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Abstract 

HIV-infected patients present with a range of pathologies that have been associated with 

mitochondrial toxicity, and more specifically, induced through exposure to the main 

class of antiretrovirals used in anti-HIV therapy (HAART), nucleoside analogue reverse 

transcriptase inhibitors, or NRTIs. It has recently been found that such patients have an 

excess of mitochondrial DNA mutations when exposed to NRTIs; however, the 

underlying pathophysiological process of this remains undetermined. 

To elaborate upon this further, a range of molecular approaches were developed to study 

the behaviour of mitochondrial DNA mutations, both large scale deletions and single 

point mutations, in both tissue samples and in vitro. High throughput, ultra-deep DNA 

sequencing technology was also utilised to characterise mitochondrial DNA mutation 

burden in detail. 

Here I present data from physiological samples of HIV-infected individuals receiving 

NRTIs indicating an increased level of point mutation heteroplasmy and the level of the 

common mitochondrial deletion, compared to HIV-infected individuals who are NRTI 

treatment naïve. The mechanisms of this mutation level increase are elucidated through 

in vitro studies indicating that deletions accumulate through a size dependent 

mechanism during exposure and a point mutation level increase is mediated through a 

bottleneck mechanism. The possibility of NRTI de novo mutagenesis is refuted through 

the use of next generation sequencing technologies; the data also further supports a 

bottleneck mechanism of increased point mutation level. I also refute the idea that 

compounds associated with mitochondrial biogenesis can reduce mitochondrial 

depletion during NRTI exposure and that there appears to be no genetic predisposition 

to pathologies in sub-Saharan African individuals.
 

I therefore conclude that there is an accelerated clonal expansion of pre-existing 

mitochondrial DNA mutations through NRTI exposure, which is mediated by a size 

dependent replication bias for deletions, and a molecular bottleneck effect which 

accelerates drift for point mutations. These data suggest an acceleration of normal 

cellular ageing through mitochondrial mechanisms in HIV-infected individuals. 
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1.1 Mitochondria 

1.1.1 Origin  

It is believed that mitochondria arose from an alpha-proteobacterium enclosed into a 

eukaryotic progenitor (Lane and Martin, 2010). This theory has come to be known as 

the endosymbiotic theory and was proposed in 1970’s by Dr Lynn Margulis’ 

observations that mitochondrial components were highly similar to those found in 

bacteria (Margulis, 1975).  Whilst mammalian mitochondria have retained only a small 

amount of bacterial features, it is estimated that the ‘current’ mitochondria are merely 

evolutionary derivatives of the original endosymbiont, after encapsulation by the 

eukaryote, which accounts for distinct differences between the two (Gabaldon and 

Huynen, 2004).  

1.1.2 Structure 

The similarity retained between mitochondria and their bacterial ancestors, is evidenced 

by each mitochondrion comprising of an outer and inner structural membrane, an 

intermembrane space/matrix and its own ‘circular’ DNA, mtDNA (mitochondrial DNA), 

which is distinct from nDNA (nuclear DNA).  

The outer mitochondrial membrane is a phospholipid bilayer, comprising channel 

forming proteins known as porins, that form mitochondrial conduits to allow the 

transportation, or non-specific diffusion, of small molecules (<10kDa). Due to the 

increased level of enzymatic activity and protein transportation, the proportion of 

proteins present in the outer membrane compared to the inner membrane is 

approximately four times as great (in relation to the ratio of proteins: lipids).  

The inner membrane, lacks many of the proteins present in the outer membrane, namely 

the porin family; however, it is abundant in cardiolipins, which are required for making 

the inner membrane impermeable to solutes and ions (Patil and Greenberg, 2013). 

Therefore, molecules present in the intermembrane space need to be actively transported 

out by a specific system. This system of transportation is driven by membrane electrical 

potential (Frazier et al., 2003). 

The mtDNA in humans, has reduced in size to 16,569bp in length, proposed to be a 

result of the millions of years of evolution, to become almost exclusively exonic in 

nature, with only one region known to be non-coding (see Figure 1.1).  



  Introduction 

5 

 

 

Figure 1.1 Structure of mitochondrial DNA (mtDNA) highlighting the highly exonic nature of the 

species and the individual genes which are encoded. The d-loop (displacement loop) is the only non-

coding region with the origin of replication of the ‘heavy’ strand (OH) of the mtDNA. Image 

adapted from https://www.nfstc.org.  

Human mtDNA is comprised of 37 genes, of which 22 encode mitochondrial transfer 

RNAs (tRNAs), 2 genes encode mitochondrial ribosomal RNAs (rRNAs) and 13 

encode polypeptides of the electron transport chain.  However, more than 80 subunits of 

the electron transport chain are encoded by the nuclear DNA (nDNA).  Typically, each 

cell will contain hundreds to thousands of copies of the mitochondrial genome (White, 

2001).  

1.1.3 Respiratory chain 

Mitochondria are responsible for encoding the functional subunits of the respiratory 

chain. The respiratory chain is located within the inner membrane of mitochondria and 

is made up of four protein complexes (NADH, succinate dehydrogenase, ubiquinol 

cytochrome c oxidoreducatase, and cytochrome c oxidase) and ATP synthase regarded 

as the fifth complex.  The respiratory chain also requires two electron carriers to act as 

intermediate units, ubiquinone (also known as coenzyme Q10) and cytochrome c.   

https://www.nfstc.org/
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During the process of respiration and the drive of the respiratory chain, there is a 

generation of superoxide of approximately 1-2% of all the electrons transported along 

the respiratory chain.  The superoxide generation has been strongly linked to the 

processes of complex I (Hirst et al., 2008). This is due to such a low redox potential 

required for one electron reduction of di-oxygen to superoxide. Although the matrix of 

the mitochondrion has limited mechanisms to protect both DNA and structural proteins, 

against oxidative damage, such mechanisms can only work at a finite rate and therefore, 

a certain level of damage is inevitable.  However, oxidative damage can start to disrupt 

the respiratory chain, especially in older age when mitochondrial activity decreases, at 

any of the complexes (I-IV) and the build-up of ROS (reactive oxygen species) is felt to 

be a major contributor to mitochondrial damage in general. 
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Figure 1.2 An illustrative schematic of the respiratory system found within the inner membrane of the mitochondria comprised of: complex I, NADH; complex II, 

succinate dehydrogenase; Q, coenzyme Q10; complex III, Ubiquinol cytochrome c oxidoreducatase; cyt c, cytochrome c; complex IV, cytochrome c oxidase and 

complex V, ATP synthase. H+ indicates hydrogen with arrows indicating flow of the ion(s).  
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1.2 Mitochondrial Genetics 

1.2.1 Mitochondrial DNA inheritance 

The standard model that describes mtDNA inheritance is that it is transmitted strictly 

though the maternal line (Giles et al., 1980), although there are claims of 1-2% of 

paternal inheritance/leakage present in mice (Gyllensten et al., 1991) with controversial 

claims that it may be present in humans also (Schwartz and Vissing, 2002).  

1.2.2 Mitochondrial DNA nucleoid structure 

Mitochondrial DNA was originally thought to be naked with histones acting as a 

protective coating, in a similar manner to the nDNA. However, it is believed that 

approximately 5-7 mtDNA molecules are compacted into nucleoprotein complexes for 

protection (nucleoids) and are estimated to be 70nm in size (Nass, 1969; Iborra et al., 

2004).  

The protein structure of nucleoids has been well studied and is strongly implicated to be 

comprised of TFAM (mitochondrial transcription factor A) and mitochondrial single-

stranded DNA-binding protein (mtSSBP) along with a range of other mitochondrial 

metabolic proteins both well and not so well studied, such as: mtDNA polymerase (pol 

γ), T7-like helicase, mtRNA polymerase, suv3-like helicase and DEAD box protein 28, 

as described by Wang and Bogenhagen (Y. Wang and Bogenhagen, 2006).  

However, it has recently been suggested that each nucleoid consists of a single mtDNA 

molecule and is mainly comprised of TFAM, suggesting that TFAM is the main factor 

in packaging and organising mtDNA into nucleoids. This observation may potentially 

have further implications for our understanding of the mechanisms of segregation and 

transmission of mtDNA disease (later discussed in Sections 1.2.10 and 1.3 ) (Kukat et 

al., 2011).  

1.2.3 Replication and maintenance 

Mitochondrial DNA is replicated by the enzyme polymerase gamma (pol γ).  Pol γ is 

encoded by the nuclear genes POLG1 and POLG2, the former encodes the catalytic 

subunit of pol γ and the latter is responsible for the coding of a 55kDa subunit; they 

have chromosome loci of 15q25 and 17q21, respectively.  

Pol γ is thought to be solely responsible for all of the mtDNA synthetic reactions as well 

as the repair of the DNA.  However, its complex role in fully maintaining the DNA is 
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not fully understood.  Pol γ is unique among the cellular replicative DNA polymerases 

because it is potentially highly susceptible to inhibition by particular compounds such 

as ethidium bromide.  It is well accepted that mtDNA replication does not coincide with 

cellular replication and is known to occur completely independently of nuclear 

replication (Bogenhagen and Clayton, 1977).  

The mtDNA helicase, twinkle, interacts with a 13-15kDa protein, mitochondrial single-

stranded DNA-binding protein (mtSSBP) to achieve a destabilization of the mtDNA 

helix during replication. Twinkle is further stimulated by mtSSBP, which results in an 

increased fidelity of pol γ and increased processivity (Kaguni, 2004).  

The essential component of the mitochondrial nucleoid structure, TFAM, is necessary 

for the initiation of transcription and replication of mtDNA. It has also been suggested 

that TFAM is not only necessary for providing structure, but also regulates protein 

binding at the cis-regulatory displacement loop (D-loop; a non-coding region) of the 

mtDNA (Ghivizzani et al., 1994). The level of TFAM has been found to be directly 

proportional to the amount of mtDNA present within a sample, further providing 

support for its regulatory mechanism (Ekstrand et al., 2004).  

Currently there are two models that explain the mechanism behind the replication of 

mtDNA; the asynchronous displacements mechanism, and the leading-lagging strand 

synthesis mechanism (Holt et al., 2000; Yang et al., 2002; Clayton, 2003). According to 

the former mechanism, the heavy strand (OH) is synthesized first until the light strand 

origin is reached (OL), then the light stranding is replicated. The latter mechanism 

suggests that there’s a coupled unidirectional synthesis of the mtDNA strands. Neither 

theories have been proven to significantly out way the likelihood of the other, with a 

suggestion that both mechanisms may occur in a cell (Clay Montier et al., 2009).  

1.2.4 Mitochondrial translation 

There’s an incomplete understanding and an underdeveloped model for studying the 

mitochondrial translation system. All of the mitochondrial ribosomal proteins are 

nuclear encoded, transcribed and translated. They’re are then transported to the 

mitochondria where they form complexes with the mitochondrial encoded rRNAs 12s 

and 16s  (O'Brien, 2003).  

13 polypeptide proteins that make up the respiratory chain are synthesised within the 

mammalian mitochondria. Translation is initiated by mitochondrial initiation factor 2 
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(IF2mt) and mitochondrial initiation factor 3 (IF3mt). Together, these factors promote the 

binding of fMet-tRNA to the small ribosomal subunit, 28s, and the dissociation of the 

large ribosome 55s. This consequently leads to the release of 39s subunit and the 

creation of the 28s-IF3mt complex (Christian and Spremulli, 2009). The elongation 

phase of the translation then occurs, until termination through one of the four 

mitochondrial stop codons (UAA, UAG, AGA or AGG) is encountered. Following 

successful termination of translation and the hydrolysis of the new protein, the ribosome 

is recycled through one of two recycling factors: RRFmt, or EF-G2. The recycling 

process has been found by the two groups to be essential for normal cell viability 

(Rorbach et al., 2008; Tsuboi et al., 2009).  

1.2.5 Mitochondrial replication regulation 

The replication of mtDNA is a multi-faceted system, implicated in mitochondrial 

biogenesis. Peroxisome proliferator activated receptor γ co-activator-1α (PGC-1α) is 

known to play a key role in the process of mitochondrial biogenesis (Jornayvaz and 

Shulman, 2010). Key interactions that PGC-1α has which contribute towards biogenesis 

include NRF1/2 (nuclear respiratory factors), PPAR α, β, δ and γ (peroxisome 

proliferator-activated receptor), TFAM, thyroid hormone, oestrogen related receptors 

and glucocorticoids (Jornayvaz and Shulman, 2010).  

A major regulator of mitochondrial biogenesis is through activation of NRF1/2 is due to 

their ability to increase the expression of TFAM. TFAM is known to drive transcription 

and replication of mtDNA (as previously discussed 1.2.3). NRF1/2 has also been found 

to increase the up-regulation of other mitochondrial enzymes required for mtDNA 

transcription (Virbasius and Scarpulla, 1994). PGC-1α activates the transcriptional 

function of NRF-1 on the promoter of TFAM, as well as promoting NRF-2 binding to 

the COX IV promoter as the mechanisms to induce biogenesis (Wu et al., 1999; Baar et 

al., 2002).   

In addition to NRF1/2, PGC-1α interacts with and co-activates the PPARs. The PPAR 

family plays an extensive role in the expression of proteins involved in the intra- and 

extra-mitochondrial fatty acid oxidation and transportation (FAO) system. PPAR-α and 

δ enhance fatty acid transporters; PPAR-β has been strongly suggested to play a role in 

glucose metabolism, along with PPAR-γ (Kota et al., 2005).  
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PGC-1α activates the other factors such as thyroid hormone, glucocorticoids and 

oestrogen related receptors (ERRs). EERα and γ target a common set of promoters that 

regulate proteins involved in the uptake of substances and ATP generation (Dufour et 

al., 2007), as well as mitochondrial ribosomal machinery (Giguere, 2008). It has been 

found that by down regulating or knocking out the expression of the EERs, 

mitochondrial content also decreases, further supporting the important role of EERs in 

mitochondrial biogenesis and content control (Schreiber et al., 2004).     

1.2.6 Mitochondrial dynamics 

Mitochondria are subject to constant morphological changes through the combined 

actions of fusion, fission and movement along cytoskeletal tracks (Alexander M. van 

der Bliek et al., 2013). The key proteins involved in mitochondrial dynamics are MFN1, 

MFN2, OPA1, FIS1, MTP18 and DRP1, with the first three mediating mitochondrial 

fusion and the latter three mediating mitochondrial fission (Mishra and Chan, 2014).  

A mutation or repression in the genes, OPA1, MFN1 or MFN2 can lead to 

mitochondrial fragmentation or a reduction in the amount of mitochondrial filaments 

(Bach et al., 2003; Hsiuchen Chen et al., 2003; Arnoult et al., 2005). This can have 

detrimental effects on mitochondrial ATP production due to the link between 

mitochondrial fusion, especially MFN2, and high energy demanding cells and the loss 

of OPA1 resulting in a release of cytochrome c and increased apoptosis (Bach et al., 

2003; Olichon et al., 2003). Conversely, an increased expression or gain in function of 

these genes, has been found to result in increased mitochondrial filament or network 

length (Santel and Fuller, 2001).  

A mutation or repression in the genes, FIS1, MTP18 and DRP1, can result in an 

elongation of the mitochondrial with increased network size and a reduction in the 

amount of mitophagy (AM van der Bliek et al., 1993; Yoon et al., 2003; Stojanovski et 

al., 2004). An increased expression of these genes or an overexpression of proteins may 

result in mitochondrial network fragmentation (Yoon et al., 2003). 

Mitochondrial dynamics is a complex system that is also responsible for maintenance of 

mitochondrial function through a separation of dysfunctional mitochondria from the 

network, which are targeted for degradation through mitophagy (Ashrafi and Schwarz, 

2013).   
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1.2.7 Mitochondrial copy number regulation  

The process of mtDNA degradation and synthesis is crucial in the maintenance and 

homeostasis of normal cellular function. The turnover process itself, does not have a 

well-defined mechanism for regulation of when to proliferate or degrade mtDNA. 

Although it may appear somewhat stochastic, the most widely accepted model of 

mtDNA copy number regulation is the copy number threshold hypothesis (Clay Montier 

et al., 2009).  

In the copy number threshold model, when mtDNA copy number decreases and reaches 

a defined lower threshold, unknown factors trigger the up-regulation of mtDNA 

replication and therefore, restore the copy number back to or within the ‘normal’ level. 

Conversely, when the copy number reaches the ‘high’ threshold, unknown factors come 

into play to reduce the amount of turnover of mtDNA and trigger mtDNA degradation, 

to bring the number back down (Clay Montier et al., 2009).  

Although the above mechanism appears somewhat vague, other hypotheses have been 

proposed but have less supporting evidence to reinforce their existence. The most recent 

study highlights that copy number, specifically in PBMCs (peripheral blood 

mononuclear cells), is regulated by TFAM expression and is determined by the level of 

oxidative protection that is required; When there is a build-up of oxidative stress 

through reactive oxidative species (ROS), copy number is up-regulated, and vice versa 

for the reverse process. (Chakrabarty et al., 2014).  

1.2.8 Mitochondrial DNA mutations and heteroplasmy 

The first mtDNA point mutation that was discovered was the m.11778G>A mutation 

associated with Leber’s Hereditary Optic Neuropathy (LHON) (DC Wallace et al., 

1988). This was then followed by the first mtDNA deletion, which was associated with 

myopathy (Holt et al., 1988). 

The replication of the mitochondrial genome can result in mutations in the form of 

single point mutations and small- or large-scale deletions. Some of these mutations have 

naturally been found to be deleterious and cause disease.  mtDNA deletions are thought 

to be caused by one of four mechanisms; double strand breaks; slippage of pol γ; 

insufficient repair and protection mechanisms (twinkle/histones) and homologous 

recombination (Meissner et al., 2008). MtDNA mutations induced through oxidative 

stress is the result of ROS; a by-product of the electron transport chain. Of the ROS, the 
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reactive hydroxyl group reacts with mtDNA by adding double bonds in DNA bases.  

This is performed by the removal of a hydrogen atom from the methyl group and results 

in the modification of the base position, expressed as a mutation (Cooke et al., 2003).  

Due to the polyploid nature of mitochondrial DNA and a large number of mtDNA 

copies present in a cell (up to thousands per cell), if one copy develops a mutation, this 

generates two populations, a mutant and a wild type. This state is known as 

heteroplasmy and the level of mutation expressed as a percentage.  

If a deletion mutation causes the removal of parts of the genes that encode for the 

OXPHOS system, such as the 4977bp ‘common deletion’ that resides in the ‘major arc’ 

region where deletions are commonly found, this can result in respiratory dysfunction. 

The mitochondrial common deletion resides between two 13-bp direct repeat potions at 

m. 13447-13459 and m.8470-8482. It has gained great interest as it is the cause of 

several sporadic diseases, including Pearson’s disease and Kearns-Sayer syndrome. It 

therefore has become known as the ‘common’ deletion and used as a tissue biomarker 

of ageing (Taylor and Turnbull, 2005).  

Point mutations can also cause significant functional effects, for example, m.3243A>G, 

can cause a severe mitochondrial disease known as MELAS (mitochondrial 

encephalomyopathy, lactic acidosis, stroke-like episodes) (Taylor and Turnbull, 2005; 

Meissner et al., 2008). Previous studies have found that there are distinct different types 

of mutations in different tissues that have been associated with ageing. In post mitotic 

tissues the predominant mutated species are large scale mtDNA deletions (Bender et al., 

2006), whereas in mitotic cells, mtDNA point mutations have been commonly identified, 

with the d-loop associated as a potential mutation hot-spot (Shin et al., 2004; De Alwis 

et al., 2009; Laura C. Greaves et al., 2010; Kassem et al., 2011).  

If the level of a mutation that causes a deleterious effect exceeds a threshold, it can 

cause defects that can compromise a whole organ, if the cells affected are part of a 

network, such as those present in the central nervous system. The process of 

accumulating mitochondrial DNA mutations to the high threshold level, usually deemed 

65-70% heteroplasmy (Durham et al., 2005), is known as clonal expansion and the 

general principle is shown in Figure 1.3.  
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Figure 1.3 A schematic illustrating a basic representation of the process of clonal expansion of an mtDNA mutation through mtDNA turnover, exceeding the 

threshold level which result in dysfunction, at approximately 75% heteroplasmy. Green indicates normal mitochondria and red indicates mutated. Mitochondria.  

Time/mtDNA Turnover 
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1.2.9 Clonal expansion 

The mitochondrial genome accumulates acquired (somatic) mutations throughout life, 

some expanding to high levels, and others not. Unlike the nuclear DNA, the mtDNA has 

an independent replication to the cell cycle, this is known as relaxed replication (see 

Section 1.2.2) (Elson et al., 2001).   

It was originally thought that mutations may accumulate within single cells due to a 

replicative advantage on the theory that smaller deleted or ‘mutant’ molecules will 

replicate quicker than a whole, wild type mtDNA molecule (in the case of deletions). 

However, it should be noted that this hypothesis, is not widely accepted, due to the fact 

that replication of the mitochondrial genome is not subject to a rate-limiting factor  and 

the ‘faster replication’ of deleted molecules should in theory, not influence the ratio 

between deleted and wild type molecules over time, i.e. the half-life greatly exceeds 

replication time of mtDNA. Furthermore, a size dependant mechanism does not explain 

the increase of heteroplasmy of point mutations, as seen within patients with inherited 

mitochondrial disease (Elson et al., 2001).  

Due to the dynamic nature of mitochondria; frequently undergoing rounds of replication 

alongside fusion and fission, it raises the possibility that clonal expansion may be 

caused by random genetic drift. This has been previously simulated using a relaxed 

replication model of mitochondrial genome replication (Elson et al., 2001).  This study 

showed that relaxed replication can cause a mutation to clonally expand and reach high 

levels within an individual post-mitotic cell without any ‘replicative advantage’. It also 

showed predictions of the levels of COX-negative cells (see Section 1.3.3) in an aged 

individual that are in concordance with those observed using histochemical techniques. 

1.2.10 Transmission of mtDNA mutations 

The inheritance or transmission of mtDNA mutations is complex. All homoplasmic 

mutations (i.e. 100% mutant) are transmitted to all offspring through the maternal line. 

The transmission of a homoplasmic mutation does not directly relate to penetrance of 

disease in the offspring. For instance, the transmission of homoplasmic mutations 

associated with Leber hereditary optic neuropathy (LHON), has been found to cause 

disease in 50% of males but only 10% of females (Man et al., 2003).  

The transmission of heteroplasmic mtDNA mutations, especially point mutations, is 

more complex than that of homoplasmic. The regulator of transmission is hypothesised 
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to be one of two mechanisms: the mitochondrial bottleneck and mitochondrial 

segregation. There are three proposed explanations or mechanisms for how it regulates 

the segregation of mtDNA heteroplasmic mutations. The first mechanism describes the 

process as a preferential amplification of clustered populations containing 

identical/highly similar sequences (L. Cao et al., 2009). The second proposed theory, 

albeit the most recent, claims that there’s an amplification of a sub population of 

mitochondrial genomes in folliculogenesis (Wai et al., 2008).  The final mechanistic 

description postulates that a decline in mtDNA copy number creates a rapid segregation, 

and allows for only a sub-population of mitochondrial genomes to repopulate during 

embryogenesis (Cree et al., 2008).  

In all of the above models, the result is that a subpopulation of maternal mtDNA 

generates the offspring mtDNA, and hence the heteroplasmy levels of the offspring 

mtDNA may be significantly skewed from the maternal. 

1.2.11 Mitochondrial haplogroups 

There is known to be substantial homoplasmic mtDNA sequence variations between 

individuals across the global population. This variation arose through ancient mtDNA 

polymorphisms accumulating along radiating maternal lineages as people migrated and 

populated the world. When people populated and colonised an area, the polymorphisms 

became enriched and generated a distinct ‘tree’ with geographical region specific 

mtDNA sequences (D. C. Wallace and Chalkia, 2013). The mtDNA sequence specific 

tree makes up what is known as mitochondrial haplogroups, and is made up of macro-

lineages or macro-haplogroups, totalling 18 distinct lineages, 9 of which are localised to 

European  individuals (Torroni and Wallace, 1994).   

However, there is emerging evidences that indicate there is also transmission of low 

level heteroplasmies throughout sub-populations. A recent study highlighted 

transmission of very low level mtDNA variant heteroplasmies in centenarians to their 

offspring, indicating lineage inheritance of low level variants as well as the 

homoplasmic changes (Giuliani et al., 2014). The presence of low-level variants gives 

rise to a range of implications, especially for the understanding of mitochondrial disease 

and ageing associated mutations. Such implications include the clonal expansions 

throughout life contributing to ageing and the inheritance of low level pathogenic 

mutations contributing towards disease.   
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1.3 Mitochondrial Disorders 

1.3.1 An overview of mitochondrial disorders 

Mitochondrial disorders are phenotypically and genotypically heterogeneous and arise 

as a result of the dysfunction of the mitochondrial respiratory pathway. In 

approximately 15% of cases, disorders arise due to mutations in the mtDNA (Dimauro 

and Davidzon, 2005), with the rest induced through nuclear genes encoding for 

mitochondrial proteins.  

1.3.2 Mitochondrial pathologies 

Mitochondrial disorders can range from affecting a single organ, such as the eye in 

Leber Hereditary optic neuropathy (LHON) (Yu-Wai-Man et al., 2009) to multisystem 

diseases such as those seen in mitochondrial encephalomyopathy, lactic acidosis and 

stroke-like episodes (MELAS) (Pavlakis et al., 1984).  Mutations in the mitochondrial 

polymerase γ gene (POLG) result in pleiotropy: some mutations would cause ocular 

weakness, whereas others would cause ataxia and muscle weakness.  

1.3.3 Diagnosing mitochondrial pathology 

There are a range of diagnostic tools used routinely in clinical and research practices to 

detect and define mitochondrial pathology. The techniques include histopathological 

staining and more recently, the use of molecular techniques to define pathology in both 

tissue specimens and DNA extracts.  

Basic haematoxylin-eosin (H&E) stains do not really give any clues to the presence of 

mitochondrial damage. One of the stereotypical features of mitochondrial myopathy is 

the presence of ragged red fibres (RRF). RRF are characteristic of mitochondrial 

damage in muscle tissue and the accumulation of diseased mitochondria is the underling 

explanation for the RRF phenomenon. RRF are usually detected by the use of a 

modified Gomori trichrome stain and visualised as red patches around the edges of a 

cell on a muscle section. Frequently the implementation of COX/SDH (cytochrome c 

oxidase/succinate dehydrogenase) staining is also used to define mitochondrial defects 

by detecting a biochemical defect displayed through cellular dysfunction.  

COX contributes to accepting electrons from cytochrome c and generating a 

mitochondrial membrane electrochemical potential. Such activity is histochemically 

detected through the use of an electron donor as a substitute of cytochrome c. When 

oxidation occurs, there is a formation of a brown pigment, and thus when a brown stain 
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is present on the cell of the muscle Section, it indicates COX activity is present. COX is 

encoded by both nuclear and mitochondrial DNA. If a mitochondrial DNA defect is 

present within a cell then COX activity in that cell will be lost, assuming there’s a 

sufficient heteroplasmy level to cause a defect. However, this does not conclude 

whether it is mitochondrial, nuclear or both; therefore, staining for SDH (mitochondrial 

complex II), which is encoded exclusively by the nDNA, will elucidate upon this issue 

as a blue counter stain will highlight the cells which contain mtDNA defects. SDH 

catalyses the oxidation of succinate into fumaric acid, a histochemical demonstration of 

this enzyme is performed by utilising a tetrazolium compound, which in the presence of 

active SDH, will be reduced to a formazan dye and produce a blue colouration (Gardner 

et al., 2013). This technique has been found useful due to claims that over 89% of 

patients expressing mitochondrial DNA mutations (specifically deletions) will have 

abnormal COX/SDH staining (Lamont et al., 1998).  

Microscopy, both light and electron/ultrastructure microscopy are important tools in the 

evaluation of mitochondrial pathology. Thirty to 44% of individuals with mitochondrial 

pathology will demonstrate mitochondrial morphological changes detectable with the 

use of electron microscopy; however, the technique is not widely available in all 

diagnostic settings (Kyriacou et al., 1999).  

More recently, advancements in technology has enabled more specific analyses and 

determination of the severity of mitochondrial pathology to be defined. The use of 

biochemical analysis can be used to determine the exact subunit(s) at fault in a 

respiratory disorder. The molecular analyses of mitochondrial copy number and major 

arc deletion quantification (by qPCR and LR-PCR if they’re rearrangements) can be 

used to detect mitochondrial depletion and deletion disorders. Finally the ability to 

sequence the entire mitochondrial genome can give clear indications to specific point 

mutations to entire genome rearrangements. If there is a deletion mutation detected, 

sequencing can also be performed to determine genes affected (mitochondrial or 

nuclear). All of these can be used to more precisely diagnose mitochondrial pathology 

and any associated disorder, which gives a valid indication of the most appropriate 

treatment procedure (Rotig et al., 2004; Phillips et al., 2014).  

1.3.4 Treatments for mitochondrial disorders 

There is no definitive means of halting mitochondrial disorder progression and the 

ability to clinically define therapeutic responsiveness and optimal drug dosing is also 
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rather limited. However, there is a range of treatment options that have been suggested 

to be beneficial in the treatment of mitochondrial disorders.  

The basic clinical goal in the treatment of mitochondrial disorders consists of increasing 

energy and promoting mitochondrial biogenesis. Increasing energy is usually induced 

through increasing the level of ATP production and reducing the level of free radical 

production (Avula et al., 2014). Supplements such as co-enzyme Q10, L-carnitine and 

riboflavin are among the few used to increase ATP production through aid to the 

respiratory chain (Parikh et al., 2009).  

Co-enzyme Q10 was initially debated as being an ineffective method for treating or 

aiding with mitochondrial disorders (Matthews et al., 1993). However some of the most 

recent studies suggest that regular oral supplementation can be beneficial as an anti-

oxidant aid, providing symptomatic relief (Garrido-Maraver et al., 2014). 

Co-supplementation with riboflavin has recently been suggested as more beneficial with 

positive benefits as prophylactic treatment in mitochondrial driven disorders, including 

unusual mitochondrial pathologies such as migraines (Markley, 2012). L-carnitine is 

more tissue specific with the most recent support as a beneficial compound in muscular 

disorders (D'Antona et al., 2014).  

A set of ‘emerging therapies’ are currently being tested to assess whether or not they 

have ameliorative effects in patients with mitochondrial disorders. These therapies are 

compounds known to have an involvement in activating intermediates of the pathway of 

mitochondrial biogenesis (for pathways, see Section 1.2.5). Sirtuins are among the most 

popular; however, there are no clinical trials as of yet to suggest such drugs are valid in 

the treatment of mitochondrial disorders. There are a group of naturally occurring 

‘supplements’ such as resveratrol and AICAR (5-Aminoimidazole-4-carboxamide 

ribonucleotide) that act  as up-regulators of co-factors of mitochondrial biogenesis and 

have been implicated as having a valid use in mitochondrial disorder treatment, 

although no conclusive assessment of their function has truly been determined in long 

term in vivo exposure (Parikh et al., 2009).  
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1.4 Mitochondrial Involvement in Ageing 

The connection between mitochondria and ageing is known as the mitochondrial theory 

of ageing. This theory incorporates the production of ROS, a by-product of the 

OXPHOS system, as a mediator of mtDNA mutations in the genome. This damage then 

leads to potential respiratory chain uncoupling and further ROS production and 

ultimately, a viscous cycle that increases with age.  

Effects of mitochondrial ageing is most evident in a tissue that is non replicative (post-

mitotic), such tissues include brain and skeletal muscle.  The role of mitochondrial 

abnormalities in the aetiology of ageing has been characterised and comprises of a 

variety of features.  One of these features is the decline in activity of the partially 

mitochondrial-encoded complex IV (COX).  Somatic mtDNA defects accumulate 

during normal ageing and lead to cellular defects of COX, which is an essential 

component of the respiratory chain and therefore, a critical component of ATP 

production (Bua et al., 2006).  These mutations collect in individual cells, ultimately 

causing a cellular biochemical defect.  

1.4.1 Age-associated disease and mitochondrial mutations 

There has been a wide range of studies reporting that there are links, both directly and 

indirectly, between mitochondrial DNA mutations and age associated diseases such as: 

neurodegenerative disease, diabetes and cancer. Research suggests that as age increases, 

mtDNA mutations accumulate within individual cells and tissues.  

Mitochondrial DNA mutations that are known to cause mitochondrial disease, have 

been shown to also accumulate with age (Corral-Debrinski et al., 1992). The first 

association of mitochondrial deletions and age was first found when studying the 

common deletion (m.8470 - m.13447) in tissue. This common deletion was found to be 

present in a number of tissues (skeletal muscle, brain, liver) in aged individuals 

(Brierley et al., 1998). Point mutations have also been shown to accumulate with age 

and specifically, the m.3243A>G mutation causing the mitochondrial disease MELAS. 

This disease and the associated mutation have only been found in adult patients 

(Michikawa et al., 1999).   

Arguably, one of the best described examples of age associated mtDNA point mutations, 

are those found in human colonic crypts. By the age of 80, approximately 15% of all 

crypts contain a respiratory defect. This defect has been shown to be caused by the 
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clonal expansion of point mutations (Taylor et al., 2003). In general, mtDNA mutations 

accumulate in a range of tissues with age and are most commonly found in the colon, 

muscle and brain.  

Finally, the accumulation of mtDNA mutations has also been strongly implicated in 

neurodegenerative disorders, such as with Tau pathology and specifically, Alzheimer’s 

disease (Corral-Debrinski et al., 1994; Hirano et al., 1997; Bonilla et al., 1999; de la 

Monte et al., 2000; Coskun et al., 2004; Swerdlow and Khan, 2004; J. Wang et al., 

2005). The accumulation of mtDNA mutations through age in neurons is debated to 

being either an ageing phenomenon, or a disease specific phenomenon. Normal ageing 

brains present with increased mtDNA mutations, but this level is significantly increased 

in Alzheimer’s brains. The cause and effect connection is therefore yet to be made. 

1.4.2 Mechanisms of accumulation of mutations through age 

It is well established that mtDNA mutations undergo a process of clonal expansions and 

cause a respiratory chain deficiency mosaic in a multitude of tissues (Krishnan et al., 

2007). However, it is essential to reinforce that this is a clonal expansion of many 

mutations through the ageing process, across many tissues, rather than one monoclonal 

expansion in a tissue specific manner, which is usually described in mitochondrial 

disorders.  

The origin of these mutations is debated; one could also argue there’s an accumulation 

of mtDNA mutations from ROS production (by-product of the OXPHOS system) due to 

the lack of histones protecting the mtDNA (Harman, 1956; Richter C, 1995). However, 

replication errors may also be the cause of mutations through the pol γ lacking 

proofreading. More recently however, there’s an argument for the accumulation of 

somatic mutations through age from clonal expansions of very low level mutations of 

pre-existing mutations created through replication errors during embryogenesis, or 

transmitted from the mother (D. C. Wallace, 2001; Larsson, 2010).  

The mechanism (which occurs in post mitotic tissue) that has been suggested states that 

the mtDNA genomes which harbour deleterious mutations, have a replicative advantage 

over wild type mtDNA and thus replicate by clonal expansion (see Section 1.2.9). This 

is specifically important if the mutation resides in the D-Loop, the site of replication 

regulation. There have been studies quoting mtDNA region specific mutations that are 

associated with age.  Amongst these mutations, point mutations at positions m.189 and 
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m.414 are known to be associated in aged individuals and have been proven not to be 

inherited (Michikawa et al., 1999).  

1.4.3 Polymerase γ mouse 

As stated above, the mitochondrial theory of ageing proposes that the accumulation of 

mtDNA mutations lead to ageing and age associated disease. However, until the advent 

of a transgenic mouse model that expressed a proofreading deficient pol γ, the 

supporting evidence was limited.  

The mice that express these pol γ enzymes with a lack of proofreading activity are born 

phenotypically normal; however, they accumulate mtDNA mutations rapidly throughout 

age until ultimately expressing a premature ageing phenotype, features of which include 

the following: weight loss, lipoatrophy, anaemia, reduced fertility and early death 

(Trifunovic et al., 2004). 

Despite the claim of these mice being the evidence of the mitochondrial theory of 

ageing, it has been quoted that these mice accumulate mitochondrial mutations at a rate 

that is 10-fold greater than that of normal ageing mice and that actually mtDNA 

deletions are driving the ageing phenotype (Vermulst et al., 2007); this has led to 

disputes over whether this mouse and accumulation of point mutations is functionally 

relevant to normal human ageing. Although it is not conclusive, these mice do show a 

premature ageing phenotype and is fully consistent with the idea mtDNA point 

mutations create amino acid substitutions of the respiratory chain subunits; thus, fully in 

support of the theory of mitochondrial ageing (Khrapko and Vijg, 2007; Edgar et al., 

2009).  

1.4.4 Pathophysiological effects of mtDNA mutations 

The link between the pathophysiological effects on ageing of mtDNA mutations, have 

to a large extent been dependent on the use of mouse model described in Section 1.4.3. 

It is key to note that there is no perfect mechanism of transfecting mtDNA mutations in 

animal models and therefore, difficult to study naturally occurring mtDNA mutations. 

The downstream effects of mtDNA mutations have been identified as a result of 

reduced oxidative phosphorylation. Contribution towards ageing is likely driven 

through a number of mechanisms that result from a reduction in cellular respiration.  

Human patients with mitochondrial diseases and mtDNA mutations have been reported 

to often have extensive cell death in the affected tissues, which is generally attributed to 
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an increased level of apoptosis from a reduction in mitochondrial proteins and the 

oxidative capacity of the tissue/cell (Oldfors et al., 1990). However, most recent 

evidence also suggests that the accumulation of low level mtDNA mutations that are 

inherited can affect the lifespan of a subject (Ross et al., 2014).   

The abnormalities found within ageing human skeletal muscle has been attributed 

towards the accumulation of the large scale common mtDNA deletion, which is well 

characterised in low mitotic tissues, such as muscle and brain (Norman Arnheim and 

Cortopassi, 1992b; Lezza et al., 1994). There is one study that examined the effect of 

mitochondrial dysfunction and cellular phenotypes in replicative tissues, resulting from 

age associated mtDNA mutations (Nooteboom et al., 2010). It was found that this tissue 

had increased level of apoptosis and attenuated cellular proliferation, which lead to 

decreased future cell populations.  

Whether mtDNA mutations are causally related to ageing and mitochondrial intrinsic 

ageing is debated, but supporting evidence continues to grow which aids the argument 

(Larsson, 2010).  Although, current studies do not rule out the fact that mitochondrial 

damage and mtDNA mutations may be a biomarker of ageing (Khrapko and Vijg, 2007).  
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1.5 Studying Mitochondrial DNA in vitro 

The key type of somatic mitochondrial DNA mutations in post-mitotic cells are large 

scale deletions. Whilst studying mitochondrial copy number in cells with a deletion is a 

reasonably well-accepted method using biopsy samples, it is almost impossible to 

successfully maintain primary cells that contain an mtDNA mutation, in a cell culture 

model. This is because when the primary cell line with a single deletion mutation is 

established; those cells which, by chance, contain higher levels of the deletion are 

rapidly out-competed by those cells with lower levels. Thus, the deletion becomes 

quickly lost from the culture system and it ultimately all reverts to wild-type mtDNA. 

This is because the deletion conveys an OXPHOS defect to the cell which means it 

replicates less well and highlights the distinct difference between post-mitotic cells 

mutation accumulation and mitotic cell mutation accumulation, i.e. post-mitotic cells 

have no means of losing deleted mtDNA.  

1.5.1 Common cell lines used in mitochondrial research  

There are a range of cell lines routinely used in mitochondrial research such as 

myoblasts, fibroblasts, HEK 293, cardiomyocytes and stem cells, to name a few. 

However, when studying mitochondrial DNA point mutations, myoblasts and 

fibroblasts are often popular cells to use in vitro, due to their ability to maintain both 

homoplasmic and heteroplasmic mutations, in vitro throughout passage. However, a 

relatively invasive clinical procedure is required to generate a primary cell line from a 

patient harbouring a mitochondrial mutation of interest. There are a range of studies 

successfully using such cell lines during in vitro studies for analysis of mutation 

involvement within mitochondrial disorders (Nishigaki et al., 2003; Grazina et al., 2007; 

Saretzki, 2009; Cox et al., 2012; De la Mata et al., 2012; Garrido-Maraver et al., 2012).  

1.5.2 Trans-mitochondrial cybrids  

A trans-mitochondrial cybrid cell line is a cell line that has been derived from two 

separate cell lines, both with specific features of interest and fused together to form a 

new cell. These cells are specifically of interest due to their ability to maintain an 

mtDNA heteroplasmic mutation in vitro.  

As depicted in Figure 1.4, to create a trans-mitochondrial cell line to use in vitro, an 

immortalised cell line nuclear background  (such as an osteosarcoma) is rendered rho0 

(completely deficient of mtDNA by the use of a chemical substrate) and the cytoplasm 

of a primary cell line which contains a particular mtDNA genotype of interest is added. 
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When fused together, they give rise to a new cell with the nDNA background of the 

immortal cell with the mtDNA of interest. Such cell lines are potentially therefore, of 

great use in mtDNA mutation experiments and some cell lines have been quoted to 

maintain their mtDNA heteroplasmy status to a great number of passage due to their 

immortal nature (Diaz et al., 2002).   

 

Figure 1.4 An overview of generating a trans-mitochondria cybrid cell line for in vitro studying of 

mtDNA heteroplasmic mutation(s). The patient cell line with mitochondria of interest is enucleated 

and fused with a mitochondrial deficient cell (ethidium bromide) with a nucelar background of 

interest i.e immortal. It is not clear however, why these cells are able to maintain their 

heteroplasmy. 
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1.6 Next Generation Sequencing of Mitochondrial DNA 

Next generation sequencing (NGS), also known as high-throughput DNA sequencing or 

massively-parallel sequencing, is increasingly becoming a prolific research tool in the 

scientific community. The technology and the analysis tools are developing at a very 

rapid pace, and the proven reliability of the technique and increased understanding in 

how to interpret the data, has seen the application move into the clinical diagnostic 

community.  

1.6.1 NGS Platforms and sequencing applications 

There have been three prevailing sequencing platforms on the market: Illumina’s 

platforms, Roche’s 454 and Applied Biosystems’ SOLiD systems; mtDNA sequencing 

has been successfully performed using all three (Craven et al., 2010; Payne et al., 2013) 

with none appearing to be clearly superior in detecting very low level mutations through 

a number of different approaches (Brodin et al., 2013; Payne et al., 2013; Gardner et al., 

2014). However, despite these claims, there has been no conclusive head-to-head 

comparison in the field of mitochondrial research. 

Each sequencing platform has its own specific sequencing chemistry and therefore, its 

own sample sequencing workflow. However, a generic overview (see Figure 1.5) 

consists of initial amplification/enrichment of target regions, pooling the samples for 

sequencing and processing with the platform specific preparation kit. Finally, the 

products are run on the platform machine, producing data output as raw sequencing 

products (fasta, fastq).  

NGS has been used in the detection of variants in a number of different mitochondrial 

disorders using DNA enrichment techniques such as long range PCR and chip-based 

capture methods (Calvo et al., 2012; Elo et al., 2012; Graham, 2012; Haack et al., 2012). 

It is essential to enrich mtDNA during the process of NGS as it comprises only 1-2% of 

the total amount of DNA content. It has been more recently found that NGS of mtDNA 

is efficiently enriched using long range PCR and nuclear genes using RainDance 

emulsion PCR (Dames et al., 2013).  
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Figure 1.5 The overview of next generation sequencing methodology. The region(s) of interest are 

firstly amplified, then pooled and processed using the platform specific sequencing chemistry. 

Finally the products are sequenced on the platform. 
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1.6.2 Sequence quality 

The quality of NGS data is typically based upon sequenced read information and Phred 

scores. Phred scores were originally developed to contribute towards the automation of 

DNA sequencing generated in the Human Genome Project. It is a mathematical 

derivation of base call quality when characterizing the DNA code sequenced (Ewing et 

al., 1998).  

Phred scores are logarithmically linked to the error probabilities of base call accuracy. 

Therefore, Phred scores are used as a determinant of sequencing accuracy and the 

quality-based sequence consensus of the data. Ewing and Green 1998, derived and 

implemented the equation to calculate Phred score, in their original sequencing quality 

analysis package, Phrap (Ewing and Green, 1998): 

𝑄 =  −10 ∙ log 10 (𝑃) 

Where; P = error probability of a given base call; Q = Phred quality score. 

Phred values are calculated on a scale of 1-99 and are typically quoted in values of 10, 

where 10 is equivalent to a 1 in 10 chance that the base call is an error, therefore 90% 

accuracy. 20 is equivalent to a 1 in 100 chance of a base call error, so 99% accuracy, 

and so on. Standard NGS analysis pipelines generally use a Phred 30 as the minimum 

for base call error thresholds. Table 1.1 highlights Phred scores in 10’s, along with their 

corresponding error rates and base call accuracy. 

Phred score Base call error Accuracy 

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.9% 

40 1 in 10000 99.99% 

50 1 in 100000 99.999% 

Table 1.1 Phred scores and the corresponidng base call error rate and accuracy 



  Introduction 

29 

 

Other considerations of sequencing data quality include the base quality breakdown per 

read, which inherently has implications on the mapping quality. Mapping quality scores 

allow for assessment of high quality reads which align to the reference/consensus 

sequence, allowing for a more accurate base call downstream (mutant vs. reference).  

1.6.3 Mitochondrial DNA-specific sequencing considerations 

Due to the inherent differences between mtDNA and nuclear DNA, the application of 

NGS and data interpretation does not always align between the two.  

When designing the long range PCR primers to amplify and enrich the mtDNA for 

sequencing, they should ideally lie in a relatively conserved region of the genome and 

generate an amplicon that is no smaller than ~2kb in size, to avoid an increased 

possibility of amplifying nuclear homologous regions, Numts (Hazkani-Covo et al., 

2010). Additional checks of primer specificity should be performed by the use of an in 

silico PCR system and/or negative amplification of an amplicon when using Rho-0 

(mitochondrial deficient) DNA, as previously described (Payne et al., 2011). 

A consideration that should be made when analysing mitochondrial DNA is the 

reference sequence used in alignment. Although rCRS has become the standard, a 

debate has recently arisen as to whether or not the rCRS should be replaced with the 

Reconstructed Sapiens Reference Sequence (RSRS) on the grounds of ancestral 

similarities (Behar et al., 2012).  Although there’s no real advantage of using either of 

the sequences, and manipulation of the reference sequence may lead to innumerable 

mistakes in NGS data interpretation. Potentially the most logical approach would be to 

choose the sequence that would best match the ancestral background of the samples in 

question (i.e. RSRS for African samples and rCRS for European samples).  

An additional reference sequence related consideration is the artificially inserted ‘N’ at 

mitochondrial position 3107, found in the revised Cambridge reference sequence (rCRS) 

(Andrews et al., 1999). If this is overlooked, the alignment will be incorrect and 

therefore the variant calling tool will falsely call variants at and around this position. 

The two approaches to resolve this issue is to leave the ‘N’ in the reference sequence 

and when 3107 is called as a variant, remove it in the post analyses; alternatively,  

position 3107 can be removed from the rCRS prior to sequence alignment, and the 

position of variants called after 3107 is adjusted by one (F. Ye et al., 2014). 
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As previously described (see Section 1.6.1) there are a number of different sequencing 

platforms; however, one platform has been the predominant market leader from the 

outset, Illumina (F. Ye et al., 2014). Due to the short read nature of the Illumina 

sequencing chemistry, a very important and often overlooked consideration that should 

be taken, is the effect of sequencing strand bias. This can be defined as a difference in 

the inferred genotype from the positive sequencing strand to the negative; with one 

reading homozygous and the other heterozygous (Yan Guo et al., 2012). This is 

especially important when calling very low level variants. Therefore, careful 

implementation of a strand call filter should be taken to minimise false-positive calls 

being accepted in the variant analysis stage. Although, it is recognised that variant 

calling software may innately apply some form of weak strand bias filter in the default 

parameters. It is worth noting that it is presumed that ‘strand biased variants’ are indeed 

errors and not true variants.  

1.6.4 Low level heteroplasmy detection 

An area of mtDNA analysis where NGS has the greatest potential to supplant previous 

technology is in the detection of very low level variants. Studying the presence of very 

low level variants, below the level of ~1%, is likely to yield important insights into 

somatic mtDNA mutations; however, there’s no defined ‘gold standard’ methodology to 

successfully do so and consequently, there are continual efforts to determine the lower 

resolution limits of NGS and the most appropriate method of defining it.  

The greatest technical challenge of NGS application in low level variant discovery is in 

differentiating between true variants and background noise. The major intrinsic sources 

of noise are introduced through primary PCR and sequencing (either sequencing 

reaction or base calling) (Kozarewa et al., 2009).   

Whilst it was originally suggested that the lowest detection levels of mtDNA variants 

was 1.5%-10% (Y. He et al., 2010; Mingkun Li et al., 2010; Tang and Huang, 2010; 

Goto et al., 2011), bacterial and virological small amplicon studies were quoting 0.1-1% 

(Daly et al., 2011; Soares et al., 2012). This was the accepted limit until novel mtDNA 

clone and phage studies resolved at a sub 1% threshold (Brodin et al., 2013; Payne et al., 

2013) with both quoting successful resolution of mtDNA variants at ≥0.2%. Very low 

level variant detection has recently been used in supporting evidence of maternal 

inheritance of mtDNA mutations at a 0.1-0.5% threshold (Y. Guo et al., 2013).  
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1.6.5 Bioinformatic considerations 

It has previously been discussed (Section 1.6.4) that noise can be generated biologically 

through the process of NGS. However there is another consideration that comes into 

play when determining very low level variants; noise can paradoxically be induced 

artificially through poorly designed bioinformatics pipelines.  

Perfectly duplicate reads must initially be removed; this is because duplicate reads may 

contain base errors that have been introduced through PCR (amplification stage), only 

unique reads should be used to avoid any potential false calls from these duplicates 

(Pireddu et al., 2011).  

The sequencing depth or ‘coverage’ of the data is a determining factor of what the 

lowest variant is that can be statistically resolved; i.e. if 10 supporting reads are required 

and if the sequencing coverage is 1,000, 10 reads in 1000 would resolve at 1%. 

Therefore the lowest detection level for calling mtDNA heteroplasmy would be 1%. 

Driving the sequencing coverage up statistically increases the low level variant 

resolution power (10 in 10,000 is 0.1%). Therefore, certain sequencing coverage is 

required to call variants using a particular threshold or MAF (minimum allele 

frequency).  

The readily achievable minimum sequencing coverage/depth of NGS technology is 

usually found in the range of >5000x. However, this figure is often hugely exceeded 

based on an average run producing approximately 10Gb data and 30 samples of whole 

mtDNA genome per run. This thesis presents data with coverage data of typically 

10,000-20,000x. Coverage is not of course, the only determinant of variant calling 

frequency. The base-calling error rate must also be taken into consideration when 

defining the lower resolution limit too. If the error rate o the machine is relatively high, 

then no matter what the sequencing coverage is, there will be no improvement in 

detection level, as described in Figure 1.6. 

 

  



 

32 

 

 

Figure 1.6 The intrinsic relationship of next generation sequencing platform base-calling error rate and sequencing coverage/depth, to the variant calling 

level/heteroplasmy.  
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Incorrect mapping of sequencing reads may also be a further source of error; although, 

read lengths may vary between platform chemistries. Theoretically, by taking the 

smallest NGS sequencing read length of 30bp, it is almost impossible to misalign the 

read to the human genome, i.e. perfect sequencing and perfect match to consensus 

sequence (Horner et al., 2010); therefore, alignment of the mitochondrial genome 

should result in no mismatches. However, in reality, there’s always a remaining cohort 

of reads that are termed ‘unmapped’ by the aligner and it’s therefore likely, that another 

group exist termed ‘incorrectly mapped’. Read mapping sometimes fails and variant 

calling can be affected by this. It has also been described that certain variant callers 

work better with certain aligners (Ulahannan et al., 2013), albeit for no comprehensibly 

logical reason. However, the truth exists that unmapped reads may contain true 

sequence variants and this can be vital when assessing variants at the sub 1% 

heteroplasmy level.  

1.6.6 Future of next generation sequencing 

Since the advent of NGS, it has intertwined itself into all aspects of scientific research 

and continues to do so in the clinical setting. There have been a large number of 

improvements from speed to cost over the past decade of sequencing technologies, 

which only appears to be improving. The number of users of NGS continually increases 

(unpublished data, Qiagen, Manchester, UK) and specifically in the field of 

mitochondrial research, the understanding of how to uniquely utilise NGS, also 

increases.  

NGS allows for both direct (targeted) and indirect (whole genome) sequencing of 

mitochondria, which is greatly improving the range of data available for mitochondrial 

research. The ability to detect low level variants is continually improving, with many 

studies confidently quoting variants, at or below, the 1% heteroplasmy level (Craven et 

al., 2010; Calvo et al., 2012; Brodin et al., 2013; Dames et al., 2013; Payne et al., 2013; 

Gardner et al., 2014).  This is undoubtedly going to improve in the forthcoming years 

especially with the description of ‘next’ next generation sequencing technology (or third 

generation sequencing) to be single molecule high throughput sequencing. 
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1.7 Human Immunodeficiency Virus 

The Human Immunodeficiency Virus (HIV) is a member of the retrovirus family and it 

is the causative agent for the acquired immune deficiency syndrome (AIDS). The HIV 

virus can be broken down into two species, HIV-1 and HIV-2. The species most 

prominently found in HIV-infected individuals is HIV-1. HIV-2 species is mainly 

isolated to West African infected persons (Peeters et al., 2013).  

1.7.1 HIV/AIDS pandemic 

AIDS was first recognised as a disease in 1981 when an increasing number of 

homosexual men succumbed to opportunistic infections. The retrovirus, HIV-1, was 

subsequently deemed the causative agent of AIDS and since then has become one of the 

most devastating infections to have emerged in recent history. 

Over the recent decades, HIV-1 has been quoted to have been the underlying reason for 

over 25 million deaths and infected more than 60 million individuals (Merson et al., 

2008).  

1.7.2 HIV classification, structure and life cycle 

HIV-1 is not one virus; it has been found to be comprised of four very distinct lineages, 

each of which resulted from independent cross-species transmission events from the 

Simian Immunodeficiency Virus (SIV). These lineages are termed M, N, O and P; 

group M was the first to be discovered and represents the causative form of the HIV 

pandemic (Sharp and Hahn, 2011). HIV-1 groups M and N are believed to have evolved 

from SIV chimpanzee strain (SIVcpz) and HIV-1 groups O and P from SIV gorilla 

strain (SIVgor). 

The first insights into the ultra-structure of HIV-1 were not reported until nearly two 

decades after the report of the HIV index case, despite a developed understanding of the 

HIV lifecycle. A seminal paper in 1998 (Kwong et al., 1998) highlighted the crystal 

structure of the virus and further elucidated the mechanisms behind viral entry into the 

host cell.  

HIV glycoprotein 120 (gp120) found on the surface of the virus envelope, binds to the 

two-domain soluble CD4 construct and induces a conformational change of gp120, 

resulting in the exposure of chemokine (CCR5 and CXCR4) receptors to facilitate viral 

fusion and entry (Moore, 1997). Once the viral capsids are inside the host cell, reverse 

transcriptase (R.T.) begins to initiate the formation of double stranded viral DNA 
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through replication of the single stranded RNA molecules. The viral DNA migrates to 

the nucleus and integrates with the host’s DNA through the enzyme integrase.  Once 

integrated, the cell remains infected until the cell is destroyed.  The provirus DNA is 

then replicated when normal cellular transcription occurs, creating more viral RNA. 

After translation of the RNA into viral proteins, the assembly of a new virus begins and 

particles move the cells outer membrane. To propagate, the host cell proteins cut the 

virus bud from the cells outer membrane and thereby create a new virus peptide (Barre-

Sinoussi et al., 2013) (overview of process in Figure 1.7).   

 

Figure 1.7 A schematic overview of the life cycle of HIV inside of a host cell.  
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1.8 HIV Therapy 

The first drug was released in 1987 (zidovudine – AZT) and paved the way to the 

advent of highly active antiretroviral therapy (HAART) that is now the basis of HIV 

therapy (Rodriguez-Novoa et al., 2006).   

1.8.1 HAART and pharmacologic mechanisms 

The management of HIV normally consists of the use of multiple (three or more) 

antiretroviral drugs that are comprised of two or more drug classes. This form of 

therapy is known as HAART (highly active antiretroviral therapy). Although there are 

multiple steps in the HIV replication process that can be targeted pharmaceutically, 

HAART usually consists of the use of two drugs from the nucleoside analogue reverse 

transcriptase inhibitor (NRTI) class and a third drug from either the protease inhibitor 

(PI) class, or the non-nucleoside analogue reverse transcriptase inhibitor (NNRTI) class 

(M. C. Dalakas et al., 2001).  However, there are other drug classes which may be used 

in HAART (as shown below in Table 1.2). The main reason for the success of HAART 

in treatment of HIV is the multi-step targeting system of multiple drugs to ensure that 

the virus is unlikely to escape through resistance and therefore allows durable 

suppression of viral replication and recovery of the immune system. 

Currently, there are five drug classes which target different stages of the HIV cell cycle, 

namely these are: Entry inhibitors, NRTIs, NNRTIs, integrase inhibitors and PIs. Table 

1.2 describes the mechanism of action for each drug class and the commonly used drugs 

within each.  
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Drug Class Mechanism of action Members 

Entry/fusion inhibitors 

Prevents the binding and fusion of HIV-

1 to the host cell by blocking either T-

cell CCR5 or CXCR4 receptors, or 

fusion of the virus to the host cell 

membrane.  

Enfuvirtide 

Maraviroc 

Nucleoside analogue 

reverse transcriptase 

inhibitor 

Prevents the conversion of HIV RNA to 

DNA by inhibiting the action of HIV 

reverse transcriptase through premature 

chain termination. 

Zalcitabine (ddC) 

Didanosine (ddI) 

Stavudine (d4T) 

Zidovudine (AZT) 

Tenofovir (TDF) 

Abacavir (ABC) 

Lamivudine (3TC) 

Emtricitabine 

(FTC) 

Protease inhibitor 

Blocks viral protease enzyme which is 

necessary to produce mature virons upon 

budding from the host cell. 

Atazanavir 

Darunavir 

Indinavir 

Nelfinavir 

Saquinavir 

Loprinavir 

Non-nucleoside 

analogue reverse 

transcriptase inhibitor 

Prevents conversion of HIV RNA into 

DNA by binding to an allosteric site of 

HIV reverse transcriptase. 

Efavirenz 

Nevirapine 

Rilpivirine 

Delavirdine 

Etravirine 

Integrase inhibitors 

Prevents viral DNA integrating into the 

DNA of the host cell by blocking the 

enzyme integrase.  

Elvitegravir 

Dolutegravir 

Raltegravir 

Table 1.2 A breakdown of each HIV drug class used in HAART and the associated mechanism of 

action by which they work. A non exhaustative list of drugs are also reported for each class.  
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1.8.2 Future directions of HIV therapy 

Although current HAART therapy is highly efficient in combatting the virus, patients 

still present with residual viraemia and in as little as 2 weeks after HAART cessation, 

HIV RNA plasma levels return to a measurable level, highlighting the inability of 

HAART to completely remove HIV from the patient proving its purpose as a mere 

suppression tool (Joseph K. Wong et al., 1997; Palmer et al., 2008).  

There are a range of renewed research efforts into finding the infamous vaccine cure for 

HIV which are showing some promise (Rerks-Ngarm et al., 2009; Gao et al., 2014). 

However, taking into consideration the persistent HIV latent reservoirs, an eradication 

cure is currently unlikely (Han et al., 2007).  Therefore, a drive towards a functional 

cure rather than an eradication cure is receiving more interest, with an aim of following 

the ‘cancer model’ where patients have an undetectable viral load with no disease 

progression and do not require other treatment to maintain the condition (i.e. HAART) 

(Autran et al., 2011). 

There’s also continued research effort into developing new pharmaceuticals for HAART 

with a more efficacious and suppressive effect to treat HIV. New drugs include: new 

classes, new drugs within current classes, better efficacy and better tolerability. 

However, the main aim of such research is to inevitably improve long-term health of 

individuals receiving HAART, especially those displaying specific HAART side effects.  
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1.9 HIV Therapy and Associated Pathologies 

Two decades prior to this writing, the main aim of HIV treatment was to prevent death 

of patients through the contraction of opportunistic infections, such as tuberculosis. 

Once therapy became more efficacious and the advent of HAART, the viral load 

suppression issue and avoiding opportunistic infections became under control. However, 

with this success came another concern, drug toxicities.  

Antiretroviral toxicity was found to comprise of a range of organ specific toxicity, 

which was strongly associated with NRTIs. Although toxicity from protease inhibitors 

and non-NRTIs (NNRTIs) was also implicated, the major contributor to the new HIV 

pathology was NRTIs; evidence of which was found both in vivo and in vitro (P and 

Nelson A, 2006; Gardner et al., 2013). 

The range of presenting pathologies encompasses the entire biological system including: 

cardiomyopathy, nephropathy, hepatotoxicity, peripheral blood toxicity and 

lipodystrophy. The most commonly ascribed disorders include: lactic acidosis, skeletal 

myopathy and neuronal pathology, which are described in greater detail below (see 

Sections 1.9.1, 1.9.2 and 1.9.3).  

1.9.1 Myopathy 

The study that can be regarded as the seminal paper describing NRTI-associated 

pathology was published in 1988, one year on from the release of the first NRTI (AZT), 

which implicated AZT as the causative agent of myopathy in HIV patients. It was 

proposed that AZT, rather than HIV was the cause of the myopathy in AZT exposed 

patients (Helbert et al., 1988). Helbert and colleagues described how the myopathy was 

found to resolve upon AZT cessation, but not on dose reduction.  

Mitochondria were later reported to be the target of AZT myopathy, with findings in 

rodents that were exposed for 35 days with AZT, presented with selective changes in 

striated muscle, which were found to be ultra-structurally localised to the mitochondria 

upon high resolution electron microscopy analysis. The electron micrographs 

highlighted that there was a high abundance of abnormal mitochondrial architecture and 

an apparent lysis of mitochondria throughout specimens (W. Lewis et al., 1992). 

A short number of years later, another NRTI drug was implicated as being a causative 

agent for mitochondrial induced myopathy, ddC (C. H. Chen and Cheng, 1989). 

Although, as detailed below (Section 1.9.2), ddC was implicated in neuropathy in a 
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significantly higher number of cases than myopathy. It was later found in the landmark 

Delta trial that there was no increased prevalence of myopathy in the AZT+ ddC arm 

than the AZT-only arm (Darbyshire, 1996).  

1.9.2 Neuropathy 

Arguably the most prevalent complication amongst the HIV-infected community is 

neuropathy, with up to 60% of infected individuals displaying symptoms of some form 

of neuropathy, whether it be a severe case of distal sensory polyneuropathy, or minor 

axonal injury (Kamerman et al., 2012).  

ddC and ddI are the NRTIs most strongly implicated as being the causative agents for 

neuropathy in the HIV-infected community. There was strong association with axonal 

injury amongst subjects receiving ddC, with 55% of mitochondria morphologically 

abnormal and significant mitochondrial copy number depletion (up to 80% compared to 

normal) (Marinos C. Dalakas, 2001).  

Given that ddC was discontinued in mid-1990 and ddI is rarely used clinically, it is 

surprising that the prevalence of neuropathy still has not disappeared. It has been 

recently found that d4T has been strongly associated with the incidence of neuropathy, 

with 21% of patients receiving d4T displaying symptoms of neuropathy (Affandi et al., 

2008; van Oosterhout et al., 2012).  

It is crucial to note that HIV itself has also been strongly implicated as being an 

underlying agent for causing sensory neuropathy among HIV-infected individuals 

through the neurotoxicity of HIV proteins (Moyle, 2000). Although often clinically 

indistinguishable, mitochondrial pathology is not always present in HIV-sensory 

neuropathy  (Zhou et al., 2007).  

1.9.3 Lactic acidosis 

The association of NRTI induced pathology driven through mitochondrial involvement 

is supported further by the fact, that lactic acidosis is prevalent among such patients 

(Gerschenson and Brinkman, 2004).  The earliest claims of lactic acidosis and NRTIs 

implicated the ‘d-drugs’ (ddC, ddI and d4T) as the causative agent; however, AZT has 

also been implicated too (Baram and Cooke, 1993).  
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1.9.4 Lipodystrophy 

The morphological signs of lipodystrophy in HIV-infected patients were first described 

approximately two years after the introduction of protease inhibitors (PIs) (Martínez, 

1998). HIV-infected patients being treated with such drugs were found to present with a 

selective thinning of subcutaneous fat tissue in the trunk and extremities.  

However, it was later found that the manifestations of lipodystrophy may actually be the 

consequence of mitochondrial damage from exposure to NRTIs and not PIs, as 

previously thought (U. A. Walker et al., 2002). Due to the ability of NRTIs to cause a 

decrease in the content and quality of mtDNA content, tissue specific effect on fat tissue 

presented as wasting, likely through a reduction in mitochondrial encoded respiratory 

chain proteins and increased apoptosis (Kotler et al., 2003).    

It is interesting to note that lipodystrophy is not well associated with the most potent pol 

γ inhibitors, ddI and ddC, suggesting that there are likely to be additional adverse effects 

of the thymidine analogues within adipose tissue beyond mtDNA depletion.  

1.9.5 Other complications 

Protease inhibitors have also been implicated as a causative agent for HIV pathologies. 

The two most common pathologies described in the literature are diarrhoea and 

lipodystrophy (Martinez et al., 2001; Mukhopadhyay et al., 2002). There’s also a 

suggestion that patients exposed to protease inhibitors also express an increased risk of 

cardiovascular disease; however, the increased risk was found to be marginal (Iloeje et 

al., 2005).  

Despite the potential implications for PIs to be the causative agents for HIV disorders, 

there have been studies implying that PIs can actually promote neuroprotection during 

HIV therapy. The mechanism ascribed to this process is through the inhibition of both 

Caspase-dependent and independent mitochondrial apoptosis, among many other 

potential direct and indirect mechanisms (Hisatomi et al., 2008). However, a full 

discussion of PIs and other HAART drug complications is beyond the scope of this 

thesis.  

1.9.6 Pol γ hypothesis 

The proposed cellular mechanism driving mitochondrial NRTI side effects is known as 

the polymerase γ hypothesis (Lund et al., 2007). Through structural mimicry, NRTIs are 

mistaken as nucleosides by pol γ during the process of replication of mtDNA. Although 
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there are five species of human DNA polymerase, for an unknown reason, pol γ is the 

only enzyme to possess a significant affinity for incorporating NRTIs, besides the drug 

target HIV reverse transcriptase.   

Through incorporation by pol γ, the elongating mtDNA strand is truncated as a result of 

premature termination of mtDNA replication. Termination of mtDNA replication results 

in a depletion of mtDNA content (copy number) and ultimately leads to a decrease in 

respiratory chain protein production. Although mtDNA partly codes for sub units of 

some of the respiratory chain complexes, the most evident decrease of protein is found 

in complex IV, COX (see Section 1.1.3), as it is completely encoded by mtDNA and 

commonly used as the hallmark of mtDNA depletion and dysfunction.  

Through the wealth of in vitro data, a hierarchy of NRTI inhibition of pol γ has become 

apparent. The NRTIs with stronger affinity for pol γ, are also more likely to be the cause 

of mtDNA depletion and cellular dysfunction in subjects (M. C. Dalakas et al., 2001; 

Deveaud et al., 2005; Cherry et al., 2006; Bourdon et al., 2007). The described 

hierarchy of pol γ inhibition is often deemed as follows: ddC > ddI > d4T ≥ AZT > 3TC 

(lamivudine) = ABC = TDF (Gardner et al., 2013). There are also implications for HIV 

itself, affecting mitochondria and causing mitochondrial toxicities such as 

HIV-myopathy and HIV-neuropathy.  

1.9.7 Mitochondrial DNA mutations and antiretroviral therapy 

There has been in vitro data to support the notion of mtDNA levels recovering once the 

causative NRTI has been removed, in keeping with the polymerase γ hypothesis (G. A. 

McComsey et al., 2005b). However, due to the increased number of HIV-individuals in 

industrialised countries now receiving NRTIs that are not inhibitors of pol γ, such as 

TDF and ABC (Wendelsdorf et al., 2009), it begs the question, whether there are 

persistent effects of mitochondrial pathologies. The likely candidate here is the 

induction of mtDNA mutations (Bartley et al., 2001).  

There have been a range of studies implicating mtDNA mutations as a cause of 

mitochondrial NRTI-induced pathologies. In a seminal paper, an NRTI treated 

individual was described to have a fatal case of lactic acidosis, associated with an 

increased level of large scale mtDNA deletions (Bartley et al., 2001), although it 

doesn’t necessarily prove causality. The first longitudinal study which found an increase 

in mtDNA mutations through NRTI therapy came from studying mutations in PBMCs 
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of patients. The observations found development of new mtDNA mutations through 

NRTI therapy (Martin et al., 2003).  

Despite the great significance of mtDNA large scale deletions, there have been only a 

few studies specifically assessing the level of deletions in post-mitotic tissue in the 

HIV-setting (Lehmann et al., 2011; Payne et al., 2011). It is particularly interesting to 

see an increased level of mtDNA point mutations and deletion mutations in post-mitotic 

tissues, especially neuromuscular samples (Payne et al., 2011). These data indicate the 

importance of quantifying mutations in patients who are currently or have been exposed 

to NRTIs, especially those that are known to be strong pol γ inhibitors.  

The aforementioned process of polymerase γ inhibition, coupled with the accumulation 

of mutations through NRTI therapy, has led the current research field to pose the 

questions: Do mutations occur? How do they occur? What is the significance of them? 

Potential mechanisms are illustrated in Figure 1.8. 
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Figure 1.8 A schematic highlighting the polymerase γ hypothesis and the cellular consequences caused through NRTI inhibition of pol γ. The current 

paradigm that mtDNA mutations are also implicated in dysfunction is also implicated (Gardner et al., 2013).  
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1.9.8 HIV and ageing 

The positive impact that HAART has had on viral suppression and disease progression 

has led to a greatly improved mortality for HIV-infected individuals, with a large 

number of people now over the age of 50 (Psaros C et al., 2014). However, 

co-morbidities are more common in older rather than young patients. There have been 

several studies that have observed cardiovascular disease, diabetes and osteoporosis are 

prominent among the HIV community, all of which are typically associated with ageing 

(Deeks and Phillips, 2009; Guaraldi et al., 2011). Given the established associations 

between NRTIs and mtDNA, and between mtDNA and cellular ageing, there is a 

plausible link between the three which tells the tale of how the HIV community may 

present with premature aged phenotypes, known as accelerated ageing (an overview is 

shown below in Figure 1.9).  

 

Figure 1.9 The overview of the process of HIV ageing potential driven through a relationship of 

mitochondrial mutations and the effect of NRTI therapy from HIV therapy on mtDNA.  

The specific influence that HAART and specifically NRTIs have on mitochondria and 

ultimately ageing, are challenging to measure. This includes a lack of simple measures 

of ageing, and the lack of long-term follow up of patient receiving HAART. Such 

measures are critical for establishing the link between markers of intrinsic ageing the 

outcome for the HIV-infected individual.   

With reference to Figure 1.8, measuring three key mitochondrial markers would give a 

clearer indication of ageing events in patients; Firstly, measurement of the level of 

mitochondrial content depletion; secondly, the mtDNA mutation load and finally, the 

amount of specific mitochondrial defects present, such as apoptosis and 
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COX-deficiency. All three are strongly associated with pol γ inhibition and severity of 

pathology, would give an indication of signs of progression or acceleration of premature 

ageing (see Section 1.9.6). However, ageing is multifactorial and it may be increased in 

HIV through mitochondrial dysfunction, driven through NRTIs by an interesting 

hypothesis (White, 2001; Anthony et al., 2006; Payne et al., 2011; Hulgan and 

Gerschenson, 2012).  

In addition to NRTI induced accelerated ageing, there is also evidence to suggest that 

protease inhibitors may also contribute towards ageing. One study found an increased 

level of oxidative stress, senescence markers and inflammation of the endothelial cells 

in patients receiving PI treatment (Lefèvre et al., 2010). Although this suggests that 

accelerated ageing could potentially be a result of more than just NRTI exposure, it also 

poses the fundamental question of ageing and its own causative factors outside of 

mtDNA involvement.  
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Chapter 2. Research Aims 
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In my Ph.D. project, I embarked upon elucidating the mechanisms behind the 

involvement of NRTIs (nucleoside analogue reverse transcriptase inhibitors) and the 

accumulation of mitochondrial DNA mutations, using the following aims: 

1. To develop in vitro models to study the behaviour of mitochondrial DNA mutations, 

both deletions and point mutations, during and after the exposure of NRTIs.  

 

2. To design and implement methods of detecting very low level (<1% heteroplasmy) 

mitochondrial DNA mutations through ultra-deep next generation sequencing 

technologies and apply them within the setting of NRTI exposure.  
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Chapter 3. Materials and Methods 
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The core methods are presented within this chapter. Details of specific experimental 

design and chapter specific methods are described in the results chapters. 

3.1 Cell culture 

All cell culture was performed in a biological class II laminar airflow safety cabinet 

(HeraSafe; Thermo-Scientific, Hampshire, UK) to ensure a sterile environment to 

minimise infection of cultures. Phosphate buffered saline (PBS) and media was warmed 

to 37
o
C in a temperature controlled water bath (Grant Bath JB AQUA 18 PLUS; 

Thermo-Scientific, Hampshire, UK) for 45 minutes prior to starting cell culture. All 

cultures were incubated in a cell culture humidifier at 37
o
C and 5% CO2 (Heracell 150i; 

Thermo-scientific, Hampshire, UK). 

3.1.1 Trans-mitochondrial cybrid cell line maintenance 

Trans-mitochondrial cybrids (as kindly provided by Professor C T Moraes, Miller 

school of medicine, University of Miami, U.S.A.) were used in the mtDNA deletion 

studies. They have been previously found to contain a single large-scale mtDNA 

deletion spanning the major arc from positions m.7982- 15504 (Diaz et al., 2002) at a 

heteroplasmy level of ~70%. Two batches of these immortalised trans-mitochondrial 

cybrids were used in this project: ΔH2.1#4 and ΔH2.1#2 up to a passage of 30.  

Optimisation experiments indicate that these cells were only cultured in T25 flasks 

(Greiner Bio-one, Stonehouse, UK) owing to the rapid growth rate observed in these 

cells. Smaller plates (6/9 well) plates may be used if short culturing times are used and 

propagation is not required.  

The normal growth media of these cells was high glucose DMEM (Dulbecco's Modified 

Eagle's Medium; Gibco, Life-Technologies, Paisley, UK) supplemented with: 10% fetal 

calf serum (Sigma-Aldrich, Dorset, UK), 20µM gentamicin (Sigma-Aldrich, Dorset, 

UK) and 200µM uridine (Sigma-Aldrich, Dorset, UK).  The cells were grown until 70-

80% confluent before splitting or freezing. When culturing cells from batch ΔH2.1#2, it 

was determined that they require a higher volume of media so were grown in 10ml 

media in opposed to 5ml with cells from batch ΔH2.1#4.  

3.1.2 Fibroblast maintenance 

Two fibroblast cell lines containing a mitochondrial d-loop mutation (m.414T>G) were 

used and were a gift from Dr G Saretzki (Newcastle University, UK). These cells were 

derived from aged individuals. Cells were used from passage 5-11 to prevent abnormal 
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fluctuations in the heteroplasmy of the mtDNA mutation or abnormal cellular behaviour, 

which may result in skewed results and interpretation of the data. 

The normal growth media of these cells was high glucose DMEM (Gibco, 

Life-Technologies, Paisley, UK) supplemented with: 10% fetal calf serum (Sigma-

Aldrich, Dorset, UK) and 5% penicillin/streptomycin (Sigma-Aldrich, Dorset, UK). The 

cells were grown until 70-80% confluency in T25 flasks (Greiner Bio-one, Stonehouse, 

UK) before splitting or freezing. 

3.1.3 Cell line propagation 

To sub-culture and propagate the cell lines (cybrid and fibroblast), the media was 

aspirated and the cells washed with PBS (Oxoid, Thermo-Scientific, Hampshire, UK) 

and then treated with 5ml of 1x Trypsin-EDTA (Life-Technologies, Paisley, UK) for 5 

minutes to detach them from the T25 flasks. The cells were transferred to a 15ml tube 

then pelleted at 1,300rpm for 5 minutes in a centrifuge (Eppendorf). The supernatant 

was aspirated and the pellet re-suspended in 1ml PBS. A cell count performed (see 

Section 3.1.6) and the correct dilution of cells re-suspended in 5ml of media in a new 

T25 flask (Greiner Bio-one, Stonehouse, UK) containing 5ml of media, and then 

replaced in a cell culture humidifier at 37
o
C and 5% CO2. The remaining cells were 

pelleted and stored at -20
o
C until required for DNA extratcion.  

3.1.4 Cryovial preservation of cells – freezing and thawing 

Cells that were required for long term storage were frozen down and stored in liquid 

nitrogen. After splitting the cells (see 3.1.3) at 70%+ confluency, the pelleted cells were 

re-suspended in 1ml of freezing media containing: FCS (Sigma-Aldrich, Dorset, UK) 

and 10% Dimethyl Sulfoxide (DMSO; Sigma-Aldrich, Dorset, UK) which had been 

filtered through a 0.22µM filter (PALL, Portsmouth, UK). The re-suspended cells were 

placed into a 2ml cryovial (Greiner Bio-one, Stonehouse, UK) and into a Mr Frosty™ 

filled with isopropanol (Thermo-Scientific, Hampshire, UK) as per manufacturer’s 

instructions, to allow for a slow freezing process of -1
o
C per minute. The Mr Frosty™ 

was placed at -80
o
C for 24 hours before transferring to liquid nitrogen for long term 

storage.  

When retrieving cells from liquid nitrogen, cells were quickly thawed at 37
o
C in a 

temperature controlled water bath (Grant Bath JB AQUA 18 PLUS; Thermo-Scientific, 

Hampshire, UK) and placed into a T25 culture flask containing 8ml media as previously 
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described (3.1.1 and 3.1.2) and incubated at 37
o
C and 5% CO2 (HeraSafe; Thermo-

Scientific, Hampshire, UK). 

3.1.5 In vitro NRTI drug concentrations 

NRTI concentrations were chosen to reflect that which has been previously determined 

to mimic expected in vivo concentrations (Lund et al., 2007). The final concentrations 

used within all experiments (unless otherwise stated) are indicated in Table 3.1. All 

NRTI powders were dissolved in DMSO.  

Drug (Abbreviation) Concentration Manufacturer 

Zidovudine (AZT) 7.1µM Sigma-Aldrich, Dorset, UK 

Stavudine (d4T) 3.6µM Sigma-Aldrich, Dorset, UK 

Didanosine (ddI) 11.8µM Sigma-Aldrich, Dorset, UK 

Tenofovir disoproxil fumarate 

(TDF) 
1.3µM 

Santa Cruz Biotechnology, Texas, 

USA 

Table 3.1 The final in vitro NRTI concentrations used in studies with their respective manufacturer 

details.  

3.1.6 Haemocytometer cell counting 

Cell counting and viability was performed using a haemocytometer (Improved 

Neubauer; Hawksley, Lancing, UK) and Trypan blue staining (Sigma-Aldrich, Dorset, 

UK). After cell pelleting and re-suspension in 1ml of PBS (Oxoid, Thermo-Scientific, 

Hampshire, UK), 50µL of the cells was added to a new 200µL Eppendorf microtube, 

mixed with 50µL of trypan blue and allowed to incubate for no longer than 5 minutes at 

room temperature. The trypan blue is a diazo dye and termed a vital stain. This means it 

will only stain cells that are dead/not viable because it is actively removed from the 

membrane of living cells.  

After the incubation, 10µL of the cells was loaded into the haemocytometer for 

counting by placing the cell mixture onto the chamber and covered using a glass cover 

slip. The cells in the four corner squares of the counting grid were counted and an 

average taken (1 mm
2
; volume 0.1 µL). This number was then imputed to the following 

equation to calculate cells per ml.  

𝐶𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑚𝑙 (𝑛) = (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡) ∙ 𝑇𝑟𝑦𝑝𝑎𝑛 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (2)  ∙  104 
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3.1.7 Mycoplasma detection 

Each time a cell line was newly cultured or frozen down (cybrids and fibroblasts), cells 

were tested for mycoplasma infection using a luminescent detection kit (Lonza, UK), as 

per the manufacturer’s guidelines. Briefly, 100µL of cleared cell supernatant was added 

to a fresh 1.5ml Eppendorf microtube. 100µL of re-constituted MycoAlert™ reagent 

was added to the sample and incubated at room temperature for 5 minutes, after which, 

a luminescence reading was taken (reading A, on a luminescent plate reader). 100µL of 

the MycoAlert™ substrate was then added to the sample and left to incubate for 10 

minutes. The final luminescence reading was then taken (reading B) the ratio of reading 

B to A was calculated. The sample is deemed as mycoplasma negative if the ratio is 

below 0.9; borderline and re-test if between 1-1.2; mycoplasma positive if greater than 

1.2. All cultures that were found to be mycoplasma positive were destroyed with the 

2ml of 2% (w/v) Virkon® (Du Point, Hertfordshire, UK).  

3.2 Single cell preparation 

The molecular analyses of single cells from in vitro studies were performed using a 

novel technique. On the day of cell splitting and propagation, the remaining cells from 

the split were counted as previously described (see Section 3.1.6) and approximately 

10,000 cells were re-suspended in 1ml of media (supplemented according to the 

experimental condition).  

The edge of the membrane on a polyethylene naphthalate (PEN) membrane glass slide 

(Leica-microsystems, Milton Keynes, UK) was coated with a hydrophobic layer using 

an immunostaining PAP pen (VectorLabs, Peterborough, UK), see Figure 3.1. 

The 1ml of re-suspended cells was then evenly distributed across the membrane slide 

and placed into a petri dish (VWR, Leicestershire, UK) at 37
o
C and 5% CO2 for 12 

hours to allow the cells to fully adhere and morphologically re-shape. After 12 hour 

incubation the excess media was aspirated from the membrane slide, the slide was 

washed once with PBS and then left to air dry in a microbiology class II laminar airflow 

cabinet for 30 minutes. 
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Figure 3.1 Illustrative example of a membrane slide with the membrane highlighted in faded blue and the black exterior of the membrane representing the 

hydrophobic layer used to isolate cells for single cell analyses 
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3.2.1 Laser microdissection 

Single cells were captured using Laser Microdissection (LMD) on an AS LMD platform 

and product-specific proprietary software (Leica-microsystems, Milton Keynes, UK). 

Live imaging was captured using a HV-C20 3CCD digital colour camera (Hitachi, 

Northamptonshire, UK).  

Prior to dissection, machine calibration was performed. First, the reference point for 

collection tube alignment was checked by ensuring that the aperture ring was centralised 

on the viewing screen (Options > Settings> Move Reference Point). Next, the laser was 

calibrated by creating reference cutting marks on a sample slide. This was performed by 

loading a PEN membrane microscope slide (Leica-microsystems, Milton Keynes, UK) 

(membrane side down) onto the stage of the microscope and selecting specimen on the 

software toolbar; this moves the stage into position ready for viewing through the 

microscope eyepiece, or live camera feed through the software. The magnification was 

changed to cutting view (10x), then the laser calibration function was selected (Laser > 

Calibrate). The laser automatically cuts three crosses on the top and bottom corners of 

the viewing screen of the membrane. Next, using the mouse cursor, the centre of these 

cutting marks was selected. The system was now fully optimised for cutting.  

All sample cutting was performed using the following settings; aperture, 10; intensity, 

30; speed, 5; and bridge, medium. Single cells were cut leaving a small gap around the 

cell to avoid damaging the cell, and collected individually in sterile 0.5ml collection 

tubes (Thermo-scientific, Hampshire, UK). After capture, visualisation of the tube cap 

was performed to ensure successful capture. Collection tubes were subjected to 15 

minutes of UV radiation using a UV hood before use, in order to reduce cross-

contamination and to limit the static charge of the collection tube caps that may result in 

single cells being repelled, rather than collected. Once the desired number of cells was 

collected, all were processed using the single cell lysis method (see Section 3.2.2).  

3.2.2 Lysis protocol 

Once cells had been captured using LMD (see Section 3.2.1) the capture tubes were 

centrifuged (eppendorf) at 13,000rpm for 10 minutes to ensure that the cell was at the 

bottom of the eppendorf. 

Whilst spinning, the lysis buffer was prepared and contained: 50mM Tris-HCL pH 8.5, 

1% tween-20 (Sigma-Aldrich, Dorset, UK), 200ng/ml proteinase K (Invitrogen™, 



Materials and Methods 

 

58 

 

Life-Technologies, Paisley, UK) and deionised water (sterilised by autoclave) made up 

to 1ml. Excess lysis buffer was disposed of and newly made every time. 

After centrifugation, 12µL of lysis buffer was added to each capture tube and incubated 

for 16 hours at 55
o
C in a temperature controlled digital dry water bath (Benchmark 

Scientific, New Jersey, U.S.A.). This step was followed by 10 minute incubation at 

95
o
C to denature the proteinase K. Subsequent molecular analyses were immediately 

performed after lysis at room temperature, to prevent further degradation of the sample. 

3.3 DNA Extraction from cultured cells 

DNA was extracted from cultured cells using the Blood and Tissue DNA extraction kit 

(Qiagen, Manchester, UK); all specific reagents were provided in the kit.  The frozen 

cells, once thawed, were re-suspended in 200µL PBS (Oxoid, Thermo-Scientific, 

Hampshire, UK) and treated with 20µL of proteinase K solution. After thorough 

vortexing, 200µL of Buffer AL was then added. The sample was incubated for 10 

minutes at 56
o
C with frequent vortexing. After 10 minutes, or when the solution had 

become significantly less viscous, 200µL of 100% ethanol was added and mixed by 

vortexing, ensuring a homogenous solution was produced prior to continuing the rest of 

the procedure. This solution was then added to a mini-spin column and centrifuged at 

8000rpm for 1 minute. The flow through was discarded, and a new collection tube used 

to spin (at 8000rpm for 1 minute) with 500µL AW1 solution. This was repeated with 

solution AW2, centrifuging at 14,000 rpm for 3 minutes.  Finally, the column was 

placed in to a 1.5ml eppendorf microtube with 200µL AE elution buffer. The elute was 

quantified using a NanoDrop 2000 UV-Vis (Thermo-Scientific, Hampshire, UK) 

spectrophotometer and stored at -20
o
C until required. 

3.4 Polymerase chain reaction (PCR) 

All standard polymerase chain reaction (PCR) reactions were performed using a hot 

start taq polymerase and amplified using a Veriti® thermocycler (Applied Biosystems, 

Life-Technologies, Paisley, UK).  The master mix was set up in a Bio-Air UV PCR 

hood to ensure the samples were sterile and in a contamination free area. 50ng of each 

DNA sample was used and amplified in the following 25µL master mix reaction (all 

PCR reagents from Bioline, London, UK): 1x ImmoBuffer, 2mM dNTPs, 200nM 

forward Primer (IDT), 200nM reverse primer (IDT), 2.5mM MgCl2 and autoclaved 

PCR-grade deionised water, 5U Immolase™ polymerase. 
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The product was then amplified under the following conditions: an initial denaturation 

step at 95
o
C for 10 minutes, then 30 cycles of denaturation at 95

o
C for 1 minute, 

annealing at Tm for 1 minute, finally extension at 72
o
C for 30 seconds/Kb, with a final 

extension step at 72
o
C for 10 minutes. The samples were finally cooled and stored 

at -20
o
C until required. 

3.5 Agarose gel electrophoresis of PCR amplicons 

DNA fragments were separated using electrophoresis on an agarose gel utilising 

ethidium bromide as an intercalating fluorescent dye. According to the expected product 

size, a 0.8-2% (w/v) agarose gel was used to resolve the products; agarose (Helena 

Biosciences Europe, Gateshead, UK) was dissolved in 100ml 1x TAE buffer (Helena 

biosciences Europe, Gateshead, UK) and heated for 2 minutes in an 800W microwave 

oven. Once cooled, 0.4µg of ethidium bromide was added to the solution and then 

poured into a flat, horizontal gel casting tray and allowed to solidify at room 

temperature. 5µL of the PCR product was electrophoresed with 5µl orange G running 

buffer (50% dH20, 50% glycerol [v/v] with few grains of orange G to colour the 

solution). Each gel had a designated sizing lane which was loaded with 5µL of the 

appropriate DNA ladder. Running time for all gels was 60 minutes under 55V in 1x 

TAE buffer. The gel was then imaged using a GelDocIt transilluminator gel imaging 

system (UVP, California, U.S.A). 

3.6 Mitochondrial DNA monoplex quantitative polymerase chain reaction 

(qPCR) 

Quantitative PCR (qPCR) provides a reliable and reproducible method to measure the 

amount of DNA being amplified in ‘real time’ during the PCR process. For all targets, 

an appropriate standard curve was employed to assess amplification efficiency, and a 

DNA negative control to monitor contamination.  

Templates of genes of interest, for standard curves, were amplified using the standard 

PCR procedure (see Section 3.4) and the products were separated and imaged using a 

PCR product size specific agarose gel (see Section 3.5) using previously designed lab 

primers from Professor Chinnery’s lab (for primers, see Table 3.2) and a DNA ladder 

(1Kb plus; Thermo-Scientific, Hampshire, UK).  
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Gene Forward Primer 5’ – 3’ Reverse Primer 5’ – 3’ Tm (
o
C) Product Size (bp) 

Template 

β2M CGCAATCTCCAGTGACAGAA GCAGAATAGGCTGCTGTTCC 60 1092 

MT-ND1 CAGCCGCTATTAAAGGTTCG AGAGTGCGTCATATGTTGTTC 60 1040 

MT-ND4 ATCGCTCACACCTCATATCC TAGGTCTGTTTGTCGTAGGC 60 1072 

qPCR 

β2M CACTGAAAAAGATGAGTATGCC AACATTCCCTGACAATCCC 62.5 231 

MT-ND1 ACGCCATAAAACTCTTCACCAAAG GGGTTCATAGTAGAAGAGCGATGG 62.5 111 

MT-ND4 ACCTTGGCTATCATCACCCGAT AGTGCGATGAGTAGGGGAAGG 62.5 107 

Table 3.2 Pre-designed primer details for mitochondrial (MT-ND1 & MT-ND4) and nuclear (β2M) genes used in qPCR analyses 
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The fragments were extracted and purified from the gel using the QIAquick gel 

extraction kit (Qiagen, Manchester, UK), as per the manufacturer’s recommendations. 

In summary, the band of interest was cut out of the gel quickly to minimise UV 

exposure, using a round end scalpel, carefully removing all traces of excess agarose. 

The gel slice was weighed and placed into a sterile 1.5ml eppendorf, and 1 volume 

(100µL) of buffer QG added per 100mg of gel and incubated at 50
o
C until all the gel 

was dissolved; gel melting was facilitated by regular vortexing to evenly distribute heat 

throughout the mixture. Following this, 1 volume of isopropanol was added and then the 

entire mixture added to a QIAquick spin column and centrifuged for 1 minute at 

13,000rpm. The flow-through was discarded and the column membrane was washed 

with 750µL of buffer PE by centrifugation for 1 minute at 13,000rpm. The flow-through 

was discarded and 50µL of elution buffer added to the spin column membrane, 

incubated for 10 minutes at room temperature, before final centrifugation at 13,000rpm 

for 1 minute, with the flow-through column replaced with a 1.5ml eppendorf microtube. 

The elute DNA concentration was quantified using the NanoDrop 2000 UV-Vis 

(Thermo-Scientific, Hampshire, UK) and stored at -20
o
C until required.  

The number of template copies per µL for each template was calculated using the 

following equation: 

𝐶𝑜𝑝𝑖𝑒𝑠 𝑝𝑒𝑟 µL =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
 ∙ 𝐾 

 

Where; concentration = DNA in ng/µL (expressed as 10
9
); molecular weight = template 

length (bp) x 2 x 330; and K = Avogadro’s constant (6.022x10
23

 mol
-1

). 

The copies per µL of each template was standardised to 1x10
10

 and a serial dilution in 

1Log10 dilution steps, was amplified along with a DNA negative control on each qPCR 

plate. This was performed in 25µL reactions in a 96-well plate (Bio-Rad, Hertfordshire, 

UK), sealed using microplate ‘B’ plate sealers, using the fluorescent dye iQ™ SYBR® 

Green Supermix (containing MgCl2, dNTPs, iTaq™ polymerase, SYBR® Green I, 

enhancers, stabilizers and fluorescein) (Bio-Rad). Each reaction contained: 1 x iQ™ 

SYBR® Green Supermix (Bio-Rad), 4mM forward and 4mM reverse primers (see 

Table 3.2) and PCR-grade autoclaved sterile deionised water (to make up to 25µL 

reaction). The cycling conditions consisted of initial denaturation at 95
o
C for 3 minutes, 

followed by 40 cycles of denaturation at 95
o
C for 10 seconds, with annealing and 
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extension at 62.5
o
C for 1 minute. A melt curve was also generated to analyse the 

specific and nonspecific PCR (i.e. primer-dimers) products generated during the 

reaction by 10 second incubation steps during which the temperature was increased 

from 65
o
C to 95

o
C in 0.5

o
C increments (see Figure 3.2).  

 

 

Figure 3.2 Melt curve of MT-ND1 standard curve serial dilution generated using the iQ5™ 

thermocycler by iQ™ SYBR® Green method, showing the single expected product.  

The serial dilution curve was plotted using the Ct (cycle threshold) and log10 

concentration (copies per µL) to determine the amplification efficiency and coefficient 

of determination (R
2
) to ensure the values lie between 98-102% efficiency and R

2
 value 

of >0.98 (see Figure 3.3).  All standards were loaded in triplicate.  
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Figure 3.3 Standard curve of serial dilution for MT-ND1 template from 10
8
 – 10

3
 copies per µL, 

highlighting optimal assay efficiency, generated using iQ5™ thermocycler by the iQ™ SYBR® 

Green method. 

3.6.1 Mitochondrial multiplex qPCR design and optimisation 

The quantification of the mitochondrial DNA deletion level and the relative mtDNA 

copy number was performed using a novel triplex qPCR assay. A specific probe based 

assay was designed due to improved accuracy, specificity and sensitivity compared to 

the traditional fluorescent dye incorporation method (as described previously in Section 

3.6) to ensure improved accuracy when measuring low target content.  

The amplicon probes were designed as nested fragments within the qPCR primer 

regions previously described (see Table 3.2). Given the primers’ previously proven 

performance and specific amplification (see Figure 3.2 & Figure 3.3); it was deemed 

unnecessary to redesign the primers.  

The probes were designed to be 20-25bp in size (see Table 3.3) and amplicon specificity 

was determined by the use of primer-BLAST (J. Ye et al., 2012) to avoid amplification 

of homologous nuclear DNA regions, or multiple mitochondrial targets. Each probe was 

designed with a fluorophore that had emission spectra that didn’t overlap with either of 

the other two probes to ensure background cross-talk didn’t occur between targets. The 

probe quencher, responsible for absorbing excess excitation energy from the 

fluorophore, was chosen based on the greatest overlap between the fluorophore 

emission spectra and the absorbance spectra of the quencher (Ryazantsev et al., 2014).  
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Gene Fluorophore Quencher Amplicon sequence 5’ – 3’ Amplicon Size (bp) 

β2M FAM BHQ-1 CCGTGTGAACCATGTGACTTTGTC 231 

MT-ND1 HEX BHQ-1 ACCCGCCACATCTACCATCACCCTC 111 

MT-ND4 Cy5 BHQ-2 CAACCAGCCAGAACGCCTGAACGCA 107 

Table 3.3 qPCR probes properties, used to specifically amplify each gene target within the multiplex qPCR reaction 
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When running the multiplex reaction it was initially found that there was a delayed and 

frequent ‘negative amplification’ (initial reduction in fluorescence signal) present in the 

nuclear β2M target (see Figure 3.4B). The inhibition ‘negative amplification’ was 

postulated to be due to PCR competition between the mitochondrial genes due to their 

greater abundance in relation to the β2M, meaning that reagents may have reached 

limiting dilutions for β2M.  Alternatively, the effect may be due to the mitochondrial 

genes amplifying prior to the β2M gene, and the release of quenchers from the 

mitochondrial specific probes which result in an unintended quenching of the β2M 

fluorophore.  

 

Figure 3.4 Delayed and negative amplification of nuclear target β2M (B) due to PCR competition 

between the abundant mitochondrial targets: MT-ND1 (A) & MT-ND4 (amplification data not 

shown). Amplifcation charts are of cybrid samples. 

In an attempt to prevent PCR competition, a primer limiting concentration experiment 

was performed to determine the primer concentration at which no change in sample Ct 

was detected compared with monoplex and a reduction/elimination of β2M 

amplification inhibition was found in the multiplex reaction. Primer concentrations were 

300nM for all targets; therefore, monoplex (single probe) reactions were run side by 

side with a 2-plex using a primer dilution series (mitochondrial gene dilutions of MT-

ND1 and MT-ND4 with β2M concentrations unchanged – see Figure 3.5 for plate map 

example). It was found that the lowest concentration that left the Ct value for MT-ND1 

and MT-ND4 unchanged was 75nM. This had a positive impact on the negative 

fluorescence resulting in the elimination of PCR competition (see Figure 3.6) and a 

linear amplification of all targets.   
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Figure 3.5 An example plate map of primer limiting experiment to determine optimal primer 

concentrations for mitochondrial gene target primers.  

 

 

Figure 3.6 Amplification of β2M (B) with optimised mitochondrial target primer concentrations of 

75nM for MT-ND1 (A) and MT-ND4 (amplification chart not shown). Amplification charts are of 

cybrid samples as illustrated in Figure 3.4. 

The optimised multiplex assay used in the determination of mitochondrial deletion level 

and copy number quantification was performed using the iQ5™ thermocycler (Bio-Rad, 

Hertfordshire, UK) in 96-well clear plates (Bio-Rad), sealed with microplate ‘B’ plate 

sealers (Bio-Rad) in 25µL reactions containing: iQ™ Multiplex Powermix (Bio-Rad), 

300nM β2M forward and reverse primers, 75mM MT-ND1 primers, 75nM MT-ND4 

primers, 200nM each β2M, MT-ND1 and MT-ND4 probe, autoclaved PCR-grade sterile 

deionised water. All DNA samples were standardised approximately 50ng/µL.  

The multiplex qPCR 2-step protocol consisted of an initial denaturation step at 95
o
C for 

3 minutes, followed by 40 cycles of denaturation at 95
o
C for 10 seconds and an 

annealing/extension step at 60
o
C for 1 minute.  
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3.6.2 Mitochondrial deletion level quantitation 

MT-ND1 is a mitochondrial gene rarely deleted (L. He et al., 2002), whilst MT-ND4 is 

found in the centre region of the ‘major arc’ encompassing the majority of large scale 

mtDNA deletions (including that found in the trans-mitochondrial cybrid cell line). 

Therefore, given that in a non-deleted mtDNA molecule the Ct values of both genes 

should be the same, calculating the difference between the Ct values of the two will give 

the relative level of mtDNA deletion. To do this, the ΔΔCt method (Livak and 

Schmittgen, 2001) was implemented by using a calibration control mtDNA deletion-

negative sample, and ensuring that the qPCR assay was performing at optimal 

efficiency by the use of a serial dilution of relevant standards and only accepting a run 

efficiency of 98-102% (see Section 3.6). The following equations were used to calculate 

the mitochondrial deletion level:  

𝛥𝛥𝐶𝑡 = (𝐶𝑡𝑀𝑇−𝑁𝐷4(𝑥) − 𝐶𝑡𝑀𝑇−𝑁𝐷4(𝐶)) − (𝐶𝑡𝑀𝑇−𝑁𝐷1(𝑥)  −  𝐶𝑡𝑀𝑇−𝑁𝐷1(𝐶)) 

Where, x = sample and C = calibrator. 

𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 (%) = 100 − (2𝛥𝛥𝐶𝑡) 

The level of deletion in samples was cross-checked with the result of a positive sample, 

which contained a previously determined deletion level in order to ensure that the 

calculated level was within ±3% of the ‘true’ deletion level.  

3.6.3 Mitochondrial copy number determination 

The mitochondrial copy number was calculated in a similar manner to the deletion level 

by making a calculation between the conserved MT-ND1 and the nuclear housekeeping 

gene of known copies of β2M ,using the quantitative method. The SQ (starting quantity) 

was determined automatically for each sample based on an extrapolation of the standard 

curve values (assuming 100% efficiency); therefore using these figures, the mtDNA 

copy number per cell was calculated using the following equation: 

𝑚𝑡𝐷𝑁𝐴 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 =   
𝑁𝐷1 𝑆𝑄

(𝛽2𝑀
𝑆𝑄
2 ) 

 

The above calculation will give total mitochondrial copy number per cell as it is 

presumed that copies of MT-ND1 are sufficiently conserved to be equivalent to total 

mtDNA. The mtDNA wild type copy number per cell can also be calculated when using 
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the multiplex assay (see Section 3.6.1) due to the amplification of MT-ND4 when a full 

mtDNA molecule is present, and therefore the SQ value is calculated. The equation for 

relative wild type copy number per cell therefore becomes: 

𝑚𝑡𝐷𝑁𝐴 𝑊𝑖𝑙𝑑 𝑇𝑦𝑝𝑒 𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 =   
𝑁𝐷4 𝑆𝑄

(𝛽2𝑀
𝑆𝑄
2 ) 

 

Finally, the relative mutant (deleted) copy number per cell can also be calculated due to 

the simple law of summation. By subtracting the wild type copy number from the total, 

the result will leave mutant copy number: 

𝑚𝑡𝐷𝑁𝐴 𝑀𝑢𝑡𝑎𝑛𝑡 𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 =   (𝑇𝑜𝑡𝑎𝑙 𝐶𝑁) − (𝑊𝑖𝑙𝑑 𝑇𝑦𝑝𝑒 𝐶𝑁) 

3.7 Long range PCR for multiple mitochondrial DNA deletions 

To investigate the presence of mtDNA deletions (single and multiple), a long range 

PCR method was implemented using the Takara LA polymerase (Takara, Clontech). 

A 10kb mtDNA fragment was amplified. Each reaction was run on a Veriti® 

thermocycler (Applied Biosystems, Life-Technologies, Paisley, UK) in 50µL reactions 

containing: 1x LA buffer II, 2.5mM dNTPs, 200nM forward primer (see Table 3.4), 

200nM reverse primer, autoclaved PCR-grade deionised water (made up to 50µL), 60ng 

DNA template and 2.5U LA Taq polymerase.  

DNA was amplified under the follow conditions: an initial denaturation step at 94
o
C for 

1 minute, followed by 35 cycles of denaturation at 94
o
C for 30 seconds, annealing step 

at 58
o
C for 30 seconds and an extension at 68

o
C for 11 minutes, with a final extension 

time of 12 minutes at 72
o
C, before cooling the sample to 4

o
C.  

The 5µL of sample was electrophoresed on a 0.8% agarose gel as previously described 

(see Section 3.5) using 1kb plus DNA ladder (Thermo-Scientific, Hampshire, UK) to 

quantify the size of the bands. Each sample should produce a band at the ~10kb marker. 

Any other additional bands will correspond with a deletion of a specific size. 10kb 

minus the size of the additional band will give an approximate size of the deletion.  
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Name Primer 5’ – 3’ Tm (
o
C) 

Product size 

(bp) 

10kb 

mtDNA 

Deletion 

F - CCCTCTCTCCTACTCCTG 

R - CAGGTGGTCAAGTATTTATGG 

58 

58 
9931 

Table 3.4 Long range PCR primer properties used to screen for mtDNA deletions 

3.8 Cloning 

Cloning was performed using the pGEM-T easy vector system (Promega, Southampton, 

UK). Incubations at 37
o
C were performed in a temperature controlled microbiology 

incubator (Thermo-Scientific, Hampshire, UK).  

3.8.1 Product preparation 

First, PCR amplification of the region of interest to clone was performed using a 

polymerase that inserted 3’ A (adenine) overhang; Takara LA (Takara, Clontech) was 

used to do this. A 50µL PCR reaction containing: 1x LA buffer II, 2.5mM dNTPs, 

200nM forward primer, 200nM reverse primer, autoclaved PCR-grade deionised water, 

60ng DNA template and 2.5U LA Taq polymerase, was ran on a Veriti® thermocycler 

(Applied Biosystems, Life-Technologies, Paisley, UK) under the following conditions: 

initial denaturation at 94
o
C for 1 minutes, followed by 30 cycles of denaturation at 94

o
C 

for 30 seconds, annealing for 30 seconds (Tm specific), extension step at 68
o
C for 

1min/Kb, followed by a single final extension step of 10 minutes at 72
o
C. The entire 

product was then run on a size specific gel as previously described (see Section 3.5). 

The product was gel-extracted using the QIAquick gel extraction kit (Qiagen, 

Manchester, UK) as previously described within Section 3.6 and DNA concentration 

quantified.  

3.8.2 Ligation 

Next, a ligation reaction was set up using the vector and ligase included in the cloning 

kit (Promega, Southampton, UK). Two ligation reactions were set up, a positive control 

and the extracted PCR product. Each ligation reaction consisted of: 2x Rapid ligation 

buffer, 50ng pGEM-T easy vector, 3U T4 DNA ligase, autoclaved PCR-grade deionised 

water and the volume of PCR product determined from the following equation: 

𝑛𝑔 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 (𝐾𝑏)

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐾𝑏)
 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 ∶ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 
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For the positive control ligation, 2µL was loaded into the ligation. In an attempt to 

maximise the number of positive transformants from the reaction, ligation occurred at 

16
o
C for 16 hours.  

3.8.3 Transformation 

Ligation transformation was performed using ‘one shot’ JM109 high efficiency 

competent cells (Promega, Southampton, UK) using LB broth (Lysogeny broth) and LB 

agar plates as growth medium (see Table 3.5). After autoclaving and cooling to 

approximately 55
o
C, the LB agar was supplemented with: 500µL Ampicillin (50mg/ml; 

Sigma-Aldrich, Dorset, UK), 750µL X-Gal (50ng/µL; Promega, Southampton, UK) and 

250µL IPTG (1M; Promega, Southampton, UK). The mixture was then aseptically 

poured (~15-20ml) into 90mm plates underneath the flame of a Bunsen burner (Greiner 

Bio-one, Stonehouse, UK) removing any bubbles that may have formed and were left to 

solidify at room temperature on a level surface. Once cooled, plates were labelled and 

placed in an incubator at 37
o
C or 4

o
C for long term storage.  

Reagent LB Broth LB Agar 

Agar N/A 7.5g 

Tryptone 5.0g 5.0g 

NaCl2 5.0g 5.0g 

Yeast extract 2.5g 2.5g 

Autoclaved deionised water 500ml 500ml 

Table 3.5 Reagents and corresponding measurements to make 500ml LB broth and LB Agar 

Once the ligation reactions had been incubated for 16 hours, the tubes were briefly 

centrifuged and 1µL added to a pre-aliquoted amount of competent cells (25µL) on ice, 

gently agitating the tube to ensure the ligation and cells were sufficiently mixed.  The 

tubes were incubated on ice for 20 minutes and then subjected to heat shock using 42
o
C 

water using a digital temperature controlled dry heat bath with 250µL water in a well 

(Benchmark Scientific, New Jersey, U.S.A), for 50 seconds. After which, the tube was 

immediately placed back onto ice for 2 minutes. Then 475µL of LB broth medium was 

added to the cells transformed with ligation reactions and incubated at 37
o
C for 1 hour. 

Finally, 100µL of the transformation culture was added onto the LB plates and spread 

around the agar to ensure an even coverage and growth of single cultures. This was 

performed using a glass spreader, dipped in ethanol and flamed briefly in a Bunsen 

burner. The plates were incubated for 16 hours at 37
o
C.  
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After 16 hours incubation, a small number of white coloured colonies were selected and 

colony PCR performed to check for the correct insert. The growth of blue colonies 

indicates a successful transfection, but an unsuccessful ligation. Sterile 0.2ml 8 strip 

PCR tubes (STARLAB, Milton Keynes, UK) were used for the PCR. 10µL of 

autoclaved PCR-grade deionised water was added to one of the PCR tubes, one of the 

white colonies was selected using a clean eppendorf and dipped into the water before 

streaking onto another agar plate and then the tip placed in 5ml of LB broth (50ml 

falcon tube; Greiner Bio-one, Stonehouse, UK) supplemented with 5µL Ampicillin 

(50mg/ml; Sigma-Aldrich, Dorset, UK. The agar plate was incubated at 37
o
C to expand 

the growth of single colonies and the broth/tip was placed at 37
o
C, agitated at 150rpm 

for 16 hours. The PCR tube containing the dipped colony was used in colony PCR, 

treating the 10µL of dipped colonies as DNA. The PCR procedure described in product 

preparation was used (see Section 3.8.1). After checking for the presence of the correct 

size PCR product on an agarose gel (see Section 3.5) and the LB broth containing the 

colony selection tip had been incubated for 16 hours, the tube was centrifuged at 

8000rpm for 10 minutes to pellet the colonies. The plasmid colony pellets were then 

frozen at -20
o
C until required.  

3.8.4 Plasmid purification 

The DNA from the pelleted plasmid colonies (see Section 3.8.3) were processed using 

the using the Miniprep kit (Qiagen, Manchester, UK). The pellet was re-suspended in 

250µL buffer P1 and transferred to a sterile 1.5ml eppendorf. 250µL of buffer P2 was 

then added and mixed thoroughly. 350µL of Buffer N3 was immediately added to the 

mixture and thoroughly mixed by vortexing. The tube was then centrifuged at 

13,000rpm for 10 minutes to form a compact white pellet. The supernatant was then 

applied to a QIAprep spin column (supplied in kit) and centrifuged for an additional 

1 minute at 13,000rpm. The column membrane was then washed by adding 750µL 

buffer PE and centrifuging at 13,000rpm for 1 minute. The flow-through was discarded 

and 50µL elution buffer was added to the spin column membrane and incubated at room 

temperature for 10 minutes prior to spinning at 13,000rpm for 1 minute into a sterile 

1.5ml eppendorf microtube.  The DNA was quantified using a NanoDrop and frozen 

at -20
0
C until required. 
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3.9 Pyrosequencing 

To quantify the level of mitochondrial D-loop point mutation m.414T>G a 

pyrosequencing assay was designed. Pyrosequencing is a method of DNA sequencing 

(sequencing by synthesis) short amplicons. Locus specificity is achieved by the use of 

specific primary PCR primers to generate ~200bp amplicon and then a third sequencing 

primer (which is biotinylated to allow for specific isolation of product) is used to 

amplify the 8-10 base-pairs of interest to quantify a mitochondrial heteroplasmic 

mutation within a sample. The following technique was performed using the 

PyroMark™ Q24 (Qiagen, Manchester, UK) using shallow 24 well sequencing plates 

(Qiagen, Manchester, UK) and 0.2ml sterile 8 strip PCR tubes (Greiner Bio-one, 

Stonehouse, UK).  

3.9.1 Pyrosequencing m.414T>G assay design 

Primers were designed using the PyroMark™ assay design software v2.0.6 (Qiagen, 

Manchester, UK) according to manufacturer’s recommendations and primers with the 

highest quality score (100 indicating best predicted PCR performance) were chosen for 

the assay (see Table 3.6).  

Primer Sequence 5’ – 3’ 
Primer 

position 

Product 

size 

(bp) 

Tm 

(
o
C) 

Forward CACAGCCACTTTCCACACAGA 256-276 
244 

60 

Reverse 5biosG/CGGGGGTTGTATTGATGAGATT 499-478 60 

Sequencing TTTATCTTTTGGCGG 399-413 N/A 60 

Table 3.6 Pyrosequencing m.414T>G primer properties as designed by the PyroMark™ Assay 

design software. 

The assay method was designed using the PyroMark™ Q24 software (Qiagen, 

Manchester, UK), which was also used for running the assay. A 10bp region around the 

m.414 position was inserted with the change (T>G) expressed as the IUPAC nucleotide 

code, K. The dispensing order of the nucleotides when sequencing was generated and 

the assay locked from accidental editing.  

3.9.2 Pyrosequencing m.414T>G procedure 

A primary PCR of samples was initially performed, as previously described (see Section 

3.4. The PCR cycling conditions consisted of an initial denaturation of 95
o
C for 10 
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minutes, followed by 30 cycles of denaturation for 30 seconds at 96
o
C, annealing at 

60
o
C for 30 seconds and extension time of 30 seconds at 72

o
C. The final extension step 

was at 72
o
C for 10 minutes. 5µL of the PCR reaction was run on a 2% agarose gel to 

check for purity and presence of the correct band size (see Section 3.5). The size of the 

band was checked using the DNA hyperladder IV (Bioline, London, UK). 

Once it was proven that the PCR reaction had generated the correct product size, 10µL 

of each PCR sample was then transferred to a new sterile 8 strip PCR tube (STARLAB, 

Milton Keynes, UK). To each sample, 70µL of binding buffer mixture was added 

containing: 40µL binding buffer (Qiagen, Manchester, UK), 2µL sepharose beads (GE 

Life science, Amersham Place, UK) and 28µL autoclaved PCR-grade deionised water. 

The caps were securely fastened and transferred to a plate agitator (Quantifoil 

Instruments GmbH, Jena, Germany) for 10 minutes at 2000rpm. On each run a mutant 

positive control, mutant negative control and 50:50 (mutant: wild type) sample was also 

included.  

The PyroMark™ Q24 workstation was used for preparing the samples for sequencing. 

Once the samples had been agitated for 10 minutes, they were placed into the deep plate 

support wells, located at the front of the workstation. The handheld processing unit 

(‘hedgehog’) was cleaned by switching the vacuum pump on and washing thoroughly 

with de-ionised water. It was then placed and left in the parking station. The Q24 wash 

reservoirs were then filled to the visible line with 100% ethanol (Sigma-Aldrich, Dorset, 

UK), denaturation solution (Qiagen, Manchester, UK) 1x wash buffer (Qiagen, 

Manchester, UK) and autoclaved PCR-grade de-ionised water. The wash buffer was 

filled slightly above the line to ensure full cleaning of the hedgehog pins occurred. 

The annealing buffer mixture was then made up containing: 300nM pyrosequencing 

primer and annealing buffer (Qiagen, Manchester, UK). A shallow 24 well sequencing 

plate (Qiagen, Manchester, UK) was placed on the workstation and 25µL of annealing 

buffer added to each well.  

Using the hedgehog unit, all liquid was aspirated. The captured beads on the hedgehog 

pins were then processed through the ethanol for 15 seconds, denaturation buffer for 15 

seconds and then the wash buffer for 30 seconds. After this step, the suction was 

disabled on the hedgehog and the hedgehog held vertically to allow excess liquid to 

drain from the pins, to avoid any interference with the sequencing reaction. After 30 
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seconds of drying, the pin heads were placed into the annealing buffer mixture on the 

sequencing reaction plate to release the beads into the mixture. The sequencing plate 

was then heated for 2 minutes at 80
o
C using a temperature controlled dry water bath hot 

block (Benchmark Scientific, New Jersey, U.S.A) and a reaction plate heating unit 

(Qiagen, Manchester, UK). The sequencing plate was then placed into the 

pyrosequencing machine.  

The PyroMark™ assay run file was generated using the PyroMark™ Q24 software by 

selecting File > new run. The m.414T>G assay file previously designed (see Section 

3.9.1) was loaded onto the plate map and the correct sample names given to each well 

on the plate. The instrument cartridge was selected and a name given to the run. After 

saving the run file onto a removable device, the pre-run information was recorded 

(enzyme, substrate and nucleotide volumes).  

The sequencing cartridge was then loaded with the pre-determined volumes (as 

calculated by the PyroMark™ software based on number of reactions) of enzyme 

substrate and nucleotides (PyroMark™ Gold reagents; Qiagen, Manchester, UK) and 

the cartridge placed into the dispensing unit in the machine. For a full sequencing plate 

the typical volumes loaded were; enzyme, 119µL; substrate 119µL; and 57µL of each 

nucleotide.  

Once the assay was finished, the data was analysed using the PyroMark™ Q24 software. 

The pyrogram produced (see Figure 3.7) was graphed and statistical comparisons made 

accordingly (GraphPad™ Prism v5, CA, U.S.A).  The sequencing cartridge was cleaned 

using deionised water and the sequencing reaction plate disposed of. 

 

 

Figure 3.7 A representative pyrogram generated from a pyrosequencing reaction of a positive wild 

type control (100% T). The first three base codes are the following controls; E, enzyme; S, 

substrate and C, internal control.  
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3.9.3 Generation of assay standards 

To ensure that each pyrosequencing run was performed optimally and efficiently, a 

series of standards were made with determined heteroplasmic levels of m.414T and 

m.414G. To achieve a pure culture of populations, cloning was performed (see Section 

3.8) using an aliquot of DNA extracted from fibroblast m.414T>G cells.  The wild type 

and mutant specific DNA generated from cloning was then used on every 

pyrosequencing run in the following way: 100% T, 100% G and 50:50 (T: G). The 

‘peaks’ of each sample were visually inspected any samples flagged as ‘red’ with 

warnings by the software were excluded.  

To assess the quantification accuracy of the assay, a standard curve was generated by 

making multiple dilutions of wild type to mutant, ranging from 0:100 (mutant: wild type) 

through to 100:0 (mutant: wild type). The data was plotted as observed to expected 

heteroplasmy level and is expressed the Figure 3.8.  

 

Figure 3.8 The observed heteroplasmy and the expected heteroplasmy of pyrosequencing standard 

curve dilutions. Green line indicates where y=x and the red line is the standard curve.  

3.10 Next generation sequencing 

To assess the low level mutation burden in cells treated with NRTIs (human trans-

mitochondrial cybrids and fibroblasts) and aged mouse (Mus musculus) samples 

exposed to antiretrovirals; next generation sequencing (NGS) was performed using the 
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MiSeq™ platform (Illumina, Cambridge, UK). All pipetting was performed using 

sterile filter tips (STARLAB, Milton Keynes, UK).  

3.10.1 Long range PCR primer design and amplicon enrichment 

In order to amplify the mtDNA region of interest, long range PCR primers were 

designed for each experiment (see Table 3.7).  

The primers used for human cells were designed based on the following rationale. The 

fibroblasts required two ~9kb overlapping fragments in order to encompass the entire 

mtDNA genome. The cybrid primers were designed to specifically only amplify either 

mutant mtDNA (i.e. molecules that would contain the deletion from m.7982-15504), or 

wild type DNA (see Figure 3.9). A size specific extension time for mutant mtDNA was 

performed to ensure that only the mutant mtDNA was amplified using the mutant 

primers as the wild-type mtDNA would require a longer extension time for successful 

PCR of the mutant amplicon primers. All primers were screened using primer-BLAST 

to ensure there was no amplification of nuclear homologous regions. 

The mouse primers were designed using the reference mouse mtDNA genome 

(NC_005089.1). Three overlapping ~6kb fragments were designed to amplify the entire 

mtDNA genome, and screened for absence of Numt (nuclear mitochondrial homologues) 

amplification using primer-BLAST (J. Ye et al., 2012).  
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Figure 3.9 Primer design rationale in the amplification of mutant and wild type specific bands of 

trans-mitochondrial cybrid cells exposed to NRTIs, sequecned using the Illumina MiSeq™ 

platform. 
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Name Forward sequence 5’ – 3’ Reverse Sequence 5’ – 3’ 
Tm 

(
o
C) 

Mouse 

Fragment 

A 
GCCAATGAAATGGGAAGAAA CGATGTCAAGGGATGAGTTG 57 

Fragment 

B 
GCAACCCTACACGGAGGTAA TGATGGTTTGGGAGATTGGT 57 

Fragment 

C 
TCCTACTGGTCCGATTCCAC TAGAAACCGACCTGGATTGC 57 

Human 

Cybrid 

Deletion 
TCGCCCTATTCTTCATAGCC GATTACTCCGGTCTGAACTC 61 

Cybrid 

Wild type 
ATTCATCGACCTCCCCACC GTATAAGAGATCAGGTTCGTC 61 

Fibroblast 

A 
CCCTCTCTCCTACTCCTG CAGGTGGTCAAGTATTTATGG 68 

Fibroblast 

B 
CATCTTGCCCTTCATTATTGC GGCAGGATAGTTCAGACGG 68 

Table 3.7 Primer properties for NGS experiments on human (trans-mitochondrial cybrids and 

fibroblasts) and mouse mtDNA designed using the mitochondrial reference sequences for the mouse 

and human (NC_005089.1 and NC_012920, respectively).  

The PCR was performed using the PrimeSTAR GXL polymerase (Takara, Clontech) 

that has been specifically designed for NGS amplicon generation (Takara). Each 

fragment was amplified using a Veriti® thermocycler (Applied Biosystems, 

Life-Technologies, Paisley, UK); the fragments were amplified in 25µL reactions using 

the following: 1x GXL buffer (Takara, Clontech), 2.5mM dNTPs, 300nM forward 

primer, 300nM reverse primer, 1M Betaine (mouse fragments only), autoclaved PCR-

grade deionised water and 1.25U GXL taq polymerase.  The PCR cycling conditions 

can be found in Table 3.8.  
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Primers 
Denaturation 

x1 

Denaturation 

x30 

Annealing 

x30 

Extension 

x30 

Extension 

x1 

Mouse 

Fragment A 
98

o
C 

(30s) 

98
o
C 

(30s) 

57
 o
C 

(30s) 

68
 o
C 

(8.5 mins) 

72
o
C 

(10 mins) 

Fragment B 
98

o
C 

(30s) 

98
o
C 

(30s) 

57
 o
C 

(30s) 

68
 o
C 

(10.5 

mins) 

72
o
C 

(10 mins) 

Fragment C 
98

o
C 

(30s) 

98
o
C 

(30s) 

57
 o
C 

(30s) 

68
 o
C 

(8.5 mins) 

72
o
C 

(10 mins) 

Human 

Cybrid  

Deletion 

98
o
C 

(30s) 

98
o
C 

(30s) 

61
 o
C 

(30s) 

68
 o
C 

(8 mins) 

72
o
C 

(12 mins) 

Cybrid  

Wild type 

98
o
C 

(30s) 

98
o
C 

(30s) 

61
 o
C 

(30s) 

68
 o
C 

(8 mins) 

72
o
C 

(12 mins) 

Fibroblast A 
95

o
C 

(5 min) 

98
o
C 

(10s) 

68
 o
C 

(15 mins) 

72
o
C 

(10 mins) 

Fibroblast B 
95

o
C 

(5 mins) 

98
o
C 

(10s) 

68
 o
C 

(15 mins) 

72
o
C 

(10 mins) 

Table 3.8 The PCR cycling conditions for fragment amplification using the GXL taq polymerase 

(Takara, Clontech). The temperature and cycling time (in brackets) is shown. 

All fragments were electrophoresed on a 1% agarose gel as previously described (see 

Section 3.5) using 5µL of product. To ensure that the reaction was contamination free 

and only specific product of the correct size was amplified, 5µL of the DNA ladder 1kb 

plus (Thermo-Scientific, Hampshire, UK) was loaded and the PCR product size cross 

referenced using this.   

3.10.2 Sample cleaning and pooling 

Once the fragments for each sample had been amplified and checked, the DNA was 

then purified to remove any excess dNTPs, primers, primer-dimers and salts, in excess 

from the PCR reaction. To do this, the samples were purified using a bead based system 

(Agencourt AMPure XP; Beckman Coulter, High Wycombe, UK) implementing a 

magnetic plate to facilitate the process.  
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The purification process was carried out as follows: the Agencourt magnetic bead 

solution were brought to room temperature and gently agitated to fully re-suspend the 

mixture.  Next, 1.8x PCR reaction volume of beads was added to each reaction on a 

96-well PCR plate. The PCR reaction and bead reagent was mixed thoroughly to 

generate a homogenate solution by pipette mixing 10-12 times. The mixture was 

incubated at room temperature for 5 mins before placing on a 96-well super magnetic 

plate (Agencourt SPRIPlate; Beckman Coulter, High Wycombe, UK) for 2 minutes to 

separate the beads from the solution. During the incubation period, the beads will bind 

to the DNA fragments and therefore, separation of beads from solution will extract and 

purify the DNA. Next, the clear solution was aspirated leaving only a brown ring of 

beads in each well. These were then washed twice using 200µL of 70% ethanol 

(Sigma-Aldrich, Dorset, UK), incubating between washes for 30 seconds. All washing 

steps were performed on the magnetic plate. To ensure that all ethanol had been fully 

removed the plate was then air dried at room temperature for 5 minutes. The magnetic 

beads were then re-suspended in 30µL elution buffer (ultra-pure PCR grade deionised 

water) away from the magnetic plate. The plate was sealed using universal 96-well plate 

sealers (Thermo scientific, Hampshire, UK) and gently agitated to ensure full 

re-suspension of the beads in the water. Finally, the beads were placed back onto the 

magnetic plate for 5 minutes and the elutant transferred to a new plate. 

The DNA concentration of the elutant was quantified using a Qubit® 2.0 Fluorometer 

(Life-Technologies, Paisley, UK). Fragments were then pooled into one well in 

equimolar quantities (all fragments per sample) and the final concentration of the 

sample DNA was adjusted to 2ng/µL, ready for fragment re-sequencing preparation.  

3.10.3 Fragment re-sequencing 

Fragment re-sequencing preparation for the MiSeq™ (Illumina, Cambridge, UK) was 

performed using the newest paired-end chemistry version at time of running (v3). The 

sample amplicons were diluted to 0.2ng/µL and 5µL (1ng total) used in the Nextera XT 

(Illumina, Cambridge, UK) tagmentation process. The sequencing primers and DNA 

barcodes were incorporated into the samples and a bead clean up performed, as 

previously described (see Section 3.10.2) with the bead to sample ratio changed from 

1.8:1 to 0.5:1. The library concentration was standardized, diluted and loaded onto the 

MiSeq™ along with a 15% positive spike-in sequencing control (PhiX; Illumina, 

Cambridge, UK). Targeted re-sequencing was then initiated on the MiSeq™ machine.  
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3.11 Bioinformatics 

Next generation sequencing (NGS) data was analysed by an optimised ‘in-house’ 

pipeline which was run using the UNIX operating platform and the command line 

scripting language associated with ‘common’ bioinformatics approaches. 

Data generated from a next generation sequencing platform is presented, in its most raw 

form, as a .fasta and/or .fastq (fasta quality file) file(s). When using a sequencing 

platform that implements a colour based detection system, such as the SOLiD (Applied 

Biosystems, Life-Technologies, Paisley, UK) then the raw data is presented in a specific 

fasta and fastq known as .csfasta or .csfastq (colour space fasta) which must be handled  

with such consideration in mind (see Section 7.4.1).    

The general principle of an NGS data analysis pipeline (see Figure 3.10) consists of the 

initial alignment of the raw data files to a reference/consensus sequence (usually the 

rCRS for mitochondrial sequencing). Once alignment has been performed, the data 

needs to be sorted to ensure only sequencing reads that have been fully mapped to the 

genome are kept and then processed through a variant calling tool. Generally, only 

SNPs and small deletions (≤50bp) will be called with variant callers such as VarScan 

(Koboldt et al., 2009; Payne et al., 2014). The final step in analysis is variant annotation 

and filtering.  
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Figure 3.10 Data flow diagram illustrating the main steps in an NGS data analysis pipeline. Briefly, the raw sequencing files are aligned to the reference genome, 

sorted/manipulated and then passed through a variant calling tool. The variant list is then filtering through QC steps and annotated.   
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3.11.1 NGS analysis pipeline 

All NGS data analysis was run on a UNIX based ‘grid’ computer cluster network 

system (Lampredi2; IGM, Newcastle University, UK). The analysis was broken down 

into three stages: primary, secondary and tertiary, which were pieced together into one 

analysis ‘script’ that processed a single sample from raw sequencing data to annotated 

files that were read into Excel Spreadsheet (Microsoft, Reading, UK). The following 

method was used for the SOLiD™ (Applied Biosystems, Life-Technologies, Paisley, 

UK) and the MiSeq™ (Illumina, Cambridge, UK) platforms’ data analysis.  

The primary analysis stage consisted of aligning the data to the reference mitochondrial 

only sequence file; human, rCRS (NC_012920); mouse, Mus mitochondrial sequence 

(NC_005089.1).  The alignment tool used was BWA v0.7.4 (H. Li and Durbin, 2009) 

implementing the ‘MEM’ (maximum exact matches) algorithm for optimised alignment 

of short sequencing reads to produce a ‘.SAM’ (sequence alignment map) output file. 

MEM alignment performs a sequence alignment based on similarity matches (as 

opposed to a global alignment which forces alignment based on a best match principle 

to cover the reference genome). Prior to alignment, the reference file was ‘indexed’ 

using BWA to prepare the file for processing with BWA.  

The secondary stage of analysis consisted of sorting and preparing the data files for the 

variant calling tool. To do this, the SAM files were initially converted in BAM (binary 

alignment map file) using SAMtools v0.1.8 (H. Li et al., 2009). To do this the ‘import’ 

function was used followed by the ‘sort’ function to organise the reads into a coherent 

order. The sorted bam file was then indexed to allow faster read access to the file 

information by software using the SAMtools ‘index’ function. Finally, the read 

duplicates were removed, or ‘marked’ in the data files (for background, see 1.6.5) using 

the Picard v1.85 tool (http://picard.sourceforge.net) and the ‘remove duplicates’ 

function, creating a log file and noting that the files were sorted.  

The final or tertiary step of data analysis was to call and annotate the predicted variants.  

This consisted of the following steps; VarScan v2.3.1 (Koboldt et al., 2009), was used 

to call variants; ANNOVAR (K. Wang et al., 2010), was used to annotate the exonic 

variants. Before VarScan was used to call potential variants, the sorted bam files were 

converted into a ‘pileup’ file, which describes base-pair information to facilitate variant 

calling and thus making the bam files ‘interpretable’ to VarScan; The SAMtools 

‘mpileup’ function was implemented to do this. Each pileup file was read into VarScan 

http://picard.sourceforge.net/
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using the ‘pileup2snp’ function to call the variants, creating a tab delimited VCF 

(variant call format) output file. The parameters used for calling variants are shown in 

Table 3.9.  

Species 
Minimum 

Coverage 
Phred 

Variant 

Frequency (%) 

Minimum supporting 

reads 

SOLiD™ 

Human 1500 30 0.1 10 

MiSeq™ 

Human Cybrids 5000 30 0.3 10 

Human 

Fibroblasts 
3000 30 0.3 8 

Mouse 3000 30 0.3 8 

Table 3.9 Variant calling parameters used in the VarScan tool for the SOLiD™ and MiSeq™ 

platforms data analysis. Minimum coverage – sequecning depth; Phred – sequencing quality score 

(see Section 1.6.2);  variant frequency – variant level within the sample; minimum supporting reads 

– the number of reads required to make a variant call. 

The variants called were annotated using ANNOVAR (most recent version) as per the 

user manual; however, firstly, a fasta file and text file containing the mitochondrial 

coding gene sequences and the relevant transcripts was made for human and mouse 

mitochondria using the Ensembl (Flicek et al., 2014) gene database (instructions for 

creating files are found in ANNOVAR user manual).  

The files generated by ANNOVAR were converted into a tab delimited file, rather than 

space separated, and read into excel for viewing, filtering or graphing. 

3.12 Statistical analysis 

For statistical analyses, either SPSS statistics v19 (IBM) or, GraphPad™ Prism v5 

(GraphPad™ Software, CA, USA) was used and the statistical test used in the analyses 

are specified in each results chapter.  

Two-sided p-values expressed as ≤0.05, were deemed as significant. 
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Chapter 4. Assessment of Mitochondrial DNA Damage in 

HIV-infected Individuals 
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4.1 Background 

Patients receiving highly active antiretroviral therapy (HAART) to combat HIV 

infection, especially those who have been/are exposed to the older nucleoside analogue 

reverse transcriptase inhibitors such as zalcitabine (ddC), didanosine (ddI), stavudine 

(d4T) and zidovudine (AZT), often present with pathologies associated with 

mitochondrial toxicity. This apparent toxicologic effect of NRTIs has been described as 

resulting from the affinity of NRTIs for the mitochondrial DNA polymerase γ,  resulting 

in mitochondrial DNA replication inhibition (Höschele, 2006). The newer NRTIs such 

as tenofovir (TDF) and abacavir (ABC) have not been associated with such pathologies, 

arguably due to their lack of affinity for polymerase γ. The sub-group of older NRTIs, 

known as the ‘d-drugs’ (dideoxynucleoside analogues, ddC, ddI, d4T), have been found 

to have the highest affinity for polymerase γ. 

The histochemical analysis of skeletal muscle samples from patients treated with the pol 

γ NRTIs indicates that some patients have a mosaic mitochondrially encoded COX 

(cytochrome c oxidase) deficiency (Birkus et al., 2002).  

There is a strong link between mitochondrial DNA deletions and the process of ageing 

(Khrapko et al., 1999; Z. Cao et al., 2001; Herbst et al., 2007). For example, the 

mitochondrial DNA ‘common deletion’ mutation (a 4977bp deletion spanning the 

‘major arc’ of the genome) accumulates with age (Y. F. Zhang, 2007; Gendron et al., 

2012; P. Wang et al., 2013).  

It has also been suggested that mitochondrial DNA point mutations may contribute 

towards (or at the very least accumulate) with the process of ageing. There has been an 

identification of specific ‘hot spots’ within the mtDNA control region where point 

mutations, such as m.414T>G may accumulate in post-mitotic tissue such as skeletal 

muscle and brain during human ageing (Michikawa et al., 1999; Del Bo et al., 2003). 

The implications of such mutations have been debated, with some claims of them being 

neutral (Seibel et al., 2008) whereas other authors cite an impact on mtDNA replication, 

and their presence within a number of ‘pre-cancerous’ cells (Z. Liu et al., 2002; Kassem 

et al., 2011).  
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4.2 Experimental Aims 

The aim of this study was to determine the effects of HIV status, and NRTI treatment 

exposure on the mitochondrial DNA control region point mutation m.414T>G, and the 

mitochondrial DNA δ4977 common deletion mutation.   
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4.3 Experimental design and methods 

4.3.1 Patient cohort 

All individuals gave informed consent and was formally approved by the local research 

ethics committee. Lower limb skeletal muscle samples from HIV-infected subjects had 

been previously obtained by percutaneous biopsy. Samples from HIV-uninfected 

control subjects had been previously obtained at the time of elective lower limb surgery, 

and submitted to the local Mitochondrial Control Tissue Bank (MCTB). A total of 26 

HIV-infected/NRTI exposed individuals were used along with 12 HIV-infected/NRTI 

naïve and nine MCTB controls. DNA was previously extracted from these samples 

(Nucleon DNA extraction kit, Tepnel life science, Manchester, UK) and stored at -80°C.  

4.3.2 Pyrosequencing 

In order to investigate the heteroplasmy level of the control region (D-loop), m.414T>G 

mutation, pyrosequencing was performed as previously described (see Section 3.9.2). 

Technical replicates were taken in duplicate and the average reading reported. Each 

sequencing run included three controls: a 100% mutant, 100% wild type and 50:50 mut: 

wild type, as described in Section 3.9.3.  

4.3.3 Common deletion qPCR quantification assay 

The proportional level of mitochondrial DNA m.δ4977bp common deletion 

(m.8470 - m.13447) was quantified using a real-time qPCR assay as previously 

described (Payne et al., 2011). The level of common deletion (CD) per mitochondrial 

DNA copy was determined by comparison with the copy number of MT-ND1.  The 

result was expressed on a logarithmical scale to improve resolution of the lower level of 

CD detection.   

The qPCR CD standards were generated (see Table 4.1) using a sample of DNA from a 

patient with KSS (Kearns Sayre syndrome) with a known level of the specific δ4977 

mitochondrial DNA common deletion mutation. The standards were processed as 

previously described (see Section 3.6). The standards were diluted serially from 10
8 

- 

10
2
 copies per cell and amplified in triplicate on the qPCR run, with an assessment of 

the amplification efficiency made for both reactions.  

The CD-MT-ND1 qPCR assay, perform on the Bio-Rad CFX system in skirted deep-

well, white bottom plates (Bio-Rad), and was performed in 10µL reactions consisting of: 

1x Evagreen supermix (Bio-Rad), 625nM primers (forward and reverse; Table 4.1) and 
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approximately 50ng DNA per sample, with each amplified in triplicate, using a positive 

control with a known common deletion present. The cycling conditions comprised: 

98
o
C initial denaturation for 2 minutes, followed by 40 cycles at 98

o
C for 5 seconds and 

annealing at 60
o
C for 20 seconds. A melt curve was taken at the end of analysis.  
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Table 4.1 The qPCR template standards and qPCR primers used in the m.δ4977 mitochondrial common deletion quantification qPCR assay. 

 

Name Forward 3’-5’ Reverse 3’-5’ Tm (
o
C) 

Product size 

(bp) 

CD qPCR standards 

CD standard TCCTAACACTCACAACAAAAC GTTAGGTAGTTGAGGTCTAGG 58 1158 

CD qPCR amplification primers 

CD qPCR CCCACCATAATTACCCCCATAC GGAGTAGAAACCTGTGAGGAAAGG 60 115 
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4.3.4 Large scale deletion determination 

To investigate the presence and number of large scale deletion mutations in the samples, 

a long range PCR was used to screen for mtDNA deletions as previously described (see 

Section 3.7).  

The PCR products were electrophoresed on a 1% agarose gel, as previously described 

(see Section 3.5) using the DNA ladder 1kb plus (Thermo-Scientific, Hampshire, UK) 

to determine the number of bands present.  

4.3.5 Statistical analyses 

The following tests were performed using SPSS: non-parametric correlations 

(spearman’s rank and Mann-Whitney), univariate linear regression and student t-tests. 
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4.4 Results 

4.4.1 m.414T>G quantification 

The mitochondrial D-loop point mutation, m.414T>G, was quantified using 

pyrosequencing and the heteroplasmy level has been graphed and expressed as mutant 

percentage level for all three groups of subjects (Figure 4.1). The lower detection limit 

of the pyrosequencing assay was deemed to be 2%, based upon my previous 

optimisation assay, as described in Section 3.9.3. All patient data can be found in 

Appendix A. 

The most striking feature of the heteroplasmy graph is the large distribution of the 

mutation level in the HIV
+
/NRTI-exposed condition compared to the other two groups. 

The highest heteroplasmy limit was found to be 9% in this group. Approximately half of 

subjects (14 out of 26) in the HIV+/NRTI-exposed group showed heteroplasmy levels 

clustered at the 2% level, consistent with no detectable m.414T>G mutation. The 

remaining subjects (12 of 26) showed increased levels which ranged from 2.5% up to 

the 9%.  

The HIV
+
/NRTI-naïve group showed a heteroplasmy level across all subjects of 2%, 

representing the lower level of resolution of the assay, and therefore may be considered 

to show no detectable m.414T>G heteroplasmy. The MCTB control samples also 

showed a similar pattern with eight of the nine subjects presenting with the lower limit 

of 2% and one sample contained 3% heteroplasmy.  

The distribution of the heteroplasmy level in the HIV
+
/NRTI-exposed group was 

assessed for correlations with previously collected, anonymised, clinical treatment data. 

Highly significant, positive correlations were found with the heteroplasmy level and the 

length of NRTI treatment (p<0.001) across the NRTI-exposed group. The m.414T>G 

level was also found to correlate with exposure to pol γ inhibiting NRTI’s, ddC, ddI and 

d4T (p=0.02) with a Mann-Whitney test also indicates significance (p=0.03) compared 

to the untreated group.  

In order to determine the effects of the specific NRTIs, univariate linear regression 

within the HIV
+
/NRTI-exposed group was performed to investigate the above 

correlation of m.414T>G heteroplasmy level and the pol γ inhibiting NRTIs. Prior 

history of exposure to each of these NRTIs (AZT, ddI, ddC, d4T) was found to be 
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statistically significantly associated with m.414T>G heteroplasmy level, with p-values 

of 0.022, 0.006, 0.006 and 0.006, respectively.   
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Figure 4.1 The heteroplasmy level of m.414T>G, quantified by the use of pyrosequencing in the muscle samples of lower limb in HIV
+
/NRTI-

exposed individuals, HIV
+
/NRTI-naïve individuals and control muscle samples (MCTB). The lower detection limit of the assay was determined 

to be 2%. Lines indicate group average.  
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4.4.2 Quantitation of large scale deletions 

The screening of large scale deletions in the samples using long range PCR (see Section 

4.3.4) indicated that there was a range of deletions present (Figure 4.2).  

In the HIV
+
/NRTI-exposed individuals and 12 out of 26 were found to have deletions 

present. This represents 46% of samples containing a deletion, with eight of the 12 

showing multiple bands/deletions from the LR-PCR, representing 31% of all 

HIV
+
/NRTI-exposed samples. 

Within the HIV
+/

NRTI-naïve group, three out of the 12 samples were found to contain 

deletions. This represents 25% of samples containing a deletion and of these; two were 

found to contain multiple bands/deletions, representing 17% of the all samples. In the 

untreated, MCTB control samples, there were no deletions present in any of the nine 

samples.  

The deletion data was categorised into three groups: no deletions, one deletion, and 

multiple deletions. This was then correlated (non-parametric) with exposure to pol γ 

inhibiting NRTIs and duration of treatment. The associations were found to be 

statistically significant in both cases, with more deletions found in those treated with pol 

γ inhibiting NRTIs (p=0.036), and in those with greater length of treatment exposure 

(p=0.028). Individuals exposed to d-drugs were found to have more deletions (p=0.009) 

than those never exposed. Age did not appear to be a contributor to number of deletions 

(p=0.624). 
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Figure 4.2 Four panel image illustrating the long range PCR gel images of large scale deletions. A) 1 – 12, HIV
+
/NRTI-exposed samples; sample 

3, HIV
+
/NRTI-naïve B) 13 – 24, HIV

+
/NRTI-exposed samples C) samples 25 – 27, HIV

+
/NRTI-exposed samples; 28 – 36, HIV

+
/NRTI-naïve 

samples D) comprised of two gel images – 37 – 38; HIV
+
/NRTI-naive samples, 39 – 41 MCTB; 42 – 47, remaining MCTB samples. 
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4.4.3 Common deletion quantification 

The level of the δ4977 mitochondrial DNA common deletion mutation (CD) was 

quantified using qPCR, expressed as CD per mtDNA copy and presented 

logarithmically (Figure 4.3). One HIV
+
/NRTI-exposed sample was excluded from the 

analysis due to a lack of adequate DNA.   

The HIV
+
/NRTI-exposed subjects show a statistically higher CD level compared to the 

HIV
+
/NRTI-naïve individuals using a two-tailed t-test (p=0.024). The mean CD level 

was found to be -4.39 log10 (CD)/mtDNA (±S.D 0.9), whereas the mean CD in the 

HIV
+
/NRTI-naïve subjects was -5.16 log10 CD/mtDNA (±S.D 0.93).  

The level of CD was found to correlate (non-parametric) with months of treatment 

(p=0.04) and was specifically associated with exposure to the d-drugs (ddI, d4T and 

ddC) compared with no d-drugs exposure (p=0.01). The cumulative months of exposure 

to d-drugs (one or more) was also found to be statistically significantly associated with 

CD level (p=0.015). The CD level was found to be statistically significant when 

compared to the total (mitochondrial toxic + mitochondrial safe) cumulative treatment 

duration (p=0.009).In addition to these correlations, there was also evidence of the level 

of CD correlating with age of the individual (p=0.034) and the percentage of 

COX-deficient cells in individuals (p=0.013).  

The CD level in the MCTB control individuals was found to have range of data -3.59 to 

-5.60 log10 (CD)/mtDNA, with a mean level of -4.34 log10 (CD)/mtDNA (±S.D 0.69). 

The difference between MCTB and HIV
+
/NRTI-naïve was found to be not significant 

(p=0.05).  
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Figure 4.3 The quantification of mitochondrial DNA common deletion, expressed as log10 

CD/mtDNA. The black coloured box and whisker plot represents the HIV/NRTI-naïve individuals 

and the red represents the HIV/NRTI-exposed individuals which was found to be significantly 

higher (p=0.024) by a two-tailed t-test.  
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4.5 Discussion 

The aim of this study was to assess the levels of the mitochondrial DNA control region  

m.414T>G point mutation, the common deletion mutation, and the number of large 

scale deletion mutations present in skeletal muscle DNA samples from control/healthy 

individuals, HIV
+
/NRTI-naïve individuals and HIV

+
/NRTI-exposed individuals.  

4.5.1 m.414 T>G data summary 

The presence of the point mutation m.414T>G (see Figure 4.1) was evident in only the 

HIV
+
/NRTI-exposed individuals. NRTI-naïve and MCTB control individuals showed 

no evidence of detectable mutation (within the 2% heteroplasmy limits of resolution of 

the assay), except in one control sample with a 3% heteroplasmy level detected. 

The level of m.414T>G has been previously associated with age in skeletal muscle 

tissue (Del Bo et al., 2003). Although there were no aged individuals included in this 

study, the average age amongst the HIV
+
/NRTI-naïve and HIV

+
/NRTI-exposed groups 

were similar (35.7 and 40 years old, respectively). Therefore it is not surprising that 

there was no signal that point mutation level was associated with age in this study. 

However these data do suggest that HIV
+
/NRTI-exposed individuals present with an 

‘aged’ m.414 genotype, plausibly suggestive of an accelerated intrinsic ageing effect.  

The evidence that the level of m.414T>G increases through NRTI exposure was further 

supported by strong associations with the NRTI treatment duration (p<0.001), and the 

specific correlations with exposure to the ‘old’ (pol γ inhibiting) NRTIs (AZT, d4T, ddI 

and ddC; p-values = 0.022, 0.006, 0.006, 0.006). None of the HIV
+
/NRTI-exposed 

individuals who had received only new NRTIs, displayed high levels of m.414T>G; all 

levels were comparable to the MCTB individuals with the highest of 3%, suggesting 

that HIV itself does not cause an increase in the m.414T>G point mutation.   

4.5.2 Mitochondrial deletion data summary 

The level of CD in the MCTB controls was not significantly different from the 

HIV
+
/NRTI-naïve individuals (p=0.05). This suggests that the HIV infection itself does 

not contribute towards an increased CD level, with the mean age of the MCTB group 

and HIV
+
/NRTI-naïve group being highly similar, 32 and 35 years old, respectively. 

There were no large scale deletion mutations detected by LR-PCR in the MCTB 

samples, in-keeping with the lower CD level.  
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In the HIV
+
 groups, there was a significant increase in CD level in the NRTI-exposed 

individuals compared to the naïve individuals (p=0.024) (see Figure 4.3).  

The previously described (Maagaard et al., 2006) notion of an increased deletion level 

in NRTI-exposed individuals with COX-deficient cells, which was also found to 

statistically correlate in this dataset, with a higher CD level in those with a higher 

percentage of COX- cells (p=0.013). The measurement of deletions by either LR-PCR 

or CD-assay indicates that any increase in deletions may be due to either clonal 

expansion within the COX-deficient cells or an increase at a lower level across many 

cells. However, the percentage of total COX-deficient cells gives an indication as to 

how much clonal expansion is occurring in a sample.  

The association of multiple mtDNA deletions with exposure to d-drugs, such as 

didanosine was also found (p=0.036) and in a time dependent manner linking d-drug 

exposure time with the accumulation of one or more deletions (p=0.026).  As the 

clinical data was based on lifetime exposure and not current (i.e. none of the subjects 

were receiving d-drugs at time of biopsy), the effects from the d-drugs are likely to be 

not reversible suggesting they have caused irreversible damage.   

There was no age correlation found with the number of deletions (p=0.624), although 

there was with the level of CD (p=0.034). The accumulation of CD over time has been 

correlated with age in a number of different tissues (Y. F. Zhang, 2007; Gendron et al., 

2012; P. Wang et al., 2013). The data presented here supports this notion and suggests 

that due to the higher CD level present in the HIV
+
/NRTI-exposed individuals, there 

may be an accelerated accumulation of the CD that is irrespective of age and is due to 

the time dependent exposure to NRTIs (p=0.01). The length of exposure time ranged 

from 29 months to 193 months, with the individual exposed to NRTIs for 193 months 

also presenting with the highest percentage of COX-deficient cells (4.5%) and the 

second highest CD level at -2.91 log10 (CD)/mtDNA; the individual exposed for the 

least number of months was found to have the second lowest CD level of -6.03 log10 

(CD)/mtDNA. Overall these data therefore show a strong dependence on duration of 

NRTI exposure.  

4.5.3 Study limitations 

There are three limitations to this study that may affect the understanding of the data. 

These are: 
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 The mtDNA CD measurement is not fully representative of mtDNA deletions. 

The CD does not represent the total mtDNA deletion population and has been 

recently shown to differ in levels between tissues and individuals, especially in 

highly energetic tissues such as muscle and brain (Phillips et al., 2013). 

Although LR-PCR was used for screening for other deletions, it is only a semi-

quantitative technique.   

 The measurement of one point mutation (m.414T>G) is not representative of the 

entire mtDNA genome. The behaviour of the mutation may also depend upon 

the underlying haplogroup. This point mutation was chosen for two reasons: the 

correlation of the m.414T>G mutation with age and the fact it is known to be a 

neutral mutation. 

 Although there is an expansion of the m.414T>G present in some samples, this 

does not indicate whether it is an event present in only select cells, such as 

COX-deficient cells, or whether it is across the board in many cells as a low 

level.  
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4.6 Chapter conclusion 

These data demonstrate an increase in mtDNA point mutations (m.414T>G) and 

large-scale deletion mutations (including the δ4977 common deletion; CD) in 

association with NRTI exposure. These effects are principally seen in those patients 

exposed to the older, pol γ inhibiting NRTIs.   

These NRTI-mediated effects are comparable with the changes expected much later in 

life in association with normal ageing.  

.   
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Chapter 5. The in vitro effects of NRTIs on the Behaviour of 

Mitochondrial DNA Deletion Mutations in Mitotic and Post-mitotic 

Models 
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5.1 Background 

Large scale mitochondrial DNA deletions are an important pathological feature of 

mitochondrial disease (D. C. Wallace, 1992; Schaefer et al., 2008) and there is a large 

amount of evidence to suggest that they are involved in the process of intrinsic ageing, 

with large scale deletions accumulating with age seen among a variety of mammalian 

species (Khrapko et al., 1999; Z. Cao et al., 2001; Herbst et al., 2007). Such studies 

elegantly demonstrate that deletion accumulation in ageing occurs through generation of 

a ‘clonal’ population that is dominated by a single large scale deletion within an 

individual cell. 

The cellular mechanism by which defective mitochondria accumulate within cells is 

currently unknown; however, there are a number of theories with varying evidences to 

suggest how this occurs. The earliest suggestion comes under the umbrella term ‘vicious 

cycle theory’ (N. Arnheim and Cortopassi, 1992a). This theory postulates that typical 

mutations cause the host mitochondria to generate an increased amount of ROS (see 

Section 1.1.3), thereby promoting or inducing further mutations in an accelerate fashion 

(de Grey, 2005). This theory is flawed by the lack of multiple deletions present in 

ageing and diseased patients, which are populated with purely one single mutant form. 

The theory does however, give support to the idea that mutations arise at the same point 

in the mitochondrial genome, which has been discussed regarding the timing of 

mutations in ageing (Khrapko, 2011).  

The two most commonly quoted theories to explain clonal expansion are random drift 

and a replicative advantage mechanism. The former has been neatly illustrated via 

computer simulations that the process of deletion accumulation in ageing humans 

(Chinnery and Samuels, 1999; Elson et al., 2001), using previously demonstrated 

mitochondrial replicative dynamics (Shadel and Clayton, 1997), can occur purely 

through random drift alone. These studies mimic mutation accumulation observations 

seen in patients with late onset mitochondrial disorders; however, more recent 

simulations suggest that random drift would only explain clonal expansion in long lived 

mammals, such as humans, and not for short lived species such as rodents (Kowald and 

Kirkwood, 2013).  

Clonal expansion by a replicative advantage mechanism has been supported by a 

number of studies (D. C. Wallace, 1992; Z. Cao et al., 2001) which arises from the idea 
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that a deletion mutation creates a reduction in the size of the genome and therefore a 

reduction in the replication time. Whilst this theory would make logical sense, it has 

been criticised on the basis that the time required for replication of mtDNA is in the 

order of 75 minutes (Clayton, 1982), which isn’t sufficient to cause a replicative 

difference based on the fact the half-life of a mtDNA is approximately 8-23 days (Korr 

et al., 1998). 

The case for clonal expansion of mutations isn’t restricted to purely mitochondrial 

disease patients and aged individuals; there’s increasing evidence that HIV-infected 

individuals receiving NRTIs also have an increased mtDNA mutation burden and the 

levels previously found are comparable to that of ageing individuals but it is unknown 

how they arise  (Payne et al., 2011).  
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5.2 Experimental aims 

The aims of the study were to determine: 

 The relative effects of NRTI-exposure on the replication of wild-type and 

deleted mtDNA. 

 Whether NRTI exposure leads to new deletion formation through de novo 

mutagenesis. 

 Whether there is a dose response effect of NRTIs on deleted mtDNA? 

 Whether there are differences between mtDNA behaviour in mitotic and 

post-mitotic cells in terms of mtDNA wild-type and mutant copy number 
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5.3 Experimental design and methods 

5.3.1 Trans-mitochondrial cybrid cell culture 

Trans-mitochondrial cybrid cell lines were cultured and propagated as previously 

described (see Section 3.1.1 and 3.1.3); cells were grown in T25 flasks (Greiner Bio-one, 

Stonehouse, UK) and split when reaching 70-80% monolayer confluency with sufficient 

media available to allow for cells to remain in the exponential growth phase. All cells 

were checked before freezing and routinely throughout the experiment for the presence 

of mycoplasma infection (see Section 3.1.7). 

5.3.2 Rat cerebellar neuron harvesting and propagation 

The pregnant WISTAR rat was euthanized by administration of carbon dioxide. The 

E18 (embryonic developmental day 18) embryos were removed and decapitated, 

transferring the heads to a small petri dish (VWR, Leicestershire, UK) containing Hanks 

Balanced Salt Solution (HBSS; Sigma-Aldrich, Dorset, UK). 

The cerebellum was separated from the cortices and placed into another small petri dish 

containing HBSS. The cerebellum meninges were carefully removed and then the 

cerebellum finely chopped using a round end scalpel in HBSS solution, before 

centrifugation for 3 minutes at 1,300rpm. The supernatant was removed and 5ml of 

Accutase (Gibco, Life-Technologies, Paisley, UK) added and incubated for 20 minutes 

at 37
o
C, with regular agitation. Prepared DNase (Sigma-Aldrich, Dorset, UK) as per 

manufacturer’s guidelines and 500µL was added to the suspension, and then centrifuged 

at 1,300rpm for 3 minutes. The supernatant was removed and 3ml FCS (Sigma-Aldrich, 

Dorset, UK) added. The suspension was then triturated using a 19G 1ml needle, 

followed by centrifugation at 1,600rpm for 3 minutes. The supernatant was removed 

and the cell pellet re-suspended in 3ml of the DMEM culture medium containing: 1% 

penicillin/streptomycin (Sigma-Aldrich, Dorset, UK) and 2% B27 (Gibco, 

Life-Technologies, Paisley, UK).  

A cell count was performed using a haemocytometer and trypan blue as previously 

described (see Section 3.1.6), seeding approximately 2,000,000 cells per well in a 6 well 

plate (Greiner Bio-one, Stonehouse, UK) which had been treated with Poly-L-Lysine 

(Sigma-Aldrich, Dorset, UK). Poly-L-Lysine treatment consisted of adding 2ml solution 

to each well for 20 minutes, incubated at 37
o
C. The cells were supplemented with 2ml 
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of the appropriate media, which was refreshed every 72hrs. After the first 72 hours, 

neurons begin to form neurites and networks (see Figure 5.1); however, they do not 

replicate and are post-mitotic cells.  

At the end of the experiment, media was aspirated and the cells treated with 1x Trypsin-

EDTA (Life-Technologies, Paisley, UK) for 5 minutes to detach them from the wells. 

The cells were then pelleted at 1,300rpm for 5 minutes. The supernatant was aspirated 

and the pelleted stored at -20
o
C until required. 

 

Figure 5.1 E18 cerebellar rat neurons 72 hours post culturing; the neurons have formed neurites 

between each neuron. 
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5.3.3 NRTI treatment experimental design 

The NRTI exposure-repopulation assay was performed using the NRTIs and 

concentrations as previously described (see Section 3.1.5).  

Exposure of the drug starts at experimental day 0 and exposure times were determined 

through previous pilot work (Dr Brendan Payne, IGM, Newcastle University, UK).  

In order to determine whether or not cells treated with NRTIs were subject to a 

molecular bottleneck mechanism affecting the deletion mutation, cybrids were treated 

with ddI at physiological concentration as previously described (see Section 3.1.5) in 10 

biological replicates with 10 untreated biological replicates for 14 days before remove 

the ddI and exposing the cells for a further 14 days to normal growth media (see Figure 

5.4).  

 

Figure 5.2 NRTI exposure-repopulation assay protocol for physiological dosing experiment of 

trans-mitochondrial cybrids 

 

 

Figure 5.3 NRTI exposure-repopulation assay time course for the dose-response (10x physiological) 

study performed using trans-mitochondrial cybrids. 
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Figure 5.4 ddI exposure-repopulation assay procedure for assessment of genetic bottleneck 

mechanism in trans-mitochondrial cybrids grown in T25 flasks from a single cryovial for the 

untreated (U1-10) replicates and ddI treated (D1-10) replicates (A), with assay time course 

illustrated in days (B). 
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Figure 5.5 Experimental 6-well plate highlighting typical set up of NRTI condition layout for 

harvested cerebellar E18 neurons in NRTI exposure-repopulation (A) and NRTI exposure only (B) 

assays.  

 

 

Figure 5.6 Experimental 6-well plate highlighting set up of ddI treatment only for individual E18 

rat cerebellar neurons in treatment only assay. The embryo cerebellum was halved with one half 

used in the ddI condition and the other used in the untreated condition. 



The in vitro effects of NRTIs on the Behaviour of Mitochondrial DNA Deletion Mutations in Mitotic and 

Post-mitotic Models 

 

 

115 

 

5.3.4 DNA extraction protocol 

For the cybrid cells, each time they were split, the residual cells that were not re-seeded 

in propagation were span at 1300rpm for 5 minutes, supernatant removed and the pellet 

frozen at -80
o
C, until required. The DNA was then extracted using the DNeasy® blood 

and tissue extraction kit (Qiagen, Manchester, UK) as previously described (see Section 

3.3). The same protocol was applied to the extraction of DNA from the neuronal cells at 

the end of the study.  

5.3.5 Mitochondrial network fragmentation analysis 

In order to make an assessment of mitochondrial network morphology changes before, 

during and after NRTI exposure at the physiological concentration of each NRTI in the 

cybrids, two time points throughout the exposure phase of the experiment were chosen 

for assessment; day 13 and 27.  

Cells were seeded at a density of 25,000 cells per well in a 12-well plate (Greiner bio-

one, Stonehouse, UK) on 16mm round cover slips (VWR) and allowed to adhered for 

48 hours at 37
o
C and 5% CO2, in normal cybrid growth media with corresponding 

treatment NRTI (see Section 5.3.1). The media was then aspirated out of the wells and 

the cells on the cover slip washed twice in PBS (Oxoid, Thermo-Scientific, Hampshire, 

UK) before the addition of 0.5ml/well of staining solution consisting: DMEM cell 

media (see Section 5.3.1), 1µg/µL Hoechst 33342 (Molecular Probes, Life-

Technologies, Paisley, UK) and 100nM MitoTracker® Green (Molecular probes, Life-

Technologies, Paisley, UK). To allow for incorporation of the dyes, the wells were 

incubated for 30 minutes at 37
o
C and 5% CO2. Following this, the staining solution was 

aspirated and the cover slips washed three times with PBS and stored in culture medium 

prior to visualisation on a microscope.   

The cover slips were removed from the wells using fine point tweezers and the excess 

media removed using absorbent tissue before being inverted (cell side facing down) 

onto a microscope slide with a small drop (5µL) of PBS between them to prevent the 

cells drying. The mitochondrial network morphology and nucleus structure were then 

captured using an upright widefield Axio Imager.Z1 epifluorescence (Carl Zeiss, 

Cambridge, UK) with an oil-immersion objective (plan apochromat 63x / N.A. = 1.4) on 

an AxioCam HRm high resolution digital camera using AxioVision v4.6 software (all 

Carl Zeiss, Cambridge, UK). The MitoTracker® Green probe stained the mitochondrial 
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network and was imaged using the GFP (green) channel. The Hoechst 33342 probe 

stained the nucleus and was detected using the DAPI (blue) channel. Each cell was 

captured in a series of z-stack ‘slices’ of 20 images at 0.2µM separation before being 

saved as a compressed single file including metadata. Approximately 10 single cells 

were imaged, depending upon cell separation on the cover slip, image clarity and the 

hydration status of the cells.  

Prior to analysing the morphology the images went through a process of deconvolution 

using Huygens Essential Software (Scientific Volume Imaging, Netherlands). This 

process recovers the image that has been degraded through the physical processes 

involved in capturing the image by using a point spread function to remove the 

‘spreading’ or ‘blurring’. The deconvolved images were then used to analyse the 

mitochondrial network morphology using the following parameters; garbage, 50; seed, 

0%; threshold, 5%. The mitochondrial length and volume for each cell analysed was 

copied into GraphPad™ Prism v5 (GraphPad™ Software, CA, USA) for visual 

graphing and statistical analyses.  

5.3.6 Quantification of human mitochondrial deletion and copy number 

The deletion level and mitochondrial copy number was calculated using the multiplex 

qPCR assay as previously described (see Section 3.6.1) using previously described 

analysis methods for deletion level and copy number calculation (see Sections 3.6.2 and 

3.6.3). The concentration of each DNA sample was standardised to 25-50ng loaded into 

each 25µL reaction. Each sample was run in duplicate on the reaction plate and 

allowing for a 0.5Ct difference between sample replicates. 

Mitochondrial copy number was expressed relative to the untreated group for each time 

point. Therefore, when sample copy number is identical to untreated copy number, 

relative copy number ratio would equal one.  

5.3.7 Measurement of de novo deletion formation 

To investigate whether or not NRTI exposure induces new deletion mutations, a long 

range PCR was used to screen for mtDNA deletions as previously described (see 

Section 3.7). The products were run on a 1% agarose gel, as previously described (see 

Section 3.5) using the DNA ladder 1kb plus (Thermo-Scientific, Hampshire, UK) to 

determine the size of the bands.  
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5.3.8 Quantification of embryonic rat neuron mitochondrial copy number 

To assess the level of E18 neuronal mitochondrial copy number, a novel qPCR assay 

was designed. The assay was designed in the same manner and implemented on the 

same principles as the human qPCR SYBR™ Green method.  

Primers (standards and qPCR) were designed to amplify a mitochondrial region and a 

nuclear housekeeping gene. Unlike human mtDNA, the D-loop region in rats has a large 

conserved region (Reyes et al., 2003), primers were designed in this region for the 

mitochondrial target; β-actin gene was chosen as the nuclear target. The qPCR primers 

were designed to be nested within the template standards (see Table 5.1). The standards 

curves were determined as previously described (see Section 3.6); all samples ran in 

triplicate (see Figure 5.7) on the iQ5™ thermocycler (Bio-Rad), with the mean and 

standard deviation calculated.  

Gene Forward Sequence 5’ – 3’ Reverse sequence 5’ – 3’ Tm 

Template 

D-loop CCATTCATTATCGCCGCCCT CCTTCATGCCTTGACGGCTA 
60 

β-Actin 
CAAAGCTTAACTTTCCCGGCC

C 
AGTCCTTCTGACCCATACCCA 

60 

qPCR 

D-loop 
TCCCCAAGCATATAAGCATGT

AA 

TGGTGCATGTCTAATAACACA

GA 

60 

β-Actin GGAACTCTTCCTCTCCCCCT CGCCCTCGCCCAACC 
60 

Table 5.1 Rattus norvegicus template and qPCR primer properties. Primers were designed using 

genbank accession numbers X14848 and V01217 for the D-Loop and β-Actin, respectively. 
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Figure 5.7 Standard curve dilution series (10
8
 – 10

2 
copies/µL) of nuclear reference gene, β-Actin, 

indicating good eficiency and R
2
, run on the iQ5™ thermocycler using the SYBR™ Green method. 

 

The total mtDNA copy number for each sample was then calculated using the same 

method as previously described (see Section 3.6.3); the SQ (starting quantity), which 

was determined automatically for each sample based on the standard curve values and 

efficiency. Therefore, assuming 100% efficiency, the mtDNA copy number was 

calculated using the following equation: 

𝑚𝑡𝐷𝑁𝐴 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 =   
𝐷 − 𝐿𝑜𝑜𝑝 𝑆𝑄

(𝛽 − 𝐴𝑐𝑡𝑖𝑛
𝑆𝑄
2 ) 

 

5.3.9 Detection of embryonic rat neuron mtDNA common deletion 

To quantify the level of rat mtDNA common deletion, a novel technique was developed. 

The mtDNA common deletion in rats is slightly smaller than that found in humans, but 

still occurs between homologous repeat regions of 16bp and is referred to as m.δ4834. 

The presence of m.δ4834 was detected using small amplicon PCR by designing specific 

primers (see Table 5.2) around the breakpoint region (i.e. m.8103 and 12952) which 

would generate a small ~300bp amplicon (~150bp either side of the break point) when 

the m.δ4834bp was present in a sample. 
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Name Forward primer 5’ – 3’ Tm (
o
C) 

Amplicon Size 

(bp) 

δ4834bp 
F - GGTCTACCAATTGTTGTGACCAT 

R - ATGCTAGGCGTTTGATTGGA 
59 298 

Table 5.2 Primer properties of Rattus norvegicus m.δ4834 small amplicon PCR 

The amplification of the product was performed using 50ng of each DNA sample in the 

following 25µL reactions containing: 10x ImmoBuffer, 2mM dNTPs, forward Primer 

and reverse primer (10µM), 50mM MgCl2 and autoclaved PCR-grade deionised water, 

5U Immolase taq (Bioline, London, UK). 

The product was then amplified under the following conditions: an initial denaturation 

step at 95
o
C for 10 minutes, then 40 cycles of denaturation at 95

o
C for 1 minute, 

annealing at 59
o
C for 1 minute, finally extension at 72

o
C for 30 seconds, with a final 

extension step at 72
o
C for 10 minutes. The product was then run on a 2% agarose gel as 

previously described (see Section 3.5), using the DNA ladder Hyperladder IV (Bioline, 

London, UK) to determine the size of the band. 

5.3.10 Single cell analysis 

To assess the deletion level within single cybrid cells during the NRTI exposure 

protocols, single cell analysis was performed as previously described (see Section 3.1.7). 

Approximately 20 cells were captured and lysed (see Sections 3.2.2) for each condition 

studied at the end of the experiment and 5µL of the lysate loaded into the downstream 

molecular analyses (deletion quantification, see Section 5.3.6).   
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5.4 Results 

5.4.1 Effects of NRTI-exposure on mtDNA 

The total, mutant and wild type mtDNA copy number (relative ratio to the untreated) of 

each NRTI treatment group for the cybrid cells is displayed below (see Figure 5.8, 

Figure 5.9 and Figure 5.10).  Each data point is expressed as the mean values derived 

from the biological and qPCR technical replicates with error bars plotted as standard 

deviations (S.D). All data is expressed on logarithmic scales relative to untreated.  

The ddI condition throughout the experiment has a reduced total copy number compared 

to the untreated especially throughout the exposure phase with a depletion maximum 

present at experimental day 22 with a ratio of 0.59 (±S.D 0.04) with minor fluctuations 

until the end of the exposure phase where at experimental day 29 depletion, it was at 0.7 

(±S.D 0.00). During the post-exposure phase the copy number appears to repopulate by 

experimental day 36 at 1.18 (±S.D 0.23); however, throughout the first eight days of the 

repopulation phase, the spread between replicates was large with approximately 25% 

difference between them.  

The d4T and AZT conditions present with a small amount of depletion of total copy 

number during the exposure phase with depletion maximum present at 0.59 (±S.D 0.10) 

for the d4T and 0.64 (±S.D 0.04) for the AZT by experimental day 22. The general 

trend appears to fluctuate in line with the untreated condition. 

The total copy number of the TDF condition shows hardly any depletion throughout the 

exposure phase. The post-exposure phase shows the condition plateau to a comparable 

level as the untreated, reaching a relative to untreated copy number of 0.95 (±S.D 0.32) 

by the end of the experimental at experimental day 42.  

The mutant copy number graph (Figure 5.9) illustrates the copy number behaviour to be 

highly comparable with total copy number. Across all conditions there’s minimal if any 

difference to the total copy number and fluctuates through the experiment.  

  



 

121 

 

 

Figure 5.8 The total mitochondrial copy number of trans-mitochondrial cybrids during the NRTI exposure-repopulation assay. Red bar indicates exposure 

phase and black indicates untreated phase. Error bars are standard deviations of the mean. 
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Figure 5.9 The mutant mitochondrial copy number of trans-mitochondrial cybrids during the NRTI exposure-repopulation assay. Red bar indicates exposure 

phase and black indicates untreated phase. Error bars are standard deviations of the mean. 
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The picture for the wild-type tDNA is very different. The most clear observation is the 

depletion in the ddI throughout the exposure phase, reaching a depletion maximum of 

0.14 (±S.D 0.03) at experimental day 29 (p<0.001; Table 5.3).  The repopulation sees 

the copy number begin to increase and reaches a repopulation maximum of 0.57 (±S.D 

0.49) at experimental day 40. It is evident however, that there’s a large spread between 

the two biological replicates, contributing towards the large standard deviation values 

present throughout the repopulation phase.  

The d4T, AZT and TDF conditions show little depletion throughout the exposure phase 

and are comparable to the total and mutant copy number graphs (Figure 5.8 and Figure 

5.9). All three conditions reach an experimental depletion maximum at experimental 

day 22 of 0.67 (±S.D 0.11), 0.85 (±S.D 0.09) and 0.87 (±S.D 0.06), respectively. All 

three conditions then increase at experimental day 29 to greater than the untreated 

condition with a d4T increasing to 1.03 (±S.D 0.09), AZT 1.42 (±S.D 0.1) and TDF 

1.49 (±S.D 0.01).  

During the repopulation phase, the d4T, AZT and TDF conditions can be seen to 

fluctuate around a similar level as the untreated with a repopulation maximum found to 

be 1.03 (±S.D 0.11), 1.29 (±S.D 0.15) and 1.40 (±S.D 0.31). None of the exposure and 

post-exposure data for d4T, AZT and TDF were found to be significantly different to 

the untreated with p- values displayed in Table 5.3, as determined by a student t-test at 

experimental day 29.  
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Condition 
Copy number 

(relative to untreated) 
S.D p-value 

ddI 0.14 0.03 <0.001 

d4T 1.03 0.09 0.865 

AZT 1.42 0.1 0.471 

TDF 1.49 0.31 0.159 

Table 5.3The p-values for the exposure-repopulation data compared to the untreated values at 

experimental day 29.   
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Figure 5.10 The wild type mitochondrial copy number of trans-mitochondrial cybrids during the NRTI exposure-repopulation assay. Red bar indicates 

exposure phase and black indicates untreated phase. Error bars are standard deviations of the mean. 
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The mitochondrial deletion heteroplasmy has been graphed and expressed as deletion 

level percentage for the cybrid cells during the NRTI exposure and post-exposure assay 

(Figure 5.11). Each data point is expressed as the mean values from the biological and 

qPCR technical replicates, with error bars plotted as standard deviations. 

The striking change in deletion heteroplasmy is seen exclusively in the ddI condition. 

During the exposure phase, the heteroplasmy level increases from 75.3% to 95.6% 

(±S.D 1.6%) by experimental day 29 and it was found to be statistically significantly 

different to the untreated (p<0.01).  This shift represents an experimental heteroplasmy 

shift maximum of 20.4%. The heteroplasmy level reduces during the post-exposure 

phase to a heteroplasmy of 85.6% (±S.D 7.17%) at experimental day 42. The overall 

shifts during both the exposure and post-exposure phase was found to be highly 

significant (p<0.001) at experimental day 42 (t-test) compared to the untreated. 

The d4T, AZT and TDF conditions appeared to fluctuate slightly throughout the 

experiment and remain comparable to the untreated condition.  

The overall final shift in heteroplasmy of the d4T, AZT or TDF condition was found not 

to be significant; d4T, p=0.847; AZT, p=0.589; TDF, p=0.810. Figures derived using 

the experimental day 42 time point, implementing a two tailed student t-test. 
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Figure 5.11 The heteroplasmy distribution of large scale deletion within cybrid cells during the NRTI exposure-repopulation assay. Red bar indicates 

exposure phase, black bar indicates repopulation phase. Error bars are standard deviations of the mean. 
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5.4.2 Effect of NRTI exposure on mitochondrial network structure 

The average length and average number of mitochondrial networks for each condition at 

experimental day 13 and 27, during the NRTI exposure-repopulation assay, were 

estimated for approximately 10 single cells and the data graphed as column graphs with 

error bars expressed as standard deviations of the mean (see Figure 5.12 and Figure 

5.13).  

The average mitochondrial length (see Figure 5.12) at experimental day 13 appears to 

be almost constant across the conditions; However, conditions ddI and TDF were found 

to have a statistically significant smaller average network length, compared to the 

untreated condition, with p-values of 0.01 and <0.001, respectively.  Whereas at 

experimental day 27: ddI, d4T and TDF, were all statistically significant in mean length 

compared to the untreated condition. 

The average mitochondrial length in the untreated condition reduces by 25.92% 

(p<0.001) by experimental day 27, and a 15.26% (p=0.135) reduction in condition AZT; 

whereas, ddI, d4T and TDF conditions all increase accordingly: 8.64% (p=0.540), 33.58% 

(p=0.018) and 29.42% (p=0.018) (see Table 5.4).   

Experimental 

Condition 

Day 13 

Mean Length  

(µM) 

Day 27 

Mean Length  

(µM) 

Mean 

percentage 

change 

p-value  

Untreated 3.24 (0.47) 2.40 (0.66) - 25.92% <0.001 

ddI 3.01 (0.42) 3.27 (0.79) + 8.64% 0.540 

d4T 2.68 (0.44) 3.58 (0.89) + 33.58% 0.0180 

AZT 3.08 (0.59) 2.61 (0.63) - 15.26% 0.135 

TDF 2.38 (0.32) 3.08 (0.79) + 29.42% 0.0180 

Table 5.4 Average mitochondrial length changes in all conditions from experimental day 13 to 

experimental day 27 during the NRTI exposure-repopulation assay. Expressed as mean and S.D (in 

brackets) of 10 replicates, as measure in µM. Percentage change, from day 13 to 27, measures gain 

(+) and losses (-). P-values calculated by student t-test. 

The average number of mitochondrial networks (see Figure 5.13) at experimental day 

27 decreases from experimental day 13 in all NRTI conditions; however the number of 

networks actually increases in the untreated condition by 74.73%. The condition with 
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the greatest decrease in number of mitochondrial networks was d4T with a 78.10% 

decrease. AZT condition decreased the least from experimental day 13 to 27 with a 

24.31% decrease. The ddI and TDF conditions were found to be decreased by 33.90% 

and 75.82%, respectively, from experimental day 13 to 27 (see Table 5.5). 

Experimental 

Condition 

Day 13 

Mean Number  

(µM) 

Day 27 

Mean Number  

(µM) 

Mean Percentage 

Change 

Untreated 56.6 (26.35) 131.33 (60.02) 74.73% 

ddI 94.5 (26.70) 60.6 (30.18) -33.90% 

d4T 122.5 (64.13) 44.4 (16.59) -78.10% 

AZT 114.56 (75.23) 90.25 (67.55) -24.31% 

TDF 126.45 (82.37) 50.63 (42.34) -75.82% 

Table 5.5 Average number of mitochondrial networks across all conditions with mean changes 

from experimental day 13 to experimental day 27 during the NRTI exposure-repopulation assay. 

Expressed as mean and S.D (in brackets) of 10 replicates. Percentage change, from day 13 and 27, 

measures gains (+) and losses (-). 
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Figure 5.12 The average mitochondria network length, calculated from 10 individual cells for each treatment condition, at experimental day 13 and 17, during the 

NRTI exposure-repopulation assay. Error bars are standard deviations of the mean. 
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Figure 5.13 The average number of mitochondrial networks calculated from 10 single cells for each treatment condition, at experiemntal days 13 and 27, during the 

NRTI expsoure-repopualtion assay. Error bars are standard deviations of the mean. 
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5.4.3 Modelling NRTI-induced molecular bottleneck 

The total, mutant and wild type mitochondrial copy number of each of the 10 replicates 

of ddI exposure for the cybrid cells is displayed below (see Figure 5.14, Figure 5.15 and 

Figure 5.16).  No results are presented for experimental day 28 due to DNA extraction 

failure. 

A molecular bottleneck effect on mutation heteroplasmy would be predicted to manifest 

as an increase in the spread of mutant heteroplasmy levels following the period of 

mtDNA depletion (‘the bottleneck’).  

Overall, the data highlights three key findings: 

 The total copy number in both conditions shows fluctuation with minor 

depletion present in the ddI-exposed condition. 

 The mutant copy number behaves almost identically to the total copy number 

with the untreated found to fluctuate throughout the experiment and the 

ddI-exposed condition showing minor depletion. 

 The wild-type copy number in the ddI-exposed condition behaves in the 

opposite manner to the total and mutant cop number, with a large depletion 

present by the end of ddI-exposure, at experimental day 14 in all replicates. The 

untreated condition wild-type copy number fluctuates throughout the experiment,  

in-line with the total mutant copy number.  

The mitochondrial large scale deletion heteroplasmy of each replicate (10 biological 

replicates) in the ddI exposure-repopulation study to assess for a genetic bottleneck 

effect in the mitochondrial trans-mitochondrial cybrid cell line is displayed below (see 

Figure 5.17). Each data point is expressed as the mean values from the qPCR technical 

replicates with error bars plotted as standard deviations. 

The key finding from this graph is all of the ddI-exposed replicates increase in mtDNA 

heteroplasmy deletion level during the exposure phase for the first 14 experimental days. 

The replicates were found to congregate at almost the same level at a mean of 97% 

heteroplasmy across the replicates. After the exposure phase, the deletion level slowly 

decreases until experimental day 24. The untreated conditions were found to have a 

fluctuating heteroplasmy level throughout the experiment.  
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Figure 5.14 Total mitochondrial copy number through ddI exposure-repopulation assay to assess for a mitochondrial genetic bottleneck. Red bar indicates 

ddI exposure phase and black bar indicates repopulation phase. The red lines indicate ddI exposed replicates and the black indicate untreated replicates. 
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Figure 5.15 The mutant mitochondrial copy number through ddI exposure-repopulation assay to assess for a mitochondrial genetic bottleneck. Red bar 

indicates ddI exposure phase and black bar indicates repopulation phase. The red lines indicate ddI exposed replicates and the black indicate untreated 

replicates.
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Figure 5.16 The wild type mitochondrial copy number through ddI exposure-repopulation assay to assess for a mitochondrial genetic bottleneck. Red bar 

indicates ddI exposure phase and black bar indicates repopulation phase. The red lines indicate ddI exposed replicates and the black indicate untreated 

replicates. 
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Figure 5.17 The distribution of a large scale deletion number through ddI exposure-repopulation assay to assess for a mitochondrial genetic bottleneck. Red 

bar indicates ddI exposure phase and black bar indicates repopulation phase. The red lines indicate ddI exposed replicates and the black indicate untreated 

replicates. 
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5.4.4 Effect of NRTI exposure on the distribution of mtDNA deletion mutation in 

single cells 

The heteroplasmy distribution of single cells isolated from three replicates in the trans-

mitochondrial cybrid cell line experiment at experimental day 24, is graphed below (see 

Figure 5.18). Each point on the graph indicates a single biological replicate from one 

cell. The mean heteroplasmy of the pooled replicates for the untreated and ddI exposed 

group are shown in Figure 5.18.  

The most striking feature of the single cell heteroplasmy levels in Figure 5.18 is the 

distribution difference between the untreated and the treated (ddI exposed) groups. All 

of the exposed to ddI have a very tight spread of data at the top end of the graph around 

the 90% heteroplasmy level.  

The untreated conditions show a large spread of heteroplasmy levels across each single 

cell. Untreated replicates had a range of heteroplasmy levels across the single cells of 

9.25% - 100%.  

Statistical comparison of the two groups indicates that they’re highly different 

(p<0.0001). The average heteroplasmy level of all the pooled single cells is 94.46%. 

The average heteroplasmy level of the untreated pooled single cells is 65.83%. These 

levels are comparable to the homogenate levels described in Section 5.4.3, previously.   
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Figure 5.18 The heteroplasmy level distribution of the large scale deletion mutation within single cells extracted from replicates at experimental day 24. The 

pooled heteroplasmy distribution of single cells across all replicates for the untreated and ddI exposed group. Red indicate cell that have been exposed to ddI 

and black indicates untreated cells.  
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5.4.5 Dose-response effect on mtDNA content and large scale deletion 

In order to examine the dose-dependent effects of NRTI exposure, 10x physiological 

dosing was studied. The total, mutant and wild type mitochondrial copy number 

(relative to the untreated) of each NRTI treatment group for the cybrid cells is displayed 

below (see Figure 5.19, Figure 5.20 and Figure 5.21).  Each data point is expressed as 

the mean values derived from the biological and qPCR technical replicates, with error 

bars plotted as standard deviations (S.D).  

The total copy number graph presented below (Figure 5.19), indicates severe depletion 

in the 10x ddI condition, evident from the first time point at experimental day 5, with 82% 

depletion present (0.18 ±S.D 0.00045) when compared to the untreated. Depletion 

continues throughout the exposure phase up to experimental day 32 with an 

experimental depletion maximum of 0.04 (±S.D 0.005). The depletion present in the 

exposure phase was found to be statistically significant when compared to the untreated 

with p-value <0.001, at experimental day 32. The mtDNA content was found to recover 

completely by the end of the post-exposure phase. 

The total copy number during the d4T exposure phase slightly fluctuates around the 

comparable level to the untreated for the entire exposure and post-exposure phases with 

a level of 1.52 (±S.D 0.18) at experimental day 32, before ending at 1.07 (±S.D 0.155) 

by experimental day 52.  

The AZT condition shows little depletion of total mitochondria during the exposure 

phase, but was found to be slightly higher than the untreated at experimental day 32 at 

1.26 (±S.D 0.03) b. The total copy number is then seen to fluctuate a total relative copy 

number of 1.16 (±S.D 0.007) by the end of the experiment at experimental day 52.  

The TDF condition was found to be comparable to the untreated condition throughout 

the experiment. 
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Figure 5.19 The total mitochondrial copy number of trans-mitochondrial cybrids during the NRTI exposure-repopulation, dose response assay. Red bar 

indicates exposure phase and black indicates untreated phase. Error bars are standard deviations of the mean. 

 



The in vitro effects of NRTIs on the Behaviour of Mitochondrial DNA Deletion Mutations in Mitotic and 

Post-mitotic Models 

 

141 

 

The mutant copy number graph is presented below (Figure 5.20) and appears highly 

comparable to the total copy number graph (Figure 5.19).  The most striking feature is 

the mtDNA depletion present in ddI-exposed cells.  

The ddI condition was found to have the biggest depletion during the exposure phase 

with the first time point at experimental day 5, indicating 79% depletion compared to 

the untreated (0.21 ±S.D 0.005). The depletion continues to decrease throughout the 

exposure phase and reaches a depletion maximum value of 0.038 (±S.D 0.001). The 

exposure phase was found to be statistically significant compared to the untreated 

(p<0.001), at experimental day 32. The post-exposure phase highlights the mutant copy 

number increasing to almost 2-fold greater than the untreated by experimental day 42 

(1.98 ±S.D 0.029) and almost 3-fold greater by the end of the experiment at 

experimental day 52 (2.83 ±S.D 0.176).  

The d4T, AZT and TDF conditions were highly comparable to the total copy number at 

experimental day 32 and the end of the experiment at experimental day 52. 
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Figure 5.20 The mutant mitochondrial copy number of trans-mitochondrial cybrids during the NRTI exposure-repopulation, dose response assay. Red bar 

indicates exposure phase and black indicates untreated phase. Error bars are standard deviations of the mean. 
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The wild type copy number graph (Figure 5.21) is presented below. The most striking 

feature of the graph is the apparent permanent depletion in the ddI condition. The other 

conditions appear similar to the untreated throughout the entire experiment.  

The ddI condition was found to severely and quickly deplete for both the total and 

mutant copy number; however, the wild type was affected the most. The experimental 

depletion maximum was found to be present at experimental day 19 with relative to 

untreated copy number ratio of 0.009 (±S.D 0.0009). At experimental day 32, end of 

exposure phase, the copy number was found to be 0.035 (±S.D 0.012). The ddI 

exposure wild type copy number data was found to be highly statistically significant 

when compared to the untreated at experimental day 32 (p<0.001). The wild type copy 

number barely repopulated during the repopulation phase increasing from 0.035 (±S.D 

0.012) at experimental day 32 to 0.057 (±S.D 0.012) by experimental day 42. This 

appeared to plateau by experimental day 52 with only a minor increase to 0.058 (±S.D 

0.012).  

The wild type copy number in the d4T condition shows mild depletion during the 

majority of the exposure phase with experimental depletion maximum present at 

experimental day 19, at 0.63 (±S.D 0.09). The depletion severity reduces from this point 

throughout the rest of the exposure phase and reaches an experimental high of 1.28 

(±S.D 0.04) at experimental day 32. This depletion was not found to be significant when 

compared to the untreated (p=0.103).  

The wild type copy number in the AZT and TDF conditions were found to be barely 

affected during the exposure phase with an exposure phase. The wild type copy number 

is highly similar to the untreated during the whole of the experiment displaying minor 

fluctuations. 
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Figure 5.21 The wild type mitochondrial copy number of trans-mitochondrial cybrids during the NRTI exposure-repopulation, dose response assay. Red bar 

indicates exposure phase and black indicates untreated phase. Error bars are standard deviations of the mean. 
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The mitochondrial deletion heteroplasmy level has been graphed and expressed as 

deletion level percentage, for the cybrid cells during the NRTI exposure-repopulation 

dose response assay (Figure 5.22). Each data point is expressed as the mean value, 

derived from the biological replicates and qPCR technical replicates, with error bars 

plotted as standard deviations of the mean. 

The untreated condition shows very little change in deletion level throughout the whole 

experiment ranging from 63.9% (±S.D 7.5%) to 82.3% (±S.D 1.2%).  

The ddI condition markedly affects heteroplasmy levels during the exposure phase, with 

a rapid increase in heteroplasmy from 65.37% at experimental day 0, to 81.2% (±S.D 

2.2%) at experimental day 5. The heteroplasmy level continues to increase throughout 

the exposure phase and reaching the experimental exposure phase maximum level of 

97.4% (±S.D 0.5%) at experimental day 27. The heteroplasmy change was found to be 

highly statistically significant during the exposure phase when compared to the 

untreated at experimental day 32 (p<0.001) at experimental day 32. The post-exposure 

phase indicates very little change in heteroplasmy level; at experimental day 42, the 

heteroplasmy level was found to be 99.1% (±S.D 0.3%), which decreases to 98.9% 

(±S.D 0.2%) by experimental day 52. 

The d4T condition was found to have heteroplasmy shifts present during the exposure 

phase reaching an experimental increase maximum of 89.1% (±S.D 4.3%) by 

experimental day 32. During the repopulation phase, the heteroplasmy level quickly 

reduces to 69.4% (±S.D 4.6%) at experimental day 42 68.7% (±S.D 3.7%) by the end of 

the repopulation phase at experimental day 52. 

The AZT and TDF conditions remained comparable with the untreated condition. 
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Figure 5.22 The heteroplasmy distribution of large scale deletion within cybrid cells during the NRTI exposure-repopulation dose response assay. Red bar 

indicates exposure phase, black bar indicates repopulation phase. Error bars are standard deviations of the mean. 
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5.4.6 Effect of NRTI-exposure on mtDNA content in embryonic rat neurons 

The total mitochondrial copy number for E18 harvested rat neurons is graphed below 

(Figure 5.23) expressed as relative to the untreated condition. The data point is 

expressed as the mean of the technical and biological replicates (qPCR) and error bars 

plotted as standard deviations of the mean.  

The physiological dosing of the NRTIs (Figure 5.23A) illustrates total copy number 

depletion is present (compared to the untreated) after 2 weeks exposure and 2 weeks 

repopulation of ddI, d4T and AZT to 0.43 (±S.D 0.07), 0.28 (±S.D 0.05) and 0.67 (±S.D 

0.006), respectively. The TDF condition was found to be increased to 1.25 (±S.D 0.18).  

It was found that in the ddI, d4T and AZT conditions, with 4 weeks physiological NRTI 

concentration exposure, depletion is almost half as severe than the 2 weeks exposure 2 

weeks repopulation experiment; ddI was 0.8 (±S.D 0.003); d4T was found to be at 0.63 

(±S.D 0.04) and AZT was found to be depleted to 0.92 (±S.D 0.36) compared to the 

untreated. The TDF condition was comparable to the untreated condition at 1.03 (±S.D 

0.12).  

All of the 10x physiological NRTI concentration conditions (see Figure 5.23B), at both 

4 weeks exposure and after a 2 weeks exposure-repopulation, were found to be depleted 

when compared to the untreated. The TDF condition was found to be depleted the most 

after 2 weeks exposure-repopulation to a value of 0.41 (±S.D 0.007). The ddI condition 

was depleted to 0.5 (±S.D 0.23) compared to the untreated. D4T condition was found to 

be depleted to 0.53 (±S.D 0.15) and the AZT condition showed the least depletion at 

0.75 (±S.D 0.01).  

After 4 weeks exposure of the 10x physiological NRTI concentration exposure, ddI was 

found to be severely depleted to 0.09 (±S.D 0.002) relative to the untreated condition. 

The d4T condition was found to be depleted to half of the untreated, 0.5 (±S.D 0.022). 

The TDF condition was found to be depleted to 0.69 (±S.D 0.22) of the untreated and 

the AZT condition was depleted the least at 0.76 (±S.D 0.04), compared to the untreated 

condition.  
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Figure 5.23 The total mitochondrial copy number, relative to untreated condition, of harvested E18 rat neurons at physiologicial (A) and 10x physiological 

dose (B) in NRTI exposure-repopualtion assay, and NRTI exposure only assay. The dotted line represents the relative untreated ratio level. Error bars are 

standard deviations of the mean.  
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5.4.7 Effect of NRTI exposure to individual E18 rat neurons  

The total mitochondrial copy number for individual E18 rat neurons is graphed below 

(Figure 5.24 and Figure 5.23 ) expressed as absolute mitochondrial copy number. The 

data points are expressed as the mean of the technical replicates (qPCR) and error bars 

plotted as standard deviations of the mean. Only data from three embryos is presented 

as the neurons of the other conditions died before the end of the experiment.  

Embryo 1 was found to display severe depletion in the ddI condition compared to the 

untreated condition with a depletion of 60.3%. The copy number of the ddI condition 

was found to be 36.84 copies per cell (±S.D 2.78) at day 17. The untreated condition for 

embryo 1 was found to be 92.78 copies per cell (±S.D 18.00).  

Embryo 2 was found to display very little depletion when compared to the untreated 

condition with 94.82 copies per cell (±S.D 0.9) compared to 113.14 copies per cell 

(±S.D 6.80; illustrating 16.12% depletion between the treated condition and the 

untreated.  

The ddI condition in Embryo 3 was found to be subject to 45% depletion with the ddI 

condition found to be 40.11 copies per cell (±S.D 1.02) compared to the untreated 

condition with 72.86 copies per cell (±S.D 7.89).  
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Figure 5.24 The Absolute mitochondrial copy number determined for individual E18 rat embryo neurons for the untreated and treated Section of the brain. 

Red bar indicates 17 days ddI exposure and black indicates 17 days untreated condition. Error bars are standard deviations of the mean. 
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5.4.8 Assessment of de novo mutagenesis 

All of the aforementioned studies included a specific screening assessment for de novo 

mutagenesis of large scale deletions through NRTI exposure.  

In the human cybrid samples, there was no presence of new deletions after any of the 

NRTI exposure conditions at a physiological or a 10x physiological dose (see Figure 

5.25). The top 10Kb band is the undeleted amplification of 10Kb and the lower band is 

the amplification of the mtDNA in the deleted mtDNA molecules, missing 

approximately 4Kb of the region amplified. 

 

Figure 5.25 The agarose gel image from long range PCR of physiological and 10x physiological 

NRTIs doses at the end of the exposure phase showing no change from the untreated condition and 

no apparent new deletion formation. 
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The assessment of the mtDNA common deletion within the rat samples was performed 

using small amplicon qPCR. There was no change after any of the NRTI conditions at 

either of the concentrations used (see Figure 5.26).  

 

Figure 5.26 The small amplicon qPCR of rat common deletion the dosing of embryonic rat neurons 

harvested from individual embryonic brains showing no band; therefore, no common deletion 

before or after treatment with ddI. 
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5.5 Discussion 

The aim of this experiment was to model the behaviour of a mitochondrial DNA 

deletion mutation in the presence of NRTIs (in multiple concentrations) to try and 

establish the mechanisms by which NRTI-exposure might affect mtDNA deletions, in 

order to increase the understanding of previous in vivo observations.  

This was done by assessing three different scenarios: 

 Is there a replicative advantage of the mutant mtDNA? 

 Is there a molecular bottleneck mechanism? 

 Is there presence of de novo mutagenesis? 

5.5.1 Effect of NRTI exposure on mtDNA deletion mutation: data summary 

The physiological concentration of NRTI exposure to the trans-mitochondrial cybrid 

cell line indicates that ddI was the only NRTI able to cause any statistically significant 

change to the deletion level and copy number. The clinically safe NRTI, TDF, showed 

no significant change in copy number or deletion heteroplasmy.  

In Figure 5.8 there was observed to be a large distribution of copy number values at 

experimental day 0 across the conditions (see Figure 5.8). This is likely due to the 

nature of how the experiment was set up. One flask was split 1:15 to make all the 

biological conditions three days prior to experimental day 0 (five conditions in 

biological duplicate). A harsh split will lead temporarily to greater spread in 

observations; also, cell division may slow due to the density of cells being too low, but 

mtDNA replication continues, leading to temporarily elevated mtDNA CN per cell. 

As this was the first experiment of the series of studies in this chapter, all other 

experiments were designed and experimentally set up with this artefact in mind and the 

required number of flasks was made more than three days in advance of experimental 

day 0, to allow copy number to stabilise. 

The copy number graphs indicate that for both total and mutant, the ddI condition is 

slightly lower than the other conditions; however, the most apparent effect is seen in the 

wild type, where there is significant depletion present. This is the first indicator that 

there’s a preferential inhibition of the wild-type molecule replication. This decrease in 

wild type compared to the untreated condition was found to be statistically significant 

(p<0.001).  
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The mutant molecule is approximately 46% smaller than the wild type and the 

replication time of a full sized mtDNA molecule has been estimated to be 1-2 hours 

(Davis and Clayton, 1996). Based on these data, almost twice as many deleted mtDNA 

molecules could potentially replicate than wild type molecules in a given time period. In 

normal treatment conditions, this time advantage doesn’t appear to make any difference, 

as seen with the stable turnover in the untreated condition and the constant 

heteroplasmy level. However, in the presence of polymerase γ inhibition, where there’s 

an apparent ‘brake’ applied to replication, this size advantage is unmasked.  

Despite known polymerase γ inhibition by d4T exposure and at lower concentrations 

than used here in vitro (Stankov et al., 2010), there was no severe depletion present in 

this study with a depletion maximum of 31%. This wasn’t sufficient to cause an evident 

shift in heteroplasmy level either indicating that in vitro large depletion is required to 

cause a shift that would have physiological consequence. This is perhaps a consequence 

of the cybrids being more resistant to depletion than other cell lines, such as primary 

cells.  

There was no de novo mutagenesis detected with no change in the number of presence 

of large scale mtDNA deletions after any of the NRTI exposures. 

5.5.2 Mitochondrial network fragmentation analysis data summary 

The mitochondrial network fragmentation analysis revealed that all NRTI conditions 

appeared to induce a decrease in the number of networks present after 27 days of 

exposure, although arguably within the variability of the untreated cells. Indicating all 

NRTIs despite a varying affinity for polymerase γ, are capable of causing mitochondrial 

network fragmentation. This phenomenon has been described with the exposure of 

protease inhibitors but not NRTIs (Roumier et al., 2005). However, there’s unpublished 

evidence from Hans van der Speks’ laboratory in the Netherlands, suggesting thymidine 

analogues, such as d4T and AZT, can increase mitochondrial network size. The 

assessment of mitochondrial network length, revealed there was a statistically 

significant increase in the length of mitochondrial networks in the d4T condition after 

27 days exposure (Table 5.4), supporting the data found in the Netherlands.   

5.5.3 Assessment molecular bottleneck: data summary 

Given that ddI exposure induces significant mtDNA depletion, we speculated that the 

mtDNA deletion mutations might be subject to a molecular bottleneck effect. This 
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possibility was assessed by implementing a large number of biological replicates (n=10) 

to assess how the deletion behaves after a strong bottleneck has been applied through 

depletion of copy number. A 14 day ddI exposure was previously found to cause 

sufficient depletion; in the case of a bottleneck mechanism driving the increased 

heteroplasmy of the deletion in all replicates, it would be expected that once ddI was 

removed, each replicate would repopulate and have a different heteroplasmy level 

depending upon the make-up of the genetic population created through the 

bottleneck/depletion. The repopulation phase illustrated that all replicates behave in the 

exact same manner as they come out of the bottleneck. This strongly excludes a 

bottleneck mechanism and adds support to the notion of replicative advantage.  

In case the study of multiple experimental replicates was insufficient to capture a 

change in spread of deletion levels indicative of a molecular bottleneck effect, therefore 

a single cell analysis was also performed. Analysis of the untreated condition revealed a 

wide spread of heteroplasmy levels (7% - 100%) between individual cells. In contrast 

the ddI-exposed cells showed an overwhelming population of cells with high level 

heteroplasmy level of >95%, comparable with data found in the homogenate analysis of 

the flasks, which was found to be highly statistically significant (p0.0001). These data 

highlight that: 

 The untreated cybrid cell line is a very heterogeneous population of cells 

(despite the very steady heteroplasmy level found in the homogenates) 

 The overall increase in heteroplasmy level in the ddI treatment may be 

accounted for by very large shifts within cells that previously had very low 

heteroplasmy levels.  

 The combination of the strength of this (selective) effect of ddI treatment, and 

the initial wide spread in untreated, would completely preclude detecting an 

increased spread in the ddI-treated. 

 These data suggest there is not a bottleneck effect for deletions - or at least that 

its completely overwhelmed by the selective effect. 

5.5.4 NRTI exposure-repopulation dose response: data summary 

The supra-physiological concentration of 10x physiological concentration was used in 

the trans-mitochondrial cybrids to assess for a dose dependent response across the 

NRTIs.  
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The most severely affected was the ddI condition with rapid depletion present, 82% 

within the first 5 experimental days. This depletion was evident in both the mutant and 

wild type copy number data suggesting that at 10x concentration, the replicative 

advantage mechanism present at the physiological concentration, is not sufficient to 

protect even the smaller molecule from severe depletion. The copy number does recover 

during the repopulation phase of the experiment, albeit only really the mutant molecule. 

The fact that mutant copy number quickly recovers suggests that there’s a replicative 

advantage. This is also supported by the fact that the heteroplasmy doesn’t really 

decrease during repopulation.  

The repopulation phase was increased to allow for a greater assessment after the severe 

depletion induced by the higher concentration of the drugs. Despite doubling the 

repopulation phase time to 20 experimental days, it was not sufficient for wild type 

copy number to repopulate enough to cause a ‘downward’ shift (decrease) in the 

heteroplasmy level of the deletion. In vivo, this may translate as an irreversible cellular 

defect. This data is supported by the findings of a previous study using similar trans-

mitochondrial cybrids where they were exposed to ethidium bromide (a highly potent 

compound in inducing mtDNA depletion) and then allowed to recover. The findings 

revealed that the smaller deleted molecule repopulated faster than the wild type and to a 

level, comparable to the experimental starting mtDNA level (Diaz et al., 2002).  

The d4T condition illustrates a classical dose response effect. There was increased 

depletion of the mutant copy number and an increased heteroplasmy level during the 

exposure phase. Although it was required to increase the physiological concentration by 

10-fold, a longer exposure than the relatively short 32 days of a physiological 

concentration may be sufficient to elicit a comparable response to that seen with ddI. 

Therefore d4T may have less relevant effect on a deletion mutation in vivo. The 

decrease of copy number was more evident in the wild type than the mutant (37% 

depletion maximum vs. 17.1% maximal depletion, respectively), further supporting 

clonal expansion through a size dependant advantage.  

A supra-physiological dose would perhaps be expected to induce a certain level of 

depletion, given the depletion present at the physiological concentration of 41% at 

experimental day 22 (Figure 5.8). The fact there’s an opposite effect, a potentially 

inverse dose response, is strikingly similar to the previous observations of another 

mitochondrial safe NRTI, abacavir (ABC), also increasing mtDNA copy number (Bulst 
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et al., 2012). However, there’s evidence to suggest that TDF actually induces 

subclinical mitochondrial toxicity in patients receiving the NRTI, especially when 

compared to patients receiving ABC rather than TDF (Maggi et al., 2012). However, 

there’s no in vivo data to support these findings of NRTI up regulating mitochondrial 

copy number and given the fact that the heteroplasmy level wasn’t affected, there’s no 

real clinical importance (in regards to mitochondrial phenotypes) in this finding either. 

It could be proposed that a patient, who is still receiving an NRTI which is known to 

cause depletion, could be co-supplement with ABC or TDF, in an attempt to reverse or 

reduce any depletion.  

It is also noted that the previously described hierarchy of inhibition by NRTI’s in vitro 

was almost perfectly depict in each of the experiments with ddI causing the greatest 

depletion, followed by d4T, AZT and finally TDF. The effects were not confined to one 

cell type with the effects seen in both mitotic and post-mitotic cell types. 

Finally, there was no de novo mutagenesis detected with no change in the number of 

presence of large scale mtDNA deletions after any of the NRTI exposures (even at 10x 

dose). 

5.5.5 Embryonic rat neuron exposure to NRTIs: data summary 

Two experiments using E18 rat neurons were used to assess the behaviour of 

mitochondria in post-mitotic cells through NRTI exposure.  

The hierarchy of depletion was visible in the harvested cells using the physiological 

concentration and 10x physiological concentration (Figure 5.23). The ddI exposure 

caused the greatest copy number depletion; however, interestingly, the TDF condition 

increased in copy number (as previously discussed in 5.5.4, above).  The results were 

not as dramatic as expected using a cell type containing very low mtDNA copy number 

(< 100 copies per cell), although it is unclear the exact turnover of mtDNA within these 

cells.  

When the rat embryos were segregated and neurons extracted from individual brains, 

rather than pooling all of them as above, ddI exposure with only the physiological 

concentration was found to cause greater depletion within 17 days, compared to the 10x 

physiological dose.  
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There were no de novo deletions detected in any of the conditions, despite previous 

reports of detectable levels of rat mtDNA ‘common deletion’ in normal embryonic brain 

and young (3 months) liver samples (Petruzzella et al., 1992; Nicklas et al., 2004). 

Although it doesn’t serve as a good model for studying deletion behaviour, it does 

reinforce the idea of clonal expansion of pre-existing mutations rather than inducing 

new mutations.  

5.5.6 Limitations 

The experiments presented within this chapter also carried recognised limitations. The 

use of a trans-mitochondrial cybrid does not strictly simulate ‘normal’ cells and does 

leave a gap in the understanding of how the effects seen in vitro would translate in vivo. 

However, the cell line implemented was done so, on the grounds that it is the only 

plausible method of successfully studying deletions in vitro.  

The E18 rat neurons gave a unique in vitro insight into post-mitotic behaviour in the 

presence of NRTIs; however, given the low copy number and nature of the cells, it may 

be seen as a poor model to modelling the behaviour of deletion mutation(s) in post-

mitotic cells as results between replicates appeared very variable biologically.  
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5.6 Chapter conclusion 

The analyses of this chapter have strongly indicated: 

 That the expansion of a pre-existing deletion mutation during the presence of pol 

γ inhibiting NRTIs is driven by a size dependent advantage mechanism.  

 The effect is very dependent upon the strength of the polymerase γ inhibition 

and the dose of the NRTI.  

 There is no evidence for de novo deletion mutagenesis through NRTI exposure.  

The overall chapter conclusion is that in the presence of partial polymerase γ inhibition 

in vivo, an mtDNA deletion may clonally expand through a greater chance of replication.  
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Chapter 6. Modelling the Behaviour of Mitochondrial DNA Point 

Mutations in the Presence of NRTI’s 
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6.1 Background 

Point mutations in mtDNA accumulate in a variety of tissues during the process of 

ageing in an uneven manner across cells (Pallotti et al., 1996). This principle has been 

best described in the polymerase γ defector mouse model where mtDNA mutations were 

found to accumulate at a rapid rate due to a defective polymerase γ, and the mouse 

presented with premature ageing phenotypes (Trifunovic et al., 2004). Nonetheless, it 

neatly illustrates the importance of point mutation and ageing. 

There have been reports of specific point mutations accumulating with age in certain 

‘hot spot’ regions; the mitochondrial non-coding region, the D-loop, has been found to 

be susceptible to point mutations with age (Kennedy et al., 2013). Specifically, 

m.189A>G and m.414T>G, with the latter associated with age in a multiple of tissues 

(Michikawa et al., 1999; Del Bo et al., 2003). 

An accumulation of mtDNA point mutations within individual cells in HIV-infected 

individuals receiving NRTI therapy has been previously described (Payne et al., 2011). 

Given the association of D-loop mutations with normal ageing and the nature of it being 

a ‘hot spot’ for accumulating somatic mutations, it is therefore important to determine 

whether or not NRTI therapy is mutagenic, or whether it imposes an accelerated clonal 

expansion of point mtDNA mutations. 

Clonal expansion has been best studied in deletion mutations with a range of postulated 

theories (see Section 1.2.9); however, there are studies that have tried to unify one 

theory of clonal expansion for both types of mutation (Coller et al., 2002). The theory 

of replicative advantage is potentially plausible on the basis of a point mutation 

changing the regulatory region of mtDNA, as opposed to a size dependant driving 

mechanism. However, neutral drift is generally accepted as a more plausible mechanism 

for point mutations.  

Due to the reduction of mitochondrial copy number through NRTI exposure, another 

potential mechanism behind the shifts in point mutation clonal expansion maybe 

explained by a genetic bottleneck creating segregation of mutant molecules, as 

described in embryogenesis through the mtDNA copy number reduction in oocytes 

(Cree et al., 2008). This theory has been modelled for a period of depletion/repopulation 

due to NRTI exposure over many years in humans (Payne et al., 2011).  In contrast, it 

may in fact be that NRTIs are mutagenic for mtDNA point mutations, as previous 
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studies have suggested using human, mouse and in vitro models (Martin et al., 2003; 

DaleM Walker et al., 2004; Y. Zhang et al., 2014).  
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6.2 Experimental Aims 

The aims of the experiments were to assess: 

 Whether there is evidence of mutagenesis for mtDNA point mutations through 

NRTI exposure. 

 Whether point mutation heteroplasmy shift through NRTI exposure 

 If any shift is present, whether this is mediated through a molecular bottleneck 

effect. 

 Whether point mutations behave in a manner suggestive of a replicative 

advantage (as seen with deletions) during NRTI exposure. 
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6.3 Experimental design and methods 

6.3.1 Fibroblast culture 

Two human fibroblast cell lines, derived from skin biopsies of aged patients (80 & 91 

years old; cell lines nr68 and nr100, respectively) harbouring a point mutation within 

the control, D-loop, region of the mitochondrial DNA (m.414T>G; Dr G Saretzki, 

Newcastle University, UK) were used, with a previously visualised genotype of 

approximately 50% heteroplasmy using sanger sequencing (Dr Angela Pyle, IGM, 

Newcastle University, UK). Cells were grown in cell culture using high glucose DMEM 

(Gibco, Life-Technologies, Paisley, UK) supplemented with: 10% fetal calf serum 

(Sigma-Aldrich, Dorset, UK) and 5% penicillin/streptomycin (Sigma-Aldrich, Dorset, 

UK) as previously described (see Section 3.1.2). The cells were cultured in T25 flasks 

(Greiner Bio-one, Stonehouse, UK) at 37
o
C and 5% CO2 to a confluency of 70-90% 

before splitting and propagating (see Section 3.1.3).  

At the point of splitting and propagating the cells during each study, the residual cells 

were pelleted by centrifugation at 8,000rpm for 5 minutes, the supernatant removed and 

DNA extracted, as previously described (3.3). Each time point was then subject to 

mitochondrial copy number determination (see Section 6.3.3), de novo deletion 

assessment (see Section 6.3.4) and m.414T>G heteroplasmy quantification (see Section 

6.3.5).  

6.3.2 NRTI procedure 

The NRTI exposure-repopulation assays were performed using the NRTIs and 

concentrations as previously described (see Section 3.1.5) with the additional inclusion 

of zalcitabine (ddC; Sigma-Aldrich, Dorset, UK) at 1µM concentration.  

Fibroblasts were grown from one inital vial, thawed from liquid nitrogen storage (see 

Section 3.1.4) to ensure all flasks and conditions throughout each study were from the 

same origin.  
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Figure 6.1 NRTI exposure-repopulation procedure for assessment of m.414T>G behaviour during 

and after NRTI physiological treatment 

 

 

Figure 6.2 The ddI exposure-repopulation assay procedure for investigation of a bottleneck 

mechanism of a point mutaion through ddI exposure. Derviation procedure of untreated replicates 

(U1-10) and ddI exposed replicates (D1-10) is shown in A, with the time assay time course 

illustrated in B.  

6.3.3 Mitochondrial copy number assessment 

In order to investigate the mtDNA total copy number levels, multiplex qPCR was 

performed, as previously described (see Section 3.6.1); however, the assay was run as a 

duplex assay to determine mitochondrial copy number (MT-ND1 and β2M – see Table 

3.3). Running conditions and reaction make up remained coherent with that previously 

described (see Section 3.6.1). The concentration of each DNA sample was standardised 

and approximately 50ng was loaded into each qPCR 25µL reaction. Each sample was 

run in duplicate on the reaction plate. 
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Total mitochondrial copy number was calculated using the SQ values of each sample as 

determined using the standard curves (see Section 3.6.3 for equation). The 

mitochondrial copy number was then expressed as a ratio relative to the untreated 

condition at that time point. Therefore, a relative copy number ratio of one indicates that 

the condition shows the same mtDNA copy number level per cell as the untreated 

conditions.  

6.3.4 Long range PCR determination of de novo deletions 

To investigate whether or not NRTI exposure induces deletion mutations in the 

fibroblast cell lines exposed to NRTIs, in comparison to the untreated conditions, a long 

range PCR was used to screen for mtDNA deletions as previously described (see 

Section 3.7).  

The PCR products were run on a 1% agarose gel, as previously described (see Section 

3.5) using the DNA ladder 1kb plus (Thermo-Scientific, Hampshire, UK) to determine 

the size of the bands and predict an approximate size of any deletion(s) present in each 

sample. The technique is used as a qualitative method rather than a quantitative.  

6.3.5 Point mutation heteroplasmy assessment 

In order to investigate the effects of NRTI exposure on the heteroplasmy level of the d-

loop, m.414T>G mutation, pyrosequencing was performed as previously described (see 

Section 3.9.2).  

6.3.6 Single cell analysis 

In order to investigate the distribution of the m.414T>G mutation of the samples used in 

the ddI-exposure repopulation study, single cell analysis was performed as previously 

described (see Section 3.1.7) and single cells isolated by the use of laser microdissection 

(see Section 3.2.1) from untreated and treated replicates one to five.  

Approximately 20 cells were captured and lysed (see Sections 3.2.2) for each replicate 

assessed at experimental day 24 in the study. 5µL of the lysate was loaded into the 

downstream molecular analyses (m.414T>G quantification by pyrosequencing, see 

Section 6.3.5, above, increasing cycles from 30-40 for the primary PCR). The data was 

compared on a single replicate basis and then pooled to express the data as an overall 

perspective of mutation level behaviour.   
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6.4 Results 

6.4.1 Effect of NRTI exposure on mtDNA copy number 

The mitochondrial DNA copy number (ratio relative to the untreated) of each NRTI 

treatment group for cell lines nr100 and nr68 are displayed below (see Figure 6.3 and 

Figure 6.4).  Each data point is expressed as the mean values derived from the 

biological and qPCR technical replicates with error bars plotted as standard deviations 

(S.D). Relative copy number is expressed on a logarithmic scale to increase resolution 

at the lower end. Due to the slow growth of the cells, there was no time point taken 

between experimental day 22 and 42. 

During NRTI exposure of ddC and ddI in both cell lines, a significant depletion in total 

mitochondrial copy number was present throughout the exposure phase which didn’t 

repopulate in either of the cell lines once the drugs were removed. These findings were 

calculated to be statistically significant by means of a 2-tailed student t-test (see Table 

6.1). 

ddC caused the greatest copy number depletion during exposure with a exposure phase 

maximum depletion level of 0.03 (±S.D 0.003) in cell line nr68 by day 14 and 0.039 

(±S.D 0.03) by experimental day 22 in cell nr100. The repopulation phase didn’t show 

any increase in copy number in either cell line by experimental day 42, with both 

reaching experimental maximum depletion of 0.02 (±S.D 0.001) in nr68 and 0.007 

(±S.D 0.00001) in nr100.  

ddI had the second greatest effect on copy number in both cell lines. The exposure 

phase maximum depletion level was found to be 0.12 (±S.D 0.049) by experimental day 

14 in cell line nr68; maximum depletion level was found to be 0.05 (±S.D 0.06) by 

experimental day 22 in cell line nr100. The repopulation phase of both cell lines after 

ddI exposure behaved in the same manner as that seen in ddC, with no apparent 

repopulation present and both cell lines reaching the experimental maximum depletion 

level of 0.01 (±S.D 0.003) by experimental day 42 in cell line nr68 and 0.03 (±S.D 

0.0005) in cell line nr100. 

None of the other NRTI treatment groups: d4T, AZT and TDF, produced any significant 

depletion in mitochondrial copy number during exposure (see Table 6.1). It is noted 

however, in both cells lines, d4T, AZT and TDF treatment groups, there was an increase 

in relative copy number at experimental day 42 and the effect was found to be more 



Modelling the Behaviour of Mitochondrial DNA Point Mutations in the Presence of NRTI’s 

 

169 

 

pronounced in cell line nr100. TDF caused the greatest increase with a 3.3-fold increase 

when compared to the untreated at experimental day 42 (see Figure 6.3) in nr100 and a 

1.4-fold increase compared to the untreated in cell line nr68.  

Condition 
Nr100 ratio to 

untreated 

p-value 

nr100 vs. 

Untreated 

Nr68 ratio 

to 

untreated 

p-value 

nr68 vs. 

Untreated 

ddC 0.0067 <0.001 0.02 <0.001 

ddI 0.03 <0.001 0.01 <0.001 

d4T 3.219 0.6105 1.77 0.7622 

AZT 2.94 0.3922 1.34 0.8472 

TDF 3.25 0.3100 1.374 0.7887 

Table 6.1 p-values from student t-test comparison of total mitochondrial copy number of all NRTI 

conditions compared to the untreated in cell lines nr68 and nr100 at experiemntal day 42 along 

with the corresponding ratio relative to untreated copy number level; 95% confidence interval wa 

used. Significant values a highlighted in red. 
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Figure 6.3 Mitochondrial copy number graph expressed as relative to untreated condition for the point mutation fibroblast cell line, nr100.  Red bar indicates 

exposure time and black indicates repopulation. Error bars are standard deviations of the mean. 
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Figure 6.4 The mitochondrial copy number expressed as relative to the untreated group for point mutation fibroblast cell line, nr68. Red bar indicates 

exposure time and black indicates repopulation. Error bars are standard deviations of the mean. 
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6.4.2 Effects of NRTI exposure on point mutation level 

The mitochondrial non-coding region point mutation m.414T>G heteroplasmy level has 

been graphed and expressed as mutant percentage level for both cell lines: nr100 and 

nr68 (Figure 6.5 and Figure 6.6, respectively). Each data point is expressed as the mean 

values from the biological and pyrosequencing technical replicates with error bars 

plotted as standard deviations. Due to the slow growth of the cells, there was no time 

point taken between experimental day 22 and 42. 

During NRTI exposure phase, there was no apparent change in overall heteroplasmy 

level of the point mutation in any of the conditions, in either of the cell lines at 

experimental day 42 (see Table 6.2).  

Condition 
Nr100 

Heteroplasmy  

p-value 

nr100 vs. 

Untreated 

Nr68 

Heteroplasmy 

p-value 

nr68 vs. 

Untreated 

Untreated 53%  35.5%  

ddC 35.5% 0.7352 42% 0.4226 

ddI 46.5% 0.2965 27% 0.4024 

d4T 43.5% 0.7818 29% 0.5918 

AZT 39% 0.9235 35% 0.9175 

TDF 26.5% 0.1299 31.5% 0.3333 

Table 6.2 The p-values from 2 way student t-test of m.414T>G mutant heteroplasmy level during 

NRTI exposure-repopulation experiment at experimental day 42, compared to the untreated 

condition.  

The untreated cell line shows minor fluctuation during the NRTI exposure phase and 

highlights that the variation present in treatment groups is in line with the untreated 

condition. At experimental day 42, the heteroplasmy of the untreated was found to be 

slightly increased in cell line nr100 to 53% (±S.D 8.48%). Conversely, in cell line nr68 

at experimental day 42, the heteroplasmy was found to have decreased with a 

heteroplasmy of 35.5% (±S.D 2.12%).  



Modelling the Behaviour of Mitochondrial DNA Point Mutations in the Presence of NRTI’s 

 

173 

 

Despite the very significant mtDNA depletion (see Figure 6.3 and Figure 6.4), neither 

of the ddC or ddI conditions shows any effect on heteroplasmy level in either of the cell 

lines during the NRTI exposure phase. However, some effect is seen at the end of the 

repopulation (experimental day 42). The ddC condition can be seen to shift down in 

heteroplasmy in cell line nr100, with a heteroplasmy level of 35.5% (±S.D 3.53%); 

whilst in cell line nr68, the ddC heteroplasmy level at experimental day 42 is found to 

be almost exactly the same as the starting level (44%) at 42% (±S.D 9.89).  

The d4T condition shows little change during the exposure phase in either cell line. The 

biggest change was present at the end of the repopulation phase with cell line nr100 

decreasing to 43.5% (±S.D 4.95%) and nr68 decreasing to 29% (±S.D 2.82).  

The AZT condition behaves in a similar manner to that seen in the d4T condition with 

minor fluctuations during the exposure phase in both cell lines. The biggest change is an 

overall downward trend in the repopulation phase with both nr100 and n68 decreasing 

at experimental day 42 to a heteroplasmy level of 39% (±S.D 0%) and 35% (±S.D 

2.82%), respectively.  

The TDF condition shows little change during the exposure phase compared to the 

untreated in either cell line. The condition was however, found to decrease the most of 

all treatment conditions in the nr100 cell line to a heteroplasmy level of 26.5% (±S.D 

4.95%) at experimental day 42. Cell line nr68 was found to also decrease in 

heteroplasmy level to 31.5% (±S.D 0.7%) at experimental day 42.  

The key information of this data is when the trend of the heteroplasmy data for both cell 

lines is assessed (Figure 6.5 and Figure 6.6). It is evident that there’s a large spread 

across the conditions in which the greatest effect can be seen at experimental day 42, 

where all NRTI conditions can also be seen to have a widespread distribution between 

replicates i.e. large S.D error bars between biological replicates.  
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Figure 6.5  m.414T>G mutation level expressed as percentage as mutant percentage (G) determined by pyrosequencing in cell line nr100, during 

physiological exposure of NRTIs. Red bar indicates exposure time and black indicates repopulation. Error bars are standard deviations of the mean.  
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Figure 6.6 m.414T>G mutation level expressed as mutant percentage (G) determined by pyrosequencing in cell line nr68, during physiological exposure of 

NRTIs. Red bar indicates exposure time and black indicates repopulation. Error bars are standard deviations of the mean. 
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6.4.3 Assessment of the presence of a molecular bottleneck  

The mitochondrial copy number of each replicate (10 biological replicates) in the ddI 

exposure-repopulation study to assess for a genetic bottleneck effect in the 

mitochondrial point mutation m.414T>G nr100 cell line is displayed below (see Figure 

6.7).  Each data point is expressed as the mean values derived from the qPCR technical 

replicates with error bars plotted as standard deviations (S.D). Six days of ddI was 

chosen due to the lack of repopulation found in the data presented in Section 6.4.1, after 

32 days exposure.  

 

The untreated replicates all have a mean starting value of 31.06 mtDNA copies per cell 

(±S.D 6.95) and with a range of 22-47 copies per cell across the 10 replicates. All 

replicates share the same fluctuating trend throughout the entire experiment. The overall 

distribution of the variation between untreated replicates throughout the experiment was 

found not to be significant by means of ANOVA analysis (p-value=0.962).  

The 10 ddI exposed samples share a similar spread of copy number at experimental day 

0 as the untreated with a mean copy number per cell as 31 (±S.D 5.94) with replicate 

spread found to be 22-42 copies per cell. All replicates exposed to ddI show severe 

depletion during the experiment with the copy number in each replicate decreasing by 

the end of ddI exposure at day 6 to 9 copies per cell (± S.D 1.07), with a range of 8-11 

copies per cell. The overall decreasing trend slowly continues into the recovery phase 

where mean copy number was found to be 6 copies per cell (±S.D 1.67), with a range of 

4-8 copies per cell. All replicates appear to repopulate quickly over the following 10 

days to reach an mean copy number of 21 copies per cell (±S.D 3.33) by experimental 

day 24. 

The difference in copy number per cell at both experimental day 6 and experimental day 

14 in the ddI treated cells was found to be highly statistically significant when 

compared to the untreated (t-test; p-value<0.001).  
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Figure 6.7 Total mitochondrial copy number for assessment of genetic bottleneck mechanism through ddI exposure. Red lines bar indicates ddI exposure phase and 

black bar indicates repopulation phase. Error bars are standard deviations of the mean.  



Modelling the Behaviour of Mitochondrial DNA Point Mutations in the Presence of NRTI’s 

178 

 

The mitochondrial non-coding region point mutation m.414T>G heteroplasmy of each 

replicate (10 biological replicates) in the ddI exposure-repopulation study to assess for a 

genetic bottleneck effect in the mitochondrial point mutation m.414T>G nr100 cell line 

is displayed below (see Figure 6.8). Each data point is expressed as the mean values 

from the pyrosequencing technical replicates with error bars plotted as standard 

deviations. 

The untreated replicates have a very tight spread of heteroplasmy levels across 

replicates with average heteroplasmy 24.7% (±S.D 1.7%) at experimental day 0. Overall, 

the untreated replicates show a slight upward trend throughout the experiment with a 

tight data spread amongst the replicates at each time point. The average heteroplasmy 

increased to 27.3% (±S.D 1.8%) by the end of the exposure phase at experimental day 6 

and further increased to 33.7% (±S.D 1.0%) by experimental day 14. The maximum 

average heteroplasmy seen in replicates was found at the end of the experiment, 

experimental day 24, with heteroplasmy level of 37.3% (±S.D 1.). Due to the consistent 

increasing heteroplasmy trend of the untreated, the distribution of the untreated 

replicates across the time course was found to be borderline significant when the trend 

analysed using 2-sample Kolmogorov-Smirnov (K-S) test, to assess for normality.   

The ddI treated replicates also share a tight spread of heteroplasmy distribution at 

experimental day 0, with a mean heteroplasmy of 24.7% (±S.D 1.3%). The spread of 

replicates ranged from 23% - 27%. The heteroplasmy remained largely unchanged by 

the end of ddI exposure at experimental day 6 (24.9% ±S.D 1.7%). The most noticeable 

change in heteroplasmy distribution was found at experimental day 14, where average 

heteroplasmy across replicates remained similar to experimental day 6 at 22.2% (±S.D 

5.6%); however, the spread increased to 15.5% across the replicates with a range of 12.5% 

- 28% across the 10 replicates. The heteroplasmy spread then reduced with an average 

heteroplasmy level was found to be at a similar level to the untreated at day 24. The data 

distribution was found to be not normally distributed with a highly statistically 

significant K-S p-value < 0.001, when comparing experimental day 14 to experimental 

day 6 amongst all of the ddI treated conditions. 

The heteroplasmy levels of all ddI replicates were found to be statistically significant at 

experimental day 14, when compared to the level of all untreated replicates (p-value < 

0.001; Mann-Whitney test chosen due to data distribution not deemed as normal from 

K-S test).   
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Figure 6.8 The heteroplasmy level distribution of the 414T>G mutant level during the assessment of a genetic bottleneck mechanism through ddI exposure. 

Red bar indicates ddI exposure phase and the black bar indicates repopulation phase. Error bars are standard deviations of the mean. 



Modelling the Behaviour of Mitochondrial DNA Point Mutations in the Presence of NRTI’s 

180 

 

6.4.4 Single cell analyses 

The heteroplasmy distribution of single cells isolated from replicates one to five at 

experimental day 24,  in the assessment of mitochondrial genetic bottleneck through ddI 

exposure in nr100 point mutation fibroblast cell line experiment is graphed below (see 

Figure 6.9). Each point on the graph indicates a single replicate from one cell of the 

corresponding experimental biological replicate. The mean heteroplasmy of the single 

cells for all replicate (pooled) are highlighted in Figure 6.9; where n=100 cells from five 

biological replicates in the NRTI-exposed and untreated conditions.  

 

The most striking feature of the single cell heteroplasmy levels is the distribution among 

the single cells (Figure 6.9). In total (untreated and ddI treated), there was a range of 

5%-86% amongst all of the cells. The average of the single cells for the condition and 

replicate was found to be comparable to that found in the homogenate replicate values 

(Table 6.3).  

Comparing the overall distribution of heteroplasmy levels of pooled single cells within 

replicates from ddI exposed to untreated (Figure 6.9B) indicates there’s no difference in 

distribution with a p-value of 0.28 (t-test, two-tailed). Single cell averages were found 

to be 26.6% and 29.9% for the untreated and ddI exposed groups, respectively, with a 

range of 4% - 82% for the untreated replicates and 5% - 87% for the treated replicates.  
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Table 6.3 The heteroplasmy of m.414T>G of each replicate used in the single cell analysis from experimental day 24 of the assessment of mitochondrial genetic 

bottleneck through ddI exposure experiment. 

Replicate Mean Untreated (%) SD Untreated (%) Mean ddI  (%) SD ddI (%) 

1 39.5 2.1 37.0 1.4 

2 37.0 0.0 36.5 0.7 

3 36.5 0.7 39.0 1.4 

4 37.5 0.7 38.0 0.0 

5 38.0 0.0 36.0 0.0 

Pooled 37.7 0.7 37.3 0.7 
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Figure 6.9 The heteroplasmy level distribution of mutation m.414T>G in single cells extracted from five replicates at experimental day 24, in the assessment of 

mitochondrial genetic bottleneck mechanism through ddI exposure study (results Section 6.4.3). Red indicate cell that have been exposed to ddI and black indicates 

untreated cells. Mean values are indicated for each replicate.  
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6.4.5 De novo mutagenesis formation 

No de novo deletions were found in any of the samples, in any of the NRTI treatments 

before or after exposure, see Figure 6.10, in the same vain as described in Chapter 5. 

An assessment for de novo mutagenesis of point mutations was performed using 

ultra-deep next generation sequencing technology and is discussed in Chapter 7. 
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Figure 6.10 The agarose gel electrophoresis images of m.414T>G fibroblasts exposed to NRTIs at experimental day 42, end of exposure for the nr100 cell line, the 

same image was produced for the nr68 cell line. Despite the significant depletion in the ddC, a large 10Kb band was still produced, highlighting the presence of 

mtDNA content through repopulation after exposure.   
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6.5 Discussion 

The aim of this experiment was to model the behaviour of a mitochondrial DNA point 

mutation that has been associated with ageing, through NRTI exposure using in vitro 

approaches. There were two main questions to be answered in this study: 

 Is there any shift of point mutation level through NRTI exposure? 

 If so, does this shift appear to be a replicative advantage mechanism or through 

a molecular bottleneck? 

In addition to these questions, to further upon the assessment of de novo mutagenesis 

discussed in Chapter 6, as screening for de novo large scale deletions across multiple 

NRTIs was also performed, albeit not an aim of the study, the technique was used due 

to the cell line being of different nature (primary cell line, with a point mutation rather 

than deletion).  

6.5.1 NRTI exposure-repopulation study data summary 

The mitochondrial DNA copy number was found to decrease as expected in conditions 

ddC and ddI (Kornblum et al., 2013); however, at a faster rate than expected, compared 

to the cybrid data from Chapter 5. This extreme depletion by day 6 of the experiment 

highlights the clearly differences and cell line specific sensitivity when compared to the 

depletion data the in trans-mitochondrial cybrid cell lines (see Chapter 5), which is 

more comparable to the 10x physiological dose, rather than the physiological dose, as 

used here. The cells may also have been affected more severely due to the age of the 

cells (derived from aged individuals). This gives insights into the effects of NRTIs on 

older cells too, and suggests an aged individual (>80 years old) receiving NRTI 

treatment, may be subject to faster depletion and NRT-associated effects.  

Given the sensitivity of the fibroblasts to ddC and ddI, it is not surprising that there was 

depletion present in the mild polymerase γ inhibitor, d4T with 44% depletion compared 

to the untreated in nr100 after 6 days exposure, which is line with previously published 

data (Stankov et al., 2010). A more mild 23% depletion was seen in cell line nr68 after 

6 days exposure to d4T. In both cases, the copy number recovers to similar level as the 

untreated and once in the repopulation phase, increasing to greater than the untreated 

with 3.2-fold and 1.7-fold increases in cell lines nr100 and 68, respectively. This is 

likely through a over-compensatory mechanism driven by the mild depletion present 

and following NRTI removal. 
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The copy number in AZT and TDF conditions for both cell lines were found to suffer 

minimal depletion during exposure. However, the repopulation phase was the most 

interesting with 3-fold increasing in cell line nr100 for both conditions, and almost 

2-fold increases in nr68, when compared to the untreated. In the case of AZT, this could 

be explained by a compensatory mechanism of the cell to produce more mitochondrial 

DNA following mild inhibition of replication; AZT caused ~23% depletion in both cell 

lines.  The lack of any real depletion in the TDF conditions is in keeping with previous 

data. 

The severe depletion in the ddC and ddI conditions during the exposure phase appears 

to create such a large reduction in copy number, to <1% of untreated, that during the 

recovery phase, there was no evident repopulation. This is likely due to the copy 

number being so low, that there were insufficient mtDNA copies remaining from which 

to repopulate. That is, the cells were approaching Rho-0 status. However, a larger 

recovery period would have been required to control for an almost complete loss of 

mtDNA copies.   

The behaviour of the point mutation heteroplasmy during the NRTI exposure phase was 

similar across all conditions in both cell lines. Although there was no time point taken at 

experimental day 32 (end of exposure), due to the slow growing nature of the cells in 

vitro, at day 14 where severe depletion was present in the ddC and ddI conditions, there 

was no significant change to point mutation heteroplasmy. This indicates that there is no 

overall increase in the mutation and given that depletion is present, there is no 

replicative advantage mechanism by depleting copy number, in contrast to the 

large-scale deletion model in chapter 5. 

6.5.2 Assessment for a molecular bottleneck mechanism: data summary 

A molecular bottleneck effect can be created by a period of depletion followed by 

repopulation of mtDNA content. During recovery, mutations may be subject to 

accelerated drift, which will be predicted to manifest as increased spread in mutation 

heteroplasmy levels in this experimental design.  

The ddI exposure, created a bottleneck, as seen by the depletion of total copy number at 

experimental day 6 (Figure 6.7); however, the heteroplasmy level shows no change 

across any of the replicates until the ddI had been removed and repopulation was 

allowed to occur. The tight spread of point mutation heteroplasmy levels present at 
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experimental day 6 rapidly increase to a statistically significant spread compared to the 

untreated (p-value<0.001) exactly as would be predicted with a molecular bottleneck 

(Khrapko, 2008).  

The single cell data indicates that there is already a wide spread of m.414T>G 

heteroplasmy levels present between individual cells within the population. There are 

two key points from these analyses: 

 The very large spread at baseline precludes showing an increase in spread after 

the bottleneck (it would be an increased, not decreased, spread expected). 

 The single cell measurements may have been taken too late, as the replicates 

show the large spread at the intermediate time point during replication, at this 

point (end of recovery phase, experimental day 24), everything appears to have 

comes back together at the end of the repopulation phase. 

6.5.3 Study limitations 

The greatest limitation of this study is the use of fibroblast cell lines from aged 

individuals with a very slow replication time in vitro. This reduced the number of time 

points that were taken throughout experiments and may have meant that transient 

phenomena during repopulation/recovery were missed.  

Another consideration is that the point mutation used in this experiment was a neutral 

‘non-disease’ causing mutation. This mutation was chosen due to its presence in 

fibroblasts and the known associations with ageing. However, there is a possibility that 

the kinetics of a neutral mutation may be different to a disease causing point mutation. 

Nevertheless, a bottleneck mechanism would be expected to apply, regardless of 

mutation type in vitro.   
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6.6 Chapter conclusion and further comments 

The data presented in this chapter strongly support the following conclusions: 

 No systematic increase in m.414 point mutation heteroplasmy, due to NRTI 

exposure, despite it being deemed a likely hot spot for mutagenesis. 

 There is evidence for a bottleneck mechanism during ddI exposure; this would 

potentially explain the in vivo data showing clonal expansion of point mutations.  

It is finally worth noting the significant evidence to suggest that fibroblast cell lines are 

highly sensitivity to NRTI exposure with a clear hierarchy matching that of polymerase 

γ inhibition (Gardner et al., 2013).  
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Chapter 7. The use of Next Generation Sequencing in the Detection of 

Very Low Level Mitochondrial DNA Mutations 
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7.1 Background 

The use of next generation sequencing (NGS) as a tool for analysing mtDNA has 

resulted in a breadth of different analyses performed from mitochondrial mutation load 

quantification to rare variant detection across multiple species (Y. He et al., 2010; 

Ameur et al., 2011; Y. Guo et al., 2013; L. C. Greaves et al., 2014). There have been a 

range of research efforts in developing methodologies on how to perform sequencing in 

the first instance and than techniques to analyse the data produced, as reviewed in 

Section 1.9.8.  

The ability to successfully interpret NGS data is intrinsically linked to the quality of 

data itself, but also extrinsically in how the data is analysed. The main contributors to 

intrinsically linked factors affecting how data is interpreted are sequencing quality and 

quantity (sequencing depth). Although a large quantity of high quality sequencing data 

is often sought and regarded as being the matter of an optimal sequencing run, the 

ability to make interpretations of the data can be defined as behaving in a sigmoidal 

fashion, due to the summation of a variety of error rates (see Figure 1.6). 

The extrinsic factors affecting the resolution of very low level variants is generally 

comprised of defining the minimum thresholds to call a variant. Other factors include 

assessing the level of sequencing strand bias, reference mapping quality and base call 

accuracy, to ensure variants lie within the binomial distribution.   

There have been a number of recent studies that have concluded that the lowest level 

which mtDNA variants can be successfully resolved is in the region of ≥0.2% variant 

frequency. Such methodologies implemented the use of sequencing of cloned mtDNA 

in order to define the lowest level at which variants should be called in biological 

samples (Payne et al., 2013).  

There have been a number of studies suggesting that NRTI exposure can induce 

mtDNA mutagenesis through a number of different mechanisms; however, there were 

methodological limitations associated with the studies (Susan-Resigna et al., 2007). The 

data presented in Chapter 6, suggests that this may not be the case and an increase in 

point mutation is mediated through a molecular bottleneck effect. The aforementioned 

studies also fail to illustrate how an induced point mutation would reach a high 

heteroplasmy level, and previous modelling data suggests it would require a substantial 

mutation rate to lead to a biochemical defect (Elson et al., 2001).   
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7.2 Experimental aims 

The experimental aims of this study were to use NGS to: 

 Design and optimise a pipeline to define the detection limit of very low level 

mitochondrial DNA variants.  

 Assess fibroblast and cybrid cells exposed in vitro to NRTIs for de novo mtDNA 

point mutagenesis.  

 Develop a model for analysing low level mtDNA point mutations through a 

putative molecular bottleneck. 

 Assess mutation burden in aged mouse samples exposed to NRTIs compared to 

aged control samples.  
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7.3 Experimental design and methods 

7.3.1 Sample sets and DNA 

Three sets of samples were used in this study: human samples, in vitro cells and aged 

mouse tissue samples.  

DNA from the blood and skeletal muscle of a patient with a confirmed MNGIE disorder 

(mitochondrial neurogastrointestinal encephalomyopathy; TYMP mutation 22q12.32-

qter), along with age matched control skeletal muscle, were studied. MNGIE DNA was 

provided by Professor Rita Horvath (Institute of Genetic Medicine, Newcastle 

University, UK). These samples were used to explore the lower limits of resolution of 

an NGS assay for mtDNA mutations, owing to the previously described presence of 

specific mutational motifs within MNGIE mtDNA.  

DNA was extracted as previously described for the in vitro samples (fibroblasts and 

trans-mitochondrial cybrids; see Section 3.3). The m.414 T>G fibroblasts (cell line 

nr100), were exposed to a physiological dose of each NRTI (ddC, ddI, d4T, AZT and 

TDF) for 32 days and then placed into normal growth media for a further 10 days.  

Experimental day 0 (baseline) and experimental day 22 for all NRTI conditions was 

used in this study.  

The trans-mitochondrial cybrid cell line was exposed to a physiological and 10x 

physiological dose of ddI, d4T, AZT and TDF for 32 days and then allowed to grow in 

normal media conditions (repopulation phase) for 10 days and 20 days, respectively. 

The time point used in this NGS study consisted of: experimental day 0, experimental 

day 32 and the end of repopulation phase, for each of the NRTI exposure conditions, 

specifically amplifying the mutant and wild-type molecules (see Section 3.10.1).  

DNA from three mouse tissues: heart, liver and gastrocnemius, was kindly provided by 

Professor Joanna Poulton (University of Oxford, UK) from two aged mice (2 years old), 

one exposed to zidovudine in utero (0.15mg/ml; GlaxoSmithKline, UK) and throughout 

life, and the other a normal age matched control. The mice were classified as first 

cousins, sharing a maternal lineage. Original protocol is previously described (Morten et 

al., 2005). 
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7.3.2 Next generation sequencing and bioinformatics 

The DNA from the MNGIE and control samples were prepared using three overlapping 

fragments and pooled in equimolar quantities by Dr Brendan Payne and kindly provided 

for this study. The samples were sequenced using the SOLiD™ platform (Applied 

Biosystems, Life Technologies, Paisley, UK) by Genomic Research, University of 

Liverpool, UK.  

The DNA from mouse and cells grown in vitro was prepared for sequencing as 

previously described in Sections 3.10.1, 3.10.2 and 3.10.3. They were sequenced using 

the Illumina MiSeq™ (Illumina, Cambridge, UK) platform by Dr Jonathan Coxhead 

(IGM, Newcastle University, UK).  

All bioinformatics was performed as previously described (see Section 3.11.1). 

Minimum coverage and supporting reads data was generated based on run performance 

the optimal coverage to encapsulate at least >95% of the mtDNA genome.  

7.3.3 Pipeline optimisation: strand bias 

In order to determine the optimum bioinformatics parameters for analysing mtDNA low 

level variants, the MNGIE samples were used as positive controls for a stereotypic 

mtDNA mutation motif (nAT>C) (Nishigaki et al., 2004) and the variant calling 

parameters (as described in Table 3.9) were refined based on this pattern (as described 

in Section 7.4.1). The two-fold strand bias filter was implemented after optimising by 

comparing the number of ‘lost’ or excluded variants dropped reduced through a series 

of thresholds (ranging from five-fold to two-fold). The remaining variants were deemed 

likely to be signal rather than sequencing noise and included in the analysis. Filtering 

for strand bias is generally considered a stringent quality control step. This is especially 

important for sequencing platforms using short reads and strand bias is more prevalent 

in such systems, compared to long read sequencing systems (Yan Guo et al., 2012). The 

exact cut off threshold for very low level variants is further discussed within this 

Chapter, under Section 7.4.1. 

7.3.4 Pipeline optimisation: NGS amplicon generation 

To further assess the optimisation of the polymerase used in the amplification of 

mtDNA products, an mtDNA sequencing clone from control Mus musculus was 

generated as previously described (see Section 3.8) using a 1188bp amplicon to 

generate the clone insert (see Table 7.1). 
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The clone was amplified using PrimeSTAR GXL (Takara, Clontech) as previously 

described (see Section 3.10.1) as well as Takara LA (Takara, Clontech), Phusion High 

fidelity polymerase (Thermo-Scientific, Hampshire, UK), Q5 (NEB, Herts, UK) using 

the same master mix as previously described for the PrimeSTAR GXL and amplified as 

previously described (see Section 3.10.1). Sequencing was performed on the MiSeq™ 

(Illumina, Cambridge, UK). 

It was found that the number of variants predicted in the clone across the variety of 

polymerases (see Table 7.2) was lowest in the Takara PrimeSTAR GXL preparation and 

therefore, this was the chosen polymerase for all subsequent NGS experiments on the 

MiSeq™ platform. The raw data indicated a mean sequencing depth for each 

sample >30,000 fold, with the exception of the Phusion HF, which was found to be 

17,316 fold. 
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Primer Sequence 5’ – 3’ 
mtDNA 

Position 

Tm 

(
o
C) 

Size 

(bp) 

Clone 
F - TCCTACTGGTCCGATTCCAC 5’ m.12533 

63 1188 

R - TGATGGTTTGGGAGATTGGT 3’ m.13721 

Table 7.1 The primer properties used to generate amplicon of mtDNA sequencing clone. 

 

Polymerase Sequencing Depth 
Variants called  

(Post-filtering) 

Takara LA 38,554 15 

Takara PrimeSTAR GXL 30,051 2 

Phusion HF 17,316 4 

Q5 30,319 5 

Table 7.2 The number of variants predicted post filtering, in the mouse (Mus musculus) clone using 

the diffferent primary LR-PCR enrichment polymerases. 
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7.4 Results 

7.4.1 Defining the detection limit of very low level mitochondrial DNA variants 

Human mtDNA amplicons (MNGIE and control) were sequenced on the AB SOLiD 

platform. The mean sequencing depth across the mtDNA genome was >16,000 for all 

three samples, with >95% of the whole mtDNA genome in all samples covered with a 

read depth of >5,000.  

The expected stereotypic pattern (termed nAT>C, where n represent the length of the 

preceding poly ‘A’ tract) was seen extensively within the MNGIE skeletal muscle and 

blood samples, throughout the whole genome at all heteroplasmy variant threshold 

levels (initially all putative variants at ≥0.1% were considered). There was however no 

apparent increase in total mtDNA point mutation load in either MNGIE tissue compared 

with the control. Variant data can be found in Appendix B. 

Variant threshold cumulative frequency ‘bins’ were then set at 0.1% intervals, from a 

variant heteroplasmy frequency of 0.1% to 1% in the MNGIE skeletal muscle and the 

control skeletal muscle datasets. The number of variants detected at these thresholds is 

plotted in Figure 7.1, stratified by matches to the nAT>C mutation motif and non-

matches (all other variants), with the nAT>C mutational burden represented as a 

percentage of the total mutational burden at each threshold.  

The most striking feature is the black bars representing stereotypical mutations 

throughout the MNGIE sample at all heteroplasmy thresholds. At ≥0.1% the 

stereotypical mutation burden was at the lowest of all the thresholds studied, when 

expressed as a proportion of the total mutational burden (27.8%). The proportion of 

stereotypical mutations was found to consistently increase in a progressive manner with 

an increased detection threshold, with 72.7% of total variants at ≥1% matching the 

nAT>C mutation pattern. 

The control sample has a consistently low level of stereotypical mutations of 

approximately 10% of total mutations from ≥0.1% and ≥0.7%, with no stereotypical 

mutations found above the ≥0.8% heteroplasmy detection threshold. The highest overall 

stereotyped mutation burden was found at ≥0.6% threshold (at 14.3%), which was 

almost one fifth of that found at the same threshold level in the MNGIE sample (68% 

stereotyped mutation burden).  
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The variant detection threshold bin intervals were then narrowed to 0.02% between the 

0.2% and 0.3% detection level (as a putative range for eventual threshold cut-off). This 

increased the resolution at the very low level and revealed the consistent trend of an 

increased proportion of stereotypical nAT>C mutations with increasing detection 

threshold in the MNGIE sample, and a consistent decreasing trend in the control. 
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Figure 7.1 The cumulative variant count of the nAT>C matches and non-matches (all other variants) found in the MNGIE skeletal muscle (SKM) and control, categorised 

into variant frequency thresholds of 0.1%, with an increased resolution at 0.2-0.3% with increased ‘bins’ of 0.02%. 
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An ANOVA was performed to compare the distributions of nAT>C mutations in both 

samples at very low level variant detection thresholds, the p-values are tabulated below 

in Table 7.3.  

As highlighted in Table 7.3, it was found that 0.3% was the statistically significant level 

at which the stereotypic mutations were different in the MNGIE compared to the control. 

To further investigate a more precise cut off, the threshold bins were decreased to 

0.02%, between ≥0.2 - 0.3%. The p-values are tabulated below in Table 7.4. The 

ANOVA revealed that ≥0.22% was the lowest statistically significant detection level 

(Figure 7.2). 

The number of variants matching the nAT>C pattern at was broken down into their 

constituent poly A tract lengths, where n= 1 - 4, at the candidate detection threshold of 

≥0.22% (see Figure 7.3). There was only one stereotypical mutation detected in the 

control sample where cumulative tract lengths were n = 2, 3 or 4. This compared with 

18, eight and seven respectively, in the MNGIE sample. If we consider a mutational 

motif of n = 4, there are 22 sites in the mtDNA genome at which a mutation could occur 

(i.e. AAAAT). There were seven mutations found in the MNGIE sample that matched 

this mutation motif, representing 31% of the total number of sites in the mtDNA 

genome where this mutation could theoretically occur.  

  

 

  



The use of Next Generation Sequencing in the Detection of Very Low Level Mitochondrial DNA 

Mutations 

 

201 

 

Detection Threshold (%) ANOVA p-value 

≥0.1 0.255 

≥0.2 0.087 

≥0.3 <0.001 

≥0.4 0.001 

≥0.5 0.001 

Table 7.3 The p-values calculated from an ANOVA of the nAT>C mutation distribution in the 

control and MNGIE skeletal muscle from very low level variant detection thresholds of ≥0.1% - 

0.5%, in 0.1% grouping bins with statistical significant values highlighted in red. 

 

Detection Threshold (%) ANOVA p-value 

≥0.2 0.087 

≥0.22 0.034 

≥0.24 <0.001 

≥0.26 <0.001 

≥0.28 <0.001 

≥0.3 <0.001 

Table 7.4 The ANOVA p-values of very low level nAT>C variants between ≥0.2-0.3% to further 

increase the resolution of the statistically significant threshold. 
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Figure 7.2 The p-value calculated from an ANOVA of nAT>C distribution between MNGIE skeletal muscle (see Figure 7.2) and control for different very low level cut-off 

frequency thresholds. 
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Figure 7.3 The distribution of nAT>C matches, where n=1-4, in the MNGIE skeletal muscle (black bar) and control (white bar). MNGIE SKM indicates MNGIE skeletal 

muscle.  
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7.4.2 Assessment of NRTI de novo mutagenesis 

>98% of the mtDNA genome was covered at >3,000 fold sequencing depth in the 

fibroblasts cell line (nr100) in the following treatment groups:  baseline (day 0), 

untreated, ddI, d4t, AZT and TDF (day 22). The ddC had slightly lower sequencing 

depth with >95% of the mtDNA genome covered at >3,000 fold. 

The frequency of the m.414T>G mutation was sought and found to be in line with the 

results (illustrated in Figure 6.5, previously generated by pyrosequencing in Chapter 6). 

For this anlysis only, the bioinformatics variant calling criterion was reduced to 

compensate for poor sequencing depth between mtDNA regions m.262 – 514, to 1,000 

fold coverage and 5 supporting variant reads (see Table 7.5 ). All conditions appear to 

be in line with the experimental day 0 and the untreated condition heteroplasmy. The 

ddC condition was very poorly covered and therefore was excluded from the analyses. 

The count of heteroplasmic variants found in the coding region of the untreated and 

experimental day 0 samples were highly similar at the ≥0.3% detection threshold. The 

untreated condition was found to have 26 variants compared to 21 at experimental day 0. 

This was found to be a consistent level among the NRTI conditions. The count of very 

low level variants in the D-Loop (see Table 7.6) was also fairly consistent amongst all 

samples (complete list of D-loop variants available in Appendix C). 
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Day 0 Untreated ddI d4T AZT TDF 

414 Variant Frequency - NGS 55.0% 50.6% 46.6% 51.9% 49.3% 45.7% 

414 NGS coverage 3121 4489 3753 3125 2567 2405 

Table 7.5 The frequency distribution of m.414T>G in all samples, calculated using a reduced calling criterion of 1,000 minimum coverage and 5 supporting reads, 

along with the 414 site coverage. The variant frequency was compared to that found in Chapter 6, with no change visually apparent. 
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  Day 0 Untreated ddC ddI d4T AZT TDF 

HVS1 (m.16024-16365) 3 2 4 2 0 2 1 

Central region (m.16366-56) 0 0 0 0 0 1 0 

HVS2 (m.57-372) 0 2 0 2 0 0 0 

m.373-575 0 2 0 3 0 4 0 

Total 3 6 4 7 0 7 1 

Table 7.6 The number of variants found in each condition at experimental day 0 and experimental day 22 from the fibroblast m.414T>G nr100 NRTI exposure-

repopualtion experiment (see Section 6.4.2). 
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7.4.3 Assessment of a bottleneck mechanism through NRTI exposure 

The cybrid samples were broken down into three categories in this analysis; point 

mutation behaviour on the wild-type molecule through exposure of NRTIs, at a 

physiological concentration; point mutation behaviour on the wild-type molecule 

through exposure of NRTIs, at a 10x physiological concentration; and the point 

mutation behaviour on the deleted mutant molecule through the exposure of ddI, at 10x 

physiological concentration. In addition to these analyses, a further assessment of de 

novo mutagenesis was also assessed in the samples exposed to NRTIs during the 

exposure phase.   

All wild-type  samples (amplicons derived from undeleted mtDNA, see Figure 3.9) 

were found to have >98% of the amplified mtDNA genome region, at a sequencing 

coverage of >5,000 depth, with an average read depth across all samples of 10,681. 

There was no evidence of increased mutagenesis in coding or D-Loop point mutation 

counts, with both regions consistently producing a similar number of point mutations at 

both physiological and 10x physiological doses.  

The variants found at experimental day 0, in both groups (physiological concentrations 

and 10x physiological concentrations) were defined as the starting variant heteroplasmy 

level. These samples were compared to all other conditions in the group to identify 

shared variants present across all samples. The level of point mutation shift was 

calculated from day 0 to end of NRTI exposure and end of repopulation for each NRTI 

condition, at ≥0.3% variant frequency, in both biological replicates. The average level 

of shift from baseline, day 0 (between biological replicates) for the physiological 

concentration and 10 x physiological concentrations of NRTI exposure are shown in 

Figure 7.4 and Figure 7.5, respectively.    

Figure 7.4A illustrates the level of heteroplasmy shift of the shared variants at the end 

of NRTI exposure at a physiological concentration. There is little shift present in any of 

the samples, with all conditions demonstrating small positive heteroplasmy shifts 

(increased level) from experiment day 0 of approximately 1.2%. Figure 7.4B illustrates 

that the level of heteroplasmy shift from experimental day 0 to the end of recovery 

shared small shifts with most NRTIs, which ranged from 2.24%  (±S.D 1.05%) in the 

d4T condition, to 2.68% (±S.D 1.23%) in the untreated condition. However, the ddI 

exposure was found to have increased heteroplasmy shifts with an average across all the 
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six variants of 6.33% (±S.D 2.76%). A t-test (equal variance) found the difference in 

heteroplasmy shift in the ddI condition was statistically significant (p=0.008) compared 

with the untreated. All other conditions were statistically comparable to the untreated.   

Figure 7.5A shows the level of heteroplasmy shift of seven point mutations across the 

NRTI 10x physiological concentration conditions. There is a small increased level in all 

point mutations in each condition with ddI found to have the smallest average increase 

of 2.1% in four variants (three omitted due to lack of sequencing depth) compared to an 

average of 3.92% increase in the untreated condition.  Figure 7.5B shows the 

heteroplasmy shifts from day 0 to the end of the repopulation phase in the NRTI x10 

physiological concentration conditions. All conditions show a heteroplasmy increase in 

each variant, with an average increased in the untreated of 5.87% (±S.D 1.76%). The 

d4T and AZT conditions show a similar average increase with 6.64% (±S.D 1.34%) and 

5.36% (±S.D 1.77%), respectively. The TDF condition shows an average heteroplasmy 

increase of 7.82% (±S.D 2.37%) and the ddI condition found to display an average 

heteroplasmy shift of 12.26% (±S.D 0.72%). The increased heteroplasmy shifts in the 

ddI was only condition to be statistically significant when compared to the untreated 

(p<0.001). All shared variant data is expressed in Appendix D and Appendix E for the 

deleted amplicon. 
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Figure 7.4 The heteroplasmy shifts of 6 shared variants across NRTI conditions at experimental day 0, 32 and 42 from the NRTI-exposure repopulation cybrid experiment. 

A) Heteroplasmy shifts present at the end of NRTI-exposure. B) Heteroplasmy shifts present in variants at end of repopulation. 
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Figure 7.5 The heteroplasmy shifts of 7 shared variants across NRTI conditions at experimental day 0, 32 and 52 from the NRTI dose-response cybrid experiment. A) 

Heteroplasmy shifts present at the end of NRTI-exposure. Shifts in ddI of two variants were covered at <5,000 depth. B) Heteroplasmy shifts present in variants at end of 

repopulation.  
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All mutant only samples (derived from deleted mtDNA molecules) had a coverage 

of >98% of the amplified mtDNA genome region at a sequencing depth of >5,000. The 

average sequencing coverage across the samples was 16,066 fold. 

The same analysis was performed as with the wild-type molecule only samples, with 

shared variants between experimental day 0, untreated and ddI x10 conditions (chosen 

due to a depletion of deleted mtDNA present at 10x ddI exposure compared with 

minimal depletion at physiological concentration, Chapter 5; Figure 5.21), at the end of 

NRTI exposure (day 32) and the end of the repopulation phase (day 52). The 

heteroplasmy shifts of 16 variants in both conditions at day 32 and day 42, is plotted in 

Figure 7.6A & B, respectively. 

The most striking feature of both graphs is the large spread of heteroplasmy shifts in the 

ddI x10 condition at both time points. In comparison to the wild-type molecule only 

samples, where shifts were found to be increased, the mutant molecule only samples 

show both increases and decreases.  

Figure 7.6A highlights an average shift in the ddI x10 condition as a (-)1.23% (±S.D 

0.86%) decrease, compared to 2.62% (±S.D 0.78) increase in the average heteroplasmy 

in the untreated condition at the end of ddI x10 exposure phase. The ddI heteroplasmy 

shift of each variant was found to be significantly different to the untreated shift 

(p=0.0024).  

Figure 7.6B shows the heteroplasmy shifts at the end of repopulation, which is almost 

the identical scenario to the end of exposure. The average shift in the ddIx10 condition 

was a (-)1.18% (±S.D 1.01%) decrease, compared to a 2.23% (±S.D 0.78%) increase in 

the untreated. The mean difference in shifts between the conditions was found to be 

statistically significant (p=0.01).  
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Figure 7.6 The heteroplasmy shift from day 0 of 16 shared variants in the mutant only amplicon for the control (black) and ddI x10 concentration (red). A) Point mutation 

heteroplasmy shift from experimental day 0 to end of NRTI-exposure phase. B) Point mutation heteroplasmy shifts from experimental day 0 to end of repopulation phase. 
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7.4.4 Intra-mitochondrial molecule comparison – mutant vs wild-type 

As a unique opportunity to analyse the two molecules (deleted mutant and wild-type) 

coexisting in the same mtDNA sample, the shared variants within the mutant and wild-

type molecules of the untreated samples were studied along with the heteroplasmy 

levels of those variants (see Table 7.7) and any differences between the molecules 

(intra-molecule shift) calculated (actual base position heteroplasmies, not shifts from 

base line). This was performed in both biological replicates for the experimental day 52 

time point (10x physiological dose response experiment). 

Across the shared variants, there is an interesting range of increases, decreases and 

positions that appear highly similar, in the mutant amplicon compared to the undeleted 

amplicon. The biggest shift in replicate 1 was found at mtDNA position 515 with an 

increase in the mutant of 16.66%. The largest decrease in heteroplasmy in replicate 1 

was found to be at mtDNA position 16126 with a 5.71% change. The largest increase in 

replicate 2 was found at mtDNA position 2707, with a change of 15.60% and the largest 

decrease in heteroplasmy in the mutant replicate 2 molecules found at mtDNA position 

16126, with a change of 7.28%. 
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Untreated Replicate 1 
 

Untreated Replicate 2 

MtDNA Mutant 

Molecule 

Wild-type 

Molecule 

Intra-molecule 

Shift  

MtDNA Mutant 

Molecule 

Wild-type 

Molecule 

Intra-molecule 

Shift Position Position 

150 10.18% 10.44% -0.26% 
 

150 11.30% 12.32% -1.02% 

185 9.96% 9.36% 0.60% 
 

185 10.86% 10.93% -0.07% 

295 17.87% 7.95% 9.92% 
 

1811 13.30% 0.35% 12.95% 

515 17.05% 0.39% 16.66% 
 

2707 15.95% 0.35% 15.60% 

1811 12.18% 0.32% 11.86% 
 

3010 15.28% 0.43% 14.85% 

3010 15.21% 0.41% 14.80% 
 

4188 5.67% 0.33% 5.34% 

4188 6.65% 0.39% 6.26% 
 

4216 5.12% 0.36% 4.76% 

4216 5.95% 0.45% 5.50% 
 

4640 4.46% 0.51% 3.95% 

4640 4.18% 0.58% 3.60% 
 

16069 5.88% 9.57% -3.69% 

16069 5.53% 8.79% -3.26% 
 

16093 4.87% 11.23% -6.36% 

16093 4.75% 9.77% -5.02% 
 

16126 4.73% 12.01% -7.28% 

16126 4.65% 10.36% -5.71% 
 

16343 6.64% 10.45% -3.81% 

16343 6.22% 8.57% -2.35% 
 

16519 8.42% 9.83% -1.41% 

16519 8.24% 8.24% 0.00% 
     

Table 7.7 The heteroplasmic shared variants of the mutant and wild-type molecule in the untreated cybrid sample replicate 1 (left), and replicate 2 (right) at 

experimental day 52. A heteroplasmy shift was calculated between the mutant and wild-type molecules for each variant position and displayed in intra-molecule shift 

column for each replicate. Green indicates increase in mutant, yellow indicates no change and red indicates decrease in mutant. The intra-molecule shift indicates the 

amount of difference in heteroplasmy for a given position between the mutant and wild-molecule. 
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7.4.5 Assessment of mouse tissues after zidovudine exposure 

The mean sequencing depth of the tissues from the control and AZT-exposed mouse 

samples is shown in Table 7.8. The mouse mtDNA clone was also included on this 

specific sequencing run and found to have a mean coverage depth of 56,666 fold.  

Sample Mean Sequencing Coverage/Depth 

Control gastrocnemius 9,950 

Control liver 8,970 

Control heart 10,801 

AZT gastrocnemius 13,945 

AZT liver 16,477 

AZT heart 13,746 

GXL clone 56,666 

Table 7.8 The mean sequencing coverage/depth of four tissues from a 2 year old control mouse and 

2 year old AZT exposed mouse. 

There were no variants found in the clone across the mtDNA genome, above a ≥0.3% 

variant threshold.    

The number of variants across the coding region of the mtDNA indicated that there 

were no distinct differences between AZT-exposed and control in type of mutation 

(synonymous, non-synonymous, missense and mtRNA variants; see Table 7.9).  

The mtDNA coding region for mitochondrial subunit COX I was found to be a common 

site for synonymous, non-synonymous and missense variants which was exclusive to 

the AZT tissues.  

An assessment of the number of variants across the mitochondrial D-Loop in all 

samples indicated distinct differences between the AZT-exposed and the control 

samples (see Table 7.10; full variant data in Appendix F). The AZT gastrocnemius 

tissue was found to have the highest number of D-Loop low level variants with 13, 

compared to two variants in the control gastrocnemius tissue. AZT heart was found to 

have ten D-Loop mutations and six variants in liver. The respective tissues in the 

control sample revealed no mutations in liver and two variants in heart.   
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Samples Synonymous Non synonymous Missense RNA’s 

Control gastrocnemius 
2 5 2 4 

Control liver 
3 3 0 2 

Control heart 
4 23 5 7 

AZT gastrocnemius 
2 11 5 4 

AZT liver 
1 5 0 2 

AZT heart 
4 16 7 15 

 

Table 7.9 The mouse variants across coding regions of the AZT-exposed and control samples represented as their constituent variant type (non-synonymous, 

synonymous etc.). The bolded samples are the AZT exposed tissues and non-bold samples are from the control mouse.  
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A Fisher’s exact test was performed comparing the D-Loop variant count in the same 

tissue between control and AZT-exposed mouse samples; with a final overall 

assessment of pooled, total D-Loop variants across all tissues in each mouse (see Table 

7.10). The count of variants was found to be statistically significant for each tissue in 

the AZT-exposed mouse, with the overall burden in the AZT-exposed mouse found to 

be strongly statistically significant (p-value <0.0001) compared to the control.  

Tissue D-Loop Mutations 
Fisher’s exact test 

(p-value) 

Control gastrocnemius 2 
0.007 

AZT gastrocnemius 13 

Control liver 0 
0.031 

AZT liver 6 

Control heart 2 
0.038 

AZT heart 10 

Total in control 4 
<0.0001 

Total in AZT 29 

Table 7.10 The number of mitochondrial D-Loop mutations found in the liver, heart and 

gastrocnemius tissues of AZT-exposed and control mice. A Fisher’s exact test was performed 

comparing number of variants between tissues along with a pooled comparison of total variants in 

the AZT mouse compared to total in the control. Red indicates statistically significant difference.   

The total number of D-Loop mutations pooled from the three tissues was categorised in 

to cumulative counts found in variant heteroplasmy level thresholds levels 0.1% bins, 

ranging from detection level of ≥0.3% to ≥1% in the AZT-exposed and control samples 

(see Figure 7.7). The number of mutations in the AZT-exposed mouse sample was 

found to be higher than the control at each threshold. The number of variants in the 

control sample was found to be zero by a detection threshold of 0.5%.  

A three tissue shared variant comparison was performed in the D-loop of the AZT 

tissues. Only one variant was found to be shared in all three tissues, at similar levels in 

each tissue, consisting of: 0.48%, 0.44% and 0.62%, for gastrocnemius, liver and heart 

respectively at mitochondrial position m.16103. The remaining variants in the d-loop of 

the samples were unshared; AZT gastrocnemius, 12; AZT liver, 5; AZT heart, 9.  
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Figure 7.7 The cumulative frequency distribution graph of pooled D-Loop variants across the four tissues representative of the variant load present in the control aged 

mouse (black) and AZT-treated aged mouse (red). 
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7.5 Discussion 

7.5.1 Defining lower limits of resolution for very low level mtDNA variants using 

NGS: data summary 

In the course of this experiment, I implemented a novel methodology to derive 

empirical lower limits of resolution for characterising mtDNA low level variants. 

Ultimately, this revealed strikingly similar results to those thresholds previously 

claimed (He et al., 2010; (Payne et al., 2013), with an optimised bioinformatics 

approach suggested for mtDNA variant detection.  

This study was performed by taking advantage of the metabolic disorder, MNGIE, 

which is known to induce a characteristic mtDNA mutation motif (nAT>C; Nishigaki et 

al., 2004) and comparing the motif frequency with a healthy control. It is inevitable 

with deep re-sequencing experiments on NGS that at very low variant heteroplasmy 

levels there will be a mixture of signal and noise detected. In reality, the noise will not 

stop abruptly above a certain threshold, but rather will taper off. Thus the higher the 

heteroplasmy detection threshold employed the greater the confidence will be that any 

detected variant is biological. However for the analysis of mtDNA somatic mutations, it 

is precisely the lowest level variants that are likely to be of the greatest interest, and 

therefore it is desirable to have an analytical method which allows the lowest possible 

heteroplasmy threshold to be employed. Furthermore, bioinformatics tools, such as 

stringent strand bias filtering will remove large amounts of noise, but little signal, so 

that lower heteroplasmy thresholds can be interrogated. Previous methods for defining 

lower limits of resolution have either used kit phage DNA (which may not capture 

mtDNA-specific sequencing problems), or specific mtDNA clones (which cannot cover 

the whole mtDNA genome and therefore may not be stringent enough). Given that 

nAT>C variants are very rare in the control sample (whether due to biological variants, 

or noise), we can be very confident that the vast majority of nAT>C variants detected in 

the MNGIE samples are therefore real biological signal. It was therefore empirically 

derived that the statistically lowest level where stereotypical mutational signal in the 

MNGIE sample outweighed the control sample was at ≥0.22% variant 

frequency/heteroplasmy level (see Figure 7.2). A more conservative approach was also 

taken by assessing the level at which the proportion of the nAT>C motifs was >50% of 

total mutational burden in the MNGIE sample. Therefore at a very low level of ≥0.3% 
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heteroplasmy we can be confident that the vast majority of variants reported using our 

pipeline will be true biological mutations.   

The methodology also implemented a stringent quality control feature of using a 

maximum 2-fold bi-directional strand bias filtering process. This technique is especially 

important for short read length deep sequencing, as with the SOLiD™ and Illumina 

platforms. Most variant calling tools implement a level of strand filtering, however, I 

argue that the level of filtering built into the software was designed for whole genome 

sequencing studies, with innately lower read depth, and not designed for the large 

amount of sequencing depth and increased level of noise found in with deep sequencing 

of smaller molecules, such as the mtDNA genome. A stringent strand bias filter 

accounts for under-represented variants (low supporting reads within the high 

sequencing depth), especially when analysing data at very low detection levels (<1%), 

which improves the overall reliability of variants being called lying within a binomial 

distribution.  

An often overlooked step of NGS preparation is the polymerase for initial amplicon 

enrichment and amplification before sequencing. Here I present a novel small study of 

polymerase that is marketed by the manufacturers as optimised for NGS purposes. It is 

evident that false calls and an increased error rate is especially prevalent when using the 

Takara LA taq. The optimal performing polymerase for lowest error rates was found to 

be the Takara GXL PrimeSTAR. Using this polymerase, variants were negligible, 

indicating a ‘clean’ pipeline. 

This study carries the possible limitation that the pipeline was optimised on data from 

one platform (SOLiD) and it was assumed to translate across other platforms (with 

potentially different base calling error rates). It was however deemed acceptable in this 

case, as previous studies have performed quad-platform comparison and found little to 

no difference in calling of low level variants (Archer et al., 2012). 

7.5.2 Assessment of NRTI de novo mutagenesis data summary 

It has been previously suggested that the mtDNA point mutation load increase is driven 

through a mutagenic effect of the NRTIs. A documented study suggests this increased 

point mutation load occurs during the exposure to AZT in skeletal muscle of 

HIV-infected patients presenting with myopathy (Casademont et al., 1996). This effect 

is potentially comparable to inherited defects of POLG that result in an accumulation of 
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mtDNA mutations, as previously shown (Payne et al., 2013). Casademont et al., 

suggest the underlying mechanism is due to a lack of exonuclease function of pol γ, 

caused through inhibition by NRTIs. Alternatively, inhibition of mitochondrial 

thymidine kinase (TK2) may result in a nucleotide pool imbalance and induce mutations 

(analogous to that seen in MNGIE, presented in Section 7.4.1). This would be expected 

to present in NGS data as either a significantly increased number of total base positions 

across the genome that are mutated, or a large increase in very low level point mutations.  

The NGS of samples exposed to a range of NRTIs in vitro in two cell lines (fibroblasts 

and trans-mitochondrial cybrids) revealed that there was no mutation burden increase 

across the coding region or in the D-Loop, where an increased level of specific point 

mutations presenting as clonal expansions within cells has been described in 

NRTI-exposed individuals (Martin et al., 2003; Payne et al., 2013).   

7.5.3 Assessment of a molecular bottleneck through NRTI exposure data 

summary 

The data presented in Chapter 5 & 6, indicated that there are the conditions for a 

possible molecular bottleneck effect, especially in opposed to strong inhibitors of pol γ, 

such as ddI. In vivo, this would drive an increase of point mutation heteroplasmy 

through NRTI exposure, due to accelerated neutral drift. Therefore, further confirmation 

of this hypothesis was sought through NGS deep sequencing of trans-mitochondrial 

cybrids that had been exposed to a range of NRTIs. It was found that the level of 

heteroplasmy shift during exposure of the NRTIs was minimal and entirely comparable 

to the drift seen in the untreated sample (see Figure 7.4A & Figure 7.5A). However, at 

the end of the repopulation phase (after NRTI removal), the heteroplasmy shifts were 

significant in the wild-type molecules (undeleted) of the ddI-exposed cells at both 

physiological and 10x physiological concentration. The expansions correlate with the 

increase of mtDNA copy number after depletion found in Chapter 5 (see Figure 5.10& 

Figure 5.21) during the NRTI-exposure repopulation assays. Further work could be 

implemented to advance the understanding of this by using a dose-range with ddI to 

display the different levels of shift from a greater/tighter bottleneck as depletion 

increases through from 1x physiological to 10x. This effect also appears to be subject to 

a dose-dependent response with the 10x physiological dose creating a greater mtDNA 

depletion and also a greater heteroplasmy shift (see Figure 7.5B), the process is 

described in Figure 7.8.   
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Figure 7.8 The representation of the process of mitochondrial copy number depletion through a 

bottleneck caused by NRTI exposure, resulting in shift of mutation level after removal of NRTI and 

repopulation of the mtDNA population/copy number. 
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The distribution of point mutations in mtDNA comparison between the mutant (deleted) 

and wild-type (undeleted) molecules highlighted an interesting feature of an apparent 

spread of heteroplasmy levels of shared variants in the mutant compared to the wild-

type. Although this data is preliminary, I interpret and propose a phenomenon of point 

mutation clonal expansion on deleted mtDNA molecules within a heteroplasmic 

population. The mechanism underlying this is based upon the fact the deleted mtDNA is 

potentially already subject to a replicative size dependent mechanism for survival and 

increased turnover. Through this the molecule is subject to increased rounds of 

replication and therefore an associated point mutation could accumulate as described 

with point mutations such as the MELAS m.3243 (Picard et al., 2014). This data is 

summarised in three main points: 

 The baseline mtDNA point mutations appear to be different in some cases on the 

deleted and wild-type mtDNA molecules. In patients, these may have existed as 

distinct populations from birth and drifted through time, potentially due to the 

replicative difference between deleted and non-deleted molecules. 

 In principle, these data suggests a ‘piggy-back’ mechanism in that each mtDNA 

point mutation behaves differently, according to the mtDNA species it is 

associated with. 

 This could be further assessed through patient biopsies to look at deleted and 

undeleted mtDNA to perform the same analysis and ensure this phenomenon 

extends to in vivo observations. 

7.5.4 Deep sequencing of multiple mice tissues exposed to AZT data summary 

 The data presented in Chapter 4 indicated that there was a shift in a point mutation 

associated with NRTI exposure in tissue from HIV-infected individuals. This finding 

supported previously described data in physiological samples from humans (Payne et al., 

2013). There have been studies assessing the mtDNA point mutation status through 

NRTI exposure in other mammals such as rodents, however, unfortunately they didn’t 

implement the best methodology. Therefore, the opportunity was taken to implement 

the optimised NGS methodology in an attempt to elaborate upon this issue.   

There is evidence to suggest that in utero exposure to NRTIs can result in mitochondrial 

dysfunction (Brogly et al., 2007). Three tissues from mice exposed to NRTIs in utero 

and throughout life were sequenced using the NGS platform, MiSeq™ (Illumina, 
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Cambridge, UK). The results indicated that there was no increase in mutation load or 

heteroplasmy levels in the coding region; however, there was an increase in mutation 

load in the D-Loop. This is somewhat surprising given the previous findings in this 

chapter (see Section 7.5.3). However, it is interesting to note the increased mutation 

burden in the non-coding region, which was especially seen in the conserved region 2 of 

the mouse mtDNA. This may indicate a specific hotspot for point mutation increase 

during NRTI exposure. This region may be comparative to the D-Loop hotspot for 

accumulating point mutations during age, found in humans. The statistically significant 

increase across all three tissues suggests that this is not a chance finding.  The data 

indicates that this is likely to be a mutagenic effect, as we see an increase in low level 

mutations at different positions across the different tissues, rather than increased 

heteroplasmy of common mutations.  

The major drawback of this study is the lack of biological replicates used in the mouse 

study for further supporting (or refuting) the mutation load increase in the mouse 

mtDNA D-Loop with AZT exposure. An insightful addition to this study would have 

been an age range of mice representing different exposure times of AZT, which would 

have given a greater insight into any time dependency associated with the effect seen.  

However, the time point used in this study represents the extreme level of time exposure, 

especially within a mouse model.  
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7.6 Chapter conclusions 

There are three major conclusions that can be drawn from the data presented in this 

chapter: 

 The discovery and quantitation of very low level mtDNA variants can be 

successfully resolved at the range of ≥0.22-0.3%, by implementing the specific 

methods described. 

 NRTIs do not appear to cause de novo point mutation mutagenesis in cells 

exposed in vitro, to a range of NRTIs and concentrations. However, tissue 

samples may be subject to an increased mutation load in specific mtDNA 

hotspots over a very prolonged timescale, in vivo. 

 Low level mtDNA point mutations are subject to a molecular bottleneck effect 

when exposed to NRTIs, which are strong pol γ inhibitors (such as ddI). This 

will lead to enhanced clonal expansion in vivo, due to accelerated drift. 
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Chapter 8. Increasing Mitochondrial Copy Number through the up-

regulation of Mitochondrial Biogenesis 
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8.1 Background 

The abundance of mitochondria within a cell is determined by mitochondrial biogenesis 

and division of the organelle through tightly regulated transcription factors and 

signalling pathways (Attardi and Schatz, 1988; Moyes and Hood, 2003). It therefore 

follows that the greater the numbers of mitochondria that are present within a cell, the 

greater the number of mtDNA copies there will be.  

Peroxisome proliferator activated receptor γ co-activator-1α (PGC-1α) is a 

transcriptional co-factor that induces mitochondrial biogenesis (see Section 1.2.5) 

through the interaction with different transcription factors (Jornayvaz and Shulman, 

2010). Activation of PGC-1α is known to be mediated by a number of co-factors. Of 

these co-factors, AMPK (AMP-activated protein kinase) is the major regulator that has 

been described to directly affect PGC-1α activity through a phosphorylation pathway 

(Canto and Auwerx, 2009).  

SIRT1 (sirtuin 1) is another co-factor which up-regulates PGC-1α expression through 

de-acetylation of PGC-1α/ERR complex (oestrogen related receptor). The PGC-1α/ERR 

complex is implicated to have a major role in regulating biogenesis (Wu et al., 1999). 

The interaction of PGC-1α with nuclear respiratory factors (NRF-1 and 2) and the 

PPAR’s (Peroxisome proliferator activated receptors α, β and γ) result in an up-

regulation of mitochondrial biogenesis through promoting mtDNA transcription and 

translation (Canto and Auwerx, 2009).  

There are candidate compounds (drugs and nutritional supplements) said to have a 

beneficial impact upon mitochondrial biogenesis by promoting an up-regulation of the 

regulatory pathway of PGC-1α (for greater detail, see Section 1.2.5).  

Those implicated to have such an involvement in mitochondrial biogenesis 

up-regulation, are pioglitazone, bezafibrate, AICAR (AICA ribonucleotide) and 

resveratrol. Briefly (as depicted in Figure 8.1), pioglitazone and bezafibrate are 

compounds used in the clinical setting to treat diabetes (pioglitazone) and manage 

hypercholesterolaemia (bezafibrate). Both pharmaceuticals cause an up-regulation of 

the PPAR co-factors, which in turn have a feedback mechanism that also up-regulates 

PGC-1α, and vice versa (L. Li et al., 2011). AICAR is an analogue of AMP (adenosine 

monophosphate) and increases the up-regulation of AMPK. Resveratrol is a type of 



Increasing Mitochondrial Copy Number through the up-regulation of Mitochondrial Biogenesis 

229 

 

phenol known as phytoalexin, which has been found to increase PGC-1α expression 

through SIRT1 (Davinelli et al., 2013).  

 

Figure 8.1 An overview of the induction of PGC-1α through bezafibrate, AICAR, resveratrol and 

pioglitazone supplementation. 

The mitochondrial copy number depletion present during NRTI therapy is well 

established and has been discussed extensively throughout the previous chapters of this 

thesis. There have been a small number of studies assessing co-treatment with 

compounds that may reduce mitochondrial damage; namely, Acetyl-L-carnitine, co-

enzyme Q, uridine and most recently, vitamin D (Hart et al., 2004; U. A. Walker et al., 

2006; Cherry et al., 2010; Campbell et al., 2013; Sinha et al., 2013). 

 

  



Increasing Mitochondrial Copy Number through the up-regulation of Mitochondrial Biogenesis 

230 

 

8.2 Experimental aim 

The experimental aims of this study are: 

 To assess whether compounds associated with the up-regulation of 

mitochondrial biogenesis, can reduce the extent of mitochondrial copy number 

depletion during NRTI exposure; 

 To assess the extent to which such compounds can prevent the effects of NRTI 

exposure on mtDNA deletion mutation heteroplasmy.  
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8.3 Experimental design and methods 

8.3.1 Trans-mitochondrial cybrid cell line culture 

Trans-mitochondrial cybrid cell lines were cultured and propagated as previously 

described (see Section 3.1.1 and 3.1.3) using T25 culturing flasks (Greiner Bio-one, 

Stonehouse, UK). 

8.3.2 Exposure procedure 

The concentration of compounds matched those that have been used in previously 

described in vitro studies, which were found to have a positive effect on PGC-1α 

expression (Miglio et al., 2009; Davinelli et al., 2013; Noe et al., 2013). The co-

supplementation set up is described in Table 8.1 with 14 days exposure procedure used 

for each of the conditions.  

Condition Concentration 

Untreated N/A 

ddI 11.8µM 

Bezafibrate 100µM 

Bezafibrate + ddI 100µM + 11.8µM 

AICAR 100µM 

AICAR + ddI 100µM+ 11.8µM 

Resveratrol 10µM 

Resveratrol + ddI 10µM + 11.8µM 

Pioglitazone 1µM 

Pioglitazone + ddI 1µM+11.8µM 

Table 8.1 The co-supplementation procedures of the supplements and the NRTI, ddI. All conditions 

were run in biological triplicate.  
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8.3.3 Mitochondrial deletion and copy number quantification 

The deletion level and mitochondrial copy number was calculated using the multiplex 

qPCR assay as previously described (see Section 3.6.1) and using the previously 

described analysis methods for deletion level and copy number calculation (see Sections 

3.6.2 and 3.6.3). The concentration of each DNA sample was standardised within the 

range of 5-10ng/µL concentration, with 5µL loaded into each 25µL reaction. Each 

sample was run in duplicate on the reaction plate and allowing for a 0.5Ct difference 

between sample replicates. 

Mitochondrial copy number was expressed as a relative ratio to the untreated group for 

each time point. 

8.3.4 DNA extraction 

The residual cybrid cells that were not re-seeded in propagation were span at 1300rpm 

for 5 minutes, supernatant removed and the pellet frozen at -80
o
C, until required. The 

DNA was then extracted using the DNeasy® Blood and Tissue extraction kit (Qiagen, 

Manchester, UK) as previously described (see Section 3.3).  
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8.4 Results 

8.4.1 Effects of supplement conditions on mitochondrial DNA copy number 

The relative total, mutant and wild type mitochondrial copy number (relative ratio to the 

untreated) of each co-supplementation group for the cybrid cells is displayed below (see 

Figure 8.2, Figure 8.3 and Figure 8.4).  Each data point is expressed as the mean values 

derived from the biological and qPCR technical replicates with error bars plotted as 

standard deviations (S.D). All graphs are plotted on a logarithmic scale to improve 

resolution of relative to untreated copy number at the lower end. Bezafibrate exposure 

was found to be toxic to the cells. 

The relative total copy number in the ddI only condition displays evident depletion 

throughout the 14 days of exposure. Relative copy number by experimental day 7 was 

0.27 (±S.D 0.077), which was found to be the maximal level of depletion throughout the 

exposure. The depletion appears to improve throughout the experiment ending on 

experimental day 14 at relative copy number of 0.47 (±S.D 0.43). Depletion throughout 

the experiment was found to be significant (p=0.05) compared to untreated condition.  

The relative total copy number in the AICAR condition (without ddI) was found to be 

raised by experimental day 3 with a 1.39-fold higher total copy number than the 

untreated (1.39 ±S.D 0.35). This represented the largest change throughout the 

experiment, with fluctuations between 0.94 at experimental day 7 (±S.D 0.28) to 0.72 

(±S.D 0.48) at experimental day 14. Overall the data was not found to be significantly 

different from the untreated (p=0.33).  

The relative total copy number in the AICAR + ddI condition was opposite of that 

found in the AICAR only (without ddI) condition. Depletion was evident from 

experimental day 3 at 0.89 (±S.D 0.25) which continued to decrease throughout the 

exposure. The relative copy number was at 0.08 (±S.D 0.01) by experimental day 14, 

representing maximal depletion level. The depletion levels were found to be statistically 

significant compared to the untreated condition (p=0.02).  

The relative total copy number in the resveratrol treated condition (no NRTI) showed a 

progressive increase throughout the exposure, reaching a maximum by the end of the 

exposure at experimental day 14 at 4.26 (±S.D 0.59). The upward increase increasing in 

copy number was found to be statistically significant (p=0.02).   
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The relative total copy number in the resveratrol + ddI condition was found to be very 

different to that of the resveratrol only condition with a progressive depletion 

throughout the entire exposure phase with the maximal level of depletion was found at 

experimental day 14 at 0.0018 (±S.D 0.001). The relative copy number data was found 

to be statistically significant when compared to the untreated (p<0.01). 

The relative total copy number of the pioglitazone (no NRTI) condition was found to be 

2.73-fold (±S.D 0.12) greater than the untreated at experimental day 3 than the untreated. 

This level decreased to 0.85 (±S.D 0.23) by experimental day 7. The relative copy 

number level fluctuated throughout the remainder of the experiment. The data overall 

was not found to be significantly different from the untreated (p=0.23).  

The total copy number in the pioglitazone + ddI condition was found to initally increase 

in line with the pioglitazone only condition to 2.42 (±S.D 0.17) by experimental day 3.  

The relative copy number was then found to decrease throughout the rest of the 

exposure phase, reaching an experimental depletion maximum at 0.22 (±S.D 0.03) by 

experimental day 14.  
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Figure 8.2 The total copy number of trans-mitochondrial cybrids during the ddI co-supplementation assay. Red bar indicates exposure phase and dotted lines 

represent the NRTI co-supplementation condition. Error bars are standard deviations of the mean. 
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The mutant copy number (Figure 8.3) was found to behave in a very similar manner to 

the total copy number across all conditions.  

The mutant copy number in the ddI condition was found to reach exposure depletion 

maximum of 0.29 (±S.D 0.08), at experimental day 7. The level increased throughout 

the remainder of the experiment to 0.49 (±S.D 0.19). The level of depletion throughout 

exposure was found to be significantly different from the untreated (p=0.02).  

The mutant copy number in the AICAR (no NRTI) condition was found to fluctuate 

throughout the exposure phase in a highly similar manner to that seen with the total 

copy number. There was found to be a reduction in the mutant copy number by the end 

of the exposure phase of 0.71 (±S.D 0.47). The fluctuation levels were not found to be 

significantly different than the untreated (p=0.48). 

The mutant copy number in the AICAR+ ddI condition decreased throughout the entire 

exposure phase. The experimental depletion maximum value was reached at the end of 

the exposure phase of 0.08 (±S.D 0.02). The decreasing levels in mutant copy number 

were found to be statistically significant when compared to the untreated (p=0.01).  

The mutant copy number in the resveratrol condition (no NRTI) was found increase 

throughout the experiment before reaching the exposure maximum level of 4.37 (±S.D 

0.63) at experimental day 14. The increased copy number throughout the exposure was 

found to be significant compared to the untreated (p=0.02).  

The mutant copy number in the resveratrol+ ddI condition was found to deplete to 0.79 

(±S.D 0.11) by experimental day 3. The decrease continues throughout the exposure 

phase as seen in the total copy number  before reaching the depletion maximum at 

experimental day 14 at 0.0016 (±S.D 0.001). The decrease was found to be significant 

(p=0.01) when compared to the untreated.  

The mutant copy number in the pioglitazone (no NRTI) exposure condition was found 

to increase by almost 3-fold at experimental day 3 (2.94 ±S.D 0.26). The relative mutant 

copy number then fluctuates throughout the exposure phase before reaching 1.43 (±S.D 

0.35) at experimental day 14. The changes were not found to be statistically significant, 

despite the high copy number at experimental day 3.  

The pioglitazone+ ddI behaves in a highly similar manner to the pioglitazone only 

exposure for the first 7 experimental days with large fluctuations in relative mutant copy 
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number. The end of the exposure phase, experimental day 14, was found to be very 

different to the pioglitazone only condition with a large decrease in mutant copy number 

found at 0.24 (±S.D 0.04). The data overall was not significantly different from the 

untreated condition (p=0.71).  
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Figure 8.3 The mutant copy number of trans-mitochondrial cybrids during the ddI co-supplementation assay. Red bar indicates exposure phase and the 

dotted lines represent the ddI co-supplementation conditions. Error bars are standard deviations of the mean.  
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The relative wild type copy number data (Figure 8.4) indicates that the ddI condition 

suffers severe depletion from the onset. At experimental day 3, the wild type copy 

number was found to be 0.55 (±S.D 0.04). The decrease reached a depletion maximum 

at experimental day 14 of 0.03 (±S.D 0.015). The depletion was found to be highly 

significant compared to the untreated condition (p<0.0001).  

The relative wild type copy number for the AICAR condition (no NRTI ) was found to 

fluctuate throughout the entire exposure phase, with an initial increase to 1.51 (±S.D 

0.66) by experimental day 3. The exposure depletion maximum was found to be 0.86 

(±S.D 0.49) at experimental day 14. The data was not found to be significantly different 

to the untreated (p=0.19).  

The AICAR+ ddI condition displayed severe depletion during the exposure phase. The 

wild type copy number was found to severely deplete by experimental day 3 to 0.48 

(±S.D 0.07), which continued throughout the exposure phase, before reaching depletion 

maximum of 0.01 (±S.D 0.0009) at experimental day 14. The depletion was found to be 

highly significant when compared to the untreated condition (p<0.0001).  

The relative wild type copy number in the resveratrol only condition (no NRTI) was 

found to have a sustained increased level throughout the exposure phase compared to 

the untreated condition. The level ranged an experimental maximal value of 2.33 (±S.D 

0.41) at experimental day 10 and slightly decreased to 2.25 (±S.D 0.13) at experimental 

day 14.  The data was found to be statistically different from the untreated (p=0.03).  

The relative wild type copy number during the resveratrol+ ddI condition was found to 

deplete throughout the entire exposure phase. By experimental day 7, the value was 

found to significantly plummet to 0.02 (±S.D 0.009). The level remained the same 

through experimental day 10 and found to reach an experimental depletion maximum of 

0.006 (±S.D 0.002).  The decreased levels were found to be highly significant compared 

to the untreated (p<0.001).  

The pioglitazone (no NRTI) exposure was found to induce a fluctuating response in the 

relative wild type copy number, which was highly similar to the untreated condition 

throughout the entire experiment. The difference was not found to be statistical 

significant (p=0.62).  
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The relative wild type copy number during the pioglitazone+ ddI exposure was found to 

initially increase to 1.50 (±S.D 0.04) by experimental day 3before fluctuating 

throughout the exposure phase and reaching an experimental depletion maximum at 

experimental day 14 of 0.04 (±S.D 0.01). The data was not found to be statistically 

significant (p=0.45), despite the depletion present at the end of the exposure phase.  
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Figure 8.4 The wild type copy number of trans-mitochondrial cybrids during the ddI co-supplementation assay. Red bar indicates exposure phase, dotted 

lines indicate ddI co-supplementation condition. Error bars are standard deviations of the mean. 
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8.4.2 Effects of supplement conditions on a mitochondrial DNA deletion 

heteroplasmy distribution 

The mitochondrial deletion heteroplasmy level distribution in each of the co-

supplementation groups has been graphed and expressed as deletion percentage for the 

cybrid cells (Figure 8.5). Each data point is expressed as the mean values from the 

biological and qPCR technical replicates, with error bars plotted as standard deviations. 

The most striking feature of the heteroplasmy levels across the condition is the 

difference in shifts between the conditions. Four conditions, ddI, AICAR+ ddI, 

resveratrol and Pioglitazone+ ddI, showed an increased heteroplasmy during the 

experiment compared to the untreated. The AICAR, resveratrol + ddI and pioglitazone 

only conditions remain at a comparable level to the untreated.  

Compared to previous experiments, the untreated condition was found to have a slight 

increasing trend in heteroplasmy level by the end of the experiment. The distribution 

ranged from 66.44% (±S.D 1.91%) to 72.86% (±S.D 0.60%).  

The ddI condition was found to progressively increase in deletion heteroplasmy from 

the onset of the exposure phase. At experimental day 3, the heteroplasmy was increased 

to 79.42% (±S.D 0.36%). The level continued to increase throughout the exposure phase. 

The experimental maximal value was found at experimental day 14, with a level of 

98.51% (±S.D 0.2%). The increase was found to be statistically significant compared to 

the untreated (p=0.03).  

The heteroplasmy level during AICAR exposure (no NRTI) was found to be highly 

similar to the untreated condition (p=0.30). Very little change was found during the 

exposure phase with the heteroplasmy level increasing in the latter half of the exposure 

phase with the maximal value for the AICAR condition of 72.81% (±S.D 1.20), at 

experimental day 14.  

The heteroplasmy level was found to increase progressively in the AICAR+ ddI 

exposure condition, in a similar manner to the ddI only condition. The starting 

heteroplasmy level of 70.56% (±S.D 0.91%) then increased to an experimental 

maximum value at experimental day 14 at 95.45% (±S.D 0.18%). The increase was 

found to be statistically significant compared to the untreated condition (p=0.02), 

although highly similar to the heteroplasmy level of the ddI only condition.  
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The heteroplasmy level during resveratrol (no NRTI) exposure was also found to have 

an increasing trend throughout the experiment; although, it wasn’t found to be 

significant compared to the untreated condition (p=0.15).  The experimental maximum 

value was found at experimental day 14 at a heteroplasmy level of 86.76% (±S.D 

0.66%).  

The heteroplasmy level in the resveratrol+ ddI condition was found to show little 

variation during exposure. The heteroplasmy level was found to increase to 75.86% 

(±S.D 2.18%) at experimental day 7, which was found to be the experimental maximum. 

The final heteroplasmy level was calculated at experimental day 10 to be 74.08% (±S.D 

1.97%). The changes were not significantly different between day 0-10 (p=0.64). There 

was no experimental day 14 heteroplasmy level calculated due to such little difference 

between the Ct values, corresponding with the low copy number levels. 

The heteroplasmy of the pioglitazone condition (no ddI) was found to fluctuate 

throughout the experiment from 59.39% (±S.D 0.4%) to the final heteroplasmy level at 

experimental day 14 of 70.74% (±S.D 1.21%). The data was not found to be significant 

compared to the untreated (p=0.64).  

The heteroplasmy level of the pioglitazone+ ddI condition was found to increase 

throughout the exposure phase and reached an experimental maximum level of 92.75% 

(±S.D 0.37%) at experimental day 14.  
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Figure 8.5 The distribution of the large scale deletion heteroplasmy level in the trans-mitochondrial cybrids during the ddI co-supplementation assay. Red 

bar indicates exposure phase. Error bars are standard deviations of the mean. 
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8.5 Discussion 

The experimental aim of this study was to assess whether compounds associated with 

up-regulating mitochondrial biogenesis, could help reduce the amount of mitochondrial 

copy number depletion and prevent heteroplasmy shift of a large scale deletion (as 

previously discussed in Chapter 5). This was carried out using trans-mitochondrial 

cybrid cells which contained a large scale deletion and exposing them to the NRTI, ddI. 

Single-therapy exposure of each compound (AICAR, resveratrol, bezafibrate and 

pioglitazone) was performed as well as co-supplementation (ddI + compound).  

8.5.1 Bezafibrate data summary 

Bezafibrate acts as a pan-agonist for all three PPAR isoforms, PPAR α, β and γ. 

Although it is a licenced pharmaceutical for the clinical treatment of dyslipidaemia, the 

up-regulation of PGC-1α from PPAR activation during exposure, has been indicated to 

have beneficial effects on mitochondrial function. These include improved OXPHOS 

function and respiratory capacity in vitro (Bastin et al., 2008; Srivastava et al., 2009).  

The cells within this experiment were found to live no longer than 48 hours in the 

presence of bezafibrate at 100µM. All three biological replicates were found to have a 

markedly reduced replicative capacity before eventually dying off. This is surprising 

based on the results from previous in vitro studies which used a higher concentration of 

bezafibrate (250µM and 400µM) for a longer exposure time (five days) than managed 

in this study, with successful up-regulation of PGC-1α and a positive impact on the 

mitochondria (Noe et al., 2013). 

8.5.2 AICAR data summary 

AICAR, an analogue of AMP, has been found to be a strong activator of AMPK and an 

up-regulator of mitochondrial biogenesis. AICAR has been described as a potentially 

beneficial compound for patients with a mitochondrial complex I deficiency 

(Golubitzky et al., 2011). However, there are no reports of copy number behaviour in 

the setting of antiretroviral therapy.  

The copy number (total, mutant and wild type) in the AICAR only condition was found 

to fluctuate throughout the exposure phase. Although, there was an increase present 

after 3 days of exposure, in all DNA species, of approximately 40%, this increased level 

appeared to be temporary and transient. With a longer exposure time illustrating a copy 

number became comparable with the untreated condition. The heteroplasmy level did 
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not change much throughout the exposure, despite an increase in copy number at 

experimental day 3 and 10. This suggests that there is no preferential increase of either 

of the mtDNA species (wild type or mutant) when copy number is increased.  

However, the AICAR+ ddI condition indicated a more severe depletion and accelerated 

onset of depletion when compared to the ddI only condition. The decrease was found to 

be significant worse than the ddI condition (p=0.02). The depletion of both mtDNA 

species was evident, but more so in the wild type DNA, suggesting the smaller mutant 

molecule maintained a replicative advantage. Wild type copy number was depleted to 1% 

of the untreated, whereas the mutant was depleted to only 7% of the untreated by the 

end of the exposure phase of 14 days. The increase in heteroplasmy was eventually 

identical to the ddI only condition.  

8.5.3 Resveratrol data summary 

Resveratrol is a naturally occurring compound that has been used in recent studies due 

to its ability to activate SIRT1 of the PGC-1α pathway. It has been found to preserve 

mitochondrial function and reduce ROS production in vitro (B. Wang et al., 2014a) and 

that there’s a strong link between increasing SIRT1 expression and mitochondrial copy 

number (Sato et al., 2014).  

The mitochondrial copy number in the resveratrol only condition was found to steadily 

increase throughout the exposure phase to a significantly higher level than the untreated 

(p=0.02). After 14 days exposure, the total copy number was found to be more than 4-

times greater than the untreated condition. However, the heteroplasmy level of the 

deletion was also found to increase during the exposure and by the experimental day 14, 

it was found to be raised to 86.76% (±S.D 0.66%). This is due to an increased level of 

mutant copy number, despite both species increasing, the wild type only increased 2.25-

fold greater than the untreated; whereas the mutant increased 4.37-fold greater than the 

untreated.  

The resveratrol+ ddI condition showed profound depletion. At experimental day 14, the 

copy number of all mtDNA species was found to be <1% of the untreated condition. 

The depletion was also found to deplete to a lower level than the ddI alone condition in 

all mtDNA species. Despite the decrease in copy number, the heteroplasmy remains 

constant, unlike the increase in heteroplasmy in the ddI alone condition. In the AICAR 

condition (Section 8.5.2, above), there was an increased heteroplasmy level due to 
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mutant copy number being maintained at a higher level than the wild type (fitting with a 

size dependent mechanism); however, the resveratrol+ ddI condition appears to 

decrease both the mutant and wild type and the same rate. This may be due to the fact 

that the depletion occurs so rapidly, the differential difference in size makes no 

difference. Alternatively, of course, there could be complete cessation of mtDNA 

turnover. 

8.5.4 Pioglitazone data summary 

Pioglitazone is a member of the thiazoline family of pharmaceuticals used in the 

management of diabetes, clinically. There’s growing evidence to suggest that PPAR 

agonists such as pioglitazone, are able to induce mitochondrial biogenesis (Guilherme et 

al., 2008). This induction has been best demonstrated in adipose tissue where 

mitochondrial function in cells has been found to improve (Rosen and Spiegelman, 

2006).  

The total copy number in the pioglitazone only condition was found to increase after a 

short exposure time of 3 days where it was raised to 2.73-fold greater than the untreated. 

All mtDNA species were subject to a temporary, initial increase in copy number, which 

was not sustained and decreased back to a similar level to the untreated by the end of 

exposure. The fact that pioglitazone increases PGC-1α through the same pathway as 

bezafibrate but resulted in an increased copy number initially, with no apparent negative 

impact on the cells, is certainly worth noting.  

The pioglitazone+ ddI condition was found to suffer the same fate as the other co-

supplementation conditions with little protective effect present. A significant 

improvement was present after 3 days, suggesting a short term protective effect. This 

was found to quickly disappear by experimental day 7 with depletion present of 24% 

(total). The heteroplasmy of the sample increased during the exposure as the depletion 

occurred, with more depletion present in the wild type copy number. The heteroplasmy 

at experimental day 3, when the copy number was found to increase, remained at a 

similar level to experimental day 0. This indicates that the induction of biogenesis 

wasn’t mtDNA species specific.  

8.5.5 Study limitations 

This study carried some limitations. There was no cell line specific dose toxicity 

assessment performed and concentrations were based on previous studies using a range 
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of different cell types, from primary to immortal. This approach may not give a good 

indicator as to the best concentrations used in these cells and could be a contributing 

factor as to why the bezafibrate appeared to be so toxic. A future study could select one 

or two compounds from the compounds used in this study for a more comprehensive 

analysis implementing a dose-ranging design. 

The cell line used was an osteosarcoma cybrid cell line and some studies have found 

that cancerous cell lines are severely affected (slow in cell replication with defects in 

mitochondrial OXPHOS and induction of apoptosis) in the presence of compounds that 

have been found to be beneficial in ‘healthy/normal cells’, i.e. AICAR (Jose et al., 

2011). This may explain why there was a limited beneficial effect seen in the cells over 

a long exposure phase. 
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8.6 Chapter conclusions 

This is the first study to the author’s knowledge that has assessed the behaviour of an 

mtDNA large scale deletion and the mtDNA copy number in the presence of NRTI 

exposure, during dual-therapy or ‘co-supplementation’ of an NRTI with a compound 

known to up-regulate mitochondrial biogenesis.  

The most striking feature of this study is the general negative impact that the ‘beneficial’ 

compounds have on cells when co-supplemented with ddI. The compounds appeared to 

exacerbate or potentiate the depletion effect of ddI within the cells, with severe copy 

number depletion and increased heteroplasmy throughout exposure present; despite in 

some instances a transient increase in copy number. 

The longer exposure time (compared to previous studies of these compounds) used in 

this study highlighted that the compounds which have previously been found to be 

beneficial to mitochondrial function after a short exposure phase i.e. bezafibrate and 

AICAR, was found to be only transient and not beneficial with longer exposure time.  

This data gives insights into what may happen to individuals taking these compounds in 

the long term and suggest the only real beneficial compound is resveratrol, with 

significantly increased mitochondrial copy number. However, the large scale deletion 

was found to increase throughout the exposure and suggests that an amplification of 

pre-existing mutations may indeed occur in otherwise healthy individuals and these 

compounds may prove to further accelerate the HIV-associated ageing phenomena 

described previously in this thesis in individuals whom are receiving NRTI therapy. 
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Chapter 9. Genetic Susceptibility to Severe Mitochondrial-mediated 

Side Effects in HIV-infected Malawian’s treated with Stavudine 
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9.1 Background 

Patients receiving the NRTI, stavudine (d4T), present with high rates of peripheral 

neuropathy (PN) and lipodystrophy (LD). Although d4T administration has been 

virtually eliminated in the developed countries, there are a large number of HIV-

infected individuals still receiving d4T in the developing countries of sub-Saharan 

Africa, specifically through ‘antiretroviral rollout’ programmes due to the low cost and 

availability of the drug.  

While the link between d4T exposure and PN/LD is suggestive of a causative role 

(Menezes et al., 2011; Pujades-Rodriguez et al., 2011; Singh et al., 2014), the 

underlying mechanisms between d4T toxicity and mitochondria have not been fully 

elucidated.  

Pol γ is encoded by two nuclear genes: POLG (chromosome 15q25) and POLG2 

(chromosome 17q) (Longley et al., 1998); POLG encodes for the catalytic subunit of 

pol γ and POLG2, encodes for the accessory or processivity subunit of pol γ. 

Monogenic mutations of the catalytic subunit have been associated with mitochondrial 

related disorders.   

A large array of genetic abnormalities and secondary mitochondrial defects have been 

associated with inherited mutations in POLG (Hudson and Chinnery, 2006). However, 

the impact of such mutations within the setting of anti-retroviral treatment is largely 

unknown.  

There have been a very small number of studies assessing the extent to which genetic 

predisposition plays a role in NRTI induced pathology, through POLG polymorphisms. 

Two polymorphisms that have been associated with lipodystrophy and neuropathy are 

R964C and E1143G, respectively (Yamanaka et al., 2007; Lee-Jun C. Wong et al., 

2008). However, African SNPs in POLG are not very well characterised, and given that 

POLG in the Caucasian population is known to be only mildly polymorphic, it could be 

that it is even less polymorphic in Africans.  

9.2 Experimental Aim 

The aim of this study is to assess whether severe d4T toxicity (PN and LD), in African 

individuals is mediated by monogenic mutations in POLG.   
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9.3 Experimental design and methods 

9.3.1 Patient Cohort 

DNA (extracted using Nucleon DNA extraction kit, Tepnel life science, Manchester, 

UK) from a cohort of Malawian HIV-infected patients receiving d4T (n=253) were sent 

on dry ice from Blantyre, Malawi (van Oosterhout et al., 2012) to Newcastle upon Tyne, 

UK. Based upon their clinical assessment 12 months after initiation of d4T therapy, the 

patients were categorized into three groups; no side effects, currently receiving d4T; 

mild side effects, currently receiving d4T; severe side effects, stopped d4T therapy. 

There were fourteen severely affected individuals, of which, ten samples yielded good 

quality DNA and were included in this study. All patient had given informed consent 

and the study was approved by the institutional review board. 

9.3.2 Whole genome amplification 

Due to the low volume of DNA that was provided for each sample, whole genome 

amplification, REPLI-g (Qiagen, Manchester, UK) was used. REPLI-g works on an 

isothermal genome amplification system which works down to DNA concentration of 

10ng/µL. to each 1µL of template (10ng/µL), 1µL of buffer D1 was added and mixed 

by vortexing. The samples were incubated at room temperature for 3 minutes before 

adding 2µL of buffer N1. Then a master mix of 16µL was added to each well (15µL 

reaction buffer and 1µL Ultrafast polymerase). This was incubated at 30
o
C for 16hrs 

before a 3 minute polymerase denaturation step at 65
o
C. The samples were stored at -

20
o
C until required.  

9.3.3 PCR 

POLG is comprised of twenty-three exons. Of these, only twenty-two are actually 

coding while ‘exon one’, which was initially thought to be a coding region, was later 

found to be non-coding and therefore, it was excluded from the sequencing of these 

patients. A series of primers were designed for each of the twenty-two coding exons. 

PCR of each sample was performed as previously described (materials and methods 

Section 3.4) using the sequences as detailed below in Table 9.1. The PCR reaction was 

mplified on a Veriti® thermocycler (Applied Biosystems, Life Technologies, Paisley, 

UK) with cycling conditions consisting: an initial denaturation step of 95
o
C for 10 

minutes, followed by 30 cycles of denaturation at 95
o
C for 1 minutes, an annealing step 
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at Tm (see Table 9.1) for 1 minute and an extension step at 72
o
C for 1 minute. A final 

extension step at 72
o
C for 10 minutes was performed before cooling the samples to 4

o
C.  

All products were imaged on a 2% agarose gel (w/v) as per materials and methods 

(Section 3.5) and an approximate quantification of each product was made using an 

arbitrary comparison of band strength compared to the DNA ladder Hyperladder IV 

(Bioline, London, UK) to ensure that the correct size was amplified with no 

contamination present in the negative control.  
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Exon Forward Sequence Reverse Sequence Tm 

2a GCCAGTAAAAGAAGCCAAGC CTCCTTGCCCGAAGATTTG 63 

2b AGCCGCAAGTGCTATCCTC GGCCTGCAACAGCAAGTT 63 

2c GACAACCTGGACCAGCACTT AACACATCAGCGCTCCCTAC 63 

3 TAGGTGTGCAGTGGTTGTTG AACCACTGAGATTAGGGCTC 63 

4 TCCACACCACCAAGCAGTGGT AGAGGGGGTCCCAAGCACTAT 65 

5+6 ATAGTGCTTGGGACCCCCTCT TACCAGGAACACACTGACC 65 

7 ATGGGATGATATTGTTCCCATTT AGTCCACTAGGGCAGGGCTA 65 

8 GCTCTCAGGAGAGAGGTAGCC GGGAAGACAATCAGGAGCAG 55 

9 AGGTAGGGTAGGGTAGGGGT CTGAGAATGGAGCAAGGGTA 63 

10 GGGACATTGTGAGAGAGAGA CACTCTTTCCACTAGCCTGAG 61 

11+12 CAGAGTGGGCATCTGGTAAT AAGAGGAAGCCCTTTCCACC 61 

13 ACAGTTTCAGGCCCTTTTCC TGTGCCTGAAATCACACTCTG 61 

14 AGGTTCTGGGCTCAGTGTTG GGCACCAGGACCAAAAGTAG 61 

15+16 AGTGAGGCTGGGTAATGGAG CAGGGTCCTTTTCATGATCC 61 

17 TCTCTAAAGCCATCCCCTCAG AGCTCAGGAACATTCTGC 63 

18 GCATGCATGGTGAGCAGGAG GTAATGGGCAGGAGATAGAACAG 65 

19+20 TGAACATTCCTTGCCAAGGC TCTGCCCATGCTCCAAAGGTA 61 

21 GCTTCTACCCTGGAGTTAATTG CAAGGAACGCTCACCCAAAG 65 

22 GTCATTGCTCCAGGAGTGAT CTGAGTCAAGAGTGGATTCTC 65 

23 CCTTTTGACCTTAGCATTAAGC CTACTGAAAAATGGCTGGCC 65 

Table 9.1 POLG primers all primers were designed using primer-BLAST and the POLG reference 

sequence NC_000015.9. A gradient for each primer was performed ranging from 55 – 65
o
C to 

determine the optimum cycling condition.  
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9.3.4 ExoFAP-IT Protocol 

The excess of PCR reagents were removed from the samples using the ExoFAP-IT 

(Thermo Fisher Scientific Inc., Loughborough, UK) clean up system to prevent any 

interaction with the subsequent sequencing reaction. The reaction works by 

implementing two hydrolytic enzymes to breakdown the excess primers and dNTPs, 

Exonuclease I (Exo I) and shrimp alkaline phosphatase (FastAP), respectively. The 

clean ups were performed in the 96 well full skirted sequencing plate (Applied 

Biosystems, Life Technologies, Paisley, UK) using 20ng of PCR product with 0.5µL 

Exo I and 1µL FastAP, on ice. The reaction was incubated at 37
o
C for 15 minutes 

before inactivation of the enzymes by 15 minute incubation at 85
o
C.  

9.3.5 BigDye® Terminator v3.1 sequencing 

The BigDye® Terminator v3.1 sequencing chemistry (Applied Biosystems, Life 

Technologies, Paisley, UK) was used to prepare the products for sequencing 

immediately after clean up. For each reaction, 1µL of BigDye® was added to 2µL 

BigDye® sequencing buffer, 1µL primer of sequencing directionality (10µM) , 5µL of 

the cleaned ExoFAP-IT product and made up to 20µL using PCR grade water. The 

reaction was heated to 96
o
C for 1 minute, followed by 25 cycles of 96

o
C for 10 seconds, 

50
o
C for 5 seconds and 60

o
C for 4 minutes, in a PCR Thermocycler (Applied 

Biosystems, Life Technologies, Paisley, UK). The reaction was performed in the same 

96 well sequencing plate as the ExoFAP-IT reaction.  

9.3.6 Ethanol precipitation 

Ethanol precipitation was performed to purify the sequencing reaction by removing any 

excess salt and to concentrate the DNA. The reaction was performed in the 96 well 

sequencing plate. To each well 2µL of 125mM EDTA (Ethylenediaminetetraacetic acid) 

with 2µL of 3M sodium acetate solution was added. 70µL of 100% ethanol was then 

added and the plate sealed, mixed by inversion and incubated at room temperature for 

15 minutes. The plate was span at 2000g for 30 minutes, then the supernatant removed 

by gentle spinning at 100g for 10 seconds. 70µL of 70% ethanol was then added to each 

well and then a further spinning process at 1650g for 15 minutes. The supernatant was 

removed in the same manner again before air drying in the dark for 10 minutes to allow 

full evaporation of excess ethanol to prevent inhibition of the sequencing reaction. 
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9.3.7 Hi-Di™ re-suspension and sequencing analysis 

Each well with precipitated product was re-suspended in 10µL of Hi-Di™ (Applied 

Biosystems, Life Technologies, Paisley, UK) which is a highly deionized formamide 

that facilitates the product sequencing in a capillary electrophoresis system. The plate 

was denatured at 95
o
C for 2 minutes prior to being loaded into the ABI 3130xl genetic 

analyser (Applied Biosystems, Life Technologies, Paisley, UK).  The data was analysed 

using SeqScape® v2.1.1 (Applied Biosystems, Life technologies, Paisley, UK). 
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9.4 Results 

No pathogenic mutations were found in exons 3-23 in any of the ten patient samples; 

the sequencing results of exon 2 (nine patients, one sample produced poor results) are 

reported in Table 9.2, no significant CAG repeat variation was detected; One sample 

presented with a SNP in exon 2, p.R42Q (see Table 9.2), which has been previously 

reported (rs74382477) and predicted not to be disease causing.  
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Table 9.2 Exon 2 CAG POLG sequencing observations indicate no abnormal repeat variation from that found in the general population. 

Patient Number Sex Age Months Treatment Sequencing Observation 

55 F 30 12 CAG 10/10 Homozygous 

73 F 44 18 CAG 10/10 Homozygous 

94 F 33 24 CAG 10/11 Heterozygous 

137 F 48 15 
Poor Sequencing across 

exon 

143 M 58 24 
CAG 10/10 Homozygous, 

p.R42Q 

166 M 61 15 CAG 10/11 heterozygous 

193 M 54 18 CAG 10/10 Homozygous 

218 F 30 18 CAG 10/11 Heterozygous 

238 F 30 12 CAG 11/11 Homozygous 

249 F 31 15 CAG 10/11 Heterozygous 
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9.5 Discussion 

There were no mutations found in the samples sequenced; despite previous literature 

quoting two monogenic mutations in POLG associated with lipodystrophy (R964C) and 

neuropathy (E1143G) (Yamanaka et al., 2007; Lee-Jun C. Wong et al., 2008). Although 

this study didn’t find an association with these mutations, it may be due to the rarity in 

the population and a larger cohort would have revealed an association.   

Another consideration is the geographical origin of the sample, which raises the 

question as to whether or not the quoted mutations were not found in this study due to 

the distinct differences in the mitochondrial background haplotype (African vs 

European).  A subsequent study on this patient cohort revealed that in those that did not 

present with lipodystrophy, there was a distinct prevalence of sub-haplogroup L3e, 

suggesting a protective effect (Kampira et al., 2013).  The presence of R964C and 

E1143G may be rare in European individuals, but potentially even more so in African’s.  

An alternative theory to monogenic POLG mutations being pathogenic is that R964C 

and E1143G are merely very rare polymorphisms that mediate an increased 

susceptibility for toxicity. This can also be scientifically supported in an evolutionary 

sense, as natural selection would not have selected against NRTI toxicity-susceptible 

determinants.    

The CAG(n) repeat found in exon 2, encoding a polyglutamine tract, has been associated 

with disease, depending upon the number of repeats (Rovio et al., 2001; Anvret et al., 

2010). 10 CAG repeats has been found to be present in 88-96% of the Eurasian 

population (Malyarchuk et al., 2005), with up to three CAG additional repeats on an 

allele deemed as normal variation; deleting the CAG repeat was found to have no effect 

on respiratory chain function in vitro (Spelbrink et al., 2001). Although this data is not 

available for African populations, it was assumed that 10-13 CAG repeats would also be 

normal in Malawians. On this basis, none of the patients presented with an abnormal 

CAG repeat region, suggesting a further lack of association with POLG mutations and 

LD/PN.  

In addition to POLG mutations, there have been a number of other genetic associations 

with PN. In a multinational study of 294 patients, there was a strong positive correlation 

with age and height with developing d4T PN (Cherry et al., 2009). A study from the 

same group also showed that Australian HIV-infected individuals receiving d4T were 
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more susceptible to PN when expressing TNF alpha-1031*2 cytokine profile (Cherry et 

al., 2008).  

Despite the fact that this study was relatively small with only ten patient samples 

expressing severe side effects, it was the first to the author’s knowledge where genetic 

predisposition to NRTI toxicities has been assessed in sub-Saharan African subjects.  

9.5.1 Study Limitations 

The two major drawbacks of this study was the small cohort of patients and the lack of 

baseline neuropathy data for each patient limited the conclusions drawn from the data.  
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9.6 Chapter Conclusions 

In conclusion, the data suggests that POLG monogenic mutations are not associated 

with d4T associated mitochondrial toxicity in Malawians. A larger population study 

would improve the resolution of these claims and increase the chance of detecting any 

rare mutations in POLG. Therefore, it cannot be fully ruled out that POLG mutations 

may contribute to severe toxicities in d4T treatment in a small number of individuals.  
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Chapter 10.  General Discussion and Concluding Statement 
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10.1 Research overview 

The research described within this thesis was undertaken to further understand the 

underlying mechanism(s) driving the apparent mtDNA defects present in HIV-infected 

individuals receiving NRTI therapy.  

The aims of the thesis were to address the following questions: 

1. To develop in vitro models to study the behaviour of mitochondrial DNA mutations, 

both deletions and point mutations, during and after the exposure of NRTIs.  

 

2. To design and implement methods of detecting very low level (<1% heteroplasmy) 

mitochondrial DNA mutations through ultra-deep next generation sequencing 

technologies and apply them within the setting of NRTI exposure.  

 

These questions have been addressed by implementing a range of molecular techniques 

and developing new models and methodologies to build upon the current understanding 

in the literature regarding the effect of NRTI therapy on HIV-infected individuals. The 

following sections consist of a discussion of the results found and how it relates to the 

wider issue of ageing in HIV. 
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10.2 Anti-HIV therapy and implications for mitochondria 

The level of mitochondrial DNA mutations, both point mutations and deletions, is 

generally accepted to increase with age in healthy individuals and has been 

characterised in a number of post-mitotic tissues, and has been associated with 

functional cellular mitochondrial defects; specifically, an increased level of 

mitochondrial COX-deficiency (N. Arnheim and Cortopassi, 1992a; Kopsidas et al., 

1998; Khrapko et al., 1999; Del Bo et al., 2003; Bua et al., 2006; Yu-Wai-Man et al., 

2010; P. Wang et al., 2013; L. C. Greaves et al., 2014).  

The exposure to NRTIs in HIV-infected individuals has been shown to result in a range 

of pathophysiological conditions such as neuropathy, myopathy and lipodystrophy, 

driven through a mitochondrial mechanism (Lim and Copeland, 2001; Kohler and 

Lewis, 2007). A known hierarchy of pol γ inhibition of NRTIs is well accepted along 

with the notion of mtDNA depletion and the polymerase γ hypothesis (Höschele, 2006).  

The data presented in Chapter 4, highlighted the results from an assessment of the level 

of mtDNA large scale deletions, the mtDNA common deletion (CD) and the level of an 

age associated point mutation (Del Bo et al., 2003) m.414T>G, in skeletal muscle of 

three groups of individuals: healthy controls, HIV
+
/NRTI-naïve individuals and 

HIV
+
/NRTI-exposed individuals.  

The data from this study indicates that there is an association of increased m.414T>G 

heteroplasmy level, in muscle homogenate DNA from patients receiving NRTIs. This 

association also correlates with the hierarchy of pol γ inhibiting NRTIs, with the 

strongest associations made with ddC and ddI, which are documented as being very 

strong inhibitors of pol γ activity (Lim and Copeland, 2001).  

Amongst the HIV-infected individuals who were NRTI-naïve, as well as the healthy 

controls, there was only one sample (healthy control) that displayed a minor increased 

level (1% increase) in the point mutation compared to the background level. The 

increased level of m.414T>G suggests an accelerated intrinsic ageing effect of NRTI 

exposure.  

These observations were extended to large scale deletion mutations. There was a 

significant increase of both total large-scale deletions, and the specific ‘common 

deletion’ (CD) in NRTI-exposed individuals compared to NRTI-naïve and control 

individuals, irrespective of age. The exposure to strong pol γ inhibiting drugs also 
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correlated with the increased CD level and large scale deletions. The number of large 

scale deletions in NRTI-exposed individuals was also found to correlate with multiple 

large scale deletions in individuals who have been exposed to ddI, d4T and ddC.   

These findings were correlated with previous clinical data, and the increased deletion 

levels (both CD and large scale deletions) positively correlated with an increased level 

of COX-deficient fibres, potentially leading to increased clonal expansions. This further 

supports previous claims of an increased level of mtDNA deletions in COX-negative 

fibres of patients who had received NRTIs (Maagaard et al., 2006; Payne et al., 2011).  

The conclusion drawn from this study is that NRTI-mediated effects are comparable 

with the changes expected much later in life in association with normal ageing, 

especially when exposed to strong pol γ inhibitors. However, as the exposure to strong 

pol γ inhibitors in these patients is a historical occurrence (as with the majority of 

HIV-infected individuals in industrialised countries), the fact that the mtDNA defects 

are still present indicates a non-reversible phenomenon with implications for future 

health of such patients. The observations define the basis for studying mechanisms of 

clonal expansion in the rest of the thesis. 
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10.3 Clonal expansion and HIV-therapy 

The literature contains a wealth of data for NRTI exposure and mtDNA copy number 

depletion, with an established NRTI pol γ inhibition hierarchy defined (Höschele, 2006). 

There is limited data however, that highlights the impact of NRTIs on mtDNA 

mutations during exposure in HIV-infected individuals, and no previous exploration of 

mechanisms.  

There are three plausible mechanisms for clonal expansion in HIV-infected individuals: 

a molecular bottleneck effect from copy number depletion, a replicative advantage 

through a size dependent mechanism and thirdly de novo mutagenesis.    

10.3.1 Mitochondrial DNA deletion mutation behaviour  

An assessment for a molecular bottleneck mechanism was performed firstly with the 

use of multiple biological replicates for both normal conditions and NRTI-exposure.  

The cells exposed to a strong pol γ inhibiting NRTI, ddI, showed an increase in 

heteroplasmy throughout the exposure, corresponding with a depletion of wild type 

mitochondrial DNA copy number. After exposure, where a bottleneck was created 

through copy number depletion, the heteroplasmy across all conditions slowly reduced, 

as opposed to an increased spread of heteroplasmies across the different flasks. These 

data were then further supported by assessment of single cells across multiple replicates. 

Following ddI exposure, all single cell heteroplasmy levels of the deletion were found 

to be shifted towards the same heteroplasmy level, comparable with the level found in 

the homogenate analyses. These data suggests that there is no molecular bottleneck 

effect on deletions.  

To further explore this issue, two assessments for a replicative advantage mechanism 

were performed. The use of a physiological and supra-physiological dose of cells 

containing a large scale deletion was employed.  

The first suggestion in the literature of a mutant size dependent replicative advantage in 

the presence of NRTIs was described in fibroblasts of patients with Kearns-Sayre 

syndrome exposed to the NRTIs, ddC and AZT (strong and mild pol γ inhibiting 

activity, respectively). The wild type mtDNA level was found to deplete whereas the 

mutant level appeared no show no change after exposure (H. Wang et al., 1996). Wang 

and colleagues used a primary cell line to study the KSS deletion, which is usually 

rapidly lost during cell culture and not an ideal model to use in such a study; therefore, 
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the model used in this thesis is much preferable for long cell culture experiments with 

repeatability.  

It was found that the deletion level in cells exposed to the strong pol γ inhibiting NRTI, 

ddI, increased throughout exposure due to depletion of the wild type mtDNA, but little 

depletion in the mutant mtDNA copy number. This is suggestive of a replicative 

advantage of the mutant (deleted) molecule, resulting in an increased heteroplasmy level 

of the deletion and supports the long lived idea that mtDNA deletions accumulate in a 

size dependent manner (D. C. Wallace, 1992). This effect was also seen in the cells 

exposed to the supra-physiological dose but at a substantially faster rate, as well as in 

the d4T treatment (a mild pol γ inhibitor), illustrating a linear relationship between size 

dependent accumulation and a ‘brake’ on mtDNA replication. Furthermore, in all NRTI 

conditions and at supra-physiological dose, there were no new deletions found during or 

after exposure, in any of the cell lines studied.  

These data therefore describes a novel method for studying mtDNA deletions for long 

periods of time in vitro.  The findings were extended to post-mitotic embryonic 

neuronal cells exposed to physiological and supra-physiological dosing of NRTIs, along 

with the expected depletion pattern across NRTI conditions.  

10.3.2 Mitochondrial DNA point mutation behaviour 

In a similar vein to the assessment of mtDNA deletion mutation behaviour through the 

exposure of NRTIs, an assessment was made for mtDNA point mutations (Chapter 6).  

The fundamental difference between deciphering between these possible mechanisms of 

mutation behaviour lies within the findings of the NRTI exposure phase and the 

repopulation phase. An increase of heteroplasmy during exposure would indicate a 

replicative advantage as with the increase seen with an mtDNA deletion in both the 

HIV-setting (Chapter 5) and the non-HIV setting (Diaz et al., 2002); Whereas a 

bottleneck mechanism would manifest most obviously, after the nadir of depletion. 

The exposure of NRTIs to cells containing a point mutation proved to have little overall 

effect on the heteroplasmy level. The phase of interest was found to be during the 

repopulation where there was a dispersion of heteroplasmies across multiple replicates 

after exposure to pol γ inhibiting NRTIs. These data neatly fits with a bottleneck 

mechanism given the extent to which mtDNA content depletion occurs, creating a 

limited pool of molecules during repopulation. The shifts seen are then produced 
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through the removal of pol γ replication inhibition and an expansion of the restricted 

pool of point mutation heteroplasmy. This is also in keeping with the data presented by 

Cree and colleagues with the segregation of mtDNA genotypes during embryogenesis 

through a bottleneck mechanism of mtDNA content reduction (Cree et al., 2008).  

These data do not completely rule out the potential of a mutageneic effect of NRTIs 

inducing de novo mutations during exposure. This has been supported by numerous 

studies highlighting an increase in mtDNA mutations in a range of animal models and 

in vitro work. However, another longitudinal study failed to detect any new mtDNA 

mutations through NRTI exposure (G. McComsey et al., 2005a; Lehmann et al., 2011; 

K. Liu et al., 2013; Y. Zhang et al., 2014).  

The issue was therefore addressed through the next generation sequencing (NGS) of 

cells exposed to NRTIs during and after exposure (Chapter 7). The major drawback of 

the aforementioned studies was their inability to differentiate between mutagenesis and 

clonal expansion; the former was therefore assumed. By implementing NGS to assess 

for de novo mutagenesis and the qPCR data discussed here, a clearer picture was formed.  

10.3.3 Mitochondrial DNA de novo mutagenesis 

Firstly, before analysing cells from the in vitro experiments (Chapters 5 & 6), the 

methodology of analysing very low level variants using NGS was sought.  

The optimal analysis of very low level mtDNA mutations is debated and there have 

been various studies implementing ultra-deep next generation sequencing approaches to 

address the question of how low can we go? Despite an array of different methodologies 

implemented and designed to answer such question, there have been similar results 

among a handful of papers defining the low level detection threshold of mtDNA 

mutations, is in the 0.2% heteroplasmy range (Y. He et al., 2010; Mingkun Li et al., 

2010; Payne et al., 2013).    

The fundamental issue with the aforementioned studies is that they never addressed 

biological samples in the optimisation of the analyses. Therefore, in Chapter 7, I present 

samples from a rare mitochondrial disorder known to display a stereotypical mutation 

motif (MNGIE; nAT>C) (Nishigaki et al., 2003), that were utilised in a novel way to 

define the low level mutation pattern, through NGS technologies. It was concluded that 

the statistically lowest threshold that signal exceeds noise in a biological sample is at 
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≥0.22%, which is strikingly similar to previous studies. To ensure a greater stringency 

and confidence in calling very low level mutations, the threshold was set to ≥0.3%.  

The newly defined threshold level and analysis pipeline was used to investigate the 

issue of de novo mutagenesis of NRTIs. A novel approach of sequencing in vitro cells 

during and after NRTI exposure was performed in two different cell lines. The results 

proved the same in both studies, there was no increase in total number of mutations, 

during or after NRTI exposure, including strong pol γ inhibitors, such as ddI, and 

thymidine analogues such as d4T, with have previously been suggested to be possibly 

mutagenic (Carter et al., 2007).  

By comparing the shared mutations across all conditions of the system, it was possible 

to measure the heteroplasmy shifts of a number of point mutations simultaneously. The 

findings revealed little change during NRTI exposure; however, after the NRTIs were 

removed, in particular in the strong pol γ inhibitors, there was a statistically significant 

shift of heteroplasmy levels that coincided with the recovery of mtDNA content. These 

data strongly supports the findings described in Chapter 4 and Chapter 6, of a molecular 

bottleneck mechanism underlying point mutation behaviour. 

The analysis of the NRTI exposed, trans-mitochondrial cybrids was extended by 

performing a unique analysis of sequencing specifically the deleted/mutant mtDNA and 

the wild-type/undeleted mtDNA, within NRTI-exposure conditions. By modelling the 

individual mtDNA species, it was possible to analyse the behaviour of pre-existing 

mutations through ddI exposure on both mtDNA species, as well as the behaviour of the 

wild-type molecule mutations in the presence and absence of all NRTIs used in this 

thesis. These preliminary data reveal for the first time, a distinct difference between 

mutation behaviour on the wild-type and the mutant molecules, with a preferential bias 

for mutation heteroplasmy accumulation on the deleted molecule in an apparent 

‘piggy-back’ mechanism in the untreated molecules.  

10.3.4 Mitochondrial DNA mutagenesis hot spots 

Despite the analyses discussed in the previous section, it cannot be completely ruled out 

that de novo mutagenesis does not occur, especially in particular hot spots for mutation 

accumulation such as the d-loop.  

Mice exposed to the NRTI, AZT, were found at the end of 2 years of exposure to have 

an increased number of mutations in the d-loop compared to an age matched control. 
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There was no difference found in the coding region between the mice. It is possible 

however, that AZT is maybe unique in this situation, with previous claims of AZT 

specific mutagenesis. This is plausible through an inhibition of pol γ exonuclease 

proof-reading activity (Lim and Copeland, 2001). Alternatively, there is evidences to 

suggest that inhibition of mitochondrial thymidine kinase by AZT (a thymidine 

analogue) would be sufficient to create a nucleotide pool imbalance (purine/pyrimidine 

levels) and thus induce mtDNA mutations; this mechanism has recently been proposed 

as a mechanism present in other NRTIs too, such as ddI (Rylova et al., 2005; Sun et al., 

2014). However, these data is very preliminary and limited conclusions can be drawn 

from it. 

The main issue a mutagenesis hypothesis is that low level induced mutations would 

require a long time to clonally expand to the high levels seen in the middle-age patients 

presented within this thesis (Chapter 4), this idea is also substantiated by previous 

modelling data of point mutations (Elson et al., 2001). Clonal expansions are more 

likely to have more functional affect anyway, as they compromise the function of 

individual cells, whereas mutagenesis of mutations will be low level and therefore, not 

functional relevant immediately (unless they subsequently go through clonal 

expansions).The other problem is an imbalance in nucleotide pool in metabolism 

disorders, such as MNGIE, result in specific mutation motifs or an overwhelming type 

of mutation created due to the imbalance of nucleotides; this was not the case in any of 

the AZT exposed conditions sequencing in this study. 

 

  



General Discussion and Concluding Statement 

273 

 

10.4 Genetic predisposition 

Finally, an under researched area that could contribute towards mitochondrial toxicity in 

HIV-infected individuals, is a genetic predisposition to certain pathologies. There have 

been only a small number of studies assessing the extent to which genetic predisposition 

contributes towards the described NRTI-induced pathology, specifically through POLG 

(pol γ encoding gene) polymorphisms. There have namely been two polymorphisms 

that have been associated with common pathologies, lipodystrophy and neuropathy, 

which were R964C and E1143G, respectively (Yamanaka et al., 2007; Lee-Jun C. 

Wong et al., 2008).  

As the majority of developed countries no longer use strong pol γ inhibiting NRTIs, it is 

difficult to gain samples for a large genetic predisposition study; however, the use of 

such drugs in sub-Saharan Africa is still highly prevalent, making HIV-infected 

individuals from this region a highly useful for studying a potential genetic 

predisposition to pathologies.  

A cohort of 10 Malawian HIV-infected subjects exposed to stavudine for approximately 

12 months, displaying severe side effects such as neuropathy and lipodystrophy, were 

assessed for monogenic POLG mutations for associations with NRTI induced pathology 

(Chapter 9). The selection of a severe phenotype was intended to amplify any genetic 

signal. There were no pathogenic mutations found in the samples sequenced. Although 

this study didn’t find POLG mutations, this may be due to their likely rarity in the 

population. A larger cohort may therefore have revealed a patient with an underlying 

POLG mutation. 

The overall conclusion of this dataset is limited due to the small number; however, this 

pilot study does indicate that monogenic POLG mutations are unlikely to make a major 

contribution towards a susceptibility to severe stavudine-induced side effects.  
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10.5 Reversing Mitochondrial DNA defects from NRTI exposure 

The mtDNA copy number depletion present during NRTI therapy is well established 

and has been described in all of the in vitro studies presented in this thesis. However, 

there have been only a small number of recent studies assessing co-treatment with 

compounds (indicated as mitochondrial biogenesis up-regulators) that may reduce 

mitochondrial damage during NRTI exposure; namely, Acetyl-L-carnitine, co-enzyme 

Q, uridine and most recently, vitamin D (Hart et al., 2004; U. A. Walker et al., 2006; 

Cherry et al., 2010; Campbell et al., 2013; Sinha et al., 2013).   

The consensus on the effects of these treatments on mitochondria in general is not clear, 

and the specific effect on mtDNA mutations has not been investigated. Therefore in 

Chapter 8, I set out to assess whether co-supplementation could help reduce the amount 

of mitochondrial copy number depletion and prevent a heteroplasmy shift of a large 

scale deletion in vitro, when exposed to an NRTI. 

Despite previous claims in the literature that mitochondrial protection was conferred 

through the exposure of bezafibrate (Noe et al., 2013), the cells in this study that were 

exposed to bezafibrate were unable to survive, despite the use of a lower concentration 

than the Noe and colleagues study. This may be explained by previous claims that 

bezafibrate increases the lowered respiratory function of cancerous cells, and therefore 

slows the growth (X. Wang and Moraes, 2011). The entire system in this study was 

comprised of cancerous cells (cybrids from osteosarcoma nuclear background); 

therefore, when the slowing growth effect of bezafibrate affected all cells in the system, 

it appeared that all of the cells had died due to a toxicity of the exposure.   

AICAR and pioglitazone were found to both have a protective function in the short term 

(first three days of exposure) by themselves, which is in line with previously found 

beneficial effects of AICAR and pioglitazone on mitochondria (Jose et al., 2011; 

Sauerbeck et al., 2011).  However, after this timeframe, there was a negative effect seen 

on mtDNA copy number when exposure exceeded five days.  

In the presence of an NRTI, the mtDNA copy number was depleted quicker and more 

severely than the NRTI condition only. This is contradictory to what has been recently 

published, with AICAR being heralded as a ‘mitochondria builder’ and provides 

protection against other mitochondrial disorders such as Alzheimer’s (Du et al., 2014). 

Myotubes exposed to in vitro to AICAR have been found to increase mitochondrial 
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biogenesis, however decrease oxygen consumption over time (Spangenburg et al., 

2013). Both conditions increased the level of mitochondrial deletion heteroplasmy 

during exposure with the NRTI, although there was no difference in the AICAR and 

pioglitazone only conditions, when compared to the untreated condition. 

The only condition within this study that proved to be beneficial to increasing mtDNA 

copy number in the long term was resveratrol which was found to increase 

mitochondrial copy number throughout the exposure (no ddI). Resveratrol has been 

found in a number of short exposure studies to have beneficial effects on mitochondria 

and implicated to have protective properties against metabolic disease through an 

affinity for DNA repair and modulation of cellular metabolism (Davinelli et al., 2013; B. 

Wang et al., 2014a; R. Wang et al., 2014b). However, in the presence of an NRTI, the 

mitochondrial copy number depleted severely and to the greatest extent across all 

conditions (including NRTI).   

The heteroplasmy was found to increase in the resveratrol only condition. The 

expansion of the deleted mtDNA was accelerated through a non-specific increase in 

mitochondrial biogenesis. This defies the logic of increasing mitochondrial copy 

number after depletion and indicates that in individuals receiving such treatment, as 

with those after ischaemia (R. Wang et al., 2014b), exposure to resveratrol may improve 

mitochondrial function but it may also accelerate expansion of pre-existing mtDNA 

deletions. This could prove to have detrimental effects in the long term and may be 

relevant to normal ageing as well as HIV/NRTIs.  

Overall, this study provides valid insights into relatively long term in vitro exposure of 

compounds used in the up-regulation of mitochondrial biogenesis and that they may not 

always exhibited a positive impact on mtDNA.  This indicates that the up-regulation of 

biogenesis through PGC-1α is only beneficial when mtDNA is allowed to freely 

replicate (unlike in the case of pol γ inhibition). In the presence of ddI, the incorporation 

of the drug maybe increased through a faster depletion driven by the faster turnover 

when biogenesis is greatly up-regulated.  

The main conclusion drawn from these data for the HIV setting is that improving 

mitochondrial copy number through up-regulating biogenesis during NRTI-exposure is 

an inappropriate method which may exacerbate the effect of NRTIs on mtDNA defects.    
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10.6 The role of mitochondrial ageing in HIV infection 

Overall, this thesis has highlighted four key aspects that are vital for the understanding 

of issues surrounding HIV accelerated ageing and mitochondrial genetics: 

 There is a lack of evidence to suggest that NRTIs induce de novo 

mutagenesis in mitochondrial DNA 

 Mitochondrial DNA deletions appear to accumulate in a size dependent 

manner in the presence of pol γ inhibitors 

 Mitochondrial DNA point mutations are subject to a molecular bottleneck 

driven through the depletion of mtDNA content 

 There is insufficient evidence to suggest that NRTI-induced mtDNA copy 

depletion and expansion of mutations can be beneficially modulated through 

pharmaceutical co-supplementation  

The expansion of mtDNA deletion mutations is supportive of the current paradigm that 

mtDNA deletions accumulate through clonal expansion with age and contribute towards 

aged diseases, such as Alzheimer’s and Parkinson’s (Swerdlow and Khan; Bender et al., 

2006). Such pathologies have also been found to present in young HIV-infected 

individuals (Anthony et al., 2006). The pathologies generally present in tissues of 

HIV-infected individuals that with high energy demand and are known to be related to 

mitochondrial dysfunction (Schapira, 2012).  

Rather than the previously described mutagenesis theory of point mutation 

accumulation through NRTI exposure, this thesis has neatly refuted this idea in a 

multitude of conditions and cell types; however, there still remains the possibility that 

through time, the D-loop could be a hot spot for mutagenesis driven through NRTIs. 

This maybe a consequence of the reduced proofreading activity of pol γ, exerted 

through NRTI incorporation (W Lewis et al., 2003), thereby mimic the effects seen in 

the polymerase γ mouse model (Trifunovic et al., 2004) and accelerating ageing.  

The mtDNA defects presented here are expected to be irreversible and therefore, will 

still pose issues for the individuals, despite them no longer receiving the pol γ inhibiting 

NRTIs. The issue also remains as to the long term effects of mild or weak pol γ 

inhibitors on HIV-infected individuals. Although, little to no defects was seen during 

the in vitro studies (Chapters 5 & 6), the defects may only appear after prolonged use 

(that is not representable in vitro).  
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However, how relevant are these molecular changes on ageing, and do they have any 

functional relevance for HIV-infected patients? It is possible that patients do have an 

increased level of mtDNA damage, but due to the incomplete understating of ageing, 

the defects go unnoticed. I would suggest that increased mutations would ultimately 

drive an accelerated physiological decline in multiple tissues and organs within the 

body (as seen in normal human ageing). The challenge is to measure this decline in HIV 

patients. This is an issue in ageing research in general, as the definitive longitudinal 

studies are very difficult to do. The use of simian model would likely address this issue, 

although the lengthy nature of such a study may not be feasible. Alternatively, it would 

be worth correlating the mtDNA data of patients in a large-scale epidemiological study 

with age-associated diseases in HIV patients; the mtDNA findings of a longitudinal 

study could also be correlated with physiological measurements in HIV patients.  

Although these data strengthen the case in general for mitochondrial involvement in 

HIV-associated ageing, given the complexity of the normal human ageing process, we 

should also consider other potential aspects of ageing in HIV infection, including: the 

effects of NRTIs on other ageing-associated molecular pathways, the effects of other 

anti-retroviral drug classes, and the effects of the virus itself. For example, there is 

clinical data to suggest that certain NRTIs (including AZT and d4T) can also cause 

telomere shortening and contribute toward accelerated ageing (Strahl and Blackburn, 

1996; Bollmann, 2013). Consideration must also be given to oxidative stress exerted by 

protease inhibitors (Xinwen Wang et al., 2007), which might also contribute to the 

molecular damage seen in ageing (including to mitochondria), and raises the question 

that it is not only NRTIs that are the causative agent of HIV-associated ageing. Overall 

however, the effects of NRTIs provide the most compelling case for promoting and 

accelerating ageing, in HIV-infected individuals.  
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10.7 Concluding remarks 

This thesis has started to explore the complex mechanisms underlying mtDNA mutation 

load increase through NRTI exposure. The data are suggestive that there are two 

separate mechanisms at play when considering the clonal expansion of mtDNA 

mutations: a molecular bottleneck for point mutations, and a replicative advantage for 

deletions. There is little if any evidence for mutagenesis.  This thesis is the first research 

that attempts to pull apart these mechanisms, with the aim of an increased 

understanding that would ultimately aid the management of HIV-infected individuals.  

Overall I conclude that the answer to the question posed in 2012 by Fisher and 

colleagues of ‘HIV and ageing: premature ageing or premature conclusions?’ (Fisher 

and Cooper, 2012) is that the data within this thesis support the notion of an 

acceleration of normal cellular ‘intrinsic’ ageing. This appears to be propagated through 

mitochondrial mechanisms in HIV-infected individuals that present as irreversible 

changes in mtDNA. The implications of these findings are most pertinent to individuals 

who are (or have previously) been exposed to strong pol γ inhibiting NRTIs, raising the 

issue of a unique iatrogenic effect that not only has implications on the HIV-infected 

community, which should be followed longitudinally to assess the ultimate health 

consequence(s). Due to recent data suggesting that clonal expansion may be the most 

important factor affecting mtDNA in normal ageing, here I present a unique model for 

manipulating it.   
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Chapter 11.  Appendices 
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Appendix A 

Appendix A consists of the relevant clinical and research data associated with the 

patient presented in Chapter 4. 
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ID Group 
CD -

Log10 
Number of 

Deletions 
m.414 

(%) 

COX- 

fibres 

(%) 
Age  

Months 

Treated 
ddI 

Duration 
d4T 

Duration 
ddC 

Duration 
AZT 

duration 
Months 

D-drug 

DH340N NAIVE -5.76 0 2 0 24.8 0 0 0 0 0 0 

MG400N NAIVE -5.25 2 2 0.28 48.8 0 0 0 0 0 0 

MT460N NAIVE -5.95 0 2 0 23.3 0 0 0 0 0 0 

MJ250N NAIVE -3.28 0 2 0.5 46.3 0 0 0 0 0 0 

KW623N NAIVE -5.59 0 2 0.18 45.3 0 0 0 0 0 0 

PH535N NAIVE -4.22 0 2 0 50.2 0 0 0 0 0 0 

SR326N NAIVE -4.07 0 2 0.11 31.8 0 0 0 0 0 0 

MM456N NAIVE -6.2 0 2 0.11 26.9 0 0 0 0 0 0 

SH630N NAIVE -5.78 1 2 0.07 34.2 0 0 0 0 0 0 

PM420N NAIVE -6.15 2 2 0 32.2 0 0 0 0 0 0 

IB525N NAIVE -4.53 0 2 0 27.4 0 0 0 0 0 0 

DD120N NAIVE -5.18 0 2 0 36.9 0 0 0 0 0 0 

BJ520A NRTI -4.49 0 1 0.13 47.1 103.2 0 0 0 103.2 0 

CA200A NRTI -4.33 2 2.5 0 30.9 42.2 0 0 0 42.2 0 

CC200A NRTI -4.49 0 2 0.19 46.3 37.2 0 0 0 37.2 0 

DE152A NRTI -6.23 0 2 0 38.3 100.1 0 0 0 100.1 0 

DM456A NRTI -5.26 2 2 0.14 30.9 36.3 0 0 0 36.3 0 

IM200A NRTI -3.4 2 2.5 0.28 32.4 93.6 0 0 0 93.6 0 

JO400A NRTI -4.33 2 2 0 29.6 49.3 0 0 0 49.3 0 

KG420A NRTI -3.36 1 2 0.39 44.3 51 0 0 0 51 0 

MW320A NRTI -4.04 0 9 0 42.3 125.7 0 0 0 125.7 0 

PW322A NRTI -4.69 0 2 0 32.8 97.6 0 0 0 97.6 0 

RF500A NRTI -3.25 1 2 1.59 35.5 139.6 0 0 0 139.6 0 
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SA255A NRTI -6.03 0 5.5 0.68 47.9 29.8 0 0 0 29.8 0 

SB616A NRTI -5.44 0 2 0 34.5 82.3 0 0 0 82.3 0 

SM000A NRTI -4 0 4 0.04 33 54.3 0 0 0 54.3 0 

SS162A NRTI   0 2 1.94 49.5 96.7 0 0 0 96.7 0 

BM254S NRTI -4.85 0 2.5 0.1 45.3 70.4 0 0 0 40 0 

CM250S NRTI -3.39 2 2.5 0.84 39.8 54 0 0 0 51 0 

IJ525S NRTI -2.91 2 4.5 1.3 49.4 193.3 1 1 1 10 89 

JC462S NRTI -4.05 1 6 4.9 48.2 151 1 1 1 9 57 

MH340S NRTI -5.69 0 2 1.4 43 118.2 0 0 0 101 0 

PD145S NRTI -2.89 2 3 2.8 50.2 138.5 1 1 0 4 72 

CR255T NRTI -4.49 1 3   39 12.4 0 0 0 0 0 

DK200T NRTI -4.16 2 2   39.5   0 0 0 0 0 

JS163T NRTI -5.38 0 2.5   25.9 33.6 0 0 0 0 0 

PM640T NRTI -3.53 0 2   50.4 17 0 0 0 0 0 

TR200T NRTI -4.31 0 2   34.2 17.8 0 0 0 0 0 

M9 MCTB -5.6 0 2 0.2 42 0 0 0 0 0 0 

M12 MCTB -4.08 0 2 0 24 0 0 0 0 0 0 

M13 MCTB -4.92 0 2 0 21 0 0 0 0 0 0 

M17 MCTB -4.14 0 3.5 0.2 52 0 0 0 0 0 0 

M7 MCTB -3.74 0 2   36 0 0 0 0 0 0 

M6 MCTB -3.79 0 2   47 0 0 0 0 0 0 

M4 MCTB -3.84 0 2   18 0 0 0 0 0 0 

M2 MCTB -4.78 0 2   31 0 0 0 0 0 0 

Table 11.1 The patient clinical and research data from HIV-infected individuals used in the study presented in Chapter 4. 
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Appendix B 

Appendix B consists of the MNGIE and control variants presented in the next 

generation sequencing pipeline optimisation section in Chapter 7 (Section 7.4.1).  
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Position  5' Sequence VarFreq Ref Var 

6767 TGTG 0.20% A G 

7385 AGTG 0.20% A G 

8196 AAACC 0.20% A G 

9399 AA 0.20% A G 

13269 AGG 0.20% A G 

9145 TGTC 0.20% G A 

4569 A 0.20% G T 

4703 AACAA 0.20% T A 

3183 ATA 0.20% T C 

4708 AC 0.20% T C 

5873 CG 0.20% T C 

9088 CCC 0.20% T C 

11661 CCA 0.20% T C 

12563 CCCAGC 0.20% T C 

13254 CCAC 0.20% T C 

13271 GAC 0.20% T C 

1590 C 0.21% A G 

9639 AATC 0.21% A G 

1243 CC 0.21% T C 

2017 C 0.21% T C 

2279 A 0.21% T C 

3344 CCCA 0.21% T C 

5162 TATC 0.21% T C 

6225 CCC 0.21% T C 

6367 GGTG 0.21% T C 

8548 CGCT 0.21% T C 

8705 AACCA 0.21% T C 

9850 TTTCC 0.21% T C 

11770 CAC 0.21% T C 

12477 TCAG 0.21% T C 

13260 AAG 0.21% T C 

14502 AAA 0.21% T C 

15976 AAC 0.21% T C 

4662 A 0.22% A G 

7542 TTAC 0.22% A G 

7138 AAAA 0.22% T A 

504 A 0.22% T C 

6235 AC 0.22% T C 

7668 CCC 0.22% T C 

9219 AA 0.22% T C 

9592 AAG 0.22% T C 

10512 ATC 0.22% T C 
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11517 CCCCC 0.22% T C 

12255 AACA 0.22% T C 

14979 AA 0.22% T C 

15744 CC 0.22% T C 

4727 AT 0.23% A G 

6720 GT 0.23% A G 

13836 AAC 0.23% A G 

2636 G 0.23% G A 

6620 GG 0.23% T C 

6844 A 0.23% T C 

8746 A 0.23% T C 

9367 A 0.23% T C 

12005 AA 0.23% T C 

14952 A 0.23% T C 

3003 G 0.24% A G 

3711 GC 0.24% A G 

12900 CATG 0.24% A G 

8250 AAATAG 0.24% G A 

2510 AACA 0.24% T C 

4028 AA 0.24% T C 

5311 A 0.24% T C 

6076 CG 0.24% T C 

8786 GGAC 0.24% T C 

9321 CCAC 0.24% T C 

10264 AAAT 0.24% T C 

14166 AA 0.24% T C 

2148 AGAG 0.25% A G 

6629 A 0.25% A G 

9964 CTGT 0.25% A G 

13224 AAAA 0.25% T A 

11299 TCAC 0.25% T C 

12797 TTGC 0.25% T C 

13433 A 0.25% T C 

13488 ACC 0.25% T C 

15831 AA 0.26% T A 

1119 AAA 0.26% T C 

3055 AAG 0.26% T C 

3631 CC 0.26% T C 

11895 AAC 0.26% T C 

15511 AA 0.26% T C 

2392 AA 0.27% T C 

7749 AACA 0.27% T C 

11324 AAAC 0.27% T C 
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1995 AA 0.28% A G 

10263 AA 0.28% A G 

2256 CC 0.28% T C 

3964 CCCC 0.28% T C 

10983 CCCC 0.28% T C 

15741 CC 0.28% T C 

15852 A 0.28% T C 

385 A 0.29% A G 

1358 AA 0.29% A G 

16043 GCAG 0.29% A G 

1974 AAG 0.29% A T 

4396 CCCCA 0.29% T C 

15873 AAAA 0.29% T C 

1694 AC 0.30% T C 

5277 AA 0.30% T C 

9581 AAA 0.30% T C 

12851 AA 0.30% T C 

13369 GGG 0.30% T C 

13520 ACA 0.30% T C 

8108 A 0.31% A G 

9609 A 0.31% T C 

10432 AATG 0.32% A G 

4703 AACAA 0.32% T C 

8547 TCGC 0.32% T C 

10989 AA 0.34% T C 

14048 AAA 0.34% T C 

9380 GATG 0.35% G A 

7880 AAA 0.35% T C 

9405 A 0.35% T C 

4370 AAAA 0.36% T C 

7275 GGC 0.36% T C 

6121 A 0.37% T C 

12919 CCAAC 0.37% T C 

14540 AAAA 0.37% T C 

2253 AAC 0.38% T C 

2104 AA 0.39% A G 

13135 CCCCCTA 0.39% G A 

1632 AAC 0.39% T C 

5136 AAC 0.40% T C 

10403 A 0.41% A G 

11070 AAA 0.42% T A 

13444 ACT 0.43% T C 

15639 CCA 0.43% T C 
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10158 AAAAA 0.44% T A 

5726 AA 0.44% T C 

9110 AA 0.44% T C 

12913 ACAC 0.45% T C 

7317 CATG 0.51% A G 

7258 AAACA 0.51% T C 

10805 A 0.51% T C 

8469 CCACC 0.52% T A 

5857 AG 0.54% A G 

12631 ATGG 0.59% T C 

3521 A 0.61% T C 

6406 AA 0.62% T C 

2371 AA 0.64% T C 

11087 AACA 0.64% T C 

408 TTT 0.65% T A 

10893 AAA 0.68% T C 

11070 AAA 0.69% T C 

16172 AA 0.69% T C 

1974 AAG 0.70% A G 

10221 AAAA 0.74% T C 

3861 TG 0.80% A G 

7091 ACTG 0.83% A G 

3653 AA 0.89% T C 

16311 TAG 0.98% T C 

3915 AAGG 1.02% G A 

2075 AAA 1.28% T C 

7440 AAAA 1.61% T C 

15831 AA 1.75% T C 

5628 AAA 1.89% T C 

13446 TTC 2.39% A T 

7138 AAAA 2.79% T C 

2233 AAAAAA 2.90% T C 

10158 AAAAA 2.97% T C 

13879 AAAA 4.60% T C 

189 A 4.93% A G 

 

Table 11.2 The variants detected in the MNGIE skeletal muscle patient sample after bioinformatics 

processing. The 5’ sequence is the sequence extracted before the ‘Var’ base, which differed from 

the rCRS ‘Ref’ base. The heteroplasmy or ‘VarFreq’ indicates the variant frequency found in the 

sample. All homoplasmic variants were removed and inverted at ≥ 90%. 
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Position  5' Sequence VarFreq Ref Var 

8129 AA 0.20% A G 

10840 AC 0.20% A G 

7755 AG 0.20% A G 

2866 TCC 0.20% A G 

4721 TG 0.20% A G 

6146 TG 0.20% A G 

11167 TG 0.20% A G 

3838 A 0.20% T C 

10510 A 0.20% T C 

8109 AA 0.20% T C 

5158 AC 0.20% T C 

7943 AC 0.20% T C 

11814 AC 0.20% T C 

1847 CC 0.20% T C 

4933 CC 0.20% T C 

5892 CC 0.20% T C 

9850 CC 0.20% T C 

7869 CCC 0.20% T C 

4800 CCCC 0.20% T C 

2010 GG 0.20% T C 

13500 GG 0.20% T C 

6345 TC 0.20% T C 

6640 TC 0.20% T C 

4939 TCC 0.20% T C 

2656 TG 0.20% T C 

2875 AA 0.21% A G 

14658 AA 0.21% A G 

4529 AC 0.21% A G 

5944 AG 0.21% A G 

10055 AG 0.21% A G 

14564 CC 0.21% A G 

4128 CG 0.21% A G 

7987 CG 0.21% A G 

7961 A 0.21% T C 

8634 A 0.21% T C 

15852 A 0.21% T C 

1694 AC 0.21% T C 

11295 AC 0.21% T C 

11978 AC 0.21% T C 

13988 AC 0.21% T C 

4480 CCC 0.21% T C 

4492 CG 0.21% T C 
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6763 CG 0.21% T C 

3801 CT 0.21% T C 

11276 GC 0.21% T C 

6620 GG 0.21% T C 

4905 TCC 0.21% T C 

10841 A 0.22% A G 

6581 GG 0.22% A G 

13269 GG 0.22% A G 

15766 GG 0.22% A G 

5311 A 0.22% T C 

14060 A 0.22% T C 

629 C 0.22% T C 

6558 CC 0.22% T C 

7695 CC 0.22% T C 

8477 CCC 0.22% T C 

1950 CG 0.22% T C 

8079 TG 0.22% T C 

4662 A 0.23% A G 

4986 AA 0.23% A G 

4021 CC 0.23% A G 

7851 CG 0.23% A G 

9629 GG 0.23% A G 

3000 TCC 0.23% A G 

3841 A 0.23% T C 

7800 A 0.23% T C 

4055 AC 0.23% T C 

4248 AT 0.23% T C 

5016 CC 0.23% T C 

5338 CC 0.23% T C 

11790 CC 0.23% T C 

2069 CCC 0.23% T C 

14050 TC 0.23% T C 

4722 GA 0.24% A G 

7749 A 0.24% T C 

4903 AAA 0.24% T C 

3847 CC 0.24% T C 

7501 CC 0.24% T C 

5873 GC 0.24% T C 

11579 GC 0.24% T C 

7854 GG 0.24% T C 

1887 AG 0.25% A G 

8923 GC 0.25% A G 

2651 TCC 0.25% A G 
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15139 A 0.25% T C 

11792 TC 0.25% T C 

9480 TT 0.25% T C 

12654 TG 0.26% A G 

15383 CC 0.26% T C 

3976 TCC 0.26% T C 

4220 TG 0.26% T C 

10988 A 0.27% A C 

13395 GA 0.27% A G 

4690 A 0.27% T C 

5116 AT 0.27% T C 

12011 GC 0.27% T C 

13574 TC 0.27% T C 

4728 A 0.28% A G 

12177 TG 0.28% A G 

7282 A 0.28% T C 

6365 GG 0.28% T C 

13836 AC 0.29% A G 

5186 TG 0.29% A G 

2778 GG 0.29% T C 

3793 TCC 0.29% T C 

12919 AC 0.30% T C 

5162 TC 0.31% T C 

15141 TG 0.31% T C 

10676 TG 0.32% C T 

7220 CG 0.32% T C 

8548 CT 0.32% T C 

11770 AC 0.33% T C 

15976 AC 0.35% T C 

482 C 0.37% T C 

2256 TCC 0.39% T C 

8506 A 0.43% T A 

6076 CG 0.43% T C 

13878 AAA 0.47% A G 

189 A 0.59% A G 

15301 TT 0.59% G A 

14783 AAAA 0.67% T C 

9540 AA 0.71% T C 

14766 AAAA 0.75% C T 

3394 GC 0.78% T C 

16126 TG 0.92% T C 

16223 CC 1.10% C T 

11719 GG 1.16% G A 
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11914 AC 1.17% G A 

12705 AT 1.20% C T 

8701 A 1.43% A G 

16519 GGG 1.44% T C 

16342 AT 1.57% T C 

16390 GG 1.96% G A 

16274 AG 3.12% G A 

 

Table 11.3 The variants detected in the control skeletal muscle patient sample after bioinformatics 

processing. The 5’ sequence is the sequence extracted before the ‘Var’ base, which differed from 

the rCRS ‘Ref’ base. The heteroplasmy or ‘VarFreq’ indicates the variant frequency in the sample. 

All homoplasmic variants were removed and inverted at ≥ 90%. 
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Appendix C 

Appendix C consists of all variants detected in the fibroblast cells exposed to NRTIs 

from Chapter 6. 
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Gene Position Ref Var 
Average 

depth 
Var Freq Mutation type 

Nucleotide 

Change 

Protein 

Change 

D-Loop_A 304 C A 3950 0.38%       

D-Loop_A 309 C T 3823 0.85%       

D-Loop_A 414 T G 4009 50.64%       

D-Loop_A 515 A G 5077 0.45%       

RNR1 709 G A 18687 0.57%       

RNR1 1024 G A 25388 2.77%       

RNR2 1709 G A 25785 4.18%       

RNR2 1999 A G 25217 2.90%       

RNR2 2623 A G 23785 1.15%       

RNR2 2844 G A 24008 0.74%       

RNR2 3003 A C 25927 3.01%       

ND1 4111 C T 26296 0.56% synonymous c.C805T p.L269L, 

ND2 5435 C A 6876 0.31% synonymous c.C966A p.P322P, 

ND2 5439 C A 7125 0.34% nonsynonymous c.C970A p.P324T, 

ND2 5450 C A 7167 0.43% synonymous c.C981A p.P327P, 

ND2 5894 A G 20258 0.99%       

COX1 5992 G A 20455 1.12% nonsynonymous c.G89A p.G30D, 

COX1 7055 A G 34525 37.03% synonymous c.A1152G p.G384G, 

ATP6 8545 G A 15886 9.66% nonsynonymous c.G19A p.A7T, 

ATP6 9057 C T 22964 0.35% synonymous c.C531T p.A177A, 

COX3 9921 G A 14433 45.17% nonsynonymous c.G715A p.A239T, 
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ND4 12128 T C 20978 16.65% nonsynonymous c.T1369C p.F457L, 

ND5 12425 A C 18824 0.49% nonsynonymous c.A89C p.N30T, 

ND5 13028 C A 8586 0.38% nonsynonymous c.C692A p.P231H, 

ND5 13037 C A 8330 0.40% nonsynonymous c.C701A p.P234H, 

ND5 13434 A G 15387 44.38% nonsynonymous c.A1098G p.I366M, 

ND5 13701 A G 7570 2.68% synonymous c.A1365G p.K455K, 

ND5 13708 G A 7195 0.38% nonsynonymous c.G1372A p.A458T, 

CYTB 15293 T G 21940 1.11% nonsynonymous c.T547G p.F183V, 

CYTB 15543 C T 29021 2.17% nonsynonymous c.C797T p.P266L, 

D-Loop_B 16093 T C 27667 99.58%       

D-Loop_B 16129 G A 26634 99.52%       

Table 11.4 The Variants detected in the untreated fibroblast cell line sequenced on the MiSeq using at experimental day 22. 
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Gene Position Ref Var 
Average 

Depth 
Var Freq Mutation Type 

Nucleotide 

change 

Protein 

change 

D-Loop_A 174 C A 7485 0.31%       

D-Loop_A 309 C T 3218 0.92%       

D-Loop_A 414 T G 3330 46.61%       

D-Loop_A 459 C A 3135 0.32%       

D-Loop_A 515 A G 4776 0.50%       

RNR1 709 G A 17663 0.53%       

RNR1 1024 G A 24191 6.85%       

RNR2 1709 G A 24553 4.05%       

RNR2 1999 A G 24049 2.27%       

RNR2 2623 A G 22757 1.49%       

RNR2 2629 A G 23980 0.54%       

RNR2 2844 G A 22592 0.94%       

RNR2 3003 A C 24726 2.08%       

ND1 4111 C T 25096 0.79% synonymous c.C805T p.L269L, 

COX1 5894 A G 18581 0.52%       

COX1 5992 G A 18991 0.93% nonsynonymous c.G89A p.G30D, 

COX1 7055 A G 33177 37.26% synonymous c.A1152G p.G384G, 

COX2 7794 C T 16789 0.41% nonsynonymous c.C209T p.A70V, 

ATP6,ATP8 8545 G A 14441 11.21% nonsynonymous c.G19A p.A7T, 

COX3 9921 G A 12807 47.72% nonsynonymous c.G715A p.A239T, 

ND4 10938 C A 8998 0.37% nonsynonymous c.C179A p.P60H, 

ND4 12128 T C 19933 17.67% nonsynonymous c.T1369C p.F457L, 

tRNA-Ser2 12259 T C 17984 0.32%       



 

296 

 

ND5 13434 A G 14759 46.56% nonsynonymous c.A1098G p.I366M, 

ND5 13701 A G 7133 5.64% synonymous c.A1365G p.K455K, 

ND5 13708 G A 6790 0.52% nonsynonymous c.G1372A p.A458T, 

ND5 14051 C A 18305 0.36% nonsynonymous c.C1715A p.S572Y, 

CYTB 15293 T G 21213 1.11% nonsynonymous c.T547G p.F183V, 

CYTB 15543 C T 27879 1.41% nonsynonymous c.C797T p.P266L, 

D-Loop_B 16093 T C 26410 99.67%       

D-Loop_B 16129 G A 25407 99.45%       
Table 11.5 The variants detected in the ddI-exposed fibroblast sample detected using the MiSeq platform from experimental day 22. 
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Gene Position Ref Var 
Average 

depth 

Var 

Freq 
Mutation type 

Coding 

Gene 

Nucleotide 

change 

Protein 

change 

RNR1 709 G A 14429 0.55%         

RNR1 1024 G A 20314 4.63%         

RNR2 1709 G A 21068 3.99%         

RNR2 1999 A G 20933 1.57%         

RNR2 2523 C A 19676 0.39%         

RNR2 2623 A G 19153 1.60%         

RNR2 2629 A G 20152 0.56%         

RNR2 2844 G A 19180 1.14%         

RNR2 3003 A C 20962 1.52%         

ND1 4111 C T 20825 0.73% synonymous ND1 c.C805T p.L269L, 

ND2 5487 T C 4878 0.31% nonsynonymous ND2 c.T1018C p.S340P, 

COX1 5992 G A 16662 0.66% nonsynonymous COX1 c.G89A p.G30D, 

COX1 7055 A G 28524 31.68% synonymous COX1 c.A1152G p.G384G, 

COX2 7794 C T 13309 0.46% nonsynonymous COX2 c.C209T p.A70V, 

COX2 8138 A G 12826 0.82% nonsynonymous COX2 c.A553G p.T185A, 

ATP6 8545 G A 11850 9.27% nonsynonymous ATP6 c.G19A p.A7T, 

ATP6 9057 C T 18157 0.30% synonymous ATP6 c.C531T p.A177A, 

COX3 9921 G A 10523 41.64% nonsynonymous COX3 c.G715A p.A239T, 

ND4 12128 T C 16010 15.48% nonsynonymous ND4 c.T1369C p.F457L, 

ND5 12418 A C 15066 0.47% nonsynonymous ND5 c.A82C p.K28Q, 

ND5 12425 A C 14512 0.50% nonsynonymous ND5 c.A89C p.N30T, 
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ND5 13309 G A 12815 0.31% nonsynonymous ND5 c.G973A p.A325T, 

ND5 13434 A G 11970 39.77% nonsynonymous ND5 c.A1098G p.I366M, 

ND5 13701 A G 5597 4.18% synonymous ND5 c.A1365G p.K455K, 

ND5 13708 G A 5250 0.44% nonsynonymous ND5 c.G1372A p.A458T, 

CYTB 15543 C T 23488 2.35% nonsynonymous CYTB c.C797T p.P266L, 

Table 11.6 The variants detected in the d4T-exposed fibroblast sample detected using the MiSeq platform from experimental day 22. 
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Gene Position Ref Var 
Average 

depth 
Var Freq Mutation type 

Nucleotide 

change 

Protein 

change 

D-Loop_A 53 G T 5662 0.39%       

D-Loop_A 498 C T 3084 0.42%       

D-Loop_A 515 A G 3752 0.46%       

D-Loop_A 536 C A 5240 0.31%       

D-Loop_A 543 C A 5420 0.33%       

RNR1 709 G A 14830 0.59%       

RNR1 750 A G 15265 99.69%       

RNR1 880 C A 18516 0.39%       

RNR1 904 C A 17856 0.30%       

RNR1 1024 G A 20290 4.96%       

RNR1 1045 G T 20234 0.36%       

RNR1 1414 C A 22103 0.31%       

RNR2 1709 G A 20681 4.17%       

RNR2 1999 A G 19709 2.21%       

RNR2 2043 C A 19640 0.30%       

RNR2 2405 C A 18486 0.36%       

RNR2 2425 A C 19430 0.41%       

RNR2 2443 C A 18357 0.32%       

RNR2 2553 G T 19317 0.35%       

RNR2 2623 A G 19145 1.68%       

RNR2 2629 A G 20222 0.59%       

RNR2 2819 G T 18007 0.31%       

RNR2 2844 G A 18843 0.74%       
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RNR2 2878 G T 18557 0.31%       

RNR2 2909 G T 18125 0.37%       

RNR2 3003 A C 20726 2.04%       

ND1 3553 C A 4362 0.41% nonsynonymous c.C247A p.L83I, 

ND1 3586 C A 4189 0.48% nonsynonymous c.C280A p.P94T, 

ND1 3588 C A 4205 0.33% synonymous c.C282A p.P94P, 

ND1 3594 C A 4243 0.33% synonymous c.C288A p.V96V, 

ND1 4086 C A 17376 0.32% synonymous c.C780A p.V260V, 

ND1 4111 C T 17762 0.60% synonymous c.C805T p.L269L, 

ND1 4153 G T 16816 0.34% nonsynonymous c.G847T p.D283Y, 

ND2 4814 C A 14499 0.31% synonymous c.C345A p.V115V, 

ND2 5147 G T 9678 0.33% synonymous c.G678T p.T226T, 

ND2 5435 C A 4298 0.33% synonymous c.C966A p.P322P, 

ND2 5438 C A 4402 0.39% synonymous c.C969A p.T323T, 

ND2 5439 C A 4409 0.39% nonsynonymous c.C970A p.P324T, 

ND2 5444 C A 4438 0.34% nonsynonymous c.C975A p.F325L, 

ND2 5449 C A 4446 0.34% nonsynonymous c.C980A p.P327H, 

ND2 5450 C A 4397 0.52% synonymous c.C981A p.P327P, 

ND2 5456 C A 3904 0.36% synonymous c.C987A p.L329L, 

COX1 5992 G A 15094 0.83% nonsynonymous c.G89A p.G30D, 

COX1 6054 G T 16417 0.41% nonsynonymous c.G151T p.D51Y, 

COX1 6211 G T 15977 0.31% stoploss c.G308T p.X103L, 

COX1 6280 G T 16926 0.32% stoploss c.G377T p.X126L, 

COX1 6621 C A 28905 0.39% nonsynonymous c.C718A p.H240N, 

COX1 6808 G T 30373 0.33% nonsynonymous c.G905T p.R302L, 

COX1 6871 G T 32131 0.30% stoploss c.G968T p.X323L, 

COX1 6962 G T 31619 0.31% synonymous c.G1059T p.L353L, 
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COX1 7055 A G 28457 34.04% synonymous c.A1152G p.G384G, 

COX1 7418 C A 15384 0.31% nonsynonymous c.C1515A p.F505L, 

COX2 7979 G T 14970 0.31% nonsynonymous c.G394T p.D132Y, 

COX2 8138 A G 14636 0.57% nonsynonymous c.A553G p.T185A, 

COX2 8168 C A 13843 0.32% nonsynonymous c.C583A p.Q195K, 

COX2 8263 C A 14604 0.32% synonymous c.C678A p.T226T, 

ATP6 8545 G A 12525 8.70% nonsynonymous c.G19A p.A7T, 

ATP6 8852 G T 17638 0.32% stoploss c.G326T p.X109L, 

COX3 9209 G T 19226 0.34% nonsynonymous c.G3T p.M1I, 

COX3 9528 C A 11485 0.34% nonsynonymous c.C322A p.P108T, 

COX3 9921 G A 10799 43.42% nonsynonymous c.G715A p.A239T, 

ND3 10164 C A 5560 0.32% nonsynonymous c.C106A p.P36T, 

ND3 10182 G T 5107 0.31% nonsynonymous c.G124T p.D42Y, 

ND3 10194 C A 5374 0.39% nonsynonymous c.C136A p.P46T, 

ND3 10327 C A 6258 0.34% stopgain c.C269A p.S90X, 

ND3 10371 G T 6434 0.33% stopgain c.G313T p.E105X, 

ND3 10375 G T 6188 0.31% stoploss c.G317T p.X106L, 

ND4 10806 G T 9966 0.36% stoploss c.G47T p.X16L, 

ND4 10917 C A 8264 0.36% nonsynonymous c.C158A p.S53Y, 

ND4 10938 C A 7510 0.39% nonsynonymous c.C179A p.P60H, 

ND4 10939 C A 7778 0.35% synonymous c.C180A p.P60P, 

ND4 10949 C A 7203 0.49% nonsynonymous c.C190A p.P64T, 

ND4 10950 C A 7164 0.32% nonsynonymous c.C191A p.P64H, 

ND4 11018 G T 9685 0.33% stopgain c.G259T p.E87X, 

ND4 11835 G T 19299 0.33% stoploss c.G1076T p.X359L, 

ND4 12128 T C 19272 15.78% nonsynonymous c.T1369C p.F457L, 

ND5 12418 A C 17814 0.42% nonsynonymous c.A82C p.K28Q, 
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ND5 12425 A C 17189 0.48% nonsynonymous c.A89C p.N30T, 

ND5 12971 C A 9211 0.31% nonsynonymous c.C635A p.P212Q, 

ND5 13028 C A 7569 0.50% nonsynonymous c.C692A p.P231H, 

ND5 13035 C A 7219 0.37% synonymous c.C699A p.L233L, 

ND5 13037 C A 7236 0.32% nonsynonymous c.C701A p.P234H, 

ND5 13038 C A 7228 0.33% synonymous c.C702A p.P234P, 

ND5 13197 C A 12665 0.31% nonsynonymous c.C861A p.F287L, 

ND5 13434 A G 12703 42.11% nonsynonymous c.A1098G p.I366M, 

ND5 13649 C A 6968 0.55% nonsynonymous c.C1313A p.P438H, 

ND5 13683 C A 6444 0.31% synonymous c.C1347A p.T449T, 

ND5 13701 A G 6836 4.36% synonymous c.A1365G p.K455K, 

ND5 13707 G T 5641 0.32% synonymous c.G1371T p.L457L, 

ND5 13708 G A 6484 0.52% nonsynonymous c.G1372A p.A458T, 

ND5 14006 G T 15630 0.35% stoploss c.G1670T p.X557L, 

CYTB 15230 C A 20290 0.32% nonsynonymous c.C484A p.Q162K, 

CYTB 15466 G T 23460 0.34% nonsynonymous c.G720T p.M240I, 

CYTB 15500 G T 21625 0.32% nonsynonymous c.G754T p.D252Y, 

CYTB 15543 C T 24499 2.09% nonsynonymous c.C797T p.P266L, 

D-Loop_B 16093 T C 22236 99.66%       

D-Loop_B 16145 G T 17535 0.35%       
Table 11.7 The variants detected in the AZT-exposed fibroblast sample detected using the MiSeq platform from experimental day 22. 
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Gene Position Ref Var 
Average 

depth 

Var 

Freq 
Mutation type 

Nucleotide 

change 

Protein 

change 

COX1 5992 G A 13126 0.86% nonsynonymous c.G89A p.G30D, 

COX2 8138 A G 13815 0.48% nonsynonymous c.A553G p.T185A, 

ATP6,ATP8 8545 G A 12929 9.48% nonsynonymous c.G19A p.A7T, 

COX3 9921 G A 11597 44.17% nonsynonymous c.G715A p.A239T, 

ND4 12128 T C 17835 17.11% nonsynonymous c.T1369C p.F457L, 

ND5 13434 A G 12682 43.44% nonsynonymous c.A1098G p.I366M, 

ND5 13708 G A 6057 0.33% nonsynonymous c.G1372A p.A458T, 

ND5 13787 T C 5951 0.37% nonsynonymous c.T1451C p.L484P, 

CYTB 14766 C T 14950 0.53% nonsynonymous c.C20T p.T7I, 

CYTB 14798 T C 14417 0.57% nonsynonymous c.T52C p.F18L, 

CYTB 15293 T G 19057 0.84% nonsynonymous c.T547G p.F183V, 

CYTB 15452 C A 23028 0.57% nonsynonymous c.C706A p.L236I, 

CYTB 15543 C T 22603 1.50% nonsynonymous c.C797T p.P266L, 

COX2 7948 C A 16250 0.63% stopgain c.C363A p.Y121X, 

ND1 4111 C T 17150 0.72% synonymous c.C805T p.L269L, 

COX1 6572 C A 27548 0.35% synonymous c.C669A p.A223A, 

COX1 7028 C T 27123 0.50% synonymous c.C1125T p.A375A, 

COX1 7055 A G 25961 35.29% synonymous c.A1152G p.G384G, 

COX2 7792 C G 14878 0.94% synonymous c.C207G p.P69P, 

COX3 9251 A T 16925 0.52% synonymous c.A45T p.P15P, 

ND5 13701 A G 6375 6.21% synonymous c.A1365G p.K455K, 

RNR1 709 G A 12008 0.37%       

RNR1 1024 G A 16714 7.37%       
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RNR2 1709 G A 17562 4.07%       

RNR2 1999 A G 17232 1.53%       

RNR2 2182 G A 16072 0.43%       

RNR2 2623 A G 16235 1.62%       

RNR2 2629 A G 17140 0.71%       

RNR2 2844 G A 16105 1%       

RNR2 3003 A C 17475 1.49%       

tRNA-Thr 15928 G A 24306 0.31%       

D-Loop_B 16093 T C 19342 99.43%       
Table 11.8 The variants detected in the TDF-exposed fibroblast sample detected using the MiSeq platform from experimental day 22. 
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Appendix D 

Appendix D consists of the shared variant data in the wild-type molecules of the cybrids 

exposed to NRTIs at end of depletion and end of repopulation compared to the 

experimental day 0 values. 
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Position 
Average Shift 

Untreated ddI D4T AZT TDF 

150 1.61% 2.00% 1.48% 2.47% 1.62% 

185 1.47% 1.83% 1.53%   1.50% 

4216 -0.08% 0.00% 0.06% -0.02% -0.02% 

15466 1.20% 1.36% 1.35% 1.44% 1.23% 

16069 1.24% 1.30% 1.46% 1.72% 1.30% 

16093 1.35% 1.36% 1.47% 1.63% 1.53% 

16343 0.76% 1.05% 0.99% 0.94% 0.64% 

16519 1.05% 1.37% 1.17% 1.30% 1.10% 

Mean shift of all bp (n=8) 
  

1.00% 1.18% 1.15% 1.17% 1.04% 

SD of mean shift (n=8) 0.53% 0.60% 0.49% 0.77% 0.55% 

Table 11.9 The mean shift from experimental day 0 for all of the shared variants across the NRTI conditions in the cybrids exposed to x1 concentration at experimental 

day 32. 
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Pos. 
Average Shift 

Untreated ddI d4T AZT TDF 

150 3.60% 7.65% 1.88% 3.36% 2.97% 

185 0.04% 0.15% 0.11% 0.02% 0.07% 

15466 2.94% 7.46% 2.72% 2.95% 2.68% 

16069 3.30% 7.59% 2.98% 3.21% 2.84% 

16093 3.54% 7.93% 3.26% 3.40% 3.07% 

16343 2.67% 6.82% 2.19% 2.60% 2.09% 

16519 2.70% 6.71% 2.52% 2.69% 2.18% 

Mean shift of all bp 

(n=7)   
2.68% 6.33% 2.24% 2.60% 2.27% 

SD of mean shift (n=7) 1.23% 2.76% 1.05% 1.18% 1.04% 

Table 11.10 The mean shift from experimental day 0 for all of the shared variants across the NRTI conditions in the cybrids exposed to x1 concentration at experimental 

day 52. 
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Position 
Average Shift 

Untreated ddI D4T AZT TDF 

150 1.73%   1.53% 0.00% 1.50% 

185     0.06% 0.00% -0.02% 

15466 1.12% 1.69% 1.35% 1.44% 1.23% 

16069 1.15% 1.51% 1.46% 1.72% 1.30% 

16093 1.24% 1.67% 1.47% 1.63% 1.53% 

16343 0.95% 1.20% 0.99% 0.94% 0.64% 

16519 1.34%   1.17% 1.30% 1.10% 

Mean shift of all bp (n=7) 
  

1.16% 1.52% 1.08% 1.17% 0.96% 

SD of mean shift (n=7) 0.27% 0.23% 0.52% 0.73% 0.55% 

Table 11.11 The mean shift from experimental day 0 for all of the shared variants across the NRTI conditions in the cybrids exposed to x10 concentration at experimental 

day 32 . 
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Pos. 
Untreated ddI d4T AZT TDF 

Average Shift Average Shift Average Shift Average Shift Average Shift 

150 7.64% 13.28% 8.08% 6.92% 10.92% 

185 7.05% 12.44% 7.78% 6.70% 10.53% 

15466 2.19% 12.66% 3.93% 1.60% 3.91% 

16069 5.51% 11.25% 6.49% 5.39% 6.97% 

16093 6.13% 11.46% 6.80% 5.81% 7.88% 

16343 6.21% 12.04% 6.64% 5.35% 7.39% 

16519 6.37% 12.68% 6.80% 5.73% 7.11% 

Mean shift of all bp (n=7) 
  

5.87% 12.26% 6.64% 5.36% 7.82% 

SD of mean shift (n=7) 1.76% 0.72% 1.34% 1.77% 2.37% 
Table 11.12 The mean shift from experimental day 0 for all of the shared variants across the NRTI conditions in the cybrids exposed to x10 concentration at experimental 

day 52. 
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Appendix E 

Appendix E consists of the shared variant data in the deleted molecules of the cybrids 

exposed to NRTIs at end of depletion and end of repopulation compared to the 

experimental day 0 values. 

 

  



Appendices 

 

311 

 

Mitochondrial 

Position 

Average Shift in untreated to 

Day 32 

Average Shift in untreated to 

Day 52 

150 4.22% 5.27% 

1389 -0.08% -0.38% 

1811 6.14% 7.54% 

2221 -0.07% 0.06% 

2707 4.49% 7.28% 

4188 6.01% 3.42% 

4248 0.05% 0.01% 

4640 4.71% 1.34% 

5893 0.14% -0.32% 

6209 -0.32% -0.14% 

15940 -5.18% -4.60% 

16069 4.40% 3.00% 

16093 4.39% 2.72% 

16126 4.41% 2.72% 

16343 4.42% 3.49% 

16519 4.17% 4.20% 

Table 11.13 The average shift from experimental day 0 to experimental days 32 and 52 in the 

untreated deleted amplicon. (-) indicates a loss of heteroplasmy and no sign indicates a gain in 

heteroplasmy. 
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Pos Average Shift in ddI to Day 32 Average Shift in ddI to Day 52 

150 -4.67% -5.15% 

1389 0.47% -0.24% 

1811 -4.48% -4.62% 

2221 0.00% -0.33% 

2707 -7.59% -6.48% 

4188 -2.40% -0.33% 

4248 0.09% 0.09% 

4640 -2.17% -1.23% 

5893 0.53% -0.11% 

6209 0.05% -0.42% 

15940 8.73% 12.02% 

16069 -1.67% -2.57% 

16093 -1.13% -2.09% 

16126 -1.00% -1.84% 

16343 -1.49% -2.29% 

16519 -2.95% -3.42% 

Table 11.14 The average shift from experimental day 0 to experimental days 32 and 52 in the ddI 

x10 deleted amplicon. (-) indicates a loss of heteroplasmy and no sign indicates a gain in 

heteroplasmy. 
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Appendix F 

Appendix F consists of the variant data of the three tissues sequenced on the MiSeq for 

the control and AZT-exposed aged mice. 
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Control Mouse 

Gene Ref Var 
Average 

depth 
Var Freq Mutation type 

Nucleotide 

change 

Protein 

change 

16S_rRNA G T 9161 0.31%       

16S_rRNA G T 8566 0.30%       

cytochrome_c_oxidase_I G T 3888 0.36% stoploss c.G968T p.X323L, 

cytochrome_c_oxidase_I G T 3371 0.39% nonsynonymous c.G1090T p.D364Y, 

cytochrome_c_oxidase_I C A 7226 0.33% nonsynonymous c.C1183A p.H395N, 

cytochrome_c_oxidase_I G T 7969 0.30% nonsynonymous c.G1219T p.D407Y, 

cytochrome_c_oxidase_II G T 9200 0.37% stoploss c.G194T p.X65L, 

tRNA_arginine A T 6392 0.41%       

tRNA_arginine C A 6624 0.33%       

NADH_dehydrogenase_6 A C 7314 0.92% nonsynonymous c.T376G p.Y126D, 

NADH_dehydrogenase_6 G C 6220 0.66% nonsynonymous c.C349G p.L117V, 

cytochrome_b C A 8265 0.34% synonymous c.C369A p.V123V, 

cytochrome_b C G 7488 0.32% synonymous c.C1020G p.G340G, 

D-Loop C A 4566 0.33%       

D-Loop T C 6155 0.31%       

AZT Mouse 

Gene Ref Var 
Average 

depth 
Var Freq Mutation type 

Nucleotide 

change 

Protein 

change 

12S_rRNA G T 7405 0.31%       

12S_rRNA C A 7590 0.33%       

12S_rRNA C A 7190 0.32%       

12S_rRNA C A 7640 0.30%       
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NADH_dehydrogenase_2 C A 18718 12.27% nonsynonymous c.C49A p.P17T, 

cytochrome_c_oxidase_I C A 16845 0.31% nonsynonymous c.C6A p.F2L, 

cytochrome_c_oxidase_I G T 15782 0.31% nonsynonymous c.G151T p.D51Y, 

cytochrome_c_oxidase_I G T 17040 0.31% nonsynonymous c.G634T p.D212Y, 

cytochrome_c_oxidase_I G T 15902 0.33% stoploss c.G824T p.X275L, 

cytochrome_c_oxidase_I C A 8029 0.35% synonymous c.C954A p.V318V, 

cytochrome_c_oxidase_I G T 4369 0.34% nonsynonymous c.G1090T p.D364Y, 

cytochrome_c_oxidase_I G T 10039 0.33% nonsynonymous c.G1219T p.D407Y, 

cytochrome_c_oxidase_I G T 9708 0.34% stoploss c.G1226T p.X409L, 

cytochrome_c_oxidase_II C A 11372 0.33% synonymous c.C426A p.V142V, 

cytochrome_c_oxidase_III G T 11162 0.46% stoploss c.G47T p.X16L, 

NADH_dehydrogenase_3 G T 7217 0.32% nonsynonymous c.G124T p.D42Y, 

NADH_dehydrogenase_5 C T 12190 0.46% nonsynonymous c.C793T p.P265S, 

NADH_dehydrogenase_6 A C 10561 0.58% nonsynonymous c.T376G p.Y126D, 

NADH_dehydrogenase_6 G C 9349 0.49% nonsynonymous c.C349G p.L117V, 

NADH_dehydrogenase_6 G T 9353 0.31% stopgain c.C29A p.S10X, 

tRNA_glutamic_acid G T 10175 0.30%       

cytochrome_b G T 10653 0.37% nonsynonymous c.G58T p.D20Y, 

cytochrome_b G T 12928 0.32% stoploss c.G230T p.X77L, 

D-Loop C A 4557 0.31%       

D-Loop C A 4341 0.51%       

D-Loop C A 4540 0.40%       

D-Loop A C 3852 0.80%       

D-Loop C A 4315 0.42%       

D-Loop C A 4401 0.48%       
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D-Loop T C 3312 4.86%       

D-Loop T C 3295 1.21%       

D-Loop G T 3134 0.45%       

D-Loop C A 3184 0.38%       

D-Loop C A 3396 0.44%       

D-Loop C A 3520 0.34%       

D-Loop G A 3103 0.81%       

Table 11.15 The variant data for gastrocnemius mouse tissue for the control and AZT-exposed mouse. 
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Control Mouse  

Gene Ref Var Average 

depth 

Var 

Freq 

Mutation type Nucleotide 

change 

Protein 

change 

12S_rRNA G T 5536 0.31%       

16S_rRNA C A 9187 0.33%       

16S_rRNA C A 12481 0.34%       

cytochrome_c_oxidase_I C A 14769 0.30% nonsynonymous c.C683A p.P228Q, 

cytochrome_c_oxidase_I A G 15618 0.42% synonymous c.A795G p.K265K, 

cytochrome_c_oxidase_I T A 6786 0.71% synonymous c.T972A p.L324L, 

cytochrome_c_oxidase_I T G 6223 0.31% nonsynonymous c.T993G p.N331K, 

cytochrome_c_oxidase_I G T 5932 0.39% nonsynonymous c.G1149T p.M383I, 

cytochrome_c_oxidase_I G T 7283 0.33% stoploss c.G1481T p.X494L, 

cytochrome_c_oxidase_I C A 7201 0.35% nonsynonymous c.C1496A p.P499H, 

tRNA_serine_1 C A 6109 0.31%       

tRNA_serine_1 C A 5953 0.32%       

cytochrome_c_oxidase_II C A 7743 0.35% nonsynonymous c.C232A p.L78I, 

cytochrome_c_oxidase_II C A 7938 0.31% synonymous c.C426A p.V142V, 

cytochrome_c_oxidase_II C A 7379 0.38% nonsynonymous c.C497A p.P166H, 

ATP_synthase_6 C A 6782 0.37% nonsynonymous c.C223A p.L75I, 

ATP_synthase_6 G T 6766 0.33% stoploss c.G326T p.X109L, 

ATP_synthase_6 G T 6810 0.37% nonsynonymous c.G462T p.M154I, 

cytochrome_c_oxidase_III G T 7506 0.36% nonsynonymous c.G3T p.M1I, 

cytochrome_c_oxidase_III G T 8296 0.31% nonsynonymous c.G662T p.R221L, 

NADH_dehydrogenase_3 G T 4830 0.37% stoploss c.G230T p.X77L, 

tRNA_arginine A T 4826 0.42%       

tRNA_arginine T A 4720 0.38%       

NADH_dehydrogenase_4L G T 5660 0.34% nonsynonymous c.G52T p.G18W, 
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NADH_dehydrogenase_4 C A 5466 0.33% nonsynonymous c.C460A p.L154I, 

NADH_dehydrogenase_4 G T 6768 0.33% stoploss c.G1076T p.X359L, 

NADH_dehydrogenase_5 G T 5526 0.31% stoploss c.G293T p.X98L, 

NADH_dehydrogenase_5 T C 7922 0.63% nonsynonymous c.T772C p.F258L, 

NADH_dehydrogenase_5 C T 8864 0.51% nonsynonymous c.C793T p.P265S, 

NADH_dehydrogenase_5 C A 8976 0.30% synonymous c.C795A p.P265P, 

NADH_dehydrogenase_5 T A 15534 0.40% nonsynonymous c.T1430A p.I477N, 

NADH_dehydrogenase_5 G T 12027 0.32% nonsynonymous c.G1579T p.G527W, 

NADH_dehydrogenase_6 A C 7211 1.66% nonsynonymous c.T376G p.Y126D, 

NADH_dehydrogenase_6 G C 6259 1.66% nonsynonymous c.C349G p.L117V, 

NADH_dehydrogenase_6 C A 6541 0.37% nonsynonymous c.G283T p.G95W, 

NADH_dehydrogenase_6 C A 6722 0.31% nonsynonymous c.G181T p.G61W, 

NADH_dehydrogenase_6 C A 6483 0.35% nonsynonymous c.G106T p.G36W, 

cytochrome_b G T 7565 0.36% nonsynonymous c.G3T p.M1I, 

cytochrome_b G T 8930 0.36% nonsynonymous c.G496T p.G166W, 

D-Loop T C 4841 0.35%       

D-Loop G T 7421 0.42%       

AZT-exposed Mouse 
Gene Ref Var Average 

depth 

Var 

Freq 

Mutation type Nucleotide 

change 

Protein 

change 

12S_rRNA C A 5620 0.34%       

12S_rRNA G T 5859 0.32%       

12S_rRNA C A 5986 0.30%       

12S_rRNA C A 8698 0.31%       

12S_rRNA G T 9939 0.43%       

tRNA_valine G T 10964 0.31%       

16S_rRNA C A 11908 0.31%       
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16S_rRNA G T 14317 0.30%       

16S_rRNA C A 13139 0.32%       

16S_rRNA C A 13069 0.31%       

16S_rRNA G T 13683 0.31%       

16S_rRNA C A 10183 0.30%       

NADH_dehydrogenase_1 C A 15625 0.37% nonsynonymous c.C124A p.P42T, 

NADH_dehydrogenase_1 C A 15450 0.30% synonymous c.C264A p.P88P, 

NADH_dehydrogenase_1 C A 18103 0.33% nonsynonymous c.C850A p.Q284K, 

NADH_dehydrogenase_2 C A 20257 16.32% nonsynonymous c.C49A p.P17T, 

cytochrome_c_oxidase_I G T 15925 0.35% nonsynonymous c.G113T p.R38L, 

cytochrome_c_oxidase_I C A 17247 0.36% stopgain c.C467A p.S156X, 

cytochrome_c_oxidase_I C A 16323 0.33% nonsynonymous c.C683A p.P228Q, 

cytochrome_c_oxidase_I C A 8499 0.31% nonsynonymous c.C943A p.P315T, 

cytochrome_c_oxidase_I G T 4372 0.32% nonsynonymous c.G1090T p.D364Y, 

cytochrome_c_oxidase_I G T 10370 0.52% nonsynonymous c.G1219T p.D407Y, 

cytochrome_c_oxidase_I G T 9987 0.33% stoploss c.G1226T p.X409L, 

cytochrome_c_oxidase_I C A 11174 0.36% nonsynonymous c.C1396A p.L466I, 

cytochrome_c_oxidase_II C A 11370 0.36% synonymous c.C426A p.V142V, 

ATP_synthase_6 G T 9918 0.31% nonsynonymous c.G395T p.G132V, 

cytochrome_c_oxidase_III G T 11995 0.43% nonsynonymous c.G3T p.M1I, 

cytochrome_c_oxidase_III G T 11941 0.32% stoploss c.G47T p.X16L, 

cytochrome_c_oxidase_III G T 12100 0.33% stoploss c.G296T p.X99L, 

cytochrome_c_oxidase_III G T 10751 0.37% stopgain c.G706T p.E236X, 

NADH_dehydrogenase_3 G T 7550 0.40% stoploss c.G338T p.X113L, 

tRNA_arginine A T 7849 0.36%       

tRNA_arginine G T 7588 0.41%       

NADH_dehydrogenase_4 G T 8182 0.31% stopgain c.G340T p.E114X, 
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NADH_dehydrogenase_5 C A 9099 0.34% synonymous c.C288A p.V96V, 

NADH_dehydrogenase_5 C A 11916 0.30% nonsynonymous c.C692A p.P231Q, 

NADH_dehydrogenase_6 A C 9220 0.85% nonsynonymous c.T376G p.Y126D, 

NADH_dehydrogenase_6 G C 7898 0.67% nonsynonymous c.C349G p.L117V, 

NADH_dehydrogenase_6 C A 8273 0.40% synonymous c.G210T p.T70T, 

tRNA_glutamic_acid G T 8889 0.36%       

cytochrome_b G T 9077 0.37% nonsynonymous c.G58T p.D20Y, 

cytochrome_b C A 10863 0.36% nonsynonymous c.C363A p.F121L, 

D-Loop C A 6039 0.35%       

D-Loop G T 8866 0.33%       

D-Loop C A 8282 0.34%       

D-Loop C A 4799 0.31%       

D-Loop C A 4098 0.32%       

D-Loop C A 3644 0.36%       

D-Loop C A 3627 0.33%       

D-Loop C A 3386 0.47%       

D-Loop C A 3523 0.62%       

D-Loop C A 3601 0.36%       
Table 11.16 The variant data for heart mouse tissue for the control and AZT exposed mouse. 
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Control Mouse 

Gene Ref Mut 
average 

depth 

Var 

Freq 
Mutation type 

Nucleotide 

change 

Protein 

change 

12S_rRNA C A 4176 0.31%       

cytochrome_c_oxidase_I T A 4225 0.31% synonymous c.T972A p.L324L, 

tRNA_arginine A T 5243 0.36%       

NADH_dehydrogenase_5 G T 5203 0.33% nonsynonymous c.G247T p.D83Y, 

NADH_dehydrogenase_6 A C 7954 0.78% nonsynonymous c.T376G p.Y126D, 

NADH_dehydrogenase_6 G C 7098 0.61% nonsynonymous c.C349G p.L117V, 

cytochrome_b C A 6662 0.30% synonymous c.C375A p.A125A, 

cytochrome_b C G 7219 0.32% synonymous c.C1020G p.G340G, 

AZT-exposed Mouse 

Gene Ref Mut 
average 

depth 

Var 

Freq 
Mutation type 

Nucleotide 

change 

Protein 

change 

NADH_dehydrogenase_2 C A 23133 20.88% nonsynonymous c.C49A p.P17T, 

cytochrome_c_oxidase_I T A 9165 0.41% synonymous c.T972A p.L324L, 

cytochrome_c_oxidase_I G A 13053 0.90% nonsynonymous c.G1261A p.V421I, 

tRNA_arginine A T 8820 0.39%       

tRNA_arginine T A 8636 0.34%       

NADH_dehydrogenase_5 C T 17234 0.36% nonsynonymous c.C793T p.P265S, 

NADH_dehydrogenase_6 A C 10907 0.99% nonsynonymous c.T376G p.Y126D, 

NADH_dehydrogenase_6 G C 9388 0.96% nonsynonymous c.C349G p.L117V, 

D-Loop A C 4141 1.66%       

D-Loop C A 4754 0.44%       

D-Loop T C 3513 4.13%       
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D-Loop T C 3535 0.93%       

D-Loop C A 3486 0.34%       

D-Loop C A 3105 0.32%       

Table 11.17 The variant data for liver mouse tissue for the control and AZT exposed mouse. 
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