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Abstract  
The biological neural computational mechanism is always fascinating to human 

beings since it shows several state-of-the-art characteristics: strong fault 

tolerance, high power efficiency and self-learning capability. These behaviours 

lead the developing trend of designing the next-generation digital computation 

platform. Thus investigating and understanding how the neurons talk with each 

other is the key to replicating these calculation features. In this work I 

emphasize using tailor-designed digital circuits for exactly implementing bio-

realistic neural network behaviours, which can be considered a novel approach 

to cognitive neural computation. The first advance is that biological real-time 

computing performances allow the presented circuits to be readily adapted for 

real-time closed-loop in vitro or in vivo experiments, and the second one is a 

transistor-based circuit that can be directly translated into an impalpable chip for 

high-level neurologic disorder rehabilitations. In terms of the methodology, first I 

focus on designing a heterogeneous or multiple-layer-based architecture for 

reproducing the finest neuron activities both in voltage-and calcium-dependent 

ion channels. In particular, a digital optoelectronic neuron is developed as a 

case study. Second, I focus on designing a network-on-chip architecture for 

implementing a very large-scale neural network (e.g. more than 100,000) with 

human cognitive functions (e.g. timing control mechanism). Finally, I present a 

reliable hybrid bio-silicon closed-loop system for central pattern generator 

prosthetics, which can be considered as a framework for digital neural circuit-

based neuro-prosthesis implications. At the end, I present the general digital 

neural circuit design principles and the long-term social impacts of the 

presented work. 
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Chapter 1 Overview and Rationale  
 

This chapter generally describes the definition, history, development trends and 

current bottlenecks of the neuromorphic circuit. Then it gives a brief description 

of the contributions of the presented work and organization of the thesis.   
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1.1 Overview  

The concept of the ñneuromorphic circuitò was first proposed by Carver Mead [1] 

in 1989 to describe electronics that can replicate neurobiological behaviour. The 

key goal of this community is to understand how neural circuits process 

information and how biological systems adapt to different environments 

incorporating learning, robustness to damage and development.  

This field can inspire hardware engineers and computer scientists to design and 

build the next-generation computational platform, which captures the major 

merits of the brainôs features: highly parallel computing, ultra-low power 

consumption, strong fault tolerance and adaptive capability [2].  

There are two main streams within the neuromorphic community: bio-inspired 

and bio-mimicking groups, as shown in Figure 1-1. The bio-inspired group 

primarily investigates how to develop an electronic system that can capture 

concepts or features of biological processes [3]. For example, inspired by the 

insect fly navigation optic flow (OF) sensing system, which can easily avoid 

hindrances and accurately move in the most changeable environments, an 

FPGA-based elementary motion detector (EMD) model [4] is developed to 

replicate this smart navigation mechanism, which is applied on a 

MicroAirVehicle. 

Bio-mimicking groups attempt to use electronics to exactly reproduce biological 

neural network behaviour in real-time computing [5]. Their purpose is to try to 

understand the neural mechanisms of insight.  

 

Figure 1-1: The neuromorphic community classifications: bio-inspired and bio-
mimicking groups. The bio-inspired devices include IBM ñTrueNorthò process 
chip. and dynamic vision sensors (DVSs); the bio-mimicking system contains a 
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silicon central pattern generator for cat movement prosthesis and silicon 
cerebellum for mouse fine movement control recovery  

Nowadays there are several projects closely related to this field as shown in 

Figure 1-2. The human brain project [6] was established in 2012 by the 

European Union. It is a 10-year 1.19 billion euro scientific research project that 

aims to fully map human brain activity on specifically designed hardware. Its 

purpose is to provide better understanding of the mechanisms of the brain. In 

addition, it also plans to design and build a computational model that can be 

used to explore the effect of psychoactive drugs on the human brain. However, 

there has been some controversy in that cognitive scientists are largely 

excluded from the project. This indicates that this large flagship project mainly 

focuses on low-level bottom-up approaches [7]. The US-based BRAIN Initiative 

(Brain Research through Advancing Innovative Neurotechologies) [8] is another 

giant project related to neuromorphic computing. It was started in 2013 under 

the Obama administration. The total funds are $300 million per year over ten 

years. Itwill initially map the mouse neural network dynamics and eventually 

transfer these into the human brain neurons. 

On the computer architectural side, a project called SpiNNaker [9] has also 

given strong impetus to the neuromorphic computing community. It is a highly 

parallel computing platform that is mainly focused on the three areas of 

neuroscience, robotic and computer science. The platform hopes to evolve to a 

million-core system to simulate the brain cortex neurons in real time. Similarly, 

IBM started the SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable 

Electronics) project [10], which aims to design a neurosynaptic chip. The aim is 

to reproduce brain computing characteristics related to efficiency, size and 

power consumption. The main applications will be for cognitive tasks such as 

pattern recognition with new programming languages [11]. 

Meanwhile, one of the largest semiconductor companies, Qualcomm, recently 

developed the first commercialized neuromorphic chip, ñZerothò, in 2014 [12]. 

ñZerothò is able to observe and predict the external environment similarly to 

human beings. The chip has defined a new concept, the Neural Processing Unit 

(NPU), which is a new class of processor mimicking the cognitive functions of 

the brain. Compared to traditional chips, they argue that the NPU is more 
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suitable for detecting and recognizing visual figures and patterns in complicated 

data with much higher power efficiency than conventional systems.  

 

Figure 1-2: The neuromorphic communities from organizations, industries and 
universities. (a) is the human brain project emitted by the European Union; (b) is 
the BRAIN Initiative supported by the American government; (c) is the first 
generation of commercialized neuromorphic Zeroth chips from the Qualcomm 
company; (d) is the visualization of a simulated network of neurosynaptic chips 
from IBM research; (e) is the analogue CMOS-based chip designed for two-
neuron communication (MIT); and (f) is the Spinnaker computational platform of 
Manchester University.    

Finally, in 2011, researchers at MIT [13] designed the first analogue chip that 

could simulate ion-based communication between two neurons. It was 

fabricated by standard CMOS manufacturing techniques with 400 transistors. 

The MITôs chip is capable of reproducing the synaptic behaviours of spike rate-

dependent plasticity and spike-timing-dependent plasticity hebbian learning 

rules.    

1.2 History and trends  

The first conceptual neuromorphic circuit was developed by Carver Mead [1] in 

1990. He used analogue circuits to mimic active ion channel current-voltage 

behaviours in a nerve membrane. As this field develops, the neuromorphic 

circuit has broader scopes such as analogue, digital and mixed-model 

analogue/digital VLSI. Particularly in the high-level exploration of implementing 

neural networks (using a Field-Programmable Gated Array), in 2004 E.L. Graas 

was the first [15] to implement a Hodgkin-Huxley (HH) neural model in digital 
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circuits [15]. This specific field has rapidly developed and become an important 

niche in society nowadays. The main developed history is shown in Figure 1-3. 

E.L. Graasôs research gave a basic framework for using FPGAs to implement 

computational neural models. It described the time multiplexing technique and 

speed optimization issues. Then, in 2007, Andrew Cassidy [16] used 32 digital 

neurons to replicate biological synaptic plasticity behaviours. This indicated that 

the digital neural system was capable of reproducing vital neural system 

performances. Meanwhile, RK Weinstein [17] contributed an auto-development 

tool kit for implementing neural models; this developed tool kit can not only alter 

model populations but also model inherent architectures such as 

adding/deleting ion channels. A pre-BÖtzinger complex model was implemented 

as a case study that contains 40 HH-based neurons. After that, researchers 

started to investigate novel hardware architectures for large-scale neural 

network implementation; SW Moore [18] and Kit Cheung [19] developed a 

Bluehive and FPGA-based neural modelling accelerator that could implement 

256,000 and 64,000 Izhikevich neurons in 2012. However, these neurons 

showed poor bio-plausibility. Recently, G Smaragdos [20] presented a digital 

network based on 96 HH neurons with compartments in 2014; it significantly  

 

Figure 1-3: History development diagram of digital neural circuits. The x-axis is 

the implemented network size and y-axis is the bio-plausibility level: leakage 
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integrate-and-fire (LIF) model, Izhikevich model, LIF with ion expression model, 

Hodgkin-Huxley (HH) model, HH model with compartment parts such as soma 

and axon (HH-c) and HH model containing voltage & calcium ion channel and 

ChR2 channels (HH-e). 

improved digital neural network bio-realistic characteristics but the number of 

neurons is limited. 

It can be deduced that the aim of digital neural network implementation is to 

create very large-scale networks with highly bio-plausible behaviours. However, 

the main challenges lie in limited hardware resources and biological real-time 

computing requirements. Using timing multiplexing or pipelining techniques can 

significantly save hardware resources but affects calculation speed. Parallel 

implementation allows digital circuits to do biological real-time calculations but 

requires massive resources. Also, since large-scale neural networks have more 

complicated synaptic connections and neuron/ion types, the implementation 

requires customer-designed routing technology and heterogeneity architectures, 

which increases the design difficulty.  

 1.3 Rationale 

In summary, the implementation of a current digital circuit-based high-level 

neural network has two limitations: 

1. It still cannot reproduce multi-ion channel-type activities including both 

electricity- and chemistry-related behaviours.  

2. When the network scale becomes very large (e.g. 100,000), the system 

has to use a simplified neuron model and shows poor bio-plausibility.  

In this work I have developed two novel hardware architectures to address 

these issues:  

1. Pipelining -Based Multi -Loop Process Mechanism : A Pipelining-Based 

Multi-Loop Process architecture is presented that can mimic different ion 

channel-type activities (voltage-dependent, voltage & calcium-dependent, 

Channelrhodopsin). This successfully reproduces the ions closed-loop 

process mechanisms, including both in electricity and chemistry, and fills 
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the gap whereby previous architectures can only implement voltage-

dependent ion channel models.  

2. The Frame Based Network -on-Chip : A frame based network-on-chip 

architecture is also presented to implement a cerebellum model that 

contains 100,000 neurons. At the same time, the implemented model still 

has high plausibility. It can accurately mimic biological passenger-of-time 

functionalities, and the network is based on a conductance-based 

integrate-and-fire neural model. 

3. The Hybrid Bio-silicon Network : This network is designed for central 

pattern generator rehabilitation, which can be considered one of the 

potential important applications of digital neural circuits. 

1.4 Contributions and organizations  

The major contributions are as follows: 

¶ A bio-realistic digital ion channel model for the neuron, which can 

incorporate 13 different types of ion channels. The advances include the 

implementation of a channelrhodopsin model into a digital platform, 

together with a multitude of calcium dependent and independent ion 

channels. These latter channels are derived from biological data from 

the ion channels of crustaceans (crab). Although the creation of a 

MatLab model may be interesting in its own right, I have additionally 

created a digital processing platform that can explore networks of these 

neural models in real time. Specifically I have utilized a Field-

Programmable Gated Array (FPGA) to achieve the implementation. This 

allows scalability not only for closed-loop neuroscience experiments but 

also prosthetic applications. 

¶ An efficient FPGA-based network-on-chip (NoC) hardware architecture 

has been developed for implementing a very large-scale neural network. 

This has been used to implement a 100 k granular-layer model of the 

cerebellum to explore passage-of-time (POT) behaviours. The 

computational delay has been sustainably minimized to 25.6 ms for 

running a 1 s real-world activity. This model may have future 

applications in neuro-prosthetics for ataxia.  

¶ A reliable and capable system is presented specifically for CPG function 

restoration. Compared to previous systems, the work is stronger in two 
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aspects: silicon neuron bio-plausibility and system reliability. Firstly, 

digital neural circuits are designed to reproduce both real CPG control 

and pharmacological outputs, which particularly aim for conditions with a 

totally damaged and partially damaged system. Secondly, the designed 

system has the capability of robustly changing the computing speed to 

achieve the best communication performances with biology by using an 

adaptive control mechanism. 

The selected publications are as follows: 

Journals  

1. J. W. Luo, G. Coapes, T. Mak, T. Yamazaki, C. Tin, and P. Degenaar, 
ñReal-Time Reproduction of Passage-of-Time Functionality Using FPGA,ò 
in 2014 IEEE Transactions on  Biomedical Circuits and Systems (minor 
revision). 

2. J. W. Luo, Peter Andras, Alex Yakovlev, and P. Degenaar, ñDigital 
Implementation of Bio-realistic optogenetic neurons,ò in 2014 Journal of 
Neural Engineering (prepared). 

3. J. W. Luo, T. Mak, Peter Andras, Alex Yakovlev, and P. Degenaar, ñA 
Reliable Central Pattern Generator Prosthesis Technique Based on 
Digital Neural Circuits,ò in 2014 IEEE Transactions on Neural System 
and Rehabilitations (prepared). 

Conferences  

1. J. W. Luo, T. Mak, B. Yu, P. Andras, and A. Yakovlev, ñTowards neuro-
silicon interface using reconfigurable dynamic clamping,ò in Conference 
proceedings: ... Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society. IEEE Engineering in Medicine and 
Biology Society. Conference, 2011, vol. 2011, pp. 6389ï92. 

2. J. W. Luo, P. Degenaar, G. Coapes, A. Yakovlev, T. Mak, and P. Andras, 
ñTowards reliable hybrid bio-silicon integration using novel adaptive 
control system,ò in 2013 IEEE International Symposium on Circuits and 
Systems (ISCAS2013), 2013, pp. 2311ï2314. 

3. J. W. Luo, P. Degenaar, A. Yakovlev, T. Mak, and P. Andras, ñA novel 
hardware architecture for large-scale hybrid bio-silicon network,ò in 2012 
Royal Academy of Engineering Young Researchers Futures Neural 
Engineering meeting, Warwick, 2012. 

4. J. W. Luo, T. Mak, P. Andras, and A. Yakovlev, ñFPGA-based simulation 
of the pyloric circuits of the crab stomatogastric ganglion,ò in 2012 
Neuroscience, D.11.f;G.06.a . 

5. J. W. Luo, G. Coapes, T. Yamazaki ,T. Mak, C.Tin, and P. Degenaar, ñA 
Scalable FPGA-based Cerebellum for Passage-of-Time Representation.,ò 
in Conference proceedingsל: ... Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 
Medicine and Biology Society. Conference, 2014. 

The thesis structure is organized as follows: 
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Chapter 1: Overviews and Purposes . This briefly describes neuromorphic 

computing background, history and development trends and the work purposes.  

Chapter 2: The Fundamentals.  This reviews the basic computation 

architectures and circuits, the digital and neural computing mechanisms, current 

implementation techniques and systems, the FPGA advances and 

developments.  

Chapter 3: The Digital Optoelectronic Neuron .  A bio-realistic digital ion 

channel model, which can incorporates 13 different types of ion channels. The 

advances include the implementation of a channelrhodopsin model onto a 

digital platform, together with a multitude of calcium dependent and 

independent ion channels. 

Chapter 4: The Digital Cerebellum.  A frame-based network-on-chip (NoC) 

architecture for implementing a very large-scale neural network (100,000) with 

specific biological passage-of-time (POT) functionalities is presented. The 

design could be a potential neuro-prosthetics tool for future experimental and 

clinical applications owing to its high computational power, flexibility, high 

scalability and power efficiency. 

Chapter 5: Case study: Central Pattern Generator Prosthesis Technique.  A 

reliable and capable system is presented specifically for CPG function 

restoration. Compared to previous systems, this work is stronger in two aspects: 

silicon neuron bio-plausibility and system reliability. Firstly, digital neural circuits 

are designed to reproduce both real CPG control and pharmacological outputs, 

which are particularly aimed at conditions with a totally damaged and partially 

damaged system. Secondly, the designed system has the capability of robustly 

changing the computing speed to achieve the best communication 

performances with biology by using an adaptive control mechanism. 

Chapter 6: Conclusion . This summarizes the main work of the thesis and 

briefly describes the major contributions. Also, the things that need to be 

improved and future work are presented as well. 
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Chapter 2 The Fundamentals  
 

This chapter first describes the basic computational principles of digital systems 

and biological neural networks. After that, these two systems are compared. In 

particular, the different features are emphasized. Then it gives a brief historical 

review of previous digital-based biological systems. Finally, the design 

conclusions are also presented.  
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2.1 Digital computational architectures  

A basic digital computational device can be defined as a system or circuit that is 

capable of performing information processing or specific functions that people 

require in their daily lives.  For example, a calculator: by entering several digital 

numbers, the machine will automatically carry out arithmetical operations that 

you need such as addition, subtraction, multiplication and division. Specifically 

in numerical computing, it can perform such computations at much faster 

speeds than the human brain. Designing a digital computational device in 

general raises several basic questions:  

1. How can the digital circuit state best represent analogue (real) world 

information. 

2. What is the optimal architecture for processing and storing information? 

3. How should computational components communicate with each other.  

We are living in an analogue world. The information we sense is continuous 

values changing with time. A digital computational system has to represent 

analogue world information (e.g. continuous values) by using digital states such 

as low and high, on and off, charged and discharged. A positional number 

system has been developed to address this issue. By using the position of 

digital bits, each with different weights, numbers can be represented in a digital 

system. The equation is shown in Equation 2-1: 

  

Ὀ  Ὠ

 

ὶ 

 

Equation 2-1 

where ὶ is the weight and Ὠ is the analogue values, the rightmost bit (Ὥ  ὲ 

is called the least significant bit (LSB), and the leftmost bit (Ὥ  ὴ ρ is called 

the most significant bit (MSB).  

Once the analogue value can be represented by digital circuit states, the next 

key consideration is how to use logic signals and gates for information 

processing. The gate functions AND, OR and NOT are developed as the basic 

logic operations; the symbols and corresponding truth table are shown in Table 

2-1and Figure 2-1. The complementary Metal-Oxide Semiconductor (CMOS) is 

the fundamental unit for implementing these logic functions.  
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Figure 2-1: The basic gate functions: AND, OR and NOT. 

Table 2-1: The truth table of logic gate functions 

AND OR NOT 

A B C A B C A B 

0 0 0 0 0 0 0 1 

0 1 0 0 1 1 1 0 

1 0 1 1 0 1   

1 1 1 1 1 1   

 

It is a three-terminal device that can be considered as a voltage-controlled 

resistance or amplifier. In the digital operation principles, the MOSFET is always 

operated either very high (switch on) or very low (switch off). An example of 

using CMOS to implement a NOT function circuit is shown in Figure 2-2: A: the 

typical CMOS inverter architecture for NOT gate function, B: The typical input-

output transfer characteristic of a CMOS inverter. 

 

Figure 2-2: A: the typical CMOS inverter architecture for NOT gate function, B: 
The typical input-output transfer characteristic of a CMOS inverter. 

Therefore, by combining and arranging different numbers of these gate 

functions as shown in Figure 2-1, from these building blocks all important 

circuits and memory elements can be created. When the circuit outputs are 

purely dependent on the input values, it is defined as a combinational circuit. 

When a process has to involve previous inputs or calculations, a memory 
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component such as flip-flops or latches is necessary. This circuit is defined as a 

sequential circuit. 

As the required information process functions become more complex and varied, 

people seek to develop a general-purpose computational device with a 

reprogrammable function, thus the architecture requires a customer-designed 

controller or program register to manage operation sequences and data and 

become more sophisticated.  The Central Processing Unit (CPU) came of age. 

Very early in the 19th century, there were two basic CPU structures: the Von 

Neumann [21] and Harvard computing architectures. The Von Neumann 

architecture contains a processing unit that consists of: 

1. An arithmetic logic unit.  

2. Registers (accumulators). 

3. A control unit that consists of an instruction register and program counter. 

4. An external massive memory storage. 

5. Input/output pads.  

The arithmetic logic unit is responsible for calculating data such as add, multiply 

and subtract operations and comparisons such as ñgreater thanò or ñless thanò. 

The control unit is for managing the process of moving data and codes in and 

out of memory, and also for executing program instructions. The memory is for 

storing both data and program instructions such as random access memory. 

The Harvard architecture maintains the same components but the key 

difference is that instruction and data memory are physically separate and have 

different signal pathways, as displayed in Figure 2-3.  

Because the Von Neumann architecture instructions and data memory share 

the same communication bus, it strongly limits the effective calculating speed. 

The CPU speed becomes limited by the time taken for memory access. Harvard 

architecture, modified Harvard architecture or parallel computing can alleviate 

this performance problem because the data bus is separate. 

The basic CPU goes through the following process sequence: first, it fetches 

the instruction in the memory location indicated by the Programmer Counter 

(PC), and loads it into the Instruction Register (IR); then the PC will be 

automatically updated to indicate the next instruction by increasing an 
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appropriate amount. At the execution phase, CPU will carry out the instruction 

in IR and execute it. This is the typical sequence of the fetch-execute cycle. 

 

Figure 2-3: Comparison between Von Neumann and Harvard computing 
architecture. 

As the computer technology develops, the modern CPU is capable of 

performing general-purpose tasks and significantly enhancing peopleôs quality 

of life. However, the CPU faced limitations as graphics process requirements 

increased. Such processing requires massive matrix and vector operations, 

which take an extremely long processing time when processed sequentially. 

Engineers then developed a tailor-designed highly parallel computing device for 

graphic processing tasks, called the Graphic Processing Unit (GPU). The first 

consumer-level GPU card, named Nvidia GeForce 256, was released in1999. 

A GPU [22] is an interesting computing architecture. It has a highly parallel 

structure. It is a heterogeneous chip multiprocessor. Because there are lots of 

matrix and vector calculations, the basic architecture is shown in Figure 2-4. 

The red block is the fetch/decode function unit that sends an instruction stream 

across many ALUs, which refers to single-instruction multi-data processing. The 

yellow block is the ALUs. And the blue block is execution contexts and shared 

memory. 

The GPU [24] process mechanism is complicated and often involves many 

steps. The basic operation principles are as follows: first, everything is 

translated into triangles by using a computer graphic library. Then the lighting 

process will identify each triangle colour. After that, all these triangles are 

translated into the virtual cameraôs film coordinates. The rasterization step will 

separate all the overlapped triangles. Next each camera pixel colour will be 
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identified and the incorrect hidden surfaces of objects will be removed. 

Nowadays people increasingly use GPU for other non-graphical applications 

such as bitcoin mining and neural network modelling [23].  

  

 

Figure 2-4: The NVIDIA GeForce GTX580 ñcoreò. The yellow block is the SIMD 
(Single Instruction Multi Data) function unit. This figure comes from the Fermi 
Compute Architecture Whitepaper CUDA Programming Guide 3.1. 

Also, as the automation, mechanical and electrical industries develop, some 

information process functions in commercial products have to be specifically 

designed to save hardware resources, increase power efficiency and enhance 

speed, in terms of raising net benefits. This raises peopleôs interests in 

designing an Application-Specific Integrated Circuit (ASIC). 

An ASIC is a customized integrated circuit for a specific function. The first ASIC 

was a gate array invented in 1980 by Ferranti. The design methodology of 

ASICs can be roughly divided into three categories: gate-array designs, 

standard-cell designs and full-customer designs. The gate-array design is 

where transistors or other active devices are predefined and unconnected. The 

interconnections of the final system are decided by the engineering. Nowadays 

it has been almost entirely replaced by FPGAs. The standard-cell design uses 

manufacturer-designed standard function blocks to build circuits with high 

electrical performance. This design involves several stages: module 

specification, top-level design, system implementation, simulation, synthesis, 

layout and testing of silicon. The full-customer design is defined all the silicon 

layers of the device. The advantages of full-customer design usually include 

smaller areas, speed enhancement and less power consumption, and also the 
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ability to integrate other components. Examples of gate-array and full-customer-

designed ASICs are displayed in Figure 2-5. 

 

Figure 2-5: A: gate-array-designed ASIC; B: full-custom-designed ASIC.  

On the other aspect, all the above three different architectures (CPUs, GPUs 

and ASICs) can be implemented in a digital reconfigurable tool, which is the 

FPGA. 

Ross Freeman and Bernard Vonderschmitt released the first commercial 

available FPGA in 1985, named XC2064 [25], which created a new beginning 

market of computational architecture. The FPGA [26] is a bit different from 

previous computing architectures; it is defined as ña prefabricated silicon device 

that can be electrically programmed to become almost any kind of digital circuit 

or systemò [26]. This is done by customized programming technology, which 

can change circuit performances after chip fabrication. The digital circuits are 

created in the ñfieldò. The conceptual structure of an FPGA is displayed in 

Figure 2-6. It contains routing channel, logic block and I/O interfaces.  

The routing channel design refers to programming technologies. The 

approaches include EPROM [27], EEPROM [28], flash [29], static memory [30] 

and anti-fuses [31]. Among these approaches, the flash, static memory and 

anti-fuse techniques are widely applied in the FPGA model.  The logic block is 

for implementing circuit function; the design has to consider the trade-off among 

speed, power and areas. The I/O pad is the input and output interface.   

The FPGA contains three main elements: Look-Up Table (LUT), flip-flops and 

routing matrix. Look-Up Tables are fundamentally how logic is actually 

implemented on   a block of; the output is the values of the corresponding 
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indexed address location. Flip-flops are typically used for function reset or 

latching. They are usually connected to the output of LUTs, which consist of a 

slice. The complex logic block contains two slices in FPGAs. The routing matrix 

is a number of multiplexers and wires that respond to connecting CLBs and the 

other FPGA resources. For example, a summation function needs to be 

implemented that requires an adder operator. An adder can be synthesized by 

using several logic functions including: AND, OR and NOT. These logic 

functions are implemented by using LUT; the connections between them are 

achieved by using a routing matrix. Specifically, system reset, enable and 

memory functions can be realized by using flip-flops.  

 

Figure 2-6: The conceptual architecture of an FPGA. The figure is cited in [26]. 

Overall, the characters of each platform are summarized in Table 2-2. There are 

two computing mechanisms for sequential and parallel approaches. CPUs 

follow a  sequential computing approach and comprise four main steps ï fetch, 

decode, execute and write-back ï while GPUs, FPGAs and ASICs use parallel 

computing.  

The clock signal governs all different digital platformsô computing speed; it is 

very important and can allow or stop a process and in general provide 

synchronization for the circuits. Increased clock frequency can directly make 

digital processors run faster, but it is limited by  circuit delays. The clock period 

has to be longer than the total propagation delay of the circuits to avoid glitches. 

Generally, larger circuits have longer propagation delays. The clock cycle of 

CPU Intel Core i7-960 can be up to 3.2 GHz, which is much faster than a Nvidia 

GTX285 1.5 GHz. Specifically, since FPGAs have switch blocks in the circuits, 
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which have large propagation delays, the clock frequency of FPGA V6-LX670 is 

0.3 GHz.  

Table 2-2: Comparisons among different computing platforms 

 CPUs GPUs FPGAs ASICs 

Mechanism sequential parallel 

Architecture specifications  

Clock cycle 3.2 GHz 1.5 GHz 0.3 GHz - 

Die area 263 mm2 470 mm2 - - 

CMOS tech 45 nm 55 nm 40 nm - 

Benchmarks (Fast Fourier Transform) 

GFLOP/s 67 250 380 952 

GFLOP/J 0.71 4.2 6.5 90 

Characteristics 

Flexibility strong strong strong weak 

Design cycles normal normal relatively long long 

Cost cheap cheap normal expensive 

Implantable no no no yes 

*: CPU is an Intel Core i7-960; GPU is a Nvidia GTX285, FPGA is a V6-LX760; the ASIC circuit is the same RTL in 65 

nm for FFT implementation; GFLOP refers to a unit of computing capacity equal to one billion floating point operations 
per second. The benchmark data is cited at Computer Architecture Lab at Carnegie Mellon.  
 

A benchmark Fast Fourier Transform (FFT) algorithm was implemented on 

these four platforms. The characteristics of FFT are complex dataflow and low 

arithmetic density. The results indicated that ASICs have the fastest 

computational speed of 952 GFLOP/S and CPU has the slowest speed of 67 

GFLOP/S. However, the power consumption of CPU is 0.71 GFLOP/J and that 

of ASICs is 90 GFLOP/J. 

In terms of system flexibility and feasibility, CPU- and GPU-based platforms 

enjoy strong flexibility and low cost, and the level of design difficulty is relatively 

easy. Meanwhile, FPGAs are also reconfigurable platforms with normal costs; 

the design cycles are generally a bit longer since hardware design requires 

extra time for circuitsô synthesis and on-board testing. Finally, ASICs are non-

reconfigurable and expensive, and the design time generally takes months, 

depending on the specific target. But the circuits are implantable and more 

efficient in terms of power consumption and computing speed. 

2.2 The digital circuit design flow  

The overall design flow of digital Integrated Circuit (IC) implementation is 

described in Figure 2-7. A digital ion channel implementation is given as a case 

study.  First, a mathematical biological neural model/algorithm (function) is 

selected for implementation. By carefully considering the model parameter 
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range and resolution, neural network architecture and functionalities, two 

hardware architecture generation tools can be candidates for designing: Very 

high-speed integrated circuit Hardware Description Language (VHDL) and 

visualization software Cadence. Cadence gives more design flexibility and 

controllability, and VHDL is for high-level architecture (system) modelling. In this 

case study, a voltage-dependent ion channel model is described by using VHDL. 

And the next step is to employ ISE software to carry out behaviour and post-

translate simulation. Behaviour simulation verifies model functionalities from the 

logic-design perspective, while post-translate simulation includes physical 

hardware constraints such as timing and layout issues, which is as close as the 

real hardware calculation. After the synthesis, the developed hardware 

architecture is represented by using the register transfer level. Finally, a Virtex-7 

evaluation board is used for implementation and on-board testing.  

After verification by using an FPGA, the next milestone is to transfer VHDL into 

ASIC circuits. At this stage the software Synopsys is applied to transfer a 

previous VHDL code into a netlist in terms of generic cells such as and, or, not 

and sequential elements and mapping into logic cells from the CMOS library. 

Specifically, timing, area and power performances of architecture should be 

optimized to meet requirements. A synthesized netlist result is shown in Figure 

2-7 as well. Then the software Encounter is chosed to perform a digital IC place 

& route task, which includes floor planning, placement of cells, clock tree 

synthesis and optimization, routing of nets and full custom layout finishing (if 

required). A 90 nm CMOS library is selected for mapping the ion channel model 

and the final physical layout is shown in Figure 2-7. Finally, in the Signoff stage, 

static timing analysis, dynamic simulation, formal equivalence checking, power 

analysis (peak, average and time based) and transistor-level simulation should 

be considered. 

2.3 How the neuron works  

Compared to the artificial information process system based on silicon, the 

natural information process system of the biology shows totally different 

features. The basic processing unit of biology is called the neuron.   

A typical biological neuron consists of a soma, dendrites and an axon (Figure 

2-8B). It processes and transmits information through electrical and chemical 
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Figure 2-7: The design flow of digital Integrated Circuits (IC) implementation. A 

case study of implementation of an ion channel model is given as a 

demonstration.  

 

 

 

 

 


















































































































































































































































