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Abstract

Free gas in shales occurs mainly in larger mesopores (width >6 nm) and macropores
(width >50 nm) and is likely to be the first or even main contributor to gas production.
Because evaluation of the storage capacity and final recovery of gas depends on distribution
and connectivity of these pores, their correct quantification has become a focus point of
advanced research. A major step for understanding pore systems in organic rich shales was
made by recognition that under increasing thermal stress, decomposition of kerogen should
progressively lead to development of organic porosity. Despite this, many questions
concerning fate of organic porosity in organic rich rocks still remain unresolved. To date,
several important attempts to link evolution of organic pores with maturation and organic
matter content gave inconclusive and contradictory results. In this study, pore systems of the
Lower Jurassic Posidonia and Lower Cretaceous Wealden shale, representing different
mudrock types and covering a range of maturities, have been characterised. By integrating
geochemical and petrophysical measurements, and with a detailed analysis of microscopic
images we offered a unique approach for measuring porosity and pore characteristics on
micrometre and centimetre scales with thorough understanding for a micrometer lithological
variation. Key aims were to quantify the evolution of porosity associated with both organic
matter and inorganic rock matrix as a function of maturity, and address the influence of
mudrock heterogeneity on porosity change.

Our experiments revealed a non-linear trend of porosity change with maturity in pores of
all sizes, with an initial drop in the oil window as a result of mechanical compaction,
chemical diagenesis, as well as pore-filling oil and bitumen. At comparable maturities,
porosity and distribution of pores depend on the content of clays, organic matter, microfossils,
silt grains and pore filling cement. In both Posidonia and Wealden, macropores (> 50 nm)
account for merely up to 20% of total porosity physically measured, with the lowest
percentage in the least mature samples. It was also demonstrated that gas sorption micropores
are controlled by the amount of organic matter and clay minerals, and thus their microporous
nature was confirmed. Interms of organic porosity development, we provided evidence that
organic matter content and the path of its thermal decomposition control total porosities of
the gas window shale. Importantly, neoformed intraorganic porosity is highly heterogeneous
with 35% of organic particles containing visible pores (> 6 nm in diameter), and porosities of
individual particles ranging from 0-50%. As a key result, we confirmed that porous zones in

the gas window are associated with sites of bitumen retention and degradation. That indicates



that the location of potential reservoirs of free gas should be linked to rigid zones, such as
fossiliferous faecal pellets, or compaction shadows of mineral grains. Combined mercury
injection and SEM data also showed that visible but potentially isolated macropores are
connected, but only through throats below 20 nm. With the evolution of the porous network
of bitumen saturating the shale matrix in the gas window, connectivity of the system changes
from inorganic to organic dominated. The size of the pore throats, and the connectivity of the
organic system in shales are likely key controls on the delivery of gas from pore to fracture

and then to wellbore.
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(HAR 7038): The visible lamination is due to presence of diagenetic layers composed of quartz and
authigenic pyrite. An uneven surface below the bottom silt layer may be erosive or diagenetic in
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pellets (red arrows). The unit at the top has more silty material (carbonates and quartz), and more
pyrite. b) (HAD 7101): Diagenetic carbonates are found in layers, in an otherwise recrystallized
shale matrix. c) (HAD 7110): Large faecal pellets (red arrow) coexist with discrete carbonate
crystals and carbonate pelloids. d) (HAD 7119): Shale matrix is strongly recrystallized with a large
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Figure 2. 6. Backscattered electron micrographs. The bedding plane in all images is horizontal. a)
(WIC 7129): Microlaminated calcareous shale (light lamina) with faecal pellet rich layers (red
arrow) alternating with clay material (green arrow). Visible organic matter is mostly associated with
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except for image f). a) (HAR 7046): Calcareous shale with recrystallized carbonate matrix. The
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(HAR 7060): Non-extractable organic matter (dark) in an oil window sample fills up spaces between
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Figure 2. 15. FIB-BIB-SEM micrographs of the WIC 0.53% R, shale. The bedding is perpendicular to
the view plane. a) Intraparticle pores within a coccolith canal; b) Intraparticle pores in a fragment of
Schizophaerella; c) Intraparticle pores in a crushed faecal pellet; d) Intraparticle pore in a strongly
recrystallized faecal pellet; e) Intraparticle pores lined with the organic material in a fragment of
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Figure 2. 16. FIB-BIB-SEM micrographs of the HAR Ro 0.89% shale. The bedding is perpendicular
to the view plane. a) Fracture within the OM; b) Fracture at the interface of the OM and calcite; c)
Interparticle pore at the interface with the OM and calcitte; d) Interparticle pores within the OM; e)
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Interparticle pores at the interface of the OM and diagenetic calcite; f) Interparticle crack-like pore
from the interface of the OM with diagenetic calcite. An authigenic calcite crystal precipitated within
the pore; g) Interparticle pore between dolomite grains/crystals and the shale matrix; h) Fracture
within clay; i) Intraparticle, cleavage associated pore in mica; j) Intraparticle pores within a pyrite
framboid; k) Intraparticle dolomite dissolution pore; |[) Intraparticle pore associated with
recrystallized calcite. Cal — calcite, Dol — dolomite, M — mica, Py — pyrite, Qz — quartz, OM —
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Figure 2. 17. FIB-SEM and BIB-SEM micrographs of the HAD 1.45% R, sample. The bedding is
perdendicular to the view plane. a) Discrete, bubble-like pores within an organic particle; b) Spongy-
organic pores, often visibly interconnected and grouped; ¢) Pendular-organic pores; Discrete pores
are also present; d) Complex organic pore at the interface with the mineral matrix; e) Complex
organic pore partly contained within the organic particle, occupying the interface with the mineral
matrix in the 3D space; f) Organic pores bordering a terrestrial maceral ; g) Partly compacted
organic pores within a terrestrial maceral; h) Interparticle pore at the interface of an organic partcle
with diagenetic calcite and clays; i) Interparticle pores between clusters of pyrite framboids, partly
contained in the OM. Cal — calcite, Py — pyrite, Qtz — quartz, OM — organic matter........................ 41

Figure 2. 18. FIB-SEM and BIB-SEM micrographs of the HAD 1.45% R, sanple. The bedding is
perpendicular to the view plane. a) Interparticle pore between flocculated clays; b) Interparticle pore
between diagenetic calcite crystals. The pore is lined with organics and thus may resemble organic
porosiy; c) Interparticle pores at the interface of the OM and diagenetic calcite. Note discrete and
spongy pores within the organic particle; d) Intraparticle pores found in a fossil fragment; e)
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Figure 3. 1. Location of Hils syncline, Northern Germany and three boreholes: WIC (0.53% Ro),
HAR (0.89% Ro) and HAD (1.45% Ro) (after Mann and Muller (1988) and Horsfield et al. (2010)). b)
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Figure 3. 2. Ternary diagram showing the basic mineralogy of the Posidonia suite. Samples taken
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oL [ ot 1o 0] T L1 PSS OPPRSPPRR 77

Figure 3. 3. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal
distribution of pores in the WIC 7151 sample (0.53% Ro). Pores exhibit a non-uniform, fractal
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bitumen (grey), as well as combined compaction and occlusion by solid bitumen (white). d) Similarity
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between potential organic porosity for the gas window shale and the sum of the potential organic
porosity of the peak oil window shale (black) and measured increase in total porosity between the two
shales after accounting for the solvent extractable bitumen occluding pores (@rey). ......ccccceveveeeenns 87

Figure 3. 9. a) 195K CO, isotherms for selected WIC 0.53% Ro (circles), HAR 0.89% Ro (triangles)
and HAD 1.45% Ro (rectangles) shales. The x-axis represents the relative pressure, while the y-axis
represents concentration (in mmol/g) of CO, adsorbed at the temperature of 195K. Samples were not
solvent extracted prior to analysis. Peak oil window shales (HAR) show lower sorption than early oil
window (WIC) and gas winodw (HAR) counterparts. b) CO, 195K isotherms for 7129 WIC 0.53% Ro
(circles), 7060 HAR 0.89% Ro (triangles), 7070 HAR 0.89% Ro (rectangles) and 7110 HAD 1.45%
Ro (diamonds) shales measured prior and after solvent extraction (ext). Non-extracted shales show
higher sorption than extracted shales at all MatUFITIES...........cc.evviiiiiiiie i 89

Figure 3. 10. Comparison of total porosity, Hg porosity, part of total porosity not accessible to
mercury (< 5.6 nm) as estimated from the Mercury Injection Capillary Pressure analysis (MICP) and
CO, 195K sorption porosity, for selected samples of three different maturities: 0.53% (WIC), 0.89%
(HAR) and 1.45% (HAD). The sum of CO, 195K sorption and Hg porosities approximate total
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Figure 3. 11. a) A lack of relationship between TOC and sorption porosity in the Posidonia WIC
7129 0.53% R,, HAR 7060 0.89% R, and HAD 7110 1.45% R, shale. b) Positive correlation between
sorption pore volume and the content of organic carbon and phyllosilicates in the WIC and HAD
SIAIES ...ttt b nr e e nbra e 90

Figure 3. 12. A mix of X-ray maps (RGB colour mode) displaying distribution of various shale
components. The bedding plane in all images is horizontal. a) WIC 7129 0.53 Ro, b) HAR 7060
0.89% Ro, ¢) HAD 7110 1.45% Ro. At all maturities samples exhibit visible fabric anisotropy with
well-defined microlamination marked by the alternation of calcite- (blue) and clay (green) lamina ,
and in the lower maturity samples, organic matter wisps (DIiNK). .......evveeiiiiereeiiiiree e 92

Figure 3. 13. Change of the mineralogical composition within areas of progressively increasing size
as retrieved from EDX maps of three selected shale samples. Measurements reflect % change of a
parameter between two successive areas. Phases investigated include phyllosilicates (a), carbonates
(b), quartz and feldspar (C) and PYFIte (A)......veeiueieiiei et 93

Figure 3. 14. Termary diagram showing contribution to porosity of three pore types as resolved in
BIB-SEM micrographs (pixel size 15 nm) in three Posidonia shale samples: WIC 7129 (0.53%)(black
circle), HAR 7060 (0.89%) (red circle) and HAD 7110 (1.45%) (green circle)...........cccoveeviiinnnnnns 95

Figure 3. 15. Backscattered electron micrographs (L) of shale samples polished with the Argon BIB.
Secondary electron micrographs (R) show details of porosity distribution within areas outlined with a
blue rectangle in BSE micrographs. The bedding plane in all images is horizontal. a)(WIC 7129):
Calcareous shale (light lamina) with disseminated faecal pellets alternating with clay material, silt-
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size quartz, pyrite framboids and sparsely disseminated calcite. b) Pores are found within fossil
aggregates, locally within pyrite framboids and in the organoclay-rich matrix with dispersed fossils.
c) (WIC 7129): Calcareous shale (dark lamina) enriched in the clay material admixed with organic
matter, with disseminated silt-size quartz, pyrite framboids and calcite fossils. d) Pores are dispersed
in an organoclay matrix with dispersed calcite grains and accumulated in fossil bodies. e) (WIC
7129): Calcareous shale (light lamina) with recrystallized fossiliferous aggregates alternating with
organic and clay laminae. f) Pores in diagenetically changed fossil aggregates can reach 3 pm in
diameter. Note lack of organic material lining the pores. g) (HAR 7060): Calcareous shale with
densely packed nannofossil aggregates. Partial recrystallization of the nannofossil rich shale matrix
and presence of calcite and dolomite cement all indicate diagenetic transformation of the original
material. h) Pores in recrystallized fossil aggregates occur at the interface with organic matter filling
the intragranular space. i) (HAR 7060): Calcareous shale with alternating calcite-and clay laminae.
Fossiliferous aggregates are to a large extent recrystallized and locally cemented. j) Pores are
encountered within fossiliferous aggregates as well as within pyrite framboids. k) (HAD 7110):
Calcareous shale with recrystallized fossils and authigenic carbonate phases replacing the original
fabric. 1) The porosity is encountered between pyrite crystallites in pyrite framboids, within well-
defined diagenetically changed fossiliferous aggregates as well as within shale matrix. m)
(HAD7110): Calcareous shale with a strong diagenetic overprint. n) Typically porous zones include
fossiliferous aggregates and organic particles. o) (HAD 7110): Common features of a diagenetic
overprint in the Posidonia shale. Biogenic calcite in faecal pellets (top and bottom) is much
recrystallized, and locally cemented. New dolomite phases are replacing the original fabric. p)
Organic matter (outlined) spans from non-porous to highly POrouUS...........cceeeeeviiivieiiiiieie e 98

Figure 3. 16. Typical distribution of pores from BIB-SEM mosaics of the Posidonia shale samples. An
area of investigation covers the size of an estimated Representative Elementary Area (96x70 pm?).
Fully resolved pores (red circles) are fitted with a linear regression line defined by a slope (D) and a
point of interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate
from the linear regression line estimated for the fully resolved pores. .........ccccooveeiieeiiieeniieennn, 100

Figure 3. 17. Distribution of pore sizes of BIB-SEM image pores for three samples WIC 7129 0.53%
Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. a) Fractal distribution of pores > 100 nm with
the line of the best linear fit described by a slope (D) and intercept with the y axis (C). The BIB-SEM
images were captured at the magnification 6,000x and cover an estimated REA. Note that porosity >
100 nm approximates inorganic hosted porosity in all samples. b) Differential pore size distribution
as a function of an equivalent radius. Note descending pore area density of pores <400 nm diameter.
c) Differential pore size distribution as a function of an equivalent radius. The BIB-SEM images were
captured at the magnification 10,000x (< REA, >50 nm) or 6,000x (REA, >100 nm) (LL — light
lamina, DL — dark lamina). d) Fractal distribution of image intraorganic pores (> 50 nm) for the
HAD 7110 1.45% Ro shale. The BIB-SEM images were captured at the magnification 10,000x
covering the estimated REA. e) Differential size distribution of intraorganic pores as a function of an
equivalent radius. Note ascending pore area density of all resolved pores (>50 nm). ..........c......... 101

Figure 3. 18. Distribution of a) equivalent diameters and b) aspect ratios of BIB-SEM image pores
for three samples WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. The
histograms represent pores with a diameter above the practical image resolution. The magnification
of a single image is 6,000x for histograms representing all pores, and 10,000x for a histogram
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representing intraorganic pores only. Frequency denotes number of pores with the characteristic
measured Within @& SPECIFIC DIN...........uiiiiiiii s 102

Figure 3. 19. Comparison of cumulative porosity (a) and pore size distribution (b) obtained from
mercury injection (>5.6 nm diameter) and image analysis (> 100 nm diameter) covering the REA for
three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. c) Extrapolation
of a line of the best linear fit describing distribution of intraorganic pores to a diameter 6 nm. d)
Comparison of cumulative porosity obtained from mercury injection (> 5.6 nm diameter) (black) and
image analysis with inorganic (> 100 nm) and intraorganic (>6 nm) porosities superimposed. The
red line denotes the minimum value of the extrapolated image porosity, while the green line — the
MAXIMUIM VAIUB........eiiiiie ettt e et e et e et eeaaee e 104

Figure 3. 20. Relationship of image porosity with EDX maps derived clay and calcite content, and
point-counted OM content. Each data point represents one BIB-SEM image captured at magnification
10,000 X and @ PIXel SIZ& 15 NIML ....vviiieeiiiiii et e e e e e e e s s e e e e snrraeeeanne 106

Figure 3. 21. Combined image porosity and point-counted OM content and its relationship to EDX
derived calcite content. Each data point represents one BIB-SEM image captured at magnification
10,000 x (corresponding PiXel Size 15 NM)...ccciiuiiiiiiiiiie et e e e e 107

Figure 3. 22. a) Cumulative porosity contained in pores grouped into three intervals <6 nm, 6-100
nm, > 100 nm, estimated for three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD
7110 1.45% Ro. Within all three groups, the change of porosity is non-linear, bottoming out in the
peak oil window shale. b) A change in the total porosity with increasing maturity is controlled to the
large extent by the pores in the interval 6-100 NIM. .......ccceiiiiiiiiiie e 108

Figure 4. 1. Regional units of the Lower Cretaceous German Wealden (shaded area) in Northern
Germany (after Mutterlose and Bornemann (2000) and Stollhofen et al. (2008)). The three boreholes:
A (R, 0.5-0.6%), B (2.2-24%) and C (1.5-1.9%) are marked with black, red and green circles
respectively b) Palaeogeography of the Lower Saxony Basin in Berriasian times (after Elstner and
Mutterlose, 1996) with the current location of the three boreholes. c¢) Lithostratigraphy of the
Berriasian and lower Valanginian of the northwest Germany (after Elstner and Mutterlose, 1996,
modified). Colour bars show top and bottom of the cored interval for each of the wells.................. 137

Figure 4. 2. Lithological logs for cores retrieved from A, B and C boreholes. The TVD (true
vertical depth) scale is in metres. The basic depositional environment of the each sediment
interval is provided left t0 €aCh 10g. ...ooouiiiiiiii 139

Figure 4. 3. Scan micrographs of the selected Wealden Shale samples. In each well, samples
originate from a number of different depositional settings. a) A10278: Deep marine, clay-rich
siliclastic mudstone with biogenic sedimentary structures. Visible burrows are differentiated by their
darker shades and flat, enlogated shapes. b) A10282: Deep marine, clay-rich siliciclastic mudstone.
The shale fabric is homogeneous and lacks any biogenic structures. ¢) A10289: Visibly laminated
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clay-rich siliciclastic mudstone from the sublittoral lake setting. The lighter laminae are composed of
silt-sized quartz grains and alternate with darker laminae dominated by the unresolved, fine-grained
mineral matrix. d) A10299: Clay-rich siliciclastic mudstone from the sublittoral lake setting. The
mudstone shows abundant silt-bearing laminae (light coloured). e) A10305: Clay-bearing
fossiliferous mudstone from the sublittoral lake setting. Distinct lamination is a result of varied
content of structured organic matter (black). f) A10320: Deep lacustrine, clay-rich siliciclastic
mudstone. The shale fabric is fine-grained and homogeneous. g) A10326: Deep lacustrine, clay-
bearing mudstone with abundant microfossils. h) A10342: Deep lacustrine, clay-rich siliciclastic
mudstone with homogeneous fabric. i) B10444: Marine influenced, deep lacustrine, clay-rich
siliclastic mudstone with biogenic sedimentary structures. The burrows are differentiated by their
lighter colours and elongated shapes. j) B10455: Marine influenced, deep lacustrine, clay-rich
siliciclastic mudstone. The shale fabric is homogeneous with the predominance of fine-grained
constituents. k) B10458: Marine influenced, deep lacustrine, clay-rich siliciclastic mudstone with very
scarce silt-sized grains. I) B10482: Deep lacustrine, clay-rich siliciclastic mudstone. A visible fossil-
rich (light) lamina in the centre. m) B10494: Deep lacustrine, clay-bearing fossiliferous mudstone.
Macro-sized fossils are embedded in the clay-rich matrix, forming distinct laminae. n) B10525: Deep
lacustrine, clay-rich siliciclastic mudstone with abundant silt-size carbonate crystals (light). o)
B10547: Deep lacustrine, clay-rich siliciclastic mudstone. The matrix is visibly diagenetically altered.
p) B10562: Deep lacustrine, clay-rich siliciclastic mudstone with abundant pyrite (light lamina at the
bottom). q) C10371: Marine influenced, lacustrine, clay-rich siliciclastic mudstone with visible silt-
sized components (light). r) C10388: Marine influenced, lacustrine, clay-bearing fossiliferous
mudstone. Macro-sized shells are embedded in the fine-grained matrix. s) C10397: Deep lacustrine,
clay-rich siliciclastic mudstone. Macro-sized fossils ARE visible at the top. t) C10401: Deep lacustrine,
clay-rich siliciclastic mudstone. u) C10418: Lake plain, clay-rich siliciclastic mudstone with sand-
sized quartz grains. v) C10426: Lake plain, clay-rich siliciclastic mudstone interbedde with shell
layers (light). w) C10432: Lake plain, clay-rich siliciclastic mudstone. The matrix is diagenetically
altered. x) C10438: Lake plain, mollusc-packed grainstone. The interstices between the shell detritus
are iNfilled WIth CEMENT. .......uiiiii e 141

Figure 4. 4. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) displaying
textural features of the Wealden Shale from the immature/early mature well A, a, b): A10282 deep
marine, clay-rich siliciclastic mudstone; c, d): A 10305 sublittoral lake, clay-rich siliciclastic
mudstone; e, f): A10320 deep lacustrine, clay-rich siliciclastic mudstone; g, h): A10326 deep
lacustrine, clay-bearing fossiliferous mudstone; i, j): A10342 deep lacustrine, clay-rich siliciclastic
mudstone. In the transmitted light micrographs black colour denotes pyrite or pyritized algae bodies
(c), white — fossils (c, g) or quartz grains (i), brown — clay matrix. White elongated features are
L= L0110 (T PP PR OUPRT 145

Figure 4. 5. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the
Wealden Shale from the overmature well B. a, b): B10455 marine influenced, deep lacustrine, clay-
rich siliciclastic mudstone; c, d): B10458 marine influenced deep lacustrine, clay-rich siliciclastic
mudstone; e, f): B10525 deep lacustrine, clay-rich siliciclastic mudstone; g, h): B10533 deep
lacustrine, clay-rich siliciclastic mudstone; i, j): B10547 deep lacustrine, clay-rich siliciclastic
mudstone. In the transmitted light micrographs brown and dark brown colour denotes clay-rich
matrix, white — quartz and diagenetic carbonates, or fossils (i). White elongated features in c) are
L= L0110 (T PSP PR 147



Figure 4. 6. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the
Wealden Shale from the overmature well C. a, b): C10371 marine influenced lacustrine, clay-rich
siliciclastic mudstone; c, d): C10397 deep lacustrine, clay-rich siliciclastic mudstone; e, f): C10401
deep lacustrine, clay-rich siliciclastic mudstone; g, h): C10418 lake plain, clay-rich siliciclastic
mudstone; i, j): C10426 lake plain, clay-rich siliciclastic mudstone. In the transmitted light
micrographs brown and dark brown colour denotes clay-rich matrix, white — quartz and diagenetic
carbonates, orfossils (i). White elongated features in e) and g) are fractures. .............c.cceecvvvvvneeen. 149

Figure 4. 7. Ternary diagram showing the basic mineralogy of the Wealden shale suite. Samples
taken from three cores: A (Ro 0.5-0.7%), B (Ro 1.6-2.4%) and C (Ro 1.5-1.9%). German Wealden
consists of a lithologically diverse group of rocks including mudstones and limestones. Note a
negative correlation between a proportion of clays and carbonates implying, that those are the main
components building the shale framewOrK. ...........coooiiiiiiii e 150

Figure 4. 8. Histogram of Total Organic Carbon of the Wealden Shale. Measurements were taken
every 1 m from each available core and thus represent a true distribution of TOC. ............ccceeeneee. 152

Figure 4. 9. Kerogen type and depositional setting of the Wealden Shale from wells a) A, Ro 0.5-
0.7%), b) B, R0 1.6-2.4% and €) C, RO 1.5-1.9%0.....ccueiuiiiiiiiieiieeie e s 153

Figure 4. 10. Oil immersion micrographs of Wealden Shale. Horizontal scale bars denote 50 pm.
Dashed lines indicate direction of a bedding plane. a) (A10305): Fluorescence mode micrograph of
sublittoral lake, clay-rich siliciclastic shale of measured maturity Ro 0.7%. Strong fluorescence of the
matrix is due to the presence of the algal material. b) Normal incident light micrograph of the same
field as a). Structured algal liptinite is common, forming well-preserved bodies of Botryococcus (Bo).
c) (B10458): Fluorescence mode micrograph of marine influenced deep lacustrine, clay-rich
siliciclastic mudstone of measured maturity Ro 1.9%. The bituminous groundmass exhibits no
fluorescence and no structured algal liptinite is present. d) Normal incident light micrograph of the
same field as c). Solid bitumen (Bs) is present, concentrating in microfractures. e) (C10401):
Fluorescence mode micrograph of deep lacustrine, clay-rich siliciclastic mudstone of measured
maturity Ro 1.9%. The bituminous groundmass exhibits only very weak fluorescence. f) Normal
incident light micrograph of the same field as e). A tight network of irregularly-shaped solid bitumen
fills the intergranular space within the clay matrix, and concentrates in compaction shadows of
mineral grains. g) (C10388): Normal incident light micrograph of marine influenced lacustrine, clay -
bearing fossiliferous mudstone of measured maturity Ro 1.6%. Solid bitumen phase is highly
concentrated, filling intra- and intergranular space within disseminated fossil fragments. h)
(C10418): Normal incident light micrograph of lake plain, clay-rich siliciclastic mudstone (no
maturity measured). Semifusinite and fusinite constitute principal macerals. Bo — Botryococcus, Bs —
solid bitumen, | —inertinite, Dol — dolomite, Fs —fossil, Py — PYrite.........ccoocvviiiiiiiiiie e 156

Figure 4. 11. Grain density variation in shale of different maturity. a) Histogram of grain density
distribution of Wealden shale from wells A, B and C. Density values exhibit a mode between 2.6-2.8
g/cm®, with higher frequency of lower density samples in the least mature well and larger frequency of
samples exhibiting higher density in the overmature shale. b) At all maturities grain density is



influenced by the mineralogical composition, with a strong positive influence of the pyrite content. c)
Organic content has a negative influence on grain density values. In the most organic rich shale
(TOC > 5%) at any given content of organic carbon, density values of the overmature shale exceed
those measured in the least mature Shale..............ccooiiiiiiii e 158

Figure 4. 12. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal
distribution of pores in the B10482 sample. Pores exhibit non-uniform fractal distribution with pores
> 38 nm (slope -0.9) interpreted as those intersected by the sample surface (surface roughness) and
pores < 38 nm (slope -2.0) interpreted as pores accessed through corresponding throats............... 160

Figure 4. 13. Histogram of porosity distribution in samples from wells A, B and C. a) Total porosity.
D) MErcury iNJECION POFOSITY. .....veeiiiieiiiie ettt e bbb neeeas 161

Figure 4. 14. Grain size distribution for the silt fraction in selected samples from the A well. Samples
A10299 and A10326 show much coarser grains across the full size range. Additionally, along with the
sample A10289 they show significantly denser population in the size <500 NM. .......ccovvvveiiiiineenns 162

Figure 4. 15. Incremental (left column) and cumulative (right column) pore volume density of
selected Wealden samples, wells: a, b) A (Ro 0.5-0.7%), ¢, d) B (Ro 1.6-2.4) and e, f) C (Ro 1.5-1.9%).
The mercury data was cut off at a radius interpreted as a true onset of the mercury intrusion into a
pore network. In the immature and early mature shale, pore throat distributions are predominantly
unimodal with the peak between 10-40 nm. A larger spread of pore throat sizes is characteristic for
mudstones enriched in a shell detritus (A10326) or burrows filling silt fraction (A10278). In the
overmature wells B and C, distribution of pore throat sizes is unimodal with the highest pore volume
density between 10-20 nm. In shales enriched in the shell detritus (C10388, C104260) distribution is
skewed towards higher values (10-20 nm) in comparison to clay-rich mudstones (< 10 nm)............ 163

Figure 4. 16. Cumulative intrusion (squares) and extrusion (triangles) of mercury for selected
Wealden shale samples from wells a) A, ¢) Band e) C. The mercury data were normalized to the true
volume of intrusion after cutting off the pore volume data interpreted as representing surface
roughness. b) A, d) B and f) C shale. Cumulative porosity that is not emptied from mercury during
the imbibition. The curves plot cumulative difference between porosity intruded and emptied during
the intrusion-extrusion experiments at equivalent pressures as % of a rock. Note that in all samples
during the imbibition process the absolute amount of mercury that is not released at the intrusion
PreSSUre INTLIATTY INCIEASES. ... .iiieee i ittt e e e e e e e e e e e e e e s st e e e e e e e s s st ereaaaeeeas 165

Figure 4. 17. Maximum fraction of total porosity trapped by mercury during the imbibition
experiment for selected Wealden shale samples from the A (black squares), B (red circles) and C
(green triangles) wells. The fraction occluded by mercury shows a strong negative relation with the
CONteNt Of OFQANIC CAMDON........uiiiiiii e e e e e s ree s 166

Figure 4. 18. Matrix scatterplot of the early mature well A Wealden Shale samples showing variation
of 10 variables and 3 factors extracted during the factor analysis. Factor 1 correlates positively with
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TOC, HlI, S2 rather than grain density. A negative correlation is observed between Factor 2 and total
porosity, mercury porosity and S3. Factor 3 is inversely correlated with S1 and maximum access
L (0 TU Ry (o g 11T (o1 U] YRR PSP PPPPT 167

Figure 4. 19. Matrix scatterplot of the gas window Wealden Shale samples (well B, C) showing
variation of 10 variables and 4 factors extracted during the factor analysis. Factor 1 correlates
positively with HI, S1 and S2. A good positive correlation is observed between Factor 2 and total
porosity, Hg porosity and S3. Factor 3 correlates positively with grain density rather than TOC.
Factor 4 is inversely correlated with the maximum access radius for mercury and ratio of mercury to
1001 = LI 010 (01511 /APPSR 168

Figure 4. 20. Variation of total porosity as a function of maturity and organic carbon content. a) Well
A (0.5-0.7% Ro). Group 1: fossil-bearing mudstone, shelly bed deposits and carbonate concretions;
Group 2: clay-rich mudstones; Group 3: clay-rich mudstone with fossil debris. b) Wells B and C (Ro
1.6-2.4% and 1.5-1.9% respectively). Group 1: fossil-bearing mudstone, limestone and carbonate
concretions; Group 2: clay-rich mudstone; Group 3: clay-rich and fossil-bearing mudstone deposited
in the lake plain setting; Group 4: carbonaceous mudstone with terrigenous organic matter. For
(012 oYL RS o (= PSSO PPRSSPPRR 170

Figure 4. 21. Variation of porosity not penetrated by mercury during mercury porosimetry as a
function of maturity and organic carbon content. a) Well A (0.5-0.7% Ro). b) Wells B and C (1.5-2.4%
R0). For group description See FIGUIe 4.20. ........cooiiiiiiieiiiiiie et eee e a e 171

Figure 4. 22. 195K CO, isotherms for selected Wealden shale samples, A10305 (Ro 0.7%), B10458
(Ro 1.9%) and C10401 (Ro 1.9%). Samples with a solid symbol were not solvent extracted, while
those marked with a semi-solid symbols were solvent extracted (ext) prior to the analysis. ............. 172

Figure 4. 23. Relationship between the combined content of phyllosilicate minerals and TOC against
195K CO, sorption porosity. Wealden data points refer to samples of maturities 0.7% (green) and 1.9%
(red). The Wealden shale data were plotted against data acquired on Posidonia Shale, referring to
samples of maturities 0.5% (grey) and 1.4% (DIACK)..........cceveieiiiiiiiiiiieie e, 173

Figure 4. 24. Backscattered electron micrographs of mudstone samples polished with BIB. In all
images the bedding plane is horizontal. Sample A10305: a) Organic phase forms pyritized algal
bodies intermixed with less defined organic groundmass. Highly dispersed carbonate phase is
represented by calcitic fossil remains. b) Quartz occurs predominantly as horizontal pods aligned
according to the bedding plane. Sample B10458: ¢) The silt fraction is represented by quartz grains
and diagenetic dolomite. d) Organic phase is aligned horizontally, and is strongly intermixed with the
clay-rich matrix. e) Sample C10401: Diagenetic dolomite is abundant, disseminated in the clay-rich
matrix. f) Organic phase is intermixed with clays and concentrated in compaction shadows of mineral
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Figure 4. 25. FIB-SEM and BIB-SEM micrographs (BSE mode) of an early mature shale sample
A10305. a) Organic pores within an algal cyst (arrows). b) Pore between walls of a partly compacted
algal cyst (arrow). c) Intraparticle pores in a fossil (black arrows); Note intraorganic pores
developed in kerogen lining the fossil interstices (white arrow). d) Intraparticle pores in a
recrystallizaed fossil partly filled with authigenic clays. e) Interparticle pore in a compaction shadow
of a dolomite crystal (black arrow). Note presence of a dissolution pore within adjacent calcite grain
(black arrow). f) Interparticle pores rimming a foraminifera test (black arrow). The overlying mica
group mineral grain contains numerous cleavage associated intraparticle pores (white arrows). g)
Intraorganic pores formed due to dissolution of a calcareous foraminifera test (black arrows).
Interparticle pores between platelets of a phyllosilicate phase are partly filled with calcite cement
(white arrow). A large interparticle pore adjacent to a fossil clast is filled with the bituminous phase.
h) Interparticle pores between folded clay platelets. Pores may represent space between not fully
compacted clay floccules. i) Interparticle pores adjacent to kerogen particles (arrows). Fs- fossil, Cal
— calcite, Dol — dolomite, Py — pyrite, OM — 0rganic Matter. ............cccoviveerieeeiiiie e 176

Figure 4. 26. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale
sample B10458. a) Interconnected spongy organic pores grow into a large pore located the particle
margin. b) Spongy organic pores within an organic grains. ¢) Organic pores interconnect with each
other, and grow into a large pore located at the margin of the organic grain. d) The visible
connections between organic pore bodies may be as small as 4 nm. e) Large pores located at the
margin of an organic particle, and in the compaction shadow of surrounding mineral grains. Organic
pores show a characteristic fibrous internal structure on its walls. f) Interparticle pores located
between clay platelets, in a compaction shadow of a pyrite framboid. Pores have jagged margins
suggesting that they de facto developed in the organic mass that had previosuly filled the pore space.
g) Interparticle pores between folded clays. h) Interparticle pores between clay platelets (left) show
identical internal structure of its walls as organic pores (right). i) Intraparticle pores within a pyrite
framboid. Fs-fossil, Cal — calcite, Dol — dolomite, Py — pyrite, OM — organic matter. ................... 177

Figure 4. 27. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale
sample C10401. a) Discrete, bubble-like and partly interconnected spongy pores within an organic
particle. Note close association of porous and non-porous organic regions. b) Large intraorganic
pores, partly located at the margins of adjacent dolomite crystals. c) Intraorganic (left) and
interparticle pores (right) developed in the organic matter mass located in the compaction shadow of
a calcite grain (bottom). d) Complex organic pore located in a compaction shadow of a dolomite
crystal (left). Note the rough surface of a pore wall. €) Organic pores developed in the vicinity of
dolomite crystals (centre). f) Discrete, spongy and large complex organic pores developed in the
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Figure 4. 29. BIB-SEM images as part of the image mosaics showing distribution of pores. Green
denotes pores that are not directly connected, and red, pores which size is equal to or smaller than
the maximum ‘“real’pore throat size penetrated by mercury (see text). AI10305: a) Mag. 600 x;
Although the groundmass organic matter is not internally porous, pores commonly populate
Bottryococcus bodies. b) Mag. 10,000 x; Inorganic pores rim fossil assemblages and concentrate
around quartz grains, with only a small proportion of much finer pores visible in the organo-clay
matrix. B10458: c¢) Mag. 6,000 x; Pores rim dolomite rhomboids and concentrate in compaction
shadows of mineral grains, often in association with residual organic matter (blue arrows). d) Mag.
10,000 x; Pores visible in the organo-clay matrix are predominantly associated with organic matter
squeezed between horizontally aligned clays and/or grains, and may follow elongation of the organic
particles. C10401: e) Mag. 6,000 x; Pores developed mostly in vicinity of mineral grains disseminated
in the shale matrix, often within accumulated organic matter. f) Mag. 10,000 x; Pores are present
directly in the clay matrix between folded clays (blue arrow), and in accumulated organic matter.
Note that not all organic matter is visibly porous. Fs- fossil, Cal — calcite, Dol — dolomite, Py — pyrite,
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area of investigation covers the size of an estimated Representative Elementary Area. Fully resolved
pores (red circles) are fitted with a linear regression line defined by a slope (D) and a point of
interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate from the
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Figure 4. 31. Distribution of pore sizes, equivalent diameters and aspect ratios of BIB-SEM fully
resolved pores for the three samples: A10305 (0.7% Ro), B10458 (1.9% Ro) and C10401 (1.9% Ro).
Images were captured at the magnification 6,000x (B10458, C10401) and x600 (A10305). a) Fractal
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Chapter 1: Introduction

Background

Mudstones constitute up to 70% of volume of sedimentary basins (Aplin and Macquaker,
2011) and due to their unique properties, they have been a target of detailed research. The
interest in mudstones was driven by their source rock potential (Bohacs et al., 2005; Hill et
al., 2007), their excellent sealing capacities (Neuzil, 1994; Schowalter, 1979; Watts, 1987),
their role as depositional and stratigraphic markers (Macquaker, 1994; Macquaker et al.,
1998; Schieber, 1999) as well as their capacity to provide clues about environmental and
chemical conditions during sediment deposition and diagenesis (Bloch and Hutcheon, 1992;
Hicks et al., 1996; Macquaker, 2014; Sageman et al., 2003; Tribovillard et al., 2006). More
recently, the boom in oil shale and shale gas exploration revived interest in mudstones and
focused on their potential to act as direct reservoirs for oil and gas (Alexander et al., 2011,
Bowker, 2007; Curtis, 2002).

Mudstones constitute a basic component of the shale reservoirs, where they interbed with
carbonate rocks, siltstones, or even sandstones. Therefore, the name “shale” is more in
practical use as it encompasses thick sequences with lithologies deviating from the strict
definition of a mudstone (rocks with > 50% of grains in a size < 0.065 mm), and with a wider
range of grain sizes (including coarser-grained or carbonate-bearing sections). On the other
hand, in the narrower sense, the term shale may imply lithologies which entail dominance of
the silicate (silt and clay) grains as opposed to calcareous mudstones dominated by the
authigenic component (chalks) (Macquaker et al., 1994). As exemplified by the complex
nomenclature of the fine-grained rocks, it is not surprising that the origin and composition of
the fine-grained component of the shale sequences differs both vertically and spatially, and
may include detrital and/or authigenic clays, autochthonous silica, biogenic carbonates and
detrital quartz. Despite the fact that mudstones/shales are usually linked to relatively
quiescent conditions of sediment deposition, typical for overbank delta settings, basinal
depths, distant lobes of turbidites, or even periodically current or wave swept shelf floors,
complex shale sequences may represent a range of depositional environments over the
geological time. This vertical and lateral relationship between shale sequences may be placed
into broad sequence stratigraphic framework to help predict a distribution of rock formations

and accumulations of organic carbon (Bohacs, 2005; Passey et al., 2010).



The physical heterogeneity of shales is reflected by their variable composition, textures
and fabric (Macquaker, 1994). Despite being originally controlled by the depositional
environment, all these feaures can be syngenetically altered or obliterated during post-
depositional diagenesis (Hower et al., 1976; Pedersen and Calvert, 1990). In the first meters
of a sediment column, bacterial activity may result in dissolution and precipitaton of new
minerals, and depending on the specific setting, and the availability of reactive clays, iron,
biogenic silica or organic matter, it may lead to progressive cementation of the pore space
(Coleman, 1985; Curtis, 1995, Macquaker et al., 2014). During the progressive burial and
increase in temperatures and pressures, further mineralogical and textural changes are
induced by transformation of smectite-to-illite (Inoue et al., 1988; Peltonen et al., 2009,
Srodon, 1999) A-opal to CT-opal and to quartz (Hesse, 1990; Williams and Crerar, 1985) as
well as selective dissolution, precipitation and recrystallization of carbonate phases (Fabricius
et al., 2007). Moreover, because of the presence of clay minerals and high initial water
saturation, mudstones are sensitive to compaction, progressively expelling water and thus
reducing their volume (Bjerlykke and Hgeg, 1997; Chaika and Dwvorkin, 2000). It was
established that over the first 3-4 kilometers of burial, total porosities can drop down to 10%
of the rock volume as compared to 90% of original values found in freshly deposited muds
(Loucks et al., 2012).

Due to the vast heterogeneity of mudstones, it has long been of interest to establish the
link between the genesis of mudstones and their physiochemical properties important from
the reservoir standpoint (Bustin et al., 2008; Chalmers and Bustin, 2012; Passey et al., 2010).
For instance, in the shale gas exploration, correct evaluation of shale porosities and its
linkage to bulk lithologies and rock texture characteristics could help predict the potential gas
storage capacity, pin point the best locations of hydrocarbon microreservoirs and estimate
final gas recovery. The establishment of the porosity-lithology link, with other factors
unchanged, may be somewhat hindered by the low-scale heterogeneity of the shale
formations, rapidly changing mineral composition and a grain size. Rine et al. (2010) showed
that for different high maturity shale reservoirs with non-uniform and distinct composition,
porosities change in a manner broadly related to the content of organic carbon but
differentiated from each other by the varied slope of the covariation.

Specific settings for mudstone and shale deposition favour them to be enriched in
organic matter derived directly from the water column and efficiently buried in the sediment
(Algeo and Ingall, 2007; Sageman et al., 2003). Presence of the organic matter significantly

adds to the complexity of the mineral-water system, potentially interacting with the mineral
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phases and affecting effective shale porosities. The effect of adsorption of organic molecules
on mineral grains has been recognized in oil reservoir, where fatty acids and carboxylated
polymers inhibit dissolution of carbonates by forming carbonate surface coatings (Thomas
and Clouse, 1990). Interestingly, such an effect is noticeable at TOC concentrations as low as
0.1 wt.%. Due to different water saturations of source rocks, presence of both kerogen,
bitumen, and oil molecules, narrowness of pore throats and finally different nature of
carbonate grains, it is not certain to what extent and via what mechanisms organic maturation
affects dissolution or recrystallization of carbonates in mature shales (Lewan et al., 1997).

Presence of kerogen has also major implications for the creation of secondary organic
porosity at hydrocarbon generation temperatures (Jarvie et al., 2007; Modica and Lapierre,
2012). Models show that the amount of organic carbon lost during thermal conversion to
petroleum is controlled by a kerogen type and thus the structural composition of the organic
moieties (Romero-Sarmiento et al., 2013). It has been hypothesized that as lacustrine kerogen
has potential to lose higher carbon mass (80%) in comparison to kerogen type 11 (50%) and
111 (20%), the evolving porosity will strongly depend on the shale organofacies (Jarvie, 2012).
Such estimations do not take into account any porosity loss due to compaction or post-
depositional diagenesis, and therefore were shown not to be valid for less mature or
consolidated shales (Jarvie et al., 2007). Interestingly, it was emphasized that the direct
carbon mass-porosity conversion is neither valid for shales in the peak oil window where the
residual oil blocks evolved pores (Curtis et al., 2013; Fishman et al., 2012; Jarvie et al. 2007,
Romero-Sarmiento et al., 2013). Those studies propose that in order to correctly evaluate
shale porosities, the retention of petroleum should be integrated in the organic porosity
prediction models (Modica and Lapierre, 2012).

Despite obvious differences between organic matter and its precursors (aquatic kerogen,
terrestrial macerals, high molecular weight bitumen compounds directly derived from
kerogen and trapped in the shale network, bitumen migrated from adjacent rocks), it is not
certain to what extent organic matter composition controls the evolution of the organic pores,
their morphologies, and most importantly, the timing of the pore growth. Unfortunately, there
are no studies that would directly compare porosities of the marine and lacustrine shales.
Moreover, such direct comparisons may be hindered by varied maturities, organic content
and lithologies of the rocks, obliterating the influence exerted by the organic phase itself. As
far as the terrestrial kerogen is concerned, previous research accentuated its different
behaviour under increasing thermal stress, and thus allowing its visual differentiation, still

with a considerable level of uncertainty, from the organic matter sourced from the marine
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algea (Loucks et al., 2009; Milliken et al., 2013). Such differentiation was facilitated by its
arcuate shapes and a lack of nanometer-scale porosity normally observed in the marine and
lacustrine shales at sufficiently high resolutions.

Variation between porosities of different organic molecules in shales is a subject of
ongoing and extensive research (Bernard et al., 2011, Bernard et al., 2012). The vast amount
of experimental work on porosity in organic mater can be found in the coal and char studies.
Those studies provided evidence for the extensive degasification of coals during artificial
pyrolysis, with the final porosity increase closely linked to a maceral type and the coal rank
(Loison et al., 1989). Hence, it is expected that similar distinction should be valid for
chemically and structurally distinct kerogens as well as products of their thermal
decomposition. The synchrotron-based transmission spectromicroscopy method allowed
direct observation of visually porous (> ~20-50 nm) organic molecules present in shales of
gas window maturities, and identified by Bernard et al. (2011) as oil-spent pyrobitumen. This
finding emphasized the significance of the bitumen retention and its pore-blocking effect and
its positive role for the porosity increase at gas window maturities. The degasification of
bituminous polymer upon thermal cracking is currently the prevailing theory about the origin
of the nanometer organic pores (Bernard et al., 2011; Jarvie et al., 2007, Loucks et al., 2009).
Though, the exact timing of cracking, and the link between the composition of organic
molecules and the morphologies of pores left behind are uncertain. In Woodford shale, Curtis
et al. (2012) found that a change in porosities quantified from the Scanning Electron
Microscope micrographs in wet and gas window shales do not show a linear covariation
either with the content of organic matter or a level of the thermal maturity. Moreover, the
observed pore morphologies differed on a nano- and micrometer scale, spanning from round,
and oval, on the order of nanometers to irregular, up to hundreds of nanometer large (Curtis
et al., 2012). Discrepancies are also observed when comparing total porosity-TOC
covariations between gas mature shales from different formations. Despite a noticeable
positive relationship between the two variables, varied slope of the respective regression lines
suggests varied impact of the organic matter, and/or the inorganic framework on the
evolution of pores. Constraining these relationships is thus a way to help predict porosity
occurrence at different levels of maturity and its relation to the organic matter abundance and
type.

Because the pore sizes of the consolidated mudstones span from a micropore < 2 nm,
through mesopore (2-50 nm) to macropore (> 50 nm) range (Nelson et al., 2009, Chalmers

and Bustin, 2012), their detection will much depend on a specific measuring method
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implemented. In the past studies, while some authors concentrated on quantification of
microporosity using gas sorption and mercury technigques (Bustin et al., 2008; Chalmers et al.,
2012; Chalmers and Bustin, 2007; Kuila and Prasad, 2013; Ross and Bustin, 2009), others
implemented mainly microscopic techniques targeting pores in the order of > 10s nm. The
latter, although limited by the resolution of the microscopic images, proved to bring
important spatial information for the porosity distribution and provided an essential
geological background for the interpretation of the experimentally measures porosities (Curtis
et al., 2011; Curtis et al., 2013; Fishman et al., 2012; Loucks et al., 2009; Loucks et al.,
2012; Milliken et al., 2013; Milner et al., 2010; Schieber, 2011; Slatt and O’Brien, 2011).
Still, only a few studies directly quantified image porosities in a statistically meaningful way
(Klaver et al., 2013; Milliken et al., 2013) and therefore more extensive data is needed to
assess the variability in a distribution of macropores in shales. Finally, mercury porosimetry
was deployed in many studies to quantify open clay porosity and determine a distribution of
pore throat sizes (Hildenbrand and Urai, 2003; Kuila and Prasad, 2013). This technique,
although useful in determining connected porosity held or accessed by pores with a diameter
exceeding 2-5 mm, imposes high uncertainties regarding the magnitude of the compressibility
of the shale framework and the pores (Bergins et al., 2007). Most of the past studies
accentuated that in order to better understand the complexity of the pore systems in shales, a
deployment of a combination of different techniques is essential (Bustin et al., 2008;
Chalmers and Bustin, 2012; Chalmers et al., 2012; Clarkson et al., 2013; Strapoc et al., 2010).

Motivation and thesis structure

In this study we examined a set of shale samples of different maturities and lithologies
originating from two sediment sequences, the Lower Toarcian Posidonia Shale formation,
and the Beriassian German Wealden, both from the Lower Saxony Basin, Germany. Our
main aim was to track the impact of the variation in lithologies, the composition of the
organic macerals, diagenetic alteration, and thermal maturity on shale porosity, and
distribution of pore sizes. Although the main rationale behind such work lies in the growing
demand for the exploration of the shale gas and therefore the need to understand the
evolution of the sub-micrometer and potentially gas containing pores, our results are expected
to contribute largely to more generic knowledge about the kerogen maturation and its thermal
transformation. Inorder to quantify pore characteristics not only in a bulk sample, but also on

a smaller scale, with thorough understanding for a micrometer lithological variation, our



unique approach consists of an integration of the geochemical and petrophysical
measurements with a detailed analysis of the microscopic images.

This work is composed of 3 technical chapters (Chapters 2-4), written in a publication
style. To provide a larger picture, the technical chapters are preceded by the general
Introduction (Chapter 1), and summarized in the Summary and Conclusions chapter (Chapter
5). In the Chapter 2 we examined a set of calcareous, organic-rich, type Il kerogen shale
samples of three different maturities spanning from 0.53% to 1.45% Ro, originating from the
Posidonia Shale formation. Due to little variance in the mineralogical composition between
wells of different maturity, our aim was to track the diagenetic changes within the inorganic
framework, the variability in the organic macerals composition and total porosity change
upon increasing thermal stress. The petrophysical and geochemical investigations were
conducted on core samples with the vertical sampling resolution > 1 m. The analysis of the
microtextures was conducted in the petrographic and scanning electron microscope
micrographs, and was followed by an analysis of the pore systems using highly polished thin
sections.

The Chapter 3 builds on the first chapter, with the main focus placed on the
quantification of porosities of the Posidonia Shale with the mercury porosimetry, gas
adsorption and image analysis. Our main aim was to investigate the change of the porosity
and the pore size distribution as the maturity of the shale changed from the early oil window
to the gas window conditions. With two main lithologies, calcareous shale and marlstone, we
also addressed the impact of a lithological variation, compaction and diagenesis for the
disappearance and reappearance of pores as the maturity progressed. Finally, we tested to
what extent the observed gas window pores are related to processes of the hydrocarbons
cracking.

In the Chapter 4, the petrophysical and geochemical investigations were carried out on
three cores of the German Wealden with predominantly type | kerogen. The bulk
measurements were supplemented by the analysis of microtextures both in the petrographic
and scanning electron microscope micrographs, and were followed by the quantification of
the pores observed in highly polished thin sections. The main aim of our work was to address
the issue of a small scale variation of the lithologically heterogeneous clay- and carbonate-
rich units, and its effect on the porosity evolution in shales of radically different maturity.
Moreover, in the gas window maturity rocks, we paid special attention to development and

connectivity of the organic pores and its relation to the content and type of the organic matter.
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Chapter 2: Microscopic and petrophysical characterization of the
PosidoniaShale —implications for porosity developmentin organic
rich, calcareousshales

Introduction

Mudstones constitute up to 70% of volume of sedimentary basins (Aplin and Macquaker,
2011) and due to their unique properties, they have been a target of detailed research. The
interest in mudstones was driven by their source rock potential (Bohacs et al., 2005; Hill et
al., 2007), their excellent sealing capacities (Neuzil, 1994; Schowalter, 1979; Watts, 1987),
their role as depositional and stratigraphic markers (Macquaker, 1994; Macquaker et al.,
1998; Schieber, 1999) as well as their capacity to record chemical conditions of sedimen
deposition and diagenesis (Bloch and Hutcheon, 1992; Hicks et al., 1996; Macquaker, 2014;
Sageman et al., 2003; Tribovillard et al., 2006). Most recently, the boom in oil shale and
shale gas exploration revived interest in mudstones and focused on their potential to act as
direct reservoirs for oil and gas (Alexander etal., 2011).

Mudstones are extremely heterogeneous and their original composition may vary from
clay-dominated, through silica-rich, to calcareous. Although the original composition of
mudstones is controlled by the depositional environment, their original mineral assemblage
usually changes during diagenesis (Hower et al., 1976; Pedersen and Calvert, 1990). Mineral
dissolution and precipitation may accompany bacterial activity and lead to precipitation of
carbonate phases, apatite or pyrite in the first meters of a sediment column (Curtis, 1995).
Availability or absence of reactive clays is crucial in that matter and influences not only the
alkalinity of the environment (through reaction of HS™ anions with detrital iron), but also
sulphurization of organic matter (most pronounced in settings with limited delivery of
terrigenous material) (Macquaker et al., 2014). The progressive burial leads to numerous
mineral transformations including smectite-to-illite (Inoue et al., 1988; Peltonen et al., 2009,
Srodon, 1999) and opal A to opal CT and quartz (Hesse, 1990; Williams and Crerar, 1985).
The recognition of conditions controlling those diagenetic reactions in shales is crucial to
help predict their properties interesting from the production point of view.

Presence of organic matter in organic-rich shales (Total Organic Content > 2 wt.%)
increases their complexity and modifies their behaviour under increasing temperatures and
pressures. Depending on the kerogen type, thermal decomposition of accumulated organic

matter can significantly reduce Total Organic Content (TOC) of the bulk rock and potentially
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add new porosity (Jarvie et al., 2007). Instead, in shales of maturities equivalent to oil
window a drop in porosities due to bitumen and oil filling is observed (Curtis et al., 2013).
Microscopic observations, although cannot provide direct answers regarding physochemical
evolution of kerogen and bitumen, when coupled with geochemical and petrophysical
measurements, can help understand distribution and heterogeneity of the organic material in
the shale matrix. Such heterogeneity may reflect varied organic precursors, a degree of
kerogen transformation, petroleum migration and expulsion, as well as evolution of residual
material under oil-to-gas cracking conditions.

In this paper we examined a set of calcareous, organic-rich shale samples of three
different maturities spanning from 0.53% to 1.45% Ro, from the Posidonia Shale formation,
Lower Saxony Basin. Due to little variance in mineralogical composition between wells of
different maturity, our aim was to track the evolution of the inorganic framework, the
macerals composition and porosity change upon increasing thermal stress. We also addressed
the issue of small scale heterogeneity on potential for development of organic porosity as
potential sites for storage of gas.

Samples and Methodologies

Posidonia Shale of the Lower Saxony Basin, North Germany is a calcareous fine-grained
rock deposited in the epicontinental sea during the Lower Toarcian second-order sea level
rise (e.g. Littke et al, 1991; Rohl and Schmid-Rohl, 2005). The Lower Toarcian
transgression was a global event that induced worldwide shelf anoxia and produced excellent
source rocks (Bachmann et al., 2008). The vertical heterogeneity of the Posidonia Formation
mudstones is then regarded as being controlled by higher order sea level changes, coupled
with subtle climatic fluctuations (R6hl et al., 2001). Based on macro- and microscopical
observations, the formation is sub-divided into three units: lower marlstone (1), middle
calcareous clay-shale (I1) and upper calcareous clay-shale (1Il) (Figure 2.1b). While
marlstone differs from the overlying shales in higher carbonate contents, units Il and Il are
lithologically similar and were distinguished based on the common occurrence of bivalves in
the middle (I1) shale (Littke, 1991). All three units contain well-preserved Type Il marine
organic matter with minor contribution from terrestrial macerals (Bour et al., 2007; Littke,
1991; Rohl et al., 2001). For this study, samples were taken from the stratigraphically
equivalent sections of three boreholes in the Hils syncline: Wickensen (0.53% R,), Harderode
(0.89% R,) and Haddessen (1.45% R,) (Figure 2.1a). The Hils half-graben forms a part of a
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series of horst and graben structures evolved during the Late Jurassic and Cretaceous tectonic
movements (Bruns et al., 2014; Radke et al., 2001). Partly due to the complex tectonic and
thermal history within the area, the genesis of a distinct maturity gradient across wells in the
Hils area was a subject of dispute. While a source of the heat was often ascribed to a
hypothetical Cretaceous intrusive body, the Vlotho Massif (Schaefer and Littke, 1988), other
studies suggest the maturity gradient is a function of differential burial and high temperature
regime (Mackenzie et al., 1988; Munoz et al., 2007). Recent 3D modelling studies confirmed
that the region experience complex burial and thermal history with differential heat flow
associated with the Mesozoic rifting episodes (Bruns et al., 2014).

26 samples were selected for bulk analyses including Rock-Eval, TOC, grain density and
total porosity (Figure 2.1b). Total Organic Carbon was measured with the LECO carbon
analyzer equipped with a HF-100 Induction Furnace on a carbonate-free aliquot. Standard
Rock-Eval was performed according to Espitalié et al. (1977) using Delsi Rock Eval OSA.
To correct for an oil-in-kerogen peak, 4 shale samples were solvent extracted with a mixture
of dichloromethane (93%) and methanol (7%) and subsequently analysed for its remaining
hydrocarbon potential.

The X-ray diffraction was performed by Macaulay Scientific Consulting Ltd. The bulk
samples were wet ground (in ethanol) in a McCrone mill and spray dried to produce random
powders with the optimum distribution of grains. X-ray powder diffraction (XRPD) patterns
were recorded from 2-75°26 using Cobalt Ka radiation. Quantitative analysis was done by a
normalised full pattern reference intensity ratio (RIR) method. Expanded uncertainty using a
coverage factor of 2, i.e. 95% confidence, is given by +X%%®, where X = concentration in
wt.%, e.g. 30 wt.% £3.3.

Shale grain density was measured on samples dried at 105°C using the “Small
Pycnometer Method” and yielding density values within an error + 0.02 g/cm®. In this method,
3 gofdry powdered shale sample was added to a pre-weighed pycnometer of a nominal value
50 mL, immersed in the 10 mL of surfactant (5% Teepol) and gently shaken. The slurry was
outgassed in a dessicator overnight, filled with the outgassed deionized water up to the total
volume of the pycnometer and weighed at temperature 25°C. The grain density was
calculated from the Equation 1:

éw (m2—-m1l)
(m4—m1)—(m3-m2)

6g = (Equation 1)
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where 5g (g/cm®) is the shale grain density, Sw (g/cm?®) is the density of water at 25°C, ml (g)
is the pycnometer mass, m2 (g) is the mass of the pycnometer plus dry sample, m3 (g) is the
mass of the pycnometer plus dry sample plus water, and m4 (g) is the mass of the pycnometer
plus water.

Total shale porosity was determined from the measured grain density and bulk density

when immersed in mercury atthe pressure 25 psia using the Equation 2:

p=1-— 39 (Equation 2)

where p (%) is the calculated shale total porosity, b (g/cm?) is the measured bulk density at
25 psia, and 8g (g/cm’) is the predetermined grain density.

For microscopic studies, 20 highly-polished thin sections and 3 resin covered blocks, cut
perpendicular to bedding, were prepared. Thin sections were first scanned using an Epson
Perfection V500 scanner with a 9600 dpi resolution. Subsequently, each thin section was
examined with a Nikon Eclipse LV100 POL transmitted light petrographic microscope with
an attached Nikon Digital Sight DS-U3 camera. Polished blocks were examined in reflected
and UV light using an Oil Zeiss Immersol 518N oil immersion microscope. The fluorescence
of organic matter was determined qualitatively using UV light with an HXP 120C accessory.

Carbon-coated polished thin sections were examined using a Hitachi SU-70 High
Resolution Analytical SEM, equipped with an Oxford Instrument Energy Dispersive X-ray
microanalysis system (INCA Energy 700). Samples were viewed in Back Scattered Electron
(BSE) mode using the YAG detector with the following conditions: 15-8 mm WD, 15keV
accelerating voltage, 2-4 nA filament current. To reduce the shale topography, prior to the
SEM imaging, selected samples were polished with an argon broad ion beam (BIB) in the
GATAN 691 Precision lon Polishing System (PIPS™). In order to fit into a chamber, the
sample size was reduced to a 3 mm in diameter disc with GATAN 601 Ultrasound Disc
Cutter using water emulsion of boron nitrate powder as a saw. Such prepared discs were
inserted into the PIPS™ chamber and bombarded with Ar ions in a vacuum (107 Pa) for 6
hours (angle 3°, 5kV, 1-20 pA). The images of shale porosity were captures in Secondary
Electron (SE) mode using through-the- lens detector (TLD) at magnification 6000x (pixel size
15 nm). The total image porosity was quantified on image mosaics covering a total area 6000
um’ with the point counting method (10000 counts) in the image analysis software
JMicroVision 1.2.7. (Roduit, 2008).
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Figure 2. 1. Location of Hils syncline, Northern Germany and three boreholes: WIC (R, 0.53%),
HAR (0.89%) and HAD (1.45%) (after Mann and Miiller (1988) and Horsfield et al. (2010)). b)
Lithological profile of the Posidonia Shale from the three boreholes with a marlstone unit (1) and two
calcareousshale units (I1 and 111); red dots represent sample locations (after Littke etal. (1991)).
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For selected areas, an Energy Dispersive X-ray (EDX) mode was implemented. With this
technique maps of elements distributions are generated due to emission of characteristic x-
rays by atoms as a result of the de-excitation of core electron holes created by a high energy
electron beam. Microanalysis settings for the EDX collection were set at 300 um dwell time,
15kV accelerating voltage and 4 nA filament current.

For high resolution imaging, three samples were milled, polished and imaged with
Gallium (Ga) focused ion beam (FIB) in the FEI Helios Nanolab 600 with FEG source. The
trenches 15 pm x 5 pum were cut at 1-30kV accelerating voltage and 3.3nA beam current.
Samples were viewed in BSE Immersion or secondary electron mode with the following
conditions: 4.1 mm WD, 1.5-3.0 kV accelerating voltage, 2-4 nA beam current, using
through-the-lens detector for better spatial resolution. The images were captured at

magnifications between 10,000-200,000x, corresponding to pixel sizes 25-1.2 nm.

Results

Shale composition and texture

Low maturity Posidonia shale from the Wickensen (WIC) borehole (Ro = 0.53%) is a
medium grey, fine-grained calcareous mudstone, showing variation both on a formation as
well as a lamina scale (Figure 2.1, Figure 2.2). The XRD bulk mineralogy (Table 2.1) shows
equal proportion (30-40 wt.%) of both calcite and clays in the upper shale units, but higher
content of calcite to clays in the lower marlstone (~50% and ~25% respectively). The calcite
and phyllosilicate abundance are inversely correlated, indicating a mutually exclusive
mechanism of their deposition. The size of the visible calcareous fraction varies across the
core (Figure 2.2), and is much coarser in the lowest marlstone unit (up to 0.6 mm) in
comparison to both shale-rich units (<0.1-0.3 mm) (Figure 2.3). While the finest particles
constituting the shale matrix cannot be resolved with the standard petrographic methods, the
microcrystalline nature of the microscopically distinguishable carbonate aggregates suggest
that they are compacted faecal pellets (Bour et al., 2007; Littke et al., 1987; Rohl et al., 2001;
Rohl and Schmid-Rdhl, 2005; Schieber, 1999). Their distribution varies from sparse,
occasionally aligned into discontinuous layers or horizons in the calcareous shale, to densely

packed in the marlstone unit.
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Figure 2. 2. Scans of polished thin sections of Posidonia Shale. The bedding plane is horizontal.
Vertical arrows denote thickness of distinguishable lamina. a) (WIC 7129): Well visible horizontal
lamination marked by the alternation of more calcite- and clay-rich horizons. The thickness of the
individual lamina reaches up to 3 mm. b) (WIC 7153): Well pronounced lenticular lamination with
large faecal pellets up to 0.6 mm. Faecal-pellet diluted horizons alternate with horizons with higher
proportion of background clay sedimentation (darker lamina). c) (HAD 7101): Alternating dark and
light lamina due to varied content of the carbonate and clay component are still visible in this higher
maturity shale. The original lamination is visibly modified by the recrystallization of the matrix
components. d) (HAD 7119): The original lamination is obliterated in this higher maturity marlstone
sample. D — dark clay-rich lamina, L — light carbonate-rich lamina, FP —faecal pellet, T — terrestrial
organic matter.
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Table 2. 1. The TOC-normalized XRD mineralogical composition of the Posidonia shale in wt.% for
WIC (Ro 0.53%), HAR (Ro 0.89%) and HAD (Ro 1.45%). The TOC content (in wt.%) was determined
with LECO.

0|28 LY o5 9B 828|128 |%2 28 2828|293

=0 |25 20220 felEe T | $ofg fefn | £
Quartz 124 15.1| 118 140 | 7.8| 146 16.4| 12.2| 10.8| 11.1| 148 141 | 7.6
Plagioclase 10| 02| 09| 06| 13| 19| 20| 26| 37| 24| 28| 32| 45
K-Feldspar 07| 00| 00| 00| 00| O5| 04| 04| 05| 05| 01| 07| 0.6
Calcite 324 | 358| 41.5]| 38.1 | 50.0 | 40.1| 39.5| 28.7| 42.2| 495| 36.8| 285 | 46.3
Dolomite 03| 00| 03| 02| 05| 06| 10| 60| 20| 06| 17| 37| 25
Siderite/
Ankerite 04| 00| 08| 18| 05| 02| 03] 03| 03| 01| 08| 04| 0.6
Aragonite na na| 1.2 na| 12 na na na na na| 0.6 na| 14
Pyrite 48| 45| 35| 37| 49| 52| 48| 86| 52| 69| 46| 66| 42
Marcasite 0.7 na na na na|f 06| 02| 09| 1.2 na na| 0.2 na
Anatase 03[ 01 na| 0.1 na| 03] 02| 02| 03] 0.2 na| 04 na
Muscovite 23| 22| 00| 12| 01| 29| 28| 35| 30| 24| 12| 44| 00
Mite +1/S 2171 220] 200 25.4 | 175 170 189 24.7| 18.3| 13.3[ 22.1 | 23.5| 18.1
Kaolinite 104 | 60| 45| 71| 20| 82| 68| 62| 40| 61| 36| 81| 10
Dickite na na 1.1 na 0.9 na na na na na 1.2 na{ 0.0
Chlorite na| 04| 18| 02| 16 na na na na| 00| 0.6 na| 25
Gypsium na| 03| 20| 04| 22 na na na na| 04| 17 na| 35
Halite na| 0.1 na 0 na na na na na| 0.1 na na na
TOC 126 | 13.3] 109 73] 97] 79| 68| 58] 87| 64| 74| 64| 7.2
Total 100 | 100| 100| 100| 100| 100 | 100| 100| 2100| 100 | 100 100 | 100

Within all units the shale matrix is arranged into sub-centimetre light and dark laminae,

reflecting differences in the proportion of carbonate and clay components (Figure 2.2). This
sub-centimetre lamination is most pronounced in the upper shale unit, with a typical thickness
of single lamina up to 3 mm (Figure 2.2a, Figure 2.3a). In both the lower calcareous shale
(Figure 2.3b) and marlstone horizons (Figure 2.3c, d) the sub-centimetric lamination is less
pronounced. In the marlstone unit, horizontal lamination is partly imparted by the abundant
faecal pellets (Figure 2.2b, Figure 2.3c, d). Here, due to the large size of individual pellets
(exceeding 0.5 mm), lenticular lamination is common (Figure 2.2b, Figure 2.3d) and
convoluted lamination occurs sporadically. In all units, contacts between laminae are parallel
and vary between sharp to gradual (Figure 2.2a, b; Figure 2.3). The regular character of the
lamination suggests that it is primary, reflecting changes in the supply of the clastic and
biogenic components. Very sporadically, the laminae boundaries are marked by an erosional

contact or presence of a thin layer of silt carbonates or quartz (Figure 2.3a, b).
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Figure 2. 3. Plane-polarized-light optical micrographs of Posidonia Shale Formation samples. a)
(WIC 7129): Fine microlamination marked by varied abundance of matrix calcite. Dark unit (centre)
is relatively enriched in a clay component and impoverished in a calcite component. No visible faecal
pellets present at this horizon. A single quartz layer can be observed at the top. Flattened algal bodies
constitute well oriented components in the fabric (green arrow). b) (WIC 7145): A layer of silt-sized
carbonates separating two lamina. Horizontal faecal pellets (red arrow) and flattened algal cysts
(green arrow) show signs of compaction. The shale below the silt layer has larger accumulation of
faecal pellets and is lighter in plain light c) (WIC 7151): An example of lenticular microlamination in
a clay- and organic matter-rich matrix. The bright horizontal lenses are composed of well-defined
faecal pellets. Flat organic-rich clay aggregates marked with a green arrow. d) (WIC 7153): Well-
developed lenticular lamination. The top half contains faecal pellets up to 0.5 nm, forming a
distinguishable horizon in a sample. The bottom half contains faecal pellets of a smaller size with a
greater proportion of the clay and organic matter in the matrix.

Most of the organic matter remains unresolved in the petrographic sections. However,
darker colour of the calcite-depleted laminae may imply relatively higher content of
disseminated organic matter in the clayish horizons. Resolved organic matter is present both
as flat, up to 0.3 mm long, organo-clay aggretates (Figure 2.3c) and as highly compacted,
discrete cysts (Figure 2.3a). Large terrestrial organic particles (up to 500 pum) are scarce, but

relatively more common in the marlstone unit (Figure 2.2Db).
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Figure 2. 4. Plane-polarized-light optical micrographs of Posidonia Shale Formation samples. a)
(HAR 7038): The visible lamination is due to presence of diagenetic layers composed of quartz and
authigenic pyrite. An uneven surface below the bottom silt layer may be erosive or diagenetic in
origin. b) (HAR 7046): The original lamination is mostly obliterated. A silt-sized quartz grain layer of
unknown origin visible in the middle. ¢) (HAR 7060): Sub- and euhedral carbonate crystals (red
arrow) are widely disseminated in the shale matrix. Some parts of the shale are cemented. Green
arrow denotes an authigenic pyrite nodule. d) (HAR 7070): Recrystallized carbonates are aligned in a
single layer.

Moving towards higher maturities (Ro > 0.9%), we observed a slight change in the shale
composition and fabric. While the bulk clay and carbonate content do not differ from those
encountered in the immature section, there is a relative increase in the proportion of dolomite
to calcite, irrespective of the unit (Table 2.1). This, along with a higher content of Na-rich
plagioclase, suggests that diagenetic processes were active at oil window maturities. The
effect of these processes can be seen in the thin section scale. In both Harderode and
Haddessen the primary sub-centimetre lamination is modified (Figure 2.2c) or obliterated
(Figure 2.2d) due to recrystallization of the matrix calcite (Figure 2.4, 2.5). The authigenic
carbonate is common, reaching up to 0.05-0.1 mm, and is usually present as oval pelloids
(Figure 2.4b, 2.4d, 2.5b, 2.5c). Some layers are more affected by diagenetic recrystallization

(Figure 2.4a) and may reflect differences in the original composition, e.g. higher calcite or
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quartz content. Consistently with the observations from the low maturity well, faecal pellets
are more abundant in the marlstone unit (Figure 2.5d).

At all maturities, macrofossils were rarely observed except for single occurrences of

bivalves, calcareous shells and fish-bone fragments.

- -’ ¢

Figure 2. 5. Plane-polarized-light optical micrographs of Posidonia Shale Formation samples. a)
(HAD 7083): Small-scale heterogeneity is imparted by the presence of flattened and oval faecal
pellets (red arrows). The unit at the top has more silty material (carbonates and quartz), and more
pyrite. b) (HAD 7101): Diagenetic carbonates are found in layers, in an otherwise recrystallized
shale matrix. c¢) (HAD 7110): Large faecal pellets (red arrow) coexist with discrete carbonate
crystals and carbonate pelloids. d) (HAD 7119): Shale matrix is strongly recrystallized with a large
volume occupied by faecal pellets (red arrow) and cements.
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Small-scale shale heterogeneity in the SEM micrographs

High-resolution BSEM micrographs show that most of the carbonate fraction in the early
mature Wickensen samples is of biogenic origin, and was deposited as faecal pellets (Figure
2.6b, d). Nannofossils, mostly coccoliths and schizospheres, form debris dispersed in the
shale matrix or concentrated in microlayers or ellipsoidal aggregates (Figure 2.6¢). Although
individual particles are often mechanically broken (Figure 2.6b), some samples still contain a
high proportion of less disarticulated material. The size of nannofossil aggregates varies from
~10 pm (Figure 2.6b), up to 100-200 pm in the calcareous shale units to over 300 pm in the
marlstone samples. In all units, microlamination is typical, but its pattern is different in the
sub-centimetre light and dark laminae. While in the first the nannofossil material tends to
form continuous, <100 um thick layers (Figure 2.6a), in the dark laminae isolated faecal
pellet islands surrounded by the clay-rich matrix are common (Figure 2.6b). The biogenic
fraction shows signs of diagenesis, but its intensity is different in the marlstone and
calcareous shale units. In the marlstone unit (Figure 2.6d) calcite redistribution was more
prominent, and involved precipitation of the calcite cement in intrafossil porosity and
recrystallization of the accumulated coccoliths and schizospheres. The advanced
recrystallization is reflected by a nearly equant shape of some of the calcite particles. In the
two more clay-rich Posidonia units, carbonate cement is present, but the intensity of the
calcite redistribution processes was much smaller. Still, we observed syntaxial overgrowths
on single biogenic fragments, signs of recrystallization and cementation within biogenic
aggregates, as well as the presence of small microcarbs of unknown origin infilling porosity.
Overall, the calcite redistribution was stronger in the sub-centimetre, light laminae, with more
concentrated nannofossil material, and much weaker in the clay-rich zones with more

dispersed biogenic fragments.
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Figure 2. 6. Backscattered electron micrographs. The bedding plane in all images is horizontal. a)
(WIC 7129): Microlaminated calcareous shale (light lamina) with faecal pellet rich layers (red
arrow) alternating with clay material (green arrow). Visible organic matter is mostly associated with
the last but may also fill cavities within fossil fragments. Silt-sized quartz and pyrite are common,
widely disseminated in the matrix. b) (WIC 7129): Details of the nannofossil enrichment in a dark
lamina of the calcareous shale. Biogenic calcite is surrounded by clays. Coccoliths are mostly broken,
some show signs of diagenetic recrystallization. ¢) (WIC 7155): Recrystallized nannofossil-rich
pellets in a marlstone sample. The silt-size components include quartz, pyrite and organic matter.
Clay laminae are volumetrically less abundant than in the calcareous shale. d) (WIC 7155): Strongly
recrystallized coccoliths as a product of intensive diagenesis of biogenic calcite in a marlstone
sample. €) (HAR 7046): Calcareous shale of at peak oil window maturity. The nannofossil rich matrix
is visibly recrystallized. Authigenic cement present as dolomite and calcite crystals with uniform
crystal lattice, as well as newly precipitated kaolinite. Calcite cement precipitated in an algal cyst
locally prevented the shale from compaction. f) (HAR 7046): A lamina of quartz associated with
authigenic minerals. Quartz grains are strongly recrystallized, with the intersticesfilled by authigenic
pyrite and kaolinite.
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Figure 2. 7. Backscattered electron micrographs. The bedding plane in all images is horizontal
except for image f). a) (HAR 7046): Calcareous shale with recrystallized carbonate matrix. The
biogenic material in fecal pellets shows signs of both advanced recrystallization and local cement
precipitation. Algal bodies remain mostly collapsed or filled by carbonate cement (bottom right). b)
(HAR 7060): Calcite and pyrite cement (top) may replace significant portion of original shale fabric.
c¢) (HAD 7083): Carbonate-rich shale with cement precipitated within coccolith canals. Most of the
carbonate material in the matrix is recrystallized and dolomite cement is common. d) (HAD 7083):
Authigenic pyrite may form small euhedra, oval framboids or directly replace biogenic calcite. The
recrystallization of biogenic calcite led to significant fusing of calcite crystals. Small authigenic
calcite (microcarbs) is closely admixed with organic matter. e) (HAD 7115): Well visible
microlamination with alternating clay- and calcite-rich lamina. Calcite cement at the bottom is either
filling a fracture or cementing a faecal pellet Biogenic fragments in the centre present strong
syntaxial overgrowths acquiring an equant crystal shape. New dolomite phases are cementing the
original fabric. f) (HAD 7115): Large calcite cementation zone is replacing the original shale fabric.
Authigenic kaolinite is filling centre of the calcite cementation zone, possibly evolved due to
dissolution of the grain framework. Bedding plane is marked with a dash line.
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Redistribution of the original shale components and precipitation of new authigenic
phases was more advanced in samples of maturity 0.9% Ro and higher. In both HAR and
HAD, calcite cement filling coccolith canals is ubiquitous (Figure 2.7c). All biogenic
fragments present syntaxial overgrowths (Figure 2.7c¢), and the fusing due to recrystallization
of single crystals is common (Figure 2.7a). The sub- and euhedral crystals of authigenic
calcite often preserve uniform crystal lattice and reach a size up to tens of microns (Figure
2.7e). Occasionally, calcite cement is filling algal cysts (Figure 2.6e), preventing them from
mechanical compaction. Some zones are fully cemented, and their size can reach up to 100
pm in length in HAR (Figure 2.7b) and 1000 pum in HAD (Figure 2.7f). The authigenic,
fabric replacement dolomite is common, and can be observed either as small discrete
assemblages, froma few pm up to 20-40 pm in size (Figure 2.7d), or large cemented zones
up to 100 microns in length.

Unlike carbonates, the composition of the clay fraction does not vary between maturities.
Detrital clays are K enriched at all maturities. Authigenic kaolinite is present and usually fills
algal cysts, cements cavities in fossil canals, or occludes pores developed due to dissolution
of the framework (Figure 2.6e, 2.7f). The detrital silt fraction is dominated by quartz, which
similarly to clays, is more abundant in the shale-rich units. It forms anhedral, rounded to
subangular grains of a size varying from under 1 pm up to 20 pm (Figure 2.7a). Occasionally,
recrystallized quartz forms part of diagenetically changed layers in samples of higher
maturities (Figure 2.6f). Finally, authigenic pyrite is present at all maturities, forming small
euhedra (Figure 2.7d), oval framboids (Figure 2.7f), nodules (Figure 2.4c), or directly
replacing biogenic calcite (Figure 2.7b, 2.7d).

Posidonia shale shows signs of physical compaction, reflected by the horizontal
arrangement of its components (Figure 2.8). The horizontal flattening visibly affected algal
cysts, clay aggregates, and faecal pellets. The collapse of the shale structure can be seen
adjacent to rigid shale components associated with compaction shadows. The shortening of
the matrix in the vertical direction visibly progressed between 0-5-0.9% Ro, often related to
the collapse of algal cysts (Figure 2.7a).
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Figure 2. 8. A mix of X-ray maps displaying well-defined microlamination of shale components at all
maturities (@) WIC 7129, b) HAR 7060, c) HAD 7110). The microlamination is marked by the
alternating pattern of calcite- and clay lamina, and in the lower maturity samples, also organic wisps.
The bedding plane in all images is horizontal.

Change of organic matter upon maturation

Posidonia Shale is an organic-rich rock with the TOC variability controlled by the
mineral composition (e.g. carbonates more strongly dilute OM than clays) as well as the
degree of the thermal maturation (Table 2.2). In the least mature shale at 0.53% R, (WIC)
TOC varies between ~7-15 wt.% (mean 10 wt.%), and gradually decreases to an average ~7%
in the peak oil window (HAR 0.89% R,) and down to ~6% in the gas window (HAD 1.45%
R,). RockEval data confirms the maturation pathway typical for the Type Il marine kerogen.
We also observed a consistent drop in both S1 and S2 yields, resulting in a decrease in Hl
from ~650 to ~60 mg/gTOC. A significant drop in yield, from 10 to 1 mg/g, was observed for
the amount of organic matter pyrolizable under standard RockEval conditions, but extracted
with organic solvents (S2;). For all samples, S2, is consistently higher than RockEval
measured free bitumen S1, significantly reducing the yield of the pyrolizable organic matter
S2;, of the solvent extracted shale (Table 2.3). Calculated oil saturation indices vary from 105
mg/gTOC for the early oil window sample, 66 and 102 for the two peak oil window samples
and 27 mg/gTOC for the gas window sample.
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Table 2. 2. Leco, Rock-Eval, grain density and total porosity results for selected Posidonia samples
fromwells WIC (Ro 0.53%), HAR (Ro 0.89%) and HAD (Ro 1.45%).

TOC S1 S? HI T rax Grain Total
Sample density | porosity
WIC 7129 12.59 3.02 90.25 717 427 2.254 0.098
WIC 7133 8.71 2.57 54.90 630 434 2.392 0.128
WIC 7135 13.27 4.62 84.63 638 427 2.249 0.101
WIC 7137 10.25 3.18 68.10 665 427 2.343 0.106
WIC 7139 9.36 2.81 64.95 694 428 2.375 0.135
WIC 7142 10.43 3.52 72.37 694 426 2.346 0.122
WIC 7145 10.92 4.18 72.03 660 425 2.331 0.129
WIC 7147 7.28 2.26 47.76 656 434 2.458 0.114
WIC 7151 14.75 5.85 89.61 608 429 2.236 0.105
WIC 7153 7.34 2.45 48.37 659 431 2.489 0.139
WIC 7155 9.67 3.87 69.41 718 428 2.361 0.126
HAR 7038 7.905 3.29 30.17 382 449 2.493 0.031
HAR 7046 6.75 2.93 26.03 386 450 2.526 0.046
HAR 7060 5.78 1.47 19.72 341 447 2.592 0.045
HAR 7070 8.71 2.26 31.27 359 449 2.463 0.035
HAD 7083 7.35 0.75 4.10 56 465 2.589 0.137
HAD 7090 7.41 0.94 4.16 56 463 2.572 0.114
HAD 7094 521 0.845 3.52 68 459 2.608 0.121
HAD 7097 5.40 0.75 3.15 58 458 2.609 0.119
HAD 7099 6.51 0.98 3.86 59 463 2.576 0.106
HAD 7101 5.88 0.92 3.1 53 457 2.624 0.118
HAD 7104 5.04 0.72 3.385 67 459 2.620 0.116
HAD 7105 5.85 0.77 3.28 56 461 2.621 0.112
HAD 7110 6.36 1.07 3.79 60 462 2.600 0.094
HAD 7115 6.49 112 3.80 59 460 2.614 0.093
HAD 7119 7.15 1.23 3.16 44 458 2.607 0.115

Table 2. 3. Rock-Eval evaluation after solvent extraction for four Posidonia samples, wells WIC

(0.53% R,), HAR (0.89% R.,) and HAD (1.45% R,).

$23 S1+ S2a s2b _OiI saturation Grair_l Total _ E_stimated
Sample / (ma/9) % / index density | porosity | bitumen

(mg/g) Toc | (M9/9) (mg/gTOC) (glem®) | (%) content (%)
WIC 7129 10.4 13.20 | 10.5 | 79.89 104.8 2.236 na na
HAR 7060 4.5 5.89 10.2 15.25 101.9 2.682 7.8 2.8
HAR 7070 35 571 6.6 27.79 65.6 2.533 6.3 34
HAD 7110 0.7 1.74 2.7 3.05 27.4 2.618 10.1 0.7
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Figure 2. 9. Oil immersion (left) and reflected light (right) micrographs. Horizontal scale bar denotes
50 um. Dashed line indicates direction of a bedding plane. a, b) (WIC 7129): Wisps and oval bodies
of algal cysts (Ar Tasmanales, A, Leiosphaeridales) constitute the most prominent organic component.
Other macerals include: unidentified alginates (A), bituminite (B), vitrinite (V), inertinite (I). Strong
fluorescence of the matrix is due to the presence of the matrix bituminite. The contrast in this
micrograph has been subdued due to strong yellow fluorescence. ¢ ,d) (HAR 7060): Algal bodies are
mostly collapsed (A.). Matrix bituminite shows much weaker fluorescence. Solid bitumen (Bs) is
present in the matrix, concentrating in the fossiliferous zones. e, f) (HAD 7110): No alginate is
present and the matrix is only marginally fluorescent. Solid bitumen (Bs) forms a dense network in
the shale matrix and within recrystallized fossiliferous units.
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The macerals found in shales of different maturities show gradual change in type,
volume and colour. At Ro = 0.53%, structured algal liptinite (e.g. Tasmanales,
Leiosphaeridales) is common, forming well-preserved laminae or thick bodies (Figure 2.9a,
b), and co-existing with less pronounced lamellar bituminite. The shale matrix is strongly
fluorescing, composed of the bituminous-mineral groundmass, with its organic component,
the so-called matrix bituminite, representing a non-structured degradation product of marine
phytoplankton and zooplankton (Tao et al., 2012), forming the most abundant organic
component of the shale. In low maturity Posidonia, the bituminous groundmass is primarily
associated with clays, but may also fill the interstices within fossils (Figure 2.7d). Terrestrial
macerals, including vitrinite and inertinite, are dispersed and are present in low abundances.
Both structured liptinite and terrestrial macerals show presence of sulphur typically
incorporated into organic structure as a by-product of bacterial sulfate reduction processes
taking place in anoxic waters under iron-limited conditions (Kenig et al., 2004).

Figure 2. 10. Secondary Electron micrographs of BIB polished samples after solvent extraction. a)
(HAR 7060): Non-extractable organic matter (dark) in an oil window sample fills up spaces between
calcite crystals (black arrows) in a fossiliferous domain. b) (HAD 7110): Non-extractable organic
matter (dark) in a gas window sample fills the space between pyrite crystallites (light grey) in a pyrite
framboid. Note very fine pores (< 100 um) within the OM.

At the peak oil window maturity, structured algal liptinite is volumetrically less abundant
with only weak brownish fluorescence (Figure 2.9¢). The bodies of Tasmanales are collapsed,
or locally filled with diagenetic carbonates (Figure 2.6e). The bituminous groundmass is
much less fluorescent and instead, a dense network of non-solvent extractable, solid bitumen
is filling the intergranular space (Figure 2.9d, 2.10a). The increased concentration of solid

bitumen within faecal pellets is a strong contrast to typical organo-clay associations observed
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at lower maturity. Solid bitumen can also be found within microfractures, often in the
association with diagenetic carbonates.

At the gas window maturity, the bituminous groundmass exhibits only very weak
fluorescence and no structured algal liptinite is present (Figure 2.9¢e). A tight network of
irregularly-shaped, non-extractable, solid bitumen is a dominant feature (Figure 2.9f, Figure
2.10b). The bitumen phase homogeneously fills in a tight clay-carbonate matrix and

microfractures.

Characterization of shale porosity

Total Porosity

The average grain density of the Posidonia mudstone increases gradually as a function of
maturity from ~2.3 g/lcm® at 0.53% Ry, to ~2.5 at 0.89% R, and ~2.6 at 1.45% R, (Table 2.2).
When accounted for this grain density change (see Equation 2), measured total porosities
show a non-linear trend with increasing maturity of the shale (Table 2.2 and Figure 2.11). At
0.53% R, porosities vary between 10-14% and, despite an observed decrease in TOC, decline
to 2.5-4.5% in the peak oil window (0.89% R,). In contrast, at gas window maturities, with
further reduction of the carbon content, a rise in total porosity is observed. Porosities oscillate
here between 9-14% reaching values similar to those at 0.53% R,. Due to a small range in
TOC values at any single maturity, porosities are not directly related to TOC, and only at the
early oil window maturity do porosities and organic content show a weak negative
covariation (Figure 2.11). For both peak oil window and gas window samples, the porosity

values scatter over the measured range of TOC with no apparent trend.
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Figure 2. 11. Total porosity asa function of maturity and organic carbon content.

33



2.7

2.6

WIC 7129
WIC 7129
HAR 7060
HAR 7060
HAR 7070
HAR 7070
HAD 7110
2.3+ HAD 7110

2.5

R e e

2.4 1

Grain density (g/cmg)

2.2 T T T
0 1 2 3

Borehole

Figure 2. 12. Grain density change with maturation as measured on “pre-extracted ” (squares) and
“post-extracted ” (circles) shale. Solvent extraction significantly increased density of the peak oil
window maturity shale (HAR 7060 and HAR 7070, 0.89% Ro) with little change in the early oil
window (WIC 7129, 0.53% Ro) and gas window (HAD 7110, 1.45% Ro).

Upon extraction of soluble bitumen, both grain densities and total porosities of the shale
changed. The most significant increase in the grain density was measured for the peak oil
window sample, with only little increase in the gas window shale and a slight decrease in the
early mature shale, both within the method error (Table 2.3 and Figure 2.12). On the basis of
a change in the grain density of a bulk shale “pre-“ and “after extraction” we estimated the
amount of the extractable bitumen and thus the “minus-soluble bitumen” total porosity for the
three samples of medium (HAR 7060, 7070) and high maturity (HAD 7110). Our calculation
assumed that the extractable bitumen occludes porosity, and therefore its amount is
equivalent to the fraction of porosity additionally available after this bitumen bitumen was
removed from the sample. The results show that the amount of the extractable bitumen
present in samples decreases from 2.8% in the marlstone and 3.4% in the calcareous shale at
the peak oil window maturities to 0.68% (calcareous shale) in the gas window (Table 2.3),
accounting for oil saturations ca. 35%, 54% and 7% correspondingly. The estimated total
porosities after solvent extraction are higher than those measured in the as-received shale
(Table 2.2), amounting to 6.3-7.8% and 10.1% in the peak oil window and gas window

samples respectively (Table 2.3).
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SEM observation of Meso- and Macroporosity

Porosity point counted from BIB images does not show significant difference between
samples of different maturity, amounting to 1.3% (light lamina) in the Wickensen sample,
and 1.1% and 1.5% in the Harderode and Haddessen samples respectively (Figure 2.13a).
Due to the limited image resolution (pixel size equals 15 nm) almost all point-counted pores
lie within the macropore size range (> 50 nm). Under such conditions, the mesoporosity (2-
50 nm) stays greatly underestimated or, along with the microporosity (< 2 nm), unresolved.
Consequently, the point counted image porosity is only 14-25% of the experimentally
measured total porosity, with the highest fraction of resolved porosity found in the oil

window shale (Figure 2.13b).
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Figure 2. 13. Point counted image porosity in % (a) and as a fraction of total porosity (b).

Pores were classified using the general classification of Loucks et al. (2009) into
interparticle, intraparticle and organic. Our division is based on the spatial relation of pores
with respect to mineral phases and organic matter, and not on the origin of pores. Due to the
nature of Posidonia Shale minerals and porosity, the following definitions of different pore
types were adapted for this study:

e Interparticle: 1) pores between detrital grains, authigenic minerals, nannofossils and clay
flakes; 2) pores (in 2 or 3D space) associated with the interface of the organic matter and
mineral matrix that do not visibly extend into an organic particle, and that are either
irregularly shaped or acquiring shape of the adjacent mineral phase;

e Intraparticle: 1) pores within single mineral grains or fossil bodies; 2) pores within well-

defined faecal pellets and pyrite framboids; 3) moldic pores formed due to dissolution of
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mineral phases; 4) pores at the interface of inorganic matrix and organic macerals that do

not visibly extend into an organic particle, contained within a fossil body, faecal pellet or

pyrite framboid;

e Organic: 1) discrete, round, bubble-like pores in the organic matter; 2) sponge- like pores
within the organic matter, often interconnected and grouped; 3) pores usually at the
interface of the organic matter and mineral matrix, irregular in shape, but visibly
extending in 3D into the organic particle; 4) visible cracks within OM particles, often
with jagged edges and extending into the particle edge.

Pore network types estimated by a point-counting technique change throughout the
maturity sequence from exclusively inter- and intraparticle in the low maturity sample (light
lamina), to inter- and intraparticle dominated in the peak oil window and finally, to inter- and
intraparticle-rich with moderate proportion of organic pores in the sample of the gas window
maturity (Figure 2.14). The visual observations of different pore types using high-resolution
SEM micrographs show a varied assemblage of pores with the size as small as a 5

nanometers (x 200,000), up to a few pm.

0.00 0.25 0.50 0.75 1.00
Organic

Figure 2. 14. A ternary diagram showing distribution of visible SEM porosity (pixel size 15 nm) in
three Posidonia samples: WIC 7129 (0.53% Ro)(black circle), HAR 7060 (0.89% Ro) (red circle) and
HAD 7110 (1.45% Ro) (green circle).

In the least mature sample (Figure 2.15), visible pores are associated mainly with the
biogenic calcite, with no significant porosity within the clay matrix. The typical intraparticle,

calcite related pores are found within fully-open coccolith canals, coccolith canals partly
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cemented with authigenic calcite, within fragments of Schizosphaerella as well as between
fragmented or crushed nanofossils and authigenic calcite phases within well-defined faecal
pellets (Figure 2.15a-e). Intraparticle pores are also found within zones cemented with
authigenic calcite, between cements, and within discrete calcite crystals as a result of
carbonate dissolution (Figure 2.15h). On some occasions, those pores are lined with organics,
imparting a smooth, pendular shape to pore edges. (Figure 2.15e). As opposed to the
intraparticle pores, the interparticle, carbonate-associated pores are found mostly between
carbonate phases and the organo-clay matrix (Figure 2.15i, j). The size and shape of the inter-
and intraparticle pores is strongly associated with a degree of recrystallization of diagenetic
carbonates (Figure 2.171). The size of visible, calcite-associated pores ranges between tens of
nm to ~3 pum. Pores found in the fossil bodies of Schizopheralles are usually equant and
straight edged, up to 500 nm in diameter. Large inter- and intraparticle pores associated with
recrystallized nanofossils can be straight edged or spheroidal, reaching up to 3 pm.

Non-calcite porosity is relatively minor but small amount of interparticle pores occur
between flocculated clays, or adjacent to quartz, or pyrite, often at the interface with organic
matter. These pores can reach 2-5 pm in diameter but also may form narrow < 100 nm rims
around or adjacent to mineral phases or organic matter (Figure 2.15k). Elongated intraparticle
pores occur within mica group minerals, more pronounced where pyrite has precipitated
between mica platelets (Figure 2.15f). Large intraparticle pores, usually lined with organic
matter, can also be sporadically found within pyrite framboids (Figure 2.15g).

The majority of organic matter at the maturity 0.5% Ro is not internally porous, and
occurrences of intraparticle organic pores are very rare. Those include remnant porosity
within walls of not fully compacted Tasmanales bodies (Figure 2.151) or well-defined, round
or angular, <1 pm pores found within arcuate-shaped, terrestrial organic particles.

In the oil window shale, most of the pore types previously observed is absent, lost due to
compaction or occluded by solid bitumen (Figure 2.10). Instead, several new types of pores
are present of both intra- and interparticle nature (Figure 2.16). Typical oil window pores are
associated with organic matter and/or authigenic phases. Microfracture-resembling pores,
elongated and with jagged edges, cross-cut organic particles (Figure 2.16a) often up to their
edges (Figure 2.16b). Many pores are found at the organo-mineral interface, with complex
shapes resembling shapes of the surrounding mineral phases (Figure 2.16e). Most of those
interface pores are associated with diagenetic calcite, and are occasionally filled with the
authigenic phases (Figure 2.16f). Pores found directly within organics are always linked in

3D space to particle edges (Figure 2.16 c, d).
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Figure 2. 15. FIB-BIB-SEM micrographs of the WIC 0.53% R, shale. The bedding is perpendicular to
the view plane. a) Intraparticle pores within a coccolith canal; b) Intraparticle pores in a fragment of
Schizophaerella; c) Intraparticle pores in a crushed faecal pellet; d) Intraparticle pore in a strongly
recrystallized faecal pellet; e) Intraparticle pores lined with the organic material in a fragment of
Schizophaerella; f) Intraparticle pore in clay. The pore formed after pyrite precipitated within the
clay material; g) Intraparticle pore within a pyrite framboid; h) Intraparticle calcite dissolution pore;
i) Interparticle pore associated with recrystallizing calcite; j) Interparticle pore associated with
biogenc calcite; k) Organic associated pores at the interface with the mineral matrix; I) Organic pore
within an algal body. Cal — calcite, Dol — dolomite, Py — pyrite, Qtz — quartz, OM — organic matter.
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Figure 2. 16. FIB-BIB-SEM micrographs of the HAR Ro 0.89% shale. The bedding is perpendicular
to the view plane. a) Fracture within the OM; b) Fracture at the interface of the OM and calcite; c)
Interparticle pore at the interface with the OM and calcitte; d) Interparticle pores within the OM; e)
Interparticle pores at the interface of the OM and diagenetic calcite; f) Interparticle crack-like pore
from the interface of the OM with diagenetic calcite. An authigenic calcite crystal precipitated within
the pore; g) Interparticle pore between dolomite grains/crystals and the shale matrix; h) Fracture
within clay; i) Intraparticle, cleavage associated pore in mica; j) Intraparticle pores within a pyrite
framboid; k) Intraparticle dolomite dissolution pore; 1) Intraparticle pore associated with
recrystallized calcite. Cal — calcite, Dol — dolomite, M — mica, Py — pyrite, Qz — quartz, OM —
organic matter.

39



Despite the prevalence of organic-associated porosity, pores are also hosted by inorganic
domains (Figure 2.16g). Clay-mineral platelets break away yielding fracture or cleavage-
related porosity (Figure 2.16 h, i), occasionally partially filled with authigenic phases. Crack-
like pores are also observed at clay-carbonate interfaces. In 3D Slice and View
reconstructions cracks often follow the shape of underlying or overlying organic particles.
Within carbonate minerals, intraparticle dissolution pores can be found (Figure 2.16Kk)
ranging from < 100 nm up to 2 pum. Rare intraparticle porosity, not clogged by bitumen, is
also encountered within recrystallized authigenic calcite domains (Figure 2.161) and pyrite
framboids (Figure 2.16j).

Gas window shale, as opposed to the shale samples of lower maturities, shows presence
of pores contained within organic particles (Figure 2.17). The visible intraorganic porosity is
highly heterogeneous, with values ranging between 0-40%, and 65% of point counted organic
particles showing no sign of porosity at all. Although the shape and size of organic pores
form a continuum, we distinguished several end-members.

Isolated, bubble-like pores are limited in size, often < 100 nm in diameter, and their
visualization requires higher magnifications. Although they are present in all shale domains,
their distribution within organic particles is varied. They can be uniformly distributed within
an organic particle (Figure 2.17a), occupy only a fraction of a particle (Figure 2.17c) or be
concentrated at the particle margins (Figure 2.17f).

Similar to round, ‘bubble’ pores, but usually clustered in groups, are sponge-like pores
(Figure 2.17b). They are very often visibly interconnected in 2D and 3D Slice and View
images, and thus they have elongated shapes with the size exceeding 100 nm. The elongation
often follows the phase margin if developed at the boundary of a visibly porous and non-
porous organic area or near the organic-inorganic interface. Similarly to discrete pores,
sponge-like pores may be evenly distributed or occupy only a fraction of an organic particle.

With the increase in size and connectivity of individual pores, sponge-like pores may be
replaced by irregularily shaped or speroidal organic pores. Although often present directly
within organic particles (Figure 2.17d), in 3D they are usually associated with the organic-
inorganic interface (Figure 2.17e). In the 3D Slice and View images, the interiors of complex
pores branch out into numerous spongy-pores, penetrating the organic mass (Figure 2.17e).
Depending on the size of a host organic particle, a diameter of the single complex pore may

reach even ~500 nm.
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Figure 2. 17. FIB-SEM and BIB-SEM micrographs of the HAD 1.45% R, sample. The bedding is
perdendicular to the view plane. a) Discrete, bubble-like pores within an organic particle; b) Spongy-
organic pores, often visibly interconnected and grouped; ¢) Pendular-organic pores; Discrete pores
are also present; d) Complex organic pore at the interface with the mineral matrix; e) Complex
organic pore partly contained within the organic particle, occupying the interface with the mineral
matrix in the 3D space; f) Organic pores bordering a terrestrial maceral ; g) Partly compacted
organic pores within a terrestrial maceral; h) Interparticle pore at the interface of an organic partcle
with diagenetic calcite and clays; i) Interparticle pores between clusters of pyrite framboids, partly
contained in the OM. Cal - calcite, Py — pyrite, Qtz — quartz, OM — organic matter.
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Figure 2. 18. FIB-SEM and BIB-SEM micrographs of the HAD 1.45% R, sample. The bedding is
perpendicular to the view plane. a) Interparticle pore between flocculated clays; b) Interparticle pore
between diagenetic calcite crystals. The pore is lined with organics and thus may resemble organic
porosiy; c) Interparticle pores at the interface of the OM and diagenetic calcite. Note discrete and
spongy pores within the organic particle; d) Intraparticle pores found in a fossil fragment; e)
Intraparticle, complex organic and spongy pores in a pyrite framboid; f) Intraparticle pores between
clay platelets. Note close association of the porosity with the OM; g) Intraparticle pores within clays
evolved due to precipitation of diagenetic pyrite; h) Intraparticle dolomite dissolution pore; i)
Intraparticle pores within recrystallized calcite. Cal — calcite, Dol — dolomite, Py — pyrite, OM —
organic matter.
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Also similar in shape to sponge-like pores, but usually associated with particle margins
and less likely to agglomerate into complex pores, are oval ‘pendular’ pores (Figure 2.17c¢).
Ranging in diameter from a few tens to a few hundreds of nanometers, a single ‘pendular’
pore can occupy a large fraction of a particle or alternatively, it may be located only at the
particle interface. Within an organic particle, ‘pendular’ pores can co-exist with other organic
pore types.

The last type of intraparticle organic pores is found with terrestrial macerals (Figure
2.17g). The shape of those pores varies from angular to oval, and their size may reach up to 1
pm in diameter.

Although intraorganic pores are the most characteristic feature of the gas window
Posidonia shale, at the magnifications used in this study it is the inorganic-hosted porosity
that predominates. However, this may be only an artifact resulting from the limited image
resolution, and, with only small % of total porosity resolved in images, the real percentage of
the organic pores may be dominating. Similarly to the irregular and complex organic pores,
inorganic-hosted pores are usually present at the organic-inorganic interface, but as opposed
to the first, they visibly do not branch out into an adjacent organic mass (Figure 2.17h, Figure
2.18a, Figure 2.18 d-f). The interface pores can be jagged edged, with the irregularly shaped
organic face (Figure 2.17h), or remain smooth (Figure 2.18b, ¢), much resembling the smooth
interface pores already present in the oil window (Figure 2.16e). Depending on their relation
to the surrounding inorganic phases, the inorganic-hosted pores can be classified either as
intraparticle or interparticle. The locations of the highest density of the interface pores
include faecal pellet domains and pyrite framboids, but the jagged-shaped pores can also be
found in vicinity of detrital grains and clay packages (Figure 2.18f). The interface pores are
the largest pores present in the gas window Posidonia, and their size may exceed 2 pum in
diameter.

Other inorganic pores types in the gas maturity sample are relatively uncommon. Those
include: intraparticle pores within mica group minerals (Figure 2.18(), intracrystal carbonate
dissolution pores (Figure 2.18h) or possibly blind, remnant pores within recrystallized

carbonate phases (Figure 2.18i).
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Discussion

Sedimentological controls on mineralogy and texture

A laminated texture of the Posidonia shale is the result of variations in the relative
amounts of biogenic calcite and detrital clay-rich material. This variation can be observed
both at a sub-centimetre scale, mainly in the low maturity shale, and a micron scale at all
maturity levels. Littke (1991) ascribed the vertical variations in the amount of carbonate and
clay minerals to relative changes in the rate of nutrient-dependent primary production in
surface waters as compared to the supply of terrigeneous clays. Similarly, increased nutrient
supply and higher primary production due to flooding of large shelf areas would account for
higher carbonate content in the marlstone unit. Our data supports the interchangeable
relationship between the clay and calcite content and points to moderate dilution of organic
matter by the biogenic material. Similar vertical laminations were observed in the Posidonia
Shale deposited in the Southwest German Basin and ascribed both to longer-term variations
in sea-levels and short-term climatic changes (R6hl et al., 2001). According to Bour et al.
(2007) and Rohl et al. (2001), relative rise in the sea level could enhance sea water
circulation, destabilize the water column and therefore explain episodes of bottom
colonization and presence of only indistinct lamination in some shale intervals. Alternatively,
distinct type of lamination, found in the upper portion of the Posidonia sequence, could point
to long-term anoxic conditions in the benthic environment (R6hl and Rohl, 2005). Prolonged
sea water stratification and high rates of primary production as indicated by Réhl et al. (2001)
could be responsible for high TOC values and the lack of bioturbation in our samples.
Predominantly concordant contacts between laminae as observed in this study confirm the
primary nature of the lamination in the low maturity shale. As opposed to Trabucho-
Alexandre et al. (2012) who investigated Posidonia Shale from the Dutch Central Graben
characterized by a higher clastic input, apart from rare layers of silt-sized material of
unknown origin we did not encounter evidence of wave or current activity in the LSB

Posidonia mudstone.

44



Carbonate diagenesis

The sub-centimetre lamination pattern is largely obliterated in shales of the oil and gas
window maturities, and based on the high-resolution SEM micrographs, could be explained
by the intense diagenesis of the shale components. For instance, lack of distinct fossil shapes
in the oil and gas window shale, and even low maturity carbonate-rich lower Posidonia,
reflects their diagenetic transformation and rerystallizaion. Similar behavior was commonly
reported for diagenetically changed sediments originally rich in biogenic calcite (e.g.; Hicks
et al., 1996). One of the proposed mechanisms for early calcite precipitation involves an
increase in carbonate alkalinity of the pore waters due to bacterial organic matter degradation
(Dix and Mullins, 1987). Early precipitation of cement in the pore space of Posidonia is
indicated by the presence of calcite-filled uncompacted coccolith canals and thus high minus-
cement porosity (Hesse, 1990; Macquaker et al., 2007). Presence of this early carbonate
cement is consistent with the possibility that biogenic gas formed in the early mature
Posidonia as reported by Schultz et al. (2013). However, taking into account a constant ratio
between clay and carbonate phase regardless of the maturity level, it is plausible that other
and less temperature-limited processes remained vital for the net redistribution of the
carbonate phase. For instance, recrystallization of carbonates may result from the
interexchange of ions with the pore water solutions and their transfer from less to more stable
calcite surfaces with no net gain or loss of solid phase (Fabricius, 2003). This type of
recrystallization will lead to more equant shape of calcite particles even when not in direct
contact with other inorganic grains. The recrystallization of carbonates may further proceed
as a pore stiffening effect due to development of contact cement, but may also involve
pressure solution and calcite cement precipitation in pores away from the stress point
(Fabricius et al., 2008; Scholle and Halley, 1985).

Although usually observed in carbonate-dominated mudstones and limestones, pressure
solution and calcite recrystallization also occurs in organic rich, clay-bearing limestones or
clay-bearing chalks (Marshak and Engelder, 1985). The diagenesis of calcite in organic- and
clay-rich shales has not been studied in detail, but our observations suggest that it is different
to that observed in carbonate rocks. Chemical processes such as pressure solution commence
in chalk at temperatures as low as 20°C, with dissolution seams and stylolites common at
temperatures around 30-40°C (e.g. Mallon and Swarbrick, 2002). Carbonate recrystallization
in chalk is very advanced by 100-120°C, similar to the temperature experienced by our

lowest maturity sample. In contrast, calcite cementation and recrystallization in Posidonia are
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limited at Ro = 0.53%, becoming increasingly evident at 0.9% (ca. 140°C) and 1.45% (ca
170°C). Whilst we do not have sufficient information to be conclusive about the apparently
retarded carbonate diagenesis in the Posidonia compared to chalk, experimental data suggest
that argillaceous chalks, due to the inhibition of carbonate precipitation, are less prone to
chemical compaction than pure chalk (Baker et al., 1980). This is consistent with our
observations that calcite diagenesis is more advanced in the more carbonate-rich Posidonia
marlstone compared with the more clay-rich middle and upper Posidonia units. It has also
been observed that diagenesis and cementation can be retarded in oil-filled carbonate and
quartzose reservoirs as a result of alterations in the wetting state of the reservoir from water-
wet to oil-wet and a concomitant reduction of the amount of water available for solution
transfer (e.g. Worden et al., 1998; Heasley et al., 2000; Scholle, 1977). It is certainly
plausible that in an organic-rich shale like the Posidonia carbonate surfaces become oil-wet
even prior to oil generation, as a result of sorption of polar organic molecules, and the arrest
in the transfer of solutes (van Duin and Larter, 2001; Aplin and Larter, 2005).

Without further support from the isotopic or petrophysical data, we cannot be conclusive
about which diagenetic process was a dominant factor in the redistribution of calcite in
Posidonia. As observed in SEM images, recrystallization features and contact-cement
structures appear as early as 0.53% Ro, and are significantly better developed in the more
calcite-rich laminae. The recrystallization of calcite as a major process could explain lack of
dissolution or etching on nanofossils as reported by Bour et al. (2007) from the immature
Posidonia from the Southwest German Basin. It could also account for the high minus-
cement porosity and crystal fusing features as seen in the oil and gas window samples under
the oil-wet conditions. In contrast, presence of cements with a uniform crystal lattice as well
as fracture filling calcite may suggest that pressure solution occurred at some point. The
dissolution may have been followed by the precipitation from carbonate ions-rich pore waters
of both calcite and dolomite. As significant dolomitization occurred at oil window
temperatures, it is unlikely that Mg required for dolomite formation was released due the
smectite to illite transformation reaction (cf McHargue and Price, 2006). For instance,
Kanitpanyacharoen et al. (2012) found that degree of preferred orientation in Posidonia clays
between 0.68-1.45% R, is not significantly different and concluded that the fabric evolved
early in the history. Likewise, it is unlikely that the dolomite precipitation was induced by
anaerobic oxidation of biogenic methane. The SEM micrographs (Figure 2.6 and 2.7)
evidently demonstrate that the intensity of dolomite formation increased at oil window

temperatures (> 100-120°C), too extreme to sustain the bacterial activity (Berner, 1968;
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Raiswell and Fisher, 2000). Analternative source of magnesium was suggested by Bernard et
al. (2013) and linked to the circulation of brines (Munoz et al., 2007).

Porosity loss through compaction

SEM visible porosity associated with faecal pellets and recrystallized biogenic fragments
in the low maturity Posidonia constitutes only ca. 10% of total porosity and its further change
with maturity is minor. The remaining porosity, especially that associated with clays and
kerogen, is not resolved with the microscopic methods applied in this study. An overview of
the < 6 nm meso-and microporosity, along with its distribution in the Posidonia shale, is
provided by Rexer et al. (2014). A clear division between resolved and unresolved porosities
and their attribution to specific domains points to the importance of original rock fabric as a
starting point to model the behaviour of porosity retention, loss and development.

The loss of porosity in shales is driven primarily by compactional processes, both
mechanical (Aplin and Yang, 2005) and chemical (Bjerlykke, 1999). Although mechanical
compaction is significant for muds at shallow burial (Draege et al., 2006), according to
Emmanuel and Day-Stirrat (2012) it may have a negligible impact on pore size distributions
of the smallest pores once it is established that the magnitude of preferred orientation of clays
ceases to change. As already mentioned, Kanitpanyacharoen et al. (2012) found that a degree
of the preferred orientation in clays in Posidonia between 0.68-1.45% R, is not significantly
different and therefore, their further compaction within this interval might have been minor.
However, we found clear evidence for the physical compaction of the shale fabric between
0.53-0.89% Ro, as associated with the collapse of the algal bodies (Figure 2.7a. Taking into
account the loss of the organic matter volume upon maturation, it is more difficult to assess
the overall effect of compaction on porosity loss in organic rich shales without taking into
account a degree of the kerogen transformation and bitumen retention. Without this
knowledge, it is also impossible to verify to what degree the chemical compaction affected
the porosities. Recrystallization of calcite without porosity modification is already known
from chalks (Fabricius et al., 2008) and it might have been important in the lower maturity
Posidonia. Presence of uniform calcite and dolomite cements (Figure 2.7) points that at later
stages of diagenesis porosity loss definitely occurred, most likely due to pressure solution.
However, the large scale pressure solution and pore cementation might have been mostly
arrested by bitumen migrating into fossiliferous zones and occluding the pore space. Still, it is

plausible that, similarily to oil-saturated chalks, minor recrystallization of calcite continued
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even under oil-wet conditions (Fabricius, 2003). Similarly, the presence of cement within
algal cysts suggests that local cementation was active even under oil generation conditions.
Therefore, we cannot preclude, that in the organic rich shales diagenetic processes may partly
continue in the peak oil window, taking advantage of the kerogen volume loss upon thermal
conversion to hydrocarbons. That also indicates that the impact of compaction may be
underestimated when taking into account merely the absolute change in the visible SEM

porosity and the change of volume in the organic component must be quantified.

Evolution of organic matter with maturation

Although much research was already dedicated to the composition of different kerogen
types and their decomposition paths under increasing thermal stress (e.g. Behar and Pelet,
1986; Behar and VVanderbroucke, 1987; Behar et al., 1992; Behar et al., 2010; Bernard et al.,
2011; Dieckmann et al., 1988; Guo et al., 2009; Hill et al., 2003; Leythaeuser et al., 1988;
Lewan et al., 1997; Lorant and Behar, 2002; Mann et al., 1991; Mao et al., 2010; Michelis et
al., 1996; Putschew et al., 1998; Rullkotter and Michaelis, 1990; Rullkotter et al., 1988;
Schenk et al., 1997; Vanderbroucke et al., 1993), the mechanisms of primary migration,
phase behaviour, bitumen entrapment and organic porosity evolution are still a subject of
discussion. In this study, we showed a consistent decrease in TOC, S1, S2 and Hydrogen
Index from early oil window to gas window conditions, consistently with observations
reported in Posidonia by Leythaeuser et al. (1988) and ascribed to the processes of petroleum
generation, expulsion and cracking. The net effect of the generation and expulsion processes
in Posidonia was documented therein between maturities 0.48 to 1.45% Ro as a progressive
increase of the rock extract composition in aliphatic compounds and a decrease in the heavier
polar fraction. In this study, direct observations of the Posidonia organic matter under the
microscope confirm its progressive thermal degradation, reflected as a change in the volume
and composition of macerals (Rullkotter et al., 1988). Specifically, a general change in the
UV light response (Khavari-Khorasani, 1987; Khavari-Khorasani and Michelsen, 1992) is
consistent with the increasing aromaticity of the maturing Posidonia kerogen (Bernard et al.,
2011). Thermal degradation of organic matter is also corroborated by a measured grain
density rise between 0.53-1.45% Ro, driven by condensation and aromatization of the carbon
structure. Degradation of organic matter accounts then for a major TOC loss with progressive

maturity, and overprints primary differences in the organic content inherited from marginally
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varied environmental conditions during deposition of the Posidonia Shale sequence (e.g.
varied degree of dilution by the biogenic carbonates).

Tissot and Welte (1984) recognized that the composition of petroleum generated during
the thermogenic conversion of the accumulated organic matter is a function of kerogen type
and maturity. To understand the mechanisms of kerogen decomposition in the subsurface,
open and close pyrolysis experiments were performed by various authors and general models
of the organic matter transformation were developed (e.g. Behar et al. 1992, 1995, 2008; Guo
et al., 2009; Horsfield et al., 1992; Lewan, 1997). Behar et al. (2008) proposed a Kinetic
scheme where kerogen decomposes, mainly through depolymerization reactions, into very
viscous liquid rich in NSO (nitrogen, oxygen and sulphur) compounds, followed by
decomposition of the last into more soluble non-hydrocarbon compounds and finally,
cracking into hydrocarbons. The presence of the heavy, intermediate bitumen phase was also
proposed by Michelis et al. (1996) and Lewan (1997). Our experiments on unextracted and
extracted samples confirm the presence of a substantial amount of a non-volatile bitumen
phase residing in kerogen of the low maturity Posidonia shale (Clementz, 1978; Wilhelms et
al.,, 1990). Consistent with little change in the bulk shale grain density after the organic
extract was removed (Figure 2.12), we presume that this early bitumen is most likely
composed of high molecular weight compounds, imparting its viscous nature and low
mobility in the shale matrix. Dominance of the heavy bitumen over total extract substantiates
that relatively few light compounds are generated directly from kerogen. The nature of
petroleum changes in the oil window, and at the peak window maturity it is dominated by
lighter compounds responsible for a measurable decrease in grain density of the bulk shale.
Similar density reduction was recently reported by Rexer et al. (2014) on Posidonia kerogen,
implying high adsorptive capabilities of the organic matter leading to retention of oil (Jarvie
et al., 2007). Presence of lighter oil at higher maturities likely reflects breakage of C-C bonds
(Dieckmann et al., 1988; Rullkotter et al., 1988; Schenk et al., 1997) and in Posidonia it is
paralleled by the formation of an insoluble high molecular weight residue, often described as
prechar. Occlusion of shale porosity by this insoluble heavy bitumen indicates that a fraction
of the early generated petroleum remained entrapped in the shale matrix (Figure 2.10) (Hill et
al., 2003; Lewan 1997). Similar solid bitumen, although of different genesis, is known not
only for clogging the pore space and closing pore throats in oil and gas reservoirs (Hwang et
al., 1998; Lomando, 1992) but is also found as a product of solidification of heavy oil in
coals (Mastalerzand Glikson, 2000). Whilst we do not have information on the exact chemo-

physical nature of the organic particles occupying porosity in the oil window maturity
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Posidonia shale, it is plausible that its precursor was a heavy, viscous non-hydrocarbon or
hydrocarbon phase that migrated within the source rock, progressively developing more
aromatic and condensed structure upon cracking to hydrocarbons (Behar et al., 1997;
Horsfield et al., 1992; Michelis et al., 1996). Such conclusion is consistent with Pelet et al.
(1986), who analyzing residual but soluble phase demonstrated preferential retention of the
heaviest and most polar molecules in the source rock. If our solid bitumen is indeed a spent
residue of the viscous bitumen generated from kerogen, it could be classified as post-oil
(Curiale, 1986) or secondary (Curiale, 1983; Stasiuk, 1997). Indeed, EDX analyses on solid
bitumen found in a fracture in the oil window sample, quite in agreement with extract
analyses performed by Leythaeuser et al. (1988), still show the presence of sulphur originally

incorporated in the marine kerogen.

Primary migration of petroleum

The occlusion of porosity by residual bitumen phase in the oil window validates the
processes of micromigration and trapping as a mechanism leading to an increased small-scale
heterogeneity of the organic matter. The micromigration of the generated petroleum was
already demonstrated by Leythaeuser et al. (1988) as a mechanism leading to a fractionation
of the soluble bitumen phase, and its progressive enrichment in a non-eluted residue towards
macrofractures. It is therefore reasonable to assume that the bitumen phase in Posidonia
became mobile and started filling pores once enriched in relatively smaller and lighter
compounds. Vanderbroucke at al. (1993) argue that compounds lighter than Cq4+ may be
important for migration of heavier compounds by dissolving them and reducing density of the
mobile phase. Alternatively, Lewan (1997) proposes that it is solubility with water and
volume increase that enable formation of a continuous bitumen network and migration of the
bitumen phase within the source rock. The formation of a continuous bitumen network for
effective migration is also recognized by Tissot and Welte (1984). Alternative proposed
mechanisms enhancing separation of the heavy bitumen and lighter hydrocarbon phase may
include preferential sorption on minerals and organic matter (Sandvik et al., 1992), or phase
immiscibility in the presence of water (Lewan, 1997). In our study the micromigration
mechanism is corroborated by microscopic observations, revealing highly dispersed nature of
the solid bitumen, forming a semi-continuous network (Landis and Castano, 1995). The
dispersion of this retained bitumen phase might be traced back to the dispersion of the

amorphous organic matter in the immature shale, likely the main contributor to the petroleum
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generated, here partly sulphurized as a result of the limited availability of the reactive iron in
the biogenic-rich intervals (Hutton, 1994; Tao et al., 2012) (Figure 2.9a). Moreover, as
opposed to the immature kerogen, mainly associated with the clays (also Littke, 1991), the
peak oil window organic matter shows a close spatial association with fossiliferous domains,
indicating that the micromigration indeed occurred. It is plausible, that analogous to reservoir
oil (Hwang et al., 1998), the source rock bitumen followed the path of the least resistance and
relatively quickly filled calcite-pores as zones of the lowest capillary pressure. The highest
concentrations of solid bitumen in the zones of recrystallization of biogenic calcite show that
the migration might have been inhibited once a migrating or in-situ generated phase became
trapped in a porous, rigid zone. The lack of driving force to push the petroleum out of the
system, despite the presence of light hydrocarbons, would have therefore accounted for the
large amount residual bitumen accumulated.

Further evidence for the small scale heterogeneity of organic matter as a result of the
bitumen flow and entrapment is provided by the FIB polished SEM micrographs of the
overmature shale sample. The distinction between porous and non-porous organic regions has
been already observed by several authors and ascribed to differences in structural
composition of organic particles (Bernard et al., 2010; Loucks et al., 2009). For instance, the
internally porous organic regions were identified by Bernard et al. (2010) and Bernard et al.
(2012) as pyrobitumen, a residue after thermal cracking of oil, and opposed to kerogen,
asphaltene and NSO-rich bitumen showing no signs of visible porosity. If different organic
compounds behaved differently upon increasing thermal stress, then their distribution can
reveal clues about their possible genetic association and migration mechanisms. In Posidonia,
close association of porous and non-porous particles, often remaining in direct vicinity,
suggests that pyrobitumen-like, porous phases might have directly evolved from the
neighbouring non-porous particles, and at higher temperatures, with the limited scope to flow,
underwent further thermal cracking. In this case, the visible pore structure likely marks a
boundary between two different organic compounds. This scenario may also apply to non-

porous arcuate-shaped terrestrial macerals, often with a rim of porous organic phase.

The role of organic matter on porosity modification in the oil window

It is experimentally proven that substantial amount of porosity in organic rich rocks may
be created during the conversion of kerogen to petroleum (Kanitpanyacharoen et al., 2013;

Oberlin and Villey, 1980). In Posidonia Shale, despite significant loss of TOC, porosities do
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not show a consistent increase, but instead reach minimum values at the peak oil window
maturity (Figure 2.11). Relatively high porosity was found in the early mature sample
characterized by the largest content of the extractable bitumen. We presume that this early
bitumen did not enter the mass migration stage, remaining associated with kerogen (Sandvik
et al., 1992) and thus physically immobile to flow (Hwang et al., 1998). According to Landis
and Castano (1995), bitumen, as a product of the thermal conversion of kerogen, may start
filling porosity of the shale as early as at 0.4% R,. In Posidonia, early signs of migration may
be reflected by the presence of pendular pores, with organics lining mineral walls. As
opposed to the early stages of petroleum generation, the loss of porosity was substantial in the
peak oil window Posidonia, and although partly related to compactional processes, it was
closely associated with the generation and micromigration of petroleum (Lewan, 1997).
Jarvie (2012) suggested that the lack of visible organic porosity at the peak oil generation
maturities is due to solubility of oil in kerogen and consequent kerogen swelling. Selective
absorption of petroleum compounds, reflected by swelling of the organic polymers, was also
proposed by Sandvik et al. (1992) to govern yield of petroleum expelled from a source rock.
Our experiments showed that oil extracted from the peak oil window Posidonia shale has a
strong affinity for organic matter and is equivalent to 2-3% of porosity. Assuming that this oil
iIs homogeneously distributed within organics, the volumetric ratio of the soluble/insoluble
organic matter would reach 1.2-1.3. This value is consistent with swelling ratios, varying
between 1.1-1.7, measured by Larsen and Li (1992) on type Il Albany kerogen using a set of
solvents of different polarity. While we do not know if in the peak oil window kerogen
physically expanded (Lewan, 1997), our results show that organic matter can accommodate
oil and it is therefore not unreasonable to assume that light oil was a driving force for
petroleum migration, and porosity loss (Pelet et al. 1986). Still, a variety of pores associated
with organic matter exists in the peak oil window Posidonia shale. For instance, the
appearance of pores accumulated primarily at the interface of organic and inorganic phases
might indicate not only wvolume loss due to exsolution of lighter hydrocarbons
(Kanitpanyacharoen et al., 2013), but also provide evidence for the low mobility of the
bitumen phase. Although those pores are commonly interpreted as dessication,
depressurization or post-coring phase alteration features (Milliken et al., 2013), it is not
unreasonable to think that similar pores could be a product of dissolution and limited
recrystallization of carbonate phases within viscous and ‘plastic’ organic polymer susceptible
to shrinkage after initial swelling (Simons, 1979). Curtis et al. (2013) who analyzed pores in

the Avalon Shale suggested that oil window porosity might be related to pressure build up
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during petroleum generation and fracture formation. Indeed, fracture-like pores with jagged
edges developed in Posidonia Shale, but they are relatively scarce and subordinate to
microscale, calcite or bitumen filled fractures. The general scarcity of the organic porosity in
the oil window Posidonia shale, despite major loss of the organic carbon, may be also
considered in terms of the phase behavior. It is reasonable to expect that in the type Il
kerogen like Posidonia bitumen phase was undersaturated to gas before the onset of the oil-to
gas cracking. Consequently, any gas molecules generated early from kerogen or NSO-rich
bitumen were most likely dissolved in the liquid phase and expelled (Pepper and Dodd, 1995;
Schenk et al., 1997; Tan et al., 2013; Waples, 2000).

Organic porosity in the gas window

RockEval experiments performed on Posidonia shale show decrease in the content of
both total oil and organic carbon between 0.89-1.45%, coinciding with the formation of the
microscopically visible, isolated, spongy and complex organic pores, similar to those reported
by Milliken et al. (2013) from the overmature Marcellus Shale. Such clear relation in HI and
porosity appearance suggests that the evolution of the gas window porosity should be
interpreted in the light of the thermal cracking of the kerogen and residual hydrocarbons
(Behar et al., 2008). Apart from the synchrotron-based study by Bernard et al. (2011) and
thorough SEM petrographic analysis by Milliken et al. (2013), there are no sufficient studies
explaining what governs the appearance and distribution of organic porosity in overmature
organic-rich shales. Bernard et al. (2011) and Bernard et al. (2012) linked intraorganic pores
encountered both in the Barnett and Posidonia Shale with residual pyrobitumen. Such
association is consistent with Loucks et al. (2009) who suggested that the appearance of
organic pores may be related to exsolution of thermogenic gas molecules. Indeed, pyrolytic
experiments performed by Horsfield and Dueppenbecker (1991) on the Posidonia kerogen
revealed increased ratio of C,-Cs/Ce. Of pyrolysate at high temperatures, ascribed by them to
the secondary breakdown of naphthenoaromatic units and gas generation. In our study and at
the scale of the BIB/SEM images, only ~25% porosity is contained directly within organics,
with ~75% remaining mineral associated. As these pseudo-interparticle and -intraparticle
pores were to a large extent occluded by the solvent insoluble bitumen phase in the peak oil
window, we presume that their evolution, similarly to the intraorganic pores, is the result of a
thermal decomposition of the organic material. A variety of organic pores that evolved

between 0.89-1.45% Ro points to the small-scale heterogeneity of the organic material in the
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shale matrix at the onset of cracking, and raises questions about the phase of the cracked
hydrocarbons. For instance, to explain accumulation of pores in the fossiliferous zones and
pyrite framboids one may have to recall primary migration mechanisms already discussed in
this chapter, dissolution of oil in initially heavy bitumen and fractionation of bitumen into
polar and lighter compounds of different mobility. The prevalence of calcite zones or pyrite
framboids as locations of bitumen entrapment and secondary porosity development is
reasonable considering a large amount of potential pore space physically protected against
compaction, that could be filled with the migrating and in-situ generated bitumen, the lack of
driving force to expel petroleum from the rigid framework, and also high retention capability
of residual bitumen for the generated oil (Pepper and Dodd, 1995).

Although we cannot be conclusive about the exact role of bitumen heterogeneity on a
distribution of organic porosity, many authors point to the importance of hydrogen donor
compounds such as asphaltenes or hydroaromatics as preventing cross-linking during
cracking reactions (Behar and Pelet, 1988; Michelis, 1996; Schenk et al., 1997) and therefore
delaying the conversion and aromatization of the organic polymers (Lewan, 1997). On the
other hand, Tiem et al. (2008) believed that although the absence of hydrogen donors may
enhance cross-linking and reduce oil potential of an organic molecule, it will increase its gas
potential at higher temperatures. Therefore, we presume that the heterogeneity of the organic
phase in terms of porosity development in Posidonia could mimic different chemophysical
properties of the organic molecules at the time of cracking, their association with unexpelled
oil and their potential to release different hydrocarbon fractions including wet gas and
methane. Pyrolysis experiments on various coals revealed different potential for porosity
development depending on the maceral composition, their plastic properties as well as coal
rank, with the viscosity and the advance in cross-linking shown to control an extent of the
coal devolatilization (Alvarez et al., 1997). Similarly, different pyrobitumen precursors,
related to dealkylation of NSO compounds or aromatic condensation reactions were also
proposed by Hill et al. (1996) and could account for different optical properties of reservoir
pyrobitumens as encountered by Stasiuk (1997). In the light of this discussion, the bubble-
like nature of some pores may indeed represent the last step in gas exsolution from already
polycondensed aromatic molecules (Tiem et al., 2008), which were not able to release the
pressure build up during gas generation but were viscous enough to prevent pore closure.

Despite that demethylation of residual kerogen is often reported from pyrolytic
experiments (Guo et al., 2009), it is still debatable whether residual kerogen itself can

participate in development of organic porosity at gas window maturities. Bernard et al.
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(2011) did not find any porosity in the overmature kerogen. Similarly, our SEM micrographs
show that in the HAD sample approximately 65% of organic particles are not visibly porous.
Recent sorption experiments by Rexer et al., (2014) found that non-soluble bulk organic
matter extracted from the overmature Posidonia shale is microporous, but they did not
separate kerogen from residual bitumen. It is plausible that the presence of internal
microporosity will facilitate diffusive release of gaseous moieties from kerogen and does not

favour development of pores (Vanderbroucke and Largeau, 2007).

Summary and conclusions

Posidonia Shale from the Hils syncline is an organic-rich rock following a maturation
pathway typical for the Type Il kerogen source rocks. Due to its relatively small
heterogeneity in terms of facies development between rocks of different maturities, it is a
natural laboratory which enables to track evolution of organic and inorganic components
under increasing thermal stress. The most volumetrically significant diagenetic changes
involve carbonates, both calcite and dolomite. Deposited as biogenic nannofossils, calcite
behavior, its recrystallization, dissolution and reprecipitation is controlled by the bulk
mineralogy, texture, organic richness and thermal maturity of the shale. We found that both
high clay content as well as petroleum generation and retention slow down chemical
compaction and irreversible porosity reduction as observed e.g. in chalks. Such behaviour
leads to high minus-bitumen porosities as encountered in the peak oil window Posidonia.

Our observations show that small-scale clay-calcite lamination of the Posidonia Shale
underlies heterogeneity of the residual organic matter in shales of higher maturities as a result
of differential generation and expulsion. The original association of the amorphous organic
matter as a major source of petroleum with clays drastically changes with the onset of
bitumen migration and filling of microreservoirs within rigid fossiliferous domains. Such
petroleum entrapment also occurs in the vicinity of any other rigid grains, where porosity
evolved due to the thermal conversion of kerogen is protected in compaction shadows.
Petroleum migration may enhance its fractionation, increasing heterogeneity of the residual
organic matter in terms of its chemophysical properties and potential for secondary cracking.

Both diagenetic reactions within the mineral matrix and thermal decomposition of the
organic material have a major impact on porosity change with maturation and its
redistribution between different shale domains. At low maturities, clays and organic matter

are not visibly porous, but most likely hold most of the shale porosity. In the oil window,
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cement precipitation, bitumen occlusion, and possibly swelling due to retention of the
residual oil, lead to reduced total porosities. High bitumen retention capacity of the rigid
fossiliferous domains gains in significance in the gas window, and affects the evolution and
distribution of the secondary pores. The evolved organic porosity is highly heterogenous and
is likely controlled by the chemophysical properties of the residual organic matter at the time
of thermal cracking. Specifically, the distribution of the nanometer size ‘bubble’ pores,
analogously to pores found in cokes, suggests that the movement of the gas molecules was
constraint by the viscosity of the organic polymer. The evolution and distribution of organic
pores is important from the gas storage and production point of view. For instance, the lack of
visible connectivity between pore bodies adjacent to and within organic paricles imply that
pores may be gas filled in the subsurface. Moreover, high bitumen retention capacity of the
rigid fossiliferous zones, followed by the secondary pore evolution, suggests that those are

excellent microreservoirs of free gas.
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Chapter 3: Porosity of the Posidonia Shale: from alow scale
variation to the formation characterization

Introduction

Mudstones are defined as a fine-grained rock with over a half of its components in the
clay size fraction (MacQuaker and Adams, 2003). Because of the presence of clay minerals
and high initial water saturation, mudstones are sensitive to compaction, progressively
expelling water and thus reducing their volume. Over a several kilometer depth, porosities of
mudstone sequences can decrease from 90 to 10 % or less, depending on the initial rate of
mud deposition, and its initial composition (Loucks et al., 2012). This porosity can be
modified via diagenetic processes as early as in a first few centimeters and proceed with
further consolidation of a mudstone (Bjerlykke and Hgeg, 1997; Chaika and Dvorkin, 2000;
Curtis, 1995; Macquaker et al., 2014).

In opposition to organic-lean mudstones, porosities of the organic-rich shales are
significantly modified via processes linked to maturation of in-situ organic matter. Recent
boom in shale gas and shale oil exploration (Alexander et al., 2011), in order to correctly
evaluate potential storage capacity and final recovery of oil and gas, emphasized the necessity
to better constrain factors controlling porosities of shales. A major step for understanding the
change of shale properties and porosities under increasing thermal stress was made by
recognition that thermal decomposition of kerogen should progressively lead to development
of organic porosity (Jarvie et al., 2007). So far authors did not find any organic pores in the
oil window shales, but widely reported occurrence of secondary pores in the gas window
(Loucks et al., 2009). Although several great attempts were made to link organic pores with
maturation and the organic matter content, they very often gave inconclusive and
contradictory results (e.g. Bernard et al., 2011; Fishman et al., 2012; Loucks et al., 2009;
Mastalerz et al., 2013; Milliken et al., 2013; Modica and Lapierre, 2012; Passey et al., 2010).

Pore sizes of consolidated mudstones span from a micropore < 2 nm, through mesopore
(2-50 nm) to macropore (> 50 nm) range (Nelson et al., 2009, Chalmers and Bustin, 2012)
and therefore their detection will much depend on a specific method implemented. In the past
research, while some authors concentrated on estimation of microporosity and gas potential
using gas sorption and mercury methods (Bustin et al., 2008; Chalmers et al., 2012; Chalmers
and Bustin, 2007; Kuila and Prasad, 2013; Ross and Bustin, 2009), others implemented
mainly microscopic techniques to resolve porosities held by various shale domains (Curtis et
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al., 2011; Curtis et al., 2013; Fishman et al., 2012; Loucks et al., 2009; Loucks et al., 2012;
Milliken et al., 2013; Milner et al., 2010; Schieber, 2011; Slatt and O’Brien, 2011). This
research experience led to a conclusion that in order to better understand the complexity of
pore systems in these extremely heterogeneous and fine-grained rocks, a combination of
different techniques is essential (Bustin et al., 2008; Chalmers and Bustin, 2012; Chalmers et
al., 2012; Clarkson et al., 2013; Strapoc et al., 2010). It was also recognized that because of
the low-scale variations in shales composition, structure and texture, the bulk techniques (gas
sorption, mercury injection) yielding bulk values, will always provide different information
than when high resolution microscopic methods are implemented. The last, although not
representative for the shale reservoir as a whole, are essential for constraining a geological
background for porosity occurrence and its spatial variation. The main advantage of the
microscopic techniques is the possibility to quantify porosities and pore size distributions
within single laminae defined by the specific lithology, organic matter content and texture.

In this study, we provided an example of the Posidonia shale (Northern Germany), a
calcareous rock formation with maturities between 0.53% - 1.45% Ro and only little variance
in mineralogical composition between wells of different maturity (Figure 3.1a, b). Our main
aim was to investigate the change of porosity and pore size distribution as the maturity of the
shale changed from the early oil window to the gas window conditions and detect any links
between the porosity change and kerogen transformation, hydrocarbon generation and
cracking. With two lithologies, middle and upper calcareous shale and bottom marlstone, we
also addressed the issue of a lithological variation, compaction and diagenesis for pore
development and connectivity. By integrating geochemical and petrophysical measurements,
with a detailed analysis of microscopic images we offered a unique approach for measuring
porosity and pore characteristics on different scales with thorough understanding for a

micrometer lithological variation.
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Samples and Methodologies

26 core samples were selected from stratigraphically equivalent sections of the three
boreholes: Wickensen (early oil window, Ro 0.53%), Harderode (peak oil window, Ro
0.89%) and Haddessen (gas window, 1.45% R,) (Figure 3.1). The samples were chosen for
bulk analyses including Rock Eval, TOC, grain density and mercury porosimetry.

Total Organic Carbon was measured with the LECO carbon analyzer equipped with a
HF-100 Induction Furnace on carbonate-free shale. Standard Rock-Eval was performed
according to Espitalié et al. (1977) using Delsi Rock Eval OSA on a 100 mg aliquot. To
correct for an oil-in-kerogen peak, 4 selected shale samples were solvent extracted with a
mixture of dichloromethane (93%) and methanol (7%) and subsequently analysed for its
remaining hydrocarbon potential.

The X-ray diffraction was performed by Macaulay Scientific Consulting Ltd.
Quantitative analysis was done by a normalised full pattern reference intensity ratio (RIR)
method.

Grain density was measured on samples dried at 105°C using the “Small Pyknometer
Method” yielding density values within an error + 0.02 g/cm®. Mercury injection data was
collected on Micrometrics Autopore Il via Mercury Injection Capillary Pressure analysis
(MICP) on samples previously freeze-dried at -50°C and evacuated to 10™ psia. Total shale
porosity was determined from grain density and bulk density when immersed in mercury at
the pressure 25 psia. Pore sizes were calculated as a function of applied pressure according to
the Washburn equation (Washburn, 1921) with the input parameters as followes: an
advancing contact angle of 141° a receding contact angle 140° and surface tension
485dyn/cm. The maximum pressure (41000 psi) applied allowed to detect pores as small as
5.6 nm. A full intrusion — extrusion cycle was run for selected samples with the final pressure
decline to 25 psia.

Low pressure sorption experiments were performed on Intelligent Gravimetric Analyzers
(IGA), supplied by Hiden Isochema Ltd., Warrington, UK, on shales (~ 140 mg) dried to a
constant weight at 110°C for 4 hours under vacuum (< 10°®). CO, was injected stepwise up to
a pressure of 1 bar at a constant temperature 195K (dry ice/acetone bath) in order to obtain
subcritical conditions for CO,. All isotherms were run twice to ensure experimental
repeatability. Sorption pore volumes (SPV) were calculated from the maximum uptake at 1
mbar, assuming CO, density 1.177 g/cm®. Corresponding sorption porosities were determined

using pycnometer shale grain density.
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Figure 3. 1. Location of Hils syncline, Northern Germany and three boreholes: WIC (0.53% Ro),
HAR (0.89% Ro) and HAD (1.45% Ro) (after Mann and Muller (1988) and Horsfield et al. (2010)). b)
Lithostratigraphic profile of the Posidonia Shale from the three boreholes showing a bottom
marlstone unit (I) and two calcareous shale units (Il and Il1); red dots represent sample locations
(after Littke etal. (1991).
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For microscopic studies, carbon-coated polished thin sections were examined using a
Hitachi SU-70 High Resolution Analytical SEM, equipped with an Oxford Instrument Energy
Dispersive X-ray microanalysis system (INCA Energy 700). Samples were viewed in Back
Scattered Electron (BSE) mode using the YAG detector with the following conditions: 15-8
mm WD, 15keV accelerating voltage, 2-4 nA filament current. To reduce the shale
topography, prior to the SEM imaging, selected samples were polished with an argon broad
ion beam (BIB) in the GATAN 691 Precision lon Polishing System (PIPS™). In order to fit
into the PIPS™ chamber, the sample size was reduced to a 3 mm in diameter disc with
GATAN 601 Ultrasound Disc Cutter using water emulsion of boron nitrate powder as a saw.
Such prepared discs were bombarded with Ar ions in a vacuum (107 Pa) for 6 hours (angle 3°,
5kV, 1-20 pA). The images of shale porosity were captured in the Secondary Electron (SE)
mode using through-the-lens detector (TLD) at magnifications 10,000 x (pixel size 6 nm) and
6,000 x (pixel size 15 nm), using the Automate mosaic building option. For selected mosaics,
an Energy Dispersive X-ray (EDX) mode was implemented, generating maps of elemental
and phase distribution. Microanalysis settings for the EDX collection were set at 300 pm
dwell time, 15kV accelerating voltage and 4 nA filament current. The areas covered by EDX
mapping varied between 4397 and 133023 pum?. The phase extraction procedure involved
conversion of each X-ray map into an RGB colour mode map, its binarization and area
quantification with the ImageJ 1.44 software (Abramoff et al., 2004).

To determine a Representative Elementary Area for estimations of image porosity, a
modified box counting method described in Houben et al. (2013) was applied. With this
method, continuous variations of any given property can be established by gradually
increasing an area of investigation in a two-dimensional space. The box counting was
proceeded for 4 groups of minerals: phyllosilicates, quartz and feldspar, carbonates and pyrite.
The phases were extracted from a mix of RGB-converted EDX elemental maps. For the
purpose of this study an area was selected as representative if the change in the content of an
individual phase in boxes of increasing size did not exceed +/-10% relative to the previous
area.

For each representative mosaic, total image porosity was quantified by digitization of
pore areas manually outlined in the Adobe Photoshop 8.0. The digitization was followed by
binarization and quantification proceeded in the image analysis software ImagelJ 1.44
(Abramoff, 2004). Further statistical analysis was performed using statistical and
mathematical software: Minitab 15 and Excel 2010. For selected mosaics, organic matter

content was quantified with the point counting method using the image analysis software
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JMicroVision 1.2.7. (Roduit, 2008). The point counting was proceeded until 300 counts or
above until no significant change in the OM percentage was observed. For the gas window
sample, the fraction occupied by porous and non-porous particles was additionally point-
counted on two high magnification (10,000 X) image mosaics.

As a result of the limited image resolution at any magnification, not all pores could be
fully visualized in the BIB image mosaics. To account for the missing pores area and
determine the minimum fully resolved pore size in the BIB mosaics at the magnifications
used, a method described in Houben et al. (2013) and Klaver et al. (2012) and based on a
concept of a fractal dimension was implemented. According to this method, all pore areas
were grouped in bins with subsequent bins increased by a power of two and subsequently, the
number of pores were counted and varied as a power of the corresponding pore area. The
unigue power law equation was determined for pores sizes fully resolved and was graphically
represented by a linear regression line(s) defined by a specific slope (D) and interception with
the y axis (C). The minimum pore size fully resolved in images was determined as the one
corresponding to the minimum pore area that does not deviate from the calculated regression
line. For the intraorganic pores, the fractal distribution relationship was used for the
calculation of a missing pore area after extrapolating the corresponding linear regression
equation down to a selected diameter.

The fractal and power law approach was also implemented to scale pore volume as a
function of a cross-sectional area of pore throats injected by mercury (Bernal and Bello,
2001). The use of this approach was justified by the fact that a range of pore areas
progressively injected by mercury exceeds one order of magnitude. Again, the equation

provided by Houben et al. (2013) was used to relate injected pore volume to a pore diameter.

Results

Impact of the research methodology used on porosity estimations

To address the issue of shales heterogeneity on different scales, and to overcome the
limitations intrinsic to each method on its own, the multi-technique approach is required. In
this study all methods were implemented complementarily, probing pores from <1 nmto 5
um in diameter. The information about porosity held by pores as small as 6 nm was obtained
via CO, 195K gas sorption (Rexer et al., 2014). A drawback of such analysis is that it does
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not differentiate between adsorbing phases unless a separate analysis for bulk shale and
kerogen is performed. Mercury injection can be complementary to gas sorption techniques,
but one should consider its limited use for estimating the true pore size distribution of shales
if pore bodies are connected through narrow pore throats (Schmitt et al., 2013). Moreover,
sample compressibility may introduce errors in quantifying porosities (Giesche, 2006).
Mercury injection is the basic method to understand distribution of pore throats and a relation
of pore bodies to pore throats if both intrusion and extrusion are run on a single sample
(loannidis et al., 1991). In this study, the minimum size of pores that were intruded by
mercury is 5.6 nm, leaving all finer pores, pores accessible through throats < 5.6 nm or any
blind pores outside the scope of our experiments (Bustin et al., 2008). To quantify the amount
and distribution of macropores not detected neither through mercury injection nor gas
adsorption, we resolved to microscopic techniques. With the typical minimum resolution in
the order of 100s pixels when analyzing standard polished thin sections under Scanning
Electron Microscope, higher resolutions can only be obtained by polishing samples with Ga
or Ar ions. But even image-based techniques using highly polished samples have limited use
in quantifying total porosities, as they typically only allow to see macropores and larger
mesopores. Still, they provide good overview of the sample mineralogy and fabric and with a
sufficient area, they allow for a qualitative and quantitative comparison of the abundance and
distribution of larger pore bodies between different areas. The most complete pore volumes
and (open) porosities in shale samples can be quantified with bulk methods using Archimedes
Principle and water as a probing fluid. When combined with mercury immersion, this method
detects pores which size exceeds the diameter of water (0.275 nm) and correlates well with
He pycnometry (Rexer etal., 2014).

Shale texture and organic abundance from microscopic observations

Low maturity Posidonia shale from the Hils half-graben is a dark grey, calcareous
mudstone exhibiting macroscopically visible, subcentimetric lamination, marked by the
varied abundance of a carbonate and clay component. Due to the diagenetic phase
redistribution within the mineral matrix and progressive maturation of organic matter
imparting black colour to shale samples, this sub-centimeter lamination is to a large extent
obliterated in rocks of higher maturity. The calcitic component building the shale matrix is
composed predominantly of nanofossils, mainly intact or broken coccoliths and disarticulated

schizospheres, and bears signs of advanced recrystallization in the bottom marlstone and in
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the most calcite-rich laminae of the middle and upper calcareous shale. The majority of
nannofossils forms debris concentrated in thin layers or ellipsoidal aggregates (faecal pellets),
alternating on a micrometer scale with clay rich laminae. The recrystallization features and
the appearance of the carbonate cement are more pronounced both in the low maturity
marlstone and in the higher maturity marlstone and calcareous shale. Those features include
equant calcite crystals, often fused by a contact cement, and abundant authigenic calcite and
dolomite replacing algal cysts, cementing clay and calcite-bearing shale framework and
sealing microfractures.

The type and mode of occurrence of organic macerals change throughout the whole
maturity sequence. In the early oil window sample, structured algal liptinite is the most
distinguishable maceral, but it is volumetrically surpassed by the microscopically unresolved
and mineral associated, strongly fluorescing matrix bituminite (Tao et al., 2012). At the peak
oil window maturity, structured algal bodies are less abundant, either mechanically collapsed
or filled with the carbonate cement. The bituminous groundmass is much less fluorescent and
instead, a dense network of non-solvent extractable solid bitumen fills the inerclay pores and
the fossilliferous aggregates. At the gas window maturity, no structured alginites are present,
and a tight network of irregularly-shaped, non-extractable, solid bitumen is a dominant
feature. The solid bitumen fills microfractures, recrystallized faecal pellets, and spaces within

clay aggregates.

Bulk properties of the shale

The bulk mineralogical composition of the Posidonia samples suite is relatively constant
throughout the whole maturity sequence (Table 3.1 and Figure 3.2). The two most abundant
components, calcite and phyllosilicates, present an interchangeable relationship and show
more drastic variations within single wells rather than between wells. For instance, in all
wells, the lower marlstone unit (Figure 3.1b) shows higher enrichment in calcite in
comparison to clays (~50% and ~25 wt.% respectively), while the middle and upper
calcareous shale present equal proportions of both (30-40 wt.%). Only two phases, dolomite
and sodium rich plagioclase, show increase in abundance while moving towards higher
maturity shale. Despite the variation in the calcite and clay content between units, the
Posidonia shale is unanimously classified as a calcareous nannoplankton-, (calcite cement-),

sit- and clay-bearing mudstone.
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Table 3. 1. The TOC-normalized XRD mineralogical composition of Posidonia shale in wt.% for WIC
(0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). The TOC content (in wt.%) was determined with

LECO.

0|28 2% 9528 8288 (%2 28282822

=0 |25 20220 felEe T | $ofg fefn | £
Quartz 12.4 | 15.1| 11.8| 14.0 78| 146 | 164 12.2| 108| 11.1| 148 | 14.1 7.6
Plagioclase 1.0 0.2 09| 0.6 1.3 1.9 2.0 2.6 37| 24 2.8 3.2 4.5
K-Feldspar 07| 00| 00| 0O| 00| 05| 04| 04| 05| 05| 01| 07| 06
Calcite 324 358 415 381|500 40.1| 39.5| 28.7| 42.2| 495 | 36.8 | 28.5 | 46.3
Dolomite 03| 00| 03| 02| 05| 06| 10| 60| 20| 06| 17| 37| 25
Siderite/
Ankerite 04| 00| 08| 18| 05| 02| 03| 03| 03| 01| 08| 04| 0.6
Aragonite nd nd| 12| nd| 12 nd nd nd nd nd| 0.6 nd| 14
Pyrite 48| 45| 35| 37| 49| 52| 48| 86| 52| 69| 46| 66| 4.2
Marcasite 0.7 nd nd nd nd{ 06| 02| 09| 1.2 nd nd| 0.2 nd
Anatase 03] 0.1 nd| 0.1 nd[ 03] 02] 02| 03] 0.2 nd|[ 0.4 nd
Muscovite 23| 22| 00| 12| 01| 29| 28| 35| 30| 24| 12| 44| 00
Mite +1/S 2171 220] 20.0| 254 175 170 189 24.7| 183 133 221 235 18.1
Kaolinite 104 | 60| 45| 71| 20| 82| 68| 62| 40| 61| 36| 81| 1.0
Dickite nd nd| 11 nd|[ 0.9 nd nd nd nd nd| 1.2 nd| 0.0
Chlorite nd| 04| 18| 02| 16 nd nd nd nd| 00| 0.6 nd| 25
Gypsium nd| 03[ 20| 04] 22 nd nd nd nd| 04| 1.7 nd| 35
Halite nd| 0.1 nd 0 nd nd nd nd nd| 0.1 nd nd nd
TOC 126 | 13.3| 10.9| 7.3 9.7 7.9 6.8 5.8 87| 6.4 741 6.4 1.2
Total 100 | 100( 100| 100 | 100| 100 | 100( 100| 100( 100| 100 | 100 | 100

0.25

0.50

Clays

0.75

Figure 3. 2. Ternary diagram showing the basic mineralogy of the Posidonia suite. Samples taken
from three cores: WIC 7129 (0.53% Ro), HAR 7060 (0.89% Ro) and HAD 7110 (1.45% Ro). Note a
strong alignment of points describing the mutually exclusive relationship between abundance of clays
and carbonates.
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Table 3. 2. TOC, Rock-Eval and grain density measurements for the selected Posidonia samples,
wells WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro).

TOC S1 S2 HI T rax Graln Grain density after
Sample (%) (mgHC/g) | (mgHC/g) | (mgHC/ | (C°) | density | solvent extraction
gTOC) (glem®) (glem®)
WIC 7129 12.59 3.02 90.25 717 427 2.254 2.236
WIC 7133 8.71 2.57 54.90 630 434 2.392 -
WIC 7135 13.27 4.62 84.63 638 427 2.249 -
WIC 7137 10.25 3.18 68.10 665 427 2.343 -
WIC 7139 9.36 2.81 64.95 694 428 2.375 -
WIC 7142 10.43 3.52 72.37 694 426 2.346 -
WIC 7145 10.92 4.18 72.03 660 425 2.331 -
WIC 7147 1.28 2.26 47.76 656 434 2.458 -
WIC 7151 14.75 5.85 89.61 608 429 2.236 -
WIC 7153 7.34 2.45 48.37 659 431 2.489 -
WIC 7155 9.67 3.87 69.41 718 428 2.361 -
HAR 7038 7.90 3.29 30.17 382 449 2.493 -
HAR 7046 6.75 2.93 26.03 386 450 2.526 -
HAR 7060 5.78 1.47 19.72 341 447 2.592 2.682
HAR 7070 8.71 2.26 31.27 359 449 2.463 2.533
HAD 7083 7.35 0.75 4,10 56 465 2.589 -
HAD 7090 7.41 0.94 4.16 56 463 2.572 -
HAD 7094 5.21 0.845 3.52 68 459 2.608 -
HAD 7097 5.40 0.75 3.15 58 458 2.609 -
HAD 7099 6.51 0.98 3.86 59 463 2.576 -
HAD 7101 5.88 0.92 3.1 53 457 2.624 -
HAD 7104 5.04 0.72 3.385 67 459 2.620 -
HAD 7105 5.85 0.77 3.28 56 461 2.621 -
HAD 7110 6.36 1.07 3.79 60 462 2.600 2.618
HAD 7115 6.49 1.12 3.80 59 460 2.614 -
HAD 7119 7.15 1.23 3.16 44 458 2.607 -

Posidonia Shale is a kerogen Type Il, organic-rich rock with the TOC change linked to
the degree of its thermal maturation (Table 3.2). The average organic content gradually
decreases from 10 (+/-2) wt.% at 0.53% Ro (WIC), to 7 (+/-1) wt.% in the peak oil window
(HAR 0.89% Ro) and 6 (+/-1) wt.% in the gas window (HAD 1.45% Ro). A drop in TOC is
accompanied by a consistent decrease in S1 and S2 values, a drop in HI from ca. 662 (+/-33)
in WIC to 58 (+/-6) mg/gTOC in HAD, a rise in Tmax from 429 (+/-3) to 460 (+/-3) °C, and
a decrease in the solvent soluble bitumen from 13 mg/g to 2 mg/g (Table 3.3). For all samples
analyzed, the kerogen-bound but solvent extractable bitumen (S2a) consistently exceeds the
amount of RockEval measured free bitumen (S1), and reduces the yield of the pyrolizable,
but solvent non-extractable organic matter (S2b). For the 4 solvent washed samples, the
corrected oil saturation index decreased from 105 mg/gTOC in the early oil window sample,

to 66 and 102 in the peak oil window samples and 27 mg/gTOC in the gas window sample.
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Table 3. 3. Rock-Eval evaluation after solvent extraction for the four selected Posidonia samples,
wells WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45%R0).

S1+ S2a S1/TOC (mg/gTOC)
Sample S2a (mg/g) g9 % TOC S2b (mg/g)
WIC 7129 10.4 13.20 10.5 79.89 104.8
HAR 7060 4.5 5.89 10.2 15.25 101.9
HAR 7070 3.5 571 6.6 271.79 65.6
HAD 7110 0.7 1.74 2.7 3.05 27.4

S1: Free bitumen
S2a: Kerogen bound, solvent extractable bitumen

S2b: pyrolizable, but not solvent extractable organic matter.

The average grain density of the mineral matrix shows minimal variation between
samples from different wells. In consequence, the observed spread in the measured shale
grain densities is linked to the maturity of the organic matter, organic content and the degree
of saturation with free bitumen. In the investigated sample suite, the measured average shale
grain densities increased from 2.4 (+/-0.1) g/cm® at 0.53% Ro, to 2.5 (+/-0.1) at 0.89% Ro
and 2.6 (+/-0.2) at 1.45% Ro (Table 3.2). Upon extraction of the extractable bitumen phase,
the density increased significantly only in the peak oil window maturity sample, with little

change in samples of two other maturities (Table 3.2).

Total and mercury porosity. Pore throat size distribution

In this study, total porosity and mercury pore size distribution were corrected for pores
intersected by the sample surface, responsible for an increase in the volume of mercury at the
very start of the injection experiment (Figure 3.3b). In order to estimate a true radius of the
onset of Hg intrusion into a porous network within each sample, cumulative mercury volume
data were compared with pore volume density data and pore throat fractal distribution (Figure
3.3). To make a comparison effective, calculated areas of pore throats cross-sectioned by a
theoretical plane were grouped in bins of an increasing size and plotted as a function of pore
volume intruded by mercury (Bernal and Bello, 2001; Houben et al., 2013). The resulting
fractal distribution of Posidonia pore throats was fitted with 2-3 linear regression lines
(Figure 3.3c). The line with the smallest slope (typically < 1.1) describing the largest pores
was interpreted as an artifact, created due to intersection of pores by the sample surface
(Figure 3.6d, e, f). A true injection of Hg to pore bodies is described by a regression line with
a higher slope reflecting increasing pore volume density of progressively smaller pores, and

corresponds to a rise in the pore volume density beyond the background values (Figure 3.3a,
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Figure 3.6a, b, c). Consistently with Comisky (2011), the estimated true radius of intrusion is

up to 3 orders of magnitude lower than the apparent radius determined by the raw data.
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Figure 3. 3. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal
distribution of pores in the WIC 7151 sample (0.53% Ro). Pores exhibit a non-uniform, fractal
distribution with pores > 80 nm (slope -0.8) interpreted as those intersected by the sample surface
(surface roughness) and pores < 80 nm (slope -1.7) interpreted as pores accessed through
corresponding throats.

Total porosities, as measured for as-received shale samples, show a significant change
with increasing maturity over the whole maturation sequence (Table 3.4 and Figure 3.4). At
0.53 Ro% porosities vary between 10-14% and, despite an observed decrease in TOC, decline
to 2.5-4.5% in the peak oil window (0.89% Ro). In contrast, at gas window maturities, with
further reduction of the carbon content, a rise in total porosity is observed. Porosities oscillate
here between 9-14% reaching values similar to those at 0.53% Ro. As observed in Figure 3.4,
with only a small variation in the measured carbon content, porosities are not directly related
to TOC, and only in the early oil window maturity shale do porosities and organic content

show a weak negative correlation. For both peak oil window and gas window samples, the
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porosity values scatter over the measured range of TOC with no apparent trend. Total

porosities show varied relation to bulk mineralogy in samples of different maturities. In

general, there is a positive relationship between calcite content and total porosity, and the

negative relation between porosity and the phyllosilicates content, for both early mature and

gas window samples (Figure 3.5). In contrast, no trend exists for the shale bulk composition

and porosities measured in the peak oil window

Table 3. 4. Porosities measured with different techniques for selected Posidonia samples, wells WIC
(0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro).

Sample Total Mercury Injection CO, 195K
porosity i - - -
(%) Hg porosity Hg access Porosity < Sorption Sorption
(%) radius (nm) 5.6 nm (%) | porosity (%) | pore volume
WICT7129 | 9.72 6.98 9.5 2.77 4.08 0.019
WIC 7133 | 12.76 9.51 131 3.27 - -
WIC7135| 10.12 5.86 8.1 4.28 4.27 0.020
WIC 7137 | 10.62 8.09 8.3 2.53 - -
WIC 7139 | 1353 8.16 8.6 5.39 - -
WIC 7142 | 12.18 8.35 10.7 3.86 - -
WICT7145| 1291 9.46 111 3.47 371 0.017
WIC 7147 | 11.44 10.41 17.1 1.14 3.57 0.015
WIC 7151 10.52 8.18 15.1 2.35 - -
WIC 7153 13.87 11.20 30.3 2.68 - -
WICT7155| 12.64 9.50 18.3 311 3.53 0.015
HAR 7038 | 3.08 1.27 5.2 1.83 2.04 0.008
HAR7046 | 4.58 0.68 34 3.90 - -
HAR 7060 | 4.48 1.96 55 2.54 2.08 0.008
HAR 7070 | 3.52 1.70 5.6 1.83 2.51 0.010
HAD 7083 | 13.68 10.35 13.9 3.35 3.79 0.015
HAD 7090 | 11.24 6.00 8.5 5.32 4.15 0.017
HAD 7094 | 12.13 8.16 10.1 4.00 3.94 0.016
HAD 7097 | 11.87 5.25 6.7 6.65 - -
HAD 7099 | 10.60 3.16 4.2 7.50 - -
HAD 7101 | 11.79 7.57 7.00 4.25 - -
HAD 7104 | 11.63 4.55 5.0 7.12 - -
HAD 7105 | 11.23 6.42 57 4.83 - -
HAD 7110 | 9.43 3.45 4.8 6.01 3.76 0.015
HAD 7115 | 9.30 4.68 55 4.63 - -
HAD 7119 | 11.29 8.34 14.7 2.98 3.29 0.013
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Figure 3. 4. Plot of total porosity change as a function of maturity and organic carbon content.
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composition. Calcite and phyllosilicates contents are not TOC normalized.
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Figure 3. 6. a), b), ¢) Pore volume density distribution of true intrusion pores in the selected
Posidonia samples, wells WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). The mercury data
was cut off ata radius interpreted as the onset of intrusion into a pore network. This corresponds to a
pore radius at which a visible change in the slope of a regression line describing fractal distribution
of pore throats occurs (see Fig 3.3). d), e), f) Fractal distibution of pore throats approximated by a
linear regression line defined by a slope (D) and point of interception with the y axis. In each sample
the regression line characterized by a low slope (<-1.1) defines surface roughness, while the line with
a high slope (>1.8) describes real pores intruded by mercury.
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A non-linear pattern of porosity change with maturity, similar to the one described above,
is observed for porosities intruded by Hg. Here values decrease from 6-12% to 1-2% between
0.53% and 0.89% Ro (Table 3.4). A subsequent increase in total porosity at gas window
maturities is not consistent, with values varying between 3 and 10%. At all maturities, the
threshold aperture, defined as an aperture providing access to > 10% of porosity is narrow,
and usually does not exceed 40 nm of diameter (Table 3.4 and Figure 3.6). In the Wickensen
sample suite, it oscillates between 16 and 37 nm, with the extreme values approaching 60 nm
only in the faecal pellet rich marlstone samples. In the gas window samples, the size of the
aperture is slightly lower, between 8-20 nm, approaching 30 nm in the most calcite rich
shales. The finest pore throats and the narrowest pore throat size distribution characterize the
oil window shale, with the pore throat threshold apertures between 7-11 nm and no influence
of shale lithology on the measured pore volume density (Figure 3.6 b, e). At all maturities,
pore throats show fractal behaviour up to the maximum pore volume density, but its
distribution varies between lithologies and maturities. This variation reflects varied spread of
pore throat sizes (high D with a smaller spread) for any given slope, and a different amount of
porosity contained in the probed pores (high C with higher porosity). In general, pore size
distributions are the narrowest in the oil window shales (high D), and describe the lowest
porosities (low C for any given D) (Figure 3.6b). A major change between samples of
different maturity is seen in the size of pore throats providing the highest differential increase
in porosity. Between 0.53% and 0.89% R, this size decreases from 9-17 nm to 6-7 nm
(Figure 3.6a, b). Amongst the lowest maturity shale, only marlstone samples exhibit
differential maxima at pores that are much wider, up to 34 nm. Similarly to the low maturity
well, at the gas window maturity a size of pore throats contributing the highest porosity value
is similar for all calcareous shale samples, oscillating between 6-12 nm, with the exception of
the marlstone sample, where this diameter reaches 22 nm (Figure 3.6¢). High contribution of
pore bodies within the maximum pore volume density intervals of the low and high maturity
shale is indicated by the presence of mercury hysteresis (Figure 3.7a, b). Such hysteresis
associated with spontaneous imbibition is controlled not by a pore throat radius, like during a
drainage stage, but by a pore body/pore throat ratio (Webb, 2001). The increase of this ratio
is interpreted as reflecting entrapment of mercury in pore cavities, causing pores to empty at
capillary pressures lower than the corresponding intrusion pressures (Padhy et al., 2007). As
shown with the curve plotting difference between porosity intruded and emptied during
intrusion-extrusion experiments at equivalent pressures, as a function of pore radii (Figure

3.7¢), the absolute amount of trapped mercury, due to a small rate of extrusion, initially
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increases. When a threshold diameter is reached (here 34 and 27 nm for WIC and HAD
samples respectively), the rate of extrusion exceeds the rate of intrusion at equivalent
pressures, and mercury starts to recede from pores that could not be emptied before (Padhy et
al., 2007). The curve shows that 90% of porosity in the lowest and highest maturity Posidonia
is not emptied before pressure equivalent to the threshold diameter is reached. Such high
percentage of the trapped mercury reflects either the high volume of the pore bodies, or
alternaively, high compressibility of the studied shale and the embedded organic matter
(Toda and Toyoda, 1972).

a) b)
00801 i 027 = HAD 7110 Intrusi
'y = WIC 7129 Intrusion n ruSIQn
~ 0.035 [? e, e WIC 7129 Extrusion e HAD 7110 Extrusion
= [ %0, > 0.020 H 'q,...
€ 0.030 - 1 hat LTS = 1 o,
= - o0 4, é
(4] = ° ®ee
£ 0.025 4 u o 0.015 [ ®ee, * oo
=1 H g .
§ . [ S o010 .
L] > ! |
L 00151 H - L1
E=] H 2 %
c_g 0.010 . < 0.005 !
>
g 0.005 + h.--......... ., g RS Sy gEE B I.....
O (.0004 " O 0.000+ .
T T T T
1 10 100 1000 10000 1 10 100 1000 10000
Equivalent pore throat radius (nm) Equivalent pore throat radius (nm)
C) 0.10 -
- = WIC 7129
bl
S sl P ra ., + HAD 7110
o ‘: : ..... " -
E c n ... LI I I .
o O L oo "
- & 0.06- e ®04 o0
8 g on e o o o
L]
>E .
2 £ 004 °n
) o
= C om
g o> :
o £ %% o™
Q=
= 3
53 H
= 0.00
E T T T
]
o 1 10 100 1000

Equivalent pore throat radius (nm)

Figure 3. 7. Cumulative intrusion (black) and extrusion (red) of mercury for a) WIC 7129 0.53% Ro
and b) HAD 7110 1.45% Ro shale. The mercury data were normalized to the true volume of intrusion
after cutting off the pore volume data interpreted as representing surface roughness. Difference
between the two curves is defined as a hysteresis. ¢) Cumulative porosity that is not emptied from
mercury during the imbibition from the WIC 7129 (black) and HAD 7110 (red shale). The curve plots
difference between porosity intruded and emptied during the intrusion-extrusion experiments at
equivalent pressures as % of a rock. For pores with a radius < 16.8 nm the rate of extrusion < rate
of intrusion and thus fraction of mercury is trapped. Note that in during the imbibition process the
absolute amount of mercury that is not released at the intrusion pressure initially increases. For
pores with a radius > 16.8 nm for WIC and > 13.5 nm for HAD the rate of extrusion > rate of
intrusion, causing emptying fromthe previously trapped mercury at lower pressures attained.
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The amount of total porosity present in the Posidonia shale changes after extraction of
the soluble bitumen with organic solvents. Although not measured directly, on the basis of a
change in the grain volume of a bulk shale pre- and after solvent extraction we were able to
estimate the volume of the soluble bitumen and thus bitumen-free total porosity for three
samples of the medium (HAR 7060, 7070) and high maturity (HAD 7110). Because we did
not notice any increase in the grain density of the early mature sample after solvent extraction,
plausibly due to change in the polymer structure upon interaction with the solvent (Sandvik et
al., 1992), we could not estimate bitumen-free porosity in the Wickensen shale. For the peak
oil and gas window shale, the amount of the extractable bitumen decreased from 2.8% in the
bottom marlstone and 3.4% in the middle calcareous shale at the peak oil window maturities
to 0.68% (upper calcareous shale) in the gas window (Table 3.5 and Figure 3.8a).
Consequently, the estimated bitumen-free total porosities are higher than those measured in
the as-received shale (Table 3.4), amounting to 6.3-7.8% and 10.1% in the peak oil window
and gas window maturity samples respectively (Table 3.5). As generation and expulsion of
hydrocarbons leads to loss of OC (Raiswell and Berner, 1987), the measured and bitumen-
free porosities were compared to potential porosities that would characterize shale of a given
maturity stage by assuming perfect expulsion of generated petroleum (Table 3.6). The loss of
OC inwt.% was calculated according to Justwan and Dahl (2005) and Jarvie et al. (2007) and
converted to OM (vol.%) according to Coskey (2001). The calculated Transformation Ratios
(TR) of the Posidonia kerogen are as follows: 5% for WIC 7129, 63% for HAR 7060, 73%
for HAR 7070 and 96% for HAD 7110. These TR show agreement with a reference kinetic
curve for type 11 kerogen from the Toarcian of Paris Basin as well as TR estimated for other
shale formations at an equivalent maturities (Modica and Lapierre, 2012, their Figure 3.8).
The conversion of accumulated OM from wt.% to vol.% vyielded potential organic porosity
values. Those increase from 0.8% in Wickensen to 7-8% in Harderode and further to 13% in
Haddessen (Figure 3.8b). Assuming the initial porosity of the low maturity shale 10% (Table
2.4), the estimated increase in total porosity between 0.53-0.89% Ro is inconsistent with a
measured drop in oil-free porosities in the oil window (Figure 3.8c). In contrast, the
calculated increase in the organic porosity by absolute 4 % between maturities 0.89-1.45%

matches an increase experimentally measured in the gas window shale (Figure 3.8d).
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Figure 3. 8. a) Total porosity prior (black) and after extraction of soluble bitumen (sum of black and
grey) in the peak oil window HAR (0.89%) and gas window HAD (1.45%) shale. Post extraction total
porosity was estimated on the basis of a change in the grain volume of a bulk shale pre- and after
solvent extraction. Sorption porosity occluded by extractable bitumen was measured by comparing
gas sorption porosity prior and after solvent extraction. b) A hypothetical organic porosity (in wt.%)
present in shale of different maturity as a result of thermal decomposition of organic matter. The
organic porosities were calculated according to equations of Jarvie et al. (2007) and Coskey (2001).
TOC for each sample was restored to original values according to Justwan and Dahl (2005). c)
Potential organic porosity (sum of black, grey and white) for 0.53% Ro (WIC 7129), 0.89% (HAR
7060) and 1.45% R, (HAD 7110), superimposed on experimentally measured porosities (black). The
initial inorganic porosity was assumed 10%, and total porosities were estimated as a sum of the
initial porosity and organic porosity characteristic for each maturity step. Difference between
potential total porosities and measured total porosities are due to occlusion by solvent extractable
bitumen (grey), as well as combined compaction and occlusion by solid bitumen (white). d) Similarity
between potential organic porosity for the gas window shale and the sum of the potential organic
porosity of the peak oil window shale (black) and measured increase in total porosity between the two
shales after accounting for the solvent extractable bitumen occluding pores (grey).
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Table 3. 5. Estimated total porosities and measured sorption porosities after solvent extraction for the
selected Posidonia samples, HAR (0.89% Ro) and HAD (1.45% Ro). Difference between pre- and
post-extraction porosities yielded volume of extractable bitumen occluding porosity.
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HAR 7060 7.84 3.36 3.19 111 0.35 0.33
HAR 7070 6.27 2.75 3.35 0.85 0.25 0.31
HAD 7110 10.11 0.68 4.55 0.79 0.17 ~1.00

Table 3. 6. Determination of potential organic porosity at different stages of thermal maturity for
selected samples of WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro) using equations of
Justwan and Dahl (2005) Jarvie et al. (2007) and Coskey (2001). S2b — hydrocarbon potential of
post-extracted shale, TR — Transformation Ratio, GOC — Generative Organic Carbon.

Sample S2b Hl o Hipd | TOCo | TOCpd | TR | GOC | Organic | Organic

(mg/g) | (mg/g) | (mglg)' | (%) (%) porosity | porosity
(wt.%) | (vol.%)

WIC 7129 | 79.9 650 635 12.97 1259 | 0.05 | 0.55 0.37 0.83

HAR 7060 | 15.3 600 264 9.23 5.78 0.72 | 0.51 3.41 7.08

HAR 7070 | 27.8 600 319 12.83 8.71 0.63 | 0.50 4.07 8.46

HAD 7110 3.0 620 48 13.05 6.36 0.96 | 0.53 6.62 13.04

*HI pd was estimated on the basis of S2b, after extraction of soluble bitumen.

Micro- and mesoporosity. Gas adsorption

Significant part of porosity is not detected by Hg and thus might be blind or
contained/accessible through pores < 5.6 nm (Table 3.4). This porosity accounts for as much
as 10-42% of total porosity in the least mature samples, and 52-59% at the peak oil window.
In the gas window, < 5.6 nm porosity shows the highest spread, accounting for 25-71% of
total porosity. While in both mature and overmature shale, lower values of the < 5.6 nm
porosity are characteristic for the bottom marlstone, in the WIC sample suite we found no
porosity difference between lithologies. In order to investigate nature and connectivity of the
< 5.6 nmpores, shale porosities were measured with the low pressure CO, 195K gas sorption.
The sorption porosities (SP) showed overall agreement with porosities that lie beneath the
resolution of the mercury injection (MP-1) in shales of all maturities (Tab. 3.4 and Figure
3.10). This agreement suggests that the combination of sorption and mercury techniques can
account for the total pore volume measured in the Posidonia shale and that the size of the

pores fully filled with adsorbing gas at CO, 195K lies below and close to 5.6 nm.
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Figure 3. 9. a) 195K CO, isotherms for selected WIC 0.53% Ro (circles), HAR 0.89% Ro (triangles)
and HAD 1.45% Ro (rectangles) shales. The x-axis represents the relative pressure, while the y-axis
represents concentration (in mmol/g) of CO, adsorbed at the temperature of 195K. Samples were not
solvent extracted prior to analysis. Peak oil window shales (HAR) show lower sorption than early oil
window (WIC) and gas winodw (HAR) counterparts. b) CO, 195K isotherms for 7129 WIC 0.53% Ro
(circles), 7060 HAR 0.89% Ro (triangles), 7070 HAR 0.89% Ro (rectangles) and 7110 HAD 1.45%
Ro (diamonds) shales measured prior and after solvent extraction (ext). Non-extracted shales show
higher sorption than extracted shales at all maturities.

All captured CO; isotherms are type | (Sing et al., 1985), that is they demonstrate
evidence for the presence of microporosity filled at the lowest pressures and little surface for
further adsorption at higher pressures (Figure 3.9a). Sorption pore volumes measured at 1
mbar and corresponding sorption porosities (SP) exhibit a non-linear change with the
maturation of the shale, similar to the trend observed for measured total (TP) and mercury
porosities (MP) (Table 3.4 and Figure 3.10). These volumes decrease from 0.015-0.029 cm®/g
at early oil window maturities to 0.008-0.010 cm®/g in the peak oil window, followed by a
rise to 0.013-0.017 cm/g in the gas window samples. Consistently, calculated sorption
porosities bottom out in the oil window at 2.0-2.5 %, and amount to 3.5-4.3% and 3.3-4.1%
for the early mature Wickensen and the gas window Haddessen samples, respectively.
Sorption porosity shows no correlation to TOC between maturities and despite indication for
the predictable change of porosity with the TOC change within wells, due to a small sample
size we cannot be conclusive about the true nature of this relationship (Figure 3.11a).
However, a positive covariation was found for the combined TOC and clay content and
sorption porosity for both the early oil window and the gas window shale (Figure 3.11b).

After solvent washing, performed for 4 shale samples, the concentration of the adsorbed gas
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increased (Figure 3.9b), resulting in an increase in the calculated sorption porosities at all
maturities (Table 3.4). For the least mature sample, as the structure of kerogen might have
been affected by the solvent, we did not calculate the post-extraction porosity value. In the
remaining samples, the calculated sorption porosity occluded by the extractable bitumen
oscillates between 0.8-1.1%, constituting 25-35% of the oil-free sorption porosity in the peak
oil window samples and 17% in the gas window sample. In total, while only 31-33 vol.% of
the extractable oil in the peak oil window shale is contained in sorption pores, in the gas

window sorption pores hold all the residual extractable bitumen (Table 3.5 and Figure 3.8a).
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Figure 3. 10. Comparison of total porosity, Hg porosity, part of total porosity not accessible to
mercury (< 5.6 nm) as estimated from the Mercury Injection Capillary Pressure analysis (MICP) and
CO, 195K sorption porosity, for selected samples of three different maturities: 0.53% (WIC), 0.89%
(HAR) and 1.45% (HAD). The sum of CO, 195K sorption and Hg porosities approximate total
porosities.
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Figure 3. 11. a) A lack of relationship between TOC and sorption porosity in the Posidonia WIC
7129 0.53% R,, HAR 7060 0.89% R, and HAD 7110 1.45% R, shale. b) Positive correlation between
sorption pore volume and the content of organic carbon and phyllosilicates in the WIC and HAD
shales.
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Meso and macroporosity in FIB-and BIB-SEM images

Mineralogical composition from SEM images. Estimation of the Representative
Elementary Area

Acquisition of the elemental composition via EDX mapping provides an important
geological background for XRD analyses and enables to cross-check the petrophysical data.
Therefore, three samples of different maturity (WIC 7129, HAR 7060, HAD 7110) were
selected for both EDX mineralogical assessment and BIB-SEM porosity measurements.
Although the samples exhibit a similar clay/phyllosilicate ratio (0.8-0.9) and thus the
differences in their mineralogical may be neglected, their texture varies. For the samples
selected for the analysis, the higher maturity shales show stronger recrystallization of
biogenic calcite and more pronounced presence of large nannofossil-rich aggregates.

To determine the Representative Elementary Area that could yield representative
porosity values and distribution of pores in the shale matrix, for each sample, a mix of EDX
maps was used (Figure 3.12). The estimation of the REA did not include organic matter
grains which remained largely unresolved in the EDX maps. The box counting was
performed twice for each sample, starting froma point chosen at random, and proceeded until
a relative change in the content of a particular phase did not exceed 10% (VVandenBygaart and
Protz, 1999). During the analysis it was found that the scale of a change in the content of the
mineral phases depends on a thickness of the alternating nannofossil aggregates and clays
microlaminae. In the three samples, the calculated change in the content of the three mineral
groups taken into account, phyllosilicates, quartz and feldspar, and carbonates, decreased to
10% or below for areas covering 5985 um? or more (Table 3.7 and Figure 3.13). Much larger
areas were required to reduce the relative change in the mineral content below 5% - 39577
un? for WIC, 23941 pum?® for HAR and 35302 pm? for HAD. Only for pyrite, relatively
scarce and scattered (Figure 3.12), did the change remain significant (> 10% change) for
areas smaller than 31271 pm?® in the HAD sample and 12215 pm? in the WIC and HAR

samples. For the purpose of this paper, 5985 pm’ area was established as representative.
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Figure 3. 12. A mix of X-ray maps (RGB colour mode) displaying distribution of various shale
components. The bedding plane in all images is horizontal. a) WIC 7129 0.53 Ro, b) HAR 7060
0.89% Ro, ¢) HAD 7110 1.45% Ro. At all maturities samples exhibit visible fabric anisotropy with
well-defined microlamination marked by the alternation of calcite- (blue) and clay (green) lamina ,

and in the lower maturity samples, organic matter wisps (pink).

Table 3. 7. Minimum areas for which a relative change in the mineralogical composition does not
exceed 5% and 10%. Samples investigated include WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and

HAD 7110 1.45% Ro.

Area pm°

Variance <10 % Variance <5 %

£ £
2 28 |5 |8 . a8 |5 3 .
£ .8 £ 3 £ =8 = 5 £
& g% S & & £ S & &
WIC 7129 | 1954 4397 5985 12215 14780 9894 39577 53869
HAR 7060 | 5985 3054 3054 12215 7818 20644 23941 31271
HAD 7110 | 5985 5985 5985 31271 7818 12215 35302 53869

Table 3. 8. Comparison of EDX Representative Elementary Area phase composition and bulk
mineralogical composition retrieved from XRD. XRD mineral contents were converted to vol.% of
rock using standard grain densities of composite minerals. Numbers in brackets show standard

deviation for EDX mineral content estimation.

588 9 T e
Method EDX XRD EDX XRD EDX XRD EDX XRD
\7/\{I2C9: (+2/f14) 26.0 (+/? 3) 109 (j_O 6) 2438 (+/:f’ 1) 20
?0%5 (+:;’_53) 315 (Jj_o y | 13 (5_29) 3L6 | (4 /‘_‘ y | 42
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Figure 3. 13. Change of the mineralogical composition within areas of progressively increasing size
as retrieved from EDX maps of three selected shale samples. Measurements reflect % change of a
parameter between two successive areas. Phases investigated include phyllosilicates (a), carbonates
(b), quartz and feldspar (c) and pyrite (d).

Because of the laminated character of the Posidonia Shale on a sub-centimetre scale,
with a single lamina reaching a few mm, an average EDX composition of the graphically
determined Representative Elementary Area is similar but not thoroughly consistent with the
volume converted XRD values using standard mineral grain densities. As seen in Table 3.8,
the estimated composition shows scatter when calculated for several different areas of the
same sample. In general, in the Wickensen shale, where the sub-centimetric lamination is
well preserved, light laminae show higher concentration of calcite (34 vol.% *2) and lower
content of clays (22 vol.% +4), while the dark laminae show more constant proportion of

both (24 £3 and 27 £2 vol.% respectively). In the two higher maturity samples, despite that
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the lamination no longer can be distinguished, higher carbonate values are associated with
laminae enriched in fecal pellets. Because the sub-centimetre scale lamination was not
captured during standard EDX mapping and probability of introducing errors related to the
acquisition and processing stage is high, this technique cannot be considered as a valid
quantitative mineral analysis. First, a substantial error may be introduced when quantifying
porous phases, not only due to the presence of unresolved micropores (clays, faecal pellets),
but also due to a signal sent from pore walls (faecal pellets). Moreover, post-acquisition
phase thresholding and extraction may distort the results if the limited image resolution
prevents from setting correct threshold values. Finally, limited resolution of EDX maps may
introduce additional inaccuracies in calculations of fine phases below or close to the
resolution of EDX maps. The largest discrepancy between our EDX and XRD results lies in
the Quartz (Qtz) and Feldspar content. Consistently, lower quartz content in the acquired
EDX maps may be ascribed both to the low-scale sample heterogeneity (presence of large
silt-size quartz grains not sufficiently represented in SEM images), limited resolution of the
EDX maps for detecting small authigenic and detrital quartz grains as well as phase

extraction errors.

BIB-SEM porosity. Pore size distribution of meso- and macropores

Pore types were point counted on representative elementary areas with a pixel size 15 nm.
For the low maturity shale, the quantification was proceeded on a light lamina (Figure 3.12a).
All pores resolved by images were classified based on their spatial relation with respect to the
mineral phases and organic matter using classification of Loucks et al. (2012). For the
purpose of this study we adapted the following definitions of pore types:

e Interparticle — 1) pores between detrital grains, authigenic minerals, nannofossils and
clay flakes; 2) pores (in 2 or 3D space) associated with the interface of organic matter
and mineral matrix that visibly do not extend into an organic particle;

e Intraparticle — 1) pores within single mineral grains or fossil bodies; 2) pores within
well-defined faecal pellets and pyrite framboids; 3) moldic pores formed due to
dissolution of mineral phases; 4) pores at the interface of the inorganic matrix and
organic macerals that do not visibly extend into an organic particle, contained within a
fossil body, faecal pellet or pyrite framboid;

¢ Organic — 1) discrete, round, bubble-like pores in the organic matter; 2) sponge- like

pores within the organic matter, often interconnected and grouped; 3) irregularily
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shaped pores, often from the interface of the organic matter and mineral matrix,

visibly extending in 3D into the organic mass; 4) visible cracks within OM particles,

often with jagged edges and extending into the particle edge.

Table 3. 9. Binarized BIB/SEM image porosities and point-counted relative contribution of different
pore types of selected Posidonia shales samples: WIC 7129 (0.53% Ro) HAR 7060 (0.89% Ro) and
HAD 7110 (1.45% Ro) samples. The minimum fully resolved pore size is 100 nm, except for the
intraorganic pores of the HAD sample - 50 nm.

Sample Area BIB BIB image Extrapolated | Intraorganic | % ofinter-,
(um?) image porosity as intraorganic porosity as | intraparticle
porosity | fraction of porosity (>6 fraction of and organic
(%) total porosity nm) (%) total porosity pores
WIC 7129 | 96x70 | 0.7 0.07 - - 47-53-0
HAR 7060 | 96x70 | 0.6 0.13 - - 44-43-13
HAD 7110 | 96x70 | 1.1 0.12 - - 36-40-24
HAD 7110 | 153x96 | 0.2 0.02 1.7-3.1 0.18-0.33 -
Intraorganic

1.00/

7

0.00

7
0.25 0.50

Organic

Figure 3. 14. Terary diagram showing contribution to porosity of three pore types as resolved in
BIB-SEM micrographs (pixel size 15 nm) in three Posidonia shale samples: WIC 7129 (0.53%)(black
circle), HAR 7060 (0.89%) (red circle) and HAD 7110 (1.45%) (green circle).
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Figure 3. 15. Backscattered electron micrographs (L) of shale samples polished with the Argon BIB.
Secondary electron micrographs (R) show details of porosity distribution within areas outlined with a
blue rectangle in BSE micrographs. The bedding plane in all images is horizontal. a)(WIC 7129):
Calcareous shale (light lamina) with disseminated faecal pellets alternating with clay material, silt-
size quartz, pyrite framboids and sparsely disseminated calcite. b) Pores are found within fossil
aggregates, locally within pyrite framboids and in the organoclay-rich matrix with dispersed fossils.
c) (WIC 7129): Calcareous shale (dark lamina) enriched in the clay material admixed with organic
matter, with disseminated silt-size quartz, pyrite framboids and calcite fossils. d) Pores are dispersed
in an organoclay matrix with dispersed calcite grains and accumulated in fossil bodies. e) (WIC
7129): Calcareous shale (light lamina) with recrystallized fossiliferous aggregates alternating with
organic and clay laminae. f) Pores in diagenetically changed fossil aggregates can reach 3 um in
diameter. Note lack of organic material lining the pores. g) (HAR 7060): Calcareous shale with
densely packed nannofossil aggregates. Partial recrystallization of the nannofossil rich shale matrix
and presence of calcite and dolomite cement all indicate diagenetic transformation of the original
material. h) Pores in recrystallized fossil aggregates occur at the interface with organic matter filling
the intragranular space. i) (HAR 7060): Calcareous shale with alternating calcite-and clay laminae.
Fossiliferous aggregates are to a large extent recrystallized and locally cemented. j) Pores are
encountered within fossiliferous aggregates as well as within pyrite framboids. k) (HAD 7110):
Calcareous shale with recrystallized fossils and authigenic carbonate phases replacing the original
fabric. ) The porosity is encountered between pyrite crystallites in pyrite framboids, within well-
defined diagenetically changed fossiliferous aggregates as well as within shale matrix. m)
(HAD7110): Calcareous shale with a strong diagenetic overprint. n) Typically porous zones include
fossiliferous aggregates and organic particles. o) (HAD 7110): Common features of a diagenetic
overprint in the Posidonia shale. Biogenic calcite in faecal pellets (top and bottom) is much
recrystallized, and locally cemented. New dolomite phases are replacing the original fabric. p)
Organic matter (outlined) spans from non-porousto highly porous.
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Pore network types change throughout the maturity sequence from exclusively inter- and
intraparticle in the low maturity sample (47 and 53% of the inter- and intraparticle pores
respectively), to inter- and intraparticle dominated in the peak oil window (44 and 43%
respectively), and finally to inter- and intraparticle-rich with moderate proportion of organic
pores in the sample of the gas window maturity (36, 40 and 24% respectively) (Table 3.9 and
Figure 3.14). In the least mature sample inorganic porosity is associated mainly with the
aggregates of biogenic calcite (Figure 3.15a-f), significantly recrystallized in the carbonate
rich laminae and in the lower marlstone (Figure 3.15a, b, e, f). Moreover, pores are found at
the interface of mineral phases and the organic matter, within pyrite framboids (Figure 3.15b),
and are occasionally lined with organic matter. Moving towards peak oil window maturity,
slit-shaped pores from the interface of the organic matter and mineral matrix, mainly found
within calcite domains, predominate (Figure 3.15g, h), with rare porosity within pyrite
framboids (Figure 3.15i, j) and very rare within organic matter in the form of cracks and
fractures. In the gas window sample, intraorganic pores appear in the form of discrete,
spongy and irregular pores (Figure 3.15m-p), and interface pores gain in significance. Most
of the visible pores are found within inorganic domains, with calcite and pyrite as locations of
their highest density (Figure 3.15k-n).

Image extraction and binarization of the visible pores provided information about
porosity, pore shapes, pore sizes, and pore size distributions. To compare between mosaics
covering a representative area (Figure 3.15a, g, k), and acquired at the magnification 6,000x
with a pixel resolution 15 nm, we took into account only fully resolved pores. Their
minimum size was estimated after grouping all pore areas into bins of an increasing size and
plotting them as a function of pore numbers (Houben et al., 2013; Klaver et al., 2012). At all
maturities, fractal distribution of fully resolved pores was approximated by one linear
regression line, with a slope varying between -2.38 in WIC, -2.42 in HAD to -2.55 in HAR
(Figure 3.16, Figure 3.17a). As pores smaller than 100 nm could not be linearly fitted, this
diameter may be interpreted as the minimum pore diameter fully resolved in our REA images
(Figure 3.16).
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Figure 3. 16. Typical distribution of pores from BIB-SEM mosaics of the Posidonia shale samples. An
area of investigation covers the size of an estimated Representative Elementary Area (96x70 pn).
Fully resolved pores (red circles) are fitted with a linear regression line defined by a slope (D) and a
point of interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate
fromthe linear regression line estimated for the fully resolved pores.

The resolved image porosity does not show significant difference between samples of
different maturity, amounting to 0.7% in a light lamina of the Wickensen shale, and 0.6% and
1.1% in Harderode and Haddessen samples respectively (Table 3.9). Although the equivalent
median diameter of resolved pores does not vary substantially, reaching 160 nm in WIC and
HAD and 150 nm in HAR (Figure 3.18a), pores are twice as elongated in the last (Table 3.10,
Figure 3.18b). In each shale a differential distribution of pore sizes shows a single maximum
located between 280-400 nm in WIC and HAD and 200-280 nm in HAR (Figure 3.17b). To
verify what factors determine the position of this maximum, pores from 4 additional mosaics
(Figure 15¢c, i, m, o) with an area < REA and estimated practical image resolution 50 nm
(mag. 10,000 x), were binarized and their differential size distribution was plotted as a
function of pores area. From the Figure 3.17c it stems that for the Wickensen sample, a dark
lamina characterizes with larger contribution of porosity held by pores < 300 nm and thus
their distribution is skewed towards smaller pores. In contrast, in a more recrystallized light
lamina, the absolute amount of porosity held by finer pores is smaller, and thus the
distribution is skewed towards larger pores. In the peak oil and gas window, the impact of an
original texture is obliterated and there is little shift of the maximum pore density between

different sample areas.

100



logN/bin

logN/bin

b . 0.014 4

14 = WIC7129:D=-2.30,C-1.4 —u— WIC 7129 0.53% RO
e HAR 7060: D =-2.50, C -0.2 0.012 4 —e— HAR 7060 0.89% Ro
12 HAD 7110: D = -2.34, C -1.1 : HAD 7110 1.45% Ro
-13 4 -, 0.010+
‘U:‘J .’/,o\ -
14 £ 0.008 / 2%
5 /N
© H °
-154 @ 0.006 -
g / \
.16 © \ '\"
o 0.004-
<] \ \
171 o 0.002 oo %
e —a
-18 4 e
18 0.000 - o
-19 T T T T T T " ’ y
40 45 50 55 60 65 70 75 10 100 1000
2 Equivalent radius (nm
log area (nm”) q (nm)
C. 0.036 —=— WIC 7129 0.53% Ro REA LL
0032 A_A L —=— WIC 7129 0.53% Ro <REA DL
: /‘\ —e— HAR 7060 0.89% Ro REA
2 0.028 A A —e— HAR 7060 0.89% Ro <REA
D \ HAD 7110 1.45% Ro REA
© 0.024- A/ .| —A—HAD 7110 1.45% Ro <REAL
<] / —A— HAD 7110 1.45% Ro <REA2
0.020 A
o /
e
C 0.016
£ A . N
3 00124 / . - .
E 0008 Yy =
.008 - Z .
S = '/6/'}/\ . ® \'\
- -,
O 0.004 " \.\” .
0.000 , b R
10 100 1000
Equivalent radius (nm)
-10 - @, 0.0045-
HAD 7110: D -2.7, C -.0.4 00040 ™ |-m—HAD 71101.45% Ro |
-11 4
0.0035 -
2 "
@ 0.0030
-12 4 c
12 % \
0.0025 - n
©
3 T
134 & 0.0020 L]
e
S 0.0015
-14 4 o
0.0010 -
L]
<15 4+— T T T T T T T T 1 0.0005 T T T T Y
36 38 40 42 44 46 48 50 52 54 20 40 60 80 100 120

log area (nm?)

Equivalent radius (nm)

Figure 3. 17. Distribution of pore sizes of BIB-SEM image pores for three samples WIC 7129 0.53%
Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. a) Fractal distribution of pores > 100 nm with
the line of the best linear fit described by a slope (D) and intercept with the y axis (C). The BIB-SEM
images were captured at the magnification 6,000x and cover an estimated REA. Note that porosity >
100 nm approximates inorganic hosted porosity in all samples. b) Differential pore size distribution
as a function of an equivalent radius. Note descending pore area density of pores <400 nm diameter.
c) Differential pore size distribution as a function of an equivalent radius. The BIB-SEM images were
captured at the magnification 10,000x (< REA, >50 nm) or 6,000x (REA, >100 nm) (LL — light
lamina, DL — dark lamina). d) Fractal distribution of image intraorganic pores (> 50 nm) for the
HAD 7110 1.45% Ro shale. The BIB-SEM images were captured at the magnification 10,000x
covering the estimated REA. e) Differential size distribution of intraorganic pores as a function of an
equivalent radius. Note ascending pore area density of all resolved pores (> 50 nm).
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Figure 3. 18. Distribution of a) equivalent diameters and b) aspect ratios of BIB-SEM image pores
for three samples WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. The
histograms represent pores with a diameter above the practical image resolution. The magnification
of a single image is 6,000x for histograms representing all pores, and 10,000x for a histogram
representing intraorganic pores only. Frequency denotes number of pores with the characteristic
measured within a specific bin.

Table 3. 10. Median equivalent diameter and aspect ratio of pores resolved fully resolved in BIB-SEM
images for WIC 7129 (0.53% Ro) HAR 7060 (0.89% Ro) and 7110 HAD (1.45% Ro). The minimum
fully resolved pore size is 100 nm, except for intraorganic pores of the HAD sample -50 nm.

Sample Median equivalent diameter Median aspect ratio
(hm)
WIC 7129 161 2.2
HAR 7060 148 4.0
HAD 7110 161 2.3
HAD organic 73 1.8

At magnification 6,000x%, the majority of resolved image porosity lies within inorganic
domains and thus a size distribution of visible pores approximates size distribution of
inorganic pores. Such approximation does not include potential clay pores, as those remained
unresolved in mosaics at all times. Similarly, little is known about intraorganic pores, which
due to their small sizes (< 200 nm) account for merelyl7% of the image porosity (> 50 nm)
in the overmature shale (Table 3.9). To gather information about size distribution of pores
contained within organic particles, separate distribution curves were constructed with all the
inorganic porosity excluded. The resolved organic pores show fractal distribution, with a
slope of the line of the best linear fit approaching 2.7 (Figure 3.17d). In contrast to the
inorganic pores, differential pore size distribution of intraorganic pores shows no maximum,

and pores of a decreasing size contribute progressively more porosity (Figure 3.17e).
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Fully resolved image porosities contained in pores > 100 nm constitute only 7, 11 and
10% of the physically measured total porosity for the investigated WIC, HAR and HAD
samples, respectively. Comparison of image and mercury injection derived cumulative and
incremental porosity curves show that > 100 nm image pore bodies are 1-3 orders of
magnitude larger than pore throats ‘seen’ by the mercury injection experiments, and thus that
they are not directly connected (Figure 3.19a, b). Lack of such connectivity is consistent with
a differential distribution of image resolved pores, showing decreasing contribution to
porosity of pores below 200 nm (Figure 3.17b). Likewise, due to a limited resolution of the
mosaics, we found no quantitative evidence for the connectivity between intraorganic pores
or their direct connectivity with the inorganic pores. However, using the fractal relationship
of the resolved intraorganic pores with a diameter > 50 nm, we assumed a similar fractal
behavior of the unresolved intraorganic pores and extrapolated the log pore area-log N
relationship towards finer pore sizes (Figure 3.19c). The limit of our extrapolation was set at
the diameter 6 nm, corresponding to the maximum pore volume density in the mercury
differential pore size distribution curve (Figure 3.6¢). The results show that if the unresolved
but extrapolated organic pores follow the same distribution as resolved pores, the intraorganic
pores could contribute 1.7-3.1% porosity in the pore size range 6-300 nm, bringing overall
18%-33% to the total porosity in the overmature shale and yielding an average porosity of
organic matter 24%. Moreover, because combined inorganic and extrapolated organic
porosities approximate experimentally measured mercury porosity (Figure 3.19d), it stems
that intraorganic pores could account for the increase in the mercury porosity below < 40 nm

and provide connectivity within the overmature shale pore system.
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Figure 3. 19. Comparison of cumulative porosity (a) and pore size distribution (b) obtained from
mercury injection (> 5.6 nm diameter) and image analysis (> 100 nm diameter) covering the REA for
three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. c) Extrapolation
of a line of the best linear fit describing distribution of intraorganic pores to a diameter 6 nm. d)
Comparison of cumulative porosity obtained from mercury injection (> 5.6 nm diameter) (black) and
image analysis with inorganic (> 100 nm) and intraorganic (>6 nm) porosities superimposed. The

red line denotes the minimum value of the extrapolated image porosity, while the green line — the
maximum value.

Distribution of image porosity in various shale domains

Low maturity Posidonia shale exhibits fine-scale lamination of clay-rich packages,
alternating with calcite-rich laminae of biogenic origin, differentiated by varied proportion of
both components (Figure 3.12). As clay packages are not visibly internally porous at any
maturity (Figure 3.15), we encountered no correlation whatsoever between EDX derived
phyllosilicates content and image porosity, regardless of maturity (Figure 3.20a). Likewise,
no correlation was found for pyrite, despite porous nature of pyrite framboids in the highest
maturity sample. In contrast, we found a moderate covariation between image macroporosity
and EDX derived calcite content. To look into this calcite-image porosity relationship in
detail, we differentiated between porosity values as captured in the clay-enriched dark

(Figure 3.15 ¢, d) and calcite-enriched light laminae (Figure 3.15e, f) in the low maturity
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shale. Despite the compositional variation, a relationship between visible porosity and calcite
content in both sample sets is not significantly different and shows the same range of values
(0.3-2.4%) with a positive sign of the covariation (Figure 3.20b). Only those regions that
show advanced redistribution of the calcite phase, found exclusively within the light lamina,
do show relative increase in porosity (up to 10%) at any given calcite content and deviate
from the range of values characteristic for areas with more dispersed calcite grains.

For the peak oil window maturity shale (Figure 3.15i, j), we could not differentiate
between light and dark laminae, and therefore the micrographs were classified into two
groups depending on the content of faecal pellets. The first group includes areas dominated
by calcite aggregates of the biogenic origin, with a strong diagenetic overprint, either
recrystallization or partial cementation, named here as faecal pellet rich domains. The second
group consists of areas rich in clays, quartz, pyrite framboids, or only discrete carbonate
crystals, named as matrix rich domains. The results show that, unlike in its lower maturity
counterpart, in the peak oil window maturity shale there is no relation between calcite content
and image porosity, even when most porous and strongly recrystallized faecal pellet rich
domains are excluded (Figure 3.20c). Overall, despite the large variation in calcite content (7-
74%), the image porosity values oscillate only within a very small range (0.0-1.5%), showing
no relation to change in the mineralogical composition.

The greatest variation of macroporosity values in relation to calcite content was found in
the most mature shale. Similarly to the peak oil window maturity shale, the micrographs and
the associated porosity were divided into faecal pallet and matrix-rich domains. We found
that faecal pellet domains are characterized by higher calcite content (> ~30%) and exhibit
higher porosities than the shale matrix domains (Figure 3.20d). Faecal pellet rich domains
also show the highest spread in the porosity values encountered in samples of all maturities,
with the variability between 3-7%. In general, image gas window porosities are by one order
of magnitude higher than porosities found in any domain in the oil window and match

porosities encountered in the light lamina of the immature shale.
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Figure 3. 20. Relationship of image porosity with EDX maps derived clay and calcite content, and
point-counted OM content. Each data point represents one BIB-SEM image captured at magnification

10,000 x and a pixel size 15 nm.
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Similarly to the calcite-porosity relationships, we found varied relation between point
counted organic content and image porosity for shales of different maturities. In both the
early oil window and peak oil window shale, there is no observable trend beween the two
variables (Figure 3.20 g, h). In contrast, in the gas window shale, an analysis of the image
porosity with distinction to microfacies showed that despite the fact that the matrix-rich
domains are on average less enriched in the organic material (7-30%) in comparison to the
faecal pellet domains (20-30%), they show stronger dependence of image porosity on OM
content (Figure 3.20e). When accounting for the resolved intraorganic porosity only, its
values are quite similar in both matrix and faecal pellet rich domains for a given organic
matter content, showing relatively small spread (0.0-0.7%), and slightly higher covariance in
the former (Figure 3.20f).

After combining the area occupied by the point counted OM and image porosity for each
image (Figure 3.21), we found a similar covariation between this area (10-40%) and the
calcite content for the peak oil and gas window shale. In contrast, in the low maturity shale,
and at the equivalent calcite content, the values are higher (up to 65%), and show a larger
spread.
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Figure 3. 21. Combined image porosity and point-counted OM content and its relationship to EDX
derived calcite content. Each data point represents one BIB-SEM image captured at magnification
10,000 x (corresponding pixel size 15 nm).
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Discussion

Pattern of porosity change upon burial and diagenesis

Posidonia Shale shows a non-linear pattern of porosity change with maturity observed in
pores of all sizes (Figure 3.10, Figure 3.22a). Based on the amount of porosity held by pores
grouped according to their size, we observed that the absolute change in total porosity is
controlled predominantly by pores between 6-100 nm. Pores in this range exhibit the most
radical change in the absolute volume of porosity they hold, with the initial drop by over 3
vol.% of the bulk rock, followed by analmost 2 vol.% increase (Table 3.11, Figure 3.22b). A
considerable change in porosity is also observed for pores < 6 nm, and only a small absolute
change is observed for pores 100 nm. Such pattern of porosity loss and gain is typical for
shales passing through the oil and gas window, respectively, and was reported from other
shale formations (e.g. Mastalerz et al., 2013). The non-uniform variation of porosity within
different groups of pores is related to the micro-, and millimeter scale heterogeneity of the
rock-building components (Table 3.1, Figure 1, Figure 3.12, Figure 3.15), reflected by the
varied amount of biogenic calcite, detrital clays and organic matter. A direct result of this
heterogeneity is the presence of a network of pores with a different association for the

carbonate, clay and organic domains and varied sensitivity for compaction or occlusion by
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Figure 3. 22. a) Cumulative porosity contained in pores grouped into three intervals <6 nm, 6-100
nm, > 100 nm, estimated for three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD
7110 1.45% Ro. Within all three groups, the change of porosity is non-linear, bottoming out in the
peak oil window shale. b) A change in the total porosity with increasing maturity is controlled to the
large extent by the pores in the interval 6-100 nm.
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Table 3. 11. The summary of porosities contained in the three selected Posidonia Shale samples: WIC
7129 (0.53% Ro) HAR 7060 (0.89% Ro) and 7110 HAD (1.45% Ro). Pores with diameters < 6 nm
were calculated from the gas sorption, pores > 100 nm were quantified from the SEM-BIB images,
and pores between 6-100 nm represent a difference between total porosity and the sum of the gas
sorption and SEM-BIB porosity.

Sample Porosity in pores < 6 | Porosity in pores 6-| Porosity in  pores
nm (%) 100 nm (%) >100nm (%)

WIC 7129 4.1 4.9 0.7

HAR 7060 2.1 1.8 0.6

HAD 7110 3.8 4.6 11

Micro- and mesoporosity of clays

With the limited resolution of SEM images, only ca. 10% of total porosity is resolved at
the magnification 6,000x. As the resolved pores are > 100 nm in size, in our study clays are
not visibly porous at any maturity, and therefore little is known about their porosity. While
deploying sorption techniques we did detect pores < 6 nm, the analyses were performed on
the bulk shale and provided no information about how much porosity is held by the clay
phase itself. A strong covariation between the sorption pore volume and the combined
content of organic carbon and phyllosilicates in the early oil and gas window shale (Figure
3.11Db) suggests that both these phases contribute to the micropore volume. Indeed, detailed
work by Rexer et al. (2014) showed that only half of the sorption pore volume is in kerogen,
and thus inorganic matrix must also contribute to measured porosities. This also agrees with
previous studies by Furmann et al. (2013), Mastalerz et al. (2013), Kuila and Prasad (2013),
Chalmers and Bustin (2012) and Schmitt et al. (2013). In the early oil window and gas
window Posidonia, shales witha higher abundance of clays were shown to have smaller pore
throat threshold apertures and higher contribution of finer mesopores in comparison to their
calcite richer counterparts. Interestingly, no difference in a distribution of mercury pores
between the clay-rich and calcite-rich units was found in the oil-filled peak oil window shale
(Figure 3.6). Despite our expectations that part of the mercury porosity should be hosted by
clay pores (Chalmers et al., 2012; Chalmers and Bustin, 2008; Ross and Bustin, 2009), the
XRD analyses on the lowest and highest maturity Posidonia shale revealed negative
correlation between total porosities and the phyllosilicates content (Figure 3.5b). These few
results suggest that in the organic-rich and oil-wet calcareous shale, despite that oil coatings
inhibit dissolution and reprecipitation of the carbonate cement, local recrystallization of
calcite leads to strengthening of the matrix (Fabricius, 2003), arresting compaction, and

preventing clays to hold a final control on porosity. Such interpretation could also be valid for
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siliceous shales, and explain a lack of a positive correlation between total porosity and clay

content as reported by Bustin et al. (2008).

Porosity and distribution of pores and pore sizes in the calcareous matrix

In contrast to clays, at all maturities, the calcareous matrix shows presence of visible
pores in sizes between << ca. 50 nm — 5000 nm, with pores > 100 nm approximating porosity
of pyrite framboids and of the biogenic, microcrystalline calcite. Our micrographs show that
upon burial, biogenic calcite experienced intensive diagenetic redistribution, with much
stronger intensity in the marlstone unit and relatively small extent of recrystallization in the
clay-rich lamina of the calcareous shale. Limited degree of recrystallization in the clay-rich
domains is consistent with previous observations from argillaceous chalks (Baker et al.,
1980), and points to a buffering effect of the matrix clays on intensity of carbonates
remobilization. Similar observations were also made in Kimmeridge Clay mudstones by
Macquaker et al. (2014). They observed that reactive clays are dissolved upon presence of
organic acids generated due to sulfate reduction, methanogenesis, and thermochemical decay
of organic matter during burial, and hence act as efficient acid buffers. In this study we found
a moderate positive correlation between the image porosity and calcite content in the dark
lamina of the least mature shale, and no correlation in the strongly recrystallized fossiliferous
aggregates (Figure 3.20b). Moreover, a detailed study showed that in the low maturity shale,
pores < 300 nm contribute more porosity in the clay-material enriched dark laminae in
comparison to horizons packed with the biogenic fossiliferous aggregates (Figure 3.17c).
Different distribution of calcite pores in the clay-rich and faecal pellet rich laminae indicates
that diagenetic redistribution of calcite modified pores size distribution of the calcite pores
present, led to a selective growth of larger pores at the expense of smaller, and resulted in the
local increase in recorded image porosity values (Figure 3.15f, Figure 3.20b). In both early
oil window and gas window shale, despite the observed recrystallization features, total
porosity is positively related to calcite content and no diagenetic pore volume loss can be
inferred. We suggest that, analogous to chalks, such positive relationship is enhanced by the
development of contact cement between calcite crystals, arresting compaction of the not-
resolved matrix pores (Fabricius, 2003). Indeed, in the low maturity maristone samples, we
observed presence of pore throats that are even one order of magnitude higher than typical
pore throats present in the calcareous shale (Figure 3.6a). Recrystallization of calcite without

pore volume loss in Posidonia stands in contrast to pore-blocking effect of the calcite cement
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often reducing porosities in shale reservoirs (Chalmers and Bustin, 2012). We attribute this
lack of porosity loss to only limited calcite precipitation as encountered in muds that
experienced stable low redox conditions in their pore waters, to the presence of clays
alternating with the carbonate-rich matrix, and finally to the oil-coating of mineral grains.

High minus-bitumen porosities observed in SEM micrographs of the peak oil window
shale indicate that, analogously to conventional carbonate and quartzose oil-filled reservoirs
(Worden et al., 1998; Heasley et al., 2000; Scholle, 1977), diagenesis and cementation in
Posidonia was retarded once bitumen filled inorganic pores. As showed by the identical
distribution of pore throat sizes in the oil window marlstone and calcareous shale (Figure
3.6b), petroleum trapping controlled the maximum loss of pore throats, and limited the
impact of both compaction and cementation. We suggest that total compaction was most
effective in the most organic rich parts of the shale, and is reflected by a loss of the area
occupied by image pores and organic phase between 0.53-0.89% Ro (Figure 3.21).

A regain in total, image and gas porosities in the gas window shows that organic
occlusion is reversible and should be linked to processes of maturation of organic matter
under increasing thermal stress. Moderate correlation between image porosity and calcite
content implies that the major change in shale porosity takes places in pores < 50 nm. A large
spread of porosities between the faecal pellets and the bulk shale matrix, with the former
yielding values up to 7%, suggest that shale composition and texture control development and

preservation of pores in the gas window.

Kerogen transformation, organic porosity loss and gain
Early oil window bitumen

Total porosity of Posidonia Shale bottoms out at oil window maturities, and shows no
dependence on Total Organic Content (Figure 3.4, Figure 3.10). Considering consistent loss
of organic carbon upon increasing thermal stress (Table 3.2, Table 3.6), this porosity - TOC
relation cannot be fully explained without recognizing effects of kerogen transformation, here
monitored by a significant drop in S1, S2, Hydrogen Index and the amount of soluble
bitumen. A complex path of kerogen transformation was described by Behar et al., (2008),
and involved decomposition of kerogen into viscous liquid rich in NSO-compounds (nitrogen,
oxygen ans sulphur), followed by decomposition of the last into more soluble non-
hydrocarbon compounds and finally, cracking into hydrocarbons. Our experiments confirm

the presence of a substantial amount of high density, non-volatile bitumen phase dominating
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total extract of the low maturity Posidonia shale (Clementz, 1978; Wilhelms et al., 1990).
Presence of inorganic pores devoid of visible organic linings in the Wickensen sample and
association of the majority of the extract with kerogen suggests that this early bitumen did not
enter the mass migration stage and still occupies kerogen pores (Hwang et al., 1998; Sandvik
et al., 1992).

Loss of porosity in the oil window

In the peak oil window shale, more than half of total porosity is lost (Figure 3.4), with
solid bitumen blocking the inter- and intraparticle space (Figure 3.15g-j). Presence of the
organic phase filling the pore space is responsible for the high slope of the line describing the
fractal distribution of HAR pores, and a relatively small importance of pores > 400 nm
(Figure 3.17a). Whilst we do not have information on the exact physiochemical nature of this
pore filling solid organic residue, it is plausible that its precursor was a heavy, viscous
polymer that developed more aromatic and condensed structure upon cracking into lighter
hydrocarbons (Behar et al., 1997; Curiale, 1986; Hill et al., 2003; Horsfield et al., 1992,
Lewan 1997; Michelis et al., 1996). Bitumen residing in the inter- and intraparticle spaces is
non-extractable by organic solvents and therefore cannot account for a density increase of the
bulk shale upon solvent washing (Table 2). This increase must be ascribed to a presence of
lighter petroleum fraction, of which ca. 1/2-1/3 resides in pores as small as < 6 nm. High
affinity for kerogen of the peak oil window oil, also recorded by Rexer et al. (2014), suggests
that the residual oil must be absorbed onto organic matter, and therefore blocks its internal
porosity (Sandvik et al., 1992). Although the solvent soluble petroleum phase occupies ca.
50% of pore space of the peak oil window shale, we presume that its mobility in the finest
pores was restricted. Limited motion and strong sorpion of oil in micropores is reflected by
the presence of residual oil blocking < 6 nm pores in the gas window shale. High oil
saturation of the organic matter in the oil window also implies that light oil might have been a
driving force for petroleum migration, increasing mobility of the petroleum phase
(Vanderbroucke et al., 1993). Such hypothesis was also proposed by Lewan (1997) and was
explained by the volume expansion following bitumen and oil generation.
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Thermal conversion of kerogen and porosity gain

In the oil window Posidonia, not all porosity was lost due to oil and bitumen pore filling,
and the SEM micrographs show presence of the interface pores between the organic phase
and minerals. Although the appearance of the interface pores may have been induced by
dessication, depressurization or post-coring phase alteration (Fishman et al., 2012; Milliken
et al., 2013), it is not unreasonable to think of their origin as a product of in-situ interaction
between diagenetically chaning carbonate phases and solidifying organic polymer. We have
not found evidence for any visual post-coring alterations within analyzed Posidonia shale
samples but we understand that the long storage of the Posidonia cores (> 20 years) may have
depleted organic matter in the most volatile components and could have contributed to the
loss of volume of the organic phase. On the other hand, the concept of porosity evolution in
the oil window is supported by the reported loss of volume of the residual organic matter
upon thermal conversion and expulsion of lighter hydrocarbons under oil generating
conditions (Table 3.2, Figure 3.8) (Kanitpanyacharoen et al., 2013). Because the organic-
inorganic interface pores are primarily concentrated within rigid zones of the fossiliferous
aggregates and pyrite framboids, such distribution emphasizes the role of the inorganic
framework as controlling petroleum micromigration of the non-hydrocarbon polar and
hydrocarbon fractions and its trapping away from the major expulsion conduits (Leythaeuser
et al., 1988; Pelet et al., 1986). Such pore location also suggests that the presence of rigid
zones is essential in order to arrest compaction and preserve organic porosity evolved due to
conversion of kerogen and bitumen. Preferential location of porosity within rigid zones is
especially visible in the gas window shale where 75% of image porosity (pores > 100 nm) is
not directly in the OM but within faecal pellets and pyrite framboids. Because the combined
area of the image pores and OM does not change between peak oil window and gas window
shale (Figure 3.21), it stems that the porous fossiliferous zones act as microreservoirs for
generated petroleum and are instrumental in contributing gas window porosity. Considering
significant drop in the amount of the convertible organic carbon and residual oil content
between 0.89-1.45% Ro, it is highly plausible that the evolution of the inorganic-hosted

porosity is associated with the cracking of the residual bitumen saturated with oil.

Evolution of organic porosity in the gas window

In contrast to fossiliferous aggregates, due to shale framework compaction and bitumen

escape, ductile clay-rich zones are less porous, wih the visible pores contained predominantly
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within the organic matter. Although point-counted visibly porous organic matter grains are
relatively rare (35%), they show fractal distribution and most likely host significant amount
of porosity < 50 nm not resolved in images (Figure 3.19c, d). This is consistent with Rexer et
al. (2014) who recorded increase in the sorption pore volume contained in the isolated
kerogen from 69-87 mm®/g at 0.9% Ro up to 104-113 mm®/g at 1.4% Ro, and agrees with the
increase of the bulk shale sorption porosity as recorded in this study (Table 4).

Although we do not know the composition of the organic particles hosting the
intraorganic pores, Bernard et al. (2011) and Bernard et al. (2012), based on the synchrotron-
based transmission spectromicroscopy, classified them as oil-spent pyrobitumen. The
evolution of the intraorganic porosity is commonly linked to the secondary cracking of
petroleum and the exsolution of thermogenic gas (Bernard et al., 2012; Curtis et al., 2010;
Jarvie, 2007; Loucks et al., 2009). Indeed, similarly to Curtis et al. (2012), Loucks et al.
(2009), Milliken et al. (2013) and Milner et al. (2010), in this study the intraorganic pores
appear only in the gas window sample. Lack of intraorganic pores at lower maturities also
suggests that any gas generated was likely dissolved in the liquid phase (Pepper and Dodd,
1995; Schenk et al., 1997; Tan et al., 2013; Waples, 2000). Co-existence of porous and non-
porous organic areas in the gas window shale and different morphologies of the organic pores
all point to the small-scale heterogeneity of the organic material in the shale matrix at the
onset of cracking and emphasize that not all organic matter is prone for development of
intraorganic porosity. Although the heterogeneity of the mature organic matter is typical for
shales with type Il kerogen (e.g. Curtis et al., 2012; Milliken et al., 2013; Milner et al., 2010)
its genesis is still not well understood. As various studies on coaking coal showed (Iglesias et
al., 2001, Kwiecinska et al., 1992), the composition and density of the organic matter are
crucial for development of gas vacuoles within the organic phase. For instance, high
concentration of mobile phase (hydrogen) in coal favours mobility of the aromatic stacks
(solvating fluid) and transfer of hydrogen to free radicals, thus inhibiting linkage and
enabling subsequent nucleation and growth of gas vacuoles during the coaking stage. Past
research also emphasizes the importance of hydrogen donor compounds such as asphaltenes
or hydroaromatics as preventing cross-linking during cracking (Behar and Pelet, 1988;
Michelis, 1996; Schenk et al., 1997), delaying conversion and aromatization of the organic
polymers (Lewan, 1997). If similar mechanisms acted during maturation of organic matter in
the Posidonia shale, only those particles that retained enough mobile hydrogen would have
been prone to devolatilization through bubble formation. Availability of hydrogen-rich

compounds was ensured by the primarily algal composition of the Posidonia kerogen as a
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precursor for the Posidonia bitumen and hydrocarbons, consistent with findings of Littke et al.
(1988) and Littke et al. (1991). In more rigid, kerogen-like particles, with advanced cross-
linking and most of the H immobilised in polycondensed aromatic molecules, any gas
generated would have likely diffused through micropores (Vanderbroucke and Largeau,
2007). The lack of visible porosity in the gas mature kerogen was experimentally
corroborated by Bernard et al. (2011) and is consistent with the high fraction (ca. 65%) of
non-porous organic particles point counted in this study.

We found positive relation between OM volume and image resolved intraorganic
porosity, with no difference in absolute porosity values between faecal and matrix domains
but with stronger covariation outside the faecal pellet zones (Figure 3.20f). Such positive
correlation stands in contrast to a negative relationship found between OM-hosted image
pores and TOC as observed by Milliken et al. (2013) in the Marcellus Shale. We suggest that
different association of the image porosity to the content of OM in shales is related to textural
and compositional differences. In Posidonia, the presence of rigid, fossiliferous zones
favoured entrapment of oil-saturated bitumen, and was followed by its efficient degasification.
Such conditions may have been less operative in shale composed primarily of the
extrabasinal siliciclastic debris (Milliken et al., 2013).

Porosity balance. Compaction, bitumen entrapment and cracking

The potential amount of organic porosity evolved due to thermogenic loss of organic
carbon can be estimated for shales of any maturity if the original TOC, HI and the extent of
thermal transformation of kerogen are known or can be restored (Jarvie et al., 2007; Modica
and Lapierre, 2012). Moreover, for any stage of thermal degradation of kerogen, potential
total porosity can be calculated if information about the initial porosity is accessible. In
Posidonia, despite the evidence of thermal degradation of kerogen with increasing thermal
stress (Table 3.2), the estimated theoretical total porosity does not match the measured values
at any stage (Figure 3.8c). The porosity balance shows that from the total porosity loss
between 0.53-0.89% Ro, only 30-40% of the observed decrease can be easily accounted for
by the retention of the liquid oil. Total difference between potential and measured porosity in
the peak oil window shale can be explained only when including compaction and/or bitumen
retention as other porosity reducing mechanisms. Although not measured directly, the
minimum porosity lost due to compaction in the oil window Posidonia can be estimated after

subtracting the amount of porosity occluded by oil from the total increase in the potential
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organic porosity between 0.53-0.89% Ro. In our samples, such estimated loss amounts to ca.
4.5% of the bulk rock, and accounts for only 35% of the estimated total porosity decrease
between 0.53-0.89% Ro.

Although our porosity balance does not yield the amount of solid bitumen occluding
pores, its content can be evaluated while examining further porosity change at higher levels
of thermal conversion. For instance, we noticed that only 40% of the regain in measured
porosity between 0.89-1.45% Ro is due to decrease in the oil content, with the majority of the
measurable increase ascribed to the evolution of additional organic pores. The organic origin
of this porosity is quantitatively reflected as the accordance between the measured increase in
the oil-free total porosity and the estimated increase in the potential organic porosity due to
thermal decomposition of the organic matter (Figure 3.8d). The 4% increase in the organic
porosity between 0.89-1.45% follows the loss in the pyrolizable organic matter as measured
by Rock-Eval (Table 3.2) and implies that in the oil window solid bitumen forms part of the
S2 peak. Our porosity reconstructions show that although organic content is a good predictor
for the amount of organic porosity evolved in the gas window Posidonia Shale, any
predictions of porosity at lower levels of thermal maturity will not work without estimating

the amount of residual bitumen trapped in the matrix.

Potential for gas storage and connectivity of the pore system

In Posidonia ca. 90% of porosity is in the meso- and micropore size range, and ca. 40%
is contained within sorption pores < 6 nm. Such high contribution of meso- and micropores is
significant from the shale gas production point of view, and will affect estimations of the
shale gas storage capacity and gas flow efficiency (Ambrose et al., 2010; Chalmers and
Bustin, 2012). We found that in the gas window Posidonia shale, porosity < 6 nm is
associated with the clay and organic domains (Figure 3.11), with radically different affinities
for water and oil. Most certainly, any organic porosity is oil-wet as it evolved via cracking of
the pore-filling bitumen and oil (Table 3.3). Moreover, retarded cementation of the
fossiiferous zones suggests that fossil-hosted pores also became oil wet and thus form part of
the oil-wet pore system. In contrast, clays are hydrophilic and may remain water-wet even at
high maturities (Aplin and Macquaker, 2011). As in Posidonia clays are microporous, they
may not participate in the gas transfer from the matrix to a fracture and a wellbore (Modica
and Lapierre, 2012; Passey et al., 2010).
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Organic porosity in the gas mature Posidonia is highly heterogeneous, with pore sizes as
small as < 6 nm, co-existing with micron-size pores hosted by fossiliferous aggregates and
pyrite framboids. Such heterogeneiy of pores has consequences for the amount of gas stored
in the free and adsorbed phase. While we did not measure the absolute gas capacity of the
Posidonia shale, we can certainly argue that its volume is controlled by the amount of
bitumen trapped in shale, and thus we expect the best microreservoir for free gas to be
associated with the macroporous and rigid faecal pellet zones.

The approximation of total shale porosity by the combination of gas sorption and
mercury injection techniques confirmed that those two pore systems are connected, and that
the pore connectivity extends to pore bodies resolved in SEM micrographs (Figure 3.10,
Figure 3.15). Consistently, high residual mercury saturation as encountered in the early oil
window and gas window samples could be interpreted as reflecting high pore body/pore
throat size ratio, leading to extensive snap-off of the mercury phase in throats over the entire
range of the imbibition pressures before retraction from the pore bodies takes place (Figure
3.7) (loannidis et al., 1991; loannidis et al., 1993; Porcheron and Monson, 2004). An
elevated ratio of pore body to throat sizes is in accordance with the lack of overlap between
the mercury pore size distributions and the distribution of sizes of the image resolved pores
(Figure 3.19a, b). However, we cannot exclude that alternatively, high residual mercury is
induced by compressibility of the shale under high pressures and does not necessarily reflect
the ratio of pore bodies to pore throats (Toda and Toyoda, 1972). Such interpretation stems
from the very high percentage (ca. 90%) of total porosity that was not emptied from the
receding mercury at the equivalent intrusion pressures and which was confirmed with the
SEM studies (Figure 3.17b, c).

A microstructure composed of pore bodies connected through < 40 nm pore throats as
present in Posidonia is typical for shales reported elsewhere (Nelson, 2009) and is believed to
have a major control on gas flow efficiency through the matrix (Chalmers and Bustin, 2012;
Rushing et al., 2008). According to Chalmers and Bustin (2012) a more balanced ratio
between micro-, meso- and macropores favours permeability of shales. In the water-free
calcareous Posidonia shale from the early oil and gas window, a moderate porosity balance is
attained at ca. 40-50-10% of total porosity contained in pores <6 nm, 6-100 nmand >100 nm
respectively. However, in a tight, clay-bearing shale with water-wet surfaces, this balance is

likely disturbed as finer pores are lost.
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Summary and Conclusions

A detailed analysis of the Posidonia shale revealed a heterogeneous rock with a micron-
scale alternation of the carbonate-rich, clay-rich and organic-rich domains. The application of
a range of different techniques measuring pores of various sizes allowed to identify factors
controlling the change in shale porosities with maturity and between lihologies.

Posidonia Shale from the Hils Sincline shows a non-linear pattern of the porosity change
with maturity. Total porosity is ca.10% at maturities of 0.6% Ro, but declines to ca. 4% at Ro
= 0.9% as a result of compaction and pore-filling with bitumen. At Ro = 1.4%, porosities
increase to values similar to those at 0.6% Ro, related to hydrocarbon generation from the
residual bitumen. The initial retention of bitumen in the shale matrix indicates that the
Transformation Ratio is of limited use when modelling the organic porosity evolution in the
oil window shale. However, it becomes again a reliable measure of the porosity gain in the
gas window. The Posidonia shale case study revealed the porosity of the overmature shales
can be accurately estimated using the Leco TOC and Rock Eval data if only porosity of the
oil window shale is known and its further compaction has been arrested.

A major consequence of the entrapment and thermal cracking of the hydrocarbon-prone
bituminous phase is the appearance of organic pores. Image analysis revealed that although
this porosity covaries positively with the content of the organic phase, it is not evenly
distributed. In Posidonia, the preferential entrapment of bitumen occurred within faecal
pellets, pyrite framboids and in the vicinities of the rigid mineral grains, showing the highest
present day macroporosities. Such location of the petroleum traps is most likely related to
their rigidity and the resistance against compaction. The visible macropores, although
surrounded by the inorganic phase, are likely oil-wet and may potentially act as
microreservoirs of gas.

The retention of bitumen in the shale matrix has major consequences for arresting
compaction of carbonates. We showed that trapping of petroleum in the faecal pellets
prevented chemical cementation of the fossiliferous aggregates and thus porosity loss. The
concomitant recrystallization of the biogenic calcite not only did not reduce porosity, but
plausibly strengthened the shale framework and induced growth of macropores. The loss of
the pore volume was most effective in the clay- and organo-rich domains, and followed
kerogen-to-bitumen transformation.

Our study showed that the pore network in Posidonia is connected at all maturities, and is

composed of narrow pore throats (< 40 nm diameter) providing access to SEM resolved pore
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bodies (> 50 nm). The pore size distribution is not uniform and is a function of both the
maturity and the rock texture and composition. Both in the low maturity and in the
overmature shale, wider pore throats are characteristic for the calcite-rich mudstone, with
higher potential for fabric strengthening than the clay-rich shale. In the peak oil window it is
the occlusion of porosity by oil that reduces the size of the pore throats, but is reversible with
the onset of the oil-to-gas cracking. A major difference in porosities is seen between the
fossiliferous and the clay rich zones, with the former arresting the loss of pores through
compacion and enhancing development of macropores in the gas window, and the latter
contributing microporosity. In the gas window shale, a fractal distribution of the intraorganic
pores resolved in SEM images suggests that pore connectivity within the organic phase is at
least partly attained.

This study showed that the multi-technique approach is essential for characterizing pores
and pore connectivity in shales. We found that CO» gas sorption at 195K is a good indicator
of micro- and fine mesoporosity, and when combined with the mercury porosimetry, it can
approximate the connected porosity. Complementary to the bulk analyses is the SEM-BIB-
FIB microscopy, offering unique approach for visualizing shale heterogeneity and
identification of the hydrocarbon microreservoirs. When coupled with the quantitative image
analysis, the high resolution microscopy provides the essential background for the
understanding of the evolution of the shale microstructure on different scales. Despite the
advantages of each technique alone, their limitations in describing the full range of pores
place constraints on the interpretation of the data if not supported by other methods. In the
case of the BIB-SEM microscopy, those limitations involve limited resolution of the
microscropic micrographs, and large, over a centimetre-scale, lithological variations.

The last comment herein relates to the classification of shale pores. While we recognize
that in the organic-rich, overmature shales the genetic classification of pores may be more
appropriate, the grouping of pores on the basis of their spatial location is useful, and may
facilitate the recognition of pathways of bitumen migration and entrapment in the oil window.
The confusement in classifying shale pores may arise while realizing that many inorganic-
hosted pores observed in the gas window maturity shale evolved due to thermal
decomposition of the residual organic matter and are de facto of organic origin. This
realization may however not be possible via the visual observations alone, and without the
access to the geochemical data from a suite of samples covering a range of maturities. The
possibility that many inorganic-hosted pores are of organic origin should lead to re-evaluation

of pore network types in many shale plays.
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Chapter 4. Microscopic, petrophysical and geochemical
characterization of the Wealden Shale of Northwest Germany —
implications for porosity development in the heterogeneous shale
gasreservoir

Introduction

The successful exploration of shale gas in the US sparked an interest in shale formations
in Europe and induced research into finding potential targets for domestic European shale gas
exploration. One of the sedimentary sequences that attracted the attention of the industry is
the Lower Cretaceous Wealden Shale from the Lower Saxony Basin in Northwest Germany.
Preliminary assessment of the German Wealden was conducted through the Isteberg 1001
drilling in the west of the basin and discovered an oil-prone rock with a lacustine Type |
kerogen, but with a variable input of terrestrial (type I11) and marine (type Il) organics
(Berner et al., 2010). A recent geochemical study by Rippen et al. (2013) on 3 cores retrieved
from the Hannover area, and also used in this study, confirmed the predominantly lacustrine
character of the organic matter with a lateral gradient in maturation from the early oil
window, to postmature and overmature. In the central part of the basin the Wealden is
dominated by clay-rich mudstones intercalated with limestones (Mutterlose and Bornemann,
2000), and thus differs in composition from mostly siliceous US shale gas plays (Curtis,
2002). It is expected that despite the high hydrocarbon potential of the accumulated organic
matter, such clay-rich lithologies may negatively affect the producibility of gas (Jarvie et al.,
2007).

The efficiency of gas flow through the matrix to naturally occurring and artificially
induced fractures depends also on the nature of the pore systems, and its vertical change in
rocks of varied lithology. It has been recognized that the nature of matrix pores influence the
permeability and wettability of shale reservoirs and thus their long-term production profiles
(Aplin and Macquaker, 2011; Chalmers et al., 2012; Soeder, 1988). The volume and type of
matrix pores constitute also a major input into estimations of the adsorbed and free gas
storage capacities of shale reservoirs (Ambrose et al., 2010). A range of pore types have been
documented, including pores hosted by organic phases (Bernard et al., 2010; Bernard et al.,
2011; Curtis et al., 2010; Desbois et al., 2009; Loucks et al., 2009; Milner et al., 2010;
Passey et al., 2010; Schieber, 2010; Sisk et al., 2010; Lu et al., 2011; Slatt and O’Brien,

2011). The importance of organic porosity for gas storage and its flow to a wellbore is critical
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as indicated by the presence of a broad positive relationship between total porosity and
organic carbon (Passey et al., 2010). The formation of the organic pores is recognized to be
secondary, related to the maturation of organic matter and thus in theory its occurrence
should be predicted by kinetic models (Jarvie et al., 2007). To date, several attempts have
been made to predict the formation of organic pores (Jarvie et al., 2007; Loucks et al., 2012;
Modica and Lapierre, 2012), all of them stressing bitumen formation and entrapment as a
factor inhibiting development of organic porosity in the oil window.

Numerous studies have documented that pores in shales are connected. The presence of
the open porosity in the clay phase was documented via a selection of gas adsorption,
mercury porosimetry, metal injection and imaging techniques in studies performed by e.g.
Curtis et al., 2010, Hildenbrand and Urai, 2003; Kuila et al., 2013, Sondergeld et al., 2010.
Likewise, high resolution 3D image visualizations methods have demonstrated pore
connectivity within the organic phase. Despite such promising results, it is recognized that
the effective pore connectivity in the subsurface is significantly lower, negatively affected by
the presence of water and oil molecules (Aplin and Macquaker, 2011, Kuila et al., 2013;
Modica and Lapierre, 2012).

Vertical and lateral heterogeneity of the pore systems encountered in shales cannot be
fully predicted without recognition of depositional environments and diagenetic changes
within muds (Macquaker et al., 2014). Such spatial variation is especially important in shales
with large vertical and lateral heterogeneity in the sedimentary facies. The resolution of the
well logging methods may not be sufficient to resolve original heterogeneity of the shale
formations, and its direct estimation requires extensive work and excellent sampling strategy.
Such work is also useful from the academic standpoint and may contribute significantly to
understanding relationships between different aspects of mudstone deposition and its physical
attributes. In this study, an attempt to perform such work has been undertaken. Both
petrophysical and geochemical investigations were carried out on three cores of the German
Wealden, retrieved by ExxonMobil Production Deutschland and made available for scientific
investigations. The bulk measurements were supplemented by analysis of microtextures both
in the petrographic and scanning electron microscope micrographs, followed by an analysis
of pore systems using highly polished thin sections. The main aim of our work was to address
the issue of small-scale variation of the lithologically heterogeneous clay- and carbonate-rich
units, and its effect on the porosity evolution in shales of radically different maturity.

Moreover, in the gas window maturity rocks, we paid special attention to development and
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connectivity of organic pores as potential sites for storage of free gas and the most likely

permeability pathways of gas flow in the context of shale gas exploration.

Samples and Methodologies

292 samples retrieved from cores at a distance ca. 1 m apart were analysed for TOC and
Rock Eval hydrocarbon potential by Applied Petroleum Technology AS, Norway. Rock-Eval
was performed according to Espitalié et al. (1977) using a Vinci RE-6 Standard instrument.
To correct for an oil-in-kerogen peak, 4 shale samples were solvent extracted with a mixture
of dichloromethane (93%) and methanol (7%) and subsequently analysed for its remaining
hydrocarbon potential.

The X-ray diffraction was performed by Macaulay Scientific Consulting Ltd. The bulk
samples were wet ground (in ethanol) in a McCrone mill and spray dried to produce random
powders. X-ray powder diffraction (XRPD) patterns were recorded from 2-75°20 using
Cobalt Ka radiation. Quantitative analysis was done by a normalised full pattern reference
intensity ratio (RIR) method. Expanded uncertainty using a coverage factor of 2, i.e. 95%
confidence, is given by +X%3° where X = concentration in wt.%, e.g. 30 wt.% +3.3.

Shale grain density was measured on samples dried at 105°C using the “Small
Pyknometer Method”, yielding density values within an error + 0.02 g/cm®. Mercury
injection data was collected on Micrometrics Autopore Il on samples freeze-dried at -50°C
and evacuated to 10" psia. Total shale porosity was determined from grain density and bulk
density of samples immersed in mercury at the pressure of 25 psia. The mercury was intruded
to a maximum pressure 41,000 psia, followed by a pressure drop to 25 psia. The pressure and
intrusion data were converted to a pore size distribution using the Washburn equation
(Washburn, 1921), with the input parameters as followes: an advancing contact angle of 141°,
a receding contact angle 140° and surface tension 485dyn/cm.

Low pressure sorption experiments were performed on an Intelligent Gravimetric
Analyzer (IGA), supplied by Hiden Isochema Ltd., Warrington, UK, onshales dried at 110°C
for 4 hours under vacuum. CO, was injected stepwise up to a pressure of 1 bar at a constant
temperature of 195K (dry ice/acetone bath). All isotherms were run twice to ensure
experimental repeatability. Sorption pore volumes (SPV) were calculated from the maximum
uptake at 1 mbar assuming a density of CO; equal to 1.177 g/lcm®. Corresponding sorption

porosities were determined using the pycnometer shale grain density.
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For microscopic studies, 20 highly-polished thin sections and 5 Araldite resin covered
blocks, all cut perpendicular to bedding, were prepared. Thin sections were first scanned
using an Epson Perfection V500 scanner with 9600 dpi resolution. Subsequently, each thin
section was examined with a Nikon Eclipse LV100 POL transmitted light petrographic
microscope with an attached Nikon Digital Sight DS-U3 camera. Polished blocks were
examined in the reflected and UV light using an Oil Zeiss Immersol 518N oil immersion
microscope. The fluorescence of organic matter was determined qualitatively using the UV
light with an HXP 120C accessory. The vitrinite reflectance (VR) measurements were made
on randomly selected particles using a Zeiss Axio Imager M2m microscope at x50
magpnification with a 546 nm interference filter. The standard used for calibration was
Yttrium- Aluminium- Garnet with a refractive index of 0.889. The VR of OM particles was
recorded in a digital mode using Fossil 3.0 software.

For high resolution imaging, one thin section of low maturity shale and two sections of
gas mature shale of varied carbonate content were selected, milled and polished
perpendicular to the bedding plane with a Gallium (Ga) focused ion beam (FIB) in a FEI
Helios Nanolab 600 with FEG source. Trenches 15 um x 5 pum were cut using a 1-30kV
accelerating voltage and 3.3nA beam current. Samples were viewed in the BSE Immersion or
secondary electron mode with the following conditions: 4.1 mm WD, 1.5-3.0 kV accelerating
voltage, 2-4 nA beam current, using through-the-lens detector for better spatial resolution.
The images were captured at magnifications between 10,000-200,000x%, corresponding to
pixel sizes 25-1.2 nm respectively.

Twenty carbon-coated polished thin sections were examined using a Hitachi SU-70 High
Resolution Analytical SEM, equipped with an Oxford Instrument Energy Dispersive X-ray
microanalysis system (INCA Energy 700). Samples were viewed in the Back Scattered
Electron (BSE) mode using the YAG detector with the following conditions: 15-8 mm WD,
15keV accelerating voltage, 2-4 nA filament current. To reduce the shale topography, prior to
the SEM imaging, selected samples were polished with anargon broad ion beam (BIB) in the
GATAN 691 Precision lon Polishing System (PIPS™). In order to fit into the PIPS™
chamber, the sample size was reduced to a 3 mm in diameter disc with GATAN 601
Ultrasound Disc Cutter using water emulsion of boron nitrate powder as a saw. The prepared
discs were bombarded with Ar ions in a vacuum (10 Pa) for 6 hours (angle 3°, 5kV, 1-20
MA). The images of shale porosity were captured in the Secondary Electron (SE) mode using
a through-the-lens detector (TLD) at magnifications of 600 x (pixel size 100 nm), 6,000 x

(pixel size 15 nm) and 10,000 x, (pixel size 6 nm) using the Automate mosaic building option.
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For selected areas, an Energy Dispersive X-ray (EDX) mode was implemented, generating
maps of elemental and phase distribution. Microanalysis settings for the EDX collection were
set at 300 um dwell time, 15kV accelerating voltage and 4 nA filament current. The areas
covered by EDX mapping varied between 5424 and 77741 pm?. The phase extraction
procedure involved conversion of each X-ray map into an RGB colour mode map, its
binarization and quantification of areas in the ImageJ 1.44 software (Abramoff et al., 2004).
Additionally, for selected samples the BSE generated images were used to estimate
distributions of grain sizes with diameters > 2 um. Areas used for the grain size analysis were
captured at a magnification of 500 x, covering 48387 pn¥ each. Grains outlines were
digitized in Adobe Photoshop 8.0 and were quantified in ImageJ software.

To determine a Representative Elementary Area for estimations of image porosity, a
modified box counting method described in Houben et al. (2013) was applied. With this
method, continuous variations of any given property can be established by gradually
increasing an area of investigation in a two-dimensional space. The box counting was
proceeded for 4 groups of minerals: phyllosilicates, quartz and feldspar, carbonates and pyrite.
The phases were extracted from a mix of RGB-converted EDX elemental maps. For the
purpose of this study an area was selected as representative if the measurements of the
content ofan individual phase in boxes of an increasing size did not change by more than +/-
10% relative to the previous area.

For each representative mosaic, total image porosity was quantified by digitization of
pore areas manually outlined in Adobe Photoshop 8.0. The digitization was followed by
binarization and quantification proceeded in the image analysis software Image) 1.44
(Abramoff, 2004). Further statistical analysis was performed using statistical and
mathematical software: Minitab 15 and Excel 2010. For two gas window samples, pores were
also point counted (150 counts) and classified into types in the image analysis software
JMicroVision 1.2.7. (Roduit, 2008). The same software was used to quantify organic matter
in the images. At least 300 counts were made, until no significant change in the OM
percentage was observed. Additionally, for one gas window sample, a fraction of the area
occupied by porous and non-porous particles was point-counted with the 300 counts limit.

As a result of the limited image resolution at any magnification, not all pores could be
fully visualized in BIB image mosaics. To determine the minimum fully resolved pore size in
BIB mosaics, a method described in Houben et al. (2013) and Klaver et al. (2012), based on a
concept of a fractal dimension was implemented. According to this method, all pore areas

were grouped in bins with subsequent bins increased by a power of two and subsequently, the
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number of pores were counted and varied as a power of the corresponding pore area. The
unique power law equation was determined for fully resolved pore sizes and graphically
represented by a linear regression line(s) defined by a specific slope (D) and interception with
the y axis (C). The minimum pore size fully resolved in images was determined as the one
corresponding to the minimum pore area that does not deviate from the calculated regression

line.

Depositional setting

The German Wealden is a term describing predominantly regressive, continental, limnic
to brackish siliciclastic deposits of the early Cretaceous in northwestern Germany (Figure
4.1). Historically, the German Wealden is divided into the Obernkirchen Member (W1-W4)
and Osterwald Member (W5-W6) (Elstner and Mutterlose 1996; Wolburg, 1949), and
belongs to the Bulckeburg Formation deposited through middle Berriasian to early
Valanginian times in the Lower Saxony Basin. Being part of the Central European Basin
System (CEBS), the evolution of the Lower Saxony sub-basin in the middle Jurassic was a
result of intensive rifting in the Central Atlantic, resulting in the establishment of a system of
deeply subsiding graben structures and strike-slip faults (Bachmann et al., 2008). As a result
of rapid burial during the Early Cretaceous, in the central part of the basin (Hannover-
Minden-Braunschweig shaded area in Figure 4.1) the Berriasian sediments currently attain
thicknesses up to 700 m, with up to 300 m of overlying Valanginian (Mutterlose and
Bornemann, 2000). Although the predominant lithologies are siltstones and mudstones,
occasionally interbedded with mollusc (gastropods, bivalves) coquinas, the character of the
sediments changes laterally, with coaly layers of backswamp environments and
sandstones/siltstones related to fluvial transport in the southeast (Peltzer et al., 1992). The
lithological heterogeneity of the Wealden shows that it was deposited in a series of sequence-
stratigraphically linked environments, embracing flood plain, littoral, sublittoral and deep
lacustrine settings, controlled by base level variations (Table 4.1) (Berner et al., 2011,
Mutterlose and Bornemann, 2000; Stollhofen et al., 2008). The transgressive-regressive
periods were oscillatory, with several short-lived marine incursions during the W2 interval,
increasing marine influence on the deposition above W3, and a fully developed marine realm
in the lower Valanginian (Casey et al., 1975; Stollhofen et al., 2008). The influence of the sea
level variations, local base level oscillations, changes in the oxygen content and intensity of

sedimentation led to overall overfilling of the lake with sediments and resulted in the small-
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scale variation in facies seen in the character of the cores used in this study (Table 4.1). The
changing hydrological conditions are indicated by the faunal assemblages (molluscs,
ostracods), mainly of limnic nature but shifting towards brackish and normal saline at the end
of Berriasian and in the Valanginian (Elstner and Muitterlose, 1996). Similarly, the change in
salinity is indicated by the character of the organic matter, mainly brackish lacustrine but
with a marine overprint towards the top of the Berriasian interval (Berner, 2011; Rippen et
al., 2013).

The maturity of the German Wealden is not uniform and varies laterally across the basin
(Bruns et al., 2013). As established by Rippen et al. (2013), well A sediments from the
northern margin of the Berriasian basin show maturities of Ro 0.5-0.6% within the interval
sampled in this study (932-1058 m). This is slightly less than the Ro values reported by the
Egs-ploration (unpublished) (up to 0.7% Ro) (Table 4.1). Southwest of well A, at the location
of the C well, Wealden Shale exhibits wet gas window maturity, with VR increasing from 1.5
to 1.9% between 609-921 m. In the most central part of the basin (well B), and also over the
largest interval studied (981-1578 m), the vitrinite reflectance shows the highest values,
between 2.2-2.4%, placing the accumulated organic matter in the dry gas window. For the
last well, the vitrinite reflectance measured by Rippen et al. (2013) deviates from the
measurements by Littke (2008, unpublished), reporting Ro values between 1.6-2.4% over the
studied interval. Due to uncertainties regarding the correct maturity of the C sediments, we
use the extended maturity values by Littke (2008, unpublished) in this study.

Table 4. 1. Information about depth, geological age, facies and maturity of three cores of German
Wealden: A, Band C.

Well | Depth (m) | Interval* Depositional setting* Maturity Ro(%o)

832-850 Lachmoeve Deep marine

A 910-928 Brachvogel B | Sublittoral 05-0.7
967-998 Austernfischer | Deep lacustrine B
1029-1058 | Unnamed Deep lacustrine
604-617 Lachmoeve Marine influenced deep lacustrine

B 709-728 Brachvogel A | Marine influenced deep lacustrine 1.6-2.4
828-890 Austernfischer | Deep lacustrine
920-942 Unnamed Lake plain
981-1003 | Lachmoeve Marine influenced deep lacustrine
1006-1016 | Unnamed Undefined

C | 1150-1186 | Brachvogel A | Deep lacustrine 15-1.9
1285-1350 | Austernfischer | Deep lacustrine
1563-1578 | Eiderente Deep lacustrine

*After ExxonMobil (unpublished)
**After Egs-ploration (unpublished), Littke (2008, unpublished) and Rippen et al. (2013)
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137




Results

Mineralogy and textural features from XRD, EDX and petrographic analysis

Wealden shale is not a homogeneous rock but encompasses a variety of interlayered and
interbedded rock types of both argillaceous and carbonate nature (Fig. 4.2). Five main
sublithofacies were distinguished in all three cores through the analysis of thin sections and
RGB-colour converted EDX maps: clay-rich siliciclastic mudstone, clay-rich siliclastic
mudstone with physical or biogenic sedimentary structures, clay-bearing fossiliferous
mudstone, limestone (mollusc- or ostracod-rich packstone or grainstone) often forming shell
pavements and carbonate concretions (Figure 4.2 and Figure 4.3). The allochtonous
components consist of detrital clays, quartz and terrigenous organic matter. The autochtonous
components consist of biogenic carbonate and algal organic matter. The diagenetic
components include pyrite, principally magnesium and ferroan diagenetic dolomite/ankerite,
diagenetic clays (illite, kaolinite) and solid bitumen.

The low maturity Wealden shale from the A borehole (Ro = 0.5-0.7%) is a greenish grey
rock, either homogeneous and visibly bioturbated (Figure 4.3a), non-laminated with an
undisturbed fabric (Figure 4.3b, 4.3 f-h), or exhibiting visible, subcentimetric lamination. In
the visibly laminate shale the altermating laminae often constitute of grains of different size
(Figure 4.3c, d), or alternatively show varied abundance ofthe fossil component (Figure 4.3e).
The bulk mineralogy (Table 4.2, Figure 4.7) shows an inversely correlated proportion of both
calcite and clays, with the relative amount of each depending on the content of the
microfossils (foraminifers, molluscs, ostracods). Clay-rich mudstone shows elevated
proportion of clays (55-66%), mostly illite and illite - smectite, and kaolinite, and only <1-2%
to 10% carbonates. In contrast, mollusc, foraminifera and clay bearing mudstone (sample
A10326) has 40% carbonates and only ca. 30% clays. Such heterogeneity reflects changes in
depositional paleoenvironments between supralittotal, littoral, sublittoral and distal basinal
settings and the associated, varied supply of clastic and biogenic material (Mutterlose and

Bornemann, 2000).
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Figure 4. 2. Lithological logs for cores retrieved from A, B and C boreholes. The TVD (true
vertical depth) scale is in metres. The basic depositional environment of the each sediment
interval is provided leftto each log.
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Figure 4. 3. Scan micrographs of the selected Wealden Shale samples. In each well, samples
originate from a number of different depositional settings. a) A10278: Deep marine, clay-rich
siliclastic mudstone with biogenic sedimentary structures. Visible burrows are differentiated by their
darker shades and flat, enlogated shapes. b) A10282: Deep marine, clay-rich siliciclastic mudstone.
The shale fabric is homogeneous and lacks any biogenic structures. ¢) A10289: Visibly laminated
clay-rich siliciclastic mudstone from the sublittoral lake setting. The lighter laminae are composed of
silt-sized quartz grains and alternate with darker laminae dominated by the unresolved, fine-grained
mineral matrix. d) A10299: Clay-rich siliciclastic mudstone from the sublittoral lake setting. The
mudstone shows abundant silt-bearing laminae (light coloured). e) A10305: Clay-bearing
fossiliferous mudstone from the sublittoral lake setting. Distinct lamination is a result of varied
content of structured organic matter (black). f) A10320: Deep lacustrine, clay-rich siliciclastic
mudstone. The shale fabric is fine-grained and homogeneous. g) A10326: Deep lacustrine, clay-
bearing mudstone with abundant microfossils. h) A10342: Deep lacustrine, clay-rich siliciclastic
mudstone with homogeneous fabric. i) B10444: Marine influenced, deep lacustrine, clay-rich
siliclastic mudstone with biogenic sedimentary structures. The burrows are differentiated by their
lighter colours and elongated shapes. j) B10455: Marine influenced, deep lacustrine, clay-rich
siliciclastic mudstone. The shale fabric is homogeneous with the predominance of fine-grained
constituents. k) B10458: Marine influenced, deep lacustrine, clay-rich siliciclastic mudstone with very
scarce silt-sized grains. I) B10482: Deep lacustrine, clay-rich siliciclastic mudstone. A visible fossil-
rich (light) lamina in the centre. m) B10494: Deep lacustrine, clay-bearing fossiliferous mudstone.
Macro-sized fossils are embedded in the clay-rich matrix, forming distinct laminae. n) B10525: Deep
lacustrine, clay-rich siliciclastic mudstone with abundant silt-size carbonate crystals (light). o)
B10547: Deep lacustrine, clay-rich siliciclastic mudstone. The matrix is visibly diagenetically altered.
p) B10562: Deep lacustrine, clay-rich siliciclastic mudstone with abundant pyrite (light lamina at the
bottom). q) C10371: Marine influenced, lacustrine, clay-rich siliciclastic mudstone with visible silt-
sized components (light). r) C10388: Marine influenced, lacustrine, clay-bearing fossiliferous
mudstone. Macro-sized shells are embedded in the fine-grained matrix. s) C10397: Deep lacustrine,
clay-rich siliciclastic mudstone. Macro-sized fossils ARE visible at the top. t) C10401: Deep lacustrine,
clay-rich siliciclastic mudstone. u) C10418: Lake plain, clay-rich siliciclastic mudstone with sand-
sized quartz grains. v) C10426: Lake plain, clay-rich siliciclastic mudstone interbedde with shell
layers (light). w) C10432: Lake plain, clay-rich siliciclastic mudstone. The matrix is diagenetically
altered. x) C10438: Lake plain, mollusc-packed grainstone. The interstices between the shell detritus
are infilled with cement.
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Table 4. 2. The TOC-normalized XRD mineralogical composition of selected Wealden shale samples
in wt.% for wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). The TOC content (in wt.%)

was determined with LECO.
31 28] 81 &1 3| 8| 3| | g 8] 8|5
S| 8 81 8 8 8| 3| & & | | 8| 8
— — — — — — — — — — — — —
< < < < < O O O O m m m m
Quartz 19.7| 1741 156 10.7| 18.1| 19.4 | 144 | 65| 205| 20.2| 20.0 | 20.5 | 21.0
Plagioclase 07| 07| 03| 09| 00| 11| 12| 10| 17| 08| 02| 08| 19
K-Feldspar 05| 09| 00| 05| 00| 04| 15| 25| 19| 04| 00| 00| 04
Calcite 02| 70| 05| 429 09| 226| 31| 02| 27| 01| 05| 03| 6.1
Dolomite 00| 09| 00| 13| 07| 87| 95|04 17| 36| 57| 22| 45
Siderite/
Ankerite 01| 02| 00| 08| 03| 02| 06| 01| 47| 01| 87| 60| 69
Pyrite 65| 22| 42| 18| 44| 40| 19| 14| 51| 60| 44| 64| 25
Marcasite nd| 0.2 nd nd nd| 00| 03| 01 nd| 0.6 nd nd nd
Anatase 04| 04| 03| 01| 01| 05| 05| 07| 05| 07| 06| 06| 05
Muscovite 50| 28| 46| 11| 24| 44| 66| 35| 83| 59| 70| 38| 44
llite + 1/S 420 39.7| 444 244 | 46.8| 295 | 36.2 | 445 425| 424 | 42.1 | 49.8 | 40.5
Kaolinite 159 13.1| 148 49| 7.7] 45| 96| 20.3] 42| 13.8] 59| 45 1.2
Chlorite 18| 00| 18| 12| 22| 26| 37| 00| 00| 13| 08| 05| 13
Gypsium 08| 10| 09] 26| 01] 00| 49| 07] 06] 00] 00| 0O 29
Halite 04| 06| 03| 05| 05| 00| 00| 02| 02| 00| 02| 01| 05
Bassanite 01] 12| 05[] 23] 02] 00| 00| 06| 04] 00| 02] O5[ 16
TOC 58| 11.8| 11.4| 41| 13| 19| 6.2 | 174| 51| 42| 38| 41| 39
Total 100 [ 100 100| 100| 100| 100 | 100 | 100| 100[ 100| 100 | 100 | 100

The top marine mudstone is either visibly bioturbated, with silty burrows arranged in

layers or lenses and occasional wood fragments (Figure 4.3a), or alternatively organic- and
clay-rich with no biogenic sedimentary structures (Figure 4.3b; Fig 4.4a, b). The middle
sublittoral lake shale (Figure 4.3c-e; Figure 4.4c, d) is on average more abundant in fossil
debris and may show interlamination of clay-rich and silt-rich laminae (Figure 4.3c, d).
Finally, the bottom, deep lacustrine shale shows the highest variability, and is represented by
non-laminated, clay-rich siliciclastic mudstone (Figure 4.3f, h, Figure 4.4e, f, Figure 4.4i, j),
bioturbated, silt-bearing, clay-rich mudstone, foraminifera and mollusc-, clay- and silt-
bearing mudstone (Figure 4.3g, Figure 4.4g, h), and finally interbedded shelly limestone.

The size of the shell fraction varies across the A core, and is much coarser in the fossil-
bearing mudstone (or wackstone) (> 0.5 mm), packstone and grainstone (> 3 mm) in
comparison to the clay-rich mudstone (<0.3 mm). Calcite cement is more common in
fossiliferous layers, and may infill intergranular porosity. Other types of cements sporadically
present include replacement siderite/ankerite and kaolinite. Quartz is present in all rock types,
with the content varying between ca. 10-20% in the samples analyzed. It forms angular,

subangular or rounded grains from > 100 pm down to < 5 pm, either disseminated in the
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matrix, concentrated in laminae or infilling burrows. Occasionally, silica cement infills
porosity in carbonate-rich intervals. Finally, pyrite is present either as euhedral crystals < 5
pm, pyrite framboids > 30 um, or infilling algal cysts. Pyrite is 2-7 wt.% and is less abundant
in the fossil-rich shale.

The original heterogeneity of the Wealden Shale is still observable in the high maturity
rocks, although often masked in thin sections by the dark colour of the shale matrix imparted
by mature organic matter. In the marine-influenced, deep lacustrine shale interval from the
top of the B core, the mudrock matrix may be partly homogenized, showing the presence of
silty burrows (Figure 4.3i), or may alternatively have an undisturbed fabric (Figure 4.3}, k,
Figure 4.5a-d). The bottom, deep lacustrine shale is more heterogeneous in terms of its
composition and texture, but still with only rare biogenic material. If present, fossil debris is
disseminated in the clay matrix (Figure 4.3m), or densely packed and cemented forming a
hardground bed. Clay-rich mudstone is usually organic-rich (TOC > 2 wt.%), either non-
laminated (Figure 4.5g, h, I) or finely laminated (Figure 4.3n, p, Figure 4.5e, f), with
occasional cement or microfossils (Figure 4.30, Figure 4.5i, ).

The C core shale shows similar variations, with the top, marine-influenced lacustrine
shale showing a varied abundance of micro- and macrofossil debris (Figure 4.3q, r; Figure
4.6a, b). The middle, deep lacustrine shale is usually clay- and organic-rich (Figure 4.3s, t;
Figure 4.6¢-f). The highest variability in the shale composition and texture was encountered
in the bottom, lake plain deposits represented by clay-rich siliciclastic mudstone (Figure
4.3w), often intebedded with shelly (Figure 4.3v; Figure 4.6i, j) or coaly layers (Figure 4.3y,
Figure 4.6g, h) and finally, by carbonate-dominated and clay-poor grainstone (Figure 4.3x).

In contrast to most of the investigated low maturity shale samples from well A, in both
high maturity cores the original variation of shale components is overprinted by advanced
diagenetic processes. This means that while in the siliciclastic mudstone samples the clay
content still varies between 41-68% (Table 4.2), the carbonate content is controlled not only
by the amount of shell debris, but also the presence of diagenetic ferroan dolomite. This is
concentrated in shell beds, either as inter- and intraparticle cement, or as discrete,
replacement dolomite-siderite rhomboids. Dolomite-replacement rhomboids are also common
in the clay-rich matrix, with sizes between <5 pum to over 500 um. Other diagenetic features
include calcite cement, especially abundant in fossil-rich laminae and beds and irregular
silica patches. Overall, the total content of carbonates in the analyzed high maturity shale
samples varies between < 1% up to > 30%, with the most carbonate-rich rocks showing the

highest fossil abundance.
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Figure 4. 4. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) displaying
textural features of the Wealden Shale from the immature/early mature well A, a, b): A10282 deep
marine, clay-rich siliciclastic mudstone; c, d): A 10305 sublittoral lake, clay-rich siliciclastic
mudstone; e, f): A10320 deep lacustrine, clay-rich siliciclastic mudstone; g, h): A10326 deep
lacustrine, clay-bearing fossiliferous mudstone; i, j): A10342 deep lacustrine, clay-rich siliciclastic
mudstone. In the transmitted light micrographs black colour denotes pyrite or pyritized algae bodies
(c), white — fossils (c, g) or quartz grains (i), brown — clay matrix. White elongated features are

fractures.
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Figure 4. 5. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the
Wealden Shale from the overmature well B. a, b): B10455 marine influenced, deep lacustrine, clay-
rich siliciclastic mudstone; c, d): B10458 marine influenced deep lacustrine, clay-rich siliciclastic
mudstone; e, f): B10525 deep lacustrine, clay-rich siliciclastic mudstone; g, h): B10533 deep
lacustrine, clay-rich siliciclastic mudstone; i, j): B10547 deep lacustrine, clay-rich siliciclastic
mudstone. In the transmitted light micrographs brown and dark brown colour denotes clay-rich
matrix, white — quartz and diagenetic carbonates, or fossils (i). White elongated features in c) are
fractures.
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Figure 4. 6. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the
Wealden Shale from the overmature well C. a, b): C10371 marine influenced lacustrine, clay-rich
siliciclastic mudstone; ¢, d): C10397 deep lacustrine, clay-rich siliciclastic mudstone; e, f): C10401
deep lacustrine, clay-rich siliciclastic mudstone; g, h): C10418 lake plain, clay-rich siliciclastic
mudstone; i, j): C10426 lake plain, clay-rich siliciclastic mudstone. In the transmitted light
micrographs brown and dark brown colour denotes clay-rich matrix, white — quartz and diagenetic
carbonates, or fossils (i). White elongated features in e) and g) are fractures.
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Figure 4. 7. Ternary diagram showing the basic mineralogy of the Wealden shale suite. Samples
taken from three cores: A (Ro 0.5-0.7%), B (Ro 1.6-2.4%) and C (Ro 1.5-1.9%). German Wealden
consists of a lithologically diverse group of rocks including mudstones and limestones. Note a
negative correlation between a proportion of clays and carbonates implying, that those are the main
components building the shale framework.

In shales of all maturities we recorded the presence of horizontal fractures sealed with
gypsum/bassanite, and in high maturity rocks occasionally with pyrite. The presence of
pyrite-sealed fractures suggests that those are naturally occurring in the subsurface. On the
other hand, the genesis of sulfate minerals may be related to the reaction of calcium carbonate
present in shales with acid sulfate from the oxidative weathering of pyrite (Burkart et al.,
2004).

Organic matter variation as a function of maturity and depositional setting

We recorded a significant drop of Hydrogen Index from the mean value 591 to 30 and 40
mg/g between the well A and wells B and C (Table 4.3, Table 4.Al). This drop is associated
with a decrease in the S2 hydrocarbon potential but no change in the S1 content. The low S1
content of the A well shale succession suggests it has not yet started generating hydrocarbons.
Despite a presumed drop of the carbon content between early oil window and gas window
maturities (Jarvie et al., 2007), the mean organic carbon is not significantly different between
low and high maturity wells, yielding average values 2.5% (1.8-3.8%), 2.4% (2.1-2.5%) and
2.1% (1.7-2.3%) in wells A, B and C respectively (Table 4.4). In contrast, there is a higher

contribution of TOC-rich samples (> 2 wt.%) in the gas window shale, and a higher

150



abundance of shales with TOC < 2% in the least mature well (Figure 4.8). This distribution of

organic content reflects the different palaeogeographic position of the three sampled cores in

the basin and the different amount of organic matter originally buried in sediments (Figure

4.1b).
Table 4. 3. Rock-Eval data statistics (median and 95% confidence interval) for Wealden shale,
samples taken every 1 m, wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro).
Sample Depth S1 S2 S3 HI Ol Tmax
(m) | (mgHC/g) | (mgHC/g) | (mgHC/g) | (mgHC/gTOC) | (mgHC/gTOC)
Well A | 832- 0.2 15.8 1.0 501 38 438
1056 | (0.1-0.3) | (9.4-27.0) | (0.9-1.2) (493-637) (34-50) (437-439)
WellB | 981- 0.1 0.6 0.6 30 27 462
1578 | (0.1-0.1) | (0.6-0.7) | (0.5-0.7) (26-38) (23-33) (372-485)
WellC | 604- 0.3 0.9 0.8 40 35 472
942 (0.2-0.5) | (0.8-1.2) | (0.7-1.0) (37-76) (29-46) (463-497)

Table 4. 4. TOC and HI data statistics (median and 95% confidence interval) for Wealden shale,
samples taken every 1 m, wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). Samples
originate from core intervals assigned to different depositional settings (ExxonMobil, unpublished).

Sample Depth (m) TOC (%) 95% ClI HI 95% ClI
Well A 832-1056 2.5 1.8-3.8 591 493-637
Deep marine 832-850 18 1.0-4.3 203 132-499
Sublittoral lake | 910-928 3.8 2.4-5.4 704 581-770
Deep lacustrine | 966-1056 2.2 1.6-3.8 604 491-669
Well B 981-1578 2.4 2.1-2.5 30 26-38
Marine 981-1003 2.1 1.2-3.6 67 61-84
influenced deep
lacustrine
Undefined 1006-1016 0.8 0.6-0.9 62 60-70
Deep lacustrine | 1150-1578 2.5 2.2-2.7 25 21-28
Well C 604-942 2.1 1.7-2.3 40 37-76
Marine 604-728 1.9 1.3-2.2 147 130-166
influenced deep
lacustrine
Deep lacustrine | 828-890 2.5 2.0-3.2 37 33-28
Lake plain 920-942 13 1.0-4.0 29 22-32
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Figure 4. 8. Histogram of Total Organic Carbon of the Wealden Shale. Measurements were taken
every 1 mfromeach available core and thus represent a true distribution of TOC.

Following the lateral heterogeneity, Wealden organofacies are not homogeneous within
single wells, but instead show interbedding of kerogen Type | with kerogen Types Il and 11l
(Figure 4.9). The TOC variation is depth and time dependent (Table 4.4, Table 4.Al) and
thus reflects fluctuations in the base level of the Cretaceous lake. For instance, in well A, a
significant input of Type Il and Il1 kerogen coincides with increased marine influence on
sedimentation after the W3 interval, resulting in the lowest mean HI of 203 mg/g. The TOC
variation is large, between 0.3-17.5%, with both low and high values found in the deep
marine, sublittoral lake and deep lacustrine shale. The highest mean TOC value is
characteristic of the sublittoral lake shale (3.8%), followed by the deep lacustrine shale
(2.2%), and the deep marine shale (1.8%). High TOC (> 3%) shales are also hydrogen rich
(HI > 500 mg/g) and have well preserved kerogen Type | or Il (Figure 4.3b-h). In contrast,
low TOC (< 1%) shales are low in hydrogen (HI <500 mg/g), have kerogen Type Il or Il
and are typically associated with visibly bioturbated shales (Figure 4.3a). Shales with
intermediate organic contents (1-3%) can be either hydrogen rich (HI > 500 mg/g), but with
organic matter diluted by a fossil debris, or depleted of hydrogen (HI<500 mg/g), partly
bioturbated, enriched in macrofossils, or more resistant terrestrial organic matter, implying a
more proximal location at the time of deposition. In general, as supported by the petrographic
evidence, depletion in hydrogen in the A well is a function of poor preservation rather than
increased input of terrestrial organic macerals.
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Figure 4. 9. Kerogen type and depositional setting of the Wealden Shale from wells a) A, Ro 0.5-

0.7%), b) B, Ro 1.6-2.4% andc) C, Ro 1.5-1.9%.
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At higher stages of maturity, remaining hydrocarbon potential is no longer an indicator
of the kerogen type, and all shales plot within the field of kerogen type 111 (Figure 4.9b, c). In
contrast to the low maturity shale, the most organic-rich shales are not always the most
hydrogen-rich due to differences in both kerogen type and maturity (Table 4.4, Table 4.Al).
For instance in the C well, shallower in the core shales from the marine-influenced lacustrine
setting have higher HI values (mean 147 mg/g) but lower TOC (mean 1.9%) than deeper-
buried shales from the deep lacustrine setting (means 37 mg/g and 2.5% respectively).
Similarly in the well B, deep lacustrine shale with a marine influence from the top of the core
shows a higher hydrogen index (mean 67 mg/g) but similar TOC compared to deep lacustrine
shale from the bottom of the core (mean 25 mg/g and 2.5% respectively).

In both B and C shale, the organic richness variation is significant, with TOC values
ranging between 0.4-9% in well B and 0.5-17% in well C. The lowest organic content values
were recorded in shales showing the presence of bioturbation, macrofossils, or silt laminae,
all implying poorer preservation and/or dilution of organic matter (Figure 4.3i, x). Such
observations are consistent with the lowest recorded mean TOC (1.3%) in the C core in shale
from the lake plain setting. Significantly higher TOC values are encountered in the deep
lacustrine shale from both overmature wells, with a mean TOC of 2.5%. The highest
measured TOC values (> 10%) are associated with coaly organic matter found in the lake
plain setting shales from the C core (Figure 4.3u).

Vitrinite reflectance measurements on selected samples confirm different maturities of
the shale from well A (Ro = 0.7% on 1 sample) and from wells B and C (1.6-1.9% on 3
samples) (Table 4.5). The marginally higher reflectance of the least mature sample and
significantly lower reflectance of the sample from the B well, as compared to Rippen et al.
(2013), likely results from inaccuracies of the vitrinite reflectance method in mudrocks with
only scarce vitrinite. However, our measurements of the VR in the A and B wells are
consistent with those reported elsewhere (Egs-ploration, unpublished; Littke, 2008,

unpublished) and therefore are assumed to be valid for this section.

Table 4. 5. Mean vitrinite reflectance values at random vitrinite particles in selected samples from the
coresA,Band C.

Sample Depth (m) No. of Mean Standard deviation
measurements (%) (%)
A10305 924 19 0.7* 0.1
B10458 1001 59 1.9% 0.2
C10388 721 122 1.6 0.2
C10401 857 75 1.9 0.1

*Please note that the value deviates from those reported by Rippen et al. (2013).
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Figure 4. 10. Oil immersion micrographs of Wealden Shale. Horizontal scale bars denote 50 pum.
Dashed lines indicate direction of a bedding plane. a) (A10305): Fluorescence mode micrograph of
sublittoral lake, clay-rich siliciclastic shale of measured maturity Ro 0.7%. Strong fluorescence of the
matrix is due to the presence of the algal material. b) Normal incident light micrograph of the same
field as a). Structured algal liptinite is common, forming well-preserved bodies of Botryococcus (Bo).
c) (B10458): Fluorescence mode micrograph of marine influenced deep lacustrine, clay-rich
siliciclastic mudstone of measured maturity Ro 1.9%. The bituminous groundmass exhibits no
fluorescence and no structured algal liptinite is present. d) Normal incident light micrograph of the
same field as c). Solid bitumen (Bs) is present, concentrating in microfractures. e) (C10401):
Fluorescence mode micrograph of deep lacustrine, clay-rich siliciclastic mudstone of measured
maturity Ro 1.9%. The bituminous groundmass exhibits only very weak fluorescence. f) Normal
incident light micrograph of the same field as €). A tight network of irregularly-shaped solid bitumen
fills the intergranular space within the clay matrix, and concentrates in compaction shadows of
mineral grains. g) (C10388): Normal incident light micrograph of marine influenced lacustrine, clay-
bearing fossiliferous mudstone of measured maturity Ro 1.6%. Solid bitumen phase is highly
concentrated, filling intra- and intergranular space within disseminated fossil fragments. h)
(C10418): Normal incident light micrograph of lake plain, clay-rich siliciclastic mudstone (no
maturity measured). Semifusinite and fusinite constitute principal macerals. Bo — Botryococcus, Bs —
solid bitumen, | — inertinite, Dol — dolomite, Fs — fossil, Py — pyrite.
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As a consequence of maturity changes, the maceral types found in shales of different
maturities show a gradual change in type, volume and colour. For instance, in the least
mature sublitoral lake A10305 shale, structured algal liptinite is common, forming well-
preserved or selectively pyritized bodies of Botryococcus, and co-exists with thin, flat and
fluorescent lamellar alginate interlayered with clay laminae and the so-called matrix
bituminite (Tao et al., 2012) (Figure 4.10a, b). Terrestrial macerals, including vitrinite and
inertinite, are dispersed and are present in very low abundance. At the gas window maturity
(Ro > 1.9%; samples B10458 and C10401), the groundmass organic matter exhibits only very
weak fluorescence and no structured algal liptinite is present (Figure 4.10c-f). Instead, a tight
network of irregularly-shaped solid bitumen fills the intergranular space, both within the clay
matrix, and especially in compaction shadows of mineral grains. The bitumen phase is a
visually dominant organic component of the overmature shale. In a shell detritus-bearing
mudstone at Ro 1.6% maturity, the solid bitumen phase is even more concentrated, filling
intra- and intergranular space within disseminated fossil fragments (Figure 4.10g). No
bitumen was noted in an organic-rich mudstone from the lake plain setting with semifusinite,

fusinite and vitrinite as principal macerals (Figure 4.10h).

Grain density, total and mercury porosity, and pore throat size distribution

Grain density

The average density of the mineral matrix shows significant variation between samples
within and between wells (Table 4.6 and Figure 4.11a) and is influenced by the variation in
the mineralogical composition (Figure 4.11b). For the three wells, density values exhibit a
single mode between 2.6-2.8 g/cm3, with a higher frequency of lower density samples in the
least mature well and a larger frequency of samples with higher density in the overmature
shale. This distribution implies the primary role of maturity inducing a change in the density
of the organic component and of the bulk shale (Okiongbo et al., 2005). In the least mature A
samples, grain density varies between 2.1 and 3.0 g/cm® and decreases significantly with an
increasing content of organic carbon (Figure 4.11c). Although a similar variation, from 2.2 to
2.9 glcm?, is observed in the shale from the C well, the density of the organic-rich rocks
(TOC > 5%) is always higher in the mature shale. For shales with organic carbon contents <
5%, due to elevated content of high grain density carbonate component in the A shale,

densities of the A and C shale overlap. In the investigated sample suite from the C well, the
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lowest density shale, 2.2-2.3 glcm®, shows the lowest pyrite content and the highest TOC and
contains predominantly type Il kerogen. The highest densities, > 2.7 glcm®, occur where
there are interbedded carbonate microconcretions. In the B well, the spread in shale grain
density is the lowest, between 2.5-3.1 g/cm®, and coincides with the smallest variation in the

organic content.
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Figure 4. 11. Grain density variation in shale of different maturity. a) Histogram of grain density
distribution of Wealden shale from wells A, B and C. Density values exhibit a mode between 2.6-2.8
g/cm®, with higher frequency of lower density samples in the least mature well and larger frequency of
samples exhibiting higher density in the overmature shale. b) At all maturities grain density is
influenced by the mineralogical composition, with a strong positive influence of the pyrite content. c)
Organic content has a negative influence on grain density values. In the most organic rich shale
(TOC > 5%) at any given content of organic carbon, density values of the overmature shale exceed
those measured in the least mature shale.
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Table 4. 6. Statistics for grain density and porosity data obtained with different techniques for
selected Wealden shale samples, wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). For
the porosity data, average values and standard deviation are provided, while for the remaining data,
median and 95% confidence interval.

Well Number of Total Hg porosity | Porosity < Hg access Grain density
samples porosity (%) (%) 5.6 nm (%) radius (nm) (glem®)
Well A 24 9.8 7.6 2.2 19.0 2.64
+-4.4 +/-3.8 +-1.7 (11.3-25.9) (2.52-2.70)
Well B 30 7.6 5.3 2.3 8.3 2.71
+/- 2.5 +-1.7 +/-1.6 (7.6-9.2) (2.69-2.73)
Well C 30 7.6 54 2.1 9.1 2.69
+/-2.9 +-2.2 +-1.4 (8.0-10.8) (2.64-2.72)

Total porosity

Measurement of grain densities enables the estimation of total porosities of a
lithologically varied suite of shale samples. Experimentally obtained raw total porosity was
corrected for pores intersected by the sample surface (conformance correction), responsible
for an increase in the volume of mercury at the very start of the injection experiment (Figure
4.12b) (Comisky et al., 2011). The conformance error occurs when mercury does not fill the
whole empty space around the sample in a penetrometer due to the sample roughness, until
higher pressures are applied (Sigal, 2009). In order to estimate a true radius of the onset of
Hg intrusion into a porous network within each sample, cumulative mercury volume data
were compared with distribution of pore throats as calculated with the Washburn equation
(Washburn, 1921) (Figure 4.12a). To make a comparison more effective, calculated areas of
pore throats cross-sectioned by a theoretical plane were grouped in bins of an increasing size
and plotted as a function of pore volume intruded by mercury (Bernal and Bello, 2001,
Houben et al., 2013). The resulting fractal distribution of pore throats was fitted with 2-3
linear regression lines (Figure 4.12c), with the line of the smallest slope (typically < 1.0)
describing the largest pores interpreted as an artifact, created due to intersection of pores by
the sample surface. The true injection of Hg to pore bodies is described by a regression line
with a slope usually > 2, and corresponds to a rise in the pore volume density beyond the
background values. Consistent with Comisky et al. (2011), the estimated true radius of
intrusion is up to 3 orders of magnitude lower than the apparent radius derived from the raw
data.
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Figure 4. 12. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal
distribution of pores in the B10482 sample. Pores exhibit non-uniform fractal distribution with pores
> 38 nm (slope -0.9) interpreted as those intersected by the sample surface (surface roughness) and
pores < 38 nm (slope -2.0) interpreted as pores accessed through corresponding throats.

Measured total porosities show a large range in shales of both low and high maturity
(Table 4.6, Table 4.A2 and Figure 4.13a). At Ro = 0.5-0.6% porosities vary between 1.9-
18.3%, with an average value of 9.8 +/-4.5%. In the high maturity wells, porosities show a
higher range of values, varying from 1.6 to 12.5% and 1.1 to 12.4% in wells B and C
respectively. In the overmature shales, the average total porosities are also lower than in the

early mature well, amounting to 7.6 +/-25% and 7.6 +/-2.9% in the B and C wells
respectively.
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Figure 4. 13. Histogram of porosity distribution in samples from wells A, Band C. a) Total porosity.
b) Mercury injection porosity.

Mercury porosity and pore size distribution

Mercury porosities show a lower spread than total porosities, varying between 0.6-15.2%
in well A, 0.4-8.5% in well B and 0.7-9.2 % in well C (Figure 4.13b). For the least mature
shale the average mercury porosity is higher, amounting to 7.6 +/-3.8%, in comparison to 5.3
+/-1.7% from the B and 5.4 +/-2.2% from the C gas mature shale.

For ca. 95% of the investigated shale samples the threshold aperture, defined as the
aperture providing access to > 10% of porosity, does not exceed 50 nm diameter (Table 4.6,
Table 4.A2). In the low maturity well, despite the prevalence of <50 nmapertures (median =

38 nm), wider pore size distributions were encountered in a few fossiliferous mudstones and

161



limestones. Within the mudstone group only, fossil-bearing mudstones show higher threshold
apertures (> 35 nm) in comparison to fossil-depleted siliciclastic equivalents. Moreover,
higher pore apertures coincide with coarser grain sizes of the silt fraction as retrieved from
SEM images (Figure 4.14). For 6 samples for which grain size distribution was determined,
two with the coarsest grains across the full size range have higher Hg apertures (40 nm and
2000 nm) than samples with finer silt fractions. At the same time, 3 samples with the densest
population of grains with the size in a range 2-500 nm have higher apertures (> 35 nm) than 3
much finer samples (aperture < 22 nm). In the overmature shale, the threshold aperture is
smaller than in the less mature equivalent, with a median value of 16 nm, 98% of samples
with apertures < 50 nmand 70% of samples with apertures < 20 nm. Although slightly higher
apertures were found in the shale from the lake plain setting (median 22 nm), they are not
significantly different in comparison to the remaining sample set (median 16 nm). Overall,
the width of the threshold apertures of the overmature shales have a smaller range than in the
early mature shale, varying between 12-24 nm and 14-36 nm for the B and C well

respectively.

m  A10282 Hg access aperture 16 nm
® A10289 Hg access aperture 34 nm
A10299 Hg access aperture 2090 nm
v A10320 Hg access aperture 19 nm
100 4 A10326 Hg access aperture 40 nm
] < A10342 Hg access aperture 23 nm
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Figure 4. 14. Grain size distribution for the silt fraction in selected samples from the A well. Samples
A10299 and A10326 show much coarser grains across the full size range. Additionally, along with the
sample A10289 they show significantly denser population in the size <500 nm.
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Figure 4. 15. Incremental (left column) and cumulative (right column) pore volume density of
selected Wealden samples, wells: a, b) A (Ro 0.5-0.7%), ¢, d) B (Ro 1.6-2.4) and e, f) C (Ro 1.5-1.9%).
The mercury data was cut off at a radius interpreted as a true onset of the mercury intrusion into a
pore network. In the immature and early mature shale, pore throat distributions are predominantly
unimodal with the peak between 10-40 nm. A larger spread of pore throat sizes is characteristic for
mudstones enriched in a shell detritus (A10326) or burrows filling silt fraction (A10278). In the
overmature wells B and C, distribution of pore throat sizes is unimodal with the highest pore volume
density between 10-20 nm. In shales enriched in the shell detritus (C10388, C104260) distribution is
skewed towards higher values (10-20 nm) in comparison to clay-rich mudstones (< 10 nm).
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Similarly to the value of the threshold aperture, pore size distributions show variations
within and between wells, reflecting the spread of pore throat sizes and different amounts of
porosity contained both in mercury pores (> 5.6 nm in diameter) and pores with a diameter <
5.6 nm (Figure 4.15). In the A well, distributions are predominantly unimodal, with a peak
between 10-40 nm. A larger spread of pore throat sizes, and modal peaks shifted towards
larger pores is characteristic for mudstones enriched in shell detritus (A10326) or burrows
lined with quartz silt (A10278) (Figure 4.15a, b). For a few fossil-rich limestones as well as
silt-laminated mudstones, the distribution is bimodal, with peaks at < 20 nm and ca. 60-200
nm (not shown). In the overmature wells B and C, the distribution of pore throat sizes is
unimodal with the highest pore volume density between 10-20 nm (Figure 4.15c-f). In shales
enriched in the shell detritus (C10388, C10426), pore size distributions are skewed towards
higher values (10-20 nm) in comparison to clay-rich mudstones (< 10 nm).

While the size and distribution of pore throats control intrusion of mercury during the
drainage stage of the mercury injection experiment, the extrusion process is controlled by the
pore body/pore throat ratio (Webb, 2001). In general, an increase in this ratio leads to the
entrapment of mercury in pore cavities, leading to the development of hysteresis (Figure
4.164, c, e) and causing some pores to empty at capillary pressures lower than corresponding
to their size as estimated from the Washburn equation (Padhy et al., 2007). As shown by the
curves plotting the difference between porosity intruded and emptied during intrusion-
extrusion experiments at equivalent pressures (Figure 4.16b, d, f), in all samples the absolute
amount of trapped mercury that is not released during the imbibition at the intrusion pressure
initially increases. When a threshold diameter is reached, the rate of extrusion exceeds the
rate of intrusion at an equivalent pressure, and mercury starts to recede from pores that could
not be emptied before. The maximum fraction of porosity occluded by trapped mercury that
cannot be emptied before the pressure equivalent to the threshold diameter is reached, varies
between 0.62-0.99 across samples and, regardless of the maturity, is strongly related to the
content of organic carbon. The maximum percentage of porosity occluded by mercury that
was not released from the sample at the equivalent intrusion pressure is encountered in the
least organic rich shales and decreases linearly with increasing TOC (Figure 4.17). This
relation indicates that little, if any, retraction occurs from inorganic pores at the start of the
imbibition and that considerable compression of the shale structure may take place upon

pressures exerted by mercury in the most organic rich shales (Friesen and Mikula, 1988).
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Figure 4. 16. Cumulative intrusion (squares) and extrusion (triangles) of mercury for selected
Wealden shale samples from wells a) A, ¢) Band e) C. The mercury data were normalized to the true
volume of intrusion after cutting off the pore volume data interpreted as representing surface
roughness. b) A, d) B and f) C shale. Cumulative porosity that is not emptied from mercury during
the imbibition. The curves plot cumulative difference between porosity intruded and emptied during
the intrusion-extrusion experiments at equivalent pressures as % of a rock. Note that in all samples
during the imbibition process the absolute amount of mercury that is not released at the intrusion
pressure initially increases.
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Figure 4. 17. Maximum fraction of total porosity trapped by mercury during the imbibition
experiment for selected Wealden shale samples from the A (black squares), B (red circles) and C
(green triangles) wells. The fraction occluded by mercury shows a strong negative relation with the
content of organic carbon.

Rock classification based on factor analysis

In order to explain variability in measured porosity values between different shale samples
and give them geological meaning, a factor analysis was employed. The 10 variables
included in the multivariate statistical analysis included geochemical data (TOC, HI, S1, S2,
S3) and petrophysical data (total porosity, mercury porosity, ratio of mercury to total porosity,
maximum access radius for injected mercury and grain density). For the early mature shale
from the A well, the first three factors explain 84% of the total variance. These factors group
samples with high TOC, HI, S2 and low grain density (Factor 1), low total porosity, mercury
porosity and S3 (Factor 2) and low S1 and maximum access radius for mercury (Factor 3)
(Figure 4.18). The factor analysis revealed 3 groups of samples and 2 main trends in terms of
porosity variability across the measured TOC range (Figure 4.20a). Group 1 includes samples
with high average porosity (7.9 +/-3.1%), low organic content (1.8 +/-1.3%), varied grain
density (2.53-2.82 g/cm®), and varied extent of preservation of organic matter (generative
potential), from highly oxidized (poor) to well preserved (very good). Samples distinguished
for this group are quite heterogeneous but embrace mostly deep lacustrine shelly bed deposits,
fossil-bearing mudstones and carbonate concretions (Figure 4.3d, g). In combination, these
samples show a positive correlation between total porosity, organic content, and the

preservation of organic matter.

166



s & NN RS N N N '15@ & N
16 1 il ° | g 1 ] PO o—l ] °
[ N ) e o [ J
8 .. . ()
Toc e ® °
0 1000
[ ... (] @ @ [ )
" 500
Hi 0 ° 3 °
20 .. 0
0 ® ° ° @ °
[ Tot. porosity
0 l (] () (J .
o® 8| o© o® @ o9 °® [} o ® LX) o
s1 2
CJ
0
100 ° 0 O CE) o
% A 2 .
0 [] [ ]
[ ] [ J 009 OO [ J [ ] (L [_J 3
° s ® 2
1
30 ® ° (3 ®
D [Dd °
25 .. Graindensity )
o e® ® o® ¢ » [ g .
. g
° e (4 .
9 A Hg porosity 2 °
1.0 o
‘ e ® e 'ﬂ-
[] .
0-5 [ ] o Hg/Tot. porosi o
00 ® ® e e o [" o ® ® ol o & .00
[] [J [] o |e [] [J [] [] [] [] ®
@ 'Y ) ® g access radiu: ® ) 2000
2.5 0
L0 PR e © o\ ®
0.5 ® F1
2
o > 0
[ ) F2
@, -2
0
-2 (J : e [ J P .. .. [ J . e [ ] : e [ [} e F3
“ T T 1 T T T T T 1 T T 1 T T T T T T
D
° R °© P e DAY SN NSRS NG Yoo

Figure 4. 18. Matrix scatterplot of the early mature well A Wealden Shale samples showing variation
of 10 variables and 3 factors extracted during the factor analysis. Factor 1 correlates positively with
TOC, HI, S2 rather than grain density. A negative correlation is observed between Factor 2 and total
porosity, mercury porosity and S3. Factor 3 is inversely correlated with S1 and maximum access
radius for mercury.

The second group of samples selected through the factor analysis includes clay-rich
mudstones with total porosity ranging from very highto very low (3-18%, average 5.2 +/-5.0)
over the range of TOC values ranging from < 0.5 to > 15.0% (average 10.5 +/-4.4). The
strong negative correlation between total organic content and total porosity of this sample set
is associated with a decrease in grain density from 2.9 to 2.1 glcm®, coinciding with a varied
abundance of early diagenetic cement, and an increase in the generative potential from poor
to very good. Characteristically for this group of rocks, higher porosities coincide with the
presence of silt-filled biogenic sedimentary structures encountered in the marine shale
(Figure 4.3a), and decline rapidly in silt- and TOC-poor mudstones (e.g. siliciclastic
mudstone with clay-filled burrows). In comparison, with TOC contents above 2-4%,
characteristic of shales with no sedimentary structures and good quality organic matter
(Figure 4.3b, c, f, h), porosities decline at a moderate rate.

The last group of samples distinguished through the factor analysis includes samples with
both high porosity (average 15.6 +/-2.7%) and organic content (average 9.4 +/-2.3%), low
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grain density (2.2-2.4 g/cm®), and consistently high preservation and high generative potential
of the organic matter. Because the samples are both clay-rich and show the presence of
fossiliferous debris, they could be classified as those with intermediate lithologies between
high generative potential fossiliferous shale from group 1 and clay-rich mudstone from the

group 3 (Figure 4.3e).
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Figure 4. 19. Matrix scatterplot of the gas window Wealden Shale samples (well B, C) showing
variation of 10 variables and 4 factors extracted during the factor analysis. Factor 1 correlates
positively with HI, S1 and S2. A good positive correlation is observed between Factor 2 and total
porosity, Hg porosity and S3. Factor 3 correlates positively with grain density rather than TOC.
Factor 4 is inversely correlated with the maximum access radius for mercury and ratio of mercury to
total porosity.

For the gas window mature shales, the factor analysis was performed for the samples from
wells B and C combined. The first 4 factors extracted explain 85% of the total variance and
group samples based on high HI, S1 and S2 (Factor 1), high total porosity, Hg porosity and
S3 (Factor 2), high grain density rather than TOC (Factor 3), and low maximum access radius
to mercury and low ratio of mercury to total porosity (Factor 4) (Figure 4.19). The analysis of
the four factors reveals four groups of samples and two different trends of total porosity

variation in relation to the content of organic carbon (Figure 4.20b). The first sample subset
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includes samples with low TOC (0.6-2.7%, average 1.3 +/-0.7%) and unusually high grain
densities for a given content of the organic carbon. Total porosity for this group rises from 1-
12% (average 7.0 +/-3.2%) with increasing carbon content, with a variable ratio of mercury
to total porosity. Samples selected in this group are fossil-bearing, imparting higher grain
density to the bulk shale and come from both deep lacustrine and lake plain settings (Figure
4.3m, 1, X).

The second group consists of samples with total porosity values ranging from moderate to
very high (4-12%, average 7.8 +/-2.0%) over a wide range of TOC between 0.7 to 8.9%
(average 3.4 +/-1.9%). What is characteristic is a low average maximum access radius to
mercury as well as a low ratio of mercury to total porosity. Samples within this group are
classified as deep lacustrine, clay-rich mudstones, with the porosity positively correlated with
the amount and the extent of preservation of organic carbon in the sediment (Figure 4.3j-1, n-
g, s-r). Importantly, this group embraces both organic- and carbonate poor mudstones with
sedimentary structures such as current features, as well as laminated organic-rich mudstones
with undisturbed clay-rich fabrics.

The next sample group consists of samples with both higher than average maximum
access radius to mercury and fractions of total porosity accessible to mercury. In this group,
the TOC variability is moderate, (1.3-6.7%, average 4.2 +/-2.1%), followed by positive
change in total porosities from 4 to 12% (average 8.8 +/-3.4%). As both the mercury:total
porosity ratio and access radius correlate with the fourth factor explaining only 12% of
variance, the porosity and TOC values of these samples do not deviate from those
characteristic for the second group of samples. Lithologically, this third group includes clay-
richand fossil-bearing mudstones deposited exclusively in the lake plain setting (Figure 4.3v,
w).

The last sample subset extracted through the factor analysis consists of only two samples,
with very high organic contents (12.9 and 17.4%), relatively low grain densities (2.23 and
2.36 gcm®) and low total porosity (5.0 and 4.6%). This group includes carbonaceous

mudstones with terrestrial organic matter concentrated in coaly laminae (Figure 4.3u).
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Figure 4. 20. Variation of total porosity as a function of maturity and organic carbon content. a) Well
A (0.5-0.7% Ro). Group 1: fossil-bearing mudstone, shelly bed deposits and carbonate concretions;
Group 2: clay-rich mudstones; Group 3: clay-rich mudstone with fossil debris. b) Wells B and C (Ro
1.6-2.4% and 1.5-1.9% respectively). Group 1: fossil-bearing mudstone, limestone and carbonate
concretions; Group 2: clay-rich mudstone; Group 3: clay-rich and fossil-bearing mudstone deposited

in the lake plain setting; Group 4: carbonaceous mudstone with terrigenous organic matter. For
details see text.
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Micro- and mesoporosity

A fraction of porosity, due to pores either being blind, finer than 5.6 nm or hidden below <
5.6 nm constrictions, was not detected by mercury. In the low maturity well, this porosity (1-
MICP) varies between 0.2-7.4% with an average value 2.2 +/-1.7% (Table 4.6, Table 4.A2).
Similar porosities were measured in the gas window shale samples, showing both equal
spread, from< 0.1 t0 6.8% and 0.3-7.1% in the B and C well respectively, and average values
(2.3 +/-1.6% and 2.1 +/-1.4% for B and C sample subsets). In the low maturity well, 1-MICP
porosity, unlike in the gas window shales, does not show a correlation with the organic
content for any of the sample groups distinguished (Figure 4.21a). At high maturities, 1-
MICP is positively correlated with the organic carbon content for all main sample groups 1 to
3 (Figure 4.21b).
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Figure 4. 21. Variation of porosity not penetrated by mercury during mercury porosimetry as a
function of maturity and organic carbon content. a) Well A (0.5-0.7% Ro). b) Wells B and C (1.5-
2.4% Ro). For group description see Figure 4.20.

High entry pressure, compressible samples can yield reduced MICP porosities due to
compressibility of the shale and thus overestimate the content of small or inaccessible pores
(Shafer et al., 2000) Hence, in order to investigate the amount ofthe < 5.6 nm pores (Rexer et
al., 2014), porosities for 3 selected organic-rich shale samples of different maturities were
measured with low pressure CO, 195K gas sorption. All CO; isotherms are type I (Sing et al.,
1985), and demonstrate evidence of the presence of microporosity filled at the lowest
pressures (Figure 4.22). Sorption pore volumes measured at 1 mbar do not differ significantly
and amount to 0.018-0.022 cm®/g in all shale samples investigated (Table 4.7). Similarly,
corresponding sorption porosities (SP) vary only insignificantly, yielding 4.4% for both the
early mature A10305 and overmature B10458 shale, and 5.2% for the C10401 shale sample

from the overmature well C. After solvent extraction, performed for 2 overmature shales,
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total sorption increased, leading to an increase in the calculated sorption porosities to 5.0%
and 5.5% in the B 10458 and C 10401 samples respectively (Table 4.4, Figure 4.17). Such
small porosity increase indicates that extractable bitumen at high maturities occupies only

small fraction of bitumen free sorption porosities (5 and 12% in B and C sample respectively).
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Figure 4. 22. 195K CO, isotherms for selected Wealden shale samples, A10305 (Ro 0.7%), B10458
(Ro 1.9%) and C10401 (Ro 1.9%). Samples with a solid symbol were not solvent extracted, while

those marked with a semi-solid symbols were solvent extracted (ext) prior to the analysis.

Table 4. 7. Porosities and pore parameters measured with different techniques for selected Wealden
samples, wells A (0.7% Ro), B (1.9% Ro) and C (1.9% Ro).

Sample | Total Mercury Injection CO, 195K
porosity
(%) Hg | Hgaccess | Porosity < Sorption Sorption pore Extract.
porosity radius 5.6 nm porosity (%) | volume (cm°/g) | bitumen in
(%) (nm) (%) Pre- | Post- | Pre- Post- sorption
ext. | ext ext. ext. pores (%)*
Al10305| 1291 5.59 6.2 7.31 442 | nd 0.021 nd nd
C10401| 10.96 7.68 10.6 3.28 524 | 550 | 0.022 | 0.023 0.25
B10458 | 9.06 7.55 8.9 1.51 444 | 5.02 | 0.018 | 0.020 0.58

* The amount of bitumen occupying sorption pores was estimated as a difference between sorption
porosity of a pre-extracted shale (pre-ext.) and shale extracted with organic solvents (post-ext.).
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Due to a small number of measurements, it was not possible to determine the relation
between sorption porosity and shale composition. However, including a sample set measured
on the Lower Jurassic, calcareous Posidonia Shale of maturities Ro 0.53% and 1.45%

(Chapter 3), a positive trend between sorption porosity and the combined content of clays
(including muscovite) and TOC emerged (Figure 4.23).
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Figure 4. 23. Relationship between the combined content of phyllosilicate minerals and TOC against
195K CO, sorption porosity. Wealden data points refer to samples of maturities 0.7% (green) and
1.9% (red). The Wealden shale data were plotted against data acquired on Posidonia Shale, referring
to samples of maturities 0.5% (grey) and 1.4% (black).

Meso and macroporosity in FIB-and BIB-SEM images
SEM observation of Meso and Macroporosity

Three samples, one from the early mature well (A 10305) and two from the overmature
wells (B10458, C10401) were selected for image porosity analysis. All shale samples are
classified as silt-bearing, clay-rich mudstones, with abundant organic matter (Figure 4.10,
Figure 4.24). In the low maturity shale, the organic phase forms pyritized algal bodies
intermixed with flat, lamellar algal wisps and a poorly-defined organic groundmass (Figure
4.243a, b). In the higher maturity shale, organic matter is dispersed in a tight clay matrix and
concentrated in compaction shadows of mineral grains (Figure 4.24d, f). The nature of the
carbonate phase varies between samples and maturities, with carbonates dominated by fossil
debris in the low mature shale (Figure 4.24a), and by diagenetic ferroan dolomite at higher

maturities (Figure 4.24c, e). Within the gas window maturity shales, there is more
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pronounced preferred orientation of grains in the B10458 sample, reflected by the planar

arrangement of clay laths and organic particles. The organic phase is represented both by

fracture filling bitumen and less defined organic wisps and blobs filling spaces between

various grains (Figure 4.24c, d). In contrast, in the C10401 shale, the clay matrix is less

visibly aligned and random orientations of clay laths and associated organics are not

uncommon (Figure 4.24e, f).

Based on the spatial relation of pores with respect to mineral phases and organic matter,

pores were classified using the general classification of Loucks et al. (2012) into interparticle,

intraparticle and organic. The following definitions of different pore types were adapted for

this study:

Interparticle: 1) pores between detrital grains, authigenic minerals, nannofossils and clay
platelets, occasionally partly filled with authigenic cement; 2) pores (in 2D or 3D space)
associated with the interface of organic matter and mineral matrix that visibly do not
extend into an organic particle;

Intraparticle: 1) pores within fossils or fossil assemblages; 2) pores within pyrite
framboids; 3) pores along cleavage planes of phyllosilicate minerals; 4) moldic pores
formed due to dissolution of mineral phases; 5) pores at the interface of inorganic matrix
and organic macerals that do not visibly extend into an organic particle, contained within
a fossil body, or pyrite framboid;

Organic: 1) pores within immature algal bodies; 2) discrete, round, bubble-like pores in
the organic matter; 3) sponge-like pores within the organic matter, often interconnected
and grouped; 4) highly irregular pores, usually at the interface of organic matter and
mineral matrix, but visibly extending into the organic particle mass; 5) visible cracks
within OM particles, often with jagged edges and extending into the particle edge.
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Figure 4. 24. Backscattered electron micrographs of mudstone samples polished with BIB. In all
images the bedding plane is horizontal. Sample A10305: a) Organic phase forms pyritized algal
bodies intermixed with less defined organic groundmass. Highly dispersed carbonate phase is
represented by calcitic fossil remains. b) Quartz occurs predominantly as horizontal pods aligned
according to the bedding plane. Sample B10458: c) The silt fraction is represented by quartz grains
and diagenetic dolomite. d) Organic phase is aligned horizontally, and is strongly intermixed with the
clay-rich matrix. e) Sample C10401: Diagenetic dolomite is abundant, disseminated in the clay-rich
matrix. f) Organic phase is intermixed with clays and concentrated in compaction shadows of mineral
grains.
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Figure 4. 25. FIB-SEM and BIB-SEM micrographs (BSE mode) of an early mature shale sample
A10305. a) Organic pores within an algal cyst (arrows). b) Pore between walls of a partly compacted
algal cyst (arrow). c) Intraparticle pores in a fossil (black arrows); Note intraorganic pores
developed in kerogen lining the fossil interstices (white arrow). d) Intraparticle pores in a
recrystallizaed fossil partly filled with authigenic clays. e) Interparticle pore in a compaction shadow
of a dolomite crystal (black arrow). Note presence of a dissolution pore within adjacent calcite grain
(black arrow). f) Interparticle pores rimming a foraminifera test (black arrow). The overlying mica
group mineral grain contains numerous cleavage associated intraparticle pores (white arrows). g)
Intraorganic pores formed due to dissolution of a calcareous foraminifera test (black arrows).
Interparticle pores between platelets of a phyllosilicate phase are partly filled with calcite cement
(white arrow). A large interparticle pore adjacent to a fossil clast is filled with the bituminous phase.
h) Interparticle pores between folded clay platelets. Pores may represent space between not fully
compacted clay floccules. i) Interparticle pores adjacent to kerogen particles (arrows). Fs- fossil, Cal
— calcite, Dol — dolomite, Py — pyrite, OM — organic matter.
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Figure 4. 26. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale
sample B10458. a) Interconnected spongy organic pores grow into a large pore located the particle
margin. b) Spongy organic pores within an organic grains. ¢) Organic pores interconnect with each
other, and grow into a large pore located at the margin of the organic grain. d) The visible
connections between organic pore bodies may be as small as 4 nm. e) Large pores located at the
margin of an organic particle, and in the compaction shadow of surrounding mineral grains. Organic
pores show a characteristic fibrous internal structure on its walls. f) Interparticle pores located
between clay platelets, in a compaction shadow of a pyrite framboid. Pores have jagged margins
suggesting that they de facto developed in the organic mass that had previosuly filled the pore space.
g) Interparticle pores between folded clays. h) Interparticle pores between clay platelets (left) show
identical internal structure of its walls as organic pores (right). i) Intraparticle pores within a pyrite
framboid. Fs- fossil, Cal — calcite, Dol — dolomite, Py — pyrite, OM — organic matter.
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27. F

sample C10401. a) Discrete, bubble-like and partly interconnected spongy pores within an organic
particle. Note close association of porous and non-porous organic regions. b) Large intraorganic
pores, partly located at the margins of adjacent dolomite crystals. c) Intraorganic (left) and
interparticle pores (right) developed in the organic matter mass located in the compaction shadow of
a calcite grain (bottom). d) Complex organic pore located in a compaction shadow of a dolomite
crystal (left). Note the rough surface of a pore wall. €) Organic pores developed in the vicinity of
dolomite crystals (centre). f) Discrete, spongy and large complex organic pores developed in the
organic matter grain in the vicinity of a dolomite crystal (right). g) Interparticle pores between folded
clays and dolomite (bottom right). h) Interparticle pores between clay platelets. Note jagged edges of
the pore walls characteristic for pores of an organic origin. i) Intraparticle pores in a faecal pellet.
Intraparticle pores within a pyrite framboid. Fs- fossil, Cal — calcite, Dol — dolomite, Py — pyrite, Qtz
—quartz, OM — organic matter.
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In the least mature sample, visible pores are associated with the inorganic and, to a lesser
extent, organic phase. Despite the predominantly visibly non-porous nature of the bulk
organic matter, organic pores are represented by up to 1 um in diameter, round or oval pores
located in Botryococcus bodies (Figure 4.25a), and more irregular, remnant pores between
walls of partly compacted algal cysts (Figure 4.25b). Also, a few intraorganic pores are
developed in the organic material lining and filling interstices within fossil aggregates (Figure
4.25¢). Inorganic porosity, at the scale of BIB-SEM images, is found predominantly within
sparsely disseminated, recrystallized biogenic calcite forming small (<50 pm) faecal pellets
(Figure 4.25c, d) and occasionally in compaction shadows of mineral grains and fossils
(Figure 4.25e, f). Depending on the size of the mineral or fossil grain, the size of the
neighbouring pores may span between 1 pm down to 100 nm. Inorganic pores may be left
intact, partially filled with authigenic clay (Figure 4.25d) or calcite (Figure 4.25g). Some
intraparticle pores formed due to dissolution of calcite (Figure 4.25e, Q).

Although in the BIB-SEM micrographs clay porosity remains unresolved, higher
magpnification FIB-SEM images revealed the presence of pores along cleavage planes of mica
group minerals (Figure 4.25f) and between clay platelets (Figure 4.25h, i). Some pores
associated with clay platelets may be up to 1-2 um long and 400 nm wide, often adjacent to
kerogen particles (Figure 25i) and occasionally lined with authigenic calcite (Figure 4.25g).
Clay-related pores sometimes show signs of distortion by compaction and represent remnant
open space within compacted clay floccules (Figure 4.25h).

In both overmature shales, the character of porosity changes, with new types of pores
found within dispersed bitumen. The porosity of organic grains is variable - organic pores can
occupy either the whole particle, or a fraction of a particle, or can be concentrated at particle
margins. Also, the size of organic pores varies, with the diameter of the smallest pores below
50 nm and the largest ones exceeding 500 nm. The smallest are isolated, bubble- like pores
(Figure 4.27a, f), often co-existing with clusters of partly interconnected spongy pores
(Figure 4.26a, b). 3D Slice and View images show that organic pores branch out and
interconnect with each other, and may grow into large (up to 500 nm), complex pores (Figure
4.26¢, d). These can be located directly within an organic particle (Figure 4.27b, c) or, most
commonly, at particle margins, often within compaction shadows of mineral grains (Figure
4.26b, Figure 4.27b-f). Organic pores, if large enough, show a characteristic jagged wall
structure (Figure 4.27d). Similar jagged structures occur in pores that do not visibly penetrate
the organic mass but occur at the interface of organic and inorganic phases (Figure 4.26e).

This observation suggests that those are de facto organic in origin, and likely represent the
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thermogenic loss of the organic mass (Figure 4.26h, Figure 4.27h). Depending on their
relation to the surrounding inorganic phases, such inorganic-hosted pores can be classified
either as interparticle or intraparticle. The interparticle pores are most commonly found in
compaction shadows of mineral grains (Figure 4.26e, f; Figure 4.279), between folded clays
and partly compacted clay floccules (Figure 4.269) or between horizontal clay platelets, often
following the elongation of the associated organic phase (Figure 4.26h). The intraparticle
pores are present within pyrite framboids (Figure 4.261i), faecal pellets (Figure 4.271) or along
cleavage planes of mica group minerals.

Mineralogical composition from SEM images. Estimation of the Representative
Elementary Area

To determine the Representative Elementary Area that could vyield representative
porosity values and its distribution in the shale matrix, a mix of EDX maps was used. The
box counting was performed once for each sample and proceeded until measurements made
on a particular parameter did not change by more than 10% relative to the previous area
(Figure 4.28) (VandenBygaart and Protz, 1999). The estimation of the REA did not include
organic matter grains which remained largely unresolved in the EDX maps. The counting
showed that in all shales, the scale of a change in the content of each mineral phase depends
on both the abundance and spatial distribution of the measured components. For instance, we
noticed only a small change in variance of the most abundant phyllosilicate phase, with
values below 10% for areas above 1100 pm? (Table 4.8). Much larger areas were required to
obtain a representative area for less abundant and more dispersed quartz and feldspar (5985
pm’ for the B10458 and 4397 unt for the C10401 sample), and carbonates (5985 um? in the
shale from well C). Within the overmature shale, only for the sparse carbonates from the B
well sample as well as pyrite in the C well shale did the change remain significant for much
larger areas — up to 7818 pum? and 20644 um? respectively. In contrast, in the early mature
shale, box counting did not yield representative values for most of the phases until the area up
to 7818 pn? for quartz and feldspar, 39577 pm? for carbonates and 59121 um? for pyrite. For
the purpose of this paper, 5985 pm’ area was established as representative for both
overmature shales. The mineral phases that are not representative for the samples on such a
limited area are spatially scarce and therefore their impact on the estimation of the REA may
be neglected. Inthe early mature shale, the established representative area is larger: 7818 pm?

and is limited to areas that are scarce in fossil fragments.
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Figure 4. 28. Change of the mineralogical composition within areas of progressively increasing size
as retrieved from EDX maps of three selected shale samples. Measurements reflect % change of a
parameter between two successive areas. Phases investigated include phyllosilicates (a), carbonates
(b), quartz and feldspar (c) and pyrite (d).

Table 4. 8. Minimum area for which a change in the mineralogical composition does not exceed 10%,
estimated for four mineral groups: phyllosilicates, carbonates, quartz + feldspar, and pyrite. Samples
investigated include A10305 (0.7% Ro), B 10458 (1.9% Ro) and C 10401 (1.9% Ro).

Sample Area (um?) for < 10% change in the phase content
Phyllosilicates Carbonates Quartz + Feldspar | Pyrite
A10305 1099 39577 7818 59121
B10458 1099 7818 5985 5985
C10401 1099 5985 4397 20644

Despite the fact that the representative area could be graphically determined for all shale

samples, its average EDX composition does not always agree with the volume converted

XRD mineralogical content (Table 4.9). For instance, the estimated content of the
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phyllosilicate phase in all shales is significantly higher than determined by XRD, yet shows
only small scatter when calculated for different areas of the same sample. This indicates that
due to the limited resolution of EDX maps when captured on large areas, a graphical way of
mineral quantification is not a valid method and may lead to overestimation of mineral phases
that remain either intermixed with organic phases or which are internally porous. Similarly,
mineral phases may be either under- or overestimated if large scale sample heterogeneity
introduces significant variation in the content of minerals or fossils over large areas (e.g.
large shell fragments in sample A10305).

Table 4. 9. Comparison of EDX Representative Elementary Area phase composition and bulk
mineralogical composition retrieved from XRD. XRD mineral contents were converted to vol.% of
rock using standard grain densities of composite minerals. Numbers in brackets show standard
deviation for EDX mineral content estimation.
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Quantification of BIB-SEM porosity. Pore size distribution of meso- and
macropores.

The quantitative assessment of SEM porosity was performed on BIB-polished thin
sections on a pre-determined, representative elementary area. As a compromise between the
number of images and their resolution, for the two overmature shales the image mosaics were
acquired at a magnification of 6,000 x (pixel size 15 nm), covering an area of 6871 pm?. For
the early mature shale, due to a large scatter in the distribution of the visible algal bodies and
a significantly smaller number of pores per unit area, the mosaic was acquired at a
significantly lower magnification of 600 x (pixel size 100 nm), and covering a total area of
306602 um?. Additionally, for each of the shale samples, < REA 1-2 mosaics were acquired

at 10,000 x magnification (pixel size 6 nm), covering an area of 3665 pm? each.
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Figure 4. 29. BIB-SEM images as part of the image mosaics showing distribution of pores. Green
denotes pores that are not directly connected, and red, pores which size is equal to or smaller than
the maximum “real’pore throat size penetrated by mercury (see text). A10305: a) Mag. 600 x;
Although the groundmass organic matter is not internally porous, pores commonly populate
Bottryococcus bodies. b) Mag. 10,000 x; Inorganic pores rim fossil assemblages and concentrate
around quartz grains, with only a small proportion of much finer pores visible in the organo-clay
matrix. B10458: c) Mag. 6,000 x; Pores rim dolomite rhomboids and concentrate in compaction
shadows of mineral grains, often in association with residual organic matter (blue arrows). d) Mag.
10,000 x; Pores visible in the organo-clay matrix are predominantly associated with organic matter
squeezed between horizontally aligned clays and/or grains, and may follow elongation of the organic
particles. C10401: e) Mag. 6,000 x; Pores developed mostly in vicinity of mineral grains disseminated
in the shale matrix, often within accumulated organic matter. f) Mag. 10,000 x; Pores are present
directly in the clay matrix between folded clays (blue arrow), and in accumulated organic matter.
Note that not all organic matter is visibly porous. Fs- fossil, Cal — calcite, Dol — dolomite, Py — pyrite,
Qtz — quartz, OM — organic matter.
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In all shales, visible pores are found predominantly in compaction shadows of mineral
grains, and within organic matter; clay porosity is unresolved at all magnifications (Figure
4.29). In the A10305 shale, although the groundmass organic matter is not internally porous,
pores commonly occur in Botryococcus bodies (Figure 4.29a). Moreover, inorganic pores rim
fossil assemblages and concentrate around quartz grains, with only a small proportion of
much finer pores visible in the organo-clay matrix (Figure 4.29b). In the B10458 shale
mosaic, pores rim dolomite rhomboids and are concentrated in compaction shadows of pyrite
crystallites and quartz, often in association with residual organic matter (Figure 4.29c). Pores
visible in the organo-clay matrix are predominantly associated with the organic matter
squeezed between horizontally aligned clays and/or grains, and may follow elongation of the
organic particles (Figure 4.29d). Finally, in the C10401 shale, pores are developed mostly in
the vicinity of pyrite and dolomite crystals, either at the margins of mineral grains, or within
accumulated organic matter (Figure 4.29¢, f). More commonly than in the B10458 shale,
pores are present between folded clays, interpreted as incompletely compacted clay floccules
(Loucks et al., 2012). In both overmature shales, even at the high magnification of 10,000 x,
only 30% of point counted organic grains bear visible pores, with most of the organic matter
remaining visibly non-porous.

To compare porosity and the distribution of pores sizes between representative areas of
different samples, only fully resolved pores were taken into account. Their minimum size was
estimated after grouping all pore areas into bins of an increasing size and plotting them as a
function of pore numbers (Figure 4.30) (Houben et al., 2013; Klaver et al., 2012). At all
maturities, a fractal distribution of fully resolved pores was approximated by one linear
regression line, with slopes of -2.21 in A10305, -2.36 in B10458 and -2.19 in C10401 shale
(Figure 4.31a). For the two overmature shales from wells B and C, pores smaller than 100 nm
could not be linearly fitted, and this diameter is interpreted as the minimum pore diameter
fully resolved in the REA images. For the A shale, due to the lower resolution of images, the

minimum fully resolved pore size is larger — 280 nm.

184



-11 n
4 [ ]
-12 4 Slope D
-13 4 .
] Interception C
s ™
2 5]
S 15-
S
9O -16
17 A
-18 4
-19 T T T T T T T T T T T T T T T T T 1
30 35 40 45 50 55 60 65 70 75

2
log area (nm”)
Pores underestimated in the BIB mosaic
e Resolved image pores

Figure 4. 30. Typical distribution of pores from BIB-SEM mosaics of the Wealden shale samples. An
area of investigation covers the size of an estimated Representative Elementary Area. Fully resolved
pores (red circles) are fitted with a linear regression line defined by a slope (D) and a point of
interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate from the
linear regression line estimated for the fully resolved pores.

Table 4. 10. Binarized BIB/SEM image porosities and point-counted relative contribution of different
pore types of selected Wealden shales samples: A10305 (Ro 0.7%) B10458 (Ro 1.9%) and C10401
(Ro 1.9%). The minimum fully resolved pore size is 100 nm, except for the sample A 10305, 280 nm.

Sample | Area BIB image | BIB image BIB image BIB image % of
(um?) porosity > | porosity as porosity > porosity as organic,
100 nm (%) | fraction of 280nm (%) fraction of inter-,
total total intraparticle
porosity porosity pores
A 10305 | 638x479 | nd nd 0.2 0.01 nd
B 10458 | 96x70 1.7 0.19 1.0 0.12 46-52-2
C 10401 | 96x70 11 0.10 0.7 0.07 52-43-5

The resolved image porosity of the two overmature shales amounted to 1.7 and 1.1% in
the B and C samples respectively (Table 4.10). In the A shale, at a lower resolution of the
image mosaic, the porosity amounted to 0.2%. For comparison, in the two higher maturity
shales, if only pores > 280 nm are taken into account, the porosity is much higher than in the
low maturity shale, reaching 1.0% in the B10458 and 0.7% in the C10401 sample. For all
shale samples, a differential distribution of pore sizes shows a single maximum located
between 400-560 nm in B and C and 560-800 nm in the A shale (Figure 4.31b). In the two
overmature shales, due to the greater resolved porosity, the maximum is more pronounced,

and corresponds to the onset of a decrease in the density of pores with a diameter < 400 nm.

185



The median diameter of fully resolved pores from all samples investigated is the highest in
the low maturity shale, 438 nm (Table 4.11). When taking into account the equivalent pore
size range in the overmature shale samples, this diameter is only 378 and 390 nm for the B
and C shale respectively. The higher median diameter in the A well shale indicates that at the
lower maturity, larger pores are more abundant and contribute more porosity than equivalent
pores in the overmature shale (Figure 4.31c). The most elongated pores with a median aspect
ratio of 3.5 were found in the overmature B shale, consistent with its highly aligned fabric
(Table 4.11 and Figure 4.31d). In two other shales, the aspect ratio of pores > 280 nm is
much lower, only 2.2 and 2.0 in the A10305 and C10401 sample respectively.

Table 4. 11. Median size and aspect ratio of pores which diameter exceeds 280 nm diameter resolved
in BIB-SEM image mosaics of the A10305 (0.7% Ro), B10458 (1.9% Ro) and C10401 (1.9% Ro)
shale.

Sample Median equivalent diameter Median aspect ratio
(nm)
A 10305 438 2.2
B 10458 378 3.5
C 10401 390 2.0

At the magnifications (6,000 x) used in this study, fully resolved image porosities
contained in pores > 100 nm constitute only 19 and 10% of the physically measured total
porosity for the investigated B10458 and C10401 samples, respectively (Table 4.10). When
taking into account fully resolved pores > 280 nm characteristic for mosaics taken at a
magnification of 600 x, the fraction of total porosity resolved in images of the two shales is
even lower, only 12 and 7%. At the similar magnification in the low maturity sample, fully
resolved pores (> 280 nm) constitute only 1% of the total porosity, the lowest value in all
samples investigated. A comparison of image and mercury injection derived cumulative and
incremental porosity curves show that > 100 nm and > 280 nm image pore bodies are 1-3
orders of magnitude larger than pore throats ‘seen’ by the mercury injection experiments, and
thus they are not directly connected at the image scale (Figure 4.29a, c, e; Figure 4.32a, b).
This lack of connectivity is consistent with the differential distribution of image resolved
pores, showing decreasing contributions to porosity towards smaller pores (Figure 4.31b). In
all investigated shales, pores of a size of mercury apertures (< 75 nm, 48 and 56 nm in
A10305, B10458 and C10401 shales respectively) are poorly resolved even in mosaics
captured at a magnification of 10,000 x. These pores are located primarily in the poorly-
resolved organo-clay matrix, and in the case of the overmature samples, directly in the

organic matter (Figure 4.29).
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Figure 4. 31. Distribution of pore sizes, equivalent diameters and aspect ratios of BIB-SEM fully
resolved pores for the three samples: A10305 (0.7% Ro), B10458 (1.9% Ro) and C10401 (1.9% Ro).
Images were captured at the magnification 6,000x (B10458, C10401) and x600 (A10305). a) Fractal
distribution of pores > 100 nm (B10458, C10401) and > 280 nm (A10305) with the line of the best
linear fit described by a slope (D) and intercept with the y axis (C). b) Differential pore size
distribution as a function of an equivalent radius shows a single maximum located between 400-560
nm in Band C and 560-800 nm in the A shale. Note sharp decrease in the pore area density of pores
with a diameter below < 400 nm in the overmature shale samples. c) Size distribution of image pores
as a function of pore number. For the early mature shale, contribution of pores with a diameter > 250
nm is approximately twice as much as in the overmature shale. d) Aspect ratio of image pores for
samples described in d).
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Figure 4. 32. Comparison of cumulative porosity (a) and pore size distribution (b) obtained from
mercury injection (> 5.6 nm) and image analysis of pores for three samples: A10305, B 10458 and C
10401. The analysis of image pores included only fully resolved pores in respected mosaics: > 140
nm radius in the A shale, and > 50 nmradius in both B and C shales.

Distribution of image pores in shale domains

Quantification of image pores in relation to the content of mineral phases was performed
on < REA mosaics acquired at a magnification of 10,000 x (practical minimum pore diameter
50 nm). For each mosaic, extracted porosity was superimposed on the EDX-derived
mineralogical composition corrected for the point counted content of organic matter. All
areas selected for the analysis are clay-rich except for the C10401 mosaic, with < 50 vol.% of
clays and > 10 vol.% of carbonates (Table 4.12).

Table 4. 12. Porosity and phase composition of BIB-SEM mosaics selected for the porosity-
mineralogy quantification.

Sample Area | Porosity | OM (%) | Phyllosilicates | Qtz+Fsp | Carbonates Pyrite
(um?) (%) (vol.%) (vol.%) (vol.%) (vol.%)
A10305 77x48 0.4 23.8 57.1 11.1 8.8 0.2
B10458 64x48 0.8 11.8 63.4 16.8 11 6.1
B10458 64x48 2.1 23.1 56.9 14.1 2.8 0.8
C10401 77x48 3.6 24.4 43.6 16.0 10.6 2.6

At the scale of the BIB-SEM mosaics, clay packages are not visibly porous at any
maturity (Figure 4.33), and thus no correlation was encountered between EDX-derived
phyllosilicate content and image macroporosity (Figure 4.33a, b). Likewise, no correlation
was found for image porosity and the content of carbonates, all showing scatter over a large
range of values (Figure 4.33c, d). Despite this lack of a distinct trend, in both the A10305 and
C10401 mosaics carbonate-rich areas have higher porosity values than carbonate-depleted
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domains. For instance, in the C10401 mosaic, the image porosity of areas with > 5 vol.%
carbonate shows the highest spread and the porosity values (1-9%) are higher than in areas
with carbonate contents < 5 vol.% (0.5-5.5%). Similarly, in the low maturity A10305 mosaic,
areas for which the carbonate content exceeds 40 vol.% show higher porosity values (0.4-
2.0%) than areas with carbonate contents below 20 vol.% (0.1-1.1%). No such pattern exists
in the B10458 mosaic, where no difference between the porosity of the carbonate-rich and
carbonate-poor areas was found; this may be related to the low overall carbonate content
(Table 4.12, Figure 4.33d).

In all shales, image porosity is more strongly related to the volume of point counted
organic matter than to the amount of any mineralogical phase. In the low maturity shale, this
relation is negative, with the most organic-rich areas (ca. > 60%) showing low porosities (<
0.5%) (Figure 4.33e). In contrast, a positive correlation is encountered both in the gas- mature,
carbonate-poor B 10458 shale and as well as in carbonate-poor areas within the gas-mature
C10401 mosaic (Figure 4.33f). For these samples, porosity increases from 0.4 to 5.5% as
organic matter content increases from 5 to 40%. The image porosities of areas rich in
carbonates (> 5%) are less related to the content of organic matter and show significant
variations over a small range of the OM abundance (Figure 4.33f). To highlight the positive
effect of organic matter on image porosity within the C 10401 mosaic, we extracted
intraorganic pores and excluded porosity concentrated in compaction shadows of mineral
grains. The resulting relation is positive, with porosities varying between 0.2-1.3% over the
19-40% organic matter variation (Figure 4.33g). This result also shows that absolute image
porosities contained directly in the organic matter are smaller than porosities spatially

associated with the inorganic grains.
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data point represents one BIB-SEM image captured at mag. 10,000 x.
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Discussion

Depositional environment and facies variation

The stratigraphy of all three sections comprises < 1 m alternations of organic-rich and
organic-lean facies composed of siliciclastic and fossiliferous mudstones, mud-depleted
limestones and concretionary carbonates. This lithological variability extends to a centimetre
and sub-centimetre scale with adjacent beds or laminae showing varied abundances of
autochtonous, allochtonous and diagenetic components. According to Mutterlose and
Borneann (2000), the distribution of facies within Lower Creatceous sediments in the Lower
Saxony Basin is related to differential subsidence, local tectonics and sea level changes. At
the locations of the cores investigated in this study, these changes resulted in the alternating
deposition of the lake plain, distal delta front and basinal muds, as well as supralittoral,
littoral and sublittoral bioclastic beds (ExxonMobil, unpublished).

The varied character of deposition of the German Wealden and its dependence on the
supply of siliciclastic and biogenic material is reflected in the petrography and organic
geochemistry of shales. Thin sections show that the biogenic input was dominated by the
shelly detritus organized into millimeter-scale laminations (Figure 4.3m, r), typical for storm
and turbidite deposits of littoral and sublittoral zones (Brett and Allison, 1998), with
foraminifera-rich beds marking the high productivity regime (Figure 4.4g, h) (Berner, 2011).
Biogenic sedimentary structures are scarce and mostly limited to transgressive sediments
deposited in the marine realm in the top parts of the core sections (Figure 4.3a, Figure 4.4a).
In all cores, the strongly siliciclastic and basinal character of the sediments dominates (Figure
4.4, 4.5, 4.6), pointing to allochtonous terrigeneous input as the primary source of the
sediment (Figure 4.3h, Figure 4.4a, Figure 4.5g, Figure 4.6e).

The analysis of the Wealden sections reveals a link between the shale lithofacies,
depositional environment, and the organofacies type. The TOC screening showed there is a
higher frequency of organically leaner rocks in the more proximal A core in comparison to
the more basinal located cores B and C. As the organic richness is a function of production,
dilution, preservation and nutrient recycling, without elemental analyses it is difficult to
determine the contribution of each of these factors on the observed pattern (Bohacs et al.,
2005; Sageman et al., 2013; Werne et al., 2002). In shale gas plays across the world, e.g. the
Marcellus Shale, the organic enrichment in aquatic kerogen coincides with periods of low

dilution by biogenic debris and excellent preservation in anoxic or euxinic conditions (Werne
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et al., 2002). In the Wealden, we found that in all sections, the most TOC-rich intervals are
associated with siliciclastic shales deposited away from terrigenous sediment sources and
with limited biogenic input (Figure 4.4c, Figure 4.5e). The only exception is coaly mudstones
found in the C core, where high present-day concentrations of organic carbon resulted from
deposition of land plant type 11l kerogen on a lake plain (Figure 4.6g). Lower organic
contents in the Wealden sediments coincide with the presence of macrofossil debris, biogenic
sedimentary structures and carbonate cements. As the organic-lean shales have
predominantly low HI (HI < 400), and there is no petrographic evidence for the increased
input of terrestrial macerals, we interpret this as a result of limited preservation of aquatic
kerogen (Canfield, 1993; Curtis, 1995; Irwin et al., 1977; Kidwell, 1989; Schutter, 1998).
Because carbonates tend to dilute organic matter in siliciclastic sequences (Werne et al.,
2002), we presume that organic carbon concentrations are dilution-limited in carbonate-rich
intervals in the Wealden. This is supported by the up to four times lower TOC contents as
compared to siliciclastic mudstone at similar HI values (> 700). The distribution of
organofacies observed in the German Wealden is typical for sediments deposited in overfilled

lakes, for example the Luman Tongue member of the Green River Formation (Bohacs, 1998).

Porosity distribution and its relation to lithology, organic content and maturity

Early oil window maturity shale

A detailed analysis of different rock types shows that total porosities vary within and
between maturities (Figure 4.13). In relatively immature Wealden shales (Ro 0.5-0.6%) with
visibly non-porous organic matter, porosities range from 1-17%. The potential factors that
could cause this porosity difference include: effective stress, lithology differences, and
cementation (Bjarlykke, 1999). Here, with the restricted depth range of the studied interval
effective stress cannot explain the observed porosity variation (Table 4.A2). Instead, our
results show that total porosity of the immature Wealden shale is strongly controlled by the
organic matter content and lithological variations, where lithology is defined by the content
and arrangement of the clay, carbonate and silt particles. To be precise, we found that the
relation between total porosity and organic content in the carbonate facies (including
microfossil-bearing mudstones, macroshell laminated mudstones, fossiliferous limestones,
and concretionary carbonates) is opposite to that in siliciclastic shales (both biologically

reworked and fabric-intact organic-rich mudstones; Figure 4.20a).
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For the carbonate-rich facies, the relationship is positive and, as supported by the
petrographic micrographs, it is controlled by the extent of cementation, most pervasive in the
leanest rocks (Figure 4.3c). Consistently, the lowest porosities are in rocks with TOC < 1.5
wt.%, in which organic matter is dominated by degraded kerogen (bottom left on Figure 4.9a).
While we do not have information regarding the timing or nature of the cements, we presume
that the positive correlation between organic carbon and total porosity reflects a depositional
link between the intensity of microbial oxidation, the degree of diagenetic cementation and
the extent of preservation of organic matter (Bohacs et al., 2005; Curtis et al., 1995; Lash and
Engelder, 2011; Macquaker and Gawthorpe, 1993; Raiswell and Fisher, 2000). In the
investigated samples the amount of cement visible in thin sections decreased and porosity
increased in the order: carbonate concretion - fossiliferous limestones - macroshell laminated
mudstones - microfossil-bearing mudstones. This order agrees with Schutter’s (1998)
observation that clays arrest cementation and thus porosity loss by inhibiting transfer of
solutes to the precipitation sites.

In the clay-rich siliciclastic shales, the relation between porosity and organic content is
negative and, as discussed below, strongly controlled by the shale composition and
arrangement of the silt particles. The two shale end members distinguished within this group
are (a) organic-lean, visibly bioturbated mudstones with silt-lined burrow structures and (b)
organic-rich mudstones with very well preserved organic material and intact fabric (bottom
left and top right in Figure 4.9a respectively). Porosity data, supported by petrographic
micrographs, show that porosities halve from 18% to 9% when moving from the organic- lean
shale rich in silt-lined biogenic structures (Figure 4.3a) to the bioturbated shale devoid of silt
linings. Inthe more organic-rich shales, the porosity decrease is less sharp, and bottoms out at
4% in the most organic-rich shale (TOC 15 wt.%) (Figure 4.3f). Although we cannot fully
explain the above relationships without a representative set of grain-size data, our mercury
injection porosity curves imply that the occurrence of tens of micrometer size quartz grains
packed in discrete aggregates plays an important role in resisting compaction and enhancing
porosities, at least on a local scale. This presumption stems from the presence of the bimodal
pore size distribution within the silt-burrowed shales, with a considerable amount of porosity
accessed through pore throats 50-100 nm (Table 4.6).

We cannot be conclusive about the reason for a consistent drop in porosities in the
organic-rich siliciclastic shale. It is plausible that the observed trend reflects the ratio of the
porosity held by kerogen as compared to the bulk inorganic matrix. In our study, both clays

and kerogen are mostly microporous (Figure 4.22, Figure 4.33a, €), and when combined with
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the Posidonia Shale data set (Figure 4.23), they show a positive relation with the 195K CO;
sorption porosity which is believed to be mainly in < 6 nm pores (Rexer et al., 2014).
Although Rexer et al. (2014) showed that at low maturities kerogen contributes half the total
pore volume in sorption pores, those experiments did not account for the pore space
contained in larger mesopores (Kuila et al., 2013; Schieber et al., 2010). Therefore we
presume that the fraction of porosity held by the inorganic pores exceeds that indicated by

Rexer et al. (2014) and could explain the relatively lower porosities of the most organic rich
clays.

Gas window maturity shale

At higher maturities (Ro 1.5-2.4%), total porosities of shales show a somewhat smaller
spread as compared to their low maturity counterparts, spanning between 2-12%. The loss of
porosity is consistent with higher effective stress and greater compaction usually experienced
by deeper buried rocks (Bjerlykke, 1999; Bjerlykke and Hgeg, 1997; Connell-Madore and
Katsube, 2006; Van de Kamp, 2008), and reflected here by the decrease in the mean Hg access
radius (Table 4.6). The evidence of compaction is readily seen in connection to the
disappearance of algal cysts (Figure 4.10), often associated by the collapse of the shale
structure (see Chapter 3). Moreover, diagenetic features, such as irregular patches of silica,
rhomboids of diagenetic dolomite, and carbonates locally filling interstices between fossil
fragments (Figure 4.5e, i, Figure 4.6c, ) are consistent with typical features of chemical
compaction occurring in shales (Laughrey et al., 2011; Peltonen et al., 2009). Although we
cannot provide details of the timing of the cementation events, at least the first two types of
cements occur predominantly within the high maturity Wealden shale and are mostly absent
from low maturity counterparts.

The second evidence of the loss of porosity in the overmature Wealden shale is the
presence of solid bitumen. As inferred from the oil immersion and SEM micrographs (Figure
4.10), solid bitumen represents in-situ generated or migrated bitumen that remained trapped
in the rock and filled up potential pore space (Curiale, 1986). Although in this study we did
not have any samples of oil window maturity, from the Posidonia shale study (Chapter 3) it is
known that at the peak oil generation, pore-filling bitumen is visibly non-porous. In the
overmature Wealden, bitumen contains visible pores (Figure 4.26 and 4.27), explaining the
positive relationship between organic carbon content and total porosity encountered in both

fossiliferous and siliciclastic shales (Figure 4.20b). The presence of secondary organic pores
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also implies that the loss of porosity due to compaction and bitumen filling was higher than
that directly inferred from the difference between the present day porosity values.

The control of organic matter on total porosity in the gas window shale is less clear in
the fossil-bearing rocks than in the siliciclastic shales (Figure 4.20b). With the help of the
petrographic and SEM micrographs (Figure 4.10g), we interpret a different slope of the
porosity-TOC relation as related to the variable abundance of non-organic pores. As already
shown in the low maturity shale, porosity in the organic- lean fossiliferous rocks is affected by
cementation, with more pervasive cements in the relatively leaner rocks. The presence of
inorganic pores in these rocks at higher maturities implies that either compaction was arrested
or secondary porosity developed due to dissolution of inorganic phases (Loucks et al., 2012;
Schieber, 2010). The first hypothesis is supported by the presence of migrabitumen in the
shelter porosity of the organic-lean but highly porous fossiliferous mudstone. The abundance
of this bituminous phase suggests that the rock was sufficiently porous to allow migration of
the bitumen phase, likely generated in more organic-rich intervals and contributing to the
“carryover” effect of S1 into the S2 peak (and thus high HI values, Table 4.A1) in the top
section of our C core (Rippen et al., 2013). As presence of oil was previously reported to
retard compaction in quartzose and carbonate oil filled reservoirs (e.g. Worden et al., 1998;
Heasley et al., 2000; Scholle, 1977), it is possible that in the fossiliferous Wealden Shale,
carbonate surfaces became oil-wet, inhibiting pore cementation (van Duin and Larter, 2001;
Aplin and Larter, 2005). Still, given the etched-like character of many carbonate surfaces
(Pudlo et al., 2012), we cannot preclude the possibility that the inorganic porosity partly
filled by the migrating bitumen is secondary, evolved under the action of carboxylic and
phenolic acids released from the kerogen at elevated temperatures (Crossey, 1991; Schieber
et al., 2010).

In comparison to fossiliferous shales, siliciclastic mudstones show a wider variation of
the total porosity over a large range of organic carbon contents, proving the dominant control
of organic matter abundance on porosity in clay-rich shales. The maximum contribution of
inorganic pores may be estimated from the imaginary intercept of the TOC-porosity relation
with the y axis, here corresponding to ca. 4-6% of the bulk rock (Figure 4.20). Similarly to
the low maturity Wealden, this porosity is held predominantly by pores not visible in the
SEM, and certainly not quantifiable with microscopic methods. Indeed, sorption experiments
showed that approximately 30-50% of total porosity is held by micro- and fine mesopores (<
6 nm), equivalent to 4-5% of the bulk rock, probably with at least half of the volume outside

the organic matter (Rexer et al., 2014). In contrast, image mosaics (practical resolution 240
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nm) showed that only fraction of the porosity (0.5% of the bulk volume) is contained in
inorganic pores large enough to be quantified with microscopic methods.

Total porosities measured in the overmature siliciclastic shales are independent of the
size of the pore throat apertures (Groups 2 and 3 in Figure 4.20b), consistent with the
secondary nature of the organic porosity. In contrast, high resolution images showed that
macroporosity is strongly controlled by the mineralogical composition. As shown in Chapter
I1, biogenic debris may create traps for the generated bitumen, which when exposed to higher
temperatures will exsolve gaseous phases, leading to the formation of secondary porosity (e.g.
Bernard et al., 2012; Chalmers et al., 2009; Curtis et al., 2010; Jarvie, 2007; Loucks et al.,
2009; Milner et al., 2010). In the clay-rich Wealden Shale, a similar role is played by
authigenic carbonates, providing compaction shadows for bitumen accumulation and
secondary porosity development (Figure 4.26d, Figure 4.27d). We found that despite much
scatter in the macroporosity data, there is significantly more pore space associated with
compaction shadows of the carbonate grains and crystals rather than present within clay-rich
domains (Figure 4.33d). Interestingly, there is no quantitative evidence for quartz grains
displaying a similar association with porosity, despite the high content and scattered nature of
the quartz grains. Precipitation of diagenetic carbonates during post-burial diagenesis is
driven by pore water alkalinity and partial pressure of CO, and thus at increased temperatures
organic reactions may favour precipitation of dolomite cement (Davies, 1979; MacGowan,
1990). However, the same factors will control dissolution of carbonates, promoting
appearance of dissolution rims around dolomite grains and partly dissolved crystals (Figure
4.24d). Hence, it is suggested that the mutual effect of the grain dissolution and bitumen
entrapment, followed by secondary porosity development, led to increased porosities of the
carbonate-rich microdomains as compared to quartz-rich domains. The positive effect of
carbonate content on image porosity enhancement is in contrast to reports of bulk porosity
decrease with high calcite cement abundance (Lu et al., 2011). This highlights the importance
of petrographic validation of the bulk porosity and XRD results by establishing the genesis of

carbonates and comparing porosities from an equivalent pore size range.

Evolution of organic porosity in the gas window

The positive relation between total porosity and TOC found in the overmature Wealden
shale is a common feature of multiple shale gas plays (Passey et al., 2010). Hence, in order to

build gquantitative models of organic matter and total porosity change with maturity, there is a
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need for a better understanding of the evolution of organic pores. To date, the most urgent
questions to be answered involve: the role of organic matter type in the development of
organic pores, mechanisms that lead to the formation of pores, the maturity at which this
formation occurs, and the range of pores sizes.

The presence of two distinct organic pore type end members, and the visibly
heterogeneous nature of organic pores (Figure 4.26, 4.27) imply that, similar to the Posidonia
shale (Chapter 2), the evolution of porosity in the overmature Wealden is at least partly
controlled by the composition of the organic material. The first pore type end member
distinguished in this study embraces highly irregular, up to > 500 nm in size pores with a
characteristic jagged wall structure, visibly penetrating the solid bituminous mass (Figure
4.26i, Figure 4.27d, h). The second end member includes discrete, fine organic pores,
disconnected from each other on the scale of the SEM imaging (Figure 4.27a). Because the
full spectrum of organic pore types is much wider and only bracketed by these two end
members, it is reasonable to assume that there is a related compositional spectrum of organic
matter particles, which evolve during maturation and oil cracking. Such an assumption is
consistent with Kkinetic schemes of petroleum generation, involving the thermal
decomposition of high molecular weight polar compounds and their successive cracking into
lighter hydrocarbons with a solid residue remaining in the form of char (Behar et al., 2008a,
b). Therefore, we link the variation in the morphology of organic pores observed in this study
to the concept of successive steps in hydrocarbon generation. In this light, pores found in
compaction shadows of mineral grains are likely to represent the initial step in the cracking of
hydrocarbons physically trapped in the shale matrix, experiencing a phase change and
substantial volume loss. Consequently, the appearance of discrete organic pores likely
reflects the onset of the gas exsolution stage from already partly polycondensed aromatic
molecules (Tiem et al., 2008). Similar bubble- like pores are typical for cokes, in which the
formation of porosity follows the onset of a densification stage of the carbon residue (Loison
et al., 1989). Hence, comparably to cokes, we presume that the formation of discrete organic
pores in shales is linked to densification processes within the residual bitumen, arresting
release of the pressure build up during gas generation, and coinciding with limited diffusion
of gas on a relevant time scale.

Identical pore types distinguished in the type | kerogen dominated Wealden shale and
type Il kerogen Posidonia shale (Chapter 2) point to similarities between these two kerogen
types in terms of organic porosity development. This uniformity is best observed ona TOC -

total porosity binary plot, with the calcareous Posidonia shale and siliciclastic Wealden shale
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plotting within the same field (Figure 4.34). Although we cannot be sure about the reasons
for the observed similarties, it is likely the consequence of a similar mechanism of pore
development through the intermediate, solid bituminuous phase present in both shales (Figure
4.10). Within the Wealden data set, the only group of samples that did not fall onto distinct
TOC - total porosity trends are samples with abundant type I11/1V kerogen (Figure 4.10h).
The relatively lower porosities of the coaly shales, along with the evidence of the absence of
solid bitumen in their matrix, once again indicates that organic pores in gas window shales
are associated with the thermal maturation of exclusively oil-prone macerals (Curtis et al.,
2012; Loucks et al., 2009; Milliken et al., 2013). Consequently, the evaluation of the genesis
and preservation of those pores need to be decoupled from the evaluation of mechanisms
controlling the fate of micropores encountered in coals and coaly kerogen (Green et al., 2011,
Loison et al., 1989).

The positive relation between total porosity and organic carbon content in the overmature
siliciclastic shale with the predominant genetic type | kerogen is valid for samples with a
broad range of maturities between Ro 1.5 to 2.4% (Figure 4.20). A lot of attention has been
given to maturity as a potential factor controlling the development of pores in gas window
shales, with very promising results obtained via the combination of pyrolysis and diamondoid
geochemistry (Dahl et al., 2012). Here, based on total porosity measurements coupled with
the petrographic characterization of rocks, we propose that maturity should not be treated as a
single factor controlling porosity in gas window shales. Similar observations of a lack of
relationship between image porosity and maturity were made by Curtis et al. (2012) on Late
Devonian-Early Mississippian Woodford Shale with marine kerogen. In our study, marine
Posidonia and lacustrine Wealden samples plot within the same TOC-porosity trend, and thus
we exclude compositional difference between the two oil-prone kerogen types (type I and 1)
as a potential factor influencing the above relationship (Figure 4.20b). Similarly, we found
no significant amount of residual oil that could block porosities at the gas window maturity
and thus influence measured porosity values (Table 4.7). A lack of correlation between shale
porosity and thermal maturity at Ro > 1.5% suggests that organic porosity evolution in
Wealden was active only below that maturity level. Observing that the porosity of shales that
have not experienced oil cracking is lower in comparison to their postmature and overmature
counterparts (Chapter 2 and 3), we suggest that the most likely timing for the development of
organic pores is the wet gas stage. Interestingly, these findings are consistent with Dahl et al.
(2012) who noticed the maximum increase in the image organic porosity in shales that were

artificially heated up to wet gas window temperatures. The lack of evidence for a further
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increase in porosity in the most mature shales, despite the measured hydrogen loss (Table 4.3)
suggests that the late gas generation did not produce significant volume of microcavities or
alternatively, that this porosity was prone to destruction (Loison et al., 1989). Consequently,
our findings do not support the models of continuous organic porosity development based on
the increasing transformation ratio and hydrogen loss (Romero-Sarmiento et al., 2013).

To fully understand the control of organic matter on the evolution of porosity, it is
necessary to recognize the range of pore sizes that control the above relationship. In this
study we implemented gas sorption techniques to measure the smallest pores not recognized
in SEM images. Based on the similarity between the summed sorption and mercury injection
porosities compared to total porosity in a suite of Posidonia shale samples, Rexer et al.
(2014) concluded that 195K CO; gas sorption mainly quantifies < 6 nm pores. For the three
samples investigated here, the maximum difference between the MICP-1 <5.6 nm porosity
and sorption porosity is equivalent to 3% of the bulk rock and thus raises questions about the
validity of the 6 nm threshold (Table 4.7). Those differences may however be compromised
by the fact that mercury porosities are prone to being overestimated due to the elastic
deformation of the organic matter induced by mercury penetration under elevated pressures,
expressed as a strong covariation between mercury retraction and the content of organic
matter already known from coals (Toda and Toyoda, 1972) (Figure 4.17).

Based on the strong positive relationship between the wt.% sum of the phyllosilicate and
organic carbon vs sorption porosity (Figure 4.23), we conclude that the amount of < 6 nm
porosity is only partly controlled by the content of organic matter. Consequently, the
remaining sorption porosity is likely to occur within non-visibly porous clays (Figure 4.33a,
b) (Kuila and Prasad, 2013). Again, this is consistent with Rexer et al. (2014) who discovered
that within the Jurassic Posidonia shale, at all maturities, approximately half of the sorption
porosity is contained within organic matter, with the other half contained in clays and at
inorganic-organic interfaces. A positive relationship between clay and organic content vs
sorption porosity found for two sets of shales with varying kerogen type emphasizes a lack of
difference between evolution of micropores in lacustrine and marine shales. However, as this
relationship was constructed only on a limited number of samples, the above conclusion
should be treated as tentative.

Similarly to < 6 nm pores, we showed that porosity resolved by SEM images is only
broadly connected to the volume of organic matter (Figure 4.33). Moreover this correlation is
absent for the visibly non-porous, low maturity organic matter. The lack of a clear relation

between macroporosity and the content of organic matter at gas window maturities is
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certainly distorted by the presence of pores encountered at the interface with the inorganic
matrix. Those pores, not located directly in the residual organic matter, likely reflect
thermally induced volume loss of the organic particles and very much resemble pores
reported by Curtis et al. (2012) in the Woodford Shale or Milner et al. (2010) in the
Marcellus Shale. The dominant contribution of macropores, with only minor amounts of
visible porosity held by intraorganic pores, supports the idea that most of the intraorganic
pores reported here - and in other studies (Curtis et al., 2012; Loucks et al., 2009; Milliken et
al., 2013; Milner et al., 2010) - cannot be seen with microscopic methods. Yet, it is these
pores that exhibit a strong positive correlation with the content of organic matter within the
macropore size range (Figure 4.33g), and thus most likely control the experimentally

measured total porosity-TOC relationship at diameters < 50 nm.

Potential shale gas production from German Wealden

The heterogeneity of the Wealden Shale has important implications for the economic
evaluation of this potential shale gas reservoir and the related production of hydrocarbons. As
already shown, the observed alternation between fossil-poor and fossil-rich lithologies is a
key control on the variability of total porosity of adjacent beds and laminae on a millimetre
and centimetre scale. Such variability may pose a challenge when building reservoir models
of hydrocarbon exploration, including gas in place estimations and fluid flow prediction
within shale packages (Ambrose et al., 2010; Bowker, 2007; Bustin and Bustin, 2012;
Clarkson et al., 2012). Recognizing the need to better constrain the mudrock properties on a
small scale, we found that the bulk shale porosities are predictable on a centimetre scale when
the organic content is known, with half of the porosity associated with the organic phase in
siliciclastic mudrocks with TOC contents > 10 wt.%. Interestingly, the slope of the porosity -
organic content relationship differs between lithologies, and is higher in the fossil debris
bearing mudstones than in the siliciclastic shales. We presume that due to the high porosities
of some of the fossiliferous rocks, with the evidence of past bitumen migration to macropores,
the carbonate surfaces became hydrophobic, giving rise to additional hydrocarbon storage
space within inorganic calcite pores. If similar variations of the TOC-total porosity
correlations exist in other shale gas plays, as e.g. those reported by Passey et al. (2010), it
follows that the amount of effective porosity is controlled not only by the organic content, but
also lithology and diagenetic history. This is important for gas-in-place estimations, since a

significant proportion of total gas appears to be associated not only with large, inter-
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connected nano-pores within the organic material (Ambrose et al., 2010), but also large,
inorganic- hosted macropores.

The results reported here support the division between marine and terrestrial organic
matter as being of utmost importance when assessing the potential for the development of
organic pores and in-situ gas storage sites (Schieber, 2010). In our work, we showed that
kerogen type I/ does not produce recognizable organic porosity upon maturation, and
therefore its abundance is secondary to total gas-in-place predictions as compared to kerogen
type | or Il. Although we cannot be conclusive about the reasons for the limited porosity and
thus gas potential of terrestrial macerals, Erdmann and Horsfield (2006) argue that with a
high input of terrestrial organic matter, recombination reactions between kerogen and
generated hydrocarbon moieties inhibit the release of hydrocarbons until higher temperatures
in a source rock are attained. In this case, analogous to coals, kerogen type III/1V is at best
microporous (Bustin and Clarkson, 1998; Clarkson and Bustin, 1997; Griffin et al., 2013;
Mastalerz et al., 2008), so that gas is mainly physisorbed within organic particles (Ambrose
et al., 2010; Bustin and Clarkson, 1998). In contrast to oil-prone shales, the transport of this
gas may be additionally hindered due to the lack of a recognizable network of porous, solid
bitumen.

Both pore throat apertures and the percentage of open porosity are recognized as primary
factors controlling the permeability of shales (Clarkson et al., 2012). In the Wealden, at least
half of the pore space is associated with inorganic pores, with a considerable fraction water-
bearing due to the high content of microporous clays. These inorganic pores are the dominant
pore system in organic-lean beds (Figure 4.20) and, coupled to their narrow pore throat
apertures, may not be part of the effective porosity, posing barriers for the flow of gas
(Passey et al., 2010). If so, generated gas would preferentially accumulate in microreservoirs
of porous fossilifeous mudstones that experienced limited cementation as well as in the
organic-rich layers with abundant intraorganic porosity and macropores located in
compaction shadows. Analogous microreservoirs were found in the calcareous Posidonia
Shale rich in recrystallized faecal pellets (Chapter 3), and are a substantial part of the gas-
producible porosity encountered in interlayered faecal pellet and silt-rich laminae of the
Eagle Ford Shale (Schieber etal., 2012).

Apart from the lake plain deposits, we did not find evidence of a substantially different
distribution of mercury pore sizes in gas mature, fossil-bearing shales in comparison to their
clay-rich equivalents. Likewise, we did not find differences in porosities other than resulting

from the varied organic content between organic-lean siliciclastic shales with distinct

201



physical and biogenic sedimentary structures and often laminated, organic-rich mudstones.
Therefore, unlike in the immature Wealden, we recognize that the impact of the original shale
texture on the total porosity and mercury pore apertures at high maturities is obliterated by
diagenesis and hydrocarbon generation. Even with similar mercury pore size distributions,
shale fabric continues to keep a strong hold on the alignment of pores. In this study, higher
aspect ratio pores were found in the aligned, clay-rich, organic-rich mudstone as compared to
a mudstone with more randomly-oriented clay platelets (Figure 4.24). The origin of the less
oriented shale with more chaotic orientation of the clay sheets could not be determined from
the thin section, but such a clay arrangement is often found in rapidly resedimentated muds.
The significance of the clay orientation was demonstrated by Lash and Engelder (2005) who
showed that shales with planar arrangements of clay grains are more prone to developing
horizontal fractures related to stresses active during kerogen-to-bitumen conversion. In this
study, this mechanism could have contributed to the formation of the microscopically
distinguishable horizontal, bitumen-filled microcracks in the B10458 shale (Figure 4.10) and
thus explain the horizontal arrangement of many organic pores found therein (Figure 4.24c,
d ). Another implication of a pore system composed of the preferably aligned pores is a
potentially less tortuous path for the hydrocarbon flow within an unfractured reservoir
(Chalmers et al., 2008; Soedrer, 1988; Thomas and Clouse, 1990). As the alignment of clays
in poorly aligned shales controls the distribution and alignment of the dispersed bitumen
(Figure 4.24e, 1), suchan arrangement is likely to slow the gas diffusion rate to a fracture and

a wellbore and thus limit its final production.

Summary and Conclusions

In this study, an attempt was undertaken to classify shales based on selected
petrophysical and geochemical attributes and provide a practical meaning to the lithological
variability as observed in core and thin sections. The shale samples were initially
characterized in terms of the mineralogical composition, texture, presence of sedimentary
structures, organic content, kerogen type and maturity. The subsequent experimental setup
involved the determination of a range of porosities using different techniques, each probing
pores of different sizes and selectively differentiating between the size of pore throats and
bodies. The visual heterogeneity of the German Wealden was captured at the thin section

scale, and led to the differentiation of microlithofacies within the sequence of
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stratigraphically linked deposits (Bohacs, 1998). Image analysis of thin sections revealed that
even such sharply defined intervals are highly heterogeneous on a submillimetre and
micrometre scale and thus their experimentally defined bulk properties represent average
values. All measurements were conducted at two levels of thermal maturation, corresponding
to early oil window and gas window, and when coupled with petrographic evidence, allowed
a direct comparison of shales differentiated by the level of thermal maturity. This approach
provided promising results in terms of screening for the abundance of organic and inorganic
pores and pointing out locations of potential microreservoirs of gas. As changes in observed
shale properties parallel changes in their lithological characteristics, we believe that our
results can be easily validated or at least compared to additional studies of shales with similar,
or conversely, distinct lithologies.

This study showed that lithological variability, and most notably clay and carbonate
abundance, are primary factors in defining principal rock characteristics, such as porosity and
organic carbon content, with a partial overlap of values between rocks of differing lithology
(Figure 4.20). In the low maturity calcareous mudstones and limestones, a positive relation
between total porosity and TOC exists, despite the variable nature of the carbonate
component (carbonate concretion, shell debris, pelagic carbonates). Hence, we presume that
different environmental conditions associated with the episodic precipitation of cements,
deposition of the shell debris and the supply of pelagic carbonates are directly reflected in a
variable but mutually linked preservation of both organic and inorganic pores. In siliciclastic
mudstones devoid of carbonate, shale porosities are again dependent on the general texture,
and are enhanced by the greater abundance of the silt fraction associated with sediment
reworking, and possibly more oxygenated bottom waters (Figure 4.3i). In the most organic-
rich, often laminated, siliciclastic sediments (>5 wt.% TOC) with well-preserved type |
kerogen, total porosities reach a minimum, possibly controlled by the ratio of the porosity
held by kerogen as compared to the bulk inorganic matrix.

At gas window maturities, the variation in total porosities within clay and carbonate
enriched rocks is still notable, despite a diagenetic overprint within the carbonate and quartz
phases. There is a strong, positive correlation between organic carbon content and total
porosity within siliciclastic and fossiliferous mudstones and limestones, with two distinct
slopes of the porosity-TOC relation in rocks of differing lithology. Different slopes between
the two parameters in fossil-poor and fossil-enriched rocks indicate the important role of the
inorganic framework in the preservation of inorganic pores and the trapping of generated

hydrocarbons at oil window maturities (see Chapter 2). High porosities of the fossil-bearing
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shales with TOC < 2 wt.% point to either dissolution of the shale framework or enhanced
preservation of inter- and intrafossil porosity in mature rocks that underwent oil generation
and/or migration. In contrast to the low maturity shale, siliciclastic mudstones do not show
elevated porosities at low organic concentrations, suggesting framework compaction
accompanying hydrocarbon generation.

The most notable result for the suite of the gas window shales analyzed in this study is a
lack of influence of the level of maturity attained on the values of total porosity. We presume
that this reflects the maturity range over which organic porosity is generated, constrained by
the physiochemical properties of the organic phase, and mimicking similar observations in
cokes (Loison, 1989). The specific timing of porosity evolution explains the location of the
large, complex organic pores in the oil-saturated bitumen (see Chapter 3), preferentially
trapped in the vicinity of mineral grains and crystals (Figure 4.24e), and co-existing with the
bubb le-like-shape intraorganic pores, the growth of which is inhibited by the solidification of
the host organic polymer (Tiem et al., 2008). If the varied pore morphologies reflect the
diminishing potential for evolution of pores within the organic phase, any loss of hydrogen
and exsolution of gas beyond the threshold maturity level continued only within the
previously formed porous network and hence did not further affect the measurable porosity of
the shale. The exact timing of organic porosity development could not be constrained due to a
lack of samples with < Ro 1.5%, but it most likely corresponds to wet gas window maturities.

After examination of gas window maturity siliciclastic shales with high resolution SEM
microscopy, we note that the best potential microreservoirs of gas are associated with
compaction shadows of carbonate grains and crystals. This specific location of macropores is
interpreted as a dual effect of carbonate dissolution in the volumes of active generation of
hydrocarbons, as well as the subsequent decomposition of bitumen trapped in the vicinities of
such grains. In contrast, no enhanced porosities and therefore no visible microreservoirs were
encountered in kerogen type 111/1VV dominated shales. For these, different mechanisms and/or
timing of gas exsolution are implied. We also showed that the shale composition and fabric
has an impact on the arrangement of pores and pore body sizes, potentially varying at similar
levels of organic carbon concentration. For instance, the presence of oriented clay flakes is
reflected in pore size and orientation, with potential consequences for connectivity.
Constraining this heterogeneity, potentially linked back to depositional mechanisms and
environments, will have a direct impact on estimations of the efficiency of delivery of
produced hydrocabons to the wellbore. Interestingly, despite the varied distribution of

observed macropores in different shales, the total amount of porosity measured in high
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maturity shales was found to be independent of the sizes of the pore apertures and thus may

affect estimations of permeabilities when only pore size distribution is taken into account.

References

ALEXANDER, T. 2011. Shale gas revolution. Oilfield review, 23, 40-55.

ABRAMOFF, M., MAGALHAES, P., RAM, S. 2004. Image processing with ImageJ.
Biophotonics International, 11, 36-42.

AMBROSE, R.J.,, HARTMAN, R.C., DIAZ-CAMPOS, M., AKKUTLU, LY.,
SONDERGELD, C.H. 2010. New pore-scale considerations for shale gas in place
calculations. In: Proceedings, SPE Unconventional Gas Conference, SPE, 23-25 February
2010, Pittsburgh, Pennsylvania, USA.

APLIN, A.C., LARTER, S.R. 2005. Fluid Flow, Pore Pressure, Wettability, and Leakage
in Mudstone Cap Rocks. AAPG Special Bulletin: AAPG Hedberg Series, 2,1-12.

APLIN, A.C., MACQUAKER. H.S. 2011. Mudstone diversity: Origin and implications
for source, seal, and reservoir properties in petroleum systems. AAPG Bulletin, 95, 2031-
2059.

BACHMANN, G.H., VOIGT, T., BAYER, U.,, VON EYNATTEN, H., LEGLER, B.,
LITTKE, R. (2008): Depositional history and sedimentary cycles in the Central European
Basin System. In: Littke,R., Bayer, U., Gajewski, D., Nelskamp, S. (Eds), Dynamics of
Complex Intracontinental Basins - The Central European Basin System, Springer-Verlag,
Berlin-Heidelberg, pp. 155-169.

BEHAR, F., LORANT, F., LEWAN, M. 2008a. Role of NSO compounds during

primary cracking of a Type Il kerogen and a Type 11l lignite. Organic Geochemistry, 39, 1-
22.

BEHAR, F., LORANT, F., MAZEAS, L. 2008b. Elaboration of a new compositional
kinetic schema for oil cracking. Organic Geochemistry, 39, 764—782.

205



BERGINS, C., HULSTON, J, STRAUSS, K. CHAFFEE, A.L. 2007.
Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of
MTE product coals. Fuel, 86, 3-16.

BERNAL, J.L.P., BELLO, M.A. 2001. Fractal geometry and mercury porosimetry.
Comparison and application of proposed models on building stones. Applied Surface Science,
185, 99-107.

BERNARD, S., HORSFIELD, B., SCHULTZ, H.M., SCHREIBER, A., WIRTH, R.,
TIEM, T.A.V., PERSSEN, F., KONITZER, S, VOLK, H., SHERWOOD, N., FUENTES, D.
2010. Multi-scale detection of organic and inorganic signatures provides insights into gas

shale properties and evolution. Chemie der Erde, 70, 119-133.

BERNARD, S., HORSFIELD, B., SCHULTZ, H.M., WIRTH, R., SCHREIBER, A,
SHERWOOD, N. 2011. Geochemical evolution of organic-rich shales with increasing
maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern
Germany). Marine and Petroleum Geology, 31, 70-89.

BERNARD, S., WIRTH, R., SCHREIBER, A., SCHULZ, H.-M., HORSFIELD, B. 2012.
Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort

Worth Basin). International Journal of Coal Geology, 103, 3-11.

BERNER, U. 2011. The German Wealden, an unconventional hydrocarbon play? Erdél
Erdgas Kohle, 127, 1-5.

BERNER, U., KAHL, T., SCHEEDER, G., 2010. Hydrocarbon potential of sediments of
the German Wealden Basin. Oil Gas European Magazine, 2, 80-84.

BJORLYKKE, K., HOEG, K. 1997. Effects of burial diagenesis on stresses, compaction

and fluid flow in sedimentary basins. Marine and Petroleum Geology, 14, 267 -276.

BJZRLYKKE, K. 1999. Principal aspects of compaction and fluid flow in mudstones.
Geological Society Special Publications, 158, 73-78.

BOHACS, K.M. 1998. Contrasting expressions of depositional sequences in mudstones
from marine to non-marine environs. In: Schieber, J., Zimmerle, W., Sethi, P., eds., Shales
and Mudstones, vol. 1, Stuttgart, Schweizerbart’sche Verlagsbuchhandlung, p. 32-77.

206



BOHACS, K.M., GRABOWSKI, G. J, CARROLL, A. R.,, MANKIEWICZ, P. J,
MISKELL-GERHARDT, K. J., SCHWALBACH, J. R. 2005. Production, destruction, and
dilution: The many paths to source rock development. In: HARRIS, N. B., (Ed.), The
deposition of organic carbon-rich sediments: Models, mechanisms, and consequences:
Society for Sedimentary Geology Special Publication 82, 61-101.

BOWKER. K.A. 2007. Barnett Shale gas production, Fort Worth Basin: Issues and

discussion. American Association of Petroleum Geologists Bulletin, 91, 523-533.

BRETT, C.E., ALLISON, P.A. 1998. Paleontological approaches to the environmental
interpretation of mudrocks. In: Schieber, J., Zimmerle, W., Sethi, P.S., eds., Shales and

Mudstones, vol. 1, Stuttgart, Schweizerbart’sche Verlagsbuchhandlung, p.301-349.

BRUNS, B., Di PRIMIO, R., BERNER, U., LITTKE, R., 2013. Petroleum system
evolution in the inverted Lower Saxony Basin, northwest Germany: A 3D basin modeling
study. Geofluids, 13, 246-271.

BURKART, B., GROSS, G.C., KERN, J. 1999. The role of gypsum in production of
sulfate-induced deformation of lime-stabilized soils. Environmental and Engineering
Geoscience, 5, 173-187.

BUSTIN, R.M., CLARKSON, C.R. 1998. Geological controls on coalbed methane

reservoir capacity and gas content. International Journal of Coal Geology, 38, 3-26.

BUSTIN, R.M., BUSTIN, AM.M,, CIU, X., ROSS, D.J.K., MURPHY PATHI, V.S.
2008. Impact of shale properties on pore structure and storage characteristics. SPE Shale Gas
Production Conference, 16-18 November 2008, Fort Worth, Texas, USA.

BUSTIN, A.M.M., BUSTIN, R.M. 2012. Importance of rock properties on the
producibility of gas shales. International Journal of Coal Geology, 103, 132-147.

CANFIELD. D.E.,, THAMDRUP, B., HANSEN, J.W. 1993. The anaerobic degradation
of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and
sulfate reduction. Geochimica et Cosmochimica Acta, 57, 3867-3883.

CASEY, R., ALLEN, P., DORHOFER, G., GRAMANN, F., HUGHES, N.F., KEMPER,
E., RAWSON, P.F.,, SURLYK, F. 1975. Stratigraphical subdivision of the Jurassic—
Cretaceous boundary beds in NW Germany. Newsletterson Stratigraphy, 4, 4-5.

207



CHALMERS, G., BUSTIN, R.M., POWER, I. 2009. A Pore by any other name would be
as small: The importance of meso-and microporosity in shale gas capacity. American
Association of Petroleum Geologists Annual Convention and Exhibition, 7-10 June, Denver,

Colorado.

CHALMERS, G.R.L., BUSTIN, R.M. 2012. Geological evaluation of Halfwaye-Doige-
Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia. Marine and
Petroleum Geology, 38, 53-72

CHALMERS, G.R.L., ROSS, D.J.K., BUSTIN, R.M. 2012. Geological controls on
matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern

British Columbia, Canada. International Journal of Coal Geology, 103, 120-131.

CLARKSON, C.R., BUSTIN, R.M. 1997. Variation in permeability with lithotype and
maceral composition of Cretaceous coals of the Canadian Cordillera. International Journal of
Coal Geology, 33, 135-151.

CLARKSON, C.R., JENSEN, J.L., PEDERSEN, P.K., FREEMAN, M. 2012. Innovative
methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir.

American Association of Petroleum Geologists Bulletin, 96, 355-374.

COMISKY, J.T., SANTIAGO, M., McCOLLOM, B., BUDDHALA, A., NEWSHAM,
K.E. 2011. Sample size effects on the application of mercury injection capillary pressure for
determining the storage capacity of tight gas and oil shales. SPE Canadian Unconventional

Resources Conference, 15-17 November 2011,Calgary, Alberta, Canada.

CONNELL-MADORE, S., KATSUBE. T.J. 2006. Pore size distribution characteristics
of Beaufort-Mackenzie Basin shale samples, Northwest Territories.In: Geological Survey of
Canada, Current Research (Online) 2006-B1, pp. 13.

CROSSEY, L.J. 1991. The Thermal Stability of Organic Acids in Sedimentary Basins.
AAPG Annual Convention Dallas, April 7-10, 1991, Texas, USA.

CURIALE, J.A. 1986. Origin of solid bitumens, with emphasis on biological marker
results. Organic Geochemistry, 10, 559-580.

CURTIS, C.D. 1995. Post-depositional evolution of mudstones I: early days and parental
influences. Journal of the Geological Society, 152, 577-586.

208



CURTIS, J. 2002. Fractured shale-gas systems. American Association of Petroleum
Geologists Bulletin, 86, 1921-1938.

CURTIS, M.E., AMBROSE, R.J., SONDERGELD, C.H., RAI, C.S. 2010. Structural
Characterization of Gas Shales on the Micro- and Nano-Scales. SPE Canadian
Unconventional Resources and International Petroleum Conference, 19-21 October 2010,

Calgary, Alberta, Canada.

CURTIS, M.E., SONDERGELD, C.H, AMBROSE, RJ., RAI, C.S. 2012.
Microstructural investigation of gas shales in two and three dimensions using nanometer-
scale resolution imaging. American Association of Petroleum Geologists Bulletin, 96, 665-
677.

DAHL, J, MOLDOWAN, J.M., WALLS, J., NUR, A., DE VITO, J. Creation of porosity
in tight shales during organic matter maturation. AAPG Annual Convention and Exhibition,
April 22-25, Long Beach, California, USA.

DAVIES, G.R. 1979. Dolomite Reservoir Rocks: Processes, Controls, Porosity
Development. In: Moore, C.H. (Organizer), Geology of carbonate porosity, American

Association of Petroleum Geologists Continuous Education Course Note Series, 11, C1-C17.

DESBOIS, G., URAI, J.L.,, KUKLA, P.A. 2009. Morphology of the pore space in
claystones — evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth,
4,15-22.

ELSTNER, F., MUTTERLOSE, J. 1996. The lower Cretaceous (Berriasian and
Valanginian) in NW Germany. Cretaceous Research, 17, 119-133.

ERDMANN, M., HORSFIELD, B. 2006. Enhanced late gas generation potential of
petroleum source rocks via recombination reactions: Evidence from the Norwegian North Sea.
Geochimica et Cosmochimica Acta, 70, 3943-3956.

ESPITALIE, J., LAPORTE, J.L., MADEC, M., MARQUIS, F., LEPLAT, P., PAULET
J., BOUTEFEU, A. 1977. Methode rapide de characterisation des roches meres, de leur
potential petrolier et de leur degree d'evolution, Rev. Inst. Franc. Pétrole., 32, 23-42.

FRIESEN, W.I., MIKULA. R.J. 1988. Mercury porosimetry of coals: Pore volume
distribution and compressibility. Fuel, 67, 1516-1520.

209



GREEN, U., AIZENSTAT, Z., GIELDMEISTER, F., COHEN, H. CO; adsorption inside
the pore structure of different rank coals during low temperature oxidation of open air coal
stockpiles, Energy Fuels, 25, 4211-4215.

GRIFFIN, S., LITKE, R.,, KLAVER, J.,, URAI, J.L. 2013. Application of BIB-SEM
technology to characterize macropore morphology in coal. International Journal of Coal

Geology (Online).

HEASLEY, E.C., WORDEN, R.H., HENDRY, J.P. 2000. Cement distribution in a
carbonate reservoir: Recognition of a paleo-oil-water contact and its relationship to reservoir
quality in the Humbly Grove field, onshore, United Kingdom. Marine and Petroleum
Geology, 17, 639-654.

HILDENBRAND, A., URAI, J.L. 2003. Investigation of the morphology of pore space

in mudstones—first results. Marine and Petroleum Geology, 20, 1185-1200.

HOUBEN, M.E., DESBOIS, G., URAI, J.L. 2013. Pore morphology and distribution in
the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D
BIB-SEM investigations on mm to nm scale. Applied Clay Science, 71, 82-97.

IRWIN, H., CURTIS, C. 1977. Isotopic evidence for source of diagenetic carbonates
formed during burial of organic-rich sediments. Nature, 269, 209-213.

JARVIE, D.M., HILL, R.J., RUBLE, T.E., POLLASTRO, R.M., 2007. Unconventional
shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for
thermogenic shale gas assessment. American Association of Petroleum Geologists Bulletin,
91, 475-499.

KLAVER, J., DESBOIS, G., URAI, J.L., LITTKE, R. 2012. BIB-SEM study of the pore
space morphology in early mature Posidonia Shale from the Hils area, Germany.

International Journal of Coal Geology, 103, 12-25.

KIDWELL, S.M. 1989. Stratigraphic condensation of marine transgressive records:

origin of major shell deposits in the Miocene of Maryland. Journal of Geology, 97, 1-24.

KUILA, U., PRASAD, M. 2013. Specific surface area and pore-size distribution in clays
and shales, Geophysical Prospecting, 61, 341-362.

210



LASH, G.G., ENGELDER, T. 2011. Thickness trends and sequence stratigraphy of the
Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadia.

American Association of Petroleum Geologists Bulletin, 95, 61-103.

LAUGHREY, C.D., RUBLE, T.E.,, LEMMENS, H., KOSTELNIK, J., BUTCHER, A.R.,
WALKER, G., KNOWLES, W. 2011. Black Shale Diagenesis: Insights from Integrated
High-Definition Analyses of Post-Mature Marcellus Formation Rocks, Northeastern
Pennsylvania. AAPG Annual Convention and Exhibition, April 10-13, 2011, .Houston, Texas,
USA.

LOISON R., FOCH P., BOYER A., 1989. Coke: Quality and Production, Butterworths,
London, pp. 353.

LOUCKS, R.G., REED, R.M., RUPPEL, S.C., JARVIE, D.M. 2009. Morphology,
genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian
Barnett Shale. Journal of Sedimentary Research, 79, 848-861.

LOUCKS, R.G., REED, R.M., RUPPEL,S.C., HAMMES, U. 2012. Spectrum of pore
types and networks in mudrocks and a descriptive classification for matrix-related mudrock

pores. American Association of Petroleum Geologists Bulletin, 96, 1071-1098.

LU, J., MILLIKEN, K., REED, R.M. 2011. Diagenesis and sealing capacity of the
middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi,

U.S.A. Environmental Geosciences, 18, 35-53.

MACGOWAN, D.B., SURDAM, R.C. 1990. Carboxylic acid anions in formation
waters, San Joaquin Basin and Louisiana Gulf Coast, U.S.A. - Implications for clastic

diagenesis. Applied Geochemistry, 5, 687-701.

MACQUAKER, JH.S., GAWTHORPE, R.L. 1993. Mudstone lithofacies in the
Kimmeridge Clay Formation, Wessex Basin, Southern England: Implications for the origin

and controls of the distribution of mudstones. Journal of Sedimentary Petrology, 63, 1129-
1143.

MACQUAKER, JHS., TAYLOR, K.G., KELLER, M., POLYA, D. 2014.
Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks:
Implications for predicting unconventional reservoir attributes of mudstones. American

Association of Petroleum Geologists Bulletin, 98, 587-603.

211



MASTALERZ, M., DROBNIAK, A., STRAPOC, D., ACOSTA, W.S., RUPP, J. 2008.
Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed
gas content. International Journal of Coal Geology, 76, 205-216.

MILLIKEN, K.L., RUDNICKI, M., AWWILER, D.N., ZHANG, T. 2013. Organic
matter—hosted pore system, Marcellus Formation (Devonian), Pennsylvania. American
Association of Petroleum Geologists Bulletin, 97, 177-200.

MILNER, M., MCLIN, R., PETRIELLO, J., TEK, T. 2010. SPE Canadian
Unconventional Resources and International Petroleum Conference, 19-21 October 2010,
Calgary, Alberta, Canada.

MODICA, C.J., LAPIERRE, S.G. 2012. Estimation of kerogen porosity in source rocks
as a function of thermal transformation: Example from the Mowry Shale in the Powder River

Basin of Wyoming. Association of Petroleum Geologists Bulletin, 96, 87-108.

MUTTERLOSE, J., BORNEMANN, A. 2000. Distribution and facies patterns of Lower

Cretaceous sediments in northern Germany: a review. Cretaceous Research, 21,733-759.

OKIONGBO, K.S., APLIN, A.C., LARTER, S.R. 2005. Changes in Type Il Kerogen

Density as a Function of Maturity: Evidence from the Kimmeridge Clay Formation. Energy
& Fuels, 19, 2495-2499.

PADHY, G.S., LEMAIRE, C., AMIRHARAJ, E.S., IDANNIDIS, M.A. 2007. Pore size
distribution in multiscale porous media as revealed by DDIF-NMR, mercury porosimetry and
statistical image analysis. Colloids and Surfaces A: Physicochemical Engineering Aspects,
300, 222-234.

PASSEY, Q. R.,, BOHACS, K. M., ESCH, W. L., KLIMENTIDISS, R., SINHA, S. 2010.
From Oil-Prone Source Rock to Gas-Producing Shale Reservoir — Geologic and
petrophysical characterization of unconventional shale-gas reservoirs. Proceedings of the
North American Unconventional Gas Conference and Exhibition. Society of Petroleum
Engineers, Paper 131350, 29p.

PELTONEN, C., MARCUSSEN, @., BJJRLYKKE, K., JAHREN, J. 2009. Clay
mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite
reaction on rock properties. Marine and Petroleum Geology, 26, 887-898.

212



PELZER, G., RIEGEL, W., and WILDE, V. 1992. Depositional controls on the Lower
Cretaceous Wealden coals of northwest Germany. In Controls on the Distribution and Quality
of Cretaceous Coals, eds. P.J. McCabe, and J.T. Parrish. Geological Society of America,
Special Paper, 267, 227-244.

PUDLO, D., REITENBACH, V., ALBRECHT, D., GANZER, L., GERNERT, U,
WIENAND, J., KOHLHEPP, R., GAUPP, R. 2012. The impact of diagenetic fluid—rock
reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area,

central Germany). Environ mental Earth Science, 67, 369-384.

RAISWELL, R., FISHER, Q.J. 2000. Mudrock-hosted carbonate concretions: a review
of growth mechanisms and their influence on chemical and isotopic composition. Journal of
Geological Society, 157, 239-251.

REXER, T.F., MATHIA, EJ., APLIN, A.C.,, THOMAS, K.M. 2014. High-Pressure
Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated
Kerogens. Energy & Fuels, 28, 2886-2901.

RIPPEN, D., LITTKE, R., BRUNS, B., MAHLSTEDT, N. 2013. Organic geochemistry
and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: The

transition from lacustrine oil shales to gas shales. Organic Geochemistry, 63, 18-36.

RODUIT. 2008. JMicroVision: Image analysis toolbox for measuring and quantifying
components of high-definition images. Version 1.2.7. Software available for free download at

http/Awww.jmicrovision.com/ accessed August, 2011.

ROMERO-SARMIENTO, M.-F., DUCROS, M., CARPENTIER, B., LORANT, F.,
CACAS, M.-C., PEGAZ-FIORENT, S., WOLF, S., ROHAIS, S., MORETTI, I. 2013.
Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale
play using petroleum system modeling: Application to the Mississippian Barnett Shale.
Marine and Petroleum Geology, 45, 315-330.

SAGEMAN, B.B.,, MURPHY, A.E, WERNE, JP., VER STRAETEN, C.A,
HOLLANDER, D.J., LYONS, T.W. 2003. A tale of shales: the relative roles of production,
decomposition, and dilution in the accumulation of organic-rich strata, Middle—Upper

Devonian, Appalachian basin. Chemical Geology, 195, 229-273.

213



SCHIEBER, J. 2010. Common Themes in the Formation and Preservation of Intrinsic
Porosity in Shales and Mudstones - Illustrated with Examples Across the Phanerozoic. SPE

Unconventional Gas Conference, 23-25 February 2010, Pittsburgh, Pennsylvania, USA.

SCHIEBER, J.,, REMUS, L., BOHACS, K., KLIMENTIDIS, R.E., OTMANN, J.,
DUMITRESCU, M. 2012. A Scanning Electron Microscope Study of Porosity in the Eagle
Ford Shale of Texas. AAPG Annual Convention and Exhibition, April 22-25, 2012, Long
Beach, California, USA.

SCHOLLE, P. A. 1977. Chalk diagenesis and its relation to petroleum exploration: oil
from chalks, a modern miracle? American Association of Petroleum Geologists Bulletin, 61,
982-1009.

SCHUTTER, S.R. 1998. Characteristics of shale deposition in relation to stratigraphic
sequence system tracts. In: Schieber, J., Zimmerle, W., Sethi, P., eds., Shales and Mudstones,
vol. 1, Stuttgart, Schweizerbart’sche Verlagsbuchhandlung, p. 79-108.

SHAFER, J., NEASHAM, J. 2000. Mercury porosimetry protocol for rapid
determination of petrophysical and reservoir quality properties. International Symposium of
the Society of Core Analysts, (2000) SCA 2021.

SIGAL, R.F. 2009. A methodology for blank and conformance corrections for high

pressure mercury porosimetry. Measurement Science and Technology, 20, 045108, 11pp.

SING, K.S.\W., EVERETT, D.H., HAUL, RAW., MOSCOU, L., PIEROTTI, R.A,
ROUQUEROL, J. 1985. Reporting physisorption data for gas/solid systems. Spetial reference
to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603-619.

SISK, C., DIAZ, E., WALLS, J.,, GRADER, A., SUHRER, M. 2010. SPE Annual
Technical Conference and Exhibition held in Florence, Italy, 19-22 September 2010.

SLATT, RM., O’BRIEN, N.R. 2011. Pore types in the Barnett and Woodford gas shales:
Contribution to understanding gas storage and migration pathways in fine-grained rocks.
AAPG Bulletin, 95, 2017-2030.

SOEDER, D.J. 1988. Porosity and permeability of eastern Devonian gas shale. Society of

Petroleum Engineers Formation Evaluation, 3, 116-124.

214



SONDERGELD, C.H.,, AMBROSE, R.J., RAI, C.S., MONCRIEFF, J. 2010. Micro-
Structural Studies of Gas Shales. Society of Petroleum Engineers Unconventional Gas
Conference, 23-25 February 2010, Pittsburgh, Pennsylvania, USA.

STOLLHOFEN, H., BACHMANN, G.H., BARNASCH, J., BAYER, U., BEUTLER, G,,
FRANZ, M., KASTNER, M., LEGLER, B., MUTTERLOSE, J., RADIES, D. 2008. Upper
Rotliegend to Early Cretaceous basin development. In: Littke, R, Bayer, U, Gajewski, D &
Nelskamp, S, eds. Dynamics of Complex Intracontinental Basins - The Central European
Basin System. Berlin Heidelberg: Springer; 2008. p. 181-221.

TAO, S., WANG, Y., TANG, D., WU, D., XU, H., HE, W. 2012. Organic petrology of
Fukang Permian Lucaogou Formation oil shales at the northern foot of Bogda Mountain,

Junggar Basin, China. International Journal of Coal Geology, 99, 27-34.

THOMAS, M.M., CLOUSE, J.A. 1990. Primary migration by diffusion through kerogen:
Il. Hydrocarbon diffusivities in kerogen. Geochimica et Cosmochimica Acta, 54, 2781-2792.

THOMAS, M.M., CLOUSE, J.A., LONGO, JM. 1993. Adsorption of organic-
compounds on carbonate minerals. 3. Influence on dissolution rates. Chemical Geology, 109,
227-237.

TIEM, V.T., HORSFIELD, B., SYKES, R. 2008. Influence of in-situ bitumen on the

generation of gas and oil in New Zealand coals. Organic Geochemistry, 39, 1606-16109.

TODA, Y., TOYODA, S. 1972. Application of mercury porosimetry to coal. Fuel, 51,
199-201.

VAN De KAMP. P.C. 2008. Smecite-illite- muscovite transformations, quartz dissolution,

and silica release in shales. Clays and Clay Minerals, 56, 66-81.

VANDENBYGAART, AlJ., PROTZ, R. 1999. The representative elementary area REA

in studies of quantitative soil micromorphology. Geoderma, 89, 333-346.

VAN DUIN, AC.T., LARTER, S.R. 2001. A computational chemical study of
penetration and displacement of water films near mineral surfaces, Geochemical Transacions
6.

WASHBURN, E.W. 1921.The Dynamics of Capillary Flow, Phys. Rev., 17, 273 — 283.

215



WEBB, P.A. 2001. An introduction to the physical characterization of materials by
mercury intrusion porosimetry with emphasis on reduction and presentation of experimental

data. Micromeritics Instrument Corp., Norcross, Georgia, pp. 23.

WERNE, JP.,, SAGEMAN, B.B., LYONS, T.W., HOLLANDER, D.J. 2002. An
integrated assessment of a “type euxinic” deposit: evidence for multiple controls on black
shale deposition in the middle Devonian Oatka Creek Formation. American Journal of
Science, 302, 110-143.

WOLBURG, J. 1949. Ergebnisse der Biostratigraphie nach Ostracoden im
Nordwestdeutschen Wealden - Erdél und Tektonik, Sammelband vom Amt fir

Bodenforschung, p. 349-360, Hannover-Celle.

WORDEN, R.H., OXTOBY, N.H., SMALLEY, P.C. 1998. Can oil emplacement prevent

quartz cementation in sandstones? Petroleum Geoscience, 4, 129-137.

216



Chapter 5: Summary and conclusions

Key results

Determination of sample porosity and its pore size distribution in the shale successions is
a first step towards understanding of the variability of physical properties on larger scales.
However, due to a fine-grained nature of mudstones, the pure estimation of their porosities is
not as straightforward and the results may differ depending on the technique used, the
experimental conditions and the sample size. Our results showed that due to a small size of
pores, often exceeding the resolution of the technique deployed, porosities of shales are not
suitable for the analysis with traditional methods alone, such as mercury porosimetry. On the
other hand, more sophisticated gas sorption techniques, despite being efficient in
quantification of porosity held by the finest pores, do not measure macropores, or even larger
mesopores. In this study, the size of pores encountered in the investigated shale samples
spanned from > 6 nm to ~5 pum. Such broad pore size distribution is a diagnostic feature of
shales and is the primary reason for the unsuitability of any single technique to yield
descriptive statistical information about the full spectrum of pores. The limitations of each of
the measuring techniques used should be thus bore in mind while interpreting and comparing
porosities between different samples. To overcome those limitations, a multi-technique
approach is preferably used. As shown in this study, the combination of the mercury and gas
sorption methods was critical to show the connectivity of the shale pore system in samples of
maturities ca. 0.5-1.9% Ro. As the injection of mercury under high pressures may introduce
an effect comparable to a deformation of the shale framework and/or its organic component,
the exact agreement between the two porosity values and the total porosity of the shale varies,
and is likely controlled by the content of the organic matter. This control is expressed a
strong dependence of the mercury retraction on the content of the organic carbon. One of the
techniques often deployed to avoid the uncertainties related to the sample compression, and
on the other hand, those related to always limited accuracy of models converting sorption or
mercury pore volume to a specific diameter value, is a high resolution microscopy. In this
study, the microscopic pore visualization and the image analysis have proved to be a useful
complementary technique with a huge potential to quantify macroporosity that could not be
directly quantified neither by the mercury porosimetry nor the sorption techniques. The main

advantage of the image pore visualization was a direct grouping of pores into pore bodies and
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pore throats with an accuracy not attained by the mercury porosimetry alone. Moreover, the
image technique, especially when coupled with the low resolution petrographic analysis, was
capable to provide a valid geological background and mineralogical context for the porosities
measured experimentally. Still, during our analysis, we found that the experimental feasibility
may pose constraints on the interpretation of the image analysis results, as the higher sample
representativeness is often a compromise for the lower image resolution. The last may thus
pose a problem in very heterogeneous shales with a strong variability on the > cm scale.

In this study, we analysed a centimetre-and micrometer scale mudstone samples that are
small enough to avoid many issues of the larger scale mudstone heterogeneity and thus can
be directly used to interpret the influence of diagenesis and organic matter maturation on the
measured physical rock properties. The Posidonia case study showed that although the
maturity of the organic matter is an important factor in interpreting the change in porosities in
relatively homogeneous calcareous mudstone successions, the influence of the mechanical
compaction and the high-temperature carbonate diagenesis should not be neglected. We
demonstrated that the theoretical porosity gain due to the expulsion of hydrocarbons in the oil
window is effectively counteracted by the shale framework collapse and occlusion of pores
by the generated organic phase. Despite blocking pores, the retention of the petroleum phase
generated in situ or migrated from adjacent beds has also a positive effect, as it arrests calcite
cementation and therefore prevents further porosity loss. The net effect of the increasing
thermal maturity on porosity is stepwise, and the initial loss of porosity and the decline in the
size of the accessible pore apertures is arrested, and even reversed in the gas window. The
porosity balance approach showed that this late porosity gain is primarily accounted for by
the evolution of the secondary organic pores, interpreted as the result of cracking of the
residual solid bitumen and oil retained in shale. By studying a large set of shale samples
containing Type | (Wealden) and 1l kerogen (Posidonia) we showed that the organic porosity
evolution is constraint to the early (wet) gas window conditions, at which point the
compositional differences between different aquatic kerogens (marine vs lacustrine) are not
significant. The specific but prolonged timing for pores evolution is most plausibly controlled
by the physiochemical properties of the organic phase and its progressive conversion into
light hydrocarbons and pyrobitumen. Such interpretation offers a plausible explanation for
the heterogeneity of pore morphologies encountered in the studied shales, could account for
the presence of large irregular pores developed in the oil-saturated bitumen trapped in the
stress-protected vicinities of mineral grains and can explain the size distribution of the

bubble-like-shape intraorganic pores.
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The full realization of the porosity change within the heterogeneous shale successions
cannot be achieved without constraining the lithological and mineralogical framework of the
inorganic matrix. In this study the analysis of the heterogeneous succession of the German
Wealden shale shed light onto the levels of such porosity variation between and within
groups of the shale samples statistically differentiated with selected petrophysical and
geochemical characteristics. We demonstrated that the clay-rich mudstones can be
differentiated from the carbonate bearing-mudstones by a different covariation with the
embedded organic matter at both low (early oil window) and high (gas window) levels of
maturity. Within the two lithological groups, the variation of porosity is similarly strong and
follows the change in the rock texture and composition. Our most significant observation
showed that within the gas window maturity shale the total porosity-TOC covariation is
positive for both clay-rich and calcareous lithologies. Moreover, while comparing the
Wealden and Posidonia shale, the nanofossil-bearing calcareous shale bore more resemblance
to the carbonate-poor siliciclastic shale than to the macroshell carbonate-bearing beds. In
combination, these two observations stress not only the significance of the organic porosity in
the gas mature shales but also a different supportive role in its evolution of the embedded
carbonate phases.

The significance of the low scale heterogeneity as revealed within the analyzed shale
sequences has major implications from the practical point of the shale gas exploration. This
study unequivocally showed that the location of the potential microreservoirs of free gas is
linked to the compaction shadows of the mineral grains, nannofossil aggregates, or even
diagenetic dolomite grains. Although the shale pores are typically connected through pore
throats < 20-40 nm, the alternation of the clay and organic rich layers with the macroporous
and rigid laminae, such as those packed with faecal pellet aggregates, may be favourable
from the production standpoint. As the clay-rich lithologies and the organic phase remain
mostly meso- and microporous, those would offer more potential for the storage of the sorbed

gas.
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Future work

The successful study of the controls on porosity of mudstones depends on the proper
design of the initial sampling strategies for the future geochemical, petrophysical and
microscopic work. The consistent selection of samples is crucial for simplification of the
shale work flow and reducing the number of variables between subsequent experimental set-
ups. In other words, this must involve comparison of shale lithologies bearing similar
maturities and kerogen types, or alternatively, those that vary in terms of the level of the
thermal maturation but show no significant lithological variation.

In the light of this work, and to better understand the timing of the organic porosity
generation, the future work should direct its focus onto the shale-rich lithologies representing
the late oil window - wet gas window maturities. Such recommendation stems from the visual
observations of pores and the experimentally measured porosity values in the type | and Il
shale investigated in this study. The significance of the organic porosity timing from the
reservoir standpoint entails different exploration and production strategies.

In order to better place investigated mudstone samples in a broader stratigraphic
framework, we see necessity in constraining its heterogeneity by higher resolution
chemostratigraphic methods. The elemental data can be acquired using inductively coupled
plasma spectrometry optical emission spectrometry (ICP OES) and inductively coupled
plasma spectrometry mass spectrometry (ICP MS), following a Li-metaborate fusion
preparation. The knowledge about the elemental distribution will enable to track lateral and
vertical changes in physical properties of shales, determine the environmental conditions of
its deposition with redox, and productivity proxies, and thus extend the interpretation of the
porosity parameters into broader conext. Finally, we see opportunity in combination of the
high resolution porosity and geochemical data in modelling the distribution of highly

productive shales and the organic deposition.
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Chapter 6: Appendices

Appendix A

Table A 1. TOC and Rock-Eval data for the Wealden shale, samples taken every 1 m, wells A (0.5-

0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro).

Sample Depth TOC S1 S2 S3 HI Ol Tmax
(m) (%) | (mgHC/g) | (mgHC/g) | (mgHC/g) | (mgHC/gTOC) | (mgHC/gTOC) (°C)
G010269 831.5 0.50 0.01 0.44 0.19 89.0 38.0 424
G010270 832.1 | 0.46 0.02 0.41 3.30 90.0 724.0 430
G010271 832.3 | 0.46 0.02 0.38 1.06 82.0 229.0 424
G010272 8333 | 1.72 0.06 3.64 1.06 212.0 62.0 428
G010273 834.7 | 1.10 0.04 1.85 0.91 168.0 83.0 430
G010274 835.1 1.38 0.05 2.67 0.63 193.0 46.0 427
G010275 836.0 1.82 0.06 5.15 1.12 283.0 62.0 427
G010276 836.6 | 4.27 0.21 2321 1.45 544.0 34.0 429
G010277 837.4 7.25 0.20 53.68 0.95 740.0 13.0 439
G010278 838.1 0.52 0.03 0.63 2.75 121.0 529.0 437
G010279 838.7 | 0.69 0.03 0.75 0.28 108.0 40.0 430
G010280 839.2 | 1.27 0.04 2.27 1.52 179.0 120.0 432
G010281 840.8 | 8.99 0.30 64.74 0.64 720.0 7.0 443
G010282 842.9 | 5.83 0.24 40.53 0.64 695.0 11.0 438
G010283 847.3 9.15 0.55 58.27 2.76 637.0 30.0 429
G010284 847.8 | 0.93 0.04 0.91 0.49 98.0 53.0 426
G010285 848.9 | 2.19 0.10 7.70 1.43 352.0 65.0 436
G010286 849.3 7.77 0.23 51.00 0.73 656.0 9.0 440
G010287 850.2 | 4.33 0.19 13.60 1.56 314.0 36.0 424
G010288 850.4 | 2.19 0.08 3.99 1.03 182.0 47.0 425
G010289 909.5 5.96 0.62 41.96 1.73 704.0 29.0 437
G010290 910.2 | 10.00 1.01 82.15 2.17 822.0 22.0 447
G010291 9111 | 3.73 0.89 28.61 1.03 767.0 28.0 4471
G010292 911.7 | 4.46 0.81 27.02 1.64 606.0 37.0 438
G010293 9125 | 452 0.78 34.73 1.66 768.0 37.0 441
G010294 9135 | 6.20 1.19 51.99 1.50 839.0 24.0 441
G010295 9139 | 527 1.23 44,81 1.01 850.0 19.0 443
G010296 9145 | 2.76 1.11 17.20 1.39 623.0 50.0 435
G010297 915.9 1.98 0.31 12.43 1.46 628.0 74.0 438
G010298 916.5 3.80 0.33 28.98 1.34 763.0 35.0 440
G010299 917.0 | 3.79 3.53 30.33 0.89 800.0 23.0 438
G010300 918.0 7.29 1.01 53.44 2.79 733.0 38.0 432
G010301 918.9 2.03 0.10 11.14 1.33 549.0 66.0 440
G010302 919.3 | 4.68 0.43 27.89 1.79 596.0 38.0 433
G010303 920.4 1.54 0.14 6.74 1.69 438.0 110.0 438
G010304 9235 | 5.81 0.28 4834 1.18 832.0 20.0 442
G010305 923.7 | 11.80 0.93 91.48 T.47 775.0 12.0 446
G010306 925.9 2.61 0.27 13.24 2.06 507.0 79.0 430
G010307 926.4 | 1.00 0.08 2.71 2.27 271.0 227.0 433
G010308 927.3 | 0.96 0.06 2.43 2.32 252.0 241.0 433
G010309 928.3 0.67 0.04 1.29 1.95 193.0 292.0 438
G010310 966.4 | 0.93 0.04 3.68 2.35 394.0 252.0 444
G010311 967.3 | 2.46 0.11 15.61 1.02 635.0 41.0 439
G010312 967.8 | 1.64 0.24 10.13 0.79 618.0 48.0 434
G010313 968.8 | 5.28 0.39 43.21 1.38 818.0 26.0 443
G010314 969.8 | 3.76 0.49 18.46 0.68 491.0 18.0 436
G010315 970.3 1.62 3.02 12.70 0.61 784.0 38.0 435
G010316 972.6 | 13.50 1.17 102.90 1.68 762.0 12.0 449
G010317 972.8 | 9.28 1.22 67.73 1.50 730.0 16.0 437
G010318 9744 | 1.37 1.77 8.43 1.10 615.0 80.0 435
G010319 9746 | 8.07 1.10 57.82 144 716.0 18.0 440
G010320 992.3 | 11.40 1.07 86.84 0.52 762.0 5.0 448
G010321 994.1 5.02 0.44 43.46 0.71 866.0 14.0 446
G010322 9949 | 4.45 0.33 29.79 0.78 669.0 18.0 437
G010323 996.4 2.96 0.18 18.58 0.90 628.0 30.0 436
G010324 997.3 3.56 0.26 20.15 1.16 566.0 33.0 433
G010325 997.8 | 1.79 0.12 9.36 1.25 523.0 70.0 437
G010326 | 1029.2 | 4.14 0.48 26.74 1.41 646.0 34.0 429
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G010327 1029.7 1.59 0.06 8.09 1.22 509.0 77.0 444
G010329 1031.0 | 10.20 0.56 77.87 0.93 763.0 9.0 448
G010330 1031.7 0.50 0.03 1.74 0.82 347.0 163.0 440
G010331 1031.9 0.95 0.04 3.19 0.97 336.0 102.0 441
G010332 1032.6 | 13.50 0.87 101.07 1.05 749.0 8.0 449
G010333 1033.6 2.64 0.25 15.95 0.85 604.0 32.0 436
G010334 1034.5 0.66 0.03 1.29 1.29 196.0 196.0 436
G010335 1036.9 0.65 0.06 2.68 1.27 412.0 195.0 440
G010336 1037.3 3.11 0.16 17.35 2.06 558.0 66.0 438
G010337 1038.4 | 12.30 0.71 89.86 0.60 731.0 5.0 448
G010338 1039.2 1.26 0.06 4.76 0.74 378.0 59.0 440
G010339 1040.1 0.75 0.11 3.48 0.84 466.0 112.0 437
G010340 1040.8 4.71 0.65 32.25 1.37 685.0 29.0 429
G010341 1042.6 1.42 0.06 6.58 0.45 463.0 32.0 440
G010342 1043.5 [ 15.30 0.74 115.84 0.99 757.0 6.0 453
G010343 1043.9 1.19 0.07 3.08 0.76 259.0 64.0 441
G010344 1044.6 0.93 0.04 4.08 0.76 441.0 82.0 441
G010345 1045.2 1.51 0.09 2.96 0.82 196.0 54.0 426
G010346 1045.6 5.72 0.51 33.51 1.14 586.0 20.0 423
G010347 1046.0 0.47 0.03 1.01 0.57 215.0 122.0 428
G010348 1046.4 1.89 0.15 10.22 0.72 541.0 38.0 435
G010349 1048.0 5.32 0.21 40.01 0.62 752.0 12.0 442
G010350 1048.5 0.33 0.02 0.45 1.0/ 135.0 320.0 442
G010351 1050.1 [ 17.50 0.82 116.19 0.54 664.0 3.0 452
G010352 1051.3 0.53 0.23 28.18 0.72 5317.0 136.0 438
G010353 1051.7 3.82 0.22 27.35 0.77 716.0 20.0 439
G010354 1052.4 0.63 0.04 2.53 0.76 405.0 122.0 441
G010355 1053.6 0.35 0.02 0.32 1.38 91.0 391.0 433
G010356 1054.4 1.58 0.12 7.66 0.63 483.0 40.0 437
G010357 1055.0 5.44 0.34 43.16 0.45 793.0 8.0 440
G010358 1055.3 1.94 0.13 7.96 0.67 410.0 35.0 437
G010359 1055.8 0.64 0.03 2.39 0.46 371.0 71.0 439
G010360 1056.6 2.24 0.16 16.32 0.76 729.0 34.0 439
G010361 1058.0 | 10.40 0.74 75.68 0.91 728.0 9.0 446
G010362 604.3 1.98 121 4.17 0.36 211.0 18.0 408
G010363 608.8 3.72 2.54 7.01 0.47 188.0 13.0 444
G010364 609.9 2.76 2.06 5.07 0.85 184.0 31.0 441
G010365 610.4 3.21 181 4.34 0.61 135.0 19.0 453
G010366 610.8 3.74 2.95 5.58 0.27 149.0 7.0 447
G010367 611.5 1.05 0.58 1.37 2.37 130.0 226.0 451
G010368 611.6 2.19 131 3.29 0.51 150.0 23.0 449
G010369 613.1 6.45 4.85 12.20 0.44 189.0 7.0 449
G010370 613.4 0.79 0.23 1.01 0.15 128.0 19.0 383
G010371 614.6 3.50 2.38 6.63 0.17 189.0 5.0 443
G010372 615.8 0.75 0.17 0.81 0.16 109.0 21.0 430
G010373 616.4 0.80 0.18 0.84 0.20 106.0 25.0 448
G010374 617.0 1.66 0.65 1.82 0.94 110.0 57.0 453
G010375 708.9 0.88 0.41 1.14 1.30 130.0 148.0 417
G010376 709.4 1.32 0.61 1.74 0.67 132.0 51.0 425
G010377 709.8 2.16 1.26 3.10 0.63 144.0 29.0 428
G010378 710.6 4.29 4.29 8.72 0.66 203.0 15.0 440
G0103/9 7115 1.12 0.65 1.69 0.44 151.0 39.0 3/8
G010380 712.7 1.52 1.08 2.64 0.83 174.0 55.0 419
G010381 713.2 1.30 0.79 2.02 0.49 155.0 38.0 406
G010382 715.0 1.22 1.13 2.65 141 217.0 116.0 418
G010383 715.9 2.09 2.48 4.83 2.53 231.0 121.0 425
G010384 716.7 0.48 0.09 0.53 0.33 111.0 69.0 453
G010385 717.8 2.07 121 3.23 0.37 156.0 18.0 413
G010386 718.3 1.84 0.82 2.39 2.11 130.0 115.0 429
G010387 719.1 1.26 0.48 1.45 1.12 115.0 89.0 415
G010388 720.8 1.92 0.97 1.92 0.71 100.0 37.0 464
G010389 728.0 6.13 3.07 5.46 2.15 89.0 35.0 472
G010390 827.8 4.09 0.82 131 0.77 32.0 19.0 466
G010391 828.0 1.32 0.26 0.77 0.93 58.0 70.0 465
G010392 829.3 3.34 0.61 1.22 0.43 37.0 13.0 461
G010393 831.2 4.64 0.55 1.29 0.62 28.0 13.0 474
G010394 831.4 2.73 0.45 0.91 0.65 33.0 24.0 463
G010395 833.3 2.23 0.38 0.89 1.33 40.0 60.0 471
G010396 834.9 3.47 0.55 1.10 1.14 32.0 33.0 470
G010397 854.3 6.33 0.62 1.52 0.69 24.0 11.0 489
G010398 854.9 1.91 0.22 0.72 1.03 38.0 54.0 446
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G010399 855.8 7.14 112 1.82 0.61 25.0 9.0 472
G010400 856.2 1.64 0.31 0.85 0.60 52.0 37.0 505
G010401 857.2 6.17 0.72 1.71 1.97 28.0 32.0 520
G010402 858.3 2.64 0.43 1.01 2.12 38.0 80.0 501
G010403 877.1 2.34 0.35 0.92 1.08 39.0 46.0 506
G010404 877.8 2.48 0.34 0.90 0.59 36.0 24.0 505
G010405 878.3 251 0.32 0.84 0.67 33.0 27.0 470
G010406 878.5 2.57 0.39 0.88 0.73 34.0 28.0 465
G010407 880.4 2.65 0.35 0.87 0.76 33.0 29.0 473
G010408 881.2 1.74 0.23 0.74 1.53 43.0 88.0 508
G010409 882.1 2.12 0.35 0.86 0.83 41.0 39.0 475
G010410 883.3 3.19 0.55 1.19 1.57 37.0 49.0 508
G010411 884.6 1.82 0.18 0.67 1.22 37.0 67.0 514
G010412 885.7 1.48 0.14 0.60 1.85 41.0 125.0 509
G010413 887.2 1.87 0.20 0.80 4.28 43.0 229.0 442
G010414 888.3 1.43 0.11 0.54 1.03 38.0 72.0 517
G010415 889.7 2.13 0.17 0.66 0.78 31.0 37.0 482
G010416 919.9 [ 12.90 0.14 2.90 0.31 22.0 2.0 541
G010417 920.8 3.29 0.11 0.95 0.54 29.0 16.0 532
G010418 921.2 | 17.40 0.24 4.13 1.00 24.0 6.0 554
G010419 922.1 1.00 0.02 0.32 0.28 32.0 28.0 533
G010420 923.1 0.75 0.02 0.29 7.48 39.0 995.0 548
G010421 924.0 2.06 0.06 0.55 0.43 27.0 21.0 546
G010422 924.8 0.61 0.05 0.39 9.27 64.0 1515.0 496
G010423 926.0 1.33 0.10 0.54 0.96 41.0 72.0 517
G010424 926.5 2.23 0.07 0.46 0.18 21.0 8.0 589
G010425 927.7 4.41 0.16 0.68 1.31 15.0 30.0 597
G010426 929.3 5.07 0.17 0.74 1.78 15.0 35.0 501
G010427 930.2 0.98 0.03 0.30 1.08 31.0 111.0 563
G010428 931.1 1.18 0.03 0.36 0.37 31.0 31.0 529
G010429 932.0 4.15 0.11 0.59 1.12 14.0 27.0 598
G010430 933.0 1.14 0.04 0.37 0.51 32.0 45.0 498
G010431 933.6 0.63 0.09 0.63 0.41 100.0 65.0 277
G010432 934.5 6.67 0.29 0.90 0.78 13.0 12.0 487
G010433 935.4 6.7/ 0.18 0.74 1.76 11.0 26.0 600
G010434 936.5 0.52 0.06 0.50 1.08 96.0 208.0 539
G010435 937.0 1.15 0.03 0.31 1.37 27.0 119.0 574
G010436 937.3 0.75 0.02 0.29 3.79 38.0 503.0 547
G010437 938.5 1.18 0.03 0.38 1.11 32.0 94.0 550
G010438 939.5 0.47 0.04 0.39 0.36 82.0 76.0 495
G010439 940.6 171 0.05 0.45 0.57 26.0 33.0 574
G010440 941.6 6.50 0.13 0.68 2.16 10.0 33.0 599
G010441 980.5 0.64 0.09 0.51 0.92 80.0 144.0 315
G010442 983.2 1.20 0.20 0.74 0.91 62.0 76.0 307
G010443 984.9 0.88 0.12 0.59 0.34 67.0 38.0 468
G010444 985.8 1.06 0.21 0.91 1.22 86.0 115.0 371
G010445 986.3 4.79 171 2.82 1.78 59.0 37.0 461
G010446 987.7 1.20 0.31 1.03 0.49 86.0 41.0 392
G010447 988.9 2.19 0.70 1.85 0.54 84.0 25.0 375
G010448 989.6 2.13 0.76 1.89 0.28 89.0 13.0 358
G010449 990.4 2.90 1.02 2.23 0.20 77.0 7.0 320
G010450 991.2 7.12 4.27 5.94 0.95 83.0 13.0 472
G010451 992.4 3.22 0.96 1.48 0.82 46.0 25.0 453
G010452 993.0 3.67 1.40 2.25 0.58 61.0 16.0 453
G010453 995.3 2.13 1.14 2.30 0.26 108.0 12.0 345
G010454 996.0 1.55 0.57 2.01 1.88 130.0 121.0 395
G010455 996.6 4.58 1.29 1.90 0.58 41.0 13.0 457
G010456 996.8 5.50 1.39 2.28 0.48 41.0 9.0 459
G010457 997.2 1.16 0.18 0.72 0.69 62.0 59.0 450
G010458 1000.6 4.18 1.05 1.64 0.82 39.0 20.0 460
G010459 1002.0 0.82 0.09 0.53 0.77 65.0 94.0 310
G010460 1002.9 0.82 0.10 0.54 0.81 66.0 99.0 486
G010461 1006.0 0.75 0.11 0.57 0.30 76.0 40.0 489
G010462 1007.1 0.65 0.06 0.45 0.60 69.0 92.0 491
G010463 1008.6 0.77 0.08 0.48 0.26 62.0 34.0 490
G010464 1009.1 0.74 0.07 0.44 0.44 60.0 60.0 492
G010465 1010.0 0.97 0.10 0.54 0.81 56.0 84.0 491
G010466 1010.9 1.16 0.16 0.70 1.25 61.0 108.0 504
G010467 1012.0 0.59 0.05 0.41 0.38 70.0 65.0 487
G010468 1013.5 0.53 0.04 0.37 0.36 70.0 68.0 490
G010469 1015.9 0.84 0.09 0.52 0.45 62.0 54.0 484
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G010470 1150.1 2.12 0.26 0.76 0.60 36.0 28.0 489
G010471 1150.2 1.31 0.14 0.61 0.87 47.0 66.0 514
G010472 1152.4 1.56 0.14 0.61 0.93 39.0 60.0 530
G010473 1153.0 2.61 0.43 1.24 0.65 48.0 25.0 525
G010474 1154.4 5.82 0.17 0.66 1.65 11.0 28.0 491
G0104/5 1155.1 0.59 0.11 0.55 0.89 94.0 152.0 314
G010476 1155.7 2.10 0.66 1.55 1.19 74.0 57.0 528
G010477 1157.1 5.84 0.18 0.71 1.12 12.0 19.0 484
G010478 1157.4 2.36 0.30 0.82 0.80 35.0 34.0 488
G010479 1158.9 4.42 0.13 0.69 1.53 16.0 35.0 528
G010480 1159.7 1.16 0.11 0.56 131 48.0 113.0 525
G010481 1160.3 2.51 0.16 0.64 1.63 25.0 65.0 599
G010482 1160.9 3.83 0.28 0.78 0.91 20.0 24.0 300
G010483 1161.7 1.72 0.09 0.52 0.40 30.0 23.0 504
G010484 1162.4 2.40 0.17 0.66 0.79 27.0 33.0 492
G010485 1163.3 2.72 0.12 0.63 0.89 23.0 33.0 462
G010486 1164.1 1.01 0.10 0.54 0.60 53.0 59.0 321
G010487 1164.9 3.97 0.09 0.52 0.52 13.0 13.0 324
G010488 1165.9 2.03 0.08 0.53 2.97 26.0 146.0 551
G010489 1166.7 3.99 0.14 0.61 1.09 15.0 27.0 313
G010490 1167.3 2.47 0.17 0.69 1.09 28.0 44.0 310
G010491 1169.2 1.50 0.10 0.57 0.14 38.0 9.0 319
G010492 1170.5 7.53 0.38 1.37 0.64 18.0 8.0 533
G010493 1171.4 1.52 0.07 0.45 0.48 30.0 32.0 511
G010494 1172.8 1.50 0.07 0.45 0.37 30.0 25.0 501
G010495 1173.7 2.90 0.08 0.49 1.06 17.0 37.0 482
G010496 11745 2.20 0.32 141 2.14 64.0 97.0 582
G010497 1175.6 0.94 0.02 0.38 0.86 40.0 92.0 483
G010498 1176.7 3.45 0.08 0.49 0.63 14.0 18.0 321
G010499 1176.3 2.79 0.10 0.66 0.19 24.0 7.0 597
G010500 1177.6 2.09 0.06 0.46 0.58 22.0 28.0 485
G010501 1178.4 2.37 0.27 0.77 0.50 32.0 21.0 475
G010502 1179.4 177 0.05 0.42 0.88 24.0 50.0 490
G010503 1180.4 1.85 0.05 0.39 0.43 21.0 23.0 581
G010504 1182.1 2.47 0.07 0.46 0.54 19.0 22.0 482
G010505 1183.1 2.40 0.30 0.80 0.95 33.0 40.0 478
G010506 1183.6 2.35 0.07 0.47 0.90 20.0 38.0 490
G010507 1184.8 1.95 0.15 0.64 0.47 33.0 24.0 484
G010508 1185.6 1.30 0.04 0.41 0.95 32.0 73.0 489
G010509 1285.3 2.66 0.51 1.07 0.49 40.0 18.0 600
G010510 1286.0 1.81 0.08 0.50 0.77 28.0 43.0 296
G010511 1287.0 2.65 0.26 0.76 0.70 29.0 26.0 601
G010512 1288.0 2.23 0.12 0.68 0.27 30.0 12.0 315
G010513 1289.3 1.70 0.32 0.81 0.76 48.0 45.0 315
G010514 1289.9 4.44 0.09 0.59 0.85 13.0 19.0 600
G010515 1296.6 2.53 0.13 0.61 1.28 24.0 51.0 280
G010516 1297.4 5.56 0.08 0.52 0.62 9.0 11.0 600
G010517 1298.7 3.60 0.10 0.55 0.50 15.0 14.0 316
G010518 1299.1 1.95 0.23 0.73 0.32 38.0 16.0 283
G010519 1299.5 0.43 0.01 0.19 0.29 44.0 67.0 593
G010520 1300.0 2.01 0.09 0.52 0.43 26.0 21.0 308
G010521 1301.0 2.49 0.17 0.65 0.40 26.0 16.0 291
G010522 1301.7 3.54 0.06 0.43 2.25 12.0 64.0 601
G010523 1302.1 0.91 0.07 0.57 0.76 63.0 83.0 297
G010524 1332.3 7.85 0.11 0.57 0.70 7.0 9.0 600
G010525 1332.7 8.94 0.22 0.73 0.32 8.0 4.0 600
G010526 1333.0 2.77 0.29 0.82 0.13 30.0 5.0 286
G010527 1333.3 2.50 0.04 0.34 0.31 14.0 12.0 599
G010528 1334.0 6.75 0.38 0.93 0.83 14.0 12.0 279
G010529 1334.5 1.60 0.14 0.61 0.35 38.0 22.0 322
G010530 1335.2 2.14 0.04 0.37 0.29 17.0 14.0 599
G010531 1336.0 6.35 0.22 0.76 0.14 12.0 2.0 284
G010532 1336.9 2.96 0.29 0.81 0.51 27.0 17.0 300
G010533 1337.8 4.05 0.11 0.55 1.24 14.0 31.0 304
G010534 1338.3 6.35 0.07 0.47 0.41 7.0 6.0 600
G010535 1339.9 6.91 0.13 0.61 0.41 9.0 6.0 298
G010536 1340.2 2.34 0.12 0.58 0.32 25.0 14.0 277
G010537 1340.9 2.76 0.32 0.82 0.70 30.0 25.0 290
G010538 1341.4 1.40 0.24 0.78 0.46 56.0 33.0 596
G010539 1344.4 531 0.18 0.67 0.21 13.0 4.0 289
G010540 1346.4 1.85 0.20 0.70 0.29 38.0 16.0 293
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G010541 1347.8 3.34 0.22 0.72 0.54 22.0 16.0 280
G010542 1348.6 2.72 0.18 0.68 0.97 25.0 36.0 598
G010543 1349.6 1.79 0.03 0.30 0.15 17.0 8.0 597
G010544 1560.4 1.45 0.07 0.55 0.41 38.0 28.0 307
G010545 1561.4 531 0.23 0.75 0.28 14.0 5.0 299
G010547 1564.0 3.85 0.07 0.51 1.42 13.0 37.0 601
G010548 1564.8 3.39 0.05 0.44 0.45 13.0 13.0 598
G010549 1565.6 0.47 0.03 0.53 0.69 113.0 147.0 308
G010550 1565.7 4.32 0.16 0.68 0.95 16.0 22.0 255
G010551 1566.6 5.56 0.09 0.52 0.44 9.0 8.0 309
G010552 1567.7 1.64 0.04 0.40 0.67 24.0 41.0 513
G010553 1568.5 1.38 0.12 0.67 0.41 49.0 30.0 254
G010554 1569.4 3.06 0.09 0.52 0.63 17.0 21.0 284
G010555 1570.5 2.76 0.05 0.42 0.66 15.0 24.0 314
G010556 1570.9 2.25 0.13 0.61 0.81 27.0 36.0 281
G010557 1572.5 3.01 0.08 0.48 0.81 16.0 27.0 600
G010558 1573.5 1.05 0.06 0.52 0.79 50.0 75.0 277
G010559 1574.2 3.24 0.14 0.62 0.21 19.0 6.0 277
G010560 1574.6 2.93 0.11 0.56 0.30 19.0 10.0 281
GO010561 1577.3 2.53 0.12 0.59 0.26 23.0 10.0 317
G010562 1577.9 1.90 0.07 0.46 0.19 24.0 10.0 309
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Table A 2. Porosities measured with different techniques for investigated Wealden shale samples,
wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro).

Sample Total porosity | Hg porosity | Porosity <5.6 Hg access | Grain density
(%) (%) nm (%) radius (nm) (glem®)
EX-B 010444 7.62 4.70 2.92 7.2 2.80
EX-B 010455 9.73 8.54 1.19 11.8 2.62
EX-B 010457 6.72 5.71 1.01 8.3 2.67
EX-B 010458 9.06 7.55 151 8.9 2.65
EX-B 010464 5.87 4.44 1.43 11.9 2.67
EX-B 010469 5.33 4.72 0.61 9.2 2.69
EX-B 010475 6.36 5.97 0.38 9.2 2.71
EX-B 010482 7.05 6.06 0.99 10.6 2.71
EX-B 010485 10.57 7.11 3.46 12.1 2.77
EX-B 010494 5.96 4.63 1.32 8.1 2.73
EX-B 010501 8.54 6.04 2.51 8.1 2.71
EX-B 010509 8.23 5.05 3.14 8.9 2.57
EX-B 010514 11.78 8.56 3.32 8.3 2.64
EX-B 010517 8.29 6.64 1.55 7.7 2.67
EX-B 010518 7.48 5.68 1.80 7.3 2.71
EX-B 010524 12.46 5.62 6.84 6.9 2.65
EX-B 010525 12.43 6.56 5.87 5.8 2.64
EX-B 010529 7.63 5.02 2.61 10.3 3.03
EX-B 010530 6.45 4.01 2.44 5.9 2.69
EX-B 010533 8.61 5.61 3.00 6.5 2.70
EX-B 010537 6.47 4.43 2.05 7.6 2.72
EX-B 010543 7.38 4.63 2.75 8.0 2.73
EX-B 010547 8.94 6.08 2.86 6.9 2.73
EX-B 010551 8.94 5.67 3.27 7.0 2.69
EX-B 010553 5.46 4.36 1.10 8.4 2.81
EX-B 010554 4.85 5.10 0.25 9.7 2.72
EX-B 010562 3.95 3.01 0.93 7.0 2.84
EX-B 010544 4.76 1.75 3.01 20.9 2.80
EX-B 010523 9.81 5.26 4.55 9.8 2.78
EX-B 010549 1.60 0.38 1.23 6.3 291
EX-C 010362 6.51 4.18 2.33 8.0 2.62
EX-C 010371 7.01 5.66 1.35 8.5 2.59
EX-C 010374 7.19 5.25 1.93 7.9 2.74
EX-C 010375 6.11 491 1.20 8.0 2.75
EX-C 010378 11.50 9.09 2.41 14.6 2.60
EX-C 010382 6.09 4.80 1.29 8.0 2.72
EX-C 010385 6.18 5.01 1.18 7.2 2.64
EX-C 010386 10.26 8.96 1.30 11.0 2.73
EX-C 010388 12.35 5.25 7.10 9.6 2.76
EX-C 010390 8.74 7.28 1.47 10.3 2.64
EX-C 010394 10.37 5.90 4.47 7.2 2.67
EX-C 010396 8.38 5.78 2.61 7.9 2.70
EX-C 010397 7.20 4.61 2.60 7.9 2.60
EX-C 010401 10.96 7.68 3.28 10.6 2.57
EX-C 010404 8.03 5.08 2.94 8.5 2.72
EX-C 010410 8.23 5.08 3.14 7.4 2.68
EX-C 010415 6.69 4.81 1.88 9.6 2.71
EX-C 010416 5.02 3.01 2.01 7.1 2.36
EX-C 010417 4.34 3.72 0.62 18.0 2.64
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EX-C 010418 4.56 2.62 1.94 7.6 2.23
EX-C 010421 5.36 4.67 0.69 29.4 2.69
EX-C 010423 5.77 5.26 0.52 15.5 2.72
EX-C 010426 11.94 8.58 3.36 10.9 2.69
EX-C 010432 11.95 9.23 2.72 11.9 2.58
EX-C 010440 10.72 8.60 2.12 10.9 2.60
EX-C 010393 7.68 4.27 151 11.8 2.64
EX-C 010384 112 0.86 0.25 11.0 2.72
EX-C 010436 8.10 6.99 111 8.4 2.81
EX-C 010438 2.05 0.70 1.36 9.6 2.76
EX-C 010439 9.61 5.96 3.65 8.3 2.73
EX-A 010270 18.32 13.42 4.90 26.0 2.92
EX-A 010278 12.41 12.09 0.32 15.3 2.82
EX-A 010282 9.46 8.50 0.95 8.2 2.46
EX-A 010283 15.69 13.11 2.58 18.2 231
EX-A 010289 9.59 8.83 0.76 171 2.44
EX-A 010295 8.57 6.51 2.07 56.1 2.63
EX-A 010300 18.28 15.24 3.04 21.3 2.45
EX-A 010299 13.01 10.49 2.52 1045.3 2.59
EX-A 010303 14.79 10.72 4.34 19.7 2.72
EX-A 010305 12.91 5.54 7.36 6.2 2.22
EX-A 010312 10.01 6.85 3.16 25.9 2.69
EX-A 010315 8.43 6.92 151 3511.6 2.82
EX-A 010320 7.38 4.12 3.26 9.3 2.23
EX-A 010321 8.02 6.17 1.85 118.9 2.60
EX-A 010326 9.63 9.42 0.21 19.9 2.53
EX-A 010333 10.37 7.31 3.06 7.1 2.65
EX-A 010341 8.65 6.00 2.65 6.5 2.64
EX-A 010342 3.45 3.01 0.43 11.7 2.10
EX-A 010343 5.28 4.49 0.79 13.8 2.67
EX-A 010355 14.24 12.16 2.08 33.0 2.80
EX-A 010347 1.91 0.60 131 9.4 2.73
EX-A 010350 6.66 5.69 0.97 19.7 2.81
EX-A 010353 3.86 2.20 1.66 7.3 2.55
EX-A 010359 5.82 4.60 1.22 35.0 2.69
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