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Abstract

Background: Direct reprogramming of human somatic cells to pluripotent
embryonic stem (ES) cell -like cells, termed induced pluripotent stem (iPS) cells,
can be achieved by expression of defined transcription factors. The potential
use of iPS cells derived from the urinary tract provides a substantial opportunity
in developing new disease models, drug screening and tissue engineering. We
aimed to generate, for the first time, human induced pluripotent stem cells
derived from the urinary tract (UT-iPS) cells and to assess capacity for directed

differentiation into bladder lineages.

Methods: Human primary culture cells derived from benign bladder and ureters
were transduced with OCT4, SOX2, KLF4 and C-MYC genes to generate
human UT-IPS cells. Generated cells were characterised using RT-PCR and
immunofluorescence. Differentiation capacity was evaluated by embryoid body
formation in vitro and teratoma assay in vivo. Established co-culture based
directed differentiation into bladder cells was assessed in comparison with

classical skin-derived iPS cells.

Results: We demonstrated successful re-programming of adult urinary tract
cells from both bladder and ureter into human UT-iPS cells. Most of the clones
showed efficient transgene silencing and maintained a normal diploid karyotype.
Specifically, we showed expression of ES cell markers and functional
pluripotency by the generation of endodermal, ectodermal and mesodermal
lineages. Differentiation into bladder lineages was demonstrated by expression
of urothelial-specific markers, uroplakins (UPIb, UPII, UPIlla, and UPIIIb),
claudins (CLD1 and CLD5) and cytokeratin (CK7); and stromal smooth muscle
markers a-SMA, calponin, and desmin. Human UT-iPS cells were shown to be
more efficient than skin-derived iPS cells in undergoing bladder differentiation,

underlining the importance of the origin of the parent cell for re-programming.

Conclusions: We demonstrated that the induction of human urinary tract cells
into iPS cells is possible, offering a new exciting opportunity for tissue

engineering and for the study of bladder disease.
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1 Chapter 1. Introduction

1.1 Clinical need for bladder reconstruction

The normal function of the bladder and associated structures of the lower
urinary tract may be diseased for many reasons and people from all races, ages
and ethnic groups suffer from poor quality of life even with access to the best
medical care. Some conditions are primary congenital abnormalities and
become lifelong health concerns of the genitourinary system. The most
common birth abnormalities include hypospadias, where the urethral opening
develops inferior to its normal location, and bladder exstrophy, where the
bladder develops on the outer surface of the abdomen. These conditions have a
considerable impact on social and psychological development. Secondary
conditions are much more common and create acute and chronic medical
problems such as bladder malignancies, trauma and neuropathy (Atala, 2008;
Ferlay et al., 2008) and are a leading cause of urinary symptoms (including

incontinence), kidney failure, pelvic pain, urinary tract infection and death.

In particular, carcinoma of the bladder is a significant clinical problem that is a
common and a serious healthcare problem throughout the world. Recent
statistics estimate that over 380,000 persons are diagnosed with the disease
worldwide each year (Ferlay J, 2010). In the UK, bladder cancer ranks as the
fourth and eleventh most frequently diagnosed cancer in men and women,
respectively. It is estimated that about 10,300 cases are diagnosed each year,
and 4,500 patients die annually, that is around 96 people every week (CRUK-
CancerStats, 2010). Bladder cancer is typically seen in people over 65, with an
incidence nearly four times higher in men than in women. Histologically, the
majority of bladder cancer patients present with transitional cell carcinoma
(TCC, 90%), whilst 5% present with squamous cell carcinoma (SCC) and less
than 2% with adenocarcinoma (Bladder cancer statistics July 2008 ). To
determine the stage of bladder cancer, many factors must be considered; how
deeply the tumour is and whether it has invaded the bladder wall (T-staging)
(Figure 1-1), the presence of tumour in the lymph nodes (N-staging), and
whether there are any metastases (M-staging) (Barentsz et al., 1993; MacVicar,
2000). TCC presents as non-muscle invasive disease (superficial), i.e. (stage

Tis, Ta, T1) in nearly 80% of patients, and as muscle invasive (stage T2) or
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extravesical bladder invasive (stage T3-4) in the remaining 20% (Kirkali et al.,
2005; Said and Theodorescu, 2009). Approximately 80% of patients with
superficial transitional cell malignancy survive the disease for at least five years
after diagnosis, however, with invasive tumours, the overall survival rate is
approximately 50% even when aggressive multimodal treatments are combined
(Crawford et al., 1991; de Wit, 2003). The verities of health problems associated
with the bladder highlights the urgent need to expand bladder health-related
research and to develop better management, and treatment of bladder

diseases.

Fat

Tis
Ta Muscle
T1
Connective tissue
T2 Urothelium

Figure 1-1: Stages of Urinary Bladder Cancer. Tis: Carcinoma in situ, Ta:
cancer is just in the innermost layer of the bladder lining, T1: cancer limited to
lamina propria, T2: cancer invades the muscle, T3: cancer has grown through
the muscle into the fat layer, T4: cancer has spread outside the bladder.
Modified from (Bladder cancer stage and grade, 2013)

Currently, using gastrointestinal segments of the patient’s own intestine, also
termed Enterocystoplasty is the most commonly performed procedure for
bladder replacement or repair (Bolland and Southgate, 2008). However,
because the bladder and intestine have different functions, this procedure has
been associated with multiple complications such as infection, stone formation,
metabolic disturbances, and malignancy (Atala et al., 1993; Ali-El-Dein et al.,
2002). Therefore, new regenerative methods and also new models (human
specific tools that accurately reflect normal physiology) to study disease

initiation and progression are required.
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1.2 Embryology of the lower urinary tract

To better understand normal and pathologic function of the lower urinary tract it
is important to understand its embryology. In human development, the
blastocyst, a structure containing an inner cell mass (ICM) and formed five days
after fertilisation, gives rise to all three germ layers of the embryo (Figure 1-2).
By the second week of gestation, the ectoderm and the endoderm are
developed from the ICM and by week three, a third layer called mesoderm
develops in between the previous two layers (Sadler, 1985). It is from the

mesoderm and endoderm germ layers that the bladder develops.

Ectoderm

Amniotic cavity
Inner cell mass

-
="
e

e o L -

) ¢
.

Endoderm

Day 5 Week 2 Week 3

Figure 1-2: Schematic diagram showing the development of the germ layers. By
the second week of gestation the inner cell mass differentiates to form two cell
layers: ectoderm (green) and endoderm (red). During the 3rd week of gestation,
a third layer, mesoderm (blue) develops in between the ectoderm and
endoderm.

3.1.1 Development of the bladder

The cloacal membrane is formed at the caudal end of the embryo, differential
growth of the mesenchyme near the cloacal membrane leads to the generation
of the cloaca, which is a chamber formed by folding the caudal end of the
embryo onto itself. Between the 4" and the 7™ week of gestation, the urorectal

septum grows caudally dividing the cloacal membrane into the urogenital
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membrane and the anal membrane, and the cloaca into the urogenital sinus
and the rectum. From this point the urogenital sinus can be divided on
morphological basis into three sections. The first and largest section will form
the urinary bladder. The second and pelvic section will form the prostatic and
membranous urethra in males and the third section will form the urethra and the
external genitalia (Figure 1-3) (Stephens, 1963; Schick, 2008). The
mesonephric duct develops from the mesoderm adjacent to the coelom, called
the primitive peritoneum. Once the mesonephric duct extends caudally to reach
the urogenital sinus, a diverticulum grows cranially from the mesonephric duct
forming the ureteric bud. The excretory duct is formed from stretching the
mesonephric duct and merge together to form the primitive trigone. However, it
has been suggested that the trigone may be formed through vitamin A-mediated
apoptosis of the common nephric duct rather than fusion of the mesonephric
ducts but (Batourina et al., 2005; Viana et al., 2007) other reports also
suggested the endodermal origin of the trigone rather than the mesodermal
origin (Oswald et al., 2006; Tanaka et al., 2010).
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Figure 1-3: Schematic diagram showing the development of the bladder. During
gestational week 4, the urorectal septum divides the cloaca into the urogenital
sinus and the rectum. During gestational week 7, the urogenital sinus can be
further subdivided into three sections. The first and largest section will form the
urinary bladder. The second and pelvic section will form the prostatic and
membranous urethra in males and the third section will form the urethra and the
external genitalia.

Around the 6™ week of gestation, the urogenital sinus expands cranially to form
the primitive bladder and caudally to form the future prostate, urethra, and
external genitalia. At this stage, the bladder wall is composed primarily of
connective tissue. However, by the 17" week of gestation, the bladder has
three muscle layers: inner and outer longitudinal layers, and a middle circular

layer. The urothelium also undergoes extensive development during this time.
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The urothelium of the bladder wall, excluding the trigone and the urethra is
thought to be derived from the endodermal layer, while the urothelium of the
renal pelvis, ureter, and trigone region of the bladder (the area of the bladder
that forms a triangle between the insertion of the two ureters and the point
where the urethra begins) is derived from the mesodermal layer. However,
histologically, the urothelium derived from mesoderm is indistinguishable from
that derived from endoderm. In addition, no significant cellular, structural and
functional differences are found among the urothelial cells of different regions of
the urinary tract (Staack et al., 2005). The urothelium differentiates gradually
starting from a simple cuboidal epithelium with smooth luminal surface and
continues to end with a stratified transitional epithelium with asymmetric unit
membrane plaques and mature fusiform vesicles (Staack et al., 2005; Ersoy et
al., 2006).

3.1.2 Anatomy of the post-natal human bladder

The lower urinary tract (LUT) consists of two ureters, the bladder, and the
urethra and is responsible for the storage and evacuation of the urine. Urine
comes from the kidneys through two ureters which measure from 25 to 30 cm in
length and have a tubular structure that begin at the renal pelvis, pierce the
posterior wall of the bladder, and run indirectly through it for about 2 cm at the
level of the vesico—ureteral junction. Crossing the bladder wall obliquely is
believed to work as a valve mechanism, and prevents the ureteric reflux during
increases in bladder pressure. The wall of the ureter has two distinct layers of
smooth muscle: an inner, longitudinal and an outer, circular layer. The bladder
is a balloon-like organ that stores and expels urine. The normal capacity of the
bladder is about 400ml of urine. When the bladder is filled, it sends a signal
through the nerves to the brain that the bladder is getting full. When the signal
comes back from the brain to void, the detrusor muscle in the bladder contracts
and the sphincter relaxes to push the urine through the urethra and out of the
body. From an inside view, three distinct orifices in the bladder wall that delimit
the trigonal region of the bladder can be observed: two ureteral orifices and the
internal urethral orifice (Lang et al., 2006; Drake, 2007; Clare J. Fowler, 2008).
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I. The detrusor muscle

Functionally, the bladder has a complex imbrication of smooth muscle fibres for
efficient bladder emptying and elasticity that permits low-pressure urine storage.
Anatomically, the wall of the bladder consists of three smooth muscular layers
called the detrusor muscle. The lumen of the bladder is covered by a layer of
transitional epithelium, called the urothelium. Deep to this, a thick layer of
connective tissue traversed by numerous capillaries, lymph vessels, and nerves
called lamina propria lies between the urothelium and the detrusor muscle. This
layer provides the bladder with a highly variable shape and allows it to expand

and collapse during filling and emptying (Haab F, 2001; Schick, 2008).

[I.  The urothelium

The majority of the urinary tract, including the renal pelvis, ureters, bladder, and
proximal urethra is lined by transitional epithelium that occurs nowhere else in
the body, also known as “Urothelium”. The urothelium consists of a basal,
intermediate, and a superficial cell layer (Lewis, 2000). Although similar to
epithelial cells in other type of tissues, the urothelium has unique properties. In
addition to its role as a highly effective barrier between the urine and the
underlying connective tissue, the urothelium modulates the movement of ions,
solutes, and water across the mucosal surface of the bladder, and protects the
underlying tissue from pathogens (Hicks, 1975; Marceau, 1990; Limas, 1993;
Baskin et al., 1997; Apodaca, 2004). Furthermore, it has been reported that the
smooth muscle layers under the urothelium need an epithelial signal to

differentiate from the mesenchyme (Baskin et al., 1996; Cao et al., 2008).

3.1.3 Urothelial histology

Typically, the urothelium is composed of three cell layers: basal, intermediate,
and umbrella superficial cell layer (Figure 1-4) (Lewis, 2000; Apodaca, 2004).
The basal layer is found immediately above the basement membrane and
consists of a single layer of small (with diameters of ~10um) and polygonal
cells. The intermediate cells are pyriform (10-25 ym in diameter) and can form
numerous cell layers. The luminal surface of the bladder is lined by a single
layer of cuboidal, large (25-250 uym in diameter), occasionally multi-nucleated,

and terminally differentiated cells (known as umbrella or superficial cells) with
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distinct apical and basolateral membrane domains demarcated by tight
junctions. The morphology and size of these cells are changed according to the
filling condition of the bladder. In empty bladders, umbrella cells are roughly
cuboidal, whilst in filled bladders, these cells become stretched (Truschel et al.,
2002; Acharya et al., 2004; Varley et al., 2006; Khandelwal et al., 2009).

The scalloped appearance of the apical surface of umbrella cells which
comprises of raised hinges (also called micro-plicae) and intervening regions
called plagues are considered one of the most identifiable features of umbrella
cells (Hicks, 1965; Kachar et al., 1999). Urothelial plaques provide the
urothelium with a very high transepithelial electrical resistance making the
urothelium a very constant permeability barrier with inherent flexibility to
accommodate significant changes in surface area (Lewis and de Moura, 1982;
Wu et al., 2009; Ho et al., 2012). In the plaque regions, the luminal leaflet of the
plasma membrane is twice as thick as the cytoplasmic leaflet, forming an
asymmetric unit membrane (AUM) (Porter et al., 1967; Romih et al., 2005).
These AUM plaques are formed mainly by the interactions between a family of
transmembrane proteins called uroplakins (UPs) (Wu et al., 1990; Wu and Sun,
1993; Southgate et al., 1994; Wu et al., 1994; Southgate et al., 1999a; Truschel
et al., 1999).

The intermediate cell layer exists directly under the umbrella cell layer and
comprises of variable cell layers of pear-shaped cells. These cells are
connected to each other, to the upper layer, and to the basal cell layer by
desmosomes (Hicks, 1975; Jost et al., 1989). Notably, the intermediate cells
just below the superficial cells are partially differentiated, can also express UPs
and have the ability to rapidly differentiate in case of the loss of the superficial
cells (Martin, 1972; Hicks, 1975). The basal cell layer includes a single layer of
mononucleate cells connected to a continuous basement membrane by
hemidesmosomes (Southgate et al., 1994; Jones, 2001; Southgate et al., 2007;
Khandelwal et al., 2009; Wu et al., 2009)

24



Renal pelvis

® PY °® ® N ———> Umbrellacells

Urotheliu

® | — > Intermediate cells

. L o
[ ua —> Basalcells
Q T Basement membrane

— Blood vessels
Myofibroblast

. ° s ° o\
° . Nerves

-]

Ureter €«—

% S iy
A e SO, e — 5% —> Det
mw_@ et = etrusor

Bladder s &

Figure 1-4: Diagram showing that the urothelium expands to cover the renal
pelvis, ureters, and bladder (red). Bladder urothelium: A three-layered
epithelium is apparent, consisting of large, binucleated superficial cells overlying
an intermediate and a basal cell layer. This is separated by a basement
membrane from a suburothelial layer that contains blood vessels, nerves and
myofibroblasts.

3.1.4 The urothelium differentiation

The urothelium expresses various types of cytokeratins (CKs) (Moll et al., 1988;
Schaafsma et al., 1989; Southgate et al., 1999b; Romih et al., 2005).
Immunohistochemical analysis of normal human urothelium has shown that
cytokeratin 13 is expressed in both intermediate and basal layers, whereas
cytokeratin 5, 10, and 17 are only expressed by the basal cells (Figure 1-5). All
urothelial layers express cytokeratin 7, 8, 18, and 19, whereas cytokeratin 20 is
restricted to the fully differentiated umbrella cells (Moll et al., 1988; Southgate et
al., 1999a; Southgate et al., 1999b; Romih et al., 2005; Varley et al., 2006;
Southgate et al., 2007).
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Figure 1-5: Distribution of various types of CKs in the urothelium layers

Another panel of urothelial differentiation markers are the UPs, a group of
integral transmembrane proteins that design AUM plaques. As mentioned
before, five types of UPs (UPla, UPIb, UPII, UPIlla, and UPIlIb) have been
described and their expression provides excellent markers for studying the
urothelial differentiation as they are only expressed in urothelial cells during
advanced stages of differentiation (Wu et al., 1994; Yu et al., 1994; Olsburgh et
al., 2003; Romih et al., 2005; Wu et al., 2009).

The UP proteins have many functions, contributing towards the barrier and
permeability to enable solute and water to flow across the apical membrane (Hu
et al., 2002). UPs are also targets of bacterial and fungal toxins (Zhou et al.,
2001). In normal human urothelium UPla, UPII, UPIllla, and UPIIIb are only
expressed in umbrella cells (Figure 1-6); while UPIb is found in intermediate
cells suggesting that UPIb expression might be correlated with less
differentiation (Lobban et al., 1998; Olsburgh et al., 2003).
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Figure 1-6: Distribution of selected uroplakins in the normal urothelium.

The paracellular barrier function of the urothelium is controlled by intercellular
tight junctions located between juxtaposed umbrella cells. These tight junctions
consist of cytoplasmic plague proteins, the zonular occludens (ZO), that
connect the tight junction to the cytoskeleton and integral transmembrane
proteins, such as occludins, junctional adhesion molecule (JAM) and claudins
(Varley and Southgate, 2008).

Claudins are a group of 24 proteins, which regulate the paracellular transport
and are involved in the structure of the tight junctions of all epithelial cells
(Kiuchi-Saishin et al., 2002). In 2006, Varley et al (Varley et al., 2006) examined
the expression of claudins in human urothelium using probes for claudin-1 to -
10 and found that human ureteric urothelium expressed claudin-3, 4, 5, and 7,
whilst the basolateral surface of the umbrella cells layer expressed claudin-5.
Also, claudin-4 was distributed at the intercellular borders of all urothelial cell

layers (Figure 1-7).
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Figure 1-7: Distribution of various types of claudins in the urothelium layers.

1.3 Urinary bladder replacement and tissue engineering strategies

Diseased urinary tract may require either replacement or augmentation, usually
with bowel segments as the current mainstay of treatment. Although this
procedure can improve bladder capacity and continence, incorporating bowel
into the urinary tract can be associated with several relatively common and
potentially serious complications such as low grade bacteriuria, stone formation,
and malignant transformation (Bolland and Southgate, 2008) as the intestinal

lining is not adapted to prolonged contact with urine (Turner et al., 2011).

Experimental animal models have shown that even augmentation with de-
epithelialised bowel segments is associated with fibrosis and shrinkage (Bolland
and Southgate, 2008). These observations suggest that the ideal material would
be the use of urothelium and the compliance afforded by its associated stroma
containing smooth muscle. The use of native cells has been explored in a
number of experimental approaches involving ex vivo expansion of autologous
cells that would avoid rejection. The main strategies include engraftment of
urothelium onto de-epithelialised bowel (composite enterocystoplasty) or
engraftment of both urothelial and smooth muscle stromal cells into acellular

biomaterials such as for reconstruction (Turner et al., 2011).
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3.1.5 Composite enterocystoplasty:

Composite enterocystoplasty is a cell engineering approach in which the bowel
epithelium is replaced with an in vitro -generated autologous urothelium
therefore enabling utilisation of the available vascularised and compliant smooth
muscle of the bowel. However, preclinical models of composite
enterocystoplasty show that this technique can be compromised by graft

contraction and poor urothelial coverage (Fraser et al., 2004).
3.1.6 Biomaterials and Cell-seeded constructs

Biomaterials can be either natural or synthetic (Grise, 2002). The outcomes of
the incorporation of synthetic materials such as polyglycolic acid (PGA),
polyethylene and polyvinyl into the bladder have been unfavorable due to
biomechanical failure or biological incompatibility resulting in recurrent infection,
scar generation and urinary stone formation (Elbahnasy et al., 1998). Natural
tissue matrices derived from various types of tissue, including small intestinal
submucosa (SIS), porcine dermis (Kimuli et al., 2004), and the urinary bladder
itself have been developed and investigated in both in vitro and in vivo settings.
In animal models, using SIS bioscaffold for bladder regeneration resulted in
rapid cellular infiltration with the resultant tissue similar to that of the native
organ. However, the level of the bladder damage appears to affect the success
of bladder reconstruction using SIS (Zhang et al., 2006). Bladder acellular matrix
grafts (BAMG) are naturally derived from dissected split thickness bladders and
also from full-thickness bladders. Previous studies using BAMG in animal
bladder studies have demonstrated their bladder regeneration potential.
However, the use of this matrix has been associated with many problems
including poor vascularisation, graft shrinkage and incomplete or disorganised
smooth muscle development (Bolland and Southgate, 2008). In 2006, Atala and
colleagues reported the first human clinical trial with engineered bladders, using
autologous cells onto biomaterials (Atala et al., 2006). However, these
strategies rely on ex vivo cell culture to generate sufficient quantities and quality
of autologous cells and patients with tissue loss and end-organ cellular damage
are not ideal candidates. Although even small biopsies of normal urothelium can
be readily expanded before undergoing senescence, this is significantly

restricted in diseased tissue (Subramaniam et al., 2011). Moreover, the use of
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this material may be inherently compromised by the disease itself and in the
case of malignancy the use of macroscopically normal urothelium would be of
concern due to genetically primed field-characterisation affecting the entire
bladder (Jones et al., 2005). Given the limitations described, increasing
attention has focussed on the use of stem cells that may provide a more readily
expandable source of cells with their ability for sustained self-renewal (Becker
and Jakse, 2007).

1.4 Stem cells and urinary bladder tissue regeneration

3.1.7 Stem cells

The ability to continually self-renew through mitosis and to specialize to a
certain tissue makes stem cells unique. Based on their ability to grow and their
potential to generate differentiated cell types, stem cells can be classified as: (a)
totipotent stem cells, which exist at the earliest stage of organism development
(fertilized egg, zygote and the first 2, 4, 8, 16 blastomeres from the early
embryo), and are capable to form all three major germ layers required for
embryo development (ectoderm, endoderm, and mesoderm) as well as the
extra-embryonic tissues, such as the placenta, (b) pluripotent stem cells derived
from the ICM of the blastocyst and have the potential to generate any of the
three germ layers, but they are unable to produce extra-embryonic tissues,(c)
multipotent stem cells are observed later in development and have the ability to
form a small number of tissues, multipotent stem cells are necessary for tissue
renewal and believed to exist in all adult tissue and (d) unipotent stem cells
which reside in adult organisms and give rise to just one cell type under normal
conditions (Wagers and Weissman, 2004). Based on their source of origin, stem

cells are also categorized into embryonic or adult stem cells.

1.4.1.1 Stem cells derived from early embryos

Embryonic stem (ES) cell research began with the study of spontaneous
tumours that occur in the testes or ovaries of certain strains of mice and arise
from the germ cells, known as teratocarcinomas. Histological analyses revealed
a mixture of tissues derived from the three embryo germ layers such as bone,
skin, and muscles. In the 1970s, Stevens found that embryos from the

blastocyst grafted into ectopic sites in host mice could also form spontaneous
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teratocarcinomas (Stevens, 1970). These spontaneous tumours contain many
kinds of embryonic, immature, and adult tissues. They realized that the small
population of undifferentiated cells in the tumour mass termed embryonal
carcinoma (EC) cells were mainly responsible for growth of teratocarcinomas.
These cells are pluripotent stem cells that can proliferate indefinitely and
differentiate in culture into derivatives of the three germ layers even after serial
transplantation (Stevens, 1970; Martin, 1981). Although EC cells could
contribute to the development of completely normal adult mice when introduced
into blastocyst-stage embryos (Brinster, 1974; Papaioannou et al., 1975), these
cells maintained a tumour generating phenotype and showed phenotypic and
chromosomal aberrations (Solter et al., 1970). A need for non-cancer derived,
pluripotent cells that could be used for developmental studies and clinical
applications was necessary. In 1981, pluripotent cells were successfully isolated
directly from the ICM of pre-implantation mouse embryos by two independent
laboratories. These cells were termed mouse embryonic stem (ES) cells to
distinguish their origin from EC cells derived from teratocarcinomas (Evans and
Kaufman, 1981; Martin, 1981).

Like mouse ES cells, human ES cell lines were first isolated from the ICM of
pre-implantation embryos in 1998 (Thomson and Marshall, 1998). Significantly,
in the unmanipulated embryo, cells from the ICM function as precursor cells, but
not as stem cells as they have limited life-spans before they become committed
to form the primary germinal layers. However, these cells can maintain their
features and self-renew as undifferentiated cells when maintained in optimal
conditions (Martin, 1981; Thomson and Marshall, 1998).

Human ES cell lines have also been derived from parthenogenetic embryos (Lin
et al., 2007), single- cell blastomeres (Chung et al., 2006) earlier stage embryos
(morula) (Strelchenko et al., 2004) and later blastocyst embryos (Stojkovic et
al., 2004). The ability of transplanted gonadal ridges to form teratocarcinomas
suggested that ES—like cells could be isolated from primordial germ cells before
they differentiated to specialized gametes. Subsequently, embryonic germ (EG)
cell lines were derived from murine (Matsui et al., 1992; Resnick et al., 1992)
and human (Shambilott et al., 1998) primordial germ cells prior to their migration

in gastrulating embryos or following their arrival in the genital ridges. Like ES
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cells, these pluripotent cell lines have the ability to differentiate in vitro and in
vitro (Rohwedel et al., 1996), as well as the ability to contribute to the germ line
of chimeric mice (Stewart et al., 1994). These observations indicate that the
germline lineage maintains the capacity to establish pluripotent cells. Indeed,
pluripotent stem cells were isolated from spermatogonial cells of newborn and
adult mice. Analysis of mouse spermatogonial stem cells demonstrated that
they have the morphology of ES-like cells, express the pluripotency marker
genes, induce mature teratomas after transplantation into nude mice and form

germline chimeras in vivo (Kanatsu-Shinohara et al., 2004; Guan et al., 2006).

1.4.1.2 Adult stem cells

Adult stem cells (or somatic stem cells) are undifferentiated cells that are found
in a differentiated tissue. Adult stem cells are mostly multipotent cells, and tend
to be tissue specific. Their primary function is to maintain and repair the organ
system in which they exist because they are able to renew themselves during
the lifetime of the organism and to generate differentiated daughter cells. Of
these, the most studied are haematopoietic stem cells isolated from bone
marrow (de Haan, 2002), and mesenchymal stem cells isolated from bone
marrow stroma (Kim and Cho, 2013). Within the last decade many other types
of tissue-specific stem cells have been identified and studied in detail such as
retina (Tropepe et al., 2000), brain (Okano, 2002), skin (Watt, 2001), pancreas
(Ramiya et al., 2000), and prostate (Bhatt et al., 2003; Richardson et al., 2004).

Adult stem cells can be found in a specific microenvironment in each organ
known as the “niche” which has been proposed to regulate their behaviour.
Unfortunately, only low numbers of adult stem cells can be found in each tissue
and once removed from their normal cellular environment they lose their
capacity to divide continually (Yoshida et al., 2007); the reason why propagation
of adult stem cells in culture is still challenging. Typically, adult stem cells
generate intermediate cell types (precursor or progenitor cells) which in turn
divide and give rise to fully differentiated cells (Marcus and Woodbury, 2008). In
most tissues, adult stem cells may remain in a metabolically quiescent state for
long periods of time before they are triggered by tissue injury. However, even in
normal situations they constantly generate new cells to maintain tissues.

Isolation and characterization of tissue-specific stem cells has been possible
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through the use of a variety of methods to track cell fate in vivo or in vitro. Of
these, the most fundamental tools are fluorescence-activated cell sorting
(FACS) and monoclonal antibody production (Spangrude et al., 1988; Baum et
al., 1992), while methods of in vivo lineage tracing include the incorporation of
DNA nucleoside analogs and cellular marking through genetic reporter

strategies.

The classification into embryonic or adult stem cells is very important due to the
ethical issues associated with the destruction of an embryo to harvest cells and
to use in research. Although adult stem cells are identified to be restricted in
their potency by the tissue from which they arose, there is a hot debate in the
literature about this idea. During the last decade, it has been suggested that
these cells are inherently plastic, purporting that under certain conditions, adult
stem cells may be much more flexible than previously envisioned and they
could cross boundaries to differentiate into cells of unrelated tissue. This
phenomenon is referred to as trans-differentiation and has been reported for a
variety of cell types. For example, neural stem cells isolated from cloned mice
show the ability to differentiate into all cell types of haematopoietic lineage
(Bjornson et al., 1999), and haematopoietic stem cells can differentiate into liver
cells (Petersen et al., 1999). Haematopoietic stem cells and mesenchymal stem
cells have also been reported to possess the ability to give rise to non-
haematopoietic cells such as muscle, liver, and lung (Quesenberry et al., 2010).
More recently, other studies have suggested that this process is a result of
fusion between implanted cells and host somatic/precursor cells instead of
actual trans-differentiation. Hence, the exact molecular mechanisms
responsible for this phenomenon are poorly understood (Nygren et al., 2004,
Gruh and Martin, 2009; Jopling et al., 2011; Peran et al., 2011).

Although adult stem cells do not require the destruction of an embryo and can
be used in autologous therapies, there are challenges involved in employing
them in a wider field. Principally, these cells are usually present in a very limited
numbers within the adult organs and isolating and purifying them has also
proven to be quite challenging (Mimeault and Batra, 2008). In addition, great
difficulty has been encountered in maintaining and expanding long term

cultures.
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1.4.1.3 Bladder urothelial stem cell

Urology is lagging behind other fields in terms of stem cell research. While the
characteristics and location of stem cells in other organs and tissues have been
well known for years, and those cells have been cultured, expanded, and even
differentiated, the isolation, morphological and biochemical characterization of
urinary tract stem cells has not yet been possible. In the case of the urothelium,
this may be due to the fact that it is a poorly understood epithelium: very few
biochemical markers of differentiation have been found, and the growth
regulation mechanisms are not known. It is only recently that research has
explored the possible applications of stem cells in the urology field and a
number of studies now support the existence of urothelial stem cells (Pastor-
Navarro et al., 2010).

The mature urothelium renews itself very slowly with turnover interval being
estimated as up to 12-24 weeks (Jost, 1989; Khandelwal et al., 2009). However,
the urothelium shows remarkable ability to proliferate and regenerate itself
following injury or pathological damage resulting in its very rapid and full
restoration (Kreft et al., 2005; Mysorekar et al., 2009). Furthermore, several
studies report the plasticity of urothelial cells to undergo different patterns of
differentiation (Kvist et al., 1992; Staack et al., 2005). Overall, the presence of
resident committed urothelial progenitor or stem cell populations has been

suggested.

Epithelial stem cells have been found to reside in a specialized and well-
protected geographical niche that may reduce their exposure to trauma. For
example, corneal stem cells are found to reside in the basal layer of the limbus,
sequestered in the peripheral cornea (Cotsarelis et al., 1989; Pellegrini et al.,
2001; Majo et al., 2008). In the epidermis, stem cells are found at the bottom of
the hair follicles in area called 'the bulge’ (Oshima et al., 2001; Morris et al.,
2004). However, in the case of the urothelium, the exact location of urothelial

stem cells has not been identified.

A patrticularly powerful method to identify the location of stem cells takes
advantage of their slow-cycling characteristics (Potten and Morris, 1988;

Terskikh et al., 2012). Once stem cells are exposed to labelled nucleosides,
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such as 3H-thymidine or 5-bromo-2'-deoxyuridine (BrdU), they retain that label
for a long period of time, while the more rapidly-cycling cells incorporate the
label faster, mature, and die. Thus, these slowly cycling cells known as label
retaining cells (LRC) are thought to represent the stem cell subpopulation.
Using this technique, stem cells have been identified in the bulge region of the
hair follicle (Watt et al., 2006), the limbus of the cornea, the endometrium of the
uterus, the crypts of intestine, and the proximal region of prostatic ducts
(Bickenbach, 1981; Chan and Gargett, 2006). Recently, Kurzrock et al have
adapted this technique and pulse-chased labelled rats with BrdU (Kurzrock et
al., 2008). One year after the administration of BrdU, 9% of bladder urothelium
basal cells retained the label. Further analyses of this bladder LRC population
indicated that these cells are characterized by small size (5-10 uM), low
granularity, high B4 integrin expression and superior clonogenic and
proliferative ability compared with unlabelled epithelial cells. Furthermore, these
cells specifically expressed cytokeratin 5 and 6, which are basal cell-specific
markers in the lung, prostate, and other epithelia cells. However, the ability of

these LRC to differentiate into urothelial cells remains to be proven.

Consistent with this result, Gaisa et al. used naturally occurring mitochrondrial
DNA mutations as markers of clonal expansion in an attempt to identify the
location of the urothelial stem cell niche in humans. In this study, the authors
identified patches of intermediate and umbrella cells that had been extended
from monoclonal proliferative units originated in basal cells. However,
superficial cells could not be identified in all monoclonal proliferative units
(Gaisa et al., 2011). Moreover, in vivo lineage tracing studies in mice suggested
that basal cells of the urothelium may contain stem cells that can give rise to all
other layers (Shin et al., 2011). These data from rodents and humans support
the urothelial stem cell to localise within the basal layer. However, controversial
data have recently been obtained using LRC method with a different synthetic
nucleoside-5-ethynyl-2- deoxyuridine (EdU) to identify potential stem cells in
neonatal rat bladders. In this study, the distribution of the LRC in the urothelium
was mostly random with no clear preferential labelling of basal cells (Zhang et
al., 2012). One possible explanation could be the differences in labelling
efficiency and chase period. Also the identification of BrdU — label retaining cells
is technically challenging and thus prone to error. In addition, finding that
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umbrella cells are capable to divide suggested that they may represent another
pool of stem cells in the urothelium (English et al., 1987; Evans and Chandler,
1987).

One such study by Signoretti et al. used the p63-/- mouse as a tool to study
urothelial development. p63, also known as transformation-related protein 63 is
a well-documented marker of basal and intermediate cell layers of bladder
urothelium (Yang et al., 1998). In this study, bladders of p63 deficient chimera
only contained umbrella cells suggesting that functional p63 basal cells are not
required for the development of umbrella cells (Signoretti et al., 2005). Further
support to the hypothesis that basal cells are not the only origin of urothelial
stem cells that can give rise to mature urothelial cells came from another study
which reported the development of abnormal urothelium containing only
umbrella cells in adult bladders of p63-null mice. Notably, these cells were

positive for uroplakin Il expression (Karni-Schmidt et al., 2011; Ho et al., 2012).

An original study by Nguyen et al. (Nguyen et al., 2007) demonstrated that cells
harvested from rat caudal bladder segments have significantly higher colony-
forming efficiency than those from cephalic bladder segments, suggesting that
more clonogenic cells exist in the lower bladder. On the other hand, Ki-67
staining showed no geographical difference in cell proliferation under normal
homeostatic in vivo conditions. Although these data demonstrated that
progenitor cells distribution pertains to a region, the authors argued that this
does not necessarily reflect a stem cell niche and the proliferative capacity
presented in vitro might be caused by transit amplifying population, which is still

undefined in the urothelium.

Further evidence for the existence of urothelial stem cells comes from in vivo
studies that have characterized a population of spheroids obtained from human
bladder specimens with self-replicative potential, termed bladder spheres.
Spheroids were mechanically dissociated into single cells and re-plated to
produce secondary cultures. This procedure was repeated every week for 2
months and most of the cultures maintained a good proliferation rate implying
that they might represent a stem cell population in the bladder (Fierabracci et
al., 2007). Zhang et al have recently described the isolation of a progenitor cell

population (About 0.2%) from urine specimens, termed urine-derived progenitor
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cells (UPCs) (Zhang et al., 2008). These UPCs can be induced to undergo
multilineage differentiation into urothelial, smooth muscle and even endothelial
and interstitial cells. In addition, these UPCs express stem/progenitor cell
markers, such as c-Kit (interstitial stem cell marker), and SSEA4 an ES cell
marker. In vitro, UPCs gave rise to multiple lineages that express cell markers
of urothelium, endothelial, smooth muscle, and interstitial. These UPCs
expressed CD44 (a marker for cells developed from the basal layer) and CK13
(an intracellular protein marker for basal cell) suggesting that UPCs are most
likely derived from basal cells of the urothelium. In addition, karyotype analysis
was performed to test the chromosomal stability of urine derived cells after
serial subcultures and all passages exhibited a normal diploid complement of

autosomes. However, the exact source of these cells is still undetermined.

3.1.8 Tissue engineering of urinary bladder using stem cells

Over the past decade, an increased number of studies have investigated the
utility of stem cells such as MSCs, ES cells, EG cells, and amniotic fluid-derived
stem cells in the field of regenerative urology (Yu and Estrada, 2010). In
addition, several differentiation protocols have been utilized to direct stem cell
differentiation to bladder tissue. However, the most powerful described method
utilises tissue recombinant xenografts of embryonic bladder mesenchyme
(EBLM) (Baskin et al., 1996; Oottamasathien et al., 2006; Oottamasathien et al.,
2007). Interesting results have been achieved using ES cells. Oottamasathien
et al, showed that mouse ES cells can differentiate to bladder cells when
associated with embryonic rat bladder mesenchyme and implanted under the
kidney capsule for up to 42 days. The endodermal markers of Foxal and
Foxa2, but not uroplakin were first detected at day 7 after grafting. By 42 days,
optimized number of cells resulted in pure urothelial cells with mature bladder
tissues derived from the ES cells that was evident by hematoxylin and eosin
staining. Maturation was evident based on expression of uroplakin, a selective
marker for urothelial cell differentiation and the basal cell marker p63, whereas
smooth muscle a-actin (SMA); was used as a marker to identify smooth muscle
cells (SMCs) (Oottamasathien et al., 2006; Oottamasathien et al., 2007).
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However, there are ethical and immunological debates about using this
procedure in humans. In addition, the differences observed between murine ES
cells and human ES cells regarding molecular and developmental properties
may represent an obstacle for direct translation to humans. Therefore,
increasing attention has been paid to the use of adult stem cells which are less
controversial, but equally promising cells in particular MSCs due to their
versatility and their ability to differentiate into wide range of adult tissue cell
types (Caplan, 2007; da Silva Meirelles et al., 2008), including muscle (Luttun et
al., 2006; Crisan et al., 2008), liver (Mimeault and Batra, 2008), lungs (Nolen-
Walston et al., 2008), neuronal (Duan et al., 2007) and gut tissue (Jiang et al.,
2002). Utilizing the same model, Anumanthan and his colleagues used a
recombinant xenograft of MSCs with EBLM to differentiate mouse MSCs toward
mature bladder cells. Histological examination showed a bladder tissue
structure with expression of uroplakin, SMA and desmin (Oottamasathien et al.,
2007). MSCs and human EG cell-derived cells seeded on porcine small
intestinal submucosa grafts were also found to enhance bladder reconstitution
in animal models. Three months after augmentation, only the stem cell seeded
biohybrid displayed normal bladder structure with both urothelial and SMCs
exhibiting gene expression levels similar to those of sham-operated animals
(Chung et al., 2005; Frimberger et al., 2005). However, cytotoxic effects of the
commercially available small intestinal submucosa (SIS) on urothelial cells have
been reported (Feil et al., 2006).

Tian et al. reported that bone marrow mesenchymal stem cells (BMSCs) can be
differentiated into urothelial cells and SMCs in vitro and in vivo when co-cultured
with bladder cells or conditioned media derived from bladder cell culture (Tian et
al., 2010b). Later, the same group published that BMSCs could be induced to
differentiate into bladder SMCs and urothelial cells when seeded on a highly
porous PLLA scaffold and treated with several key growth factors including
platelet-derived growth factor BB (PDGF-BB) and transforming growth factor (31
(TGF-B1) (Tian et al., 2010a; Petrovic et al., 2011). However the clinical utility of
BMSC is currently limited mainly because of their extremely low frequency, the
intricacy and pain of the process, and difficulty in maintaining them in culture
(Arai et al., 2002).
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Another source of autologous adult stem cells has been obtained from stromal
elements of adipose tissue (referred to as adipose-derived stem cells ,ADSC)

and have been successfully used to tissue engineer the smooth muscle of the
urinary bladder in rat (Zuk et al., 2001; Jack et al., 2009).

In an attempt to overcome problems concerning appropriate cells sources for
tissue regeneration of the bladder, Drewa at al showed that stem cells from rat
hair follicle seeded on a bladder acellular matrix (BAM) scaffold and grafted into
a surgically created defect within the anterior bladder wall were able to
reconstruct both the urothelial and the muscle layers into surgically created
defects. However, they did not demonstrate any uroplakin expression and the
urothelial cells showed incomplete differentiation with weak expression of CK7.
Most importantly, they couldn’t control the differentiation of the hair follicle stem
cells after transplantation. Muscle layers were thick in bladders reconstructed
with cell-seeded grafts and very thin in acellular grafts. Again, obtaining
sufficient cell numbers posed a major challenge regarding the use of these cells
(Drewa, 2008; Petrovic et al., 2011).

Recently, Zhang et al. isolated a subpopulation of cells with progenitor cell
characteristics from urine samples. These cells showed the ability to
differentiate in vitro into multiple lineages that expressed cell markers of
urothelial, endothelial, smooth muscle, and interstitial cells and maintained

normal karyotype even after several passages (Zhang et al., 2008).

Although many trials documented great therapeutic potential of adult stem cells,
experimental studies reported that adult stem cells are able to form other cell
types by fusion with them rather than trans-differentiation which might produce
cells with karyotypic abnormalities (Terada et al., 2002; Ying et al., 2002,
Sievert et al., 2007). Alternatively, pluripotent stem cells by their ability to
proliferate indefinitely and to differentiate into any of the cell types in the body

represent a serious alternative and major avenue in the regenerative medicine

An exciting and recent advancement in stem cell research involves that of viral
overexpression of specific transcriptional factors OCT4, SOX2, KLF4, and C-
MY C which can reprogram the differentiated cells back to pluripotency termed
induced pluripotent stem (iPS) cells (Takahashi and Yamanaka, 2006;
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Takahashi et al., 2007). These iPS cells exhibit embryonic stem cell
characteristics and can differentiate into all 3 embryonic germ layers. Disease-
specific and patient-specific iPS cells have also been generated, thus providing
a new method to evaluate potential therapeutics and to gain mechanistic insight
into a variety of diseases (Park et al., 2008). Because production of iPS cells
doesn’t involve the use of embryos or oocytes, they overcome the ethical
restrictions that clearly obstruct the isolation, study, and use of ES cells,
therefore they hold the general promise of ES cells, that is, pluripotency, and
thus the ability to form any desired tissue (Yu and Estrada, 2010; Robinton and
Daley, 2012). In this project, we aim to generate iPS cells from adult human
urinary tract cells by lentiviral transduction. Such cells have great application
potential for tissue engineering, understanding the mechanisms of bladder

disease and drug screening.

1.5 Pluripotent stem cell characteristics

Irrespective of the cell origin, all pluripotent stem cells have the same main
biological characteristics which considerably differ from those of normal somatic
cells: the ability to proliferate indefinitely and the ability to differentiate into

multiple somatic and germ cells in vitro and in vivo (Murry and Keller, 2008).

1.1.1 Pluripotent stem cells morphology and cell cycle

In culture, undifferentiated pluripotent stem cells grow in relatively flat, compact
colonies with defined edges containing cells with a high ratio of nucleus to
cytoplasm and prominent nucleoli (Thomson et al., 1995; Thomson and
Marshall, 1998). Currently, the majority of human ES cell lines are maintained
on a feeder layer of mouse embryonic fibroblasts (MEFs), in medium that lacks
serum but includes other exogenous peptide growth factors (Thomson and
Marshall, 1998). However, the use of feeder layers and animal serum products
can produce variable and heterogeneous results and precludes clinical
applications (Sakamoto et al., 2007). Great progress in the culture systems of
human ES cells has been recently achieved by Amit et al. who reported long-
term culture of human ES cells under serum-free conditions (Amit et al., 2000),
Richard el al. who replaced MEFs with human feeder layers (Richards et al.,

2002), and Xu et al. who reported the first attempt to produced feeder-free
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cultures of human ES cells using Matrigel, or laminin substrates in medium
conditioned by MEFs (Xu et al., 2001). In addition, iPS and ES cell lines have
been successfully established using a number of serum and feeder replacement
media formulations including KnockOut Serum replacement, defined serum-free
media (Cheng et al., 2004), and mTeSR as specific media which provides
serum-free and feeder-free conditions to culture human iPS and ES cells
(Ludwig et al., 2006). A very common method for monitoring ES cells culture is
visual observation. Observation of ES cell morphology may give an indication of
the state of differentiation in routine cultures (Thomson et al., 1995; Thomson
and Marshall, 1998). Despite limitations in terms of quantification and
sensitivity, this approach is one of the most effective and inexpensive means to
reveal any changes in the undifferentiated cells in culture (Schatten et al.,
2005). Pluripotent stem cells have rapid growth supported by brief G1 cell cycle
phase whilst cells remain in S-phase for most of the cell cycle (Becker et al.,
2006).

1.1.2 Pluripotent stem cells gene expression and epigenetics

All pluripotent stem cell lines share similar gene expression patterns, which
significantly distinguish them from other cells with lower developmental potency.
These cells express a panel of protein markers that has been commonly used
to characterize them in cultures such as stage-specific embryonic antigens 3
and 4 (SSEA-3 and SSEA-4), high molecular weight glycoproteins TRA-1-60
and TRA-1-81, and alkaline phosphatase (Draper et al., 2002; Henderson et al.,
2002). They also express a number of genes that have now been found to be
closely associated with the pluripotent state including Pous5F1/OCT3/4 (POU
domain, class 5, transcription factor 1/Octamer binding transcription factor 3/4),
SOX2, NANOG, teratocarcinoma-derived growth factor-1 (TDGF-1), DNMT3B,
and growth and differentiation factor 3 (GDF3), together with the lack of
differentiation markers. Furthermore, pluripotent stem cells have long telomeres
due to high telomerase activity, an enzyme associated with immortal cell lines
(Thomson et al., 1995; Thomson and Marshall, 1998; Adewumi et al., 2007).
Telomerase is a ribonucleoprotein responsible for the maintenance of
chromosome length by adding telomere repeats to chromosome ends. The high

telomerase activity expressed by the ES cells provides them with long
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replicative life span and long-term maintenance in culture and as the cell

differentiates the telomerase activity is reduced (Marion and Blasco, 2010).

The International Stem Cell Initiative has analyzed 59 human ES cell lines
obtained and maintained in 17 laboratories worldwide for expression of different
potential markers of the undifferentiated stem cells. They found that all of these
ES cell lines expressed a specific set of marker antigens and genes that can

generally be used to screen pluripotent stem cells (Adewumi et al., 2007).

Epigenetically, ES cells also have distinct chromatin signatures consisting of
bivalent domains. These regions harbour both a “repressive” and an “activating”
chromatin modification and function to silence developmental genes in ES cells
while keeping them poised for induction upon initiation of specific

developmental pathways (Bernstein et al., 2006).

1.1.3 Functional assays of pluripotency

[.  Invitro differentiation potential of pluripotent stem cells

Several tests have been developed to characterise pluripotent cell lines. The
pluripotency of ES cells in vitro can be evaluated by the ability of these cells to
generate embryoid bodies (EBs) comprising cells that represent the three germ
layers. When cultivated in suspension, both mouse and human ES cells form
multicellular aggregates which have been termed “embryoid bodies” (EBs) , and
upon further differentiation on adherent culture the EBs produce a wide range of
cell types derived from all three embryonic germ layers However, EBs do not
exactly simulate the structural design perceived in the embryo. Several studies
have routinely used this assay to test pluripotency in vitro (Martin, 1981,
Itskovitz-Eldor et al., 2000). Direct differentiation of ES cells to form the lineage
of interest can also be used to test their ability to generate cells that represent
each embryonic layer (Trounson, 2006). In these protocols, cells are transfected
with ubiquitously expressing transcription factors, co-cultured with cell types
capable of lineage induction or exposed to specific culture conditions and
selected growth factors to enhance the differentiation towards a specific

lineage.

42



II. Invivo differentiation potential of pluripotent stem cells

The most convincing proof for pluripotency can be achieved by demonstrating
the ability of stem cells to give rise to all three embryonic germ layers, including
germ cells, in chimeras formed by mixing ES cells with mouse blastomeres or
blastocysts (Nagy et al., 1993). However, because chimera formation is
unethical using human ES cells, this has only been successfully established
with mouse ES cells. For testing human ES cells, the most irrevocable test
available is to demonstrate their ability to produce benign teratomas containing
differentiated cells representing all three embryonic germ layers in
immunodeficient mice (Thomson and Marshall, 1998; Gertow et al., 2004).
Teratomas are generated by the introduction of the cells into immunodeficient
mice beneath the testis or kidney capsules (Thomson and Marshall, 1998),
intramuscularly (Tzukerman et al., 2003), subcutaneously (Levenberg et al.,
2002), or in the liver (Cooke et al., 2006).

1.6 Signalling pathways to maintain pluripotency

The first isolated mouse ES cells were cultured onto a feeder layer of mitotically
inactivated mouse primary embryonic fibroblasts using media conditioned by
teratocarcinoma cells supplemented with foetal bovine serum and exogenous
proteins. Until recently, this was the most effective system for derivation,
propagation, and expansion of ES cell lines of different species (Martin, 1981).
The feeder layer supports ES cell growth and prevents spontaneous
differentiation of ES cells during culture. In the absence of feeder layers,
conditioned medium (CM) collected from embryonic fibroblasts was found to
support undifferentiated mouse ES cell culture (Smith and Hooper, 1983). Smith
and Williams analysed the CM collected from embryonic fibroblasts and found
that the key factor to inhibit the differentiation was leukemia inhibitory factor
(LIF) (Smith et al., 1988; Williams et al., 1988). LIF enhanced the expression of
specific target genes important for sustaining the undifferentiated state of the
mouse ES cell by activating the Jak/Stat3 signalling pathways (Burdon et al.,
2002). Subsequently, other extrinsic factors involved in self-renewal and
pluripotency of ES cells have been detected. Animal sera such as foetal bovine

serum (FBS) provide all of these extrinsic factors, except LIF.
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The bone morphogenetic protein (BMP) signalling pathway was found to
cooperate with LIF to maintain self-renewal of mouse ES cells and activate
differentiation inhibitor genes in serum-free culture conditions (Ying et al.,

2003). More recently, a combination of LIF and small-molecule inhibitors of ERK
has been reported to repress the differentiation proteins and enhance the
proliferation of the ES cell propagation (Ying et al., 2008). Other factors such as
vitamin A (Chen and Khillan, 2010), threonine (Wang et al., 2009), and a
decreased oxidation state (Yanes et al., 2010) have also been reported to

maintain undifferentiated mouse ES cells.

Although human and mouse ES cells are similar with respect to their self-
renewal and differentiation capacity, growth factor requirements for maintaining
mouse ES cell culture were unable to support long-term self-renewal of human
ES cell lines (Bongso et al., 1994; Xu et al., 2002). For instance, human ES
cells do not require LIF signalling for their derivation or propagation. Indeed, the
LIF-JAK-STATS3 signalling is not active in human ES cells (Brandenberger et al.,
2004) but is essential for self-renewal of mouse ES cells. Further confirmation
of the fundamental differences between mouse and human ES cells comes
from studies by Xu et al. In this work, the authors found that BMP-4 signalling
pathways which have been shown to enhance the self-renewal of mouse ES
cells, could stimulate human ES cells to differentiate into trophoblast cells or

mesodermal precursors (Xu et al., 2002; Pera et al., 2004).

In contrast, human ES cells require elevated basic fibroblast growth factor
(bFGF) in the culture medium to maintain their pluripotency and undifferentiated
state in the absence of fibroblasts or fibroblast-conditioned medium (Vallier et
al., 2005; Xu et al., 2005a; Xu et al., 2005b). A study by Wang et al.
demonstrated for the first time that a combination of BMP antagonist and high
concentrations of bFGF can help to maintain the pluripotency of human ES cells
in the absence of feeder layers (Wang et al., 2005). However, in mouse ES
cells, FGF signalling cascades have been shown to promote differentiation by
stimulation of ERK1/2 signalling (Mayshar et al., 2008).

Other essential factors in combination with bFGF are likely to be involved in
growth enhancement and preserve the undifferentiated state of human ES cells

such as transforming growth factor 8 (TGF), activin and Nodal (Beattie et al.,
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2005; James et al., 2005). It has been suggested that the TGFp/Activin/Nodal
and BMP/GDF/MIS subfamilies control the cell fate of human ES cell through
the Smad pathway. In human ES cells, the activity of Smad1/5/8 pathway is
repressed and Smad2/3 pathway is stimulated whereas upon differentiation
Smad 2/3 pathway is repressed and Smad 1/5/8 pathway is stimulated
(Miyazawa et al., 2002; Shi and Massague, 2003). The ERK, PI3K/Akt and
Nuclear Factor Kappa-lightchain- enhancer of activated B cells (NFkB)
pathways have also been suggested to have a role in the maintenance of
human ES cells (Armstrong et al., 2006). Inhibition of the ERK and PI3K/Akt
pathways has been shown to enhance the differentiation and induce the
apoptosis in human ES cells (Li et al., 2007b). Similarly, the inhibition of NFkB
pathway induces differentiation and increases cell death in human ES cells
(Armstrong et al., 2006).

Activation of Wnt signalling is sufficient to maintain and support the growth of
mouse and human ES cells (Sato et al., 2004). Wnt, a biological inhibitor of
Gsk3p3, is endogenously activated in both mouse (Nordin et al., 2008) and
human (Okoye et al., 2008) ES cells. A previous study by Sato et al, reported
that the activation of Wnt pathway maintained the expression of pluripotency
markers OCT4, REX-1 and NANOG and promoted self-renewal in both types of
ES cells whilst the usual differentiation program could be induced by removing
the compound (Sato et al., 2004). However, contradictory results have been
reported by Dravid et al. in 2005, using either Wnt3a or Wnt antagonists. They
found that Wnt activation could enhance the proliferation of human ES cells but
was not sufficient to maintain and expand their undifferentiated state (Dravid et
al., 2005). On the other hand, Wnt signalling is also required to promote the
differentiation of mouse (Lindsley et al., 2006), and human ES cells (Wang and
Nakayama, 2009). Therefore, further research is required to understand the

precise roles of Wnts on ES cell proliferation and maintenance.

1.7 Transcriptional network for maintenance of pluripotency

Cellular pluripotency is governed by specific molecular signalling pathways as
well as maintained by specific gene expression patterns that are characterized
by activation of genes that support and sustain an undifferentiated cellular state

and repression of those that promote differentiation. Several transcription
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factors have been recognized as key regulators of cell pluripotency. Amongst
them, OCT4, SOX2, and NANOG are proposed to form a core regulatory
circuitry regulating pluripotency and self-renewal in human (Boyer et al., 2005),
and mouse (Chen et al., 2008) ES cells. However, the reprogramming of
mouse and human somatic cells to a pluripotent state using just four
transcription factors OCT4, SOX2, C-MYC and KLF4 (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007) or OCT4, SOX2, NANOG and LIN28
(Yu et al., 2007) endorsed the central roles of these genes in regulating cell

pluripotency.
OCT4:

OCT4 (octamer-binding transcription factor 4), also known as POUS5SF1 is the
master regulator of the pluripotent state of germ cells, EG, and ES cells. OCT4
is an octamer-binding homeobox transcriptional factor that belongs to the class
V family of transcription factors containing the POU DNA binding domain. In the
mouse embryo, OCT4 protein is only expressed in the ICM cells after cavitation
whilst it's downregulated in the differentiated trophectoderm (TE). Therefore,
OCT4 is essential marker for stem cell pluripotency. In vitro, OCT4 is expressed
in undifferentiated EC, EG and ES cell lines (Niwa et al., 2000; Takahashi and
Yamanaka, 2006). OCT4-deficient embryos fail to form the ICM and die shortly
at pre implantation stage. In vitro culture of OCT4-negative embryos produced
non-pluripotent ICM cells (Nichols et al., 1998), suggesting that OCT4 function
is an absolute requirement for the establishment of the ICM pluripotency and it's
necessary to maintain self-renewal of pluripotent ES cells. Furthermore, OCT4
can directly repress the main regulators of trophectoderm differentiation Cdx2,
Eomes and hCG. Hence, a component of OCT4’s role is as a gatekeeper that
blocks the differentiation into the trophectoderm lineage and maintains the
pluripotency in the ICM (Liu et al., 1997; Niwa et al., 2000). Importantly, a
precise level of OCT4 seems to be critical for the fate decisions of ES cells. In
support of this, previous studies have demonstrated that overexpression of
OCT4 resulted in differentiation into primitive endoderm and mesoderm, In
contrast, reduction in OCT4 levels result in dedifferentiation to trophectoderm
(Niwa et al., 2000; Zeineddine et al., 2006).
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SOX2:

In mouse embryo, SOX2 expression is found in epiblast, and germ cells. Unlike
OCT4, SOX2 expression is also persistent in multipotent cells of extra-
embryonic ectoderm. Knockout of SOX2 in mice resulted in embryonic lethality
after implantation due to defects in epiblast formation (Avilion et al., 2003). In
vitro, SOX2 expression is detected in pluripotent ES cells and neural progenitor
cells (Li et al., 1998). SIRNA-mediated knockdown of SOX2 results in the
differentiation of ES cells into trophoectoderm. However, forced expression of
OCT4 can successfully rescue SOX2-null pluripotent cells indicating that the
essential function of SOX2 is related to the transcriptional activation of OCTA4.
SOX2 represents an important binding partner for OCT4 to enhance the
expression of most pluripotency-associated genes, including FGF4, UTF1,
Fbxol5, Leftyl, and NANOG. Furthermore, the OCT-SOX enhancers can
stimulate the expression of OCT4 and SOX2 through a positive-feedback loop
(Kuroda et al., 2005; Masui et al., 2007).

NANOG:

The homeodomain transcription factor NANOG is another important
pluripotency-related factor in mouse and human pluripotent and
teratocarcinoma cells. Similar to OCT4, the in vivo expression of NANOG is
specific to the ICM, epiblast and germ cells. In vitro, NANOG is expressed in
both mouse and human pluripotent cell lines (Chambers et al., 2003). Mouse
embryos lacking NANOG fail to form ICM and die shortly after implantation.
Similarly, removing NANOG from mouse (Mitsui et al., 2003) and human
(Hyslop et al., 2005) ES cells has been shown to incite differentiation to multi-
lineage cells, while elevated levels of NANOG can enhance the self-renewal
and prevent the differentiation of human ES cells (Darr et al., 2006), and mouse
ES cells in the absence of LIF, or even in the presence of LIF antagonists
(Chambers et al., 2003). Notably, NANOG expression failed to maintain the
pluripotency of mouse ES cells in the absence of OCT4 (Mitsui et al., 2003; Hart
et al., 2004). NANOG is also found to interact in concert with OCT4 and SOX2
in the maintenance of pluripotency of mouse and human ES cells (Chen et al.,
2008). In this aspect OCT4, SOX2, and NANOG together can also form

interconnected autoregulatory and feedforward loops by binding to the
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promoters of their own genes (Boyer et al., 2005; Wang et al., 2006). In
addition, these transcription factors interact with several other genes to repress
the differentiation of ICM into extra-embryonic lineages—trophoblast and extra-
embryonic endoderm (Niwa et al., 2009). A recent study by Chambers et al.
(2007) suggested a different view where the authors reported that NANOG-null
ES cells maintain the expression of pluripotency markers and the ability to
differentiate to multi-lineage cells in vitro and in vivo (Chambers et al., 2007).
Collectively, NANOG appears to play a significant role in regulating pluripotency
but unlike OCT4 and SOX2, it is not critical in the transcriptional housekeeping

machinery of pluripotency.
KLF4:

KLF4 belongs to the Kruppel-like factor family of zinc finger transcription factors.
It has been found that overexpression of OCT4, SOX2 and C-MYC, KLF4 can
reprogram somatic cells back to an embryonic-like state (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007). In mouse, KLF4 overexpression was
found to block the differentiation of ES cells into erythroid progenitors (Li et al.,
2005). KLF4 knockout mice preserved their pluripotent stem cell populations.
Similarly, siRNA-mediated knockdown of KLF4 doesn'’t affect the general
phenotype of mouse ES cells which might be due to the functional corporation
among other KLF family members in ES cells. Indeed, triple knockdown of
KLF2, KLF4 and KLF45 induced differentiation in mouse ES cells and caused
more changes in expression compared to single or double knockdown (Jiang et
al., 2008). Moreover, somatic cells were successfully reprogramed after
replacing KLF4 with other KLF family members such as KLF1, KLF2 and KLF5
(Nakagawa et al., 2008). However, successful generation of iPS cells without
using KLF4 suggested that KLF4 acts as a supporter rather than an essential
factor in the reprogramming process (Yu et al., 2007). The requirement for LIF
to maintain pluripotency can be sufficiently replaced by artificial expression of
KLF4 or Tbx3. Remarkably, in the absence of LIF, overexpression of NANOG
supports self-renewal of mouse ES cells while sustaining the OCT4 activity
even without KLF4 and Thx3 activity (Niwa et al., 2009). In human ES cells,
KLF4 expression was found to prevent differentiation by activating the NANOG
promoter (Chan et al., 2009b).
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LIN28

LIN28 encodes a cytoplasmic RNA binding protein that was identified as a key
regulator of developmental timing in Caenorhabditis elegans (Polesskaya et al.,
2007). Overexpression of LIN28 was associated with very rapid cell proliferation
in mouse ES cells (Xu et al., 2009a) while it seemed to decrease cell
proliferation in human ES cells (Darr and Benvenisty, 2009). Indeed at present,
the exact role of LIN28 in human and mouse ES cell is still intriguing. Although
LIN28 was used together with OCT4, SOX2 and NANOG to reprogram human
somatic cells back to a pluripotent state (Yu et al., 2007), its role was not critical
for reprogramming and it can even be replaced by other factors, suggesting that
it may not be an essential factor in maintaining pluripotency but rather, serves
as a secondary factor to enhance pluripotency, much like KLF4 (Takahashi et
al., 2007).

C-MYC:

MYC is a proto-oncogene whose overexpression is frequently observed in
human tumours and is involved in transformation and tumorigenesis (Kendall et
al., 2006). Overexpression of C-MYC is reported during the blastocyst stage
and several studies have demonstrated the central role of C-MYC in early
mouse and human embryo (Paria et al., 1992; Naz et al., 1994).
Overexpression of C-MYC in mouse ES cells has been found to prevent
differentiation while downregulation of C-MYC antagonized self-renewal and
caused differentiation (Cartwright et al., 2005). On the other hand,
overexpression of C-MYC in human ES cells resulted in apoptosis and
differentiation into extraembryonic endoderm and trophectoderm. To explain the
conflicting roles of C-MYC in both proliferation and apoptosis, the “dual signal”
model has been proposed in which C-MYC is involved in both proliferation and
growth arrest pathways (Pucci et al., 2000). Although C-MYC was one of the
four factors that Yamanaka used to reprogram both mouse and human somatic
cells (Takahashi and Yamanaka, 2006; Takahashi et al., 2007), subsequent
studies have reported the generation of iPS cells without using C-MYC.
However, the efficiency was significantly reduced (Nakagawa et al., 2008;
Wernig et al., 2008b) Indeed, several studies have suggested a different role for
C-MYC in comparison to other pluripotency factors. During the reprogramming
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process, C-MYC was proposed to mainly down-regulate somatic gene
expressions rather than activate that of pluripotency regulators (Sridharan et al.,
2009). C-MYC is also proposed to support the self-renewal of stem cells by
inducing a cell cycle program and enhancing cell proliferation (Vermeulen et al.,
2003).

In conclusion, pluripotency cannot simply be characterized by just the
expression of a particular set of genes or signalling pathways. Instead, multiple
signalling pathways and transcriptional networks interact together to maintain

ES cell pluripotency (Figure 1-8).
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Figure 1-8: Signalling pathways involved in pluripotency and self-renewal.
Modified from: (http://www.pharmatutor.org/articles/molecules-involved-in-
regulation-of-stem-cell-differentiation).

1.8 Reprogramming and induced pluripotency

Despite their immense potential for differentiation and expansion, the
application of human ES cells in research, clinical therapies, and pharma-
screening is still controversial due to the destruction of human embryos,
immunologic rejection of allogeneic ES cell-derived grafts and the unavailability
of patient-specific cells (Johnson, 2008). Adult stem cells have also gained
serious interest as they circumvent some of the ethical and immunologic issues
of human ES cells, but, they have a rather limited differentiation and expansion

potential (Wagers et al., 2002; Murry et al., 2004). Consequently, great effort
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has gone into developing functional equivalents of human ES cells without
using embryonic material. In particular, research has focused on generating
pluripotent stem cells directly from somatic cells which finally led in 2006 to the
ground breaking work by Shinya Yamanaka who demonstrated the induction of
pluripotency in differentiated cells. These cells are called induced pluripotent
stem (iPS) cells and are generated from a patient’s own cells, thus bypassing
the immune rejection and the ethical issues associated with the use of human
embryos (Takahashi and Yamanaka, 2006). Reversal of the differentiated state
to a state of developmental pluripotency is defined as “reprogramming.” A
number of techniques have been established over the years to reprogram
somatic cells to a pluripotent state including cloning or somatic cell nuclear
transfer (SCNT), cellular fusion, cell extracts or defined media, and direct

reprogramming using exogenous factors (Figure 1-9).

1.1.4 Somatic cell nuclear transfer (SCNT)

SCNT is a pioneering technique first used by John Gurdon to generate Dolly the
sheep, the first mammal to be cloned, whereby he transferred the somatic cell
nucleus into an enucleated oocyte arrested at metaphase Il stage (Gurdon and
Melton, 2008). Upon transfer, the epigenome of the somatic cell is
reprogrammed by the cellular factors in the egg. The resultant entity is assumed
to have the same developmental potential as a fertilized zygote and can give
rise to a cloned organism (Wilmut et al., 1997). Hereby this work constituted the
first evidence that the differentiation process is not a permanent change and
that the somatic cell can be reprogrammed to an embryonic-like stage and more
importantly acquires all genetic materials required to create a mature organism
(Hanley et al., 2010). Following Dolly, other animals including mouse (Tsunoda
et al., 1987), cow (Prather et al., 1987), goat (Willadsen, 1986), pig (Prather et
al., 1989), cat (Imsoonthornruksa et al., 2012) and rabbit (Matsuda et al., 2002)

were successfully generated by SCNT.

SCNT bestowed a powerful tool to study the molecular mechanisms controlling
early development and raised the possibility of using them for autologous
transplantation without the risk of immunologic rejection. There are two types of
cloning, reproductive and therapeutic cloning. Reproductive cloning is used to

create genetically identical embryo to the donor nucleus. Then this embryo is
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grown into the uterus to generate an infant that is a clone of the donor.
However, the application of this type of cloning for humans is denied in most
countries. The other type of cloning is therapeutic cloning which has also been
called somatic cell nuclear transfer. This type is also used to form blastocysts
from an embryo that has identical genetic material to its cell origin. However,
blastocysts are cultured in vitro with the goal of generating an autologous ES
cell line (Kawase et al., 2000; Hochedlinger and Jaenisch, 2003; Byrne et al.,
2007). Importantly, these cell lines are similar to normal ES cell lines with

respect to morphology and gene expression profile (Brambrink et al., 2006).

The pluripotency of ES cells derived from SCNT was confirmed by their ability
to form teratomas after injection into immunocompromised mice (Munsie et al.,
2000), and their ability to contribute to mouse diploid chimeras, suggesting that
they can be used as an alternative source of transplantable cells that are
identical to the patient’s own cells (Hochedlinger and Jaenisch, 2002). The
therapeutic effects of nuclear transfer derived ES cells have been reported in
mouse models of severe combined immunodeficiency (Rideout et al., 2002),
and Parkinson’s disease (Barberi et al., 2003). Most recently, SCNT human
blastocysts were produced for the first time using somatic adult donor nuclei
reprogrammed by human oocytes (French et al., 2008). Nevertheless the
efficiency of generating ES cell lines from nuclear-transferred embryos is
significantly low where very few clones survive after implantation, and even
those have severe malformations (Ogonuki et al., 2002; Byrne et al., 2007,
Atala, 2011).

Interestingly, cloning with a less differentiated somatic cell as a nuclear donor is
significantly more efficient than with terminally differentiated somatic cells
(Blelloch et al., 2006). Consistently, skin stem cells and neural stem cells create
cloned animals more easily than do keratinocytes and neurons, respectively
(Inoue et al., 2007; Li et al., 2007a). Donor cell cycle stage has also been
reported to impact the efficiency of SCNT (Cibelli et al., 1998). Following SCNT,
histone modifications and DNA demethylation seem to be essential for
developmental potential of cloned embryos (Dean et al., 2001). DNA
methylation and histone acetylation are also directly involved in X chromosome

inactivation in female SCNT embryos (Xiong et al., 2005). Bortvin at al reported
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that the failure of deriving cloned embryos is often correlated to an incomplete
reactivation of genes functioning in the pluripotent cells of the preimplantation
embryo, in particular, OCT4 which is only expressed in pluripotent cells of the
early embryo and the germline (Bortvin et al., 2003). Although this approach
has recently been expanded to other mammals (Gurdon and Melton, 2008), the
use of SCNT in research and therapy however is hampered by many technical
limits associated with the cloning process including low efficiency, incomplete
remodelling, high percentage of abnormalities and low birth rate, and ethical
limits surrounding the use of human eggs (Gurdon and Melton, 2008).
Nevertheless, SCNT trials provide the proof-of-concept that paved the way to
identify the main key factors required for nuclear reprogramming.

1.1.5 Cellular fusion

Cellular fusion has been used previously to study the plasticity of differentiated
cells (Blau and Blakely, 1999). In a pioneering study, mouse EC cells were
fused with thymocytes and the resultant pluripotent hybrid cells showed the
ability to induce teratomas upon injection into immunocomprimised mice (Miller
and Ruddle, 1976). More recent research has revealed that ES and EG cells
also possess the ability to reprogram somatic cells (Han and Sidhu, 2008).
Matveeva et al. reported for the first time the ability of mouse ES cells to
reprogram somatic cells. In this work, hybrid cells with pluripotent properties
were obtained by fusion of mouse ES cells with the spleen cells of an adult
female mouse (Matveeva et al., 1998). Reactivation of OCT4—enhanced green
fluorescent protein (EGFP) transgene and silencing of X chromosome were
detected in the ES hybrid cells (Tada et al., 2001). Microarray analysis showed
that a mouse embryonic fibroblast /ES cell hybrid contains unique expression
profiles that are similar to normal ES cells (Ambrosi et al., 2007). Similarly,
Eggan’s group artificially fused human ES cells with human fibroblasts through
the merging of their membranes to form a stable cell hybrid. The resultant cell
contained both the somatic and human ES cell chromosomes in a single
nucleus, had a phenotype similar to the parental ES cell, and grew in
appearance similar to a human ES cell. Reprogramming of the somatic genome
in hybrid cells to an embryonic state is demonstrated by the silencing of the
somatic-specific genes, demethylation and reactivation of several pluripotency

genes including OCT4, NANOG, and REX1, reactivation of the inactive X
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chromosome in fused female somatic cells and the ability to differentiate into all
three germ layers in vitro and in vivo (Cowan et al., 2005). Comparable results
have been obtained with human ES cells and haematopoietic cells. The
resultant hybrid cells showed reactivation of OCT4-EGFP and expression of ES
cell-specific genes at a level comparable to that in diploid human ES cells.
Furthermore, the hybrid cells had the ability to form the three germ layers
suggesting functional nuclear reprogramming (Yu et al., 2006). However, this
approach is still limited by technical and ethical barriers that have restricted the
use of ES cells in research including low efficiency and chromosomal and
genetic instability of the hybrid which can lead to malignant transformation
(Vasilkova et al., 2007; Nowak-Imialek et al., 2010). Furthermore, although the
somatic cell genome is reprogrammed, the tetraploid DNA content presents an
additional technical hurdle before this process could be used in customized cell
therapy as transplanting these tetraploid hybrids into the somatic donor will
probably result in immune rejection caused by the existence of the foreign

genome.

1.1.6 Cell extracts and defined media

Based on observations from SCNT and fusion experiment, it has been
suggested that reprogramming may be induced by incubation of somatic cells
with ES nuclear and cytoplasmic extracts (Taranger et al., 2005). Xenopus egg
extract has been used to reprogram human lymphocytes. Egg extract-treated
cells showed increased expression of endogenous pluripotent gene OCT4
whilst somatic genes were inhibited (Hansis et al., 2004). Similarly, exposing
293Tand NIH3T3 cells to extracts of mouse EC or ES cells resulted in
demethylation of OCT4 and NANOG promoters concomitant with down
regulation of differentiation genes. Moreover, generated cells exhibited the
ability to differentiate towards several cell lineages including neurogenic,
adipogenic, osteogenic, and endothelial lineage (Taranger et al., 2005; Freberg
et al., 2007). However, employing this technique is hindered by the instability of
the reprogramming outcomes which may lead to cancer development and the

very low yield of extracts even with large numbers of oocytes.

Another technique to produce reprogrammed cells is based on exposing cells

in vitro to a specific mixture of growth factors. Under standard ES cell culture
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conditions, adult testis cells can gain ES cell characteristics (Guan et al., 2006).
Cellular dedifferentiation of murine C2C12 myoblasts can also be induced using
A2,6-disubstituted purine, reversine (Chen et al., 2004). To date the

mechanisms by which these defined factors function are still elusive.

1.1.7 Direct reprogramming using exogenous factors

In 2006, Shinya Yamanaka and his team presented a hew concept of
reprogramming mouse somatic cells using retroviral-mediated overexpression
of key transcription factors (Takahashi and Yamanaka, 2006). The generated
cells called induced pluripotent stem (iPS) cells are almost identical to ES cells
in terms of morphology, molecular characteristics, and teratoma formation
ability. These results were later reproduced on human adult fibroblasts to
generate human iPS cells that would serve as another source of patient-specific
pluripotent stem cells that circumvent some of the problems associated with ES
cells, hence bear promise to advance biomedical research and regenerative
medicine (Takahashi et al., 2007; Yu et al., 2007).
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Figure 1-9: Mechanisms to induce nuclear reprogramming.
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1.8.1.1 Induction of pluripotent stem cells from murine fibroblasts

The induction of pluripotent stem cells from murine fibroblasts by Shinya
Yamanaka and Kazutoshi Takahashi represents a hallmark in stem cell
research (Takahashi and Yamanaka, 2006). They first selected a combination
of 24 candidate genes due to their suggested role in production and
maintenance of the ICM in the blastocyst and also in maintaining the pluripotent
state of ES cells (Figure 1-10). These factors were delivered as a pool by
retroviral transduction to MEFs engineered to express neomycin resistance
from the Fbx15 locus, a downstream target of the pluripotency associated factor
OCT4. The transfected cells were cultured in mouse ES cell environment and
colony resistance to G418 as a selective antibiotic was used to control the
induction of the Fbx15 locus which is only expressed in embryos and mouse ES
cells. Cells transduced with a single gene were unable to confer G418
resistance while cells transduced with all 24 genes formed colonies with mouse
ES cell characteristics after about 25 days. Then exogenous factors were
eliminated one by one while monitoring the efficiency and timeline of ES-like
colony formation until they demonstrated that only four transcription factors,
OCT4, SOX2, KLF4, and C-MYC, were required to form a G418-resistant
colony and to bestow ES cell-like properties on fibroblasts. Established iPS cells
were positive for alkaline phosphatase and SSEA-1 (stage-specific embryonic
antigen 1). Moreover, iPS cells reactivated the silenced X chromosome in
female cells and restored telomerase activity. In vitro, iPS cells exhibited the
ability to form embryoid bodies, which in turn exhibited the ability to differentiate
into cell types of the three germ layers. Teratoma formation resulting from
subcutaneous injection of iPS cells into nude mice demonstrated their

pluripotency in vivo.
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Figure 1-10: Generation of iPS cells. Yamanaka and colleagues demonstrated
that retroviral-mediated over expression of a combination of just four
transcription factors was sufficient to convert somatic cells into pluripotent stem
cells, called induced pluripotent stem (iPS) cells.

Nevertheless, these early attempts generated iPS cells that didn’t show global
gene-expression patterns similar to those of ES cells, and failed to produce
viable chimeras upon injection into a developing blastocyst suggesting that the
reprogramming was incomplete. However, replacing the FBX15-neo selection
with GFP-IRES-puro cassette introduced into the endogenous OCT4 (OCT4-
neo) or NANOG locus (NANOG-neo) in MEFs allows the generation of iPS cells
that were similar to ES cells with respect to DNA methylation, gene expression
profiles and the chromatin state of the reprogrammed cells (Maherali et al.,
2007; Okita et al., 2007). Both OCT4 and NANOG promoters showed
demethylation in NANOG -selected iPS cells that were almost identical to global
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histone methylation patterns (H3K4 and H3K27) in ES cells. FBX15 selected
IPS cells had significantly higher expression levels of the four transgenes and
lower levels of endogenous OCT4, SOX2, and NANOG gene expression
compared with NANOG-iPS cells. Importantly, OCT4 -selected iPS cells could
be maintained through endogenous expression of OCT4, whilst FBX15 selected
iIPS cells required continuous expression of the exogenously provided factors to
maintain their self-renewal and pluripotency (Takahashi and Yamanaka, 2006).
These cells were able to form teratomas containing differentiated cell types
representing all three embryonic germ layers and importantly could contribute to
the germ line of chimeric offspring following blastocyst injection (Maherali et al.,
2007; Okita et al., 2007) suggesting that the reprogramming was complete.
Subsequently, mouse iPS cells passed the most stringent in vivo assay of
pluripotency by showing the ability to give rise to full-term embryos by tetraploid
complementation, thus becoming functionally highly similar to mouse ES cells
(Boland et al., 2009; Zhao et al., 2009). On the other hand, Meissner at al
suggested that the incomplete reprogramming in the original Yamanaka work
was caused by the early selection for Fbx15 activation and postulated that
selection for Fbx15 activation at later times would generate fully reprogrammed
iIPS cells based on the finding that the reprogramming process is slow and
gradual (Meissner et al., 2007). IPS cells have also been derived from
unmodified somatic cells based upon morphological criteria rather than
selection for drug resistance. The overall efficiency of reprogramming using
morphological selection was approximately 5-10 times higher when compared
to drug-selection strategies. This result endorsed the supposition that
reprogramming is a gradual process where selection for drug may exclude cells

before reaching the ultimate pluripotency state.

1.8.1.2 Induction of pluripotent stem cells from human fibroblasts

One year later, two groups succeeded in generating iPS cells from adult human
dermal fibroblasts (HDF) by the introduction of either the same four transcription
factors (Takahashi et al., 2007) or a slightly different combination (Yu et al.,
2007). Similar to human ES cells, human iPS cells formed tightly-packed flat
colonies. Disaggregation of these colonies resulted in cells similar to human ES
cells in morphology characterized by large nuclei and scant cytoplasm. Human

iIPS cells expressed human ES cell-specific surface antigens, including SSEA-3,
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SSEA-4, and tumour-related antigen (TRA)-1-60, TRA-1-81, and alkaline
phosphatase. RT-PCR also showed that human iPS cells expressed many
undifferentiated ES cell-marker genes, such as OCT4, SOX2, NANOG, GDF3,
fibroblast growth factor 4 (FGF4), embryonic cell specific gene 1 (ESG1),
developmental pluripotency-associated 2 (DPPA2), DPPA4, and telomerase
reverse transcriptase (hnTERT) at levels similar to those in human ES and EC
cell lines as well as an epigenetic status similar to that observed in human ES
cells. The OCT4 and NANOG promoters were demethylated and in an active
state, and exhibited H3K4 methylation and H3K27 demethylation patterns.
Furthermore, these cells possessed the ability to differentiate into cell types of
the three germ layers both in vitro and in vivo. However, Yamanaka et al. found
that each iPS clone contained some retroviral integration, which may increase
the risk of tumorigenesis. Around 20% of mice derived from iPS cells exhibited
tumours, which was partially ascribed to reactivation of the C-MYC retrovirus
(Takahashi and Yamanaka, 2006). Thomson et al. reported that human somatic
cells can be converted to pluripotent cells using a similar, but distinct
combination of genes (OCT4, SOX2, NANOG, and LIN28) without
compromising iPS efficiency. KLF4 and C-MYC therefore may not be required
for the reprogramming process in human cells. These data demonstrated that
iIPS cells can be generated not only from mouse, but also from human fibroblast
cultures. After the successful generation of iPS cells from animal and human
fibroblasts, other cell types have been successfully reprogrammed either in
animal such as stomach cells (Aoi et al., 2008) and B cells (Hanna et al., 2008),
or in human such as cord blood (Nishishita et al., 2011), keratinocytes (Aasen
et al., 2008), adipose tissues (Sun et al., 2009), neural progenitor cells (Kim et
al., 2009b), platelets (Gekas and Graf, 2010), prostate and bladder cells (Moad
et al., 2013), and the number of cell types that can be used to generate iPS
cells is growing steadily. Similar to human ES cells, human iPS cells should be
very useful for studying the development and function of human tissues, for

discovering and testing new drugs and for transplantation medicine.

1.8.1.3 Mechanistic insights to reprogramming

Several studies have reported that the reprogramming process involves a series
of transcriptional modifications. Recently, it has been indicated that acquisition

of epithelial characteristics through mesenchymal to epithelial transition (MET)
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is an important early step required for the successful reprogramming of a
mouse fibroblast cell into a pluripotent stem cell. MET takes place before the
acquisition of ES cell-like properties and is characterised by epithelial-like
morphological alterations including size reduction, compacting cells with well-
defined intercellular junctions and high cytokeratin expression from day 5 post-
transduction, activation of epithelial-associated genes such as E-cadherin
(Cdhl), Claudins 3, 4, 7, 11, Occludin, epithelial cell adhesion molecule
(EpCAM), and crumbs homolog 3 (Crb3 ), as well as repression of
mesenchymal associated genes, such as SNAIL1/2, SLUG, ZEB1 and ZEB2 (Li
et al., 2010; Samavarchi-Tehrani et al., 2010). Consistent with these,
reprogramming can be improved using factors facilitating MET such as TGF-b
inhibitors, Cdhl, BMPs, microRNA miR200s and miR302/367 (Liao et al., 2011,
Liang and Zhang, 2013). OCT4, SOX2, KLF4 and C-MYC reprogramming
factors have a suppressive effect on TGF-b signalling and miRNAs miR-155,
miR-10b, which are associated with EMT (Peinado et al., 2003; Kong et al.,
2008). Subsequently, OSKM were more effective in generation of iPS cells than
OSK which might be due to the inefficient block of the TGF-b pathway mediated
by C-MYC, indicating that MET is essential for the establishment of

pluripotency.

However, acquisition of the epithelial status doesn’t guarantee reaching the iPS
cell fate, since cells undergoing reprogramming will still require continuous
expression of reprogramming factors to reach bona fide pluripotency found in
ES cells (Smith et al., 2010). Concurrent with acquiring epithelial cell
characteristics, reprogrammed cells increase their proliferation rate and escape
cell cycle arrest. Consistently, knocking down p53-p21 or inhibiting Ink4a/Arf
has been found to promote the iPS generation by enhancing cell proliferation
(Smith et al., 2010; Liang and Zhang, 2013).

Metabolic change is also an important step for inducing pluripotency. Studying
the metabolome profiles of iPS cells relative to ES cells and to their somatic
cells of origin showed that iPS cells and ES cells have similar but not an
identical metabolomic signature (Panopoulos et al., 2012). In addition, the
metabolome profile of differentiated cells which prefer oxidative phosphorylation
is converted to pluripotent glycolytic metabolism which fuels induction of
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pluripotency (Folmes et al., 2011). Previous studies reported that C-MYC is
involved in metabolic gene regulation and cell cycle acceleration, indicating that
C-MYC plays a critical role in the early phase of the reprogramming process
rather than activation of pluripotency regulators (Sridharan et al., 2009).
However, successful generation of iPS cells without C-MYC suggests that
metabolic changes can be achieved by other reprogramming factors (Liang and
Zhang, 2013).

The next step in reprogramming involves the activation of the pluripotency
circuitry. Pioneering studies by two groups reported the first insights into the
mechanisms of reprogramming fibroblasts into iPS cells using doxycycline-
controlled lentiviral vectors encoding the four reprogramming factors OCT4,
SOX2, KLF4 and C-MYC to infect MEFs with a knock in of GFP into the
endogenous OCT4 allele (OCT4-GFP) (Brambrink et al., 2008; Stadtfeld et al.,
2008b). Stably reprogrammed cells were produced after treating with
doxycycline for at least 8 days. Addition of doxycycline for 10, 11, 12, and 13
days increased the number of iPS colonies, sequentially. Cell sorting with Thyl
(expressed in fibroblasts and other differentiated cell types) and SSEA1
markers (expressed in mouse ES cells) showed that the Thy+/SSEA1-
phenotype in fibroblasts starts to shift gradually after 3 days of doxycycline
withdrawal, where Thyl down-regulation preceded the SSEA-1 upregulation.
However, the phenotype reversal to Thy1-/SSEA1+ was not significantly
detected until the doxycycline was removed from the cultures at day 12,
suggesting that surface markers Thyl and SSEA1 distinguish early
intermediates of the reprogramming process and only few Thy1-/SSEA1+ cells
can pass to the stabilisation phase (Stadtfeld et al., 2008b; Li et al., 2010; Liang
and Zhang, 2013).

Previous studies also revealed that direct reprogramming is a slow and gradual
process encompassing the sequential activation of various pluripotency
associated markers where alkaline phosphatase appears at day 3 of transgene
expression followed by expression of the surface marker SSEA1 on day 9. On
the other hand, endogenous expression of OCT4 or NANOG was first
detectable on day 16, suggesting that SSEA1+ cells may mark an intermediate

step of reprogramming whereas the endogenous expression of OCT4 or
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NANOG was postulated as a marker for fully reprogrammed cells. Retroviral
silencing also appeared to be a gradual process that started early but finished
coinciding with the acquisition of late pluripotency gene expression in iPS cells.

In a more advanced system Wernig et al generated doxycycline-inducible
secondary iPS cells. Firstly, reprogramming factors were expressed using
doxycycline-inducible lentiviruses to generate primary iPS cells which were then
used to generate chimeric mice. Addition of doxycycline to the MEF population
selected from these chimeric mice resulted in the generation of secondary iPS
cells with higher efficiency compared to primary iPS cells but was not 100% as
one might expect (Wernig et al., 2008a). Yamanaka gave explanation for this
discrepancy in his recent comment about the two models for iPS cell generation
(Yamanaka, 2009a). First, the elite model, presupposes that only a certain
population of cells, such as stem/progenitor cells, can be successfully
reprogrammed into a pluripotent state. Evidence for this model comes from a
study by Kuroda et al where they reported the existence of “multilineage
differentiating stress-enduring” (Muse) cells, a type of cell in adult human
mesenchymal cells such as dermal fibroblasts and bone marrow stromal cells.
Muse cells were found initially to be stress-tolerant and SSEA3+/CD105+ and
showed pluripotency characteristics such as self-renewal ability, expression of
pluripotency markers (OCT4, SOX2, and NANOG) and ability to differentiate
into the three germ layers in vitro and in vivo, while at the same time they also
exhibited characteristics of mesenchymal cells (Kuroda et al., 2010). These
Muse-cells have been found to be more amenable to generating iPS cells when
transduced with the four factors OCT4, SOX2, KLF4, and C-MYC, while no iPS
cells could be established from non-Muse cells indicating that human fibroblast
cells contain a population of adult stem cells that primarily contributes to iPS cell
generation (Wakao et al., 2011). However, such a model cannot explain the
existence of the partially reprogrammed cells that acquire epithelial properties

but without activation of the pluripotency genes.

The other model, the stochastic model proposed that most differentiated cells
can be reprogrammed after infected with the reprogramming factors. However,
genetic and epigenetic obstacles must be overcome to reach successful
reprogramming. This model may integrally depict the reprogramming process
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and most data generated appear to support it (Hanna et al., 2009; Yamanaka,
2009a).

A study by Tehrani et al revealed three phases of reprogramming termed
initiation, maturation, and stabilization where the Initiation phase is mainly
marked by MET. Importantly, the authors found that reactivation of some
pluripotency markers such as NANOG and SALL4 mark the transition to the
maturation phase (Samavarchi-Tehrani et al., 2010). NANOG is also found to
play an important role in initiating the pluripotency state, specifically by driving
the partially reprogrammed iPS cells to reach pluripotency (Silva et al., 2009)

and therefore may help in setting up the whole pluripotency circuitry.

Recently, single-cell gene expression analysis and clonal retrospective tracing
of cells derived from early time points, intermediate cells, and fully
reprogrammed iPS cells showed that reprogramming in mouse comprises an
early stochastic and a late hierarchical stage. Gene expression of Esrrb, Utf1,
Lin28, and DppaZ2 were found to stringently predict successful generation of
stable iPS cells lines before the pluripotency core circuitry is activated (Buganim
et al., 2012). Moreover, up-regulation of pluripotency genes such as Fbxol5,
Fgf4, and unexpectedly OCT4 doesn't strictly associate with successful
reprogramming. In the same study, the authors found that the expression of
SOX2 significantly activated the most upstream pluripotency genes and derived
a hierarchical activation of key pluripotency genes making it a potential late
marker. Such a hierarchy proposes that fully reprogramming can be induced
from multiple entry points and even without any of the original Yamanaka
factors. Interestingly, generation of iPS cells has been reported by a
combination of Lin28, Sall4, Esrrb and Dppa2 suggesting specific gene
expression and hierarchical activation of key pluripotency genes mediate the
activation of the pluripotency circuitry during the late phase in reprogramming
(Liang and Zhang, 2013). Upon activation of the pluripotency circuitry,
reprogramming cells gain the ability for self-renewal independently of the
exogene expression (Guenther et al., 2010; Newman and Cooper, 2010; Bock
et al., 2011).

Dramatic changes in the gene-expression patterns without alterations in DNA

sequences are referred to as “epigenetic” changes, mainly including DNA
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methylation, genomic imprinting and histone modification. Epigenetic changes
allow pluripotent cells to differentiate into tissue specific cells during the normal
development. Epigenetic changes, such as DNA methylation and histone
modifications, are also believed to play a critical role in the process of
reprogramming somatic cells to an undifferentiated state and maintaining stem
cell pluripotency. Successful reprogramming requires silencing of differentiation
specific genes and activation of gene expression patterns unique to pluripotent
cells (Han and Sidhu, 2008). Lysine methylation and acetylation are two of the
most frequently studied histone post-translational modifications. Changes in
histone modifications including a deposition of the histone H3 dimethylated at
lysine 4 (H3K4me2) mark and a gradual depletion of H3K27me3 is observed
immediately after induction whereas DNA demethylation and X-chromosome
reactivation can be seen late in the reprogramming process (Buganim et al.,
2013). Collectively, these studies provide deep insights into the molecular
events that occur during the reprogramming process using integrating viral

vectors.

1.8.1.4 Potential application of iPS cells

Overcoming both immunological rejection and the ethical issues relating to ES
cells, together with the unique ability to continuously self-renew and differentiate
into all cell types in the human body gives iPS cells the potential to revolutionize
the earliest steps of disease modelling and treatment. Therefore, the potential
use of iPS cells as treatments for various disorders has been investigated in

vitro and in vivo.

A proof of principle study for potential clinical applications of iPS cells with
encouraging results was described by Hanna et al in 2007. Tail-tip fibroblasts
isolated from a humanized knock-in mouse model of sickle cell anemia were
transduced with retroviruses encoding for OCT4, SOX2, KLF4, and C-MYC
transcription factors to generate iPS cells. Then the B-sickle mutation in
generated iPS cells was corrected by homologous recombination with a human
BA wild-type globin gene. Haematopoietic progenitors (HPs) derived in vitro
from gene-corrected iPS transplanted into irradiated mice were able to
reconstitute the haematopoietic system of sickle mice and correct their disease
phenotype (Hanna et al., 2007).

64



More recently, neural precursors derived from mouse iPS cells have been
shown to migrate into various brain regions and differentiate into glia and
neurons when grafted into the embryonic cerebral ventricles of parkinsonian
rats. Successfully implanted animals showed functional recovery and significant
improvement in the disease phenotype (Wernig et al., 2008c). Another
therapeutic application of iPS has been evaluated using FVIII expressing
endothelial/endothelial progenitor cells derived from wild-type mouse iPS cells
to treat haemophilia A mutant animals. Transplantation of these iPS-derived
cells into the liver of a preclinical mouse model of haemophilia A resulted in
phenotypic correction of the bleeding disorder. Monitoring plasma levels of FVIII
revealed long-term functional engraftment and structural integrity of iPS-derived
donor cells (Xu et al., 2009b).

Additional technical challenges may be expected when applying these
therapeutic approaches into human diseases therapies. However, several trials
to generate disease-specific iPS cells are presently in progress. Initial
experiments by Dimos et al showed that disease-specific iPS cells can be
produced utilizing skin fibroblasts cells obtained from an 82-year-old patient
diagnosed with a familial form of amyotrophic lateral sclerosis (ALS). Generated
iIPS cells could further be successfully directed to differentiate into motor
neurons, the cell type involved in ALS pathology, providing a potential
therapeutic model and suggesting that iPS generation is not restricted by the

age and the source of the cells (Dimos et al., 2008).

IPS cells were subsequently generated to study disease and drug development.
IPS cells were successfully generated from patients with 10 different single-
gene disorders including Gaucher disease type Ill, Shwachman-Bodian-
Diamond syndrome, Huntington disease, Lesch—Nyhan syndrome and
Parkinson’s disease. The mutation to the wild-type was corrected before
transplantation by gene targeting. The resulting cells were analysed to confirm
that gene repair was perfect and specific, thereby decreasing the safety
concerns of random, viral-mediated gene therapy. Furthermore, all generated
iIPS cell lines expressed markers including OCT4, SOX2, NANOG, REX1,
GDF3 and hTERT and possessed the ability to differentiate into the three germ

layers in vitro (Park et al., 2008). Similarly, primary dermal keratinocytes and
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fibroblasts were obtained from Fanconi Anemia (FA) patients (Raya et al.,
2009). Somatic cells were used either directly or after genetic correction to
generate iPS- cells. IPS cells generated from genetically corrected FA somatic
cells showed disease-free phenotype with fully functional FA pathway.
Furthermore, haematopoietic progenitors of the erythroid and myeloid lineages
were successfully obtained from FA-IPS cells and maintained the disease-free
phenotype of FA-IPS cells. However, iPS cells could not be generated from
patient’s cells before repairing the genetic alteration. Recently Zou et al
reported the first successful gene targeting by homologous recombination in
human iPS cells using an engineered gene-targeting vector expressing a zinc
finger nuclease. This technique increased the efficiency of HR-mediated gene
targeting by almost 200-fold in human ES and iPS cells without detrimental
effects on either cell karyotypes or pluripotency. Therefore, this study provided
a solid foundation to enhance the development of future therapeutic gene
targeting to efficiently create or correct specific mutations in patient-specific iPS
cells (Zou et al., 2009).

Human iPS cells can also be used to model a specific pathology seen in a
genetically inherited disease. Fibroblast cells isolated from a child with spinal
muscular atrophy were used to generate iPS cells. IPS derived neurons
retained the disease genotype and showed selective deficits compared to those
derived from the patient’s healthy mother (Ebert et al., 2009). Disease-specific
IPS cells can also help as a small molecule screening platform for drug
development. IPS cells established from familial dysautonomia patients (FD-
iIPS) were differentiated towards neural crest lineages to model functional
characteristics of pathogenesis in vitro (Lee et al., 2009). This model enabled
the authors to identify a new drug candidate termed “kinetin,” for the treatment
of FD, and further supported the potential use of iPS cell technology in disease
modelling and cell therapy. Professor Schwartz and his colleagues reported
new, positive data in a paper in Lancet from their clinical trials using retinal
pigmented epithelial cells (RPEs) made from human ES cells for treatment of
different forms of macular degeneration (MD). Importantly so far bleeding and
some adverse side effects were reported and appeared related to the delivery
procedure itself and to immunosuppression (Schwartz et al., 2014). Recently, a

Japanese woman in her seventies who had retinal damage owing to a condition
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known as age-related macular degeneration has been received for the first time
ever tissue derived from iPS cells. Cells from the patient's skin were
reprogrammed to produce iPS cells. Then those cells were differentiated into
retinal pigment epithelium cells and grown into a sheet for implantation. No
serious side effects have been reported. However, researchers around the
world are watching to see whether the cells stop the retina from deteriorating
further and whether any side effects develop (Cyranoski, 2014).

Overall, iPS cells present a potentially unlimited source of cells that may be
directed to differentiate into all cell types within the body and used in tissue
engineering, cell replacement therapies and for regenerative medicine
applications. A potential major advantage here is that iPS cells have the ability
to generate other cell types such as neural, endothelial and a smooth muscle
cell which makes them a valuable cell source for urological tissue engineering
compared with other cell types. These are integral cell types that make up the

complete organ.
1.8.1.5 The limitation of using iPS cells in regenerative medicine

The unique nature of iPS cells lies in their capability, when cultured, for
unlimited self-renewal and reproduction of all cell types of the body in the
course of their differentiation; therefore they represent invaluable tools for
research into the mechanism of tissue formation. However, there are also
significant problems associated with the use of these cells in tissue engineering
(Ibarretxe et al., 2012). Pluripotent stem cells present a safety concern because
of their potential to form tumours. When these cells are transplanted in the
undifferentiated state, they form teratomas, tumours derived from all three germ
layers. Currently, the only way to ensure that teratomas do not form is to
differentiate the pluripotent stem cells, enrich for the desired cell type, and
screen for the presence of undifferentiated cells (Zhu et al., 2011). Another
serious problem is the use of potentially harmful genome integrating viruses to
deliver reprogramming factor transgenes. Most iPS cells are prepared by viral
vectors that integrate the reprogramming factors into host genomes, increasing
the risk of tumor formation (Takahashi and Yamanaka, 2006; Brambrink et al.,
2008). The residual presence of integrated transgenes following the derivation

of IPS cells is highly undesirable. The four genes used for the induction of
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pluripotency are recognised oncogenes, thus pose a theoretical risk of
neoplastic development from cells derived from iPS cells. There are substantial
grounds to state that the process of nuclear reprogramming by virus-assisted
factor insertion in the cell genome increases the risk of carcinogenesis (Miura et
al., 2009). This high risk of carcinogenesis is largely, but not exclusively, related
to the integration of c-MYC transgenes (Nakagawa et al., 2008). Several
possible strategies exist for resolving the above mentioned problems including
the development of delivery protocols for non-integrated genetic constructs
(adenoviruses, plasmid transfection, doxycycline-inducible excisable piggyBac
(PB) transposon system), and minimizing the number of genes required for
reprogramming. Another way to reprogram somatic cells consists of delivery of
recombinant proteins rather than genes into the cells to be reprogrammed
(Zhou et al., 2009) or the induction of reprogramming by chemical stimulation
and screening/selection of effective small molecules, thus reducing the amount
of factors delivered to cells (Lyssiotis et al., 2009). The opportunity to obtain
patient-specific iPS cells has brought a big hope on the prospect of future tissue
engineering regenerative therapies by cell transplant since these new
pluripotent cells circumvent two of the main problems traditionally associated
with human ES cells (ethical issues and the possibility of rejection of the
transplanted cells by the host immune system). One can confidently state that
both iPS cells and their derivatives are potent instruments applicable in cell
replacement therapy. Their use for tissue regeneration, however, poses
considerable health risks, with research into their clinical value still in the

earliest stages (Medvedev et al., 2010).

1.8.1.6 “Retentive” memory of reprogrammed cells

Although iPS cells were shown to be similar to ES cells with respect to gene
expression of pluripotency markers and the ability to differentiate into cell types
from the three embryonic germ layers both in vitro and in teratoma assays,
differences between iPS cells and ES cells in their gene expression profiles
(Chin et al., 2009), differentiation abilities (Feng et al., 2010), and persistence of
donor-cell gene expression (Ghosh et al., 2010; Bar-Nur et al., 2011) have been
recently documented. It has been shown that iPS cells at low passages display
an epigenetic memory inherited from the original somatic cell that will likely

favour iPS cell differentiation towards lineages related to that cell (Chin et al.,
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2009; Marchetto et al., 2009; Kim et al., 2010). Genome wide expression
analysis of human iPS cells and their embryo derived counterparts showed that
early- and late-passage iPS cells have different gene expression signatures,
where late-passage appeared to be much more similar to their embryo-derived
counterparts than early-passage iPS cells. Analysing the expression differences
between early-passage iPS cells lines and their related human ES cells showed
that most of the genes highly expressed in iPS cells versus ES cells were
associated with differentiation. Although extended passaging significantly
reduced these transcriptional differences, late passage iPS cells were still
distinguishable from ES cells. These transcriptional differences didn’t appear to
be due to differences in histone modification patterns (Guenther et al., 2010)
suggesting insufficient suppression of somatic genes or insufficient induction of
pluripotent genes (Chin et al., 2009; Marchetto et al., 2009). Other studies also
revealed unique DNA methylation and gene expression patterns that are
inherited from a parental cell following reprogramming in both human and
mouse iPS (Kim et al., 2010; Lister et al., 2011; Ohi et al., 2011).

Mouse iPS cells in very low-passage were found to maintain a DNA methylation
memory of their somatic tissue of origin that may influence their differentiation
propensity toward tissue specific fates related to that origin, and limiting other
cell destinies (Kim et al., 2010; Polo et al., 2010). These data are consistent
with previous reports, which indicate that cell origin influences reprogramming
efficiency (Aoi et al., 2008; Maherali et al., 2008; Miura et al., 2009).
Importantly, this epigenetic memory may only appear upon differentiation when
the particular loci that retained epigenetic marks are expressed and not in the
pluripotent state. Methylation, faulty restoration of bivalent domains and loss of
key factors that mediate repression of genes expressed only in differentiated
cells constitute suggested mechanisms of epigenetic memory in iPS cells (Kim
et al., 2010; Polo et al., 2010). In accordance with these findings, gene
expression and DNA methylation analysis of human iPS cells established from
different cell origins showed that iPS cells retain a residual transcriptional
memory of the original somatic cell which can be partially identified by inefficient
promoter DNA methylation and silencing of somatic genes. Inhibition of
C9orf64, one of the main incompletely silenced genes in iPS cells significantly
decreased the efficiency of iPS generation suggesting that such genes may be
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required during reprogramming therefore continue to be expressed in nascent
iIPS cells. Notably most of these findings were associated with early passage
iIPS cells (Ohi et al., 2011). However, much additional research will be
necessary to understand how this memory varies among different cell types and
tissues. Interestingly, the presence of a tissue-specific epigenetic memory might
be of benefit rather than a hindrance through generation of iPS cells that retain
the ability to differentiate into a specific cell type.

Recently Bar-Nur et al utilised a genetic lineage-tracing approach for monitoring
the origin of reprogrammed cells and evaluating the differentiation potential of
iIPS cells derived from human beta cells (BiPS). Generated BiPS cells were
found to retain an epigenetic memory during their expansion in vitro that may
preferentially drive their differentiation more readily into insulin producing cells.
BiPS cell lines showed a typical ES-like morphology, expressed most
pluripotency markers at both RNA and protein levels, silenced the retroviral
transgenes, maintained a normal diploid karyotype and generated cells from all
three embryonic germ layers. Importantly, the linear correlation coefficient
between BiPS cells and ES cells was very similar to the correlation coefficient
between two different ES cell lines (R = 0.94). These observations collectively
indicated that BiPS cells were truly reprogrammed pluripotent cells. Chromatin
immunoprecipitation showed epigenetic imprint preserved in the INSULIN and
PDX1 gene promoters in BiPS cell lines at similar levels to those of beta cell-
derived (BCD) progeny, while not detected in non-beta pancreatic iPS (PiPS)
cell lines, iPS cells derived from fibroblasts, or ES cells of similar passage
numbers. Similar epigenetic memory was observed at the DNA methylation
level with unique DNA methylation signature in BiPS cells that segregated them
from BCD, PiPS cells lines, iPS cells, and ES cells. The authors next
investigated if that observed epigenetic memory may skew the differentiation of
BiPS cells into insulin producing cells and found that differentiated cells derived
from BiPS cells expressed higher levels of INSULIN, PDX1, and FOXA2
compared to differentiated cells derived from PiPS cell lines, iPS cells, and ES
cells of similar passage numbers, suggesting preferential lineage-specific
differentiation in BiPS (Bar-Nur et al., 2011). Therefore, it is essential to
generate human iPS cells from different tissues and compare their safety and
differentiation capacities.
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Consistent with these results iPS cells derived from murine ventricular myocytes
showed a dramatically higher tendency to re-differentiate back to cardiovascular
progenitors and contribute to functionally beating cardiomyocytes as compared
to genetically matched ES cells or iPS cells derived from tail-tip fibroblasts (Xu
et al., 2012). Global gene expression and DNA methylation analysis of these
iIPS cells showed a distinct transcriptional and epigenetic signature that may
potentially be involved in directing iPS cells to ventricular myocytes fate. Later
Lee et al extended these studies to demonstrate that the differentiation potential
of iPS cells may depend on the lineage stage-specific differentiation state of
donor cells. iPS cell lines established from hepatic lineage cells at an early
stage (hepatoblast) can differentiate more effectively toward hepatocytic lineage
as compared to iPS cells established from adult hepatocyte (late stage), mouse
embryonic fibroblasts, or mouse ES cells (Lee et al., 2012). All the generated
iIPS cell lines showed ES cell-like morphology, expressed pluripotency markers
and underwent multilineage differentiation in vitro and in vivo demonstrating
their complete reprogramming. Moreover, a global gene expression analysis of
hepatoblast derived iPS cells also exhibited a unique gene expression
signature, which clearly differentiated them from iPS cells established from adult
hepatocyte as well as mouse ES cells. These differences in gene expression
were suggested to be responsible for the variability observed in differentiation
potency. Comparison of the gene expression profiles of the hepatoblast derived
iIPS cells and parental cells allowed identification of 24 genes (7 upregulated
and 17 downregulated genes) as the hepatoblast derived-iPS cells specific

donor memory genes.

Based on this literature, we hypothesised that iPS cells generated from urinary
tract specific tissue is better able to regenerate differentiated bladder tissue
than conventional skin fibroblast derived iPS cells. To this end, stromal cell
isolated from the lower urinary tract were transduced with lentiviral vectors
encoding the four pluripotency-inducing factors, OCT4, SOX2, KLF4, and C-
MYC in a single polycistronic construct. The cDNA was further ‘Floxed’ by LoxP
sites to ensure deletion of the viral genome once the cells attained their
‘ground-state’. Transduced cells were subjected to an optimized protocol
involving the use of pluripotent-cell as well as feeder cell-conditioned media. A
total of 31 clones from 5 different patients have been generated. The resultant
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cells silenced the lentiviral transgenes, and maintained a normal diploid
karyotype and their credibility were further corroborated by means of ‘paternity’
tests showing an identical DNA identity match between parent and the resultant
UT-iPS cells for a panel of microsatellite markers. All the UT-iPS cells
expressed embryonic stem-cell characteristics. The cells were expressed
endogenous pluripotency genes in comparable levels to human ES cells and
gave rise to differentiated cells representing all the three germ layers in vitro, as
judged by EB formation assay, and in vivo, as evidenced by teratoma formation
assay. Taken together, these results demonstrate that UT-iPS cells are truly
reprogrammed pluripotent cells. We have also found that these UT-iPS cells
show preferred differentiation towards bladder tissues suggesting that a tissue-
specific molecular and epigenetic imprint may remain contained during iPS cells

reprogramming.
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Hypotheses:

IPS cells generated from urinary tract specific tissue (UT-iIPS) are better able to
regenerate differentiated bladder tissue than conventional skin fibroblast
derived iPS cells (skin-iPS).

Aims:

- Generation of induced pluripotent stem cells from stromal/ urothelial cells

isolated form the urinary tract tissue (UT-IPS) cells.

- Evaluate the potential of UT-iPS cells to differentiate into bladder specific cells

compared with the conventional skin-iPS cells.
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2 Chapter 2. Materials and methods

2.1 Cell culturing and maintaining
3.1.9 Cell line culture: Normal Human Dermal Fibroblast (NHDF) cells

NHDF cells were kindly donated by Prof. Majlinda Lako (Institute of Genetic
Medicine, Newcastle University). Cells were cultured in RPMI1640 medium with
HEPES modification (Sigma) supplemented with 10% heat inactivated foetal
bovine serum (FBS) (GIBCO, Life Technologies) and 1% L-glutamine (2mM)
(Sigma). Cells were passaged approximately every week and the medium was
changed every 48 hours. The main purpose for growing these cells is to be

used as control cell line for iPS induction.
3.1.10 Primary tissue culture

The urothelium is defined as the epithelial cells lining the surface of the renal
pelvis, ureter, bladder, and proximal urethra; therefore, we used the urothelium
isolated from human bladder and ureter as a model for studying the urothelial
cells. All surgical specimens were collected after conforming to ethical
guidelines and had full patient consent. Samples of bladder and ureter were
obtained from patients undergoing various urological procedures with no history
of urothelial dysplasia or malignancy (Department of Urology, Freeman
Hospital, Newcastle Upon Tyne, UK). Samples were taken to the laboratory as
promptly as possible. All procedures were performed under sterile conditions.

2.1.1.1 Isolation and culturing of human urothelial cells

Two methods were used to isolate and grow human urothelial cells in vitro,
primary explant culture, and enzymatic digestion method described by
Southgate et al (Jennifer Southgate, 2002; Southgate et al., 2007).

[.  Primary explant culture

Ureter samples were opened longitudinally and the urothelium attached to

underlying tissues was separated mechanically using fine curved scissor and

forceps (sterilized tools were used to prevent any cross-contamination), and cut

into small pieces (=2x2 mm). Tissue pieces were placed into 90 mm Petri dish

(Figure 2-1) (approx 5 pieces/dish) containing 2-3 ml of keratinocyte serum-free
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medium (KSFM) supplemented with epidermal growth factor (EGF, 5 ng/ml) and
bovine pituitary extract (BPE, 50 pg/ml) as provided by the manufacturer
(GIBCO, Life Technologies) as well as 1% Penicillin-Streptomycin (Sigma), the
medium was further supplemented with 30 ng/ml of cholera toxin (Sigma) to
improve cell attachment, this medium was called Complete Keratinocyte Serum-
Free Medium (KSFMc). Using low calcium concentration, bovine pituitary
extract, and other supplementary growth factors have been found to promote
the growth of epithelial cells and enable for higher serial passages in culture
(Chaproniere and McKeehan, 1986). Cultures were kept at 37°C and in a
humidified atmosphere of 5% CO,. The medium was replaced every 2-3 days.
Explants outgrowth was maintained until a significant number of cells were
obtained. Cells were passaged as follows: after removing the explants and
medium from the dish, 1.5 ml of 0.05% trypsin (Sigma) was added and
incubated at 37°C for about 5 minutes. Once all the cells were lifted off, the
trypsin was diluted by adding 5 ml of KSFMc. Cells were centrifuged at 1200 x
rpm for 4 minutes, re-suspended in fresh medium, and seeded into flasks or

Petri dishes depending on the density of the cells.

Urothelium

The urothelium separated mechanically
with scissor and forceps

Stroma

O . o
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> < ] o L
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Fragments were plated Isolated urothelium was
into 90 mm petri dish minced to small fragments

Figure 2-1: A schematic drawing for the initial steps of the primary explant
culture.
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II. Enzymatic digestion

Samples were dissected into approximately 1-2 cm? pieces. Each piece was
placed into 10 ml of stripper medium (Table 2-1) for 4 hours at 37°C or
overnight at 4°C to detach the urothelial cell sheets from the underlying stroma.
The urothelium sheets were then scraped gently from their stromal counterparts
using forceps and centrifuged at 1200 x rpm for 4 minutes. The resulting pellet
was further disaggregated by treating with 2ml of collagenase type IV 100 U/mi
(Sigma) for 20 minutes at 37°C. Cells were centrifuged and were further purified
through MACS separation with the help of MACS microbeads linked to an
antibody against the HEA (Human Epithelial Antigen/CD326/EpCAM/) antigen
(Miltenyl Biotech Ltd., Surrey, UK). CD326 positive urothelial cells were seeded
into 60mm tissue culture dish and maintained in KSFMc at 37°C and in a
humidified atmosphere of 5% CO. in air. Because the initial yield of urothelial
cells was in most cases very low, we found that culturing cells initially into
60mm tissue culture dish rather than 90mm culture dishes increased culture
success rate since it ensured that the cells are more close to each other.
Cultures were passaged as follow: the medium was removed and the cells were
treated with phosphate buffered saline (PBS) containing 0.1% (w/v) EDTA for 5
minutes at 37°C, followed by incubation in 1 ml of trypsin-versene (containing
0.25% (w/v) trypsin and 0.02% (w/v) EDTA) to detach the cells. Cells were re-
suspended in KSFMc containing trypsin inhibitor (Sigma) and collected by
centrifugation at 1200 x rpm for 4 minutes. The supernatant was aspirated and

the cells were resuspended in KSFMc medium and plated into two 60mm tissue

culture dish.

Stripping solution
Components Quantity Supplier
Hanks' Balanced Salt Solution (HBSS) without | 500ml Invitrogen
Ca?* and Mg
1% (w/v) EDTA 50ml Sigma
1 M HEPES buffer pH 7.6 5ml Sigma
Aprotinin(500,000-KIU) 1ml (20 KIU) | Sigma

Table 2-1: Stripping solution composition.
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lll. CD326 magnetic activated cell sorting (MACS)

We used the MACS Kit provided by Miltenyi Biotec and CD326 microbeads to
enrich for epithelial cells. Briefly, cells were incubated in 300 ul MACS buffer
(1xPBS, 0.25%FCS, and 2mM EDTA), 100 ul FcR Blocking Reagent human (to
increase the specificity of labelling with MACS Micro Beads), and 100 pl of
CD236 MicroBeads conjugated to monoclonal antibody (Miltenyi Biotech,
Bergisch Gladbach, Germany) for 30 minutes at 4 °C. Following incubation,
cells were washed with cold MACS buffer, and centrifuged at 300 x g for 10
minutes at 4°C. Finally, cells were re-suspended in 500 ul of MACS buffer. For
cell sorting, the magnetic separation MS column was placed in the magnetic
field and prepared by rinsing with 500 pl of MACS buffer. The cell suspension
was applied onto the column. CD326 positive cells remained on the column in
the magnetic field whereas unlabeled cells (CD326 negative cells) flowed
through and were collected in a universal tube. Immediately after removing the
column from the separator, the labelled cells were flushed out to another

universal tube with 1 ml MACS buffer and plunger.

2.1.1.2 Isolation and culturing of human urinary tract stromal cells

All stromal cells were propagated and maintained in RPMI1640 media with
HEPES modification (Sigma) supplemented with 10% FBS, 1% L-glutamine
(2mM), and 1% Penicillin-Streptomycin (Sigma). This medium was called full
RPMI1640 medium. Firstly, the stroma layer from which the urothelium had
been detached was minced with sterile scissors to ensure increased surface
area for digestion (Figure 2-2). Then, resulting tissue pieces were digested by
incubating with 250 U/mg of collagenase Type | (LS004196, Worthington, Lorne
Laboratories, Reading, UK) overnight at 37°C with stirring. Collagenase |
solution was prepared by dissolving 20mg of Collagenase IV powder in 20 ml of
full medium RPMI1640. The cell suspension was mechanically disrupted by
aspiration back and forth through a 21 gauge (21G) needle to homogenise and
increase yield. Cells were then washed with PBS and centrifuged at 1500 x rpm
for 5 minutes. Finally, cells were seeded in 25cm? flask containing 5ml of full
medium RPMI1640. Stromal cells were passaged when approximately 85%
confluent using either 75cm? or 175cm? flasks (Corning, UK) and maintained at

37°C in a humidified atmosphere of 5% CO in air. Subculture was achieved as
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follows: after removing the medium, cells were washed 1 x with PBS and
detached from culture surface enzymatically by treatment with 2-3 ml of 0.05%
trypsin solution and incubating at 37°C for 5 minutes. Then trypsin was
neutralised by adding 8 ml of full medium RPMI1640. Cells were centrifuged at
1500 x rpm for 5 minutes and re-suspended in appropriate amount of full

medium RPMI1640 depending upon flask size.

Urothelium

Stroma

ﬁ Isolated Stroma was minced to

- small fragments

(5.2
lTB)

Pellet was seeded Overnight incubation at 37Ce
into 60-mm dish with collagenase Type |

Figure 2-2: A schematic drawing of the initial steps in isolation and culturing the
urinary tract stroma.

2.1.1.3 Freezing and thawing human urinary tract cells

We couldn’t freeze the urothelial cells because the yield of these cells was in
most cases very low. 80-90% confluent T175 flask of stromal cells was washed
with PBS and incubated with 5 ml of 0.05% trypsin for 5 minutes at 37°C. The
cells centrifuged at 1500 x rpm for 5 minutes, and the supernatant was
discarded and replaced with 1 ml of fresh prepared freezing medium (Table 2-2)
per original T175 flask of stromal cells. Cell suspension was transferred to
cryopreservation cryovials (Nunc) and stored in a -80°C freezer. To retrieve
frozen cells, a cryovial was rapidly transferred into 37°C water until most of the
contents were thawed. Thawed cells were immediately washed with 9 ml pre-

warmed RPMI1640 full medium and centrifuged at 1500 x rpm for 5 minutes at
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room temperature. The cells pellet was re-suspended in 10 ml of RPMI11640 full
medium and plated into T75 culture flasks. After 24 hours, the medium was
changed and the cells were monitored for adherence and potential

contamination.

Freezing medium

Components Quantity | Supplier
RPMI1640 8 ml Sigma
Dimethyl sulfoxide (DMSO) 1ml Sigma
Heat treated foetal bovine serum (FBS) 1ml Invitrogen

Table 2-2: Freezing Mixture Composition.

3.1.11 Pluripotent stem cell culture

2.1.1.4 Culturing UT-iPS cells on MEF feeder cells.

Human UT-iPS cells were routinely cultured in a 0.1% gelatin coated 6-well
plate (Corning, UK) and were maintained on a layer of mouse embryonic
fibroblast (MEF) feeder cells in human ES cell medium (Table 2-3). UT-iPS cells
were checked microscopically to assure cell growth and sterility and maintained

as mycoplasma negative.

Human Embryonic stem cell medium

Components Quantity Supplier
Knockout-Dulbecco’s Modified Eagle’s 120ml — 80% Invitrogen
Medium (KO-DMEM)

Knockout-Serum Replacement (KO-SR) 30ml — 20% Invitrogen
MEM Non-Essential Amino Acids (100X), | 1.5ml — 1% Invitrogen
liquid

Penicillin-Streptomycin Solution 1.5ml - 1% Sigma
Basic Fibroblast Growth Factor (B-FGF) 120pl- 8ng/ml | Invitrogen
GlutaMAX™-| Supplement, 200 mM 1.5ml-2mM Invitrogen
B-mercaptoethanol 2ul- 100uM Sigma

Table 2-3: Human Embryonic Stem Cell Media Composition.
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2.1.1.4.1 Preparing gelatin coated culture plates

To improve their adhesion and attachment, MEF cells were plated onto 0.1%
gelatin-coated plates. To prepare the gelatin solution, 1 gram of gelatin powder
was dissolved to 100ml of distilled sterile water. This was autoclaved, dispensed
into 50ml of 1% gelatin aliquots, and stored at -20°C. To make 0.1% gelatin, 50
ml of 1% gelatin was dissolved in 450 ml sterile distilled water. A gelatin-coated
6-well plate was prepared by placing 1 ml of this 0.1% gelatin into each well.
These gelatinised plates were incubated in a sterile environment for 30 minutes
at room temperature or for 2 hours at 37°C, and the gelatin solution was only

removed immediately prior to plating of irradiated MEFs.

2.1.1.4.2 Thawing and preparing MEF feeder plates

UT-iPS cells were maintained on irradiated MEF cells, passage 3, purchased
from VhBio. MEF cells were derived from CF-1 mouse embryos at day 13 and
mitotically inactivated by treatment with irradiation. The cells can be directly
plated onto gelatin coated plates. Frozen stocks of MEFs were stored at -80°. At
a time point 24 hours prior to use, cells were thawed as quickly as possible in a
37°C water bath, with gentle shaking by hand and transferred to a 20 ml
universal centrifuge tube (Sterilin, UK) and washed by adding 10 ml of complete
MEF medium (DMEM medium with HEPES modification supplemented with
10% FBS and 2mM L-Glutamine) dropwise, slowly with swirling and centrifuged
at 1500 x rpm for 5 minutes. The cells pellet was re-suspended with an
appropriate volume of complete MEF medium and directly plated at a
concentration of 5 x 10* cells / cm? on pre-gelatinised 6-well plates. The MEF
coated plates were ready to use 24 hours after plating and always used within 5

days.
2.1.1.4.3 Preparation of MEF- conditioned medium (MEF-CM)

MEF cells were plated at a density of 5 x 10* cells / cm? on pre-gelatinised 6-
well plates in complete MEF medium. The following day, the MEF medium with
2ml/well of human ES cell medium was replaced, and incubated at 37°C, and
5% CO,. The MEF-CM was collected from the wells every 24 hours and
sterilized by passing it through 0.22 uM disposable filter. MEF-CM was collected
for up to seven days using this procedure. MEF-CM was used fresh (within 3
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days), otherwise frozen at -80°. Non-inactivated cell lines were also maintained
in culture so as to generate feeder-conditioned media. These cells were
routinely checked to assure cell growth and sterility and were maintained as

mycoplasma negative.

2.1.1.4.4 Passaging UT-iPS cells onto MEF feeder cells

A plate which contained UT-iPS colonies that cover 80-90% of each well was
ready to be passaged in a ratio of 1 to 3. One day before splitting UT-iPS cells,
a new MEF plate was prepared. The complete MEF medium was replaced on
the day of UT-iPS cells culture with 2 ml of human ES cell medium. UT-iPS
cultures were split using mechanical and enzymatic dissociation passaging
using a dissecting microscope within a laminar flow cabinet. UT-iPS colonies
were washed with 1XPBS and treated with 1ml per well of prewarmed
Collagenase IV solution (1mg/ml, GIBCO, Life Technologies) for 5-8 minutes at
37°C until the edge of the colonies could be clearly defined and appeared
slightly raised from the surrounding MEF cells. At this point the Collagenase
was replaced with 2 ml of fresh human ES cell medium. To maintain the general
undifferentiated state of the culture, the differentiated regions were identified
morphologically and excised manually using a dissecting microscope within a
laminar flow cabinet with P20/200 sterile plastic Gilson tip. The remaining
undifferentiated colonies were scored with a 29 gauge (29G) needle or a P20
Gilson pipette tip into small clumps and transferred with a P200 pipette to new
6-well MEF plates and mixed gently to spread the clumps evenly over the well.
The plate was incubated at 37°C in 5% CO, for 24 hours to allow cells to
adhere to the bottom. Medium was changed the following day and every second
day thereafter and colonies were monitored daily with any differentiated area of
cells removed. Care was taken to avoid disaggregation of UT-iPS colonies to
single cells during passaging, as this will significantly decrease their survival
efficiency. On average, UT-iPS colonies were plated at a density of ~250-300
colonies per well/6-well plate. 5-7 days post-passage, the colonies reached 80-

90% confluent within the wells and were then transferred into fresh MEF plates.
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2.1.1.5 Culturing UT-iPS cells under feeder-free conditions

Human UT-iPS cells were cultured in 6-well culture plates coated with BD
Matrigel™ human ES cell-qualified Matrix (354277, BD Biosciences, Bedford,
UK) and maintained in a defined serum-free media mTeSR™1(05850, StemCell
Technologies.) that was changed every 24 hours. To prepare the mTeSR1
medium, the 100ml mTeSR1 5X supplement was thawed overnight at 2 - 8°C
and added to 400 ml basal medium for a total volume of 500 ml. The complete
mTeSR™ medium was dispensed into working aliquots and stored at -20°C for
up to 6 months. Thawed aliquots were stored at 4°C and used within two
weeks. Under these conditions, UT-IPS cells were grown in colonies and

passaged about every 5-7 days at split ratio of 1:6.
2.1.1.5.1 Preparing Matrigel-coated culture plates

The BD Matrigel™ matrix was thawed overnight at 4°C on ice. Once thawed,
the vial was swirled to ensure the Matrigel was evenly dispersed. The content
was aliquoted into smaller working volumes (160 ul) and stored at -80°C for up
to 6 months. BD Matrigel was kept on ice at all times while handling, aliquoted
as quickly as possible using pre-cooled tips and refrozen immediately to prevent
it from gelling. Multi freeze- thaw was avoided. According to the dilution factor
provided on the certificate of analysis, each aliquot can be used to coat two 6-
well plates. To coat the plate, the BD Matrigel aliquot was thawed on ice and
mixed with 13 ml of cold DMEM/F-12 (Sigma). Immediately, the wells were fully
coated with the diluted BD Matrigel solution using 1ml/ well of a 6 well plate.
The plates were incubated at room temperature for at least 1 hour before use.
Otherwise the plates were sealed with Parafilm to prevent evaporation of the
BD Matrigel solution and stored at 4°C for up to 7 days after coating. Stored
coated plates were kept at room temperature for 30 minutes before use. Just
before plating the UT-IPS cells, the BD Matrigel solution was carefully removed
using a pipette without scratching the coated surface followed by adding 2ml of
complete mTeSR1 medium.
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2.1.1.5.2 Passaging UT-iPS cells under feeder-free conditions

UT-iPS colonies were passaged when about 80% of the culture surface was
covered with colonies. Before passaging, differentiation areas were visually
detected and removed by scraping with a pipette tip using an inverted
microscope in a laminar flow cabinet. To passage, undifferentiated UT-iPS
colonies were washed with DMEM/F-12 medium (2 mL/well) and loosened from
the Matrigel by incubation with 1 ml/well of dispase (07923, StemCell
Technologies) at a concentration of 1 mg/ml at 37°C for 5-7 minutes. Once the
edges of the colonies start curling up, the dispase solution was removed and
the cells were gently washed with 2 ml/well of DMEM/F-12 medium to dilute
away any remaining dispase. Then 2 ml/well of mTeSR1 medium was added
and the colonies were gently scraped from the substrate with a glass pipette
and broken into pieces. These pieces were transferred onto new Matrigel-
coated culture wells and grown in mTeSR1 medium. The new plates were then
placed in an incubator and agitated a few times to disperse the colonies evenly
over the whole surface. Starting 24 hours after passaging, the cells were

monitored daily and the medium was changed every other day.

2.1.1.6 Freezing and thawing of UT-iPS cells

IPS cells have a low viability when split to single cells and are therefore
routinely passaged as aggregates or clumps of cells. Unfortunately, when these
cells are frozen, their viability upon thawing is particularly low making freezing
and reconstituting of iPS cells a real challenge. Cryopreservation was done at
the time when they were ready for passaging where wells are 80 % confluent.
Before freezing, the UT-iPS cell culture was checked to ensure that it was at a
suitable confluency, healthy situation and free of contamination. UT-iPS clumps
were stored using both slow (Cryovial Cryopreservation) and fast (Vitrification)
freezing methods. Vitrification is a rapid process and usually provides better
post-thaw recovery rate of iPS cells compared to that in slow freezing
procedure. However, the latter one is generally more conveniently performed

and hence desired.
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2.1.1.6.1 Slow freezing of the UT-iPS cells

I. Cryopreserving using DMSO:

Cell aggregates were collected as per routine UT-iPS cells passaging and kept
as big as possible. Cells were pelleted at 200g for 4 minutes at room
temperature. During the spin, the freezing medium was prepared, which
contains: 50% human ES cell medium and 50% cryopreservation medium
(Table 2-4). The supernatant was aspirated and the cells pellet was
reconstituted in 200pl of freezing medium and mixed quickly and gently. It has
been previously shown that the addition of Rho-associated Kinase (ROCK)
inhibitor Y-27632 to the freezing medium minimises cell apoptosis and
significantly enhances survival by as much as 27 fold (Watanabe et al., 2007).
Cells harvested from one 6-well plates were frozen in 1 cryovial, to this 10uM of
ROCK inhibitor (Stemolecule ™ Y27632, Stemgent) was added and the
cryovials were placed in a -80°C freezer for short term storage and were later

transferred to liquid nitrogen (-196°C) for long-term storage.

Cryopreservation medium(x10)

Components Quantity Supplier
Heat Treated Foetal Bovine Serum (FBS) 600ul- 60% | Invitrogen
DMSO 200pl- 20% | Sigma
HESC Media 200pl- 20% | -
Y-27632 Rho-associated Kinase (ROCK) 10uM Stemgent
inhibitor

Table 2-4: Cryopreservation medium composition.

lI. Cryopreserving using STEM-CELLBANKER:

Cells were harvested as per routine UT-iPS cells passaging. Cell clumps were
centrifuged at 2009 for 4 minutes at room temperature, the supernatant was
removed and cells were gently suspended with 1 ml STEM-CELLBANKER
cryopreservation medium (11890, AMSBIO LLC) with no other supplements and
transferred to one cryovial. Cryovials were directly placed in a -80°C for storage.
For every well of a 6-well plate being frozen 1 mL of STEM-CELLBANKER was

used.
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2.1.1.6.2 Cryovial cryopreservation thawing

To thaw the UT-iPS cells, we removed the frozen UT-iPS Cryovial from the
liquid nitrogen storage tank and quickly thawed the cells by swirling gently in a
37°C water bath. The vial was wiped with 70% Ethanol and the cells were
washed with 10 ml of human ES cell medium. Cells were centrifuged at 200 x g
for 4 minutes at room temperature and the cells pellet was resuspended in 2 ml
of fresh human ES cells medium containing 10 um ROCK inhibitor and plated in
one well of a freshly prepared 6-well culture plate. The medium was changed
the following day, and subsequently every 2 days. Small colonies initially
appeared after one week. In our hands, unfortunately, only 1-5 colonies can
often be recovered when used 10% DMSO to freeze the UT-iPS cells. However,
we found that about 50% of the UT-iPS cells cryopreserved with STEM-
CELLBANKER were recovered.

2.1.1.6.3 Fast freezing of UT-iPS cells

Protocol courtesy of Dr. Sun Yung and Professor Majlinda Lako (Institute of

Genetic Medicine, Newcastle University, International Centre for Life.).
I. Open straw vitrification freezing:

This procedure allows high cooling and warming speeds which helps to avoid
chilling injury and minimise toxic and osmotic harm to the cells.
Collagenase/dispase treated UT-IPS colonies were collected as pieces that are
larger than those used for passaging and placed into well number 1 (Figure 2-3)
of a 4-well vitrification plate (TKT-190-130V, Thermo Scientific Nunc )
containing 500 pl of ES-HEPES solution (Table 2-5) for 1 minute at 37°C. 8 to
10 colony pieces were transferred to well number 2 which contains 500 pl of
10% vitrification solution (Table 2-6) and incubated for 1 minute at 37°C. During
this minute, a 20 pl drop of 20% vitrification solution (Table 2-8) was placed on
the inside of the lid of the plate, one per straw to be frozen. The colony pieces
were transferred to well number 3 containing 500 pl of 20% vitrification solution
(Figure 2-3) and incubated for 25 seconds at 37°C. The colony pieces were
transferred to the 20 pl drop of 20% vitrification solution. The colony fragments

were aspirated in a 3 pl volume from the 20 pl drop and deposited as a
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separate small, peaked droplet on the lid (Vajta et al., 1998). The narrow end of
the vitrification straw was immediately inserted into the side of the 3 ul drop at a
30° angle to the plane of the dish, and the pieces were sucked up into the straw
by capillary action. The straw was plunged into liquid nitrogen at a 45° angle

and stored in a labelled tube within a nitrogen storage canister.

Well | Solution/Media

1 ES-HEPES
2 10% Vitrification

3 20% Vitrification

7N

20 pl droplet 3 ul droplet

Figure 2-3: Open straw vitrification plate — freezing.

ES-HEPES solution

Components Quantity | Supplier
Knock Out-Dulbecco’s Modified Eagle’s | 15.6ml Invitrogen
Medium (KO-DMEM)

Heat Treated Foetal Bovine Serum (FBS) aml Invitrogen
HEPES (1M) 0.4ml Sigma

Table 2-5: ES-HEPES solution composition. Stored at 4°C for up to one week.
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10% Vitrification solution

Components Quantity Supplier
ES-HEPES Solution 2ml -
Ethylene Glycol 0.25ml Sigma
DMSO 0.25ml Sigma

Table 2-6:10% Vitrification solution composition. Stored at 4°C. Unused solution

discarded after each day.

1M sucrose stock

Components Quantity Supplier
Sucrose 3.42g Sigma
ES-HEPES Solution 14ml -

Heat Treated Foetal Bovine Serum (FBS) | 2ml Invitrogen

Table 2-7: 1M sucrose stock composition. Stored at 4°C. Unused solution

discarded after each day.

20% Vitrification Solution

Components Quantity | Supplier
ES-HEPES Solution 0.75ml -

1M Sucrose Stock 0.75ml -
Ethylene Glycol 0.5ml Sigma
DMSO 0.5ml Sigma

Table 2-8: 20% Vitrification solution composition. Stored at 4°C. Unused

solution discarded after each day.

II.  Open straw vitrification thawing

A 4 well vitrification thawing plate was prepared as follow:

500pl of 0.2M sucrose solution (Table 2-10) was pipetted into well number 1
(Figure 2-4), 500l of 0.1M sucrose solution (Table 2-9) was pipetted into well
number 2, and 500ul of ES-HEPES solution (Table 2-5) was pipetted into wells
number 3 and 4. The tube that containing the vitrification straw in vitrification
solution was collected from nitrogen storage in a receptacle containing liquid

nitrogen. The straw was removed using forceps and immediately the narrow

end was submerged into the first well containing 0.2M sucrose solution
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(Figure 2-4) at 30° angle to the plane of the plate. As soon as the liquid column
melts, a 10 pl pipette was placed at the top end of the straw and the liquid was
gently pipetted out. After 1 minute at 37°C, the colony pieces were transferred
to the next well containing 0.1 M sucrose solution and incubated for 5 minutes
at 37°C. The colony pieces were transferred to the next well containing ES-
HEPES medium and incubated for 5 minutes at 37°C, and then the pieces were
moved to ES-HEPES solution in well number 4 and incubated for a final 5
minutes at 37°C. The fragments were harvested and placed into a single well of

a 4-well plate which contained MEF cells in 500 ul of human ES cell medium.

1 0.2M Sucrose
2 0.1M Sucrose
3 ES-HEPES
4 ES-HEPES
Figure 2-4: Open straw vitrification plate - thawing.
0.1M sucrose solution
Components Quantity Supplier
ES-HEPES Solution 4.5ml -
1M Sucrose Stock 0.5ml -

Table 2-9: 0.1M sucrose solution composition. Stored at 4°C. Unused solution
discarded after each day.

0.2M sucrose solution

Components Quantity Supplier
ES-HEPES Solution aml -
1M Sucrose Stock 1ml -

Table 2-10: 0.2M Sucrose solution composition. Stored at 4°C. Unused solution
discarded after each day.
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2.2 Optimizing the transduction efficiency

The optimal transduction efficiency was regarded as the MOI that would be
sufficient to transduce the majority of the target cells with the least toxicity.
Urinary tract stromal cells were seeded at 50,000 cells/well of a 6-well plate and
transduced with MOls of 2, 5, 10, 20, and 30 using mWasabi GFP empty
lentiviral vector (Allele Biotech, USA) in the presence of polybrene 10ug/ml (TR-
1003-G, Millipore, Massachusetts, USA) for 48 hours after which GFP
expression was analysed and compared against a polybrene-only control (or
MOI = 0). All FACS analysis was performed on FACSCalibur system using FL1-
H channel for GFP detection and Cyflogic for analysis and interpretation of

results.
2.3 Cell viability analysis by flow cytometry

Cells were exposed to polybrene at concentrations ranging from 0 to 20ug/ml

for 48 hours. Cells were collected and resuspended in 500ul of MACS buffer.

Immediately before injection into the flow cytometry, 20ul of Img/ml propidium
iodide (PI, Sigma) was added to each sample. Samples with low PI staining

were considered viable, while PI-high cells were considered unviable.

2.4 Alkaline phosphatase staining

Alkaline phosphatase (ALP) activity was analysed in the UT-iPS cells after five
days in culture and at low to medium density. The cells were fixed with 4%
Paraformaldehyde in PBS for 1-2 minutes maximum as fixing for longer period
will result in the inactivation of alkaline phosphatase. Fixed colonies were
washed with 1 X wash Buffer (20mM Tris-HCL, pH 7.4, 0.15 NaCl, 0.05%
Tween-20). The colonies were then treated with Fast Red Violet, AS-BI
phosphate solution and distilled water in a 2:1:1 ratio and incubated in the dark
at room temperature for 15 minutes after which the staining solution was
removed and the colonies were washed again with 1 X wash buffer. The cells
were covered with 1 X PBS to prevent drying and observed under observed
under light microscope for AP expression.
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2.5 Live immunofluorescence staining

Live cell imaging of emerging colonies was performed by staining with 1:100
dilutions of anti-TRA-1-60, Clone TRA-1-60-FITC conjugate (Millipore) and anti-
SSEA-4, Clone MC-813-70-PE conjugate (SCRO001, Millipore). Cells were
incubated with 1ml/well of human ES cell medium containing these antibodies.
After 2 hours of incubation at 37°C, Hoechst dye was added to wells at a final
concentration of 0.5ug/ml. After 10 minutes of incubation at 37°C, cells were
washed twice with 1ml/well of human ES cell medium and 500ul of medium
were added before viewing under fluorescent Nikon TE2000-4 inverted

microscope using NIS elements — BR 3.0 software.
2.6 Immunofluorescence

Cells were fixed in 4% Paraformaldehyde/PBS for 15 minutes at room
temperature. After washing with PBS, cells were permeabilized with 0.1% Triton
X-100/PBS for 10 minutes at room temperature and blocked in PBS with 4%
goat serum for 30 minutes followed by incubation with primary antibody
overnight at 4°C, and with secondary antibodies for 1 hour at room temperature.
Primary antibodies included anti-OCT4 (1:100, Millipore); anti-NANOG (1:100,
Cell Signaling Technology); anti-SSEA-4, anti-TRA-1-60 and anti-TRA-1-81
(1:100; Millipore); anti-CD31 (1:100, BD Pharmingen), anti-glII-Tubulin (1:100;
Covance), anti-aFP (1:100, Sigma), and anti-UPIb (1:100, Santa Cruz).
Secondary antibodies used were Alexa546-conjugated goat anti-mouse,
Alexa488-conjugated goat anti-mouse, and Alexa568-conjugated rabbit anti-
goat (all at 1:400, Invitrogen). The nuclei were counterstained with 4’,6-
diamidino-2-phenylindole (DAPI) and cells were mounted (Vectashield; Vector
Laboratories Inc, Burlingame, CA, USA). Images were obtained using a

confocal laser scanning microscopy system (Nikon Corp, Tokyo, Japan).
2.7 Karyotyping of human UT-iPS cells

UT-iPS cells were karyotyped at passage 25. Karyotyping was performed based
on the following protocol:

1) collect cells and arrest at metaphase:
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Once UT-iPS colonies reached 85% confluence, they were treated with the
mitotic spindle poison colcemid (kindly donated by Mr. Arman Esfandiari and
Prof. John Lunec) for 2 hours at 37°C. Following colcemid treatment, the
medium was collected and stored in 37°C. UT-iPS colonies were harvested as
per routine UT-iPS cells passaging, re-suspended in the previously collected
medium and allowed to stand for another 10 minutes which further ensured the
separation of any remaining MEF cells from the UT-iPS colonies. The iPS
colonies were then washed in 1XPBS and broken down to single
cell suspensions by treating with 1% trypsin for 5 minutes at 37°C after which
the trypsin was inactivated with 10% FBS-PBS. These were then centrifuged at
1500 rpm for 5 minutes and the supernatant was carefully removed by
aspiration leaving approx. 200ul of supernatant to re-suspend the mitotic cells in
by gently flicking the side of the tube.

2) Addition of hypotonic solution
To swell the cells and separate the chromosomes, 1ml of ice-cold hypotonic
solution (1:1 0.4% KCI + 0.4% sodium citrate) was added to the side of the tube
to make up the final volume to 2ml. Cells were incubated at 37°C for 7 minutes
following which the cells were centrifuged at 1500 rpm for 6 minutes and re-
suspended in the remaining 200ul supernatant.

3) Fix the cells
Drops of fixative (3:1 methanol and acetic acid) were added slowly to the
suspension to make up a final volume to 2 mL while gently tapping the tube.
After 30 minutes of incubation at room temperature, cells were again
centrifuged, the supernatant was removed and the pellet was resuspended in
the remaining fluid. The previous step was repeated but with 20 minutes
incubation at room temperature. At this point, the fixed cells were either
dropped onto slides or stored at -20°C.

4) Prepare the slides
The glass slides were rinsed with ice cold water and were then rinsed with the
fixative. The cells fixed earlier were washed once in the fixative. Using a plastic
transpipet, 2-3 drops of the cell suspension were dropped at 45° angle onto the
slides. The slides were left to dry at room temperature for at least 24 hours.

5) G-banding of chromosomes and generation of Karyogram, protocol

courtesy Dr. Claire Schwab
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Pots were arranged in the following order (reagents kindly provided by Dr.
Claire Schwab):
a) 1ml trypsin in 25 ml saline/25 ml Leishman’s buffer , pH 6.8
b) 50 ml saline
c) 50 ml saline
d) Staining solution: Giemsa and Leishman’s staining solutions, 0.4
ml Giemsa staining solution added to 8ml Leishman’s stain and 40
ml Leishman’s buffer
e) 100+ ml pot of cold deionized water
The slides were placed in freshly prepared trypsin solution (a) for 15 seconds.
At end of this time period, slides were immediately immersed in the saline
solution (b). These were then rinsed twice in the third saline pot (c) and
immersed in the Staining solution (d) for 4-5 minutes. The stained slides were
then rinsed in deionized water (e), mounted with coverslip using DPX and
analysed using the Kario software or Cytovision®. Karyogram analysis was
performed by Dr.Sarah Fordham).

2.8 DNA fingerprinting:

DNA fingerprinting was carried out to confirm the genetic source of the
generated UT-iPS cell to their parent stromal cells and to rule out any possibility
of contamination with skin iPS cell line that was cultured concurrently in our lab.
Cells were harvested as per routine passaging. The cells pellet of UT-iPS cells,
parental urinary tract stromal cells and skin-iPS cells were sent off to Northern
Molecular Genetics Service, (Newcastle Upon Tyne, UK) where the total
genomic DNA was extracted and amplified through the Promega PowerPlex®
16 system for the detection of 16 different human microsatellite markers. This
system is designed specifically for co-amplification and three-color detection of
sixteen human loci (fifteen STR loci and Amelogenin): Penta E, D18S51,
D21S11, THO1, D3S1358, FGA, TPOX, D8S1179, VWA, Amelogenin, Penta D,
CSF1PO, D16S539, D7S820, D13S317 and D5S818. One primer for each of
the Penta E, D18S51, D21S11, THO1 and D3S1358 loci is labeled with
fluorescein (FL); one primer for each of the FGA, TPOX, D8S1179, vWA and
Amelogenin loci is labeled with carboxy-tetramethylrhodamine (TMR); and one
primer for each of the Penta D, CSF1PO, D16S539, D7S820, D13S317 and
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D5S818 loci is labeled with 6-carboxy-4",5"-dichloro-2",7 -dimethoxy-fluorescein
(JOE). The results were analysed on an ABI 377 sequence detector using
Genotype software (Applied Biosystems, Foster City, CA).

2.9 Embryoid body (EB) formation from UT-iPS cells

Using a sterile pipette tip or needle, UT-iPS cells were collected using the same
protocol for passaging. Gently, the colony pieces were placed into low-adhesion
culture plate (Corning, UK) containing standard EB differentiation media

(Table 2-11) and incubated at 37°C with 5% CO, with medium changed every 3
days. To change the medium, the EBs were transferred to a 15ml conical tube
and allowed to settle to the bottom of the tube for 10 minutes. The supernatant
was removed leaving about 20% and replaced with fresh EB media into a new
low-adhesion culture plate.

EB differentiation medium

Components Quantity Supplier
Knockout-Dulbecco’s Modified Eagle’s Medium | 120ml — 80% | Invitrogen
Heat Treated Foetal Bovine Serum (FBS) 30ml —20% | Invitrogen
MEM Non-Essential Amino Acids (100X), liquid | 1.5ml — 1% Invitrogen
Penicillin-Streptomycin Solution 1.5ml - 1% Sigma

GlutaMAX™-| Supplement, 200 mM 1.5ml-2mM | Invitrogen

Table 2-11: EB basic differentiation medium composition

2.10 Teratoma formation assay

Teratoma formation assay was performed using immunodeficient NSG mice as

recipient. 24 hours before injection.

1. Preparing UT-iPS cell for injection
Cells were harvested according to the normal protocol for UT-iPS cells
passaging and placed in a 15-ml conical tube which was placed upright for 4-5
minutes to separate the disrupted colonies from MEF cells through gravity
rather than centrifuging the cells. Then the supernatant was carefully removed
and the UT-iPS cells were broken down to single cells by trypsinization. Cells

were then collected, counted, and resuspended in sufficient human ES cell
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medium at a concentration of 5 million cells per ml. Each injection was prepared
by mixing 100ul of cells for each cell line with 100ul of Matrigel.

2. Injecting cells
Injection procedure was performed by Dr. Lyle Armstrong. Cells were injected
subcutaneously into the right flanks of each mouse. One cell line was used per
mice and in total each cell line was replicated through three mice. Ear notching
was used to identify each mouse.

3. Harvesting and fixation of teratomas
Mice were euthanized by Mrs. Shirley Dodd by cervical dislocation after 6—12
weeks. Xenografts were extracted and fixed for 24 hours in 20X volume of
Bouin’s fluid. Bouin’s fixation provides good penetration and
morphological/structural preservation of tissues. The following day, tissues were
washed three times in water and placed in 30-40ml of 70% ethanol for 2 hours.
The procedure was repeated with 80%, 90% and 95% ethanol. Tissues were

stored in 95% ethanol until ready for processing.

2.11 Induce differentiation of bladder specific cells from human UT-iPS

cells in vitro.

To induce differentiation, both UT-iPS cells and skin-iPS cells were treated with
conditioned media (CM) for 14 days. Two main types of CM were used in this
study: urothelial cells derived CM (U-CM) collected from cultured human
urothelial cells and stroma cells derived CM (S-CM) collected form human
urinary tract stromal cells. CM was collected After 24 hours, centrifugation was
performed at 1500 x rpm for 5 minutes to remove cells, filtrated with a 0.2-um
syringe membrane filter and diluted with one-third the volume of DMEM with
serum at a final concentration of 2% (U-CM), or with an equal volume of RPMI
10% FCS (S-CM).

2.12 Lentiviral transduction

Stromal cells were seeded in a 6-well plate at 5 x 10 cells per well one day
before transduction. Cells were transduced using a single polycistronic lentiviral
vector (ABP-SC-LVI4inl, Allele Biotechnology, San Diego, USA) at MOI=10 in
the presence of 10ug/ml polybrene. On day 2, the transduction medium was

replaced with standard stromal medium. On day 6, cells were harvested and
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plated onto previously prepared MEF 6-well plate in human ES cell medium and
maintained till day 10. From this point, the transduced cells were cultured in
MEF-CM supplemented with human iPS culture medium collected from
cultivated skin-iPS cells. ES cell-like colonies were manually picked based on

morphology and transferred to a new plate on MEF cells.
2.13 Lentivirus production

PLenti- EF1a-citrine lentivirus was constructed by Dr.Fiona Frame (YCR Cancer
Research Unit, Department of Biology, University of York). The lentiviral
particles stock was generated by cotransfecting the pLenti- EFla-citrine
construct and the optimized packaging plasmid mix (GIBCO, Life Technologies)
into the 293T cell line. One day prior to transfection (Day 1), 5 x 10° 293T cells
were plated onto a 10cm tissue culture plate and incubated overnight in 10ml of
full RPMI1460 without antibiotic. The next day (Day 2), the culture medium was
replaced with 5 ml of OPTI-MEM | medium. For each transfection sample, DNA-
Lipofectamine™ 2000 complexes was prepared as follows: 9 ug of the
ViraPower lentivirus packaging mix and 3 pg of pLenti expression plasmid DNA
were added to 1.5 ml of OPTI-MEM | medium without serum and mixed gently
in 5 ml tube. In a separate sterile tube, 36 ul of Lipofectamine 2000 with 1.5ml
of OPTI-MEM | medium without serum was added, mixed gently by finger
tapping and incubated for 5 minutes at room temperature. After the incubation,
the diluted DNA was mixed gently with the Lipofectamine containing solution,
and incubated for 20 minutes at room temperature to allow the DNA
Lipofectamine 2000 complexes to form. The DNA-Lipofectamine 2000
complexes were added dropwise to each plate of cells and swirled gently. After
24 hours of incubation at 37°C in a humidified 5% CO, incubator (day3), the
transfection mixture was replaced with 10 ml of full RPMI1460 without antibiotic
and incubated for another 24 hours at 37°C in a humidified 5% CO, incubator.
Virus-containing medium was collected 48 hours post-transfection (Day 4) and
filtered using a 0.45 pum pore-size polyethersulfone syringe filter to remove
remaining cells. To yield a higher titration, the viral supernatant was
concentrated 10-fold by centrifugation at 120,000g for 2 hours at 4°C in an

Optima XL-100K ultracentrifuge (Beckman Coulter). The supernatant was
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discarded and the viral pellet was resuspended in DMEM-F12 medium and

stored as aliquots at -80°C.
2.14 Transduction and establishment of transgenic UT-iPS cell lines
3.1.12 Lentiviral transduction of UT-IPS cells

Undifferentiated UT-iPS cells were detached from the Matrigel by incubation
with dispase for 5 -7 minutes at 37°C. The detached aggregates were then
plated into a 6-well matrigel-coated culture plate with an overall confluency of
<40%. 24 hours after plating, the medium was replaced with the virus
supernatant diluted in mTeSR1 medium in the presence of 6 pg/ml polybrene.
The following day, the virus suspension was replaced with fresh mTeSR1
medium. 5 days post transduction, blasticidin was added at final concentration
of 1 pg/ml. Selection with blasticidin lasted 12 days with medium and blasticidin

changes every 2 days.
3.1.13 FACS analysis and cell sorting of transduced UT-iPS cells

FACS analysis and sorting of $-actin-mOrange and EF1a- mWasabi/Citrine
expressing cells was performed on a BD FACSAria Il system, according to their
fluorescent emission. Undifferentiated UT-iPS cells were used to set the
background level of fluorescence. UT-iPS cultures were pre-treated with 10uM
Y-27632 ROCK inhibitor for one hour prior to analysis and sorting by FACS and
subsequently sorted as follow: UT-iPS clumps were dissociated to single-cell
suspensions by 7-10 minutes of incubation with Accumax solution (SCRO0O06,
Chemicon) at 37°C. Cells were subsequently resuspended in mTeSR1 medium
containing 5mM EDTA at a concentration of 5x10° cells/ml. Cells were sorted at
approximately 20 PSI using a 100-micron nozzle at an average acquisition rate
of 3,000 cells per second into mTeSR1 medium. Following centrifugation at
200xg for 4 minutes, the sorted cells were resuspended in mTeSR1 medium
containing 10uM of Y27632 ROCK and plated onto 6-well Matrigel coated plate
at a concentration of ~ 1-2 x 10° cells/well. 1% Penicillin/Streptomycin was
added to the medium for one week after sorting to avoid bacterial

contamination.
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2.15 RNA extraction and analysis
3.1.14 RNA isolation

All products used for RNA extraction were from certified RNAse free sources.
During the procedure, all samples, reagents, and plasticware were handled with
gloved hands to avoid any contamination from RNases found on human skin.
The choice of RNA extraction procedure and the kit to use were determined
depending on the cell number. RNA was extracted from cells = 5x10° using EZ-
RNA (Biological Industries, Beit haemek, Israel). RNA from cells < 5x10° was
extracted using RNeasy® Micro-kit (Qiagen, West Sussex, UK). Steps were
performed in a fume hood and appropriate face protection was used when

required.

2.15.1.1 RNA isolation with EZ-RNA kit

Cells were lysed in 0.5ml of denaturing solution, vortexed until complete lysis
and incubated for 5 minutes at room temperature. 0.5ml of extraction solution
was added to the homogenate, shaken vigorously for 15 seconds, and
incubated for 10 minutes at room temperature. Sample was centrifuged at
12,000 x g for 15 minutes at 4°C. The upper aqueous phase was carefully
transferred to a fresh RNase-free microcentrifuge tube without disturbing the
white precipitate layer, which contains DNA and protein and 0.5ml of analytical
grade isopropanol (Sigma) was added to precipitate the RNA. To increase yield,
the sample was stored at this point at -20°C overnight. After incubation,
samples were centrifuged at 12,000 x g for 8 minutes at 4°C and the
isopropanol was carefully removed leaving a small amount behind in order to
avoid disturbing the pellet. The pellet was washed with 1ml of 75% ethanol, and
centrifuged at 7,500 x g for 5 minutes. The ethanol was removed completely
and the pellet air dried for 5-7 minutes at room temperature to remove any
residual ethanol. RNA was dissolved in DEPC-treated water by incubating at
55°C for 15 minutes. RNA was either used immediately or stored at -80°C to
minimise degradation and maintain RNA integrity.
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2.15.1.2 RNA isolation with Qiagen Micro RNeasy extraction kit

The Kit included all the required buffers apart from the ethanol. The protocol
followed was as described in the manufacturer's handbook (RNeasy® Micro
Handbook, Qiagen). Cell pellet was lysed in 350pl of lysis buffer (guanidine-
thiocyanate containing RLT buffer supplemented with 1% of B-
mercaptoethanol), briefly vortexed until complete lysis. Following this, 350l of
RNase-free 70% ethanol was added to the lysed cell, mixed well, and directly
pipetted to an RNeasy MinElute spin column placed in a 2 ml collection tube
and centrifuged at 10,000 x rpm for 15 seconds. Ethanol promotes selective
binding of RNA to the spin columns silica membrane. The flow through was
discarded and the samples were washed with 350ul of RW1 wash buffer. The
spin columns were centrifuged and the flow through was discarded. Samples
were then treated with DNase | solution (70ul of RDD buffer and 10pul of DNase
| stock) for 15 minutes at room temperature to degrade DNA contaminants and
ensure purity of resultant RNA. The sample was washed again by adding 350ul
of buffer RW1 onto the RNeasy MinElute Spin Column and centrifuged at
10,000 x rpm for 15 seconds. The column was transferred to a new 2 ml
collection tube and another wash with 500ul buffer RPE was performed. Then,
500ul of RNase-free 80% ethanol was pipetted to the RNeasy column before
spinning the tube for 2 minutes at 10,000 x rpm. Following the centrifugation,
the RNeasy MinElute Spin Column was carefully removed from the collection
tube and placed into a new 2 ml collection tube. The membrane of the column
was dried by centrifuging the column with the lid opened at full speed for 5 min.
RNA was eluted by pipetting 14pl of RNase-free water directly onto the centre
of the silica-gel membrane and spinning for 1 minute at full speed. RNA was
either used immediately or stored at —80°C to minimise degradation and

maintain RNA integrity.
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3.1.15 Quantification of RNA

RNA concentrations of samples were quantified using NanoDrop® ND-1000
spectrophotometer (NanoDrop Technologies, Delaware, USA). The data was
logged in and recorded through the supplied NanoDrop software which controls
the machine and runs from a desktop computer. To clean the lower and upper
surface of the sample retention platform of the Spectrophotometer, 1ul of DEPC
treated water was pipetted onto both surfaces, the lever arm closed and then
the surfaces wiped with a clean fresh laboratory wipe. The machine was set up
and calibrated according to the manufacturer’s instructions. DEPC treated water
was used as a blank reference. The optical surfaces were firstly cleaned with a
fresh clean laboratory wipe. 1.2l of RNA was pipetted onto the end of the
optical surface and the lever arm was closed to bring the second surface into
contact with the liquid sample making the sample link the optical ends together
before taking the measurement with the NanoDrop software. Before applying
the next sample the optical surfaces were cleaned again. The ratio of sample
absorbance at 230nm, 260nm and 280nm was used to measure the purity of
RNA. The resultant RNA should be free of DNA, proteins, or other contaminants
for which a ratio of ~2.0 for the 260/280 ratio and 1.8-2.2 for the 260/230 ratio
should be expected. Resultant RNA was either used immediately or stored at

-80°C to minimise degradation and maintain RNA integrity
2.16 Reverse Transcriptase and cDNA synthesis

To prepare the isolated RNA for the production of cDNA, 1 - 2 g of total RNA
from each sample was diluted in DEPC treated water to a final volume of 12.7pl
and incubated for five minutes at 65°C to remove the secondary structure.
Reaction mixture containing: 4ul 5X Moloney Murine Leukaemia Virus Reverse
Transcriptase (M-MLV RT) buffer (Promega), 2ul 4mM dNTPs (Promega), 1l
of 50uM Oligo dT16 primers (Applied Biosystems) and 0.3ul M-MLV RT enzyme
(Promega) was added to RNA and incubated for 1 hour at 37°C. Reverse
transcription was terminated by incubating at 95°C for 5 min. Resultant cDNA

was either used immediately or stored at —20°C.
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2.17 Real-time PCR

Real-time polymerase chain reaction (PCR) was performed using an ABI
PRISM® 7900 HT sequence detection system according to the manufacturer’'s
instructions (Applied Biosystems, UK). SYBR green (Platinum®Sybr®Green
gPCR supermix-UDG with ROX, Invitrogen) reporter was used wherein SYBR
green dye binds to the minor groove of double-stranded DNA and the
fluorescence emitted is directly proportional to the amount of amplicons
produced. Reactions were performed in an optical 384-well plate containing 9pl
of reaction mixture (Table 2-12) + 1pl of cDNA in each well. The reaction plate
was sealed with a transparent adhesive cover and centrifuged briefly at 1000 x
rcf for 1 minute to spin down the contents and eliminate any air bubbles from
the solutions. The plate was placed in the 7900HT real time PCR system where
it went through the following PCR temperature cycles, 50°C for 2 minutes, 95°C
for 10 minutes, and 45 cycles of 95°C for 15 seconds and 60°C for 1 minute.
The reaction was finished with dissociation step which consisted of 15 seconds
at 95°C, 15 seconds at 60°C and 15 seconds at 95°C. A single peak in the
resultant dissociation plot represented a single specific product. Each sample
was performed in triplicate, and negative control reactions without cDNA were
included in each experiment. Glyceraldehyde-3-phosphate dehydrogenise
(GAPDH) was used as a housekeeping gene to normalise expression. Serial
dilutions of cDNA that were known to express transcripts of interest were used
to quantify the relative amounts of cDNA produced in the PCR reactions. Data
were analysed using ABI 7900 HT SDS 2.3 software (Applied Biosystems).
Absolute quantities were measured for each gene, then subsequently

normalised to GAPDH to account for differences in loading the samples.

Real-time PCR reaction mixture

Components Quantity Supplier
SYBR green 5ul Invitrogen
Forward primers 0.4ul Sigma
Reverse primers 0.4pl Sigma
DEPC treated water 3.2ul -

Table 2-12: Real-time PCR reaction mixture.
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The following primers (Table 2-13) were used for evaluating genes expression:

Genes Forward primer (5'-3") Reverse primer (5'-3’')

GAPDH CGACCACTTTGTCAAGCT | GGGTCTTACTCCTTGGAGGC
CA

CD24 TGAAGAACATGTGAGAGG | GAAAACTGAATCTCCATTCCA
TTTG C

VWF ACTGAAGCGTGATGAGAC | TTCATCAAAGGGTGGGCAGC
GC

CD45 GAAATTGTTCCTCGTCTG | CTTTGCCCTGTCACAAATAC
AT

a-SMA CCGACCGAATGCAGAAG | ACAGAGTATTTGCGTCCGAA
GA

CD90 CACACARACCGCTCCCG | GCTGATGCCCTCACACTT
AACC

ENDO- GCAAGCCCTCATTTCACC | AGGATCAACCCAGCCCGGCCT

OCT4 AGGCC

ENDO- TCACATGTCCCAGCACTA | CCCATTTCCCTCGTTTTTCT

SOX2 CC

NANOG CCAAATTCTCCTGCCAGT | CACGTGGTTTCCAAACAAGAA
GAC A

GDF3 CTTATGCTACGTAAAGGA | GTGCCAACCCAGGTCCCGGA
GCTGGG AGTT

REX1 CGTACGCAAATTAAAGTC | CAGCATCCTAAACAGCTCGCA
CAGA GAAT

DNMT3B TGCTGCTCACAGGGCCC | TCCTTTCGAGCTCAGTGCACC
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GATACTTC ACAAAAC

AR CTGGACACGACAACAACC | CAGATCAGGGGCGAAGTAGA
AG

PSA CAATGACGTGTGTGCGCA | CGTGATACCTTGAAGCACACC
A A

UPIb GGGACAGACAAGGTGCC | TATTGGCTGGCTTGCTTCTCT
TGTTAT CCA

UPII CAGTGCCTCACCTTCCAA | TGGTAAAATGGGAGGAAAGTC
CA AA

UPllla TCACTGGCACCCACGAG | CGTTGAGCCCAGTGGGGTGTT
GTCT

UPIIIb CCCTGGCCCTGGACCCT | CCACAGGCTGGAGAAGCGCA
ATCG

Calponin TTTGAGGCCAACGACCTG | CCTTTCGTCTTCGCCATGCT
TT

Desmin CCATCGCGGCTAAGAACA | TCGGAAGTTGAGGGCAGAGTA
TT

Claudinl ATGGAAAGGGTGTTGGC | AATGCCTTGCTCAAACACAGA
ATTGGTG CGG

Claudin5 CTGTTTCCATAGGCAGAG | AAGCAGATTCTTAGCCTTCC
CG

CK7 TGTGGTGCTGAAGAAGG | TGTCAACTCCGTCTCATTGAG
ATGTGGA GGT

Transgene | TGCTGCCAAGAGGGTCA | AGCCATACGGGAAGCAATAG
AG

Table 2-13: List of primer sets and sequences.
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2.18 Statistical analyses

All experiments were independently repeated at least 3 times and the average
values were considered. All graphs plotted show the respective standard error
of the mean. A paired t-test analysis was used to evaluate the statistical
significance between two independent variables.

* P <0.05, *P <0.01, ** P <0.001.
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Results

3 Chapter 3. Establishing and characterising cell cultures of

primary human urothelial and stromal cells

3.1 Introduction

Histological examination confirmed the absence of urothelial dysplasia or
malignancy. Both urothelial and stromal single cell suspensions were prepared
from the primary tissue samples. Primary culture protocols were optimised to
obtain healthy and homogeneous primary cultures of both urothelial and stromal
cells, which is critical for effective transduction and successful reprogramming.
Isolated urothelial cells were purified via CD326 (EpCAM) Magnetic-activated
cell sorting (MACS) sort while homogeneous stromal cells were obtained
through multiple passages. Cells were characterized according to morphology,
growth characteristics, and mRNA expression of a panel of cell lineage

markers.
3.2 Aims

1. To establish viable primary cultures of human urothelial and stromal
cells.

2. To produce highly pure cultures of primary urothelial and stromal cells.

3. To evaluate the mMRNA expression levels of pluripotency markers in pure

primary cultures.

3.3 Results
3.3.1 Isolation and culture of human urothelial cells

Primary cultures were established for both urothelial and stromal cells using
either the outgrowths from explanted tissues, ‘explant culture method’, (Fischer
et al., 1980; Reznikoff et al., 1983; Jing et al., 2011) or by dissociating the tissue
with EDTA, trypsin and collagenase following protocol described by Southgate,
‘the enzymatic digestion method’ (Southgate J, 2002; Southgate et al., 2007).
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3.3.1.1 Isolation and culture of human urothelial cells using explant
culture method
The primary explant method was tested on 15 patient samples. Cultures were
initiated on a 90mm diameter culture dish in KSFMc medium. 11 out of 15
samples exhibited outgrowth, giving an overall success rate of about 73% for
growing and culturing primary urothelial cells using this method. Passage 1 was
reached by most of the samples. However, urothelial cells showed low
propensity to survive when subcultured, with only 26% of cultures reaching
passage 2, after which all cultures eventually died (Figure 3-1). This might be
due to the toxic effects of trypsin which was used to detach the cells from the
plate. About 65-75% of the explants attached to the growth surface of dishes
within 24 to 36 hours after plating and eventually gave rise to urothelial cells.
Frequent observation of the culture was avoided particularly on the first day as

this may cause explant detachment from the surface of the culture dish.

Explant Culture

11845
11842
11903
11836
11919
11919
11914
11913
11908
11902

Patient sample

11826
11905
11851

118484

118414

0 1 2
Passage Number

Figure 3-1: A summary of primary urothelial explant cultures. About 73% of
samples grew successfully in culture. Only 4 of 15 samples could be maintained
to passage 2. Y-axis represents the patient samples ID. X-axis represents the
passage number.
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3.3.1.1.1 Morphology of epithelial cells

Following 48h, polygonal cells began to migrate from the explants and
increased gradually in number over the following days (Figure 3-2). Cells at the
leading edge of growth often exhibited rounded surface with ruffles, while in
confluent regions, cells exhibited more cuboidal appearance. Fresh samples
(collected and processed within 24-48 hours) grew more readily than old ones
(collected and processed after 48 hours). Although the conditioned culture
medium was used to inhibit the growth of stromal cells and to stimulate the
growth of urothelial cells, few stromal cells were seen in some cases. All
cultures identified with fibroblastoid growing cells were discarded. Generally,
growing cells migrated from the tissue and formed a crown of confluent cells
around it. At higher magnification, polygonal cells grew with a cobble-stone
pattern. These cells were uniform in size and shape and exhibited epithelial
morphology. The morphology and the growth characteristics of the derived
urothelial cells using ureter or bladder as tissue source were comparable
(Figure 3-3).
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Figure 3-2: Procurement of human urothelial cells. (a) The explants were plated
onto 90mm culture dish and maintained in KSFMc medium. (b, ¢) Phase
contrast photomicrograph showing normal urothelial cells migrated away from
the ureteral explant at days 2 and 5, respectively. (d) Cells adhere closely
together and yield a cobblestone epithelial morphology in a more confluent
layer. (e) Membranes of cells at the outer regions of the growth are often ruffled.
(f) Example of non-urothelial cells contamination. Scale bars: 50 um (b, c); 10
pum (d, e, f).
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Figure 3-3: Explant culture of human urothelial cells. (a) Explant of normal
ureter growing on 90mm culture dish at day 10. Outgrowths continuously
expanded from the tissue resembling a ring around of confluent cells around the
explants. (b) Higher magnification shows the cobble-stone morphology. (c)
Urothelial cells derived from ureter tissue. (d) Urothelial cells derived from
bladder tissue. Scale bars: 100 um (a, b); 10 um (c, d).

As an alternative to repeated subculture, the potential of re-plating the explant
tissue was investigated (Figure 3-4). In two experiments, three explants were
re-plated three times and each time a new confluent culture of cells was
reinitiated that continued to express epithelial morphology. The survival of these
cells may be related to the gradual release in culture of growth factors known to
be present in the extracellular matrix, or produced by mature cells of the
urothelium. However, this technique of initiating new cultures by re-plating
explants was not quantitative, whilst the purity of these cells and the effect of
serial re-plating were not investigated. The number of viable cells isolated per
sample was higher when more than one tissue piece was plated in the same
well (6- 8 tissue pieces per well). Culturing one tissue piece per well had a
suppressive effect on the growth efficiency and most of the explants failed to
produce outgrowing cells (Figure 3-5) suggesting that the interactions between
these tissues may play a role in stimulating the growth of urothelial cells, or the
outgrowth from one tissue may enhance the growth from other tissues.
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a

Explant plated in 90mm
culture dish

Outgrowing cells

Explants were re-plated in Subculture
new 90mm culture dish outgrowing cells

Figure 3-4: (a) Schematic diagram outlining the technique used to re-plate
tissue explants. Repeated urothelium outgrowth from tissue explants, (b) Day 5.
(c) Day 10. Continuous cell outgrowth was observed after replating the explants
onto 90mm diameter culture dish under the same conditions. (d) Cell outgrowth
from a recycled explant has a similar growth pattern to the initial culture. (e)
Outgrowing cells subcultured from explants (1% passage) day7. Scale bars: 100
pm.
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Figure 3-5: Outgrowing cells from explants tissues, Day 8. (a) On 90mm culture
dish. (b) On 6-wells plate. Scale bars: 100 pm.

3.3.1.1.2 Purity of urothelial cells from explant primary culture

Although validating the epithelial cells by appearance is a well-accepted
method, some epithelia might exhibit greater variations in shape. Hence, to
confirm their origin and to check their purity, mMRNA expression of cell lineage
markers in primary outgrowing cells from tissue explants (CD24 as marker for
epithelial cells (Gracz et al., 2013), CD45 as marker for haematopoietic cells
(Altin and Sloan, 1997), CD146 as marker for endothelial cells (Elshal et al.,
2005), and a-SMA as marker for stromal cells (Lazard et al., 1993)) was tested
using real-time PCR assay (Figure 3-6). Although morphologically outgrowth
cells were epithelioid, only one sample expressed CD24 (epithelial cell marker),
but also co-expressed a-SMA and CD146, suggesting that growing cells
contained both epithelial and nonepithelial cells. No expression of CD45 was

detected in any of the samples so excluding any haematopoietic contamination.
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Figure 3-6: Explant outgrowth showing haematopoietic and stromal
contamination. Real time-PCR for mRNA expression of CD24 (epithelial cell
marker), CD146 (endothelial cell marker), and a-SMA (stromal cell marker) in
explant outgrowth. Y-axis depicts expression of the cell marker normalized to
GAPDH expression. X-axis depicts the patient samples ID. Error bars represent
standard error of the mean (SEM).
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3.3.1.2 Isolation and culture of urothelial cells using enzymatic digestion
method
Because real time-PCR showed that the outgrowing cells from explant tissue
were not pure epithelial cells, an alternative technique to isolate human
urothelial cells was investigated. A total of 36 samples were prepared according
to the method of Southgate et al. Isolated cells were further purified through
MACS separation using CD326 microbeads. The CD326 antigen (also known
as human epithelial antigen (HEA), epithelial-specific antigen (ESA), and
EpCAM) is a 40 kDa transmembrane glycoprotein that is extensively expressed
by normal and tumour epithelial cells. 7 out of 36 samples failed to grow giving
a success rate of about 80% for growing and culturing primary urothelial cells
using this technique. Higher subcultures were attained with difficulty with only
three samples reaching passage 5 (Figure 3-7). After selection, both CD326
positive and negative cells were cultured. Following 24 hours in culture,
satisfactory growth by CD326 positive cells was observed whilst only a small
number of CD326 negative cells grew (Figure 3-8).
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Enzymatic digestion method
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Figure 3-7: A summary of primary urothelial cultures using enzymatic digestion
method. About 20% of samples did not grow in culture. Y-axis represents the
patient samples ID. X-axis represents the passage number.

Figure 3-8: Phase contrast photomicrographs of CD326 positive and negative
cells after 24 hours in culture. Scale bars: 100 pm.
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3.3.1.2.1 Morphology of epithelial cells

Cells started to cluster and form colonies after 1 week in culture and took about
2-3 weeks to reach 70-80% confluency. At this point, cultures were subcultured
as cell differentiation might occur progressively after that point. The urothelial
cells derived from both normal bladder and ureter tissues showed similar
epithelial appearance. Cells grew as colonies of compact cells with tight
borders. Typically, cultures contained near isodiametric and cuboidal cells that
arranged themselves in a cobblestone pattern (Figure 3-9). No fibroblast

contamination was visually observed in these cultures.

Figure 3-9: Phase contrast photomicrographs of normal human urothelial cells
(CD326+) passage 1 growing on 60mm dish in KSFMc medium. (a) day 1, (b)
day 3, (c) day 6, (d) day 12, and (e) day 19. Higher magnification showed
compacted cells growing in colonies with a cobblestone pattern. Scale bars: 50
pm.
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Beyond week 3, no notable increase in colony size could be observed; instead
cells showed an increased tendency towards differentiation and senescence
represented by an increase in cell size, shape irregularities and cytoplasmic
vacuolation. It was also observed that in cultures beyond Passage 3, urothelial
cells started to diffuse over the whole dish rather than form well-circumscribed
patches, lost their cobblestone appearance and were made up of cells with high
level of morphological heterogeneity (Figure 3-10). Southgate et al (Southgate
et al., 2007) demonstrated separation of the urothelium lining from the outer
layer following incubation in the stripper medium either for 4 hours at 37°C or
overnight at 4°C. In my experiments | observed that the viability was higher in

the shorter incubation time (N=10).

Figure 3-10: Phase contrast photomicrographs of urothelial cells at day 7.
(a) Passage 2. (b) Passage 4, cell population shows high degree of
morphologic heterogeneity and shape irregularities. Scale bars: 50 um.
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3.3.1.2.2 Purity of urothelial cells cultured following the enzymatic
digestion protocol

To confirm the enrichment of cultured urothelial cells following the enzymatic
digestion protocol, mMRNA expression of cell lineage markers (a-SMA, CD90,
CD24, CD45; CD146; and Von Willebrand factor (VWF)) was assessed by real
time-PCR in both CD326 positive and negative fractions separated by MACS
technique. Expression of all genes was investigated in cells from passages PO,
P1, and P2. As shown in (Figure 3-11), CD326 positive cells overexpressed
epithelial cell marker (CD24) suggesting their epithelial origin. Importantly, none
of the samples exhibited expression of stromal cell markers (a-SMA, CD90),
endothelial cell markers (CD146, vVWF) or haematopoietic cell marker, (CD45)
therefore excluding any obvious contamination. In CD326 negative cells, real
time-PCR showed expression of CD24 which might be due to the existence of
some epithelial cells as MACS enriches for epithelial cells. However, these cells
also co-expressed CD45, and VWF. This data indicated that isolating urothelial
cells via enzymatic digestion followed by MACS selection for CD326+ cells

resulted in highly pure urothelial cells.
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Figure 3-11: Primary urothelial cells showing absence of stromal
haematopoietic and endothelial contamination. Real time-PCR for mRNA
expression of a-SMA and CD90 (stromal cell markers), CD24 (epithelial cell
marker), CD45 (haematopoietic marker), and vVWF and CD146 (endothelial cell
markers) in CD326 positive and negative cells after MACS selection. Error bars
show standard error of the mean (SEM) for N=4.
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3.3.1.2.3 Cell identification

The optimised protocol we used to isolate the urothelial cells from the
underlying tissue ensures that only epithelial cells become established in
culture. However, to establish the identity of cultured cells more objectively, the
expression of differentiation-specific markers including a6 integrin, 4 integrin,
CK13, CK14, claudin7 (CLD7), and UPIb was investigated. CK13 is present in
all but the superficial cell layer of the urothelium. Uroplakin is a selective marker
for urothelial cell differentiation. In particular, UPIb is expressed by the
superficial and the intermediate cells. In addition, normal human urothelial cells
express the a6 4 integrin in vitro. Real time-PCR showed that urothelial cells
expressed these markers at variable levels (Figure 3-12). Expression of CK14
was higher than that of CK13 which may be an indicator that cells in culture
tend towards a more squamous phenotype (Southgate et al., 1994; R. lan
Freshney, 2002). Expression of UPIb marker was further validated at the protein
level; immunofluorescence showed that isolated cultured cells exhibited typical
UPIb expression. Altogether, these results verified that upon isolation and
culture, a homogeneous population with typical epithelial morphology of primary

urothelial cells could be obtained and further subcultured.
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Figure 3-12: Expression of selected differentiation markers by human
urothelium. (a) Real time-PCR for mRNA expression of differentiation-specific
markers in normal human urothelial cells. Y-axis depicts expression of
differentiation-specific markers normalized to GAPDH expression. X-axis
depicts expression of individual differentiation-specific markers. Error bars show
SEM for N=3. (b) Normal urothelial cells immunostained for UPIb (red), cell
nuclei were counterstained with DAPI (blue). Scale bar: 10 um.
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3.3.2 Isolation and culture of human urinary tract (UT) stromal cells

After culturing the urothelial cells using either explant or enzymatic digestion
method, their associated stromal cells were cultured using the protocol
previously described in the methods (Chapter 2). A total of 45 stroma samples
were cultured with almost 95% success rate. Stromal cultures appeared more
able to survive higher serial subcultures than their epithelial counterparts. The
first passage was performed on stromal cells growing in 25 cm? flask from
which they were transferred into 75 cm?and 175 cm? flasks for further
propagation. Stromal cells could be serially subcultured for at least ten

passages after which they were frozen and stored at -80°C.

3.3.2.1 Morphology of UT-stromal cells

Initial culture of stromal cells from tissues following isolation of the urothelium
using the explant method didn’t exhibit typical morphology of stroma

(Figure 3-13). Clumps of cells with a sunburst-like outgrowth and some cells
with epithelioid appearance were observed. This may be expected as
separating the urothelium mechanically from the stroma was very difficult and
subsequent contamination could be possible. In time, the clumped cells tended
to scatter and epithelioid growth gradually diminished. In advanced subcultures,
only cells with stromal morphology were seen. On the other hand, stroma
cultures derived from tissues after isolating the urothelium using enzymatic
digestion exhibited typical stromal morphology even from the initial cultures.
Cells showed distinct morphology from their epithelial counterparts in terms of
cell size, shape and culture-type. Unlike urothelial cells, primary UT-stromal
cells grew as monolayers rather than colonies (Figure 3-14). In preconfluent
culture, cells exhibited a spindle-shaped, elongated, and fibroblast-like
morphology with whorl-like patterns associated with greater confluence. No
visible changes in morphology between the initial cultures and subcultures were
observed (Figure 3-15).
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Figure 3-13: Phase contrast photomicrographs of human UT-stroma culture
after isolating the urothelium using explant culture. (a, b, ¢, and d) represent
stroma culture at day 2, 7, 14, and 21 days, respectively. Scale bars: 50 pm.
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Figure 3-14: Phase contrast photomicrographs of UT-stroma culture from
tissues after isolating the urothelium using enzymatic digestion showing typical
morphology of stromal cells. (a) Day 2. (b) Day 7. (c) Day 10. Stromal cells were
fibroblastic in appearance, in the more confluent culture the stromal cells
exhibited “streaming,” forming loops and whorls. Scale bars: 100 pum.
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Figure 3-15: Phase contrast photomicrographs showing typical morphology of
the stromal cells at different subcultures. Scale bars: 100 pm.
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Another observed difference in UT-stroma cultures following urothelium
isolation using explant method or enzymatic digestion method was that stromal
cultures following explant method required ~33-37 days to reach 80-90%
confluency, whilst stromal cultures following enzymatic method only required 8-
12 days (Figure 3-16). However, this difference was not observed in
subcultures, suggesting that stromal cell proliferation might be repressed in the
presence of the more slowly dividing epithelial cells.
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Figure 3-16: Days required for reaching 80-90% confluence culture of UT-
stromal cells after isolating the urothelium using two different methods (explants
and enzymatic digestion method). Y-axis depicts days between two passages.
X-axis depicts passage number. Error bars show standard error of the mean
(SEM) for N=5.
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3.3.2.2 Purity of stromal cells

Morphologically, stromal cells isolated via enzymatic digestion method exhibited
typical fibroblast structure. The purity of cultured UT-stromal cells was checked
by investigating the mRNA expression of a panel of cell lineage markers (a-
SMA; CD90; CD24; CD45; and VWF). Primary stromal cultures at initial
passages (PO, P1) showed evidence of contamination with epithelial cells
(through positive expression of CD24), haematopoietic cells (through positive
expression of CD45), and endothelial cells (through positive expression of
VWEF). As these cells were progressively passaged (P2, P3), cells expressed
stromal cell markers a-SMA and CD90, with no significant expression of
epithelial cell marker CD24, haematopoietic cell marker CD45, and endothelial
cell marker vWF (Figure 3-17). Collectively, these data indicated that passaging
was enriching for stromal cells and cells at P2 were apparently pure stromal

cells.
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Figure 3-17: Primary UT-stromal cells at passage 0, 1, 2, and 3 showing
significant reduction of epithelial, haematopoietic, and endothelial
contamination. Real time-PCR for mRNA expression of a-SMA and CD90
(stromal cell markers), CD24 (epithelial cell marker), CD45 (haematopoietic
marker), and VWF (endothelial cell markers) in UT-stromal cells from serial
subcultures (PO; P1; P2; and P3). Error bars show standard error of the mean
(SEM) for N=3.
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3.3.3 Evaluation of pluripotency markers at different passages

The endogenous expression of certain reprogramming factors in different cell
types has permitted their exclusion from the factor cocktail (Maherali and
Hochedlinger, 2008). Generally, generating iPS cells from somatic cells that
already express endogenous reprogramming factors tends to be easier and
may require less exogenes. Therefore, the expression of pluripotency markers

in pure urothelial and stromal cultures was evaluated.

3.3.3.1 Evaluation of pluripotency markers in normal human urinary tract
cells

Real time-PCR showed that mRNA expression of OCT4, SOX2, and NANOG

was detectable in cells at PO. This expression was significantly reduced with

increasing passage number (Figure 3-18).

As shown previously, stroma cells at PO and P1 were not pure, therefore the
pluripotent transcript expression at this stage were not assessed. Transcript
expression of OCT4; SOX2; and NANOG was detectable at P2, and P3;
however the expression levels decreased with increasing passage number.
Previous study showed that the pluripotency-associated OCT4A is not
expressed by normal or malignant human urothelium, but indicated the
presence of alternative isoforms (OCT4B, and OCT4B1) or potentially
translated pseudogenes (Wezel et al., 2013). Therefore we studied the
expression of the alternatively spliced variant OCT4B1.
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Figure 3-18: Expression of pluripotency markers in normal human urinary tract
cells at different passages. (a) mMRNA expression of (OCT4, SOX2, and
NANOG) in pure urothelial cells at (PO; P1; P2) of the same sample. (b) mMRNA
expression of (OCT4, SOX2, and NANOG) in pure UT-stroma cells at (P2; P3)
of the same sample. Y-axis depicts expression of pluripotency markers
normalized to GAPDH expression. X-axis depicts the expression of individual
pluripotency markers. Error bars show standard error of the mean (SEM) for
N=3.
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3.4 Discussion

Primary culture is the early in vitro culture of cells isolated from donor tissue.
Such cultures are widely used for basic research as they are assumed to
display key characteristics similar to those seen in vivo. Usually, maintaining
primary cell culture requires specific media with several supplementary
components due to their limited life time and their tendency to change their
differentiated characteristics with time in culture. Specifically, establishing and
maintaining primary culture of normal human epithelial cells in vitro has been
deemed to be difficult and challenging (Reznikoff et al., 1983; Michael Aschner,
2011). Herein, primary cultures of urothelial and stromal cells from human
ureter and bladder biopsies were established using two different techniques.
Although the time-honoured method to validate epithelial cells in culture is by
morphology, some cell types can show greater plasticity in shape, for example
endothelial cells derived from mesenchyme can display epithelioid shape in a
confluent culture (R. lan Freshney, 2002). Urothelial and UT-stroma cells were
subjected to real time-PCR analysis using a panel of cell specific or
differentiation-specific markers. Markers were selected as most representative
of the class of cell type concerned. Morphology and growth characteristics were
also utilized to monitor and follow culture progress of both cell types in vitro

after separation.

Initiating cells using explant culture is an old technique and it has been used to
culture epithelial cells from various tissues in vitro (Stonington and
Hemmingsen, 1971; Fischer et al., 1980). Although the explant culture method
showed that it might be a simple technique, outgrowth cells show low viability
and limited application, since mixed cultures of urothelial and stromal cells are
produced. Minor contamination of stromal cells can eventually overtake the
urothelial cells, even under improved conditions for urothelial growth, since
stromal cells have higher proliferation rate compared with that of urothelial cells.
In recent years, culture systems have been developed to achieve high purity of
homogeneous primary urothelial cultures. In particular, Southgate and colleges
dissociated the urothelium from the basement membrane using EDTA. This
method permits high cell yields that show high plating efficiencies (Southgate et
al., 1994; Southgate J, 2002). In our hands, isolating urothelial cells using this
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technique followed by MACS selection for CD326 was found to produce almost
pure urothelial cells. Although urothelial cells showed extended culture lifetime
many fold as compared to explant culture, their overall growth potential is still
limited (Southgate et al., 1994; Southgate J, 2002; Southgate et al., 2007).
Notably, due to limitation in the number of cells that can be extracted and
expanded from a small biopsy of clinical material from the urinary tract, we
didn’t examine the doubling time which can give a more intuitive sense of the
long-term impact of growth. On the other hand, UT-stroma cells displayed
typical fibroblastic characteristics including robustness and proliferative capacity
and could be successfully thawed and subcultured after freezing. We accept the
limitation of not showing the protein expression to confirm the origin of the
stomal cells. However, showing that cells have mRNA expression of stomal
markers and no expression of epithelial, haematopoietic, and endothelial
markers strongly suggested the stromal origin and the purity of cultured cells.
Moreover, the protocols were directly learnt from a placement in Prof Jenny
Southgate’s lab, who has extensively characterised the nature of these cells
from human tissue (Southgate J, 2002; Southgate et al., 2007), including

protein expressions.

After producing highly pure cultures of primary urothelial and stromal cells, as
quantified by real time-PCR, the expression of the main pluripotency markers in
these cultures at different passages were assessed. Previous reports showed
that reprogramming somatic cells which already express high endogenous
levels of reprogramming factors is easier and may require fewer ectopic factors
(Kim et al., 2008; Kim et al., 2009b). Thus in general, the higher the expression
of reprogramming factors in the cells the more easily they are to reprogram. In
addition, cultured cells might change qualitatively over time (Utikal et al., 2009).
By real time-PCR, higher expression levels of OCT4, SOX2, and NANOG at PO
and P2 of urothelial and stromal cells, respectively was observed. Therefore,

urothelial cells at PO and stromal cells at P2 were selected for transduction.
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4 Chapter 4. Generation of iPS cells from normal human

urinary tract cells

4.1 Introduction

This chapter will describe in detail the experimental protocol designed to
produce iPS cells from primary UT-stroma and urothelial cells by means of
lentiviral overexpression of OCT4, SOX2, KLF4, and C-MYC (OSKM).
Lentiviruses provide particularly attractive vectors for iPS generation as they
can stably integrate into the genome without incurring cellular toxicity and
maintain sustained expression of the transgene during prolonged proliferation
and subsequent differentiation. Additional advantages of lentiviruses are their
ability to transduce both proliferating and non-proliferating cells at high
efficiency. Reprogramming into iPS cells was mediated by a single polycistronic
construct encoding the transcription factors that are involved in maintaining the
pluripotent state. The reprogramming factors in this vector are driven by the
elongation factor 1 alpha (EF1a) promoter and fused in-frame into a single open
reading frame (ORF) via self-cleaving 2A sequences flanked by loxP sites
(Figure 4-1). These advances in vector design have significantly improved
vector safety and reprogramming efficiency, ensuring that all transduced cells
receive equal amounts of each of the four transcription factors, and enables
excision of the exogene through a Cre-recombinase technology (Ma et al.,
2003; Shao et al., 2009).

dl. CMVITAR RRE PEF1a Oct3/4 2A Sox2 2A KIf4 2A c-Myc Insulator
| BN omES' [ )
loxP cPPT SIN loxP

Figure 4-1: Schematic representation of the lentiviral construct.

4.2 Aims

e Toinduce iPS-phenotype in normal human primary UT-stromal cells.

e Toinduce iPS-phenotype in normal human primary urothelial cells.
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4.3 Results

4.3.1 Transduction of human UT-stromal cells

Having confirmed the homogeneity of the stromal cells by real time-PCR using
a panel of cell lineage markers, the lentiviral transduction was subsequently
optimised.

4.3.1.1 Determination of optimal Polybrene concentration for transduction

One method to improve the very low transduction efficiency is to use an additive
substance in the transduction cocktail such as polybrene (hexadimethrine
bromide). Polybrene is a cationic polymer that is usually used with viruses to
improve the transduction efficiency (Toyoshima and Vogt, 1969; Lin et al.,
2011a). Polybrene acts by neutralizing the negative electrostatic repulsion
between the viral particles and the surface of their target cells leading to
enhanced absorption of the virus by the cells (Davis et al., 2002; Lin et al.,
2011a). Polybrene is tolerated well at low concentrations. However, at
concentrations greater than 10 pg/mL, significant inhibition of cell proliferation
has been reported in some cell types, such as keratinocytes (Seitz et al., 1998)
and human mesenchymal stem cells (Lin et al., 2011a). To investigate the effect
that different concentrations of polybrene have on stroma cell viability, cells
were exposed to polybrene at concentrations ranging from 0 to 20 pug/ml for 48
hours and apoptosis was analysed by flow cytometry and propidium iodide (PI)
staining. PI staining was analysed and compared against control (vehicle
control). Under standard culture conditions, the percentage of Pl-positive cells
(approximately 6%) were variously increased after a polybrene treatment
(Figure 4-2). Increasing the concentration of polybrene dramatically increased
its unfavourable impact on cell viability especially at the concentration of
20pg/ml and that was in accordance with the morphological observations
(Figure 4-3). Low cytotoxic effects with polybrene at 10ug/ml is to be expected

and accepted, therefore this concentration was selected for further experiments.
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Figure 4-2: Polybrene induced apoptosis of UT-stroma cells. The graph
represents % apoptosis in UT-stroma cells after polybrene exposure (0, 1ug/ml,
5ug/ml, 10pg/ml, 15pug/ml, and 20ug/ml) for 48 hours. Y-axis depicts percent Pl
positive cells. X-axis depicts different concentrations of polybrene. Error bars
show SEM for N=3. * P < 0.05, **P <0.01, *** P <0.001.

Figure 4-3: Phase- contrast micrographs of cultured stroma cells either not
exposed or exposed to 10 and 20ug/ml of polybrene for 48 hours. Control cells
(Oug/ml) showing healthy spindle-shape cells with long, delicate processes.
Incubation with 10ug/ml of polybrene results in low cytoxicity. Incubation with
20ug/ml of polybrene results in high cytotoxicity. Scale bars: 100 um.
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4.3.1.2 Determination of optimal MOI for transduction

To determine the most efficient multiplicity of infection (MOI) with the least
toxicity for transduction of stromal cells a range of MOIs were investigated using
mWasab GFP control transduction particles. 5 x 10* stromal cells seeded on 6
well plate in 2 ml of complete RPMI1640 medium were transduced with MOls of
2,5, 10, 20, and 30 in the presence of polybrene 10ug/ml for 48 hours. GFP
expression was analysed and compared against control (MOI = 0). The
percentage of GFP positive cells increased in a linear fashion from ~5% to
~45% as MOI was increased from 2 to 30, respectively (Figure 4-4). At lower
MOlIs, an only minimal difference in cell viability was observed, as determined
by PI dye exclusion (Figure 4-4). With MOls of more than 10, a more dramatic
effect was apparent with an approximate 50% decrease in surviving cells. Also,
it is essential that the amount of virus used is kept to a minimum so as to
prevent multiple integral sites and to ensure silencing of the transgene.
Therefore, MOI=10 and polybrene = 10ug/ml were determined as optimal

conditions in subsequent experiments.
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Figure 4-4: Determination of optimal MOI for transduction. (a) Transduction
efficiency of UT-stroma cells by control lentivirus particles mWasabi (EF1a).
Flow cytometry analysis of transduced cells, bar graph representation of the
efficiency of transduction at increasing MOls, as indicated on the x axis.
(b) Cells viability after 48h of transduction with different MOI. At higher MOI cell
death was observed more frequently. Error bars show SEM for N=3
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4.3.1.3 Trangdpced cells underwent a mesenchymal to epithelial
transition
It has been shown that reprogramming of fibroblast cells to iPS cells inevitably
involves an early event termed mesenchymal to epithelial transition (MET);
during which cells undergo changes in morphology and gene expression. The
characterisation of MET had become a recognised and central phenomena in
the generation of iPSCs from mesenchymal cells (Li et al., 2010; Samavarchi-
Tehrani et al., 2010). We undertook a preliminary assessment of this process
using transcript expression of markers that are strongly indicative of this
process. we accept that further characterisations with protein levels of these
markers would be stronger evidence, however, given that definitive proof of iPS
cells in generating teratomas and embryoid bodies is presented, the further
descriptions of MET was not considered to be critical. Overall, the picture of
MET was apparent given the transcript changes and final functional proof of iPS
cells. Phase-contrast photographs taken at day 10 post transduction showed
few cells that became aggregated and had acquired a rounded shape
(Figure 4-5). Real-time PCR analysis of transduced cells at day 10 post
transduction validated the upregulation of epithelial gene expression (E-
cadherin, and Ep-CAM), and showed a concomitant downregulation of
mesenchymal gene gene (slug, snalil, twistl, and vimentin), indicating that the

exogenous factors initiated the MET program in stromal cells.
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Figure 4-5: MET changes in primary UT-stroma post transduction. (a) Phase-
contrast micrographs of transduced stromal cells 10 days post transduction;
cells displayed an altered epithelial morphology. (b) Higher magnification, x100
(c): Real time PCR analysis showed upregulation in epithelial markers (E-
cadherin and Ep-CAM accompanied by downregulation of mesenchyme
markers (Slug, Snail, Twistl, and Vimentin) in stromal cells 10 day post
transduction suggesting the occurrence of an MET. Error bars show SEM for
N=3. Scale bars: 100 um. * P <0.05, *P < 0.01, ** P < 0.001.
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4.3.1.4 Generation of iPS cells from human UT- stroma cells

Our protocol for human UT-stroma cells transduction is summarized in

(Figure 4-6). One day prior to transduction, 5 x 10* cells were seeded onto a 6-
well plate and incubated overnight in complete RPMI 1640. The following day,
cells were washed once in 1XPBS and freshly prepared lentiviral transduction
mixture containing OSKM virus MOI=10 and 10ug/ml of polybrene was added to
the cells. ‘media only’ and ‘media and polybrene’ controls were used. After 48
hours, the transduction media was replaced with fresh complete RPMI 1640
medium and the cells were cultured for another 4 days.

The cells grew normally and appeared healthy against the control. On day 6,
cells were transferred to 6-well plate seeded with inactivated mouse embryonic
fibroblasts (MEFs) in human ES cell medium. On day 10, the transduced cells
were cultured in human ES cell medium conditioned from inactivated MEFs
(MEF-CM) and supplemented with human iPS culture medium and maintained
in such a manner for 4-6 weeks. MEF-conditioned ES cell medium was
prepared by treating MEF cells at a density of 50,000 cells/well with human ES
cell medium. Media was collected every 24h for 5 to 7 days after plating and
was filtered through 0.2 um filter before use. Similarly, human iPS culture
medium was collected from skin-iPS culture 3-5 days after plating, centrifuged
for 5 min at 1500 x rpm to remove cells, and the supernatant media was

collected and filtered through 0.2 um filter.

Because the conditioned medium was collected after treating the relevant cells
for 24h at 37°C, some of the media chemicals components might be broken
down, therefore, freshly prepared human ES cell medium was added to the
MEF-conditioned ES cell medium and human Skin-iPS culture medium in a
1:1:1 ratio. MEF-and ES cell conditioned medium have been shown to increase
the reprogramming efficiency at least 10 times by enhancing the transition of
pre-iPS cell colonies to a fully reprogrammed state. Combination of different
factors provided by MEFs and pluripotent stem cells has been found to help the
transduced cells undergoing reprogramming to survive and gain pluripotent
state (Katarzyna Tilgner, 2010). The reprogramming progress was monitored on

a daily basis by light microscopy to identify any presumptive colonies.
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Figure 4-6: Time line for UT-IPS cell generation.

Four weeks after transduction with the lentivirus, several small, tight cell
colonies with dark appearance were detected that grew slowly and were distinct
from both ES cells and parental stromal cells in morphology. By week 6 after
transduction, rapidly growing colonies displaying morphology similar to that of
human ES cells were observed (tight and flat colonies with clear-cut edges

comprising of small cells with a high nucleus-to-cytoplasm ratio) (Figure 4-7).

In this manner a total of thirty one ES cell-like colonies (17 bladder and 14
ureter derived) were successfully expanded and stably maintained throughout
the cell passages (>50 passages, >10 months). Patient details from which
successful iPS cell lines were established are summarised in (Table 4-1). Since
each colony represents one separate human iPS cell line, these colonies were
individually picked out and each was placed into a separate wall for expansion

and identity analyses.
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Figure 4-7: (a) Phase- contrast micrographs of UT-stroma cells 48h post
transduction. The control represent untransduced cells, OSKM+ represent cells
transduced with lentivirus at MOI = 10 and Polybrene = 10ug/ml. (b) Example of
small and tight cell colonies observed 4 weeks after transduction. (c) Example
of established UT-iPS colonies on MEFs feeder layer showing standard
hallmarks of human ES cell colonies, including sharp borders and tightly packed
cells within the colonies. Scale bars: 100 um
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Patent identifier | Age | Gender History of patient iPS clones

12380 65 Female | Ureter from radical 4
nephrectomy for renal cell
carcinoma

12459 66 Male Ureter from 7

Cystoprostatectomy for
benign functional disorder

12491 48 Male Bladder from 10
Cystoprostatectomy for
benign functional
neurological disorder

12502 54 Male Ureter from radical 3
nephrectomy
12506 56 Male Bladder from 7

Cystoprostatectomy for
benign functional
neurological disorder

Table 4-1: Patient details from which UT-iPS cell lines were established.

4.3.1.5 Characterization of generated UT-iPS cells

4.3.1.5.1 Morphological analysis of UT-iPS cells

Colony and cellular morphological characteristics were assessed by phase-
contrast microscopy. Some of the early forming colonies appeared with slightly
fuzzy margins with a high frequency to undergo differentiation (Figure 4-8). This
might be expected since the nascent reprogrammed cells are highly prone to
differentiation, especially within the first few passages (Hochedlinger and Plath,
2009). However, as they expanded, colonies became uniformly round or oval
shaped with well-defined margins and flatter appearance (Figure 4-8).

The cells within these colonies showed large round nuclei with prominent
nucleoli and displayed a large nuclear to cytoplasmic ratio and phase-bright
borders. Within the same colony a variety of cell shapes and sizes were
observed but most of the cells were typically trapezoidal. As a colony increased
in size, the cells packed more tightly causing the cells to appear smaller.
Therefore, cells in smaller colonies looked larger than those in big colonies. In

addition, cells in the centre of the colony appeared smaller than those at the
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edge. While maintaining the human iPS cells in culture, a fraction of the cells

underwent spontaneous differentiation.

Typically, 10% spontaneous differentiation was seen in human ES cell cultures.
Differentiation is represented by loss of border integrity and the appearance of
obvious different cell types. The two frequent types of differentiation observed
included central differentiation at the top of the colonies and peripheral
differentiation where undifferentiated UT-iPS cells were surrounded by a ring of

differentiated cells as shown in (Figure 4-9).

During each passage, differentiated cells were carefully scraped and removed
from the culture to avoid deterioration of cell quality. To maintain sterility of the
iIPS cell cultures, this process was performed using an inverted light microscope
in a tissue culture hood. Notably, long intervals between passages or incubating
with culture media for more than 48h resulted in increased differentiation of the
cells. The size and confluence of iPS colonies were visually observed and used
as a guide for assessing when to passage. In general, UT-IPS cell cultures were

regularly passaged approximately every 5 to 7 days.
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Figure 4-8: Phase- contrast micrographs of established UT-iPS colonies on a
feeder layers. (a) Passage 1. (b) Passage 7, Inserts show higher magnification.
Scale bars: 100 pm.
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Figure 4-9: Visual inspection of human UT-iPS cell culture. (a) Example of
undifferentiated UT-iPS colony. Types of differentiation observed during
propagation of UT-iPS cell colonies vary, but they include: (b, c) Central
differentiation and (d) Peripheral differentiation where an undifferentiated UT-
iIPS colony is surrounded by a ring of differentiated cells. Scale bars: 100 um.
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4.3.1.5.2 Genetic analysis of UT-iPS cells (Surface marker and gene

expression)

Clones were expanded by standard human ES cell culture procedures on MEF
feeder cells and gave rise to cell lines with human ES cell-like morphology.
Three clones were selected for further analyses and the remaining clones were

frozen and stored in liquid nitrogen.

I.  Surface marker analysis in UT-iPS cells

Consistent with their human ES cell-like morphology, immunostaining using
antibodies for the surface antigen stage—specific embryonic antigen SSEA-4,
tumour rejection antigen TRA-1-81 and TRA-1-60 and also transcription factors
OCT4, and NANOG showed positive staining for these iPS markers

(Figure 4-10). Furthermore, alkaline phosphatase activity typical of an ES cell-

phenotype was demonstrated in the induced cells (Figure 4-10).
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TRA-1-81

Figure 4-10: (a) Immunofluorescence of generated UT-iPS cells for the
expression of specific human ES cell surface markers, SSEA-4, TRA-1-81,
TRA-1-60, and nuclear transcription factors NANOG and OCT4. Nuclei were
stained with DAPI (blue). (b) Alkaline phosphatase staining of UT-iPS cell
colonies. MEF feeder cells served as the negative control. Scale bars: 100 pum.
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Il. Testing transgene expression in UT-iPS cells

Transgene silencing is associated with the generation of iPS cells, where there
is a critical switch to endogenous expression of key ES cell regulatory factors
such as OCT4, SOX2 and NANOG. Expression level of the exogenous factors
was analysed in the induced cells by real time-PCR using primers specific for
lentiviral transcripts and demonstrated that transgenic expression of these

defined genes had ceased in UT-iPS clones (Figure 4-11).
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Figure 4-11: Real time-PCR using primers specific for the transgenes, and not
detecting endogenous gene expression levels confirm lentiviral transgene
silencing in UT-IPS cells (Passage 5). Control represents parental stromal cells
6 days after transduction. H9 human embryonic stem cell line was used as a
negative control. Clonel, clone4, and clone6 are three different clones of UT-
IPS cells. Error bars show SEM for N=3.
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lll.  Transcript analyses

Furthermore, endogenous expression of the pluripotency markers OCT4,
S0OX2, and NANOG, was consistent with that of H9 human ES cells ( cDNA was
kindly donated by Prof. Majlinda Lako (Institute of Genetic Medicine, Newcastle
University) ) and markedly increased compared with that in the parental stromal
cell population (Figure 4-12), whilst fibroblast lineage specific genes a-SMA,
calponin, and desmin were down-regulated (Figure 4-13).
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Figure 4-12: Real time-PCR analysis for expression of endogenous OCT4 and
SOX2 and NANOG in three different clones of UT-IPS cells (Passage 5).
Control represents parental stromal cells before transduction. All values were
calculated with respect to the value for H9 human ES cell which was set to 1.
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Figure 4-13: Real time-PCR analysis for fibroblast lineage specific genes a-
SMA, calponin, and desmin in UT-iPS cells (Passage 5). Control represents
parental stromal cells before transduction. Error bars show SEM for N=3.
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IV. Expression of other pluripotent transcripts in UT-iPS cells

A recent publication reported that the expression of DNMT3B, GDF3, and REX1
markers can distinguish the bona fide iPS cells from partially reprogrammed
cells (Chan et al., 2009a). The generated UT-iPS clonal cells expressed these
markers at comparable levels to human ES cells, confirming their full
reprogramming capacity (Figure 4-14). The UT-iPS cell lines derived from
bladder and ureter were shown to be identical in terms of ES cell-like

morphology, proliferation and gene-expression signatures.
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Figure 4-14: Real time-PCR analysis of stem cell marker genes in three
different clones of UT-IPS cells for expression of DNMT3B, GDF3, and REX1.
Control represents stromal cells before transduction. All values were calculated
with respect to the value for H9 human ES cell which was set to 1.
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4.3.1.5.3 Identity testing of UT-iPS cells

Authentication of UT-iPS cells derivation from parental stromal cells was
confirmed using DNA fingerprinting. The patterns of 16 short tandem repeat
(STR) markers were completely identical between UT-iPS clones and the
parental stromal cells. In addition, these patterns differed from skin-iPS line that
was cultured concurrently in the laboratory ruling out any contamination of our

iIPS cell lines by pre-existing skin-iPS cells (Table 4-2).

Name Parental cells | UT-iIPS Skin-iPS
Amelogenin XY XY XY
D3S51358 12 17 12 17 17 18

THO1 6 9.3 6 9.3 6 9
D21S11 29 30 29 30 29 30
D18S51 13 15 13 15 12 13

PentaE 5 15 5 15 7 12
D5S818 10 12 10 12 11 12
D13S317 11 13 11 13 9 9
D7S829 8 9 8 9 10 11
D16S539 10 13 10 13 11 11
CSF1PO 12 12 12 12 10 12
PentaD 9 10 9 10 10 10

VWA 14 14 14 14 16 17
D8S1179 12 12 12 12 13 15

TPOX 8 10 8 10 8 9

FGA 21 24 21 24 21 27

Table 4-2: DNA fingerprinting showing that UT-iPS cells have DNA genetic
profiles matched to their parental stromal cells and differ from that of pre-
existing skin-iPS cells.
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4.3.1.5.4 Karyotyping of UT-iPS cells

Karyotyping was performed to demonstrate that the generated UT-iPS cells
maintain a stable karyotype after serial passages. UT-iPS cells showed a
normal diploid 46, XY chromosome arrangement with the absence of any
aneuploidy (loss or duplication of chromosome) and heteroploidy (having

abnormal numbers of chromosomes) (Figure 4-15).
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Figure 4-15: Karyotype analysis shows normal karyotype of established UT-IPS
cells at passage 25.
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4.3.1.6 In vitro differentiation capacity of UT-IPS cells

As mentioned before, the pluripotent stem cells are characterized by their ability
to differentiate into representative derivatives of all three embryonic germs.
Although the iPS cells were very similar to human ES cells with respect to
morphology, proliferation, antigen markers and gene expression markers, it
remained unclear whether these generated cells are true pluripotent cells with
full differentiation capacity. To investigate this, the differentiation potential of
these putative iPS clones was evaluated in vitro using floating cultivation to form
embryoid bodies (EBs). Typically, within a suspension culture, pluripotent stem
cells aggregate and form three-dimensional structures or spheroids called EBs
because they mimic many features of normal embryonic development. UT-IPS
cells formed ball-shaped EB-like structures after 8 days in suspension culture
with differentiation medium (Figure 4-16). These EBs were transferred to

gelatin-coated cell culture plates and cultured for a further 8-10 days.

Figure 4-16: UT-IPS cells formed EBs in suspension culture. Phase- contrast
micrographs of EBs created by human UT-iPS cells at day 3, and 8. Scale bars:
500 pm.
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The ability to differentiate to cells derived from three germ-cell layers was
examined by immunofluorescence. Outgrowth cells were detected to be positive
for CD31 (mesoderm marker), alpha-fetoprotein (endoderm marker), and fllI

tubulin (ectoderm marker) (Figure 4-17).

Differentiation to three germ-cell layers was further confirmed by real time-PCR.
Differentiated cells showed marker gene expression for all three embryonic
germ layers: alpha-fetoprotein (endoderm marker), PAX6 (ectoderm marker),

and a-SMA and vimentin (mesoderm marker) (Figure 4-18).

Moreover, following iPS cells differentiation into the three germ layers, the
pluripotent transcripts should be down regulated, otherwise potential integrated
proviruses might be present (Stadtfeld et al., 2008b). UT-iPS embryoid-body
derived cells showed down regulation of the endogenous expression of OCT4,
SOX2, and NANOG (Figure 4-19).

Although integrated transcription factors become transcriptionally silenced over
time, spontaneous reactivation of these exogenous factors during cell culture
and upon differentiation into various lineages have been reported (Nakagawa et
al., 2008; Shao and Wu, 2010). Therefore the expression of the exogenous
factors in UT-iIPS embryoid-body derived cells was analysed by real time PCR
and this demonstrated that transgenic expression of these defined genes is still
silenced (Figure 4-20). Together, these results indicate that these ES cell-like
colonies not only expressed pluripotency markers, but also could differentiate

into ectoderm, mesoderm, and endoderm-derived germ layers in vitro.

152



BETA -TUBULIN

CD31(PECAM-1)

g [

Figure 4-17: Characterisation of Pro-iPS embryoid body differentiation through
immunofluorescence staining. Immunofluorescence analysis of EBs derived
from UT-IPS cells shows expression of the lineage markers beta-tubulin
(ectodermal marker; Red), CD31 (mesodermal marker; Green ) and alpha-
fetoprotein (AFP) (endodermal marker; Green ). Nuclei were stained with DAPI
(blue) (scale bar = 100pum).
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Figure 4-18: UT-iPS derived embryoid bodies differentiate into cells of
ectodermal, mesodermal, and endodermal lineage. Real time-PCR analysis for
MRNA expression of PAX6, and vimentin (ectodermal marker), a-SMA
(mesodermal marker), and AFP (endodermal) in EBs derived from UT-iPS cells
compared to undifferentiated UT-iPS cells. Error bars show SEM for N=3.
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Figure 4-19: Real time-PCR analysis for endogenous expression of OCT4,
S0OX2, and NANOG in EBs derived from UT-iPS cells shows down-regulation of
these markers. Error bars show SEM for N=3.
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Figure 4-20: Real time-PCR using primers specific for the transgenes confirm
that lentiviral transgene is still silenced in EBs derived from UT-IPS cells (week
4). Control represents parental stromal cells 6 days after transduction. Error
bars show SEM for N=3.

4.3.1.7 In vivo differentiation capacity of UT-iPS cells

The most instructive in vivo test of pluripotency is the ability to contribute to all
cell types, including germ cells, in chimeric offspring generated by mixing ES
cells with mouse blastocysts (Evans and Kaufman, 1981; Martin, 1981).
However, due to obvious ethical concerns, human ES cells cannot be subjected
to the same definitive test. Therefore, the gold standard to assess the
developmental potency of human ES cells is the formation of teratomas in

immunodeficient murine hosts.

Approximately 5 x 10° UT-iPS cells for three clones were injected
subcutaneously to immunodeficient NSG mice. Similarly, 5 x 10° human ES
cells (H9) were used as a positive control. Teratomas that developed from
grafted UT-IPS cells were surgically removed, fixed in Bouin’s, and paraffin
embedded. The tissues in the teratoma were analyzed histologically and
confirmed that UT-iPS cells formed tissues derived from all three embryonic
germ layers confirming their pluripotency. Areas of germ layer specific
differentiation were evident with sections containing structures consistent with

endoderm, mesoderm and ectoderm lineages (Figure 4-21).
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Figure 4-21: Histological sections of identified cells within teratoma formed by
UT-iPS cells representing all three embryonic germ layers: ectoderm (neuronal
rosette-like structures), endoderm (intestinal epithelial-like cells) and mesoderm
(muscle-like tissue). The histopathological analyses was kindly performed by
Prof. Simon Hayward, Vanderbilt University, USA.

4.3.2 Transduction of human urothelial cells

Urothelial cells were cultured as described in the previous chapter. Once
confluent, the media was replaced with freshly prepared transduction media
containing the OSKM 4 in 1 construct in the presence of polybrene 10 ug/ml
final concentration. Prior transduction, mRNA expression of cell lineage markers
(a-SMA; CD90; CD24; CD45; and VWF) was assessed in urothelial cells by real
time-PCR to confirm their purity (Figure 4-22).

All samples expressed the epithelial cell marker, CD24 while no expression of
stromal, haematopoietic and endothelial cell markers was detected. Urothelial
cells were transduced using the same protocol as for stroma cells and at day 14

post-transduction, small and dense colonies were observed (Figure 4-22).
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Figure 4-22: Transduction of human urothelial cells. Urothelial cells were
transduced with OSKM lentivirus vectors, and plated onto MEFs feeder cells in
human ES cell medium. (a) Real time-PCR for mRNA expression of a-SMA and
CD90 (stromal cell markers), CD24 (epithelial cell marker), CD45
(haematopoietic cell marker), and vVWF (endothelial cell marker) for two samples
of urothelial CD326+ cells at PO. (b, c, d). Phase-contrast photomicrographs of
urothelial colonies in ES cell environment at different magnifications. These
cells didn’t exhibit ES/iPS cells morphological features including small round
cells with large nuclei, notable nucleoli, and spaces between cells. (e) Control
phase-contrast photomicrograph of UT-iPS cells. Scale bars: 100 pum (b, c), 50
um (d, e).
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4.3.3 Live- cell staining of transduced urothelial cells

A live-cell staining of urothelial colonies using anti SSEA-4 and TRA-1-60
antibody was performed in conjunction with Hoechst 33342 nuclear staining, as
previously described. SSEA-4 expression is particularly interesting as it seems
to be expressed more rapidly than other commonly used markers (Enver et al.,
2005; Stewart et al., 2006) while the TRA-1-60 antigen exhibits an intermediate
behaviour (Draper et al., 2002). Moreover, these markers are located on the
exterior surfaces of the cell membrane; therefore they can be detected by live
cell imaging and allow us to culture these colonies following the staining
process and further observe their progress over time without damaging the
cells. Interestingly, analysis of the photomicrographs revealed that some of
these colonies exhibit SSEA-4 and TRA-1-60 positive phenotype (Figure 4-23).

Although it was expected that these colonies would grow, no such proliferation
was observed. Even after dividing into smaller clumps and transferring to fresh
MEFs, it was not possible to detect any noteworthy proliferation in the resulting
clumps. These nascent reprogrammed cells might fail to reach the fully
reprogrammed state and possibly reverted back or simply died. Since these
colonies were easily distinguishable by behaviour from human ES cell-like iPS
colonies, it was decided that these would be categorized as either partially re-

programmed or abortive colonies.

On the other hand, control cells (un-transduced cells) started to form colonies
on the MEFs feeder layer at day 5-7 after plating (Figure 4-24). However,
staining for SSEA-4 and TRA-1-60 was undetectable in any of these colonies
(Figure 4-25). Once substantial-sized colonies were noticed, these were split
into smaller fragments and transferred to fresh MEFs. However, they didn’t
grow as fast as the parental colonies and remained negative for SSEA-4 and
TRA-1-60. Most of these colonies eventually died or stopped proliferating.

Alternatively, epithelial cells were directly seeded after MACS sorting onto
MEFs in human ES cell medium and once substantial-sized colonies were
noticed these were transduced with the OSKM 4 in 1 construct and 10 pg/ml of
polybrene. Growing prostate epithelial cancer cells in such an environment has
been shown to upregulate the transcription factors (OCT4, SOX2, NANOG) in
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these cells which in turn might increase the reprogramming efficiency
(Anastasia Hepburn, NICR, unpublished data). In addition, this may avoid the
cells the stress resulting from replating process. After 48 hours of transduction,
the media was replaced with fresh human ES cell medium and the cells were

cultured in this media for another 4 weeks. No iPS colonies were noted.
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Figure 4-23: Live cell imaging analysis of transduced urothelial cells (12165). (a)
Day 14. (b) Day 30 post transduction. (c) Primary urothelial cells (negative
control). (d) Human skin iPS cell colony (positive control). Colony was analysed
by phase contrast (top left) and fluorescence microscopy for expression of
pluripotency markers SSEA-4 (red), and TRA-1-60 (green); nuclei were stained
with Hoechst 33342 (blue). Scale bars: 100 um (a, b), 50 um (c, d).

159



Figure 4-24: Phase-contrast photomicrographs of colonies formed by
untransduced urothelial cells cultured in ES cell environment. (a) Day 8. (b) Day
15. Colonies on low power magnification showed tight borders and smooth
surface. Scale bars: 100 pm.
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Figure 4-25: Live cell imaging analysis of untransduced urothelial cells. (a) Day
10. (b) Day 20 post transduction. (c) Human skin iPS cell colony (positive
control). Colony was analyzed by phase contrast and fluorescence microscopy
for expression of pluripotency markers SSEA-4 (red), and TRA-1-60 (green);
phase contrast (top left), nuclei were stained with Hoechst 33342 (blue). Scale
bars: 50 pum.
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4.4 Discussion

Since iPS cells may retain an epigenetic memory of their original cell types
(Chin et al., 2009; Marchetto et al., 2009; Kim et al., 2010), it is important to
establish human iPS cells from different tissue origins and compare their
differentiation potentials. In this chapter successful reprogramming of adult
human stromal cells isolated from both bladder and ureter into iPS cells (UT-
IPS) is successfully described following the method developed in the Yamanaka
laboratory, with modifications described by Tilgner and colleges (Katarzyna
Tilgner, 2010). In addition to exhibiting ES cell morphology, the newly derived
UT-iPS cells highly expressed the pluripotency markers OCT4, SOX2, NANOG,
SSEA-4, TRA-1-60 and TRA-1-81 and alkaline phosphatase, showed efficient
transgene silencing and maintained a normal diploid karyotype. It should be
noted that karyotyping relies on G-band quality and resolution and poor quality
chromosomes increase the risk of missing small subtle abnormality may not
detect mosaicism. Therefore more sensitive technique such as CGH Microarray
testing (array CGH), MLPA (multiple ligation-dependent probe amplification) or
FISH (fluorescence in-situ hybridisation) that can detect copy number change
(deletion or duplication) in the genome at a higher resolution than G-band

analysis should be performed in the future.

Furthermore, human UT-iPS cells showed functional pluripotency by the
generation of endodermal, ectodermal and mesodermal lineages in vitro and in
vivo. UT-iPS colonies were morphologically selected by microscopic
observation, which is consistent with previous reports that drug selection with
pluripotent markers is not essential for iPS cells derivation (Meissner et al.,
2007; Nakagawa et al., 2008; Ohnuki et al., 2009). This result is also consistent
with the findings that reprogramming to pluripotency is a slow and gradual
process where cells that have not yet reached the pluripotency state may be
eliminated by drug selection. In addition, using a selection system will need
genetic modification which may constitute a potential drawback for therapeutic

application of similar approaches (Lyssiotis, 2009).

Yamanaka in his original work used multiple individual retroviral vectors to
deliver each transcription factor to generate iPS cells (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007) which can lead to high number of
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genomic integrations. In addition, each of the reprogramming factors was
individually integrated into different sites within the genome leading to an
increased risk of gene mutagenesis and genomic instability. In this project, to
avoid these problems, cells were transduced using a single, self-inactivating
(SIN), polycistronic lentiviral vector encoding for the four transcription factors
separated by 2A sequences with a loxP site in truncated 3° LTR and controlled
by the EF1a promoter. This system improves the reprogramming efficiency and
silencing of transduced exogenous and ensures that all transduced cells will
receive equal amounts of each of the four transcription factors (Shao et al.,
2009). Most importantly the integrated provirus can be deleted from the iPS cell
genome through transient expression of Cre-recombinase in transduced cell
and therefore allows the derivation of transgene-free human iPS cells (Oh et al.,
2012; Awe et al., 2013). Although C-MYC is a cancer-causing gene which is
known to cause death and differentiation in human ES cells (Sumi et al., 2007);
it markedly increased the reprogramming efficiency and OSKM factors have
been shown to be more efficient to reprogram human fibroblasts compared to
OSK, and OSLN (Robinton and Daley, 2012). Hence, OSKM set was used for
the establishment of UT-IPS cells.
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5 Chapter 5. Induced differentiation of bladder specific cells
from UT-IPS cells in vitro

5.1 Introduction

Pluripotent stem cells are functionally characterized by their ability to self-renew
and differentiate into all cell types derived from all 3 germ layers. In this project,
the generated UT-iPS cells are proven to be pluripotent and must be able to
differentiate to any cell type including urothelial and stromal cells. However,
recent evidence revealed that during the reprogramming process, iPS cells
retain an epigenetic memory of the starting cell type that increase their
propensity to redifferentiate back into the parental cell types (Kim et al., 2010;
Bar-Nur et al., 2011; Ohi et al., 2011; Lee et al., 2012; Xu et al., 2012), the
exact mechanisms behind this donor memory are not fully understood. This
raises the question whether UT-IPS cells will exhibit higher propensity to
differentiate in vitro into bladder lineages as compared to classical skin-derived
IPS cells. To address this question, both UT-iPS and skin-iPS cells were
differentiated using the protocol described by Tian et al with minor modifications
(Tian et al., 2010b).

5.2 Aim:

To investigate the basic ability of the UT-iPS cells to differentiate into urothelial
and stromal like cells by using CM derived from bladder cells and comparison
with conventional skin derived iPS cells for potential use in urological tissue

engineering and regeneration.
5.3 Results:

Primary urothelial and stromal cells from urinary bladders or ureters were
isolated and cultured in accordance with the methods described in the previous
chapter. Two different protocols were used to induce the differentiation of UT-
iIPS and skin-iPS cells into urothelial and stromal cells (Figure 5-1).

UT-iPS cell were collected as clumps and cultured on low adhesion dishes in a
urothelial cell-derived CM (U-CM) collected from cultured human urothelial cells
and alternatively on a stromal cell-derived CM (S-CM) collected from human

urinary tract stromal cells where they were observed to round up into embryoid
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body-like masses and were referred to as bcm-EB (bladder conditioned medium
embryoid body). After 10 to 14 days of suspension culture, bcm-EBs were
transferred onto gelatin coated plates and further cultured in the same CM for
another 3 weeks. The other protocol used was previously described by Tian et
al (Tian et al., 2010Db), but with minor modifications. Briefly, iPS cells were
initially plated in a 6-well plate for 5-7 days in human ES cell medium. Then 70-
80% confluent iPS cell cultures were washed with 1XPBS and incubated in
various differentiated media for a further 2 weeks. For urothelial cell
differentiation, U-CM was collected from cultured human bladder urothelium and
diluted to one-third volume with fresh DMEM. For stormal cells differentiation, S-
CM was collected from cultured human bladder stromal cells and diluted with an
equal volume of RPMI1640 10% FCS. The medium was changed at 24 h prior
to collection and the filtered CM was also stored at -80°C to retain the biological
activity of the secreted factors. Differentiated cells were analysed for a panel of
urothelium and stromal smooth muscle specific genes using real time-PCR. The
expression of specific markers in the differentiated cells derived from UT-IPS
cells and skin-iPS cells were compared after the same planned period of culture
and using the same CM. UT-iPS that were not induced were processed in

parallel as a negative control.

Differentiation Induction

Conditioned
media

Conditioned
media

Figure 5-1: General outline of the two protocols used for iPS differentiation.
Scale bars: 100 pm
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5.3.1 Characteristics of newly differentiated urothelia/stroma-like cells

Morphological examination of the differentiation cells derived from UT-iPS cells
showed characteristically small, epithelioid cells. To investigate the ability of
generated UT-iPS to differentiate into bladder tissues, the mRNA expression of
urothelium differentiation specific genes (UPIb, UPII, UPllla, UPIlIb, CLD1,
CLD5, and CK7) and stromal smooth muscle cells specific markers (a-SMA,
calponin, and desmin) in differentiated cells derived from UT-iPS cell line was

analysed and compared to that derived from the skin-iPS cell line.

5.3.2 Differentiated UT-iPS cells expressed urothelial and stromal-

specific genes

Real time-PCR was performed on UT-iPS and skin-iPS cells before and after
induction. Amplification of urothelium differentiation specific genes ( UPIb, UPII,
UPllla, and UPIllb, CLD1, CLD5, CK7) and stromal smooth muscle cells
specific markers (a-SMA, calponin, and desmin) showed specific products in
induced cells from both UT-iPS cells and skin-iPS cells using both U-CM and S-
CM although some variation was observed between expression of uroplakins.
However, mMRNA expression of uroplakins was significantly higher in induced
UT-iPS cells using both S-CM and U-CM, when compared to that in non-
induced UT-iPS cells and induced skin-iPS cells (Figure 5-2). Similarly, induced
UT-iPS cells particularly after treating with U-CM showed higher levels of other
markers for epithelial cells, CLD1, CLD5, and CK7 (approximately 15 to 20
fold), as compared to non-induced UT-iPS cells and induced skin-iPS cells. In
addition, all urothelium differentiation specific genes were more strongly
expressed when UT-iPS cells were treated with U-CM compared to those
treated with S-CM.

Stromal smooth muscle cell-specific transcripts (a-SMA, calponin, and desmin)
also showed a significant increase in induced UT-iPS cells compared to non-
induced UT-iPS cells and induced skin-iPS cells. Amongst the stromal smooth
muscle markers, there was a massive increase in a-SMA transcription (150-200
fold) but about 5-10 fold induction in calponin and desmin transcription

compared to the non-induced UT-iPS cells and induced skin-iPS cells.
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Figure 5-2: Expression of urothelial and smooth muscle lineage specific
transcripts in differentiated cells derived from UT-iPS cells and Skin-iPS cells at
day 14. The mRNA levels are shown as a fold change relative to control
(undifferentiated cells) (N=3). (a) Differentiation induction with conditioned
medium from urinary tract urothelium. (b) Differentiation induction with
conditioned medium from urinary tract stroma.

* P <0.05, *P <0.01, *** P <0.001.
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5.3.3 Urothelial marker expression in differentiated UT-iPS cells

The above findings using real time-PCR have demonstrated that differentiated
UT-iPS cells express a panel of urothelial specific genes. To further examine
whether these cells had differentiated into urothelial cells, the expression of
UPIb was measured at the protein level by immunofluorescence. Cells immuno-

positive for UPIb were seen in differentiated cells derived from UT-iPS cells

after 2 weeks in U-CM as shown in (Figure 5-3)

Figure 5-3:Immunofluorescence of differentiated cells derived from UT-iPS cells
treated with conditioned medium at day 14, showing (a) Bright field; (b) Positive
staining for UPIb (red) juxtaposed with an area of UPIb negative staining, with
DAPI nuclear counterstain (blue); and (c) High magnification of UPIb
immunostaining. (scale bar = 100um).
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5.4 Discussion

Stem cell fate is mainly controlled by the extracellular environment represented
by the cells and secreted proteins (Moore and Lemischka, 2006; Liu et al.,
2009a). Therefore, the local environment is likely to be a critical factor in
defining stem cell features (Van Vranken et al., 2005). Our results demonstrated
that CM from bladder tissue may provide a niche that is favourable for urothelial
differentiation of iPS cells in vitro. The mammalian bladder is composed of a
three layer arrangement of serosa, smooth muscle and urothelium. The
urothelium consists of three cell layers, basal, intermediate, and umbrella
superficial cell zones and contains a group of integral membrane proteins called
uroplakins, UPla/b, UPIl and UPIlla/b, which represent highly sensitive and
specific markers for mature urothelium. Moreover, cytokeratins (CKs) and
claudins are expressed by different types of epithelial cells. Specifically,
Urothelial cells in culture express various types of CKs and claudins which also
provide useful markers to identify the urothelial cells (Varley and Southgate,
2008; Liu et al., 2009a). The results showed that urothelium and stromal smooth
muscle gene expression was detected in differentiated UT-iPS cells after
treating with either U-CM or S-CM. Differentiation into urothelial like cells was
further confirmed by showing that UT-iPS cells can give rise to cells expressing
UPIB (which is one of the most commonly used urothelial cell markers) on the
protein level. Its expression is very specific and many experts in the field would
consider the expression of this marker at a protein level to be definitive of
urothelium. Ideally additional markers could be assessed for urothelial and
smooth muscle cell phenotypic characterisation. In addition further studies to
determine whether UT-iPS cells can differentiate into functional urothelial cells
and smooth muscle cells for potential use in tissue engineering would be
desired (Southgate et al., 1994; Wezel et al., 2014). This experiment is also
limited by the fact that UT-iPS and skin iPS cell lines are not derived from the
same patient. Hence it will be interesting to investigate the differentiation
potential between two different iPS cell lines derived from the same patient.

Previous study reported that CM derived from bladder cells was able to induce
the differentiation of human bone marrow mesenchymal stem cells into smooth

muscle cells and urothelium-like cells (Tian et al., 2010b). UT-iPS cells were
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also shown to be more proficient than skin-derived iPS cells in generating
urothelial and stromal like cells which was demonstrated by expression of
urothelial-specific markers including uroplakins, claudins, and cytokeratin and
stromal smooth muscle markers including a-SMA, calponin, and desmin. These
disparities highlight the epigenetic differences between individual iPS lines and
represent the importance of organ-specific iPS cells for tissue-specific studies
and justify sourcing iPS cells from the urinary tract tissue rather than the more
accessible skin tissue for potential applications in clinical regenerative medicine
and modelling urinary tract disease. Furthermore, these results suggest that the
growth factors might be sufficient to induce differentiation of iPS cell along the
urothelial and stromal lineage and that physical contact between iPS cells and

the inductor cells is not always a requisite.
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6 Chapter 6. Induce differentiation of bladder specific cells
from UT-iPS cells in vivo

6.1 Introduction

In the previous chapter it was demonstrated that the generated UT-iPS cells
have skewed ability to differentiate into bladder cells in vitro. The next step was
to investigate the ability of these cells to differentiate into bladder specific
tissues in vivo. Previous experiments reported that embryonic bladder
mesenchyma (EBLM) is an appropriate inductor that regulates differentiation of
mouse ES cells and bone marrow derived mesenchymal stem cells toward
mature bladder tissue (Oottamasathien et al., 2006; Oottamasathien et al.,
2007). Therefore, the behaviour of the UT-iPS cells was assessed when co-
cultured with appropriate inductive mesenchyme in vivo. Inducing the
differentiating of UT-iPS cells into mature bladder tissue in vivo might be a
major step towards the clinical use of iPS cells in regenerative medicine and
tissue engineering of urological organs and also may lead to a better
understanding and studying of human bladder embryogenesis and diseases. To
this end, it was decided to establish a feeder free culture using a matrigel matrix
with optimised human ES cell media. Thereafter, to enable tracking their
differentiation in vitro and in vivo, UT-iPS cells were labelled with a fluorescent
marker. Such a model might enable us to capture early events involved in
bladder development and also facilitate the ability to identify bladder progenitor

cells.
6.2 Aims

- Adapting and maintaining UT-iPS cells to feeder-free culture.

- Generate stable transfectant iPS clones using lentiviral vectors encoding for
fluorescent marker genes.

- Investigate the potential of UT-iPS cells to undergo complex differentiation to
form mature bladder tissue under the inductive signaling environment
provided by EBLM.
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6.3 Results:
6.3.1 Feeder-free adaptation, culture and passaging of human UT-iPS
cells

To avoid loss of lentivirus into the feeder layer and to exclude the effect of
Blasticidin on MEFs, attempts were made to establish UT-iPS cells feeder-free
culture. UT-iPS cells were seeded and maintained in culture dishes coated with
BD Matrigel human ES cell qualified matrix in optimised human ES cell media-
mTeSR1. BD Matrigel human ES cell qualified matrix is a soluble basement
membrane extract optimized for stem cell research mainly consisting of laminin,
collagen IV, entactin, and heparan sulfate proteoglycan (Kleinman et al., 1982).
MTeSRL1 is complete, serum-free standardized media for feeder-free
maintenance of human ES and iPS cells in culture (Yu et al., 2007; Sun et al.,
2009). No adaptation step is required when switching iPS cells from feeder to
mTeSR1. Simply, at the time of passaging, undifferentiated UT-iPS aggregates
were scraped from the surface of the plate under a low power microscope,
washed with DMEM/F-12 and seeded in appropriate volume of mTeSR1 on BD
Matrigel-coated plates. High magnification images demonstrated that UT-IPS
cells grew as compact and multicellular colonies with a distinct border and
displayed prominent nucleoli with a high nuclear-to-cytoplasm ratio (Figure 6-1).
Cells at the margins of the colony appeared larger than the cells in the colony
centre. Healthy colonies were multilayered in the centre, resulting in clusters of
phase-bright cells.
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Figure 6-1: Morphology of human UT-iPS cells cultured on a Matrigel coated
plate in mTeSR1 medium. (a) An undifferentiated human UT-IPS colony at day
1. (b) and day 5. (c) Higher magnification, feeder-free colonies appear to have a
flatter morphology, whereby individual cells are more easily observed within the
colonies. (d) Cells at the margins of the colony appear larger than the cells in
the colony centre. Insert shows UT-iPS cells with high nuclear to cytoplasmic
ratio and prominent nucleoli. Scale bars = 100pm.
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As human iPS cells are maintained in culture, a subset of the cells
spontaneously differentiate. Differentiation is characterized by loss of border
integrity, and the appearance of obvious different cell types as shown in
(Figure 6-2). These differentiated cells were scraped off the dish surface and
removed before each passage. In our hands, the percentage of the

differentiated cells didn’t exceed 2%.

To ensure continued quality with optimum attachment and continued
undifferentiated proliferation, iPS cells should be passaged at the proper time.
Extending the time between passaging in feeder free system results in
overgrowing and increased differentiation of the iPS cells and cannot be
rescued. Passaging too early, however, resulted in reduced attachment and
poor survival. During the first few passages after transferring to feeder free
culture, UT-IPS cells grew slowly and they therefore passaged to matrigel plates
at a 1:1 ratio. Later, cells were split using 1:6 ratio.

Cells were passaged when the colonies became large with a dense and phase-
bright centre compared to their edges when viewed using phase contrast
microscopy and when the colonies start to touch and fuse with one another
(Figure 6-3). This generally happened around 5-7 days after seeding. UT-iIPS
cells were passaged using dispase at a concentration of 1 mg/ml at 37°C for 7
minutes until the edges of the colony appear slightly folded back (Figure 6-3).
All cultures were observed in the days immediately following passage to ensure
that they already passaged at the appropriate time. In the first two days after
seeding colonies may not be very densely packed with cells. However, the
density of the colonies increased quickly after this time point. UT-iPS cells were
phenotypically homogeneous and could be maintained and expanded in

undifferentiated state for more than 30 passages.
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Figure 6-2: (a) An undifferentiated human UT-iPS colony day 5. (b) UT-iPS
colony showing an area of differentiation in the centre. (c) Area of differentiation
between 2 undifferentiated human UT-iPS colonies. Scale bars = 100pm.

Figure 6-3: Passaging of UT-IPS cells on feeder - free culture. (a) UT-iPS cells
ready to be passaged. (b) UT-iPS colonies growing on Matrigel have a very flat
appearance with the edges of the colonies tightly adhering to the Matrigel
coated dish surface. (C) Exposure to dispase for ~7 minutes results in the
curling of the colony edges but the colonies should remain attached to the plate.
(d) Higher magnification. Scale bars = 100um.
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6.3.2 Generation of stable transfectant UT-iPS cell lines

The second aim of this part of project was to generate stable transfectant UT-
iIPS clones to enable tracking them through and after their differentiation. To
achieve this, UT-iPS cells were transduced with -actin-mOrange self-
inactivating lentiviral vectors and blasticidin selected (Figure 6-4) (gifted by
Norman J. Maitland, YCR Cancer Research Unit, York, UK). The m-Orange
marker and the selectable marker are driven by $-actin and SV40 promoters,
respectively. Drug selection is a simple and widely used approach to separate
the stable transfectant cells from other cells that have not integrated the vector
DNA into their chromosomes. Drug selection performs two important roles, both
to remove untransduced cells, but also to force integration of the vector. The
lowest dose of blasticidin that would completely kill 200% of un-transduced UT-
IPS cells by 12 days after drug addition was taken as a starting point for

selection trials.

Figure 6-4: Diagram of mOrange (B-actin)-Bsd lentiviral particles lentivirus
construct. Modified from (Frame et al., 2010).
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In brief, undifferentiated iPS cells were plated at a confluency of <40% per well
into a 6-well culture plate, taking care to maintain cells as aggregates. After
24h, media was replaced with the desired amount of virus particles diluted in
mTeSR1 medium supplemented with 6ug/ml of polybrene. Medium was
changed after 24h. 5 days post transduction, blasticidin was added at a final
concentration of 1 pg/ml, as determined previously through kill curves. Selection
lasted 12 days. Medium and selective antibiotic were replenished every 2 days.
After blasticidin selection the mOrange expression was analysed by
fluorescence microscopy and by flow cytometry. A control experiment was first
carried out to validate the virus stock, in which an easy to handle cell line
(HEK293) was transduced with 10, and 100 pl of virus using the same protocol.
Three days after transduction, few fluorescent positive cells were observed

confirming that the virus was working well (Figure 6-5).

Figure 6-5: HEK293 cells transduced with B-actin-mQOrange lentivirus, day 3.
Phase contrast (left), Fluorescence (middle), and merged (right) micrographs
are shown. Scale bar = 100pum.
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6.3.2.1 Promoter activity in undifferentiated UT-iPS cells

As the concentration of the virus was not known, the MOI couldn’t be
determined, therefore, the initial transduction of UT-IPS was carried out using
different amounts of virus (100, 500, and 1000ul). Undifferentiated UT-iPS cells
were prepared for transduction as described previously; transduced cells were
subsequently subjected to blasticidin selection (1 pg/ml for 12 days). Five days
after transduction, mOrange was constitutively expressed in very few cells
(Figure 6-6). An attempt was made to clone the positive cells. However,
colonies of lentivirus-infected UT-iPS cells showed silencing of the p-actin
promoter in blasticidin-selected cells (Figure 6-7).

Figure 6-6: UT-iPS cells transduced with B-actin-mOrange lentivirus. Five days
after transduction, very few mOrange-positive cells were detected. Phase
contrast (top row) fluorescence (middle row), and merged (bottom row)
micrographs are shown. Scale bar = 10um.
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Figure 6-7: Colonies of mOrange(f3-actin) lentivirus- transduced UT-iPS cells
showing silencing of the B-actin promoter in blasticidin-selected cells.
Fluorescence (top row) and merged (bottom row) micrographs are shown.
Scale bar = 50um.

Lentivirus (B-actin)-transduced UT-iPS cells were analysed after blasticidin
selection, to quantify the proportion of cells expressing the mOrange fluorescent
proteins and to isolate the positive cells. Flow cytometry analysis demonstrated
that mOrange was negative in about 99% of the cells (Figure 6-8). mOrange
positive cells were isolated and cultured for 10 days. Colonies formed from
these sorted cells showed heterogeneity in mOrange expression and remained
blasticidin-resistant. After three weeks in culture, the flow cytometry was
repeated and it was observed that less than 1% of the sorted cells expressed
the mOrange marker (Figure 6-9). In addition, differentiated cells derived from
transduced UT-iPS cells did not constitutively express the mOrange marker
(Figure 6-10).
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Figure 6-8: Flow cytometry of mOrange (B-actin) lentivirus- transduced UT-iPS
cells. (a) P1 gated the cells after ruling out the cellular debris. (b) Doublets
discrimination. (c) Control untransduced cells. (d) Lentivirus- transduced UT-iPS
cells, ~ 99% of the cells were mOrange negative. UT-iPS cells control cells,
mOrange negative (purple events); mOrange positive cells (yellow events);
Doublets (red events).
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Figure 6-9: Flow cytometry of mOrange (B-actin) lentivirus-transduced UT-iPS
cells 3 weeks after selection. (a) P1 gated the cells after ruling out the cellular
debris. (b) Doublets discrimination. (c) Control untransduced cells. (d)
Lentivirus-transduced UT-iPS cells, less that 1% of the cells are mOrange
positive (green events). UT-IPS cells control cells, mOrange negative (purple
events). Doublets (red events).

Figure 6-10: Phase contrast (left) and fluorescence (right) micrographs of
mOrange(B-actin)lentivirus-transduced UT-iPS cells showed silencing of the -
actin promoter upon differentiation. Scale bar = 100um.
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As a result of this, fluorescent markers driven by human elongation factor 1-
alpha (EFla) constitutive promoter were alternatively used in further studies.
UT-iPS cells were transduced with EF1a-mWasabi or EF1a-Citrine self-

inactivating lentiviral vectors following the same protocol described above. 3
days post transduction; iPS cells were identified demonstrating mWasabi or

citrine expression by fluorescence microscopy (Figure 6-11).

EF1a-mWasabi EF1a-Citrine

Figure 6-11: UT-iPS cells transduced with EF1a-mWasabi (left column) or
EF1a-Citrine lentivirus (right column). Phase contrast (top row) fluorescence
(middle row), and merged (bottom row) micrographs at day 3 are shown. Scale
bar = 100pm.
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To generate relatively homogeneous cell populations, positive cells were
isolated by FACS and cultured on matrigel coated plates in mTeSR1 medium.
Human iPS cells prefer close cell-to cell contacts, and will rarely survive as
single cells. It was found that the density of initial plating after sorting was
critical for sorted cells recovery; therefore, to maximize their recovery, wasabi+
or citrine+ sorted cells were seeded at a very high density (1-2x10° cells/well of
a 6-well plate). In addition, as widely performed, a pre-incubation with the Rho
kinase (ROCK) inhibitor before harvesting the cells for FACS was found to
enhance the cell survival following sorting. mWasabi and Citrine positive sorted
cells exhibited characteristic human ES cells morphology and maintained the
fluorescent expression upon extended iPS cell culture (Figure 6-12). FACS
analysis of transduced cell lines indicated that the purity of sorted mWasabi-
and Citrine-expressing cells were 98% (Figure 6-13) and 90.4%, respectively
(Figure 6-14) even after 10 passages when cultured in normal proliferation

conditions.

Figure 6-12: Clonal populations of UT-iPS cells transduced with EF1a-mWasabi
lentivirus at day 3 (top row), day 7 (middle row), and day 14 (bottom row).
Phase contrast (left column), fluorescence (middle column), and merged (right
column) micrographs are shown. Scale bar = 100um.
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Figure 6-13: Flow cytometry of UT-iPS transduced with EF1a-mWasabi
lentivirus. (a) P1 gated the cells after ruling out the cellular debris. (b) Doublets
discrimination. (c) Control untransduced cells. (d) Lentivirus-transduced UT-iPS
cells, 98% of the cells are positive. mWasabi positive (purple events). Doublets
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6.3.2.2 Promoter activity in differentiated UT-iPS cells

Although promoter silencing was not detectable in undifferentiated cells, it might
occur during iPS cell differentiation. Thus, it was considered whether mWasabi
fluorescence would be maintained during differentiation of the transduced UT-
iPS cell line. Differentiation was induced by culturing EF1a/mWasabi-
transduced UT-iPS cells as embryoid body for 2 weeks followed by replating
and culture on gelatin coated plate for 2 weeks. As shown in (Figure 6-15), the
cells maintained their mWasabi- expression during differentiation suggesting

that EFla is a stable promoter during differentiation.

Figure 6-15: lentivirus-transduced UT-iPS cells maintained their mWasabi-
expression upon differentiation. mWasabi expression in embryoid bodies of UT-
iIPS cells at day 14 (top row). mWasabi expression in embryoid bodies
outgrowth (bottom row). Phase contrast (left column) fluorescence (middle
column), and merged (right column) micrographs are shown. Scale bar =
100pm.
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6.3.3 Tissue Recombination Grafts of UT-iPS cells with mouse EBLM

To investigate the ability of UT-iPS cells to undergo complex differentiation and
form mature urothelium with bladder tissue formation under the inductive
signalling environment provided by EBLM, initial experiments with other
colleagues from the department of urologic surgery, Vanderbilt university were
carried out using UT-iPS cells recombined with EBLM and injected under the
kidney capsule of male athymic nude mice (CD-1 nu/nu Charles River) aged 7—
8 weeks. Grafts were harvested at 42 days post in vivo incubation and tissues
were processed, paraffin embedded, and sectioned for staining. All the
recombinants grew under the kidney capsule and no gross invasion outside of
the renal capsule or into the renal parenchyma was observed. However, these
experiments were not optimised and multiple differentiated structures
representing a teratoma were observed with no evidence of bladder tissue
formation (Figure 6-16). Oottamasathien et al reported similar problem while
trying to differentiate mouse ES cells into bladder tissues. The authors found
that using 1000 ES cells + one EBLM shell per graft was not sufficient to avoid
teratoma formation and yield pure bladder tissue while simply using four shells
of EBLM in each graft, along with increasing the number of ES cells to 1500
cells resulted in only pure bladder structures in each graft with no evidence of
teratoma formation. Therefore, it is evident that further optimisation of both the
number of EBLM shells in each graft, and the number of UT-iPS cells is

required.
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Figure 6-16: (a) Gross appearance of xenografts on host mouse kidney; Two
grafts were placed beneath the renal capsule of each kidney. (b) H&E staining
showing complex structures representing a teratoma.

6.4 Discussion

Human iPS cells are unique in their dual ability to continuously self-renew and
differentiate into any cell in the adult body (Kreft et al.) without immune rejection
or the ethical issues involved in destroying human embryos. These
characteristics give iPS cells the potential to be suitable in many different
aspects of basic and clinical research, including use as an ex vivo source for
cellular transplantation; and producing cells for use in studying new drug
candidates and assessing their toxicity; and as an in vitro system for modelling
human development and disease. However, some of the most promising
applications of iPS cells in research are restricted by the difficulty in generating
genetically modified iPS cell lines. This chapter describes feeder-free
adaptation, culture and passaging of human UT-IPS cells and the generation of
stable transgenic UT-iPS cell lines, specifically for use in fluorescent lineage

tracking.

Although studies have previously reported successful integration of exogenous
DNA into ES cells, isolation of stable transfectant cell lines is still inefficient
because of the poor integration of the construct into the genome and high
tendency of the exogenous gene to be silenced (Eiges et al., 2001; Liew et al.,
2007). UT-iPS cells were cultured onto BD Matrigel hESC qualified Matrix in
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mTeSR1 medium. Previous reports showed that ES cells and iPS cells cultured
and maintained in this environment have homogeneous phenotype, maintain a
normal karyotype, high levels of appropriate ES cell markers expression,
including OCT4, TRA-1-60, TRA-1-81, SSEA-4 and the ability to form all three
germ layers both in vitro and in vivo (Yu et al., 2007; Sun et al., 2009). iPS cells
were initially transduced with lentivirus vector that contains a gene encoding
mOrange, under the control of the (-actin and the blasticidin resistance gene
under control of SV40. Since iPS cells grow as colonies and prefer close cell-to
cell contacts, starting the antibiotic selection too early, may isolate the stably
transfected cells and reduce their survival rates. Therefore, the addition of
selective antibiotics was postponed until day 5 post transduction. In this way,
resistant cells are afforded time to form small colony of daughter resistant cells
before selection initiates. However, it was found that UT-iPS cells transduced
with mOrange driven by (3-actin promoter showed silencing of this promoter in
both undifferentiated and differentiated cells while cells transduced with either
mWasabi or citrine under the control of the constitutive promoter EFla showed a

purity of more than 90% even after long term culture.

Fluorescent tracking of cells using lentivirus vectors has recently been used
successfully in other tissues (Naldini et al., 1996; Frame et al., 2010). Actually,
many constitutive promoters have successfully been reported to conserve
stable transgene expression in stem cells and are therefore good candidates in
generation of fluorescent reporter cell lines. Previous studies reported promoter
silencing with lentivirus constructs (Xia et al., 2007) and suggested that EFla
promoter acts as a strong and stable promoter for transgene fluorescent
expression in human ES cells (Kim et al., 2007). Our results demonstrate that
lentiviral transduction can successfully be used to produce stable transfectants
in IPS cells with good viability. Moreover, consistent with previous studies, it
was found that EFla is a stable promoter during differentiation of iPS cells and
therefore is suitable for long term transgene expression. Notably, lentivirus
vectors have the potential to activate oncogenes or inactivate tumour
suppressor genes in the modified cells since they randomly integrate into the

genome which raises concerns regarding clinical applications.
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7 Chapter 7. General discussion and conclusion

The urinary tract is subject to damage from a variety of different diseases and
conditions such as congenital and neuropathic disorders, and malignancies.
Mature, differentiated native cells collected from the patient remain one of the
few tools available for replacement and repair of the urinary tract. Nevertheless,
the shortage of native tissue in congenital disorders and malignancies, and the
limited regenerative potential of fully differentiated mature cells, even if
available, is still a crucial drawback (Lakshmanan et al., 2005; Atala, 2008).
Therefore, cellular systems simulating urinary tract characteristics are in urgent
need for development of disease specific models for investigations of new
therapeutic targets as well as for surgical treatment through regenerative

medicine and transplantation therapies.

7.1 Stem cells for bladder tissue regeneration

Numerous trials have attempted to differentiate both embryonic and adult stem
cells into bladder specific tissue in vitro and in vivo (Liu et al., 2009a; Tian et al.,
2010a; Tian et al., 2010b; Ning et al., 2011). Early studies using both mouse ES
cells and human BMSCs have raised the possibility to generate bladder-like
lineages by xenografting ES cells with EBLM in vivo (Oottamasathien et al.,
2006; Oottamasathien et al., 2007; Anumanthan et al., 2008). However, ethical
iIssues associated with the destruction of an embryo and the difficulty in isolating
and growing adult stem cells limited their use in human therapy. It is also
important to distinguish between mouse and human studies. Despite being a
useful and powerful model organism, mouse models cannot always completely
mimic human disorders and promising results with preclinical trials in animal
models are not always replicated in human clinical trials. About 1% of mouse
genes have no detectable homologues in the human genome. In addition,
obvious differences between species have been found in morphology, gestation
period, and the spatial and temporal regulation of gene expression during
embryonic development (Zhu and Huangfu, 2013).

190



7.2 Potential advantages of iPS cells

Human iPS cells present a unique and potential source of cells for tissue repair
or regeneration since they have the ability to propagate themselves through
self-renewal, differentiate into multiple lineages and importantly overcome the
ethical barriers that have limited human ES cell research, since oocytes and
embryos are not required. In addition, autologous iPS cells can be derived
directly from patients, such patient-specific iPS cell lines would be compatible
with the immune system thus provide a potential cell source for cellular therapy
and give the opportunity to develop diseases models for the study and
treatment of human diseases (Yamanaka, 2009b; Trounson et al., 2012). This
pluripotent nature of iPS cells makes them very attractive as a potentially
inexhaustible source of various cell types that could be used in regenerative
medicine, drug discovery, disease modeling, and pharmaceutical applications
(Hochedlinger and Plath, 2009; Onder and Daley, 2012).

In this project for the first time, successful reprogramming of cells isolated from
adult human urinary tract tissue to an ES cell-like pluripotent state is reported.
These cells were validated as de facto iPS cells by confirming their ability for
sustained self-renewal, silencing of transgenes, expression of ES cell-specific
genes such as NANOG, reactivating of endogenous OCT4 and SOX2 to levels
comparable to those found in human ES cells, and pluripotent differentiation
into cell types from the three embryonic germ layers both in vitro and in vivo.
Furthermore, within the appropriate inductive environment, UT-iPS cell
differentiation could be directed into bladder-specific lineages allowing for
enormous scope in the future for studies of tissue engineering, disease
mechanisms and drug treatments. UT-iPS cells have remarkable potential for
regenerative medicine applications and studying the biochemical and

physiological features of the human urinary tract system.

7.3 Generating iPS cells from UT-stromal cells

Since the reprogramming efficiency might be affected by the heterogeneity of
the targeted cellular population and differentiation state (Stadtfeld and
Hochedlinger, 2010) we started with producing highly pure cultures of primary

cells, as quantified by real time-PCR.
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We next aimed to establish iPS cells from UT-stroma cells using the four
classical Yamanaka factors (OCT4, SOX2, KLF4, and C-MYC) and following
the protocol described before. ES cell-like colonies were first observed around
week 5-6 post transduction. Subsequently, these generated cells

passed through a series of checkpoints to ascertain that genuine fully
reprogrammed UT-iPS cells have been obtained. Morphologically, UT-iPS cells
looked indistinguishable from human ES cells and demonstrate unlimited self-
renewal. On a molecular level, UT-IiPS cells showed high expression levels of
key pluripotency markers at both transcript and protein levels, and ES cell-
specific surface antigens (SSEA-4, TRA-1-81, TRA-1-60) with a concomitant
downregulation of lineage-specific genes associated with the cell of origin.
Silencing of exogenous genes was demonstrated in UT-iPS clones indicating
that they become factor-independent. On a functional level, UT-iPS cells
showed the ability to differentiate into lineages from all three embryonic germ

layers in vitro and in vivo.

7.3.1 Identification of UT-iPS cell colonies

Non-reprogrammed cells can be easily distinguished from reprogrammed ones.
However, differentiating between partially reprogrammed cells and fully repro-
grammed cells is more challenging. Previous studies reported that partially
reprogrammed cells have clearly distinct gene expression from both parental
and iPS cells. Although they can be morphologically similar to ES cells and can
reactivate many pluripotency genes, they fail to express many genes that are
directly related to pluripotency, including OCT4 and NANOG, and showed
incomplete silencing of somatic genes, and DNA hypermethylation at the
promoters of pluripotency-related genes (Mikkelsen et al., 2008; Plath and
Lowry, 2011). Chan et al. reported that SSEA-4, GDF3, hTERT and NANOG
cannot sufficiently distinguish the partially reprogrammed from bona fide iPS
cell lines whereas silencing the transgenes and expression of TRA-1-60,
DNMT3B and REX1 are validated as sufficient markers (Chan et al., 2009a).
Generated UT-iPS cells were positive for many pluripotency factors including
SSEA4, TRA-1-81, TRA-1-60, OCT4, NANOG, GDF3, DNMT3B, and REX1 at
comparable levels to human ES cells. In addition, most of the clones showed
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efficient transgene silencing demonstrating that these cell lines are completely

reprogrammed into bona fida induced pluripotent stem cells.

7.3.2 Mechanisms underlying iPS cell generation

7.3.2.1 Acquiring epithelial properties

Gene expression profile analyses proposed that the reprogramming process
could be divided into 3 phases, termed initiation, maturation and stabilization;
the initial phase is delineated by a mesenchymal-to-epithelial transition (MET),
while the maturation and stabilisation phases are marked by the activation of a
subset of pluripotency related genes (Li et al., 2010; Samavarchi-Tehrani et al.,
2010). Initiating and maintaining the reprogramming of fibroblasts inevitably
requires a process called MET, in which cells undergo morphological changes
toward epithelial-like cells and epithelial-associated genes are activated while
mesenchymal genes (such as Snaill, Snail2, Zeb1l, and Zeb2) are robustly
suppressed (Mikkelsen et al., 2008; Li et al., 2010; Samavarchi-Tehrani et al.,
2010; Smith et al., 2010). Around day 7, we observed that some transduced
UT-stromal cells undergo epithelial-like morphological changes. Real time PCR
analysis showed overexpression of MET genes in accordance with suppression
of the important inducers of EMT, such as transcription factors Snail, Slug and
Twistl, consistent with the occurrence of a MET.

Cells should go through MET before moving on to the next step, termed
maturation which is characterized by activation of the pluripotency marker
genes including NANOG, Sall4, and OCT4. However, the regulatory network
controlling pluripotency is not completely activated until the late stabilization
phase (Samavarchi-Tehrani et al., 2010). By tracking clonally derived cells,
researchers were able to analyse the late stages of reprogramming including
late maturation and stabilization phases for understanding the global changes
that occur in cells during reprogramming and gaining mechanistic insights of
reprogramming. Golipour et al. found that transgenes silencing is essential for
the transition from the maturation to the stabilization phase and becoming
pluripotent (Golipour et al., 2012).

Another study used genome-wide analyses to examine intermediate cell

populations poised to become iPS cells (Polo et al., 2012) reported major gene
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activity in two distinct waves during iPS cell formation: the first wave occurred in
all cells between days 0 and 3, mostly mediated by MYC and was identified by
the upregulation of genes involved in proliferation, metabolism, and
cytoskeleton organization and downregulation of genes related to development,
while the second wave was observed after day 9 and was more restricted to
reprogrammable cells. The second wave was characterized by the activation of
genes responsible for embryonic development and stem cell maintenance,
specifically OCT4 and SOX2. KLF4 was involved in both phases by
downregulating the differentiation related genes in the first phase and by

promoting the expression of pluripotency genes during the second one.

Gene expression analysis of 48 genes included those related to pluripotency,
proliferation, epigenetic modification, and ES cell-maintaining pathways in
single cells derived from early time points, intermediate cells, and fully
reprogrammed iPS cells, revealed that the four factors induce the somatic cells
to acquire early stochastic gene expression changes. These stochastic
epigenetic expression changes are followed by a late ‘deterministic’ or more
‘hierarchical’ phase that leads to activation of the pluripotency circuitry with
SOX2 being the triggering factor in a gene expression hierarchy (Figure 7-1).

During the early stage of reprogramming, cells will undergo MET, increase
proliferation, undergo alterations in DNA methylation and histone modifications
in specific genes, and activate DNA repair and RNA processing. The
reprogrammable cells will then pass to an intermediate phase with an unknown
rate-limiting step that delays their progress toward a fully reprogrammed state
and therefore supposed to be responsible for the low efficiency of the
reprogramming process. In some rare cases, the stochastic gene expression
can trigger the activation of “predictive markers” like undifferentiated embryonic
cell transcription factor 1 (Utf1), oestrogen-related receptor beta (Esrrb),
developmental pluripotency associated 2 (Dppa2) and Lin28, which then identify
the cells that have a higher probability to move on to the second phase, starting
with the activation of SOX2 which in turn will trigger a series of deterministic
events that eventually leads to stabilise the cells into the pluripotent state. This
late hierarchic phase includes silencing of transgene expression, activation of
the core pluripotency circuit, remodelling of the cytoskeleton to an ES cell-like
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state, and resetting the epigenome of a somatic cell to a pluripotent state.
(Buganim et al., 2013).

Initiation phase: .-- Intermediate phase: SSES Maturation and stabilization phase:

+ Increased proliferation Wami ° Stochastic activation of pluripotency genes mmmn + Activation of the core pluripotency circuitry

+ Metabolic changes ﬂ « Transient activation of developmental regulators ﬂ * Silencing of transgenes

+ Initiation of MET MmN - Activation of glycolysis MmN - Complete epigenetic resetting

« Changes in histone marks = = + Chromosome organization and segregation

+ Activation of RNA processing and DNA repair + Upregulation of ECM and cell adhesion proteins
—g- . - @ @ ®

<

- Induced cell expressing:
Fibroblast

Esrb, Utf1, Lin28 or Dppa2 iPS cell

Apoptotic cell Senescentcell Epithelialinduced cell

Figure 7-1: Phases of the reprogramming process.
al., 2013).

Modified from (Buganim et

7.3.2.2 Stochastic versus elite model

The overall efficiency in generating UT-iPS cells was low (~0.03%), but is
comparable to the reported efficiency of iPS cells generated from human dermal
fibroblasts (Takahashi et al., 2007). The so-called “elite” or “deterministic”
model can explain the low efficiency of iPS cell derivation by proposing that only
the few somatic stem or progenitor cells that present naturally in a somatic cell
culture are amenable to reprogramming (Yamanaka, 2009a). However, the elite
model cannot explain the successful reprogramming of somatic cells derived
from different starting tissues at similar efficiency rates, including fully
differentiated B and T lymphocytes (Hanna et al. 2008; Eminli et al. 2009) as
well as pancreatic b cells (Stadtfeld et al. 2008a). In addition, long-term analysis
of reprogramming monoclonal populations of early B cells and monocytes
showed that nearly all donor cells are amenable to attain the fully
reprogrammed pluripotent state albeit, at different times due to different
latencies (Hanna et al., 2009). In contrast, the “stochastic” model proposes that

all somatic cells regardless of their tissue origin, are equally susceptible to
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reprogramming upon continuous overexpression of stemness-related genes,
but have to transit through sequential stochastic epigenetic events toward the
pluripotent state. Only a few cells may pass all of these roadblocks, resulting in
the overall low efficiency (Yamanaka, 2009a; Stadtfeld and Hochedlinger,
2010). Indeed, current evidence revealed that induction of the pluripotent state
is a multistep procedure, in which somatic cells have to go through sequential
gene expression steps to acquire pluripotency. Failure to move between any of
these steps would result in blocked or incomplete reprogramming (Hanna et al.,
2009; Papp and Plath, 2013). Utilizing specific surface marker combinations, it
has been found that successfully reprogramming cells first downregulate the
fibroblast-associated marker Thyl followed by activation of the embryonic
marker SSEAL and, eventually, reaching the fully pluripotency state (Brambrink
et al., 2008; Stadtfeld et al., 2008b; Polo et al., 2012). The silencing of Thyl
was detected in the majority of the starting cell population. However, only a
small portion of Thyl-negative cells showed subsequent gain of SSEA1 and
only a small subset of the SSEA1-positive cells completed the reprogramming
process and became iPS cells (Wernig et al., 2008a; Stadtfeld and
Hochedlinger, 2010). These finding might explain somehow why efficiency of
IPS cell generation is typically so low. It was also found that cells which remain
positive for Thyl upon OSKM expression become refractory to reprogramming.
Notably, during the first two weeks, SSEAL positive cells are phenotypically still
elastic and may revert to earlier reprogramming state, later on in
reprogramming, they exhibit much more commitment to a stable pluripotent cell
fate (Polo et al., 2012; Papp and Plath, 2013). Accordingly, following clonal
populations of early B cells and monocytes revealed that almost all starting cells
ultimately have the potential to form iPS cells even though the reprogramming
process may take more than 6 months (Hanna et al., 2009). However, the
differentiation phase itself has been suggested to influence the efficiency of
reprogramming. Indeed, establishing iPS cells from adult progenitor and stem
cells have been found to be more efficient and take less time as compared to
mature, differentiated cells (Eminli et al., 2009; Galende et al., 2010). Hence,
recent studies suggested a modified stochastic model that integrates an elite
component to help explain the low efficiency of reprogramming (Smith et al.,
2010; Stadtfeld and Hochedlinger, 2010).
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7.3.3 Transduction efficiency

Transduction efficiency of lentivirus for reprogramming factors is critical for iPS
generation. The ratio of active virus to target cell is referred to as the multiplicity
of infection (MOI). As there are substantial differences in cell types that affect
their susceptibility to transduction, MOI should be optimized for each cell line
before transduction. Transduced cells with a very high MOI can lead to multiple
vector copy integration and persistence of the exogenes, on the other hand
transduction with very low MOI would result in ineffective transduction and thus
failed iPS induction; therefore we modified the MOI during the initial
transduction step to achieve efficient transduction with fewer copies per cell. We
found that an MOI of 30 resulted in transduction efficiency of approximately
45%. However, with this MOI the lentivirus was very toxic to stromal cells with
about 30 % of the cells dying, while the percentage death dropped down to 13%
with an MOI of 10. Taking in mind to use the minimal amount of virus particles
to minimise the number of integrating sites and to ensure silencing of the
transgene, an MOI of 10 was selected despite the lower infection efficiency.
Growth properties of the target cells are also important for iPS cell generation.
Transduction efficiency is significantly decreased when senescent cells are
used for transduction. Therefore, fresh and pure stromal cells were transduced

as early as possible for iPS cell production.
7.3.4 Culturing and maintaining UT-iPS cells

The generated UT-iPS were initially cultured and maintained in feeder-
dependent culture. Quality of the MEFs has been found to play an important
role to help maintain successful culture of human pluripotent cells (Amit et al.,
2003). The quality of UT-iPS culture varied with different batches of MEFs since
each batch varies in its capacity to support these cells. UT-iPS cells cultured
onto low-quality MEFs showed excessive differentiation and poor colony
morphology. The optimum plating density of MEFs is also critical to reduce the
differentiation and maintain appropriate proliferation. We found that iPS cells
plated on 50,000 cells/cm? MEFs density produced healthy cultures with good
colony morphology. UT-iPS were also cultured and maintained successfully in
feeder free culture. Human ES cells were cultured in feeder free conditions for

the first time by Xu et al (Xu et al., 2001). This system allowed for long-term
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maintenance of stem cells with low level of spontaneous differentiation even at
high passages. Recently, several human ES and iPS cell lines have also been
cultured in the absence of feeder cells (Amit et al., 2000; Sjogren-Jansson et
al., 2005; Warren et al., 2012; Fukusumi et al., 2013). The move to feeder free
culture has several advantages; first and foremost, it reduces the exposure of
human ES and iPS cells to animal pathogens. In addition, it eliminates the need
to prepare and preserve an additional cell type (MEFs), attains better
visualization of iPS colonies, and excludes a source of potentially confounding
cells especially during iPS cell differentiation. Regardless of the culture system,
feeder dependent or independent, to preserve the passaging efficiency and
pluripotency of the iPS culture, it is significant that the iPS cells are transferred
as small fragments (200 to 300 cells/clump). Triturating the colonies down to
very small fragments or single cells will significantly increase the differentiation
and reduce the plating efficiencies. Colony fragments that are too large however
result in poor attachment. Moreover, the period of time from colony scrapping to
re-plating is also critical and should be kept to a minimum. Appropriate passage
timing and plating densities are also essential to maintain a constant
undifferentiated state and optimum attachment. Passaging cells too late will
stimulate the differentiation and reduce the quality of the culture. In contrast,
replating the cells too early may results in low plating efficiencies. In our hands,
iIPS cultures were passaged every 5 to 7 days, while passaging we tried to
obtain clumps of the same, near-optimal size and spread them throughout the
well. UT-IPS cells lines were maintained using a combination of both the
mechanical and enzymatic transfer procedures which allows for mass
production of undifferentiated iPS cells by manually excluding differentiated

colonies prior to enzyme treatment (Oh et al., 2005; Schatten et al., 2005).

Since the first descriptions of iPS cells in 2006, most reports have focused on
the generation of iPS cells from a range of normal and diseased tissues. Only
more recently researchers have started to further explore the differences in the
ability for terminal tissue-specific differentiation between the iPS cell lines
derived from different organs and found that not all iPS cells are the same in
this respect (Kim et al., 2010; Polo et al., 2010; Ohi et al., 2011). Interestingly,
several studies have demonstrated that de facto iPS cells may carry an

“epigenetic memory” of their cell type of origin. Consequently, iPS cells with
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source cell memory have higher tendency to differentiate back to their parental
cell type than to other cell fates (Lee et al., 2012; Xu et al., 2012). Moreover,
genetically identical iPS cell lines derived from different somatic cell types
showed histone methylation patterns and transcription profiles unique to their
tissue of origin (Polo et al., 2010). Whether retained DNA methylation marks,
histone modifications, or a combination of both do contribute to iPS cell-somatic
donor memory is still unclear (Kim et al., 2010; Ohi et al., 2011; Xu et al., 2012).
Therefore, the functional differences and differentiation potential of UT-iPS cells
to more efficiently generate bladder tissue cells compared with iPS cells derived

from skin fibroblasts were further analysed.

7.3.5 UT-iPS cells exhibit higher capacity for bladder tissues
differentiation than skin-iPS cells

We compared the differentiation potential of UT-iPS cells with skin-iPS cells in
generating urothelial and smooth muscle stromal cells and our results
demonstrated vast differences in their capabilities for bladder specific
differentiation. UT-iPS cells have a greater propensity for bladder differentiation
compared to skin-iPS cells under the same conditions. This observation serves
to emphasise the importance of tissue specific iPS cells for the study of urinary
tract differentiation, and is likely to be related to established mechanisms of
epigenetic imprinting restricting differentiation potential.

Although the epigenetic memory was observed in early passage iPS cells and
can be gradually erased upon extended iPS cell culture (Kim et al., 2010; Polo
et al., 2010), UT-IPS cells were used at passage numbers below 50 and it is
therefore justifiable that these cells still retain some epigenetic signature of their
somatic-cell provenance at this stage. Whether this source cell memory can be
erased by continued passaging remains unknown and requires further
investigation. This further underscores the need for understanding how this

memory varies among different cell types and tissues.

In urothelial and smooth muscle stromal cells differentiation of UT-iPS cells, U-
CM treatment appears more efficient in inducing UT-iPS cells differentiation into
urothelium when comparing treatment with S-CM. In previous studies, U-CM

was shown to be more efficient in inducing urothelial differentiation whilst S-CM
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was more efficient at inducing smooth muscle stromal cell differentiation
(Mudge and Klumpp, 2005); however, further studies of UT-iPS cells
differentiation would be required to disentangle relative contributions to
epithelial or stromal differentiation in our model. Nevertheless, our findings
show that either U-CM and S-CM were able to guide UT-iPS cells to
differentiate into both urothelial and SM cells consistent with evidence that
stromal-epithelial interactions are necessary for their development and

maintenance (Baskin et al., 1996).

Moreover, a reciprocal cell-cell signalling relationship between the stromal and
epithelial compartments during differentiation would be consistent with the
simultaneous induction of both cell types as observed in our model.
Contemporary evidence has shown that mesoderm (Wolffian duct) does not
contribute to trigone development (Viana et al., 2007; Tanaka et al., 2010) and
that endodermal derivatives of the urogenital tract could differentiate to form
prostate and only mesodermal derivatives of the urogenital tract could
differentiate to form seminal vesicle (Tanaka et al., 2010). However, this usual
pattern of restricted differentiation depending on the germ layer origin of the
epithelium can be overcome by iPS cell generation as both ureteric
(mesodermal derivative) and bladder (endodermal derivative) were able to
demonstrate bladder specific differentiation. This is consistent with de-
differentiation into a pluripotent ES cell-like state preceding gastrulation; where
endoderm and mesoderm arise from the transient mesendoderm common

precursor cell population.

In addition, we know that organ-specific mesenchyme, from which we took
conditioned media, can enforce lineage commitment and alter terminal
differentiation of adult epithelia across endodermal and ectodermal boundaries
(Taylor et al., 2009). This may also explain why there is plasticity in
mesenchymal stem cells (MSCs), such as those derived from bone, that are
able to undergo endodermal differentiation into bladder tissue (Anumanthan et
al., 2008). Pre-clinical studies of MSCs in the urinary tract have shown
considerable promise (Anumanthan et al., 2008; Tian et al., 2010b). However,
in comparison to human ES cell derived progenitors, MSCs display substantially
decreased tissue formation (Peppo et al., 2012) and furthermore the
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regenerative capacities of MSCs can be enhanced by inducing the expression
of iPS cell-related genes NANOG and OCT4 (Liu et al., 2009c). The exact
contribution of MSCs to fully differentiated bladder regeneration requires further

assessment and a direct comparison with the UT-iPS cells would be of interest.

Interestingly, the expression of a-SMA was substantially higher than that of
calponin and desmin. a-SMA is considered as an early marker of smooth
muscle differentiation, while calponin and desmin are highly specific markers
confined to fully differentiated contractile smooth muscle cells (Jack et al.,
2009). The expression of a-SMA has also been found to precede the
expression of other smooth muscle markers, including calponin and desmin
during the myofibrillar development in the early development of rat and chicken
hearts (Ruzicka and Schwartz, 1988; Ya et al., 1997). Therefore, the presence
of differences in the expression of these markers in differentiated UT-iPS cells
might reveal differences in the developmental timing of myocyte maturation.

Early investigations proved that various sources of stem cells (embryonic stem
cells (ESCs), BM-derived SCs) have the ability to differentiate into bladder cells.
Oottamasathien et al, showed that mouse ES cells can differentiate to bladder
cells when associated with embryonic rat bladder mesenchyme and implanted
under the kidney capsule for up to 42 days. The endodermal markers of Foxal
and Foxa2, but not uroplakin were first detected at day 7 after grafting. By 42
days, optimized number of cells resulted in pure urothelial cells with mature
bladder tissues derived from the ES cells that was evident by hematoxylin and
eosin staining. Maturation was evident based on expression of uroplakin, a
selective marker for urothelial cell differentiation and the basal cell marker p63,
whereas smooth muscle a-actin (SMA); was used as a marker to identify
smooth muscle cells (SMCs) (Oottamasathien et al., 2006; Oottamasathien et
al., 2007). However, there are ethical and immunological debates about using
this procedure in humans. In addition, the differences observed between murine
ES cells and human ES cells regarding molecular and developmental properties
may represent an obstacle for direct translation to humans. Utilizing the same
model, Anumanthan and his colleagues used a recombinant xenograft of MSCs
with EBLM to differentiate mouse MSCs toward mature bladder cells.
Histological examination showed a bladder tissue structure with expression of

201



uroplakin, SMA and desmin (Oottamasathien et al., 2007). The primary
limitation of using adult stem cell derived urothelium hinges on a poorly
understood differentiation process that typically occurs through either
transdifferentiation or cell fusion. Furthermore, adult cells have limited
proliferation potential in vitro (Ning et al., 2011). While the murine model
provided evidence of feasibility, only recently has the differentiation of human
urothelium from pluripotent stem cells been reported. Osborn et al described the
induction of human urothelium from ES cells and iPS cells using a
developmentally directed culture system, where urothelium is induced through a
definitive endoderm step. The system efficiently differentiated urothelium
through a process that appeared to mimic development of the bladder
epithelium during embryogenesis (Osborn et al., 2014). Osborn data also
supported our finding human iPS cells be efficiently differentiated in vitro into

urothelial cells in the absence of cell contact (Moad et al., 2013).

Several studies have also addressed the question of true differentiation versus
fusion of stem cells (Terada et al., 2002; Ying et al., 2002). In this study, using
cell-free conditioned medium to treat the UT-iPS cells does confirm that they

have undergone true differentiation.

7.3.6 Establishment of UT-iPS transgenic cell line

To identify the UT-iPS cells and their cell lineage in vitro and in vivo, UT-iIPS
cells were transduced with lentiviral vectors encoding for fluorescent marker
gene. Lentiviral mediated gene transfer was selected for gene delivery into UT-
IPS cells since it provides stable transgene integration, efficient transduction
(Gropp et al., 2003; Ma et al., 2003; Norrman et al., 2010), and less tendency
for silencing during propagation and differentiation (Cherry et al., 2000), while
other non-integrating viral systems, such as adenovirus can only provide
transient expression of the transgene (Suzuki et al., 2008). Fluorescent proteins
are genetically encoded which allows to monitor and track the cells easily, and
make it possible to image certain type of cells in real time within living cells and
in animal grafting experiments (Miyawaki et al., 2003; Verkhusha and Lukyanov,
2004; Giepmans et al., 2006). Although the low viral transgene expression is a
common phenomenon in human ES cells (Xia et al., 2007), several viral

promoters have successfully been reported for efficient stable expression of
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transgenes in human ES cells. We started with a lentivirus vector expressing
mOrange under the control of the B-actin promoter. This lentiviral vector also
carries blasticidin resistance, which was used to select for the transduced cells.
However, mOrange (B-actin)- transduced UT-iPS cells lost most of their
mOrange expression in subsequent culturing and during their in vitro
differentiation as confirmed by fluorescent microscopy and flow cytometry and
remained blasticidin-resistant. Similar and complementary results were reported
previously using the same construct (Frame et al., 2010). It is well known that
lentiviral silencing is usually associated with certain promoters (Xia et al., 2007;
Mao et al., 2008). Although human ES cell lines expressing robust levels of
EGFP both in undifferentiated and differentiated cells has been achieved using
a human B-actin promoter-driven EGFP gene (Costa et al., 2005), the
transgene expression in the transduced cells might be affected by potential
alterations in activity of the promoter sequence of the fluorescent gene. Indeed
promoter silencing associated with both the promoter-fluorescent gene
combination and cell type have been reported previously (Tao et al., 2007;
Frame et al., 2010). The observed difference in -actin promoter activity may
also be explained by the differences in lentiviral vector design. As a result of
this, the constitutively active promoter EF1la was subsequently investigated.
Previous studies reported long-term stable expression of most transgenes
under the control of EFla by lentiviral vectors in ES cells in vitro and in vivo
(Chung et al., 2002; Hong et al., 2007; Kim et al., 2007; Liu et al., 2009b; Qin et
al., 2010). UT-iPS cells were transduced with a lentiviral vector coding for
mWasabi or citrine under the control of EF1a. mWasabi is a monomeric green
fluorescent protein derived from mTFP1 and it is approximately 2-fold brighter
than EGFP. We found that mWasabi and citrine expression under the control of
EFla promoter were stably maintained for more than 10 passages in
undifferentiated UT-iPS cells with no obvious cytotoxic side effects. This is in
line with previous data demonstrating constant, robust EF1a promoter activity in
human ES cells for up to 60 days in culture (Ma et al., 2003). In addition,
transgene expression is sustained during in vitro differentiation. Such
genetically modified iPS cell lines will provide new tools for tracking cells
transplanted into animal models and hence a better understanding of human
development. However, the long term activity of EFla promoter in differentiated

UT-iPS cell lines has not been extensively studied. In addition, the behaviour of
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this promoter during in vivo UT-IPS cell differentiation remains unknown. It is
worth noting that differentiating iPS cells will result in heterogeneous cell
populations at the fully differentiated stage, including different types of cells,
therefore it is still unclear whether the EF1a promoter may exhibit various

transcriptional activities in different cell lineages.
7.4 Transduction of human urothelial cells

The induction protocol used for UT-stromal cells was also applied to the primary
culture of human urothelial cells. However, we undertook unsuccessful
preliminary attempts at inducing urothelium. It is conceivable that epithelial cells
per se are more amenable to reprogramming, perhaps because, unlike stromal
cells, they may not need to undergo an initial MET to yield iPS cells. However,
primary urothelial cells might not be healthy enough for reprogramming after the
cell sorting and replating processes, taking into account that primary urothelial
cells even without the stress of sorting are technically challenging cell cultures
and often have limited life span in vitro. Although a few colonies that were
positive for the TRA-1-60 and SSEA4 antigen were detected, these were non-

proliferative and the morphology was not similar to that of ES cells.

Previous study reported early TRA-1-60 and SSEA-4 positive cells detected in
human fibroblasts transduced with the four reprogramming factors (OCT4,
SOX2, KLF4 and C-MYC) that were not on a trajectory to reach a fully
reprogrammed state, but instead senesced, died or remained partially
reprogrammed (Chan et al., 2009a). Consistently, a very recent paper from the
Yamanaka lab (Tanabe et al., 2013) in which the fate of transduced cells was
monitored during the reprogramming process demonstrated that although 20%
of the transduced cells exhibited TRA-1-60 positive staining, about 99% of
these nascent reprogrammed cells failed to reach the pluripotency state and
turned back to be negative again during the subsequent culture. Small-molecule
treatment has been suggested to induce these reversed cells to convert to the
next reprogramming stage and subsequently to iPS cells more efficiently (Ichida
et al., 2009; Esteban et al., 2010; Plath and Lowry, 2011).

Further reduction of toxicity involving the optimisation of MOI, reduction of

polybrene and timing of transfer to ES cell medium with MEFs may also be
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required. Further experimentation was not pursued given that the stroma based
UT-iPS cells demonstrated robust ability to differentiate into urothelium.
Furthermore, a proof of principle in animal studies was already established
where mouse ES cells were shown to undergo endodermal lineage
transformation into mature urothelium (Oottamasathien et al., 2007). This
phenomenon also provides the additional attraction of using an alternative,
genetically normal, tissue source in urothelial malignancies and thus avoids the

hazards of using diseased cells.
7.5 Challenges of iPS cells

Future challenges include developing viral- and transgene-free reprogramming
approaches and xeno-free culture methods in building towards clinical

translation.

7.5.1 Gene delivery methods

Since the first generation of iPS cells using retroviral transduction there has
been remarkable progress toward reprogramming technologies, optimizing the
delivery of the reprogramming factors into somatic cells, and improving

reprogramming efficiency (Figure 7-2).

7.5.2 Viral delivery system

The basic method developed by Yamanaka and colleagues used constitutively
active retroviral vectors in mouse (Takahashi and Yamanaka, 2006) as well as
human fibroblasts (Takahashi et al., 2007; Lowry et al., 2008). Because they
tend to be completely silenced and provide extended expression of the
transgene, retroviruses are considered as effective gene transfer vehicles
(Hotta and Ellis, 2008). However, subsequent mutations that contributed to
neoplastic clone formation have been identified in retrovirus transduced cells
(Nienhuis et al., 2006; Takahashi and Yamanaka, 2006). Later on, iPS cells
from various cell types have been generated successfully using lentiviruses, a
subclass of retroviruses. Unlike retroviruses, lentiviral vectors are able to target
both dividing and nondividing cells which increases the rate of cell transduction
(Yu et al., 2007; Sommer et al., 2009; Sun et al., 2009) and can be used with

constitutive or inducible expression system (Brambrink et al., 2008;
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Hockemeyer et al., 2008; Stadtfeld et al., 2008a), but they seem to be
associated with inefficient proviral silencing (Robinton and Daley, 2012). These
two systems have been shown to be robust, reproducible and very efficient at
delivering genes. However, the risks of permanent transgene integration into
the genome and the possible reactivation of the transgene expression leading
to tumour formation pose serious clinical concerns (Ton-That et al., 1997,
Stadtfeld et al., 2008a; Sommer et al., 2009; Anokye-Danso et al., 2011).
Additionally, the protocol efficiency which uses retro/lentiviruses is low, with
reported reprogramming rates of 0.001% to 1% (Maherali et al., 2007; Wernig et
al., 2007). Since the most exciting prospect for the use of iPS cell technology is
for human therapeutic applications, alternative methods to derive iPS cells free
of transgenic sequences have been now demonstrated. Generally integration-
free IPS cell lines have been established using integrating vectors that can be
subsequently excised from the genome, non-integrating viruses, and non-viral
delivery system (Stadtfeld et al., 2008c; Zou et al., 2009).

To reduce the tumour formation potential of iPS cells, the exogenous factors
can be excised from genomic integration sites in iPS cells by Cre-loxP
recombination and piggyBac (PB) transposition. Reprogramming factors flanked
by loxP sites can be excised by transient expression of CRE recombinase. The
Cre protein is a site-specific DNA recombinase that catalyzes the recombination
of DNA between loxP sequences which contain binding sites for Cre (Shi et al.,
2008; Soldner et al., 2009). However, transgene excision leaves behind the
entire long terminal repeat, which contains a loxP site and that could potentially

lead to genomic instability and genome rearrangements.

To overcome the multiple genomic integrations, a single polycistronic vector,
containing the four reprogramming factors connected with 2A peptide linkers
was established (Chang et al., 2009; Shao et al., 2009). However, a loxP site
and vector DNA external to the loxP sites still remains in the genome after Cre-
mediated excision, retaining the possibility of interrupting promoters, coding

sequences and regulatory elements.

In contract, the PB transposon removes itself without leaving any remnants of
exogenous DNA in the cell genome (Woltjen et al., 2009). Woltjen, Kaji, and

colleagues reported successful and efficient generation of transgene-free
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murine and human iPS cells using doxycycline-inducible transcription factors
delivered by PB transposition which can be excised once pluripotent cell lines
become established. The transduction efficiency using this approach was

similar to the retroviral methods (Yusa et al., 2009).

Adenovirus is a non-integrating vector that remains in an epichromosomal form
in cells and provides high-level expression of exogenous genes. The first iPS
cells free of exogenous gene integration were generated from mouse fibroblasts
and liver cells using adenoviral vectors containing OCT4, SOX2, KLF4 and C-
MYC genes without permanent genetic integration and at an efficiency of about
0.0005% (Stadtfeld et al., 2008c). Human fibroblasts have also been
reprogrammed into iPS cells with adenoviral vectors (Zhou and Freed, 2009).
However, the limited availability of primary cellular receptor required for binding
and internalization decrease the efficiency of gene transfer (Freimuth et al.,
2008). In addition, repeated transfection might be required for efficient

reprogramming of certain cells (Stadtfeld et al., 2008c).

Fusaki et al, reported efficient generation of viral-free iPS cells from human
fibroblast cells with Sendai virus (SeV) vectors (Fusaki et al., 2009). Sendai
virus is an RNA virus which does not integrate into chromosomes of the target

cells.

7.5.3 Non-viral delivery system

The transgene silencing after retrovirus transduction and successful
reprogramming with a nonintegrating system indicated that transgene
integration into the genome is not essential for direct reprogramming. Therefore

researchers tried to generate iPS cells using non-viral delivery approaches.

Plasmid vectors are a non-viral delivery system in which the encapsulated
exogenes are carried on plasmids and transfected into the cells to be
reprogrammed. Plasmids are episomally retained and usually exhibit short
duration of gene expression. This approach was used for the first time by Okita
et al (Okita et al., 2008) to transfect mouse embryonic fibroblast. No integration
was identified within the iPS cells generated using the transient transfection

nucleofection protocol. However, plasmid incorporation into the host genome
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was detected at rates as low as approximately 5.5% using the serial
transfection method. Compared with regular plasmid vectors which provide a
short window of gene expression, episomal plasmid vectors show longer and
more stable expression in target cells and can be controlled in transfected cells
through drug selection to remove the untransduced cells (Nanbo et al., 2007).
Nevertheless, the reprogramming efficiency of this strategy was extremely low
(3-6 colonies per 10° somatic cells) comparing to that of viral systems (Kaji et
al., 2009; Yu et al., 2009).

However, all the previous strategies still target the cells with foreign genetic
materials, which may still produce unpredicted alterations within the genome.
Thus, reprogramming strategies entirely free of DNA-based vectors are a major
future goal. In 2009, Zhou et al. and Kim et al. reported the possibility of
obtaining mouse and human transgene-free iPS cells using cell-permeable
recombinant proteins of the four factors (OCT4, SOX2, KLF4 and C-MYC)
rather than forcing their transcription through transgenes (Kim et al., 2009a;
Zhou et al., 2009). 5x10* mouse embryonic fibroblast cells were subjected to
four rounds of protein supplementation, and treated with the histone
deacytelase inhibitor, valproic acid (VPA). After 30-35 days in culture, three iPS
cell clones that were morphologically similar to mouse ES cells were obtained.
In addition, the generated protein-induced pluripotent stem (piPS) cells were
shown to have global gene expression similar to that of mouse ES cells and
demonstrated an ability to differentiate into cells of the three primary germ
layers in vitro and in vivo. However, it is not clear if adult cells can be
transduced successfully using recombinant cell-penetrating reprogramming
proteins which have proven to be more refractory to reprogramming than
embryonic cells. Moreover, due to the short half-life of the recombinant proteins,
repeated protein transductions might be required for successful reprogramming
(Gump and Dowdy, 2007; Lai et al., 2011).

More recently, Warren and colleagues showed that they were able to efficiently
generate iPS cell lines from multiple human differentiated cells using modified
MRNA encoding reprogramming factors (Warren et al., 2010). Using mRNAs for
reprogramming has many advantages over other methods including high
efficiency as they are much smaller than DNA; high activity as they will be
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translated into proteins by the host cell, and better ability to control the amount
of each factor (Plews et al., 2010). However, mRNA provides only a short
duration of gene expression (2—3 days), thus multiple transfections are required
for complete reprogramming and innate immune response must be suppressed

alongside mRNA transfection (Wang and Na, 2011).

One major drawback to these approaches, however, is the very low
reprogramming efficiency (0.01-0.1%), making them currently far from being
technically mature. Finding that microRNA (miRNA)-deficient ES cells are
defective in differentiation and proliferation highlighted the importance of

mMiRNAs in the control of pluripotent stem cells.

Recently, Judson et al. reported the first successful generation of iPS cells from
mouse embryonic fibroblasts using miRNAs specific to ES cells (Judson et al.,
2009). Cells were exposed to a subset of the miR-290 cluster, known as the
embryonic stem cell cycle (ESCC) regulating miRNA in the presence of OCT4,
SOX2 and KLF4 factors. MicroR-294 was found to be the most effective miRNA
and increased the reprogramming efficiency to 0.1-0.3%. MicroR-302 which is
the human homologous miR-291/294/295 family is also abundantly present in
mouse and human pluripotent cells but not in somatic cells, thus miR-302 can
be potentially used to enhance the reprogramming efficiency of differentiated
cells. The miR302/367 cluster has been found to be a direct target of OCT4 and
SOX2 (Card et al., 2008). It was also found that the introduction of the miR-
302/miR-372 cluster improved the reprogramming efficiency through enhancing
the kinetics of MET during reprogramming (Nie et al., 2012) confirming its
critical role in self-renewal ability and the maintenance of pluripotency. As
expected, the miR302/367 cluster possessed the ability to directly reprogram
mouse and human somatic cells to an iPS cell phenotype without the
expression of the known reprogramming factors (Anokye-Danso et al., 2011;
Miyoshi et al., 2011). Similarly, Lin et al. reported successful generation of iPS
cells from human hair follicle cells (hHFCs) by inducing miR-302 expression
beyond 1.3-fold of the concentration in human ES cells (Lin et al., 2011b).
Reprogramming by miRNAs produced iPS cells indistinguishable from those
generated by transcription factors with respect to colony morphology,

expression of stemness markers, differentiation potential, and germline
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transmission (in mice). In addition, this reprogramming technique has been
found to be highly efficient and rapid compared with that by the transcriptional
factors and most importantly it requires neither using transcription factors nor
manipulating the cell genomes. However, how exactly miRNAs can induce the
whole network governing pluripotency and the practical use and robustness of

this approach is yet to be revealed (Wang and Na, 2011).

Stimulus-triggered acquisition of pluripotency (also known as STAP) is a new
cellular reprogramming approach which describes the ability to reprogram the
somatic cells by exposing these cells to harsh external stimuli such as a
transient low-pH stressor without the need for nuclear transfer or the
introduction of transcription factors. However, since this report was published,
scientists in other prominent stem-cell laboratories have been unable to
produce “STAP” cells using the protocols reported in Obokata’s publications
(Obokata et al., 2014).

/ Factor delivery methods for reprogramming somatic cells to iPS cells \

MicroRNA
> Retroviral vector Sendai virus RNA
E Lentiviral vector Excisable lentiviral vector
% Transposon

Episomal plasmid
Small molecules

Adenaoviral vector Protein

\ Safety /

Figure 7-2: Factor delivery methods for reprogramming somatic cells to iPS
cells. Based on (Gonzalez et al., 2011).
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7.6 Factors and strategies to enhance reprogramming

To enhance the efficiency of DNA reprogramming several modifications have
been tried such as adding small molecules and chemical compounds including
vitamin C which has been found to significantly enhance the generation of both
mouse and human iPS cells by suppressing p53 and minimizing the cellular
senescence resulting from the stress of DNA damage (Esteban et al., 2010),
and valproic acid, a histone deacetylase inhibitor which increased the
reprogramming efficiency by more than a hundred fold (Huangfu et al., 2008a;
Mikkelsen et al., 2008; Feng et al., 2009b). The efficiency of lentiviral
transduction can also be enhanced using a drug inducible transgenic system,
this system further permits temporal control over factor expression (Maherali et
al., 2008; Stadtfeld et al., 2008b).

A recent study by Liao et al. improved the efficiency of producing iPS cells from
human differentiated cells using a combination of 6 transcription factors, OCT4,
NANOG, SOX2, LIN28, C-MYC and KLF4 (Liao et al., 2008). Human newborn
foreskin fibroblasts were transduced with the lentivirus carrying GFP (as
negative control), a cocktail of lentivirus carrying 4 factors (OCT4, NANOG,
SOX2, and LIN28), or 6 factors (OCT4, NANOG, SOX2, LIN28, C-MYC and
KLF4). Colonies with human ES cell-like morphology were observed after 12
days from transduction with 4 factors, and after only 7 days from transduction

with 6 factors.

More recently, deterministic reprogramming of mouse and human differentiated
cells back to an undifferentiated state similar to ES cells at efficiencies nearing
100% within seven days has been achieved by OSKM factors together with
inhibiting Mbd3, a core member of the Mbd3/NuRD (nhucleosome re-modelling
and deacetylation) (Rais et al., 2013). In this study Mbd3/NuRD was found to
supress iPS cells induction through silencing the OSKM target genes that are
required to boost the reprogramming process. However, contrary to previous
reports (Luo et al., 2013), depleting Mbd3 expression couldn’t induce the
formation of iPS cell in somatic cells without exogenous overexpression of
OSKM. It is worth exploring if depleting Mbd3 may improve iPS-generation

efficiency in the human urinary tract cells.

211



Another major drawback with Yamanaka'’s original transduction protocol
however, was the use of C-MYC oncogene as a reprogramming factor.
Although retrovirally delivered, C-MYC is strongly silenced in bona fide iPS
cells, reactivation of the C-MYC transgene induced tumour formation in about
20% of iPS - derived progeny (Okita et al., 2007).

At the same time, Thomson and co-workers were successfully generating
human iPS cells utilizing lentiviral vectors with OCT4, and SOX2 in combination
with NANOG and LIN28 genes instead of C-MYC and KLF4 (Yu et al., 2007).
The reprogrammed human somatic cells met all defining criteria for ES cells
suggesting that different transcription factors can stimulate each other’s
synthesis which in turn leads to a common pluripotent ground state, or,
alternatively, different routes can lead to the pluripotency state (Stadtfeld and
Hochedlinger, 2010).

Nakagawa et al. examined whether iPS cells can be generated without the MYC
transgene (Nakagawa et al., 2008). Mouse and human fibroblast were
transduced with three factors devoid of MYC and cultured without selection for
at least 2 or 3 weeks. NANOG-GFP expressing colonies appeared ~30 days
after transduction and NANOG-selected iPS cells displayed human ES-cell
markers, and differentiated into cell types from the three germ layers.
Importantly, generated chimeric mice didn’t develop tumours indicating that C-
MYC is not essential for direct reprogramming of somatic cells into iPS cells
albeit at the cost of reduced reprogramming efficiency and speed. Omitting C-
MYC also selected for high standard iPS cells, reduced the high number of
background cells and significantly reduced the risk of tumourigenicity in
chimeras (Nakagawa et al., 2008; Wernig et al., 2008b).

In subsequent studies the number of genes required for reprogramming was
further reduced. Both mouse (Kim et al., 2008) and human (Hester et al., 2009)
neural stem cells (NSCs) which endogenously express high levels of SOX2 and
C-MYC compared to ES cells have been reprogrammed into a pluripotent state
using only OCT4/ KLF4 or OCT4/C-MYC, though at lower efficiency than with
four factors. A single factor reprogramming of human and mouse neural stem
cells with only OCT4 has been also reported (Kim et al., 2009b; Kim et al.,

2009c). Similarly, dermal papilla (DP) cells from mouse hair follicles which
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express high endogenous levels SOX2, C-MYC, and KLF4 can be
reprogrammed into iPS cells with the single transcription factor OCT4 (Tsai et
al., 2011).

Successful reprogramming has also been achieved using subtypes of
transcription factors, albeit with a decrease in reprogramming efficiency, for
example SOX1 and SOX3 can be used instead of SOX2, L-MYC and N-MYC
instead of c-MYC, and KLF2 instead of KLF4 (Blelloch et al., 2007; Okita et al.,
2007; Lai et al., 2011). Direct reprogramming of somatic cells has been also
achieved by replacing some of the reprogramming transcription factors with
small molecules. For example, the histone deacetylase inhibitor, valproic acid
enables efficient reprogramming of human fibroblasts without using KLF4 and
C-MYC (Huangfu et al., 2008b). Feng at al. reported successful reprogramming
of MEFs using orphan nuclear receptor, Esrrb in the presence of OCT4, SOX2
and C-MYC (Feng et al., 2009a). Even OCT4, which was considered to be
essential for reprograming, has been replaced with an orphan nuclear receptor
gene, Nr5a2 in iPS cells generation in the presence of ectopic expression of
SKM. However, Nr5a2 upregulates OCT4 and NANOG through direct binding to
their promoters, indicating that its ability to promote reprogramming was still
through the OCT4 route (Heng et al., 2010). Moreover, using chemical
components as an alternative to transcription factors significantly decreased the
number of generated iPS cell clones, suggesting that none of these compounds
can completely substitute the function of a transcription factor (Stadtfeld and
Hochedlinger, 2010).

Another challenge before human iPS cells can be used for therapy is
developing a serum-free, xeno-free, and chemically defined medium, suitable
for derivation and maintenance of these cells. At first, scientists

commonly used human ES cell medium containing foetal bovine serum (FBS)
supplemented with conditioned secretory factors from MEFs (Thomson et al.,
1998), but later, more standardized and better-defined medium to overcome
xenogeneic -related problems was described. Knock-out serum replacement
with basic fibroblast growth factor (bFGF) has been successfully used to
support feeder-based human iPS cell culture. This medium provides more
standardized and better defined culture conditions compared with serum-
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containing medium. However, it is not an animal free medium as it contains
lipid-rich bovine serum albumin (Koivisto et al., 2004; Chaudhry et al., 2008).
Later on, Tenneille Ludwig and colleagues developed serum-free, xeno-free
culture medium (termed TeSR1) with high levels of FGF-2, lithium chloride
(LiCl), gamma-aminobutyric acid (GABA), TGF-beta, and pipeolic acid for use in
feeder-free conditions (Ludwig et al., 2006).

Currently, the majority of human ES and iPS cell lines are maintained on a
feeder layer of MEFs because they provide robust growth of their colonies.
However, since MEFs have complex, undefined, and xenogeneic properties,
various human cell types have been substituted to support human ES and iPS
cell growth (Chen et al., 2014). Great progress has been achieved by Richard el
al. who replaced MEFs with human foetal and adult fibroblast feeders (Richards
et al., 2002), and Mallon et al. who used human cells from adult tissues such as
foreskin, uterine endometrium, and marrow-derived stromal cells to grow human
ES cells (Mallon et al., 2006). However, the use of feeders is not suitable for
clinical application. Hence, considerable effort has been made to develop

complete xeno-free environment for derivation and maintenance of iPS cells.

Xu et al. reported the first attempt to produced feeder-free cultures of human ES
cells using Matrigel, an animal based extracellular matrix (ECM) preparation, or
laminin substrates in medium conditioned by MEFs (Xu et al., 2001). Currently
well-defined and xenogeneic- free extracellular components for the
maintenance of human ES cells and iPS cells under feeder-free conditions are
commercially available including CELLstart, StemAdhere, and Synthemax- R
Surface (Chen et al., 2014).

7.7 Conclusion and future directions

In summary, iPS cells seem to meet virtually all the defining criteria of true
pluripotent stem cells but without the ethical and immunological concerns that
have limited progress with human ES cells. Furthermore, alternative
approaches are now becoming established to produce virus/integration free iPS
cell lines, thereby improving the prospects of clinical translation. Nevertheless,
the field of iPS cells remains in its infancy and a better understanding of the

reprogramming process and its effects on the cells is needed in order to
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develop safer and more quick and efficient approaches for pluripotency

induction.

Development of a robust protocol for the differentiation and derivation of a pure
pool of desired cells to be used in the development of cellular-based therapies
is also required. Our study, for the first time, provides proof of principle for the
direct reprogramming of adult human stromal cells derived from urinary tract to
iIPS cells (UT-iPS cells). These UT-iPS cells exhibited typical pluripotent stem
cell characteristics and showed more propensity toward urothelial and smooth
muscle stromal cell differentiation as compared to iPS cells obtained from
human skin fibroblast. As such, UT-iPS cells provide a cellular platform toward
the development of differentiation protocols and show great promise in clinical

regenerative medicine and modelling urinary tract disease.

To direct the differentiation of these cells in vivo to form bladder structures using
the inductive signalling properties of appropriate mesenchyme would be a great
step forward from this work as this will potentially reveal information about the
process of bladder development and bladder stem cells, and also offers the
ability to characterize these cells with respect to their potential use for
regenerative medicine and other bio clinical applications such as disease

modelling, and drug screening.
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Abstract

Background: Primary culture and animal and cell-line models of prostate and
bladder development have limitations in describing human biology, and novel
strategies that describe the full spectrum of differentiation from foetal through to
ageing tissue are required. Recent advances in biology demonstrate that direct
reprogramming of somatic cells into pluripotent embryonic stem cell (ESC)-like
cells is possible. These cells, termed induced pluripotent stem cells (iPSCs),
could theoretically generate adult prostate and bladder tissue, providing an

alternative strategy to study differentiation.

Objective: To generate human iPSCs derived from normal, ageing, human
prostate (Pro-iPSC), and urinary tract (UT-iPSC) tissue and to assess their

capacity for lineage-directed differentiation.

Design, setting, and participants: Prostate and urinary tract stroma were
transduced with POU class 5 homeobox 1 (POU5F1; formerly OCT4), SRY (sex
determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (gut) (KLF4), and v-
myc myelocytomatosis viral oncogene homolog (avian) (MYC, formerly C-MYC)

genes to generate iPSCs.

Outcome measurements and statistical analysis: The potential for differentiation
into prostate and bladder lineages was compared with classical skin-derived

iPSCs. The student t test was used.

Results and limitations: Successful reprogramming of prostate tissue into Pro-
IPSCs and bladder and ureter into UT-iPSCs was demonstrated by
characteristic ESC morphology, marker expression, and functional pluripotency
in generating all three germ-layer lineages. In contrast to conventional skin-
derived iPSCs, Pro-iPSCs showed a vastly increased ability to generate
prostate epithelial-specific differentiation, as characterised by androgen
receptor and prostate-specific antigen induction. Simi- larly, UT-iPSCs were
shown to be more efficient than skin-derived iPSCs in undergoing bladder
differentiation as demonstrated by expression of urothelial-specific markers:
uroplakins, claudins, and cytokeratin; and stromal smooth muscle markers: a-

smooth-muscle actin, calponin, and desmin. These disparities are likely to
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represent epigenetic differences between individual iPSC lines and highlight the

importance of organ-specific iPSCs for tissue-specific studies.

Conclusions: IPSCs provide an exciting new model to characterise mechanisms
regulating prostate and bladder differentiation and to develop novel approaches
to disease modelling. Regeneration of bladder cells also provides an

exceptional opportunity for translational tissue engineering.
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Abstract

Background: Primary culture and animal and cell-line models of prostate and bladder development
have limitations in describing human biology, and novel strategies that describe the full spectrum of
differentiation from foetal through to ageing tissue are required. Recent advances in biology
demonstrate that direct reprogramming of somatic cells into pluripotent embryonic stem cell
(ESC)-like cells is possible. These cells, termed induced pluripotent stem cells (iPSCs), could theoreti-
cally generate adult prostate and bladder tissue, providing an alternative strategy to study
differentiation.
Objective: To generate human iPSCs derived from normal, ageing, human prostate (Pro-iPSC), and
urinary tract (UT-iPSC) tissue and to assess their capacity for lineage-directed differentiation.
Design, setting, and participants: Prostate and urinary tract stroma were transduced with POU class
5 homeobox 1 (POU5F1; formerly OCT4), SRY (sex determining region Y)-box 2 (SOX2), Kruppel-like
factor 4 (gut) (KLF4), and v-myc myelocytomatosis viral oncogene homolog (avian) (MYC, formerly
C-MYC) genes to generate iPSCs.
Outcome measurements and statistical analysis: The potential for differentiation into prostate and
bladder lineages was compared with classical skin-derived iPSCs. The student t test was used.
Results and limitations: Successful reprogramming of prostate tissue into Pro-iPSCs and bladder and
ureter into UT-iPSCs was demonstrated by characteristic ESC morphology, marker expression, and
functional pluripotency in generating all three germ-layer lineages. In contrast to conventional skin-
derived iPSCs, Pro-iPSCs showed a vastly increased ability to generate prostate epithelial-specific
differentiation, as characterised by androgen receptor and prostate-specific antigen induction. Simi-
larly, UT-iPSCs were shown to be more efficient than skin-derived iPSCs in undergoing bladder
differentiation as demonstrated by expression of urothelial-specific markers: uroplakins, claudins,
and cytokeratin; and stromal smooth muscle markers: a-smooth-muscle actin, calponin, and desmin.
These disparities are likely to represent epigenetic differences between individual iPSC lines and
highlight the importance of organ-specific iPSCs for tissue-specific studies.
Conclusions: IPSCs provide an exciting new model to characterise mechanisms regulating prostate
and bladder differentiation and to develop novel approaches to disease modelling. Regeneration of
bladder cells also provides an exceptional opportunity for translational tissue engineering.

© 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Mechanisms involved in prostate and bladder development
and differentiation have been implicated in disease [1-3].
Established animal models of prostate and bladder devel-
opment are well characterised; however, despite providing
key insights for differentiation, there are limitations in
translating these findings to the human setting. Similarly,
there are constraints on studying cells lines that forcibly
maintain expression of immortalising genes. Approaches to
human primary cell culture can overcome some of these
issues, although this can be challenging due to the limited
life-span of cultures, biologic variability between patients,
limited material despite cell expansion, and changes in the
phenotype associated with in vitro culture adaptation
[4-6]. An alternative strategy is the use of embryonic stem
cells (ESCs) that can generate foetal and adult prostate and
bladder tissue [7,8], but this approach is limited by ethics
associated with the source of material. However, a recent
landmark discovery by Yamanaka and colleagues demon-
strated that somatic cells can be reset to an embryonic-like
state, termed induced pluripotent stem cells (iPSCs), by the
expression of defined factors [9,10]. Such cells offer an
unparalleled opportunity for regenerative therapies, dis-
ease modelling, and drug screening [11]. However, iPSCs
appear to retain epigenetic imprinting associated with their
tissue type of origin. This phenomenon results in restricted
terminal differentiation into other cell types [12-14].

In this study, we generated, for the first time, iPSCs
derived from human prostate (Pro-iPSCs) and urinary tract
cells (bladder and ureter) (UT-iPSCs). Furthermore, our data
showed that Pro-iPSCs and UT-iPSCs are more efficient in
differentiating into respective prostate and bladder lineages
relative to established skin fibroblast-derived iPSCs, con-
firming the importance of the organ of origin on the
differentiation potential of the reprogrammed cell.

2. Materials and methods
2.1. Cell culture

All surgical specimens were collected according to local ethical and
regulatory guidelines and included written, informed patient consent
(Freeman Hospital, Newcastle Upon Tyne, UK). Patient details from
which successful iPSC lines were established are summarised in Table 1.
Histologic examination confirmed the absence of dysplasia or malig-
nancy. Prostate primary culture was undertaken according to previously
optimised protocols to separate purified epithelial and stromal cells

[15,16]. Cell cultures of urothelium and associated urinary tract stroma
were established using a protocol described by Southgate et al. [17].
Detailed protocols for cell culture are provided in Supplement 1. The
homogeneity of the stromal cells that were subsequently transduced
were confirmed by real-time reverse transcription-polymerase chain
reaction (RT-PCR) using a panel of cell lineage markers (CD24 epithelial,
CD45 haematopoietic, von Willebrand factor endothelial, CD146
endothelial, a-smooth-muscle actin [SMA] stromal smooth muscle,
and Thy-1 cell surface antigen [CD90] stromal cells).

2.2. Lentivirus transduction

Pure cultures of 5 x 10% prostate, bladder, and ureter stromal cells were
transduced using a polycistronic lentiviral vector (POU class 5 homeobox
1 [POUS5F1, formerly OCT4], SRY [sex determining region Y]-box 2 [SOX2],
Kruppel-like factor 4 (gut) [KLF4], and v-myc myelocytomatosis viral
oncogene homolog [avian] [MYC, formerly C-MYC]; Allele Biotech, San
Diego, CA, USA) at a multiplicity of infection of 10 in the presence of
polybrene (10 pg/ml) and transduction medium (RPMI1640 medium with
HEPES modification; Sigma-Aldrich Co, St. Louis, MO, USA) containing 10%
foetal calf serum (Sigma-Aldrich Co, St. Louis, MO, USA), L-glutamine
(2 mM), and 1% penicillin and streptomycin (Invitrogen Corp, Carlsbad, CA,
USA).Onday 2, the transduction medium (including lentiviral vectors) was
replaced with standard stroma culture medium. On day 6, cells were
seeded onto gelatine-coated plates with a feeder layer of irradiated
CF-1 mouse embryonic fibroblasts (MEFs) (MTI-GlobalStem, Rockville,
MD, USA) in human ESC medium (Knockout Dulbecco’s modified Eagle’s
medium, 1 mML-glutamine, 100 mM nonessential amino acids, 20% serum
replacement, and 8 ng/ml fibroblast growth factor [FGF] 2 [Invitrogen Corp,
Carlsbad, CA, USA]). Additional details on optimisation of these protocols
areavailablein Supplement 1. After an additional week, cells were cultured
in MEF-conditioned ESC medium. ESC-like colonies were manually
selected based on morphology between 4 and 6 wk. The medium was
changed every 48 h. A similar protocol was applied to epithelial cells but
was unsuccessful in iPSCs generation; it is described in Supplement 1.

2.3. Characterisations by polymerase chain reaction, DNA
fingerprinting, karyotyping, immunofluorescence, and alkaline
phosphatase staining

RNA isolation and real time RT-PCR was normalised to glyceraldehyde
3-phosphate dehydrogenase according to protocols described in
Supplement 1. DNA fingerprinting was based on microsatellite markers
for short tandem repeats and karyotyping was determined by Giemsa
banding. Details about this and about alkaline phosphatase activity
detection and immunofluorescence are described in Supplement 1.

24. Assays of pluripotency

In vitro and in vivo differentiation assays, and embryoid body and
teratoma formation were undertaken using established protocols and
are detailed in Supplement 1.

Table 1 - Details of patients from whom induced pluripotent stem cells lines were established

Patent identifier Age, yr Sex Nature of tissue biopsy

12380 65 Female Ureter biopsy from radical nephrectomy for renal cell carcinoma

12459 66 Male Bladder biopsy from cystoprostatectomy undertaken as part of urinary diversion
for benign functional disorder (secondary to urethral injury and bowel surgery)

12491 48 Male Bladder biopsy from cystoprostatectomy for benign, functional, neurologic
disorder

12502 54 Male Ureter biopsy from radical nephrectomy for renal cell carcinoma

12506 56 Male Bladder biopsy from cystoprostatectomy for benign functional neurologic disorder

11901 66 Male Prostate biopsy from cystoprostatectomy for bladder cancer
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2.5. Lineage-specific differentiation of human induced
pluripotent stem cells in vitro

MEFs were removed for differentiation studies. For the induction of
prostate differentiation, Pro-iPSCs were cultured with primary prostate
stroma-conditioned medium. For bladder differentiation, UT-iPSCs were
cultured with conditioned medium for 14 d using a previously established
protocol [18]. Details of the conditioned medium from either cultured
human urothelial cells or stroma cells are described in Supplement 1.
Comparison of differentiation potential was drawn against conventional
human-skin iPSCs, which is a pre-established cell line [19].

2.6. Statistical analysis

All results are expressed as mean plus or minus the standard error, and
statistical differences assessed using the student t test with p values
<0.05 considered significant.

3. Results

3.1. Generation of induced pluripotent stem cells from normal
ageing prostate and human urinary tract cells

Once primary cultures of prostate, bladder, and ureter
stromal cells were established, we examined the purity of
fibroblast lineage. Following passage, there was an inherent
culture-based selection for fibroblasts based on cell mor-
phology and lineage-marker expressions. Morphologically,
cells were consistent with primary, prostate stromal fibro-
blasts and were confirmed to be devoid of endothelial,
epithelial, and haematopoietic contamination following the
first passage (Supplemental Fig. S1A and S1B). Pure bladder
and ureter stromal cells expressing smooth muscle and

A Seedcells Transduction Remove Seeding onto MEFs feeder. Recover
transduction media Switch to hESC media colonies
— y |
| I | 7 |
Day -1 Day 0 Day 2 Day 6 ~ Day 30

B Pro-iPSC

=,
.

C Pro-iPSC

TRA-1-81

TRA-1-60

POUF54

UT.iPSC

N

Fig. 1 - (A) Timeline for induced pluripotent stem cell (iPSC) generation. (B) Example of established iPSC colonies growing on a feeder layer with human
embryonic stem cell (ESC)-like morphology. (C) Inmunofluorescence of generated iPSCs for the expression of specific human ESC surface markers: stage-
specific embryonic antigen-4 (SSEA4), tumour rejection antigen (TRA)-1-81, TRA-1-60, and nuclear transcription factors Nanog homeobox (NANOG) and
POU class 5 homeobox 1(POU5F1, formerly OCT4). Note mouse embryonic fibroblast (MEF) cells at the periphery of the colonies are negative for stem cell
marker expression. Nuclei were stained with 4',6-diamidino-2-phenylindole (blue) (scale bar = 100 pm), and specific cellular localisation of the stem cell

markers are shown in their expected distribution.

hESC = human embryonic stem cell; Pro-iPSC = prostate induced pluripotent stem cell; UT-iPSC = urinary tract induced pluripotent stem cell.
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myofibroblastic markers a-SMA and CD90 were confirmed
at second passage, associated with typical stromal-cell
appearance (Supplemental Fig. S2A and S2B). Polycistronic
lentiviral vectors containing the four transcription factors
POUS5F1, SOX2, KLF4, and MYC were transduced into pure
stromal cells. A schedule for human iPSC reprogramming is
summarised in Figure 1A. Seven days following lentiviral
transduction, fibroblasts demonstrated features of mesen-
chymal to epithelial transition, which is typical of early
reprogramming [20]. Mesenchymal to epithelial transition
was characterised by a change in the prostate fibroblast
morphology from spindle-shaped cells to classic, epitheloid,
cobblestone colonies, and was confirmed by marker expres-
sion showing upregulation of epithelial marker E-cadherin
and downregulation of mesenchymal markers snail homolog
1 and 2 (Drosophila) (dubbed Snail and Slug, respectively)
(p < 0.05) (Supplemental Fig. S1C). Four week to 5 wk after
transduction with the lentivirus, several small and tight cell
colonies were detected; however, they grew slowly and so
were not consistent with ESC-like cells (Supplemental
Fig. S2C). By week 6 after transduction, rapidly growing
colonies displaying morphology similar to that of human
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ESCs were observed (tight and flat colonies with clear-cut
edges composed of small cells with a high nucleus-
to-cytoplasm ratio) (Fig. 1B, Supplemental Fig. S1D and
S2D). Eleven prostate and 31 urinary tract ESC-like colonies
(17 bladder and 14 ureter) were successfully expanded and
stably maintained throughout culture passages (>50 pas-
sages, >10mo). The overall efficiency in generating Pro-iPSCs
and UT-iPSCs was low (0.02-0.04% of all stromal cells
transfected), but was comparable to the reported efficiency of
iPSCs generated from human dermal fibroblasts [21].
Karyotyping confirmed a diploid 46,XY chromosome
arrangement (Supplemental Fig. S1E and S2E). Authentica-
tion of Pro-iPSCs and UT-iPSCs derivation from parental
stromal cells was confirmed using DNA fingerprinting
(Supplemental Fig. S1F and S2F).

3.2. Characterisation of generated induced pluripotent stem
cells

Immunofluorescence for human, ESC-specific, surface
markers—stage-specific embryonic antigen-4, tumour

rejection antigen (TRA)-1-81, and TRA-1-60, and also

UT-iPSC

_Exogene expression in UTHPSC

10 1

Relative expression

0 T T = s 1
UT-iIPSCs H9 Control

Stem cell marker expression

[MUT-iPSC
E3HS

Relative expression
O = N W s~ wn

Fig. 2 - (A) Alkaline phosphatase staining of induced pluripotent stem cell (iPSC) colonies. Note underlying mouse embryonic fibroblast cells act as
negative control cells with no staining. (B) Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrating silencing of exogenous
transgene expression in iPSCs. Control represents stromal cells 6 d after transduction. (C) Real-time RT-PCR analysis for expression of endogenous POU
class 5 homeobox 1 (POU5F1, formerly OCT4), SRY (sex determining region Y)-box 2 (SOX2), and other stem cell marker genes: Nanog homeobox (NANOG),
growth differentiation factor 3 (GDF3), DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) and ZFP42 zinc finger protein (ZFP42, formerly REX1) in
iPSCs. All values were calculated with respect to the value for H9 human embryonic stem cell, which was set to 1.

Pro-iPSC = prostate induced pluripotent stem cell; UT-iPSC = urinary tract induced pluripotent stem cell; ENDO = endothelial.
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transcription factors Nanog homeobox (NANOG) and
POU5F1—was confirmed (Fig. 1C). Additionally, alkaline
phosphatase activity, typical of an ESC phenotype, was
demonstrated in the induced cells (Fig. 2A). Exogenous
transgene silencing is associated with the generation of iPSCs,
where there is a critical switch to endogenous expression of
key ESC regulatory factors such as POU5F1, SOX2, and NANOG.
Real-time RT-PCR using primers specific for lentiviral
transcripts demonstrated that exogenous transgene expres-
sion had ceased in both Pro-iPSC and UT-iPSC clones (Fig. 2B).
Furthermore, endogenous expression of the pluripotency
markers POU5F1, SOX2, and NANOG, in addition to ESC
markers growth differentiation factor 3 (GDF3), DNA (cyto-
sine-5-)-methyltransferase 3 beta (DNMT3B), and ZFP42 zinc
finger protein (ZFP42, formerly REX1) in both Pro-iPSCs and
UT-iPSCs was consistent with expression levels in the control
human-ESCline H9 (Fig. 2C). The iPSC clones were identical in
terms of ESC-like morphology, proliferation, and gene-
expression signatures (data not shown).

3.3. Pluripotency of generated induced pluripotent stem cells

When cultured in suspension on low-adhesion plates in the
absence of basic FGF, both Pro-iPSCs and UT-iPSCs formed
embryoid bodies containing all three germ-layer deriva-
tives, as demonstrated by immunofluorescence of lineage-
specific markers III tubulin (ectoderm), CD31 (mesoderm),
and a-fetoprotein (endoderm) (Fig. 3A). Xenografts from the
in vivo teratoma-forming assay also confirmed ectoderm,
mesoderm, and endoderm lineage histology (Fig. 3B).

34. Prostate induced pluripotent stem cells differentiate into
androgen receptor and prostate-specific antigen-expressing cells

We compared the differentiation potential of Pro-iPSCs with
conventional skin-derived iPSCs (skin-iPSCs). Following
induced differentiation by prostate stromal-cell condi-
tioned medium for 3 wk, both Pro-iPSCs and skin-iPSCs
displayed epithelioid cell morphology. Transcripts of
epithelial marker CD24 were detected at comparable levels
to primary prostate epithelium (data not shown). When
characterised with the prostate differentiation markers
androgen receptor (AR) and prostate-specific antigen (PSA),
the prostate-specific phenotype was restricted to Pro-iPSCs
(Fig. 4). AR expression was present in the differentiated Pro-
iPSCs and the degree of immunofluorescence was at levels
comparable with mature prostate epithelium in early
primary culture (day 10), whereas only minimal levels of
AR were detected in skin-iPSCs (Fig. 4A). Functional AR was
confirmed by PSA transcript and protein expression at levels
in keeping with primary, cultured, prostate epithelia,
whereas no PSA expression was detected in the differentia-
tion medium-treated skin-iPSCs (Fig. 4B).

3.5. Urinary tract-induced pluripotent stem cells differentiate
into uroplakin-expressing cells

Lineage-specific differentiation of the UT-iPSCs into bladder
lineages was assessed using established coculture methods

A Pro-iPSC

Bl tubulin

UT-iPSC
Bl tubulin

a-fetoprotein

B Teratoma

Endoderm )

Fig. 3 - Pluripotency in prostate induced pluripotent stem cells
(Pro-iPSCs) and urinary tract induced pluripotent stem cells (UT-iPSCs).
(A) Immunofluorescence analysis of embyroid bodies derived from iPSCs
shows expression of the lineage markers gllI-tubulin (ectodermal
marker; red), CD31 (mesodermal marker; green), and «-fetoprotein
(endodermal marker). Nuclei were counterstained with 4',6-diamidino-
2-phenylindole (blue) (scale bar = 100 um). (B) Left: Histologic section of
teratoma formed from Pro-iPSCs showing neuronal epithelial
differentiation. Right: UT-iPSCs representing all three embryonic germ
layers: ectoderm (neuronal rosette-like structures), mesoderm (muscle-
like tissue), and endoderm (intestinal epithelial-like cells).

[18]. In comparison to cells derived from skin-iPSCs, UT-
iPSCs were significantly more efficient at inducing bladder-
specific differentiation, as demonstrated by urothelial
differentiation-specific genes (UPIb, UPII, UPIIIa, and UPIIIb;
claudin 1 [CLD1], claudin 5 [CLD5] and keratin 7 [CK7]) and
markers specific for smooth-muscle cells (a-SMA, calponin,
and desmin) (Fig. 5A). Furthermore, the effect of condi-
tioned medium from urothelia was compared with that of
conditioned medium from stromal cells (Fig. 5B). Similar to
the embryogenesis of the urinary tract, where there is a
reciprocal differentiation of epithelial and mesenchymal
fractions [22], both urothelial and stromal differentiation
was concurrently induced using either urothelial- or
stromal-conditioned medium (Fig. 5A and 5B). UPIb protein
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Fig. 4 - Prostate-specific differentiation of prostate induced pluripotent stem cells (Pro-iPSCs). (A) Relative messenger RNA (mRNA) expression of androgen
receptor (AR) in Pro-iPSCs before and after differentiation (control levels in primary prostate stroma and epithelia shown) (n = 6). Right:
Immunofluorescence staining for AR (green) shown in Pro-iPSCs and skin-iPSCs. AR is induced in Pro-iPSCs only, with functional activity suggested by
nuclear AR localisations (blue 4',6-diamidino-2-phenylindole [DAPI] counterstain). (B) Relative mRNA expression of prostate-specific antigen (PSA) in
Pro-iPSCs before and after differentiation (control levels in primary prostate stroma and epithelia shown) (n = 3). Inmunofluorescence staining for PSA
(green) shown in Pro-iPSCs and skin-iPSCs. PSA is induced in Pro-iPSCs only (blue DAPI counterstain).

expression indicated by immunofluorescence was also
confirmed in differentiated cells derived from UT-iPSCs
after 2 wk in urothelial-conditioned medium (Fig. 5C).

4. Discussion

We report for the first time successful reprogramming of
normal, human, ageing prostate, bladder, and ureter
stromal fibroblasts to an ESC-like pluripotent state. These
cells were validated as de facto iPSCs by confirming their
ability for sustained self renewal, silencing of exogenous
transgenes, expression of ESC-specific genes, and pluripo-
tent differentiation into all three germ lineages. Further-
more, within the appropriate inductive environment,
prostate epithelial-specific differentiation with induced
functional AR, as characterised by PSA expression, was
demonstrated and UT-iPSC differentiation could be directed
into urothelial-specific lineages. These models allow for
enormous scope in future studies of differentiation, tissue
engineering, disease mechanisms, and drug development.

Since the first descriptions of iPSCs in 2006, most reports
have focused on the generation of iPSCs from a range of
normal and diseased tissues. In our work, we generated
multiple clones of UT-iPSCs from multiple donors and sites
(bladder and ureter), and multiple clones of Pro-iPSCs

from a single donor. All clones were comparable to both
skin-iPSCs and ESCs in terms of ESC-marker expression and
pluripotency potential, supporting the generalisability of
these methods to urologic tissues. Researchers exploring
further differences in ability for terminal organ-specific
differentiation among the iPSC lines derived from different
organs have found that not all iPSCs are the same in this
respect [13]. We compared the differentiation potential of
Pro-iPSCs and UT-iPSCs with skin-iPSCs and our results
demonstrated vast differences in their capabilities for
prostate- and bladder-specific differentiation. These find-
ings are consistent with emerging evidence that epigenetic
imprinting, specific to the tissue type of iPSC origin, remains
intact throughout the mechanism of stem cell reprogram-
ming and may limit the potential for terminal differentia-
tion into all cell types [12-14]. Our data emphasise the
importance of the source from which iPSCs are generated as
a consideration for organ-specific development studies.
Although we confirmed prostate-specific differentiation,
additional work is required to determine whether Pro-iPSCs
can generate the full breadth of epithelial differentiation. In
addition, it would be of interest to investigate if these cells
differentiate through somatic stem cell phenotypes or
directly into basal and luminal cells, in keeping with an
alternative model that proposes that epithelial stem cells
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Fig. 5 - Expression of urothelial and smooth-muscle lineage-specific transcripts in differentiated cells derived from urinary tract induced pluripotent stem
cells (UT-iPSCs) and skin-iPSCs by reverse transcription-polymerase chain reaction on day 14. Messenger RNA levels are shown as a fold change relative to
control (undifferentiated cells) (n = 3). (A) Expression of urothelial-specific markers (UPIb, UPII, UPIIla, UPIIIb, claudin 1 [CLD1], claudin 5 [CLD5], keratin
7 [CK7]) and smooth-muscle-specific markers («a-smooth muscle actin [a-SMA], calponin, desmin) induced with conditioned medium from urothelium.
(B) Expression of urothelial- and smooth-muscle-specific markers induced with conditioned medium from stroma. (C) Inmunofluorescence of
differentiated cells derived from UT-iPSCs treated with conditioned medium, at day 14, showing (left) bright field; (centre) positive staining for UPIb (red)
juxtaposed with an area of UPIb-negative staining, with 4’,6-diamidino-2-phenylindole nuclear counterstain (blue); and high magnification of UPIb

immunostaining (scale bar =100 pm).

maintain the phenotype of the original embryonic progenitor
of the prostate (urogenital sinus epithelium) [23]. Also of
interest would be further in vivo study of prostate epithelial
development and organisation from iPSCs, especially given
the considerable debate about the nature of the somatic stem
cell in prostate epithelium. Recent evidence has shown that
in early, postnatal, mouse prostate development, epithelial
homeostasis is maintained by basal multipotent stem cells
that differentiate into basal, luminal, and neuroendocrine
cells, as well as by unipotent basal and luminal progenitors
[24]. In contrast, in situ assays in the human adult setting
have revealed that epithelial hierarchical organisation is
based on a common stem cell [25]. The Pro-iPSC model is well
placed to explore these differences with lineage tracking

studies. Furthermore, the generation of ESC-like Pro-iPSCs
are of particular interest to the study of prostate disease,
where benign prostatic hyperplasia has been associated with
models of embryonic reawakening [26] and prostate cancer
can be associated with ESC-marker expressions [27].

Atala and colleagues reported the first human clinical trial
with engraftment of both urothelial and smooth-muscle
stromal cells into acellular biomaterials for bladder engi-
neering and reconstruction [28]. However, these strategies
rely on ex vivo cell culture to generate sufficient quantities
and quality of autologous cells. Although even small biopsies
of normal urothelium can be readily expanded before
undergoing senescence, this is significantly restricted in
diseased tissue [29]. We were unsuccessful in preliminary
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attempts at inducing urothelium. Further experimentation
was not pursued given that the stroma-based UT-iPSCs
demonstrated ability to differentiate into urothelium. In
clinical applications for regenerative medicine, this phenom-
enon also provides the additional attraction of using an
alternative, genetically normal tissue source in urothelial
malignancies for reconstruction. However, concerns about
induction of malignancies from iPSCs persist and are being
cautiously tackled with refinements in induction methods
that include virus-free and transgene-free reprogramming
and xeno-free approaches [30]. Alternative approaches are
now becoming established to realise this ambition, including
vector-free human-iPSC generation using episomal-factor
delivery, and feeder-free and albumin-free culture [31]. As
such, UT-iPSCs show great promise in clinical regenerative
medicine and modelling urinary tract disease.

5. Conclusions

Human prostate and urinary tract tissue can be used to
generate iPSCs that can be differentiated back into their
parent organ lineages. The generation of Pro-iPSCs and
UT-iPSCs provides a convenient ready-to-access model that
offers considerable potential for studies of normal and
diseased prostate and bladder biology.
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