaxType, [internal items]

Figure 12.7: Lemmas used by rewrite proof command in Drop lemma assump-
tions (step K8).

In this particular case, the side-effects of the rewrite command are not too dis-
ruptive: i.e. they do not make a substantial change to the goal and do not affect
the general high-level proof idea. Therefore the user chooses to apply the com-
mand broadly. Furthermore, in similar situations the user can often miss some of
the additional changes to the goal when using automatic proof commands. The
filtered goal view in the ProofProcess system helps with the issue by showing just
the changes within a proof step (see Section 8.2.3). However, the eventual decision
of how to advance the proof is with the user and in this case a simple rewrite
command is used. The ProofProcess framework aims to accommodate all proof
processes, thus the captured proof information is faithful to how the proof is done,
even though extracting strategies from it may be difficult.

In a more general case, the side-effects may be more disruptive. Furthermore,
a single powerful proof command may advance proof in multiple ways, realising
several high-level ideas. For example, if sufficient lemmas are available, multiple
parts of the goal can be transformed when respective lemmas are applied by the
same rewrite command. In such a scenario, the user may want to record the
different proof ideas separately. This can be achieved by having multiple nested
ProofSeq elements in the ProofProcess framework. Each higher-level element wrap-
ping the same proof command would have its own proof intent and associated
proof features describing the particular high-level proof idea.

Step K8 also lists the captured lemma usage information. In particular the
weakening lemma is highlighted. The full list of lemmas used by the rewrite
proof command is much larger and due to space issues is listed in Figure 12.7.
The Z/EVES theorem prover traces lemma usage in proof tactics, which perform
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simplification and rewriting. This information is displayed along with the goal
changes. The Z/EVES ProofProcess integration captures this information as part
of the ZEvesTrace data structure, which records the prover command data. The
captured data lists the rewrite rules (used by rewrite steps) as well as forward and
assumption rules (used by both rewrite and simplification steps). Figure 12.7 shows
that the number of lemmas can be large even for simple models and proofs. By
filtering the important ones (e.g. excluding the built-in Z/EVES toolkit lemmas, the
datatype$declaration lemmas that are generated automatically from datatypes, etc.),
the user would have a better overview of what is done by the proof command—
and particularly how the goal is changed.

In the case of the Drop lemma assumptions (K8) step, the weakening lemma
is highlighted among the used lemmas. The weakening lemma is used to prove
the type assumption extpid′ ∈ UPID↔ PID from an existing hypothesis extpid′ ∈
UPID 7→ PID: i.e. if a variable is a partial function, it is also a relation. However,
the used lemma is not marked explicitly as an important proof feature. This is
because the weakening lemma is a built-in Z/EVES toolkit lemma: i.e. it would
also be available for other similar proofs automatically. Because of this ubiquity,
its availability and shape are not as important and therefore are not recorded as
proof features. In other cases, the user would select from the captured list of used
lemmas and record the important lemmas as proof features.

12.2.3 Simulating backward proof step

TheBridge predicate data structures step introduces a lemma that proves the over-
all goal: ran extpid′ = {} ⇒ extpid′ = {}. Thus if the fact ran extpid′ = {} can
be established, the overall goal follows. Unfortunately, performing such backward
reasoning in Z/EVES proofs and establishing ran extpid′ = {} as a new subgoal is
not straightforward. Instead, a workaround resembling a proof by contradiction is
employed to be able to focus on a proof involving ran extpid′.

Splitting the goal into contradicting cases

Z/EVES provides a split command, which introduces an if P thenG elseG pred-
icate for the given predicate P on which the goal G is split [MS97]. This way any
fact can be inserted among the assumptions with two cases to prove: either when
the fact is true or false. In general, it can be used to introduce a cut rule: the proof
can rely on the cut predicate in the “true” case. In the “false” case, the negated
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Intent: Split on lemma assumption ProofSeq (as decoration)
Narrative: Make a case split on the lemma assumption that proves the necessary goal.
In features:

• Assumption shape (ran extpid′ = {} ⇒ ?g)

• Goal shape (?g)
In goals (filtered):

?p1 ⇒ ?p2

Proof step: split ran extpid′ = {} . . .
Out goals (filtered):

if(ran extpid′ = {})
then ?p1 ⇒ ?p2
else ?p1 ⇒ ?p2

Step K9: Split on lemma assumption

predicate ¬ P appears among the assumptions. However, as all the assumptions
are conjoined, showing that the negated predicate is false (or that it can falsify an-
other assumption predicate) makes the conjoined assumptions predicate false and
therefore the overall goal true (false implies anything). Showing that the negated
predicate is false (¬ ¬ P) actually results in showing that P is true.

In this proof, the split is done on ran extpid′ = {}. The high-level idea Split
on lemma assumption is captured in step K9. The triggers for this strategy are
recorded as proof features: there is a lemma among the assumptions that proves
the overall goal ?g. The assumption of this lemma should then be used as the
argument for the split proof command. The user marks the matching goal with
a placeholder variable ?g, simplifying strategy extraction and making it easier to
comprehend that the assumption lemma matches the goal.

After splitting on the ran extpid′ = {}, there are two cases in the goal: when
ran extpid′ = {} (then/“true” case) and when ran extpid′ 6= {} (else/“false”
case). A basic simplification command would prove and discard the “true” case
and simplify the “false” case automatically, making it possible to jump directly to
step K16 in the proof. However, the user elects to tackle each case individually.

To split the if – then –else argument of the goal into individual sub-goals, the
cases proof command can be used. It performs the splitting and narrows down
the goal to the first sub-goal. Unlike Isabelle, the Z/EVES prover focuses only on
a single goal. Thus when the cases command is used, instead of displaying two
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Intent: Select case ProofSeq (as decoration)
Narrative: Select the first case in a case split.
In features:

• Top shape (if ?p1 then ?p2 else ?p3)
In goals (filtered):

if(ran extpid′ = {})
then ?p1 ⇒ ?p2
else ?p1 ⇒ ?p2

Proof step: cases . . .
• Proof case: # 2.

Out goals (filtered):

ran extpid′ = {} ∧ ?p1 ⇒ ?p2

Step K10: Select case

sub-goals, it shows just one but indicates that this is a sub-case of the overall proof.
The ProofProcess system tracks individual proof branches within the ProofProcess

tree structure (Section 4.3). In Z/EVES ProofProcess, the branching information is
provided by the prover, where each branch is markedwith a case number. The sys-
tem collects sequential proof steps with the same case number into one branch and
joins all same-level branches within a single ProofParallel element. Furthermore,
the case number is captured as part of the ZEvesTrace data structure for future
reference. It is used to identify proof branches, whereas Isabelle ProofProcess has
to do goal change analysis. However, the branching proof commands have to be
captured within the proof process (they are filtered in Isabelle ProofProcess capture)
as the commands perform both goal transformation and sub-goal selection. This
can introduce awkward proof steps, particularly for the next proof commands
(see steps K13 and K19).

Trivially proving the position case

The case splitting in the current proof is captured as Select case step K10. The
proof features capture the fact that this generic proof step can be used when the
goal is a top-level if – then –else predicate. A general strategy can be extracted di-
rectly from the captured proof step, suggesting case analysis in all such situations.
The cases command is also applicable in other situations: e.g. when the goal is
a conjunction, disjunction, etc. [MS97]. These other cases of the strategy will be
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Intent: Use assumption ProofSeq (as decoration)
Narrative: Use the assumption lemma to prove the overall goal.
In features:

• Assumption shape (?p1 ⇒ ?p2)

• Goal shape (?p2)

• Assumption shape (?p1)

Out features:
• Number of goals (0)

In goals (filtered):

ran extpid′ = {} ∧ ?p1 ∧ (ran extpid′ = {} ⇒ extpid′ = {})
⇒
extpid′ = {}

Proof step: simplify . . .
• Proof case: # 2.

Out goals (filtered): X (none)

Step K11: Use assumption

captured when used in other proofs and tagged with the same Select case intent.
After the case split, the predicate ran extpid′ = {} is added to the list of assump-

tions. Together with the previously added lemma, the overall goal is discharged,
completing this proof branch. The details are captured as the Use assumption
(K11) proof step. With the necessary assumptions in place, a simple simplify
command suffices to complete the proof branch: Z/EVES produces the final pred-
icate true to indicate a complete proof. When capturing the proof using Z/EVES

ProofProcess, the predicate is dropped—a complete proof in the ProofProcess frame-
work is represented with the empty list of out goals.

The user also marks this proof branch as a higher-level proof step to provide
descriptive proof process information. Step K12 captures the abstract proof step
Use lemma conclusion, containing both proof steps in this proof branch.

Selecting the negation case

With the “position” (where the assumption is positive) branch complete, the user
focuses on the “negation” case. To switch to the other proof branch, Z/EVES pro-
vides the next proof command. At this point, the high-level idea is the same as
with the earlier cases application: selecting one of the proof cases. Therefore the
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Intent: Use lemma conclusion ProofSeq
Narrative: Prove the overall goal with the necessary assumption established.
Children:

• (K10) ProofSeq: Select case . . .

• (K11) ProofSeq: Use assumption . . .

Step K12: Use lemma conclusion

Intent: Select case ProofSeq (as decoration)
Narrative: Select the next case.
In features:

• In case split () — Verify that the proof is currently in a case split (e.g. Case # 2).

• Number of goals (0)

In goals (filtered): (none)
Proof step: next . . .

• Proof case: # 1.
Out goals (filtered):

¬ ran extpid′ = {} ∧ ?p1 ⇒ ?p2

Step K13: Select case

proof command is tagged with the same Select case intent (step K13).

The captured proof step records why the next command is used: the proof
is in a case split (the prover reports a case number). The next command allows
a change to another proof branch, even if the previous branch is not yet finished.
However, in this case the previous branch is finished and the user marks that as
an important proof feature: Number of goals (0). This restricts the strategy reuse:
e.g. the Select case proof strategy should be suggested in order to switch to a new
branch when the previous branch is finished, otherwise it would match whenever
a proof within a case split is being done.

The next proof command (aswell as its companion cases command), however,
introduces some issues to the captured proof process structure. Because some of
the goal transformations that are done by the commands are hidden, it is difficult to
correctly represent the proof process in a branching structure. For example, when
capturing an Isabelle proof process, a proof command that introduces multiple
sub-goals can be tracked as an entry point to the branch split. Then by analysing
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the proof goal changes, the system assigns proof commands to particular goals of
the explicitly listed sub-goals (see Section 6.2). By separating the “splitting” and
“sub-goal” commands, the system can produce a correct structure to represent the
branching: e.g. the splitting command is followed by a ProofParallel that contains
branches of sub-goal commands.

When capturing Z/EVES proof commands, the branch identifiers are reported
by the prover and the Z/EVES ProofProcess system utilises them to partition proof
commands into branches. However, it is impossible to separate the functionality
of these commands into “splitting” and “selecting/working on sub-goal”. The
cases command transforms the goal into multiple sub-goals (“true” and “false”
cases in the current proof), then selects one of the sub-goals to work on—a single
command does both the splitting and the selection. After applying the cases
command, the system can only capture a single sub-goal, because the other sub-
goals are not visible until a next command is issued. In turn, the next command
is used on a previous branch goal and it changes the goal to the next one in the
split that has been done by the cases command. Because of this, the captured
proof step records an incorrect transformation, as if the proof step introduces a
proof goal out of nowhere (e.g. as in step K13), or, if the user switches the proof
branch before completing the previous one, an invalid goal transformation.

A more accurate record would have the “before-split” goal (e.g. the in goal of
step K10) as the in goal. However, it is not correct either, because the next proof
command does not do the splitting actually—it is part of the cases command.
Furthermore, in this approach the captured proof features, which record why the
proof step was taken, would not match the in goal in the proof step. Alternatively,
the cases and next commands could be treated as “meta” commands that are
not important to the high-level proof structure (e.g. goal rearranging commands
in Isabelle ProofProcess are discarded as they do not change the high-level proof).
However, this is also not ideal, because the cases command actually does split
the goal into multiple sub-goals. Finding a more nuanced approach to handle
and capture branching in Z/EVES proof, one that would take into account these
considerations, is among the future work of this research.

Cleaning up the negation case

The next command selects the proof case with a negated lemma assumption:
¬ ran extpid′ = {}. The “position” case allows for proof of the overall goal by
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Intent: Cleanup ProofSeq (as decoration)
Narrative: Drop the implications depending on negated assumptions.
In features:

• Assumption shape (¬ ?p1)

• Assumption shape (?p1 ⇒ ?p2)
In goals (filtered):

¬ ran extpid′ = {} ∧ ?p1 ∧ (ran extpid′ = {} ⇒ extpid′ = {}) ⇒ ?p2

Proof step: simplify . . . (case # 1)
Out goals (filtered):

¬ ran extpid′ = {} ∧ ?p1 ∧ ⇒ ?p2

Step K14: Cleanup

assuming the lemma hypothesis (step K11). The “negation” case focuses on prov-
ing that the said hypothesis actually holds. As sketched earlier, the negated hy-
pothesis is proved to be false, thus falsifying the whole assumptions conjunct.

Furthermore, the negated assumption allows for cleaning up the remains of
lemma gEmptyRan. Because the assumption is false, the implication ran extpid′ =
{} ⇒ extpid′ = {} can be dropped using a simple simplify command. The
details of this proof step are captured in step K14. This proof step is always ap-
plicable when performing such a workaround, simulating a backward proof step.
The strategy splits on lemma assumptions, thus the “negation” case always has the
assumptions negated and permits the cleanup of the lemma itself. The captured
proof step is tagged with a generic Cleanup intent, adding to the collection of gen-
erally applicable cleanup steps. The proof features in step K14 capture the generic
scenario that the strategy is applicable for implications with negated assumptions.

After cleanup, the user is finishedwith simulating the backward proof step: the
goal is to show that ran extpid′ = {}, even though the goal itself is not structured
as such. To record the high-level idea (that this case split and proof branching
is done as a backward proof step), the user introduces a higher-level proof step
tagged with a Do backward proof intent (step K15). This high-level proof step
wraps the case splitting and handling, providing a high-level description. Such
abstract proof steps describe the overall idea of how the proof is achieved. For
example, the current proof of lemma tDeleteAllExtpid can be described as follows:

1. Zoom
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Intent: Do backward proof ProofSeq
Narrative: Show that ran extpid′ is empty by contradiction (simulating a backward proof

step by negating the lemma assumption).
Children:

• (K9) ProofSeq: Split on lemma assumption . . .

• ProofParallel: Contradiction cases . . .

– (K12) ProofSeq: Use lemma conclusion . . .

– ProofSeq: Prove negated assumption . . .
In goals (flattened):a

?assms ∧ (ran extpid′ = {} ⇒ extpid′ = {}) ⇒ extpid′ = {}

Out goals (flattened): X (none)
a?assms variable denotes the same assumptions as in the out goal of step K6.

Step K15: Do backward proof

2. Cleanup

3. Bridge predicate data structures

4. Do backward proof

5. (Nested, see step K18) Prove at element level

See Figure 12.4 for a structural overview. The last high-level step (Prove at ele-
ment level) is actually nested within Do backward proof. This happens because
the proof continues within a sub-branch and its high-level proof steps are con-
tained within the parent ProofParallel element, resulting in this nested structure (a
similar situation is encountered in the heap proof, see Section 11.2.3). The ProofPro-

cess framework makes it possible to circumvent a nested structuring by exporting
a branch result outside the parent ProofParallel element. See full discussion on
wrapping and exporting proof branches in Section 4.3.7.

In fact, such a structure, where unfinished branch goals are exported to the
“main” proof, can be done directly in Z/EVES proofs. Using the next proof com-
mand, the user may switch to a next proof branch without having finished it. If
there are no more branches to switch to, the next command completes the branch-
ing and collects the unfinished branches back into a single goal. In the current
proof, there is a single unfinished branch remaining (proving ran extpid′ = {}).
The user can close the branch by executing the next command: its goal becomes
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a top-level one. Z/EVES ProofProcess system will notice that the case number has
changed and will register the subsequent proof steps at the top level, not as part
of a branch. The resulting ProofProcess tree structure will be the same as if the user
exports the branch at the capture level.

The ability to abandon unfinished proof branches in Z/EVES results in proof
“merge” points when capturing the proof process. Each proof branch would get a
ProofId element referencing the same proof step, which closes the branching and
continues the overall proof as a single goal. It is another case where a merging tree
structure is needed (see further discussion and other examples in Section 4.3.7).

12.2.4 Completing the proof at the element level

At this point of the proof, the aim is no longer proving the initial extpid′ = {}, but
rather proving the fact ran extpid′ = {} introduced by using lemma gEmptyRan.
The goal itself, however, is structured with this fact negated (line 2):8

?type assms ∧ ?other assms ∧
¬ ran extpid′ = {} ∧
used′ = dom state′ ∧
used′ = {} ∧
uprocs = ptype′ ∼ L{uproc} M ∧
uprocs = dom cdseg′ ∧
{} = dom ptype′ ∧
{} = dom tss′ ∧
dom cdseg′ = dom dsseg′ ∧
dom dsseg′ = dommsgq′ ∧
dommsgq′ = ran extpid′ ∧
⇒
extpid′ = {}

The overall goal is proved if ran extpid′ = {} or if this fact falsifies another as-
sumption in the conjoined list. In that case, the whole assumptions predicate is
false and thus the overall implication is proved (false implies anything).

The inspection of the goal shows that the equalities can be followed easily to get
to ptype′ ∼ L{uproc} M = ran extpid′. The assumption {} = dom ptype′ comes from
the other side to show the emptiness. Bridging the final step from the dom ptype′

being empty to the relational image of inverse ptype′ map being empty, however,
requires manual proof steps. Automatic Z/EVES proof commands lack lemmas to
work at this level of reasoning to establish this proof argument.

8Only important parts of the goal are highlighted, type information and predicates not used
in the proof are omitted from this goal presentation.
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Intent: Zoom ProofSeq (as decoration)
Narrative: Zoom to set-element level from set level.
In features:

• Used lemma (extensionality)

• Assumption term (ran extpid′ = {})

• Preferred level of discourse (?elem ∈ ran extpid′)
In goals (filtered):

¬ ran extpid′ = {} ∧
?p1 ⇒ ?p2

Proof step: apply extensionality to predicate ran extpid′ = {} . . . (case # 1)
Out goals (filtered):

¬ ((∀ x : ran extpid′ • x ∈ {}) ∧ (∀ y : {} • y ∈ ran extpid′)) ∧
?p1 ⇒ ?p2

Step K16: Zoom

Zooming to set-element level

Automation can be improved by adding new general lemmas to manipulate pred-
icates at the level of sets and maps. However, this requires skills in conjecturing
good lemmas in a correct shape for the Z/EVES theorem prover. Section 12.3 dis-
cusses how good lemmas can simplify the proof in this case study.

Alternatively, the user can seek assistance at a lower level of discourse in proof.
Z/EVES has a rich set of lemmas about set-membership in its base library. The
user can “zoom” into the proof to go from reasoning about sets to reasoning about
set elements. Step K16 captures this as a Zoom high-level intent. Just like with
previous instances of the Zoom intent, “zooming” early can introduce too many
low-level facts into the goal and complicate the proof. Thus the user zooms to the
set-element level only after advancing the proof enough at the higher (set) level.

To change the level of discourse, the user applies the extensionality lemma to
the predicate ran extpid′ = {}. This lemma replaces set equality with bidirectional
set membership: every element of one set must belong to the other and vice-versa.
The out goal of step K16 records the application results. This complex-looking
negated predicate becomes a simple x ∈ ran extpid′ after quantifier elimination
and rewriting, and achieves the intended level of discourse.
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Intent: Prove automatically ProofSeq (as decoration)
Narrative: Complete the proof blindly using automatic proof command.
In features:

• Used lemma (inImageInv)

• Assumption term (ptype′ ∼ L{uproc} M)

Out features:
• Number of goals (0)

In goals (filtered): . . .
Proof step: prove . . . (case # 1)
Used lemmas: inNull, inImageInv, weakening, pfun sub and others.
Out goals (filtered): X (none)

Step K17: Prove automatically

Blind proof

At the lower level of discourse, the user blindly tries one of the automatic proof
commands in Z/EVES: prove [by rewrite]. This command performs quantifier
elimination, hypotheses rearrangement, equality substitution and goal rewriting
in a loop a number of times, until the goal no longer changes [MS97]. At the set-
element level, the automatic proof command succeeds and completes this proof
branch. The proof step is captured by the ProofProcess framework as Prove auto-
matically and is listed in step K17.

Blindly running automated proof commands and similar tools (e.g. the Sledge-

hammer automatic theorem provers in Isabelle) is a tactic taken frequently by the
users. This is particularly the case in industrial settings, where how the proof
is achieved is not as as important as getting it done. A blind prove by reduce
command early in the proof is usually attempted in Z/EVES proofs. If it succeeds,
the user is often not even bothered to get familiar with the goal. The approach
is understandable and modern proof assistants should run such automatic proof
commands in the background,9 “just in case” they succeed. If so, then the proof
is found and the high-level idea may not be as important. The approach, however,
is not without problems: the success of “blind” application of automated proof
commands may mask an error in the theorem. If the theorem is specified incor-
rectly, its proof may be trivial, but the user will have mistaken assurance that some
property about the specification holds.

9Isabelle/jEdit already employs automatic execution of a number of proof methods [Wen14].
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theorem rule inImageInv [X,Y]
∀ f : Y 7→X; S : PX • x ∈ f ∼ L S M ⇔ x ∈ dom f ∧ f (x) ∈ S

Figure 12.8: Lemma inImageInv (Z/EVES toolkit).

Nevertheless, Prove automatically (“blindly”) is a valid proof step. It does
capture the high-level idea that the user is attempting: that he does not actually
have a strategy and at this point attempts the proof blindly. The “blind” strategy
is also reusable: in similar proofs, a blind application of the automatic prove
command may also complete the proof.

Furthermore, after doing the proof step, the user may be able to mark the
important parts of the proof that allowed the strategy to succeed. For example,
Z/EVES ProofProcess tracks all lemmas used by an automatic proof step. By inspect-
ing them, the user may identify the important ones and recognise the direction
that the prover has taken. In step K17, the user highlights lemma inImageInv as
an important one. This lemma (listed in Figure 12.8) links the set membership
in a relational image of inverse function with set membership in the domain of
said function. As discussed earlier, this link is essential to complete the proof.
“Zooming” to the set-element level allowed Z/EVES to use this lemma.

By recognising the key inImageInv lemma among the used lemmas, the user can
infer why the proof succeeds. Then he can mark the important parts of the proof
retroactively, as if this was indeed the intended proof direction. The proof features
in step K17 record that having the relational image of an inverse function is key to
using this lemma. Furthermore, the “blind” strategy is restricted to be used only
if it completes the proof by marking Number of goals (0) as an out proof feature.
With hindsight, the user constructs a proof step that identifies the features of why
the proof succeeds. The extracted strategy presents multiple scenarios for reuse:
e.g. if a similar data structure is encountered (f ∼ L S M), the user is encouraged to
benefit from the inImageInv lemma; otherwise, if the user follows the higher-level
strategy in a similar proof but does not have such a data structure, the captured
proof will hint at blindly trying to complete the proof.

With the proof complete, further higher-level proof steps can be identified and
tagged in the captured ProofProcess tree structure (see Figure 12.4 for overview).
For example, the last two proof steps are taggedwith Prove at element level intent
(step K18). This highlights a higher-level strategy: try zooming to a set-element
level and then blindly prove using the lower-level lemmas in the Z/EVES toolkit.
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Intent: Prove at element level ProofSeq
Narrative: Zoom to the set-element level of discourse and prove blindly.
Children:

• (K16) ProofSeq: Zoom . . .

• (K17) ProofSeq: Prove automatically . . .

Step K18: Prove at element level

Intent: Finish split ProofSeq (as decoration)
Narrative: Finish case split by closing the last proof branch.
In features:

• Case number (# 1)

In goals: X none
Proof step: next . . .
Out goals: X (none)

Step K19: Finish split

Completing proof branches

The last proof step completes the “negation” proof branch. However, to complete
the overall proof, one more instance of the next proof command is needed. It
collects the (possibly unfinished) goals of each proof branch back into the top-level
goal. At this point in the tDeleteAllExtpid proof, all proof branches are complete,
thus the overall proof is also complete.

Step K19 records the minimal proof process information about this proof step.
To finish the split, the case number must be # 1. In Z/EVES, the higher case split
numbers are addressed first, thus the final proof branch always has case number
# 1. There are no more goal transformations to record in step K19. Because of this,
recording the proof step itself is somewhat redundant. This is another issue with
the current handling of cases/next proof commands in Z/EVES ProofProcess (see
also steps K10 and K13). One approach is to drop the capture of these proof steps
altogether, but encode the proof commands in the replay tools.
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12.3 Automating proof with lemmas

The proof of lemma tDeleteAllExtpid is quite convoluted for a simple problem.
The sketched manual proof in Section 12.2 shows that the goal follows by simply
tracing the relationships between process table variables. However, due to the lack
of appropriate lemmas, the prover cannot discharge the conjecture automatically.

The captured proof process and marked important proof meta-information
produce a clearer big-picture view of the proof. When tagging the proof intent,
the user is forced to express the high-level idea of how the proof is advanced.
Furthermore, marking the important proof features isolates the crucial parts of
the goal from the clutter and allows clarification of the proof process. In the proof
of lemma tDeleteAllExtpid, two points stand out in particular:

• The Bridge predicate structures (K6) proof step requires three proof com-
mands to insert a lemma and clean up its assumptions. Better automation
of the lemma use could simplify its manual insertion (including the need to
fully qualify the use proof command in step K7), or avoid it altogether.

Furthermore, the shape of lemma gEmptyRan used to bridge the data struc-
tures (i.e. the implication) requires a backward proof step later (see Sec-
tion 12.2.3). Simulating the backward proof step requires additional proof
commands and takes the focus away from the proof, requiring construction
of the workaround in Z/EVES.

• The Prove at element level (K18) proof step goes to a lower level of discourse
in the proof, where it can utilise additional lemmas about set-membership
in the Z/EVES toolkit. While being a valid strategy, it highlights that too few
appropriate lemmas are available at the higher level of discourse (sets and
maps). If said lemmas were available, the zooming step could be avoided
and the prover could solve the proof automatically at the level of sets.

As explained earlier, the original proof of lemma tDeleteAllExtpid was done
by the user without extensive experience in theorem proving and, particularly,
without intimate knowledge of the Z/EVES theoremprover. Because of that, lemma
gEmptyRanwas formulated in a way that inhibited its automatic use. The manual
use of this lemma introduces significant inefficiency, thus the lemma needs to be
reformulated. Figure 12.9 lists the new generic lEmptyRan lemma, specified as a
rewrite rule. Instead of an implication, the lemma states that the range of a relation
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theorem rule lEmptyRan [X,Y]
∀P : X↔ Y • ran[X,Y] P = {} ⇔ P = {}

theorem rule lEmptyDom [X,Y]
∀P : X↔ Y • dom[X,Y] P = {} ⇔ P = {}

theorem rule lEmptyFlip
{} = S ⇔ S = {}

Figure 12.9: General lemmas about empty sets and maps.

proof tDeleteAllExtpid
invoke DeleteAllProcesses;
invoke ∆PTab;
invoke predicate PTab′;
prove;

Figure 12.10: New proof of theorem tDeleteAllExtpid.

being empty is the same as if the relation itself (amap in the current proof) is empty.
Furthermore, a counterpart lemma about the domains of relations—lEmptyDom—
is also specified. As rewrite rules, these lemmas are used automatically by the
prover during the rewrite steps—the shape of the lemma is chosen to match the
Z/EVES requirements. Furthermore, an additional lemma lEmptyFlip is needed: it
transforms empty-set equalities into a canonical form used by most lemmas (e.g.
{} = dom ptype′ in step K8 would be replaced with dom ptype′ = {}). The latter
shape is more suitable for automated use in Z/EVES.

Lemmas lEmptyRan and lEmptyDom address the issues mentioned in both
the points above: they automate the use of facts within the previous lemma
gEmptyRan, as well as introduce additional lemmas to reason about maps at the
level of sets. With the generic lemmas in Figure 12.9 added to the specification,
the overall proof of lemma tDeleteAllExtpid can be found automatically: the new
proof steps are listed in Figure 12.10. With the new lemmas available, the proof
can actually be shortened to just a single line: prove by reduce. This is the most
powerful proof tactic in Z/EVES: it expands all datatypes and performs the rewrit-
ing steps in a loop. However, full expansion clutters the goal and finding the proof
takes much longer. The proof listed in Figure 12.10 is a good compromise between
the manual effort needed and the speed of the prover: the zooming part is quite
straightforward and the proof is fully automatic thereafter.
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The addition of generic lemmas simplifies the proof to the extent that it may no
longer be interesting to capture it using the ProofProcess framework. The automatic
prove command performs a large number of important rewrites and identifying
them all as higher-level proof steps is an unnecessary overhead. The redundancy
of the ProofProcess framework and the AI4FM tools in these situations should
not be seen as a negative: after all, the AI4FM project aims to help the user in
the places where the automation fails, i.e. it tries to supplement the automatic
tools, not replace them. Nevertheless, the user can still mark the lemmas listed
in Figure 12.9 as important, together with some other important lemmas traced
from the rewriting process. This way the user can indicate why the automation
is successful—in similar proofs the user could check whether their analogues are
available for the new problem.

Furthermore, the capture of high-level ideas using the ProofProcess framework
makes the user think about the proof and identify that such lemmas are needed
and useful. Thus the recording of a higher-level description can be useful for proof
strategies, but it can also invoke a more thoughtful approach to theorem proving,
instead of blindly attempting all available proof commands until successful.

A good selection of generic lemmas simplifies the proof of tDeleteAllExtpid.
Nevertheless, even clumsy proofs without good lemmas, such as captured in this
case study, can yield reusable strategies. The next section discusses reuse of this
awkward proof for similar lemmas.

12.4 Reuse of awkward strategy

The high-level proof process of lemma tDeleteAllExtpid captured in Section 12.2 can
give rise to reusable strategies despite being quite convoluted. The original formal
development of the separation kernel [Vel09], which includes this proof, contains
a number of instances where parts of these high-level ideas are reused in similar
proofs. Proof simplification as described in Section 12.3 is a recent development,
thus the other proofs in the original development have not benefited from the
newly added generic lemmas.

The proof of tDeleteAllExtpid only verifies a single property: that the extpid′ vari-
able is empty after executing the DeleteAllProcesses operation. Proving the same
property for all other variables yields very similar proofs. For example, prov-
ing that the dsseg′ variable is also empty after the execution of DeleteAllProcesses
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theorem tDeleteAllDsseg
DeleteAllProcesses ⇒ dsseg′ = ∅

proof tDeleteAllDsseg
invoke DeleteAllProcesses;
invoke ∆PTab;
invoke predicate PTab′;
prenex;
use gEmptyDom[Z, Z×Z][A := PID, B := SDesc, P := dsseg′];
rearrange;
rewrite;
split dom dsseg′ = {};
cases;
simplify;
next;
simplify;
apply extensionality to predicate dom dsseg′ = {};
prove;
next;

Figure 12.11: Theorem tDeleteAllDsseg and its proof in Z/EVES.

succumbs to the same proof commands: the only difference is the variable names
(dsseg′ instead of extpid′), associated types and focusing on the domain of dsseg′

(see Figure 12.11). Because dom dsseg′ variable is used within the PTab invariants
(cf. ran extpid′, see Figure 12.1), an analogous lemma gEmptyDom is used instead
of gEmptyRan. The lemma states that an empty domain of a map (relationship) im-
plies that the map itself is empty. It is inserted in the proof manually and used by
simulating a backward proof step, just as in the proof of lemma tDeleteAllExtpid.

This is a trivial example of the strategy reuse: the same proof process applies
to a similar proof almost intact. Nevertheless, manual intervention is needed to
chase the correct types, appropriate lemma and specific sub-terms to split or apply
lemmas on. However, if the strategy gets automated and such a proof is discharged
automatically without manual intervention, it will be beneficial for industrial-size
formal developments.

Furthermore, partial strategies extracted from the captured proof can be reused
in a number of cases. In the original formal development of a separation ker-
nel [Vel09], a brief search reveals that the following strategies were used within
the proofs about the process table:

• Prove at element level (step K18, i.e. “zooming” to the set-element level
using the extensionality lemma and then proving automatically), is used four
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times. Particularly, this step is used when the proof involves variables with
a relational image of an inverse function: better lemmas are available at the
set-element level in the Z/EVES toolkit.

Two of these lemmas (gPTabEmptyDprocs and gPTabEmptyUprocs, see [Vel09]
for full details) are noteworthy: they are used to simplify later proofs about
individual PTab variables by introducing the fact that:

ptype ∼ L{uproc} M = {} (same for dproc).

Basically, these lemmas split the proofs in a similar manner to that described
earlier. Then, instead of doing the Prove at element level step everywhere,
these lemmas are used.

• Bridge predicate data structures (step K6) is used 10 times, twice using the
gEmptyRan lemma, the rest using the gEmptyDom lemma.

• The Zoom steps (e.g. step K1) at the beginning of the proof are employed
widely: in such industrial-style proofs expanding the necessary schemas and
definitions is an almost universal first step.

The reuse of the full proof process or just parts of the overall strategy suggests
that proof families exist even in small formal developments like the separation
kernel in [Vel09]. Formal verification can be done successfully by replaying the
same high-level ideas and without spending additional effort to generalise proofs,
extract lemmas, etc. Even the “awkward” proof of lemma tDeleteAllExtpid yields
viable reusable information—if that gets the similar proofs done, there is noth-
ing wrong with it. In industrial settings, results matter more rather than “tidy”
lemmas, data structures or perfect strategies.
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CHAPTER 13
Conclusions

and further work
This thesis investigates capturing reusable interactive proof ideas, via abstraction
and holistic inspection of the overall proof process. The proposed abstractions and
other data points provide rich descriptions of interactive proofs. Such descriptions
can give rise to proof strategies that help tackle similar proofs; or just provide a
comprehensive view of how proofs have been discovered—capturing the expert’s
insight rather than low-level instructions to the theorem proving system.

This chapter recaps the key points of this thesis, from the proposed proof
process representation to the system implementation and proof process capture
evaluation using case studies. Also, this chapter draws directions for further re-
search. These include avenues towards extracting and replaying proof strategies
(including testing the existing approaches) as well as new applications for the
captured proof process data.

13.1 Thesis summary

A review of relatedwork on extracting proof strategies highlights the limitations of
the use of low-level proof scripts as the source for strategies. Some success has been
found in proof reuse using analogy, particularly in the area of proof planning, where
the use of higher-level abstractions (such as “specifications” of proof tactics) enable
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adapting one proof plan to similar proofs. Capturing important abstractions of the
interactive proof process (and in this way representing the theorem proving expert’s
insight) is the aim of this research. Furthermore, the focus is on the industrial
formal verification proofs, where automatic generation of proof obligations and
reuse of data structures give rise to “families” of similar proofs.

This thesis proposes a ProofProcess model to represent the important infor-
mation about an interactive proof development. The important proof steps are
described using a proof intent “tag” with various proof features marking the terms
within the goal, used lemmas and other proof meta-information relevant to the
particular proof step. This information provides an abstract description of a proof
step and can be captured at any granularity. Furthermore, the proposed model
provides a representation for proof structure, can capture multiple proof attempts
and establishes links between the abstract proof step descriptions and the actual
prover commands “implementing” them.

The generic core model allows extensions for prover specific data, enabling
integration with different theorem proving systems. Furthermore, supplementary
proof history data is easy to capture during interactive proof and unlocks new op-
portunities: from enhancing the proof process capture and analysis to calculating
proof metrics, assisting with proof tutoring, etc.

Automating the capture of proof process meta-information is a difficult chal-
lenge. The thesis presents approaches to infer the proof structure from low-level
proof commands as well as to recognise different proof attempts. In the mean-
time, other details such as the proof intent and proof features need to be recorded
manually (the thesis proposes approaches to infer this data automatically).

The presented ideas are implemented within the ProofProcess framework—a
proof process capture system. The thesis presents a description of the system as
well as the implementation details. Integrationswith two theorem provers (Isabelle

and Z/EVES) are available, extending and reusing the generic core framework. The
system “wire-taps” the prover communication. It captures and analyses the low-
level data as well as enables the user to mark the important facets of the proof,
thus constructing the proposed high-level representation of the interactive proof
and the expert’s insight.

The proof process capture approach presented in this thesis is illustrated and
evaluated using two case studies, each done using a different theorem prover.
They show how the proof can be represented at an abstract level, carry both proof-
specific and domain-specific descriptions, how proof features are used to capture
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key ideas about particular proof directions, how different prover commands com-
prise alternative realisations of the same high-level proof intent, etc.

Furthermore, the evaluation involves reusing the captured high-level proof pro-
cess information for similar proofs. Analogy is employed to construct the similar
proofs, as strategy extraction is not yet available from the AI4FM project. How-
ever, the case studies propose what the extracted strategies would be like, and
the general ideas about how the captured proof process data facilitates strategy
extraction are also presented in the thesis.

13.2 Conclusions and discussion

The research presented in this thesis is a combination of tangible results (e.g. the
abstract model of high-level interactive proof process, the built prototype systems
and the case studies demonstrating the validity of the proposed approach) as well
as ideas on how to produce such results in the areas where the current execution
is lacking. Together they describe a system that can evaluate the thesis hypotheses:
that enough information can be extracted about interactive proof process in an
automated manner to facilitate creation of reusable, high-level proof strategies.
The implementation of the prototype shows that such a proof capture system is
viable. The case studies confirm the main hypothesis and show that proofs can be
reused even without strategy extraction. Improving and polishing the prototype
implementation, also implementing the full system and evaluating it with large-
scale industrial case studies in order to prove the hypotheses empirically and in
an assured manner is left for future work.

A significant question underpinning the H1 hypothesis is “how does one do
proof?”, more specifically: “how to describe interactive proof?”. This thesis ex-
plores the question extensively, with results including an abstract model of proof
processes; categories and examples of proof intents and proof features that can
be used to describe how proofs are developed; an implemented prototype system
enabling proof process capture and description; case studies illustrating the discus-
sion of necessary and sufficient proof description for reuse; etc. The results show
that the approach works and can capture high-level descriptions of interactive
proof processes. The prototype framework supports multiple theorem provers.
Though the currently supported Isabelle and Z/EVES provers have similarities, the
framework is designed to accommodate other theorem provers and proof styles.
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The ultimate goal of learning proofs strategies from an expert is approached
from a pragmatic standpoint. The aim is to succeed in more straightforward cases,
providing proof assistance where possible, without aiming for perfect proof strate-
gies or their perfect specifications. The proposed model leans toward interactive
proofs constructed using mechanised proof assistants, rather than aiming to solve
a more general question of “how is proof constructed in general?”. Utilising proof
features outside the scope of the current goal is novel, as is allowing free-style
description rather than restricting to a small set of predefined building blocks to
describe proofs. Of course, the description flexibility may create obstacles in strat-
egy replay, but is needed to express the expert’s proof insight. Furthermore, the
balance between precise and exhaustive description of proof versus quick hints
and under-specification tilts towards the latter: the use cases show that strategies
can be identified and reused from the limited description. Relying on the actual
theorem prover to verify the proof gives the flexibility to err in corner cases.

The types of strategies that the proposed approach would facilitate can range
from generic, widely reusable strategies to problem-specific ones, reusable within
a very narrow family of proofs. Discovering new generic strategies would be very
valuable, akin to developing (or rather, cataloguing) design patterns in software
engineering. However, the case studies in this thesis illustrate that the majority
of reusable proof strategies are problem-specific. learning and replaying them,
however, would still improve the overall automation of using formal methods.

A significant contribution of this thesis is the development of a platform to
capture data about interactive proof. Capturing and having access to data about
interactive proof can yield interesting case studies and insights (e.g. see the dis-
cussion in Section 13.4), enabling various further research directions. With proof
process capture, one can start running large-scale studies on interactive proof pro-
cesses in industry; or investigate how to infer or learn advanced proof features
automatically. Thus the research presented in this thesis is a valuable contribution
enabling such directions.

The results presented in this thesis are limited when it comes to user-oriented
surveys and studies. The examples of proof descriptions in this thesis come from
the thesis author and colleagues in the AI4FM project. Enabled by data capture,
one can start running studies of larger scale: how do people describe proofs? How
does the process of developing proofs change if one is asked to describe and qualify
the choices made? The kernel case study shows that having to explain how the
proof is advanced makes the user identify better proof approaches (Section 12.3).
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Part of this thesis focuses on building tools to improve theorem proving. The
state of prover IDEs and the usefulness and adequacy of available tools warrants
a wider discussion. Reports from industry highlight the preference of automated
tools (automated provers, model checkers, etc) to interactive proof. This statement
can be a signal of inadequate tool support in the latter area. Theorem provers have
been available for many years, however their functionality and convenience are
lacking when compared, for example, to modern IDEs for software development.
There are a number of areas that can be improvedwithout large effort. For example,
identifying one’s place in the proof is important: is would be useful to have a high-
level overview of the proof, a description of what is happening. This thesis and the
prototype implementation takes steps towards improving the state of the art. For
example, goal filtering to identify “affected” parts (Section 8.2.3) has not been seen
in proof assistants, yet is not difficult to implement and provides a convenient way
of viewing goals, particularly in industrial-scale developments. Other avenues
towards a better theorem proving interface are also explored: the capture of high-
level proof description can improve the usability (see discussions in Section 13.4.2).

13.3 Future work

The scope of the overall goal of this thesis—to (automatically) capture the expert’s
high-level proof process—is very large. This thesis builds the foundations that
can be taken further in various directions. A number of avenues and approaches
to improve the current state of work are proposed within the thesis, such as ways
to infer proof process data (Chapter 6), better user interface solutions or prover
integration (e.g. in Chapter 8, Sections 9.1.2 and 10.2), etc. This section reiterates
the key future improvements to proof process capture aswell as outlines additional
directions for further research, building up the ProofProcess platform towards the
AI4FM goal of reusing proof strategies.

13.3.1 Capturing proof process

This thesis presents an architecture, a prototype implementation and a brief eval-
uation of a proof capture system. Further improvements to the current state of
research and the implemented system are discussed in detail within the thesis.
The following paragraphs provide a summary of this future work, categorising it
into things that can be addressed immediately and topics that would take longer
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to investigate and build. This information can be used to direct research and
development resources towards improving the proof process capture system.

The immediate areas where the ProofProcess system and approach can be im-
proved are the following:

• Polish and improve the user interface. The current solutions focus on basic
data manipulation, but they need to be more user-friendly to entice new
users into providing the data.

• Better support for deriving new proof attempts. Currently high-level proof
process data is not moved onto a new attempt when it branches off the old
one (see Section 8.6.2).

• Improve prover integration. Upgrade proof capture and analysis functional-
ity when necessary APIs become available within the Isabelle theorem prover
(see Section 9.1.2). The Z/EVES integration can also be improved, as discussed
in Section 10.2.

• Support tracing of lemma usage in Isabelle either by parsing the proof terms
or using the existing tracingmechanisms (see Section 6.5.4). More research is
needed on the best way to mark the important features of the used lemmas.

• Support straightforward proof features. Section 6.5 outlines some proof
feature types that are not difficult to infer automatically. Features such as
Top symbol are straightforward to implement to be suggested to the expert.
Proof context features such as domain or provenance can be easily derived.

• Support inferring proof intent in straightforward cases. For example, finding
the same proof command or the same lemma being used in a previous proof
can suggest the same proof intent for reuse (Section 6.4).

• Evaluate the system using large-scale case studies involving real industrial
formal developments and proofs, different users of varying expertise, etc.

In addition to these medium term improvements, longer term research goals can
be outlined:

• Implement a library of known proof features (see Section 6.5.1). The order of
implementation could be informed by the proof process data capture: e.g.
by first support the most popular features. The shape proof features are often
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used and should be prioritised. Their implementation could reuse similar
capabilities (e.g. unification) within theorem provers.

• Support matching captured proof process data with previous proofs. This
requires generalisation of proof features, proof structure, etc.

• Support re-running the proof history. The current system captures all proof
history including proof script versions. Section 13.4.2 suggests using this
information for “proof movies”, but it would be beneficial to at least re-run
the proof script to perform new analysis.

• Integrate with other theorem provers. For example, supporting proof pro-
cess capture for Rodin toolset would give access to a library of large-scale
industrial proofs to evaluate the system.

• Evaluate the benefits of proof attempts as a source of proof strategies. The
design supports capture of multiple proof attempts with the aim that even
failed attempts can yield reusable strategies. This claimneeds to be evaluated
in larger case studies. Furthermore, the use of failed attempts as negative
information can also be explored.

• Develop truly modern, immersive user interfaces for the ProofProcess system
and theorem provers. Marking important proof features should be a stream-
lined process to avoid distracting the expert from the task of actually doing
the proof.

• Extract and replay proof strategies. The issue of how to generalise the cap-
tured proof process data into reusable proof strategies is still open within
AI4FM and needs to be explored. Replaying strategies also has a number of
open questions, as discussed in the next section.

A number of these future research and development goals are independent
and can be done in amodular manner. For example, adding support for new proof
features can be done one-by-one, thus each implementation can be of a small scale
and distributed among different developers.

13.3.2 Testing proof strategies

Proof strategies are closely alignedwith proof process capture. The captured proof
process information is the data source to extract strategies but also affects their
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development: e.g. the strategies must accommodate the different proof vocabu-
laries and proof styles. In the other direction, development of proof strategies
informs the research on proof process capture: enough information needs to be
captured to facilitate strategy extraction.

The case studies in Chapters 9–10 simulate proof strategies using ad hoc analogy
to reuse the captured proof process data. Chapter 7 describes the research within
the AI4FM project on providing more detailed models and representations of
proof strategies. In particular, two approaches are presented: an abstract top-
down model of proof strategies and an implementation using proof-strategy graphs.

Some of the differences between the approaches can be attributed to coming
from different sides of the same problem: top-down versus bottom-up develop-
ment. The abstract model of proof strategies in Section 7.2 establishes a high-level
view with different types of meta-information used in describing and matching
proof strategies. Furthermore, it focuses on finding the most applicable strategy
step every time, enabling seamlessly switching between strategies coming from
different proofs and thus constructing an optimal proof from the start. Proof-
strategy graphs (Section 7.3) encode multi-step strategies—the approach has been
developed by generalising actual proofs. Strategy replay follows the selected strat-
egy until the end or until it gets stuck, with subgoals continuing along the edges
of a proof-strategy graph. In this case, the proof search is more constrained and
follows some earlier proof (from which the strategy got extracted) to its entirety.

Further experiments and an implementation workbench with real-world for-
mal verification examples are needed to resolve the balance between these ap-
proaches. In fact, Chapter 7 discusses that there may be some optimal middle
ground for strategy replay, where the new most applicable strategies are queried
when an existing strategy gets stuck; alternatively, the user could choose how often
to search for new strategies.

13.3.3 Lemma discovery

During proof process capture, important lemmas can be marked using used lemma
proof features (Section 4.2.1). They record the key lemmas needed by the proof
step; further details about the lemma shape and its other properties could also be
marked. When the proof is reused, a similar lemma may be needed.

This thesis suggests that the user would be capable of recognising what similar
lemma is needed in most cases, particularly if important features of the original
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lemma had been identified. However, automating this process and discovering
the lemmas without user interaction would be beneficial.

Lemma discovery (or lemma synthesis, theory exploration) is an active research
area in supporting both the interactive and automated theorem proving. Isa-

Scheme [MRMDB10] uses ‘schemes’ (terms in higher-order logic) as templates
to generate new definitions and conjectures. IsaCoSy [JDB11] only generates irre-
ducible terms, implemented as constraints to the lemma synthesis process. In both
systems the generated candidate lemmas are filtered through a counter-example
checker and an automated theorem prover to only generate valid ones. Heras
et al. [HKJM13] use lemma discovery with machine learning to generate similar
lemmas in ACL2 proofs. Machine learning is employed to identify proofs similar
to the current one, then lemma analogy is used to adapt the lemmas in the similar
proofs to the current one.

These approaches could successfully complement the proof strategy replay pro-
cess in AI4FM. The used lemma proof features capture the important lemmas—in
similar proofs, lemma analogy could be used to automatically generate appropri-
ate sibling lemmas. When the used lemma shape is recorded, it could be used as
a template (‘scheme’) within the IsaScheme approach, and so on. Further work is
needed to investigate the relation between the quality and amount of proof infor-
mation being captured and the success in generating necessary lemmas; as well
as to build the integration with existing lemma discovery approaches.

13.3.4 Querying proof processes

The architecture of a proof process capture systemproposed in this thesis separates
the capture and storage of the data from its uses (Section 3.2.3). This improves the
modularity of the main components and encourages further extensions and uses
of proof process data that are independent of strategy extraction.

To facilitate the access to the captured data, a query interface is needed. It
could be used to examine the captured data that matches some set of parameters,
with applications in viewing the captured data, running analysis techniques or
inspecting interesting facets of the proof processes. Even when capturing new
proof process, querying is needed to link with the existing data: e.g. a newly
captured Attempt needs querying for a correct Proof object to attach it to. More
detailed queries are needed to check whether a new Attempt matches with some
existing one, in case it is a replay or an extension of some previous proof (see also
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Section 6.3). Currently the prototype ProofProcess system accesses the stored data
by exhaustively traversing the whole data structure, starting from a top-level proof
store. A proof process query API would abstract the concept of a proof store and
provide a more convenient access to the captured data.

Developing a proof process query language and implementing a program-
ming interface is among the future work. Aspinall et al. [ADL12, ADL13] propose
a proof query language PrQL that supports hiproofs. As the ProofProcess data struc-
tures are similar to hiproofs, this work could be extended with support for proof
features, multiple attempts, etc.

13.3.5 Capturing declarative proof

Declarative proof style allows explicitly stating the facts to be proven and using
them to construct the proof argument. This style of proof is well suited for devel-
opingmathematical proofs and provides a human-readable representation similar
to that found in textbooks. However, for industrial-style formal verification proofs,
procedural proof style is preferred, as observed in Section 2.2.1.

Working towards a complete system for capturing any interactive proof style, it
is important to support the capture of declarative proofs. The research presented in
this thesis focuses on capturing procedural proofs. However, rudimentary support
for declarative proofs is also proposed and implemented for the Isabelle/Isar proof
language [WW07]. This section outlines the current state of this support and
identifies the main issues for further work.

Isabelle/Isar allows switching between procedural and declarative proof styles
within the same proof. In the declarative style, stated facts can be named and used
as assumptions later in the proof. This establishes a relationship, where a proof
step “depends” on previous proof steps that conjecture its assumptions. A single
proof step can have a number of such assumptions, as illustrated in Section 9.2.3.
The ProofProcess system captures these relationships and represents them within
the graph structure for proofs (Section 8.6): e.g. each dependency is represented
as an edge between the assumption and its use. The various assumption edges,
unfortunately, make the overall graph structure of such proofs very complex.

The current approach tries to make both proof styles coexist within the same
data structure. Section 9.2.3 discusses how the goals from the two styles are nor-
malised. Furthermore, the “consumption” and “production” of assumption facts
are captured as part of the in/out goals: e.g. if a proof step uses (depends on) some
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assumption, it becomes one of the in goals. In a similar manner, if a proof step
declares an assumption fact, it is recorded as one of the out goals. In each case,
the assumptions are wrapped into AssumptionTerms to differentiate them from the
actual goals, which are wrapped into JudgementTerms. Thus each declarative proof
step has outgoing edges to where the declared assumption is used as well as to
a (possibly) procedural proof that establishes the validity of the stated assump-
tion. This proof structure is inferred automatically using the generic goal change
analysis algorithm presented in Section 6.2.

The main issue with the current approach is that switching between the pro-
cedural and declarative style loses the linear account of how the goals change.
The declarative proof graph with assumption edges has a large number of “merge
points”, which make the representation very complex when converted to a Proof-

Process tree structure. Furthermore, describing high-level proof steps (i.e. “group-
ing” the proof commands) over a non-linear structure is also not intuitive. Some
approaches exist for converting between proof styles (e.g. in [KW09, Whi13]), but
conversion would lose the representation in which the user constructs the proof.
It may be difficult to record the proof insight within an unfamiliar structure.

The current support for capturing declarative proofs is limited and further
work is needed to investigate the best way to represent both declarative and pro-
cedural proofs. Furthermore, ideas on how proof strategies can be extracted from
declarative proof need to be considered.

13.4 Other uses of proof process data

Capturing richmeta-information about proofs and the proof process can be benefi-
cial for various applications in addition to strategy extraction. These opportunities
show the usefulness of the proposed proof process capture system but further re-
search is needed to explore them. This section discusses some of these research
avenues that could use the captured proof process data.

13.4.1 Data for machine learning

Machine learning can be used to improve the premise selection of automated
theorem proving, to cluster similar proofs or to identify proof patterns (see Sec-
tion 2.3.2). The current approaches use quite low-level features of the proofs as
the data source: the top symbol, the main operators, the number of subgoals, etc.
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A dataset of captured proof process data as proposed in this thesis can provide
richer data points for data mining. For example, the important operators or sub-
terms could be used instead of taking the top symbol or all function names; proof
intents give alternative names to proof steps; relationships between proof steps
(both the branching structure and the levels of granularity) could be exploited;
etc. Furthermore, the capture of all proof attempts enlarges the dataset needed for
data mining: the failed attempts can carry proof information of general interest.

13.4.2 Proof explanation, teaching and training

High-level descriptions of proof processes can improve proof comprehension in
various human-related use cases: from understanding the proof for proof mainte-
nance to learning how to do interactive proof.

Understanding proofs

Getting oneself familiar with an existing proof is not a rare activity in interactive
proof development. It is necessary to understand how the proof was achieved
when trying to get to the bottom of someone else’s proof, when training a new
person to work on formal development, and even when coming back to one’s own
proofs after some period of time (e.g. for proof maintenance). In all these cases,
the lost proof insight inflicts additional effort to understand the proof.

Communicating proofs is important in formal mathematics, where proofs are
more complex and difficult in comparison to formal verification proofs. One solu-
tion is using the declarative proof style to construct the proof by explicitly stating
the intermediate facts. Alternatively, a “wiki for formal mathematics” [TGMW10,
TGM10, TKUG13] combines the recording of proof commands and their results
with additional narrative to explain procedural proofs. In fact, the latter approach
has a number of similarities to proof process capture proposed in this thesis. The
proofs are captured by “wire-tapping” the prover communication; complete proof
steps with their results are stored for independent inspection; etc.

The work presented in this thesis has similar capabilities in capturing and
describing proofs. Proposed proof abstractions would further enhance proof in-
spection experience: users could view the proof at varying levels of granularity,
with important proof features highlighted, etc.
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Proof maintenance

The proposed proof abstractions can be beneficial for proof maintenance. When
specification definitions, libraries or proof tactics change, the subsequent proofs
are invalidated and may no longer work. A significant obstacle to fixing broken
proofs is the loss of information about what made the proof work previously.
Declarative proof style helps with this issue: explicitly stated intermediate goals
act as checkpoints of what is expected in the proof. Captured proof descriptions
would provide a similar benefit: information about the original intermediate goals
and other proof propertieswould be available. Furthermore, proof features can high-
light important parts of the proof, pinpointing the differences from the original
proof and hinting at specific fixes.

This use case could be automated further by using proof strategies. For exam-
ple, a proof strategy extracted by an AI4FM system from the original proof could
be applicable to the changed goal. Then it could automatically produce a proof
similar to the original.

“Watching” the expert

Assistance and training from existing theorem proving experts is very important
when a new person starts doing formal verification work [AJK+12]. Similarly,
teaching theorem proving to students can benefit from “learning by example”, i.e.
if the students can watch an expert do interactive proof.

The ProofProcess system presented in this thesis captures enough data (e.g. see
Chapter 5) to enable viewing of “proof movies” about formal development and
interactive proof process. The proposed approach is to animate an expert doing
a previously captured proof so that students and trainees can follow his example
and get familiar with the “big picture” of how proof is done.1 This is particularly
useful when the user lacks familiarity with the theorem proving system, used
libraries or theorem proving in general.

Following the full development including backtracking, intermediate structur-
ing and editing of the formal specification, aswell as other important activities, can
lead to easier understanding of what is going on and how the formal verification

1A similar functionality of recording “proof movies” is available from the Proviola
tool [TGMW10], which aims to improve proof reviews by recording proof states to complement
the proof script and allowing additional informal narrative to describe the proof.
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is achieved. Furthermore, the proof intent and proof features information could
help with descriptions of the high-level insight.

13.4.3 Towards proof process metrics

Industrial use of formalmethods and formal verification is often argued to bemore
cost-effective than testing and certification of a comparable assurance [WLBF09].
However, estimating cost-effectiveness in advance requires development of proof
process metrics. Andronick and Staples et al. [AJK+12, SJA+14] conclude that the
lines of proof 2 metric is a poor size measure for proof productivity and cost.

The proof process data capture proposed in this thesis can provide new data
points to evaluate and develop metrics about the proof process. For example,
proof structure, granularity and proof features could be used for various complex-
itymetrics; capture of different proof attempts and proof re-runs can provide data
on proof rework or the difficulty of finding the correct proof; timestamped proof
activities can yield data about the durations of proofs and the efficiency of interac-
tive proof; etc. Further work is needed on both capturing significant examples and
developing proof metrics, but the rich proof process meta-data can be beneficial
in this research area.

2Akin to the lines of code metric in software engineering.
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APPENDIX A
ProofProcess model

A.1 Core model

A.1.1 Top

ProofStore :: proofs : Proof -set
intents : IntentId m−→ Intent
features : FeatureId m−→ FeatureDef

A.1.2 Attempts

Proof :: goals : Term+

label : [Name]
attempts : AttemptId m−→ Attempt

where
inv-Proof (mk-Proof (goals, label, attempts)) 4

∀a ∈ rng attempts · inGoals(a.proof ) =m goals

Term = token

Attempt :: proof : ProofTree
derivedFrom : AttemptId

A.1.3 Proof tree

ProofTree = ProofEntry | ProofSeq | ProofParallel | ProofId
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ProofSeq :: info : ProofInfo
steps : ProofTree+

where
inv-ProofSeq(mk-ProofSeq(info, steps)) 4

(∀i ∈ inds steps · i > 0 ⇒
inGoals(steps(i)) =m outGoals(steps(i-1))1) ∧

(∃s ∈ elems steps · ¬ is-ProofId(s))

ProofParallel :: info : ProofInfo
branches : ProofTree-set

where
inv-ProofParallel(mk-ProofParallel(info, branches)) 4 branches 6= { }

ProofId :: goals : Term+

ProofEntry :: info : ProofInfo
step : ProofStep

ProofStep :: inGoals : Term+

outGoals : Term∗

justification : Justification

Justification = Trusted | Gap | ProofTrace

ProofTrace = NaturalDeduction | IsabelleTrace | ZEvesTrace | . . .

Proof tree functions

inGoals :ProofTree→ Term+

inGoals(ptree) 4 given by cases below

inGoals(mk-ProofEntry(info,mk-ProofStep(in, out, justif ))) 4 in

inGoals(mk-ProofSeq(info, steps)) 4 inGoals(hd steps)

inGoals(mk-ProofParallel(info, branches)) 4

let brGoals = [inGoals(b) | b ∈ branches] in dconc brGoals

1Here =m is a multiset equality, as the order must be ignored.
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inGoals(mk-ProofId(goals))) 4 goals

outGoals :ProofTree→ Term∗

outGoals(ptree) 4 given by cases below

outGoals(mk-ProofEntry(info,mk-ProofStep(in, out, justif ))) 4 out

outGoals(mk-ProofSeq(info, steps)) 4

let last = steps(len steps) in outGoals(last)

outGoals(mk-ProofParallel(info, branches)) 4

let brGoals = [outGoals(b) | b ∈ branches] in dconc brGoals

outGoals(mk-ProofId(goals)) 4 goals

isDischarged :ProofTree→ B

isDischarged(ptree) 4 len outGoals(ptree) = 0

A.1.4 Proof info

ProofInfo :: why : [IntentId]
inFeatures : Feature-set
outFeatures : Feature-set
narrative : Text
score : Score

Intent = token

Feature :: name : FeatureId
params : FeatureParam+

type : User | Inferred

FeatureParam = Term | . . .

FeatureDef = KnownFtr | CustomFtr | . . .

KnownFtr = TermFtr | ShapeFtr | UsedLemmaFtr | ContextFtr | . . .

TermFtr = ExiSymFtr | TopSymFtr | ExiTermFtr | TypeFtr | . . .
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ShapeFtr = MainTermShapeFtr | SubTermShapeFtr | . . .

UsedLemmaFtr = UsedLemmaNameFtr | UsedLemmaShapeFtr | . . .

ContextFtr = OriginFtr | ProvenanceFtr | DomainFtr | . . .

CustomFtr :: name : Text
template : ParamTemplate

ParamTemplate = token

Score = token

A.2 Proof history

A.2.1 Proof log

ProofLog :: activities : (Activity× Timestamp)∗

Timestamp = N

Activity = ProofActivity | DefActivity | . . .

ProofActivity :: proofStep : ProofEntry

DefActivity = token

IsabelleTrace :: . . .

source : [TextLoc]

TextLoc :: file : File
offset : N
length : N

ZEvesTrace :: . . .

source : [TextLoc]

A.2.2 File history

FileHistoryProject :: files : FileId m−→ FileEntry
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FileEntry :: versions : FileVersion∗

where
inv-FileEntry(mk-FileEntry(versions)) 4

∀i, j ∈ inds versions ·
i < j ⇒ versions(i).timestamp ≤ versions(j).timestamp

FileVersion :: contents : File
timestamp : Timestamp
syncPoint : N
checksum : Checksum
syncChecksum : Checksum
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