
School of Computing Science

The Consistent Representation of
Scientific Knowledge:

Investigations into the Ontology of
Karyotypes and Mitochondria.

Jennifer D. Warrender

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

June 2015

c© 2015, Jennifer D. Warrender

- B -

Abstract

Ontologies are widely used in life sciences to model scientific knowledge. The en-

gineering of these ontologies is well-studied and there are a variety of methodolo-

gies and techniques, some of which have been re-purposed from software engineering

methodologies and techniques. However, due to the complex nature of bio-ontologies,

they are not resistant to errors and mistakes. This is especially true for more ex-

pressive and/or larger ontologies.

In order to improve on this issue, we explore a variety of software engineering tech-

niques that were re-purposed in order to aid ontology engineering. This exploration

is driven by the construction of two light-weight ontologies, The Mitochondrial Dis-

ease Ontology and The Karyotype Ontology. These ontologies have specific and

useful computational goals, as well as providing exemplars for our methodology.

This thesis discusses the modelling decisions undertaken as well as the overall suc-

cess of each ontological model. Due to the added knowledge capture steps required

for the mitochondrial knowledge, The Karyotype Ontology is further developed than

The Mitochondrial Disease Ontology.

Specifically, this thesis explores the use of a pattern-driven and programmatic ap-

proach to bio-medical ontology engineering. During the engineering of our bio-

medical ontologies, we found many of the components of each model were similar

in logical and textual definitions. This was especially true for The Karyotype On-

tology. In software engineering a common technique to avoid replication is to ab-

stract through the use of patterns. Therefore we utilised localised patterns to model

these highly repetitive models. There are a variety of possible tools for the en-

coding of these patterns, but we found ontology development using Graphical User

Interface (GUI) tools to be time-consuming due to the necessity of manual GUI

interaction when the ontology needed updating. With the development of Tawny-

OWL, a programmatic tool for ontology construction, we are able to overcome this

issue, with the added benefit of using a single syntax to express both simple and

- i -

patternised parts of the ontology.

Lastly, we briefly discuss how other methodologies and tools from software engineer-

ing, namely unit tests, diffing, version control and Continuous Integration (CI) were

re-purposed and how they aided the engineering of our two domain ontologies.

Together, this knowledge increases our understanding in ontology engineering tech-

niques. By re-purposing software engineering methodologies, we have aided con-

struction, quality and maintainability of two novel ontologies, and have demon-

strated their applicability more generally.

- ii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this the-

sis has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Jennifer D. Warrender

June 2015

- iii -

- iv -

Publications

Portions of the work within this thesis have been documented in the following pub-

lications:

Jennifer D. Warrender, Phillip Lord. The Karyotype Ontology: a computational

representation for human cytogenetic patterns. Bio-Ontologies 2013, 2013.

Jennifer D. Warrender, Phillip Lord. A Pattern-driven Approach to Biomedical

Ontology Engineering. SWAT4LS 2013, 2013.

- v -

- vi -

Acknowledgements

First and foremost I would like to thank my main supervisor, Dr Phillip Lord,

who provided me with the chance to complete my doctorate. With his continuous

fortitude and endless guidance throughout this thesis, I was able to conclude this

once-in-a-lifetime opportunity.

I would also like to thank my secondary supervisors Dr Simon J. Cockell and Dr

Joanna L. Elson. Both supervisors were instrumental as sounding boards and re-

viewers of this work. Dr Joanna L. Elson especially was conducive in all of the

mitochondrial work.

In addition to my supervisors, I am also grateful to Dr Michel Dumontier for his

invaluable feedback on the work regarding localised patterns in The Semanticscience

Integrated Ontology (SIO) (as described in Chapter 8). His feedback provided fur-

ther confidence in the use of localised patterns in ontology engineering.

As part of the term capture process of The Mitochondrial Disease Ontology, as

discussed in Section 7.2.2, I took part in a number of weekly The Mitochondrial

Research Group (MRG) lab meetings. I would like to thank the individuals of MRG

in allowing me to attend these meetings and share in their latest research.

For the duration of this thesis I was fortunate to be placed with some of the most

generous individuals. I would like to thank all the individuals in the department

and school for their friendship, support and humorous attitudes. I would especially

like to thank Dr Michael Bell, whose optimism and LATEX skills far outweigh my

own. I would also like to thank Professor Anil Wipat and Professor Robert Stevens

for their challenging discussions and constructive feedback.

Now that I am at the completion of my thesis I find myself forever indebted to my

friends and family. To my friends, I thank you for your patience and unceasing faith.

Lastly, to my parents, I thank you for being you with your continual encouragement

and unwavering support throughout, despite the long and tough five years we have

had.

- vii -

- viii -

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 Contributions of this thesis . 7

1.3 Thesis structure . 10

2 Background 13

2.1 Scientific knowledge . 14

2.2 What is an Ontology? . 18

2.3 Technologies and Methodologies . 21

2.4 Summary . 24

3 Tawny-OWL 27

3.1 Introduction . 28

3.2 The genesis of Tawny-OWL . 29

3.3 Tawny-OWL overview . 32

3.4 The many names of an entity . 40

3.5 Clojure overview . 43

3.6 Summary . 45

3.6.1 Presentation in this thesis . 45

4 Pattern-Driven Development 47

4.1 Introduction . 48

4.2 Ontology Design Patterns (ODPs) implementation in Tawny-OWL . . 50

4.3 Sources of data . 60

4.4 Localised patterns . 62

4.5 Summary . 65

5 Modelling Karyotypes 67

5.1 Introduction . 68

5.1.1 Definition of terms . 69

5.2 What is an ISCN String . 72

5.2.1 Reviewing chromosome components 82

- ix -

5.2.2 Modelling requirements . 85

5.3 Design considerations . 88

5.3.1 Portions of reality . 88

5.3.2 A partonomic axiomitisation 89

5.3.3 The event-based change axiomitisation 92

5.4 Representing karyotypic knowledge 95

5.4.1 Modelling chromosome components 95

5.4.2 Modelling normal karyotypes 96

5.4.3 Abnormality breakpoints . 97

5.4.4 Orientation of substitution segments 99

5.4.5 Partial knowledge . 103

5.4.6 Modelling uncertainty . 103

5.4.7 Multiple copies of rearranged chromosomes 104

5.4.8 Derivative chromosomes . 104

5.4.9 Abnormalities involving homologous chromosomes 105

5.4.10 Constitutional anomalies . 107

5.4.11 Mosaic karyotypes . 107

5.4.12 Identifying the (near-)ploidy levels 108

5.4.13 Defining sex . 109

5.5 Assessment . 111

5.6 Summary . 113

6 Scaling The Karyotype Ontology 115

6.1 Introduction . 116

6.2 Creating random ontologies . 117

6.3 Performance . 119

6.4 Scaling The Karyotype Ontology . 121

6.5 Incorporating affects restrictions 122

6.5.1 The affects implementations 122

6.5.2 Results . 127

6.6 Summary . 129

- x -

7 The Mitochondrial Domain 131

7.1 Introduction . 132

7.2 Stage 1 – Term Capture . 135

7.2.1 Term of the week . 135

7.2.2 Lab meetings . 136

7.2.3 Published papers . 136

7.2.4 Assessing the term capture techniques 139

7.3 Stage 2 – Competency Questions . 140

7.4 Stage 3 – Refinement . 141

7.4.1 Canonicalising terms . 141

7.4.2 Identifying disease relevant terms 142

7.5 Stage 4 – Construction . 143

7.5.1 Constructing The Mitochondrial Disease Ontology classes . . . 144

7.6 Stage 5 – Evaluation . 148

7.7 Summary . 149

8 Patternised Development of an Existing Ontology 151

8.1 Introduction . 152

8.2 Non-patternised rendering of Tawny-SIO 153

8.3 Patternised refactoring of Tawny-SIO 157

8.4 Tawny-SIO errors . 163

8.5 Patterns for downstream usage . 166

8.6 Summary . 170

9 Pattern classification 171

9.1 Introduction . 172

9.2 Classification by role . 174

9.2.1 Internal localised patterns . 174

9.2.2 External localised patterns . 175

9.3 Results . 176

9.4 Summary . 182

- xi -

10 Discussion 183

10.1 Introduction . 184

10.2 Utilising a pattern-driven and programmatic approach 185

10.3 The Karyotype Ontology . 188

10.4 The Mitochondrial Disease Ontology 191

10.5 Re-purposing software engineering . 193

10.6 Improving the ontology engineering process 197

A Recast of The Pizza Ontology 199

B Tawny-OWL: Supplementary Material 201

B.1 Tawny-OWL restriction exemplars . 202

B.2 Tawny-OWL entity exemplars . 204

B.3 Tawny-OWL frames . 206

B.4 Defining a namespace in Tawny-OWL 209

C Mitochondria: Supplementary Material 211

D Classification: Supplementary Material 217

E Summary of research questions 221

E.1 Summary of research questions . 222

References 227

- xii -

List of Figures

2.1 The Protégé interface . 22

3.1 Entity names . 41

5.1 Top-level structure . 68

5.2 Visualising the chromosome complement 71

5.3 Example chromosomal abnormalities 76

5.4 Translocation example . 77

5.5 Chromosome components . 83

5.6 Visualising sub-bands . 84

5.7 Inverted chromosome 1 . 91

5.8 Limitations of hasBreakPoint . 98

5.9 An inverse duplication event . 100

5.10 A direct and inverse event . 101

5.11 Homologous chromosome events . 106

6.1 Performance check . 120

6.2 Mean reasoning time taken . 121

6.3 Diagrammatic representation of the affects implementations 123

6.4 Reasoning times for each affects implementation 128

7.1 Methodology overview . 133

7.2 Term Capture results . 138

7.3 Top-level structure . 147

8.1 SIO workflow . 153

9.1 Classification of ODPs . 172

9.2 Classification of patterns . 174

- xiii -

- xiv -

List of Tables

2.1 Ontology reasoning time . 19

3.1 Ontology syntax overview . 29

3.2 Tawny-OWL entity mappings . 37

3.3 The subset of Tawny-OWL function aliases 38

5.1 Modal numbers . 74

5.2 Structural chromosome rearrangements 78

5.3 Chromosome component statistics . 85

5.4 Base karyotypes . 96

5.5 Class statistics for The Karyotype Ontology 112

7.1 In-scope and quarantined statistics 142

7.2 Statistics for each generic class . 145

7.3 Class statistics for The Mitochondrial Disease Ontology 146

8.1 Tawny-SIO entity name replacements 154

8.2 SIO comparison . 161

8.3 List of all SIO errors . 164

8.4 Correcting missing/incorrect annotations 165

8.5 Downstream ontology comparison . 169

9.1 Classifying Tawny-Karyotype and Tawny-Karyotype-Scaling
localised patterns . 177

9.2 Classifying Tawny-Mitochondria localised patterns 179

9.3 Classifying Tawny-SIO localised patterns 180

B.1 Tawny-OWL ontology frames . 206

B.2 Tawny-OWL class frames . 206

B.3 Tawny-OWL individual frames . 207

B.4 Tawny-OWL object property frames 207

B.5 Tawny-OWL annotation property frames 208

B.6 Tawny-OWL datatype property frames 208

- xv -

C.1 Mitochondrial paper statistics . 212

C.2 Mitochondrial disease terms . 214

D.1 The VP ODP classification . 218

D.2 The ME ODP classification . 219

- xvi -

Acronyms

AI Artificial Intelligence

AOD The Agile Ontology Development

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ATP Adenosine TriPhosphate

BFO The Basic Formal Ontology

BMI Body Mass Index

BP Biological Process

CARMEN Code Analysis, Repository & Modelling for E-Neuroscience

CC Cellular Component

CI Continuous Integration

CP Content Pattern

CSV Comma Separated Values

CV Controlled Vocabulary

CVS Concurrent Versions System

CWA Closed-World Assumption

CdCS Cri du Chat Syndrome

DAML DARPA Agent Markup Language

DC Dublin Core

DDC Dewey Decimal Classification

DL Description Logic

DNA DeoxyriboNucleic Acid

EFO The Experimental Factor Ontology

FISH Fluorescence In Situ Hybridization

FMA Foundational Model of Anatomy

- xvii -

GO The Gene Ontology

GOA Gene Ontology Annotation

GUI Graphical User Interface

IRI Internationalized Resource Identifier

IDE Integrated Development Environment

ISCN International System for human Cytogenetic Nomenclature

JVM Java Virtual Machine

KB Knowledge Base

M2 Mapping Master

MELAS Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes

MF Molecular Function

MRG The Mitochondrial Research Group

mtDNA mitochondrial DNA

NOR Nucleolus Organiser Region

OBO Open Biomedical Ontologies

ODP Ontology Design Pattern

OIL Ontology Interface Language

OMIM Online Mendelian Inheritance in Man

OOPS! The OntOlogy Pitfall Service!

OPPL The Ontology Pre-Processing Language

OWA Open-World Assumption

OWL The Web Ontology Language

PATO The Phenotype And Trait Ontology

POM Project Object Model

PROV-O The PROV Ontology

RDF Resource Description Framework

REPL Read-Eval-Print Loop

RFC Request For Comments

- xviii -

RIO Regularities Inspector for Ontologies

RNA RiboNucleic Acid

SDP Software Design Patterns

SHU Scoville Heat Units

SIO The Semanticscience Integrated Ontology

SKOS The Simple Knowledge Organization System

SO The Sequence Ontology

SNOMED CT The Systematized Nomenclature Of MEDicine Clinical Terms

TA The Terminologia Anatomica

TCA TriCarboxylic Acid cycle

TPS The Pretty Turtle Syntax

UCS Universal Character Set

UMDF The United Mitochondrial Disease Foundation

UML Unified Modeling Language

UniProtKB The UniProt Knowledge Base

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML eXtensible Markup Language

- xix -

- xx -

1
Introduction

Contents
1.1 Introduction . 2

1.2 Contributions of this thesis 7

1.3 Thesis structure . 10

- 1 -

Chapter 1: Introduction

1.1 Introduction

Science is a knowledge-rich discipline, that as a process, involves the building, cap-

turing and organisation of a vast amount of knowledge. The creation of knowledge

is difficult, as is the storing and structuring of knowledge so that it can be sorted,

retrieved and used. Historically, the successful structuring of knowledge can be piv-

otal to discovery: one well-known example occurred in the 18th Century, when Carl

Linnaeus introduced the Linnaean taxonomy [68], an early biological classification

of organisms. This taxonomy was fundamental to the biological community and

enabled an enormous increase in our biological understanding.

The quantity of knowledge is continually increasing. For example in PubMed1 the

number of papers has grown from approximately 16 million to 24 million, over the

past 10 years2. In general, with an increase in size, there is an increase in complexity,

thus the whole process of structuring knowledge gets harder. Being able to manage

and deal with this problem is one of the challenges for science in the 21st Century.

One way of making scientific knowledge easier to understand, define, quantify, vi-

sualise or simulate is by creating scientific models. A simple example of a scientific

model used in biology is the modelling of a nucleic acid; using a succession of letters

we3 indicate the order of the nucleotides and represent information about a molecule.

Within a DeoxyriboNucleic Acid (DNA) molecule the letters A, C, G and T represent

the Adenine, Cytosine, Guanine, and Thymine nucleotides respectively [2].

However scientific knowledge can be complex, multi-scaled, and generated in a dis-

tributed and autonomous manner. There are a variety of ways we model this complex

knowledge, including Petri Nets [10], networks [50] and differential equations [155].

These forms of modelling deal well with knowledge of a certain sort. In this thesis,

the modelling technology that we will be using to model our biological domain is an

ontology, which is well-known for the handling of categorical biological knowledge.

1http://www.ncbi.nlm.nih.gov/pubmed
2Identified using a search for papers published between 1908 and 2004 versus 1908 and present

(2014).
3Throughout this thesis plurals are used; this does not indicate multiple authorship unless stated

explicitly.

- 2 -

http://www.ncbi.nlm.nih.gov/pubmed

Chapter 1: Introduction

Originally used in philosophy, the term ontology was adopted by Artificial Intelli-

gence (AI) researchers, who created ontologies as computational models and viewed

them as a form of applied philosophy. Perhaps the most well-known definition of an

ontology from a computer science perspective is attributed to Tom Gruber [49], who

defines an ontology as an explicit and formal specification of a conceptualisation. In

this thesis, we define an ontology as a model of objects or process in the real-world,

that captures knowledge about a domain by describing these objects as well as the

relationships between these objects. The benefits of ontologies include their ability

to share a common understanding of the structure of knowledge, the ability to anal-

yse the domain knowledge as well as keep the ontology in a form readable to both

humans and machines.

One well-known ontology in biology is The Gene Ontology (GO) [161]. GO4 is a

structured Controlled Vocabulary (CV) of terms and relationships for the catalogu-

ing of gene product properties. GO was originally made up of three non-overlapping

sub-ontologies: Molecular Function (MF); Biological Process (BP); and Cellular

Component (CC), where each ontology describes a particular aspect of a gene or

gene product as well as the relations between these terms [5]. The ontology has since

evolved to include cross-links between the three domains [6]. The success of GO [7]

caused an explosion in the awareness and usage of ontologies in biology [60]. Many

of these ontologies can be found in online ontology libraries such as NCBO BioPor-

tal5 [101], which at this time of writing (2014) contains 384 ontologies, whilst Gene

Ontology Annotations (GOAs) [20] are commonplace within biological databases,

such as The UniProt Knowledge Base (UniProtKB) [3].

Ontologies can be encoded in a variety of different ontology languages; one of the

most popular is The Web Ontology Language (OWL) [161], a standard defined by

the World Wide Web Consortium (W3C)6 in 2004 [87] and subsequently updated in

2009 [160].

The development of ontologies is aided by the use of (bespoke) ontology editors.

4http://www.geneontology.org/
5http://bioportal.bioontology.org/
6http://www.w3.org/Consortium/

- 3 -

http://www.geneontology.org/
http://bioportal.bioontology.org/
http://www.w3.org/Consortium/

Chapter 1: Introduction

A popular OWL ontology editor is Protégé [161]. Protégé7, is a free, open-source

desktop platform that provides users with the ability to create and manipulate OWL

ontologies. Built in Java, Protégé is an extensible framework with plugins that, for

example, allow the visualisation and reasoning ontologies. Another editor available

from the developers of Protégé, is WebProtégé [153], which has similar capabilities,

but is tailored to aid the development of collaborative OWL ontologies on the Web.

Though these editors are developed as OWL editors, both can support other ontol-

ogy syntax such as the OBO flat file format [99]. Another editor, OBO-Edit was

originally created for GO and later extended to handle other Open Biomedical On-

tologies (OBO) ontologies [27]. Overall, one characteristic of all these tools is that

they were built specifically for building ontologies.

Ontology engineering is well-studied and there are a variety of methodologies in ex-

istence. Some of these are analogous to software engineering methodologies. For

example V-model [144], Spiral [51], Waterfall and Iterative-Incremental [147]. Fur-

thermore, this parallel between software engineering and ontology engineering is not

limited to methodologies. For example, originally popularised in the context of soft-

ware engineering [40], SDP has been recast into Ontology Design Patterns (ODPs).

We define ODPs as formal, reusable and successful modelling solutions to recur-

rent modelling problems that are used for creating and maintaining ontologies [35].

Many of these ODPs can be found in online ODP libraries such as ontologydesign-

patterns.org [119] and the ODPs public catalog8. The main usage of ODPs is to help

with the construction of ontologies while avoiding common mistakes [93]. However,

even though ODPs are useful in ontology engineering, they are used sparingly in

bio-medical ontologies [94]. This could be due to a lack of knowledge or appropriate

tooling [95]. In addition, even with the use of patterns, due to the complex nature

of bio-ontologies, they are not resistant to errors and mistakes. This is especially

true for more expressive and/or larger ontologies.

Another example of a re-purposed software engineering technology is static code

analysis, specifically through the use of lints. In software engineering, lints are

7http://protege.stanford.edu/
8http://www.gong.manchester.ac.uk/odp/html/

- 4 -

http://ontologydesignpatterns.org
http://ontologydesignpatterns.org
http://protege.stanford.edu/
http://www.gong.manchester.ac.uk/odp/html/

Chapter 1: Introduction

generally used to aid development and maintenance by flagging suspicious language

usage, as well as identifying syntactic discrepancies. Generic lints are available to the

ontology community by tools called validators. One well-known validator is the The

OntOlogy Pitfall Service! (OOPS!) [118], which tests ontologies for generic pitfalls

such as missing labels and comments. The efovalidator9 is a more specific validator

that can only be used for the validation of The Experimental Factor Ontology (EFO),

an ontology that provides formal description of many experimental variables [79].

Using this software analogy, we ask the simple question: if patterns are useful for

extending and manipulating existing ontologies built with tools such as Protégé, how

would the process of ontology engineering change if we inverted the traditional use

and (programmatically) built with patterns from the start. In addition, we actively

pursue the notion that other parts of software engineering, in addition to patterns,

can be re-purposed and recast for use within ontology engineering.

In this thesis, we explore the usage of pattern-driven and programmatic approach to

ontology engineering, by developing two significant ontologies of biology; specifically

in the karyotypes and mitochondria domain. We use this ontology development to

answer a number of research questions:

RQ1 How can we build a computational representation of the International Sys-

tem for human Cytogenetic Nomenclature (ISCN) using a pattern-driven and

programmatic approach?

RQ2 Can we apply this approach to model new areas of biology and produce

useful computational artefacts?

RQ3 What are the advantages and benefits of this approach to ontology engineer-

ing?

The research in this thesis is largely driven by these two novel ontologies, which are

useful in their own right, and also serve as real-world exemplars. We wish to more

formally and unambiguously define the complex knowledge found in two developing

9http://www.ebi.ac.uk/fgpt/sw/efovalidator/index.html

- 5 -

http://www.ebi.ac.uk/fgpt/sw/efovalidator/index.html

Chapter 1: Introduction

research areas; mitochondrial disease and karyotypes, and potentially facilitate and

support clinical decisions.

- 6 -

Chapter 1: Introduction

1.2 Contributions of this thesis

This thesis focuses on the ontological modelling of scientific knowledge, using a

pattern-driven and programmatic approach. Investigations using this approach re-

sulted in the development of two novel, light-weight ontologies: The Karyotype

Ontology10 and The Mitochondrial Disease Ontology11.

The first ontology, The Karyotype Ontology, describes human chromosomes as seen

under the microscope. This ontology was designed to be a replacement for the cur-

rent nomenclature, which is based on semantically meaningful strings that do not

have a formal interpretation. With this computational representation, cytogeneti-

cists will potentially have the ability to transform collections of karyotypes to a form

that is easy to query, validate and maintain. The second ontology, The Mitochon-

drial Disease Ontology, describes mitochondrial disease related terms. This ontology

is the first step in building an ontology which will enable us to structure and or-

ganise knowledge about a small (and hopefully tractable) organelle, to increase our

understanding of this domain. With The Mitochondrial Disease Ontology we would

potentially have the ability to classify and clarify mitochondrial disease by their

symptomatic and/or genomic definition.

During the engineering of our domain ontologies, we found many repetitive com-

ponents having similar textual and/or logical definitions. In software engineering,

patterns are a common method of avoiding repetition. Therefore, we have investi-

gated the use of patterns within our ontology building, to model and abstract over

these repetitive components. While ODPs have been described previously, here we

discuss localised patterns that were built for a specific purpose, rather than generi-

cally for reuse in other ontologies. We found custom construction patterns that are

specific to an ontology, to be more useful for our specific needs and easy to express.

This is also true for specific patterns that aid potential downstream users of our

ontologies. Lastly, we show that two existing ODP classifications are insufficient

in the classification of localised patterns. Thus we introduce a novel classification

of localised patterns (and their relation to existing ODP classifications) as well as

10https://w3id.org/ontolink/karyotype/
11https://w3id.org/ontolink/mitochondria/

- 7 -

https://w3id.org/ontolink/karyotype/
https://w3id.org/ontolink/mitochondria/

Chapter 1: Introduction

provide basic statistics of the localised patterns used in this work in order to improve

the ontological community’s understanding of localised patterns .

While there are numerous existing tools for the encoding of patterns, the tool we

used was a novel environment called Tawny-OWL12, which was built in parallel with

and motivated by the work described in this thesis. Throughout the software’s agile

life cycle we have evaluated the tool’s fitness for purpose (as a Clojure library to build

ontologies), provided minor fixes and documented the application of Tawny-OWL

to three bio-ontologies.

As Tawny-OWL is built on a programming language (Clojure) we can use its pro-

grammatic nature to automatically and consistently (re-)generate ontologies easily

and quickly in order to provide a novel means to explore modelling choices and de-

termine how well they scale. We generated numerous test ontologies (of various size

and axiomitisations) and calculated the mean time taken to reason them. We found

that The Karyotype Ontology can comfortably scale to 105 karyotypes and that

there are two viable ways modelling the affects restriction.

In addition, we have shown that by using this approach we enforce consistency

and thus potentially identify any errors. By explicitly encoding the ISCN and its

exemplars, we found documentation errors (e.g. missing bands). In recasting The

Semanticscience Integrated Ontology (SIO) and its downstream patterns we found

errors within the ontology itself and the documentation (i.e. the SIO wiki). Some

of these errors have been sent to the authors of SIO, who have since updated the

SIO wiki. The majority of the identified errors were found as we had to explicitly

handle exceptions to our preconceived patterns.

More generally, we show that the re-purposing of many programmatic tools and

methodologies has additional advantages for ontology development. For example,

with the use of an explicit abstraction, we are able to cleanly separate out the

knowledge from the axiomitisation. This means that we can utilise an agile approach

to manipulate OWL entities and axioms rapidly, even if these changes affect many

OWL objects. Unit tests frameworks for software engineering can be used for the

same purpose with ontologies. This is desirable and we have implemented this into

12Developed by Dr Phillip Lord, Newcastle University.

- 8 -

Chapter 1: Introduction

our repositories. With the use of Continuous Integration (CI), we were able to

automate the running of our unit tests. Lastly, with the use of version control,

we were able to develop ontologies in a distributed and non-linear manner while

efficiently tracking ontology changes, which is otherwise difficult with OWL.

- 9 -

Chapter 1: Introduction

1.3 Thesis structure

This thesis is divided into the following chapters:

• In Chapter 2 we broadly introduce ontologies and their usage in the bio-medical

domain. We extend this background to review ontology engineering method-

ologies and technologies, as well as the use of agile software engineering tech-

niques to aid ontology engineering.

• In Chapter 3 we introduce the Tawny-OWL library, the mechanism that was

used for the construction of the ontologies, and was developed as a result of

the work described in this thesis. We show how OWL entities and axioms

are defined in Tawny-OWL, by introducing Clojure syntax and the frame-

based syntax of Manchester Syntax. These exemplar OWL entity definitions

in Tawny-OWL are taken from the exemplar ontology; The Pizza Ontology.

• In Chapter 4 we show how generic and parameterisable patterns, known as

localised patterns, are encoded in Tawny-OWL. Similar to Chapter 3, examples

are taken from the exemplar ontology; The Pizza Ontology, and the Tawny-

OWL library itself.

• In Chapter 5 we present how karyotypes are currently represented and how

they can be represented ontologically. First, we discuss the karyotype com-

ponents and then present the motivating problem; the current string repre-

sentation of karyotypes is not computationally amenable, therefore karyotypes

of diagnostic importance, can be hard to parse, validate and query. Here, we

discuss the modelling decisions made for the ontological modelling of kary-

otypes with numerous examples taken from the ISCN2013, our handbook on

karyotypes.

• In Chapter 6 we investigate the scaling performance of The Karyotype On-

tology and test three different representations of the affects restriction by

generating multiple versions of The Karyotype Ontology. Using the HermiT

reasoner [137], we found that the ontology can comfortably scale and that

- 10 -

Chapter 1: Introduction

the best way to model the affects relation is dependent on the number of

karyotypes.

• In Chapter 7 we discuss the five stage methodology used to build a compu-

tational model of mitochondrial disease. The first three stages, collectively

known as the knowledge acquisition stage, is used to identify related terms

and competency question. After, we discuss the modelling decisions made for

the first iteration of the ontology. This includes the incorporation of existing

structured data from databases as well as the refined terms manually obtained

from a corpus of papers.

• In Chapter 8 we investigate the application of a pattern-driven and program-

matic approach to ontology engineering on an existing bio-ontology, SIO.

• In Chapter 9 we introduce a novel classification of localised patterns as existing

classifications of ODPs are insufficient in the classification of localised patterns.

In addition, we provide basic statistics of localised pattern usage in our three

Tawny-OWL projects.

• In Chapter 10 we summarise the work presented in chapters 2 to 9, specifically

highlighting their relation to the original research questions as well as high-

lighting the limitations and potential extensions of each model. This chapter

ends with a discussion as to how this work will aid the ontology community.

- 11 -

Chapter 1: Introduction

- 12 -

2
Background

Contents
2.1 Scientific knowledge . 14

2.2 What is an Ontology? . 18

2.3 Technologies and Methodologies 21

2.4 Summary . 24

- 13 -

Chapter 2: Background

2.1 Scientific knowledge

Bioinformatics is the application of computing technology to biology, i.e. the study of

life and living organisms. Biology, like all sub-disciplines of science, is a knowledge-

rich subject that involves the management of knowledge. In the past, biological

datasets were relatively small in size, but represented extremely complex knowledge.

However the quantity of this data is continuously increasing, largely due to new

experimental technologies, thus requiring biologists to join “the big-data club” [86].

In this thesis we will focus on two areas of biology: mitochondria and karyotypes.

The first biological domain is mitochondria (mitochondrion singl.): complex or-

ganelles found in most eukaryotic cells. Mitochondria are an important part of

human biology due to their prominent role in the production of Adenosine TriPhos-

phate (ATP) through respiration which provides usable energy for the cell. Sim-

ilar to other organelles mitochondria have their own independent genome, which

is known as mitochondrial DNA (mtDNA), and is cytoplasmically inherited; any

abnormalities in the mtDNA can result in mitochondrial disease, such as Mitochon-

drial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes (MELAS), which

was first classified in 1984 [114]. MELAS syndrome symptoms can include muscle

weakness, migraines, loss of appetite, unexplained vomiting, seizures and so on [29].

This syndrome is caused by mtDNA point mutations where the most common is

m.3243A>G [47]. Approximately 236 in 100,000 people have MELAS with this mu-

tation [85]. The mutations in the mtDNA impairs the ability of the mitochondria to

produce proteins and continue its natural functions. Like all mitochondrial diseases,

MELAS is currently incurable, however the symptoms can be treated. The link be-

tween mitochondria and disease is a major research area as mitochondrial diseases

can give rise to a wide range of symptoms, in almost any organ or tissue, at any

age, with any mode of inheritance [22]. As a result, there is currently no standard

and simple way to diagnose and differentiate between mitochondrial diseases.

The mitochondrial disease domain knowledge is a classic example of most biological

knowledge. Firstly, the knowledge can be found in numerous sources (e.g. pub-

lished papers and online databases) and in a variety of formats (e.g. “free text” and

- 14 -

Chapter 2: Background

Comma Separated Values (CSV)). Furthermore, the community’s understanding of

mitochondria and mitochondrial disease is incomplete; research is actively being con-

ducted throughout the world, so the quantity of biological knowledge is continuously

growing. Lastly, the knowledge is multi-scaled (i.e. can exist of a range of granular-

ity) according to its biological organisation of life (e.g. atoms and molecules), which

increases complexity.

The second biological domain we analyse is the karyotype; this is a description of

the chromosomes present in a cell, describing their number and the presence of

abnormalities (if any). Karyotypes are important for their diagnostic application,

as they describe chromosomal abnormalities which can cause a variety of genetic

disorders.

One such disorder, Tuners Syndrome (aka Ullrich-Turner Syndrome), was first clas-

sified in 1938 [154] and occurs approximately 1 in 2500 people [146]. This syndrome

is caused by monosomy X, i.e. the absence of one chromosome X in female individu-

als [38] (see Figure 5.2a). The symptoms of Tuners Syndrome include short stature,

neck webbing, low hairline and so on [30]. Like MELAS, there is no cure for Tuners

Syndrome though the symptoms can be treated [91].

Human karyotypes are normally represented using a string, as defined by the Interna-

tional System for human Cytogenetic Nomenclature (ISCN) [135] (see Section 5.2).

ISCN Strings state: the number of chromosomes; the sex chromosomes; and any

abnormalities, such as inversions, deletions, that occur in the chromosomes. For ex-

ample, a female with Tuners Syndrome (and no other abnormalities) is represented

as “45,X”. However these strings can be hard to parse, validate and query as they are

not computationally amenable. For further background on karyotypes and current

representation, see Section 5.2.

Unlike mitochondria, the biological knowledge of karyotypes is bounded, because

the existing interpretation of the domain is already mature; the ISCN has under-

gone numerous, rigorous and laborious revisions to become the standard manual for

representing karyotypes. However the number of karyotype instances is continuously

growing, such that the karyotypic knowledge is outstripping our ability to maintain

and analyse these karyotypes; we need some way of enabling this.

- 15 -

Chapter 2: Background

One way of making biological knowledge easier to understand, define, quantify, vi-

sualise or simulate is through the creation of scientific models. There are numerous

modelling technologies we could use to model this complex knowledge; in this thesis,

we will be using ontologies to model our two biological domains.

The reasons why we are using an ontology is that they [102]:

• Are already widely used in Life Sciences (e.g. The Gene Ontology (GO) [5] and

The Experimental Factor Ontology (EFO) [79]). As introduced In Section 1.1,

BioPortal1 [101], which at this time of writing (2014) contains 384 ontologies.

In addition, Gene Ontology Annotations (GOAs) [20] are commonplace within

biological databases, such as The UniProt Knowledge Base (UniProtKB) [3]

• Can handle multi-scale definitions and in fact are being built and used in a

multi-scale manner [130]. This will be helpful in the defining of mitochon-

drial disease where the knowledge can be defined according to its biological

organisation of life (e.g. atoms and molecules)

• Can handle partial knowledge i.e. incomplete knowledge. This will be of inter-

est to the karyotypes domains as there are situations when were are unable to

determine the origin segment or an exact breakpoint loci (see Section 5.4.5)

• Enable common shared understanding of the structure of knowledge, in a form

readable to both humans and machines [143]. Resources that have the same

underlying ontological model can be aggregated then queried

• Can be built with standard technology e.g. The Web Ontology Language

(OWL), a subset of first order logic, as declared by World Wide Web Consor-

tium (W3C) in 2004 [87] (see Section 2.3). As well as ensuring compatibility

with other ontologies, it encourages development in the area

• Enable reuse of domain knowledge. Rather than “reinventing the wheel”, de-

velopers can import other existing ontologies to extend their ontology

1http://bioportal.bioontology.org/

- 16 -

http://bioportal.bioontology.org/

Chapter 2: Background

• Make domain assumptions explicit. As discussed in this section, there is no

standard and simple way to diagnose and differentiate between mitochondrial

diseases. In explicitly defining these we hope to classify and clarify mitochon-

drial disease by their symptomatic and/or genomic definition

• Separate domain knowledge from operational knowledge. A biologist does not

necessarily need to understand the computational interface that encapsulates

the ontology

• Analyse domain knowledge. Using an ontology for a specific task has been

proven to be successful when classifying phosphatase proteins [166], or com-

paring annotation similarity with sequence similarity [69]

• Have shown impressive progress over the years, as shown in Table 2.1. Some-

thing that was slow and simple in 1995 has become reasonably acceptable in

more recent times. This is due to the improvement in computers, ontologies

and reasoners (this is discussed in more detail, in Section 2.2)

In this section, we have described the scientific knowledge involved in two biological

domains: mitochondria (specifically mitochondrial disease) and karyotypes. In order

to model these two disciplines, we aim to use ontologies, thus in the next section,

we provide the fundamentals of ontologies.

- 17 -

Chapter 2: Background

2.2 What is an Ontology?

Originally used in philosophy, the term ontology was adopted by Artificial Intelli-

gence (AI) researchers, who created ontologies as computational models and viewed

them as a form of applied philosophy. Perhaps the most well-known definition of an

ontology from a computer science perspective is attributed to Tom Gruber, who de-

fines an ontology as an explicit and formal specification of a conceptualisation [49].

In this thesis, we define an ontology as a model of objects or processes in the real-

world that captures knowledge about a domain by describing these objects as well

as the relationships between these objects.

These objects and relationships can be formally represented in an ontology by using

three main components [70]:

1. Individuals (or Instances) which represent the objects in the domain of interest

(e.g. ThisThesis and Jennifer)

2. Properties (or Slots) which represent the link between two individuals (e.g.

Thesis hasAuthor Jennifer)

3. Classes (or Concepts) that represent sets containing the individuals that share

common features (e.g. Document and Person)

Based on the logical structure of an OWL ontology, the model will allow the use of

(semantic) reasoners for inference. Two common example reasoners are ELK [170]

and HermiT [137]. As discussed in [132] we use reasoners to:

1. check consistency i.e. there exists a model of the ontology O that satisfies all

the axioms of O

2. check satisfiability [131] i.e. for each named class N in ontology O there exists

a model of O that satisfies all the axioms of O and has an instance of N

3. automatically build the ontology hierarchy i.e. for any two named classes A

and B of ontology O, there exists a model of O that satisfies all the axioms of O

and an instance of A is also an instance B

- 18 -

Chapter 2: Background

In addition, they can be also used for basic querying of the ontology through the

use of defined classes.

Nowadays, reasoners apply two main approaches to reasoning: consequence-driven

and tableau-based. Consequence-driven reasoning uses deductive rules in order to

infer logical consequences (or entailments) using the axioms of an ontology and

other derived axioms. The ELK reasoner is an example reasoner that uses the

consequence-based approach. In contrast, tableau-based reasoning uses completion

rules to individuals to construct and extend a model that satisfies all of the axioms

in the ontology. They were developed for more expressive profiles, while ELK was

built for the OWL EL profile (see Section 2.3). The HermiT reasoner is an example

of tableau-based reasoner.

In general, reasoners perform well, as shown in Table 2.1 [59]; through the years, the

time taken to reason over the ontology has generally decreased. Despite this, reason-

ing time can still be rather unpredictable and can increase dramatically, particularly

if the ontology is computationally complex.

Table 2.1: Ontology Reasoning Time - Taken from Oxford Research Overview (2012)
Ian Horrocks, UK Ontology Network 2012

Year Size Time(s)

1995 3,000 >>109
1998 3,000 300
2005 30,000 30
2008 30,000 <1
2008 400,000 45
2011 400,000 4

Ontologies can be classified in a variety of ways; the common classification focuses on

the scope or domain granularity [128]. Upper level [55] (or Top Level) ontologies (e.g.

The Basic Formal Ontology (BFO)2, Dublin Core (DC) ontology3 and The Seman-

ticscience Integrated Ontology (SIO) [33]) are generic ontologies that are encapsulate

various domains. Their main purpose is to allow the semantic interoperability of on-

tologies. Reference ontologies (e.g. Foundational Model of Anatomy (FMA) [127],

2http://ifomis.uni-saarland.de/bfo/
3http://dublincore.org/

- 19 -

http://ifomis.uni-saarland.de/bfo/
http://dublincore.org/

Chapter 2: Background

The Systematized Nomenclature Of MEDicine Clinical Terms (SNOMED CT)4 and

NCI Thesaurus5) are ontologies that encapsulate community knowledge about a do-

main. In Chapter 7, we discuss the steps taken to build a reference ontology of

mitochondria from the knowledge source of published papers. Similarly, domain

ontologies (e.g. ChEBI [52]), also model the knowledge about a domain, but the

knowledge contained is user specific rather than community orientated. However

despite this difference, the term domain ontology has also been known to mean any

ontology that focuses on one domain, regardless of whether the knowledge is com-

munity or user-specific. Lastly, application [80] (or Local) ontologies (e.g. EFO [79])

are ontologies that are built for a specific task or purpose, such as annotation. In

Chapter 5, we discuss the construction of The Karyotype Ontology, an ontology

built to replace the current representation of karyotypes.

Ontologies are used widely in life sciences for many purposes, including instance

classification, schema reconciliation, or as a controlled vocabulary [145]. Of these,

classification is perhaps of most interest to us. An example of this is demonstrated

by GO in [4]. Further, with the use of a reasoner, we can find biological significance

in conjunction with our built ontology. An example of this is demonstrated in work

undertaken in [166] on the PhosphaBase Ontology [167, 168]. Here, an ontology was

used to explore novel proteins and in the process refine an existing classification.

In this section, we have briefly described the history, components, types and us-

age of ontologies. In the next section, we discuss Semantic Web technologies and

methodologies related to ontology engineering.

4http://www.ihtsdo.org/snomed-ct
5http://ncit.nci.nih.gov/

- 20 -

http://www.ihtsdo.org/snomed-ct
http://ncit.nci.nih.gov/

Chapter 2: Background

2.3 Technologies and Methodologies

While there have historically been many ontology languages (e.g. DAML+OIL [141]),

in bioinformatics the two most common are OWL and the OBO flat file format.

OWL is a standard for the Semantic Web since 2004 [87], as recommended by the

W3C6, the international body which defines web standards. OWL1 has since been

revised to version OWL2 and was released in 2009 [160]. There are a number of vari-

ants of OWL that vary in the use of the expressiveness of their language. Perhaps the

most common is to use just subsumption and existential restrictions (i.e. the OWL

EL profile) of which GO is a well-known example, while The Simple Knowledge

Organization System (SKOS)7 is an example of using the OWL Full profile. In ad-

dition, OWL supports a variety of syntax, such as OWL/XML [96] and Manchester

Syntax [58]. For more information on the different OWL syntaxes, see Section 3.2.

There are various bespoke ontology editors available for the building of OWL on-

tologies, however the most popular is the integrated ontology development tool,

Protégé [161]. Protégé8, is a free, open-source desktop platform that provides users

the ability to create and manipulate OWL ontologies. This popularity is most likely

due to its user friendly interface and visualisation capabilities that encourage the

natural exploration ontology (see Figure 2.1 [157]). Though this editor is tailored

to OWL ontology development, Protégé also supports the OBO flat file format.

The OBO flat file format, first developed in 1999 for the construction of GO9, is an

ontology language which supports a subset of the expressivity of OWL and has been

extended to support meta-data modelling [99]. The motivation of the OBO flat file

format was to provide an extensible, easy to read and parse syntax that contained

little redundancy. A popular ontology editor for Open Biomedical Ontologies (OBO)

is OBO-Edit. Originally created for the editing of GO, OBO-Edit [27] has since been

extended to handle other OBO.

In the past, there was a significant community divide between those using the OBO

6http://www.w3.org/Consortium/
7http://www.w3.org/2009/08/skos-reference/skos.rdf
8http://protege.stanford.edu/
9http://www.geneontology.org/

- 21 -

http://www.w3.org/Consortium/
http://www.w3.org/2009/08/skos-reference/skos.rdf
http://protege.stanford.edu/
http://www.geneontology.org/

Chapter 2: Background

c©Taken from Constructing Conceptual Knowledge Artefacts: Activity Patterns in the Ontology Authoring Process by Markel Vigo,
Caroline Jay and Robert Stevens[157]

Figure 2.1: Figure showing the core areas of the Protégé interface.

flat file format and those using OWL [43]. However, over time, a desire for interoper-

ability has meant that a standard mapping between the two has been developed [150].

While there is no standard way of engineering ontologies, there are a variety of

methodologies that exist, some of which are analogous to software engineering

methodologies. For example V-model [144], Spiral [51], Waterfall and Iterative-

Incremental [147]. Furthermore, this parallel between software engineering and on-

tology engineering is not limited to methodologies. For example, originally popu-

larised in the context of software engineering [40], SDP has been recast into Ontol-

ogy Design Patterns (ODPs): formal, reusable and successful solutions to recurrent

ontology modelling problems [35]. The main usage of ODPs is to help with the con-

struction of ontologies while avoiding common mistakes [93]. Two well-known ODPs

are value partition [121] and the sequence pattern [31]. ODPs have been supported

by environments like Protégé through the use of graphical wizards10.

As well as ODPs, which address generic concerns cross-cutting a number of domains,

10http://protegewiki.stanford.edu/wiki/Protege_Wizards

- 22 -

https://www.escholar.manchester.ac.uk/uk-ac-man-scw:247112
http://protegewiki.stanford.edu/wiki/Protege_Wizards

Chapter 2: Background

a need has also been recognised for patterns within a single ontology. One mechanism

for expressing these patterns is The Ontology Pre-Processing Language (OPPL), a

pre-processing language, also available as a Protégé plugin, which can be used to

automate addition or transformation of ontology terms derived by a declarative rule

language [36]. A similar idea is found with “Safe Macros”, where patterns are ex-

pressed as annotation properties within the ontology, which may be expanded to

logical axioms with a post-processor [100]. Other tools use patterns to leverage

alternative data entry environments, generally spreadsheets. For example, Right-

Field [169] and Populous [62] enable constrained data entry using an Excel spread-

sheet, and then use OPPL to expand this data into OWL expressions. Similarly,

Quick term templates [126] uses spreadsheets and the mapping language, Mapping

Master (M2) [105].

However, while this Graphical User Interface (GUI) based interaction is of bene-

fit to some users (e.g. biologists that lack sufficient knowledge to code), some users

(e.g. programmers) find these tools to be time-consuming and error-prone, especially

when there are major modelling changes. Therefore, a number of text based/pro-

gramming environment tools for ontology construction have been developed. Exam-

ples include Thea-OWL [156] (Prolog) and InfixOWL [106] (Python), both of which

can generate OWL. These tools enable the development of ontologies within a pro-

grammatic environment. These also provide a mechanism for the use of patterns

thus repetitive ontology construction tasks can be automated.

In this section, we have briefly described various ontology languages and ontology

editors. In the next section, we discuss what we have learned from our research and

highlight the gaps in this research and their relation to the research questions.

- 23 -

Chapter 2: Background

2.4 Summary

This section provides an analytical review of the existing ontological and scientific

research discussed in this chapter; we use this review to identify three research

questions that this thesis should answer.

As discussed in Section 2.1, the current string representation of karyotypes (as de-

fined by the ISCN) is not computational amenable. Specifically, when representing

homologous chromosomes the ISCN specification underlines the chromosome number

and this underlining cannot be represented in American Standard Code for Infor-

mation Interchange (ASCII). Therefore these karyotypes of diagnostic importance

can be hard to parse, validate and query. Thus, we aim to build an ontology that

will represent the underlying biological knowledge contained in the ISCN.

In Section 2.3, we discuss a variety of technologies and methodologies that could

be used for the building the ontology. In addition, we have seen that with the

use of patterns we can enforce consistency throughout ontology thus potentially

decrease the number of errors. However, we would like to potentially improve on

this by programmatically applying these patterns. Thus we identify the first research

question to be “How can we build a computational representation of the ISCN using

a pattern-driven and programmatic approach?” (RQ1).

In Section 2.1, we discuss the biological knowledge contained in two biological do-

mains; karyotypes and mitochondria11. From this we learn that the karyotypic

biological knowledge is a bounded and mature, while the mitochondrial biological

knowledge is distributed, incomplete and multi-scaled. Therefore, while the applica-

tion of this approach to build a computational representation of the ISCN is useful

(RQ1), we must also show that the approach can be used to model mitochondrial

biological knowledge. By producing useful computational artefacts for karyotypes

and mitochondrial domains we provide evidence that the approach is potentially

applicable to other domains. Thus our second research question asks “Can we ap-

ply this approach to model new areas of biology and produce useful computational

artefacts?” (RQ2).

11To our knowledge, neither of these domains have an existing computational representation.

- 24 -

Chapter 2: Background

As discussed in Section 2.3, the use of a programmatic environment to build ontolo-

gies (with or without patterns) is not novel. In addition, the benefits of using of

patterns to build ontologies have been discussed previously [17, 18]. However, to our

knowledge there has been no research that comprehensively explores the advantages

and benefits of using a pattern-driven and programmatic approach to ontology engi-

neering. Thus our last research question asks the question“What are the advantages

and benefits of this approach to ontology engineering?” (RQ3).

We address these questions through the use of a novel environment Tawny-OWL,

which was built in parallel with and motivated by the work described in this thesis.

In the next chapter, we briefly introduce Tawny-OWL, Clojure (which Tawny-OWL

is built with) and the idea of using a programmatic environment for constructing

ontologies, by focusing on exemplars from The Pizza Ontology.

- 25 -

Chapter 2: Background

- 26 -

3
Tawny-OWL

Contents
3.1 Introduction . 28

3.2 The genesis of Tawny-OWL 29

3.3 Tawny-OWL overview . 32

3.4 The many names of an entity 40

3.5 Clojure overview . 43

3.6 Summary . 45

3.6.1 Presentation in this thesis . 45

- 27 -

Chapter 3: Tawny-OWL

3.1 Introduction

As the main tool used in this thesis, the majority of the examples will be in Tawny-

OWL format, unless specified otherwise. The syntax of Tawny-OWL [74] is based

on the Manchester Syntax [58] and therefore should be relatively straight-forward

to both ontologists and non-programmers. However to further aid the reader’s un-

derstanding of these Tawny-OWL exemplars, this chapter is used to describe basic

functionality and highlight important aspects of Tawny-OWL. This means that there

is no research in this chapter; instead we present further necessary thesis background

information.

Tawny-OWL1 is a library written in Clojure, a dialect of Lisp, that wraps the OWL

API. The basic syntax of Tawny-OWL is a frame-based syntax such that each entity

is defined by a Clojure function and a frame is defined by a Clojure keyword. The

tool development was motivated by the karyotype work described in Chapter 5, but is

not specific to this domain and can be used in other domains. Tawny-OWL is used as

a textual interface for ontology construction and enables a fully programmatic way of

building an ontology, such that entities can be generated from simple data structures

and patterns in Clojure (see Chapter 4). It also has the ability to interoperate with

external reasoners and make use of unit testing.

In order to describe different aspects of Tawny-OWL, we will focus on exemplars

from The Pizza Ontology, a well-known ontology used by bioinformaticians and users

of Protégé [122]. However this chapter is not comprehensive user documentation

of Tawny-OWL. Instead, this chapter is used to discuss the basic functions and

highlight important points required to understand the exemplars found in this thesis.

For a more detailed discussion on Tawny-OWL and its features please refer to the

project repository2 and associated paper [74].

1Developed by Dr Phillip Lord, Newcastle University.
2https://github.com/phillord/tawny-owl/

- 28 -

https://github.com/phillord/tawny-owl/

Chapter 3: Tawny-OWL

3.2 The genesis of Tawny-OWL

In this section, we discuss the ideology of Tawny-OWL. We briefly review four ontol-

ogy syntaxes to see which syntax is beneficial for the quick editing of OWL ontologies,

thus highlighting why Tawny-OWL is based on the frame-based Manchester Syntax.

While RDF/XML [41] is the standard OWL2 Syntax [140], the complexity of this

syntax means that the quick editing of OWL ontologies can be problematic. Other

syntaxes are available such as OWL/XML [96], Functional Syntax [97] and Manch-

ester Syntax [58]; see Table 3.1 for a description and example of each syntax.

Table 3.1: Table showing a variety of syntaxes available to define ontologies. Exam-
ples for each syntax are shown in Listings 3.1 to 3.4; in each we define an ontology
and a class. The preambles and prefix definitions have been elided.

Name of syntax Example Brief description

RDF/XML Listing 3.1 The W3C recommended syntax for storing
OWL2 ontologies is the RDF/XML Syntax
that represents the RDF graph as an XML
serialisation.

OWL/XML Listing 3.2 As the name suggests, this syntax is an XML-
based syntax that represents OWL informa-
tion as a regular XML serialisation. This
syntax is designed to support processing with
(off-the-shelf) XML tools.

Functional Syntax Listing 3.3 This syntax is a high-level syntax which
closely follows the formal structure of an
OWL ontology. This syntax evolved from the
Abstract Syntax and Concrete Abstract Syn-
tax.

Manchester Syntax Listing 3.4 The Manchester Syntax is a human readable
compact DL syntax, that is generally easier
for non-logicians to read.

The two XML-based syntaxes are not convenient for a human to write, because of

their relative verbosity as well as the necessity for balancing open and close tags.

The functional syntax is more convenient to type, although it has a potentially

deeply-nested parenthetical structure; the use of parentheses for scoping an ontol-

ogy means that the open and close parentheses can be separated by many screens.

- 29 -

Chapter 3: Tawny-OWL

<rdf:RDF ... >

<Ontology rdf:about="http :// www.ncl.ac.uk/pizza"/>

<Class rdf:about="&piz;Pizza"/>

</rdf:RDF >

Listing 3.1: RDF/XML Syntax.

<Ontology ontologyIRI="http :// www.ncl.ac.uk/pizza" ... >

<Declaration >

<Class IRI="#Pizza"/>

</Declaration >

</Ontology >

Listing 3.2: OWL/XML Syntax.

Ontology(<http ://www.ncl.ac.uk/pizza>

Declaration(Class(piz:Pizza))

)

Listing 3.3: Functional Syntax.

Ontology: <http ://www.ncl.ac.uk/pizza>

Class: piz:Pizza

Listing 3.4: Manchester Syntax.

Manchester Syntax, on the other hand, was explicitly designed to be user-friendly

and for presentation to users.

The Manchester Syntax, developed at The University of Manchester, was originally

released in 2006 for OWL1 ontologies [56]. Since then there have been revisions to

allow the construction of OWL1.1 [57] and OWL2 [58] ontologies. The motivation

of Manchester Syntax was to provide a less verbose OWL syntax to users who

did not have a Description Logic (DL) background. This was accomplished by

blending principles from the OWL Abstract Syntax [113] and the compact German

DL Syntax. The Manchester Syntax, like the Abstract Syntax, is frame-based such

that all information about an entity is grouped into a single construct; this differs,

for instance, from the eXtensible Markup Language (XML) syntaxes which use

groupings based on the underlying axioms. Generally a frame-based syntax follows

the format shown in Listing 3.5.

- 30 -

Chapter 3: Tawny-OWL

Entity: IRI

Frame:

Value(s)

Listing 3.5: Basic frame-based format of Manchester Syntax.

Interestingly, each entity is represented in a stanza, something Manchester Syntax

shares with the OBO flat file format (see Listing 3.6); the latter was also designed

for direct editing. As the syntax of Tawny-OWL also needs to be user-friendly and

easily readable, Tawny-OWL incorporates a variant of Manchester Syntax frame

syntax.

id_space: pizza http :// www.ncl.ac.uk/pizza#

[Term]

id: Pizza

Listing 3.6: The OBO flat file format style.

Tawny-OWL is a Clojure library, which is a dialect of Lisp and its syntax also

reflects this. Clojure syntax consists of parenthesis delimited lists3, which define

expressions4 that contain elements. Elements of Clojure can be literals (e.g. strings,

numbers and keywords), symbols, or collections (e.g. lists, vectors). Literals evaluate

to themselves while symbols evaluate to their values. The first element of an expres-

sion is usually a function. For example in Listing 3.7, the + symbol is a clojure.core

function which returns the sum of numbers. Using a Read-Eval-Print Loop (REPL),

the expression is evaluated to return the number value 3. For more information on

Clojure syntax, see Section 3.5. In the next section we see how we have combined

the two.

user=> (+ 1 2)

3

Listing 3.7: An example of basic Clojure usage.

3Earlier, we criticised the deep nesting of parenthesis with the functional syntax, something
which would appear to also apply to Tawny-OWL. However, Tawny-OWL has been designed to
avoid parenthesis where possible. Additionally, as it uses a derivative of Lisp syntax, we can reuse
Lisp editing tools such as Par Edit which largely manages a balancing and nesting of parenthesis
automatically.

4Also called s-expressions, sexprs or sexps in the Lisp literature.

- 31 -

Chapter 3: Tawny-OWL

3.3 Tawny-OWL overview

Generally, the basic syntax of Tawny-OWL is an extension of Clojure that blends

the frame-based Manchester Syntax with Clojure such that an entity is defined by a

Clojure function, a frame by a Clojure keyword, and a value by a Clojure expression

or element. Continuing with our syntax exemplars (see Listings 3.1 to Listing 3.4),

the equivalent Tawny-OWL expressions to define an ontology and a class is shown

in Listing 3.8.

(defontology pizzaontology

:iri "http://www.ncl.ac.uk/pizza"

:prefix "piz:")

(defclass Pizza)

Listing 3.8: Tawny-OWL syntax.

Each of the two expressions is a list (parenthesis delimited). The “def” entity func-

tions are Tawny-OWL functions that create a new symbol that allows us to refer to

the associated OWL entities later5.

More specifically, the defontology function builds on the ontology function, such

that ontology creates the OWL API OWLOntology object and defontology creates a

symbol, in this case pizzaontology. Subsequent use of this symbol will evaluate to

the ontology object. The defclass function binds an OWLClass object to the Pizza

symbol (this is discussed in more detail, later in this section).

In this exemplar we introduce two ontology frames; the :iri and :prefix keywords.

The :iri ontology frame is used to set the Internationalized Resource Identifier (IRI)

for the ontology. This IRI is saved and used as the base IRI for all entities of the

ontology. This frame value is mandatory such that if no IRI value is provided then

Tawny-OWL automatically generates a random IRI. The :prefix frame is used to

set the prefix of the ontology. This frame value is also mandatory such that if none

is provided the prefix is set to the name of the ontology. Unlike the IRI, the prefix

has no semantic value. Using these frames we have set the IRI of our ontology to

"http://www.ncl.ac.uk/pizza" and prefix to "piz:". In Tawny-OWL, the frames

5They may also generate what we call a Tawny-Name annotation, which we will go into detail
in Section 3.4

- 32 -

Chapter 3: Tawny-OWL

are not explicitly defined, instead frames are terminated by the existence of another

frame or closing bracket [72].

Typically each Clojure namespace has at most one ontology defined in it, though

more are possible. However multiple usage of the defontology function with the

same symbol name, in the same namespace, causes the new ontology to overwrite

the old ontology.

As briefly discussed, generally the basic syntax of Tawny-OWL is a blend of Manch-

ester Syntax and Clojure such that an entity is defined by a Clojure function, a

frame by a Clojure keyword, and a value by a Clojure expression or element. The

frames were initially the same as Manchester Syntax, however these have evolved

with some differences (see Section B.3).

An OWLClass object is defined using the defclass function; for an example basic class

definition see Listing 3.9. The defclass function builds on the owl-class function,

such that owl-class creates an anonymous OWL API OWLClass object and defclass

creates a symbol, in this case Pizza. Subsequent use of this symbol will resolve to

the class object.

(defclass Pizza

:annotation

(annotation label-property (literal "Pizza" "en")))

Listing 3.9: An example basic class definition.

The :annotation frame is used to add an annotation to the entity object. The

literal and annotation functions are used to create an OWLLiteral object and an

OWLAnnotationAxiom object, which uses the generated OWLLiteral object, respec-

tively. In this example, we are simply adding an annotation with the English string

value "Pizza" to our Pizza class.

In Tawny-OWL, there are various constructions for the same semantic and syntactic

representation. For example, in Listing 3.9, we used the annotation and literal

functions to generate the appropriate label annotation axiom, using the rdfs:label

annotation property. This can be simplified using the label shortcut function.

The equivalent class definition for a Pizza using the label function is shown in

Listing 3.10. By default, if no language argument for a string value, Tawny-OWL

- 33 -

Chapter 3: Tawny-OWL

will assume that the value is English.

(defclass Pizza

:annotation

(label "Pizza"))

Listing 3.10: An example usage of the label function.

Similarly the comment shortcut function can be used to generate the appropriate

comment annotation axiom, using the rdfs:comment annotation property. More

examples of construction variety (using tawny broadcasting) is discussed later in

this section.

So far we have seen that Tawny-OWL has the same frames as Manchester Syn-

tax. For example the :annotation Tawny-OWL frame refers to the Annotations:

Manchester Syntax frame. Similarly the :equivalent Tawny-OWL frame refers to

the EquivalentTo: Manchester Syntax frame (see Listing 3.14) and the :disjoint

Tawny-OWL frame refers to the DisjointWith: Manchester Syntax frame (see List-

ing 3.19). However there are few exceptions to the rule.

The first exception is what we term shortcut frames. In the construction of on-

tologies, it is good practice for each entity to have a natural language label and

definition, modelled using the rdfs:label and rdfs:comment annotation property

respectively. This is encouraged in Tawny-OWL by providing shortcut frames to

generate and add the appropriate OWLAnnotationAxiom to an entity. These shortcut

frames (i.e. :label and :comment) can be used in place of the :annotation frame. For

example, in Listing 3.9, we used the :annotation frame to add a label annotation

axiom to an entity, using the rdfs:label annotation property; this can be simplified

using the :label shortcut frame. The equivalent class definition for a Pizza using

the :label shortcut frame is shown in Listing 3.11. Similarly the :comment short-

cut frame can be used to add a comment annotation axiom to an entity, using the

rdfs:comment annotation property. Both of these shortcut frames are available for

any entity declaration.

(defclass Pizza

:label "Pizza")

Listing 3.11: An example usage of the :label frame.

The second exception regards OWLSubClassOfAxioms. In Manchester Syntax, super-

- 34 -

Chapter 3: Tawny-OWL

classes are defined using the SubClassOf: frame, while in Tawny-OWL, after much

exploration [76], we find that we can shorten and reverse the natural language seman-

tics while still retaining the logical semantics [76] by using the :super Tawny-OWL

frame (see Listing 3.12). A :sub Tawny-OWL frame is also available, such that we

can add one or more subclass(es) to the class. The :super and :sub frames are more

intelligent than initially realised; depending on the entity the :sub and :super frames

can be used to add OWLSubClassOfAxioms to class object or OWLSubPropertyOfAxioms

to properties. All available class frames are shown in Table B.3.

(defclass MargheritaPizza

:super Pizza)

Listing 3.12: An example basic class definition.

In ontologies there are a variety of restrictions available, such as existential and uni-

versal. The most commonly used restriction in ontologies is the existential restric-

tion. In Tawny-OWL, existential restrictions are declared using the some function;

an example existential restriction can be seen in Listing 3.136. In this example, we

introduce the fact that it is possible to have more than one value for a frame. This

is also true for the Manchester Syntax. Here, we show that the :super frame has

two restriction values; these restrictions are used to ensure that each Pizza has at

least one PizzaTopping and at least one PizzaBase.

(defclass Pizza

:label "Pizza"

:super

(some hasTopping PizzaTopping)

(some hasBase PizzaBase))

Listing 3.13: Example existential restriction definitions.

In Tawny-OWL universal restrictions are declared using the only function. An

example universal restriction can be seen in Listing 3.14.

In OWL there are three Boolean operators available: intersection; union and com-

plement. In Tawny-OWL these are defined using functions such as and, or and

not respectively. In OWL ontologies these operators can be used to define com-

plex nested definitions. This is also possible in Tawny-OWL as the underlying

Lisp heritage naturally supports this by the use of nested function calls. The com-

6In order to run these exemplars, the tawny.english library must be imported.

- 35 -

Chapter 3: Tawny-OWL

plete class definition in Listing 3.14 utilises all three Boolean operators. Here, a

VegetarianPizza2 defined class is used to find all entities that are Pizzas that (and)

do not have either a MeatTopping or FishTopping. Other exemplars of Tawny-OWL

restriction definitions are shown in Section B.1.

(defclass VegetarianPizza2

:equivalent

(and Pizza

(only hasTopping

(not (or MeatTopping FishTopping)))))

Listing 3.14: An example universal restriction definition.

Previously in this section, we briefly identified that there are various constructions

with the same semantic and syntactic representation of knowledge that can be ac-

cessed using shortcut functions, such as label or comment. Similar to Manchester

Syntax, Tawny-OWL is compact and hides some of the complex OWL axiomiti-

sations; in Tawny-OWL we call this functionality “broadcasting”. Broadcasting in

Tawny-OWL is the variadic flattening of Clojure data structures. Most Tawny-OWL

functions have this functionality, and it is also supported by entity frames.

This means that the simple example in Listing 3.15, which contains two class expres-

sions, is semantically and syntactically similar to the exemplars in Listings 3.16, 3.17

and 3.18.

(defclass C :super A)

(class C :super B)

Listing 3.15: Broadcasting expansion
of the example basic class defined in
Listings 3.16, 3.17 and 3.18.

(defclass C :super A B)

Listing 3.16: Broadcasting example
with two entity arguments.

(defclass C :super [A B])

Listing 3.17: Broadcasting example
with one vector argument.

(defclass C :super A [B])

Listing 3.18: Broadcasting example
with one entity and one vector argu-
ment.

Tawny-OWL offers a number of def entity variants that are used to define OWL

entities. Table 3.2 shows an overview of available Tawny-OWL functions that define

an OWL entity, and their relation to the OWL API. Example definitions of the first

- 36 -

Chapter 3: Tawny-OWL

two entities (i.e. ontologies and classes) have been discussed in this chapter, while

the latter four entities are shown in Section B.2. All available keyword frames for

each entity are shown in Section B.3.

Table 3.2: Table showing the variety of entities available to define in Tawny-OWL.
Data taken from the Tawny-OWL project repository.

OWL object Tawny-OWL function Def form

OWLOntology ontology defontology

OWLClass owl-class defclass

OWLIndividual individual defindividual

OWLObjectProperty object-property defoproperty

OWLAnnotationProperty annotation-property defaproperty

OWLDataProperty data-property defdproperty

Continuing with the Tawny-OWL spirit of providing a concise syntax for ontology

construction, users of Tawny-OWL can import the tawny.english shorter aliases for

a subset of Tawny-OWL functions. Table 3.3 shows an overview of available Tawny-

OWL function aliases. By default these aliases are not imported as the clojure.core

namespace already utilises these symbols. For example the clojure.core/some func-

tion is used to find the first logical true value for any collection. Therefore, in order

to import these aliases, we must first restrict the imported clojure.core mappings.

This is done by customising the namespace (for more information see Section B.4).

By introducing variables, Tawny-OWL generally forces the developer to define them

before use. However this introduces a problem. For example, when defining two

classes as disjoint (see Listing 3.19), we are unable to evaluate the first expression as

Clojure does not (yet) know about the symbol B. There are three possible solutions

to overcome this problem.

(defclass A :disjoint B)

(defclass B :disjoint A)

Listing 3.19: Desired Tawny-OWL expansion for two disjoint classes.

The first solution is to refine the entity definition. Unlike the defontology function

the defclass function does not overwrite existing class definitions. Instead the

defclass (and subsequently owl-class) collates OWL definitions7. This is true for

7In order to “overwrite” a class definition, the entity must first be removed using the remove-

- 37 -

https://github.com/phillord/tawny-owl

Chapter 3: Tawny-OWL

Table 3.3: Table showing the variety of shorter aliases available for a subset of
Tawny-OWL functions. Data taken from the Tawny-OWL project repository.

Tawny-OWL function Shortcut alias

owl-and and

owl-or or

owl-not not

owl-some some

owl-class class

owl-import import

owl-comment comment

owl-max <

max-inc <=

owl-min >

min-inc >=

min-max ><

min-max-inc >=<

all def entity variants. This means that once the required class for our restriction is

defined, we can update the OWL class definition using the refine function, which

builds on the owl-class function. In Listing 3.20, we update the A class definition

to make A disjoint from B, after B has been declared.

(defclass A)

(defclass B :disjoint A)

(refine A :disjoint B)

Listing 3.20: An example refine solution to the disjoint axiomitisation problem.

The second solution is to introduce Clojure functions which will achieve what we

want. In Listing 3.21 we use the explicit function as-disjoint which makes the OWL

classes defined within the function as disjoint classes. This is a Tawny-OWL function

in Clojure that was created especially for this purpose. See Section 3.5 on how to

define Clojure functions and Chapter 4 for exemplar pattern implementations.

(as-disjoint (defclass Y) (defclass Z))

Listing 3.21: An example as-disjoint solution to the disjoint axiomitisation prob-
lem.

The last solution is to utilise strings, which in Tawny-OWL is less restrictive than

symbol usage. In Listing 3.22 we use strings to refer to the disjoint class. This is

entity function.

- 38 -

https://github.com/phillord/tawny-owl

Chapter 3: Tawny-OWL

very useful in a programmatic application, however this solution is prone to spelling

mistakes and shows a poorer Integrated Development Environment (IDE) integra-

tion.

(defclass A :disjoint "B")

(defclass B :disjoint "A")

Listing 3.22: An example of basic class definitions using strings for classes not
predefined.

Generally all Tawny-OWL functions require an OWL ontology argument. This

ensures that Tawny-OWL manipulation is not available unless an ontology is pro-

vided. By default, this parameter is defined to be the current ontology. For example

in Listing 3.23 we use the defclass function to add a class with symbol A to the

testontology.

(defclass A :ontology testontology)

Listing 3.23: An example basic class definition in to ontology.

- 39 -

Chapter 3: Tawny-OWL

3.4 The many names of an entity

In Tawny-OWL, there are three ways of referring to an OWL entity: 1. symbol, 2.

Tawny-Name or 3. IRI. Normally, these three have a direct relationship; the symbol

and Tawny-Name are the same, and both are the same as the fragment of the IRI.

However, they can be separated. Unfortunately, in several places of the thesis, they

have to be separated, for example to cope with numeric identifiers. Here, we define

each:

1. Symbol

A symbol is a Clojure element that evaluates to its bound value. These Clojure

symbols are constrained in four ways: they may only contain valid Clojure

characters8; they must not begin or end with the colon character (:)9; they

must begin with a non-numeric character; and they must not redefine reserved

symbols, such as def, true and false. Therefore Tawny-OWL ensures that

non legal characters such as parenthesis, white space and forward slashes are

replaced by an underscore.

2. Tawny-Name

A Tawny-Name is a string literal value; technically it need not be limited by

the constraints on symbols, although in most cases in the thesis, they are.

3. IRI

An IRI is a sequence of characters that identifies and enables interaction with

a resource over a network. Unlike a Uniform Resource Identifier (URI), an IRI

is a generalisation that is not limited to a subset of ASCII character set; an IRI

may contain characters from the Universal Character Set (UCS) such as Chi-

nese kanji. An IRI is defined according to the Request For Comments (RFC)

proposed standard [32]. Similar to the Clojure symbol, an IRI is constrained.

In Tawny-OWL, an IRI is maintained using the OWL API, meaning validation

is ensured internally.

8Alphanumeric characters and *,+,!,-,_, and ?. See http://clojure.org/reader
9This is reserved for Clojure keywords.

- 40 -

http://clojure.org/reader

Chapter 3: Tawny-OWL

As previously mentioned (in Section 3.3), the defclass creates a Clojure symbol in

the current namespace. This symbol is converted to a Tawny-Name, which in turn

is converted into an IRI with the Tawny-Name as its fragment. Finally, an OWL

API OWLClass object is instantiated, and bound to the Clojure symbol which can

thereafter be used to refer to the OWLClass object. For example the (defclass A)

expression will generate the symbol A, the OWLClass OWL API object with (short-

ened) IRI value #A, and the Tawny-Name with value "A" (which is added to the

OWL object) (see Figure 3.1).

Figure 3.1: The many names of an entity and their mappings.

However the three entity names do not necessarily need to be similar. For example

in Listing 3.2410 we declare an OWLClass object with the symbol clazz, the Tawny-

Name annotation value “Example OWL Class” and the (shortened) IRI value #A.

(def clazz

(owl-class "A"

:annotation

(annotation name "Example OWL Class")))

Listing 3.24: An example of basic class definition with three dissimilar entity names.

In some ontologies, such as SIO and a variety of OBO, numeric identifiers are of-

ten used for ontology terms. While these semantic free numeric IDs are useful, as

we can change the identifying label without changing the underlying semantics, in

Tawny-OWL these IDs are meaningless and could possibly result in “illegal” Clojure

symbols. Therefore this facility (i.e. dissimilar entity names) means that we can

support the use of numeric identifiers (aka numeric IDs) in Tawny-OWL.

10In order for this exemplar to work, we need to exclude clojure.core/name and include
tawny.tawny/name symbols from the current namespace.

- 41 -

Chapter 3: Tawny-OWL

When two or three entity names are similar, there is a mapping between these entity

names. These mappings can be encoded as programmatic relationships as shown in

Figure 3.1.

Generally each symbol maps to one OWL entity as a one-to-one mapping; however

it is possible to have more than one symbol map to the same OWL entity.

- 42 -

Chapter 3: Tawny-OWL

3.5 Clojure overview

At this point, we know that Tawny-OWL is built on Clojure. While Clojure is one

of the top 100 programming languages according to its TIOBE index [149] (we could

argue Lisp at position 19, as Clojure is a derivative of Lisp)11, it is not as well known

as languages such as C and Java. Therefore this section is used as a brief overview

of Clojure; we will discuss basic Clojure functions and highlight important points

that are required to understand the Tawny-OWL exemplars. For a more detailed

on Clojure functions please refer to the Clojure web page12.

Clojure, designed by Rich Hickey and released in 2007, is a modern dialect of Lisp,

which is used as a general-purpose language that specialises in functional program-

ming and concurrency. As Clojure is a Lisp dialect, all advantages that apply to

Lisp also apply to Clojure; for example functions are a data type just like strings

and numbers meaning they can be stored in variables and be passed as arguments.

Clojure is a JVM-based language which allows users full access to the mature Java

Application Programming Interface (API) and interoperability with other Java APIs

(such as the OWL API). Another advantage of Clojure is its interactive REPL which

provides dynamic development.

Like many other derivatives of Lisp, Clojure syntax consists of parenthesis delimited

lists, called s-expressions, sexprs or sexps, that are evaluated, resulting in values. S-

expressions contain elements which can be literals (i.e. strings, numbers, characters,

Booleans, nil and keywords), symbols, or immutable persistent data structures (i.e.

lists, vectors, sets and maps). Literals evaluate to themselves while symbols resolve

to their bound values (see Section 3.4). The first element of an s-expression is

an operator (i.e. a function or macro) which performs operation(s) on the given

arguments. In the Clojure libraries there are a variety of predefined functions and

macros that have distinct functionality. For example, in Listing 3.25, the * function

is a clojure.core function that returns the product of the numbers 2 and 2. Using

a REPL, the s-expression is evaluated to return the value 4.

11Accessed on September 2014.
12http://clojure.org

- 43 -

http://clojure.org

Chapter 3: Tawny-OWL

user=> (* 2 2)

4

Listing 3.25: An example of basic Clojure usage.

Using Tawny-OWL, the majority of our patterns (discussed in Chapter 4) are defined

as functions. In Clojure, functions can be defined using the defn function while

associated arguments are defined as a vector in square brackets ([]). Listing 3.26

shows an example definition of a custom function using Clojure. Here we create a

new function, called square, which multiplies the local argument x by itself. As

shown in the exemplar, lists are expressions enclosed in parenthesis (e.g. (* x x))13,

while vectors are expressions enclosed in square brackets (e.g. [x]).

user=> (defn square [x] (* x x))

user=> (square 2)

4

Listing 3.26: An example of basic function definition.

13Though it is more complex than this. There are two list data structures with different perfor-
mances. It is also possible to say ‘(1 2 3).

- 44 -

Chapter 3: Tawny-OWL

3.6 Summary

As the primary tool for this thesis, here we describe Tawny-OWL, Clojure (which

Tawny-OWL is built with) and the idea of using a programmatic environment for

constructing ontologies, by focusing on exemplars from The Pizza Ontology. This

is beneficial as this knowledge provides the foundation for how a computational

representation of the ISCN can be built (RQ1).

Tawny-OWL (developed by Dr Phillip Lord14) is a novel environment that was built

in parallel with and motivated by the work described in this thesis. As Tawny-

OWL has advanced (using an agile life cycle) we have continuously evaluated the

tool’s fitness for purpose (as a Clojure library to build ontologies), submitted bug

reports and provided minor fixes where possible. In addition, this thesis is valid doc-

umentation of the application of Tawny-OWL to four ontologies: one test ontology

(The Pizza Ontology), two novel bio-ontologies (The Karyotype Ontology and The

Mitochondrial Disease Ontology) and one existing bio-ontology.

As previously mentioned, as the main tool used in this thesis, the majority of the

examples will be in Tawny-OWL format, unless specified otherwise. In the next

section we provide an overview of the presentation of these Tawny-OWL exemplars.

3.6.1 Presentation in this thesis

All exemplars have been simplified and are not direct duplicates of the code. For

example, all docstrings15 as well as pre and post conditions16 have been elided. In

most instances, all exception handling has also been removed. To ensure a con-

cise syntax, all exemplars use tawny.english shortcut aliases (e.g. some rather than

owl-some). However all function names have been preserved and each concept maps

to only one symbol, for easy code lookup, unless explicitly described. Lastly, all

exemplars are syntax highlighted such that we can clearly identify the different core

Clojure and Tawny-OWL functions, using purple17 and brown highlighting respec-

14Newcastle University
15A docstring is a source code string literal used to document parts of the code.
16These are conditions that must always be true just before, or after, execution.
17This excludes Clojure special forms, which are highlighted in pink.

- 45 -

Chapter 3: Tawny-OWL

tively. All other Clojure functions are highlighted in blue. In this thesis, we use

Clojure version 1.6.0 and Tawny-OWL version 1.3.1-SNAPSHOT18.

In the next chapter, we discuss how we can encode patterns in Tawny-OWL in order

to continue the background on how a computational representation of the ISCN was

built.

18Commit number 691ae78976

- 46 -

https://github.com/phillord/tawny-owl/commit/691ae789765748a535c2a7ea39bb835b437f95dc

4
Pattern-Driven Development

Contents
4.1 Introduction . 48

4.2 Ontology Design Patterns (ODPs) implementation in
Tawny-OWL . 50

4.3 Sources of data . 60

4.4 Localised patterns . 62

4.5 Summary . 65

- 47 -

Chapter 4: Pattern-Driven Development

4.1 Introduction

During the engineering of our domain ontologies, we found many of their components

to have similar textual and/or logical definitions. In software engineering, code

duplication is considered bad practice, and design patterns are often used to avoid

it. Therefore, we used a pattern-driven approach to model and abstract over these

repetitive components. As discussed in Chapter 2, there are a variety of tools to

express these patterns, such as The Ontology Pre-Processing Language (OPPL) [36]

and Mapping Master (M2) [105]. These have a major limitation; the ontological

model and patterns are expressed in two different environments.

As introduced in Chapter 3, we are expressing our patterns using Tawny-OWL1

which is built on Clojure and the OWL API. Unlike other tools, Tawny-OWL

expresses the ontological model and patterns in a single syntax and environment,

meaning that the two can be edited and changed together. In Listing 4.12, we show

an OPPL example3 and its equivalent definition in Tawny-OWL format.

?x:CLASS SELECT ?x SubClassOf NamedPizza

BEGIN ADD ?x SubClassOf Thing END;

Listing 4.1: An OPPL example.

(doseq [clazz (isubclasses NamedPizza)]

(class clazz :super thing))

Listing 4.2: The equivalent Tawny-OWL definition.

Previous research on patterns in ontology engineering have resulted in ODPs which

are analogous to software design patterns. Many ODPs can be found in online

ODP libraries such as ontologydesignpatterns.org [119] and the ODPs public

catalog4. We have implemented some of these ODPs in our ontologies such as the

value partition ODP [121].

1https://github.com/phillord/tawny-owl
2In order for this exemplar to work, we need to import the tawny.reasoner namespace into

the current namespace.
3In this particular example we are only making syntactic changes to the ontology (i.e. no change

in semantics), though is is not always the case. This example was taken from the OPPL website,
see http://oppl2.sourceforge.net/taggedexamples/

4http://www.gong.manchester.ac.uk/odp/html/

- 48 -

ontologydesignpatterns.org
https://github.com/phillord/tawny-owl
http://oppl2.sourceforge.net/taggedexamples/
http://www.gong.manchester.ac.uk/odp/html/

Chapter 4: Pattern-Driven Development

In this chapter, we describe how we implement patterns in Tawny-OWL, using

known ODPs as exemplars5. We then describe localised patterns using our exemplar

ontology, The Pizza Ontology6.

5These implementations are not directly taken from the Tawny-OWL and Tawny-Pizza reposi-
tories; they are simplified examples which elide some of the complexities. The full definitions are
available in source.

6In this thesis The Pizza Ontology is used to refer to our mini The Pizza Ontology recasting
(see Chapter A)

- 49 -

Chapter 4: Pattern-Driven Development

4.2 ODPs implementation in Tawny-OWL

Implementing ODPs in Tawny-OWL is relatively straightforward as it is built on

a programming language. We can use the tools that Clojure provides for general

programming to enable abstraction, iteration and comparison, for approximately the

same purpose in The Web Ontology Language (OWL). In practice, most patterns

are implemented by creating new Clojure functions. Tawny-OWL already includes

an implementation of three generic patterns. The first two are so common that they

are rarely recognised as patterns; the closure axiom and the covering axiom.

The underlying formal logic of ontologies means that knowledge is represented using

the Open-World Assumption (OWA), which means that just because we do not say

something does not mean it is not true [142]. This sometimes has undesirable logical

consequences to which the closure axiom is a common solution, simulating a form

of Closed-World Assumption (CWA)7.

An example usage of the closure axiom in The Pizza Ontology can be seen in List-

ing 4.38. Here, a MargheritaPizza is explicitly defined with three superclass prop-

erty restrictions; two existential and one universal. These restrictions tell us that a

MargheritaPizza has exactly two toppings: TomatoTopping and MozzarellaTopping.

This is necessary because of the OWA in OWL; if we do not make this statement,

then it is assumed that there may be other toppings that have not been men-

tioned. This means, that we cannot, for example, infer that a MargheritaPizza

is a VegetarianPizza (see Listing 3.14) because it could have a MeatTopping in ad-

dition to TomatoTopping and MozzarellaTopping. We use a closure axiom to close

the world, and state that a MargheritaPizza has these and only these toppings.

7http://www.gong.manchester.ac.uk/odp/html/Closure.html
8The exemplars shown in this chapter use to the tawny.english shortcut functions and not

clojure.core functions. The latter namespace includes a some function that has different be-
haviour.

- 50 -

http://www.gong.manchester.ac.uk/odp/html/Closure.html

Chapter 4: Pattern-Driven Development

(defclass MargheritaPizza

:super

NamedPizza

(some hasTopping TomatoTopping)

(some hasTopping MozzarellaTopping)

(only hasTopping (or TomatoTopping MozzarellaTopping)))

Listing 4.3: Expansion of the closure axiom example in Listing 4.4.

Explicitly defining closure axioms for numerous Pizzas is repetitive, time-consuming

and susceptible to error. Therefore we want to encode the pattern and reuse this

for each Pizza. The desired usage of the closure pattern (called some-only) can be

seen in Listing 4.4. The some-only pattern should expand into a list that contains

two existential restrictions and one universal restriction.

(defclass MargheritaPizza

:super

NamedPizza

(some-only hasTopping

TomatoTopping MozzarellaTopping))

Listing 4.4: Example usage of the closure axiom.

We can encode the closure axiom as shown in Listing 4.5. The parts of this definition

are:

• We define a new function with defn, and the name some-only

• An argument list [property & classes]

• The classes argument is variadic and can represent any number of values

• A function body

• The some, only and or functions return the relevant restrictions as described

in Section 3.3

• The restrictions are returned as a single list, containing at least one existential

and exactly one universal restriction

(defn some-only [property & classes]

(list (some property classes)

(only property

(or classes))))

Listing 4.5: An example implementation of the some-only pattern.

- 51 -

Chapter 4: Pattern-Driven Development

Another way to close the open world is with the covering axiom; here we explicitly

define all the children of a particular class. An example is shown in Listing 4.6.

Here, three classes and one disjoint union restriction are defined. More specifically:

• There are three classes PizzaComponent, PizzaTopping and PizzaBase

• Each and every instance of PizzaBase or PizzaTopping is also an instance of

PizzaComponent (according to the subclass axioms)

• A PizzaBase instance cannot also be and PizzaTopping instance (according to

the disjoint axiom)

• All instances of PizzaComponent must be either a PizzaBase or PizzaTopping

instance (according to the equivalent axiom and the union complex class)

(defclass PizzaComponent

:equivalent

(or PizzaBase PizzaTopping))

(defclass PizzaBase

:super PizzaComponent

:disjoint PizzaTopping)

(defclass PizzaTopping

:super PizzaComponent

:disjoint PizzaBase)

Listing 4.6: Expansion of the covering axiom example in listing 4.7.

The desired usage of the covering axiom can be seen in Listing 4.7. Us-

ing the parent class (PizzaComponent) and numerous defclass declarations, the

as-covering-subclasses pattern should expand, and define two subclasses and one

disjoint union restriction.

(as-covering-subclasses

PizzaComponent

(defclass PizzaBase)

(defclass PizzaTopping))

Listing 4.7: Example usage of the covering axiom.

We can encode the covering axiom as shown in Listing 4.89. This pattern will

9In Tawny-OWL, covering (and disjoint) axioms are implemented as part of the as-subclasses
function.

- 52 -

Chapter 4: Pattern-Driven Development

generate at least two subclasses and one disjoint union restriction to the parent

class. The parts of this definition are:

• We define a new function with defn, and the name as-covering-subclasses

• An argument list [parent & children]

• The children argument is variadic and can represent any number of values

• A function body

• The as-disjoint functions returns the relevant disjoint restrictions as de-

scribed in Section 3.3. Similarly the as-subclasses function returns the rele-

vant SubClassOf axioms

• The add-equivalent function, is an explicit Tawny-OWL function used to add

one or more equivalent axiom to a given entity

• The var-get-maybe function, is a Tawny-OWL support function used to return

the value of a given var

• The map function is a clojure.core function. The map function applies a

function (the second element) to each item in the provided collections. In

this case the var-get-maybe function is applied to each item of the children

collection

(defn as-covering-subclasses [parent & children]

(as-subclasses children)

(as-disjoint children)

(add-equivalent

parent (map var-get-maybe children)))

Listing 4.8: An example implementation of the as-covering-subclasses pattern.

Some patterns are quite a bit longer, contain other patterns and involve more than

just logical patterns. The Pizza Ontology also uses the value partition ODP [121].

This is different to previous exemplars as it involves some lexical manipulation. This

pattern is used to model the values of attributes. It splits up ranges, that in reality

have continuous values (which can be modelled using a datatype property), into

- 53 -

Chapter 4: Pattern-Driven Development

discrete values because these are easier to work with logically. Discrete values are

represented using an object property restriction. In fact, an analogous method is

also used outside of the ontology community as a form of “binning”, for example the

Body Mass Index (BMI) (or Quetelt index) which is used to measure an individual’s

relative weight classification based on their mass and height. In OWL, we would

encode this property such that BMI can only be an instance of either Underweight,

NormalRange, Overweight or Obese, and is linked via the hasBMI object property.

In The Pizza Ontology, the value partition ODP is used to identify the spiciness of

pizzas. Spiciness could be measured using the Scoville scale which identifies food

in Scoville Heat Units (SHU) [134], a continuous numeric value between 0 and ∼2

million. In The Pizza Ontology however, spiciness is only identified as three levels

of spiciness: mild, medium and hot.

An example usage of a value partition pattern in The Pizza Ontology can be seen

in Listing 4.9. Here, four classes, one object property and one disjoint union restric-

tion are defined. This example tells us that Spiciness can only be MildSpiciness,

MediumSpiciness or HotSpiciness. More specifically:

• There are four classes Spiciness, MildSpiciness, MediumSpiciness and

HotSpiciness and one object property hasSpiciness

• Each and every instance of MildSpiciness, MediumSpiciness or HotSpiciness

is also an instance of Spiciness (according to the subclass axioms)

• A HotSpiciness instance cannot also be a MediumSpiciness and/or a

MildSpiciness instance (according to the disjoint axiom)

• All instances of Spiciness must be either a MildSpiciness, MediumSpiciness

or HotSpiciness instance (according to the equivalent axiom and the union

complex class)

• The hasSpiciness object property links any given individual to individuals of

Spiciness (according to the specified range)

• For any given individual, there can only be, at most, one individual related via

the hasSpiciness object property (according to the functional characteristic)

- 54 -

Chapter 4: Pattern-Driven Development

(class Spiciness

:equivalent

(or HotSpiciness MediumSpiciness MildSpiciness))

(object-property hasSpiciness

:range Spiciness

:characteristic :functional)

(class MildSpiciness

:super Spiciness

:disjoint MediumSpiciness HotSpiciness)

(class MediumSpiciness

:super Spiciness

:disjoint MildSpiciness HotSpiciness)

(class HotSpiciness

:super Spiciness

:disjoint MildSpiciness MediumSpiciness)

Listing 4.9: Expansion of the value partition example in listing 4.10.

This value partition expansion is a lot more involved than previous exemplars and

can be laborious to encode for two reasons: firstly, handling symbols where they

have not been previously declared is somewhat involved in Clojure; and secondly

the multiple usage of “Spiciness” string in all subclasses of Spiciness.

By using a simple tree-like structure Tawny-OWL should be able to expand the data

input and generate the necessary entities and restrictions. The desired usage of the

pattern can be seen in Listing 4.10.

(value-partition

Spiciness "Mild" "Medium" "Hot")

Listing 4.10: Example usage of the value-partition pattern.

We can encode the value partition pattern as shown in Listing 4.11. The parts of

this definition are:

• We define a new function with defn, and the name value-partition

• An argument list [parent & children]

• The children argument is variadic and can represent any number of values

• A function body

- 55 -

Chapter 4: Pattern-Driven Development

• The str-name function returns a string representation of the entity’s name.

• The let function evaluates then binds the results to locally named symbols.

In this case we bind the parent name to the local symbol s

• The str function returns a string concatenation of the arguments. It is this

lexical manipulation that is novel in this pattern from others shown previously.

• The object-property and class functions return the relevant OWL API ob-

ject, as described in Section 3.8

• The map function creates the name and then the class, for each item of the

children collection

• The as-covering-subclasses function, as described earlier in this section, ap-

plies the relevant restrictions: one disjoint, one equivalent and at least two

subclass restrictions.

(defn value-partition [parent & children]

(let [s (str-name parent)]

(object-property (str "has" s)

:range parent

:characteristic :functional)

(as-covering-subclasses parent

(map #(class (str % s)) children))))

Listing 4.11: An example implementation of the value-partition pattern.

Some patterns define annotation axioms rather than logical axioms. As we will

see in Chapter 8, for some ontologies, many patterns affect annotations and only

annotations. In Chapter 3, we saw that Tawny-OWL has already defined some anno-

tation patterns; the label and comment functions create annotation axioms using the

rdfs:label and rdfs:comment annotation properties respectively. In Tawny-Pizza,

we might wish to add a Dublin Core (DC) ontology creator annotation to our pizza

entities. For example, in Listing 4.6 the MozzarellaTopping class is defined and

annotated with the creator value “Jennifer D. Warrender”10.

10In order for the dc:creator annotation property to resolve, we need to import the DC ontology
[1].

- 56 -

Chapter 4: Pattern-Driven Development

(defclass MozzarellaTopping

:annotation

(annotation

(iri "http://purl.org/dc/elements/1.1/creator")

(literal "Jennifer D. Warrender" :lang "en")))

Listing 4.12: Expansion of the creator annotation axiom example in Listing 4.13

We can simplify this annotation axiom into a more concise expression using a custom

creator function. An example usage of this creator function is shown in Listing 4.13.

(defclass MozzarellaTopping

:annotation

(creator "Jennifer D. Warrender"))

Listing 4.13: Example usage of the creator pattern.

We can encode the creator annotation pattern as shown in Listing 4.14. The parts

of this definition are:

• We define a new function with defn function, and the name creator

• An argument list [creator]

• A function body

• The dc-creator symbol refers to the dc:creator annotation property using its

specified Internationalized Resource Identifier (IRI)11

• The annotation and literal functions return the relevant annotation restric-

tion and literal as described in Section 3.3

• The function returns a single annotation restriction

(defn creator [creator]

(annotation dc-creator (literal creator :lang "en")))

Listing 4.14: Example usage of the creator pattern.

The manual addition of the creator annotation to numerous entities can be laborious

and error-prone. Instead we might consider adding these creator annotations auto-

matically to all entities in the ontology, where those entities start with a given IRI.

Here we show an example and explanation of how we could encode this pattern.

11http://purl.org/dc/elements/1.1/creator

- 57 -

http://purl.org/dc/elements/1.1/creator

Chapter 4: Pattern-Driven Development

In this case we name this iterative annotation pattern as whodunit. The desired

usage of the pattern can be seen in Listing 4.15.

(whodunit pizzaontology

"http://www.ncl.ac.uk/pizza"

"Jennifer D. Warrender")

Listing 4.15: Example usage of the whodunit pattern.

We can encode the whodunit function as shown in Listing 4.1612. The parts of this

definition are:

• We define a new function with defn, and the name whodunit

• An argument list [o piri & creators]

• The creators argument is variadic and can represent any number of values

• A function body

• The map function applies the creator function to each item in the creators

argument to create the relevant creator annotation axiom(s). Using the let

function this result is bound to the local symbol a

• The .startsWith is an imported Java method from the String class. Simply,

the .startsWith method tests whether a string starts with a given prefix.

• The .getSignature, .getIRI and .toString methods are imported Java OWL

API methods. The .getSignature method returns all entities that are in a

given OWLOntology object, whilst the .getIRI method returns the IRI of an

OWL API object and the .toString method returns a string representation

of the IRI.

• The add-annotation function is an explicit Tawny-OWL function used to add

one or more annotations to a given entity.

• The doseq function is a Clojure iterative function used to repeatedly execute

the body to the filtered and bound local arguments (in this case e). Here, we

12This function excludes the annotating of the ontology, because an OWLOntology object is not
returned in the .getSignature OWL API function call. Therefore an extra add-annotation call
would be required.

- 58 -

Chapter 4: Pattern-Driven Development

are applying the add-annotation function to numerous entities of the ontology.

The variables are filtered using the :when Clojure keyword such that only

“when” the predicate is true does the entity bind to the local variable e

(defn whodunit [o piri & creators]

(let [a (map creator creators)]

(doseq

[e (. getSignature o)

:when (. startsWith

(. toString (. getIRI e))

piri)]

(add-annotation e a))))

Listing 4.16: An example implementation of the whodunit function.

Overall, in all of these encoded generic patterns, we find patterns contain OWL

constructors and that OWL entities are present only as variables.

- 59 -

Chapter 4: Pattern-Driven Development

4.3 Sources of data

In the patterns described so far all the values are specified in the source. However,

it is also possible to take values from other places, for example from external files in

different and more appropriate formats.

For example, we might wish to add Italian labels to our pizza ontology. An example

of this is shown in Listing 4.17. Here we define a MargheritaPizza with the Italian

annotation value "Pizza Margherita".

(defclass MargheritaPizza

:annotation (label "Pizza Margherita" "it"))

Listing 4.17: Expansion of the labelling of entities in Italian.

However adding labels to the source code is cumbersome, so we instead define these

labels in an external properties file. An excerpt from this file is shown below:

MargheritaPizza=Pizza Margherita

MozzarellaTopping=Mozzarella Ingredienti

TomatoTopping=Pomodorro Ingredienti

By providing a valid file name, Tawny-OWL should be able to read input from the

properties file and correctly assign Italian annotations to the relevant OWL entities.

An example usage of this facility, which we call the load-labels function, is shown

in Listing 4.18.

(load-labels pizzaontology "pizzalabel_it.properties" "it")

Listing 4.18: Example usage of the load-labels pattern.

We can encode the load labels pattern as shown in Listing 4.19. This function

generates the Italian label axioms for all entities in the ontology that have an Italian

translation. The parts of this definition are:

• We define a new function with defn, and the name load-labels

• An argument list [o filename language]

• A function body

• The .getSignature function returns a collection of relevant OWL API objects

as described earlier in this chapter

- 60 -

Chapter 4: Pattern-Driven Development

• Similar to the whodunit pattern, the load-labels pattern uses an iterator

(doseq) to assign the Italian labels. However, in this case the entities are not

filtered but still bound to the local symbol e.

• The load-props function loads the properties file to memory as a set of key

and value pairs

• The resolve-entity13 function is a Tawny-OWL function used to return a

string representation of the symbol that holds the OWL API object

• The .getProperty method is imported from java.util.Properties and is used

to search for the associated property value for the given key

• In this exemplar the let function is used twice; first we bind the loaded prop-

erty key value pairs to the local symbol props; secondly we bind the result of

.getProperty to the symbol l

• The if-not and nil? functions are clojure.core functions used to test the

complement conditional and existence of l respectively

• The label function returns the relevant annotation axiom (as described in

Section 3.3), while the add-annotation function adds this axiom to the relevant

entity

(defn load-labels [o filename language]

(let [props (load-props filename)]

(doseq [e (. getSignature o)]

(let [l (. getProperty props (resolve-entity e))]

(if-not (nil? l)

(add-annotation e (label l language)))))))

Listing 4.19: An example implementation of the load-labels pattern.

With the use of the Incanter library14 we can also read from spreadsheets (of file

formats .xls and .xlsx) such that Tawny-OWL has similar capabilities to tools such

as RightField [169] and Populous [62].

13In order for this function call to work, the tawny.lookup namespace must be imported.
14https://github.com/incanter/incanter

- 61 -

https://github.com/incanter/incanter

Chapter 4: Pattern-Driven Development

4.4 Localised patterns

As Tawny-OWL is embedded in a generic programming language, Tawny-OWL

allows the expression of localised patterns. In this thesis, we introduce and

define localised patterns as “custom patterns that are specific to the ontology”

(see Chapter 9). In The Pizza Ontology, one such localised pattern is the

generate-named-pizza pattern, where a particular pizza is defined by an enumer-

ation of its ingredients. An example usage of the localised pattern can be seen

in Listing 4.21. In this example, the input expands to a class with one universal

restriction each and seven existential restrictions as shown in Listing 4.20.

(class CapricciosaPizza

:super NamedPizza

(some hasTopping AnchoviesTopping)

(some hasTopping MozzarellaTopping)

(some hasTopping TomatoTopping)

(some hasTopping PeperonataTopping)

(some hasTopping HamTopping)

(some hasTopping CaperTopping)

(some hasTopping OliveTopping)

(only hasTopping AnchoviesTopping MozzarellaTopping

TomatoTopping PeperonataTopping HamTopping CaperTopping

OliveTopping))

Listing 4.20: Expansion of the localised pattern example in Listing 4.21.

Explicitly defining closure axioms for numerous NamedPizzas is repetitive, time-

consuming and susceptible to error. Therefore we want to encode the pattern and

reuse this for each NamedPizza. The desired usage of the pattern can be seen in

Listing 4.21.

(generate-named-pizza

[CapricciosaPizza AnchoviesTopping MozzarellaTopping

TomatoTopping PeperonataTopping HamTopping CaperTopping

OliveTopping])

Listing 4.21: Example usage of the generate-named-pizza function.

We can encode the generate-named-pizza function as shown in Listing 4.22. The

parts of this definition are:

• We define a new function with defn, and the name generate-named-pizza

- 62 -

Chapter 4: Pattern-Driven Development

• An argument list [& pizzalist]

• The pizzalist argument is variadic and can represent any number of values

• Each item in the pizzalist argument is destructured. Destructuring is the

binding of a set of variables to a corresponding set of variables. In this case,

each pizzalist value is bound to two separate symbols; named, which corre-

sponds to the first element of pizzalist, and toppings, the rest of the elements.

Here, the toppings argument is also variadic

• A function body

• The class function returns the relevant OWLClass object as described in Sec-

tion 3.3

• Once again we use the doseq iterator function; for each named pizza, we create

the relevant OWL API class object using the local bound arguments named and

toppings

• The some-only function returns the relevant restrictions as described in Sec-

tion 4.2

(defn generate-named-pizza [& pizzalist]

(doseq [[named & toppings] pizzalist]

(class

named

:super NamedPizza

(some-only hasTopping toppings))))

Listing 4.22: An example implementation of the localised pattern, generate-named-
pizza.

This pattern is simple because it uses the some-only function (already defined in

Section 4.2), to define the existential and universal restrictions. Unlike other encoded

patterns shown in this chapter, you can see that the generate-named-pizza pattern

has an embedded class definition, which is syntactically similar to our previous uses

of defclass.

Unlike the generic patterns discussed in Section 4.2, localised patterns have parts of

the patterns hard-coded with OWL entities. In the generate-named-pizza localised

- 63 -

Chapter 4: Pattern-Driven Development

pattern, the NamedPizza class and hasTopping object property are specific to the

ontology.

The generate-named-pizza pattern is useful because it is variadic; it can take any

number of pizza. Additionally, it uses variadic destructuring internally, enabling, for

example, a MargheritaPizza to have two toppings, while a CapricciosaPizza has

seven. Also it is syntactically concise, which is useful when defining pizzas with a

large number of toppings. Lastly the localised pattern also ensures the consistency

of definitions for all subclasses of NamedPizza, and supporting maintainability should

we wish to change these definitions.

- 64 -

Chapter 4: Pattern-Driven Development

4.5 Summary

In this chapter, we discuss the implementation of patterns in Tawny-OWL, which

fulfils part of RQ1. Patterns are simple to implement and are generally implemented

as functions. Using these functions, we have started to show the many benefits of

using a pattern-driven and programmatic approach to ontology engineering (RQ3).

For example, it is easy to iterate over all entities in an ontology, and to interact with

external files thus allowing us to separate the knowledge from the axiomitisation. In

addition, where pattern definitions become complex, they can be abstracted over,

hiding the technical details.

Unlike other ways of expressing patterns in OWL (such as OPPL and M2), in Tawny-

OWL the pattern is expressed in the same syntax, which means that patternised and

non-patternised class definitions look similar. In addition, the patternised and non-

patternised parts of the ontology are expressed in the same environment: they can be

in the same file, version and can be tested alongside each other. The use of a single

environment is particularly important because it enables the construction of localised

patterns, and most of the ontologies discussed in this thesis, are full of localised

patterns. Here, we introduce localised patterns (to the ontological community),

as patterns that have a specific purpose, rather than generically for reuse in other

ontologies.

In the next chapter, we discuss how we can use Tawny-OWL and its ability to encode

patterns to build a computational representation of the International System for

human Cytogenetic Nomenclature (ISCN).

- 65 -

Chapter 4: Pattern-Driven Development

- 66 -

5
Modelling Karyotypes

Contents
5.1 Introduction . 68

5.1.1 Definition of terms . 69

5.2 What is an ISCN String . 72

5.2.1 Reviewing chromosome components 82

5.2.2 Modelling requirements . 85

5.3 Design considerations . 88

5.3.1 Portions of reality . 88

5.3.2 A partonomic axiomitisation 89

5.3.3 The event-based change axiomitisation 92

5.4 Representing karyotypic knowledge 95

5.4.1 Modelling chromosome components 95

5.4.2 Modelling normal karyotypes 96

5.4.3 Abnormality breakpoints . 97

5.4.4 Orientation of substitution segments 99

5.4.5 Partial knowledge . 103

5.4.6 Modelling uncertainty . 103

5.4.7 Multiple copies of rearranged chromosomes 104

5.4.8 Derivative chromosomes . 104

5.4.9 Abnormalities involving homologous chromosomes 105

5.4.10 Constitutional anomalies . 107

5.4.11 Mosaic karyotypes . 107

5.4.12 Identifying the (near-)ploidy levels 108

5.4.13 Defining sex . 109

5.5 Assessment . 111

5.6 Summary . 113

- 67 -

Chapter 5: Modelling Karyotypes

5.1 Introduction

Over the years, the number of known karyotypes has grown to over a hundred

thousand. These karyotypes of clinical significance can be found in multiple re-

search databases. There is a standard nomenclature for karyotypes, which is based

on semantically meaningful strings. However this specification is outdated and not

computationally amenable, which puts the quality and maintenance of this clinically

important knowledge into question. Therefore, the development of The Karyotype

Ontology is potentially valuable for cytogenetics by transforming collections of kary-

otypes into a form that is easy to query, check and maintain.

For this work, we are using an ontology to provide a strong computational and

formal interpretation of the karyotype. The top-level structure of The Karyotype

Ontology can be seen in Figure 5.1.

Figure 5.1: The top-level structure of The Karyotype Ontology.

For our methodology, we used features from agile development working from the

ISCN specification and other external knowledge. However, even with our approach,

there are many similar concepts. Therefore, we define the ontology as a series of

parameterisable patterns (see Chapter 4), which expand to the full ontology [163],

using Tawny-OWL (see Chapter 3). We evaluate the ontology using examples de-

fined by the ISCN2013 [135].

- 68 -

Chapter 5: Modelling Karyotypes

Within this chapter, we describe how karyotypes are currently represented and how

they can be represented ontologically. First, we discuss karyotypic terms and their

usage in the cytogenetics community, including a brief review on human chromo-

some components. Next, we analyse the karyotype components by discussing how

they can be represented in string format, as defined by the ISCN specification. From

this analysis we present the motivating problem: the current string representation

of karyotypes is not computationally amenable, therefore these karyotypes of diag-

nostic importance can be hard to parse, validate and query. This incompatibility

occurs when representing homologous chromosomes; the ISCN underlines these ho-

mologous chromosomes which cannot be represented in American Standard Code

for Information Interchange (ASCII) . Our analysis of ISCN identifies a variety of

key requirements that our ontological representation of karyotypes should model.

Next, we discuss the ontological modelling of karyotypes with numerous examples

taken from the ISCN. This discussion includes the three approaches investigated to

model karyotypes: realism, partonomic and event-based change. We find the latter

approach the most appropriate in creating an ontology for karyotypes, while the

chromosomal components are modelled partonomically.

The later part of the chapter provides an overview of the ontology, its functionality

and shows how we have fulfilled our requirements introduced in Section 5.2.2.

The corresponding code and supplementary data for the construction of The Kary-

otype Ontology can be found on the Project Website1.

5.1.1 Definition of terms

Throughout this chapter, we use the following terms to describe different components

of cytogenetics. Within the cytogenetics community, these definitions are freely used

and are used interchangeably, even though they are not synonymous. Here we define

each term so that they are not synonymous and provide the common community

usage of the term:

1https://github.com/jaydchan/tawny-karyotype

- 69 -

https://github.com/jaydchan/tawny-karyotype

Chapter 5: Modelling Karyotypes

Chromosome complement

The whole set of chromosomes present in the nucleus of a eukaryotic cell.

This term crosses many levels of granularity and is applicable at a species,

individual, cell line, or cell level. When applied at levels other than the cell it

expresses the canonical complement: i.e. some cells in a cell line or individual

may have differences from the canonical complement.

Species level: In a normal human, the chromosome complement consists of 46

chromosomes – 22 pairs of autosomal chromosomes (1 to 22) and one pair of

sex chromosomes (XX or XY).

Karyogram

A visualisation of the chromosome complement as seen under a microscope,

after chromosomes are fixed and stained. Usually a picture or photograph,

the chromosomes are arranged in homologous pairs and in descending order of

size.

For example, the karyogram for an individual with Tuners Syndrome can be

seen in Figure 5.2a.

Ideogram (or Idiogram)

A diagrammatic representation of the Karyogram, in part or in whole. Chro-

mosome(s) are lined up by their centromere and placed with their short arm

facing up and long arm facing down. Further annotation can be included to

aid classification.

Example ideograms for normal human chromosomes can be seen in Fig-

ure 5.2b2.

This term is commonly substituted with Karyogram.

Karyotype

A description of the chromosome complement at the level of granularity seen

2Throughout this thesis, ideograms are used to help explain the biological theory behind kary-
otypes. The majority of the images were produced by Idiographica and later adapted using Mi-
crosoft Visio.

- 70 -

http://www.ncrna.org/idiographica

Chapter 5: Modelling Karyotypes

in the Karyogram and/or Ideogram3. The karyotype describes the number of

chromosomes and the presence of abnormalities (if any).

For example, a“free text”karyotype of Tuners Syndrome is“a female individual

with 45 chromosomes and monosomy X”.

This term is commonly substituted with chromosome complement and an

ISCN String.

ISCN String

A string representation of the karyotype as defined by the ISCN. It is a subtype

of karyotype.

For example, the ISCN String for Tuners Syndrome is “45,X”. More detailed

examples are explained in Section 5.2.

OWL Karyotype

An OWL representation of a karyotype using the concepts defined in this

thesis.

For example, the OWL Karyotype for Tuners Syndrome is shown in List-

ing 5.11.

(a) An example Karyogram depicting a
female individual with monosomy X.
c©45,X.jpg by Wikipedia is licensed under CC BY-SA 3.0/
Monosomy X highlighted with red box

(b) Ideogram: a diagrammatic represen-
tation of the human chromosomes.

Figure 5.2: Two ways of visualising the chromosome complement: Karyogram and
Ideogram.

3the full genome is not a karyotype.

- 71 -

http://en.wikipedia.org/wiki/File:45,X.jpg

Chapter 5: Modelling Karyotypes

5.2 What is an ISCN String

This section provides an extensive and in depth analytic review of how the ISCN

defines ISCN Strings; we use this review to identify key requirements that our onto-

logical representation should be able to model as well as areas that could be improved

or expanded upon. One thing to note is that the ISCN also describes karyotypic

experimental techniques such as Fluorescence In Situ Hybridization (FISH); these

techniques will not be modelled in the ontology as it is out-of-scope of this thesis4.

The ISCN is the specification that defines an ISCN String. Initially designed for

writing and printing, it was developed to address the need for an explicit nomen-

clature “to enable communication between workers in the field” [135]. The ISCN

has a long history; early versions date from around 1960, when the emphasis was

on human-to-human communication for a small number of karyotypes. This human

readability is beneficial to cytogeneticists, however the number of karyotypes is in-

creasing, outstripping our human capabilities to analyse these karyotypes. With no

computational representation, we are unable to use computers to aid the validation

and querying of karyotypes. Our ontological representation aims to overcome this

problem.

An ISCN String represents three key concepts:

1. the number of chromosomes

2. the sex chromosomes present

3. any abnormalities that may be present

In a normal human (with no abnormalities), the chromosome complement consists

of 46 chromosomes; 22 pairs of autosomal chromosomes (1 to 22) and one pair of sex

chromosomes (XX or XY). These normal karyotypes are represented as “46,XX” and

“46,XY” in ISCN String format for a female and male individual respectively. The

first part of the ISCN String identifies the number of chromosomes present in the

karyotype, while the second part explicitly identifies the sex chromosomes present.

4However there is no a priori reason to believe that we could not do this.

- 72 -

Chapter 5: Modelling Karyotypes

These two parts of this ISCN String are important and should not be mistaken as

denormalised (contained redundancy that is typically used to optimise readability).

For example, given “XY” (rather than “46,XY”), we are unable to determine if

we are representing the “24,XY” haploid, “46,XY” diploid, “68,XY” triploid, or

“90,XY” tetraploid karyotype. This uncertainty is due to the way constitutional

sex chromosomes are represented in ISCN Strings (discussed later in this section).

The second part of the ISCN String is also important as it tells us the sex5 of the

karyotype.

Here we identify two key requirements; it is necessary that The Karyotype Ontology

be able to model the “normal” karyotypes for each ploidy level (R2) and determine

the sex of a given karyotype (R8).

However not all karyotypes are normal; they can include a variety of abnormalities.

There are two types of abnormality. Numerical abnormalities are abnormalities that

affect the number of chromosomes present in the karyotype, either by gaining or

losing whole chromosomes. Structural abnormalities are abnormalities that involve

only parts of the chromosomes.

Only numerical abnormalities change the first part of the ISCN String: an ab-

sent chromosome decreases the number while a surplus chromosome increases the

number. The second part of the ISCN String can be affected by both types of

abnormalities; any sex chromosome that is missing or gained (and is not part of

the constitutional karyotype) is removed from, or added to, this part. The third

and final part of the ISCN String is a list of abnormalities, in order of chromoso-

mal “number” (X,Y,1,2,. . . ,22), the abnormality type (numerical, structural), then

finally alphabetical order of structural abnormalities.

These abnormalities are represented in the ISCN String using symbols and abbre-

viated terms. For numerical abnormalities, the symbol - is used to represent the

loss of chromosomes while + represents the gain of chromosomes (except for the

sex chromosomes). For example, the karyotype for an individual born with Downs

Syndrome (and no other abnormalities) is represented as “47,XX,+21”; a female

individual that has gained one chromosome 21, results in 47 chromosomes and a

5Although in karyotypes, as in life, sex is more complicated then it first appears.

- 73 -

Chapter 5: Modelling Karyotypes

trisomy (three copies of) chromosome 21 (see Figure 5.3a).

Here we identify a further key requirement; it is necessary that OWL Karyotypes

be able to model both types of numerical abnormalities; gain and loss (R3).

Using the number of chromosomes present, we can determine the associated

(near-)ploidy or euploid level; so, for example, for the ISCN String “47,XX,+21”,

has 47 chromosomes, thus is defined to be a near-diploid cell (see Table 5.1). It is

therefore implicit that this cell has two of chromosome 1. This representation allows

a more concise form of karyotype: so “47,XX,+21” rather than “47,XX,1,1,2,2,3,3,

. . . ,21,21,+21,22,22”. As well as concision, we have the ability to define our start

point. So, Tuners Syndrome is described as a diploid that has lost one chromosome

(“45,X”), rather than a haploid that has gained 22 (“23,X,+1,+2,. . . +21,+22”).

Here we identify another key requirement; it is necessary that The Karyotype On-

tology be able to determine the (near-)ploidy levels for a given karyotype (R9).

Table 5.1: Table showing the relationship between the modal number and number
of chromosomes. Taken from ISCN2013 [135]. Further ploidy levels and in-depth
details have been excluded from the table as they are out-of-scope for this thesis.

Near-ploidy level Modal number Number of chromosomes

Near-haploidy (23±) n ≤34
Near-diploidy (46±) 2n 35-57
Near-triploidy (69±) 3n 58-80
Near-tetraploidy (92±) 4n 81-103

The majority of the structural abnormalities are represented using abbreviated

terms. For example, an individual with an inversion abnormality uses the inv ab-

breviation. Immediately after the abbreviation, the chromosome involved in the

structural abnormality, followed by any associated breakpoints (see Section 5.2.1),

are specified within two sets of parenthesis (). The “46,XX,inv(6)(p22q23)” ISCN

String represents a female individual with an inversion abnormality in one of the

chromosome 6; breakpoints are band 6p22 and 6q23 (see Figure 5.3b).

If more than one chromosome is involved in the abnormality, then the chromosomal

information is separated by a semicolon (;). For example, an individual with a

translocation abnormality (t) that involves one chromosome 3 and one chromosome

- 74 -

Chapter 5: Modelling Karyotypes

9 with associated breakpoints 3p13 and 9q21 has the ISCN String “46,XX,t(3;9)(p1

3;q21)” (see Figure 5.4).

If an abnormality involves homologous chromosomes, then one of the homologous

chromosomes is underlined. For example, the ISCN String “ins(2;2)(p13;q21q31)”

represents an individual with an insertion abnormality (ins) that involves two ho-

mologous chromosome 2 with associated breakpoints 2p13 in one chromosome 2 and

2q21 and 2q31 in the homologous chromosome 2 (see Figure 5.11). Although this

underlining is sufficient for human-to-human (written) communication, it cannot

be represented in ASCII. Further analysis of the ISCN does not show how ab-

normalities that affect three homologous chromosomes are modelled. This explicit

identification of homologous chromosomes and associated breakpoints is clearly a

necessary requirement of our ontological model (R5).

The full list of structural abnormalities, their associated abbreviated terms and

definitions are seen in Table 5.2. This table identifies a key requirement; OWL

Karyotypes should be able to model the variety of structural abnormalities (R4).

However not all karyotypes are quite so simple; a karyotype can include karyotypic

information for numerous different clones. There are two types of clone karyotypes;

mosaic (see Section 5.4.11) and chimera karyotypes. A mosaic karyotype is defined

as a cell line originating from the same zygote, while a chimera karyotype is defined

as a cell line originating from different zygotes. Each clone karyotype is followed by

the number of cells with that karyotype in square brackets ([]).

In mosaic karyotypes, the karyotype may be preceded by the abbreviation mos and

clone karyotypes are separated by a forward slash (/). A simple example of a

mosaic ISCN String is “mos47,XY,+21[12]/46.XY[18]” which has two cell lines;

12 cells with a male cell line with trisomy 21 and 18 cells with a normal male cell

line. Unlike other ISCN Strings exemplars we have shown so far, the clonal number

provided in mosaic ISCN Strings represents results for a specific experiment, rather

than a canonicalisation.

- 75 -

Chapter 5: Modelling Karyotypes

(a) Ideogram showing chromosomal gain
such that trisomy 21 occurs.

(b) Ideogram showing an inversion ab-
normality in chromosome 6 with associ-
ated breakpoints 6p22 and 6q23.

Figure 5.3: There are two types of abnormalities: numerical and structural. Fig-
ure 5.3a shows an example karyotype with a numerical abnormality; specifically
chromosomal gain. Figure 5.3b shows an example karyotype with a structural ab-
normality; specifically an inversion abnormality.

- 76 -

Chapter 5: Modelling Karyotypes

Figure 5.4: Ideogram showing a reciprocal translocation involving chromosomes 3
and 9.

- 77 -

Chapter 5: Modelling Karyotypes

Table 5.2: Table showing the variety of structural chromosomal rearrangements.
Where available, definitions are directly taken straight from the ISCN2013 [135].

Type Abbreviation Biological Definition

Additional material

of unknown origin

add used to indicate additional material of un-

known origin attached to a chromosome’s

region or band.

Deletion del a part of the chromosome is deleted or

lost. del is used to denote both termi-

nal (which involves either telomere) and

interstitial (occurs in the interior of the

chromosome) deletions.

Derivative Chro-

mosome (see

Section 5.4.8)

der a structurally rearranged chromosome,

with an intact centromere, generated ei-

ther by a rearrangement involving two or

more chromosomes or by multiple aberra-

tions within a single chromosome.

Dicentric Chromo-

some

dic a chromosome that contains two func-

tional centromeres.

Duplication dup an extra copy of some chromosome seg-

ment exists (a duplicate).

Fission fis used to denote centric fission; splitting

of one functional centromere of a chro-

mosome to produce two centric chromo-

somes [116].

Fragile Site fra parts of the chromosome that show breaks

when the cells are exposed to certain drugs

or chemicals.

Continued on next page...

- 78 -

Chapter 5: Modelling Karyotypes

Table 5.2 – continued from previous page

Type Abbreviation Biological Definition

Homogeneously

Staining Region

hsr autonomously replicating extra chromoso-

mal elements that are frequently associ-

ated with gene amplification in a variety

of cancers [90].

Insertion ins used to indicate the insertion of additional

material to a normal chromosome.

Inversion inv part of the chromosome has been reversed

(rotated 180 degrees) therefore changing

the order of the bands. inv is used to de-

note both pericentric and paracentric in-

versions; inversions that do and do not in-

volve the centromere respectively.

Isochromosome i a chromosome with two identical arms, ei-

ther two short arms or two long arms.

Marker Chromo-

some

mar a structurally abnormal chromosome that

cannot be unambiguously identified or

characterized by conventional banding cy-

togenetics.

Neocentromere neo a functional centromere that has arisen or

been activated within a region not known

to have a centromere.

Quadruplication qdq a chromosome that contains four copies of

the same chromosome segment.

Ring Chromosome r fusion of one or more chromosome arms to

form a chromosome with no ends (ring)

Continued on next page...

- 79 -

Chapter 5: Modelling Karyotypes

Table 5.2 – continued from previous page

Type Abbreviation Biological Definition

Telomeric Associa-

tion

tas fusion between two telomeres of two dif-

ferent chromosomes without visible loss of

chromosomal material [15].

Translocation t parts that are exchanged between non-

homologous chromosomes.

Tricentric Chromo-

some

trc a chromosome that contains three func-

tional centromeres.

Triplication trp a chromosome that contains three copies

of some chromosome segment (triplicate).

- 80 -

Chapter 5: Modelling Karyotypes

A chimera ISCN String is similar to a mosaic ISCN String. Instead the karyotype

may be preceded by the abbreviation chi and the clone karyotypes are separated by

a double forward slash (//).

These mosaic and chimera karyotypes are interesting as their existence requires us

to review our definition of the chromosome complement; we are modelling more

than one canonical karyotype rather than only one canonical, which conflicts with

our definition of canonical. Therefore we derive a new requirement; our ontological

model should be able to model these composite karyotypes (R7).

An abnormality can be also classified as either a constitutional or acquired abnor-

mality. A constitutional abnormality (see Section 5.4.10), also known as an in-born

abnormality, is an abnormality that is present in (almost) all cells of an individual

and exists at the earliest stages of embryogenesis, while an acquired abnormality is

an abnormality that develops in somatic cells [165].

Generally, constitutional abnormalities are indicated using the suffix c. For example

the ISCN String “48,XX,+8,+21c[20]” represents tumour cells taken from a female

individual that has a constitutional trisomy 21 and an acquired trisomy 8.

However constitutional sex chromosome numerical abnormalities are more complex

still. Instead of using the + and - symbols to indicate numerical abnormalities,

these constitutional sex chromosome abnormalities are included in the initial ISCN

String sex description. For example the karyotype for an individual born with Tuners

Syndrome (and no other abnormalities) is represented as “45,X”: a female individual

that has 45 chromosomes and monosomy X (only one X chromosome); while an

individual with Klinefelter Syndrome (and no other abnormalities) is represented as

“47,XXY” (most common variant [158]); a male individual that has 47 chromosomes,

of which two are X chromosomes and one a Y chromosome.

Therefore with the c suffix, acquired chromosome abnormalities in individuals with a

constitutional sex chromosome abnormality can be distinguished. For example the

ISCN String “46,Xc,+21” represents tumour cells taken from a female individual

with Tuners Syndrome; a constitutional monosomy X and an acquired trisomy 21.

Using this representation we see that karyotypes with constitutional abnormalities

- 81 -

Chapter 5: Modelling Karyotypes

explicitly define two types of canonicalisation; one of the individual and the other

for the cell line they have given rise to.

This implicit and explicit annotating of constitutional abnormalities is important to

cytogeneticists due to their relation to oncology; therefore we derive a new OWL

Karyotype requirement (R6).

So far most of the karyotypes discussed contain only one or two abnormalities.

However, ISCN String can quickly become a complicated composition of information.

For example the ISCN String “46,XX,t(3;9)(p13;q21)[14]/48,XX,+3,+9[11]/46,X

X,t(1;6)(p11;p12)[9]/47,XX,t(6;10)(q12;p15),+7[6]/46,XX,inv(6)(p22q23)[3]/46,X

X[7]”. Here we have a mosaic karyotype of clones from a female individual that

contains a variety of translocation and inversion events (discussed earlier in this

section).

As we can see from this discussion, the description of the human chromosome com-

plement is complex and involved. However in order to fully understand the complex-

ities that underlie structural abnormalities, it is vital that we also briefly review the

components of a chromosome and highlight those components that will be modelled

in the ontology.

5.2.1 Reviewing chromosome components

A chromosome is an organised structure of DeoxyriboNucleic Acid (DNA), protein

and RiboNucleic Acid (RNA) found in cells. The chromosome components can be

seen in Figure 5.5a. According to ISCN2013 [135] each component can be represented

as follows:

• Arm – the long arm is represented by q while the short arm is represented by

p.

• Centromere – abstractly represented by cen or, more specifically, p10 for the

part of centromere facing the short arm and q10 for the part facing the long

arm.

- 82 -

Chapter 5: Modelling Karyotypes

• Telomere – represented by ter, qter is the long arm telomere and pter is the

short arm telomere.

After staining, banding patterns can be visualised – the staining for chromosome

17 can be seen in Figure 5.5b. Bands are parts of the chromosome that are distin-

guishable from their adjacent segments, after being stained. The band name is a

combination of: the chromosome number; the arm symbol; the region number; and

the band number within that region. Regions and bands proximal to the centromere

are labelled as 1, then 2 and so on. An example chromosome band is 17q21, which

informs us that the band is the first band (proximal to the centromere) in region 2

of the long arm of chromosome 17.

(a) Adapted image of a generic chro-
mosome with its components clearly la-
belled.
c©Chromosome.jpg by Wikipedia is licensed under CC BY-
SA 3.0/ labelled the chromosome components on diagram.

(b) Ideogram of chromosome 17 with the
bands clearly labelled.

Figure 5.5: Identifying the different chromosome components.

There are a variety of staining techniques available that are used in karyotyping.

The first staining technique that produced banding patterns along the length of

the human chromosomes is Q-banding. This technique uses Quinacrine (mustard

or dihydrochloride) to bind to adenine-thymine rich regions of the chromosomes to

produce a florescent banding pattern. This technique was followed by G-banding

which uses Giemsa to bind to the phosphate groups of DNA (see Figure 5.2a) and

produces a pattern of light and dark bands. Those techniques which provide banding

- 83 -

http://en.wikipedia.org/wiki/File:Chromosome.svg

Chapter 5: Modelling Karyotypes

patterns showing the inverse (of light and dark) bands seen in G-banding are known

as R-banding. Unlike Q-banding, G-banding and R-banding, C-banding, T-banding

and NOR-banding are used to visualise the specific components of the chromosome

resulting in a subset of bands; specifically centromeres, telomeres and Nucleolus

Organiser Region (NOR)s respectively.

Banding patterns are complicated and are described at different resolutions. The

five standard resolutions are 300-, 400-, 550-, 700- and 850- band levels (i.e. the

approximate number of bands seen in a haploid set), such that the 300- band is a

low resolution and the 850- band is a high resolution [135]. High resolution banding

techniques result in existing bands being subdivided into sub-bands. The naming of

these resulting sub-bands uses a hierarchical decimal system similar to the Dewey

Decimal Classification (DDC). If we just focus on our continuing example of band

17q21 at resolution 400-, the sub-bands are 17q21.1, 17q21.2 and 17q21.3 at res-

olution 500-. At resolution 700-, band 17q21.3 is further subdivided to 17q21.31,

17q21.32 and 17q21.33. A visual representation of this example, can be seen in

Figure 5.6.

Figure 5.6: Visualising the higher resolution sub-bands of human chromosome band
17q21.

In order to model karyotypes, we need to include concepts in the ontology to model

the human chromosomes and their components (R1). The total number of chromo-

somal components can be seen in Table 5.3.

Now that we have reviewed the chromosome components we can now conclude our

analytical review of ISCN Strings. Throughout this review we have been able to

- 84 -

Chapter 5: Modelling Karyotypes

Table 5.3: Table showing the type and number of chromosome components.

Biological entity Number of entities

Chromosome 24
Arm 48
Centromere 24
Telomere 48
Bands and Sub-bands 1152

Total Number 1296

extract a set of key requirements for The Karyotype Ontology which we summarise

in the next section.

5.2.2 Modelling requirements

Within this section we have seen how karyotypes are represented as ISCN Strings;

the string format as defined by the ISCN. From this analysis we see that ISCN

Strings have no formal (or computational) grammar and no formal interpretation.

Additionally, the specification is not available in a computational format and is,

therefore, not searchable. As a result karyotypes of diagnostic importance can be

difficult to parse, validate and query, especially for more complicated ISCN Strings.

From our analysis, we have identified nine key requirements that our ontological

representation should have the ability to model. These modelling requirements, also

known as functional requirements, are:

R1 The Karyotype Ontology should model the human chromosomes and chromo-

some components.

R2 The Karyotype Ontology should model the “normal” human chromosome kary-

otypes for each ploidy level i.e. haploid, diploid, triploid and tetraploid.

R3 OWL Karyotypes should be able to represent the two types of numerical ab-

normalities: gain and loss.

R4 OWL Karyotypes should be able to represent the variety of structural abnor-

malities (involving one or more chromosomes) identified in Table 5.2.

- 85 -

Chapter 5: Modelling Karyotypes

R5 OWL Karyotypes should be able to clearly model and differentiate between

homologous chromosomes and their associated breakpoints.

R6 OWL Karyotypes should be able to model constitutional abnormalities.

R7 OWL Karyotypes should be able to model compositional karyotypes, such as

mosaic and chimera karyotypes.

R8 The Karyotype Ontology should be able to determine the sex of a given diploid

OWL Karyotype.

R9 The Karyotype Ontology should be able to determine the associated

(near-)ploidy level.

In addition to the functional requirements, we identify five non-functional require-

ments:

R10 The Karyotype Ontology should be able to model all exemplars provided by

the ISCN (see Section 5.5).

R11 The Karyotype Ontology “should be made as simple as possible, but no sim-

pler”6.

R12 The overall performance of The Karyotype Ontology (and Tawny-Karyotype7)

should be acceptable for development, testing and deployment. Acceptable is

defined loosely here, but for example, (re-)loading The Karyotype Ontology

would not hinder development, but a 10 minute load time would. Test per-

formance is less critical, as tests can be selected or run independently (i.e.

continuously integrated), but should take minutes rather than hours.

R13 The Karyotype Ontology should be scalable. In Chapter 6 we show how we

tested the scalability of The Karyotype Ontology by implementing up to 106

karyotypes and analysing the reasoning time.

6This paraphrased quote is often attributed to Einstein [109]
7Tawny-Karyotype refers to the Tawny-OWL code used to build The Karyotype Ontology.

- 86 -

Chapter 5: Modelling Karyotypes

R14 The Karyotype Ontology (and Tawny-Karyotype) should be extensible (i.e.

allow the implementation of further features). In Chapter 6 we discuss the

implementation of the affects relation and its effect of the ontology.

In the next section we discuss the approach used to model these karyotypes.

- 87 -

Chapter 5: Modelling Karyotypes

5.3 Design considerations

For the purposes of modelling karyotypes, we describe three different approaches to

building the ontology: realism (see Section 5.3.1), partonomic axiomitisation (see

Section 5.3.2) and event-based axiomitisation (see Section 5.3.3).

5.3.1 Portions of reality

Initial experiments with a realist ontology8 represented karyotype definitions such

that distinctions are made between the biological entity, the experimental artefact

and the information content entity. This representation meant that distinctions

between a chromosome (as a piece of DNA and protein), the experimental artefact

(following staining) and the visualisation of the experimental artefact are all different

“portions of reality”. Therefore a chromosome in a living cell cannot meaningfully

be said to have bands.

Some other distinctions incorporated into the realist ontology include:

• A karyotype may be used to describe the chromosome complement of different

biological entities: for example, Cell, Organism, or Nucleus.

• Karyotypes may be descriptive of an actual chromosome complement (in a

cell), or different levels of canonicalisation. So, in an individual with a “46,X

X” karyotype not all cells would have exactly this complement, whilst a subset

of species, although women would be expected to have a “46,XX” karyotype.

• The distinction between a biological entity and its visualisation. So, for ex-

ample, an Ideogram is an ordered rearrangement of images of stained chro-

mosomes. In some cases, the relationship between the visualisation and the

biological entity is not clear; it is still not clear exactly what biological feature

results in the visible banding patterns.

These distinctions can be represented ontologically, but results in one major dif-

ficulty; many hierarchies are replicated (for the majority of chromosomal compo-

8Developed by Dr Phillip Lord.

- 88 -

Chapter 5: Modelling Karyotypes

nents). For example chromosome 1 (biological entity), stained chromosome 1 (ex-

perimental artefact), and the visualisation of chromosome 1.

As we aim to develop a lightweight ontology with specific computational goals (R11),

these distinctions are not required for our application. Any distinction that was not

of practical use would only bloat the ontology without adding any clear value. Thus

we follow a pragmatic approach [78].

5.3.2 A partonomic axiomitisation

Originally we defined karyotypes as a strict partonomy (i.e. a non-reflexive parton-

omy), utilising the hasPart and isPartOf relations; here we describe this type of

ontology as a partonomic ontology. A resulting incomplete definition of a karyotype

by its canonical parts (chromosomal bands) for a normal female individual can be

seen in Listing 5.1.

(defclass k46_XX

:super

(exactly hasPart 2 HumanChromosome1BandpTer)

(exactly hasPart 2 HumanChromosome1Bandp36.3)

(exactly hasPart 2 HumanChromosome1Bandp36.2)

... 22 hasPart relations removed ...

(exactly hasPart 2 HumanChromosome1BandqTer))

Listing 5.1: Incomplete karyotype definition for a normal female individual at 300-
band level using the partonomic approach.

However we find that the size of the OWL definitions increased as the resolution

level increased (see Listing 5.2). In this incomplete definition, we have to define 42

extra hasPart restrictions, while the complete definition would require 561 extra

hasPart restrictions.

(defclass k46_XX

:super

(exactly hasPart 2 HumanChromosome1BandpTer)

(exactly hasPart 2 HumanChromosome1Bandp36.33)

(exactly hasPart 2 HumanChromosome1Bandp36.32)

... 64 hasPart relations removed ...

(exactly hasPart 2 HumanChromosome1BandqTer))

Listing 5.2: Incomplete karyotype definition for a normal female individual at 850-
band level using the partonomic approach.

- 89 -

Chapter 5: Modelling Karyotypes

Early versions of The Karyotype Ontology were manually built, which made this

form of representation impractical. Programmatic approaches such as OPPL or

Tawny-OWL would make it possible. However, due to the large number of axioms,

we assumed that this type of modelling would negatively affect the performance

of a partonomic ontology (R12). Theoretically, if we model karyotypes using this

approach then: 10 karyotypes would have ∼ 8, 500 axioms; 100 karyotypes would

have∼ 85, 000 logical axioms; and so on. In particular, we anticipated that reasoning

would have been costly: in Tawny-OWL, The Gene Ontology (GO) (which has ∼ 105

logical axioms) only takes 12 seconds to reason over. Even with linear scaling9

a partonomic ontology with 10,000 karyotypes (i.e. ∼ 8, 500, 000 axioms) would

reason in 16 minutes. This time growth conflicts with our idea of creating a useful

and pragmatic ontology that the cytogeneticists could use (also contradicting R13).

Therefore, we can conclude that we do not want to model individual karyotypes

using a partonomy due to the extensive size of the OWL definitions and its potential

reasoning time.

With further work, we also find that the partonomic ontology is unable to differ-

entiate between two important edge cases as the definitions are logically equivalent

but biologically distinct.

Edge case 1: The karyotype “46,XX” represents a female individual with a

normal karyotype, while the “46,XX,inv(1)(q11qTer)” represents a female individual

with the correct chromosome 1 bands, but not (necessarily) in the right order (see

Figure 5.7). From this edge case, we learn that order is important when defining

karyotypes.

(defclass k46_XX_inv!1!!q11qTer!

:super

(exactly hasPart 2 HumanChromosome1BandpTer)

(exactly hasPart 2 HumanChromosome1Bandp36.3)

(exactly hasPart 2 HumanChromosome1Bandp36.2)

... 22 hasPart relations removed ...

(exactly hasPart 2 HumanChromosome1BandqTer))

Listing 5.3: Incomplete karyotype definition for a female individual with an inversion
abnormality using the partonomic approach.

9which is unlikely

- 90 -

Chapter 5: Modelling Karyotypes

Figure 5.7: Ideogram showing an inversion abnormality involving chromosome 1 and
breakpoints q11 and qTer

Edge case 2: The karyotype “45,X,-Y” is a cell line from a male individual that

has lost its chromosome Y, while “45,X” is an individual with monosomy X (only one

chromosome), meaning they never had another sex chromosome in the first place.

These karyotypes are partonomically identical, but are considered different. From

this edge case, we learn that history is important when defining karyotypes.

(defclass k45_X

:super

(exactly hasPart 1 HumanChromosomeXBandpTer)

(exactly hasPart 1 HumanChromosomeXBandp22.3)

(exactly hasPart 1 HumanChromosomeXBandp22.2)

... 11 hasPart relations removed ...

(exactly hasPart 1 HumanChromosomeXBandqTer))

Listing 5.4: Incomplete karyotype definition for a female individual with Tuners
Syndrome using the partonomic approach.

Therefore, we modelled karyotypes using what we call event-based change (from a

normal karyotype, in a diploid the normal is either “46,XX”, “46,XY” or “46,XN”).

This way of modelling is similar to the ISCN Strings.

- 91 -

Chapter 5: Modelling Karyotypes

5.3.3 The event-based change axiomitisation

Similar to ISCN Strings representation, the event-based change approach explicitly

asserts changes from the normal karyotype (R2). So, for example, to satisfy R3, we

use addition and deletion events which describe chromosomal gain and loss respec-

tively. An example event-based representation of a chromosomal gain abnormality

using a cardinality restriction can be seen in Listing 5.5.

(exactly hasDirectEvent 1

(and Addition HumanChromosome21))

Listing 5.5: Example chromosomal gain restriction “+21” utilising the hasDi-

rectEvent object property.

However this numerical abnormality information on its own is not sufficient as we do

not know if we are modelling disomy 21 in a haploid biological entity or trisomy 21

in diploid biological entity, and so on. Therefore, in using the event-based approach,

all OWL Karyotypes must explicitly state their constitutional karyotype (R6). An

example definition of a constitutional karyotype using an existential restriction can

be seen in Listing 5.6.

(some derivedFrom k46_XX)

Listing 5.6: Example constitutional karyotype restriction using the derivedFrom

object property.

Like the ISCN String representation, we can infer the chromosome aneuploids, using

the explicit numerical abnormalities and constitutional karyotype. In the k47_XX_+21

OWL Karyotype (see Listing 5.7), we know that the OWL Karyotype is a type of

near-diploid cell (R2), therefore we have three of chromosome 21. This implicit

condensation of knowledge is beneficial as the expanded listing of “47,XX,+21”

would be similar to the partonomic approach.

(defclass k47_XX_+21

:super

(some derivedFrom k46_XX)

(exactly hasDirectEvent 1

(and Addition HumanChromosome21)))

Listing 5.7: Complete karyotype definition for a female individual with an inversion
abnormality using the event-based change approach.

In order to model structural abnormalities as required by R4, each structural ab-

- 92 -

Chapter 5: Modelling Karyotypes

normality is modelled as an Event or Feature concept (20 in total). An example

event-based representation of an inversion abnormality using a cardinality restriction

can be seen in Listing 5.8. Unlike numerical abnormalities, structural abnormalities

require more information; the associated breakpoints (bands in which the breaks

have occurred) for that abnormality. In Listing 5.8, the associated breakpoints are

6p22 and 6q23.

(defclass k46_XX_inv!6!!p22q23!

:super

(some derivedFrom k46_XX)

(exactly hasDirectEvent 1

(and

Inversion

(some hasBreakPoint HumanChromosome6Bandp22)

(some hasBreakPoint HumanChromosome6Bandq23))))

Listing 5.8: Complete karyotype definition for a female individual with an inversion
abnormality using the event-based change approach.

Further examples of how the ISCN can be modelled using the event-based approach

and other modelling decisions applied in this development are shown in Section 5.4.

Most importantly, by using an approach that is similar to the ISCN specification

(changes in relation to the near-ploidy level), we can now logically differentiate

between the two identified edge cases.

Edge case 1: As discussed in Section 5.3.2, when using a partonomic approach, we

cannot differentiate between the “46,XX” and “46,XX,inv(1)(q11qTer)” karyotypes.

With an event-based approach this distinction is straight-forward. In Listing 5.9, we

show the latter, which is clearly different by the presence of the inversion restriction.

(defclass k46_XX_inv!1!!q11qTer!

:super

(some derivedFrom k46_XX)

(exactly hasDirectEvent 1

(and

Inversion

(some hasBreakPoint HumanChromosome1Bandq11)

(some hasBreakPoint HumanChromosome1BandqTer))))

Listing 5.9: Complete karyotype definition for a female individual with an inversion
abnormality using the event-based change approach.

Edge case 2: Similarly, we can distinguish “45,X,-Y” and “45,X” karyotypes, as

we explicitly assert the constitutional karyotype, as shown in Listings 5.10 and 5.11.

- 93 -

Chapter 5: Modelling Karyotypes

(defclass k45_X_-Y

:super

(some derivedFrom k46_XY)

(exactly hasDirectEvent 1

(and Deletion HumanChromosomeY)))

Listing 5.10: Complete karyotype definition for a cell line from a male individual
with a missing Y chromosome using the event-based change approach.

(defclass k45_X

:super

(some derivedFrom

(and

k46_XN

(exactly hasDirectEvent 1

(and Deletion HumanSexChromosome)))))

Listing 5.11: Complete karyotype definition for female individual with Tuners Syn-
drome using the event-based change approach.

From the comparison of these three approaches, we can clearly see that the event-

based change approach is the best method for modelling karyotypes. By chance we

have arrived at a similar way of representing karyotypes as specified in the ISCN,

which is to be expected due to the community’s decades of experience in representing

karyotypes.

- 94 -

Chapter 5: Modelling Karyotypes

5.4 Representing karyotypic knowledge

In this section, we present an overview of The Karyotype Ontology, its functionality

and show how we have fulfilled the requirements identified in Section 5.2.2.

5.4.1 Modelling chromosome components

In Section 5.3.2, we showed that modelling karyotype instances using a partonomic

approach can quickly expand the ontology because of the approach’s exhaustive

nature. This in turn potentially affects the reasoning performance of the ontology.

However there are some parts of The Karyotype Ontology that still benefit from

the use of the partonomic approach. For example, human chromosome components

(identified in Section 5.2) are still modelled using a partonomy approach.

Unlike karyotype instances, there are a finite number of chromosome components

(see Table 5.3), 1296 in fact, with approximately double that in terms of the number

of logical axioms. Therefore, the potential reasoning performance problem identified

earlier seems inconsequential.

We originally thought of modelling human chromosome band information as a strict

partonomy, utilising the hasPart relations. A resulting definition of human chromo-

some 1 (including all bands from all five resolutions) can be seen in Listing 5.12.

(defclass HumanChromosome1

:super

HumanAutosome,

(exactly hasPart 1 HumanChromosome1BandpTer)

(exactly hasPart 1 HumanChromosome1Bandp36.3)

(exactly hasPart 1 HumanChromosome1Bandp36.33)

... 87 hasPart relations removed ...

(exactly hasPart 1 HumanChromosome1BandqTer))

Listing 5.12: Chromosome definition for a normal human chromosome 1 using a
strict partonomy.

Instead we decided to model the partonomic relation using the inverted hasPart and

specialised isBandOf and isSubBandOf relations, cutting down the size of the entity

definitions10.

10We are uncertain whether this small change in semantics will impact the reasoning performance.
If required, we can invert, or explicitly add both the forward and inverse relations at a later date.

- 95 -

Chapter 5: Modelling Karyotypes

The use of partonomy for human chromosomal components is beneficial as it is used

to enforce hierarchy as well as the existence of the chromosome components and the

relations involving them in the ontology. For example a HumanTelomere cannot be

a isSubBandOf of HumanChromosome. This partonomic modelling of the chromosome

components fulfils R1.

5.4.2 Modelling normal karyotypes

In The Karyotype Ontology, normal karyotypes for each ploidy level are explicitly

defined as BaseKaryotype subclasses (R2). Diploid karyotypes are represented as

using the k46_XN11 class, i.e. a karyotype that has one chromosome X and one other

sex chromosome. The direct subclasses of the generic diploid karyotype are k46_XX

and k46_XY which represent the male and female karyotype respectively.

The complete list of normal karyotypes for haploids, diploids, triploids and

tetraploids are shown in Table 5.4.

Table 5.4: Table showing the available base karyotypes for each ploidy level.

Ploidy level Base karyotypes

Haploid k23,N

k23,X

k23,Y

Diploid k46,XN

k46,XX

k46,XY

Triploid k69,XNN

k69,XXX

k69,XXY

k69,XYY

Tetraploid k92,XNNN

k92,XXXX

k92,XXXY

k92,XXYY

k92,XYYY

These normal karyotypes are essential when using the event-based approach as it

implicitly tells us ploidy number and the copy number of each chromosome. It is also

11In this section, name refers to the Clojure symbol. The k prefix has been introduced because
Clojure symbols cannot start with a number.

- 96 -

Chapter 5: Modelling Karyotypes

useful in explicitly defining the constitutional karyotype of a karyotype; examples are

discussed further in Section 5.4.10. This explicit modelling of the normal karyotypes

fulfils R2.

5.4.3 Abnormality breakpoints

So far we have shown that chromosomal band abnormalities are modelled using the

hasBreakPoint object property (see Listing 5.8). However this type of modelling is

not without its limitations. This is especially true for insertion restrictions. For

example, in Listing 5.13, we show the ontological definition of “ins(2)(p25p13p23

)”12 (see Figure 5.8a). The breakpoints have correctly been encoded, however by

using this generic object property we have lost vital information in the translation.

From this definition we can no longer determine the substitution segment and its

loci. Due to this loss of information, we find that this ontological definition is also

true for “ins(2)(p13p23p25)” (see Figure 5.8b). Therefore, in order to ontologically

differentiate between these karyotypes we require more information; what we need

is some way of specifying which are providing or receiving breakpoints.

(exactly hasDirectEvent 1

(and

Insertion

(some hasBreakPoint HumanChromosome2Bandp13)

(some hasBreakPoint HumanChromosome2Bandp23)

(some hasBreakPoint HumanChromosome2Bandp25)))

Listing 5.13: Example insertion restriction “ins(2)(p25p13p23)” only utilising the
hasBreakPoint object property.

Therefore specialised subproperties of hasBreakPoint were created:

hasProvidingBreakPoint and hasReceivingBreakPoint. Now we can logically

differentiate between the “ins(2)(p25p13p23)” and “ins(2)(p13p23p25)” karyotypes

as shown in Listings 5.14 and 5.15.

12Note that “ins(2)(p25p13p23)” can also be written as “ins(2;2)(p25;p13p23)”.

- 97 -

Chapter 5: Modelling Karyotypes

(a) An Ideogram for “ins(2)(p25p13p23
)”

(b) An Ideogram for “ins(2)(p13p23p25
)”

Figure 5.8: Two valid representations of the ontological modelling shown in List-
ing 5.13

- 98 -

Chapter 5: Modelling Karyotypes

(exactly hasDirectEvent 1

(and

Insertion

(some hasProvidingBreakPoint HumanChromosome2Bandp13)

(some hasProvidingBreakPoint HumanChromosome2Bandp23)

(some hasReceivingBreakPoint HumanChromosome2Bandp25)))

Listing 5.14: Example insertion restriction“ins(2)(p25p13p23)”using specialised sub
properties of hasBreakPoint.

(exactly hasDirectEvent 1

(and

Insertion

(some hasProvidingBreakPoint HumanChromosome2Bandp23)

(some hasProvidingBreakPoint HumanChromosome2Bandp25)

(some hasReceivingBreakPoint HumanChromosome2Bandp13)))

Listing 5.15: Example insertion restriction “ins(2)(p13p23p25)” using specialised
subproperties of hasBreakPoint.

These specialised subproperties are not just useful for Insertion events, they are

also useful in defining Translocation events. This explicit modelling of abnormality

breakpoints partially fulfils R4.

5.4.4 Orientation of substitution segments

So far we have shown abnormalities that have the same orientation as the origin,

which is known as a direct substitution. Here, we show that this modelling is not

explicit enough when modelling duplication events that have been inverted. For

example, in Listing 5.16 we show the ontological definition of “dup(1)(q25q22)” (see

Figure 5.9) and whilst the breakpoints have been correctly encoded, by using the

generic OWL entity Duplication we have lost vital information in the translation.

From this definition we can no longer determine if this duplicated segment is inverted

(i.e. “dup(1)(q25q22)”) or direct (i.e. “dup(1)(q22q25)”). This lack of detail means

that to ontologically differentiate the two, we require more specific OWL classes.

- 99 -

Chapter 5: Modelling Karyotypes

Figure 5.9: An Ideogram of an inverse duplication event.

(exactly hasDirectEvent 1

(and

Duplication

(some hasBreakPoint HumanChromosome1Bandq22)

(some hasBreakPoint HumanChromosome1Bandq25)))

Listing 5.16: Example inverse duplication restriction “dup(1)(q25q22)” using the
Duplication class.

Therefore specialised subclasses of Duplication were created: DirectDuplication

and InverseDuplication. Now we can differentiate between “dup(1)(q25q22)” and

“dup(1)(q22q25)”, as shown in Listings 5.18 and 5.17 respectively.

(exactly hasDirectEvent 1

(and

InverseDuplication

(some hasBreakPoint HumanChromosome1Bandq22)

(some hasBreakPoint HumanChromosome1Bandq25)))

Listing 5.17: Example inverse duplication restriction “dup(1)(q25q22)” using spe-
cialised subclasses of Duplication.

- 100 -

Chapter 5: Modelling Karyotypes

(exactly hasDirectEvent 1

(and

DirectDuplication

(some hasBreakPoint HumanChromosome1Bandq22)

(some hasBreakPoint HumanChromosome1Bandq25)))

Listing 5.18: Example direct duplication restriction “dup(1)(q22q25)” using spe-
cialised subclasses of Duplication.

This modelling works for simple abnormalities such as Duplication and Insertion

events, but does not hold for abnormalities such as Translocation events, where it

is possible that not all of the “substitutions” in the Translocation event are direct

or inverse, but a combination of both orientations. For example the “(5;14;9)(q1

3q23;q24q21;p12p23)” karyotype has two direct and one inverse substitutions (see

Figure 5.10). In this instance it makes more sense to assert an Inversion abnormality

for the one inverted substitution, as shown in Listing 5.19.

Figure 5.10: An Ideogram of a translocation event that contains direct and inverse
substitutions.

- 101 -

Chapter 5: Modelling Karyotypes

(exactly hasDirectEvent 1

(and

Translocation

(and

(some hasProvidingBreakPoint HumanChromosome14Bandq21)

(some hasProvidingBreakPoint HumanChromosome14Bandq24)

(some hasReceivingBreakPoint HumanChromosome5Bandq13)

(some hasReceivingBreakPoint HumanChromosome5Bandq23))

(and

(some hasProvidingBreakPoint HumanChromosome14Bandq21)

(some hasProvidingBreakPoint HumanChromosome14Bandq24)

(some hasReceivingBreakPoint HumanChromosome9Bandp12)

(some hasReceivingBreakPoint HumanChromosome9Bandp23))

(and

(some hasProvidingBreakPoint HumanChromosome5Bandq13)

(some hasProvidingBreakPoint HumanChromosome5Bandq23)

(some hasReceivingBreakPoint HumanChromosome14Bandq21)

(some hasReceivingBreakPoint HumanChromosome14Bandq24))

(and

(some hasDirectEvent

(and

Inversion

(some hasBreakPoint HumanChromosome14Bandq21)

(some hasBreakPoint HumanChromosome14Bandq24))))))

Listing 5.19: Example translocation restriction “t(5;14;9)(q13q23;q24q21;p12p23)”
with a mixture of direct and inverse “substitutions”. In this example the 14q21 to
14q24 segment is inverted.

This modelling works well for Translocation events but is unnecessary within the

Duplication and Insertion patterns. In Listing 5.20, we see that the break point

information is duplicated. Thus both ways of modelling are available to the user.

This explicit modelling of abnormality orientation fulfils part of R4.

(exactly hasDirectEvent 1

(and

Duplication

(some hasBreakPoint HumanChromosome1Bandq22)

(some hasBreakPoint HumanChromosome1Bandq25)

(some hasDirectEvent

(and

Inversion

(some hasBreakPoint HumanChromosome1Bandq22)

(some hasBreakPoint HumanChromosome1Bandq25)))))

Listing 5.20: Example inverse duplication restriction “dup(1)(q25q22)” using the
Inversion event.

- 102 -

Chapter 5: Modelling Karyotypes

5.4.5 Partial knowledge

So far we have only shown abnormalities with complete information. ISCN pro-

vides a syntax for situations where we are unable to determine the origin segment

or the exact breakpoint loci. Here, a question mark (?) is used in the ISCN String.

Take as an example the ISCN String “ins(1,?)(p22,?)”; in this exemplar, an inser-

tion event has occurred at 1p22, although we are uncertain as to its origin. One

benefit of OWL is its ability to represent partial knowledge straight-forwardly. We

represent this partial knowledge by using the more generic parent class, such as

HumanChromosomeBand (see Listing 5.21).

(exactly hasDirectEvent 1

(and

Insertion

(some hasReceivingBreakPoint HumanChromosome1Bandp22)

(some hasProvidingBreakPoint HumanChromosomeBand)))

Listing 5.21: Example inversion restriction with partial information.

5.4.6 Modelling uncertainty

The ISCN also provides a syntax for situations where we are uncertain about the

abnormality or origin segment. Here, a question mark (?) is also used in the

ISCN String (i.e. the question mark character precedes the potential abnormality

description). An example ISCN String is the“46,XX,?del(1)(q12)”; in this exemplar,

it is possible that a deletion event has occurred at 1q12, however we cannot be

sure. We model uncertain events using the specialised subproperty of hasEvent;

hasUncertainEvent (see Listing 5.22).

(defclass k46_XX_?del!1!!q12!

:super

(some derivedFrom k46_XX)

(exactly hasUncertainEvent 2

(and

Deletion

(some hasBreakPoint HumanChromosome1Bandq12)

(some hasBreakPoint HumanChromosome1BandqTer))))

Listing 5.22: Example karyotype with an uncertain structural abnormality.

- 103 -

Chapter 5: Modelling Karyotypes

5.4.7 Multiple copies of rearranged chromosomes

So far we have only shown distinct abnormalities, i.e. the abnormality definition

only occurs once in the karyotype. If the same abnormality definition occurs more

than once, i.e. the same abnormality affects the homologous chromosome, then the

ISCN String uses a multiplication sign (x). An example ISCN String the “46,XX,

del(6)(q13q23)x2”; in this exemplar, the same deletion effect occurs in both copies

of chromosome 6. Ontologically, we can model this replication by simply increasing

the cardinality of the restriction (see Listing 5.23).

(defclass k46_XX_del!6!!q13q23!x2

:super

(some derivedFrom k46_XX)

(exactly hasDirectEvent 2

(and

Deletion

(some hasBreakPoint HumanChromosome6Bandq13)

(some hasBreakPoint HumanChromosome6Bandq23))))

Listing 5.23: Example karyotype with multiple copies of rearranged chromosomes.

5.4.8 Derivative chromosomes

During the modelling of our structural abnormalities, we found that unlike the other

Events and Features, a derivative chromosome is generated by multiple abnormalities

occurring within a single chromosome13 i.e. through the composition of many events.

An example ISCN String is “der(5)add(5)(p15.3)add(5)(q23)”; in this exemplar,

a derivative chromosome 5 is generated by the addition of unknown material at

breakpoints 5p15.2 and 5q23 (see Listing 5.24). This explicit modelling of derivative

chromosomes fulfils part of R4.

13Or by the rearrangement of two or more chromosomes.

- 104 -

Chapter 5: Modelling Karyotypes

(exactly hasDirectFeature 1

(and

DerivativeChromosome

(some isRearrangedChromosomeOf HumanChromosome5)

(hasDirectEvent some

(and

Addition

(some hasBreakPoint HumanChromosome5Bandp15.3)))

(hasDirectEvent some

(and

Addition

(some hasBreakPoint HumanChromosome5Bandq23)))))x

Listing 5.24: Example derivative chromosome restriction
“der(5)add(5)(p15.3)add(5)(q23)”.

5.4.9 Abnormalities involving homologous chromosomes

So far we have shown abnormalities that affect two non-homologous chromosomes.

Unfortunately, this modelling is not explicit enough for insertion events that affect

homologous chromosomes. For example, in Listing 5.25 we show an ontological

definition of “ins(2;2)(p13;q21q31)” (see Figure 5.11). From this definition, we can

no longer determine if this insertion takes place in the same chromosome (i.e. “ins

(2)(p13;q21q31)”) or affects two chromosomes (i.e. “ins(2;2)(p13;q21q31)”)14. This

lack of knowledge means that to ontologically differentiate the two, we require more

specific OWL classes.

(exactly hasDirectEvent 1

(and

Insertion

(some hasProvidingBreakPoint HumanChromosome2Bandq21)

(some hasProvidingBreakPoint HumanChromosome2Bandq31)

(some hasReceivingBreakPoint HumanChromosome2Bandp13)))

Listing 5.25: Example insertion restriction “ins(2;2)(p13;q21q31)” using the Inser-

tion class.

Therefore specialised subclasses of Insertion were created –

InsertionOneChromosome and InsertionTwoChromosome. Now we can differen-

tiate between “ins(2;2)(p25;p13p23)” and “ins(2)(p13;p23p25)” as shown in

Listings 5.14 and 5.15.

14ISCN also does not make this distinction naturally, and has to resort to underlining one
chromosome to distinguish the two.

- 105 -

Chapter 5: Modelling Karyotypes

Figure 5.11: An Ideogram showing an insertion event that affects homologous chro-
mosomes.

(exactly hasDirectEvent 1

(and

InsertionOneChromosome

(some hasProvidingBreakPoint HumanChromosome2Bandq21)

(some hasProvidingBreakPoint HumanChromosome2Bandq31)

(some hasReceivingBreakPoint HumanChromosome2Bandp13)))

Listing 5.26: Example insertion restriction ISCN Stringins(2;2)(p13;q21q31) using
specialised subclasses of Insertion.

(exactly hasDirectEvent 1

(and

InsertionTwoChromosome

(some hasProvidingBreakPoint HumanChromosome2Bandq21)

(some hasProvidingBreakPoint HumanChromosome2Bandq31)

(some hasReceivingBreakPoint HumanChromosome2Bandp13)))

Listing 5.27: Example insertion restriction “ins(2;2*)(p13;q21q31)” using specialised
subclasses of Insertion.

- 106 -

Chapter 5: Modelling Karyotypes

These specialist subclasses are specific to Insertion events. In all other ontological

abnormality definitions, we can implicitly determine if homologous chromosomes

are involved. This modelling of abnormalities that affect homologous chromosomes

fulfils R5.

5.4.10 Constitutional anomalies

As described in Section 5.2, abnormalities can be classified as either constitutional or

acquired. So far we have only shown the ontological modelling of acquired abnormal-

ities, i.e. abnormalities that develop in somatic cells. If the abnormality is in-born,

i.e. is present in most cells of an individual from early embyrogenesis, then the

abnormality is classified as a constitutional abnormality. Generally, constitutional

karyotypes are indicted with the c suffix in ISCN; in The Karyotype Ontology we

model constitutional abnormalities explicitly, using the derivedFrom restriction. An

example ISCN String is the “k48,XXYc,+X”; in this exemplar, a male individual

has two extra X chromosomes, one he was born with, the other has been acquired,

(see Listing 5.28). This explicit modelling of constitutional abnormalities fulfils R6.

(defclass k48_XXYc_+X

:super

(some derivedFrom

(and

(some derivedFrom k46_XY)

(exactly hasEvent 1

(and Addition HumanChromosomeX))))

(exactly hasEvent 1

(and Addition HumanChromosomeX)))

Listing 5.28: Example karyotype with constitutional anomalies.

5.4.11 Mosaic karyotypes

So far we have not shown the ontological modelling of compositional karyotypes such

as mosaic or chimera karyotypes; i.e. where an individual human appears to have

more than one cell line with different karyotypes.

Generally, mosaic karyotypes are preceded with the mos abbreviation, with clone

karyotypes separated by the forward slash character (/). An example ISCN String

- 107 -

Chapter 5: Modelling Karyotypes

is “mos47,XY,+21[12]/46,XY[18]”; in this exemplar, we have a cell line from a male

individual that contains 18 normal cells and 12 cells with an acquired chromosome

21 (see Listing 5.29).

In The Karyotype Ontology, chimera karyotypes have a very similar represen-

tation; in order to differentiate between the two, the MosaicKaryotype and

ChimeraKaryotype classes are explicitly defined. This explicit modelling of com-

positional karyotypes fulfils R7.

(defclass kmos_47_XY_+21!12!_46_XY!18!

:super

MosaicKaryotype

(and

(and

HumanKaryotype

(some derivedFrom k46_XY)

(exactly 1 hasEvent

(and Addition

HumanChromosome21)))

(hasClone value 12))

(and

k46_XY

(hasClone value 18)))

Listing 5.29: Example ontological model of a mosaic karyotype.

5.4.12 Identifying the (near-)ploidy levels

As discussed in Section 5.2, we can use the number of chromosomes to determine

the (near-)ploidy level of a karyotype. In The Karyotype Ontology, we do not

explicitly define the number of chromosomes, but implicitly in the BaseKaryotype.

Thus, to find all diploid karyotypes we use the equivalency definition, as shown in

Listing 5.3015. The definitions for all other ploidy levels are similar to the diploid

definition shown in Listing 5.30; the concept name and base karyotypes are replaced

as appropriate. This explicit modelling of (near-)ploidy levels fulfils R9.

15As the derivedFrom object property is transitive, we also find diploid karyotypes that contain
constitutional abnormalities.

- 108 -

Chapter 5: Modelling Karyotypes

(defclass DiploidKaryotype

:equivalent

(and

HumanKaryotype

(some derivedFrom k46,XN)))

Listing 5.30: Tawny-OWL definition for “diploid” karyotypes using the partonomic
approach.

5.4.13 Defining sex

While building this ontology, we found that sex is not as intuitive as it seems16. We

need to be able to describe “male” and “female” karyotypes. The obvious definition

for sex was that a “male” karyotype should be defined as a karyotype with a Y

chromosome, while a “female” karyotype as one without, as shown in Listings 5.31

and 5.32 respectively. This type of modelling would be easier with a partonomic

ontology rather than event-based change modelling. However further investigation

showed that these definitions are, in fact, too simplistic as the karyotype“45,X,-Y”17,

has no Y chromosome, yet would generally be considered to be a “male” karyotype.

(defclass MaleKaryotype

:equivalent

(and

Karyotype

(some hasPart HumanChromosomeY)))

Listing 5.31: Tawny-OWL definition for “male” karyotypes using the partonomic
approach.

(defclass FemaleKaryotype

:equivalent

(and

Karyotype

(not MaleKaryotype)))

Listing 5.32: Tawny-OWL definition for “female” karyotypes using the partonomic
approach.

Therefore, the finalised definition for sex, as shown in Listing 5.33 and Listing 5.34,

considers the history of the (constitutional) karyotype by asserting a derivedFrom

16Ontologically, as in real life.
17A male-derived cell line which has lost its Y chromosome.

- 109 -

Chapter 5: Modelling Karyotypes

relation. Using these definitions, the “45,X,-Y” karyotype can be correctly stated as

being a “male” karyotype.

(defclass MaleKaryotype

:equivalent

(or

k46_XY

(some derivedFrom k46_XY)))

Listing 5.33: Tawny-OWL definition for male karyotypes.

(defclass MaleKaryotype

:equivalent

(or

k46_XX

(some derivedFrom k46_XX)))

Listing 5.34: Tawny-OWL definition for female karyotypes.

However these definitions are unable to ontologically categorise the“45,X”karyotype

as either female or male though it would generally be considered a“female”karyotype

(see Listing 5.11).

There is no correct answer to this problem. We could either redefine our female

karyotype to include the “45,X” karyotype or add phenotypic sex. This decision

needs to be taken by the domain experts themselves.

- 110 -

Chapter 5: Modelling Karyotypes

5.5 Assessment

As well as providing a specification, we are fortunate that ISCN2013 provides many

examples; we are using these examples as an initial evaluation for our ontology, to

determine whether The Karyotype Ontology is expressive enough to represent these

exemplar karyotypes (R10).

We wanted the Clojure symbols of these exemplars to be related to the ISCN String

as, in most cases, there is no other more humanly readable name. Thus the following

changes were incorporated to ensure that the Clojure symbol was legal with all

associated syntaxes (i.e. Clojure, Manchester Syntax, and the Uniform Resource

Identifier (URI) specification):

• All karyotype exemplars start with the k character – Clojure symbols cannot

start with numbers

• Replaced ; character with – a semicolon is a comment in Clojure

• Replaced (and) characters with ! – parenthesis are list delimiters in Clojure

• Replaced , character with – a comma is a separator in Manchester Syntax

• Replaced / character with – a forward slash is a namespace separator in

Clojure

During this implementation process, we have also discovered two difficulties with

the existing ISCN2013 specification; in both cases a simple and intuitive correction

is possible:

• The lack of bands 17q11 and Xq12 in figures showing chromosome bands

(page 28 and page 31); the figures are the only list of all chromosome bands

in ISCN2013 (and ISCN2009 [136]).

• The absence of a band Yq11.2 in the 300 band resolution (11.21, 11.22, 11.23

do exist on page 31) while this band is used in several exemplars (for example

on page 78). This band does exist in ISCN2005 – a past specification.

- 111 -

Chapter 5: Modelling Karyotypes

In total, The Karyotype Ontology has 1616 classes, 29 object properties and 1

datatype property; see Table 5.5 for the complete class statistics.

Table 5.5: Table showing the type and number of implemented classes in The Kary-
otype Ontology.

Class Type Number of Classes

Chromosome 27
Chromosome Component 1
Centromere 25
Telomere 25
Bands and Sub-bands 1286
Event 20
Feature 21
Karyotype 1
Base Karyotype 16
ISCN Example Karyotype 170
Named Karyotype 18
Resolution 6

Total Number 1616

Overall, our ontological representation of karyotypes has met almost all of the

functional requirements identified in Section 5.2.2, with the exception of R4 in its

entirety; specifically structural rearrangements such as Fragile Sites and Homoge-

neously Staining Regions. As a result, in total, we have represented 170 (of 260)18

karyotypes in The Karyotype Ontology. Further work is required in order to fulfil

R4, which in turn should enable the success of R10.

One limitation still exists; there may be more than one“path”to the same karyotype.

One extreme example of this limitation is the “46,XX,-1,-2,. . . ,-22,-X” and “23,X”

karyotypes. However, this limitation also exists within the ISCN, thus we do not

make things any worse.

18This value does not include the FISH and duplicate ISCN String exemplars.

- 112 -

Chapter 5: Modelling Karyotypes

5.6 Summary

Currently, karyotypes have only been represented as experimental entities, or results

of medical procedures. In this chapter, we discuss the steps taken to provide a com-

putational and formal representation and interpretation of karyotypes (RQ1). These

steps include the analysis of the ISCN to identify functional (and non-functional)

requirements, the design and implementation (i.e. modelling decisions) of the The

Karyotype Ontology, and lastly the testing of this model using exemplars from the

ISCN. To summarise, we found that the resulting ontology satisfies the functional

requirements identified in Section 5.2.2, using the exemplars provided by the ISCN

as evidence.

Indeed, in successfully building a computational representation of the ISCN, we have

also shown that the pattern-driven and programmatic approach is applicable in the

modelling of new biological knowledge. In addition, we have produced an ontology

that will potentially be valuable for cytogeneticists by transforming collections of

karyotypes to a form that is easy to query, validate and maintain (RQ2). However,

as discussed in Chapter 2 the knowledge of karyotypes is bounded as the existing

interpretation (i.e. the ISCN specification) is already mature. Thus we must also

show that this approach can model other types of biological knowledge, specifically

mitochondria, where this complex and incomplete knowledge can be found in many

different sources and formats (see Chapter 7).

Lastly, we have shown that by using this approach we enforce consistency mean-

ing we can potentially identify documentation errors (RQ3). By explicitly encoding

the biological knowledge underlying the ISCN, we were able to identify two miss-

ing bands. Whilst encoding the ISCN exemplars, we found that several exemplars

referred to a band that did not exist.

In the next chapter, we aim to prove that The Karyotype Ontology also satisfies the

last three non-functional requirements: performance, scalability, and extensibility.

- 113 -

Chapter 5: Modelling Karyotypes

- 114 -

6
Scaling The Karyotype

Ontology

Contents
6.1 Introduction . 116

6.2 Creating random ontologies 117

6.3 Performance . 119

6.4 Scaling The Karyotype Ontology 121

6.5 Incorporating affects restrictions 122

6.5.1 The affects implementations 122

6.5.2 Results . 127

6.6 Summary . 129

- 115 -

Chapter 6: Scaling The Karyotype Ontology

6.1 Introduction

Over the years, the number of ISCN Strings has grown to at least a hundred thousand

across multiple research databases that have clinical importance. Now we have the

initial prototype of The Karyotype Ontology (see Chapter 5), we need to test that

the ontology could handle these numbers of instances, as well as investigate the

general scalability performance of the model (R13).

Our pattern driven approach means that it is possible to change and refine our

ontological models rapidly, even where these changes affect many entities within

the ontology (R14). In this chapter, we use this capability to investigate the per-

formance of several different axiomitisations of the same knowledge; specifically, a

deletion or inversion event affects a sequence of bands between two breakpoints.

There are various ways to implement this relation, however a priori it is difficult to

determine which of these will work best, particularly with respect to non-functional

characteristics such as reasoning time. Here, we test the scalability of three different

axiomatisations for the affects relation. The programmatic methodology of The

Karyotype Ontology means that we can test scaling within the same environment

(Clojure); for example, by generating random karyotypes for an ontology as well as

collating and graphing the reasoning results of many random ontologies.

The corresponding code and supplementary data of our investigation into the scal-

ing performance of The Karyotype Ontology and the incorporation of the affects

relation can be found at the project website1.

1https://github.com/jaydchan/tawny-karyotype-scaling

- 116 -

https://github.com/jaydchan/tawny-karyotype-scaling

Chapter 6: Scaling The Karyotype Ontology

6.2 Creating random ontologies

In order to test the scalability of The Karyotype Ontology, multiple test ontolo-

gies were required. Using Tawny-OWL and the Tawny-Karyotype project, we can

programmatically create N number of random ontologies.

Tawny-Karyotype provides us with the ability to generate K number of random

karyotypes for an ontology; each of these random karyotypes has one random

derivedFrom restriction (defining the sex) and M number of hasDirectEvent re-

strictions. This is coded in the random-karyotype-driver function.

In order to test the effects of the different affects relation implementations on

The Karyotype Ontology, we aim to compare the reasoning times for: an ontology

with no affects relation, and three further ontologies that contain one affects

implementation each. This was accomplished by refining the random ontologies and

applying each affects implementation (A). These implementations are available in

the functions affects1-driver, affects2-driver and affects3-driver respectively.

For this work we use the following variable values:

N = number of ontologies = 100

K = number of karyotype classes within an ontology = { 101 102 103 104 105}

M = number of event restrictions for each karyotype class = { 0 . . . 10 }

A = the affects implementation = { 0 . . . 3 } where 0 means an ontology that

has no affects relationship incorporated (i.e. null-affects) and 1, 2, 3 with the

closure-affects, sequence-affects, data-affects incorporated respectively.

This means that in total 22,000 ontologies were generated.

The main limitation of our randomness is that we do not know that the distributions

in our random karyotypes are similar to a real-world collection of karyotypes. Part

of the problem here is that we do not have a large body of karyotypes in a structured

format2, so this is difficult or impossible to do.

2This is why we are writing The Karyotype Ontology.

- 117 -

Chapter 6: Scaling The Karyotype Ontology

Therefore, we have picked a simplistic scheme for generating random ontologies; first,

we only use 43 from the 13 events, and secondly only use the 300-band level chromo-

some bands from chromosome 1. The Karyotype Ontology is highly patternised, and

all events are defined in terms of cardinality and existential restrictions, therefore

this simple scheme should be sufficient.

3Chromosomal addition, chromosomal deletion, chromosomal band addition and chromosomal
band deletion

- 118 -

Chapter 6: Scaling The Karyotype Ontology

6.3 Performance

Due to the large number of ontologies that are to be generated, then reasoned, we

automated the launch of the tests. For this, we used shell scripts which also allowed

each reasoning test to be performed in a clean, newly invoked Java Virtual Ma-

chine (JVM). Only the reasoning time was measured i.e. JVM start, and ontology

load time was excluded. The newly invoked JVM avoids the risk of optimisations

increasing later performance, although potentially introduces a small start-up over-

head – given the overall length of the reasoning task this is probably not significant.

We tested two types of computer specifications:

C1 – Intel Core i7 CPU 920, 8 multi-core processor with 2.67GHz speed and 6 GiB

RAM.

C2 – Intel Xeon E5335, 8 multi-core processor with 2.00GHz speed and 12 GiB

RAM.

While C1 can generate up to 105 karyotypes in one ontology, it can only reason up

to 104 number of karyotypes. For 105 number of karyotypes, the reasoner is unable

to complete the reasoning process due to insufficient memory. This conflicts with

our initial requirement that there now exists around 105 ISCN Strings. However

C2, can generate and reason up to 105 karyotypes4. These results suggest that The

Karyotype Ontology can scale to individual lab size (104) easily while world scale

(105) will require more resources.

On C1, serial generation and reasoning of 176,000 ontologies takes about two days

to complete, while on C2, it took about a week to complete only 220 ontologies. It

is because of this substantial increase of time taken, that for the rest of this chapter

we will discuss the results produced by C1.

In order to ensure that the reasoning tasks are not affected by possible time-sensitive

background computer processes, we randomise the reasoning tasks. The results of

these tasks is shown in Figure 6.1. We can see no obvious correlation, so we conclude

that our results are not affected by time-sensitive background computer processes.

4While it can also generate up to 106 karyotypes, it can only reason up to 105

- 119 -

Chapter 6: Scaling The Karyotype Ontology

Figure 6.1: Scatter plot of the time taken versus the run index for randomised
reasoning tasks.

- 120 -

Chapter 6: Scaling The Karyotype Ontology

6.4 Scaling The Karyotype Ontology

In this section, we investigate whether The Karyotype Ontology scales well by cal-

culating the mean reasoning performance (R13), by reasoning over a set of random

ontologies using HermiT [137]5. The mean time taken to reason an ontology grouped

by M number of event restrictions and K number of karyotypes, can be seen in Fig-

ure 6.2.

Figure 6.2: Line chart showing the mean reasoning times versus the number of
random karyotype classes for a variety of restrictions. Each line represents the mean
reasoning time taken for various M number of event restrictions.

From graph 6.2, we can see that, unsurprisingly, the reasoning time increases as

the number of restrictions (M) increases, and the number of random karyotypes (K)

increases.

5At this time of writing (2014) Tawny-OWL only supports two maven compliant reason-
ers: ELK see http://code.google.com/p/elk-reasoner/ and HermiT see http://github.com/
phillord/hermit-maven

- 121 -

http://code.google.com/p/elk-reasoner/
http://github.com/phillord/hermit-maven
http://github.com/phillord/hermit-maven

Chapter 6: Scaling The Karyotype Ontology

6.5 Incorporating affects restrictions

In this section, we show an extension of The Karyotype Ontology (R14). We do

this by incorporating affects restrictions, which is currently not modelled in The

Karyotype Ontology. For example, a deletion or inversion event affects a sequence

of bands between two breakpoints. In the thesis, we investigate three ways of imple-

menting this relation and how these implementations effect reasoning performance.

The four representations are:

A0 null-affects no affects relation is incorporated.

A1 closure-affects all bands are named, and a closure axiom added.

A2 sequence-affects a variant of the sequence ODP.

A3 data-affects use of ordinal numbers for the chromosome bands as a datatype.

The diagrammatic representation of these affects implementations can be seen in

Figure 6.36.

A priori, it is difficult to determine which of these implementations will work best,

particularly with respect to non-functional characteristics such as reasoning time.

With the use of Tawny-OWL, Tawny-Karyotype and HermiT we are able to test this

by generating multiple test versions of The Karyotype Ontology (see Section 6.2).

6.5.1 The affects implementations

In order to demonstrate the three affects implementations, we will use the same

example as shown in Listing 6.1. Here, we define a karyotype with an inversion

restriction that involve breakpoints 1p117 and 1p13. Therefore the band expansion

of the breakpoints 1p11 and 1p13 is an ordered sequence of three bands; 1p11, 1p12

and 1p13. As the implementations are encoded in different namespaces, name clashes

are averted and the same function name is used, in this case affects-band.

6These diagrams are similar to the formal diagrams seen in the ODPs public catalog.
7In this chapter, chromosome band concept names have been simplified to ensure a concise

syntax; for example, 1p11 actually refers to HumanChromosome1Bandp11 in the ontology.

- 122 -

http://odps.sourceforge.net/odp/html/index.html

Chapter 6: Scaling The Karyotype Ontology

(a) closure-affects implementation

(b) sequence-affects implementation

(c) data-affects implementation

Figure 6.3: OWL to UML representations of each affects implementation using
the exemplar in Listing 6.1.

- 123 -

Chapter 6: Scaling The Karyotype Ontology

(defclass k46_XX_inv!1!p11p13!

:super

(some derivedFrom k46_XX)

(inversion 1 1p11 1p13)

(affects-band [1p11 1p12 1p13]))

Listing 6.1: The usage used to define affects restrictions.

Affects type 1 : (closure-affects) – One way of implementing the affects restric-

tions for karyotype classes that have event restrictions, is through the use of the

generic closure axiom. Thus the usage pattern shown in Listing 6.1 will expand to

generate four restrictions; three existential and one universal restriction (see List-

ing 6.2)8.

(defclass k46_XX_inv!1!p11p13!

:super

(some derivedFrom k46_XX)

(inversion 1 1p11 1p13)

(some affects 1p11)

(some affects 1p12)

(some affects 1p13)

(only affects (or 1p11 1p12 1p13)))

Listing 6.2: The expansion of an example karyotype with an inversion event and
affects object property restrictions as a closure axiom.

The encoding of this pattern is simplistic and only requires the use of the predefined

Tawny-OWL some-only generic pattern (see Section 4.2). The full pattern encoding

is shown in Listing 6.3.

(defn affects-band [bands]

(some-only affects bands))

Listing 6.3: The pattern used to define affects restrictions as a closure axiom.

In the existence of more than one insertion restriction, bands are collated. The

resulting collection is then applied to the affects-band pattern.

Affects type 2 : (sequence-affects) – The second way of implementing the affects

relation in karyotypes, uses a variant of the sequence ODP [31]. Thus the usage

pattern shown in Listing 6.1 will expand to generate four existential restrictions;

one of which explicitly models the order of the bands (see Listing 6.4).

8In real usage, we would expect the list of bands to be generated automatically using Tawny-
OWL

- 124 -

Chapter 6: Scaling The Karyotype Ontology

(defclass k46_XX_inv!1!p11p13!

:super

(some derivedFrom k46_XX)

(inversion 1 1p11 1p13)

(some affects 1p11)

(some affects 1p12)

(some affects 1p13)

(some affects

(and 1p11

(some directlyPrecedes

(and 1p12

(some directlyPrecedes 1p13))))))

Listing 6.4: The expansion of an example karyotype with an inversion event and
affects object property restriction implemented as a sequence ODP.

The full pattern encoding for this implementation is shown in Listing 6.5. The new

Clojure part of this definition is the clojure.core vector?9 function; this function

checks if the given parameter is an instance of type vector (or not).

(defn affects-band [bands]

(list

(some affects bands)

(if (vector? bands)

(some affects

(apply sequence-odp bands)))))

Listing 6.5: The pattern used to define affects restrictions as a variant of the
sequence ODP.

This affects-band function makes use of a second pattern, namely the sequence-odp

function (see Listing 6.6); a recursive function that uses the directlyPrecedes object

property to implement the ODP. The new Clojure parts of this definition are the

clojure.core first10 and rest11 functions; these return the head element and tail

elements of a collection respectively.

9http://clojuredoc.org/clojure.core/vector_q
10https://clojuredocs.org/clojure.core/first
11http://clojuredoc.org/clojure.core/rest

- 125 -

http://clojuredoc.org/clojure.core/vector_q
https://clojuredocs.org/clojure.core/first
http://clojuredoc.org/clojure.core/rest

Chapter 6: Scaling The Karyotype Ontology

(defn sequence-odp [args]

(if (= 0 (count args))

(first args)

(and

(first args)

(some directlyPrecedes

(sequence-odp (rest args))))))

Listing 6.6: Example implementation of the sequence-odp function.

In the existence of more than one insertion restriction, unlike the first implementa-

tion, it is possible to determine the order of bands by reasoning in OWL. Potentially,

this would mean that the membership of directional classes such as DirectInsertion

or InverseInsertion could be inferred rather than asserted (see Section5.4.4).

Affects type 3 : (data-affects) – The third and last way of implementing affects

restrictions is as a datatype property and assign ordinal numbers to chromosome

bands. Thus the usage pattern shown in Listing 6.1 will expand to generate one

restriction (see Listing 6.712).

(defclass k46_XX_inv!1!p11p13!

:super

(some derivedFrom k46_XX)

(inversion 1 1p11 1p13)

(some affects (span >=< 12 14)))

Listing 6.7: The expansion of an example karyotype with an inversion event and
affects datatype property restriction. Here, 12 = 1p11, 13 = 1p12 and 14 = 1p13.

The full pattern encoding for this implementation is shown in Listing 6.8. The new

Clojure parts of this definition are:

• The Tawny-OWL min-max-inc function which applies an

OWLDatatypeMinMaxInclusiveRestriction OWL API restriction.

• The get-start-ordinal and get-finish-ordinal functions finds the start and

finish ordinal numbers respectively, for the first and last bands for a given

collection of bands.

12The span Tawny-OWL function returns a numeric datatype restriction, identified by its first
argument. In this example, (span >=< 12 14) returns a min max inclusive restriction, while the
>< argument would return a min max exclusive restriction.

- 126 -

Chapter 6: Scaling The Karyotype Ontology

(defn affects-band [bands]

(let [start (get-start-ordinal bands)

finish (get-finish-ordinal bands)]

(some affects (min-max-inc start finish))))

Listing 6.8: The pattern used to define data-affects restrictions.

Similar to the sequence-affects implementation, the ordering of the bands is explicit

within OWL and could be inferenced over.

6.5.2 Results

Using bash scripts and Tawny-OWL, we created 1200 refined ontologies – N=100

for each affects implementation (A) and K number of karyotypes with M=5 event

restrictions. The mean time taken to reason an ontology grouped by K number of

karyotypes then affects A implementation can be seen in Figure 6.4.

As with scaling in general (Figure 6.2), we can see (Figure 6.4) that the reasoning

time increases as the number of random karyotypes (K) increases for each affects

implementation. If we compare the three affects implementations we find that while

the reasoning times for all implementations increases with the number of karyotypes,

the data-affects which initially is the worst performer, scales to become the best,

while the closure implementation is initially the best and becomes the worst. Gen-

erally the reasoning times for the sequence-affects implementation seems consistent,

as it is mostly the second best representation of the three implementations (with

the exception of 103 karyotypes).

From these results we are unable to deduce the best way to implement the affects

relation due to the variability. However we can make the statements that for ontolo-

gies with ≤ 104 karyotypes, the closure-affects implementation is the best for the

affects relationship, while ontologies with ≥ 105 karyotypes, the data-affects im-

plementation is the best. In fact, the results suggest that all three implementations

scale reasonably well with respect to the null representation (null-affects).

- 127 -

Chapter 6: Scaling The Karyotype Ontology

(a) Reasoning times for 101 karyotypes. (b) Reasoning times for 102 karyotypes.

(c) Reasoning times for 103 karyotypes. (d) Reasoning times for 104 karyotypes.

Figure 6.4: Bar charts showing the mean reasoning times for each affects imple-
mentation from 101 to 104 number of karyotypes. As shown in the key, the blue
bar represents reasoning times for the original representation, while the red, green,
yellow bars represent the reasoning times for closure-affects, sequence-affects, and
data-affects implementation respectively.

- 128 -

Chapter 6: Scaling The Karyotype Ontology

6.6 Summary

In this chapter we have shown that with the use of multiple generated test ontologies

(see Section 6.2), we are able to successfully test the performance (R12), scalability

(R13) and extensibility (R14) of The Karyotype Ontology thus successfully proven

that The Karyotype Ontology has met the requirements (identified in Section 5.2.2).

This was accomplished due to the main benefit of a pattern-driven and programmatic

approach to ontology engineering (RQ3); once encoded we can automatically and

consistently (re-)generate ontologies easily and quickly. This means that any changes

in the code also effects the resulting ontology. As shown in Sections 6.2 we use

this ability to generate many random ontologies (i.e. test ontologies with random

karyotypes) of various sizes.

As shown in Section 6.4 we can use our random ontologies to determine how well the

computational representation scales. From our results we see that The Karyotype

Ontology generation and reasoning of 176,000 ontologies (that contain more than

200,000 axioms), is plausible on two desktop machines. While the slightly older

computer (C1) was unable to reason ontologies 105 karyotypes, due to the limited

memory available, the other computer (C2) was successful in this plight. This

suggests that we should be able to reason without any more resources.

As shown in Section 6.5 when we can apply new patterns to our random ontologies

we can quantitatively determine the effect different modelling representations have

on an ontology by how well they scale. We showed the reasoning results for three

different representations of an event which affects numerous chromosome bands.

Generally the results tell us that there are two viable ways of implementing the

affects restriction; the enumeration of bands (closure-affects) and the datatype

restriction of ordinal bands (data-affects), depending on the number of karyotypes

we wish to model. However, the non-functional scalability requirement is probably

not the best basis to make for this design decision. Instead, with Tawny-OWL, we

can keep all three implementations and allow downstream users of The Karyotype

Ontology to decide which implementation is best for them.

To summarise, we have shown a novel means to explore modelling choices and how

- 129 -

Chapter 6: Scaling The Karyotype Ontology

well they scale.

In the next chapter, we will investigate whether this programmatic and patternised

approach to building ontologies is also possible for another interesting domain of

biology; mitochondrial disease.

- 130 -

7
The Mitochondrial Domain

Contents
7.1 Introduction . 132

7.2 Stage 1 – Term Capture . 135

7.2.1 Term of the week . 135

7.2.2 Lab meetings . 136

7.2.3 Published papers . 136

7.2.4 Assessing the term capture techniques 139

7.3 Stage 2 – Competency Questions 140

7.4 Stage 3 – Refinement . 141

7.4.1 Canonicalising terms . 141

7.4.2 Identifying disease relevant terms 142

7.5 Stage 4 – Construction . 143

7.5.1 Constructing The Mitochondrial Disease Ontology classes . . 144

7.6 Stage 5 – Evaluation . 148

7.7 Summary . 149

- 131 -

Chapter 7: The Mitochondrial Domain

7.1 Introduction

The knowledge about mitochondria is complex and rich; we wished to build an

ontology representing some of this knowledge so that we could provide a formal

and computational interpretation of mitochondria and mitochondrial disease. This

also provides an opportunity to extend the programmatic and patternised ontology

development methodology developed and described in Chapter 5 to a new domain. In

contrast to The Karyotype Ontology, however, there is no existing specification that

we wished to formalise; rather the knowledge is represented in databases, academic

papers and individual academics. For this work, therefore, we start by describing

our experiments with knowledge capture, where we attempt to illicit the domain;

we then move onto formalising the knowledge, and the incorporation of existing

resources, into The Mitochondrial Disease Ontology.

An overview of the methodology being used to build The Mitochondrial Disease

Ontology can be seen in Figure 7.1. As with most ontology engineering approaches,

we can split the methodology into different stages. The five stages are:

S1 Term Capture – acquire knowledge about the mitochondrial domain

S2 Competency Questions – identify interesting questions about the mitochon-

drial domain

S3 Refinement – filter terms and competency questions with respect to the ontol-

ogy’s purpose and scope i.e. in this case inherited mitochondrial disease.

S4 Construction – build the ontology

S5 Evaluation – evaluate the ontology

While these different stages could be pursued in a traditional waterfall-style, we

instead take a more agile approach. This is for two main reasons: first, the time

required for the individual stages is hard to judge, which makes planning the process

to fit within the time available difficult; second, maintaining the interest of the

domain experts is not served by a lengthy process with no apparent end-outcomes.

- 132 -

Chapter 7: The Mitochondrial Domain

Figure 7.1: An overall pictorial representation of the methodology discussed in this
chapter. The fives stages have been highlighted in blue. The first three stages are
combinatorially known as the knowledge acquisition stage of the methodology that
results in a database of refined terms and competency questions. Feedback from
the evaluation stage is used for the next iteration of the ontology – as with software
development, the ontology model will need multiple iterations.

- 133 -

Chapter 7: The Mitochondrial Domain

Within this chapter, we describe a more in-depth illustration of the methodology

used for the construction of The Mitochondrial Disease Ontology; we explore nu-

merous challenges and apply a number of heuristics to overcome these challenges.

Within each stage of the methodology we provide the results obtained and lessons

learned. The corresponding code and supplementary data for the construction of

The Mitochondrial Disease Ontology can be found at the Project Website1.

1https://github.com/jaydchan/tawny-mitochondria

- 134 -

https://github.com/jaydchan/tawny-mitochondria

Chapter 7: The Mitochondrial Domain

7.2 Stage 1 – Term Capture

The term capture stage is used to acquire knowledge about the domain of interest,

in this case mitochondria and to identify relevant terms. The approach we use for

extracting terms was näıve; no linguistic processors were used in the extraction of

terms, instead we used our experience (and our lack of mitochondrial knowledge)

to identify these terms. For the purpose of acquiring knowledge, we describe three

different techniques: “Term of the week”, lab meetings and published papers. For

some of these techniques, we required access to domain experts; in this case, our local

domain experts are members of The Mitochondrial Research Group (MRG) (known

as The Wellcome Trust Centre for Mitochondrial Research2 since 2012) based at

Newcastle University. In this section we explore the (potential) effects of the three

techniques.

7.2.1 Term of the week

Here, we describe the Term of the week process, pioneered by Dr Frank Gibson

and Dr Phillip Lord as part of the Code Analysis, Repository & Modelling for E-

Neuroscience (CARMEN) project3, as it was considered for use in building of our

ontology. In this technique, group mailing lists were exploited; every week a term

(chosen by the ontologists) was sent to the mailing lists to illicit definitions. In

general, this approach had worked well in soliciting engagement from some domain

experts. However it also produced significant negative feedback from others, due

to the volume of email traffic; the process was halted after several months. The

main outcome was to demonstrate to domain experts that term definitions were

not consistent (i.e. not “everybody knows what that means”) and that, in fact,

considerable diversity of understanding existed.

For this project, we decided not to use this technique as we were unable to identify a

suitable mailing list; existing MRG mailing lists were used largely for other purposes.

Using these lists, or even bulk mailing, was considered likely to have alienated many

2http://www.newcastle-mitochondria.com/
3http://www.carmen.org.uk/

- 135 -

http://www.newcastle-mitochondria.com/
http://www.carmen.org.uk/

Chapter 7: The Mitochondrial Domain

domain experts as found earlier or, worse, been considered spam. We considered

that this risk was too great, as we have only a single set of experts to work with.

What we require is a technique that will not disrupt the daily lives of our domain

experts.

7.2.2 Lab meetings

At the time of this work4, we attended weekly lab meetings held by MRG. In

these meetings, the experts would take turns to present their current research, in a

semi-formal presentation. The purpose of these meetings was to update and receive

feedback from their colleagues. In attending these meetings, we “captured” words or

phrases that we thought were important about the mitochondrial domain. Words

that we did not understand were also captured as, they were quite likely to be of

high information content.

While this technique was informative as to what current research is being carried

out, we lacked the expertise and so found the knowledge to be too specialised and

difficult to understand. Also as the mode of communication was mainly oral captur-

ing the spelling of terms was problematic; however with supplementary knowledge,

corrections could be made at a later date. Lastly, we found that as well as cap-

turing mitochondrial domain information, environment specific information such as

(preferred) equipment names, samples, cell lines and so on, were also captured.

Therefore we conclude that as well as not disrupting the daily lives of our domain

experts (see Section 7.2.1), we require a form of written communication (similar to

Term of the week) and a broader range of domain experts (to lessen the amount of

environmental specific information).

7.2.3 Published papers

A tried and tested approach for term gathering is simply to read published papers

and manually extract related terms. This allows access to mitochondrial data from

at least the past ten years (although introduces a time lag from publication delay).

42010-2011

- 136 -

Chapter 7: The Mitochondrial Domain

One significant problem here is that there are too many papers to read and process

with only one person employed full-time. Our solution was as follows: papers were

selected randomly from PubMed [125] that were published between the years 2000

and 2011; for each batch of papers, we noted the number of new terms, which allowed

us to judge when the process was saturating.

A total of 3666 terms from 30 papers were extracted using the published paper data

source (see Table C.1 for paper details)5. However when we collate these terms we

find that while many are unique for each paper some exist across numerous papers

(i.e. are duplicates). For example the term melas was manually identified as a term

in five different papers [21, 25, 124, 148, 171]. Once we removed these duplicates,

3311 terms remained.

The number of unique terms captured (without duplicates) using this method for

every batch of five papers is shown in Figure 7.2. Generally, the number of new terms

is seen to decrease over time. However the figure also shows that a large number

of new terms per batch (approximately 250 terms per 5 papers) are still being

extracted. It is clear that the process is far from saturated, with the production

of biological knowledge outstripping the ability to describe it; this is, however, a

common problem [12].

Sample Cases: The following examples show the terms extracted from one paper

from the mitochondrial corpus [148]. The terms are highlighted.

Sample 1 :

“ For LHON, a strict maternal pattern of inheritance was evident

and point mutations involving the ND family of genes that encode

subunits of complex I were identified. ”
5Terms extracted from each paper are available at https://github.com/jaydchan/tawny-

mitochondria/tree/master/resources/input/Terms.

- 137 -

https://github.com/jaydchan/tawny-mitochondria/tree/master/resources/input/Terms
https://github.com/jaydchan/tawny-mitochondria/tree/master/resources/input/Terms

Chapter 7: The Mitochondrial Domain

Figure 7.2: Line plot showing the number of new terms extracted from each batch
(five) of papers.

- 138 -

Chapter 7: The Mitochondrial Domain

Sample 2 :

“ There has been considerable interest in the possibility that mito-

chondrial DNA (mtDNA) variants might predispose to common dis-

eases; for example, diabetes, Alzheimer disease (AD) and Parkin-

son disease (PD). ”Sample 3 :

“ Mitochondria are found in all nucleated cells and are the prin-

cipal generators of cellular Adenosine TriPhosphate (ATP) by ox-

idative phosphorylation (OXPHOS), incorporating the electron-

transferring respiratory chain (complexes I-IV) and the ATP

synthase (complex V). ”
7.2.4 Assessing the term capture techniques

The techniques described here result in somewhat different forms of knowledge:

when used Term of the week results in fewer terms, but with (multiple) ad hoc def-

initions, extracted from email threads; lab meetings result in less formal transcripts

often without references, but which represent local knowledge; terms extracted from

published papers result in many referenced terms, but provide no definitions and

may contain gaps in community knowledge (due to the publishing time-lag).

For the first iteration of our ontology, we found the published paper technique the

most useful and appropriate knowledge source. Through this technique we have

identified numerous relevant and referenced mitochondrial terms that: were indi-

rectly provided by the global mitochondrial community and did not disturb the

normal lives of our experts; are less likely to be environmentally specific; and are

(most likely) spelt correctly. However this technique is labour-intensive and time-

expensive, thus as future work, we may investigate use of Term of the week and

lab meetings for later iterations of the ontology, when our aims and objectives are

clearer to our local domain experts, MRG.

- 139 -

Chapter 7: The Mitochondrial Domain

7.3 Stage 2 – Competency Questions

The breadth of knowledge about mitochondrial biology is significant; attempting

to represent this with the resources available is impractical. We therefore compiled

an informal list of competency questions, which define those questions which our

ontology should reasonably be able to answer (see Section 7.6). In total we identified

133 competency questions6.

Sample Cases: Example competency questions that relate to the sample terms

extracted from the term capture task (see Section 7.2.3):

• What are all the (point) mutations that are associated with a specific syn-

drome?

• What are all the (point) mutations that are associated with a specific gene/pro-

tein?

• What are all the genes/proteins that are associated with a specific syndrome?

6A list of identified competency questions is available at https://github.com/jaydchan/

tawny-mitochondria/blob/master/resources/input/cq.txt.

- 140 -

https://github.com/jaydchan/tawny-mitochondria/blob/master/resources/input/cq.txt
https://github.com/jaydchan/tawny-mitochondria/blob/master/resources/input/cq.txt

Chapter 7: The Mitochondrial Domain

7.4 Stage 3 – Refinement

The refinement task is used to filter the terms and competency questions, ensuring

that these meet the overall direction of the research (in this case mitochondrial dis-

ease). The refinement task involves reviewing both terms and competency questions

against the following criteria:

• Relevant: related to mitochondrial pathology

• Representable: plausible to ontologically represent

The last of these was interpreted quite broadly – we made no judgement at this

stage whether a term or competency question would be easily or well represented.

The refinement process was largely done without any domain expert engagement,

again due to the labour-intensive nature of the work. This brings with it the risk

that the resultant ontology will represent a domain that is too specific or broad; we

believe that subsequent iteration through earlier steps should help to alleviate this

possibility.

Both the terms and competency questions were reviewed; any which failed the stated

criteria were labelled as out-of-scope, and “quarantined”. In the case of terms, this

will avoid subsequent reintroduction of the material, while quarantined competency

questions (“incompetency questions”) will be later used to evaluate the ontology. At

this stage, we also canonicalised terms, in an attempt to remove acronyms, synonyms

and other forms of duplication, where this was not obvious at the initial capture

stage7.

In this section we discuss the results of the canonicalisation and filtering processes.

7.4.1 Canonicalising terms

As mentioned in the term capture stage (see Section 7.2), we utilised a näıve ap-

proach to extracting terms – terms that we thought were important in the mito-

chondrial domain or obscure to us were extracted. However this approach resulted

7In order to aid the canonicalisation process, terms were converted and stored in lower case.

- 141 -

Chapter 7: The Mitochondrial Domain

in various forms of duplication, such as synonyms and acronyms; for example ant is

the acronym for adenine nucleotide translocator. Therefore we removed these

duplication, using simple string searches.

These string searches predicted that we had collected 5644 duplicates and 128

acronyms. Through manual evaluation we found that there was 222 duplicates and

22 acronyms. Having now identified these duplications we can decrease the number

of terms we need to refine and therefore model. The total number of canonicalised

capture terms we have at the end of this task is 3061.

7.4.2 Identifying disease relevant terms

Now that we have been able to reduce the number of terms, we can now move

onto filtering the canonicalised terms. Table 7.1 shows the statistics behind the

refinement stage. As can be seen in the table, we are attempting to keep a relatively

narrow scope, avoiding in their entirety some areas if they are likely to produce a

large increase in the workload. Maintaining a tightly-defined scope has previously

been identified as a key factor in the success of GO [7].

Table 7.1: Table showing the number of terms and competency question found to
be in-scope or quarantined.

Number of Terms Number of Competency Questions

In-scope 2174 125
Quarantined 887 8
Total 3061 133

- 142 -

Chapter 7: The Mitochondrial Domain

7.5 Stage 4 – Construction

In this section, we aim to formalise the knowledge extracted from our earlier elici-

tation stages. Initial attempts to do this were done using Protégé, RightField and

Populous (which uses OPPL) but found the separation between the three environ-

ments made the process difficult to manage. Instead, we now use a semi-automated

construction using Tawny-OWL and localised patterns. There are numerous reasons

for this decision:

Firstly, from the term gathering stage it is clear that many of the terms (such as

mitochondrial genes and proteins) are already available in a structured form either

in another ontology or, more commonly, in a database such as Online Mendelian

Inheritance in Man (OMIM) and MitoMiner [139]. We wish to have the option

of reusing this work. The incorporation of external knowledge is a common best

practise in ontology engineering; for example in The Semanticscience Integrated

Ontology (SIO) (see Chapter 8), 118 chemical elements are defined and related to

the ChEBI database. In this case, there are many more terms we could incorporate;

for example human anatomy as well as mitochondrial anatomy, diseases, genes,

proteins and mutations. Through the use of Tawny-OWL, we can build patterns,

read the terms from file and translate them into the ontology.

Secondly, contradictory knowledge; this causes obvious issues with integration into

an ontology. For example, we might have two statements, “mutation 1 cause disease”

and “mutation 1 does not cause disease”. Ontologically, this is contradictory and

may result in unsatisfiable classes in OWL [131]. One solution to this is to use

reification. So “mutation 1 causes disease according to person X” and “mutation

1 does not cause disease according to person Y”. These statements are no longer

contradictory. However, reification would prevent us from using the ontology to

discover contradictions which is, itself, a useful feature of an ontological model.

With Tawny-OWL, we can separate out the full axiomatisation from the immediate

representation; we can change the axiomatiation later consistently. We can even have

both representations under different circumstances, an ability exploited in Chapter 6.

As shown in [78], retaining the flexibility in our representation of the biological

- 143 -

Chapter 7: The Mitochondrial Domain

knowledge is often useful for many reasons.

Finally, importing other ontologies or databases will potentially allow us to generate

a large number of terms rapidly, which raises the spectre of scalability issues when

reasoning, as seen with karyotypes (see Chapter 6). More specifically, in [65], the

author has shown poor performance occurs when describing all mitochondrial genes

and then asserting them as disjoint which, though true, was not necessary for our

application. We may wish to change our representation to use simpler definitions or

a less expressive, but computationally cheaper, OWL profile (such as EL). This is

hard to plan for upfront, as the complexity of reasoning for a given ontology is hard

to predict a priori.

To summarise, Tawny-OWL enables us to import knowledge from a variety of sources

which carry much of the background knowledge. It should also allow us to retain

the flexibility we need with respect to representation and expressibility that we use.

In this section, we briefly discuss the construction of The Mitochondrial Disease

Ontology classes, as well as provide the basic statistics for the first iteration of The

Mitochondrial Disease Ontology.

7.5.1 Constructing The Mitochondrial Disease Ontology
classes

Once, we have our identified our in-scope and quarantined terms and competency

questions, we can move onto building the ontology. However, before we incorporate

the refined terms identified in the previous stage (see Section 7.4), we want to

first incorporate any existing (structured) data found in various sources, such as

online databases and articles. To accomplish this task, we first identify generic

bins or categories that are related to mitochondrial disease. These categories are:

mitochondrial anatomy, diseases, genes and proteins, as well as human anatomy.

For each, we discerned all associated child terms (see Table 7.2) and subsequently

encoded and incorporated these terms into The Mitochondrial Disease Ontology,

using localised patterns (see Chapter 4).

In addition, mutations (DNA and protein) are useful, as proved by their presence in

the in-scope terms and competency questions. However, unlike mitochondrial genes

- 144 -

Chapter 7: The Mitochondrial Domain

Table 7.2: Table showing the type, number of and data source for each generic The
Mitochondrial Disease Ontology class.

Class type Count Data source

Disease 41 The United Mitochondrial Disease Founda-
tion (UMDF) website

Gene 761 The NCBI Gene portal
Human Anatomy 61 The Terminologia Anatomica (TA) is the in-

ternational standard on human anatomic ter-
minology.

Mitochondrial Anatomy 15 The Mitochondrial Research Group (MRG)
website

Protein 479 The UniProt Knowledge Base (UniProtKB)

and proteins, there is no comprehensive list of mitochondrial mutations available

to incorporate into the ontology. Instead we can use the mutations nomenclature8

and pattern matching to näıvely identify these mutations from our refined terms.

The regular expressions used to identify DNA mutations and protein mutations are

shown in Listing 7.1. After manual inspection of the filter results, we find that 6 (of

6) were correct DNA mutations, while 0 (of 36) were correct protein mutations. This

shows that whilst the protein mutation regular expression is too generic, as we also

found genes and proteins, the DNA mutation regular expression is too specific, as it

does not include other valid DNA mutations found in another format, e.g. g8993t.

DNA mutation: "[acgt]>[acgt]"

Protein mutation:

"[gpavlimcfywhkrqnedst]\d+[gpavlimcfywhkrqnedst]"

Listing 7.1: Applied regular expressions for identifying mitochondrial mutations.

Now, we can start to incorporate the refined terms into the ontology. However, since

we already have ∼1300 classes in the ontology that are related to mitochondria, it

is possible that some of the refined terms already exist in the ontology, therefore,

we require further canonicalisation of terms. Thus, as we incorporate the terms we

check to see if the term is equivalent to any existing classes. If it is, then the class

is edited to include paper provenance information. An example of an existing term

that has been updated with provenance information is shown in Listing 7.2. Those

terms that are not found pre-existing are also incorporated into the ontology. This

8http://www.hgmd.cf.ac.uk/docs/mut_nom.html

- 145 -

http://www.umdf.org/site/c.8qKOJ0MvF7LUG/b.7934629/k.4C9B/Types_of_Mitochondrial_Disease.htm
http://www.umdf.org/site/c.8qKOJ0MvF7LUG/b.7934629/k.4C9B/Types_of_Mitochondrial_Disease.htm
http://www.ncbi.nlm.nih.gov/gene
http://www.unifr.ch/ifaa/
http://www.newcastle-mitochondria.com/mitochondria/what-do-mitochondria-do/
http://www.newcastle-mitochondria.com/mitochondria/what-do-mitochondria-do/
http://www.uniprot.org/
http://www.hgmd.cf.ac.uk/docs/mut_nom.html

Chapter 7: The Mitochondrial Domain

incorporation task is aided with the use of localised patterns. After incorporation

we find that 45 (of 2174) refined terms were pre-existing in the ontology.

(class melas

:label "melas"

:super

Disease

(see-also "OMIMID:540000")

(see-also "Mitochondrial Encephalomyopathy Lactic Acidosis

and Strokelike Episodes")

Term

(source paper7))

Listing 7.2: Example of an existing term in The Mitochondrial Disease Ontology.
The source function ensures that each term has a hasSource relation.

In total, The Mitochondrial Disease Ontology has 3532 classes, 3 annotation prop-

erties and 2 object properties; see Table 7.3 for the complete class statistics and

Figure 7.3 for a visual representation of The Mitochondrial Disease Ontology top-

level structure. Now complete, we can focus on the different evaluation techniques

that could be applied to The Mitochondrial Disease Ontology.

Table 7.3: Table showing the type and number of implemented classes in The Mi-
tochondrial Disease Ontology.

Class Type Total Number Number of Refined

Disease 42 10
Gene 762 19
Human Anatomy 62 1
Mitochondria 1 0
Mitochondrial Anatomy 16 7
Mutation 1 0
DNA Mutation 7 6
Protein Mutation 1 0
Paper 31 0
Protein 480 3
Term 2129 2128

Total Number 3532 2174

- 146 -

Chapter 7: The Mitochondrial Domain

Figure 7.3: The top-level structure of The Mitochondrial Disease Ontology. Classes
that were imported from external sources are coloured in orange, while classes that
were extracted from the paper are coloured in green.

- 147 -

Chapter 7: The Mitochondrial Domain

7.6 Stage 5 – Evaluation

There is no standard way of evaluating ontologies, however four potential methods

to evaluate the ontology are discussed in [42]:

Specification evaluation – utilises the identified competency and incompetency

questions. The ontology must have the ability to answer all of the in-scope

competency questions. This can be achieved through the use of competency

and incompetency questions: the former should be answerable, while the later

should not be.

Terminology evaluation – originally proposed in [44], this determines ontology

accuracy by checking definitions for consistency, completeness and conciseness.

Taxonomy evaluation – evaluating the structure of the ontology by testing

the axioms for inconsistencies using reasoners such as Pellet9, HermiT10 or

Fact++11.

Application-dependent evaluation – to evaluate the ontology’s fitness for pur-

pose.

Of these, application-dependent evaluation is perhaps of most interest to us, as this

allows evaluation of the ontology in the context of an otherwise useful task; for

example, classifying phosphatase proteins [166], or comparing annotation similarity

with sequence similarity [69]. The usefulness of the task increases the likelihood that

domain experts will be willing to contribute time to it; this is particularly the case if,

as with the classification of phosphatases, it raises the possibility of new biological

understanding. Further work is required in order to implement this.

9http://clarkparsia.com/pellet
10http://hermit-reasoner.com/
11http://owl.man.ac.uk/factplusplus/

- 148 -

http://clarkparsia.com/pellet
http://hermit-reasoner.com/
http://owl.man.ac.uk/factplusplus/

Chapter 7: The Mitochondrial Domain

7.7 Summary

In this chapter, we discuss the progress and steps taken to provide a reference

ontology, that describes the terms associated with mitochondrial disease.

Unlike The Karyotype Ontology, there is no standard nomenclature for mitochon-

drial knowledge, which meant that some form of knowledge capture was required. In

order to accelerate this knowledge capture, we tried to implement some techniques

(e.g. implement “Term of the week” and attend lab meetings) but found limited suc-

cess. Instead, we utilised the tried and tested (i.e. trusted) method of reading and

capturing our knowledge from published papers. However, even the methodological

reading of papers has one major limitation; the seemingly infinite amount of papers

that contain vital mitochondrial knowledge. Indeed, our statistics demonstrate that

our term gathering is far from saturated, suggesting that the end product will have

a far from complete coverage.

In further iterations of the ontology, we might need to consider incorporating gam-

ification in order to make the term capture stage entertaining and encourage par-

ticipation as this has been shown to be beneficial. In particular, the iCAPTURer

methodology [46] demonstrated the construction of a simple ontology at the cost of

“3 t-shirts, 4 coffee mugs and one chocolate mousse”. Or a more recent study has con-

sciously attempted to adapt techniques from agile software development and apply

them to ontologies resulting in The Agile Ontology Development (AOD) [23, 81, 82].

While The Mitochondrial Disease Ontology is far from complete, we have still shown

that a pattern-driven and programmatic approach is also useful in representing this

domain knowledge. In addition, the resulting ontology, The Mitochondrial Disease

Ontology, is our first step in building a complete ontology which will potentially have

the ability to classify and clarify mitochondrial disease by their symptomatic and/or

genomic definition. Thus this chapter concludes our research into the application

of our approach into two novel areas of biology in order to produce two novel bio-

ontologies (RQ2).

Whilst lots of the mitochondrial knowledge can only found in papers, there are many

databases and online resources that also contain vital information. With the use of

- 149 -

Chapter 7: The Mitochondrial Domain

our approach and localised patterns we were able to incorporate the mitochondrial

knowledge from a variety of sources and different formats (RQ3).

In the next chapter, we aim to prove that pattern-driven and programmatic approach

can also be applied to an existing bio-ontology in order to highlight further benefits

of this approach.

- 150 -

8
Patternised Development of an

Existing Ontology

Contents
8.1 Introduction . 152

8.2 Non-patternised rendering of Tawny-SIO 153

8.3 Patternised refactoring of Tawny-SIO 157

8.4 Tawny-SIO errors . 163

8.5 Patterns for downstream usage 166

8.6 Summary . 170

- 151 -

Chapter 8: Patternised Development of an Existing Ontology

8.1 Introduction

While we have shown in detail that localised patterns are beneficial within the devel-

opment of highly patternised novel ontologies, we need to prove that this methodol-

ogy is useful to other ontologies. To test this, we have taken an existing bio-ontology

and re-written it using Tawny-OWL, refactoring it into a patternised form.

The chosen ontology is SIO [33], a simple upper OWL ontology, useful for the in-

tegration of types and relations that provide rich descriptions of objects, processes

and their attributes. The ontology (version 1.0.10) defines 1414 classes, 203 object

properties, 1 datatype property and 8 annotation properties. We have chosen SIO

as it is explicit in promoting ODPs to describe and associate numerous entities such

as databases and measurements. The ontology is available on the SIO wiki (and

BioPortal) as an OWL2 file1.

An overview of the workflow used for this investigation is shown in Figure 8.1. The

three steps are:

1. Read and Render the original ontology (sio.owl) into Tawny-OWL syntax.

This step results in the non-patternised version of Tawny-SIO.

2. Refactor the transformed ontology that uses common patterns identified from

visual inspection. This step results in the patternised version of Tawny-SIO.

3. Implement localised patterns for downstream usage, identified from the SIO

wiki. This step results in the patternised version of the downstream (exem-

plars) ontology.

In this thesis, SIO is used to refer to the existing ontology, whilst Tawny-SIO refers

to the Tawny-OWL refactoring of SIO. The corresponding code and supplementary

data for our application of a programmatic and pattern-driven approach to Tawny-

SIO can be found at the project website2.

1http://semanticscience.org/ontology/sio.owl
2https://github.com/jaydchan/tawny-sio

- 152 -

http://semanticscience.org/ontology/sio.owl
https://github.com/jaydchan/tawny-sio

Chapter 8: Patternised Development of an Existing Ontology

Figure 8.1: Overview of the SIO workflow.

8.2 Non-patternised rendering of Tawny-SIO

SIO was not developed using Tawny-OWL and is only available as an OWL2 file.

Therefore, in order to enable the refactoring of SIO, we must first transform this

into Tawny-OWL expressions, such that, when evaluated, it results in an ontology

similar (i.e. semantically alike) or identical (i.e. syntactically and semantically alike)

to the OWL version of SIO.

Secondly, we wish to make SIO appear as an ontology created natively with Tawny-

OWL. This means that we want to be able to refer to SIO classes with symbols,

rather than strings, or full IRIs. However SIO uses numeric identifiers as the frag-

ment3 of its URL, and while there are good reasons for this, it means that the

fragment is unsuitable as a human memorable identifier at code level.

Therefore, we choose a part of SIO entity to transform into the usable name; the

3The technical definition of “fragment” is relatively involved, but in many cases is the same as
the anchor of a Uniform Resource Locator (URL)

- 153 -

Chapter 8: Patternised Development of an Existing Ontology

obvious choice is the rdfs:label4. However these label values may not be valid

Clojure names. Therefore, we apply a simple syntactic transformation, with a few

specific replacements for SIO entity names that would otherwise transform into

either: reserved words (e.g. true and false), Tawny-OWL functions (e.g. annotation

and label)5, invalid Clojure names (e.g. e.coli)6 or cause an OWL API parser error

(e.g. implies (->)7). The short list of specific replacements is shown in Table 8.1.

In this case, the original SIO identifiers are lost from Tawny-SIO, as they were not

explicitly needed for this work; it would be possible to recover these if necessary.

Table 8.1: Table showing replacements for the short list of SIO entities.

SIO name Tawny-SIO name

annotation _annotation

e.coli e_coli

false _false

implies (->) implies

label _label

true _true

When we applied this name transformation to version 1.0.10 of SIO, we found

that two entities (SIO_000944 and SIO_001246) have the same rdfs:label (namely

interval). This is defined as pitfall 32 according to The OntOlogy Pitfall Service!

(OOPS!) catalogue8, and we interpret this as an error. Historically9, we see that this

error was introduced in version 1.0.6 of SIO, when SIO_001246 was added to the

ontology even though SIO_000944 already existed. Therefore in order to differentiate

between these two classes in Tawny-OWL, the original OWL file was edited such

that the SIO_001246 class (a subclass of set) now has the set_interval rdfs:label,

while SIO_000944 continues to have the interval rdfs:label. This is the first of

many discoveries summarised in Table 8.3. This table is expanded on later in this

4http://www.w3.org/TR/rdf-schema/#ch_label
5We could avoid the namespace clash by not importing tawny.owl/annotation and

tawny.owl/label, then specifying the namespace of both when in use.
6In Clojure, the full stop character (.) is used to designate a fully-qualified class name (e.g.

java.util.Properties) or a name in the namespace.
7The OWL API parser for OWL/XML syntax cannot handle a greater than character (>) in

the IRI.
8See http://oeg-lia3.dia.fi.upm.es/oops/catalogue.jsp
9Using the OWL submissions provided on the BioPortal website, see http://bioportal.

bioontology.org/ontologies/SIO.

- 154 -

http://www.w3.org/TR/rdf-schema/#ch_label
http://oeg-lia3.dia.fi.upm.es/oops/catalogue.jsp
http://bioportal.bioontology.org/ontologies/SIO
http://bioportal.bioontology.org/ontologies/SIO

Chapter 8: Patternised Development of an Existing Ontology

Section 8.4.

The various utilities in Tawny-OWL for rendering and reading ontologies have been

written to deal with the transformation and Clojure names. Once transformed and

rendered, these Tawny-OWL expressions are saved to a local file (see Step 1 of the

workflow)10.

Here we show the transformation of the study_subject class after Step 1 of the

workflow has been applied. A direct excerpt from SIO (see Listing 8.1), shows the

OWL definition of study_subject (aka SIO_000399).

<owl:Class rdf:about="&resource;SIO_000399">

<rdfs:label xml:lang="en">study subject </rdfs:label >

<rdfs:subClassOf

rdf:resource="&resource;SIO_000498"/>

<dc:description xml:lang="en">a study subject is an individual

that is the subject of the study. </dc:description >

</owl:Class >

Listing 8.1: Example class defined in SIO.

Once applied, this definition is transformed; Listing 8.2 shows the non-patternised

definition of study_subject in Tawny-OWL syntax. You will notice that the

study_subject entity now refers to the readable person entity, instead of referring

to SIO_000498.

(defclass study_subject

:super person

:annotation

(annotation (iri "http://purl.org/dc/terms/description")

(literal "a study subject is an individual that is the

subject of the study." :lang "en"))

(label (literal "study subject" :lang "en")))

Listing 8.2: Example class defined in the non-patternised rendering of SIO.

The full effects of Step 1 on the ontology can be seen in Table 8.2. This application

creates two files that (with the header file) spans 581KB. This is substantial decrease

in size compared to the original OWL file of 896KB. If we consider the number of

10As discussed in Section 3.3, by introducing Clojure symbols, the ordering of entity declarations
becomes important; an entity must be declared before use. While the transforming and rendering
of terms is simplistic, the ordering of these rendered expressions with a definition of terms first
is not possible in Tawny-SIO as some entities refer to themselves (e.g. _label). Thus we require
a predump to declare all entities before any of their definitions. In a fully refactored version of
Tawny-SIO, it would be possible to avoid most of these declarations.

- 155 -

Chapter 8: Patternised Development of an Existing Ontology

lines, we see that the number of lines has been halved; the original had ∼20,000

lines while the non-patternised version has ∼10,000. This is most likely due to

difference in syntax; in OWL/XML each construct contains a start and end tag,

while Tawny-OWL does not.

If we take a closer look at the number of entities and axioms, we see that while

we have the same number of entities, there are more axioms in the non-patternised

ontology than the original ontology. In Tawny-OWL all disjoint axioms are rendered

as pairwise disjoint axioms. This means that it takes three (DisjointWith) axioms,

rather than one (AllDisjointClasses) axiom to declare that three classes are disjoint

(see Listings 8.3 and 8.4). The current facilities in Tawny-OWL render one entity at a

time, as opposed to one axiom at a time, making it difficult to remove this difference.

This means that while the non-patternised ontology is semantically identical, it is

not syntactically similar to the original ontology11.

(as-disjoint A B C)

Listing 8.3: This expression
expands to an AllDisjoint-

Classes axiom.

(as-disjoint A B)

(as-disjoint A C)

(as-disjoint B C)

Listing 8.4: These expressions ex-
pand to three DisjointWith ax-
ioms.

Now that we have our non-patternised rendering of SIO in Tawny-OWL syntax, we

can move onto applying patterns to SIO. In the next section, we show how the

non-patternised study_subject class in Listing 8.2 is refactored in the patternised

study_subject class.

11A brief investigation of how this effects the functional characteristics of the ontology, such as
reasoning time, shows that quality is preferred over quantity, e.g. one owl:AllDisjointClasses

axiom with three classes is quicker to reason than three owl:DisjointWith pairwise axioms. How-
ever it is unclear if this is because of reasoner functionality or communication between the ontology
and reasoner.

- 156 -

Chapter 8: Patternised Development of an Existing Ontology

8.3 Patternised refactoring of Tawny-SIO

In software engineering, patterns are used to avoid replication in code by abstrac-

tion. This principle holds for ontology engineering. The need for a pattern can

be identified in two ways; visual inspection and/or by using tools [162], such as

Regularities Inspector for Ontologies (RIO) [88]. For this work, all the patterns

encoded were found by visual inspection. In this section, we briefly discuss some

of the identified localised patterns of Tawny-SIO and their effect on the patternised

refactoring of Tawny-SIO.

In Tawny-SIO, the majority of Tawny-SIO classes are defined with a name, label

and description. An example Tawny-SIO class is shown in Listing 8.5. The SIO wiki

documentation12 supports that this is an intentional pattern:

“ Resources should be described with brief English labels

(rdfs:label) and human readable definitions (dc:description). . .

Basic Design Principle No. 4, SIO wiki documentation ”(defclass study_subject

:super person

:annotation

(annotation (iri "http://purl.org/dc/terms/description")

(literal "a study subject is an individual that is the

subject of the study." :lang "en"))

(label (literal "study subject" :lang "en")))

Listing 8.5: Example class defined in SIO.

Explicit defining 1414 SIO classes is repetitive, time-consuming and susceptible to

error. Therefore we want to encode a generic pattern, known as defsclass, and

reuse this for each Tawny-SIO class. The desired usage of the defsclass pattern is

shown in Listing 8.6.

(defsclass

study_subject

"a study subject is an individual that is the subject of

the study."

:super person)

Listing 8.6: Example usage of the defsclass pattern.

12https://code.google.com/p/semanticscience/wiki/ODP

- 157 -

https://code.google.com/p/semanticscience/wiki/ODP

Chapter 8: Patternised Development of an Existing Ontology

We can encode the defsclass pattern as a two part pattern as shown in Listings 8.7

and 8.8. This type of functionality is a common theme throughout Tawny-OWL;

there are functions that create the OWL API object (i.e. class) and a def equiva-

lent that bind the resulting OWL API object to a local valid Clojure symbol (i.e.

defclass). In this case we have the sio-class function that creates the relevant

OWL API object while defsclass interns this value. The general functionality of

this localised pattern is used to ensure that each SIO class:

• has a label annotation (automatically generated using symbol name)

• has a description annotation

The defsclass macro is created straight-forwardly from the equivalent function

using the defentity macro from Tawny-OWL as shown in Listing 8.7.

(defentity defsclass sio-class)

Listing 8.7: An example implementation of the defsclass function.

We can encode the sio-class patterns as shown in Listing 8.8. The new Clojure

parts of this definition are:

• The make-label function transforms the Clojure safe name into the desired

label by replacing underscore characters with a whitespace character, then

removing prefix whitespace characters.

• The apply13 function is a clojure.core function. It applies a given function

(the second element) to the args collection and any intervening arguments.

(defn sio-class [name description & frames]

(apply class name

:label (make-label name)

:annotation (desc description)

frames))

Listing 8.8: A common pattern for Tawny-SIO classes. name, description and
frames are variables.

13http://clojuredocs.org/clojure.core/apply

- 158 -

http://clojuredocs.org/clojure.core/apply

Chapter 8: Patternised Development of an Existing Ontology

The sio-class function makes use of a second pattern, namely the description

annotation pattern, which creates a standardised annotation using the DC ontology

description entity, as shown in Listing 8.914. The desc function is another example

of an annotation pattern (see Section 4.2).

(defn desc [description]

(annotation dc-description

(literal description :lang "en")))

Listing 8.9: The description pattern for Tawny-SIO classes.

In total, there are 1274 classes that use the defsclass pattern, leaving 23 exceptions

which are defined directly using defclass. There are two reasons for these excep-

tions. 21 of these exceptions are because of the different legal characters between

Clojure and IRI. The other two are the SIO classes, product and target, which do

not contain a description annotation. This appears to be erroneous with SIO.

Although the defsclass pattern is a small and simple pattern, it has a substantial

effect on Tawny-SIO. The original class definitions save to a file 496KB in size; this

has decreased by over a half to 238KB after patternisation.

A similar pattern exists for the declaration of SIO object properties, named

defsoproperty which utilises the sio-oproperty function. In total, there are 162

SIO object properties declared using the defsoproperty pattern. This means that

there are 41 object properties that are declared using the regular defoproperty

Tawny-OWL function; 37 of these do not have a description value, 3 are caused

by differing legal character sets and 1 (SIO_000288 with rdfs:label “is covalently

connected to (transitive)”) has both issues.

Similar to the defsclass macro, the application of the defoproperty pattern to the

ontology has had a reductive effect on the size of the file. If we compare the full

rendered Tawny-OWL forms versus the patternised forms we see a decrease from

82KB to 51KB when serialised.

Further exceptions to the defsclass pattern are the concepts that model the chem-

ical elements, known as atoms. Unlike other Tawny-SIO classes, atoms do not have

14The dc-description predefined symbol refers to the dc:description object property via
its IRI (http://purl.org/dc/elements/1.1/description). The desc is similar to the label

function in Tawny-OWL, which uses an OWL built in property.

- 159 -

http://purl.org/dc/elements/1.1/description

Chapter 8: Patternised Development of an Existing Ontology

a description annotation; instead they have a sio:see-also annotation. This seems

intuitive, otherwise the ontology would need to go into further detail (e.g. atomic

number and element category). An example atom class is shown in Listing 8.10.

(defclass boron_atom

:super atom

:annotation

(label (literal "boron atom" :lang "en"))

(annotation seeAlso

(literal "CHEBI:27560" :type :RDF_PLAIN_LITERAL)))

Listing 8.10: Example atom class.

There are 118 atoms defined in SIO. Explicitly defining all atoms is repetitive and

can be avoided by utilising a localised pattern. The desired usage of the defsatom

pattern can be seen in Listing 8.11.

(defsatom boron_atom "CHEBI:27560")

Listing 8.11: Example usage of the defsatom pattern.

Similar to other SIO entities, we define a pattern as a function, sio-atom as shown in

Listing 8.1215. As this pattern is specialised for atoms, the superclass is “hard-coded”

into the pattern. This localised pattern is used to ensure that each Tawny-SIO atom

class:

• has a atom superclass restriction

• has a label annotation (automatically generated using the make-label func-

tion)

• has a see-also annotation (if provided)

(defn sio-atom [name chebi]

(sio-atom-annotation-maybe

(class name

:super sio-atom-class

:label (make-label name))

chebi))

Listing 8.12: An example implementation of the sio-atom pattern.

15The sio-atom-class predefined symbol refers to the sio:atom class via its IRI (http://ncl.
ac.uk/sio/mysio#atom)

- 160 -

http://ncl.ac.uk/sio/mysio#atom
http://ncl.ac.uk/sio/mysio#atom

Chapter 8: Patternised Development of an Existing Ontology

Seven of the SIO atom subclasses lack a see-also annotation, for reasons that we

describe later. In this case, we have built these exceptions into the pattern through

sio-atom-annotation-maybe which simply applies a conditional (see Listing 8.13).

(defn sio-atom-annotation-maybe [cls chebi]

(if-not (nil? chebi)

(add-annotation cls (see-also chebi)))

cls)

Listing 8.13: An example implementation of the sio-atom-annotation-maybe pat-
tern.

This is used for example, in the definition of Copernicium (see Listing 8.14).

(defsatom copernicium_atom nil)

Listing 8.14: Example atom with no associated ChEBI identifier.

This application of the defsatom pattern to the ontology has a massive effect on

the size of the file. The expanded class definitions spanned 22KB in size; this has

decreased by over a half to 5KB.

Table 8.2: Table showing a comparison of the three versions of SIO.

Metric sio.owl Non-Patternised Patternised

Size of file (bytes) 895,726 580,855 309,504
Number of lines 20654 10544 4854
Load time (msecs) 109.52 103.26 105.00
Number of entities 1626 1626 1626
Number of axioms 7463 7558 7460
Number of disjoints 75 170 72
Number of other axioms 5388 5388 5388

In total, we have identified and encoded 15 localised patterns (see Table 9.3). The

full effects of Step 2 on the ontology can be seen in Table 8.5. This application

utilises five files that in total would have a file size of 310KB. This is substantial

decrease in size compared to the non-patternised ontology of 581KB. In terms of

number of lines, the size has been halved; the non-patternised and patternised have

∼10,000 and ∼5,000 lines respectively. This is most likely due to the removal of the

:annotation frame (when there were no further annotations other than the label

and description annotations) and the expanded description definition for most of

the SIO classes and object properties.

- 161 -

Chapter 8: Patternised Development of an Existing Ontology

If we take a closer look at the number of entities and axioms, we see that while

we have the same number of entities, there are less axioms in the patternised

ontology than the original and non-patternised ontologies. This decrease occurs

as the patternised ontology utilises AllDisjointClasses axioms where applica-

ble. Thus the three female, male, hermaphrodite pair wise disjoints collate to

one AllDisjointClasses axiom. Further, in the original ontology we find two

AllDisjointClasses axioms declared for the subclasses of coordinate; in Listing 8.15

we see that the bottom axiom is an unnecessary AllDisjointClasses axiom as the

top axiom semantically also declares this disjointness.

(as-disjoint _3D_cartesian_coordinate

x_cartesian_coordinate

y_cartesian_coordinate

z_cartesian_coordinate)

(as-disjoint x_cartesian_coordinate

y_cartesian_coordinate

z_cartesian_coordinate)

Listing 8.15: Two DisjointAllClasses axioms found in SIO.

In this section we have shown that through the use of simple patterns we can en-

sure consistency. The encoding of these patterns forces us to deal with exceptions

explicitly. We show that the use of patterns has significantly compressed the size of

the Tawny-OWL file compared to the non-patternised Tawny-OWL syntax file. In

the next section we will summarise further identified inconsistencies.

- 162 -

Chapter 8: Patternised Development of an Existing Ontology

8.4 Tawny-SIO errors

During the application of this workflow we found inconsistencies in SIO that we

have interpreted as errors. For example, in Section 8.2 we found that two entities

had the same rdfs:label annotation. This error was identified through the use

of a label to Clojure name transformation pattern. In Section 8.3 we found that

numerous entities were missing the necessary dc:description annotation. These

missing descriptions were also found with the use of patterns. In this section, we

briefly discuss some of the other errors of Tawny-SIO.

In this thesis we have shown that with the use of patterns we can ensure the con-

sistent modelling of entities. When there is a lack of consistency in the original

ontology, we start to question the integrity of the ontology and/or external resources.

In SIO version 0.9.2216 we found that elements 112 to 118 lack a sio:see-also

annotation [163]. This meant that, according to SIO, these elements do not exist in

the ChEBI database [52]. This is generally true, however there was one exception;

element 112 (aka Copernicium aka Ununubium) can be found with ChEBI identifier

CHEBI:33517 [34]. This discovery was identified to the ontology authors who have

since corrected and published this information since SIO version 0.9.2217.

However as introduced earlier this is not the only error; while refactoring, we found

incorrect ChEBI annotations and missing or incorrect PATO identifiers. The com-

plete list of errors is shown in Table 8.3. These were identified through the use of

patterns, grouping18 and/or visualisation. Using these methods we found 43, 4, and

3 errors respectively. A list of correct identifiers for entities with missing or incorrect

annotations is shown in Table 8.4.

In this section we have shown that during the patternisation process we have found

numerous inconsistencies; the majority of which were identified through use of pat-

terns. This occurs as the encoding of patterns, forces us to have to deal with

exceptions explicitly. In the next section, we will show how patterns can also aid

16Published in July 2013.
17Published in October 2013.
18During Step 2, similar entities were grouped by type (e.g. class or object property) and logical

definition (e.g. parent).

- 163 -

Chapter 8: Patternised Development of an Existing Ontology

Table 8.3: Table showing the list of potential errors found in SIO. The identification
method is categorised as either Patterns, Grouping, or Visualisation.

Error type Method Effected entities

Duplicate label annotations P interval, set_interval
Incorrect ChEBI identifier V chemical_entity, molecule
Incorrect PATO identifier V hermaphrodite

Missing PATO identifier G female, bent, curved, abnormal
Missing ChEBI identifier P copernicium_atom

Missing description annotation P product, target,
is_transitively_related_to,
has_identifier, is_identifier_for,
is_satisfied_by,
has_realizable_property,
is_realizable_property_of,
is_broader_than, is_broad_match_to,
is_exact_match_to,
is_close_match_to, has_expression,
is_manifestation_of,
is_subject_of, is_evidence_for,
is_disputing_evidence_for,
is_supporting_evidence_for,
is_refuting_evidence_for,
is_denoted_by, is_modelled_by,
affects, is_affected_by,
is_realized_in, is_regulated_by,
is_preceded_by, results_in,
is_result_of, is_trigger_for,
is_transcribed_from,
is_translated_from,
is_translated_into,
is_time_boundary_of,
has_time_boundary,
has_start_time, is_start_time_of,
has_end_time, is_end_time_of,
is_covalently_connected_to__transitive_,
is_weakly_interacting_with

- 164 -

Chapter 8: Patternised Development of an Existing Ontology

Table 8.4: Table showing the list of correct identifiers for each mislabelled entity
identified in Table 8.3.

Entity Identifier

abnormal PATO:0000460

bent PATO:0000617

chemical_entity CHEBI:24431

copernicium_atom CHEBI:33517

curved PATO:0001591

female PATO:0000383

hermaphrodite PATO:0001340

molecule CHEBI:25367

downstream users of the ontology.

- 165 -

Chapter 8: Patternised Development of an Existing Ontology

8.5 Patterns for downstream usage

The SIO wiki documents many exemplar ODPs that can be used in conjunction

with SIO. Although they are not explicitly described as such, in our terminology,

this means that authors of SIO have already identified the potential downstream lo-

calised patterns. These patterns are described by exemplars written in “The Pretty

Turtle Syntax (TPS)”19; so there is no direct computational representation of these

as a pattern, since the syntax does not support variables. As with the abnormality

patterns in Tawny-Karyotype, with Tawny-OWL we can encode these SIO ODPs

for downstream usage. In this section we investigate the value of this explicit repre-

sentation.

One example ODP documented by the authors of SIO is the biochemical-reaction

pattern. An example expansion of this pattern refactored into Tawny-OWL syntax

is shown Listing 8.1620. If we build this pattern based on the original documen-

tation, the pattern does not work, due to inconsistencies occurring between the

ontology and the documentation. We found that the target_role entity should be

reactant_role [19]. Their documentation (i.e. wiki) has since been updated to show

this.

(defclass hexokinase_reaction

:equivalent

(and

biochemical_reaction

(some realizes

(and catalytic_role (some is_role_of hexokinase)))

(some realizes

(and product_role (some is_role_of ADP)))

(some realizes

(and product_role (some is_role_of glucose-6-phosphate)))

(some realizes

(and target_role (some is_role_of ATP)))

(some realizes

(and target_role (some is_role_of glucose)))))

Listing 8.16: Part of an instance of the biochemical-reaction pattern, based on
the original SIO documentation.

19https://code.google.com/p/semanticscience/wiki/PrettyTurtleSyntax.
20This expansion was based on the TPS example seen at https://code.google.com/p/

semanticscience/wiki/ODPBiochemistry on December 2013 [163].

- 166 -

https://code.google.com/p/semanticscience/wiki/PrettyTurtleSyntax
https://code.google.com/p/semanticscience/wiki/ODPBiochemistry
https://code.google.com/p/semanticscience/wiki/ODPBiochemistry

Chapter 8: Patternised Development of an Existing Ontology

Another example ODP documented by the authors of SIO is the

biochemical-pathway pattern. An example encoding of this pattern is two-

fold, as shown in Listings 8.17 and 8.18. The biochemical-pathway function creates

the composite class definition while the biochemical-pathway0 recursive function

creates the complex nested axiom required by the biochemical-pathway pattern.

Here, the pathway class, the has_proper_part and precedes object properties

are “hard-coded” into the pattern. Similar to the earlier implementations, the

biochemical-pathway function is paired with a macro, named defbpathway, which

binds the resulting OWL API object to a local variable.

(defn biochemical-pathway [name & reactions]

(class name

:equivalent

(and pathway

(some has_proper_part

(biochemical-pathway0 reactions))

(some has_proper_part reactions))))

Listing 8.17: Example encoding of the biochemical-pathway function.

(defn biochemical-pathway0 [reactions]

(if (= 1 (count reactions))

(first reactions)

(and

(first reactions)

(some precedes

(biochemical-pathway0 (rest reactions))))))

Listing 8.18: Example encoding of the biochemical-pathway0 recursive function.

In Listing 8.19, we show an example usage of the defbpathway pattern. Here we

describe the glycolysis pathway in OWL. This exemplar expands to one entity

and two axioms; one declaration and one equivalent logical axiom, as shown in

Listing 8.20.

- 167 -

Chapter 8: Patternised Development of an Existing Ontology

(defbpathway glycolysis_pathway

hexokinase_reaction

phosphoglucose_isomerase_reaction

phosphofructokinase_reaction

fructose-bisphosphate_aldolase_reaction

triosephosphate_isomerase_reaction

glyceraldehyde_phosphate_dehydrogenase_reaction

phosphoglycerate_kinase_reaction

phosphoglycerate_mutase_reaction

enolase_reaction

pyruvate_kinase_reaction)

Listing 8.19: Example usage of the defbpathway function.

Here, we show that with the use of patterns we can explicitly define entities in

a concise and simple way. Instead of requiring 26 lines of explicit code, we only

require 11. This concise syntactic expressions mean that we save space. Also we do

not have to consider the complicated axiomitisations as the biochemical-pathway

pattern automatically constructs these for the user.

(d e f c l a s s
g l y co l s i s pa thway
: e qu i v a l e n t
(and
pathway
(some has prope r par t hexok ina s e r e a c t i on)
(some has prope r par t phosphog luco s e i s omera s e r ea c t i on)
(some has prope r par t pho spho f ru c tok ina s e r ea c t i on)
(some has prope r par t f r u c t o s e−b i s pho spha t e a l d o l a s e r e a c t i on)
(some has prope r par t t r i o s epho spha t e i s ome r a s e r e a c t i on)
(some has prope r par t g lyce ra ldehyde phosphate dehydrogenase r eac t i on)
(some has prope r par t pho sphog l y c e r a t e k i na s e r e a c t i on)
(some has prope r par t phosphog lyce ra te mutase r eac t i on)
(some has prope r par t e n o l a s e r e a c t i o n)
(some has prope r par t py ruva t e k i na s e r e a c t i on)
(some has prope r par t
(and hexok ina s e r e a c t i on
(some precedes
(and phosphog luco s e i s omera s e r ea c t i on
(some precedes
(and pho spho f ru c tok ina s e r ea c t i on
(some precedes
(and f r u c t o s e−b i s pho spha t e a l d o l a s e r e a c t i on
(some precedes
(and t r i o s epho spha t e i s ome r a s e r e a c t i on
(some precedes
(and g lyce ra ldehyde phosphate dehydrogenase r eac t i on
(some precedes
(and pho sphog l y c e r a t e k i na s e r e a c t i on
(some precedes
(and phosphog lyce ra te mutase r eac t i on
(some precedes
(and en o l a s e r e a c t i o n
(some precedes
py ruva t e k i na s e r e a c t i on)

Listing 8.20: Expansion of the glycolysis biological pathway.

From the SIO wiki pages, we have identified and encoded 15 localised patterns (see

- 168 -

Chapter 8: Patternised Development of an Existing Ontology

Table 9.3) and 14 simple example usages of the patterns (Step 3 of the workflow).

These exemplars encode 33 entities and 76 axioms.

The implementation of downstream patterns and exemplars results in a file of size

16KB; the full expansion of these exemplars creates a file of size 21KB. In terms

of lines of code, the non-patternised and patternised files are 220 and 508 lines of

Tawny-OWL syntax code respectively. In this instance we have decreased the size of

the file but have increased the number of lines. This is probably due to the amount

of whitespace occurring in the patternised file.

Table 8.5: Table showing a comparison of the non-patternised and patternised ver-
sions of the downstream (exemplars) ontology.

Metric Non-Patternised Patternised

Size of file (bytes) 20,729 16,105
Number of line 220 508

In summary, we show that patterns are of benefit to quality control of the docu-

mentation and consistency between the ontology and documentation, as we showed

when encoding the biochemical-reaction pattern. They are also useful for the

concise definition of complex entities such as the glycolysis biological pathway.

- 169 -

Chapter 8: Patternised Development of an Existing Ontology

8.6 Summary

In this chapter, we show further benefits of applying a programmatic and pattern-

driven approach of ontology engineering by refactoring an existing bio-ontology; SIO

(RQ3).

SIO was created independent of Tawny-OWL and without an explicit encoding of

patterns. Despite this, through careful refactoring, we have shown that it is possible

to refactor SIO into Tawny-SIO and that doing so enables us to decrease the overall

size while aiding consistency. This conforms with prior work looking at patternisa-

tion of the anatomy ontology which also found the presence of significant numbers

of patterns [89].

We found that localised patterns were as useful within Tawny-SIO as they were in

The Karyotype Ontology and The Mitochondrial Disease Ontology. A number of

patterns were identified and their use helps increase the consistency and concision

of the ontology. Furthermore, localised patterns, whilst not themselves used in SIO,

are potentially useful for downstream users. However there are potential limitations;

with our current encoding of the biochemical-pathway pattern, inferences of circular

pathways (e.g. the TriCarboxylic Acid cycle (TCA) pathway) might require further

thought.

Lastly, we show that through the application of patterns to an existing ontology,

we can potentially identify any existing ontology errors. In SIO, the majority of

the identified errors were found as we had to explicitly handle exceptions to our

preconceived patterns. Some of these errors have been sent to the authors of SIO,

and have since been updated.

In the next chapter, we discuss the classification and provide basic statistics of our

localised patterns in order to improve the community’s understanding of localised

patterns.

- 170 -

9
Pattern classification

Contents
9.1 Introduction . 172

9.2 Classification by role . 174

9.2.1 Internal localised patterns . 174

9.2.2 External localised patterns 175

9.3 Results . 176

9.4 Summary . 182

- 171 -

Chapter 9: Pattern classification

9.1 Introduction

There are a number of existing ODP classifications. Generally, these have classified

generic ODPs. However, during the ontology development described in this thesis,

whilst we have used some of these, the majority of the patterns that we have used

are specific to a single ontology, i.e. they are localised patterns (see Section 4.4).

To our knowledge there has been no previous classification of this form of ODP,

therefore in this chapter, we analyse our use of localised patterns and introduce a

preliminary classification of this form of pattern.

Two well-known examples of ODP classifications are found in [35] and [119]. In [35],

ODPs are classified according to their usage; more specifically as Extension, Good

Practice or Domain Modelling ODPs. Extension ODPs are defined as ODPs that

enable the ontologies to overcome their limits; an example of this is the nary rela-

tionship ODP [103] that enables the community to link an individual to more than

one individual or value. Good Practice ODPs, as the name suggests, are ODPs used

for good practice, such as the value partition ODP [121]. Lastly, Domain modelling

ODPs are used to model a concrete part of the biological domain, e.g. sequence

ODP [31]. For further discussion on each generic ODP, see Section 4.2.

In [119], ODPs can be classified into nine categories (see Figure 9.1); definitions for

each are provided in Table D.1. Of these, we find that the majority of our localised

patterns are classified as Content Patterns (CPs) (aka content design patterns) i.e.

design patterns that are built to solve recurring domain modelling problems [28].

c©Taken from Odptypes.jpg by EvaBlomqvist

Figure 9.1: Simplified classification of ODPs.

- 172 -

http://ontologydesignpatterns.org/wiki/Image:Odptypes.jpg
http://ontologydesignpatterns.org/wiki/User:EvaBlomqvist

Chapter 9: Pattern classification

However, as described in Section 9.3, we find that these two classifications are not de-

scriptive, as the bulk of the localised patterns (from our three ontologies: The Kary-

otype Ontology, The Mitochondrial Disease Ontology and Tawny-SIO) are grouped

into one category in each i.e. CPs or domain modelling ODPs for [119] and [35]

respectively. Therefore, in this chapter we introduce a new simple classification of

localised patterns.

- 173 -

Chapter 9: Pattern classification

9.2 Classification by role

Our first criteria for classification of localised patterns is by “role”: they can be

further classified as an internal localised pattern and/or an external localised pattern

(see Figure 9.2). We define internal localised patterns as “localised patterns that

aide ontology construction” and external localised patterns as “localised patterns

that aide ontology downstream usage”. A visualisation of this classification is shown

in Figure 9.2.

Figure 9.2: Classification of patterns.

This classification of localised patterns is not disjoint; sometimes a localised pattern

can be both internal and external. In the recasting of The Pizza Ontology, the

generate-named-pizza pattern is used to populate The Pizza Ontology and defines

a finite set of NamedPizzas. In reality however, the generate-named-pizza pattern

could be used by a variety of pizza chains to populate The Pizza Ontology to store

information about their NamedPizzas. Thus, the generate-named-pizza pattern is

classified as both an internal and external localised pattern.

In this section, we briefly discuss some of the internal and external localised patterns

that exist in The Karyotype Ontology.

9.2.1 Internal localised patterns

Like The Pizza Ontology, we make use of localised patterns in The Karyotype On-

tology. In fact, most of the entities in The Karyotype Ontology are a part of at least

one pattern, making The Karyotype Ontology our most highly patternised ontology.

- 174 -

Chapter 9: Pattern classification

Of 1616 entities, 1248 entities are created using a single pattern, the humanbands

pattern. As the name suggests, the humanbands pattern models the chromosome

bands; using a simple tree-like structure, the humanbands pattern expands the input

data and generates the necessary classes and restrictions. The humanbands pattern

is classified as an internal localised pattern as its role is to define a finite number

of human chromosome bands. As this pattern is unlikely to change, this pattern is

parameterised directly in the source code.

Another internal localised pattern is the resolution pattern, which refines chro-

mosome bands to include cytogenetic resolution information. Similar to the

named-generate-pizza pattern, the resolution pattern uses the generic closure pat-

tern. This pattern is also classified as an internal localised pattern as resolution

refines a finite set of human chromosome bands. Unlike the humanbands pattern the

data source of this pattern is a local resource text file.

9.2.2 External localised patterns

A number of patterns are defined within The Karyotype Ontology which were not

used during the construction of The Karyotype Ontology; rather they are intended

for use by end-users of the ontology (and also by the test cases and exemplars for The

Karyotype Ontology). Within The Karyotype Ontology, we define an abnormality as

a concept and support each with a usage pattern and a function(s) that generates an

OWL restriction according to the pattern. One simple example of an abnormality

pattern is the inversion localised pattern, which abstracts over the axioms that

define an inversion event in a karyotype.

In The Karyotype Ontology, we define a karyotypic inversion restriction with an

exact cardinality restriction. The purpose of the pattern is to abstract from the exact

axiomatisation and require parameterisation with experimental knowledge alone: i.e.

the number of chromosomes and the two breakpoint bands that are affected.

- 175 -

Chapter 9: Pattern classification

9.3 Results

In this section we apply three classifications to the localised patterns used in the en-

gineering of our ontologies (with the exception of The Pizza Ontology). In summary,

the three classifications1 are:

VP In [119], ODPs are sorted into nine categories, see Figure 9.1 and Table D.1 for

descriptions of each.

ME In [35], ODPs are classified according to the way they are used, see Table D.2

for descriptions of each.

JW Patterns are classified according to their role in the ontology, i.e. internal lo-

calised patterns (see Section 9.2.1) and external localised patterns (see Sec-

tion 9.2.2).

The results of this classification can be seen in Tables 9.1, 9.2 and 9.3.

Firstly, with VP, we find that most of the ontology localised patterns are grouped in

the CP category, as they are specific to the domain. Though it is of interest to note

that in Tawny-SIO, half of the localised patterns are (also) Annotation Patterns.

With ME, we find that the identified localised patterns are sorted as either Good

Practice or Domain Modelling ODPs. For both of these classifications, most of

the patterns have been classified into a single category as these classifications have

focused on generic patterns. While our work instead focuses on the patterns that are

specific to the ontology, we suggest that the heavy use of patterns in our ontologies

is as a result of technology; with Tawny-OWL it is now easy to add a new pattern

on a per ontology basis.

Lastly, our simple classification (based on role) shows that the majority of the pat-

terns in Tawny-Karyotype and Tawny-Mitochondria2 are external localised patterns

and internal localised patterns respectively, whilst Tawny-SIO has a balance of both

internal localised patterns and external localised patterns.

1We refer to each classification by the initials of the first author.
2Tawny-Mitochondria refers to the Tawny-OWL code used to build The Mitochondrial Disease

Ontology.

- 176 -

Chapter 9: Pattern classification

Table 9.1: Table highlighting pattern classification statistics of localised patterns
used in the Tawny-Karyotype and Tawny-Karyotype-Scaling projects. VP and ME
are defined as the category codes identified in Table D.1 and Table D.2 respectively,
while JW is classified as I(nternal) and/or E(xternal). For each localised pattern
we show: the number of times we use the localised pattern in Tawny-Karyotype (i.e.
usage); the number of calls (internal localised pattern only); the number of logical
axioms generated; and the logical axiom coverage % shown here as C% (internal
localised pattern only). For each external localised pattern that has a variadic
argument, we show the minimum number of axioms that could be generated; for
example affects-band [1] generates at least 2 axioms for each call.

Name VP ME JW Usage Calls Axioms C%

resolution Con D I 1 1248 7395 71.4

human-sub-band Con D I 2 845 1690 16.3

humanbands0 Con D I 2 285 195 1.9

humanbands Con D I 48 48 304 2.9

set-ordinal Con D I/E 1 25 25 0.2

addition-band Con D E 1 – 0 –

addition-chromosome Con D E 1 – 0 –

affects-band [1] Con D E 1 – 2+ –

affects-band [2] Con D E 1 – 1+ –

affects-band [3] Con D E 2 – 1+ –

deletion-band Con D E 2 – 0 –

deletion-chromosome Con D E 1 – 0 –

derivative Con D E 56 – 1 –

dicentric Con D E 6 – 1 –

duplication-pattern Con D E 3 – 0 –

exactly-direct-event Con D E 1 – 0 –

exactly-direct-feature Con D E 1 – 0 –

exactly-event Con D E 1 – 0 –

exactly-feature Con D E 1 – 0 –

fission Con D E 2 – 1/2 –

fragilesite Con D E 4 – 1 –

Continued on next page. . .

- 177 -

Chapter 9: Pattern classification

Table 9.1 – continued from previous page

Name VP ME JW Usage Calls Axioms C%

hsr Con D E 7 – 1 –

insertion-pattern Con D E 6 – 1 –

inversion-pattern Con D E 1 – 0 –

isochromosome Con D E 6 – 1 –

isoderivative Con D E 3 – 1 –

isodicentric Con D E 1 – 1 –

karyotype-class Con D E 1 – 2+ –

marker Con D E 5 – 1 –

pseudo-dicentric Con D E 2 – 1 –

pseudo-isodicentric Con D E 0 – 1 –

quadruplication Con D E 2 – 1 –

ring Con D E 9 – 1 –

robertsonian Con D E 4 – 1 –

some-direct-event Con D E 1 – 0 –

some-event Con D E 1 – 0 –

some-feature Con D E 1 – 0 –

some-direct-feature Con D E 1 – 0 –

translocation Con D E 78 – 1 –

tricentric Con D E 4 – 1 –

triplication-pattern Con D E 3 – 1

- 178 -

Chapter 9: Pattern classification

Table 9.2: Table highlighting pattern classification statistics of localised patterns
used in the Tawny-Mitochondria project. For further details see Table 9.1.

Name VP ME JW Usage Calls Axioms C%

existing-class Con D I 2 2174 4348 57.7

source Con D I 1 2174 0 0.0

term-class Log G I 1 2121 0 0.0

protein-class Con D I 1 479 479 6.4

gene-class Con D I 1 461 461 6.1

hanatomy-class Con D I 1 163 163 2.2

author-fact Con D I 1 87 0 0.0

disease-class Con D I 1 41 41 0.5

paper-class Con D I 1 30 30 0.4

pmid-fact Con D I 1 30 0 0.0

title-fact Con D I 1 30 0 0.0

manatomy-class Con D I 1 15 15 0.2

dna-mutation-class Con D I 1 6 6 0.1

protein-mutation-class Con D I 1 2 2 0.0

- 179 -

Chapter 9: Pattern classification

Table 9.3: Table highlighting pattern classification statistics of localised patterns
used in the Tawny-SIO project. For further details see Table 9.1.

Name VP ME JW Usage Calls Axioms C%

desc Ann G I 27 1461 0 0.0

sio-class Con D I 1274 1274 1772 76.1

sio-oproperty Con D I 162 162 436 18.7

sio-atom Con D I 118 118 118 5.1

sio-atom-annotation-maybe Ann G I 1 118 0 0.0

see-also-rdf Ann G I 6 117 0 0.0

example Ann G I 1 68 0 0.0

synonym-en Ann G I 46 46 0 0.0

synonym-rdf Ann G I 43 43 0 0.0

equivalent-rdf Ann G I 36 36 0 0.0

subset-rdf Ann G I 18 18 0 0.0

equivalent-uri Ann G I 13 13 0 0.0

see-also-uri Ann G I 6 6 0 0.0

similar-uri Ann G I 2 2 0 0.0

sadi Ann G I 1 2 0 0.0

biochemical-pathway Con D E 1 – 1 –

biochemical-pathway0 Con D E 3 – 0 –

biochemical-reaction Con D E 1 – 1 –

enzyme-dissociate Con D E 2 – 1 –

enzyme-part-of Con D E 2 – 1 –

enzyme-role Con D E 2 – 1 –

molecule-atom Con D E 4 – 1 –

molecule-pattern Con D E 1 – 3+ –

parameter-pattern Con D E 1 – 1 –

protein-containment Con D E 1 – 1 –

protein-pattern Con D E 1 – 2+ –

Continued on next page. . .

- 180 -

Chapter 9: Pattern classification

Table 9.3 – continued from previous page

Name VP ME JW Usage Calls Axioms C%

protein-residue Con D E 4 – 2 –

reaction-pattern Con D E 1 – 1+ –

software Con D E 2 – 1 –

some-role Con D E 2 – 1+ –

- 181 -

Chapter 9: Pattern classification

9.4 Summary

In this thesis we have identified numerous patterns; this is especially true for The

Karyotype Ontology. We accept that The Karyotype Ontology is, no doubt, an

extreme example, but we also found the same thing in The Pizza Ontology, The

Mitochondrial Disease Ontology and Tawny-SIO. Here, we show that the use of these

patterns was beneficial in both the construction of the ontology and the downstream

usage of the ontologies (RQ3).

In addition, we use explicit metrics to show how highly patternised our ontologies

actually are. Specifically 73.3%, 97.7% and 99.9% of the logical axioms are gener-

ated by localised patterns in The Mitochondrial Disease Ontology, The Karyotype

Ontology and Tawny-SIO respectively (see Tables 9.2, 9.1 and 9.3). Furthermore,

each ontology has at least one pattern that generates at least half the required logical

axioms.

Many of the localised patterns are very small, but even small patterns help with

regularity, and, more importantly, help with developer comprehensibility. Our most

extreme example comes from outside of this work; the Open Biomedical Ontologies

(OBO) ID pattern is designed to hide IDs from the developer. We have also used

patterns for maintainability and for “late binding” so we can change our mind about

axiomitisations.

Lastly, we show that two existing ODP classifications are insufficient in the classi-

fication of localised patterns. With our novel classification (that classifies localised

patterns based on their role) and basic statistics of the localised patterns used in

this work, we aim to improve the ontological community’s understanding of localised

patterns. Thus this chapter concludes our research into how a pattern-driven and

programmatic approach can be used to build a computational representation of the

ISCN (RQ1).

In the next chapter, we will summarise the findings of this thesis and discuss how

the work discussed in this thesis can improve the ontology engineering process.

- 182 -

10
Discussion

Contents
10.1 Introduction . 184

10.2 Utilising a pattern-driven and programmatic approach . . . 185

10.3 The Karyotype Ontology . 188

10.4 The Mitochondrial Disease Ontology 191

10.5 Re-purposing software engineering 193

10.6 Improving the ontology engineering process 197

- 183 -

Chapter 10: Discussion

10.1 Introduction

Since the success of GO, the awareness and usage of ontologies in biology has grown.

The engineering of these ontologies is well-studied and there are a variety of method-

ologies and techniques, some of which have been re-purposed from software en-

gineering methodologies and techniques. However, due to the complex nature of

bio-ontologies, they are not resistant to errors and mistakes. This is especially true

for more expressive and/or larger ontologies.

In order to overcome these issue, we explored the usage of a pattern and program-

matic approach to ontology engineering. In this chapter, we reflect on the usage of

this approach in the development of two novel models of biology and the recasting

of one existing bio-ontology. Further, we discuss how the approach can also be used

for the downstream usage of ontologies (see Section 10.2).

As a result of this work, two computational artefacts were produced for two domains

of biology; The Karyotype Ontology and The Mitochondrial Disease Ontology. The

Karyotype Ontology provides a formal representation of karyotypes in a form that

is easy to query, validate and maintain, while The Mitochondrial Disease Ontology

is a reference ontology that describes the terms associated with mitochondrial dis-

ease. In this chapter, we discuss the limitations and identify possible improvements

and extensions that could be applied to each of these ontologies (see Sections 10.3

and 10.4 respectively).

In addition, while modelling these two domains, we were able to re-purpose some

software engineering techniques, such as versioning and Continuous Integration (CI),

to aid ontology engineering. While we have not provided the specifics of this data

in this thesis, we briefly reflect on the success (or failure) with a collection of re-

purposed techniques (see Section 10.5).

In summary, this work has taken a step towards building ontologies using a soft-

ware engineering perspective, thus removing ourselves from having to utilise bespoke

tooling. This chapter ends with a review of this work, specifically highlighting im-

provements that could help enhance the (computing science) ontology community

(see Section 10.6).

- 184 -

Chapter 10: Discussion

10.2 Utilising a pattern-driven and programmatic

approach

During the construction of The Karyotype Ontology, we found that many of the

entities were very similar in logical structure; this forced us to use a pattern-driven

approach. We tried to express these patterns in various ways; the best way being

OPPL, which allows us to change or update an existing ontology using a declarative

query language. However, there are difficulties with using OPPL in a pattern-driven

approach. For instance, we introduce a completely new syntax over and above

that of OWL. This necessitates a new environment such as the OPPL plugin for

Protégé. However, this is a one-shot tool; OPPL is applied to the ontology which is

then changed. But what if we find our OPPL transformation was wrong, or we wish

to reapply with new knowledge? And, where do we store and version our OPPL

scripts?

We also considered generating the Manchester Syntax using a script or using the

OWL API, but believed neither of these approaches to be workable in practice. The

overall structure of the ontology would be hidden in the former case, and the seman-

tics of Java, with its use of classes and method invocation bears little relationship to

the semantics of OWL. We used Tawny-OWL to implement these patterns; the ad-

vantage of a single syntax and environment for both patternised and non-patternised

parts was overwhelmingly clear. That we could also use the same environment and

syntax for scalability, performance testing and parsing was unexpected but also

extremely useful.

Tawny-OWL currently provides support for three well-known existing patterns:

value partition, closure and covering axioms. These patterns have been used in

Tawny-Pizza (see Chapter 4) and are available for use in other ontologies. As Tawny-

OWL is fully programmatic, we can easily encode patterns that are localised to the

scope of a single ontology. These localised patterns are useful as they enable syn-

tactic concision, ensure consistency and support maintainability should the need for

change arise. This form of localised pattern stands in contrast to most work on

ODPs which have focused on generic patterns.

- 185 -

Chapter 10: Discussion

The Karyotype Ontology is predominantly made up of a variety of localised patterns

(see Table 9.1). Around half of these entities, specifically the human chromosome

bands, are generated via the humanbands pattern. In practice, the use of a pattern

is the only plausible way we could model these repetitive entities. In modelling

human chromosome bands there is no shortcut we could implement; we have to

list all the possible bands. While The Karyotype Ontology is possibly exceptional

in this regard, it is by no means unique. Other potential repetitive domains that

this type of pattern-driven approach would be applicable to are: countries1, stellar

classification [92], human languages2, and chess pieces [63].

Through the use of patterns, we show that we can easily extend The Karyotype

Ontology (see Chapter 6). For example, karyotypic events, such as deletions and

insertions that affect a sequence of bands, are not modelled in our ontology. We

have discussed three ways we could achieve this. A priori, it is difficult to determine

which of these will work best (for various sizes), particularly with respect to non-

functional characteristics such as reasoning time. The extensibility of Tawny-OWL

enables us to test this by generating multiple test versions of the ontology. With

105 classes this would otherwise be impractical.

To our knowledge, this (programmatic) application of patterns is completely novel.

There is relatively little work on addressing this form of non-functional characteristic

(reasoning time), largely because once the ontology has been built, it is too late to

test.

We have demonstrated that patterns benefited the development of Tawny-Pizza, The

Karyotype Ontology and The Mitochondrial Disease Ontology. However, we wish to

understand whether patterns are generally useful. Therefore, we have also applied

this methodology to SIO (see Chapter 8), which we chose after the construction of

Tawny-OWL, and which was built without knowledge of Tawny-OWL.

We find that patterns are generally less useful within Tawny-SIO than The Kary-

otype Ontology. However, a number of patterns were identified that could increase

the consistency and concision of this ontology. The lack of patterns for construction

1http://www.iso.org/iso/country_codes
2http://www.iso.org/iso/language_codes

- 186 -

http://www.iso.org/iso/country_codes
http://www.iso.org/iso/language_codes

Chapter 10: Discussion

is probably because SIO is an upper level ontology that does not have much self-

repetition. The only exception is in the definition of atoms; here a pattern is vital

and bears more resemblance to a middle level ontology. However even with SIO

we have identified numerous annotation patterns that are more or less independent

of the domain. For example, an annotation that utilises SIO term(s) is obviously

not independent of the domain while an annotation that states the authors is in-

dependent. Furthermore, we (and SIO authors) have identified and implemented

additional patterns, which whilst are not themselves used in Tawny-SIO, are poten-

tially useful for downstream users of Tawny-SIO.

In this thesis, we have described the application of Tawny-OWL to four ontologies

which have allowed us to test the usage of patterns. It is clear that the utility

of the pattern-driven approach will depend on the nature of the ontology. For

example, a structurally simple ontology may use few patterns. However, we note

that they are not limited to the logical component of OWL; within Tawny-SIO we

have used a number of annotation patterns. We believe that once patterns are easy

to use and integrate within the ontology environment, patterns will cease to become

exceptional and start to become a routine utility for authors and downstream users

of ontologies. They can be used in many different parts of the life cycle and appear

to be a promising approach that can substantially improve ontology engineering.

- 187 -

Chapter 10: Discussion

10.3 The Karyotype Ontology

From around 1960, karyotypes have been described as semantically meaningful

strings3, as defined by the standard nomenclature, ISCN. Historically, this rep-

resentation has worked for human-to-human (written) communication; however the

number of ISCN Strings is continuously growing, thus outstripping our human ca-

pabilities. As a result, we question the representation, scalability and extensibility

of ISCN.

The specification mixes epistemology with ontology. For example ISCN Strings

generally represent the canonicalised karyotype, however when describing mosaic

karyotypes we count the number of clones. This confusion is progressively increases

when incorporating FISH and sequence knowledge. This is not necessarily a problem,

but it does mean that the ISCN is going to get increasingly more complex over time

as more techniques are invented. This increase of scope means that the necessity

for a machine interpretable version becomes more important as the current format,

a standalone book, is not extensible. Any existing data, or other specifications

related to techniques such as FISH, cannot be simply integrated with the ISCN.

The specification is a standalone book, so the only way to compose it with other

specifications is to rewrite it.

What we need is a representation that is computationally amenable, scalable, ex-

tensible and can integrate with other specifications. The Karyotype Ontology is

all of these things; it has formally defined semantics and specification; something

which we have used during this thesis. We have shown that it is scalable to realistic

numbers of ISCN Strings. The use of Tawny-OWL adds a layer of extensibility over

and above that already provided by OWL. Finally, as part of the Semantic Web,

OWL has been built to integrate with other resources available on the open web; the

semantics of OWL mean that this is truer of The Karyotype Ontology than would

have been the case with either a relational or eXtensible Markup Language (XML)

based representation. While we have not explored this aspect of OWL as part of

the thesis, integrating The Karyotype Ontology with resources such as GO or The

3known in this thesis as ISCN Strings

- 188 -

Chapter 10: Discussion

Sequence Ontology (SO) [37] is obvious future work for The Karyotype Ontology.

Unfortunately, one key resource that The Karyotype Ontology does not cleanly

integrate with is the ISCN specification, or any existing ISCN Strings. Lacking a

formal computational specification for ISCN makes it difficult to extract knowledge

stored in ISCN Strings and representing it using The Karyotype Ontology; this

is a process which adds structure to the knowledge and thus remains difficult to

automate. It is, however, possible to apply heuristics to parse the ISCN Strings and

represent them in The Karyotype Ontology. One unexpectedly useful implication of

our use of Tawny-OWL, is that we can integrate code implementing these heuristics

in Clojure with The Karyotype Ontology. Inevitably, the heuristic nature of this

process will be error-prone; even here, though, the extensible and integratable nature

of The Karyotype Ontology helps. We can, for instance, use The PROV Ontology

(PROV-O) to describe and maintain links back to the original source, enabling any

updates to be percolated cleanly, something which has been difficult to do in other

resources [14].

In this thesis, we have experimented heavily with a fully programmatic environment

and the impact it has on ontology development. It is possible that this work can

also enable the reverse: integrating ontologies into software development. If possible

this would greatly help with one further extension that is critically required by the

cytogeneticists; they require the ability to visualise these ISCN Strings as ideograms.

One other extension of The Karyotype Ontology we are interested in and would like

to develop further, is the use of reasoning to identify and classify syndromes. For

example Cri du Chat Syndrome (CdCS) [66] is a genetic disease that is caused by

a partial deletion (of variable size) occurring in the short arm of chromosome 5,

also known as 5p monosomy. Consider the class definition in Listing 10.1. Here, we

define a male individual with CdCS by explicitly defining the chromosome 5 deletion

event (breakpoints p15 and pTer). Obviously this definition is of a primitive class,

but if it were defined, potentially all individuals with CdCS could be inferred to be

subclasses which has obvious diagnostic implications.

- 189 -

Chapter 10: Discussion

(defclass k46_XY_del (5p15)

:super

(some derivedFrom k46_XY)

(exactly hasEvent 1

(and

Deletion

(some hasBreakPoint HumanChromosome5Bandp15)

(some hasBreakPoint HumanChromosome5BandpTer))))

Listing 10.1: Tawny-OWL definition of an individual with CdCS.

In summary, with The Karyotype Ontology, we have: produced a useful compu-

tational artefact that can be used to maintain and query karyotypes (which fulfils

RQ1); pioneered a new paradigm for ontology development (see Section 10.2); and

lastly, left the research community with lots of new questions to contemplate.

- 190 -

Chapter 10: Discussion

10.4 The Mitochondrial Disease Ontology

In this thesis, we have described the development process for an ontology of mi-

tochondrial pathology. Unlike The Karyotype Ontology, there is no existing spec-

ification that we wish to formalise. Instead, our knowledge about mitochondria is

contained in numerous sources e.g. databases and papers. Therefore, we first had

to apply some form of knowledge capture to elicit the relevant information. In this

thesis, we describe three different techniques for knowledge elicitation; we found

that term extraction from published papers was the most useful and appropriate

knowledge source for the first iteration of our ontology.

Once we had extracted a list of possible terms for our ontology, it was necessary to

apply some form of refinement. This stage was twofold as it required canonicalisation

of all terms (i.e. removing acronyms and other forms of duplications that were not

obvious in the initial capture stage), then the filtering of disease relevant terms only.

In order to aid us in the canonicalisation process, simple heuristics (string searches)

were employed to identify possible duplicate terms.

However, this work was conducted previous to the patternised described in Sec-

tion 10.2. It would be interesting to consider how this workflow might be changed

with a patternised approach. For example could we have had users building Google

docs or spreadsheets and re-import this live data from them on demand? Our data

cleaning steps would have been encoded in Clojure and then directly transformed

with Tawny-OWL patterns into OWL; we could also have recycled the knowledge

to the users by using spreadsheets in a similar manner to RightField and Populous.

Next we started to build The Mitochondrial Disease Ontology for its purpose; to

provide a Knowledge Base (KB) for exploration, rather than a reference ontology,

which is the current state of the ontology. This commonly occurs as ontology en-

gineering is a lengthy process. An example “ontology”4 that facilitates a KB for

exploration (and accomplishes what we wish to achieve), is discussed in the drug

discovery work conducted in [26].

Ultimately, though, the mitochondrial work was limited by the tooling. The mito-

4The author is careful not to describe his work as an ontology.

- 191 -

Chapter 10: Discussion

chondrial work came to a standstill, and it was not until Tawny-OWL was developed

(in co-ordination with the karyotype work) that the mitochondrial work was able to

be updated and continued. Even with the shortfall, we believe that the agile engi-

neering approach we followed was strong, and that it can be extended, by further

exploiting parallels with software engineering.

As future work, we wish to continue the construction of the ontology and evaluate of

the ontology in the context of an otherwise useful task; for example, classifying and

clarifying of mitochondrial disease by their symptomatic or genomic definition. This

use has been proven to be successful when classifying phosphatase proteins [166],

or comparing annotation similarity with sequence similarity [69]. We believe this

work would be of particular interest to the biologists and, as with the classification of

phosphatases, it raises the possibility of computerising the discovery of new biological

understanding, such that, like the robot scientist Adam [64], we could remove some

of the labour intensive (and sometimes boring) testing of hypothesis.

In summary, with The Mitochondrial Disease Ontology, we have produced a useful

computational artefact that will potentially have the ability to classify and clarify

mitochondrial disease by their symptomatic and/or genomic definition (which fulfils

RQ2); and clearly identified the future work required of this model.

- 192 -

Chapter 10: Discussion

10.5 Re-purposing software engineering

For this work, we made extensive use of patterns. As mentioned in Chapter 2,

patterns were originally popularised in the context of software engineering. Here,

we reflect on other software engineering techniques that we have re-purposed in

order to aid the ontology engineering. This mean that there is no research in this

section; instead we conduct a reflective report on our success (or failure) with the

re-purposed techniques.

One example of a software engineering process re-purposed for ontologies is version-

ing; while the management of this process (revision control), allows collaborative

development, it can be controlled by client-server systems known as Concurrent

Versions System (CVS). There are existing bespoke tools that attempt to emulate

these systems, such as ContentCVS [129], which is OWL specific. There are also

collaborative environments such as WebProtégé [153], which provides some CVS

functionality, i.e. a collaborative engineering of ontologies, but WebProtégé does

not include features such as history. However, there is one well-known problem with

versioning ontologies; these revision control tools depend implicitly on diff5 and irre-

spective of the ontology’s syntax, one small change in the ontology can create many

changes in the file. Resource Description Framework (RDF) serialisations, in fact,

are the worst perpetrators for this change [98]. We could utilise bespoke diff tools for

OWL, such as ecco [45], which applies both semantic and syntactic diff techniques,

but find that all we really need is a human-readable, line-oriented syntax, such as

Manchester Syntax or the OBO flat file format [98], which Tawny-OWL emulates.

In addition, with the use of patterns, we find that semantic diff is less useful as one

pattern can change many entities. Instead, we find that a non-semantic diff works

fine as an end user tool.

During this thesis we made extensive use of revision control; this was accomplished

using the revision control system Git and GitHub (an online community Git repos-

itory). With GitHub, each project has its own repository. Version control was

paramount as all ontologies were built in a modular fashion, with numerous com-

5A utility that shows the changes between two versions of the same file.

- 193 -

Chapter 10: Discussion

mits over a long period of time.

Another example of a re-purposed software engineering technique is Unit test-

ing [159]. In software engineering, unit tests are generally used to aid development

and maintenance by verifying that units of code behave as intended [13]. In our

case, the unit tests provided a strict way of isolating problems early in the ontol-

ogy construction and pattern generation. As Tawny-OWL is built on Clojure, a

general purpose language, we naturally inherited the ability to implement tests via

clojure.test. Further, as Tawny-OWL is extensible, regression testing accelerated

and facilitated change. In addition, we have the ability to automatically generate

unit tests. For example, with the use of the Incanter library6, we auto-generated

each OWL Karyotype unit test, using the data stored in the spreadsheet.

Once tests are implemented, we also have the ability to integrate with CI systems,

specifically TravisCI7, to automatically run all tests after every push to the reposi-

tory.

In software engineering, Maven is used to automatically build and manage projects.

This is achieved using a Project Object Model (POM), specifically an XML file

which describes the software project being built, its dependencies, the build order,

directories and any associated plug-ins. Maven uses this POM to dynamically down-

load associated libraries and stores them to a local cache. Through the use of Maven,

we get all of the associated software e.g. HermiT [137], ELK [170] and Tawny-OWL

itself. Unlike OntoMaven [112], an extension of Maven, this functionality was natu-

rally occurring in the development of Tawny-OWL.

Maven also provides us with a new way of distributing ontologies by allowing the

reuse of existing ontology components into local development repositories. This

mean that for each repository the open source libraries can be uploaded to clojars8,

a free online Clojure community repository, and pulled in via Maven dependencies.

As mentioned in Section 2.3, the interaction required by Graphical User Interface

(GUI) ontology engineering tools can be time-consuming, especially when there are

6https://github.com/incanter/incanter
7https://travis-ci.org/
8https://clojars.org/

- 194 -

https://github.com/incanter/incanter
https://travis-ci.org/
https://clojars.org/

Chapter 10: Discussion

many changes to make. In this regard, Tawny-OWL is superior. However, Protégé

is still one of the most popular editors for building ontologies [161]; part of this is

most likely due to its visualisation capabilities, something that Tawny-OWL lacks.

However, with numerous extensions9 this limitation is alleviated [77].

In contrast to the GUI visualisation, Tawny-OWL also has Integrated Development

Environment (IDE) interoperability with the Emacs text editor, and supports a full

textual representation of the Clojure code. We use the tawny-mode10 Emacs package

that, with a full featured Read-Eval-Print Loop (REPL), allows us to dynamically

explore, create and reason ontologies. In addition, it supports the encoding of on-

tologies in Tawny-OWL by providing documentation lookup and applying custom

syntax highlighting. Further, we use the omn-mode11 Emacs package to visualise the

ontology in Manchester Syntax format12 [71, 73].

As briefly mentioned in Section 1.1, lints also originated from software engineering.

One well-known ontology lint used by the community is OOPS!, which is currently

in the implementation stage13. However, we need to consider not only the ontology

but the code that was used to generate the ontology. While we have tools such as

eastwood14, which help with the static analysis of Clojure code, it would be nice to

have a lint for Tawny-OWL itself. In addition, if this Tawny-OWL lint could operate

at the level of the patterns and allow the flexible redefinition of code, we could use

it to help with the refactoring of SIO (Section 8.1 Step 2) and systematically handle

the syntax tree. We could attempt this by defining rules, which is possible through

standard Clojure lints, such as kibit15.

Further, there are many other software engineering techniques that we have not

considered. For example, is it possible to incorporate Tawny-OWL into a highly

collaborative editing environment, such as WebProtégé? Additionally, documenta-

tion is an important but time-consuming part of any computational artefact. In

order to aid the documentation process, could we implement some form of auto-

9See Protege-Nrepl, Tawny-Protege and Lein-sync
10https://github.com/phillord/tawny-owl/blob/master/emacs/tawny-mode.el
11Found at https://github.com/phillord/phil-emacs-packages.
12By saving the ontology in Manchester Syntax format
13https://github.com/jaydchan/tawny-owl/tree/oops-service
14https://github.com/jonase/eastwood
15https://github.com/jonase/kibit

- 195 -

https://github.com/phillord/protege-nrepl
https://github.com/phillord/tawny-protege
https://github.com/phillord/lein-sync
https://github.com/phillord/tawny-owl/blob/master/emacs/tawny-mode.el
https://github.com/phillord/phil-emacs-packages
https://github.com/jaydchan/tawny-owl/tree/oops-service
https://github.com/jonase/eastwood
https://github.com/jonase/kibit

Chapter 10: Discussion

matic live [115] documentation or employ literate documentation [75]? Could we

provide the ability to import or create live spreadsheets, thus emulating RightField

and Populous? As briefly discussed in Chapter 6, we believe that the best way of

modelling the affects relation is dependent on the user’s preference. Could we im-

plement this through the use of contextual imports [24]? Lastly, could we improve

Tawny-OWL itself; for example implement tools that explain the origin of pattern

generated ontology components or provide ontology statistics?

In summary, we have discussed the 5 and 8 re-purposed software engineering tech-

niques and technologies respectively, used in the creation of our ontologies. Further-

more, 3 techniques and 4 technologies have been identified as future work. Thus

this section concludes our research into the advantages and benefits of applying

a pattern-driven and programmatic approach to ontology engineering (RQ3). See

Chapter E for a summary of all advantages and benefits discussed in this thesis.

- 196 -

Chapter 10: Discussion

10.6 Improving the ontology engineering process

During the work presented in this thesis, we have identified numerous features and

properties regarding the usage of a pattern-driven approach to ontology engineering.

Within this section, we summarise each topic that can help enhance the (computing

science) ontology community.

As discussed in Section 2.3, there are a variety of bespoke tools available for the

construction of OWL ontologies (e.g. Protégé and Populous). However, in this the-

sis, rather than use bespoke tools, we have successfully used numerous re-purposed

software engineering techniques and technologies for use with Tawny-OWL, in order

to build our two domain ontologies. For example, Git and GitHub were used to

manage the versioning of the ontology, whilst clojure.test and TravisCI enabled

the implementation of unit testing and the automatic running of our tests after every

push to the project repository. In total, we discuss 13 re-purposed and 7 potential

software engineering tools and techniques (see Section 10.5). The usage of these

tools was personally, of great benefit in the ontology engineering, thus we propose

that, rather than invent further bespoke ontology tools, we should re-purpose the

already existing software engineering tools.

Secondly, we see that ontology patterns are useful in ontology engineering; all the

more so for ontologies that are highly repetitive. For example, whilst The Kary-

otype Ontology is probably an exceptional case, (97.7% of the logical axioms were

generated through the use of patterns, see Table 9.1), it was shown to not be unique.

However, if ontology patterns are to be useful, we need them to be able to encode

them computationally and subsequently generate ontologies with them. Existing

tools that allow the encoding of patterns, may require repetitive and time-consuming

GUI interactions and/or the separation of non-patternised and patternised parts of

the ontology. With Tawny-OWL these issues are circumvented.

In this thesis, we see that localised patterns are of more importance than generic

patterns. This was especially true for The Karyotype Ontology. However, this state-

ment is already obvious, as in software engineering, the implementation of functions

and removal of code replication occurred way before we (the computing science

- 197 -

Chapter 10: Discussion

community) started talking about design patterns.

Finally, in this work, we have shown that it is possible to incorporate software

to build our ontologies. An example of this is shown in the construction of The

Mitochondrial Disease Ontology; The Mitochondrial Disease Ontology is built with

Clojure, Tawny-OWL the OWL API, and is based on numerous text files and spread-

sheets. Here, we consider whether the converse is also possible i.e. can ontology

elements be built into the software. An example of this would be a visual tool

for the construction of karyotype classes. In fact through the use of Clojure and

Tawny-OWL, this would be possible as we can embed our ontology directly into our

programming language.

Taken together, this approach to ontology engineering defines a new paradigm, and

allows us to move ontologies beyond tools for generating reference canonicalisations,

toward becoming tools for the exploration of knowledge and the creation of new

understanding.

- 198 -

A
Recast of The Pizza Ontology

- 199 -

Chapter A: Recast of The Pizza Ontology

(defontology pizzaontology

:iri "http://www.ncl.ac.uk/pizza"

:prefix "piz:")

(defdproperty hasCalorificContentValue)

(defaproperty myOpinion)

(defoproperty hasTopping

:label "rdfs-label test")

(as-disjoint

(defclass Pizza

:label "Pizza")

(defclass PizzaComponent))

(as-subclasses PizzaComponent

:cover :disjoint

(defclass PizzaTopping)

(defclass PizzaBase))

(defclass NamedPizza

:annotation (annotation myOpinion "rdfs-annotation test"))

(defclass TomatoTopping

:annotation (see-also "rdfs-seealso test"))

(defclass MozzarellaTopping

:comment "rdfs-comment test")

(defclass MargheritaPizza

:super

NamedPizza

(some-only hasTopping

TomatoTopping MozzarellaTopping))

(defindividual ExampleMargheritaPizza

:type MargheritaPizza

:fact (fact hasCalorificContentValue 300))

Listing A.1: A subset of The Pizza Ontology

- 200 -

B
Tawny-OWL: Supplementary

Material

Contents
B.1 Tawny-OWL restriction exemplars 202

B.2 Tawny-OWL entity exemplars 204

B.3 Tawny-OWL frames . 206

B.4 Defining a namespace in Tawny-OWL 209

- 201 -

Chapter B: Tawny-OWL: Supplementary Material

B.1 Tawny-OWL restriction exemplars

In Tawny-OWL exact cardinality restrictions are declared using the exactly func-

tion. An example exact cardinality restriction can be seen in Listing B.1. This

restriction is used by the FourCheesePizza defined class to find all Pizzas that have

exactly four CheeseToppings.

(defclass FourCheesePizza

:equivalent

(and Pizza

(exactly 4 hasTopping CheeseTopping)))

Listing B.1: An example exact cardinality restriction definition.

In Tawny-OWL minimum cardinality restrictions are declared using the at-least

functions. An example minimum cardinality restriction can be seen in Listing B.2.

This restriction is used to by the InterestingPizza defined class to find all Pizzas

that have at least three CheeseToppings. Conversely maximum cardinality restric-

tions are declared using the at-most function.

(defclass InterestingPizza

:equivalent

(and Pizza

(at-least 3 hasTopping PizzaTopping)))

Listing B.2: An example minimum cardinality restriction definition.

In Tawny-OWL has-value restrictions are declared using the has-value function. An

example has-value restriction can be seen in Listing B.3. This restriction declares

that the calorific content value is 150.

(has-value hasCalorificContentValue 150)

Listing B.3: An example basic class definition

In Tawny-OWL datatype restrictions are declared using the span function. An

example datatype restriction is shown in Listing B.4. Using the >=< symbol, we

define a min and max inclusive datatype restriction. This restriction is used by

the MediumCaloriePizza defined class to find all Pizzas that have a calorific value

between 400 and 700.

- 202 -

Chapter B: Tawny-OWL: Supplementary Material

(defclass MediumCaloriePizza

:equivalent

(and Pizza

(some hasCalorificContentValue

(span >=< 400 700))))

Listing B.4: An example existential restriction definition using a datatype property.

- 203 -

Chapter B: Tawny-OWL: Supplementary Material

B.2 Tawny-OWL entity exemplars

Once a class is defined in Tawny-OWL, we can start to define OWL individuals.

As an example basic individual definition see Listing B.5. The defindividual

function builds on individual, such that individual creates the OWL API

OWLIndividual object and defindividual creates a symbol, in this case the

ExampleMargheritaPizza. Subsequent use of this symbol will resolve to the indi-

vidual object.

(defindividual ExampleMargheritaPizza

:type MargheritaPizza

:fact (fact hasCalorificContentValue 300))

Listing B.5: An example basic individual definition.

The :type and :fact frames are used to add one or more class assertion axioms and

facts respectively to the individual. In Tawny-OWL, facts can be generated using

the fact or is functions. All available individual frames are shown in Table B.3.

In an ontology an ontologist can define three types of properties: object property,

annotation property and datatype property. In Tawny-OWL these are declared

majorly using the defoproperty, defaproperty and defdproperty respectively. In

this section we show an example declaration of each property type and supply a

brief description of some of the associated frames for each.

(defoproperty hasBase

:super hasIngredient

:characteristic :functional

:range PizzaBase

:domain Pizza)

Listing B.6: An example basic object property definition.

The :super frame is used to add one or more superproperties to the property using

the SubPropertyOf axiom. In Listing B.6 we assert that the hasBase object property

is a subproperty of the hasIngredient object property. The :characteristic frame

is used to add a list of characteristics to the property. In Listing B.6, we are defining

the hasBase object property to be a functional property. This states that every Pizza

can only have one PizzaBase. The :range and :domain frames are used to add one or

more property range or domain axioms to the property. All available object property

- 204 -

Chapter B: Tawny-OWL: Supplementary Material

frames are shown in Table B.4.

As an example basic annotation property definition see Listing B.7. The

defaproperty function builds on the annotation function, such that annotation

creates the OWL API OWLAnnotationProperty object and defaproperty creates a

symbol. in this case myOpinion.

(defaproperty myOpinion

:super owl-comment-property

:label "My Opinion"

:comment "Do I think this is a good pizza to eat?")

Listing B.7: An example basic annotation property definition

Like the defoproperty, the :super frame is used to add one or more superproperties

to the property using the SubPropertyOf axiom. In Listing B.7 we assert that the

myOpinion annotation property is a subproperty of the owl-comment-property, which

is a predefined Tawny-OWL symbol that refers to the rdfs:comment annotation

property. All available annotation property frames are shown in Table B.5.

As an example basic datatype property definition see Listing B.8. The defdproperty

function builds on the datatype-property function, such that datatype-property

creates the OWL API OWLDataProperty object and defdproperty creates a symbol,

in this case hasCalorificContentValue.

(defdproperty hasCalorificContentValue

:range :XSD_INTEGER)

Listing B.8: An example basic datatype property definition

Like the defoproperty, the :range frame is used to add one or more property range

axioms to the property. In Listing B.8 we assert that the hasCalorificContentValue

datatype property has a property range axiom value of :XSD_INTEGER, which is a

transformed Tawny-OWL keyword that refers to the OWL2Datatype constant1. All

available datatype property frames are shown in Table B.6.

1http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/vocab/

OWL2Datatype.html#XSD_INTEGER

- 205 -

http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/vocab/OWL2Datatype.html#XSD_INTEGER
http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/vocab/OWL2Datatype.html#XSD_INTEGER

Chapter B: Tawny-OWL: Supplementary Material

B.3 Tawny-OWL frames

Table B.1: Table showing the variety of frames available to define an OWL ontology
in Tawny-OWL. Data taken from the Tawny-OWL repository.

Ontology frame Description

:iri Sets the iri for the ontology
:iri-gen Adds an IRI gen function to the ontology options
:prefix Sets the prefix for the ontology
:name Adds a tawny-name annotation axiom to the ontol-

ogy, unless the :noname ontology option is specified
:seealso Adds a see also annotation axiom to the ontology
:comment Adds a comment annotation axiom to the ontology
:versioninfo Adds a version information annotation axiom to

the ontology

Table B.2: Table showing the variety of frames available to define an OWL class
in Tawny-OWL. The :subclass frame, previously used to define SubClassOf re-
strictions, has not included as it has now been deprecated. Data taken from the
Tawny-OWL repository.

Class frame Description

:sub Adds one or more subclasses to the class
:super Adds one or more superclasses to the class
:haskey Adds a haskey axiom to the class
:annotation Adds an annotation axiom to the class
:comment Adds a comment annotation axiom to the class
:label Adds a label annotation axiom to the class
:equivalent Adds an equivalent class axiom to the ontology
:disjoint Adds a disjoint class axiom to the ontology

- 206 -

Chapter B: Tawny-OWL: Supplementary Material

Table B.3: Table showing the variety of frames available to define an OWL individual
in Tawny-OWL. Data taken from the Tawny-OWL repository.

Individual frame Description

:type Adds one or more class assertion axioms to the
individual

:fact Adds one or more facts to the individual
:same Adds one or more individuals as same individual

axioms to the ontology
:different Adds one or more individuals as different individ-

ual axioms to the ontology

Table B.4: Table showing the variety of frames available to define an OWL object
property in Tawny-OWL. The :subproperty frame and :subpropertychain frame,
previously used to define SubPropertyOf and SubPropertyChainOf restrictions re-
spectively, has not included as it has now been deprecated. Data taken from the
Tawny-OWL repository.

Property frame Description

:domain Adds one or more domain axioms to the property
:range Adds one or more range axioms to the property
:inverse Adds one or more inverse axioms to the property
:sub Adds one or more subproperties to the property
:super Adds one or more superproperties to the property
:subchain Adds a property chain to property
:characteristic Adds a list of characteristics to the property.

Available characteristics include :transitive,
:functional, :inversefunctional, :symmetric,
:asymmetric, :irreflexive and :reflexive

:disjoint Adds a disjoint property axiom to the ontology
:equivalent Adds an equivalent property axiom to the ontology
:annotation Adds an annotation axiom to the property
:comment Adds a comment annotation axiom to the property
:label Adds a label annotation axiom to the property

- 207 -

Chapter B: Tawny-OWL: Supplementary Material

Table B.5: Table showing the variety of frames available to define an OWL annota-
tion property in Tawny-OWL. The :subproperty frame, previously used to define
SubPropertyOf restrictions, has not included as it has now been deprecated. Data
taken from the Tawny-OWL repository.

Property frame Description

:super Adds one or more superproperties to the property
:annotation Adds an annotation axiom to the property
:comment Adds a comment annotation axiom to the property
:label Adds a label annotation axiom to the property

Table B.6: Table showing the variety of frames available to define an OWL datatype
property in Tawny-OWL. The :subproperty frame, previously used to define Sub-

PropertyOf restrictions, has not included as it has now been deprecated. Data
taken from the Tawny-OWL repository.

Property frame Description

:domain Adds one or more data domain axioms to the prop-
erty

:range Adds one or more data range axioms to the prop-
erty

:sub Adds one or more subproperties to the property
:super Adds one or more superproperties to the property
:characteristic Adds a list of characteristics to the property.

Available characteristics include :functional

:disjoint Adds a disjoint property axiom to the ontology
:equivalent Adds an equivalent property axiom to the ontology
:annotation Adds an annotation axiom to the property
:comment Adds a comment annotation axiom to the property
:label Adds a label annotation axiom to the property

- 208 -

Chapter B: Tawny-OWL: Supplementary Material

B.4 Defining a namespace in Tawny-OWL

Before an OWL ontology can be defined, a Clojure namespace must be defined. This

utility is used to prevent name clashes. Similar to Java, Clojure namespaces can also

contain packages which map to directories. The namespace defined in Listing B.9

maps to a file in the src/pizza/pizza.clj. Listing B.9 shows an example of defining

a namespace using the Clojure ns macro. By default it will create a new namespace

that contains mappings to functions in clojure.core and classnames in java.long

and clojure.lang.Compile. Further mappings can be included and/or excluded

using the namespace keywords such as :refer-clojure, :use and :require.

(ns pizza.pizza

(:refer-clojure :exclude [and or not some])

(:use [tawny.owl]

[tawny.english])

(:require [tawny.reasoner :as r]))

Listing B.9: An example basic namespace definition

The :use keyword is used to import another namespace’s code as though it was

declared in your namespace i.e. it does not need qualification. In Listing B.9 we

are importing all tawny.owl and tawny.english2 symbols. In order ensure that no

namespace clashes occur when we import tawny.english, the :refer-clojure key-

word is used apply restrictions to clojure.core mappings, such that and, or, not

and some functions are not imported into the current namespace. The :require key-

word however is used to refer to another namespace’s code without importing it into

the current namespace. In Listing B.9 we define a shortcut for the tawny.reasoner

library by using the :as option.

Once a namespace is available, we can start to manipulate ontologies in Tawny-

OWL.

2Shortcut aliases for tawny.owl functions with an owl- disambiguation.

- 209 -

Chapter B: Tawny-OWL: Supplementary Material

- 210 -

C
Mitochondria: Supplementary

Material

- 211 -

Chapter C: Mitochondria: Supplementary Material

Table C.1: Table highlighting certain statistics of the papers used in the term cap-
ture stage. Here we show the order of the papers, and for each paper provide the
publishing year, the number of terms manually extracted (with and without collec-
tion duplicates) and its associated reference.

Paper No. Year Batch No. Terms Unique terms Reference

1 2011 1 101 101 [111]

2 2011 1 245 245 [120]

3 2004 1 284 268 [123]

4 2006 1 178 152 [11]

5 2006 1 208 186 [39]

6 2009 2 122 103 [124]

7 2005 2 433 416 [148]

8 2000 2 90 86 [16]

9 2003 2 178 174 [104]

10 2003 2 187 161 [21]

11 2006 3 54 54 [151]

12 2005 3 82 77 [152]

13 2004 3 383 314 [171]

14 2009 3 105 103 [53]

15 2000 3 61 54 [54]

16 2008 4 109 82 [25]

17 2001 4 80 73 [67]

18 2006 4 62 51 [84]

19 2003 4 2 1 [164]

20 2007 4 56 44 [117]

21 2006 5 106 78 [133]

22 2010 5 108 97 [9]

23 2005 5 68 62 [8]

24 2004 5 36 34 [61]

25 2002 5 19 17 [138]

Continued on next page...

- 212 -

Chapter C: Mitochondria: Supplementary Material

Table C.1 – continued from previous page

Paper No. Year Batch No. Terms Unique terms Reference

26 2011 6 130 122 [108]

27 2011 6 11 10 [107]

28 2010 6 79 66 [83]

29 2010 6 22 19 [110]

30 2011 6 67 61 [48]

Total: 3666 3311

- 213 -

Chapter C: Mitochondria: Supplementary Material

Table C.2: Table showing variety of mitochondrial disease terms taken from the
UMDF website. Adapted to include related OMIM links.

Name OMIM ID Long Name

Alpers Disease 203700 –

Barth Syndrome 302060 –

Beta-oxidation Defects – –

Cernitine-Acyl-Carnitine Deficiency – –

Cernitine Deficiency 212160 –

Creatine Deficiency Syndromes – –

Co-Enzyme Q10 Deficiency – –

Complex I Deficiency 252010 NADH dehydrogenase (NADH-

CoQ reductase) deficiency

Complex II Deficiency 252011 Succinate dehydrogenase defi-

ciency

Complex III Deficiency 516020 Ubiquinone-cytochrome c oxi-

doreductase deficiency

Complex IV Deficiency 220110 COX deficiency

Complex V Deficiency 516060 ATP synthase deficiency

CPEO 157640 Chronic Progressive External

Ophthalmoplegia Syndrome

CPT I Deficiency – –

CPT II Deficiency 600650 –

KSS 530000 –

Lactic Acidosis – –

LBSL 611105 –

LCAD – –

LCHAD 609016 –

Leigh Disease 256000 –

Luft Disease – –

Continued on next page...

- 214 -

Chapter C: Mitochondria: Supplementary Material

Table C.2 – continued from previous page

Name OMIM ID Long Name

MAD 231680 –

MCAD 201450 –

MELAS 540000 –

MERRF 545000 –

MIRAS – Mitochondrial Recessive Ataxia

Syndrome

Mitochondrial Cytopathy – –

Mitochondrial DNA Depletion – –

Mitochondrial Encephalopathy – –

Mitochondrial Myopathy 251900 –

MNGIE 603041 –

NARP 551500 –

Pearson Syndrome 557000 –

Pyruvate Carboxylase Deficiency 266150 –

Pyruvate Dehydrogenase Deficiency 312170 –

POLG Mutations – –

Respiratory Chain – –

SCAD 201470 –

SCHAD 601609 –

VLCHAD 201475 –

- 215 -

Chapter C: Mitochondria: Supplementary Material

- 216 -

D
Classification: Supplementary

Material

- 217 -

Chapter D: Classification: Supplementary Material

Table D.1: Table showing the variety of ODP classification categories and their
description. Data taken from the Ontology Design Patterns wiki (see http:

//ontologydesignpatterns.org/wiki/OPTypes).

Name Code Description

Structural Str Structural ODPs includes Logical ODPs and Architec-
tural ODPs.

Logical Log A Logical OP is a formal expression, whose only parts
are expressions from a logical vocabulary, e.g. OWL
Description Logic (DL), that solves a problem of ex-
pressivity.

Architectural Arc Architectural ODPs affect the overall shape of the ontol-
ogy: their aim is to constrain ’how the ontology should
look like’.

Correspondence Cor Correspondence OPs include Reengineering OPs and
Alignment OPs.

Re-engineering Ren Reengineering OPs are transformation rules applied in
order to create a new ontology (target model) starting
from elements of a source model.

Alignment Ali Alignment OPs refer to correspondences between ontolo-
gies. Each pattern models a relation between two enti-
ties or sets of entities in two ontologies. Instantiation of
an Alignment OP results in a correspondence between
elements of two given ontologies.

Content Con CPs are distinguished networked ontologies and have
their own namespace. They cover a specific set of com-
petency questions (requirements), which represent the
problem they provide a solution for. Furthermore, CPs
show certain characteristics, i.e. they are: computa-
tional, small, autonomous, hierarchical, cognitively rel-
evant, linguistically relevant, and best practices. See
evaluation principles for more details.

Reasoning Rea Reasoning OPs are applications of Logical OPs oriented
to obtain certain reasoning results, based on the behav-
ior implemented in a reasoning engine.

Presentation Pre Presentation ODPs deal with usability and readability
of ontologies from a user perspective.

Naming Nam Naming OPs are conventions on how to create names
for namespaces, files, and ontology elements in general
(classes, properties, etc.).

Annotation Ann Annotation ODPs provide annotation properties or an-
notation property schemas that are meant to improve
the understandability of ontologies and their elements.

Lexico-Syntactic Lex Lexico-Syntactic OPs are linguistic structures or
schemas that consist of certain types of words follow-
ing a specific order, and that permit to generalize and
extract some conclusions about the meaning they ex-
press.

- 218 -

http://ontologydesignpatterns.org/wiki/OPTypes
http://ontologydesignpatterns.org/wiki/OPTypes

Chapter D: Classification: Supplementary Material

Table D.2: Table showing the variety of ODP classification categories and their
description. Data taken from the Ontology Design Patterns (ODPs) Public Catalog
(see http://www.gong.manchester.ac.uk/odp/html/).

Name Code Description

Extension ODPs E patterns that by-pass the limitations of OWL.
Good Practice ODPs G patterns that obtain a more robust, cleaner and

easier to maintain ontology.
Domain Modelling ODPs D patterns that are solutions to concrete mod-

elling problems in biology.

- 219 -

http://www.gong.manchester.ac.uk/odp/html/

Chapter D: Classification: Supplementary Material

- 220 -

E
Summary of research questions

Contents
E.1 Summary of research questions 222

- 221 -

Chapter E: Summary of research questions

E.1 Summary of research questions

Throughout this thesis we have discussed the research questions and how and when

they have been fulfilled. Due to the distributed manner of this knowledge, in this

chapter we collate the evidence and summarise each research question.

RQ1 How can we build a computational representation of the ISCN

using a pattern-driven and programmatic approach?

In this thesis, we have shown the step-by-step construction of the computa-

tional representation of the ISCN.

1. Use a programmatic environment that has the ability to build ontologies:

In Chapter 3, we introduce Tawny-OWL and Clojure (what it is built on)

using exemplars from The Pizza Ontology

2. Ensure that the programmatic environment has the ability to encode

patterns. In Chapter 4, we detail how patterns can be encoded function

using Tawny-OWL using further exemplars from The Pizza Ontology.

3. Use the software engineering life cycle to build the computational model.

In Chapter 5: we analyse the current specification and identify the re-

quirements; detail the design and implement of The Karyotype Ontology;

and lastly test The Karyotype Ontology using exemplars from the ISCN.

4. Improve the community’s understanding of localised patterns. In Chap-

ter 9 we introduce a novel classification of localised patterns and provide

basic stats of the localised patterns used to build The Karyotype Ontol-

ogy.

RQ2 Can we apply this approach to model new areas of biology and to

produce useful computational artefacts?

In this thesis, we have shown the construction of two novel bio-ontologies using

the pattern-driven and patternised approach.

- 222 -

Chapter E: Summary of research questions

1. In Chapter 5, we show that this approach is applicable to a bounded and

mature biological domain, specifically karyotypes. The resulting compu-

tational artefact, The Karyotype Ontology, will potentially be valuable

for cytogeneticists by transforming collections of karyotypes to a form

that is easy to query, validate and maintain.

2. In Chapter 7, we show that this approach is applicable to a complex de-

veloping biological domain, specifically mitochondria. The resulting com-

putational artefact, The Mitochondrial Disease Ontology, is our first step

to building an ontology that will potentially have the ability to classify

and clarify mitochondrial disease by their symptomatic and/or genomic

definition.

RQ3 What are the advantages and benefits of applying this approach

to ontology engineering?

In this thesis, we have shown 13 advantages and benefits of applying a pattern-

driven and patternised approach to ontology engineering.

1. Compatibility with existing structured data. This separate the knowledge

from the axiomitisation. In Chapter 4 we show that we can interact

with external files. In Chapter 7 we incorporate knowledge into The

Mitochondrial Disease Ontology from a variety of sources and sources.

2. Easy to iterate over all entities. In Chapter 4 we use the whodunit pattern

to apply a creator annotation to all entities in the ontology. In addition,

we use the load-labels pattern to apply a Italian name annotation to all

entities (where possible).

3. Complex patterns can be abstracted over for downstream users. In Chap-

ter 4 we show numerous examples where once encoded, these patterns can

be potentially used without requiring the user to know the technical detail

underneath.

4. Aid developer comprehensibility. In Chapter 4, we show that the pat-

ternised and non-patternised parts of the ontology are expressed in the

- 223 -

Chapter E: Summary of research questions

same syntax. In addition, the patternised and non-patternised parts of

the ontology are expressed in the same environment. In Chapter 8 we

hide the SIO IDs and provide the developer with usable Clojure names.

Similarly in Chapter 9, we introduce the OBO ID pattern which hides

the OBO IDs.

5. Enforces consistency: a computer is less error-prone (than humans) and is

not likely to get bored. In Chapter 5 we show that by encoding the ISCN

(and exemplars) we were able to identify two missing and identify several

exemplars that refer to a band that does not exist. In Chapter 8 we show

that by refactoring SIO there are various errors within the ontology. In

addition, by encoding the downstream patterns we found errors in the

SIO wiki (which documents these downstream patterns).

6. Automatically (re-)generate ontologies. A computer can accomplish this

quicker and easier than a human. In addition, any changes made to

the code (including patterns) also effect the ontology. Thus ontologies

are potentially easy to maintain. In Chapter 6 we use this ability to

programmatically generate numerous random ontologies (not always ap-

plicable).

7. Means to test the (reasoning) performance of an ontology. In Chapter 6,

we test the performance by calculating the mean time taken to reason

our ontology.

8. Means to test the scalability of an ontology (not always applicable). In

Chapter 6 we use auto-generated random ontologies of various sizes and

the reasoning performance to find that The Karyotype Ontology can com-

fortably scale to 105.

9. Means to test the extensibility i.e. what effect does different modelling

representations on an ontology. In Chapter 6 we use auto-generated ran-

dom ontologies of various axiomitisations (and sizes) as well as the rea-

soning performance to find that all three representations could be valid

though it is dependent on the value of K.

10. Encourages concision. In Chapter 8 we show this by carefully refactoring

- 224 -

Chapter E: Summary of research questions

SIO into a patternised form and noting the differences for size of file,

number of lines and load time.

11. The ability to encode patterns for downstream usage: potentially encour-

age downstream usage and/or useful to downstream users. In Chapter 8,

we discuss the downstream patterns documented on the SIO wiki. As

shown in Chapter 9, each event and feature has an associated localised

pattern. Uses these patterns we were able to implement the ISCN exem-

plars as a form of application-dependent testing (results are discussed in

Chapter 5).

12. Useful in the construction of ontologies and downstream usage of ontolo-

gies. In Chapter 9 we show document the localised patterns used in all

three bio-ontologies. More than 70% of the ontologies were constructed

using localised patterns. In each ontology, there is at least one pattern

that generates approximately >50% of the logical axioms.

13. Compatibility with existing software tools and software engineering tech-

niques. In Chapter 10 we discuss 13 re-purposed and 7 potential software

engineering tools and techniques e.g. Git, GitHub, clojure.test and CI.

- 225 -

226

References

[1] DCMI Metadata Terms. http://dublincore.org/documents/dcmi-terms/.
Accessed: June 2015.

[2] Abbreviations and symbols for nucleic acids, polynucleotides and their con-
stituents. European Journal of Biochemistry, 15(2):203–208, 1970.

[3] R Apweiler, A Bateman, M. J Martin, C O’Donovan, M Magrane, Y Alam-
Faruque, E Alpi, R Antunes, J Arganiska, E Barrera Casanova, B Bely,
M Bingley, C Bonilla, R Britto, B Bursteinas, W Mun Chan, G Chavali,
E Cibrian-Uhalte, A Da Silva, M De Giorgi, F Fazzini, P Gane, L. G Cas-
tro, P Garmiri, E Hatton-Ellis, R Hieta, R Huntley, D Legge, W Liu, J Luo,
A MacDougall, P Mutowo, A Nightingale, S Orchard, K Pichler, D Poggioli,
S Pundir, L Pureza, G Qi, S Rosanoff, T Sawford, A Shypitsyna, E Turner,
V Volynkin, T Wardell, X Watkins, H Zellner, M Corbett, M Donnelly, P van
Rensburg, M Goujon, H McWilliam, R Lopez, I Xenarios, L Bougueleret,
A Bridge, S Poux, N Redaschi, L Aimo, A Auchincloss, K Axelsen, P Bansal,
D Baratin, P. A Binz, M. C Blatter, B Boeckmann, J Bolleman, E Boutet,
L Breuza, C Casal-Casas, E de Castro, L Cerutti, E Coudert, B Cuche,
M Doche, D Dornevil, S Duvaud, A Estreicher, L Famiglietti, M Feuermann,
E Gasteiger, S Gehant, V Gerritsen, A Gos, N Gruaz-Gumowski, U Hinz,
C Hulo, J James, F Jungo, G Keller, V Lara, P Lemercier, J Lew, D Lieber-
herr, T Lombardot, X Martin, P Masson, A Morgat, T Neto, S Paesano, I Pe-
druzzi, S Pilbout, M Pozzato, M Pruess, C Rivoire, B Roechert, M Schneider,
C Sigrist, K Sonesson, S Staehli, A Stutz, S Sundaram, M Tognolli, L Ver-
bregue, A. L Veuthey, C. H Wu, C. N Arighi, L Arminski, C Chen, Y Chen,
J. S Garavelli, H Huang, K Laiho, P McGarvey, D. A Natale, B. E Suzek,
C Vinayaka, Q Wang, Y Wang, L. S Yeh, M. S Yerramalla, and J Zhang.
Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res.,
42(Database issue):D191–198, Jan 2014.

[4] M Aranguren, S Bechoffer, P Lord, U Sattler, and R Stevens. Understanding
and using the meaning of statements in a bio-ontology: recasting the Gene
Ontology in OWL. BMC Bioinformatics, 8:57+, February 2007.

[5] M Ashburner, C. A Ball, J. A Blake, D Botstein, H Butler, J. M Cherry, A. P
Davis, K Dolinski, S. S Dwight, J. T Eppig, M. A Harris, D. P Hill, L Issel-
Tarver, A Kasarskis, S Lewis, J. C Matese, J. E Richardson, M Ringwald, G. M
Rubin, and G Sherlock. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nature Genetics, 25(1):25–29, May 2000.

[6] M Bada, R Mcentire, C Wroe, and R Stevens. Goat: The gene ontology
annotation tool. In Proceedings of the 2003 UK e-Science All Hands Meeting,
pages 514–519, 2003.

- 227 -

http://dublincore.org/documents/dcmi-terms/

[7] M Bada, R Stevens, C Goble, Y Gil, M Ashburner, J. A Blake, J. M Cherry,
M Harris, and S Lewis. A short study on the success of the Gene Ontology. Web
Semantics Science Services and Agents on the World Wide Web, 1(2):235–240,
2004.

[8] S. M Bailey, A Landar, and V Darley-Usmar. Mitochondrial proteomics in
free radical research. Free Radical Biology and Medicine, 38(2):175–188, 2005.

[9] R Banjerdpongchai, P Kongtawelert, O Khantamat, C Srisomsap,
D Chokchaichamnankit, P Subhasitanont, and J Svasti. Mitochondrial and en-
doplasmic reticulum stress pathways cooperate in zearalenone-induced apop-
tosis of human leukemic cells. Journal of hematology and oncology, 3:50, 2010.

[10] R Banks, V Khomenko, and L. J Steggles. A case for using signal transi-
tion graphs for analysing and refining genetic networks. Electronic Notes in
Theoretical Computer Science, 227(0):3–19, 2009.

[11] S Basu, E Bremer, C Zhou, and D. F Bogenhagen. Migenes: A searchable
interspecies database of mitochondrial proteins curated using gene ontology
annotation. Bioinformatics, 22(4):485–492, 2006.

[12] W. A Baumgartner, K. B Cohen, L. M Fox, G Acquaah-Mensah, and L Hunter.
Manual curation is not sufficient for annotation of genomic databases. Bioin-
formatics, 23(13):i41–i48, Jul 2007.

[13] K Beck. Simple smalltalk testing: with patterns. Technical Report 4 (2), 1994.

[14] M. J Bell. Provenance, Propagation and Quality of Biological Annotation.
PhD thesis, Newcastle University, 2014.

[15] C Beneteau, S Baron, A David, F Jossic, D Poulain, S Schmitt, M.-D Leclair,
P Piloquet, and C Le Caignec. Constitutional telomeric association (y;7) in a
patient with a female phenotype. American Journal of Medical Genetics Part
A, 161(6):1436–1441, 2013.

[16] J. L Blanchard and M Lynch. Organellar genes. why do they end up in the
nucleus? Trends in Genetics, 16(7):315–320, 2000.

[17] E Blomqvist, A Gangemi, and V Presutti. Experiments on pattern-based on-
tology design. In Proceedings of the Fifth International Conference on Knowl-
edge Capture, K-CAP ’09, pages 41–48, New York, NY, USA, 2009. ACM.

[18] E Blomqvist, V Presutti, E Daga, and A Gangemi. Experimenting with ex-
treme design. In P Cimiano and H Pinto, editors, Knowledge Engineering
and Management by the Masses, volume 6317 of Lecture Notes in Computer
Science, pages 120–134. Springer Berlin Heidelberg, 2010.

[19] C Boelling, M Dumontier, M Weidlich, and H.-G Holzhütter. Role-based rep-
resentation and inference of biochemical processes. In R Cornet and R Stevens,
editors, ICBO, volume 897 of CEUR Workshop Proceedings. CEUR-WS.org,
2012.

- 228 -

[20] E Camon, M Magrane, D Barrell, D Binns, W Fleischmann, P Kersey, N Mul-
der, T Oinn, J Maslen, A Cox, and R Apweiler. The Gene Ontology Annota-
tion (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and
InterPro. Genome Res., 13(4):662–672, Apr 2003.

[21] P. F Chinnery and E. A Schon. Mitochondria. Journal of neurology, neuro-
surgery, and psychiatry, 74(9):1188–1199, 2003.

[22] P. F Chinnery. Mitochondrial disorders overview. 2000 Jun 8 [Updated 2014
Aug 14]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneRe-
viewsÂő [Internet]. Seattle (WA): University of Washington, Seattle; 1993-
2015. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1224/.

[23] M Copeland, A Brown, H Parkinson, R Stevens, and J Malone. The SWO
Project: A Case Study of Applying Agile Ontology Engineering Methods in
Community Driven Ontologies. ICBO 2012, 7 2012.

[24] M Courtot, F Gibson, A. L Lister, J Malone, D Schober, R. R Brinkman, and
A Ruttenberg. Mireot: The minimum information to reference an external
ontology term. Appl. Ontol., 6(1):23–33, January 2011.

[25] M Crimi and R Rigolio. The mitochondrial genome, a growing interest inside
an organelle. International journal of nanomedicine, 3(1):51–57, 2008.

[26] S Croset. Drug repositioning and indication discovery using description logics.
PhD thesis, University of Cambridge, 2014.

[27] J Day-Richter, M. A Harris, M Haendel, and S Lewis. Obo-edit – an ontology
editor for biologists. Bioinformatics, 23(16):2198–2200, August 2007.

[28] R de Almeida Falbo, G Guizzardi, A Gangemi, and V Presutti. Ontology pat-
terns: Clarifying concepts and terminology. In Proceedings of the 4th Workshop
on Ontology and Semantic Web Patterns co-located with 12th International Se-
mantic Web Conference (ISWC 2013), Sydney, Australia, October 21, 2013.,
2013.

[29] S DiMauro and M Hirano. MELAS. 2001 Feb 27 [Updated 2013 Nov 21]. In:
Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviewsÂő [Internet].
Seattle (WA): University of Washington, Seattle; 1993-2015. Available from:
http://www.ncbi.nlm.nih.gov/books/NBK1233/.

[30] M. D Donaldson, E. J Gault, K. W Tan, and D. B Dunger. Optimising
management in Turner syndrome: from infancy to adult transfer. Arch. Dis.
Child., 91(6):513–520, Jun 2006.

[31] N Drummond, A Rector, R Stevens, G Moulton, M Horridge, H. H Wang,
and J Seidenberg. Putting OWL in order: Patterns for sequences in OWL.
Concrete, pages 1–10, 2006.

[32] M Duerst and M Suignard. Internationalized resource identifiers (iris). http:
//tools.ietf.org/html/rfc3987, 2005. Accessed: June 2015.

- 229 -

http://www.ncbi.nlm.nih.gov/books/NBK1224/
http://www.ncbi.nlm.nih.gov/books/NBK1233/
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987

[33] M Dumontier, C Baker, J Baran, A Callahan, L Chepelev, J. C Toledo,
N Del Rio, G Duck, L Furlong, N Keath, D Klassen, J McCusker, N. Q
Rosinach, M Samwald, N. V Rosales, M Wilkinson, and R Hoehndorf. The
Semanticscience Integrated Ontology (SIO) for biomedical research and knowl-
edge discovery. Journal of Biomedical Semantics, 5(1):14+, 2014.

[34] EBI Web Team. ununbium atom (CHEBI:33517). http://www.ebi.ac.uk/

chebi/chebiOntology.do?chebiId=CHEBI:33517. Accessed: June 2015.

[35] M Egaña, A Rector, R Stevens, and E Antezana. Applying ontology design
patterns in bio-ontologies. In Proceedings of the 16th International Conference
on Knowledge Engineering: Practice and Patterns, EKAW ’08, pages 7–16,
Berlin, Heidelberg, 2008. Springer-Verlag.

[36] M Egana Aranguren, R Stevens, and E Antezana. Transforming the axiomi-
sation of ontologies: The ontology pre-processor language. Nature Precedings,
Dec 2009.

[37] K Eilbeck, S Lewis, C Mungall, M Yandell, L Stein, R Durbin, and M Ash-
burner. The sequence ontology: a tool for the unification of genome annota-
tions. Genome Biology, 6(5):R44, 2005.

[38] C Ford, K Jones, P Polani, J. D Almeida, and J Briggs. A SEX-
CHROMOSOME ANOMALY IN A CASE OF GONADAL DYSGENESIS
(TURNER’S SYNDROME). The Lancet, 273(7075):711 – 713, 1959. Origi-
nally published as Volume 1, Issue 7075.

[39] T Gabaldón. Computational approaches for the prediction of protein func-
tion in the mitochondrion. American journal of physiology. Cell physiology,
291(6):C1121–C1128, 2006.

[40] E Gamma, R Helm, R Johnson, and J Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[41] F Gandon and G Schreiber. RDF 1.1 XML Syntax. Technical report, 2014.

[42] A Garcia, K O’Neill, L. J Garcia, P Lord, R Stevens, O Corcho, and F Gibson.
Developing ontologies within decentralised settings. In H Chen, Y Wang, and
K.-H Cheung, editors, Semantic e-Science, volume 11 of Annals of Information
Systems, pages 99–139. Springer US, 2010.

[43] C Goble and C Wroe. The Montagues and the Capulets. Comp. Funct. Ge-
nomics, 5(8):623–632, 2004.

[44] A Gómez-Pérez, M Fernández-López, and O Corcho. Ontological Engineering,
volume 36. Springer, 2004.

[45] R. S Gonçalves, B Parsia, and U Sattler. Ecco: A Hybrid Diff Tool for OWL
2 ontologies. In OWLED 2012, 2012.

- 230 -

http://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:33517
http://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:33517

[46] B. M Good, E. M Tranfield, P. C Tan, M Shehata, G. K Singhera, J Gosselink,
E. B Okon, and M. D Wilkinson. Fast, cheap and out of control: a zero cura-
tion model for ontology development. Pacific Symposium On Biocomputing,
11:128–139, 2006.

[47] Y Goto, I Nonaka, and S Horai. A mutation in the tRNA(Leu)(UUR) gene
associated with the MELAS subgroup of mitochondrial encephalomyopathies.
Nature, 348(6302):651–653, Dec 1990.

[48] J Gross and D Bhattacharya. Endosymbiont or host: who drove mitochondrial
and plastid evolution? Biology direct, 6:12, 2011.

[49] T. R Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[50] J Hallinan, K James, and A Wipat. Network approaches to the functional
analysis of microbial proteins. In R. K Poole, editor, Advances in Microbial
Physiology, volume 59 of Advances in Microbial Physiology, pages 101 – 133.
Academic Press, 2011.

[51] H. A Hashim and A A. The Spiral OWL Model – Towards Spiral Knowledge
Engineering. 4(2):759 – 764, 2010.

[52] J Hastings, P de Matos, A Dekker, M Ennis, B Harsha, N Kale, V Muthukrish-
nan, G Owen, S Turner, M Williams, and C Steinbeck. The ChEBI reference
database and ontology for biologically relevant chemistry: enhancements for
2013. Nucleic Acids Research, 41(D1):D456–D463, 2013.

[53] T Hayashi, R Rizzuto, G Hajnoczky, and T. P Su. Mam: more than just a
housekeeper. Trends in Cell Biology, 19(2):81–88, 2009.

[54] J. M Herrmann and W Neupert. Protein transport into mitochondria. Current
Opinion in Microbiology, 3(2):210–214, 2000.

[55] R Hoehndorf. What is an upper level ontology? http://ontogenesis.

knowledgeblog.org/740, 2010. Accessed: June 2015.

[56] M Horridge, N Drummond, J Goodwin, A Rector, R Stevens, and H Wang.
The Manchester OWL Syntax. In OWLED 2006 Second Workshop on OWL
Experiences and Directions, Athens, GA, USA, 2006.

[57] M Horridge and P. F Patel-Schneider. Manchester syntax for OWL 1.1.
OWLED 2008, 2008.

[58] M Horridge and P. F Patel-Schneider. OWL 2 Web Ontology Language Manch-
ester Syntax (Second Edition). Technical report, 2012.

[59] I Horrock. Oxford ontology research overview. http://dream.inf.ed.ac.

uk/events/ukont-13/2012workshop/Horrocks_UK-Ont-Net.pdf, 2012. Ac-
cessed: June 2015.

- 231 -

http://ontogenesis.knowledgeblog.org/740
http://ontogenesis.knowledgeblog.org/740
http://dream.inf.ed.ac.uk/events/ukont-13/2012workshop/Horrocks_UK-Ont-Net.pdf
http://dream.inf.ed.ac.uk/events/ukont-13/2012workshop/Horrocks_UK-Ont-Net.pdf

[60] L. J Jensen and P Bork. Ontologies in quantitative biology: A basis for
comparison, integration, and discovery. PLoS Biol, 8(5):e1000374, 05 2010.

[61] R. E Jensen, C. D Dunn, M. J Youngman, and H Sesaki. Mitochondrial
building blocks. Trends in Cell Biology, 14(5):215–218, 2004.

[62] S Jupp, M Horridge, L Iannone, J Klein, S Owen, J Schanstra, R Stevens,
and K Wolstencroft. Populous: A tool for populating ontology templates.
Proceedings of the 3rd International Workshop on Semantic Web Applications
and Tools for the Life Sciences BerlinGermany December 810 2010, 2010.

[63] T Just. U.S. Chess Federation’s official rules of chess. Random House, New
York, 2014.

[64] R. D King, J Rowland, W Aubrey, M Liakata, M Markham, L. N Soldatova,
K. E Whelan, A Clare, M Young, A Sparkes, S. G Oliver, and P Pir. The
Robot Scientist Adam. Computer, 42(8):46–54, 2009.

[65] I Laycock. Modelling the proteins of the mitochondria using ontological mod-
elling. Master’s thesis, Newcastle University, 2010.

[66] J LEJEUNE, J LAFOURCADE, R BERGER, J VIALATTE, M BOESWILL-
WALD, P SERINGE, and R TURPIN. [3 CASES OF PARTIAL DELETION
OF THE SHORT ARM OF A 5 CHROMOSOME]. C. R. Hebd. Seances Acad.
Sci., 257:3098–3102, Nov 1963.

[67] E. J Lesnefsky, S Moghaddas, B Tandler, J Kerner, and C. L Hoppel. Mi-
tochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and
heart failure. Journal of molecular and cellular cardiology, 33(6):1065–1089,
2001.

[68] C Linnaeus. Systema naturae sive Regna tria naturae systematice proposita
per classes, ordines, genera, & species. 1735.

[69] P. W Lord, R. D Stevens, A Brass, and C. A Goble. Investigating seman-
tic similarity measures across the Gene Ontology: the relationship between
sequence and annotation. Bioinformatics, 19(10):1275–83, 2003.

[70] P Lord. Components of an ontology. http://ontogenesis.knowledgeblog.
org/514, 2010. Accessed: June 2015.

[71] P Lord. Omn-mode now released. http://www.russet.org.uk/blog/2185,
2012. Accessed: June 2015.

[72] P Lord. Programming OWL. http://www.russet.org.uk/blog/2214, 2012.
Accessed: June 2015.

[73] P Lord. Some updates to omn-mode. http://www.russet.org.uk/blog/

2200, 2012. Accessed: June 2015.

[74] P Lord. The Semantic Web takes Wing: Programming Ontologies with Tawny-
OWL. OWLED 2013, 2013.

- 232 -

http://ontogenesis.knowledgeblog.org/514
http://ontogenesis.knowledgeblog.org/514
http://www.russet.org.uk/blog/2185
http://www.russet.org.uk/blog/2214
http://www.russet.org.uk/blog/2200
http://www.russet.org.uk/blog/2200

[75] P Lord. Further experiments with literate programming. http://www.

russet.org.uk/blog/2979, 2014. Accessed: June 2015.

[76] P Lord. Manchester syntax is a bit backward. http://www.russet.org.uk/

blog/2985, 2014. Accessed: June 2015.

[77] P Lord. Tawny and protege. http://www.russet.org.uk/blog/2981, 2014.
Accessed: June 2015.

[78] P Lord and R Stevens. Adding a little reality to building ontologies for biology.
PLoS ONE, 5(9):7, 2010.

[79] J Malone, E Holloway, T Adamusiak, M Kapushesky, J Zheng, N Kolesnikov,
A Zhukova, A Brazma, and H Parkinson. Modeling Sample Variables with
an Experimental Factor Ontology. Bioinformatics (Oxford, England), March
2010.

[80] J Malone and H Parkinson. Reference and application ontologies. http:

//ontogenesis.knowledgeblog.org/295, 2010. Accessed: June 2015.

[81] J Malone, R Stevens, A Brown, and H Parkinson. An Agile Ontol-
ogy. http://softwareontology.wordpress.com/2011/04/04/an-agile-

ontology, 2011. Accessed: June 2015.

[82] J Malone, R Stevens, A Brown, and H Parkinson. The Software
Ontology’s Bottom Up, Agile Approach to Ontology building. http:

//softwareontology.wordpress.com/2011/08/08/267/, 2011. Accessed:
June 2015.

[83] C Mammucari and R Rizzuto. Signaling pathways in mitochondrial dysfunc-
tion and aging. Mechanisms of Ageing and Development, 131(7-8):536–543,
2010.

[84] C. a Mannella. Structure and dynamics of the mitochondrial inner membrane
cristae. Biochimica et biophysica acta, 1763(5-6):542–8, 2006.

[85] N Manwaring, M. M Jones, J. J Wang, E Rochtchina, C Howard, P Mitchell,
and C. M Sue. Population prevalence of the MELAS A3243G mutation. Mi-
tochondrion, 7(3):230–233, May 2007.

[86] V Marx. Biology: The big challenges of big data. Nature, 498(7453):255–260,
2013.

[87] D. L McGuinness and F van Harmelen. OWL Web Ontology Language
Overview. Technical report, 2004.

[88] E Mikroyannidi, N Azlinayati, A Manaf, L Iannone, and R Stevens. Analysing
syntactic regularities in ontologies. 2012.

[89] E Mikroyannidi, A Rector, and R Stevens. Abstracting and Generalising the
Foundational Model Anatomy (FMA) Ontology. Bio-ontologies, 2009.

- 233 -

http://www.russet.org.uk/blog/2979
http://www.russet.org.uk/blog/2979
http://www.russet.org.uk/blog/2985
http://www.russet.org.uk/blog/2985
http://www.russet.org.uk/blog/2981
http://ontogenesis.knowledgeblog.org/295
http://ontogenesis.knowledgeblog.org/295
http://softwareontology.wordpress.com/2011/04/04/an-agile-ontology
http://softwareontology.wordpress.com/2011/04/04/an-agile-ontology
http://softwareontology.wordpress.com/2011/08/08/267/
http://softwareontology.wordpress.com/2011/08/08/267/

[90] M. H Moghadam, A Movafagh, M Omrani, K Ghanati, M Hashemi, F Pour-
safavi, H Darvish, D. Z Abdolahi, M Gholami, M. R. H Rostamy, S Safari,
L HaghNejad, R Darehgazani, N. S Naeini, M. G Motlagh, and D Amani.
Identification of homogeneously staining regions in leukemia patients. Journal
of Research in Medical Sciences, 18(4), 2013.

[91] T Morgan. Turner syndrome: diagnosis and management. Am Fam Physician,
76(3):405–410, Aug 2007.

[92] W. W Morgan and P. C Keenan. Spectral classification. Annual Review of
Astronomy and Astrophysics, 11(1):29–50, 1973.

[93] J. M Mortensen, M Horridge, M. A Musen, and N. F Noy. Applications of
ontology design patterns in biomedical ontologies. AMIA Annu Symp Proc,
2012:643–652, 2012.

[94] J. M Mortensen, M Horridge, M. A Musen, and N. F Noy. Applications of
ontology design patterns in biomedical ontologies. AMIA Annu Symp Proc,
2012:643–652, 2012.

[95] J Mortensen, M Horridge, M. A Musen, and N. F Noy. Modest use of ontology
design patterns in a repository of biomedical ontologies. In WOP’12, pages
–1–1, 2012.

[96] B Motik, B Parsia, and P. F Patel-Schneider. OWL 2 Web Ontology Language
XML Serialization (Second Edition). Technical report, 2012.

[97] B Motik, P. F Patel-Schneider, and B Parsia. OWL 2 Web Ontology Lan-
guage Structural Specification and Functional-Style Syntax (Second Edition).
Technical report, 2012.

[98] C Mungall. The perils of managing OWL in a version control sys-
tem. https://douroucouli.wordpress.com/2014/03/30/the-perils-of-

managing-owl-in-a-version-control-system/, 2014. Accessed: June
2015.

[99] C Mungall, A Ruttenberg, I Horrocks, and D Osumi-Sutherland. OBO
Flat File Format 1.4 Syntax and Semantics [DRAFT]. http://oboformat.

googlecode.com/svn/branches/2011-11-29/doc/obo-syntax.html. Ac-
cessed: June 2015.

[100] C Mungall, A Ruttenberg, and D Osumi-Sutherland. Taking shortcuts with
OWL using safe macros. Nature Preceedings, 2010.

[101] N. F Noy, N. H Shah, P. L Whetzel, B Dai, M Dorf, N Griffith, C Jonquet, D. L
Rubin, M. A Storey, C. G Chute, and M. A Musen. BioPortal: ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Res., 37(Web
Server issue):W170–173, Jul 2009.

[102] N. F Noy and D. L mcguinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Online, 2001.

- 234 -

https://douroucouli.wordpress.com/2014/03/30/the-perils-of-managing-owl-in-a-version-control-system/
https://douroucouli.wordpress.com/2014/03/30/the-perils-of-managing-owl-in-a-version-control-system/
http://oboformat.googlecode.com/svn/branches/2011-11-29/doc/obo-syntax.html
http://oboformat.googlecode.com/svn/branches/2011-11-29/doc/obo-syntax.html

[103] N Noy and A Rector. Defining N-ary Relations on the Semantic Web. Technical
report, 2006.

[104] T. W O’Brien. Properties of human mitochondrial ribosomes. IUBMB Life,
55(9):505–513, Sep 2003.

[105] M. J O’Connor, C Halaschek-Wiener, and M. A Musen. Mapping Master: A
Flexible Approach for Mapping Spreadsheets to OWL. In P. F Patel-Schneider,
Y Pan, P Hitzler, P Mika, L Zhang, J Pan, I Horrocks, and B Glimm, editors,
The Semantic Web – ISWC 2010, volume 6497 of Lecture Notes in Computer
Science, pages 194–208. Springer Berlin Heidelberg, 2010.

[106] C Ogbuji. InfixOWL: An Idiomatic Interface for OWL. In C Dolbear, A Rut-
tenberg, and U Sattler, editors, OWLED 2008, volume 432 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[107] H. D Osiewacz. Regulation of the mitochondrial transition pore: impact on
mammalian aging. Aging (Albany NY), 3(1):10–11, Jan 2011.

[108] C Osman, D. R Voelker, and T Langer. Making heads or tails of phospholipids
in mitochondria. The Journal of cell biology, 192(1):7–16, 2011.

[109] G O’Toole. Everything should be made as simple as possible, but not sim-
pler – quote investigator. http://quoteinvestigator.com/2011/05/13/

einstein-simple/, 2011. Accessed: June 2015.

[110] L. J Pallanck. Culling sick mitochondria from the herd. The Journal of cell
biology, 191(7):1225–1227, 2010.

[111] L Partridge. Some highlights of research on aging with invertebrates, 2010.
Aging Cell, 10(1):5–9, 2011.

[112] A Paschke. OntoMaven: Maven-based Ontology Development and Manage-
ment of Distributed Ontology Repositories. 9th International Workshop on
Semantic Web Enabled Software Engineering (SWESE 2013), 2013.

[113] P. F Patel-Schneider and I Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax Section 2. Abstract Syntax. Technical report, 2004.

[114] S. G Pavlakis, P. C Phillips, S DiMauro, D. C De Vivo, and L. P Rowland. Mi-
tochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes:
a distinctive clinical syndrome. Ann. Neurol., 16(4):481–488, Oct 1984.

[115] S Peroni, D Shotton, and F Vitali. The live owl documentation environment:
A tool for the automatic generation of ontology documentation. In A ten
Teije, J VÃűlker, S Handschuh, H Stuckenschmidt, M d’Aquin, A Nikolov,
N Aussenac-Gilles, and N Hernandez, editors, EKAW, volume 7603 of Lecture
Notes in Computer Science, pages 398–412. Springer, 2012.

[116] J Perry, S Nouri, P La, A Daniel, Z Wu, S Purvis-Smith, E Northrop, K Choo,
and H Slater. Molecular distinction between true centric fission and pericentric
duplication-fission. Human Genetics, 116(4):300–310, 2005.

- 235 -

http://quoteinvestigator.com/2011/05/13/einstein-simple/
http://quoteinvestigator.com/2011/05/13/einstein-simple/

[117] P Pizzo and T Pozzan. Mitochondria-endoplasmic reticulum choreography:
structure and signaling dynamics. Trends in Cell Biology, 17(10):511–517,
2007.

[118] M Poveda-Villalón, M. C Suárez-Figueroa, and A Gómez-Pérez. Validating
ontologies with oops! In Proceedings of the 18th International Conference on
Knowledge Engineering and Knowledge Management, EKAW’12, pages 267–
281, Berlin, Heidelberg, 2012. Springer-Verlag.

[119] V Presutti, E Daga, A Gangemi, and A Salvati. http: //ontologydesignpat-
terns.org [odp]. In C Bizer and A Joshi, editors, International Semantic Web
Conference (Posters & Demos), volume 401 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

[120] S Rawat and T. L Stemmler. Key players and their role during mitochondrial
iron-sulfur cluster biosynthesis. Chemistry - A European Journal, 17(3):746–
753, 2011.

[121] A Rector. Representing Specified Values in OWL: value partitions and value
sets. Technical report, 2005.

[122] A Rector, N Drummond, M Horridge, J Rogers, H Knublauch, R Stevens,
H Wang, and C Wroe. OWL pizzas: Practical experience of teaching OWL-
DL: Common errors & common patterns. In In Proc. of EKAW 2004, pages
63–81. Springer, 2004.

[123] A. S Reichert and W Neupert. Mitochondriomics or what makes us breathe.
Trends in Genetics, 20(11):555–562, 2004.

[124] R Reja, A. J Venkatakrishnan, J Lee, B.-C Kim, J.-W Ryu, S Gong, J Bhak,
and D Park. Mitointeractome: mitochondrial protein interactome database,
and its application in âĂIJaging networkâĂİ analysis. BMC genomics, 10
Suppl 3:S20, 2009.

[125] R. J Roberts. Pubmed central: The genbank of the published literature. Pro-
ceedings of the National Academy of Sciences of the United States of America,
98(2):381–382, 2001.

[126] P Rocca-Serra, A Ruttenberg, M. J O’Connor, P. L Whetzel, D Schober,
J Greenbaum, M Courtot, R. R Brinkman, S. A Sansone, R Scheuermann,
R Scheuermann, and B Peters. Overcoming the ontology enrichment bottle-
neck with Quick Term Templates. Appl. Ontol., 6(1):13–22, January 2011.

[127] C Rosse and J. L. V Mejino, Jr. A reference ontology for biomedical infor-
matics: The foundational model of anatomy. J. of Biomedical Informatics,
36(6):478–500, December 2003.

[128] C Roussey, F Pinet, M Kang, and O Corcho. An introduction to ontolo-
gies and ontology engineering. In Ontologies in Urban Development Projects,
volume 1 of Advanced Information and Knowledge Processing, pages 9–38.
Springer London, 2011.

- 236 -

[129] E. J Ruiz, B. C Grau, I Horrocks, and R Berlanga. Building ontologies collab-
oratively using contentcvs. In Proceedings of the 22nd International Workshop
on Description Logics (DL 2009), 2009.

[130] U Sattler and R Stevens. Modelling in multiple dimensions is great in so
many ways. http://ontogenesis.knowledgeblog.org/1401, 2013. Ac-
cessed: June 2015.

[131] U Sattler, R Stevens, and P Lord. (i can’t get no) satisfiability. http://

ontogenesis.knowledgeblog.org/1329, 2013. Accessed: June 2015.

[132] U Sattler, R Stevens, and P Lord. How does a reasoner work? http://

ontogenesis.knowledgeblog.org/1486, 2014. Accessed: June 2015.

[133] A. H. V Schapira. Mitochondrial disease. Lancet, 368(9529):70–82, 2006.

[134] W. L Scoville. Note on capsicums. Journal of the American Pharmaceutical
Association, 1(5):453–454, 1912.

[135] L Shaffer, M.-J J., and S M., editors. ISCN 2013: An International System
for Human Cytogenetic Nomenclature (2013). Karger, 2012.

[136] L Shaffer, M Slovak, and L Campbell, editors. ISCN 2009: An International
System for Human Cytogenetic Nomenclature (2009). Karger, 2009.

[137] R Shearer, B Motik, and I Horrocks. HermiT: A Highly-Efficient OWL Rea-
soner. In A Ruttenberg, U Sattler, and C Dolbear, editors, Proc. of the 5th Int.
Workshop on OWL: Experiences and Directions (OWLED 2008 EU), Karl-
sruhe, Germany, October 26–27 2008.

[138] T. B Sherer, R Betarbet, and J. T Greenamyre. Environment, mitochon-
dria, and parkinson’s disease. The Neuroscientist : a review journal bringing
neurobiology, neurology and psychiatry, 8(3):192–197, 2002.

[139] A. C Smith and A. J Robinson. MitoMiner, an integrated database for the
storage and analysis of mitochondrial proteomics data. Molecular cellular
proteomics, 8(6):1324–1337, 2009.

[140] M Smith, I Horrocks, M Krötzsch, and B Glimm. OWL 2 Web Ontology
Language Conformance (Second Edition). Technical report, 2012.

[141] D. C Stein, F van Harmelen, I Horrocks, D. L McGuinness, P. F Patel-
Schneider, and L. A Stein. DAML+OIL (March 2001) Reference Description.
Technical report, 2001.

[142] R Stevens. Closing down the open world: Covering axioms and closure axioms.
http://ontogenesis.knowledgeblog.org/1001, 2011.

[143] R Stevens. Why use an ontology? http://ontogenesis.knowledgeblog.

org/1296, 2013. Accessed: June 2015.

- 237 -

http://ontogenesis.knowledgeblog.org/1401
http://ontogenesis.knowledgeblog.org/1329
http://ontogenesis.knowledgeblog.org/1329
http://ontogenesis.knowledgeblog.org/1486
http://ontogenesis.knowledgeblog.org/1486
http://ontogenesis.knowledgeblog.org/1001
http://ontogenesis.knowledgeblog.org/1296
http://ontogenesis.knowledgeblog.org/1296

[144] R Stevens, C. A Goble, and S Bechhofer. Ontology-based knowledge repre-
sentation for bioinformatics. Briefings in Bioinformatics, 1(4):398–414, 2000.

[145] R Stevens and P Lord. Application of ontologies in bioinformatics. In
S Staab and R Studer, editors, Handbook on Ontologies in Information Sys-
tems. Springer, second edition, 2008.

[146] K Stochholm, S Juul, K Juel, R. W Naeraa, and C HÃÿjbjerg Gravholt.
Prevalence, incidence, diagnostic delay, and mortality in turner syndrome.
The Journal of Clinical Endocrinology & Metabolism, 91(10):3897–3902, 2006.
PMID: 16849410.

[147] M. C Suárez-Figueroa, A Gómez-Pérez, and M Fernández-López. The neon
methodology for ontology engineering. In M. C Suárez-Figueroa, A Gómez-
Pérez, E Motta, and A Gangemi, editors, Ontology Engineering in a Networked
World, pages 9–34. Springer Berlin Heidelberg, 2012.

[148] R. W Taylor and D. M Turnbull. Mitochondrial dna mutations in human
disease. Nature reviews. Genetics, 6(5):389–402, 2005.

[149] TIOBE. Tiobe software: The coding standards company. http://www.tiobe.
com/index.php/content/paperinfo/tpci/index.html. Accessed: Septem-
ber 2014.

[150] S. H Tirmizi, S Aitken, D. A Moreira, C Mungall, J Sequeda, N. H Shah, and
D. P Miranker. Mapping between the OBO and OWL ontology languages. J
Biomed Semantics, 2 Suppl 1:S3, 2011.

[151] A Torroni, A Achilli, V Macaulay, M Richards, and H. J Bandelt. Harvesting
the fruit of the human mtdna tree. Trends in Genetics, 22(6):339–345, 2006.

[152] A Trifunovic, A Hansson, A Wredenberg, A. T Rovio, E Dufour, I Khvorostov,
J. N Spelbrink, R Wibom, H. T Jacobs, and N.-G Larsson. Somatic mtdna
mutations cause aging phenotypes without affecting reactive oxygen species
production. Proceedings of the National Academy of Sciences of the United
States of America, 102(50):17993–17998, 2005.

[153] T Tudorache, C Nyulas, N. F Noy, and M. A Musen. WebProtégé: A Collabo-
rative Ontology Editor and Knowledge Acquisition Tool for the Web. Semant
Web, 4(1):89–99, Jan 2013.

[154] H. H TURNER. A syndrome of infantilism, congenital webbed neck, and
cubitus valgus. Endocrinology, 23(5):566–574, 1938.

[155] S Varier, M Kaiser, and R Forsyth. Establishing, versus maintaining, brain
function: A neuro-computational model of cortical reorganization after injury
to the immature brain. Journal of the International Neuropsychological Soci-
ety, 17(06):1030–1038, 2011.

[156] V Vassiliadis, J Wielemaker, and C Mungall. Processing OWL2 ontologies
using Thea: An application of logic programming. In OWLED 2009, 2009.

- 238 -

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[157] M Vigo, C Jay, and R Stevens. Constructing conceptual knowledge artefacts:
Activity patterns in the ontology authoring process. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, CHI ’15,
pages 3385–3394, New York, NY, USA, 2015. ACM.

[158] J Visootsak and J. M Graham. Klinefelter syndrome and other sex chromo-
somal aneuploidies. Orphanet journal of rare diseases, 1:42, 2006.

[159] D Vrandečić and A Gangemi. Unit tests for ontologies. In R Meersman, Z Tari,
and P Herrero, editors, On the Move to Meaningful Internet Systems 2006:
OTM 2006 Workshops, volume 4278 of Lecture Notes in Computer Science,
pages 1012–1020. Springer Berlin Heidelberg, 2006.

[160] W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview (Second Edition). Technical report, 2012.

[161] P Warren. Ontology users’ survey - summary of results. Technical report, The
Open University, June 2013.

[162] P Warren. Ontology patterns: a survey into their use. Technical report, The
Open University, March 2014.

[163] J. D Warrender and P Lord. A pattern-driven approach to biomedical ontology
engineering. SWAT4LS 2013, 2013.

[164] B Westermann and W Neupert. ’Omics’ of the mitochondrion. Nat. Biotech-
nol., 21(3):239–240, Mar 2003.

[165] M. M Wintrobe and J. P Greer. Wintrobe’s clinical hematology, volume 1.
2009.

[166] K Wolstencroft, P Lord, L Tabernero, A Brass, and R Stevens. Protein classi-
fication using ontology classification. Bioinformatics, 22(14):e530–e538, 2006.

[167] K Wolstencroft, R Mcentire, R Stevens, L Tabernero, and A Brass. Construct-
ing ontology-driven protein family databases. Bioinformatics, 21(8):1685–
1692, April 2005.

[168] K. J Wolstencroft, R Stevens, L Tabernero, and A Brass. PhosphaBase:
an ontology-driven database resource for protein phosphatases. Proteins,
58(2):290–294, Feb 2005.

[169] K Wolstencroft, S Owen, M Horridge, O Krebs, W Mueller, J. L Snoep,
F du Preez, and C Goble. RightField: embedding ontology annotation in
spreadsheets. Bioinformatics, 27(14):2021–2022, 2011.

[170] Yevgeny Kazakov and Markus Krötzsch and Frantǐsek Simanč́ık. ELK: a
reasoner for OWL EL ontologies. System description, University of Ox-
ford, 2012. Available from http://code.google.com/p/elk-reasoner/

wiki/Publications.

[171] M Zeviani and S Di Donato. Mitochondrial disorders. Brain : a journal of
neurology, 127(Pt 10):2153–2172, 2004.

239

http://code.google.com/p/elk-reasoner/wiki/Publications
http://code.google.com/p/elk-reasoner/wiki/Publications

	Introduction
	Introduction
	Contributions of this thesis
	Thesis structure

	Background
	Scientific knowledge
	What is an Ontology?
	Technologies and Methodologies
	Summary

	Tawny-OWL
	Introduction
	The genesis of Tawny-OWL
	Tawny-OWL overview
	The many names of an entity
	Clojure overview
	Summary
	Presentation in this thesis

	Pattern-Driven Development
	Introduction
	ODPs implementation in Tawny-OWL
	Sources of data
	Localised patterns
	Summary

	Modelling Karyotypes
	Introduction
	Definition of terms

	What is an ISCN String
	Reviewing chromosome components
	Modelling requirements

	Design considerations
	Portions of reality
	A partonomic axiomitisation
	The event-based change axiomitisation

	Representing karyotypic knowledge
	Modelling chromosome components
	Modelling normal karyotypes
	Abnormality breakpoints
	Orientation of substitution segments
	Partial knowledge
	Modelling uncertainty
	Multiple copies of rearranged chromosomes
	Derivative chromosomes
	Abnormalities involving homologous chromosomes
	Constitutional anomalies
	Mosaic karyotypes
	Identifying the (near-)ploidy levels
	Defining sex

	Assessment
	Summary

	Scaling The Karyotype Ontology
	Introduction
	Creating random ontologies
	Performance
	Scaling The Karyotype Ontology
	Incorporating affects restrictions
	The affects implementations
	Results

	Summary

	The Mitochondrial Domain
	Introduction
	Stage 1 – Term Capture
	Term of the week
	Lab meetings
	Published papers
	Assessing the term capture techniques

	Stage 2 – Competency Questions
	Stage 3 – Refinement
	Canonicalising terms
	Identifying disease relevant terms

	Stage 4 – Construction
	Constructing The Mitochondrial Disease Ontology classes

	Stage 5 – Evaluation
	Summary

	Patternised Development of an Existing Ontology
	Introduction
	Non-patternised rendering of Tawny-SIO
	Patternised refactoring of Tawny-SIO
	Tawny-SIO errors
	Patterns for downstream usage
	Summary

	Pattern classification
	Introduction
	Classification by role
	Internal localised patterns
	External localised patterns

	Results
	Summary

	Discussion
	Introduction
	Utilising a pattern-driven and programmatic approach
	The Karyotype Ontology
	The Mitochondrial Disease Ontology
	Re-purposing software engineering
	Improving the ontology engineering process

	Recast of The Pizza Ontology
	Tawny-OWL: Supplementary Material
	Tawny-OWL restriction exemplars
	Tawny-OWL entity exemplars
	Tawny-OWL frames
	Defining a namespace in Tawny-OWL

	Mitochondria: Supplementary Material
	Classification: Supplementary Material
	Summary of research questions
	Summary of research questions

	References

