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Abstract 

 

Free gas in shales occurs mainly in larger mesopores (width >6 nm) and macropores 

(width >50 nm) and is likely to be the first or even main contributor to gas production. 

Because evaluation of the storage capacity and final recovery of gas depends on distribution 

and connectivity of these pores, their correct quantification has become a focus point of 

advanced research. A major step for understanding pore systems in organic rich shales was 

made by recognition that under increasing thermal stress, decomposition of kerogen should 

progressively lead to development of organic porosity. Despite this, many questions 

concerning fate of organic porosity in organic rich rocks still remain unresolved. To date, 

several important attempts to link evolution of organic pores with maturation and organic 

matter content gave inconclusive and contradictory results. In this study, pore systems of the 

Lower Jurassic Posidonia and Lower Cretaceous Wealden shale, representing different 

mudrock types and covering a range of maturities, have been characterised. By integrating 

geochemical and petrophysical measurements, and with a detailed analysis of microscopic 

images we offered a unique approach for measuring porosity and pore characteristics on 

micrometre and centimetre scales with thorough understanding for a micrometer lithological 

variation. Key aims were to quantify the evolution of porosity associated with both organic 

matter and inorganic rock matrix as a function of maturity, and address the influence of 

mudrock heterogeneity on porosity change. 

Our experiments revealed a non- linear trend of porosity change with maturity in pores of 

all sizes, with an initial drop in the oil window as a result of mechanical compaction, 

chemical diagenesis, as well as pore-filling oil and bitumen. At comparable maturities, 

porosity and distribution of pores depend on the content of clays, organic matter, microfossils, 

silt grains and pore filling cement. In both Posidonia and Wealden, macropores (> 50 nm) 

account for merely up to 20% of total porosity physically measured, with the lowest 

percentage in the least mature samples. It was also demonstrated that gas sorption micropores 

are controlled by the amount of organic matter and clay minerals, and thus their microporous 

nature was confirmed.  In terms of organic porosity development, we provided evidence that 

organic matter content and the path of its thermal decomposition control total porosities of 

the gas window shale. Importantly, neoformed intraorganic porosity is highly heterogeneous 

with 35% of organic particles containing visible pores (> 6 nm in diameter), and porosities of 

individual particles ranging from 0–50%. As a key result, we confirmed that porous zones in 

the gas window are associated with sites of bitumen retention and degradation. That indicates 
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that the location of potential reservoirs of free gas should be linked to rigid zones, such as 

fossiliferous faecal pellets, or compaction shadows of mineral grains. Combined mercury 

injection and SEM data also showed that visible but potentially isolated macropores are 

connected, but only through throats below 20 nm. With the evolution of the porous network 

of bitumen saturating the shale matrix in the gas window, connectivity of the system changes 

from inorganic to organic dominated. The size of the pore throats, and the connectivity of the 

organic system in shales are likely key controls on the delivery of gas from pore to fracture 

and then to wellbore.  
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sorption pore volume and the content of organic carbon and phyllosilicates in the WIC and HAD 
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Figure 3. 12. A mix of X-ray maps (RGB colour mode) displaying distribution of various shale 

components. The bedding plane in all images is horizontal. a) WIC 7129 0.53 Ro, b) HAR 7060 

0.89% Ro, c) HAD 7110 1.45$ Ro. At all maturities samples exhibit visible fabric anisotropy with 

well-defined microlamination marked by the alternation of calcite- (blue) and clay (green) lamina , 

and in the lower maturity samples, organic  matter wisps (pink). ................................................... 92 

 

Figure 3. 13. Change of the mineralogical composition within areas of progressively increasing size 

as retrieved from EDX maps of three selected shale samples.  Measurements reflect % change of a 
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Figure 3. 15. Backscattered electron micrographs (L) of shale samples polished with the Argon BIB. 

Secondary electron micrographs (R) show details of porosity distribution within areas outlined with a 

blue rectangle in BSE micrographs. The bedding plane in all images is horizontal. a)(WIC 7129): 

Calcareous shale (light lamina) with disseminated faecal pellets alternating with clay material, silt-
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size quartz, pyrite framboids and sparsely disseminated calcite. b) Pores are found within fossil 

aggregates, locally within pyrite framboids and in the organoclay-rich matrix with dispersed fossils. 

c) (WIC 7129): Calcareous shale (dark lamina) enriched in the clay material admixed with organic 

matter, with disseminated silt-size quartz, pyrite framboids and calcite fossils. d) Pores are dispersed 

in an organoclay matrix with dispersed calcite grains and accumulated in fossil bodies. e) (WIC 

7129): Calcareous shale (light lamina) with recrystallized fossiliferous aggregates alternating with 

organic and clay laminae. f) Pores in diagenetically changed fossil aggregates can reach 3 µm in 

diameter. Note lack of organic material lining the pores. g) (HAR 7060): Calcareous shale with 

densely packed nannofossil aggregates. Partial recrystallization of the nannofossil rich shale matrix 

and presence of calcite and dolomite cement all indicate diagenetic transformation of the original 

material. h) Pores in recrystallized fossil aggregates occur at the interface with organic matter filling 

the intragranular space. i) (HAR 7060): Calcareous shale with alternating calcite-and clay laminae. 

Fossiliferous aggregates are to a large extent recrystallized and locally cemented. j) Pores are 

encountered within fossiliferous aggregates as well as within pyrite framboids. k) (HAD 7110): 

Calcareous shale with recrystallized fossils and authigenic carbonate phases replacing the original 

fabric. l) The porosity is encountered between pyrite crystallites in pyrite framboids, within well-

defined diagenetically changed fossiliferous aggregates as well as within shale matrix. m) 

(HAD7110): Calcareous shale with a strong diagenetic overprint. n) Typically porous zones include 

fossiliferous aggregates and organic particles. o) (HAD 7110): Common features of a diagenetic 

overprint in the Posidonia shale. Biogenic calcite in faecal pellets (top and bottom) is much 

recrystallized, and locally cemented. New dolomite phases are replacing the original fabric. p) 

Organic matter (outlined) spans from non-porous to highly porous................................................ 98 

 

Figure 3. 16. Typical distribution of pores from BIB-SEM mosaics of the Posidonia shale samples. An 

area of investigation covers the size of an estimated Representative Elementary Area (96x70 µm
2
). 

Fully resolved pores (red circles) are fitted with a linear regression line defined by a slope (D) and a 

point of interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate 

from the linear regression line estimated for the fully resolved pores. ...........................................100 

 

Figure 3. 17. Distribution of pore sizes of BIB-SEM image pores for three samples WIC 7129 0.53% 

Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro.  a) Fractal distribution of pores > 100 nm with 

the line of the best linear fit described by a slope (D) and intercept with the y axis (C). The BIB-SEM 

images were captured at the magnification 6,000x and cover an estimated REA. Note that porosity > 

100 nm approximates inorganic hosted porosity in all samples. b) Differential pore size distribution 

as a function of an equivalent radius. Note descending pore area density of pores < 400 nm diameter. 

c) Differential pore size distribution as a function of an equivalent radius. The BIB-SEM images were 

captured at the magnification 10,000x (< REA, >50 nm) or 6,000x (REA, >100 nm) (LL – light 

lamina, DL – dark lamina). d) Fractal distribution of image intraorganic pores (> 50 nm) for the 

HAD 7110 1.45% Ro shale. The BIB-SEM images were captured at the magnification 10,000x 

covering the estimated REA.  e) Differential size distribution of intraorganic pores as a function of an 

equivalent radius. Note ascending pore area density of all resolved pores (> 50 nm). ....................101 

 

Figure 3. 18. Distribution of a) equivalent diameters and b) aspect ratios of BIB-SEM image pores 

for three samples WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. The 

histograms represent pores with a diameter above the practical image resolution. The magnification 

of a single image is 6,000x for histograms representing all pores, and 10,000x for a histogram 
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representing intraorganic pores only. Frequency denotes number of pores with the characteristic 

measured within a specific bin. ...................................................................................................102 
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mercury injection (> 5.6 nm diameter) and image analysis (> 100 nm diameter) covering the REA for 

three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. c) Extrapolation 

of a line of the best linear fit describing distribution of intraorganic pores to a diameter 6 nm. d) 

Comparison of cumulative porosity obtained from mercury injection (> 5.6 nm diameter) (black) and 

image analysis with inorganic (> 100 nm) and intraorganic (>6 nm) porosities superimposed. The 

red line denotes the minimum value of the extrapolated image porosity, while the green line – the 
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Figure 3. 20. Relationship of image porosity with EDX maps derived clay and calcite content, and 

point-counted OM content. Each data point represents one BIB-SEM image captured at magnification 
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Figure 3. 21. Combined image porosity and point-counted OM content and its relationship to EDX 

derived calcite content. Each data point represents one BIB-SEM image captured at magnification 
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Figure 3. 22. a) Cumulative porosity contained in pores grouped into three intervals < 6 nm, 6 -100 

nm, > 100 nm, estimated for three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 

7110 1.45% Ro. Within all three groups, the change of porosity is non-linear, bottoming out in the 

peak oil window shale. b) A change in the total porosity with increasing maturity is controlled to the 
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Figure 4. 1. Regional units of the Lower Cretaceous German Wealden (shaded area) in Northern 

Germany (after Mutterlose and Bornemann (2000) and Stollhofen et al. (2008)).  The three boreholes: 

A (Ro 0.5-0.6%), B (2.2-2.4%) and C (1.5-1.9%) are marked with black, red and green circles 

respectively b) Palaeogeography of the Lower Saxony Basin in Berriasian times (after Elstner and 

Mutterlose, 1996) with the current location of the three boreholes. c) Lithostratigraphy of the 

Berriasian and lower Valanginian of the northwest Germany (after Elstner and Mutterlose, 1996, 

modified). Colour bars show top and bottom of the cored interval for each of the wells. .................137 

 

Figure 4. 2. Lithological logs for cores retrieved from A, B and C boreholes. The TVD (true 

vertical depth) scale is in metres. The basic depositional environment of the each sediment 

interval is provided left to  each log. ......................................................................................139 

 

Figure 4. 3. Scan micrographs of the selected Wealden Shale samples. In each well, samples 

originate from a number of different depositional settings. a) A10278: Deep marine, clay-rich 

siliclastic mudstone with biogenic sedimentary structures. Visible burrows are differentiated by their 

darker shades and flat, enlogated shapes. b) A10282: Deep marine, clay-rich siliciclastic mudstone. 

The shale fabric is homogeneous and lacks any biogenic structures. c) A10289: Visibly laminated 
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clay-rich siliciclastic mudstone from the sublittoral lake setting. The lighter laminae are composed of 

silt-sized quartz grains and alternate with darker laminae dominated by the unresolved, fine-grained 

mineral matrix. d) A10299: Clay-rich siliciclastic mudstone from the sublittoral lake setting. The 

mudstone shows abundant silt-bearing laminae (light coloured). e) A10305: Clay-bearing 

fossiliferous mudstone from the sublittoral lake setting. Distinct lamination is a result of varied 

content of structured organic matter (black). f) A10320: Deep lacustrine, clay-rich siliciclastic 

mudstone. The shale fabric is fine-grained and homogeneous. g) A10326: Deep lacustrine, clay-

bearing mudstone with abundant microfossils. h) A10342: Deep lacustrine, clay-rich siliciclastic 

mudstone with homogeneous fabric. i) B10444: Marine influenced, deep lacustrine, clay-rich 

siliclastic mudstone with biogenic sedimentary structures. The burrows are differentiated by their 

lighter colours and elongated shapes. j) B10455: Marine influenced, deep lacustrine, clay-rich 

siliciclastic mudstone. The shale fabric is homogeneous with the predominance of fine-grained 

constituents. k) B10458: Marine influenced, deep lacustrine, clay-rich siliciclastic mudstone with very 

scarce silt-sized grains. l) B10482: Deep lacustrine, clay-rich siliciclastic mudstone. A visible fossil-

rich (light) lamina in the centre. m) B10494: Deep lacustrine, clay-bearing fossiliferous mudstone. 

Macro-sized fossils are embedded in the clay-rich matrix, forming distinct laminae. n) B10525: Deep 

lacustrine, clay-rich siliciclastic mudstone with abundant silt-size carbonate crystals (light). o) 

B10547: Deep lacustrine, clay-rich siliciclastic mudstone. The matrix is visibly diagenetically altered. 

p) B10562: Deep lacustrine, clay-rich siliciclastic mudstone with abundant pyrite (light lamina at the 

bottom). q) C10371: Marine influenced, lacustrine, clay-rich siliciclastic mudstone with visible silt-

sized components (light). r) C10388: Marine influenced, lacustrine, clay-bearing fossiliferous 

mudstone. Macro-sized shells are embedded in the fine-grained matrix. s) C10397: Deep lacustrine, 

clay-rich siliciclastic mudstone. Macro-sized fossils ARE visible at the top. t) C10401: Deep lacustrine, 

clay-rich siliciclastic mudstone. u) C10418: Lake plain, clay-rich siliciclastic mudstone with sand-

sized quartz grains. v) C10426: Lake plain, clay-rich siliciclastic mudstone interbedde with shell 

layers (light). w) C10432: Lake plain, clay-rich siliciclastic mudstone. The matrix is diagenetically 

altered. x) C10438: Lake plain, mollusc-packed grainstone. The interstices between the shell detritus 
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Figure 4. 4. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) displaying 

textural features of the Wealden Shale from the immature/early mature well A, a, b): A10282 deep 

marine, clay-rich siliciclastic mudstone; c, d): A 10305 sublittoral lake, clay-rich siliciclastic 

mudstone; e, f): A10320 deep lacustrine, clay-rich siliciclastic mudstone; g, h): A10326 deep 

lacustrine, clay-bearing fossiliferous mudstone; i, j): A10342 deep lacustrine, clay-rich siliciclastic 

mudstone. In the transmitted light micrographs black colour denotes pyrite or pyritized algae bodies 

(c), white – fossils (c, g) or quartz grains (i), brown – clay matrix. White elongated features are 
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Figure 4. 5. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the 

Wealden Shale from the overmature well B. a, b): B10455 marine influenced, deep lacustrine, clay-

rich siliciclastic mudstone; c, d): B10458 marine influenced deep lacustrine, clay-rich siliciclastic 

mudstone; e, f): B10525 deep lacustrine, clay-rich siliciclastic mudstone; g, h): B10533 deep 

lacustrine, clay-rich siliciclastic mudstone; i, j): B10547 deep lacustrine, clay-rich siliciclastic 

mudstone. In the transmitted light micrographs brown and dark brown colour denotes clay-rich 

matrix, white – quartz and diagenetic carbonates, or fossils (i). White elongated features in c) are 
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Figure 4. 6. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the 

Wealden Shale from the overmature well C. a, b): C10371 marine influenced lacustrine, clay-rich 

siliciclastic mudstone; c, d): C10397 deep lacustrine, clay-rich siliciclastic mudstone; e, f): C10401 

deep lacustrine, clay-rich siliciclastic mudstone; g, h): C10418 lake plain, clay-rich siliciclastic 

mudstone; i, j): C10426 lake plain, clay-rich siliciclastic mudstone. In the transmitted light 

micrographs brown and dark brown colour denotes clay-rich matrix, white – quartz and diagenetic 

carbonates, or fossils (i). White elongated features in e) and g) are fractures. ...............................149 

 

Figure 4. 7. Ternary diagram showing the basic mineralogy of the Wealden shale suite. Samples 

taken from three cores: A (Ro 0.5-0.7%), B (Ro 1.6-2.4%) and C (Ro 1.5-1.9%). German Wealden 

consists of a lithologically diverse group of rocks including mudstones and limestones. Note a 

negative correlation between a proportion of clays and carbonates implying, that those are the main 

components building the shale framework. ..................................................................................150 

 

Figure 4. 8. Histogram of Total Organic Carbon of the Wealden Shale. Measurements were taken 

every 1 m from each available core and thus represent a true distribution of TOC. ........................152 

 

Figure 4. 9. Kerogen type and depositional setting of the Wealden Shale from wells a) A, Ro 0.5 -

0.7%), b) B, Ro 1.6-2.4%  and c) C, Ro 1.5-1.9%. ........................................................................153 

 

Figure 4. 10. Oil immersion micrographs of Wealden Shale. Horizontal scale bars denote 50 µm. 

Dashed lines indicate direction of a bedding plane. a) (A10305): Fluorescence mode micrograph of 

sublittoral lake, clay-rich siliciclastic shale of measured maturity Ro 0.7%. Strong fluorescence of the 

matrix is due to the presence of the algal material. b) Normal incident light micrograph of the same 

field as a). Structured algal liptinite is common, forming well-preserved bodies of Botryococcus (Bo). 

c) (B10458): Fluorescence mode micrograph of marine influenced deep lacustrine, clay-rich 

siliciclastic mudstone of measured maturity Ro 1.9%. The bituminous groundmass exhibits no 

fluorescence and no structured algal liptinite is present. d) Normal incident light micrograph of the 

same field as c). Solid bitumen (BS) is present, concentrating in microfractures. e) (C10401): 

Fluorescence mode micrograph of deep lacustrine, clay-rich siliciclastic mudstone of measured 

maturity Ro 1.9%. The bituminous groundmass exhibits only very weak fluorescence. f) Normal 

incident light micrograph of the same field as e). A tight network of irregularly-shaped solid bitumen 

fills the intergranular space within the clay matrix, and concentrates in compaction shadows of 

mineral grains. g) (C10388): Normal incident light micrograph of marine influenced lacustrine, clay-

bearing fossiliferous mudstone of measured maturity Ro 1.6%. Solid bitumen phase is highly 

concentrated, filling intra- and intergranular space within disseminated fossil fragments. h) 

(C10418): Normal incident light micrograph of lake plain, clay-rich siliciclastic mudstone (no 

maturity measured). Semifusinite and fusinite constitute principal macerals. Bo – Botryococcus, Bs – 

solid bitumen, I – inertinite, Dol – dolomite, Fs – fossil, Py – pyrite. .............................................156 

 

Figure 4. 11. Grain density variation in shale of different maturity. a) Histogram of grain density 

distribution of Wealden shale from wells A, B and C. Density values exhibit a mode between 2.6 -2.8 

g/cm
3
, with higher frequency of lower density samples in the least mature well and larger frequency of 

samples exhibiting higher density in the overmature shale. b) At all maturities grain density is 
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influenced by the mineralogical composition, with a strong positive influence of the pyrite content. c) 

Organic content has a negative influence on grain density values. In the most organic rich shale 

(TOC > 5%) at any given content of organic carbon, density values of the overmature shale exceed 

those measured in the least mature shale. ....................................................................................158 

 

Figure 4. 12. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal 

distribution of pores in the B10482 sample. Pores exhibit non-uniform  fractal distribution with pores 

> 38 nm (slope -0.9) interpreted as those intersected by the sample surface (surface roughness) and 

pores < 38 nm (slope -2.0) interpreted as pores accessed through corresponding throats. ..............160 

 

Figure 4. 13. Histogram of porosity distribution in samples from wells A, B and C. a) Total porosity. 
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Figure 4. 14. Grain size distribution for the silt fraction in selected samples from the A well. Samples 

A10299 and A10326 show much coarser grains across the full size range. Additionally, along with the 

sample A10289 they show significantly denser population in the size < 500 nm. ............................162 

 

Figure 4. 15. Incremental (left column) and cumulative (right column) pore volume density of 

selected Wealden samples, wells: a, b) A (Ro 0.5-0.7%), c, d) B (Ro 1.6-2.4) and e, f) C (Ro 1.5-1.9%). 

The mercury data was cut off at a radius interpreted as a true onset of the mercury intrusion into a 

pore network. In the immature and early mature shale, pore throat distributions are predominantly 

unimodal with the peak between 10-40 nm. A larger spread of pore throat sizes is characteristic for 

mudstones enriched in a shell detritus (A10326) or burrows filling silt fraction (A10278). In the 

overmature wells B and C, distribution of pore throat sizes is unimodal with the highest pore volume 

density between 10-20 nm. In shales enriched in the shell detritus (C10388, C104260) distribution is 
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Figure 4. 16. Cumulative intrusion (squares) and extrusion (triangles) of mercury for selected 

Wealden shale samples from wells a) A, c) B and e) C.  The mercury data were normalized to the true 

volume of intrusion after cutting off the pore volume data interpreted as representing surface 

roughness. b) A, d) B and f) C shale.  Cumulative porosity that is not emptied from mercury during 

the imbibition. The curves plot cumulative difference between porosity intruded and emptied during 

the intrusion-extrusion experiments at equivalent pressures as % of a rock. Note that in all samples 

during the imbibition process the absolute amount of mercury that is not released at the intrusion 
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Figure 4. 17. Maximum fraction of total porosity trapped by mercury during the imbibition 

experiment for selected Wealden shale samples from the A (black squares), B (red circles) and C 

(green triangles) wells. The fraction occluded by mercury shows a strong negative relation with the 
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Figure 4. 18. Matrix scatterplot of the early mature well A Wealden Shale samples showing variation 

of 10 variables and 3 factors extracted during the factor analysis. Factor 1 correlates positively with 
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TOC, HI, S2 rather than grain density. A negative correlation is observed between Factor 2 and total 

porosity, mercury porosity and S3. Factor 3 is inversely correlated with S1 and maximum access 

radius for mercury. ....................................................................................................................167 

 

Figure 4. 19. Matrix scatterplot of the gas window Wealden Shale samples (well B, C) showing 

variation of 10 variables and 4 factors extracted during the factor analysis. Factor 1 correlates 

positively with HI, S1 and S2. A good positive correlation is observed between Factor 2 and total 

porosity, Hg porosity and S3. Factor 3 correlates positively with grain density rather than TOC. 

Factor 4 is inversely correlated with the maximum access radius for mercury and ratio of mercury to 
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Figure 4. 20. Variation of total porosity as a function of maturity and organic carbon content. a) Well 

A (0.5-0.7% Ro). Group 1: fossil-bearing mudstone, shelly bed deposits and carbonate concretions; 

Group 2: clay-rich mudstones; Group 3: clay-rich mudstone with fossil debris. b) Wells B and C (Ro 

1.6-2.4% and 1.5-1.9% respectively). Group 1: fossil-bearing mudstone, limestone and carbonate 

concretions; Group 2: clay-rich mudstone; Group 3: clay-rich and fossil-bearing mudstone deposited 

in the lake plain setting; Group 4: carbonaceous mudstone with terrigenous organic matter. For 
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Figure 4. 21. Variation of porosity not penetrated by mercury during mercury porosimetry as a 

function of maturity and organic carbon content. a) Well A (0.5-0.7% Ro). b) Wells B and C (1.5-2.4% 
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Figure 4. 22. 195K CO2 isotherms for selected Wealden shale samples, A10305 (Ro 0.7%), B10458 

(Ro 1.9%) and C10401 (Ro 1.9%). Samples with a solid symbol were not solvent extracted, while 

those marked with a semi-solid symbols were solvent extracted (ext) prior to the analysis. .............172 

 

Figure 4. 23. Relationship between the combined content of phyllosilicate minerals and TOC against 

195K CO2 sorption porosity. Wealden data points refer to samples of maturities 0.7% (green) and 1.9% 

(red). The Wealden shale data were plotted against data acquired on Posidonia Shale, referring to 
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Figure 4. 24. Backscattered electron micrographs of mudstone samples polished with BIB. In  all 

images the bedding plane is horizontal. Sample A10305: a) Organic phase forms pyritized algal 

bodies intermixed with less defined organic groundmass. Highly dispersed carbonate phase is 

represented by calcitic fossil remains. b) Quartz occurs predominantly as horizontal pods aligned 

according to the bedding plane. Sample B10458: c) The silt fraction is represented by quartz grains 

and diagenetic dolomite. d) Organic phase is aligned horizontally, and is strongly intermixed with the 

clay-rich matrix. e) Sample C10401: Diagenetic dolomite is abundant, disseminated in the clay-rich 

matrix. f) Organic phase is intermixed with clays and concentrated in compaction shadows of mineral 
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Figure 4. 25. FIB-SEM and BIB-SEM micrographs (BSE mode) of an early mature shale sample 

A10305. a) Organic pores within an algal cyst (arrows). b) Pore between walls of a partly compacted 

algal cyst (arrow). c) Intraparticle pores in a fossil (black arrows); Note intraorganic pores 

developed in kerogen lining the fossil interstices (white arrow). d) Intraparticle pores in a 

recrystallizaed fossil partly filled with authigenic clays. e) Interparticle pore in a compaction shadow 

of a dolomite crystal (black arrow). Note presence of a dissolution pore within adjacent calcite grain 

(black arrow). f) Interparticle pores rimming a foraminifera test (black arrow). The overlying mica 

group mineral grain contains numerous cleavage associated intraparticle pores (white arrows). g) 

Intraorganic pores formed due to dissolution of a calcareous foraminifera test (black arrows). 

Interparticle pores between platelets of a phyllosilicate phase are partly filled with calcite cement 

(white arrow). A large interparticle pore adjacent to a fossil clast is filled with the bituminous phase. 

h) Interparticle pores between folded clay platelets. Pores may represent space between not fully 

compacted clay floccules. i) Interparticle pores adjacent to kerogen particles (arrows). Fs- fossil, Cal 

– calcite, Dol – dolomite, Py – pyrite, OM – organic matter. ........................................................176 

 

Figure 4. 26. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale 

sample B10458. a) Interconnected spongy organic pores grow into a large pore located the particle 

margin. b) Spongy organic pores within an organic grains. c) Organic pores interconnect with each 

other, and grow into a large pore located at the margin of the organic grain. d) The visible 

connections between organic pore bodies may be as small as 4 nm. e) Large pores located at the 

margin of an organic particle, and in the compaction shadow of surrounding mineral grains. Organic 

pores show a characteristic fibrous internal structure on its walls. f) Interparticle pores located 

between clay platelets, in a compaction shadow of a pyrite framboid. Pores have jagged margins 

suggesting that they de facto developed in the organic mass that had previosuly filled the pore space. 

g) Interparticle pores between folded clays. h) Interparticle pores between clay platelets (left) show 

identical internal structure of its walls as organic pores (right). i) Intraparticle pores within a pyrite 

framboid. Fs- fossil, Cal – calcite, Dol – dolomite, Py – pyrite, OM – organic matter. ...................177 

 

Figure 4. 27. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale 

sample C10401. a) Discrete, bubble-like and partly interconnected spongy pores within an organic 

particle. Note close association of porous and non-porous organic regions. b) Large intraorganic 

pores, partly located at the margins of adjacent dolomite crystals. c) Intraorganic (left) and 

interparticle pores (right) developed in the organic matter mass located in the compaction shadow of 

a calcite grain (bottom). d) Complex organic pore located in a compaction shadow of a dolomite 

crystal (left). Note the rough surface of a pore wall. e) Organic pores developed in the vicinity of 

dolomite crystals (centre). f) Discrete, spongy and large complex organic pores developed in the 

organic matter grain in the vicinity of a dolomite crystal (right). g) Interparticle pores between folded 

clays and dolomite (bottom right). h) Interparticle pores between clay platelets. Note jagged edges of 

the pore walls characteristic for pores of an organic origin. i) Intraparticle pores in a faecal pellet. 

Intraparticle pores within a pyrite framboid. Fs- fossil, Cal – calcite, Dol – dolomite, Py – pyrite, Qtz 

– quartz, OM – organic matter. ..................................................................................................178 

 

Figure 4. 28. Change of the mineralogical composition within areas of progressively increasing size 

as retrieved from EDX maps of three selected shale samples. Measurements reflect % change of a 

parameter between two successive areas. Phases investigated include phyllosilicates (a), carbonates 

(b), quartz and feldspar (c) and pyrite (d). ...................................................................................181 
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Figure 4. 29. BIB-SEM images as part of the image mosaics showing distribution of pores. Green 

denotes pores that are not directly connected, and red, pores which size is equal to or smaller than 

the maximum “real”pore throat size penetrated by mercury (see text).  A10305: a) Mag. 600 x; 

Although the groundmass organic matter is not internally porous, pores commonly populate 

Bottryococcus bodies. b) Mag. 10,000 x; Inorganic pores rim fossil assemblages and concentrate 

around quartz grains, with only a small proportion of much finer pores visible in the organo -clay 

matrix. B10458: c) Mag. 6,000 x; Pores rim dolomite rhomboids and concentrate in compaction 

shadows of mineral grains, often in association with residual organic matter (blue arrows). d) Mag. 

10,000 x; Pores visible in the organo-clay matrix are predominantly associated with organic matter 
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Chapter 1: Introduction 
 

Background 

Mudstones constitute up to 70% of volume of sedimentary basins (Aplin and Macquaker, 

2011) and due to their unique properties, they have been a target of detailed research. The 

interest in mudstones was driven by their source rock potential (Bohacs et al., 2005; Hill et 

al., 2007), their excellent sealing capacities (Neuzil, 1994; Schowalter, 1979; Watts, 1987), 

their role as depositional and stratigraphic markers (Macquaker, 1994; Macquaker et al., 

1998; Schieber, 1999) as well as their capacity to provide clues about environmental and 

chemical conditions during sediment deposition and diagenesis (Bloch and Hutcheon, 1992; 

Hicks et al., 1996; Macquaker, 2014; Sageman et al., 2003; Tribovillard et al., 2006). More 

recently, the boom in oil shale and shale gas exploration revived interest in mudstones and 

focused on their potential to act as direct reservoirs for oil and gas  (Alexander et al., 2011, 

Bowker, 2007; Curtis, 2002).  

Mudstones constitute a basic component of the shale reservoirs, where they interbed with 

carbonate rocks, siltstones, or even sandstones. Therefore, the name “shale” is more in 

practical use as it encompasses thick sequences with lithologies deviating from the strict 

definition of a mudstone (rocks with > 50% of grains in a size < 0.065 mm), and with a wider 

range of grain sizes (including coarser-grained or carbonate-bearing sections). On the other 

hand, in the narrower sense, the term shale may imply lithologies which entail dominance of 

the silicate (silt and clay) grains as opposed to calcareous mudstones dominated by the 

authigenic component (chalks) (Macquaker et al., 1994). As exemplified by the complex 

nomenclature of the fine-grained rocks, it is not surprising that the origin and composition of 

the fine-grained component of the shale sequences differs both vertically and spatially, and 

may include detrital and/or authigenic clays, autochthonous silica, biogenic carbonates and 

detrital quartz. Despite the fact that mudstones/shales are usually linked to relatively 

quiescent conditions of sediment deposition, typical for overbank delta settings, basinal 

depths, distant lobes of turbidites, or even periodically current or wave swept shelf floors, 

complex shale sequences may represent a range of depositional environments over the 

geological time. This vertical and lateral relationship between shale sequences may be placed 

into broad sequence stratigraphic framework to help predict a distribution of rock formations 

and accumulations of organic carbon (Bohacs, 2005; Passey et al., 2010).  
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The physical heterogeneity of shales is reflected by their variable composition, textures 

and fabric (Macquaker, 1994). Despite being originally controlled by the depositional 

environment, all these feaures can be syngenetically altered or obliterated  during post-

depositional diagenesis (Hower et al., 1976; Pedersen and Calvert, 1990). In the first meters 

of a sediment column, bacterial activity may result in dissolution and precipitaton of new 

minerals, and depending on the specific setting, and the availability of reactive clays, iron, 

biogenic silica or organic matter, it may lead to progressive cementation of the pore space 

(Coleman, 1985; Curtis, 1995, Macquaker et al., 2014). During the progressive burial and 

increase in temperatures and pressures, further mineralogical and textural changes are 

induced by transformation of smectite-to-illite (Inoue et al., 1988; Peltonen et al., 2009, 

Środoń, 1999) A-opal to CT-opal and to quartz (Hesse, 1990; Williams and Crerar, 1985) as 

well as selective dissolution, precipitation and recrystallization of carbonate phases (Fabricius 

et al., 2007). Moreover, because of the presence of clay minerals and high initial water 

saturation, mudstones are sensitive to compaction, progressively expelling water and thus 

reducing their volume (Bjørlykke and Høeg, 1997; Chaika and Dvorkin, 2000). It was 

established that over the first 3-4 kilometers of burial, total porosities can drop down to 10% 

of the rock volume as compared to 90% of original values found in freshly deposited muds 

(Loucks et al., 2012). 

Due to the vast heterogeneity of mudstones, it has long been of interest to establish the 

link between the genesis of mudstones and their physiochemical properties important from 

the reservoir standpoint (Bustin et al., 2008; Chalmers and Bustin, 2012; Passey et al., 2010). 

For instance, in the shale gas exploration, correct evaluation of shale porosities and its 

linkage to bulk lithologies and rock texture characteristics could help predict the potential gas 

storage capacity, pin point the best locations of hydrocarbon microreservoirs and estimate 

final gas recovery. The establishment of the porosity- lithology link, with other factors 

unchanged, may be somewhat hindered by the low-scale heterogeneity of the shale 

formations, rapidly changing mineral composition and a grain size. Rine et al. (2010) showed 

that for different high maturity shale reservoirs with non-uniform and distinct composition, 

porosities change in a manner broadly related to the content of organic carbon but 

differentiated from each other by the varied slope of the covariation.  

Specific settings for mudstone and shale deposition favour them to be enriched in 

organic matter derived directly from the water column and efficiently buried in the s ediment 

(Algeo and Ingall, 2007; Sageman et al., 2003). Presence of the organic matter significantly 

adds to the complexity of the mineral-water system, potentially interacting with the mineral 
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phases and affecting effective shale porosities. The effect of adsorption of organic molecules 

on mineral grains has been recognized in oil reservoir, where fatty acids and carboxylated 

polymers inhibit dissolution of carbonates by forming carbonate surface coatings (Thomas 

and Clouse, 1990). Interestingly, such an effect is noticeable at TOC concentrations as low as 

0.1 wt.%. Due to different water saturations of source rocks, presence of both kerogen, 

bitumen, and oil molecules, narrowness of pore throats and finally different nature of 

carbonate grains, it is not certain to what extent and via what mechanisms organic maturation 

affects dissolution or recrystallization of carbonates in mature shales (Lewan et al., 1997).  

Presence of kerogen has also major implications for the creation of secondary organic 

porosity at hydrocarbon generation temperatures (Jarvie et al., 2007; Modica and Lapierre, 

2012). Models show that the amount of organic carbon lost during thermal conversion to 

petroleum is controlled by a kerogen type and thus the structural composition of the organic 

moieties (Romero-Sarmiento et al., 2013). It has been hypothesized that as lacustrine kerogen 

has potential to lose higher carbon mass (80%) in comparison to kerogen type II (50%) and 

III (20%), the evolving porosity will strongly depend on the shale organofacies (Jarvie, 2012). 

Such estimations do not take into account any porosity loss due to compaction or post-

depositional diagenesis, and therefore were shown not to be valid for less mature or 

consolidated shales (Jarvie et al., 2007). Interestingly, it was emphasized that the direct 

carbon mass-porosity conversion is neither valid for shales in the peak oil window where the 

residual oil blocks evolved pores (Curtis et al., 2013; Fishman et al., 2012; Jarvie et al. 2007; 

Romero-Sarmiento et al., 2013). Those studies propose that in order to correctly evaluate 

shale porosities, the retention of petroleum should be integrated in the organic porosity 

prediction models (Modica and Lapierre, 2012).  

Despite obvious differences between organic matter and its precursors (aquatic kerogen, 

terrestrial macerals, high molecular weight bitumen compounds directly derived from 

kerogen and trapped in the shale network, bitumen migrated from adjacent rocks), it is not 

certain to what extent organic matter composition controls the evolution of the organic pores, 

their morphologies, and most importantly, the timing of the pore growth. Unfortunately, there 

are no studies that would directly compare porosities of the marine and lacustrine shales. 

Moreover, such direct comparisons may be hindered by varied maturities, organic content 

and lithologies of the rocks, obliterating the influence exerted by the organic phase itself. As 

far as the terrestrial kerogen is concerned, previous research accentuated its different 

behaviour under increasing thermal stress, and thus allowing its visual differentiation, still 

with a considerable level of uncertainty, from the organic matter sourced from the marine 
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algea (Loucks et al., 2009; Milliken et al., 2013). Such differentiation was facilitated by its 

arcuate shapes and a lack of nanometer-scale porosity normally observed in the marine and 

lacustrine shales at sufficiently high resolutions.  

Variation between porosities of different organic molecules in shales is a subject of 

ongoing and extensive research (Bernard et al., 2011, Bernard et al., 2012). The vast amount 

of experimental work on porosity in organic mater can be found in the coal and char studies. 

Those studies provided evidence for the extensive degasification of coals during artificial 

pyrolysis, with the final porosity increase closely linked to a maceral type and the coal rank 

(Loison et al., 1989). Hence, it is expected that similar distinction should be valid for 

chemically and structurally distinct kerogens as well as products of their thermal 

decomposition. The synchrotron-based transmission spectromicroscopy method allowed 

direct observation of visually porous (> ~20-50 nm) organic molecules present in shales of 

gas window maturities, and identified by Bernard et al. (2011) as oil-spent pyrobitumen. This 

finding emphasized the significance of the bitumen retention and its pore-blocking effect and 

its positive role for the porosity increase at gas window maturities. The degasification of 

bituminous polymer upon thermal cracking is currently the prevailing theory about the origin 

of the nanometer organic pores (Bernard et al., 2011; Jarvie et al., 2007, Loucks et al., 2009). 

Though, the exact timing of cracking, and the link between the composition of organic 

molecules and the morphologies of pores left behind are uncertain. In Woodford shale, Curtis 

et al. (2012) found that a change in porosities quantified from the Scanning Electron 

Microscope micrographs in wet and gas window shales do not show a linear covariation 

either with the content of organic matter or a level of the thermal maturity. Moreover, the 

observed pore morphologies differed on a nano- and micrometer scale, spanning from round, 

and oval, on the order of nanometers to irregular, up to hundreds of nanometer large (Curtis 

et al., 2012). Discrepancies are also observed when comparing total porosity-TOC 

covariations between gas mature shales from different formations. Despite a noticeable 

positive relationship between the two variables, varied slope of the respective regression lines 

suggests varied impact of the organic matter, and/or the inorganic framework on the 

evolution of pores. Constraining these relationships is thus a way to help predict porosity 

occurrence at different levels of maturity and its relation to the organic matter abundance and 

type. 

Because the pore sizes of the consolidated mudstones span from a micropore < 2 nm, 

through mesopore (2-50 nm) to macropore (> 50 nm) range (Nelson et al., 2009, Chalmers 

and Bustin, 2012), their detection will much depend on a specific measuring method 
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implemented. In the past studies, while some authors concentrated on quantification of 

microporosity using gas sorption and mercury techniques (Bustin et al., 2008; Chalmers et al., 

2012; Chalmers and Bustin, 2007; Kuila and Prasad, 2013; Ross and Bustin, 2009), others 

implemented mainly microscopic techniques targeting pores in the order of > 10s nm. The 

latter, although limited by the resolution of the microscopic images, proved to bring 

important spatial information for the porosity distribution and provided an essential 

geological background for the interpretation of the experimentally measures porosities (Curtis 

et al., 2011; Curtis et al., 2013; Fishman et al., 2012; Loucks et al., 2009; Loucks et al., 

2012; Milliken et al., 2013; Milner et al., 2010; Schieber, 2011; Slatt and O’Brien, 2011).  

Still, only a few studies directly quantified image porosities in a statistically meaningful way 

(Klaver et al., 2013; Milliken et al., 2013) and therefore more extensive data is needed to 

assess the variability in a distribution of macropores in shales. Finally, mercury porosimetry 

was deployed in many studies to quantify open clay porosity and determine a distribution of 

pore throat sizes (Hildenbrand and Urai, 2003; Kuila and Prasad, 2013). This technique, 

although useful in determining connected porosity held or accessed by pores with a diameter 

exceeding 2-5 mm, imposes high uncertainties regarding the magnitude of the compressibility 

of the shale framework and the pores (Bergins et al., 2007).  Most of the past studies 

accentuated that in order to better understand the complexity of the pore systems in shales, a 

deployment of a combination of different techniques is essential (Bustin et al., 2008; 

Chalmers and Bustin, 2012; Chalmers et al., 2012; Clarkson et al., 2013; Strapoc et al., 2010).  

 

Motivation and thesis structure 

In this study we examined a set of shale samples of different maturities and lithologies 

originating from two sediment sequences, the Lower Toarcian Posidonia Shale formation, 

and the Beriassian German Wealden, both from the Lower Saxony Basin, Germany. Our 

main aim was to track the impact of the variation in lithologies, the composition of the 

organic macerals, diagenetic alteration, and thermal maturity on shale porosity, and 

distribution of pore sizes. Although the main rationale behind such work lies in the growing 

demand for the exploration of the shale gas and therefore the need to understand the 

evolution of the sub-micrometer and potentially gas containing pores, our results are expected 

to contribute largely to more generic knowledge about the kerogen maturation and its thermal 

transformation. In order to quantify pore characteristics not only in a bulk sample, but also on 

a smaller scale, with thorough understanding for a micrometer lithological variation, o ur 
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unique approach consists of an integration of the geochemical and petrophysical 

measurements with a detailed analysis of the microscopic images. 

This work is composed of 3 technical chapters (Chapters 2-4), written in a publication 

style. To provide a larger picture, the technical chapters are preceded by the general 

Introduction (Chapter 1), and summarized in the Summary and Conclusions chapter (Chapter 

5). In the Chapter 2 we examined a set of calcareous, organic-rich, type II kerogen shale 

samples of three different maturities spanning from 0.53% to 1.45% Ro, originating from the 

Posidonia Shale formation. Due to little variance in the mineralogical composition between 

wells of different maturity, our aim was to track the diagenetic changes within the inorganic 

framework, the variability in the organic macerals composition and total porosity change 

upon increasing thermal stress. The petrophysical and geochemical investigations were 

conducted on core samples with the vertical sampling resolution > 1 m. The analysis of the 

microtextures was conducted in the petrographic and scanning electron microscope 

micrographs, and was followed by an analysis of the pore systems using highly polished thin 

sections. 

The Chapter 3 builds on the first chapter, with the main focus placed on the 

quantification of porosities of the Posidonia Shale with the mercury porosimetry, gas 

adsorption and image analysis. Our main aim was to investigate the change of the porosity 

and the pore size distribution as the maturity of the shale changed from the early oil window 

to the gas window conditions. With two main lithologies, calcareous shale and marlstone, we 

also addressed the impact of a lithological variation, compaction and diagenesis for the 

disappearance and reappearance of pores as the maturity progressed. Finally, we tested to 

what extent the observed gas window pores are related to processes of the hydrocarbons 

cracking.  

In the Chapter 4, the petrophysical and geochemical investigations were carried out on 

three cores of the German Wealden with predominantly type I kerogen. The bulk 

measurements were supplemented by the analysis of microtextures both in the petrographic 

and scanning electron microscope micrographs, and were followed by the quantification of 

the pores observed in highly polished thin sections. The main aim of our work was to address 

the issue of a small scale variation of the lithologically heterogeneous clay- and carbonate-

rich units, and its effect on the porosity evolution in shales of radically different maturity. 

Moreover, in the gas window maturity rocks, we paid special attention to development and 

connectivity of the organic pores and its relation to the content and type of the organic matter.  
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Chapter 2: Microscopic and petrophysical characterization of the 

Posidonia Shale – implications for porosity development in organic 

rich, calcareous shales 

 

Introduction 

Mudstones constitute up to 70% of volume of sedimentary basins (Aplin and Macquaker, 

2011) and due to their unique properties, they have been a target of detailed research. The 

interest in mudstones was driven by their source rock potential (Bohacs et al., 2005; Hill et 

al., 2007), their excellent sealing capacities (Neuzil, 1994; Schowalter, 1979; Watts, 1987), 

their role as depositional and stratigraphic markers (Macquaker, 1994; Macquaker et al., 

1998; Schieber, 1999) as well as their capacity to record chemical conditions of sedimen 

deposition and diagenesis (Bloch and Hutcheon, 1992; Hicks et al., 1996; Macquaker, 2014; 

Sageman et al., 2003; Tribovillard et al., 2006). Most recently, the boom in oil shale and 

shale gas exploration revived interest in mudstones and focused on their potential to act as 

direct reservoirs for oil and gas (Alexander et al., 2011). 

Mudstones are extremely heterogeneous and their original composition may vary from 

clay-dominated, through silica-rich, to calcareous. Although the original composition of 

mudstones is controlled by the depositional environment, their original mineral assemblage 

usually changes during diagenesis (Hower et al., 1976; Pedersen and Calvert, 1990). Mineral 

dissolution and precipitation may accompany bacterial activity and lead to precipitation of 

carbonate phases, apatite or pyrite in the first meters of a sediment column (Curtis, 1995). 

Availability or absence of reactive clays is crucial in that matter and influences not only the 

alkalinity of the environment (through reaction of HS- anions with detrital iron), but also 

sulphurization of organic matter (most pronounced in settings with limited delivery of 

terrigenous material) (Macquaker et al., 2014). The progressive burial leads to numerous 

mineral transformations including smectite-to- illite (Inoue et al., 1988; Peltonen et al., 2009, 

Środoń, 1999) and opal A to opal CT and quartz (Hesse, 1990; Williams and Crerar, 1985). 

The recognition of conditions controlling those diagenetic reactions in shales is crucial to 

help predict their properties interesting from the production point of view. 

Presence of organic matter in organic-rich shales (Total Organic Content > 2 wt.%) 

increases their complexity and modifies their behaviour under increasing temperatures and 

pressures.  Depending on the kerogen type, thermal decomposition of accumulated organic 

matter can significantly reduce Total Organic Content (TOC) of the bulk rock and potentially 
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add new porosity (Jarvie et al., 2007). Instead, in shales of maturities equivalent to oil 

window a drop in porosities due to bitumen and oil filling is observed (Curtis et al., 2013). 

Microscopic observations, although cannot provide direct answers regarding physochemical 

evolution of kerogen and bitumen, when coupled with geochemical and petrophysical 

measurements, can help understand distribution and heterogeneity of the organic material in 

the shale matrix. Such heterogeneity may reflect varied organic precursors, a degree of 

kerogen transformation, petroleum migration and expulsion, as well as evolution of residual 

material under oil-to-gas cracking conditions. 

In this paper we examined a set of calcareous, organic-rich shale samples of three 

different maturities spanning from 0.53% to 1.45% Ro, from the Posidonia Shale formation, 

Lower Saxony Basin. Due to little variance in mineralogical composition between wells of 

different maturity, our aim was to track the evolution of the inorganic framework, the 

macerals composition and porosity change upon increasing thermal stress. We also addressed 

the issue of small scale heterogeneity on potential for development of organic porosity as 

potential sites for storage of gas.  

 

Samples and Methodologies 

Posidonia Shale of the Lower Saxony Basin, North Germany is a calcareous fine-grained 

rock deposited in the epicontinental sea during the Lower Toarcian second-order sea level 

rise (e.g. Littke et al., 1991; Röhl and Schmid-Röhl, 2005). The Lower Toarcian 

transgression was a global event that induced worldwide shelf anoxia and produced excellent 

source rocks (Bachmann et al., 2008). The vertical heterogeneity of the Posidonia Formation 

mudstones is then regarded as being controlled by higher order sea level changes, coupled 

with subtle climatic fluctuations (Röhl et al., 2001). Based on macro- and microscopical 

observations, the formation is sub-divided into three units: lower marlstone (I), middle 

calcareous clay-shale (II) and upper calcareous clay-shale (III) (Figure 2.1b). While 

marlstone differs from the overlying shales in higher carbonate contents, units II and III are 

lithologically similar and were distinguished based on the common occurrence of bivalves in 

the middle  (II) shale (Littke, 1991).  All three units contain well-preserved Type II marine 

organic matter with minor contribution from terrestrial macerals (Bour et al., 2007; Littke, 

1991; Röhl et al., 2001). For this study, samples were taken from the stratigraphically 

equivalent sections of three boreholes in the Hils syncline: Wickensen (0.53% Ro), Harderode 

(0.89% Ro) and Haddessen (1.45% Ro) (Figure 2.1a). The Hils half-graben forms a part of a 
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series of horst and graben structures evolved during the Late Jurassic and Cretaceous tectonic 

movements (Bruns et al., 2014; Radke et al., 2001). Partly due to the complex tectonic and 

thermal history within the area, the genesis of a distinct maturity gradient across wells in the 

Hils area was a subject of dispute. While a source of the heat was often ascribed to a 

hypothetical Cretaceous intrusive body, the Vlotho Massif (Schaefer and Littke, 1988), other 

studies suggest the maturity gradient is a function of differential burial and high temperature 

regime (Mackenzie et al., 1988; Munoz et al., 2007). Recent 3D modelling studies confirmed 

that the region experience complex burial and thermal history with differential heat flow 

associated with the Mesozoic rifting episodes (Bruns et al., 2014). 

26 samples were selected for bulk analyses including Rock-Eval, TOC, grain density and 

total porosity (Figure 2.1b). Total Organic Carbon was measured with the LECO carbon 

analyzer equipped with a HF-100 Induction Furnace on a carbonate-free aliquot. Standard 

Rock-Eval was performed according to Espitalié et al. (1977) using Delsi Rock Eval OSA. 

To correct for an oil- in-kerogen peak, 4 shale samples were solvent extracted with a mixture 

of dichloromethane (93%) and methanol (7%) and subsequently analysed for its remaining 

hydrocarbon potential.  

The X-ray diffraction was performed by Macaulay Scientific Consulting Ltd. The bulk 

samples were wet ground (in ethanol) in a McCrone mill and spray dried to produce random 

powders with the optimum distribution of grains. X-ray powder diffraction (XRPD) patterns 

were recorded from 2-75°2θ using Cobalt Kα radiation. Quantitative analysis was done by a 

normalised full pattern reference intensity ratio (RIR) method. Expanded uncertainty using a 

coverage factor of 2, i.e. 95% confidence, is given by ±X0.35, where X = concentration in 

wt.%, e.g. 30 wt.% ±3.3. 

Shale grain density was measured on samples dried at 105°C using the “Small 

Pycnometer Method” and yielding density values within an error ± 0.02 g/cm3. In this method, 

3 g of dry powdered shale sample was added to a pre-weighed pycnometer of a nominal value 

50 mL, immersed in the 10 mL of surfactant (5% Teepol) and gently shaken. The slurry was 

outgassed in a dessicator overnight, filled with the outgassed deionized water up to the total 

volume of the pycnometer and weighed at temperature 25°C. The grain density was 

calculated from the Equation 1: 

𝛿𝑔 =  
𝛿𝑤 (𝑚2−𝑚1)

(𝑚4−𝑚1)−(𝑚3−𝑚2)
                                     (Equation 1) 
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where δg (g/cm3) is the shale grain density, δw (g/cm3) is the density of water at 25°C, m1 (g) 

is the pycnometer mass, m2 (g) is the mass of the pycnometer plus dry sample, m3 (g) is the 

mass of the pycnometer plus dry sample plus water, and m4 (g) is the mass of the pycnometer 

plus water. 

Total shale porosity was determined from the measured grain density and bulk density 

when immersed in mercury at the pressure 25 psia using the Equation 2: 

𝜌 = 1 −  
𝛿𝑏

𝛿𝑔
                                               (Equation 2) 

where ρ (%) is the calculated shale total porosity, δb (g/cm3) is the measured bulk density at 

25 psia, and δg (g/cm3) is the predetermined grain density. 

For microscopic studies, 20 highly-polished thin sections and 3 resin covered blocks, cut 

perpendicular to bedding, were prepared. Thin sections were first scanned using an Epson 

Perfection V500 scanner with a 9600 dpi resolution. Subsequently, each thin section was 

examined with a Nikon Eclipse LV100 POL transmitted light petrographic microscope with 

an attached Nikon Digital Sight DS-U3 camera. Polished blocks were examined in reflected 

and UV light using an Oil Zeiss Immersol 518N oil immersion microscope. The fluorescence 

of organic matter was determined qualitatively using UV light with an HXP 120C accessory. 

Carbon-coated polished thin sections were examined using a Hitachi SU-70 High 

Resolution Analytical SEM, equipped with an Oxford Instrument Energy Dispersive X-ray 

microanalysis system (INCA Energy 700). Samples were viewed in Back Scattered Electron 

(BSE) mode using the YAG detector with the following conditions: 15-8 mm WD, 15keV 

accelerating voltage, 2-4 nA filament current. To reduce the shale topography, prior to the 

SEM imaging, selected samples were polished with an argon broad ion beam (BIB) in the  

GATAN 691 Precision Ion Polishing System (PIPSTM). In order to fit into a chamber, the 

sample size was reduced to a 3 mm in diameter disc with GATAN 601 Ultrasound Disc 

Cutter using water emulsion of boron nitrate powder as a saw. Such prepared discs were 

inserted into the PIPSTM chamber and bombarded with Ar ions in a vacuum (10-2 Pa) for 6 

hours (angle 3°, 5kV, 1-20 µA). The images of shale porosity were captures in Secondary 

Electron (SE) mode using through-the- lens detector (TLD) at magnification 6000x (pixel size 

15 nm). The total image porosity was quantified on image mosaics covering a total area 6000 

µm2 with the point counting method (10000 counts) in the image analysis software 

JMicroVision 1.2.7. (Roduit, 2008).  

 

 

http://www.gatan.com/index.html
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Figure 2. 1. Location of Hils syncline, Northern Germany and three boreholes: WIC (Ro 0.53%), 
HAR (0.89%) and HAD (1.45%) (after Mann and Müller (1988) and Horsfield et al. (2010)). b) 
Lithological profile of the Posidonia Shale from the three boreholes with a marlstone unit (I) and two 
calcareous shale units (II and III); red dots represent sample locations (after Littke et al. (1991)). 
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For selected areas, an Energy Dispersive X-ray (EDX) mode was implemented. With this 

technique maps of elements distributions are generated due to emission of characteristic x-

rays by atoms as a result of the de-excitation of core electron holes created by a high energy 

electron beam. Microanalysis settings for the EDX collection were set at 300 µm dwell time, 

15kV accelerating voltage and 4 nA filament current. 

For high resolution imaging, three samples were milled, polished and imaged with 

Gallium (Ga) focused ion beam (FIB) in the FEI Helios Nanolab 600 with FEG source. The 

trenches 15 µm x 5 µm were cut at 1-30kV accelerating voltage and 3.3nA beam current. 

Samples were viewed in BSE Immersion or secondary electron mode with the following 

conditions: 4.1 mm WD, 1.5-3.0 kV accelerating voltage, 2-4 nA beam current, using 

through-the-lens detector for better spatial resolution. The images were captured at 

magnifications between 10,000-200,000x, corresponding to pixel sizes 25-1.2 nm. 

 

Results 

 

Shale composition and texture  

Low maturity Posidonia shale from the Wickensen (WIC) borehole (Ro = 0.53%) is a 

medium grey, fine-grained calcareous mudstone, showing variation both on a formation as 

well as a lamina scale (Figure 2.1, Figure 2.2). The XRD bulk mineralogy (Table 2.1) shows 

equal proportion (30-40 wt.%) of both calcite and clays in the upper shale units, but higher 

content of calcite to clays in the lower marlstone (~50% and ~25% respectively). The calcite 

and phyllosilicate abundance are inversely correlated, indicating a mutually exclusive 

mechanism of their deposition. The size of the visible calcareous fraction varies across the 

core (Figure 2.2), and is much coarser in the lowest marlstone unit (up to 0.6 mm) in 

comparison to both shale-rich units (<0.1-0.3 mm) (Figure 2.3). While the finest particles 

constituting the shale matrix cannot be resolved with the standard petrographic methods, the 

microcrystalline nature of the microscopically distinguishable carbonate aggregates suggest 

that they are compacted faecal pellets (Bour et al., 2007; Littke et al., 1987; Röhl et al., 2001; 

Röhl and Schmid-Röhl, 2005; Schieber, 1999). Their distribution varies from sparse, 

occasionally aligned into discontinuous layers or horizons in the calcareous shale, to densely 

packed in the marlstone unit.  
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Figure 2. 2. Scans of polished thin sections of Posidonia Shale. The bedding plane is horizontal. 
Vertical arrows denote thickness of distinguishable lamina. a) (WIC 7129): Well visible horizontal 
lamination marked by the alternation of more calcite- and clay-rich horizons. The thickness of the 
individual lamina reaches up to 3 mm. b) (WIC 7153): Well pronounced lenticular lamination with 
large faecal pellets up to 0.6 mm. Faecal-pellet diluted horizons alternate with horizons with higher 
proportion of background clay sedimentation (darker lamina). c) (HAD 7101): Alternating dark and 
light lamina due to varied content of the carbonate and clay component are still visible in this higher 
maturity shale. The original lamination is visibly modified by the recrystallization of the matrix 
components. d) (HAD 7119): The original lamination is obliterated in this higher maturity marlstone 
sample. D – dark clay-rich lamina, L – light carbonate-rich lamina, FP – faecal pellet, T – terrestrial 
organic matter. 
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Table 2. 1. The TOC-normalized XRD mineralogical composition of the Posidonia shale in wt.% for 
WIC (Ro 0.53%), HAR (Ro 0.89%) and HAD (Ro 1.45%). The TOC content (in wt.%) was determined 
with LECO. 

 

W
IC

 
7

1
2

9
 

W
IC

 
7

1
3

5
 

W
IC

 
7

1
4

5
 

W
IC

 

7
1

4
7

 

W
IC

 

7
1

5
5

 

H
A

R
 

7
0

3
8

 

H
A

R
 

7
0

4
6

 

H
A

R
 

7
0

6
0

 

H
A

R
 

7
0

7
0

 

H
A

D
 

7
0

8
3

 

H
A

D
 

7
0

9
0

 

H
A

D
 

7
1

1
0

 

H
A

D
 

7
1

1
9

 

Quartz 12.4 15.1 11.8 14.0 7.8 14.6 16.4 12.2 10.8 11.1 14.8 14.1 7.6 
Plagioclase 1.0 0.2 0.9 0.6 1.3 1.9 2.0 2.6 3.7 2.4 2.8 3.2 4.5 

K-Feldspar 0.7 0.0 0.0 0.0 0.0 0.5 0.4 0.4 0.5 0.5 0.1 0.7 0.6 
Calcite 32.4 35.8 41.5 38.1 50.0 40.1 39.5 28.7 42.2 49.5 36.8 28.5 46.3 

Dolomite 0.3 0.0 0.3 0.2 0.5 0.6 1.0 6.0 2.0 0.6 1.7 3.7 2.5 
Siderite/ 
Ankerite 0.4 0.0 0.8 1.8 0.5 0.2 0.3 0.3 0.3 0.1 0.8 0.4 0.6 

Aragonite na na 1.2 na 1.2 na na na na na 0.6 na 1.4 
Pyrite 4.8 4.5 3.5 3.7 4.9 5.2 4.8 8.6 5.2 6.9 4.6 6.6 4.2 

Marcasite 0.7 na na na na 0.6 0.2 0.9 1.2 na na 0.2 na 
Anatase 0.3 0.1 na 0.1 na 0.3 0.2 0.2 0.3 0.2 na 0.4 na 

Muscovite 2.3 2.2 0.0 1.2 0.1 2.9 2.8 3.5 3.0 2.4 1.2 4.4 0.0 
Illite + I/S 21.7 22.0 20.0 25.4 17.5 17.0 18.9 24.7 18.3 13.3 22.1 23.5 18.1 

Kaolinite 10.4 6.0 4.5 7.1 2.0 8.2 6.8 6.2 4.0 6.1 3.6 8.1 1.0 
Dickite na na 1.1 na 0.9 na na na na na 1.2 na 0.0 

Chlorite na 0.4 1.8 0.2 1.6 na na na na 0.0 0.6 na 2.5 
Gypsium na 0.3 2.0 0.4 2.2 na na na na 0.4 1.7 na 3.5 

Halite na 0.1 na 0 na na na na na 0.1 na na na 
TOC 12.6 13.3 10.9 7.3 9.7 7.9 6.8 5.8 8.7 6.4 7.4 6.4 7.2 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 

 
 

Within all units the shale matrix is arranged into sub-centimetre light and dark laminae, 

reflecting differences in the proportion of carbonate and clay components (Figure 2.2). This 

sub-centimetre lamination is most pronounced in the upper shale unit, with a typical thickness 

of single lamina up to 3 mm (Figure 2.2a, Figure 2.3a). In both the lower calcareous shale 

(Figure 2.3b) and marlstone horizons (Figure 2.3c, d) the sub-centimetric lamination is less 

pronounced. In the marlstone unit, horizontal lamination is partly imparted by the abundant 

faecal pellets (Figure 2.2b, Figure 2.3c, d). Here, due to the large size of individual pellets 

(exceeding 0.5 mm), lenticular lamination is common (Figure 2.2b, Figure 2.3d) and 

convoluted lamination occurs sporadically. In all units, contacts between laminae are parallel 

and vary between sharp to gradual (Figure 2.2a, b; Figure 2.3). The regular character of the 

lamination suggests that it is primary, reflecting changes in the supply of the clastic and 

biogenic components. Very sporadically, the laminae boundaries are marked by an erosional 

contact or presence of a thin layer of silt carbonates or quartz (Figure 2.3a, b). 
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Figure 2. 3. Plane-polarized-light optical micrographs of Posidonia Shale Formation samples. a) 
(WIC 7129): Fine microlamination marked by varied abundance of matrix calcite. Dark unit (centre) 
is relatively enriched in a clay component and impoverished in a calcite component. No visible faecal 
pellets present at this horizon. A single quartz layer can be observed at the top. Flattened algal bodies 
constitute well oriented components in the fabric (green arrow). b) (WIC 7145): A layer of silt-sized 
carbonates separating two lamina. Horizontal faecal pellets (red arrow) and flattened algal cysts 
(green arrow) show signs of compaction. The shale below the silt layer has larger accumulation of 
faecal pellets and is lighter in plain light. c) (WIC 7151): An example of lenticular microlamination in 
a clay- and organic matter-rich matrix. The bright horizontal lenses are composed of well-defined 
faecal pellets. Flat organic-rich clay aggregates marked with a green arrow. d) (WIC 7153): Well-
developed lenticular lamination. The top half contains faecal pellets up to 0.5 nm, forming a 
distinguishable horizon in a sample. The bottom half contains faecal pellets of a smaller size with a 
greater proportion of the clay and organic matter in the matrix. 
 
 

Most of the organic matter remains unresolved in the petrographic sections. However, 

darker colour of the calcite-depleted laminae may imply relatively higher content of 

disseminated organic matter in the clayish horizons. Resolved organic matter is present both 

as flat, up to 0.3 mm long, organo-clay aggretates (Figure 2.3c) and as highly compacted, 

discrete cysts (Figure 2.3a). Large terrestrial organic particles (up to 500 µm) are scarce, but 

relatively more common in the marlstone unit (Figure 2.2b).  
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Figure 2. 4. Plane-polarized-light optical micrographs of Posidonia Shale Formation samples. a) 
(HAR 7038): The visible lamination is due to presence of diagenetic layers composed of quartz and 
authigenic pyrite.  An uneven surface below the bottom silt layer may be erosive or diagenetic in 
origin. b) (HAR 7046): The original lamination is mostly obliterated. A silt-sized quartz grain layer of 
unknown origin visible in the middle. c) (HAR 7060): Sub- and euhedral carbonate crystals (red 
arrow) are widely disseminated in the shale matrix. Some parts of the shale are cemented. Green 
arrow denotes an authigenic pyrite nodule. d) (HAR 7070): Recrystallized carbonates are aligned in a 
single layer. 
 
 

Moving towards higher maturities (Ro > 0.9%), we observed a slight change in the shale 

composition and fabric. While the bulk clay and carbonate content do not differ from those 

encountered in the immature section, there is a relative increase in the proportion of dolomite 

to calcite, irrespective of the unit (Table 2.1). This, along with a higher content of Na-rich 

plagioclase, suggests that diagenetic processes were active at oil window maturities. The 

effect of these processes can be seen in the thin sec tion scale. In both Harderode and 

Haddessen the primary sub-centimetre lamination is modified (Figure 2.2c) or obliterated 

(Figure 2.2d) due to recrystallization of the matrix calcite (Figure 2.4, 2.5). The authigenic 

carbonate is common, reaching up to 0.05-0.1 mm, and is usually present as oval pelloids 

(Figure 2.4b, 2.4d, 2.5b, 2.5c). Some layers are more affected by diagenetic recrystallization 

(Figure 2.4a) and may reflect differences in the original composition, e.g. higher calcite or 

d c 

a b 
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quartz content. Consistently with the observations from the low maturity well, faecal pellets 

are more abundant in the marlstone unit (Figure 2.5d). 

At all maturities, macrofossils were rarely observed except for single occurrences of 

bivalves, calcareous shells and fish-bone fragments. 

 

 

  
 

  
Figure 2. 5. Plane-polarized-light optical micrographs of Posidonia Shale Formation samples. a) 
(HAD 7083): Small-scale heterogeneity is imparted by the presence of flattened and oval faecal 
pellets (red arrows). The unit at the top has more silty material (carbonates and quartz), and more 
pyrite. b) (HAD 7101): Diagenetic carbonates are found in layers, in an otherwise recrystallized 
shale matrix.  c) (HAD 7110): Large faecal pellets (red arrow) coexist with discrete carbonate 
crystals and carbonate pelloids. d) (HAD 7119): Shale matrix is strongly recrystallized with a large 
volume occupied by faecal pellets (red arrow) and cements. 
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Small-scale shale heterogeneity in the SEM micrographs 

High-resolution BSEM micrographs show that most of the carbonate fraction in the early 

mature Wickensen samples is of biogenic origin, and was deposited as faecal pellets (Figure 

2.6b, d). Nannofossils, mostly coccoliths and schizospheres, form debris dispersed in the 

shale matrix or concentrated in microlayers or ellipsoidal aggregates (Figure 2.6c). Although 

individual particles are often mechanically broken (Figure 2.6b), some samples still contain a 

high proportion of less disarticulated material. The size of nannofossil aggregates varies from 

~10 µm (Figure 2.6b), up to 100-200 µm in the calcareous shale units to over 300 µm in the 

marlstone samples. In all units, microlamination is typical, but its pattern is different in the 

sub-centimetre light and dark laminae. While in the first the nannofossil material tends to 

form continuous, <100 µm thick layers (Figure 2.6a), in the dark laminae isolated faecal 

pellet islands surrounded by the clay-rich matrix are common (Figure 2.6b). The biogenic 

fraction shows signs of diagenesis, but its intensity is different in the marlstone and 

calcareous shale units. In the marlstone unit (Figure 2.6d) calcite redistribution was more 

prominent, and involved precipitation of the calcite cement in intrafossil porosity and 

recrystallization of the accumulated coccoliths and schizospheres. The advanced 

recrystallization is reflected by a nearly equant shape of some of the calcite par ticles. In the 

two more clay-rich Posidonia units, carbonate cement is present, but the intensity of the 

calcite redistribution processes was much smaller. Still, we observed syntaxial overgrowths 

on single biogenic fragments, signs of recrystallization and cementation within biogenic 

aggregates, as well as the presence of small microcarbs of unknown origin infilling porosity.  

Overall, the calcite redistribution was stronger in the sub-centimetre, light laminae, with more 

concentrated nannofossil material, and much weaker in the clay-rich zones with more 

dispersed biogenic fragments. 
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Figure 2. 6. Backscattered electron micrographs. The bedding plane in all images is horizontal. a) 
(WIC 7129): Microlaminated calcareous shale (light lamina) with faecal pellet rich layers (red 
arrow) alternating with clay material (green arrow). Visible organic matter is mostly associated with 
the last but may also fill cavities within fossil fragments. Silt-sized quartz and pyrite are common, 
widely disseminated in the matrix. b) (WIC 7129): Details of the nannofossil enrichment in a dark 
lamina of the calcareous shale. Biogenic calcite is surrounded by clays. Coccoliths are mostly broken, 
some show signs of diagenetic recrystallization. c) (WIC 7155): Recrystallized nannofossil-rich 
pellets in a marlstone sample. The silt-size components include quartz, pyrite and organic matter. 
Clay laminae are volumetrically less abundant than in the calcareous shale. d) (WIC 7155): Strongly 
recrystallized coccoliths as a product of intensive diagenesis of biogenic calcite in a marlstone 
sample. e) (HAR 7046): Calcareous shale of at peak oil window maturity. The nannofossil rich matrix 
is visibly recrystallized. Authigenic cement present as dolomite and calcite crystals with uniform 
crystal lattice, as well as newly precipitated kaolinite. Calcite cement precipitated in an algal cyst 
locally prevented the shale from compaction. f) (HAR 7046): A lamina of quartz associated with 
authigenic minerals. Quartz grains are strongly recrystallized, with the interstices filled by authigenic 
pyrite and kaolinite. 
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Figure 2. 7. Backscattered electron micrographs. The bedding plane in all images is horizontal 
except for image f). a) (HAR 7046): Calcareous shale with recrystallized carbonate matrix. The 
biogenic material in fecal pellets shows signs of both advanced recrystallization and local cement 
precipitation. Algal bodies remain mostly collapsed or filled by carbonate cement (bottom right). b) 
(HAR 7060): Calcite and pyrite cement (top) may replace significant portion of original shale fabric. 
c) (HAD 7083): Carbonate-rich shale with cement precipitated within coccolith canals. Most of the 
carbonate material in the matrix is recrystallized and dolomite cement is common. d) (HAD 7083): 
Authigenic pyrite may form small euhedra, oval framboids or directly replace biogenic calcite. The 
recrystallization of biogenic calcite led to significant fusing of calcite crystals. Small authigenic 
calcite (microcarbs) is closely admixed with organic matter. e) (HAD 7115): Well visible 
microlamination with alternating clay- and calcite-rich lamina. Calcite cement at the bottom is either 
filling a fracture or cementing a faecal pellet. Biogenic fragments in the centre present strong 
syntaxial overgrowths acquiring an equant crystal shape. New dolomite phases are cementing the 
original fabric. f) (HAD 7115): Large calcite cementation zone is replacing the original shale fabric. 
Authigenic kaolinite is filling centre of the calcite cementation zone, possibly evolved due to 
dissolution of the grain framework. Bedding plane is marked with a dash line. 
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Redistribution of the original shale components and precipitation of new authigenic 

phases was more advanced in samples of maturity 0.9% Ro and higher. In both HAR and 

HAD, calcite cement filling coccolith canals is ubiquitous (Figure 2.7c). All biogenic 

fragments present syntaxial overgrowths (Figure 2.7c), and the fusing due to recrystallization 

of single crystals is common (Figure 2.7a). The sub- and euhedral crystals of authigenic 

calcite often preserve uniform crystal lattice and reach a size up to tens of microns (Figure 

2.7e). Occasionally, calcite cement is filling algal cysts (Figure 2.6e), preventing them from 

mechanical compaction.  Some zones are fully cemented, and their size can reach up to 100 

µm in length in HAR (Figure 2.7b) and 1000 µm in HAD (Figure 2.7f). The authigenic, 

fabric replacement dolomite is common, and can be observed either as small discrete 

assemblages, from a few µm up to 20-40 µm in size (Figure 2.7d), or large cemented zones 

up to 100 microns in length.  

Unlike carbonates, the composition of the clay fraction does not vary between maturities. 

Detrital clays are K enriched at all maturities. Authigenic kaolinite is present and usually fills 

algal cysts, cements cavities in fossil canals, or occludes pores developed due to dissolution 

of the framework (Figure 2.6e, 2.7f). The detrital silt fraction is dominated by quartz, which 

similarly to clays, is more abundant in the shale-rich units. It forms anhedral, rounded to 

subangular grains of a size varying from under 1 µm up to 20 µm (Figure 2.7a). Occasionally, 

recrystallized quartz forms part of diagenetically changed layers in samples of higher 

maturities (Figure 2.6f). Finally, authigenic pyrite is present at all maturities, forming small 

euhedra (Figure 2.7d), oval framboids (Figure 2.7f), nodules (Figure 2.4c), or directly 

replacing biogenic calcite (Figure 2.7b, 2.7d).  

Posidonia shale shows signs of physical compaction, reflected by the horizontal 

arrangement of its components (Figure 2.8). The horizontal flattening visibly affected algal 

cysts, clay aggregates, and faecal pellets. The collapse of the shale structure can be seen 

adjacent to rigid shale components associated with compaction shadows. The shortening of 

the matrix in the vertical direction visibly progressed between 0-5-0.9% Ro, often related to 

the collapse of algal cysts (Figure 2.7a).  
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Figure 2. 8. A mix of X-ray maps displaying well-defined microlamination of shale components at all 
maturities (a) WIC 7129, b) HAR 7060, c) HAD 7110). The microlamination is marked by the 
alternating pattern of calcite- and clay lamina, and in the lower maturity samples, also organic wisps. 
The bedding plane in all images is horizontal. 

 

Change of organic matter upon maturation 

Posidonia Shale is an organic-rich rock with the TOC variability controlled by the 

mineral composition (e.g. carbonates more strongly dilute OM than clays) as well as the 

degree of the thermal maturation (Table 2.2). In the least mature shale at 0.53% Ro (WIC) 

TOC varies between ~7-15 wt.% (mean 10 wt.%), and gradually decreases to an average ~7% 

in the peak oil window (HAR 0.89% Ro) and down to ~6% in the gas window (HAD 1.45% 

Ro). RockEval data confirms the maturation pathway typical for the Type II marine kerogen. 

We also observed a consistent drop in both S1 and S2 yields, resulting in a decrease in HI 

from ~650 to ~60 mg/gTOC. A significant drop in yield, from 10 to 1 mg/g, was observed for 

the amount of organic matter pyrolizable under standard RockEval conditions, but extracted 

with organic solvents (S2a). For all samples, S2a is consistently higher than RockEval 

measured free bitumen S1, significantly reducing the yield of the pyrolizable organic matter 

S2b of the solvent extracted shale (Table 2.3). Calculated oil saturation indices vary from 105 

mg/gTOC for the early oil window sample, 66 and 102 for the two peak oil window samples 

and 27 mg/gTOC for the gas window sample. 
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Table 2. 2. Leco, Rock-Eval, grain density and total porosity results for selected Posidonia samples 
from wells WIC (Ro 0.53%), HAR (Ro 0.89%) and HAD (Ro 1.45%). 

Sample  
TOC S1 S2 HI Tmax Grain 

density 
Total 
porosity 

WIC 7129 12.59 3.02 90.25 717 427 2.254 0.098 
WIC 7133 8.71 2.57 54.90 630 434 2.392 0.128 

WIC 7135 13.27 4.62 84.63 638 427 2.249 0.101 
WIC 7137 10.25 3.18 68.10 665 427 2.343 0.106 

WIC 7139 9.36 2.81 64.95 694 428 2.375 0.135 
WIC 7142 10.43 3.52 72.37 694 426 2.346 0.122 

WIC 7145 10.92 4.18 72.03 660 425 2.331 0.129 

WIC 7147 7.28 2.26 47.76 656 434 2.458 0.114 
WIC 7151 14.75 5.85 89.61 608 429 2.236 0.105 

WIC 7153 7.34 2.45 48.37 659 431 2.489 0.139 
WIC 7155 9.67 3.87 69.41 718 428 2.361 0.126 

HAR 7038 7.905 3.29 30.17 382 449 2.493 0.031 
HAR 7046 6.75 2.93 26.03 386 450 2.526 0.046 

HAR 7060 5.78 1.47 19.72 341 447 2.592 0.045 
HAR 7070 8.71 2.26 31.27 359 449 2.463 0.035 

HAD 7083 7.35 0.75 4.10 56 465 2.589 0.137 
HAD 7090 7.41 0.94 4.16 56 463 2.572 0.114 

HAD 7094 5.21 0.845 3.52 68 459 2.608 0.121 
HAD 7097 5.40 0.75 3.15 58 458 2.609 0.119 

HAD 7099 6.51 0.98 3.86 59 463 2.576 0.106 
HAD 7101 5.88 0.92 3.1 53 457 2.624 0.118 

HAD 7104 5.04 0.72 3.385 67 459 2.620 0.116 
HAD 7105 5.85 0.77 3.28 56 461 2.621 0.112 

HAD 7110 6.36 1.07 3.79 60 462 2.600 0.094 

HAD 7115 6.49 1.12 3.80 59 460 2.614 0.093 
HAD 7119 7.15 1.23 3.16 44 458 2.607 0.115 

 

 

 
Table 2. 3. Rock-Eval evaluation after solvent extraction for four Posidonia samples, wells WIC 
(0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). 

Sample 
S2a 
(mg/g) 

S1 + S2a 
S2b 
(mg/g) 

Oil saturation 
index 
(mg/gTOC) 

Grain 
density 
(g/cm

3
) 

Total 
porosity 
(%) 

Estimated 
bitumen 
content (%) 

(mg/g) % 
TOC 

WIC 7129 10.4 13.20 10.5 79.89 104.8 2.236 na na 

HAR 7060 4.5 5.89 10.2 15.25 101.9 2.682 7.8 2.8 
HAR 7070 3.5 5.71 6.6 27.79 65.6 2.533 6.3 3.4 

HAD 7110 0.7 1.74 2.7 3.05 27.4 2.618 10.1 0.7 
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Figure 2. 9. Oil immersion (left) and reflected light (right) micrographs. Horizontal scale bar denotes 
50 µm. Dashed line indicates direction of a bedding plane. a, b) (WIC 7129): Wisps and oval bodies 
of algal cysts (AT Tasmanales, AL Leiosphaeridales) constitute the most prominent organic component. 
Other macerals include: unidentified alginates (A), bituminite (B), vitrinite (V), inertinite (I). Strong 
fluorescence of the matrix is due to the presence of the matrix bituminite. The contrast in this 
micrograph has been subdued due to strong yellow fluorescence. c ,d) (HAR 7060): Algal bodies are 
mostly collapsed (AL). Matrix bituminite shows much weaker fluorescence. Solid bitumen (BS) is 
present in the matrix, concentrating in the fossiliferous zones. e, f) (HAD 7110): No alginate is 
present and the matrix is only marginally fluorescent.  Solid bitumen (BS) forms a dense network in 
the shale matrix and within recrystallized fossiliferous units. 
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The macerals found in shales of different maturities show gradual change in type, 

volume and colour. At Ro = 0.53%, structured algal liptinite (e.g. Tasmanales, 

Leiosphaeridales) is common, forming well-preserved laminae or thick bodies (Figure 2.9a, 

b), and co-existing with less pronounced lamellar bituminite. The shale matrix is strongly 

fluorescing, composed of the bituminous-mineral groundmass, with its organic component, 

the so-called matrix bituminite, representing a non-structured degradation product of marine 

phytoplankton and zooplankton (Tao et al., 2012), forming the most abundant organic 

component of the shale. In low maturity Posidonia, the bituminous groundmass is primarily 

associated with clays, but may also fill the interstices within fossils (Figure 2.7d). Terrestrial 

macerals, including vitrinite and inertinite, are dispersed and are present in low abundances.  

Both structured liptinite and terrestrial macerals show presence of sulphur typically 

incorporated into organic structure as a by-product of bacterial sulfate reduction processes 

taking place in anoxic waters under iron-limited conditions (Kenig et al., 2004). 

 

 
 

Figure 2. 10. Secondary Electron micrographs of BIB polished samples after solvent extraction. a) 
(HAR 7060): Non-extractable organic matter (dark) in an oil window sample fills up spaces between 
calcite crystals (black arrows) in a fossiliferous domain. b) (HAD 7110): Non-extractable organic 
matter (dark) in a gas window sample fills the space between pyrite crystallites (light grey) in a pyrite 
framboid. Note very fine pores (< 100 µm) within the OM. 

 
At the peak oil window maturity, structured algal liptinite is volumetrically less abundant 

with only weak brownish fluorescence (Figure 2.9c). The bodies of Tasmanales are collapsed, 

or locally filled with diagenetic carbonates (Figure 2.6e). The bituminous groundmass is 

much less fluorescent and instead, a dense network of non-solvent extractable, solid bitumen 

is filling the intergranular space (Figure 2.9d, 2.10a). The increased concentration of solid 

bitumen within faecal pellets is a strong contrast to typical organo-clay associations observed 
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at lower maturity. Solid bitumen can also be found within microfractures, often in the 

association with diagenetic carbonates. 

At the gas window maturity, the bituminous groundmass exhibits only very weak 

fluorescence and no structured algal liptinite is present (Figure 2.9e). A tight network of 

irregularly-shaped, non-extractable, solid bitumen is a dominant feature (Figure 2.9f, Figure 

2.10b). The bitumen phase homogeneously fills in a tight clay-carbonate matrix and 

microfractures. 

 

Characterization of shale porosity 

Total Porosity 

The average grain density of the Posidonia mudstone increases gradually as a function of 

maturity from ~2.3 g/cm3 at 0.53% Ro, to ~2.5 at 0.89% Ro and ~2.6 at 1.45% Ro (Table 2.2). 

When accounted for this grain density change (see Equation 2), measured total porosities 

show a non- linear trend with increasing maturity of the shale (Table 2.2 and Figure 2.11). At 

0.53% Ro porosities vary between 10-14% and, despite an observed decrease in TOC, decline 

to 2.5-4.5% in the peak oil window (0.89% Ro). In contrast, at gas window maturities, with 

further reduction of the carbon content, a rise in total porosity is observed. Porosities oscillate 

here between 9-14% reaching values similar to those at 0.53% Ro. Due to a small range in 

TOC values at any single maturity, porosities are not directly related to TOC, and only at the 

early oil window maturity do porosities and organic content show a weak negative 

covariation (Figure 2.11). For both peak oil window and gas window samples, the porosity 

values scatter over the measured range of TOC with no apparent trend. 
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Figure 2. 11. Total porosity as a function of maturity and organic carbon content. 
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Figure 2. 12. Grain density change with maturation as measured on “pre-extracted” (squares) and 
“post-extracted” (circles) shale. Solvent extraction significantly increased density of the peak oil 
window maturity shale (HAR 7060 and HAR 7070, 0.89% Ro) with little change in the early oil 
window (WIC 7129, 0.53% Ro) and gas window (HAD 7110, 1.45% Ro). 

 

 

Upon extraction of soluble bitumen, both grain densities and total porosities of the shale 

changed. The most significant increase in the grain density was measured for the peak oil 

window sample, with only little increase in the gas window shale and a slight decrease in the 

early mature shale, both within the method error (Table 2.3 and Figure 2.12). On the basis of 

a change in the grain density of a bulk shale “pre-“ and “after extraction” we estimated the 

amount of the extractable bitumen and thus the “minus-soluble bitumen” total porosity for the 

three samples of medium (HAR 7060, 7070) and high maturity (HAD 7110). Our calculation 

assumed that the extractable bitumen occludes porosity, and therefore its amount is 

equivalent to the fraction of porosity additionally available after this bitumen bitumen was 

removed from the sample. The results show that the amount of the extractable bitumen 

present in samples decreases from 2.8% in the marlstone and 3.4% in the calcareous shale at 

the peak oil window maturities to 0.68% (calcareous shale) in the gas window (Table 2.3), 

accounting for oil saturations ca. 35%, 54% and 7% correspondingly. The estimated total 

porosities after solvent extraction are higher than those measured in the as-received shale 

(Table 2.2), amounting to 6.3-7.8% and 10.1% in the peak oil window and gas window 

samples respectively (Table 2.3). 

 

 



35 
 

SEM observation of Meso- and Macroporosity 

Porosity point counted from BIB images does not show significant difference between 

samples of different maturity, amounting to 1.3% (light lamina) in the Wickensen sample, 

and 1.1% and 1.5% in the Harderode and Haddessen samples respectively (Figure 2.13a). 

Due to the limited image resolution (pixel size equals 15 nm) almost all point-counted pores 

lie within the macropore size range (> 50 nm). Under such conditions, the mesoporosity (2-

50 nm) stays greatly underestimated or, along with the microporosity (< 2 nm), unresolved. 

Consequently, the point counted image porosity is only 14-25% of the experimentally 

measured total porosity, with the highest fraction of resolved porosity found in the oil 

window shale (Figure 2.13b).  
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Figure 2. 13. Point counted image porosity in % (a) and as a fraction of total porosity (b). 

 

Pores were classified using the general classification of Loucks et al. (2009) into 

interparticle, intraparticle and organic. Our division is based on the spatial relation of pores 

with respect to mineral phases and organic matter, and not on the origin of pores. Due to the 

nature of Posidonia Shale minerals and porosity, the following definitions of different pore 

types were adapted for this study: 

 Interparticle: 1) pores between detrital grains, authigenic minerals, nannofossils and clay 

flakes; 2) pores (in 2 or 3D space) associated with the interface of the organic matter and 

mineral matrix that do not visibly extend into an organic particle, and that are either 

irregularly shaped or acquiring shape of the adjacent mineral phase; 

 Intraparticle: 1) pores within single mineral grains or fossil bodies; 2) pores within well-

defined faecal pellets and pyrite framboids; 3) moldic pores formed due to dissolution of 

a) b) 
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mineral phases; 4) pores at the interface of inorganic matrix and organic macerals that do 

not visibly extend into an organic particle, contained within a fossil body, faecal pellet or 

pyrite framboid; 

 Organic: 1) discrete, round, bubble- like pores in the organic matter; 2) sponge- like pores 

within the organic matter, often interconnected and grouped; 3) pores usually at the 

interface of the organic matter and mineral matrix, irregular in shape, but visibly 

extending in 3D into the organic particle; 4) visible cracks within OM particles, often 

with jagged edges and extending into the particle edge. 

Pore network types estimated by a point-counting technique change throughout the 

maturity sequence from exclusively inter- and intraparticle in the low maturity sample (light 

lamina), to inter- and intraparticle dominated in the peak oil window and finally, to inter- and 

intraparticle-rich with moderate proportion of organic pores in the sample of the gas window 

maturity (Figure 2.14). The visual observations of different pore types using high-resolution 

SEM micrographs show a varied assemblage of pores with the size as small as a 5 

nanometers (x 200,000), up to a few µm. 
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Figure 2. 14.  A ternary diagram showing distribution of visible SEM porosity (pixel size 15 nm) in 
three Posidonia samples: WIC 7129 (0.53% Ro)(black circle), HAR 7060 (0.89% Ro) (red circle) and 
HAD 7110 (1.45% Ro) (green circle). 
 
 

In the least mature sample (Figure 2.15), visible pores are associated mainly with the 

biogenic calcite, with no significant porosity within the clay matrix. The typical intraparticle, 

calcite related pores are found within fully-open coccolith canals, coccolith canals partly 
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cemented with authigenic calcite, within fragments of Schizosphaerella as well as between 

fragmented or crushed nanofossils and authigenic calcite phases within well-defined faecal 

pellets (Figure 2.15a-e). Intraparticle pores are also found within zones cemented with 

authigenic calcite, between cements, and within discrete calcite crystals as a result of 

carbonate dissolution (Figure 2.15h). On some occasions, those pores are lined with organics, 

imparting a smooth, pendular shape to pore edges. (Figure 2.15e). As opposed to the 

intraparticle pores, the interparticle, carbonate-associated pores are found mostly between 

carbonate phases and the organo-clay matrix (Figure 2.15i, j). The size and shape of the inter- 

and intraparticle pores is strongly associated with a degree of recrystallization of diagenetic 

carbonates (Figure 2.17i). The size of visible, calcite-associated pores ranges between tens of 

nm to ~3 µm. Pores found in the fossil bodies of Schizopheralles are usually equant and 

straight edged, up to 500 nm in diameter. Large inter- and intraparticle pores associated with 

recrystallized nanofossils can be straight edged or spheroidal, reaching up to 3 µm. 

Non-calcite porosity is relatively minor but small amount of interparticle pores occur 

between flocculated clays, or adjacent to quartz, or pyrite, often at the interface with organic 

matter. These pores can reach 2-5 µm in diameter but also may form narrow < 100 nm rims 

around or adjacent to mineral phases or organic matter (Figure 2.15k). Elongated intraparticle 

pores occur within mica group minerals, more pronounced where pyrite has precipitated 

between mica platelets (Figure 2.15f). Large intraparticle pores, usually lined with organic 

matter, can also be sporadically found within pyrite framboids (Figure 2.15g). 

The majority of organic matter at the maturity 0.5% Ro is not internally porous, and 

occurrences of intraparticle organic pores are very rare. Those include remnant porosity 

within walls of not fully compacted Tasmanales bodies (Figure 2.15l) or well-defined, round 

or angular, < 1 µm pores found within arcuate-shaped, terrestrial organic particles.  

In the oil window shale, most of the pore types previously observed is absent, lost due to 

compaction or occluded by solid bitumen (Figure 2.10). Instead, several new types of pores 

are present of both intra- and interparticle nature (Figure 2.16). Typical oil window pores are 

associated with organic matter and/or authigenic phases. Microfracture-resembling pores, 

elongated and with jagged edges, cross-cut organic particles (Figure 2.16a) often up to their 

edges (Figure 2.16b). Many pores are found at the organo-mineral interface, with complex 

shapes resembling shapes of the surrounding mineral phases (Figure 2.16e). Most of those 

interface pores are associated with diagenetic calcite, and are occasionally filled with the 

authigenic phases (Figure 2.16f). Pores found directly within organics are always linked in 

3D space to particle edges (Figure 2.16 c, d).  
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Figure 2. 15. FIB-BIB-SEM micrographs of the WIC 0.53% Ro shale. The bedding is perpendicular to 
the view plane. a) Intraparticle pores within a coccolith canal; b) Intraparticle pores in a fragment of 
Schizophaerella; c) Intraparticle pores in a crushed faecal pellet; d) Intraparticle pore in a strongly 
recrystallized faecal pellet; e) Intraparticle pores lined with the organic material in a fragment of 
Schizophaerella; f) Intraparticle pore in clay. The pore formed after pyrite precipitated within the 
clay material; g) Intraparticle pore within a pyrite framboid; h) Intraparticle calcite dissolution pore; 
i) Interparticle pore associated with recrystallizing calcite; j) Interparticle pore associated with 
biogenc calcite; k) Organic associated pores at the interface with the mineral matrix; l) Organic pore 
within an algal body. Cal – calcite, Dol – dolomite, Py – pyrite, Qtz – quartz, OM – organic matter. 
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Figure 2. 16. FIB-BIB-SEM micrographs of the HAR Ro 0.89% shale. The bedding is perpendicular 
to the view plane. a) Fracture within the OM; b) Fracture at the interface of the OM and calcite; c) 
Interparticle pore at the interface with the OM and calcitte; d) Interparticle pores within the OM; e) 
Interparticle pores at the interface of the OM and diagenetic calcite; f) Interparticle crack-like pore 
from the interface of the OM with diagenetic calcite. An authigenic calcite crystal precipitated within 
the pore; g) Interparticle pore between dolomite grains/crystals and the shale matrix; h) Fracture 
within clay; i) Intraparticle, cleavage associated pore in mica; j) Intraparticle pores within a pyrite 
framboid; k) Intraparticle dolomite dissolution pore; l) Intraparticle pore associated with 
recrystallized calcite. Cal – calcite, Dol – dolomite, M – mica, Py – pyrite, Qtz – quartz, OM – 
organic matter. 
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Despite the prevalence of organic-associated porosity, pores are also hosted by inorganic 

domains (Figure 2.16g). Clay-mineral platelets break away yielding fracture or cleavage-

related porosity (Figure 2.16 h, i), occasionally partially filled with authigenic phases. Crack-

like pores are also observed at clay-carbonate interfaces. In 3D Slice and View 

reconstructions cracks often follow the shape of underlying or overlying organic particles. 

Within carbonate minerals, intraparticle dissolution pores can be found (Figure 2.16k) 

ranging from < 100 nm up to 2 µm. Rare intraparticle porosity, not clogged by bitumen, is 

also encountered within recrystallized authigenic calcite domains (Figure 2.16l) and pyrite 

framboids (Figure 2.16j). 

Gas window shale, as opposed to the shale samples of lower maturities, shows presence 

of pores contained within organic particles (Figure 2.17). The visible intraorganic porosity is 

highly heterogeneous, with values ranging between 0-40%, and 65% of point counted organic 

particles showing no sign of porosity at all. Although the shape and size of organic pores 

form a continuum, we distinguished several end-members. 

Isolated, bubble- like pores are limited in size, often < 100 nm in diameter, and their 

visualization requires higher magnifications. Although they are present in all shale domains, 

their distribution within organic particles is varied. They can be uniformly distributed within 

an organic particle (Figure 2.17a), occupy only a fraction of a particle (Figure 2.17c) or be 

concentrated at the particle margins (Figure 2.17f).  

Similar to round, ‘bubble’ pores, but usually clustered in groups, are sponge- like pores 

(Figure 2.17b). They are very often visibly interconnected in 2D and 3D Slice and View 

images, and thus they have elongated shapes with the size exceeding 100 nm. The elongation 

often follows the phase margin if developed at the boundary of a visibly porous and non-

porous organic area or near the organic- inorganic interface. Similarly to discrete pores, 

sponge-like pores may be evenly distributed or occupy only a fraction of an organic particle. 

With the increase in size and connectivity of individual pores, sponge- like pores may be 

replaced by irregularily shaped or speroidal organic pores. Although often present directly 

within organic particles (Figure 2.17d), in 3D they are usually associated with the organic-

inorganic interface (Figure 2.17e). In the 3D Slice and View images, the interiors of complex 

pores branch out into numerous spongy-pores, penetrating the organic mass (Figure 2.17e). 

Depending on the size of a host organic particle, a diameter of the single complex pore may 

reach even ~500 nm. 
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Figure 2. 17. FIB-SEM and BIB-SEM micrographs of the HAD 1.45% Ro sample. The bedding is 
perdendicular to the view plane. a) Discrete, bubble-like pores within an organic particle; b) Spongy-
organic pores, often visibly interconnected and grouped; c) Pendular-organic pores; Discrete pores 
are also present; d) Complex organic pore at the interface with the mineral matrix; e) Complex 
organic pore partly contained within the organic particle, occupying the interface with the mineral 
matrix in the 3D space; f) Organic pores bordering a terrestrial maceral ; g) Partly compacted 
organic pores within a terrestrial maceral; h) Interparticle pore at the interface of an organic partcle 
with diagenetic calcite and clays; i) Interparticle pores between clusters of pyrite framboids, partly 
contained in the OM. Cal – calcite, Py – pyrite, Qtz – quartz, OM – organic matter. 
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Figure 2. 18. FIB-SEM and BIB-SEM micrographs of the HAD 1.45% Ro sample. The bedding is 
perpendicular to the view plane. a) Interparticle pore between flocculated clays; b) Interparticle pore 
between diagenetic calcite crystals. The pore is lined with organics and thus may resemble organic 
porosiy; c) Interparticle pores at the interface of the OM and diagenetic calcite. Note discrete and 
spongy pores within the organic particle; d) Intraparticle pores found in a fossil fragment; e) 
Intraparticle, complex organic and spongy pores in a pyrite framboid; f) Intraparticle pores between 
clay platelets. Note close association of the porosity with the OM; g) Intraparticle pores within clays 
evolved due to precipitation of diagenetic pyrite; h) Intraparticle dolomite dissolution pore; i) 
Intraparticle pores within recrystallized calcite. Cal – calcite, Dol – dolomite, Py – pyrite, OM – 
organic matter. 
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Also similar in shape to sponge- like pores, but usually associated with particle margins 

and less likely to agglomerate into complex pores, are oval ‘pendular’ pores (Figure 2.17c). 

Ranging in diameter from a few tens to a few hundreds of nanometers, a single ‘pendular’ 

pore can occupy a large fraction of a particle or alternatively, it may be located only at the 

particle interface. Within an organic particle, ‘pendular’ pores can co-exist with other organic 

pore types. 

The last type of intraparticle organic pores is found with terrestrial macerals (Figure 

2.17g). The shape of those pores varies from angular to oval, and their size may reach up to 1 

µm in diameter.  

Although intraorganic pores are the most characteristic feature of the gas window 

Posidonia shale, at the magnifications used in this study it is the inorganic-hosted porosity 

that predominates. However, this may be only an artifact resulting from the limited image 

resolution, and, with only small % of total porosity resolved in images, the real percentage of 

the organic pores may be dominating. Similarly to the irregular and complex organic pores, 

inorganic-hosted pores are usually present at the organic- inorganic interface, but as opposed 

to the first, they visibly do not branch out into an adjacent organic mass (Figure 2.17h, Figure 

2.18a, Figure 2.18 d-f). The interface pores can be jagged edged, with the irregularly shaped 

organic face (Figure 2.17h), or remain smooth (Figure 2.18b, c), much resembling the smooth 

interface pores already present in the oil window (Figure 2.16e). Depending on their relation 

to the surrounding inorganic phases, the inorganic-hosted pores can be classified either as 

intraparticle or interparticle. The locations of the highest density of the interface pores 

include faecal pellet domains and pyrite framboids, but the jagged-shaped pores can also be 

found in vicinity of detrital grains and clay packages (Figure 2.18f). The interface pores are 

the largest pores present in the gas window Posidonia, and their size may exceed 2 µm in 

diameter. 

Other inorganic pores types in the gas maturity sample are relatively uncommon. Those 

include: intraparticle pores within mica group minerals (Figure 2.18g), intracrystal carbonate 

dissolution pores (Figure 2.18h) or possibly blind, remnant pores within recrystallized 

carbonate phases (Figure 2.18i).  
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Discussion 

 

Sedimentological controls on mineralogy and texture 

A laminated texture of the Posidonia shale is the result of variations in the relative 

amounts of biogenic calcite and detrital clay-rich material. This variation can be observed 

both at a sub-centimetre scale, mainly in the low maturity shale, and a micron scale at all 

maturity levels. Littke (1991) ascribed the vertical variations in the amount of carbonate and 

clay minerals to relative changes in the rate of nutrient-dependent primary production in 

surface waters as compared to the supply of terrigeneous clays. Similarly, increased nutrient 

supply and higher primary production due to flooding of large shelf areas would account for 

higher carbonate content in the marlstone unit. Our data supports the interchangeable 

relationship between the clay and calcite content and points to moderate dilution of organic 

matter by the biogenic material. Similar vertical laminations were observed in the Posidonia 

Shale deposited in the Southwest German Basin and ascribed both to longer-term variations 

in sea- levels and short-term climatic changes (Röhl et al., 2001). According to Bour et al. 

(2007) and Röhl et al. (2001), relative rise in the sea level could enhance sea water 

circulation, destabilize the water column and therefore explain episodes of bottom 

colonization and presence of only indistinct lamination in some shale intervals. Alternatively, 

distinct type of lamination, found in the upper portion of the Posidonia sequence, could point 

to long-term anoxic conditions in the benthic environment (Röhl and Röhl, 2005). Prolonged 

sea water stratification and high rates of primary production as indicated by Röhl et al. (2001) 

could be responsible for high TOC values and the lack of bioturbation in our samples. 

Predominantly concordant contacts between laminae as observed in this study confirm the 

primary nature of the lamination in the low maturity shale. As opposed to Trabucho-

Alexandre et al. (2012) who investigated Posidonia Shale from the Dutch Central Graben 

characterized by a higher clastic input, apart from rare layers of silt-sized material of 

unknown origin we did not encounter evidence of wave or current activity in the LSB 

Posidonia mudstone.  
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Carbonate diagenesis  

The sub-centimetre lamination pattern is largely obliterated in shales of the oil and gas 

window maturities, and based on the high-resolution SEM micrographs, could be explained 

by the intense diagenesis of the shale components. For instance, lack of distinct fossil shapes 

in the oil and gas window shale, and even low maturity carbonate-rich lower Posidonia, 

reflects their diagenetic transformation and rerystallizaion. Similar behavior was commonly 

reported for diagenetically changed sediments originally rich in biogenic calcite (e.g.; Hicks 

et al., 1996). One of the proposed mechanisms for early calcite precipitation involves an 

increase in carbonate alkalinity of the pore waters due to bacterial organic matter degradation 

(Dix and Mullins, 1987). Early precipitation of cement in the pore space of Posidonia is 

indicated by the presence of calcite-filled uncompacted coccolith canals and thus high minus-

cement porosity (Hesse, 1990; Macquaker et al., 2007). Presence of this early carbonate 

cement is consistent with the possibility that biogenic gas formed in the early mature 

Posidonia as reported by Schultz et al. (2013). However, taking into account a constant ratio 

between clay and carbonate phase regardless of the maturity level, it is plausible that other 

and less temperature- limited processes remained vital for the net redistribution of the 

carbonate phase. For instance, recrystallization of carbonates may result from the 

interexchange of ions with the pore water solutions and their transfer from less to more stable 

calcite surfaces with no net gain or loss of solid phase (Fabricius, 2003). This type of 

recrystallization will lead to more equant shape of calcite particles even when not in direct 

contact with other inorganic grains. The recrystallization of carbonates may further proceed 

as a pore stiffening effect due to development of contact cement, but may also involve 

pressure solution and calcite cement precipitation in pores away from the stress point 

(Fabricius et al., 2008; Scholle and Halley, 1985).  

Although usually observed in carbonate-dominated mudstones and limestones, pressure 

solution and calcite recrystallization also occurs in organic rich, clay-bearing limestones or 

clay-bearing chalks (Marshak and Engelder, 1985). The diagenesis of calcite in organic- and 

clay-rich shales has not been studied in detail, but our observations suggest that it is different 

to that observed in carbonate rocks. Chemical processes such as pressure solution commence 

in chalk at temperatures as low as 20°C, with dissolution seams and stylolites common at 

temperatures around 30-40°C (e.g. Mallon and Swarbrick, 2002). Carbonate recrystallization 

in chalk is very advanced by 100-120°C, similar to the temperature experienced by our 

lowest maturity sample. In contrast, calcite cementation and recrystallization in Posidonia are 
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limited at Ro = 0.53%, becoming increasingly evident at 0.9% (ca. 140°C) and 1.45% (ca 

170°C). Whilst we do not have sufficient information to be conclusive about the apparently 

retarded carbonate diagenesis in the Posidonia compared to chalk, experimental data suggest 

that argillaceous chalks, due to the inhibition of carbonate precipitation, are less prone to 

chemical compaction than pure chalk (Baker et al., 1980). This is consistent with our 

observations that calcite diagenesis is more advanced in the more carbonate-rich Posidonia 

marlstone compared with the more clay-rich middle and upper Posidonia units. It has also 

been observed that diagenesis and cementation can be retarded in oil- filled carbonate and 

quartzose reservoirs as a result of alterations in the wetting state of the reservoir from water-

wet to oil-wet and a concomitant reduction of the amount of water available for solution 

transfer (e.g. Worden et al., 1998; Heasley et al., 2000; Scholle, 1977). It is certainly 

plausible that in an organic-rich shale like the Posidonia carbonate surfaces become oil-wet 

even prior to oil generation, as a result of sorption of polar organic molecules, and the arrest 

in the transfer of solutes (van Duin and Larter, 2001; Aplin and Larter, 2005).  

Without further support from the isotopic or petrophysical data, we cannot be conclusive 

about which diagenetic process was a dominant factor in the redistribution of calcite in 

Posidonia. As observed in SEM images, recrystallization features and contact-cement 

structures appear as early as 0.53% Ro, and are significantly better developed in the more 

calcite-rich laminae. The recrystallization of calcite as a major process could explain lack of 

dissolution or etching on nanofossils as reported by Bour et al. (2007) from the immature 

Posidonia from the Southwest German Basin. It could also account for the high minus-

cement porosity and crystal fusing features as seen in the oil and gas window samples under 

the oil-wet conditions. In contrast, presence of cements with a uniform crystal lattice as well 

as fracture filling calcite may suggest that pressure solution occurred at some point. The 

dissolution may have been followed by the precipitation from carbonate ions-rich pore waters 

of both calcite and dolomite. As significant dolomitization occurred at oil window 

temperatures, it is unlikely that Mg required for dolomite formation was released due the 

smectite to illite transformation reaction (cf McHargue and Price, 2006). For instance, 

Kanitpanyacharoen et al. (2012) found that degree of preferred orientation in Posidonia clays 

between 0.68-1.45% Ro is not significantly different and concluded that the fabric evolved 

early in the history. Likewise, it is unlikely that the dolomite precipitation was induced by 

anaerobic oxidation of biogenic methane. The SEM micrographs (Figure 2.6 and 2.7) 

evidently demonstrate that the intensity of dolomite formation increased at oil window 

temperatures (> 100-120°C), too extreme to sustain the bacterial activity (Berner, 1968; 



47 
 

Raiswell and Fisher, 2000). An alternative source of magnesium was suggested by Bernard et 

al. (2013) and linked to the circulation of brines (Munoz et al., 2007). 

 

Porosity loss through compaction 

SEM visible porosity associated with faecal pellets and recrystallized biogenic fragments 

in the low maturity Posidonia constitutes only ca. 10% of total porosity and its further change 

with maturity is minor. The remaining porosity, especially that associated with clays and 

kerogen, is not resolved with the microscopic methods applied in this study.  An overview of 

the < 6 nm meso-and microporosity, along with its distribution in the Posidonia shale, is 

provided by Rexer et al. (2014). A clear division between resolved and unresolved porosities 

and their attribution to specific domains points to the importance of original rock fabric as a 

starting point to model the behaviour of porosity retention, loss and development.  

The loss of porosity in shales is driven primarily by compactional processes, both 

mechanical (Aplin and Yang, 2005) and chemical (Bjørlykke, 1999). Although mechanical 

compaction is significant for muds at shallow burial (Dræge et al., 2006), according to 

Emmanuel and Day-Stirrat (2012) it may have a negligible impact on pore size distributions 

of the smallest pores once it is established that the magnitude of preferred orientation of clays 

ceases to change. As already mentioned, Kanitpanyacharoen et al. (2012) found that a degree 

of the preferred orientation in clays in Posidonia between 0.68-1.45% Ro is not significantly 

different and therefore, their further compaction within this interval might have been minor. 

However, we found clear evidence for the physical compaction of the shale fabric between 

0.53-0.89% Ro, as associated with the collapse of the algal bodies (Figure 2.7a. Taking into 

account the loss of the organic matter volume upon maturation, it is more difficult to assess 

the overall effect of compaction on porosity loss in organic rich shales without taking into 

account a degree of the kerogen transformation and bitumen retention. Without this 

knowledge, it is also impossible to verify to what degree the chemical compaction affected 

the porosities. Recrystallization of calcite without porosity modification is already known 

from chalks (Fabricius et al., 2008) and it might have been important in the lower maturity 

Posidonia. Presence of uniform calcite and dolomite cements (Figure 2.7) points that at later 

stages of diagenesis porosity loss definitely occurred, most likely due to pressure solution. 

However, the large scale pressure solution and pore cementation might have been mostly 

arrested by bitumen migrating into fossiliferous zones and occluding the pore space. Still, it is 

plausible that, similarily to oil-saturated chalks, minor recrystallization of calcite continued 
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even under oil-wet conditions (Fabricius, 2003). Similarly, the presence of cement within 

algal cysts suggests that local cementation was active even under oil generation conditions. 

Therefore, we cannot preclude, that in the organic rich shales diagenetic processes may partly 

continue in the peak oil window, taking advantage of the kerogen volume loss upon thermal 

conversion to hydrocarbons. That also indicates that the impact of compaction may be 

underestimated when taking into account merely the absolute change in the visible SEM 

porosity and the change of volume in the organic component must be quantified. 

 

Evolution of organic matter with maturation 

Although much research was already dedicated to the composition of different kerogen 

types and their decomposition paths under increasing thermal stress (e.g. Behar and Pelet, 

1986; Behar and Vanderbroucke, 1987; Behar et al., 1992; Behar et al., 2010; Bernard et al., 

2011; Dieckmann et al., 1988; Guo et al., 2009; Hill et al., 2003; Leythaeuser et al., 1988; 

Lewan et al., 1997; Lorant and Behar, 2002; Mann et al., 1991; Mao et al., 2010; Michelis et 

al., 1996; Putschew et al., 1998; Rullkötter and Michaelis, 1990; Rullkötter et al., 1988; 

Schenk et al., 1997; Vanderbroucke et al., 1993), the mechanisms of primary migration, 

phase behaviour, bitumen entrapment and organic porosity evolution are still a subject of 

discussion. In this study, we showed a consistent decrease in TOC, S1, S2 and Hydrogen 

Index from early oil window to gas window conditions, consistently with observations 

reported in Posidonia by Leythaeuser et al. (1988) and ascribed to the processes of petroleum 

generation, expulsion and cracking. The net effect of the generation and expulsion processes 

in Posidonia was documented therein between maturities 0.48 to 1.45% Ro as a progressive 

increase of the rock extract composition in aliphatic compounds and a decrease in the heavier 

polar fraction. In this study, direct observations of the Posidonia organic matter under the 

microscope confirm its progressive thermal degradation, reflected as a change in the volume 

and composition of macerals (Rullkötter et al., 1988). Specifically, a general change in the 

UV light response (Khavari-Khorasani, 1987; Khavari-Khorasani and Michelsen, 1992) is 

consistent with the increasing aromaticity of the maturing Posidonia kerogen (Bernard et al., 

2011). Thermal degradation of organic matter is also corroborated by a measured grain 

density rise between 0.53-1.45% Ro, driven by condensation and aromatization of the carbon 

structure. Degradation of organic matter accounts then for a major TOC loss with progressive 

maturity, and overprints primary differences in the organic content inherited from marginally 
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varied environmental conditions during deposition of the Posidonia Shale sequence (e.g. 

varied degree of dilution by the biogenic carbonates).  

Tissot and Welte (1984) recognized that the composition of petroleum generated during 

the thermogenic conversion of the accumulated organic matter is a function of kerogen type 

and maturity. To understand the mechanisms of kerogen decomposition in the subsurface, 

open and close pyrolysis experiments were performed by various authors and general models 

of the organic matter transformation were developed (e.g. Behar et al. 1992, 1995, 2008; Guo 

et al., 2009; Horsfield et al., 1992; Lewan, 1997). Behar et al. (2008) proposed a kinetic 

scheme where kerogen decomposes, mainly through depolymerization reactions, into very 

viscous liquid rich in NSO (nitrogen, oxygen and sulphur) compounds, followed by 

decomposition of the last into more soluble non-hydrocarbon compounds and finally, 

cracking into hydrocarbons. The presence of the heavy, intermediate bitumen phase was also 

proposed by Michelis et al. (1996) and Lewan (1997). Our experiments on unextracted and 

extracted samples confirm the presence of a substantial amount of a non-volatile bitumen 

phase residing in kerogen of the low maturity Posidonia shale (Clementz, 1978; Wilhelms et 

al., 1990). Consistent with little change in the bulk shale grain density after the organic 

extract was removed (Figure 2.12), we presume that this early bitumen is most likely 

composed of high molecular weight compounds, imparting its viscous nature and low 

mobility in the shale matrix. Dominance of the heavy bitumen over total extract substantiates 

that relatively few light compounds are generated directly from kerogen. The nature of 

petroleum changes in the oil window, and at the peak window maturity it is dominated by 

lighter compounds responsible for a measurable decrease in grain density of the bulk shale. 

Similar density reduction was recently reported by Rexer et al. (2014) on Posidonia kerogen, 

implying high adsorptive capabilities of the organic matter leading to retention of oil (Jarvie 

et al., 2007). Presence of lighter oil at higher maturities likely reflects breakage of C-C bonds 

(Dieckmann et al., 1988; Rullkötter et al., 1988; Schenk et al., 1997) and in Posidonia it is 

paralleled by the formation of an insoluble high molecular weight residue, often described as 

prechar. Occlusion of shale porosity by this insoluble heavy bitumen indicates that a fraction 

of the early generated petroleum remained entrapped in the shale matrix (Figure 2.10) (Hill et 

al., 2003; Lewan 1997). Similar solid bitumen, although of different genesis, is known not 

only for clogging the pore space and closing pore throats in oil and gas reservoirs (Hwang et 

al., 1998; Lomando, 1992) but is also found as a product of solidification of heavy oil in 

coals (Mastalerz and Glikson, 2000). Whilst we do not have information on the exact chemo-

physical nature of the organic particles occupying porosity in the oil window maturity 
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Posidonia shale, it is plausible that its precursor was a heavy, viscous non-hydrocarbon or 

hydrocarbon phase that migrated within the source rock, progressively developing more 

aromatic and condensed structure upon cracking to hydrocarbons (Behar et al., 1997; 

Horsfield et al., 1992; Michelis et al., 1996). Such conclusion is consistent with Pelet et al. 

(1986), who analyzing residual but soluble phase demonstrated preferential retention of the 

heaviest and most polar molecules in the source rock. If our solid bitumen is indeed a spent 

residue of the viscous bitumen generated from kerogen, it could be classified as post-oil 

(Curiale, 1986) or secondary (Curiale, 1983; Stasiuk, 1997). Indeed, EDX analyses on solid  

bitumen found in a fracture in the oil window sample, quite in agreement with e xtract 

analyses performed by Leythaeuser et al. (1988), still show the presence of sulphur originally 

incorporated in the marine kerogen. 

 

Primary migration of petroleum 

The occlusion of porosity by residual bitumen phase in the oil window validates the 

processes of micromigration and trapping as a mechanism leading to an increased small-scale 

heterogeneity of the organic matter. The micromigration of the generated petroleum was 

already demonstrated by Leythaeuser et al. (1988) as a mechanism leading to a fractionation 

of the soluble bitumen phase, and its progressive enrichment in a non-eluted residue towards 

macrofractures. It is therefore reasonable to assume that the bitumen phase in Posidonia 

became mobile and started filling pores once enriched in relatively smaller and lighter 

compounds. Vanderbroucke at al. (1993) argue that compounds lighter than C14+ may be 

important for migration of heavier compounds by dissolving them and reducing density of the 

mobile phase. Alternatively, Lewan (1997) proposes that it is solubility with water and 

volume increase that enable formation of a continuous bitumen network and migration of the 

bitumen phase within the source rock. The formation of a continuous bitumen network for 

effective migration is also recognized by Tissot and Welte (1984). Alternative proposed 

mechanisms enhancing separation of the heavy bitumen and lighter hydrocarbon phase may 

include preferential sorption on minerals and organic matter (Sandvik et al., 1992), or phase 

immiscibility in the presence of water (Lewan, 1997). In our study the micromigration 

mechanism is corroborated by microscopic observations, revealing highly dispersed nature of 

the solid bitumen, forming a semi-continuous network (Landis and Castano, 1995). The 

dispersion of this retained bitumen phase might be traced back to the dispersion of the 

amorphous organic matter in the immature shale, likely the main contributor to the petroleum 
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generated, here partly sulphurized as a result of the limited availability of the reactive iron in 

the biogenic-rich intervals (Hutton, 1994; Tao et al., 2012) (Figure 2.9a). Moreover, as 

opposed to the immature kerogen, mainly associated with the clays (also Littke, 1991), the 

peak oil window organic matter shows a close spatial association with fossiliferous domains, 

indicating that the micromigration indeed occurred. It is plausible, that analogous to reservoir 

oil (Hwang et al., 1998), the source rock bitumen followed the path of the least resistance and 

relatively quickly filled calcite-pores as zones of the lowest capillary pressure. The highest 

concentrations of solid bitumen in the zones of recrystallization of biogenic calcite show that 

the migration might have been inhibited once a migrating or in-situ generated phase became 

trapped in a porous, rigid zone. The lack of driving force to push the petroleum out of the 

system, despite the presence of light hydrocarbons, would have therefore accounted for the 

large amount residual bitumen accumulated. 

 Further evidence for the small scale heterogeneity of organic matter as a result of the 

bitumen flow and entrapment is provided by the FIB polished SEM micrographs of the 

overmature shale sample. The distinction between porous and non-porous organic regions has 

been already observed by several authors and ascribed to differences in structural 

composition of organic particles (Bernard et al., 2010; Loucks et al., 2009). For instance, the 

internally porous organic regions were identified by Bernard et al. (2010) and Bernard et al. 

(2012) as pyrobitumen, a residue after thermal cracking of oil, and opposed to kerogen, 

asphaltene and NSO-rich bitumen showing no signs of visible porosity. If different organic 

compounds behaved differently upon increasing thermal stress, then their distribution can 

reveal clues about their possible genetic association and migration mechanisms. In Posidonia, 

close association of porous and non-porous particles, often remaining in direct vicinity, 

suggests that pyrobitumen-like, porous phases might have directly evolved from the 

neighbouring non-porous particles, and at higher temperatures, with the limited scope to flow, 

underwent further thermal cracking. In this case, the visible pore structure likely marks a 

boundary between two different organic compounds. This scenario may also apply to non-

porous arcuate-shaped terrestrial macerals, often with a rim of porous organic phase.  

 

The role of organic matter on porosity modification in the oil window 

It is experimentally proven that substantial amount of porosity in organic rich rocks may 

be created during the conversion of kerogen to petroleum (Kanitpanyacharoen et al., 2013; 

Oberlin and Villey, 1980). In Posidonia Shale, despite significant loss of TOC, porosities do 
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not show a consistent increase, but instead reach minimum values at the peak oil window 

maturity (Figure 2.11). Relatively high porosity was found in the early mature sample 

characterized by the largest content of the extractable bitumen. We presume that this early 

bitumen did not enter the mass migration stage, remaining associated with kerogen (Sandvik 

et al., 1992) and thus physically immobile to flow (Hwang et al., 1998). According to Landis 

and Castano (1995), bitumen, as a product of the thermal conversion of kerogen, may start 

filling porosity of the shale as early as at 0.4% Ro. In Posidonia, early signs of migration may 

be reflected by the presence of pendular pores, with organics lining mineral walls. As 

opposed to the early stages of petroleum generation, the loss of porosity was substantial in the 

peak oil window Posidonia, and although partly related to compactional processes, it was 

closely associated with the generation and micromigration of petroleum (Lewan, 1997). 

Jarvie (2012) suggested that the lack of visible organic porosity at the peak oil generation 

maturities is due to solubility of oil in kerogen and consequent kerogen swelling. Selective 

absorption of petroleum compounds, reflected by swelling of the organic polymers, was also 

proposed by Sandvik et al. (1992) to govern yield of petroleum expelled from a source rock. 

Our experiments showed that oil extracted from the peak oil window Posidonia shale has a 

strong affinity for organic matter and is equivalent to 2-3% of porosity. Assuming that this oil 

is homogeneously distributed within organics, the volumetric ratio of the soluble/insoluble 

organic matter would reach 1.2-1.3. This value is consistent with swelling ratios, varying 

between 1.1-1.7, measured by Larsen and Li (1992) on type II Albany kerogen using a set of 

solvents of different polarity. While we do not know if in the peak oil window kerogen 

physically expanded (Lewan, 1997), our results show that organic matter can accommodate 

oil and it is therefore not unreasonable to assume that light oil was a driving force for 

petroleum migration, and porosity loss (Pelet et al. 1986). Still, a variety of pores associated 

with organic matter exists in the peak oil window Posidonia shale. For instance, the 

appearance of pores accumulated primarily at the interface of organic and inorganic phases 

might indicate not only volume loss due to exsolution of lighter hydrocarbons 

(Kanitpanyacharoen et al., 2013), but also provide evidence for the low mobility of the 

bitumen phase. Although those pores are commonly interpreted as dessication, 

depressurization or post-coring phase alteration features (Milliken et al., 2013), it is not 

unreasonable to think that similar pores could be a product of dissolution and limited 

recrystallization of carbonate phases within viscous and ‘plastic’ organic polymer susceptible  

to shrinkage after initial swelling (Simons, 1979). Curtis et al. (2013) who analyzed pores in 

the Avalon Shale suggested that oil window porosity might be related to pressure build up 
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during petroleum generation and fracture formation. Indeed, fracture- like pores with jagged 

edges developed in Posidonia Shale, but they are relatively scarce and subordinate to 

microscale, calcite or bitumen filled fractures. The general scarcity of the organic porosity in 

the oil window Posidonia shale, despite major loss of the organic carbon, may be also 

considered in terms of the phase behavior. It is reasonable to expect that in the type II 

kerogen like Posidonia bitumen phase was undersaturated to gas before the onset of the oil-to 

gas cracking. Consequently, any gas molecules generated early from kerogen or NSO-rich 

bitumen were most likely dissolved in the liquid phase and expelled (Pepper and Dodd, 1995; 

Schenk et al., 1997; Tan et al., 2013; Waples, 2000). 

 

Organic porosity in the gas window 

RockEval experiments performed on Posidonia shale show decrease in the content of 

both total oil and organic carbon between 0.89-1.45%, coinciding with the formation of the 

microscopically visible, isolated, spongy and complex organic pores, similar to those reported 

by Milliken et al. (2013) from the overmature Marcellus Shale. Such clear relation in HI and 

porosity appearance suggests that the evolution of the gas window porosity should be 

interpreted in the light of the thermal cracking of the kerogen and residual hydrocarbons 

(Behar et al., 2008). Apart from the synchrotron-based study by Bernard et al. (2011) and 

thorough SEM petrographic analysis by Milliken et al. (2013), there are no sufficient studies 

explaining what governs the appearance and distribution of organic porosity in overmature 

organic-rich shales. Bernard et al. (2011) and Bernard et al. (2012) linked intraorganic pores 

encountered both in the Barnett and Posidonia Shale with residual pyrobitumen. Such 

association is consistent with Loucks et al. (2009) who suggested that the appearance of 

organic pores may be related to exsolution of thermogenic gas molecules. Indeed, pyrolytic 

experiments performed by Horsfield and Dueppenbecker (1991) on the Posidonia kerogen 

revealed increased ratio of C2-C5/C6+ of pyrolysate at high temperatures, ascribed by them to 

the secondary breakdown of naphthenoaromatic units and gas generation. In our study and at 

the scale of the BIB/SEM images, only ~25% porosity is contained directly within organics, 

with ~75% remaining mineral associated. As these pseudo-interparticle and -intraparticle 

pores were to a large extent occluded by the solvent insoluble bitumen phase in the peak oil 

window, we presume that their evolution, similarly to the intraorganic pores, is the result of a 

thermal decomposition of the organic material. A variety of organic pores that evolved 

between 0.89-1.45% Ro points to the small-scale heterogeneity of the organic material in the 
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shale matrix at the onset of cracking, and raises questions about the phase of the cracked 

hydrocarbons. For instance, to explain accumulation of pores in the fossiliferous zones and 

pyrite framboids one may have to recall primary migration mechanisms already discussed in 

this chapter, dissolution of oil in initially heavy bitumen and fractionation of bitumen into 

polar and lighter compounds of different mobility. The prevalence of calcite zones or pyrite 

framboids as locations of bitumen entrapment and secondary porosity development is 

reasonable considering a large amount of potential pore space physically protected against 

compaction, that could be filled with the migrating and in-situ generated bitumen, the lack of 

driving force to expel petroleum from the rigid framework, and also high retention capability 

of residual bitumen for the generated oil (Pepper and Dodd, 1995). 

Although we cannot be conclusive about the exact role of bitumen heterogeneity on a 

distribution of organic porosity, many authors point to the importance of hydrogen donor 

compounds such as asphaltenes or hydroaromatics as preventing cross- linking during 

cracking reactions (Behar and Pelet, 1988; Michelis, 1996; Schenk et al., 1997) and therefore 

delaying the conversion and aromatization of the organic polymers (Lewan, 1997). On the 

other hand, Tiem et al. (2008) believed that although the absence of hydrogen donors may 

enhance cross- linking and reduce oil potential of an organic molecule, it will increase its gas 

potential at higher temperatures. Therefore, we presume that the heterogeneity of the organic 

phase in terms of porosity development in Posidonia could mimic different chemophysical 

properties of the organic molecules at the time of cracking, their association with unexpelled 

oil and their potential to release different hydrocarbon fractions including wet gas and 

methane. Pyrolysis experiments on various coals revealed different potential for porosity 

development depending on the maceral composition, their plastic properties as well as coal 

rank, with the viscosity and the advance in cross- linking shown to control an extent of the 

coal devolatilization (Alvarez et al., 1997). Similarly, different pyrobitumen precursors, 

related to dealkylation of NSO compounds or aromatic condensation reactions were also 

proposed by Hill et al. (1996) and could account for different optical properties of reservoir 

pyrobitumens as encountered by Stasiuk (1997). In the light of this discussion, the bubble-

like nature of some pores may indeed represent the last step in gas exsolution from already 

polycondensed aromatic molecules (Tiem et al., 2008), which were not able to release the 

pressure build up during gas generation but were viscous enough to prevent pore closure.  

Despite that demethylation of residual kerogen is often reported from pyrolytic 

experiments (Guo et al., 2009), it is still debatable whether residual kerogen itself can 

participate in development of organic porosity at gas window maturities. Bernard et al. 
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(2011) did not find any porosity in the overmature kerogen. Similarly, our SEM micrographs 

show that in the HAD sample approximately 65% of organic particles are not visibly porous. 

Recent sorption experiments by Rexer et al., (2014) found that non-soluble bulk organic 

matter extracted from the overmature Posidonia shale is microporous, but they did not 

separate kerogen from residual bitumen. It is plausible that the presence of internal 

microporosity will facilitate diffusive release of gaseous moieties from kerogen and does not 

favour development of pores (Vanderbroucke and Largeau, 2007). 

 

Summary and conclusions 

Posidonia Shale from the Hils syncline is an organic-rich rock following a maturation 

pathway typical for the Type II kerogen source rocks. Due to its relatively small 

heterogeneity in terms of facies development between rocks of different maturities, it is a 

natural laboratory which enables to track evolution of organic and inorganic components 

under increasing thermal stress. The most volumetrically significant diagenetic changes 

involve carbonates, both calcite and dolomite. Deposited as biogenic nannofossils, calcite 

behavior, its recrystallization, dissolution and reprecipitation is controlled by the bulk 

mineralogy, texture, organic richness and thermal maturity of the shale. We found that both 

high clay content as well as petroleum generation and retention slow down chemical 

compaction and irreversible porosity reduction as observed e.g. in chalks. Such behaviour 

leads to high minus-bitumen porosities as encountered in the peak oil window Posidonia. 

Our observations show that small-scale clay-calcite lamination of the Posidonia Shale 

underlies heterogeneity of the residual organic matter in shales of higher maturities as a result 

of differential generation and expulsion. The original association of the amorphous organic 

matter as a major source of petroleum with clays drastically changes with the onset of 

bitumen migration and filling of microreservoirs within rigid fossiliferous domains. Such 

petroleum entrapment also occurs in the vicinity of any other rigid grains, where porosity 

evolved due to the thermal conversion of kerogen is protected in compaction shadows. 

Petroleum migration may enhance its fractionation, increasing heterogeneity of the residual 

organic matter in terms of its chemophysical properties and potential for secondary cracking.  

Both diagenetic reactions within the mineral matrix and thermal decomposition of the 

organic material have a major impact on porosity change with maturation and its 

redistribution between different shale domains. At low maturities, clays and organic matter 

are not visibly porous, but most likely hold most of the shale porosity. In the oil window, 



56 
 

cement precipitation, bitumen occlusion, and possibly swelling due to retention of the 

residual oil, lead to reduced total porosities. High bitumen retention capacity of the rigid 

fossiliferous domains gains in significance in the gas window, and affects the evolution and 

distribution of the secondary pores. The evolved organic porosity is highly heterogenous and 

is likely controlled by the chemophysical properties of the residual organic matter at the time 

of thermal cracking. Specifically, the distribution of the nanometer size ‘bubble’ pores, 

analogously to pores found in cokes, suggests that the movement of the gas molecules was 

constraint by the viscosity of the organic polymer. The evolution and distribution of organic 

pores is important from the gas storage and production point of view. For instance, the lack of 

visible connectivity between pore bodies adjacent to and within organic paricles imply that 

pores may be gas filled in the subsurface. Moreover, high bitumen retention capacity of the 

rigid fossiliferous zones, followed by the secondary pore evolution, suggests that those are 

excellent microreservoirs of free gas.  
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Chapter 3: Porosity of the Posidonia Shale: from a low scale 

variation to the formation characterization 

 

Introduction 

 
Mudstones are defined as a fine-grained rock with over a half of its components in the 

clay size fraction (MacQuaker and Adams, 2003). Because of the presence of clay minerals 

and high initial water saturation, mudstones are sensitive to compaction, progressively 

expelling water and thus reducing their volume. Over a several kilometer depth, porosities of 

mudstone sequences can decrease from 90 to 10 % or less, depending on the initial rate of 

mud deposition, and its initial composition (Loucks et al., 2012). This porosity can be 

modified via diagenetic processes as early as in a first few centimeters and proceed with 

further consolidation of a mudstone (Bjørlykke and Høeg, 1997; Chaika and Dvorkin, 2000; 

Curtis, 1995; Macquaker et al., 2014).  

In opposition to organic- lean mudstones, porosities of the organic-rich shales are 

significantly modified via processes linked to maturation of in-situ organic matter. Recent 

boom in shale gas and shale oil exploration (Alexander et al., 2011), in order to correctly 

evaluate potential storage capacity and final recovery of oil and gas, emphasized the necessity 

to better constrain factors controlling porosities of shales. A major step for understanding the 

change of shale properties and porosities under increasing thermal stress was made by 

recognition that thermal decomposition of kerogen should progressively lead to development 

of organic porosity (Jarvie et al., 2007). So far authors did not find any organic pores in the 

oil window shales, but widely reported occurrence of secondary pores in the gas window 

(Loucks et al., 2009). Although several great attempts were made to link organic pores with 

maturation  and the organic matter content, they very often gave inconclusive and 

contradictory results (e.g. Bernard et al., 2011; Fishman et al., 2012; Loucks et al., 2009;  

Mastalerz et al., 2013; Milliken et al., 2013; Modica and Lapierre, 2012; Passey et al., 2010). 

Pore sizes of consolidated mudstones span from a micropore < 2 nm, through mesopore 

(2-50 nm) to macropore (> 50 nm) range (Nelson et al., 2009, Chalmers and Bustin, 2012) 

and therefore their detection will much depend on a specific method implemented. In the past 

research, while some authors concentrated on estimation of microporosity and gas potential 

using gas sorption and mercury methods (Bustin et al., 2008; Chalmers et al., 2012; Chalmers 

and Bustin, 2007; Kuila and Prasad, 2013; Ross and Bustin, 2009), others implemented 

mainly microscopic techniques to resolve porosities held by various shale domains (Curtis et 
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al., 2011; Curtis et al., 2013; Fishman et al., 2012; Loucks et al., 2009; Loucks et al., 2012; 

Milliken et al., 2013; Milner et al., 2010; Schieber, 2011; Slatt and O’Brien, 2011). This 

research experience led to a conclusion that in order to better understand the complexity of 

pore systems in these extremely heterogeneous and fine-grained rocks, a combination of 

different techniques is essential (Bustin et al., 2008; Chalmers and Bustin, 2012; Chalmers et 

al., 2012; Clarkson et al., 2013; Strapoc et al., 2010). It was also recognized that because of 

the low-scale variations in shales composition, structure and texture, the bulk techniques (gas 

sorption, mercury injection) yielding bulk values, will always provide different information 

than when high resolution microscopic methods are implemented. The last, although not 

representative for the shale reservoir as a whole, are essential for constraining a geological 

background for porosity occurrence and its spatial variation. The main advantage of the 

microscopic techniques is the possibility to quantify porosities and pore size distributions 

within single laminae defined by the specific lithology, organic matter content and texture. 

In this study, we provided an example of the Posidonia shale (Northern Germany), a 

calcareous rock formation with maturities between 0.53% - 1.45% Ro and only little variance 

in mineralogical composition between wells of different maturity (Figure 3.1a, b). Our main 

aim was to investigate the change of porosity and pore size distribution as the maturity of the 

shale changed from the early oil window to the gas window conditions and detect any links 

between the porosity change and kerogen transformation, hydrocarbon generation and 

cracking. With two lithologies, middle and upper calcareous shale and bottom marlstone, we 

also addressed the issue of a lithological variation, compaction and diagenesis for pore 

development and connectivity. By integrating geochemical and petrophysical measurements, 

with a detailed analysis of microscopic images we offered a unique approach for measuring 

porosity and pore characteristics on different scales with thorough understanding for a 

micrometer lithological variation.  
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Samples and Methodologies 

 
26 core samples were selected from stratigraphically equivalent sections of the three 

boreholes: Wickensen (early oil window, Ro 0.53%), Harderode (peak oil window, Ro 

0.89%) and Haddessen (gas window, 1.45% Ro) (Figure 3.1). The samples were chosen for 

bulk analyses including Rock Eval, TOC, grain density and mercury porosimetry.  

Total Organic Carbon was measured with the LECO carbon analyzer equipped with a 

HF-100 Induction Furnace on carbonate-free shale. Standard Rock-Eval was performed 

according to Espitalié et al. (1977) using Delsi Rock Eval OSA on a 100 mg aliquot. To 

correct for an oil- in-kerogen peak, 4 selected shale samples were solvent extracted with a 

mixture of dichloromethane (93%) and methanol (7%) and subsequently analysed for its 

remaining hydrocarbon potential.  

The X-ray diffraction was performed by Macaulay Scientific Consulting Ltd. 

Quantitative analysis was done by a normalised full pattern reference intensity ratio (RIR) 

method. 

Grain density was measured on samples dried at 105°C using the “Small Pyknometer 

Method” yielding density values within an error ± 0.02 g/cm3. Mercury injection data was 

collected on Micrometrics Autopore II via Mercury Injection Capillary Pressure analysis 

(MICP) on samples previously freeze-dried at -50°C and evacuated to 10-4 psia. Total shale 

porosity was determined from grain density and bulk density when immersed in mercury at 

the pressure 25 psia. Pore sizes were calculated as a function of applied pressure according to 

the Washburn equation (Washburn, 1921) with the input parameters as followes: an 

advancing contact angle of 141°, a receding contact angle 140° and surface tension 

485dyn/cm. The maximum pressure (41000 psi) applied allowed to detect pores as small as 

5.6 nm. A full intrusion – extrusion cycle was run for selected samples with the final pressure 

decline to 25 psia.  

Low pressure sorption experiments were performed on Intelligent Gravimetric Analyzers 

(IGA), supplied by Hiden Isochema Ltd., Warrington, UK, on shales (~ 140 mg) dried to a 

constant weight at 110°C for 4 hours under vacuum (< 10-6). CO2 was injected stepwise up to 

a pressure of 1 bar at a constant temperature 195K (dry ice/acetone bath) in order to obtain 

subcritical conditions for CO2. All isotherms were run twice to ensure experimental 

repeatability. Sorption pore volumes (SPV) were calculated from the maximum uptake at 1 

mbar, assuming CO2 density 1.177 g/cm3. Corresponding sorption porosities were determined 

using pycnometer shale grain density.  



72 
 

 

 
Figure 3. 1. Location of Hils syncline, Northern Germany and three boreholes: WIC (0.53% Ro), 
HAR (0.89% Ro) and HAD (1.45% Ro) (after Mann and Müller (1988) and Horsfield et al. (2010)). b) 
Lithostratigraphic profile of the Posidonia Shale from the three boreholes showing a bottom 
marlstone unit (I) and two calcareous shale units (II and III); red dots represent sample locations 
(after Littke et al. (1991). 
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For microscopic studies, carbon-coated polished thin sections were examined using a 

Hitachi SU-70 High Resolution Analytical SEM, equipped with an Oxford Instrument Energy 

Dispersive X-ray microanalysis system (INCA Energy 700). Samples were viewed in Back 

Scattered Electron (BSE) mode using the YAG detector with the following conditions: 15-8 

mm WD, 15keV accelerating voltage, 2-4 nA filament current. To reduce the shale 

topography, prior to the SEM imaging, selected samples were polished with an argon broad 

ion beam (BIB) in the GATAN 691 Precision Ion Polishing System (PIPSTM). In order to fit 

into the PIPSTM chamber, the sample size was reduced to a 3 mm in diameter disc with 

GATAN 601 Ultrasound Disc Cutter using water emulsion of boron nitrate powder as a saw. 

Such prepared discs were bombarded with Ar ions in a vacuum (10-2 Pa) for 6 hours (angle 3°, 

5kV, 1-20 µA). The images of shale porosity were captured in the Secondary Electron (SE) 

mode using through-the-lens detector (TLD) at magnifications 10,000 x (pixel size 6 nm) and 

6,000 x (pixel size 15 nm), using the Automate mosaic building option. For selected mosaics, 

an Energy Dispersive X-ray (EDX) mode was implemented, generating maps of elemental 

and phase distribution. Microanalysis settings for the EDX collection were set at 300 µm 

dwell time, 15kV accelerating voltage and 4 nA filament current. The areas covered by EDX 

mapping varied between 4397 and 133023 µm2. The phase extraction procedure involved 

conversion of each X-ray map into an RGB colour mode map, its binarization and area 

quantification with the ImageJ 1.44 software (Abramoff et al., 2004). 

To determine a Representative Elementary Area for estimations of image porosity, a 

modified box counting method described in Houben et al. (2013) was applied. With this 

method, continuous variations of any given property can be established by gradually 

increasing an area of investigation in a two-dimensional space. The box counting was 

proceeded for 4 groups of minerals: phyllosilicates, quartz and feldspar, carbonates and pyrite. 

The phases were extracted from a mix of RGB-converted EDX elemental maps. For the 

purpose of this study an area was selected as representative if the change in the content of an 

individual phase in boxes of increasing size did not exceed +/-10% relative to the previous 

area. 

For each representative mosaic, total image porosity was quantified by digitization of 

pore areas manually outlined in the Adobe Photoshop 8.0. The digitization was followed by 

binarization and quantification proceeded in the image analysis software ImageJ 1.44 

(Abramoff, 2004). Further statistical analysis was performed using statistical and 

mathematical software: Minitab 15 and Excel 2010. For selected mosaics, organic matter 

content was quantified with the point counting method using the image analysis software 

http://www.gatan.com/index.html
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JMicroVision 1.2.7. (Roduit, 2008). The point counting was proceeded until 300 counts or 

above until no significant change in the OM percentage was observed. For the gas window 

sample, the fraction occupied by porous and non-porous particles was additionally point-

counted on two high magnification (10,000 x) image mosaics.  

As a result of the limited image resolution at any magnification, not all pores could be 

fully visualized in the BIB image mosaics. To account for the missing pores area and 

determine the minimum fully resolved pore size in the BIB mosaics at the magnifications 

used, a method described in Houben et al. (2013) and Klaver et al. (2012) and based on a 

concept of a fractal dimension was implemented. According to this method, all pore areas 

were grouped in bins with subsequent bins increased by a power of two and subsequently, the 

number of pores were counted and varied as a power of the corresponding pore area. The 

unique power law equation was determined for pores sizes fully resolved and was graphically 

represented by a linear regression line(s) defined by a specific slope (D) and interception with 

the y axis (C). The minimum pore size fully resolved in images was determined as the one 

corresponding to the minimum pore area that does not deviate from the calculated regression 

line. For the intraorganic pores, the fractal distribution relationship was used for the 

calculation of a missing pore area after extrapolating the corresponding linear regression 

equation down to a selected diameter. 

The fractal and power law approach was also implemented to scale pore volume as a 

function of a cross-sectional area of pore throats injected by mercury (Bernal and Bello, 

2001). The use of this approach was justified by the fact that a range of pore areas 

progressively injected by mercury exceeds one order of magnitude.  Again, the equation 

provided by Houben et al. (2013) was used to relate injected pore volume to a pore diameter. 

 

Results 

 

Impact of the research methodology used on porosity estimations 

To address the issue of shales heterogeneity on different scales, and to overcome the 

limitations intrinsic to each method on its own, the multi-technique approach is required. In 

this study all methods were implemented complementarily, probing pores from < 1 nm to 5 

µm in diameter. The information about porosity held by pores as small as 6 nm was obtained 

via CO2 195K gas sorption (Rexer et al., 2014). A drawback of such analysis is that it does 
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not differentiate between adsorbing phases unless a separate analysis for bulk shale and 

kerogen is performed. Mercury injection can be complementary to gas sorption techniques, 

but one should consider its limited use for estimating the true pore size distribution of shales 

if pore bodies are connected through narrow pore throats (Schmitt et al., 2013). Moreover, 

sample compressibility may introduce errors in quantifying porosities (Giesche, 2006). 

Mercury injection is the basic method to understand distribution of pore throats and a relation 

of pore bodies to pore throats if both intrusion and extrusion are run on a single sample  

(Ioannidis et al., 1991). In this study, the minimum size of pores that were intruded by 

mercury is 5.6 nm, leaving all finer pores, pores accessible through throats < 5.6 nm or any 

blind pores outside the scope of our experiments (Bustin et al., 2008). To quantify the amount 

and distribution of macropores not detected neither through mercury injection nor gas 

adsorption, we resolved to microscopic techniques. With the typical minimum resolution in 

the order of 100s pixels when analyzing standard polished thin sections under Scanning 

Electron Microscope, higher resolutions can only be obtained by polishing samples with Ga 

or Ar ions. But even image-based techniques using highly polished samples have limited use 

in quantifying total porosities, as they typically only allow to see macropores and larger 

mesopores. Still, they provide good overview of the sample mineralogy and fabric and with a 

sufficient area, they allow for a qualitative and quantitative comparison of the abundance and 

distribution of larger pore bodies between different areas. The most complete pore volumes 

and (open) porosities in shale samples can be quantified with bulk methods using Archimedes 

Principle and water as a probing fluid. When combined with mercury immersion, this method 

detects pores which size exceeds the diameter of water (0.275 nm) and correlates well with 

He pycnometry (Rexer et al., 2014). 

 

Shale texture and organic abundance from microscopic observations 

Low maturity Posidonia shale from the Hils half-graben is a dark grey, calcareous 

mudstone exhibiting macroscopically visible, subcentimetric lamination, marked by the 

varied abundance of a carbonate and clay component. Due to the diagenetic phase 

redistribution within the mineral matrix and progressive maturation of organic matter 

imparting black colour to shale samples, this sub-centimeter lamination is to a large extent 

obliterated in rocks of higher maturity. The calcitic component building the shale matrix is 

composed predominantly of nanofossils, mainly intact or broken coccoliths and disarticulated 

schizospheres, and bears signs of advanced recrystallization in the bottom marlstone and in 
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the most calcite-rich laminae of the middle and upper calcareous shale. The majority of 

nannofossils forms debris concentrated in thin layers or ellipsoidal aggregates (faecal pellets), 

alternating on a micrometer scale with clay rich laminae. The recrystallization features and 

the appearance of the carbonate cement are more pronounced both in the low maturity 

marlstone and in the higher maturity marlstone and calcareous shale. Those features include 

equant calcite crystals, often fused by a contact cement, and abundant authigenic calcite and 

dolomite replacing algal cysts, cementing clay and calcite-bearing shale framework and 

sealing microfractures. 

The type and mode of occurrence of organic macerals change throughout the whole 

maturity sequence. In the early oil window sample, structured algal liptinite is the most 

distinguishable maceral, but it is volumetrically surpassed by the microscopically unresolved 

and mineral associated, strongly fluorescing matrix bituminite (Tao et al., 2012). At the peak 

oil window maturity, structured algal bodies are less abundant, either mechanically collapsed 

or filled with the carbonate cement. The bituminous groundmass is much less fluorescent and 

instead, a dense network of non-solvent extractable solid bitumen fills the inerclay pores and 

the fossilliferous aggregates. At the gas window maturity, no structured alginites are present, 

and a tight network of irregularly-shaped, non-extractable, solid bitumen is a dominant 

feature. The solid bitumen fills microfractures, recrystallized faecal pellets, and spaces within 

clay aggregates.  

 

Bulk properties of the shale 

The bulk mineralogical composition of the Posidonia samples suite is relatively constant 

throughout the whole maturity sequence (Table 3.1 and Figure 3.2). The two most abundant 

components, calcite and phyllosilicates, present an interchangeable relationship and show 

more drastic variations within single wells rather than between wells. For instance, in all 

wells, the lower marlstone unit (Figure 3.1b) shows higher enrichment in calcite in 

comparison to clays (~50% and ~25 wt.% respectively), while the middle and upper 

calcareous shale present equal proportions of both (30-40 wt.%). Only two phases, dolomite 

and sodium rich plagioclase, show increase in abundance while moving towards higher 

maturity shale. Despite the variation in the calcite and clay content between units, the 

Posidonia shale is unanimously classified as a calcareous nannoplankton-, (calcite cement-), 

silt- and clay-bearing mudstone.  
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Table 3. 1. The TOC-normalized XRD mineralogical composition of Posidonia shale in wt.% for WIC 
(0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). The TOC content (in wt.%) was determined with 
LECO. 
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Quartz 12.4 15.1 11.8 14.0 7.8 14.6 16.4 12.2 10.8 11.1 14.8 14.1 7.6 
Plagioclase 1.0 0.2 0.9 0.6 1.3 1.9 2.0 2.6 3.7 2.4 2.8 3.2 4.5 

K-Feldspar 0.7 0.0 0.0 0.0 0.0 0.5 0.4 0.4 0.5 0.5 0.1 0.7 0.6 
Calcite 32.4 35.8 41.5 38.1 50.0 40.1 39.5 28.7 42.2 49.5 36.8 28.5 46.3 

Dolomite 0.3 0.0 0.3 0.2 0.5 0.6 1.0 6.0 2.0 0.6 1.7 3.7 2.5 
Siderite/ 
Ankerite 0.4 0.0 0.8 1.8 0.5 0.2 0.3 0.3 0.3 0.1 0.8 0.4 0.6 

Aragonite nd nd 1.2 nd 1.2 nd nd nd nd nd 0.6 nd 1.4 
Pyrite 4.8 4.5 3.5 3.7 4.9 5.2 4.8 8.6 5.2 6.9 4.6 6.6 4.2 

Marcasite 0.7 nd nd nd nd 0.6 0.2 0.9 1.2 nd nd 0.2 nd 
Anatase 0.3 0.1 nd 0.1 nd 0.3 0.2 0.2 0.3 0.2 nd 0.4 nd 

Muscovite 2.3 2.2 0.0 1.2 0.1 2.9 2.8 3.5 3.0 2.4 1.2 4.4 0.0 
Illite + I/S 21.7 22.0 20.0 25.4 17.5 17.0 18.9 24.7 18.3 13.3 22.1 23.5 18.1 

Kaolinite 10.4 6.0 4.5 7.1 2.0 8.2 6.8 6.2 4.0 6.1 3.6 8.1 1.0 
Dickite nd nd 1.1 nd 0.9 nd nd nd nd nd 1.2 nd 0.0 

Chlorite nd 0.4 1.8 0.2 1.6 nd nd nd nd 0.0 0.6 nd 2.5 
Gypsium nd 0.3 2.0 0.4 2.2 nd nd nd nd 0.4 1.7 nd 3.5 

Halite nd 0.1 nd 0 nd nd nd nd nd 0.1 nd nd nd 
TOC 12.6 13.3 10.9 7.3 9.7 7.9 6.8 5.8 8.7 6.4 7.4 6.4 7.2 

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 
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Figure 3. 2. Ternary diagram showing the basic mineralogy of the Posidonia suite. Samples taken 
from three cores: WIC 7129 (0.53% Ro), HAR 7060 (0.89% Ro) and HAD 7110 (1.45% Ro). Note a 
strong alignment of points describing the mutually exclusive relationship between abundance of clays 
and carbonates. 
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Table 3. 2. TOC, Rock-Eval and grain density measurements for the selected Posidonia samples, 
wells WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). 

Sample 

TOC 
(%) 

S1 
(mgHC/g) 

S2 
(mgHC/g) 

HI 
(mgHC/ 
gTOC) 

Tmax 

(C°) 
Grain 

density 
(g/cm

3
) 

Grain density after 
solvent extraction 

(g/cm
3
) 

WIC 7129 12.59 3.02 90.25 717 427 2.254 2.236 
WIC 7133 8.71 2.57 54.90 630 434 2.392 - 

WIC 7135 13.27 4.62 84.63 638 427 2.249 - 
WIC 7137 10.25 3.18 68.10 665 427 2.343 - 

WIC 7139 9.36 2.81 64.95 694 428 2.375 - 
WIC 7142 10.43 3.52 72.37 694 426 2.346 - 

WIC 7145 10.92 4.18 72.03 660 425 2.331 - 
WIC 7147 7.28 2.26 47.76 656 434 2.458 - 

WIC 7151 14.75 5.85 89.61 608 429 2.236 - 
WIC 7153 7.34 2.45 48.37 659 431 2.489 - 

WIC 7155 9.67 3.87 69.41 718 428 2.361 - 

HAR 7038 7.90 3.29 30.17 382 449 2.493 - 
HAR 7046 6.75 2.93 26.03 386 450 2.526 - 

HAR 7060 5.78 1.47 19.72 341 447 2.592 2.682 
HAR 7070 8.71 2.26 31.27 359 449 2.463 2.533 

HAD 7083 7.35 0.75 4.10 56 465 2.589 - 
HAD 7090 7.41 0.94 4.16 56 463 2.572 - 

HAD 7094 5.21 0.845 3.52 68 459 2.608 - 
HAD 7097 5.40 0.75 3.15 58 458 2.609 - 

HAD 7099 6.51 0.98 3.86 59 463 2.576 - 
HAD 7101 5.88 0.92 3.1 53 457 2.624 - 

HAD 7104 5.04 0.72 3.385 67 459 2.620 - 
HAD 7105 5.85 0.77 3.28 56 461 2.621 - 

HAD 7110 6.36 1.07 3.79 60 462 2.600 2.618 
HAD 7115 6.49 1.12 3.80 59 460 2.614 - 

HAD 7119 7.15 1.23 3.16 44 458 2.607 - 

 

Posidonia Shale is a kerogen Type II, organic-rich rock with the TOC change linked to 

the degree of its thermal maturation (Table 3.2). The average organic content gradually 

decreases from 10 (+/-2) wt.% at 0.53% Ro (WIC), to 7 (+/-1) wt.% in the peak oil window 

(HAR 0.89% Ro) and 6 (+/-1) wt.% in the gas window (HAD 1.45% Ro). A drop in TOC is 

accompanied by a consistent decrease in S1 and S2 values, a drop in HI from ca. 662 (+/-33) 

in WIC to 58 (+/-6) mg/gTOC in HAD, a rise in Tmax from 429 (+/-3) to 460 (+/-3) °C, and 

a decrease in the solvent soluble bitumen from 13 mg/g to 2 mg/g (Table 3.3). For all samples 

analyzed, the kerogen-bound but solvent extractable bitumen (S2a) consistently exceeds the 

amount of RockEval measured free bitumen (S1), and reduces the yield of the pyrolizable, 

but solvent non-extractable organic matter (S2b). For the 4 solvent washed samples, the 

corrected oil saturation index decreased from 105 mg/gTOC in the early oil window sample, 

to 66 and 102 in the peak oil window samples and 27 mg/gTOC in the gas window sample. 
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Table 3. 3. Rock-Eval evaluation after solvent extraction for the four selected Posidonia samples, 
wells WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45%Ro). 

Sample S2a (mg/g) 
S1 + S2a 

S2b (mg/g) 
S1/TOC (mg/gTOC) 

(mg/g) % TOC 
WIC 7129 10.4 13.20 10.5 79.89 104.8 

HAR 7060 4.5 5.89 10.2 15.25 101.9 

HAR 7070 3.5 5.71 6.6 27.79 65.6 
HAD 7110 0.7 1.74 2.7 3.05 27.4 

S1: Free bitumen 
S2a: Kerogen bound, solvent extractable bitumen  

S2b: pyrolizable, but not solvent extractable organic matter. 
 

The average grain density of the mineral matrix shows minimal variation between 

samples from different wells. In consequence, the observed spread in the measured shale 

grain densities is linked to the maturity of the organic matter, organic content and the degree 

of saturation with free bitumen. In the investigated sample suite, the measured average shale 

grain densities increased from 2.4 (+/-0.1) g/cm3 at 0.53% Ro, to 2.5 (+/-0.1) at 0.89% Ro 

and 2.6 (+/-0.2) at 1.45% Ro (Table 3.2). Upon extraction of the extractable bitumen phase, 

the density increased significantly only in the peak oil window maturity sample, with little 

change in samples of two other maturities (Table 3.2). 

 

 

Total and mercury porosity. Pore throat size distribution 

In this study, total porosity and mercury pore size distribution were corrected for pores 

intersected by the sample surface, responsible for an increase in the volume of mercury at the 

very start of the injection experiment (Figure 3.3b). In order to estimate a true radius of the 

onset of Hg intrusion into a porous network within each sample, cumulative mercury volume 

data were compared with pore volume density data and pore throat fractal distribution (Figure 

3.3). To make a comparison effective, calculated areas of pore throats cross-sectioned by a 

theoretical plane were grouped in bins of an increasing size and plotted as a function of pore 

volume intruded by mercury (Bernal and Bello, 2001; Houben et al., 2013). The resulting 

fractal distribution of Posidonia pore throats was fitted with 2-3 linear regression lines 

(Figure 3.3c). The line with the smallest slope (typically < 1.1) describing the largest pores 

was interpreted as an artifact, created due to intersection of pores by the sample surface 

(Figure 3.6d, e, f). A true injection of Hg to pore bodies is described by a regression line with 

a higher slope reflecting increasing pore volume density of progressively smaller pores, and 

corresponds to a rise in the pore volume density beyond the background values (Figure 3.3a, 
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Figure 3.6a, b, c). Consistently with Comisky (2011), the estimated true radius of intrusion is 

up to 3 orders of magnitude lower than the apparent radius determined by the raw data. 
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Figure 3. 3. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal 
distribution of pores in the WIC 7151 sample (0.53% Ro). Pores exhibit a non-uniform, fractal 
distribution with pores > 80 nm (slope -0.8) interpreted as those intersected by the sample surface 
(surface roughness) and pores < 80 nm (slope -1.7) interpreted as pores accessed through 
corresponding throats. 

 

Total porosities, as measured for as-received shale samples, show a significant change 

with increasing maturity over the whole maturation sequence (Table 3.4 and Figure 3.4). At 

0.53 Ro% porosities vary between 10-14% and, despite an observed decrease in TOC, decline 

to 2.5-4.5% in the peak oil window (0.89% Ro). In contrast, at gas window maturities, with 

further reduction of the carbon content, a rise in total porosity is observed. Porosities oscillate 

here between 9-14% reaching values similar to those at 0.53% Ro. As observed in Figure 3.4, 

with only a small variation in the measured carbon content, porosities are not directly related 

to TOC, and only in the early oil window maturity shale do porosities and organic content 

show a weak negative correlation. For both peak oil window and gas window samples, the 

a) b) 

c) 
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porosity values scatter over the measured range of TOC with no apparent trend. Total 

porosities show varied relation to bulk mineralogy in samples of different maturities. In 

general, there is a positive relationship between calcite content and total poros ity, and the 

negative relation between porosity and the phyllosilicates content, for both early mature and 

gas window samples (Figure 3.5). In contrast, no trend exists for the shale bulk composition 

and porosities measured in the peak oil window 

 

Table 3. 4. Porosities measured with different techniques for selected Posidonia samples, wells WIC 
(0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). 

Sample Total 
porosity 
(%) 

Mercury Injection CO2 195K 

Hg porosity 
(%) 

Hg access 
radius (nm) 

Porosity < 
5.6 nm (%) 

Sorption 
porosity (%) 

Sorption 
pore volume 

WIC 7129 9.72 6.98 9.5 2.77 4.08 0.019 

WIC 7133 12.76 9.51 13.1 3.27 - - 
WIC 7135 10.12 5.86 8.1 4.28 4.27 0.020 

WIC 7137 10.62 8.09 8.3 2.53 - - 
WIC 7139 13.53 8.16 8.6 5.39 - - 

WIC 7142 12.18 8.35 10.7 3.86 - - 
WIC 7145 12.91 9.46 11.1 3.47 3.71 0.017 

WIC 7147 11.44 10.41 17.1 1.14 3.57 0.015 
WIC 7151 10.52 8.18 15.1 2.35 - - 

WIC 7153 13.87 11.20 30.3 2.68 - - 
WIC 7155 12.64 9.50 18.3 3.11 3.53 0.015 

HAR 7038 3.08 1.27 5.2 1.83 2.04 0.008 
HAR 7046 4.58 0.68 3.4 3.90 - - 

HAR 7060 4.48 1.96 5.5 2.54 2.08 0.008 

HAR 7070 3.52 1.70 5.6 1.83 2.51 0.010 
HAD 7083 13.68 10.35 13.9 3.35 3.79 0.015 

HAD 7090 11.24 6.00 8.5 5.32 4.15 0.017 
HAD 7094 12.13 8.16 10.1 4.00 3.94 0.016 

HAD 7097 11.87 5.25 6.7 6.65 - - 
HAD 7099 10.60 3.16 4.2 7.50 - - 

HAD 7101 11.79 7.57 7.00 4.25 - - 
HAD 7104 11.63 4.55 5.0 7.12 - - 

HAD 7105 11.23 6.42 5.7 4.83 - - 
HAD 7110 9.43 3.45 4.8 6.01 3.76 0.015 

HAD 7115 9.30 4.68 5.5 4.63 - - 
HAD 7119 11.29 8.34 14.7 2.98 3.29 0.013 
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Figure 3. 4. Plot of total porosity change as a function of maturity and organic carbon content.  
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Figure 3. 5. Cross-plots showing relationship between shale total porosity and its XRD mineralogical 
composition. Calcite and phyllosilicates contents are not TOC normalized. 
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Figure 3. 6. a), b), c) Pore volume density distribution of true intrusion pores in the selected 
Posidonia samples, wells WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro). The mercury data 
was cut off at a radius interpreted as the onset of intrusion into a pore network. This corresponds to a 
pore radius at which a visible change in the slope of a regression line describing fractal distribution 
of pore throats occurs (see Fig 3.3). d), e), f) Fractal distibution of pore throats approximated by a 
linear regression line defined by a slope (D) and point of interception with the  y axis. In each sample 
the regression line characterized by a low slope (<-1.1) defines surface roughness, while the line with 
a high slope (>1.8) describes real pores intruded by mercury. 
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A non- linear pattern of porosity change with maturity, similar to the one described above, 

is observed for porosities intruded by Hg. Here values decrease from 6-12% to 1-2% between 

0.53% and 0.89% Ro (Table 3.4). A subsequent increase in total porosity at gas window 

maturities is not consistent, with values varying between 3 and 10%. At all maturities, the 

threshold aperture, defined as an aperture providing access to > 10% of porosity is narrow, 

and usually does not exceed 40 nm of diameter (Table 3.4 and Figure 3.6). In the Wickensen 

sample suite, it oscillates between 16 and 37 nm, with the extreme values approaching 60 nm 

only in the faecal pellet rich marlstone samples. In the gas window samples, the size of the 

aperture is slightly lower, between 8-20 nm, approaching 30 nm in the most calcite rich 

shales. The finest pore throats and the narrowest pore throat size distribution characterize the 

oil window shale, with the pore throat threshold apertures between 7-11 nm and no influence 

of shale lithology on the measured pore volume density (Figure 3.6 b, e). At all maturities, 

pore throats show fractal behaviour up to the maximum pore volume density, but its 

distribution varies between lithologies and maturities. This variation reflects varied spread of 

pore throat sizes (high D with a smaller spread) for any given slope, and a different amount of 

porosity contained in the probed pores (high C with higher porosity). In general, pore size 

distributions are the narrowest in the oil window shales (high D), and describe the lowest 

porosities (low C for any given D) (Figure 3.6b). A major change between samples of 

different maturity is seen in the size of pore throats providing the highest differential increase 

in porosity. Between 0.53% and 0.89% Ro this size decreases from 9-17 nm to 6-7 nm 

(Figure 3.6a, b). Amongst the lowest maturity shale, only marlstone samples exhibit 

differential maxima at pores that are much wider, up to 34 nm.  Similarly to the low maturity 

well, at the gas window maturity a size of pore throats contributing the highest porosity value 

is similar for all calcareous shale samples, oscillating between 6-12 nm, with the exception of 

the marlstone sample, where this diameter reaches 22 nm (Figure 3.6c). High contribution of 

pore bodies within the maximum pore volume density intervals of the low and high maturity 

shale is indicated by the presence of mercury hysteresis (Figure 3.7a, b). Such hysteresis 

associated with spontaneous imbibition is controlled not by a pore throat radius, like during a 

drainage stage, but by a pore body/pore throat ratio (Webb, 2001). The increase of this ratio 

is interpreted as reflecting entrapment of mercury in pore cavities, causing pores to empty at 

capillary pressures lower than the corresponding intrusion pressures (Padhy et al., 2007). As 

shown with the curve plotting difference between porosity intruded and emptied during 

intrusion-extrusion experiments at equivalent pressures, as a function of pore radii (Figure 

3.7c), the absolute amount of trapped mercury, due to a small rate of extrusion, initially 
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increases. When a threshold diameter is reached (here 34 and 27 nm for WIC and HAD 

samples respectively), the rate of extrusion exceeds the rate of intrusion at equivalent 

pressures, and mercury starts to recede from pores that could not be emptied before (Padhy et 

al., 2007). The curve shows that 90% of porosity in the lowest and highest maturity Posidonia 

is not emptied before pressure equivalent to the threshold diameter is reached. Such high 

percentage of the trapped mercury reflects either the high volume of the pore bodies, or 

alternaively, high compressibility of the studied shale and the embedded organic matter 

(Toda and Toyoda, 1972). 
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Figure 3. 7. Cumulative intrusion (black) and extrusion (red) of mercury for a) WIC 7129 0.53% Ro 
and b) HAD 7110 1.45% Ro shale. The mercury data were normalized to the true volume of intrusion 
after cutting off the pore volume data interpreted as representing surface roughness. Difference 
between the two curves is defined as a hysteresis. c) Cumulative porosity that is not emptied from 
mercury during the imbibition from the WIC 7129 (black) and HAD 7110 (red shale). The curve plots 
difference between porosity intruded and emptied during the intrusion-extrusion experiments at 
equivalent pressures as % of a rock.  For pores with a radius < 16.8 nm the rate of extrusion < rate 
of intrusion and thus fraction of mercury is trapped. Note that in during the imbibition process the 
absolute amount of mercury that is not released at the intrusion pressure initially increases. For 
pores with a radius > 16.8 nm for WIC and > 13.5 nm for HAD the rate of extrusion > rate of 
intrusion, causing emptying from the previously trapped mercury at lower pressures attained. 

a) b) 

c) 
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The amount of total porosity present in the Posidonia shale changes after extraction of 

the soluble bitumen with organic solvents. Although not measured directly, on the basis of a 

change in the grain volume of a bulk shale pre- and after solvent extraction we were able to 

estimate the volume of the soluble bitumen and thus bitumen-free total porosity for three 

samples of the medium (HAR 7060, 7070) and high maturity (HAD 7110). Because we did 

not notice any increase in the grain density of the early mature sample after solvent extraction, 

plausibly due to change in the polymer structure upon interaction with the solvent (Sandvik et 

al., 1992), we could not estimate bitumen-free porosity in the Wickensen shale. For the peak 

oil and gas window shale, the amount of the extractable bitumen decreased from 2.8% in the 

bottom marlstone and 3.4% in the middle calcareous shale at the peak oil window maturities 

to 0.68% (upper calcareous shale) in the gas window (Table 3.5 and Figure 3.8a). 

Consequently, the estimated bitumen-free total porosities are higher than those measured in 

the as-received shale (Table 3.4), amounting to 6.3-7.8% and 10.1% in the peak oil window 

and gas window maturity samples respectively (Table 3.5). As generation and expulsion of 

hydrocarbons leads to loss of OC (Raiswell and Berner, 1987), the measured and bitumen-

free porosities were compared to potential porosities that would characterize shale of a given 

maturity stage by assuming perfect expulsion of generated petroleum (Table 3.6). The loss of 

OC in wt.% was calculated according to Justwan and Dahl (2005) and Jarvie et al. (2007) and 

converted to OM (vol.%) according to Coskey (2001). The calculated Transformation Ratios 

(TR) of the Posidonia kerogen are as follows: 5% for WIC 7129, 63% for HAR 7060, 73% 

for HAR 7070 and 96% for HAD 7110. These TR show agreement with a reference kinetic 

curve for type II kerogen from the Toarcian of Paris Basin as well as TR estimated for other 

shale formations at an equivalent maturities (Modica and Lapierre, 2012, their Figure 3.8). 

The conversion of accumulated OM from wt.% to vol.% yielded potential organic porosity 

values. Those increase from 0.8% in Wickensen to 7-8% in Harderode and further to 13% in 

Haddessen (Figure 3.8b). Assuming the initial porosity of the low maturity shale 10% (Table 

2.4), the estimated increase in total porosity between 0.53-0.89% Ro is inconsistent with a 

measured drop in oil- free porosities in the oil window (Figure 3.8c). In contrast, the 

calculated increase in the organic porosity by absolute 4 % between maturities 0.89-1.45% 

matches an increase experimentally measured in the gas window shale (Figure 3.8d).  
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Figure 3. 8. a) Total porosity prior (black) and after extraction of soluble bitumen (sum of black and 
grey) in the peak oil window HAR (0.89%) and gas window HAD (1.45%) shale. Post extraction total 
porosity was estimated on the basis of a change in the grain volume of a bulk shale pre- and after 
solvent extraction.  Sorption porosity occluded by extractable bitumen was measured by comparing 
gas sorption porosity prior and after solvent extraction. b) A hypothetical organic porosity (in wt.%) 
present in shale of different maturity as a result of thermal decomposition of organic matter. The 
organic porosities were calculated according to equations of Jarvie et al. (2007) and Coskey (2001). 
TOC for each sample was restored to original values according to Justwan and Dahl (2005). c) 
Potential organic porosity (sum of black, grey and white) for 0.53% Ro (WIC 7129), 0.89% (HAR 
7060) and 1.45% Ro (HAD 7110), superimposed on experimentally measured porosities (black). The 
initial inorganic porosity was assumed 10%, and total porosities were estimated as a sum of the 
initial porosity and organic porosity characteristic for each maturity step. Difference between 
potential total porosities and measured total porosities are due to occlusion by solvent extractable 
bitumen (grey), as well as combined compaction and occlusion by solid bitumen (white). d) Similarity 
between potential organic porosity for the gas window shale and the sum of the potential organic 
porosity of the peak oil window shale (black) and measured increase in total porosity between the two 
shales after accounting for the solvent extractable bitumen occluding pores (grey).  
 
 

b) a) 

c) d) 
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Table 3. 5. Estimated total porosities and measured sorption porosities after solvent extraction for the 
selected Posidonia samples, HAR (0.89% Ro) and HAD (1.45% Ro). Difference between pre- and 
post-extraction porosities yielded volume of extractable bitumen occluding porosity. 
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HAR 7060 7.84 3.36 3.19 1.11 0.35 0.33 
HAR 7070 6.27 2.75 3.35 0.85 0.25 0.31 

HAD 7110 10.11 0.68 4.55 0.79 0.17 ~1.00 

 
 
Table 3. 6. Determination of potential organic porosity at different stages of thermal maturity for 
selected samples of WIC (0.53% Ro), HAR (0.89% Ro) and HAD (1.45% Ro) using equations of 
Justwan and Dahl (2005) Jarvie et al. (2007) and Coskey (2001). S2b – hydrocarbon potential of 
post-extracted shale, TR – Transformation Ratio, GOC – Generative Organic Carbon. 

Sample S2b 
(mg/g) 

HI o 
(mg/g) 

HI pd 
(mg/g)

1
 

TOCo 
(%) 

TOCpd 
(%) 

TR GOC Organic 
porosity 
(wt.%) 

Organic 
porosity 
(vol.%) 

WIC 7129 79.9 650 635 12.97 12.59 0.05 0.55 0.37 0.83 

HAR 7060 15.3 600 264 9.23 5.78 0.72 0.51 3.41 7.08 

HAR 7070 27.8 600 319 12.83 8.71 0.63 0.50 4.07 8.46 

HAD 7110 3.0 620 48 13.05 6.36 0.96 0.53 6.62 13.04 
1
HI pd was estimated on the basis of S2b, after extraction of soluble bitumen. 

 

 

Micro- and mesoporosity. Gas adsorption 

Significant part of porosity is not detected by Hg and thus might be blind or 

contained/accessible through pores < 5.6 nm (Table 3.4). This porosity accounts for as much 

as 10-42% of total porosity in the least mature samples, and 52-59% at the peak oil window. 

In the gas window, < 5.6 nm porosity shows the highest spread, accounting for 25-71% of 

total porosity. While in both mature and overmature shale, lower values of the < 5.6 nm 

porosity are characteristic for the bottom marlstone, in the WIC sample suite we found no 

porosity difference between lithologies. In order to investigate nature and connectivity of the 

< 5.6 nm pores, shale porosities were measured with the low pressure CO2 195K gas sorption. 

The sorption porosities (SP) showed overall agreement with porosities that lie beneath the 

resolution of the mercury injection (MP-1) in shales of all maturities (Tab. 3.4 and Figure 

3.10). This agreement suggests that the combination of sorption and mercury techniques can 

account for the total pore volume measured in the Posidonia shale and that the size of the 

pores fully filled with adsorbing gas at CO2 195K lies below and close to 5.6 nm.  
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Figure 3. 9. a) 195K CO2 isotherms for selected WIC 0.53% Ro (circles), HAR 0.89% Ro (triangles) 
and HAD 1.45% Ro (rectangles) shales. The x-axis represents the relative pressure, while the y-axis 
represents concentration (in mmol/g) of CO2 adsorbed at the temperature of 195K. Samples were not 
solvent extracted prior to analysis. Peak oil window shales (HAR) show lower sorption than early oil 
window (WIC) and gas winodw (HAR) counterparts. b) CO2 195K isotherms for 7129 WIC 0.53% Ro 
(circles), 7060 HAR 0.89% Ro (triangles), 7070 HAR 0.89% Ro (rectangles) and 7110 HAD 1.45% 
Ro (diamonds) shales measured prior and after solvent extraction (ext). Non-extracted shales show 
higher sorption than extracted shales at all maturities. 

 

All captured CO2 isotherms are type I (Sing et al., 1985), that is they demonstrate 

evidence for the presence of microporosity filled at the lowest pressures and little surface for 

further adsorption at higher pressures (Figure 3.9a). Sorption pore volumes measured at 1 

mbar and corresponding sorption porosities (SP) exhibit a non- linear change with the 

maturation of the shale, similar to the trend observed for measured total (TP) and mercury 

porosities (MP) (Table 3.4 and Figure 3.10). These volumes decrease from 0.015-0.029 cm3/g 

at early oil window maturities to 0.008-0.010 cm3/g in the peak oil window, followed by a 

rise to 0.013-0.017 cm3/g in the gas window samples. Consistently, calculated sorption 

porosities bottom out in the oil window at 2.0-2.5 %, and amount to 3.5-4.3% and 3.3-4.1% 

for the early mature Wickensen and the gas window Haddessen samples, respectively. 

Sorption porosity shows no correlation to TOC between maturities and despite indication for 

the predictable change of porosity with the TOC change within wells, due to a small sample 

size we cannot be conclusive about the true nature of this relationship (Figure 3.11a). 

However, a positive covariation was found for the combined TOC and clay content and 

sorption porosity for both the early oil window and the gas window shale (Figure 3.11b). 

After solvent washing, performed for 4 shale samples, the concentration of the adsorbed gas 

a) 
b) 
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increased (Figure 3.9b), resulting in an increase in the calculated sorption porosities at all 

maturities (Table 3.4). For the least mature sample, as the structure of kerogen might have 

been affected by the solvent, we did not calculate the post-extraction porosity value. In the 

remaining samples, the calculated sorption porosity occluded by the extractable bitumen 

oscillates between 0.8-1.1%, constituting 25-35% of the oil- free sorption porosity in the peak 

oil window samples and 17% in the gas window sample. In total, while only 31-33 vol.% of 

the extractable oil in the peak oil window shale is contained in sorption pores, in the gas 

window sorption pores hold all the residual extractable bitumen (Table 3.5 and Figure 3.8a). 
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Figure 3. 10. Comparison of total porosity, Hg porosity, part of total porosity not accessible to 
mercury (< 5.6 nm) as estimated from the Mercury Injection Capillary Pressure analysis (MICP) and 
CO2 195K sorption porosity, for selected samples of three different maturities: 0.53% (WIC), 0.89% 
(HAR) and 1.45% (HAD). The sum of CO2 195K sorption and Hg porosities approximate total 
porosities. 
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Figure 3. 11. a) A lack of relationship between TOC and sorption porosity in the Posidonia WIC 
7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro shale. b) Positive correlation between 
sorption pore volume and the content of organic carbon and phyllosilicates in the WIC and HAD 
shales. 

a) b) 
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Meso and macroporosity in FIB- and BIB-SEM images 

Mineralogical composition from SEM images. Estimation of the Representative 
Elementary Area 

Acquisition of the elemental composition via EDX mapping provides an important 

geological background for XRD analyses and enables to cross-check the petrophysical data. 

Therefore, three samples of different maturity (WIC 7129, HAR 7060, HAD 7110) were 

selected for both EDX mineralogical assessment and BIB-SEM porosity measurements. 

Although the samples exhibit a similar clay/phyllosilicate ratio (0.8-0.9) and thus the 

differences in their mineralogical may be neglected, their texture varies. For the samples 

selected for the analysis, the higher maturity shales show stronger recrystallization of 

biogenic calcite and more pronounced presence of large nannofossil-rich aggregates.  

To determine the Representative Elementary Area that could yield representative 

porosity values and distribution of pores in the shale matrix, for each sample, a mix of EDX 

maps was used (Figure 3.12). The estimation of the REA did not include organic matter 

grains which remained largely unresolved in the EDX maps. The box counting was 

performed twice for each sample, starting from a point chosen at random, and proceeded until 

a relative change in the content of a particular phase did not exceed 10% (VandenBygaart and 

Protz, 1999). During the analysis it was found that the scale of a change in the content of the 

mineral phases depends on a thickness of the alternating nannofossil aggregates and clays 

microlaminae. In the three samples, the calculated change in the content of the three mineral 

groups taken into account, phyllosilicates, quartz and feldspar, and carbonates, decreased to 

10% or below for areas covering 5985 µm2  or more (Table 3.7 and Figure 3.13). Much larger 

areas were required to reduce the relative change in the mineral content below 5% - 39577 

µm2 for WIC, 23941 µm2 for HAR and 35302 µm2 for HAD. Only for pyrite, relatively 

scarce and scattered (Figure 3.12), did the change remain significant (> 10% change) for 

areas smaller than 31271 µm2 in the HAD sample and 12215 µm2 in the WIC and HAR 

samples. For the purpose of this paper, 5985 µm2 area was established as representative.  
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Figure 3. 12. A mix of X-ray maps (RGB colour mode) displaying distribution of various shale 
components. The bedding plane in all images is horizontal. a) WIC 7129 0.53 Ro, b) HAR 7060 
0.89% Ro, c) HAD 7110 1.45$ Ro. At all maturities samples exhibit visible fabric anisotropy with 
well-defined microlamination marked by the alternation of calcite- (blue) and clay (green) lamina , 
and in the lower maturity samples, organic  matter wisps (pink). 
 
 
Table 3. 7. Minimum areas for which a relative change in the mineralogical composition does not 
exceed 5% and 10%. Samples investigated include WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and 
HAD 7110 1.45% Ro. 
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WIC 7129 1954 4397 5985 12215 14780 9894 39577 53869 

HAR 7060 5985 3054 3054 12215 7818 20644 23941 31271 
HAD 7110 5985 5985 5985 31271 7818 12215 35302 53869 

 
 
Table 3. 8. Comparison of EDX Representative Elementary Area phase composition and bulk 
mineralogical composition retrieved from XRD. XRD mineral contents were converted to vol.% of 
rock using standard grain densities of composite minerals. Numbers in brackets show standard 
deviation for EDX mineral content estimation. 
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Figure 3. 13. Change of the mineralogical composition within areas of progressively increasing size 
as retrieved from EDX maps of three selected shale samples.  Measurements reflect % change of a 
parameter between two successive areas. Phases investigated include phyllosilicates (a), carbonates 
(b), quartz and feldspar (c) and pyrite (d). 

 

Because of the laminated character of the Posidonia Shale on a sub-centimetre scale, 

with a single lamina reaching a few mm, an average EDX composition of the graphically 

determined Representative Elementary Area is similar but not thoroughly consistent with the 

volume converted XRD values using standard mineral grain densities. As seen in Table 3.8, 

the estimated composition shows scatter when calculated for several different areas of the 

same sample. In general, in the Wickensen shale, where the sub-centimetric lamination is 

well preserved, light laminae show higher concentration of calcite (34 vol.% ±2) and lower 

content of clays (22 vol.% ±4), while the dark laminae show more constant proportion of 

both (24 ±3 and 27 ±2 vol.% respectively). In the two higher maturity samples, despite that 

a) b) 

c) 
d) 
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the lamination no longer can be distinguished, higher carbonate values are associated with 

laminae enriched in fecal pellets. Because the sub-centimetre scale lamination was not 

captured during standard EDX mapping and probability of introducing errors related to the 

acquisition and processing stage is high, this technique cannot be considered as a valid 

quantitative mineral analysis. First, a substantial error may be introduced when quantifying 

porous phases, not only due to the presence of unresolved micropores (clays, faecal pellets), 

but also due to a signal sent from pore walls (faecal pellets). Moreover, post-acquisition 

phase thresholding and extraction may distort the results if the limited image resolution 

prevents from setting correct threshold values. Finally, limited resolution of EDX maps may 

introduce additional inaccuracies in calculations of fine  phases below or close to the 

resolution of EDX maps. The largest discrepancy between our EDX and XRD results lies in 

the Quartz (Qtz) and Feldspar content. Consistently, lower quartz content in the acquired 

EDX maps may be ascribed both to the low-scale sample heterogeneity (presence of large 

silt-size quartz grains not sufficiently represented in SEM images), limited resolution of the 

EDX maps for detecting small authigenic and detrital quartz grains as well as  phase 

extraction errors. 

 

BIB-SEM porosity. Pore size distribution of meso- and macropores 

Pore types were point counted on representative elementary areas with a pixel size 15 nm. 

For the low maturity shale, the quantification was proceeded on a light lamina (Figure 3.12a). 

All pores resolved by images were classified based on their spatial relation with respect to the 

mineral phases and organic matter using classification of Loucks et al. (2012). For the 

purpose of this study we adapted the following definitions of pore types: 

 Interparticle – 1) pores between detrital grains, authigenic minerals, nannofossils and 

clay flakes; 2) pores (in 2 or 3D space) associated with the interface of organic matter 

and mineral matrix that visibly do not extend into an organic particle;  

 Intraparticle – 1) pores within single mineral grains or fossil bodies; 2) pores within 

well-defined faecal pellets and pyrite framboids; 3) moldic pores formed due to 

dissolution of mineral phases; 4) pores at the interface of the inorganic matrix and 

organic macerals that do not visibly extend into an organic particle, contained within a 

fossil body, faecal pellet or pyrite framboid;  

 Organic – 1) discrete, round, bubble-like pores in the organic matter; 2) sponge- like 

pores within the organic matter, often interconnected and grouped; 3) irregularily 
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shaped pores, often from the interface of the organic matter and mineral matrix, 

visibly extending in 3D into the organic mass; 4) visible cracks within OM particles, 

often with jagged edges and extending into the particle edge.  

 

 
Table 3. 9. Binarized BIB/SEM image porosities and point-counted relative contribution of different 
pore types of selected Posidonia shales samples: WIC 7129 (0.53% Ro) HAR 7060 (0.89% Ro) and 
HAD 7110 (1.45% Ro) samples. The minimum fully resolved pore size is 100 nm, except for the 
intraorganic pores of the HAD sample - 50 nm. 

Sample Area 

(µm
2
) 

BIB 

image 

porosity 

(%) 

BIB image 

porosity as 

fraction of 

total porosity 

Extrapolated 

intraorganic 

porosity (>6 

nm) (%) 

Intraorganic 

porosity as 

fraction of 

total porosity 

% of inter-, 

intraparticle 

and organic 

pores 

WIC 7129 96x70 0.7 0.07 - - 47-53-0 
HAR 7060 96x70 0.6 0.13 - - 44-43-13 

HAD 7110 96x70 1.1 0.12 - - 36-40-24 
HAD 7110 
Intraorganic 

153x96 0.2 0.02 1.7-3.1 0.18-0.33 - 

 

 

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
0.00

0.25

0.50

0.75

1.00

In
tra

p
a
rticle

In
te

rp
a
rt
ic

le

Organic

 

Figure 3. 14. Ternary diagram showing contribution to porosity of three pore types as resolved in 
BIB-SEM micrographs (pixel size 15 nm) in three Posidonia shale samples: WIC 7129 (0.53%)(black 
circle), HAR 7060 (0.89%) (red circle) and HAD 7110 (1.45%) (green circle). 
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Figure 3. 15. Backscattered electron micrographs (L) of shale samples polished with the Argon BIB. 
Secondary electron micrographs (R) show details of porosity distribution within areas outlined with a 
blue rectangle in BSE micrographs. The bedding plane in all images is horizontal. a)(WIC 7129): 
Calcareous shale (light lamina) with disseminated faecal pellets alternating with clay material, silt-
size quartz, pyrite framboids and sparsely disseminated calcite. b) Pores are found within fossil 
aggregates, locally within pyrite framboids and in the organoclay-rich matrix with dispersed fossils. 
c) (WIC 7129): Calcareous shale (dark lamina) enriched in the clay material admixed with organic 
matter, with disseminated silt-size quartz, pyrite framboids and calcite fossils. d) Pores are dispersed 
in an organoclay matrix with dispersed calcite grains and accumulated in fossil bodies. e) (WIC 
7129): Calcareous shale (light lamina) with recrystallized fossiliferous aggregates alternating with 
organic and clay laminae. f) Pores in diagenetically changed fossil aggregates can reach 3 µm in 
diameter. Note lack of organic material lining the pores. g) (HAR 7060): Calcareous shale with 
densely packed nannofossil aggregates. Partial recrystallization of the nannofossil rich shale matrix 
and presence of calcite and dolomite cement all indicate diagenetic transformation of the original 
material. h) Pores in recrystallized fossil aggregates occur at the interface with organic matter filling 
the intragranular space. i) (HAR 7060): Calcareous shale with alternating calcite-and clay laminae. 
Fossiliferous aggregates are to a large extent recrystallized and locally cemented. j) Pores are 
encountered within fossiliferous aggregates as well as within pyrite framboids. k) (HAD 7110): 
Calcareous shale with recrystallized fossils and authigenic carbonate phases replacing the original 
fabric. l) The porosity is encountered between pyrite crystallites in pyrite framboids, within well-
defined diagenetically changed fossiliferous aggregates as well as within shale matrix. m) 
(HAD7110): Calcareous shale with a strong diagenetic overprint. n) Typically porous zones include 
fossiliferous aggregates and organic particles. o) (HAD 7110): Common features of a diagenetic 
overprint in the Posidonia shale. Biogenic calcite in faecal pellets (top and bottom) is much 
recrystallized, and locally cemented. New dolomite phases are replacing the original fabric. p) 
Organic matter (outlined) spans from non-porous to highly porous. 
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Pore network types change throughout the maturity sequence from exclusively inter- and 

intraparticle in the low maturity sample (47 and 53% of the inter- and intraparticle pores 

respectively), to inter- and intraparticle dominated in the peak oil window (44 and 43% 

respectively), and finally to inter- and intraparticle-rich with moderate proportion of organic 

pores in the sample of the gas window maturity (36, 40 and 24% respectively) (Table 3.9 and 

Figure 3.14). In the least mature sample inorganic porosity is associated mainly with the 

aggregates of biogenic calcite (Figure 3.15a-f), significantly recrystallized in the carbonate 

rich laminae and in the lower marlstone (Figure 3.15a, b, e, f). Moreover, pores are found at 

the interface of mineral phases and the organic matter, within pyrite framboids (Figure 3.15b), 

and are occasionally lined with organic matter. Moving towards peak oil window maturity, 

slit-shaped pores from the interface of the organic matter and mineral matrix, mainly found 

within calcite domains, predominate (Figure 3.15g, h), with rare porosity within pyrite 

framboids (Figure 3.15i, j) and very rare within organic matter in the form of cracks and 

fractures. In the gas window sample, intraorganic pores appear in the form of discrete, 

spongy and irregular pores (Figure 3.15m-p), and interface pores gain in significance. Most 

of the visible pores are found within inorganic domains, with calcite and pyrite as locations of 

their highest density (Figure 3.15k-n).  

Image extraction and binarization of the visible pores provided information about 

porosity, pore shapes, pore sizes, and pore size distributions. To compare between mosaics 

covering a representative area (Figure 3.15a, g, k), and acquired at the magnification 6,000x 

with a pixel resolution 15 nm, we took into account only fully resolved pores. Their 

minimum size was estimated after grouping all pore areas into bins of an increasing size and 

plotting them as a function of pore numbers (Houben et al., 2013; Klaver et al., 2012). At all 

maturities, fractal distribution of fully resolved pores was approximated by one linear 

regression line, with a slope varying between -2.38 in WIC, -2.42 in HAD to -2.55 in HAR 

(Figure 3.16, Figure 3.17a). As pores smaller than 100 nm could not be linearly fitted, this 

diameter may be interpreted as the minimum pore diameter fully resolved in our REA images 

(Figure 3.16).  
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Figure 3. 16. Typical distribution of pores from BIB-SEM mosaics of the Posidonia shale samples. An 
area of investigation covers the size of an estimated Representative Elementary Area (96x70 µm

2
). 

Fully resolved pores (red circles) are fitted with a linear regression line defined by a slope (D) and a 
point of interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate 
from the linear regression line estimated for the fully resolved pores. 

 

The resolved image porosity does not show significant difference between samples of 

different maturity, amounting to 0.7% in a light lamina of the Wickensen shale, and 0.6% and 

1.1% in Harderode and Haddessen samples respectively (Table 3.9). Although the equivalent 

median diameter of resolved pores does not vary substantially, reaching 160 nm in WIC and 

HAD and 150 nm in HAR (Figure 3.18a), pores are twice as elongated in the last (Table 3.10, 

Figure 3.18b). In each shale a differential distribution of pore sizes shows a single maximum 

located between 280-400 nm in WIC and HAD and 200-280 nm in HAR (Figure 3.17b). To 

verify what factors determine the position of this maximum, pores from 4 additional mosaics 

(Figure 15c, i, m, o) with an area < REA and estimated practical image resolution 50 nm 

(mag. 10,000 x), were binarized and their differential size distribution was plotted as a 

function of pores area. From the Figure 3.17c it stems that for the Wickensen sample, a dark 

lamina characterizes with larger contribution of porosity held by pores < 300 nm and thus 

their distribution is skewed towards smaller pores. In contrast, in a more recrystallized light 

lamina, the absolute amount of porosity held by finer pores is smaller, and thus the 

distribution is skewed towards larger pores. In the peak oil and gas window, the impact of an 

original texture is obliterated and there is little shift of the maximum pore density between 

different sample areas.  

Slope D 

Interception C 
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Figure 3. 17. Distribution of pore sizes of BIB-SEM image pores for three samples WIC 7129 0.53% 
Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro.  a) Fractal distribution of pores > 100 nm with 
the line of the best linear fit described by a slope (D) and intercept with the y axis (C). The BIB-SEM 
images were captured at the magnification 6,000x and cover an estimated REA. Note that porosity > 
100 nm approximates inorganic hosted porosity in all samples. b) Differential pore size distribution 
as a function of an equivalent radius. Note descending pore area density of pores < 400 nm diameter. 
c) Differential pore size distribution as a function of an equivalent radius. The BIB-SEM images were 
captured at the magnification 10,000x (< REA, >50 nm) or 6,000x (REA, >100 nm) (LL – light 
lamina, DL – dark lamina). d) Fractal distribution of image intraorganic pores (> 50 nm) for the 
HAD 7110 1.45% Ro shale. The BIB-SEM images were captured at the magnification 10,000x 
covering the estimated REA.  e) Differential size distribution of intraorganic pores as a function of an 
equivalent radius. Note ascending pore area density of all resolved pores (> 50 nm).  

a. b. 

c. 

d. e. 
HAD 7110: D -2.7, C -.0.4 
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Figure 3. 18. Distribution of a) equivalent diameters and b) aspect ratios of BIB-SEM image pores 
for three samples WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. The 
histograms represent pores with a diameter above the practical image resolution. The magnification 
of a single image is 6,000x for histograms representing all pores, and 10,000x for a histogram 
representing intraorganic pores only. Frequency denotes number of pores with the characteristic 
measured within a specific bin. 
 

 

Table 3. 10. Median equivalent diameter and aspect ratio of pores resolved fully resolved in BIB-SEM 
images for WIC 7129 (0.53% Ro) HAR 7060 (0.89% Ro) and 7110 HAD (1.45% Ro). The minimum 
fully resolved pore size is 100 nm, except for intraorganic pores of the HAD sample -50 nm. 

Sample Median equivalent diameter 

(nm) 

Median aspect ratio 

WIC 7129 161 2.2 

HAR 7060 148 4.0 

HAD 7110 161 2.3 

HAD organic 73 1.8 

 

At magnification 6,000x, the majority of resolved image porosity lies within inorganic 

domains and thus a size distribution of visible pores approximates size distribution of 

inorganic pores. Such approximation does not include potential clay pores, as those remained 

unresolved in mosaics at all times. Similarly, little is known about intraorganic pores, which 

due to their small sizes (< 200 nm) account for merely17% of the image porosity (> 50 nm) 

in the overmature shale (Table 3.9). To gather information about size distribution of pores 

contained within organic particles, separate distribution curves were constructed with all the 

inorganic porosity excluded. The resolved organic pores show fractal distribution, with a 

slope of the line of the best linear fit approaching 2.7 (Figure 3.17d). In contrast to the 

inorganic pores, differential pore size distribution of intraorganic pores shows no maximum, 

and pores of a decreasing size contribute progressively more porosity (Figure 3.17e).  

 

a. b. 
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Fully resolved image porosities contained in pores > 100 nm constitute only 7, 11 and 

10% of the physically measured total porosity for the investigated WIC, HAR and HAD 

samples, respectively. Comparison of image and mercury injection derived cumulative and 

incremental porosity curves show that > 100 nm image pore bodies are 1-3 orders of 

magnitude larger than pore throats ‘seen’ by the mercury injection experiments, and thus that 

they are not directly connected (Figure 3.19a, b). Lack of such connectivity is consistent with 

a differential distribution of image resolved pores, showing decreasing contribution to 

porosity of pores below 200 nm (Figure 3.17b). Likewise, due to a limited resolution of the 

mosaics, we found no quantitative evidence for the connectivity between intraorganic pores 

or their direct connectivity with the inorganic pores. However, using the fractal relationship 

of the resolved intraorganic pores with a diameter > 50 nm, we assumed a similar fractal 

behavior of the unresolved intraorganic pores and extrapolated the log pore area-log N 

relationship towards finer pore sizes (Figure 3.19c). The limit of our extrapolation was set at 

the diameter 6 nm, corresponding to the maximum pore volume density in the mercury 

differential pore size distribution curve (Figure 3.6c). The results show that if the unresolved 

but extrapolated organic pores follow the same distribution as resolved pores, the intraorganic 

pores could contribute 1.7-3.1% porosity in the pore size range 6-300 nm, bringing overall 

18%-33% to the total porosity in the overmature shale and yielding an average porosity of 

organic matter 24%. Moreover, because combined inorganic and extrapolated organic 

porosities approximate experimentally measured mercury porosity (Figure 3.19d), it stems 

that intraorganic pores could account for the increase in the mercury porosity below < 40 nm 

and provide connectivity within the overmature shale pore system.   
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Figure 3. 19. Comparison of cumulative porosity (a) and pore size distribution (b) obtained from 
mercury injection (> 5.6 nm diameter) and image analysis (> 100 nm diameter) covering the REA for 
three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 7110 1.45% Ro. c) Extrapolation 
of a line of the best linear fit describing distribution of intraorganic pores to a diameter 6 nm. d) 
Comparison of cumulative porosity obtained from mercury injection (> 5.6 nm diameter) (black) and 
image analysis with inorganic (> 100 nm) and intraorganic (>6 nm) porosities superimposed. The 
red line denotes the minimum value of the extrapolated image porosity, while the green line – the 
maximum value. 

 

Distribution of image porosity in various shale domains 

Low maturity Posidonia shale exhibits fine-scale lamination of clay-rich packages, 

alternating with calcite-rich laminae of biogenic origin, differentiated by varied proportion of 

both components (Figure 3.12). As clay packages are not visibly internally porous at any 

maturity (Figure 3.15), we encountered no correlation whatsoever between EDX derived 

phyllosilicates content and image porosity, regardless of maturity (Figure 3.20a). Likewise, 

no correlation was found for pyrite, despite porous nature of pyrite framboids in the highest 

maturity sample. In contrast, we found a moderate covariation between image macroporosity 

and EDX derived calcite content. To look into this calcite- image porosity relationship in 

detail, we differentiated between porosity values as captured in the clay-enriched dark 

(Figure 3.15 c, d) and calcite-enriched light laminae (Figure 3.15e, f) in the low maturity 

a. b. 

c. d. 
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shale. Despite the compositional variation, a relationship between visible porosity and calcite 

content in both sample sets is not significantly different and shows the same range of values 

(0.3-2.4%) with a positive sign of the covariation (Figure 3.20b). Only those regions that 

show advanced redistribution of the calcite phase, found exclusively within the light lamina, 

do show relative increase in porosity (up to 10%) at any given calcite content and deviate 

from the range of values characteristic for areas with more dispersed calcite grains.  

For the peak oil window maturity shale (Figure 3.15i, j), we could not differentiate 

between light and dark laminae, and therefore the micrographs were classified into two 

groups depending on the content of faecal pellets. The first group includes areas dominated 

by calcite aggregates of the biogenic origin, with a strong diagenetic overprint, either 

recrystallization or partial cementation, named here as faecal pellet rich domains. The second 

group consists of areas rich in clays, quartz, pyrite framboids, or only discrete carbonate 

crystals, named as matrix rich domains. The results show that, unlike in its lower maturity 

counterpart, in the peak oil window maturity shale there is no relation between calcite content 

and image porosity, even when most porous and strongly recrystallized faecal pellet rich 

domains are excluded (Figure 3.20c). Overall, despite the large variation in calcite content (7-

74%), the image porosity values oscillate only within a very small range (0.0-1.5%), showing 

no relation to change in the mineralogical composition.  

The greatest variation of macroporosity values in relation to calcite content was found in 

the most mature shale. Similarly to the peak oil window maturity shale, the micrographs and 

the associated porosity were divided into faecal pallet and matrix-rich domains. We found 

that faecal pellet domains are characterized by higher calcite content (> ~30%) and exhibit 

higher porosities than the shale matrix domains (Figure 3.20d). Faecal pellet rich domains 

also show the highest spread in the porosity values encountered in samples of all maturities, 

with the variability between 3-7%. In general, image gas window porosities are by one order 

of magnitude higher than porosities found in any domain in the oil window and match 

porosities encountered in the light lamina of the immature shale.  
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Figure 3. 20. Relationship of image porosity with EDX maps derived clay and calcite content, and 
point-counted OM content. Each data point represents one BIB-SEM image captured at magnification 
10,000 x and a pixel size 15 nm. 
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Similarly to the calcite-porosity relationships, we found varied relation between point 

counted organic content and image porosity for shales of different maturities. In both the 

early oil window and peak oil window shale, there is no observable trend beween the two 

variables (Figure 3.20 g, h). In contrast, in the gas window shale, an analysis of the image 

porosity with distinction to microfacies showed that despite the fact that the matrix-rich 

domains are on average less enriched in the organic material (7-30%) in comparison to the 

faecal pellet domains (20-30%), they show stronger dependence of image porosity on OM 

content (Figure 3.20e). When accounting for the resolved intraorganic porosity only, its 

values are quite similar in both matrix and faecal pellet rich domains for a given organic 

matter content, showing relatively small spread (0.0-0.7%), and slightly higher covariance in 

the former (Figure 3.20f).  

After combining the area occupied by the point counted OM and image porosity for each 

image (Figure 3.21), we found a similar covariation between this area (10-40%) and the 

calcite content for the peak oil and gas window shale. In contrast, in the low maturity shale, 

and at the equivalent calcite content, the values are higher (up to 65%), and show a larger 

spread. 
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Figure 3. 21. Combined image porosity and point-counted OM content and its relationship to EDX 
derived calcite content. Each data point represents one BIB-SEM image captured at magnification 

10,000 x (corresponding pixel size 15 nm). 
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Discussion 

 

Pattern of porosity change upon burial and diagenesis 

Posidonia Shale shows a non-linear pattern of porosity change with maturity observed in 

pores of all sizes (Figure 3.10, Figure 3.22a). Based on the amount of porosity held by pores 

grouped according to their size, we observed that the absolute change in total porosity is 

controlled predominantly by pores between 6-100 nm. Pores in this range exhibit the most 

radical change in the absolute volume of porosity they hold, with the initial drop by over 3 

vol.% of the bulk rock, followed by an almost 2 vol.% increase (Table 3.11, Figure 3.22b). A 

considerable change in porosity is also observed for pores < 6 nm, and only a small absolute 

change is observed for pores 100 nm. Such pattern of porosity loss and gain is typical for 

shales passing through the oil and gas window, respectively, and was reported from other 

shale formations (e.g. Mastalerz et al., 2013). The non-uniform variation of porosity within 

different groups of pores is related to the micro-, and millimeter scale heterogeneity of the 

rock-building components (Table 3.1, Figure 1, Figure 3.12, Figure 3.15), reflected by the 

varied amount of biogenic calcite, detrital clays and organic matter. A direct result of this 

heterogeneity is the presence of a network of pores with a different association for the 

carbonate, clay and organic domains and varied sensitivity for compaction or occlusion by 

the petroleum phase. 

 

HAD 7110

HAR 7060

WIC 7129

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of total porosity

 Porosity > 100 nm

 Porosity 6-100 nm

 Porosity < 6 nm

 
Figure 3. 22. a) Cumulative porosity contained in pores grouped into three intervals < 6 nm, 6-100 
nm, > 100 nm, estimated for three samples: WIC 7129 0.53% Ro, HAR 7060 0.89% Ro and HAD 
7110 1.45% Ro. Within all three groups, the change of porosity is non-linear, bottoming out in the 
peak oil window shale. b) A change in the total porosity with increasing maturity is controlled to the 
large extent by the pores in the interval 6-100 nm. 
 

 

a. b. 
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Table 3. 11. The summary of porosities contained in the three selected Posidonia Shale samples: WIC 
7129 (0.53% Ro) HAR 7060 (0.89% Ro) and 7110 HAD (1.45% Ro). Pores with diameters < 6 nm 
were calculated from the gas sorption, pores > 100 nm were quantified from the SEM-BIB images, 
and pores between 6-100 nm represent a difference between total porosity and the sum of the gas 
sorption and SEM-BIB porosity. 

Sample Porosity in pores < 6 

nm (%) 

Porosity in pores 6-

100 nm (%) 

Porosity in pores 

>100nm (%) 

WIC 7129 4.1 4.9 0.7 

HAR 7060 2.1 1.8 0.6 

HAD 7110 3.8 4.6 1.1 

 

Micro- and mesoporosity of clays  

With the limited resolution of SEM images, only ca. 10% of total porosity is resolved at 

the magnification 6,000x.  As the resolved pores are > 100 nm in size, in our study c lays are 

not visibly porous at any maturity, and therefore little is known about their porosity.  While 

deploying sorption techniques we did detect pores < 6 nm, the analyses were performed on 

the bulk shale and provided no information about how much porosity is held by the clay 

phase itself. A strong covariation between the sorption pore volume and the combined 

content of organic carbon and phyllosilicates in the early oil and gas window shale (Figure 

3.11b) suggests that both these phases contribute to the micropore volume. Indeed, detailed 

work by Rexer et al. (2014) showed that only half of the sorption pore volume is in kerogen, 

and thus inorganic matrix must also contribute to measured porosities. This also agrees with 

previous studies by Furmann et al. (2013), Mastalerz et al. (2013), Kuila and Prasad (2013), 

Chalmers and Bustin (2012) and Schmitt et al. (2013). In the early oil window and gas 

window Posidonia, shales with a higher abundance of clays were shown to have smaller pore 

throat threshold apertures and higher contribution of finer mesopores in comparison to their 

calcite richer counterparts.  Interestingly, no difference in a distribution of mercury pores 

between the clay-rich and calcite-rich units was found in the oil- filled peak oil window shale 

(Figure 3.6). Despite our expectations that part of the mercury porosity should be hosted by 

clay pores (Chalmers et al., 2012; Chalmers and Bustin, 2008; Ross and Bustin, 2009), the 

XRD analyses on the lowest and highest maturity Posidonia shale revealed negative 

correlation between total porosities and the phyllosilicates content (Figure 3.5b). These few 

results suggest that in the organic-rich and oil-wet calcareous shale, despite that oil coatings 

inhibit dissolution and reprecipitation of the carbonate cement, local recrystallization of 

calcite leads to strengthening of the matrix (Fabricius, 2003), arresting compaction, and 

preventing clays to hold a final control on porosity. Such interpretation could also be valid for 
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siliceous shales, and explain a lack of a positive correlation between total porosity and clay 

content as reported by Bustin et al. (2008). 

 

Porosity and distribution of pores and pore sizes in the calcareous matrix 

In contrast to clays, at all maturities, the calcareous matrix shows presence of visible 

pores in sizes between << ca. 50 nm – 5000 nm, with pores > 100 nm approximating porosity 

of pyrite framboids and of the biogenic, microcrystalline calcite. Our micrographs show that 

upon burial, biogenic calcite experienced intensive diagenetic redistribution, with much 

stronger intensity in the marlstone unit and relatively small extent of recrystallization in the 

clay-rich lamina of the calcareous shale. Limited degree of recrystallization in the clay-rich 

domains is consistent with previous observations from argillaceous chalks (Baker et al., 

1980), and points to a buffering effect of the matrix clays on intensity of carbonates 

remobilization. Similar observations were also made in K immeridge Clay mudstones by 

Macquaker et al. (2014). They observed that reactive clays are dissolved upon presence of 

organic acids generated due to sulfate reduction, methanogenesis, and thermochemical decay 

of organic matter during burial, and hence act as efficient acid buffers. In this study we found 

a moderate positive correlation between the image porosity and calcite content in the dark 

lamina of the least mature shale, and no correlation in the strongly recrystallized fossiliferous 

aggregates (Figure 3.20b). Moreover, a detailed study showed that in the low maturity shale, 

pores < 300 nm contribute more porosity in the clay-material enriched dark laminae in 

comparison to horizons packed with the biogenic fossiliferous aggregates (Figure 3.17c). 

Different distribution of calcite pores  in the clay-rich and faecal pellet rich laminae indicates 

that diagenetic redistribution of calcite modified pores size distribution of the calcite pores 

present, led to a selective growth of larger pores at the expense of smaller, and resulted in the 

local increase in recorded image porosity values (Figure 3.15f, Figure 3.20b). In both early 

oil window and gas window shale, despite the observed recrystallization features, total 

porosity is positively related to calcite content and no diagenetic pore volume loss can be 

inferred. We suggest that, analogous to chalks, such positive relationship is enhanced by the 

development of contact cement between calcite crystals, arresting compaction of the not-

resolved matrix pores (Fabricius, 2003). Indeed, in the low maturity marlstone samples, we 

observed presence of pore throats that are even one order of magnitude higher tha n typical 

pore throats present in the calcareous shale (Figure 3.6a). Recrystallization of calcite without 

pore volume loss in Posidonia stands in contrast to pore-blocking effect of the calcite cement 
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often reducing porosities in shale reservoirs (Chalmers and Bustin, 2012). We attribute this 

lack of porosity loss to only limited calcite precipitation as encountered in muds that 

experienced stable low redox conditions in their pore waters, to the presence of clays 

alternating with the carbonate-rich matrix, and finally to the oil-coating of mineral grains. 

High minus-bitumen porosities observed in SEM micrographs of the peak oil window 

shale indicate that, analogously to conventional carbonate and quartzose oil- filled reservoirs 

(Worden et al., 1998; Heasley et al., 2000; Scholle, 1977), diagenesis and cementation in 

Posidonia was retarded once bitumen filled inorganic pores. As showed by the identical 

distribution of pore throat sizes in the oil window marlstone and calcareous shale (Figure 

3.6b), petroleum trapping controlled the maximum loss of pore throats, and limited the 

impact of both compaction and cementation. We suggest that total compaction was most 

effective in the most organic rich parts of the shale, and is reflected by a loss of the area 

occupied by image pores and organic phase between 0.53-0.89% Ro (Figure 3.21).  

A regain in total, image and gas porosities in the gas window shows that organic 

occlusion is reversible and should be linked to processes of maturation of organic matter 

under increasing thermal stress. Moderate correlation between image porosity and calcite 

content implies that the major change in shale porosity takes places in pores < 50 nm. A large 

spread of porosities between the faecal pellets and the bulk shale matrix, with the former 

yielding values up to 7%, suggest that shale composition and texture control development and 

preservation of pores in the gas window.     

 

Kerogen transformation, organic porosity loss and gain  

Early oil window bitumen 

Total porosity of Posidonia Shale bottoms out at oil window maturities, and shows no 

dependence on Total Organic Content (Figure 3.4, Figure 3.10). Considering consistent loss 

of organic carbon upon increasing thermal stress (Table 3.2, Table 3.6), this porosity - TOC 

relation cannot be fully explained without recognizing effects of kerogen transformation, here 

monitored by a significant drop in S1, S2, Hydrogen Index and the amount of soluble 

bitumen. A complex path of kerogen transformation was described by Behar et al., (2008), 

and involved decomposition of kerogen into viscous liquid rich in NSO-compounds (nitrogen, 

oxygen ans sulphur), followed by decomposition of the last into more soluble non-

hydrocarbon compounds and finally, cracking into hydrocarbons. Our experiments confirm 

the presence of a substantial amount of high density, non-volatile bitumen phase dominating 
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total extract of the low maturity Posidonia shale (Clementz, 1978; Wilhelms et al., 1990). 

Presence of inorganic pores devoid of visible organic linings in the Wickensen sample and 

association of the majority of the extract with kerogen suggests that this early bitumen did not 

enter the mass migration stage and still occupies kerogen pores (Hwang et al., 1998; Sandvik 

et al., 1992).  

 

Loss of porosity in the oil window 

In the peak oil window shale, more than half of total porosity is lost (Figure 3.4), with 

solid bitumen blocking the inter- and intraparticle space (Figure 3.15g-j). Presence of the 

organic phase filling the pore space is responsible for the high slope of the line describing the 

fractal distribution of HAR pores, and a relatively small importance of pores > 400 nm 

(Figure 3.17a). Whilst we do not have information on the exact physiochemical nature of this 

pore filling solid organic residue, it is plausible that its precursor was a heavy, viscous 

polymer that developed more aromatic and condensed structure upon cracking into lighter 

hydrocarbons (Behar et al., 1997; Curiale, 1986; Hill et al., 2003; Horsfield et al., 1992; 

Lewan 1997; Michelis et al., 1996).  Bitumen residing in the inter- and intraparticle spaces is 

non-extractable by organic solvents and therefore cannot account for a density increase of the 

bulk shale upon solvent washing (Table 2). This increase must be ascribed to a presence of 

lighter petroleum fraction, of which ca. 1/2-1/3 resides in pores as small as < 6 nm. High 

affinity for kerogen of the peak oil window oil, also recorded by Rexer et al. (2014), suggests 

that the residual oil must be absorbed onto organic matter, and therefore blocks its internal 

porosity (Sandvik et al., 1992). Although the solvent soluble petroleum phase occupies ca. 

50% of pore space of the peak oil window shale, we presume that its mobility in the finest 

pores was restricted. Limited motion and strong sorpion of oil in micropores is reflected by 

the presence of residual oil blocking < 6 nm pores in the gas window shale. High oil 

saturation of the organic matter in the oil window also implies that light oil might have been a 

driving force for petroleum migration, increasing mobility of the petroleum phase 

(Vanderbroucke et al., 1993). Such hypothesis was also proposed by Lewan (1997) and was 

explained by the volume expansion following bitumen and oil generation.  
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Thermal conversion of kerogen and porosity gain 

In the oil window Posidonia, not all porosity was lost due to oil and bitumen pore filling, 

and the SEM micrographs show presence of the interface pores between the organic phase 

and minerals. Although the appearance of the interface pores may have been induced by 

dessication, depressurization or post-coring phase alteration (Fishman et al., 2012; Milliken 

et al., 2013), it is not unreasonable to think of their origin as a product of in-situ interaction 

between diagenetically chaning carbonate phases and solidifying organic polymer. We have 

not found evidence for any visual post-coring alterations within analyzed Posidonia shale 

samples but we understand that the long storage of the Posidonia cores (> 20 years) may have 

depleted organic matter in the most volatile components and could have contributed to the 

loss of volume of the organic phase. On the other hand, the concept of porosity evolution in 

the oil window is supported by the reported loss of volume of the residual organic matter 

upon thermal conversion and expulsion of lighter hydrocarbons under oil generating 

conditions (Table 3.2, Figure 3.8) (Kanitpanyacharoen et al., 2013). Because the organic-

inorganic interface pores are primarily concentrated within rigid zones of the fossiliferous 

aggregates and pyrite framboids, such distribution emphasizes the role of the inorganic 

framework as controlling petroleum micromigration of the non-hydrocarbon polar and 

hydrocarbon fractions and its trapping away from the major expulsion conduits (Leythaeuser 

et al., 1988; Pelet et al., 1986). Such pore location also suggests that the presence of rigid 

zones is essential in order to arrest compaction and preserve organic porosity evolved due to 

conversion of kerogen and bitumen.  Preferential location of porosity within rigid zones is 

especially visible in the gas window shale where 75% of image porosity (pores > 100 nm) is 

not directly in the OM but within faecal pellets and pyrite framboids. Because the combined 

area of the image pores and OM does not change between peak oil window and gas window 

shale (Figure 3.21), it stems that the porous fossiliferous zones act as microreservoirs for 

generated petroleum and are instrumental in contributing gas window porosity. Considering 

significant drop in the amount of the convertible organic carbon and residual oil content 

between 0.89-1.45% Ro, it is highly plausible that the evolution of the inorganic-hosted 

porosity is associated with the cracking of the residual bitumen saturated with oil.  

 

Evolution of organic porosity in the gas window 

In contrast to fossiliferous aggregates, due to shale framework compaction and bitumen 

escape, ductile clay-rich zones are less porous, wih the visible pores contained predominantly 
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within the organic matter. Although point-counted visibly porous organic matter grains are 

relatively rare (35%), they show fractal distribution and most likely host significant amount 

of porosity < 50 nm not resolved in images (Figure 3.19c, d). This is consistent with Rexer et 

al. (2014) who recorded increase in the sorption pore volume contained in the isolated 

kerogen from 69-87 mm3/g at 0.9% Ro up to 104-113 mm3/g at 1.4% Ro, and agrees with the 

increase of the bulk shale sorption porosity as recorded in this study (Table 4). 

Although we do not know the composition of the organic particles hosting the 

intraorganic pores, Bernard et al. (2011) and Bernard et al. (2012), based on the synchrotron-

based transmission spectromicroscopy, classified them as oil-spent pyrobitumen. The 

evolution of the intraorganic porosity is commonly linked to the secondary cracking of 

petroleum and the exsolution of thermogenic gas (Bernard et al., 2012; Curtis et al., 2010; 

Jarvie, 2007; Loucks et al., 2009). Indeed, similarly to Curtis et al. (2012), Loucks et al. 

(2009), Milliken et al. (2013) and Milner et al. (2010), in this study the intraorganic pores 

appear only in the gas window sample. Lack of intraorganic pores at lower maturities also 

suggests that any gas generated was likely dissolved in the liquid phase (Pepper and Dodd, 

1995; Schenk et al., 1997; Tan et al., 2013; Waples, 2000). Co-existence of porous and non-

porous organic areas in the gas window shale and different morphologies of the organic pores 

all point to the small-scale heterogeneity of the organic material in the shale matrix at the 

onset of cracking and emphasize that not all organic matter is prone for development of 

intraorganic porosity. Although the heterogeneity of the mature organic matter is typical for 

shales with type II kerogen (e.g. Curtis et al., 2012; Milliken et al., 2013; Milner et al., 2010) 

its genesis is still not well understood. As various studies on coaking coal showed (Iglesias et 

al., 2001, Kwiecinska et al., 1992), the composition and density of the organic matter are 

crucial for development of gas vacuoles within the organic phase. For instance, high 

concentration of mobile phase (hydrogen) in coal favours mobility of the aromatic stacks 

(solvating fluid) and transfer of hydrogen to free radicals, thus inhibiting linkage and 

enabling subsequent nucleation and growth of gas vacuoles during the coaking stage. Past 

research also emphasizes the importance of hydrogen donor compounds such as asphaltenes 

or hydroaromatics as preventing cross-linking during cracking (Behar and Pelet, 1988; 

Michelis, 1996; Schenk et al., 1997), delaying conversion and aromatization of the organic 

polymers (Lewan, 1997). If similar mechanisms acted during maturation of organic matter in 

the Posidonia shale, only those particles that retained enough mobile hydrogen would have 

been prone to devolatilization through bubble formation. Availability of hydrogen-rich 

compounds was ensured by the primarily algal composition of the Posidonia kerogen as a 
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precursor for the Posidonia bitumen and hydrocarbons, consistent with findings of Littke et al. 

(1988) and Littke et al. (1991). In more rigid, kerogen- like particles, with advanced cross-

linking and most of the H immobilised in polycondensed aromatic molecules, any gas 

generated would have likely diffused through micropores (Vanderbroucke and Largeau, 

2007). The lack of visible porosity in the gas mature kerogen was experimentally 

corroborated by Bernard et al. (2011) and is consistent with the high fraction (ca. 65%) of 

non-porous organic particles point counted in this study.  

We found positive relation between OM volume and image resolved intraorganic 

porosity, with no difference in absolute porosity values between faecal and matrix domains 

but with stronger covariation outside the faecal pellet zones (Figure 3.20f). Such positive 

correlation stands in contrast to a negative relationship found between OM-hosted image 

pores and TOC as observed by Milliken et al. (2013) in the Marcellus Shale. We suggest that 

different association of the image porosity to the content of OM in shales is related to textural 

and compositional differences. In Posidonia, the presence of rigid, fossiliferous zones 

favoured entrapment of oil-saturated bitumen, and was followed by its efficient degasification. 

Such conditions may have been less operative in shale composed primarily of the 

extrabasinal siliciclastic debris (Milliken et al., 2013).  

 

Porosity balance. Compaction, bitumen entrapment and cracking 

The potential amount of organic porosity evolved due to thermogenic loss of organic 

carbon can be estimated for shales of any maturity if the original TOC, HI and the extent of 

thermal transformation of kerogen are known or can be restored (Jarvie et al., 2007; Modica 

and Lapierre, 2012). Moreover, for any stage of thermal degradation of kerogen, potential 

total porosity can be calculated if information about the initia l porosity is accessible. In 

Posidonia, despite the evidence of thermal degradation of kerogen with increasing thermal 

stress (Table 3.2), the estimated theoretical total porosity does not match the measured values 

at any stage (Figure 3.8c). The porosity balance shows that from the total porosity loss 

between 0.53-0.89% Ro, only 30-40% of the observed decrease can be easily accounted for 

by the retention of the liquid oil. Total difference between potential and measured porosity in 

the peak oil window shale can be explained only when including compaction and/or bitumen 

retention as other porosity reducing mechanisms. Although not measured directly, the 

minimum porosity lost due to compaction in the oil window Posidonia can be estimated after 

subtracting the amount of porosity occluded by oil from the total increase in the potential 
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organic porosity between 0.53-0.89% Ro. In our samples, such estimated loss amounts to ca. 

4.5% of the bulk rock, and accounts for only 35% of the estimated total porosity decrease 

between 0.53-0.89% Ro.  

Although our porosity balance does not yield the amount of solid bitumen occluding 

pores, its content can be evaluated while examining further porosity change at higher levels 

of thermal conversion. For instance, we noticed that only 40% of the regain in measured 

porosity between 0.89-1.45% Ro is due to decrease in the oil content, with the majority of the 

measurable increase ascribed to the evolution of additional organic pores. The organic origin 

of this porosity is quantitatively reflected as the accordance between the measured increase in 

the oil- free total porosity and the estimated increase in the potential organic porosity due to 

thermal decomposition of the organic matter (Figure 3.8d). The 4% increase in the organic 

porosity between 0.89-1.45% follows the loss in the pyrolizable organic matter as measured 

by Rock-Eval (Table 3.2) and implies that in the oil window solid bitumen forms part of the 

S2 peak. Our porosity reconstructions show that although organic content is a good predictor 

for the amount of organic porosity evolved in the gas window Posidonia Shale, any 

predictions of porosity at lower levels of thermal maturity will not work without estimating 

the amount of residual bitumen trapped in the matrix.  

 

Potential for gas storage and connectivity of the pore system  

In Posidonia ca. 90% of porosity is in the meso- and micropore size range, and ca. 40% 

is contained within sorption pores < 6 nm. Such high contribution of meso- and micropores is 

significant from the shale gas production point of view, and will affect estimations of the 

shale gas storage capacity and gas flow efficiency (Ambrose et al., 2010; Chalmers and 

Bustin, 2012). We found that in the gas window Posidonia shale, porosity < 6 nm is 

associated with the clay and organic domains (Figure 3.11), with radically different affinities 

for water and oil. Most certainly, any organic porosity is oil-wet as it evolved via cracking of 

the pore-filling bitumen and oil (Table 3.3). Moreover, retarded cementation of the 

fossiiferous zones suggests that fossil-hosted pores also became oil wet and thus form part of 

the oil-wet pore system. In contrast, clays are hydrophilic and may remain water-wet even at 

high maturities (Aplin and Macquaker, 2011). As in Posidonia clays are microporous, they 

may not participate in the gas transfer from the matrix to a fracture and a wellbore (Modica 

and Lapierre, 2012; Passey et al., 2010).  
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Organic porosity in the gas mature Posidonia is highly heterogeneous, with pore sizes as 

small as < 6 nm, co-existing with micron-size pores hosted by fossiliferous aggregates and 

pyrite framboids. Such heterogeneiy of pores has consequences for the amount of gas stored 

in the free and adsorbed phase. While we did not measure the absolute gas capacity of the 

Posidonia shale, we can certainly argue that its volume is controlled by the amount of 

bitumen trapped in shale, and thus we expect the best microreservoir for free gas to be 

associated with the macroporous and rigid faecal pellet zones.  

The approximation of total shale porosity by the combination of gas sorption and 

mercury injection techniques confirmed that those two pore systems are connected, and that 

the pore connectivity extends to pore bodies resolved in SEM micrographs (Figure 3.10, 

Figure 3.15). Consistently, high residual mercury saturation as encountered in the early oil 

window and gas window samples could be interpreted as reflecting high pore body/pore 

throat size ratio, leading to extensive snap-off of the mercury phase in throats over the entire 

range of the imbibition pressures before retraction from the pore bodies takes place (Figure 

3.7) (Ioannidis et al., 1991; Ioannidis et al., 1993; Porcheron and Monson, 2004).  An 

elevated ratio of pore body to throat sizes is in accordance with the lack of overlap between 

the mercury pore size distributions and the distribution of sizes of the image resolved pores 

(Figure 3.19a, b). However, we cannot exclude that alternatively, high residual mercury is 

induced by compressibility of the shale under high pressures and does not necessarily reflect 

the ratio of pore bodies to pore throats (Toda and Toyoda, 1972). Such interpretation stems 

from the very high percentage (ca. 90%) of total porosity that was not emptied from the 

receding mercury at the equivalent intrusion pressures and which was confirmed with the 

SEM studies (Figure 3.17b, c). 

A microstructure composed of pore bodies connected through < 40 nm pore throats as 

present in Posidonia is typical for shales reported elsewhere (Nelson, 2009) and is believed to 

have a major control on gas flow efficiency through the matrix (Chalmers and Bustin, 2012; 

Rushing et al., 2008). According to Chalmers and Bustin (2012) a more balanced ratio 

between micro-, meso- and macropores favours permeability of shales. In the water-free 

calcareous Posidonia shale from the early oil and gas window, a moderate porosity balance is 

attained at ca. 40-50-10% of total porosity contained in pores < 6 nm, 6-100 nm and >100 nm 

respectively. However, in a tight, clay-bearing shale with water-wet surfaces, this balance is 

likely disturbed as finer pores are lost.  
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Summary and Conclusions 

 

A detailed analysis of the Posidonia shale revealed a heterogeneous rock with a micron-

scale alternation of the carbonate-rich, clay-rich and organic-rich domains. The application of 

a range of different techniques measuring pores of various sizes allowed to identify factors 

controlling the change in shale porosities with maturity and between lihologies. 

Posidonia Shale from the Hils Sincline shows a non- linear pattern of the porosity change 

with maturity. Total porosity is ca.10% at maturities of 0.6% Ro, but declines to ca. 4% at Ro 

= 0.9% as a result of compaction and pore-filling with bitumen. At Ro = 1.4%, porosities 

increase to values similar to those at 0.6% Ro, related to hydrocarbon generation from the 

residual bitumen. The initial retention of bitumen in the shale matrix indicates that the 

Transformation Ratio is of limited use when modelling the organic porosity evolution in the 

oil window shale. However, it becomes again a reliable measure of the porosity gain in the 

gas window. The  Posidonia shale case study revealed the porosity of the overmature shales 

can be accurately estimated using the Leco TOC and Rock Eval data if only porosity of the 

oil window shale is known and its further compaction has been arrested. 

A major consequence of the entrapment and thermal cracking of the hydrocarbon-prone 

bituminous phase is the appearance of organic pores. Image analysis revealed that although 

this porosity covaries positively with the content of the organic phase, it is not evenly 

distributed. In Posidonia, the preferential entrapment of bitumen occurred within faecal 

pellets, pyrite framboids and in the vicinities of the rigid mineral grains, showing the highest 

present day macroporosities. Such location of the petroleum traps is most likely related to 

their rigidity and the resistance against compaction. The visible macropores, although 

surrounded by the inorganic phase, are likely oil-wet and may potentially act as 

microreservoirs of gas.  

The retention of bitumen in the shale matrix has major consequences for arresting 

compaction of carbonates. We showed that trapping of petroleum in the faecal pellets 

prevented chemical cementation of the fossiliferous aggregates and thus porosity loss. The 

concomitant recrystallization of the biogenic calcite not only did not reduce porosity, but 

plausibly strengthened the shale framework and induced growth of macropores. The loss of 

the pore volume was most effective in the clay- and organo-rich domains, and followed 

kerogen-to-bitumen transformation.  

Our study showed that the pore network in Posidonia is connected at all maturities, and is 

composed of narrow pore throats (< 40 nm diameter) providing access to SEM resolved pore 
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bodies (> 50 nm). The pore size distribution is not uniform and is a function of both the 

maturity and the rock texture and composition. Both in the low maturity and in the 

overmature shale, wider pore throats are characteristic for the calcite-rich mudstone, with 

higher potential for fabric strengthening than the c lay-rich shale. In the peak oil window it is 

the occlusion of porosity by oil that reduces the size of the pore throats, but is reversible with 

the onset of the oil-to-gas cracking.  A major difference in porosities is seen between the 

fossiliferous and the clay rich zones, with the former arresting the loss of pores through 

compacion and enhancing development of macropores in the gas window, and the latter 

contributing microporosity. In the gas window shale, a fractal distribution of the intraorganic 

pores resolved in SEM images suggests that pore connectivity within the organic phase is at 

least partly attained.  

This study showed that the multi-technique approach is essential for characterizing pores 

and pore connectivity in shales. We found that CO2 gas sorption at 195K is a good indicator 

of micro- and fine mesoporosity, and when combined with the mercury porosimetry, it can 

approximate the connected porosity. Complementary to the bulk analyses is the SEM-BIB-

FIB microscopy, offering unique approach for visualizing shale heterogeneity and 

identification of the hydrocarbon microreservoirs.  When coupled with the quantitative image 

analysis, the high resolution microscopy provides the essential background for the 

understanding of the evolution of the shale microstructure on different scales. Despite the 

advantages of each technique alone, their limitations in describing the full range of pores 

place constraints on the interpretation of the data if not supported by other methods. In the  

case of the BIB-SEM microscopy, those limitations involve limited resolution of the 

microscropic micrographs, and large, over a centimetre-scale, lithological variations. 

The last comment herein relates to the classification of shale pores. While we recognize 

that in the organic-rich, overmature shales the genetic classification of pores may be more 

appropriate, the grouping of pores on the basis of their spatial location is useful, and may 

facilitate the recognition of pathways of bitumen migration and entrapment in the oil window. 

The confusement in classifying shale pores may arise while realizing that many inorganic-

hosted pores observed in the gas window maturity shale evolved due to thermal 

decomposition of the residual organic matter and are de facto of organic origin. This 

realization may however not be possible via the visual observations alone, and without the 

access to the geochemical data from a suite of samples covering a range of maturities. The 

possibility that many inorganic-hosted pores are of organic origin should lead to re-evaluation 

of pore network types in many shale plays. 
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Chapter 4: Microscopic, petrophysical and geochemical 

characterization of the Wealden Shale of Northwest Germany – 

implications for porosity development in the heterogeneous shale 

gas reservoir 

 

Introduction 
 

The successful exploration of shale gas in the US sparked an interest in shale formations 

in Europe and induced research into finding potential targets for domestic European shale gas 

exploration. One of the sedimentary sequences that attracted the attention of the industry is 

the Lower Cretaceous Wealden Shale from the Lower Saxony Basin in Northwest Germany. 

Preliminary assessment of the German Wealden was conducted through the Isteberg 1001 

drilling in the west of the basin and discovered an oil-prone rock with a lacustine Type I 

kerogen, but with a variable input of terrestrial (type III) and marine (type II) organics 

(Berner et al., 2010). A recent geochemical study by Rippen et al. (2013) on 3 cores retrieved 

from the Hannover area, and also used in this study, confirmed the predominantly lacustrine 

character of the organic matter with a lateral gradient in maturation from the early oil 

window, to postmature and overmature. In the central part of the basin the Wealden is 

dominated by clay-rich mudstones intercalated with limestones (Mutterlose and Bornemann, 

2000), and thus differs in composition from mostly siliceous US shale gas plays (Curtis, 

2002). It is expected that despite the high hydrocarbon potential of the accumulated organic 

matter, such clay-rich lithologies may negatively affect the producibility of gas (Jarvie et al., 

2007).  

The efficiency of gas flow through the matrix to naturally occurring and artificially 

induced fractures depends also on the nature of the pore systems, and its vertica l change in 

rocks of varied lithology. It has been recognized that the nature of matrix pores influence the 

permeability and wettability of shale reservoirs and thus their long-term production profiles 

(Aplin and Macquaker, 2011; Chalmers et al., 2012; Soeder, 1988). The volume and type of 

matrix pores constitute also a major input into estimations of the adsorbed and free gas 

storage capacities of shale reservoirs (Ambrose et al., 2010). A range of pore types have been 

documented, including pores hosted by organic phases (Bernard et al., 2010; Bernard et al., 

2011; Curtis et al., 2010; Desbois et al., 2009; Loucks et al., 2009; Milner et al., 2010; 

Passey et al., 2010; Schieber, 2010; Sisk et al., 2010; Lu et al., 2011; Slatt and O’Brien, 

2011). The importance of organic porosity for gas storage and its flow to a wellbore is critical 
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as indicated by the presence of a broad positive relationship between total porosity and 

organic carbon (Passey et al., 2010). The formation of the organic pores is recognized to be 

secondary, related to the maturation of organic matter and thus in theory its occurrence 

should be predicted by kinetic models (Jarvie et al., 2007). To date, several attempts have 

been made to predict the formation of organic pores (Jarvie et al., 2007; Loucks et al., 2012; 

Modica and Lapierre, 2012), all of them stressing bitumen formation and entrapment as a 

factor inhibiting development of organic porosity in the oil window.  

Numerous studies have documented that pores in shales are connected. The presence of 

the open porosity in the clay phase was documented via a selection of gas adsorption, 

mercury porosimetry, metal injection and imaging techniques in studies performed by e.g. 

Curtis et al., 2010, Hildenbrand and Urai, 2003; Kuila et al., 2013, Sondergeld et al., 2010. 

Likewise, high resolution 3D image visualizations methods have demonstrated pore 

connectivity within the organic phase. Despite such promising results, it is recognized that 

the effective pore connectivity in the subsurface is significantly lower, negatively affected by 

the presence of water and oil molecules (Aplin and Macquaker, 2011, Kuila et al., 2013; 

Modica and Lapierre, 2012). 

Vertical and lateral heterogeneity of the pore systems encountered in shales cannot be 

fully predicted without recognition of depositional environments and diagenetic changes 

within muds (Macquaker et al., 2014). Such spatial variation is especially important in shales 

with large vertical and lateral heterogeneity in the sedimentary facies. The resolution of the 

well logging methods may not be sufficient to resolve original heterogeneity of the shale 

formations, and its direct estimation requires extensive work and excellent sampling strategy.  

Such work is also useful from the academic standpoint and may contribute significantly to 

understanding relationships between different aspects of mudstone deposition and its physical 

attributes. In this study, an attempt to perform such work has been undertaken. Both 

petrophysical and geochemical investigations were carried out on three cores of the German 

Wealden, retrieved by ExxonMobil Production Deutschland and made available for scientific 

investigations. The bulk measurements were supplemented by analysis of microtextures both 

in the petrographic and scanning electron microscope micrographs, followed by an analysis 

of pore systems using highly polished thin sections. The main aim of our work was to address 

the issue of small-scale variation of the lithologically heterogeneous clay- and carbonate-rich 

units, and its effect on the porosity evolution in shales of radically different maturity. 

Moreover, in the gas window maturity rocks, we paid special attention to development and 
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connectivity of organic pores as potential sites for storage of free gas and the most likely 

permeability pathways of gas flow in the context of shale gas exploration. 

 

Samples and Methodologies 
 

292 samples retrieved from cores at a distance ca. 1 m apart were analysed for TOC and 

Rock Eval hydrocarbon potential by Applied Petroleum Technology AS, Norway. Rock-Eval 

was performed according to Espitalié et al. (1977) using a Vinci RE-6 Standard instrument. 

To correct for an oil- in-kerogen peak, 4 shale samples were solvent extracted with a mixture 

of dichloromethane (93%) and methanol (7%) and subsequently analysed for its remaining 

hydrocarbon potential.  

The X-ray diffraction was performed by Macaulay Scientific Consulting Ltd. The bulk 

samples were wet ground (in ethanol) in a McCrone mill and spray dried to produce random 

powders. X-ray powder diffraction (XRPD) patterns were recorded from 2-75°2θ using 

Cobalt Kα radiation. Quantitative analysis was done by a normalised full pattern reference 

intensity ratio (RIR) method. Expanded uncertainty using a coverage factor of 2, i.e. 95% 

confidence, is given by ±X0.35, where X = concentration in wt.%, e.g. 30 wt.% ±3.3. 

Shale grain density was measured on samples dried at 105°C using the “Small 

Pyknometer Method”, yielding density values within an error ± 0.02 g/cm3. Mercury 

injection data was collected on Micrometrics Autopore II on samples freeze-dried at -50°C 

and evacuated to 10-4 psia. Total shale porosity was determined from grain density and bulk 

density of samples immersed in mercury at the pressure of 25 psia. The mercury was intruded 

to a maximum pressure 41,000 psia, followed by a pressure drop to 25 psia. The pressure and 

intrusion data were converted to a pore size distribution using the Washburn equation 

(Washburn, 1921), with the input parameters as followes: an advancing contact angle of 141°, 

a receding contact angle 140° and surface tension 485dyn/cm.  

Low pressure sorption experiments were performed on an Intelligent Gravimetric 

Analyzer (IGA), supplied by Hiden Isochema Ltd., Warrington, UK, on shales dried at 110°C 

for 4 hours under vacuum. CO2 was injected stepwise up to a pressure of 1 bar at a constant 

temperature of 195K (dry ice/acetone bath). All isotherms were run twice to ensure 

experimental repeatability. Sorption pore volumes (SPV) were calculated from the maximum 

uptake at 1 mbar assuming a density of CO2 equal to 1.177 g/cm3. Corresponding sorption 

porosities were determined using the pycnometer shale grain density. 
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For microscopic studies, 20 highly-polished thin sections and 5 Araldite resin covered 

blocks, all cut perpendicular to bedding, were prepared. Thin sections were first scanned 

using an Epson Perfection V500 scanner with 9600 dpi resolution. Subsequently, each thin 

section was examined with a Nikon Eclipse LV100 POL transmitted light petrographic 

microscope with an attached Nikon Digital Sight DS-U3 camera. Polished blocks were 

examined in the reflected and UV light using an Oil Zeiss Immersol 518N oil immersion 

microscope. The fluorescence of organic matter was determined qualitatively using the UV 

light with an HXP 120C accessory. The vitrinite reflectance (VR) measurements were made 

on randomly selected particles using a Zeiss Axio Imager M2m microscope at x50 

magnification with a 546 nm interference filter. The standard used for calibration was  

Yttrium-Aluminium-Garnet with a refractive index of 0.889. The VR of OM particles was 

recorded in a digital mode using Fossil 3.0 software.  

For high resolution imaging, one thin section of low maturity shale and two sections of 

gas mature shale of varied carbonate content were selected, milled and polished 

perpendicular to the bedding plane with a Gallium (Ga) focused ion beam (FIB) in a FEI 

Helios Nanolab 600 with FEG source. Trenches 15 µm x 5 µm were cut using a 1-30kV 

accelerating voltage and 3.3nA beam current. Samples were viewed in the BSE Immersion or 

secondary electron mode with the following conditions: 4.1 mm WD, 1.5-3.0 kV accelerating 

voltage, 2-4 nA beam current, using through-the- lens detector for better spatial resolution. 

The images were captured at magnifications between 10,000-200,000x, corresponding to 

pixel sizes 25-1.2 nm respectively. 

Twenty carbon-coated polished thin sections were examined using a Hitachi SU-70 High 

Resolution Analytical SEM, equipped with an Oxford Instrument Energy Dispersive X-ray 

microanalysis system (INCA Energy 700). Samples were viewed in the Back Scattered 

Electron (BSE) mode using the YAG detector with the following conditions: 15-8 mm WD, 

15keV accelerating voltage, 2-4 nA filament current. To reduce the shale topography, prior to 

the SEM imaging, selected samples were polished with an argon broad ion beam (BIB) in the  

GATAN 691 Precision Ion Polishing System (PIPSTM). In order to fit into the PIPSTM 

chamber, the sample size was reduced to a 3 mm in diameter disc with GATAN 601 

Ultrasound Disc Cutter using water emulsion of boron nitrate powder as a saw. The prepared 

discs were bombarded with Ar ions in a vacuum (10-2 Pa) for 6 hours (angle 3°, 5kV, 1-20 

µA). The images of shale porosity were captured in the Secondary Electron (SE) mode using 

a through-the- lens detector (TLD) at magnifications of 600 x (pixel size 100 nm), 6,000 x 

(pixel size 15 nm) and 10,000 x, (pixel size 6 nm) using the Automate mosaic building option. 

http://www.gatan.com/index.html
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For selected areas, an Energy Dispersive X-ray (EDX) mode was implemented, generating 

maps of elemental and phase distribution. Microanalysis settings for the EDX collection were 

set at 300 µm dwell time, 15kV accelerating voltage and 4 nA filament current. The areas 

covered by EDX mapping varied between 5424 and 77741 µm2. The phase extraction 

procedure involved conversion of each X-ray map into an RGB colour mode map, its 

binarization and quantification of areas in the ImageJ 1.44 software (Abramoff et al., 2004). 

Additionally, for selected samples the BSE generated images were used to estimate  

distributions of grain sizes with diameters > 2 µm. Areas used for the grain size analysis were 

captured at a magnification of 500 x, covering 48387 µm2 each. Grains outlines were 

digitized in Adobe Photoshop 8.0 and were quantified in ImageJ software. 

To determine a Representative Elementary Area for estimations of image porosity, a 

modified box counting method described in Houben et al. (2013) was applied. With this 

method, continuous variations of any given property can be established by gradually 

increasing an area of investigation in a two-dimensional space. The box counting was 

proceeded for 4 groups of minerals: phyllosilicates, quartz and feldspar, carbonates and pyrite. 

The phases were extracted from a mix of RGB-converted EDX elemental maps. For the 

purpose of this study an area was selected as representative if the measurements of the 

content of an individual phase in boxes of an increasing size did not change by more than +/- 

10% relative to the previous area. 

For each representative mosaic, total image porosity was quantified by digitization of 

pore areas manually outlined in Adobe Photoshop 8.0. The digitization was followed by 

binarization and quantification proceeded in the image analysis software ImageJ 1.44 

(Abramoff, 2004). Further statistical analysis was performed using statistical and 

mathematical software: Minitab 15 and Excel 2010. For two gas window samples, pores were 

also point counted (150 counts) and classified into types in the image analysis software 

JMicroVision 1.2.7. (Roduit, 2008). The same software was used to quantify organic matter 

in the images. At least 300 counts were made, until no significant change in the OM 

percentage was observed. Additionally, for one gas window sample, a fraction of the area 

occupied by porous and non-porous particles was point-counted with the 300 counts limit.  

As a result of the limited image resolution at any magnification, not all pores could be 

fully visualized in BIB image mosaics. To determine the minimum fully resolved pore size in 

BIB mosaics, a method described in Houben et al. (2013) and Klaver et al. (2012), based on a 

concept of a fractal dimension was implemented. According to this method, all pore areas 

were grouped in bins with subsequent bins increased by a power of two and subsequently, the 
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number of pores were counted and varied as a power of the corresponding pore area. The 

unique power law equation was determined for fully resolved pore sizes and graphically 

represented by a linear regression line(s) defined by a specific slope (D) and interception with 

the y axis (C). The minimum pore size fully resolved in images was determined as the one 

corresponding to the minimum pore area that does not deviate from the calculated regression 

line. 

 

Depositional setting 

The German Wealden is a term describing predominantly regressive, continental, limnic 

to brackish siliciclastic deposits of the early Cretaceous in northwestern Germany (Figure 

4.1). Historically, the German Wealden is divided into the Obernkirchen Member (W1-W4) 

and Osterwald Member (W5-W6) (Elstner and Mutterlose 1996; Wolburg, 1949), and 

belongs to the Bückeburg Formation deposited through middle Berriasian to early 

Valanginian times in the Lower Saxony Basin. Being part of the Central European Basin 

System (CEBS), the evolution of the Lower Saxony sub-basin in the middle Jurassic was a 

result of intensive rifting in the Central Atlantic, resulting in the establishment of a system of 

deeply subsiding graben structures and strike-slip faults (Bachmann et al., 2008). As a result 

of rapid burial during the Early Cretaceous, in the central part of the basin (Hannover-

Minden-Braunschweig shaded area in Figure 4.1) the Berriasian sediments currently attain 

thicknesses up to 700 m, with up to 300 m of overlying Valanginian (Mutterlose and 

Bornemann, 2000). Although the predominant lithologies are siltstones and mudstones, 

occasionally interbedded with mollusc (gastropods, bivalves) coquinas, the character of the 

sediments changes laterally, with coaly layers of backswamp environments and 

sandstones/siltstones related to fluvial transport in the southeast (Peltzer et al., 1992). The 

lithological heterogeneity of the Wealden shows that it was deposited in a series of sequence-

stratigraphically linked environments, embracing flood plain, littoral, sublittoral and deep 

lacustrine settings, controlled by base level variations (Table 4.1) (Berner et al., 2011; 

Mutterlose and Bornemann, 2000; Stollhofen et al., 2008). The transgressive-regressive 

periods were oscillatory, with several short-lived marine incursions during the W2 interval, 

increasing marine influence on the deposition above W3, and a fully developed marine realm 

in the lower Valanginian (Casey et al., 1975; Stollhofen et al., 2008). The influence of the sea 

level variations, local base level oscillations, changes in the oxygen content and intensity of 

sedimentation led to overall overfilling of the lake with sediments and resulted in the small-
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scale variation in facies seen in the character of the cores used in this study (Table 4.1). The 

changing hydrological conditions are indicated by the faunal assemblages (molluscs, 

ostracods), mainly of limnic nature but shifting towards brackish and normal saline at the end 

of Berriasian and in the Valanginian (Elstner and Mutterlose, 1996). Similarly, the change in 

salinity is indicated by the character of the organic matter, mainly brackish lacustrine but 

with a marine overprint towards the top of the Berriasian interval (Berner, 2011; Rippen et 

al., 2013). 

The maturity of the German Wealden is not uniform and varies laterally across the basin 

(Bruns et al., 2013). As established by Rippen et al. (2013), well A sediments from the 

northern margin of the Berriasian basin show maturities of Ro 0.5-0.6% within the interval 

sampled in this study (932-1058 m). This is slightly less than the Ro values reported by the 

Egs-ploration (unpublished) (up to 0.7% Ro) (Table 4.1). Southwest of well A, at the location 

of the C well, Wealden Shale exhibits wet gas window maturity, with VR increasing from 1.5 

to 1.9% between 609-921 m. In the most central part of the basin (well B), and also over the 

largest interval studied (981-1578 m), the vitrinite reflectance shows the highest values, 

between 2.2-2.4%, placing the accumulated organic matter in the dry gas window. For the 

last well, the vitrinite reflectance measured by Rippen et al. (2013) deviates from the 

measurements by Littke (2008, unpublished), reporting Ro values between 1.6-2.4% over the 

studied interval. Due to uncertainties regarding the correct maturity of the C sediments, we 

use the extended maturity values by Littke (2008, unpublished) in this study. 

 
Table 4. 1. Information about depth, geological age, facies and maturity of three cores of German 
Wealden: A, B and C. 

Well Depth (m) Interval* Depositional setting* Maturity Ro(%) 

A 

832-850 Lachmoeve Deep marine 

0.5-0.7 
910-928 Brachvogel B Sublittoral 

967-998 Austernfischer Deep lacustrine 

1029-1058 Unnamed Deep lacustrine 

B 

604-617 Lachmoeve Marine influenced deep lacustrine 

1.6 -2.4 

 

709-728 Brachvogel A Marine influenced deep lacustrine 

828-890 Austernfischer Deep lacustrine 

920-942 Unnamed Lake plain 

C 

981-1003 Lachmoeve Marine influenced deep lacustrine 

1.5-1.9 

1006-1016 Unnamed Undefined 

1150-1186 Brachvogel A Deep lacustrine 

1285-1350 Austernfischer Deep lacustrine 

1563-1578 Eiderente Deep lacustrine 

*After ExxonMobil (unpublished) 
**After Egs-ploration (unpublished), Littke (2008, unpublished) and Rippen et al. (2013) 
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Figure 4. 1. Regional units of the Lower Cretaceous German Wealden (shaded area) in Northern 
Germany (after Mutterlose and Bornemann (2000) and Stollhofen et al. (2008)).  The three boreholes: 
A (Ro 0.5-0.6%), B (2.2-2.4%) and C (1.5-1.9%) are marked with black, red and green circles 
respectively b) Palaeogeography of the Lower Saxony Basin in Berriasian times (after Elstner and 
Mutterlose, 1996) with the current location of the three boreholes. c) Lithostratigraphy of the 
Berriasian and lower Valanginian of the northwest Germany (after Elstner and Mutterlose, 1996, 
modified). Colour bars show top and bottom of the cored interval for each of the wells.  
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Results 

 

Mineralogy and textural features from XRD, EDX and petrographic analysis 

Wealden shale is not a homogeneous rock but encompasses a variety of interlayered and 

interbedded rock types of both argillaceous and carbonate nature  (Fig. 4.2). Five main 

sublithofacies were distinguished in all three cores through the analysis of thin sections and 

RGB-colour converted EDX maps: clay-rich siliciclastic mudstone, clay-rich siliclastic 

mudstone with physical or biogenic sedimentary structures, clay-bearing fossiliferous 

mudstone, limestone (mollusc- or ostracod-rich packstone or grainstone) often forming shell 

pavements and carbonate concretions (Figure 4.2 and Figure 4.3). The allochtonous 

components consist of detrital clays, quartz and terrigenous organic matter. The autochtonous 

components consist of biogenic carbonate and algal organic matter. The diagenetic 

components include pyrite, principally magnesium and ferroan diagenetic dolomite/ankerite, 

diagenetic clays (illite, kaolinite) and solid bitumen.  

The low maturity Wealden shale from the A borehole (Ro = 0.5-0.7%) is a greenish grey 

rock, either homogeneous and visibly bioturbated (Figure 4.3a), non- laminated with an 

undisturbed fabric (Figure 4.3b, 4.3 f-h), or exhibiting visible, subcentimetric lamination. In 

the visibly laminate shale the altermating laminae often constitute of grains of different size 

(Figure 4.3c, d), or alternatively show varied abundance of the fossil component (Figure 4.3e). 

The bulk mineralogy (Table 4.2, Figure 4.7) shows an inversely correlated proportion of both 

calcite and clays, with the relative amount of each depending on the content of the 

microfossils (foraminifers, molluscs, ostracods). Clay-rich mudstone shows elevated 

proportion of clays (55-66%), mostly illite and illite - smectite, and kaolinite, and only <1-2% 

to 10% carbonates. In contrast, mollusc, foraminifera and clay bearing mudstone (sample 

A10326) has 40% carbonates and only ca. 30% clays. Such heterogeneity reflects changes in 

depositional paleoenvironments between supralittotal, littoral, sublittoral and distal basinal 

settings and the associated, varied supply of clastic and biogenic material (Mutterlose and 

Bornemann, 2000). 
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Figure 4. 2. Lithological logs for cores retrieved from A, B and C boreholes. The TVD (true 
vertical depth) scale is in metres. The basic depositional environment of the each sediment 
interval is provided left to  each log.  
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Figure 4. 3. Scan micrographs of the selected Wealden Shale samples. In each well, samples 
originate from a number of different depositional settings. a) A10278: Deep marine, clay-rich 
siliclastic mudstone with biogenic sedimentary structures. Visible burrows are differentiated by their 
darker shades and flat, enlogated shapes. b) A10282: Deep marine, clay-rich siliciclastic mudstone. 
The shale fabric is homogeneous and lacks any biogenic structures. c) A10289: Visibly laminated 
clay-rich siliciclastic mudstone from the sublittoral lake setting. The lighter laminae are composed of 
silt-sized quartz grains and alternate with darker laminae dominated by the unresolved, fine-grained 
mineral matrix. d) A10299: Clay-rich siliciclastic mudstone from the sublittoral lake setting. The 
mudstone shows abundant silt-bearing laminae (light coloured). e) A10305: Clay-bearing 
fossiliferous mudstone from the sublittoral lake setting. Distinct lamination is a result of varied 
content of structured organic matter (black). f) A10320: Deep lacustrine, clay-rich siliciclastic 
mudstone. The shale fabric is fine-grained and homogeneous. g) A10326: Deep lacustrine, clay-
bearing mudstone with abundant microfossils. h) A10342: Deep lacustrine, clay-rich siliciclastic 
mudstone with homogeneous fabric. i) B10444: Marine influenced, deep lacustrine, clay-rich 
siliclastic mudstone with biogenic sedimentary structures. The burrows are differentiated by their 
lighter colours and elongated shapes. j) B10455: Marine influenced, deep lacustrine, clay-rich 
siliciclastic mudstone. The shale fabric is homogeneous with the predominance of fine-grained 
constituents. k) B10458: Marine influenced, deep lacustrine, clay-rich siliciclastic mudstone with very 
scarce silt-sized grains. l) B10482: Deep lacustrine, clay-rich siliciclastic mudstone. A visible fossil-
rich (light) lamina in the centre. m) B10494: Deep lacustrine, clay-bearing fossiliferous mudstone. 
Macro-sized fossils are embedded in the clay-rich matrix, forming distinct laminae. n) B10525: Deep 
lacustrine, clay-rich siliciclastic mudstone with abundant silt-size carbonate crystals (light). o) 
B10547: Deep lacustrine, clay-rich siliciclastic mudstone. The matrix is visibly diagenetically altered. 
p) B10562: Deep lacustrine, clay-rich siliciclastic mudstone with abundant pyrite (light lamina at the 
bottom). q) C10371: Marine influenced, lacustrine, clay-rich siliciclastic mudstone with visible silt-
sized components (light). r) C10388: Marine influenced, lacustrine, clay-bearing fossiliferous 
mudstone. Macro-sized shells are embedded in the fine-grained matrix. s) C10397: Deep lacustrine, 
clay-rich siliciclastic mudstone. Macro-sized fossils ARE visible at the top. t) C10401: Deep lacustrine, 
clay-rich siliciclastic mudstone. u) C10418: Lake plain, clay-rich siliciclastic mudstone with sand-
sized quartz grains. v) C10426: Lake plain, clay-rich siliciclastic mudstone interbedde with shell 
layers (light). w) C10432: Lake plain, clay-rich siliciclastic mudstone. The matrix is diagenetically 
altered. x) C10438: Lake plain, mollusc-packed grainstone. The interstices between the shell detritus 
are infilled with cement. 
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Table 4. 2. The TOC-normalized XRD mineralogical composition of selected Wealden shale samples 
in wt.% for wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). The TOC content (in wt.%) 
was determined with LECO. 
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Quartz 19.7 17.4 15.6 10.7 18.1 19.4 14.4 6.5 20.5 20.2 20.0 20.5 21.0 
Plagioclase 0.7 0.7 0.3 0.9 0.0 1.1 1.2 1.0 1.7 0.8 0.2 0.8 1.9 

K-Feldspar 0.5 0.9 0.0 0.5 0.0 0.4 1.5 2.5 1.9 0.4 0.0 0.0 0.4 
Calcite 0.2 7.0 0.5 42.9 0.9 22.6 3.1 0.2 2.7 0.1 0.5 0.3 6.1 

Dolomite 0.0 0.9 0.0 1.3 0.7 8.7 9.5 0.4 1.7 3.6 5.7 2.2 4.5 
Siderite/ 
Ankerite 0.1 0.2 0.0 0.8 0.3 0.2 0.6 0.1 4.7 0.1 8.7 6.0 6.9 

Pyrite 6.5 2.2 4.2 1.8 4.4 4.0 1.9 1.4 5.1 6.0 4.4 6.4 2.5 
Marcasite nd 0.2 nd nd nd 0.0 0.3 0.1 nd 0.6 nd nd nd 

Anatase 0.4 0.4 0.3 0.1 0.1 0.5 0.5 0.7 0.5 0.7 0.6 0.6 0.5 
Muscovite 5.0 2.8 4.6 1.1 2.4 4.4 6.6 3.5 8.3 5.9 7.0 3.8 4.4 

Illite + I/S 42.0 39.7 44.4 24.4 46.8 29.5 36.2 44.5 42.5 42.4 42.1 49.8 40.5 
Kaolinite 15.9 13.1 14.8 4.9 7.7 4.5 9.6 20.3 4.2 13.8 5.9 4.5 1.2 

Chlorite 1.8 0.0 1.8 1.2 2.2 2.6 3.7 0.0 0.0 1.3 0.8 0.5 1.3 
Gypsium 0.8 1.0 0.9 2.6 0.1 0.0 4.9 0.7 0.6 0.0 0.0 0.0 2.9 

Halite 0.4 0.6 0.3 0.5 0.5 0.0 0.0 0.2 0.2 0.0 0.2 0.1 0.5 
Bassanite 0.1 1.2 0.5 2.3 0.2 0.0 0.0 0.6 0.4 0.0 0.2 0.5 1.6 

TOC 5.8 11.8 11.4 4.1 15.3 1.9 6.2 17.4 5.1 4.2 3.8 4.1 3.9 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 

 

The top marine mudstone is either visibly bioturbated, with silty burrows arranged in 

layers or lenses and occasional wood fragments (Figure 4.3a), or alternatively organic- and 

clay-rich with no biogenic sedimentary structures (Figure 4.3b; Fig 4.4a, b). The middle 

sublittoral lake shale (Figure 4.3c-e; Figure 4.4c, d) is on average more abundant in fossil 

debris and may show interlamination of clay-rich and silt-rich laminae (Figure 4.3c, d). 

Finally, the bottom, deep lacustrine shale shows the highest variability, and is represented by 

non- laminated, clay-rich siliciclastic mudstone (Figure 4.3f, h, Figure 4.4e, f, Figure 4.4i, j), 

bioturbated, silt-bearing, clay-rich mudstone, foraminifera and mollusc-, clay- and silt-

bearing mudstone (Figure 4.3g, Figure 4.4g, h), and finally interbedded shelly limestone.  

The size of the shell fraction varies across the A core, and is much coarser in the fossil-

bearing mudstone (or wackstone) (> 0.5 mm), packstone and grainstone (> 3 mm) in 

comparison to the clay-rich mudstone (<0.3 mm). Calcite cement is more common in 

fossiliferous layers, and may infill intergranular porosity. Other types of cements sporadically 

present include replacement siderite/ankerite and kaolinite. Quartz is present in all rock types, 

with the content varying between ca. 10-20% in the samples analyzed. It forms angular, 

subangular or rounded grains from > 100 µm down to < 5 µm, either disseminated in the 
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matrix, concentrated in laminae or infilling burrows. Occasionally, silica cement infills 

porosity in carbonate-rich intervals. Finally, pyrite is present either as euhedral crystals < 5 

µm, pyrite framboids > 30 µm, or infilling algal cysts. Pyrite is 2-7 wt.% and is less abundant 

in the fossil-rich shale.  

The original heterogeneity of the Wealden Shale is still observable in the high maturity 

rocks, although often masked in thin sections by the dark colour of the shale matrix imparted 

by mature organic matter. In the marine- influenced, deep lacustrine shale interval from the 

top of the B core, the mudrock matrix may be partly homogenized, showing the presence of 

silty burrows (Figure 4.3i), or may alternatively have an undisturbed fabric (Figure 4.3j, k, 

Figure 4.5a-d). The bottom, deep lacustrine shale is more heterogeneous in terms of its 

composition and texture, but still with only rare biogenic material. If present, fossil debris is 

disseminated in the clay matrix (Figure 4.3m), or densely packed and cemented forming a 

hardground bed. Clay-rich mudstone is usually organic-rich (TOC > 2 wt.%), either non-

laminated (Figure 4.5g, h, l) or finely laminated (Figure 4.3n, p, Figure 4.5e, f), with 

occasional cement or microfossils (Figure 4.3o, Figure 4.5i, j).  

The C core shale shows similar variations, with the top, marine- influenced lacustrine 

shale showing a varied abundance of micro- and macrofossil debris (Figure 4.3q, r; Figure 

4.6a, b). The middle, deep lacustrine shale is usually clay- and organic-rich (Figure 4.3s, t; 

Figure 4.6c-f). The highest variability in the shale composition and texture was encountered 

in the bottom, lake plain deposits represented by clay-rich siliciclastic mudstone (Figure 

4.3w), often intebedded with shelly (Figure 4.3v; Figure 4.6i, j) or coaly layers (Figure 4.3u; 

Figure 4.6g, h) and finally, by carbonate-dominated and clay-poor grainstone (Figure 4.3x).  

In contrast to most of the investigated low maturity shale samples from well A, in both 

high maturity cores the original variation of shale components is overprinted by advanced 

diagenetic processes. This means that while in the siliciclastic mudstone samples the clay 

content still varies between 41-68% (Table 4.2), the carbonate content is controlled not only 

by the amount of shell debris, but also the presence of diagenetic ferroan dolomite. This is 

concentrated in shell beds, either as inter- and intraparticle cement, or as discrete, 

replacement dolomite-siderite rhomboids. Dolomite-replacement rhomboids are also common 

in the clay-rich matrix, with sizes between <5 µm to over 500 µm. Other diagenetic features 

include calcite cement, especially abundant in fossil-rich laminae and beds and irregular 

silica patches. Overall, the total content of carbonates in the analyzed high maturity sha le 

samples varies between < 1% up to > 30%, with the most carbonate-rich rocks showing the 

highest fossil abundance. 
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Figure 4. 4. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) displaying 
textural features of the Wealden Shale from the immature/early mature well A, a, b): A10282 deep 
marine, clay-rich siliciclastic mudstone; c, d): A 10305 sublittoral lake, clay-rich siliciclastic 
mudstone; e, f): A10320 deep lacustrine, clay-rich siliciclastic mudstone; g, h): A10326 deep 
lacustrine, clay-bearing fossiliferous mudstone; i, j): A10342 deep lacustrine, clay-rich siliciclastic 
mudstone. In the transmitted light micrographs black colour denotes pyrite or pyritized algae bodies 
(c), white – fossils (c, g) or quartz grains (i), brown – clay matrix. White elongated features are 

fractures. 
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Figure 4. 5. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the 
Wealden Shale from the overmature well B. a, b): B10455 marine influenced, deep lacustrine, clay-
rich siliciclastic mudstone; c, d): B10458 marine influenced deep lacustrine, clay-rich siliciclastic 
mudstone; e, f): B10525 deep lacustrine, clay-rich siliciclastic mudstone; g, h): B10533 deep 
lacustrine, clay-rich siliciclastic mudstone; i, j): B10547 deep lacustrine, clay-rich siliciclastic 
mudstone. In the transmitted light micrographs brown and dark brown colour denotes clay-rich 
matrix, white – quartz and diagenetic carbonates, or fossils (i). White elongated features in c) are 
fractures. 
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Figure 4. 6. Transmitted light micrographs (left) and RGB colour mode EDX maps (right) of the 
Wealden Shale from the overmature well C. a, b): C10371 marine influenced lacustrine, clay-rich 
siliciclastic mudstone; c, d): C10397 deep lacustrine, clay-rich siliciclastic mudstone; e, f): C10401 
deep lacustrine, clay-rich siliciclastic mudstone; g, h): C10418 lake plain, clay-rich siliciclastic 
mudstone; i, j): C10426 lake plain, clay-rich siliciclastic mudstone. In the transmitted light 
micrographs brown and dark brown colour denotes clay-rich matrix, white – quartz and diagenetic 
carbonates, or fossils (i). White elongated features in e) and g) are fractures. 
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Figure 4. 7. Ternary diagram showing the basic mineralogy of the Wealden shale suite. Samples 
taken from three cores: A (Ro 0.5-0.7%), B (Ro 1.6-2.4%) and C (Ro 1.5-1.9%). German Wealden 
consists of a lithologically diverse group of rocks including mudstones and limestones. Note a 
negative correlation between a proportion of clays and carbonates implying, that those are the main 
components building the shale framework. 

 

In shales of all maturities we recorded the presence of horizontal fractures sealed with 

gypsum/bassanite, and in high maturity rocks occasionally with pyrite. The presence of 

pyrite-sealed fractures suggests that those are naturally occurring in the subsurface. On the 

other hand, the genesis of sulfate minerals may be related to the reaction of calcium carbonate 

present in shales with acid sulfate from the oxidative weathering of pyrite (Burkart et al., 

2004). 

 

Organic matter variation as a function of maturity and depositional setting  

We recorded a significant drop of Hydrogen Index from the mean value 591 to 30 and 40 

mg/g between the well A and wells B and C (Table 4.3, Table 4.A1). This drop is associated 

with a decrease in the S2 hydrocarbon potential but no change in the S1 content. The low S1 

content of the A well shale succession suggests it has not yet started generating hydrocarbons. 

Despite a presumed drop of the carbon content between early oil window and gas window 

maturities (Jarvie et al., 2007), the mean organic carbon is not significantly different between 

low and high maturity wells, yielding average values 2.5% (1.8-3.8%), 2.4% (2.1-2.5%) and 

2.1% (1.7-2.3%) in wells A, B and C respectively (Table 4.4). In contrast, there is a higher 

contribution of TOC-rich samples (> 2 wt.%) in the gas window shale, and a higher 
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abundance of shales with TOC < 2% in the least mature well (Figure 4.8). This distribution of 

organic content reflects the different palaeogeographic position of the three sampled cores in 

the basin and the different amount of organic matter originally buried in sediments (Figure  

4.1b). 

 

Table 4. 3. Rock-Eval data statistics (median and 95% confidence interval) for Wealden shale, 
samples taken every 1 m, wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). 

Sample Depth 
(m) 

S1 
(mgHC/g) 

S2 
(mgHC/g) 

S3 
(mgHC/g) 

HI 
(mgHC/gTOC) 

OI 
(mgHC/gTOC) 

Tmax 

Well A 832-
1056 

0.2 
(0.1-0.3) 

15.8 
(9.4-27.0) 

1.0 
(0.9-1.2) 

591 
(493-637) 

38 
(34-50) 

438 
(437-439) 

Well B 981-
1578 

0.1 
(0.1-0.1) 

0.6 
(0.6-0.7) 

0.6  
(0.5-0.7) 

30 
(26-38) 

27 
(23-33) 

462 
(372-485) 

Well C 604-
942 

0.3 
(0.2-0.5) 

0.9 
(0.8-1.2) 

0.8 
(0.7-1.0) 

40 
(37-76) 

35 
(29-46) 

472 
(463-497) 

 

 
Table 4. 4. TOC and HI data statistics (median and 95% confidence interval) for Wealden shale, 
samples taken every 1 m, wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). Samples 
originate from core intervals assigned to different depositional settings (ExxonMobil, unpublished).  

Sample Depth (m) TOC (%) 95% CI HI 95% CI 

Well A 832-1056 2.5 1.8-3.8 591 493-637 

  Deep marine 832-850 1.8 1.0-4.3 203 
 

132-499 

  Sublittoral lake 910-928 3.8 2.4-5.4 704 581-770 

  Deep lacustrine 966-1056 2.2 1.6-3.8 604 491-669 

Well B 981-1578 2.4 2.1-2.5 30 26-38 

Marine 
influenced deep 
lacustrine 

981-1003 2.1 1.2-3.6 67 61-84 

  Undefined 1006-1016 0.8 0.6-0.9 62 60-70 

  Deep lacustrine 1150-1578 2.5 2.2-2.7 25 21-28 

Well C 604-942 2.1 1.7-2.3 40 37-76 

Marine 
influenced deep 
lacustrine 

604-728 1.9 1.3-2.2 147 130-166 

  Deep lacustrine 828-890 2.5 2.0-3.2 37 33-28 
  Lake plain 920-942 1.3 1.0-4.0 29 22-32 
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Figure 4. 8. Histogram of Total Organic Carbon of the Wealden Shale. Measurements were taken 
every 1 m from each available core and thus represent a true distribution of TOC. 

 

Following the lateral heterogeneity, Wealden organofacies are not homogeneous within 

single wells, but instead show interbedding of kerogen Type I with kerogen Types II and III 

(Figure 4.9). The TOC variation is depth and time dependent (Table 4.4, Table 4.A1) and 

thus reflects fluctuations in the base level of the Cretaceous lake. For instance, in well A, a 

significant input of Type II and III kerogen coincides with increased marine influence on 

sedimentation after the W3 interval, resulting in the lowest mean HI of 203 mg/g. The TOC 

variation is large, between 0.3-17.5%, with both low and high values found in the deep 

marine, sublittoral lake and deep lacustrine shale. The highest mean TOC value is 

characteristic of the sublittoral lake shale (3.8%), followed by the deep lacustrine shale 

(2.2%), and the deep marine shale (1.8%). High TOC (> 3%) shales are also hydrogen rich 

(HI > 500 mg/g) and have well preserved kerogen Type I or II (Figure 4.3b-h). In contrast, 

low TOC (< 1%) shales are low in hydrogen (HI < 500 mg/g), have kerogen Type II or III 

and are typically associated with visibly bioturbated shales (Figure 4.3a). Shales with 

intermediate organic contents (1-3%) can be either hydrogen rich (HI > 500 mg/g), but with 

organic matter diluted by a fossil debris, or depleted of hydrogen (HI<500 mg/g), partly 

bioturbated, enriched in macrofossils, or more resistant terrestrial organic matter, implying a 

more proximal location at the time of deposition. In general, as supported by the petrographic 

evidence, depletion in hydrogen in the A well is a function of poor preservation rather than 

increased input of terrestrial organic macerals. 
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Figure 4. 9. Kerogen type and depositional setting of the Wealden Shale from wells a) A, Ro 0.5 -
0.7%), b) B, Ro 1.6-2.4%  and c) C, Ro 1.5-1.9%. 
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At higher stages of maturity, remaining hydrocarbon potential is no longer an indicator 

of the kerogen type, and all shales plot within the field of kerogen type III (Figure 4.9b, c). In 

contrast to the low maturity shale, the most organic-rich shales are not always the most 

hydrogen-rich due to differences in both kerogen type and maturity (Table 4.4, Table 4.A1). 

For instance in the C well, shallower in the core shales from the marine- influenced lacustrine 

setting have higher HI values (mean 147 mg/g) but lower TOC (mean 1.9%) than deeper-

buried shales from the deep lacustrine setting (means 37 mg/g and 2.5% respectively). 

Similarly in the well B, deep lacustrine shale with a marine influence from the top of the core 

shows a higher hydrogen index (mean 67 mg/g) but similar TOC compared to deep lacustrine 

shale from the bottom of the core (mean 25 mg/g and 2.5% respectively).  

In both B and C shale, the organic richness variation is significant, with TOC values 

ranging between 0.4-9% in well B and 0.5-17% in well C. The lowest organic content values 

were recorded in shales showing the presence of bioturbation, macrofossils, or silt laminae, 

all implying poorer preservation and/or dilution of organic matter (Figure 4.3i, x). Such 

observations are consistent with the lowest recorded mean TOC (1.3%) in the C core in shale 

from the lake plain setting. Significantly higher TOC values are encountered in the deep 

lacustrine shale from both overmature wells, with a mean TOC of 2.5%. The highest 

measured TOC values (> 10%) are associated with coaly organic matter found in the lake 

plain setting shales from the C core (Figure 4.3u). 

Vitrinite reflectance measurements on selected samples confirm different maturities of 

the shale from well A (Ro = 0.7% on 1 sample) and from wells B and C (1.6-1.9% on 3 

samples) (Table 4.5). The marginally higher reflectance of the least mature sample and 

significantly lower reflectance of the sample from the B well, as compared to Rippen et al. 

(2013), likely results from inaccuracies of the vitrinite reflectance method in mudrocks with 

only scarce vitrinite. However, our measurements of the VR in the A and B wells are 

consistent with those reported elsewhere (Egs-ploration, unpublished; Littke, 2008, 

unpublished) and therefore are assumed to be valid for this section.  

 
Table 4. 5. Mean vitrinite reflectance values at random vitrinite particles in selected samples from the 
cores A, B and C. 

Sample Depth (m) No. of  
measurements 

Mean 
(%) 

Standard deviation 
(%) 

A10305 924 19 0.7* 0.1 
B10458 1001 59 1.9* 0.2 

C10388 721 122 1.6 0.2 
C10401 857 75 1.9 0.1 

*Please note that the value deviates from those reported by Rippen et al. (2013). 
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Figure 4. 10. Oil immersion micrographs of Wealden Shale. Horizontal scale bars denote 50 µm. 
Dashed lines indicate direction of a bedding plane. a) (A10305): Fluorescence mode micrograph of 
sublittoral lake, clay-rich siliciclastic shale of measured maturity Ro 0.7%. Strong fluorescence of the 
matrix is due to the presence of the algal material. b) Normal incident light micrograph of the same 
field as a). Structured algal liptinite is common, forming well-preserved bodies of Botryococcus (Bo). 
c) (B10458): Fluorescence mode micrograph of marine influenced deep lacustrine, clay-rich 
siliciclastic mudstone of measured maturity Ro 1.9%. The bituminous groundmass exhibits no 
fluorescence and no structured algal liptinite is present. d) Normal incident light micrograph of the 
same field as c). Solid bitumen (BS) is present, concentrating in microfractures. e) (C10401): 
Fluorescence mode micrograph of deep lacustrine, clay-rich siliciclastic mudstone of measured 
maturity Ro 1.9%. The bituminous groundmass exhibits only very weak fluorescence. f) Normal 
incident light micrograph of the same field as e). A tight network of irregularly-shaped solid bitumen 
fills the intergranular space within the clay matrix, and concentrates in compaction shadows of 
mineral grains. g) (C10388): Normal incident light micrograph of marine inf luenced lacustrine, clay-
bearing fossiliferous mudstone of measured maturity Ro 1.6%. Solid bitumen phase is highly 
concentrated, filling intra- and intergranular space within disseminated fossil fragments. h) 
(C10418): Normal incident light micrograph of lake plain, clay-rich siliciclastic mudstone (no 
maturity measured). Semifusinite and fusinite constitute principal macerals. Bo – Botryococcus, Bs – 
solid bitumen, I – inertinite, Dol – dolomite, Fs – fossil, Py – pyrite. 
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As a consequence of maturity changes, the maceral types found in shales of different 

maturities show a gradual change in type, volume and colour. For instance, in the least 

mature sublitoral lake A10305 shale, structured algal liptinite is common, forming well-

preserved or selectively pyritized bodies of Botryococcus, and co-exists with thin, flat and 

fluorescent lamellar alginate interlayered with clay laminae and the so-called matrix 

bituminite (Tao et al., 2012) (Figure 4.10a, b). Terrestrial macerals, including vitrinite and 

inertinite, are dispersed and are present in very low abundance. At the gas window maturity 

(Ro > 1.9%; samples B10458 and C10401), the groundmass organic matter exhibits only very 

weak fluorescence and no structured algal liptinite is present (Figure 4.10c-f). Instead, a tight 

network of irregularly-shaped solid bitumen fills the intergranular space, both within the clay 

matrix, and especially in compaction shadows of mineral grains. The bitumen phase is a 

visually dominant organic component of the overmature shale. In a shell detritus-bearing 

mudstone at Ro 1.6% maturity, the solid bitumen phase is even more concentrated, filling 

intra- and intergranular space within disseminated fossil fragments (Figure 4.10g). No 

bitumen was noted in an organic-rich mudstone from the lake plain setting with semifusinite, 

fusinite and vitrinite as principal macerals (Figure 4.10h). 

 

Grain density, total and mercury porosity, and pore throat size distribution 

Grain density  

The average density of the mineral matrix shows significant variation between samples 

within and between wells (Table 4.6 and Figure 4.11a) and is influenced by the variation in 

the mineralogical composition (Figure 4.11b). For the three wells, density values exhibit a 

single mode between 2.6-2.8 g/cm3, with a higher frequency of lower density samples in the 

least mature well and a larger frequency of samples with higher density in the overmature 

shale. This distribution implies the primary role of maturity inducing a change in the density 

of the organic component and of the bulk shale (Okiongbo et al., 2005). In the least mature A 

samples, grain density varies between 2.1 and 3.0 g/cm3 and decreases significantly with an 

increasing content of organic carbon (Figure 4.11c). Although a similar variation, from 2.2 to 

2.9 g/cm3, is observed in the shale from the C well, the density of the organic-rich rocks 

(TOC > 5%) is always higher in the mature shale. For shales with organic carbon contents < 

5%, due to elevated content of high grain density carbonate component in the A shale, 

densities of the A and C shale overlap. In the investigated sample suite from the C well, the 
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lowest density shale, 2.2-2.3 g/cm3, shows the lowest pyrite content and the highest TOC and 

contains predominantly type III kerogen. The highest densities, > 2.7 g/cm3, occur where 

there are interbedded carbonate microconcretions. In the B well, the spread in shale grain 

density is the lowest, between 2.5-3.1 g/cm3, and coincides with the smallest variation in the 

organic content.  
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Figure 4. 11. Grain density variation in shale of different maturity. a) Histogram of grain density 
distribution of Wealden shale from wells A, B and C. Density values exhibit a mode between 2.6 -2.8 
g/cm

3
, with higher frequency of lower density samples in the least mature well and larger frequency of 

samples exhibiting higher density in the overmature shale. b) At all maturities grain density is 
influenced by the mineralogical composition, with a strong positive influence of the pyrite content. c) 
Organic content has a negative influence on grain density values. In the most organic rich shale 
(TOC > 5%) at any given content of organic carbon, density values of the overmature shale exceed 
those measured in the least mature shale. 

 

 

 

 

 

b) c) 
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Table 4. 6. Statistics for grain density and porosity data obtained with different techniques for 
selected Wealden shale samples, wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). For 
the porosity data, average values and standard deviation are provided, while for the remaining data, 
median and 95% confidence interval. 

Well Number of 
samples 

Total 
porosity (%) 

Hg porosity 
(%) 

Porosity < 
5.6 nm (%) 

Hg access 
radius (nm) 

Grain density 
(g/cm

3
) 

Well A 24 9.8 
+/-4.4 

7.6 
+/-3.8 

2.2 
+/-1.7 

19.0 
(11.3-25.9) 

2.64 
(2.52-2.70) 

Well B 30 7.6 
+/- 2.5 

5.3 
+/-1.7 

2.3 
+/-1.6 

8.3 
(7.6-9.2) 

2.71 
(2.69-2.73) 

Well C 30 7.6 
+/-2.9 

5.4 
+/-2.2 

2.1 
+/-1.4 

9.1 
(8.0-10.8) 

2.69 
(2.64-2.72) 

 

 

Total porosity 

Measurement of grain densities enables the estimation of total porosities of a 

lithologically varied suite of shale samples. Experimentally obtained raw total porosity was 

corrected for pores intersected by the sample surface (conformance correction), responsible 

for an increase in the volume of mercury at the very start of the injection experiment (Figure 

4.12b) (Comisky et al., 2011). The conformance error occurs when mercury does not fill the 

whole empty space around the sample in a penetrometer due to the sample roughness, until 

higher pressures are applied (Sigal, 2009). In order to estimate a true radius of the onset of 

Hg intrusion into a porous network within each sample, cumulative mercury volume data 

were compared with distribution of pore throats as calculated with the Washburn equation 

(Washburn, 1921) (Figure 4.12a). To make a comparison more effective, calculated areas of 

pore throats cross-sectioned by a theoretical plane were grouped in bins of an increasing size 

and plotted as a function of pore volume intruded by mercury (Bernal and Bello, 2001; 

Houben et al., 2013). The resulting fractal distribution of pore throats was fitted with 2-3 

linear regression lines (Figure 4.12c), with the line of the smallest slope (typically < 1.0) 

describing the largest pores interpreted as an artifact, created due to intersection of pores by 

the sample surface. The true injection of Hg to pore bodies is described by a regression line 

with a slope usually > 2, and corresponds to a rise in the pore volume density beyond the 

background values. Consistent with Comisky et al. (2011), the estimated true radius of 

intrusion is up to 3 orders of magnitude lower than the apparent radius derived from the raw 

data. 
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Figure 4. 12. a) Pore volume density, b) cumulative volume of intruded mercury and c) fractal 
distribution of pores in the B10482 sample. Pores exhibit non-uniform  fractal distribution with pores 
> 38 nm (slope -0.9) interpreted as those intersected by the sample surface (surface roughness) and 
pores < 38 nm (slope -2.0) interpreted as pores accessed through corresponding throats. 

 

Measured total porosities show a large range in shales of both low and high maturity 

(Table 4.6, Table 4.A2 and Figure 4.13a). At Ro = 0.5-0.6% porosities vary between 1.9-

18.3%, with an average value of 9.8 +/-4.5%. In the high maturity wells, porosities show a 

higher range of values, varying from 1.6 to 12.5% and 1.1 to 12.4% in wells B and C 

respectively. In the overmature shales, the average total porosities are also lower than in the 

early mature well, amounting to 7.6 +/-2.5% and 7.6 +/-2.9% in the B and C wells 

respectively. 

 

 

 

 

 

a) b) 

c) 
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Figure 4. 13. Histogram of porosity distribution in samples from wells A, B and C. a) Total porosity. 
b) Mercury injection porosity. 

 

Mercury porosity and pore size distribution 

Mercury porosities show a lower spread than total porosities, varying between 0.6-15.2% 

in well A, 0.4-8.5% in well B and 0.7-9.2 % in well C (Figure 4.13b). For the least mature 

shale the average mercury porosity is higher, amounting to 7.6 +/-3.8%, in comparison to 5.3 

+/-1.7% from the B and 5.4 +/-2.2% from the C gas mature shale.  

For ca. 95% of the investigated shale samples the threshold aperture, defined as the 

aperture providing access to > 10% of porosity, does not exceed 50 nm diameter (Table 4.6,  

Table 4.A2). In the low maturity well, despite the prevalence of < 50 nm apertures (median = 

38 nm), wider pore size distributions were encountered in a few fossiliferous mudstones and 

a) 

b) 
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limestones. Within the mudstone group only, fossil-bearing mudstones show higher threshold 

apertures (> 35 nm) in comparison to fossil-depleted siliciclastic equivalents. Moreover, 

higher pore apertures coincide with coarser grain sizes of the silt fraction as retrie ved from 

SEM images (Figure 4.14). For 6 samples for which grain size distribution was determined, 

two with the coarsest grains across the full size range have higher Hg apertures (40 nm and 

2000 nm) than samples with finer silt fractions. At the same time, 3 samples with the densest 

population of grains with the size in a range 2-500 nm have higher apertures (> 35 nm) than 3 

much finer samples (aperture < 22 nm). In the overmature shale, the threshold aperture is 

smaller than in the less mature equivalent, with a median value of 16 nm, 98% of samples 

with apertures < 50 nm and 70% of samples with apertures < 20 nm. Although slightly higher 

apertures were found in the shale from the lake plain setting (median 22 nm), they are not 

significantly different in comparison to the remaining sample set (median 16 nm). Overa ll, 

the width of the threshold apertures of the overmature shales have a smaller range than in the 

early mature shale, varying between 12-24 nm and 14-36 nm for the B and C well 

respectively.  
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Figure 4. 14. Grain size distribution for the silt fraction in selected samples from the A well. Samples 
A10299 and A10326 show much coarser grains across the full size range. Additionally, along with the 
sample A10289 they show significantly denser population in the size < 500 nm. 
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Figure 4. 15. Incremental (left column) and cumulative (right column) pore volume density of 
selected Wealden samples, wells: a, b) A (Ro 0.5-0.7%), c, d) B (Ro 1.6-2.4) and e, f) C (Ro 1.5-1.9%). 
The mercury data was cut off at a radius interpreted as a true onset of the mercury intrusion into a 
pore network. In the immature and early mature shale, pore throat distributions are predominantly 
unimodal with the peak between 10-40 nm. A larger spread of pore throat sizes is characteristic for 
mudstones enriched in a shell detritus (A10326) or burrows filling silt fraction (A10278). In the 
overmature wells B and C, distribution of pore throat sizes is unimodal with the highest pore volume 
density between 10-20 nm. In shales enriched in the shell detritus (C10388, C104260) distribution is 
skewed towards higher values (10-20 nm) in comparison to clay-rich mudstones (< 10 nm). 
 
 

a) 

c) 

e) 

b) 

d) 

f) 
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Similarly to the value of the threshold aperture, pore size distributions show variations 

within and between wells, reflecting the spread of pore throat sizes and different amounts of 

porosity contained both in mercury pores (> 5.6 nm in diameter) and pores with a diameter < 

5.6 nm (Figure 4.15). In the A well, distributions are predominantly unimodal, with a peak 

between 10-40 nm. A larger spread of pore throat sizes, and modal peaks shifted towards 

larger pores is characteristic for mudstones enriched in shell detritus (A10326) or burrows 

lined with quartz silt (A10278) (Figure 4.15a, b). For a few fossil- rich limestones as well as 

silt-laminated mudstones, the distribution is bimodal, with peaks at < 20 nm and ca. 60-200 

nm (not shown). In the overmature wells B and C, the distribution of pore throat sizes is 

unimodal with the highest pore volume density between 10-20 nm (Figure 4.15c-f). In shales 

enriched in the shell detritus (C10388, C10426), pore size distributions are skewed towards 

higher values (10-20 nm) in comparison to clay-rich mudstones (< 10 nm).  

While the size and distribution of pore throats control intrusion of mercury during the 

drainage stage of the mercury injection experiment, the extrusion process is controlled by the 

pore body/pore throat ratio (Webb, 2001). In general, an increase in this ratio leads to the 

entrapment of mercury in pore cavities, leading to the development of hysteresis (Figure 

4.16a, c, e) and causing some pores to empty at capillary pressures lower than corresponding 

to their size as estimated from the Washburn equation  (Padhy et al., 2007). As shown by the 

curves plotting the difference between porosity intruded and emptied during intrusion-

extrusion experiments at equivalent pressures (Figure 4.16b, d, f), in all samples the absolute 

amount of trapped mercury that is not released during the imbibition at the intrusion pressure 

initially increases. When a threshold diameter is reached, the rate of extrusion exceeds the 

rate of intrusion at an equivalent pressure, and mercury starts to recede from pores that could 

not be emptied before. The maximum fraction of porosity occluded by trapped mercury that 

cannot be emptied before the pressure equivalent to the threshold diameter is reached, varies 

between 0.62-0.99 across samples and, regardless of the maturity, is strongly related to the 

content of organic carbon. The maximum percentage of porosity occluded by mercury that 

was not released from the sample at the equivalent intrusion pressure is encountered in the 

least organic rich shales and decreases linearly with increasing TOC (Figure 4.17). This 

relation indicates that little, if any, retraction occurs from inorganic pores at the start of the 

imbibition and that considerable compression of the shale structure may take place upon 

pressures exerted by mercury in the most organic rich shales (Friesen and Mikula, 1988).  
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Figure 4. 16. Cumulative intrusion (squares) and extrusion (triangles) of mercury for selected 
Wealden shale samples from wells a) A, c) B and e) C.  The mercury data were normalized to the true 
volume of intrusion after cutting off the pore volume data interpreted as representing surface 
roughness. b) A, d) B and f) C shale.  Cumulative porosity that is not emptied from mercury during 
the imbibition. The curves plot cumulative difference between porosity intruded and emptied during 
the intrusion-extrusion experiments at equivalent pressures as % of a rock. Note that in all samples 
during the imbibition process the absolute amount of mercury that is not released at the intrusion 
pressure initially increases. 
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Figure 4. 17. Maximum fraction of total porosity trapped by mercury during the imbibition 
experiment for selected Wealden shale samples from the A (black squares), B (red circles) and C 
(green triangles) wells. The fraction occluded by mercury shows a strong negative relation with the 
content of organic carbon. 

 

Rock classification based on factor analysis 

In order to explain variability in measured porosity values between different shale samples 

and give them geological meaning, a factor analysis was employed. The 10 variables 

included in the multivariate statistical analysis included geochemical data (TOC, HI, S1, S2, 

S3) and petrophysical data (total porosity, mercury porosity, ratio of mercury to total porosity, 

maximum access radius for injected mercury and grain density). For the early mature shale 

from the A well, the first three factors explain 84% of the total variance. These factors group 

samples with high TOC, HI, S2 and low grain density (Factor 1), low total porosity, mercury 

porosity and S3 (Factor 2) and low S1 and maximum access radius for mercury (Factor 3) 

(Figure 4.18). The factor analysis revealed 3 groups of samples and 2 main trends in terms of 

porosity variability across the measured TOC range (Figure 4.20a). Group 1 includes samples 

with high average porosity (7.9 +/-3.1%), low organic content (1.8 +/-1.3%), varied grain 

density (2.53-2.82 g/cm3), and varied extent of preservation of organic matter (generative 

potential), from highly oxidized (poor) to well preserved (very good). Samples distinguished 

for this group are quite heterogeneous but embrace mostly deep lacustrine shelly bed deposits, 

fossil-bearing mudstones and carbonate concretions (Figure 4.3d, g). In combination, these 

samples show a positive correlation between total porosity, organic content, and the 

preservation of organic matter.  
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Figure 4. 18. Matrix scatterplot of the early mature well A Wealden Shale samples showing variation 
of 10 variables and 3 factors extracted during the factor analysis. Factor 1 correlates positively with 
TOC, HI, S2 rather than grain density. A negative correlation is observed between Factor 2 and total 
porosity, mercury porosity and S3. Factor 3 is inversely correlated with S1 and maximum access 
radius for mercury. 

 

The second group of samples selected through the factor analysis includes clay-rich 

mudstones with total porosity ranging from very high to very low (3-18%, average 5.2 +/-5.0) 

over the range of TOC values ranging from < 0.5 to > 15.0% (average 10.5 +/-4.4). The 

strong negative correlation between total organic content and total porosity of this sample set 

is associated with a decrease in grain density from 2.9 to 2.1 g/cm3, coinciding with a varied 

abundance of early diagenetic cement, and an increase in the generative potential from poor 

to very good. Characteristically for this group of rocks, higher porosities coincide with the 

presence of silt- filled biogenic sedimentary structures encountered in the marine shale 

(Figure 4.3a), and decline rapidly in silt- and TOC-poor mudstones (e.g. siliciclastic 

mudstone with clay-filled burrows). In comparison, with TOC contents above 2-4%, 

characteristic of shales with no sedimentary structures and good quality organic matter 

(Figure 4.3b, c, f, h), porosities decline at a moderate rate.  

The last group of samples distinguished through the factor analysis includes samples with 

both high porosity (average 15.6 +/-2.7%) and organic content (average 9.4 +/-2.3%), low 
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grain density (2.2-2.4 g/cm3), and consistently high preservation and high generative potential 

of the organic matter. Because the samples are both clay-rich and show the presence of 

fossiliferous debris, they could be classified as those with intermediate lithologies between 

high generative potential fossiliferous shale from group 1 and clay-rich mudstone from the 

group 3 (Figure 4.3e).  
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Figure 4. 19. Matrix scatterplot of the gas window Wealden Shale samples (well B, C) showing 
variation of 10 variables and 4 factors extracted during the factor analysis. Factor 1 correlates 
positively with HI, S1 and S2. A good positive correlation is observed between Factor 2 and total 
porosity, Hg porosity and S3. Factor 3 correlates positively with grain density rather than TOC. 
Factor 4 is inversely correlated with the maximum access radius for mercury and ratio of mercury to 
total porosity. 

 

For the gas window mature shales, the factor analysis was performed for the samples from 

wells B and C combined. The first 4 factors extracted explain 85% of the total variance and 

group samples based on high HI, S1 and S2 (Factor 1), high total porosity, Hg porosity and 

S3 (Factor 2), high grain density rather than TOC (Factor 3), and low maximum access radius 

to mercury and low ratio of mercury to total porosity (Factor 4) (Figure 4.19). The analysis of 

the four factors reveals four groups of samples and two different trends of total porosity 

variation in relation to the content of organic carbon (Figure 4.20b). The first sample subset 
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includes samples with low TOC (0.6-2.7%, average 1.3 +/-0.7%) and unusually high grain 

densities for a given content of the organic carbon. Total porosity for this group rises from 1-

12% (average 7.0 +/-3.2%) with increasing carbon content, with a variable ratio of mercury 

to total porosity. Samples selected in this group are fossil-bearing, imparting higher grain 

density to the bulk shale and come from both deep lacustrine and lake plain settings (Figure 

4.3m, r, x).  

The second group consists of samples with total porosity values ranging from moderate to 

very high (4-12%, average 7.8 +/-2.0%) over a wide range of TOC between 0.7 to 8.9% 

(average 3.4 +/-1.9%). What is characteristic is a low average maximum access radius to 

mercury as well as a low ratio of mercury to total porosity. Samples within this group are 

classified as deep lacustrine, clay-rich mudstones, with the porosity positively correlated with 

the amount and the extent of preservation of organic carbon in the sediment (Figure 4.3j- l, n-

q, s-r). Importantly, this group embraces both organic- and carbonate poor mudstones with 

sedimentary structures such as current features, as well as laminated organic-rich mudstones 

with undisturbed clay-rich fabrics. 

The next sample group consists of samples with both higher than average maximum 

access radius to mercury and fractions of total porosity accessible to mercury. In this group, 

the TOC variability is moderate, (1.3-6.7%, average 4.2 +/-2.1%), followed by positive 

change in total porosities from 4 to 12% (average 8.8 +/-3.4%). As both the mercury:total 

porosity ratio and access radius correlate with the fourth factor explaining only 12% of 

variance, the porosity and TOC values of these samples do not deviate from those 

characteristic for the second group of samples. Lithologically, this third group includes clay-

rich and fossil-bearing mudstones deposited exclusively in the lake plain setting (Figure 4.3v, 

w).  

The last sample subset extracted through the factor analysis consists of only two samples, 

with very high organic contents (12.9 and 17.4%), relatively low grain densities (2.23 and 

2.36 g/cm3) and low total porosity (5.0 and 4.6%). This group includes carbonaceous 

mudstones with terrestrial organic matter concentrated in coaly laminae (Figure 4.3u).  
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Figure 4. 20. Variation of total porosity as a function of maturity and organic carbon content. a) Well 
A (0.5-0.7% Ro). Group 1: fossil-bearing mudstone, shelly bed deposits and carbonate concretions; 
Group 2: clay-rich mudstones; Group 3: clay-rich mudstone with fossil debris. b) Wells B and C (Ro 
1.6-2.4% and 1.5-1.9% respectively). Group 1: fossil-bearing mudstone, limestone and carbonate 
concretions; Group 2: clay-rich mudstone; Group 3: clay-rich and fossil-bearing mudstone deposited 
in the lake plain setting; Group 4: carbonaceous mudstone with terrigenous organic matter. For 
details see text. 
 

a) 

b) 
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Micro- and mesoporosity 

A fraction of porosity, due to pores either being blind, finer than 5.6 nm or hidden below < 

5.6 nm constrictions, was not detected by mercury. In the low maturity well, this porosity (1-

MICP) varies between 0.2-7.4% with an average value 2.2 +/-1.7% (Table 4.6, Table 4.A2). 

Similar porosities were measured in the gas window shale samples, showing both equal 

spread, from < 0.1 to 6.8% and 0.3-7.1% in the B and C well respectively, and average values 

(2.3 +/-1.6% and 2.1 +/-1.4% for B and C sample subsets). In the low maturity well, 1-MICP 

porosity, unlike in the gas window shales, does not show a correlation with the organic 

content for any of the sample groups distinguished (Figure 4.21a). At high maturities, 1-

MICP is positively correlated with the organic carbon content for all main sample groups 1 to 

3 (Figure 4.21b).  
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Figure 4. 21. Variation of porosity not penetrated by mercury during mercury porosimetry as a 
function of maturity and organic carbon content. a) Well A (0.5-0.7% Ro). b) Wells B and C (1.5-
2.4% Ro). For group description see Figure 4.20. 

 

High entry pressure, compressible samples can yield reduced MICP porosities due to 

compressibility of the shale and thus overestimate the content of small or inaccessible pores 

(Shafer et al., 2000) Hence, in order to investigate the amount of the < 5.6 nm pores (Rexer et 

al., 2014), porosities for 3 selected organic-rich shale samples of different maturities were 

measured with low pressure CO2 195K gas sorption. All CO2 isotherms are type I (Sing et al., 

1985), and demonstrate evidence of the presence of microporosity filled at the lowest 

pressures (Figure 4.22). Sorption pore volumes measured at 1 mbar do not differ significantly 

and amount to 0.018-0.022 cm3/g in all shale samples investigated (Table 4.7). Similarly, 

corresponding sorption porosities (SP) vary only insignificantly, yielding 4.4% for both the 

early mature A10305 and overmature B10458 shale, and 5.2% for the C10401 shale sample 

from the overmature well C. After solvent extraction, performed for 2 overmature shales, 

a) b) 



172 
 

total sorption increased, leading to an increase in the calculated sorption porosities to 5.0% 

and 5.5% in the B 10458 and C 10401 samples respectively (Table 4.4, Figure 4.17). Such 

small porosity increase indicates that extractable bitumen at high maturities occupies only 

small fraction of bitumen free sorption porosities (5 and 12% in B and C sample respectively).  
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Figure 4. 22. 195K CO2 isotherms for selected Wealden shale samples, A10305 (Ro 0.7%), B10458 
(Ro 1.9%) and C10401 (Ro 1.9%). Samples with a solid symbol were not solvent extracted, while 
those marked with a semi-solid symbols were solvent extracted (ext) prior to the analysis. 

 

 
Table 4. 7. Porosities and pore parameters measured with different techniques for selected Wealden 
samples, wells A (0.7% Ro), B (1.9% Ro) and C (1.9% Ro). 

Sample Total 
porosity 
(%) 

Mercury Injection CO2 195K 

Hg 
porosity 

(%) 

Hg access 
radius 
(nm) 

Porosity < 
5.6 nm 

(%) 

Sorption 
porosity (%) 

Sorption pore 
volume (cm

3
/g) 

Extract. 
bitumen in 

sorption 
pores (%)* 

Pre-
ext. 

Post-
ext. 

Pre-
ext. 

Post-
ext. 

A10305 12.91 5.59 6.2 7.31 4.42 nd 0.021 nd nd 
C10401 10.96 7.68 10.6 3.28 5.24 5.50 0.022 0.023 0.25 
B10458 9.06 7.55 8.9 1.51 4.44 5.02 0.018 0.020 0.58 

* The amount of bitumen occupying sorption pores was estimated as a difference between sorption 
porosity of a pre-extracted shale (pre-ext.) and shale extracted with organic solvents (post-ext.). 
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Due to a small number of measurements, it was not possible to determine the relation 

between sorption porosity and shale composition. However, including a sample set measured 

on the Lower Jurassic, calcareous Posidonia Shale of maturities Ro 0.53% and 1.45% 

(Chapter 3), a positive trend between sorption porosity and the combined content of clays 

(including muscovite) and TOC emerged (Figure 4.23).  
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Figure 4. 23. Relationship between the combined content of phyllosilicate minerals and TOC against 
195K CO2 sorption porosity. Wealden data points refer to samples of maturities 0.7% (green) and 
1.9% (red). The Wealden shale data were plotted against data acquired on Posidonia Shale, referring 
to samples of maturities 0.5% (grey) and 1.4% (black). 

 

Meso and macroporosity in FIB- and BIB-SEM images 

SEM observation of Meso and Macroporosity 

Three samples, one from the early mature well (A 10305) and two from the overmature  

wells (B10458, C10401) were selected for image porosity analysis. All shale samples are 

classified as silt-bearing, clay-rich mudstones, with abundant organic matter (Figure 4.10, 

Figure 4.24). In the low maturity shale, the organic phase forms pyritized algal bodies 

intermixed with flat, lamellar algal wisps and a poorly-defined organic groundmass (Figure 

4.24a, b). In the higher maturity shale, organic matter is dispersed in a tight clay matrix and 

concentrated in compaction shadows of mineral grains (Figure 4.24d, f). The nature of the 

carbonate phase varies between samples and maturities, with carbonates dominated by fossil 

debris in the low mature shale (Figure 4.24a), and by diagenetic ferroan dolomite at higher 

maturities (Figure 4.24c, e). Within the gas window maturity shales, there is more 
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pronounced preferred orientation of grains in the B10458 sample, reflected by the planar 

arrangement of clay laths and organic particles. The organic phase is represented both by 

fracture filling bitumen and less defined organic wisps and blobs filling spaces between 

various grains (Figure 4.24c, d). In contrast, in the C10401 shale, the clay matrix is less 

visibly aligned and random orientations of clay laths and associated organics are not 

uncommon (Figure 4.24e, f). 

Based on the spatial relation of pores with respect to mineral phases and organic matter, 

pores were classified using the general classification of Loucks et al. (2012) into interparticle, 

intraparticle and organic. The following definitions of different pore types were adapted for 

this study: 

 Interparticle: 1) pores between detrital grains, authigenic minerals, nannofossils and clay 

platelets, occasionally partly filled with authigenic cement; 2) pores (in 2D or 3D space) 

associated with the interface of organic matter and mineral matrix that visibly do not 

extend into an organic particle; 

 Intraparticle: 1) pores within fossils or fossil assemblages; 2) pores within pyrite 

framboids; 3) pores along cleavage planes of phyllosilicate minerals; 4) moldic pores 

formed due to dissolution of mineral phases; 5) pores at the interface of inorganic matrix 

and organic macerals that do not visibly extend into an organic particle, contained within 

a fossil body, or pyrite framboid; 

 Organic: 1) pores within immature algal bodies; 2) discrete, round, bubble- like pores in 

the organic matter; 3) sponge-like pores within the organic matter, often interconnected 

and grouped; 4) highly irregular pores, usually at the interface of organic matter and 

mineral matrix, but visibly extending into the organic particle mass; 5) visible cracks 

within OM particles, often with jagged edges and extending into the particle edge. 
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Figure 4. 24. Backscattered electron micrographs of mudstone samples polished with BIB. In all 
images the bedding plane is horizontal. Sample A10305: a) Organic phase forms pyritized algal 
bodies intermixed with less defined organic groundmass. Highly dispersed carbonate phase is 
represented by calcitic fossil remains. b) Quartz occurs predominantly as horizontal pods aligned 
according to the bedding plane. Sample B10458: c) The silt fraction is represented by quartz grains 
and diagenetic dolomite. d) Organic phase is aligned horizontally, and is strongly intermixed with the 
clay-rich matrix. e) Sample C10401: Diagenetic dolomite is abundant, disseminated in the clay-rich 
matrix. f) Organic phase is intermixed with clays and concentrated in compaction shadows of mineral 
grains. 
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Figure 4. 25. FIB-SEM and BIB-SEM micrographs (BSE mode) of an early mature shale sample 
A10305. a) Organic pores within an algal cyst (arrows). b) Pore between walls of a partly compacted 
algal cyst (arrow). c) Intraparticle pores in a fossil (black arrows); Note intraorganic pores 
developed in kerogen lining the fossil interstices (white arrow). d) Intraparticle pores in a 
recrystallizaed fossil partly filled with authigenic clays. e) Interparticle pore in a compaction shadow 
of a dolomite crystal (black arrow). Note presence of a dissolution pore within adjacent calcite grain 
(black arrow). f) Interparticle pores rimming a foraminifera test (black arrow). The overlying mica 
group mineral grain contains numerous cleavage associated intraparticle pores (white arrows). g) 
Intraorganic pores formed due to dissolution of a calcareous foraminifera test (black arrows). 
Interparticle pores between platelets of a phyllosilicate phase are partly filled with calcite cement 
(white arrow). A large interparticle pore adjacent to a fossil clast is filled with the bituminous phase. 
h) Interparticle pores between folded clay platelets. Pores may represent space between not fully 
compacted clay floccules. i) Interparticle pores adjacent to kerogen particles (arrows). Fs- fossil, Cal 
– calcite, Dol – dolomite, Py – pyrite, OM – organic matter. 
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Figure 4. 26. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale 
sample B10458. a) Interconnected spongy organic pores grow into a large pore located the particle 
margin. b) Spongy organic pores within an organic grains. c) Organic pores interconnect with each 
other, and grow into a large pore located at the margin of the organic grain. d) The visible 
connections between organic pore bodies may be as small as 4 nm. e) Large pores located at the 
margin of an organic particle, and in the compaction shadow of surrounding mineral grains. Organic 
pores show a characteristic fibrous internal structure on its walls. f) Interparticle pores located 
between clay platelets, in a compaction shadow of a pyrite framboid. Pores have jagged margins 
suggesting that they de facto developed in the organic mass that had previosuly filled the pore space. 
g) Interparticle pores between folded clays. h) Interparticle pores between clay platelets (left) show 
identical internal structure of its walls as organic pores (right). i) Intraparticle pores within a pyrite 
framboid. Fs- fossil, Cal – calcite, Dol – dolomite, Py – pyrite, OM – organic matter. 
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Figure 4. 27. FIB-SEM and BIB-SEM micrographs (BSE and SE mode) of an overmature shale 
sample C10401. a) Discrete, bubble-like and partly interconnected spongy pores within an organic 
particle. Note close association of porous and non-porous organic regions. b) Large intraorganic 
pores, partly located at the margins of adjacent dolomite crystals. c) Intraorganic (left) and 
interparticle pores (right) developed in the organic matter mass located in the compaction shadow of 
a calcite grain (bottom). d) Complex organic pore located in a compaction shadow of a dolomite 
crystal (left). Note the rough surface of a pore wall. e) Organic pores developed in the vicinity of 
dolomite crystals (centre). f) Discrete, spongy and large complex organic pores developed in the 
organic matter grain in the vicinity of a dolomite crystal (right). g) Interparticle pores between folded 
clays and dolomite (bottom right). h) Interparticle pores between clay platelets. Note jagged edges of 
the pore walls characteristic for pores of an organic origin. i) Intraparticle pores in a faecal pellet. 
Intraparticle pores within a pyrite framboid. Fs- fossil, Cal – calcite, Dol – dolomite, Py – pyrite, Qtz 
– quartz, OM – organic matter. 
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In the least mature sample, visible pores are associated with the inorganic and, to a lesser 

extent, organic phase. Despite the predominantly visibly non-porous nature of the bulk 

organic matter, organic pores are represented by up to 1 µm in diameter, round or oval pores 

located in Botryococcus bodies (Figure 4.25a), and more irregular, remnant pores between 

walls of partly compacted algal cysts (Figure 4.25b). Also, a few intraorganic pores are 

developed in the organic material lining and filling interstices within fossil aggregates (Figure 

4.25c). Inorganic porosity, at the scale of BIB-SEM images, is found predominantly within 

sparsely disseminated, recrystallized biogenic calcite forming small (<50 µm) faecal pellets 

(Figure 4.25c, d) and occasionally in compaction shadows of mineral grains and fossils 

(Figure 4.25e, f). Depending on the size of the mineral or fossil grain, the size of the 

neighbouring pores may span between 1 µm down to 100 nm. Inorganic pores may be left 

intact, partially filled with authigenic clay (Figure 4.25d) or calcite (Figure 4.25g). Some 

intraparticle pores formed due to dissolution of calcite (Figure 4.25e, g).  

Although in the BIB-SEM micrographs clay porosity remains unresolved, higher 

magnification FIB-SEM images revealed the presence of pores along cleavage planes of mica 

group minerals (Figure 4.25f) and between clay platelets (Figure 4.25h, i). Some pores 

associated with clay platelets may be up to 1-2 µm long and 400 nm wide, often adjacent to 

kerogen particles (Figure 25i) and occasionally lined with authigenic calcite (Figure 4.25g). 

Clay-related pores sometimes show signs of distortion by compaction and represent remnant 

open space within compacted clay floccules (Figure 4.25h). 

In both overmature shales, the character of porosity changes, with new types of pores 

found within dispersed bitumen. The porosity of organic grains is variable - organic pores can 

occupy either the whole particle, or a fraction of a particle, or can be concentrated at particle 

margins. Also, the size of organic pores varies, with the diameter of the smallest pores below 

50 nm and the largest ones exceeding 500 nm. The smallest are isolated, bubble- like pores 

(Figure 4.27a, f), often co-existing with clusters of partly interconnected spongy pores 

(Figure 4.26a, b). 3D Slice and View images show that organic pores branch out and 

interconnect with each other, and may grow into large (up to 500  nm), complex pores (Figure 

4.26c, d). These can be located directly within an organic particle (Figure 4.27b, c) or, most 

commonly, at particle margins, often within compaction shadows of mineral grains (Figure 

4.26b, Figure 4.27b-f). Organic pores, if large enough, show a characteristic jagged wall 

structure (Figure 4.27d). Similar jagged structures occur in pores that do not visibly penetrate 

the organic mass but occur at the interface of organic and inorganic phases (Figure 4.26e). 

This observation suggests that those are de facto organic in origin, and likely represent the 
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thermogenic loss of the organic mass (Figure 4.26h, Figure 4.27h). Depending on their 

relation to the surrounding inorganic phases, such inorganic-hosted pores can be classified 

either as interparticle or intraparticle. The interparticle pores a re most commonly found in 

compaction shadows of mineral grains (Figure 4.26e, f; Figure 4.27g), between folded clays 

and partly compacted clay floccules (Figure 4.26g) or between horizontal clay platelets, often 

following the elongation of the associated organic phase (Figure 4.26h). The intraparticle 

pores are present within pyrite framboids (Figure 4.26i), faecal pellets (Figure 4.27i) or along 

cleavage planes of mica group minerals.  

 

Mineralogical composition from SEM images. Estimation of the Representative 

Elementary Area 

To determine the Representative Elementary Area that could yield representative 

porosity values and its distribution in the shale matrix, a mix of EDX maps was used. The 

box counting was performed once for each sample and proceeded until measurements made 

on a particular parameter did not change by more than 10% relative to the previous area 

(Figure 4.28) (VandenBygaart and Protz, 1999). The estimation of the REA did not include 

organic matter grains which remained largely unresolved in the EDX maps. The counting 

showed that in all shales, the scale of a change in the content of each mineral phase depends 

on both the abundance and spatial distribution of the measured components. For instance, we 

noticed only a small change in variance of the most abundant phyllosilicate phase, with 

values below 10% for areas above 1100 µm2 (Table 4.8). Much larger areas were required to 

obtain a representative area for less abundant and more dispersed quartz and feldspar (5985 

µm2 for the B10458 and 4397 µm2 for the C10401 sample), and carbonates (5985 µm2 in the 

shale from well C). Within the overmature shale, only for the sparse carbonates from the B 

well sample as well as pyrite in the C well shale did the change remain significant for much 

larger areas – up to 7818 µm2 and 20644 µm2 respectively. In contrast, in the early mature 

shale, box counting did not yield representative values for most of the phases until the area up 

to 7818 µm2 for quartz and feldspar, 39577 µm2 for carbonates and 59121 µm2 for pyrite. For 

the purpose of this paper, 5985 µm2 area was established as representative for both 

overmature shales. The mineral phases that are not representative for the samples on such a 

limited area are spatially scarce and therefore their impact on the estimation of the REA may 

be neglected. In the early mature shale, the established representative area is larger: 7818 µm2  

and is limited to areas that are scarce in fossil fragments. 
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Figure 4. 28. Change of the mineralogical composition within areas of progressively increasing size 
as retrieved from EDX maps of three selected shale samples. Measurements reflect % change of a 
parameter between two successive areas. Phases investigated include phyllosilicates (a), carbonates 
(b), quartz and feldspar (c) and pyrite (d). 

 

 
Table 4. 8. Minimum area for which a change in the mineralogical composition does not exceed 10%, 
estimated for four mineral groups: phyllosilicates, carbonates, quartz + feldspar, and pyrite. Samples 
investigated include A10305 (0.7% Ro), B 10458 (1.9% Ro) and C 10401 (1.9% Ro). 

Sample Area (µm
2
) for < 10% change in the phase content 

Phyllosilicates Carbonates Quartz + Feldspar Pyrite 

A10305 1099 39577 7818 59121 

B10458 1099 7818 5985 5985 
C10401 1099 5985 4397 20644 

 

Despite the fact that the representative area could be graphically determined for all shale 

samples, its average EDX composition does not always agree with the volume converted 

XRD mineralogical content (Table 4.9). For instance, the estimated content of the 

a) b) 

c) 
d) 
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phyllosilicate phase in all shales is significantly higher than determined by XRD, yet shows 

only small scatter when calculated for different areas of the same sample. This indicates that 

due to the limited resolution of EDX maps when captured on large areas, a graphical way of 

mineral quantification is not a valid method and may lead to overestimation of mineral phases 

that remain either intermixed with organic phases or which are internally porous. Similarly, 

mineral phases may be either under- or overestimated if large scale sample heterogeneity 

introduces significant variation in the content of minerals or fossils over large areas (e.g. 

large shell fragments in sample A10305). 

 
Table 4. 9. Comparison of EDX Representative Elementary Area phase composition and bulk 
mineralogical composition retrieved from XRD. XRD mineral contents were converted to vol.% of 
rock using standard grain densities of composite minerals. Numbers in brackets show standard 
deviation for EDX mineral content estimation. 
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Method EDX XRD EDX XRD EDX XRD EDX XRD 

A10305 67.6 
(+/-13.9) 

42.0 
8.7  

(+/-5.4) 
14.7 

13.2 
(+/-15.7) 

6.0 
0.2 

(+/-0.1) 
1.0 

B10458 70.5 
(+/-5.4) 

56.6 
16.1 

(+/-1.2) 
19.3 

0.9 
(+/-0.1) 

3.2 
5.0 

(+/-2.3) 
3.2 

C10401 63.5 
(+/-2.9) 

49.5  
 

13.5 
(+/-0.9) 

15.3 
12.9  

(+/-0.8) 
10.9 

0.8 
(+/-0.6) 

1.0 

  

Quantification of BIB-SEM porosity. Pore size distribution of meso- and 
macropores.  

The quantitative assessment of SEM porosity was performed on BIB-polished thin 

sections on a pre-determined, representative elementary area.  As a compromise between the 

number of images and their resolution, for the two overmature shales the image mosaics were 

acquired at a magnification of 6,000 x (pixel size 15 nm), covering an area of 6871 µm2. For 

the early mature shale, due to a large scatter in the distribution of the visible algal bodies and 

a significantly smaller number of pores per unit area, the mosaic was acquired at a 

significantly lower magnification of 600 x (pixel size 100 nm), and covering a total area of 

306602 µm2. Additionally, for each of the shale samples, < REA 1-2 mosaics were acquired 

at 10,000 x magnification (pixel size 6 nm), covering an area of 3665 µm2 each.   
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Figure 4. 29. BIB-SEM images as part of the image mosaics showing distribution of pores. Green 
denotes pores that are not directly connected, and red, pores which size is equal to or smaller than 
the maximum “real”pore throat size penetrated by mercury (see text).  A10305: a) Mag. 600 x; 
Although the groundmass organic matter is not internally porous, pores commonly populate 
Bottryococcus bodies. b) Mag. 10,000 x; Inorganic pores rim fossil assemblages and concentrate 
around quartz grains, with only a small proportion of much finer pores visible in the organo -clay 
matrix. B10458: c) Mag. 6,000 x; Pores rim dolomite rhomboids and concentrate in compaction 
shadows of mineral grains, often in association with residual organic matter (blue arrows). d) Mag. 
10,000 x; Pores visible in the organo-clay matrix are predominantly associated with organic matter 
squeezed between horizontally aligned clays and/or grains, and may follow elongation of the organic 
particles. C10401: e) Mag. 6,000 x; Pores developed mostly in vicinity of mineral grains disseminated 
in the shale matrix, often within accumulated organic matter. f) Mag. 10,000 x; Pores are present 
directly in the clay matrix between folded clays (blue arrow), and in accumulated organic matter. 
Note that not all organic matter is visibly porous. Fs- fossil, Cal – calcite, Dol – dolomite, Py – pyrite, 
Qtz – quartz, OM – organic matter. 
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In all shales, visible pores are found predominantly in compaction shadows of mineral  

grains, and within organic matter; clay porosity is unresolved at all magnifications (Figure 

4.29). In the A10305 shale, although the groundmass organic matter is not internally porous, 

pores commonly occur in Botryococcus bodies (Figure 4.29a). Moreover, inorganic pores rim 

fossil assemblages and concentrate around quartz grains, with only a small proportion of 

much finer pores visible in the organo-clay matrix (Figure 4.29b). In the B10458 shale 

mosaic, pores rim dolomite rhomboids and are concentrated in compaction shadows of pyrite 

crystallites and quartz, often in association with residual organic matter (Figure 4.29c). Pores 

visible in the organo-clay matrix are predominantly associated with the organic matter 

squeezed between horizontally aligned clays and/or grains, and may follow elongation of the 

organic particles (Figure 4.29d). Finally, in the C10401 shale, pores are developed mostly in 

the vicinity of pyrite and dolomite crystals, either at the margins of mineral grains, or within 

accumulated organic matter (Figure 4.29e, f). More commonly than in the B10458 shale, 

pores are present between folded clays, interpreted as incompletely compacted clay floccules 

(Loucks et al., 2012). In both overmature shales, even at the high magnification of 10,000 x, 

only 30% of point counted organic grains bear visible pores, with most of the organic matter 

remaining visibly non-porous.  

To compare porosity and the distribution of pores sizes between representative areas of 

different samples, only fully resolved pores were taken into account. Their minimum size was 

estimated after grouping all pore areas into bins of an increasing size and plotting them as a 

function of pore numbers (Figure 4.30) (Houben et al., 2013; Klaver et al., 2012). At all 

maturities, a fractal distribution of fully resolved pores was approximated by one linear 

regression line, with slopes of -2.21 in A10305, -2.36 in B10458 and -2.19 in C10401 shale 

(Figure 4.31a). For the two overmature shales from wells B and C, pores smaller than 100 nm 

could not be linearly fitted, and this diameter is interpreted as the minimum pore diameter 

fully resolved in the REA images. For the A shale, due to the lower resolution of images, the 

minimum fully resolved pore size is larger – 280 nm. 
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Figure 4. 30. Typical distribution of pores from BIB-SEM mosaics of the Wealden shale samples. An 
area of investigation covers the size of an estimated Representative Elementary Area. Fully resolved 
pores (red circles) are fitted with a linear regression line defined by a slope (D) and a point of 
interception with the y axis (C). Pores not fully resolved in mosaics (black squares) deviate from the 
linear regression line estimated for the fully resolved pores. 
 

 
Table 4. 10. Binarized BIB/SEM image porosities and point-counted relative contribution of different 
pore types of selected Wealden shales samples: A10305 (Ro 0.7%) B10458 (Ro 1.9%) and C10401 
(Ro 1.9%). The minimum fully resolved pore size is 100 nm, except for the sample A 10305, 280 nm.  

Sample Area 

(µm
2
) 

BIB image 

porosity > 

100 nm (%)  

BIB image 

porosity as 

fraction of 

total 

porosity 

BIB image 

porosity > 

280nm (%)  

BIB image 

porosity as 

fraction of 

total 

porosity 

% of 

organic, 

inter-, 

intraparticle 

pores 
A 10305 638x479 nd nd 0.2 0.01 nd 

B 10458 96x70 1.7 0.19 1.0 0.12 46-52-2 

C 10401 96x70 1.1 0.10 0.7 0.07 52-43-5 

 

The resolved image porosity of the two overmature shales amounted to 1.7 and 1.1% in 

the B and C samples respectively (Table 4.10). In the A shale, at a lower resolution of the 

image mosaic, the porosity amounted to 0.2%. For comparison, in the two higher maturity 

shales, if only pores > 280 nm are taken into account, the porosity is much higher than in the 

low maturity shale, reaching 1.0% in the B10458 and 0.7% in the C10401 sample. For all 

shale samples, a differential distribution of pore sizes shows a single maximum located 

between 400-560 nm in B and C and 560-800 nm in the A shale (Figure 4.31b). In the two 

overmature shales, due to the greater resolved porosity, the maximum is more pronounced, 

and corresponds to the onset of a decrease in the density of pores with a diameter < 400 nm. 

Slope D 

Interception C 
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The median diameter of fully resolved pores from all samples investigated is the highest in 

the low maturity shale, 438 nm (Table 4.11). When taking into account the equivalent pore 

size range in the overmature shale samples, this diameter is only 378 and 390 nm for the B 

and C shale respectively. The higher median diameter in the A well shale indicates that at the 

lower maturity, larger pores are more abundant and contribute more porosity than equivalent 

pores in the overmature shale (Figure 4.31c). The most elongated pores with a median aspect 

ratio of 3.5 were found in the overmature B shale, consistent with its highly aligned fabric 

(Table 4.11 and Figure 4.31d). In two other shales, the aspect ratio of pores > 280 nm is 

much lower, only 2.2 and 2.0 in the A10305 and C10401 sample respectively.   

 
Table 4. 11. Median size and aspect ratio of pores which diameter exceeds 280 nm diameter resolved 
in BIB-SEM image mosaics of the A10305 (0.7% Ro), B10458 (1.9% Ro) and C10401 (1.9% Ro) 
shale. 

Sample Median equivalent diameter 

(nm) 

Median aspect ratio 

A 10305 438 2.2 

B 10458 378 3.5 
C 10401 390 2.0 

 

At the magnifications (6,000 x) used in this study, fully resolved image porosities 

contained in pores > 100 nm constitute only 19 and 10% of the physically measured total 

porosity for the investigated B10458 and C10401 samples, respectively (Table 4.10). When 

taking into account fully resolved pores > 280 nm characteristic for mosaics taken at a 

magnification of 600 x, the fraction of total porosity resolved in images of the two shales is 

even lower, only 12 and 7%. At the similar magnification in the low maturity sample, fully 

resolved pores (> 280 nm) constitute only 1% of the total porosity, the lowest value in all 

samples investigated. A comparison of image and mercury injection derived cumulative and 

incremental porosity curves show that > 100 nm and > 280 nm image pore bodies are 1-3 

orders of magnitude larger than pore throats ‘seen’ by the mercury injection experiments, and 

thus they are not directly connected at the image scale (Figure 4.29a, c, e; Figure 4.32a, b). 

This lack of connectivity is consistent with the differential distribution of image resolved 

pores, showing decreasing contributions to porosity towards smaller pores (Figure 4.31b). In 

all investigated shales, pores of a size of mercury apertures (< 75 nm, 48 and 56 nm in 

A10305, B10458 and C10401 shales respectively) are poorly resolved even in mosaics 

captured at a magnification of 10,000 x. These pores are located primarily in the poorly-

resolved organo-clay matrix, and in the case of the overmature samples, directly in the 

organic matter (Figure 4.29). 
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Figure 4. 31. Distribution of pore sizes, equivalent diameters and aspect ratios of BIB-SEM fully 
resolved pores for the three samples: A10305 (0.7% Ro), B10458 (1.9% Ro) and C10401 (1.9% Ro). 
Images were captured at the magnification 6,000x (B10458, C10401) and x600 (A10305). a) Fractal 
distribution of pores > 100 nm (B10458, C10401) and > 280 nm (A10305) with the line of the best 
linear fit described by a slope (D) and intercept with the y axis (C). b) Differential pore size 
distribution as a function of an equivalent radius shows a single maximum located between 400 -560 
nm in B and C and 560-800 nm in the A shale. Note sharp decrease in the pore area density of pores 
with a diameter below < 400 nm in the overmature shale samples. c) Size distribution of image pores 
as a function of pore number. For the early mature shale, contribution of pores with a diameter > 250 
nm is approximately twice as much as in the overmature shale. d) Aspect ra tio of image pores for 
samples described in d). 
 
 
 

a. b. 

c. d. 
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Figure 4. 32. Comparison of cumulative porosity (a) and pore size distribution (b) obtained from 
mercury injection (> 5.6 nm) and image analysis of pores for three samples: A10305, B 10458 and C 
10401. The analysis of image pores included only fully resolved pores in respected mosaics: > 140 
nm radius in the A shale, and > 50 nm radius in both B and C shales. 

 

Distribution of image pores in shale domains 

Quantification of image pores in relation to the content of mineral phases was performed 

on < REA mosaics acquired at a magnification of 10,000 x (practical minimum pore diameter 

50 nm). For each mosaic, extracted porosity was superimposed on the EDX-derived 

mineralogical composition corrected for the point counted content of organic matter. All 

areas selected for the analysis are clay-rich except for the C10401 mosaic, with < 50 vol.% of 

clays and > 10 vol.% of carbonates (Table 4.12).  

 

Table 4. 12. Porosity and phase composition of BIB-SEM mosaics selected for the porosity-
mineralogy quantification. 

Sample 
Area 
(µm

2
) 

Porosity 
(%) 

OM (%) Phyllosilicates  
(vol.%) 

Qtz+Fsp 
(vol.%) 

Carbonates  
(vol.%) 

Pyrite 
(vol.%) 

A10305 77x48 0.4 23.8 57.1 11.1 8.8 0.2 

B10458 64x48 0.8 11.8 63.4 16.8 1.1 6.1 
B10458 64x48 2.1 23.1 56.9 14.1 2.8 0.8 

C10401 77x48 3.6 24.4 43.6 16.0 10.6 2.6 

 

At the scale of the BIB-SEM mosaics, clay packages are not visibly porous at any 

maturity (Figure 4.33), and thus no correlation was encountered between EDX-derived 

phyllosilicate content and image macroporosity (Figure 4.33a, b). Likewise, no correlation 

was found for image porosity and the content of carbonates, all showing scatter over a large 

range of values (Figure 4.33c, d). Despite this lack of a distinct trend, in both the A10305 and 

C10401 mosaics carbonate-rich areas have higher porosity values than carbonate-depleted 

a. b. 
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domains. For instance, in the C10401 mosaic, the image porosity of areas with > 5 vol.% 

carbonate shows the highest spread and the porosity values (1-9%) are higher than in areas 

with carbonate contents < 5 vol.% (0.5-5.5%). Similarly, in the low maturity A10305 mosaic, 

areas for which the carbonate content exceeds 40 vol.% show higher porosity values (0.4-

2.0%) than areas with carbonate contents below 20 vol.% (0.1-1.1%). No such pattern exists 

in the B10458 mosaic, where no difference between the porosity of the carbonate-rich and 

carbonate-poor areas was found; this may be related to the low overall carbonate content 

(Table 4.12, Figure 4.33d). 

In all shales, image porosity is more strongly related to the volume of point counted 

organic matter than to the amount of any mineralogical phase. In the low maturity shale, this 

relation is negative, with the most organic-rich areas (ca. > 60%) showing low porosities (< 

0.5%) (Figure 4.33e). In contrast, a positive correlation is encountered both in the gas-mature, 

carbonate-poor B 10458 shale and as well as in carbonate-poor areas within the gas-mature 

C10401 mosaic (Figure 4.33f). For these samples, porosity increases from 0.4 to 5.5% as 

organic matter content increases from 5 to 40%. The image porosities of areas rich in 

carbonates (> 5%) are less related to the content of organic matter and show significant 

variations over a small range of the OM abundance (Figure 4.33f). To highlight the positive 

effect of organic matter on image porosity within the C 10401 mosaic, we extracted 

intraorganic pores and excluded porosity concentrated in compaction shadows of mineral 

grains. The resulting relation is positive, with porosities varying between 0.2-1.3% over the 

19-40% organic matter variation (Figure 4.33g). This result also shows that absolute image 

porosities contained directly in the organic matter are smaller than porosities spatially 

associated with the inorganic grains.  
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Figure 4. 33. Covariation of image porosity with phyllosilicate, carbonate and OM content. Each 

data point represents one BIB-SEM image captured at mag. 10,000 x. 

a. b. 

c. d. 

e. f. 

g. 
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Discussion 

 

Depositional environment and facies variation 

The stratigraphy of all three sections comprises < 1 m alternations of organic-rich and 

organic- lean facies composed of siliciclastic and fossiliferous mudstones, mud-depleted 

limestones and concretionary carbonates. This lithological variability extends to a centimetre 

and sub-centimetre scale with adjacent beds or laminae showing varied abundances of 

autochtonous, allochtonous and diagenetic components. According to Mutterlose and 

Borneann (2000), the distribution of facies within Lower Creatceous sediments in the Lower 

Saxony Basin is related to differential subsidence, local tectonics and sea level changes. At 

the locations of the cores investigated in this study, these changes resulted in the alternating 

deposition of the lake plain, distal delta front and basinal muds, as well as supralittoral, 

littoral and sublittoral bioclastic beds (ExxonMobil, unpublished). 

The varied character of deposition of the German Wealden and its dependence on the 

supply of siliciclastic and biogenic material is reflected in the petrography and organic 

geochemistry of shales. Thin sections show that the biogenic input was dominated by the 

shelly detritus organized into millimeter-scale laminations (Figure 4.3m, r), typical for storm 

and turbidite deposits of littoral and sublittoral zones (Brett and Allison, 1998), with 

foraminifera-rich beds marking the high productivity regime (Figure 4.4g, h) (Berner, 2011). 

Biogenic sedimentary structures are scarce and mostly limited to transgressive sediments 

deposited in the marine realm in the top parts of the core sections (Figure 4.3a, Figure 4.4a). 

In all cores, the strongly siliciclastic and basinal character of the sediments dominates (Figure 

4.4, 4.5, 4.6), pointing to allochtonous terrigeneous input as the primary source of the 

sediment (Figure 4.3h, Figure 4.4a, Figure 4.5g, Figure 4.6e). 

The analysis of the Wealden sections reveals a link between the shale lithofacies, 

depositional environment, and the organofacies type. The TOC screening showed there is a 

higher frequency of organically leaner rocks in the more proximal A core in comparison to 

the more basinal located cores B and C. As the organic richness is a function of production, 

dilution, preservation and nutrient recycling, without elemental analyses it is difficult to 

determine the contribution of each of these factors on the observed pattern (Bohacs et al., 

2005; Sageman et al., 2013; Werne et al., 2002). In shale gas plays across the world, e.g. the 

Marcellus Shale, the organic enrichment in aquatic kerogen coincides with periods of low 

dilution by biogenic debris and excellent preservation in anoxic or euxinic conditions (Werne 
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et al., 2002). In the Wealden, we found that in all sections, the most TOC-rich intervals are 

associated with siliciclastic shales deposited away from terrigenous sediment sources and 

with limited biogenic input (Figure 4.4c, Figure 4.5e). The only exception is coaly mudstones 

found in the C core, where high present-day concentrations of organic carbon resulted from 

deposition of land plant type III kerogen on a lake plain (Figure 4.6g). Lower organic 

contents in the Wealden sediments coincide with the presence of macrofossil debris, biogenic 

sedimentary structures and carbonate cements. As the organic- lean shales have 

predominantly low HI (HI < 400), and there is no petrographic evidence for the increased 

input of terrestrial macerals, we interpret this as a result of limited preservation of aquatic 

kerogen (Canfield, 1993; Curtis, 1995; Irwin et al., 1977; Kidwell, 1989; Schutter, 1998). 

Because carbonates tend to dilute organic matter in siliciclastic sequences (Werne et al., 

2002), we presume that organic carbon concentrations are dilution-limited in carbonate-rich 

intervals in the Wealden.  This is supported by the up to four times lower TOC contents as 

compared to siliciclastic mudstone at similar HI values (> 700). The distribution of 

organofacies observed in the German Wealden is typical for sediments deposited in overfilled 

lakes, for example the Luman Tongue member of the Green River Formation (Bohacs, 1998).  

 

Porosity distribution and its relation to lithology, organic content and maturity 

Early oil window maturity shale 

A detailed analysis of different rock types shows that total porosities vary within and 

between maturities (Figure 4.13). In relatively immature Wealden shales (Ro 0.5-0.6%) with 

visibly non-porous organic matter, porosities range from 1-17%. The potential factors that 

could cause this porosity difference include: effective stress, lithology differences, and 

cementation (Bjørlykke, 1999). Here, with the restricted depth range of the studied interval 

effective stress cannot explain the observed porosity variation (Table 4.A2). Instead, our 

results show that total porosity of the immature Wealden shale is strongly controlled by the 

organic matter content and lithological variations, where lithology is defined by the content 

and arrangement of the clay, carbonate and silt particles. To be precise, we found that the 

relation between total porosity and organic content in the carbonate facies (including 

microfossil-bearing mudstones, macroshell laminated mudstones, fossiliferous limestones, 

and concretionary carbonates) is opposite to that in siliciclastic shales (both biologically 

reworked and fabric-intact organic-rich mudstones; Figure 4.20a).  
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For the carbonate-rich facies, the relationship is positive and, as supported by the 

petrographic micrographs, it is controlled by the extent of cementation, most pervasive in the 

leanest rocks (Figure 4.3c). Consistently, the lowest porosities are in rocks with TOC < 1.5 

wt.%, in which organic matter is dominated by degraded kerogen (bottom left on Figure 4.9a). 

While we do not have information regarding the timing or nature of the cements, we presume 

that the positive correlation between organic carbon and total porosity reflects a depositional 

link between the intensity of microbial oxidation, the degree of diagenetic cementation and 

the extent of preservation of organic matter (Bohacs et al., 2005; Curtis et al., 1995; Lash and 

Engelder, 2011; Macquaker and Gawthorpe, 1993; Raiswell and Fisher, 2000). In the 

investigated samples the amount of cement visible in thin sections decreased and porosity 

increased in the order: carbonate concretion - fossiliferous limestones - macroshell laminated 

mudstones - microfossil-bearing mudstones. This order agrees with Schutter’s (1998) 

observation that clays arrest cementation and thus porosity loss by inhibiting transfer of 

solutes to the precipitation sites.  

In the clay-rich siliciclastic shales, the relation between porosity and organic content is 

negative and, as discussed below, strongly controlled by the shale composition and 

arrangement of the silt particles. The two shale end members distinguished within this group 

are (a) organic- lean, visibly bioturbated mudstones with silt- lined burrow structures and (b) 

organic-rich mudstones with very well preserved organic material and intact fabric (bottom 

left and top right in Figure 4.9a respectively). Porosity data, supported by petrographic 

micrographs, show that porosities halve from 18% to 9% when moving from the organic- lean 

shale rich in silt- lined biogenic structures (Figure 4.3a) to the bioturbated shale devoid of silt 

linings. In the more organic-rich shales, the porosity decrease is less sharp, and bottoms out at 

4% in the most organic-rich shale (TOC 15 wt.%) (Figure 4.3f). Although we cannot fully 

explain the above relationships without a representative set of grain-size data, our mercury 

injection porosity curves imply that the occurrence of tens of micrometer size quartz grains 

packed in discrete aggregates plays an important role in resisting compaction and enhancing 

porosities, at least on a local scale. This presumption stems from the presence of the bimodal 

pore size distribution within the silt-burrowed shales, with a considerable amount of porosity 

accessed through pore throats 50-100 nm (Table 4.6). 

We cannot be conclusive about the reason for a consistent drop in porosities in the 

organic-rich siliciclastic shale. It is plausible that the observed trend reflects the ratio of the 

porosity held by kerogen as compared to the bulk inorganic matrix. In our study, both clays 

and kerogen are mostly microporous (Figure 4.22, Figure 4.33a, e), and when combined with 
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the Posidonia Shale data set (Figure 4.23), they show a positive relation with the 195K CO2 

sorption porosity which is believed to be mainly in < 6 nm pores (Rexer et al., 2014). 

Although Rexer et al. (2014) showed that at low maturities kerogen contributes half the total 

pore volume in sorption pores, those experiments did not account for the pore space 

contained in larger mesopores (Kuila et al., 2013; Schieber et al.,  2010). Therefore we 

presume that the fraction of porosity held by the inorganic pores exceeds that indicated by 

Rexer et al. (2014) and could explain the relatively lower porosities of the most organic rich 

clays.  

 

Gas window maturity shale 

At higher maturities (Ro 1.5-2.4%), total porosities of shales show a somewhat smaller 

spread as compared to their low maturity counterparts, spanning between 2-12%. The loss of 

porosity is consistent with higher effective stress and greater compaction usually experienced 

by deeper buried rocks (Bjørlykke, 1999; Bjørlykke and Høeg, 1997; Connell-Madore and 

Katsube, 2006; Van de Kamp, 2008), and reflected here by the decrease in the mean Hg access 

radius (Table 4.6). The evidence of compaction is readily seen in connection to the 

disappearance of algal cysts (Figure 4.10), often associated by the collapse of the shale 

structure (see Chapter 3). Moreover, diagenetic features, such as irregular patches of silica, 

rhomboids of diagenetic dolomite, and carbonates locally filling interstices between fossil  

fragments (Figure 4.5e, i, Figure 4.6c, e) are consistent with typical features of chemical 

compaction occurring in shales (Laughrey et al., 2011; Peltonen et al., 2009). Although we 

cannot provide details of the timing of the cementation events, at least the first two types of 

cements occur predominantly within the high maturity Wealden shale and are mostly absent 

from low maturity counterparts.  

The second evidence of the loss of porosity in the overmature Wealden shale is the 

presence of solid bitumen. As inferred from the oil immersion and SEM micrographs (Figure 

4.10), solid bitumen represents in-situ generated or migrated bitumen that remained trapped 

in the rock and filled up potential pore space (Curiale, 1986). Although in this study we did 

not have any samples of oil window maturity, from the Posidonia shale study (Chapter 3) it is 

known that at the peak oil generation, pore-filling bitumen is visibly non-porous. In the 

overmature Wealden, bitumen contains visible pores (Figure 4.26 and 4.27), explaining the 

positive relationship between organic carbon content and total porosity encountered in both 

fossiliferous and siliciclastic shales (Figure 4.20b). The presence of secondary organic pores 
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also implies that the loss of porosity due to compaction and bitumen filling was higher than 

that directly inferred from the difference between the present day porosity values. 

 The control of organic matter on total porosity in the gas window shale is less clear in 

the fossil-bearing rocks than in the siliciclastic shales (Figure 4.20b). With the help of the 

petrographic and SEM micrographs (Figure 4.10g), we interpret a different slope of the 

porosity-TOC relation as related to the variable abundance of non-organic pores. As already 

shown in the low maturity shale, porosity in the organic- lean fossiliferous rocks is affected by 

cementation, with more pervasive cements in the relatively leaner rocks. The presence of 

inorganic pores in these rocks at higher maturities implies that either compaction was arrested 

or secondary porosity developed due to dissolution of inorganic phases (Loucks et al., 2012; 

Schieber, 2010). The first hypothesis is supported by the presence of migrabitumen in the 

shelter porosity of the organic- lean but highly porous fossiliferous mudstone. The abundance 

of this bituminous phase suggests that the rock was sufficiently porous to allow migration of 

the bitumen phase, likely generated in more organic-rich intervals and contributing to the 

“carryover” effect of S1 into the S2 peak (and thus high HI values, Table 4.A1) in the top 

section of our C core (Rippen et al., 2013). As presence of oil was previously reported to 

retard compaction in quartzose and carbonate oil filled reservoirs (e.g. Worden et al., 1998; 

Heasley et al., 2000; Scholle, 1977), it is possible that in the fossiliferous Wealden Shale, 

carbonate surfaces became oil-wet, inhibiting pore cementation (van Duin and Larter, 2001; 

Aplin and Larter, 2005). Still, given the etched-like character of many carbonate surfaces 

(Pudlo et al., 2012), we cannot preclude the possibility that the inorganic porosity partly 

filled by the migrating bitumen is secondary, evolved under the action of carboxylic and 

phenolic acids released from the kerogen at elevated temperatures (Crossey, 1991; Schieber 

et al., 2010).  

In comparison to fossiliferous shales, siliciclastic mudstones show a wider variation of 

the total porosity over a large range of organic carbon contents, proving the dominant control 

of organic matter abundance on porosity in clay-rich shales. The maximum contribution of 

inorganic pores may be estimated from the imaginary intercept of the TOC-porosity relation 

with the y axis, here corresponding to ca. 4-6% of the bulk rock (Figure 4.20). Similarly to 

the low maturity Wealden, this porosity is held predominantly by pores not visible in the 

SEM, and certainly not quantifiable with microscopic methods. Indeed, sorption experiments 

showed that approximately 30-50% of total porosity is held by micro- and fine mesopores (< 

6 nm), equivalent to 4-5% of the bulk rock, probably with at least half of the volume outside 

the organic matter (Rexer et al., 2014). In contrast, image mosaics (practical resolution 240 
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nm) showed that only fraction of the porosity (0.5% of the bulk volume) is contained in 

inorganic pores large enough to be quantified with microscopic methods.  

Total porosities measured in the overmature siliciclastic shales are independent of the 

size of the pore throat apertures (Groups 2 and 3 in Figure 4.20b), consistent with the 

secondary nature of the organic porosity. In contrast, high resolution images showed that 

macroporosity is strongly controlled by the mineralogical composition. As shown in Chapter 

II, biogenic debris may create traps for the generated bitumen, which when exposed to higher 

temperatures will exsolve gaseous phases, leading to the formation of secondary porosity (e.g. 

Bernard et al., 2012; Chalmers et al., 2009; Curtis et al., 2010; Jarvie, 2007; Loucks et al., 

2009; Milner et al., 2010). In the clay-rich Wealden Shale, a similar role is played by 

authigenic carbonates, providing compaction shadows for bitumen accumulation and 

secondary porosity development (Figure 4.26d, Figure 4.27d). We found that despite much 

scatter in the macroporosity data, there is significantly more pore space assoc iated with 

compaction shadows of the carbonate grains and crystals rather than present within clay-rich 

domains (Figure 4.33d). Interestingly, there is no quantitative evidence for quartz grains 

displaying a similar association with porosity, despite the high content and scattered nature of 

the quartz grains. Precipitation of diagenetic carbonates during post-burial diagenesis is 

driven by pore water alkalinity and partial pressure of CO2 and thus at increased temperatures 

organic reactions may favour precipitation of dolomite cement (Davies, 1979; MacGowan, 

1990). However, the same factors will control dissolution of carbonates, promoting 

appearance of dissolution rims around dolomite grains and partly dissolved crystals (Figure 

4.24d). Hence, it is suggested that the mutual effect of the grain dissolution and bitumen 

entrapment, followed by secondary porosity development, led to increased porosities of the 

carbonate-rich microdomains as compared to quartz-rich domains. The positive effect of 

carbonate content on image porosity enhancement is in contrast to reports of bulk porosity 

decrease with high calcite cement abundance (Lu et al., 2011). This highlights the importance 

of petrographic validation of the bulk porosity and XRD results by establishing the genesis of 

carbonates and comparing porosities from an equivalent pore size range.  

 

Evolution of organic porosity in the gas window  

The positive relation between total porosity and TOC found in the overmature Wealden 

shale is a common feature of multiple shale gas plays (Passey et al., 2010). Hence, in order to 

build quantitative models of organic matter and total porosity change with maturity, there is a 
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need for a better understanding of the evolution of organic pores. To date, the most urgent 

questions to be answered involve: the role of organic matter type in the development of 

organic pores, mechanisms that lead to the formation of pores, the maturity at which this 

formation occurs, and the range of pores sizes.  

The presence of two distinct organic pore type end members, and the visibly 

heterogeneous nature of organic pores (Figure 4.26, 4.27) imply that, similar to the Posidonia 

shale (Chapter 2), the evolution of porosity in the overmature Wealden is at least partly 

controlled by the composition of the organic material. The first pore type end member 

distinguished in this study embraces highly irregular, up to > 500 nm in size pores with a 

characteristic jagged wall structure, visibly penetrating the solid bituminous mass (Figure 

4.26i, Figure 4.27d, h). The second end member includes discrete, fine organic pores, 

disconnected from each other on the scale of the SEM imaging (Figure 4.27a). Because the 

full spectrum of organic pore types is much wider and only bracketed by these two end 

members, it is reasonable to assume that there is a related compositional spectrum of organic 

matter particles, which evolve during maturation and oil cracking. Such an assumption is 

consistent with kinetic schemes of petroleum generation, involving the thermal 

decomposition of high molecular weight polar compounds and their successive cracking into 

lighter hydrocarbons with a solid residue remaining in the form of char (Behar et al., 2008a, 

b). Therefore, we link the variation in the morphology of organic pores observed in this study 

to the concept of successive steps in hydrocarbon generation. In this light, pores found in 

compaction shadows of mineral grains are likely to represent the initial step in the cracking of 

hydrocarbons physically trapped in the shale matrix, experiencing a phase change and 

substantial volume loss. Consequently, the appearance of discrete organic pores likely 

reflects the onset of the gas exsolution stage from already partly polycondensed aromatic 

molecules (Tiem et al., 2008). Similar bubble- like pores are typical for cokes, in which the 

formation of porosity follows the onset of a densification stage of the carbon residue (Loison 

et al., 1989). Hence, comparably to cokes, we presume that the formation of discrete organic 

pores in shales is linked to densification processes within the residual bitumen, arresting 

release of the pressure build up during gas generation, and coinciding with limited diffusion 

of gas on a relevant time scale. 

Identical pore types distinguished in the type I kerogen dominated Wealden shale and 

type II kerogen Posidonia shale (Chapter 2) point to similarities between these two kerogen 

types in terms of organic porosity development. This uniformity is best observed on a TOC - 

total porosity binary plot, with the calcareous Posidonia shale and siliciclastic Wealden shale 
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plotting within the same field (Figure 4.34). Although we cannot be sure about the reasons 

for the observed similarties, it is likely the consequence of a similar mechanism of pore 

development through the intermediate, solid bituminuous phase present in both shales (Figure 

4.10). Within the Wealden data set, the only group of samples that did not fall onto distinct 

TOC – total porosity trends are samples with abundant type III/IV kerogen (Figure 4.10h). 

The relatively lower porosities of the coaly shales, along with the evidence of the absence of 

solid bitumen in their matrix, once again indicates that organic pores in gas window shales 

are associated with the thermal maturation of exclusively oil-prone macerals (Curtis et al., 

2012; Loucks et al., 2009; Milliken et al., 2013). Consequently, the evaluation of the genesis 

and preservation of those pores need to be decoupled from the evaluation of mechanisms 

controlling the fate of micropores encountered in coals and coaly kerogen (Green et al., 2011; 

Loison et al., 1989). 

The positive relation between total porosity and organic carbon content in the overmature 

siliciclastic shale with the predominant genetic type I kerogen is valid for samples with a 

broad range of maturities between Ro 1.5 to 2.4% (Figure 4.20). A lot of attention has been 

given to maturity as a potential factor controlling the development of pores in gas window 

shales, with very promising results obtained via the combination of pyrolysis and diamondoid 

geochemistry (Dahl et al., 2012). Here, based on total porosity measurements coupled with 

the petrographic characterization of rocks, we propose that maturity should not be treated as a 

single factor controlling porosity in gas window shales. Similar observations of a lack of 

relationship between image porosity and maturity were made by Curtis et al. (2012) on Late 

Devonian-Early Mississippian Woodford Shale with marine kerogen. In our study, marine 

Posidonia and lacustrine Wealden samples plot within the same TOC-porosity trend, and thus 

we exclude compositional difference between the two oil-prone kerogen types (type I and II) 

as a potential factor influencing the above relationship (Figure 4.20b).  Similarly, we found 

no significant amount of residual oil that could block porosities at the gas window maturity 

and thus influence measured porosity values (Table 4.7). A lack of correlation between shale 

porosity and thermal maturity at Ro > 1.5% suggests that organic porosity evolution in 

Wealden was active only below that maturity level. Observing that the porosity of shales that 

have not experienced oil cracking is lower in comparison to their postmature and overmature 

counterparts (Chapter 2  and 3), we suggest that the most likely timing for the development of 

organic pores is the wet gas stage. Interestingly, these findings are consistent with Dahl et al. 

(2012) who noticed the maximum increase in the image organic porosity in shales that were 

artificially heated up to wet gas window temperatures. The lack of evidence for a further 
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increase in porosity in the most mature shales, despite the measured hydrogen loss (Table 4.3) 

suggests that the late gas generation did not produce significant volume of microcavities or 

alternatively, that this porosity was prone to destruction (Loison et al., 1989). Consequently, 

our findings do not support the models of continuous organic porosity development based on 

the increasing transformation ratio and hydrogen loss (Romero-Sarmiento et al., 2013).  

To fully understand the control of organic matter on the evolution of porosity, it is 

necessary to recognize the range of pore sizes that control the above relationship. In this 

study we implemented gas sorption techniques to measure the smallest pores not recognized 

in SEM images. Based on the similarity between the summed sorption and mercury injection 

porosities compared to total porosity in a suite of Posidonia shale samples, Rexer et al. 

(2014) concluded that 195K CO2 gas sorption mainly quantifies < 6 nm pores. For the three 

samples investigated here, the maximum difference between the MICP-1 <5.6 nm porosity 

and sorption porosity is equivalent to 3% of the bulk rock and thus raises questions about the 

validity of the 6 nm threshold (Table 4.7). Those differences may however be compromised 

by the fact that mercury porosities are prone to being overestimated due to the elastic 

deformation of the organic matter induced by mercury penetration under elevated pressures, 

expressed as a strong covariation between mercury retraction and the content of organic 

matter already known from coals (Toda and Toyoda, 1972) (Figure 4.17). 

Based on the strong positive relationship between the wt.% sum of the phyllosilicate and 

organic carbon vs sorption porosity (Figure 4.23), we conclude that the amount of < 6 nm 

porosity is only partly controlled by the content of organic matter. Consequently, the 

remaining sorption porosity is likely to occur within non-visibly porous clays (Figure 4.33a, 

b) (Kuila and Prasad, 2013). Again, this is consistent with Rexer et al. (2014) who discovered 

that within the Jurassic Posidonia shale, at all maturities, approximately half of the sorption 

porosity is contained within organic matter, with the other half contained in clays and at 

inorganic-organic interfaces. A positive relationship between clay and organic content vs 

sorption porosity found for two sets of shales with varying kerogen type emphasizes a lack of 

difference between evolution of micropores in lacustrine and marine shales. However, as this 

relationship was constructed only on a limited number of samples, the above conclusion 

should be treated as tentative.  

Similarly to < 6 nm pores, we showed that porosity resolved by SEM images is only 

broadly connected to the volume of organic matter (Figure 4.33). Moreover this correlation is 

absent for the visibly non-porous, low maturity organic matter. The lack of a clear relation 

between macroporosity and the content of organic matter at gas window maturities is 
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certainly distorted by the presence of pores encountered at the interface with the inorganic 

matrix. Those pores, not located directly in the residual organic matter, likely reflect 

thermally induced volume loss of the organic particles and very much resemble pores 

reported by Curtis et al. (2012) in the Woodford Shale or Milner et al. (2010) in the 

Marcellus Shale. The dominant contribution of macropores, with only minor amounts of 

visible porosity held by intraorganic pores, supports the idea that most of the intraorganic 

pores reported here - and in other studies (Curtis et al., 2012; Loucks et al., 2009; Milliken et 

al., 2013; Milner et al., 2010) - cannot be seen with microscopic methods. Yet, it is these 

pores that exhibit a strong positive correlation with the content of organic matter within the 

macropore size range (Figure 4.33g), and thus most likely control the experimentally 

measured total porosity-TOC relationship at diameters < 50 nm. 

 

Potential shale gas production from German Wealden 

The heterogeneity of the Wealden Shale has important implications for the economic 

evaluation of this potential shale gas reservoir and the related production of hydrocarbons. As 

already shown, the observed alternation between fossil-poor and fossil- rich lithologies is a 

key control on the variability of total porosity of adjacent beds and laminae on a millimetre 

and centimetre scale. Such variability may pose a challenge when building reservoir models 

of hydrocarbon exploration, including gas in place estimations and fluid flow prediction 

within shale packages (Ambrose et al., 2010; Bowker, 2007; Bustin and Bustin, 2012; 

Clarkson et al., 2012). Recognizing the need to better constrain the mudrock properties on a 

small scale, we found that the bulk shale porosities are predictable on a centimetre scale when 

the organic content is known, with half of the porosity associated with the organic phase in 

siliciclastic mudrocks with TOC contents > 10 wt.%. Interestingly, the slope of the porosity - 

organic content relationship differs between lithologies, and is higher in the fossil debris 

bearing mudstones than in the siliciclastic shales. We presume that due to the high porosities 

of some of the fossiliferous rocks, with the evidence of past bitumen migration to macropores, 

the carbonate surfaces became hydrophobic, giving rise to additional hydrocarbon storage 

space within inorganic calcite pores. If similar variations of the TOC-total porosity 

correlations exist in other shale gas plays, as e.g. those reported by Passey et al. (2010), it 

follows that the amount of effective porosity is controlled not only by the organic content, but 

also lithology and diagenetic history. This is important for gas- in-place estimations, since a 

significant proportion of total gas appears to be associated not only with large, inter-
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connected nano-pores within the organic material (Ambrose et al., 2010), but also large, 

inorganic-hosted macropores. 

The results reported here support the division between marine and terrestrial organic 

matter as being of utmost importance when assessing the potential for the development of 

organic pores and in-situ gas storage sites (Schieber, 2010). In our work, we showed that 

kerogen type III/IV does not produce recognizable organic porosity upon maturation, and 

therefore its abundance is secondary to total gas- in-place predictions as compared to kerogen 

type I or II. Although we cannot be conclusive about the reasons for the limited porosity and 

thus gas potential of terrestrial macerals, Erdmann and Horsfield (2006) argue that with a 

high input of terrestrial organic matter, recombination reactions between kerogen and 

generated hydrocarbon moieties inhibit the release of hydrocarbons until higher temperatures 

in a source rock are attained. In this case, analogous to coals, kerogen type III/IV is at best 

microporous (Bustin and Clarkson, 1998; Clarkson and Bustin, 1997; Griffin et al., 2013; 

Mastalerz et al., 2008), so that gas is mainly physisorbed within organic particles (Ambrose 

et al., 2010; Bustin and Clarkson, 1998). In contrast to oil-prone shales, the transport of this 

gas may be additionally hindered due to the lack of a recognizable network of porous, solid 

bitumen.  

Both pore throat apertures and the percentage of open porosity are recognized as primary 

factors controlling the permeability of shales (Clarkson et al., 2012). In the Wealden, at least 

half of the pore space is associated with inorganic pores, with a cons iderable fraction water-

bearing due to the high content of microporous clays. These inorganic pores are the dominant 

pore system in organic-lean beds (Figure 4.20) and, coupled to their narrow pore throat 

apertures, may not be part of the effective porosity, posing barriers for the flow of gas 

(Passey et al., 2010).  If so, generated gas would preferentially accumulate in microreservoirs 

of porous fossilifeous mudstones that experienced limited cementation as well as in the 

organic-rich layers with abundant intraorganic porosity and macropores located in 

compaction shadows. Analogous microreservoirs were found in the calcareous Posidonia 

Shale rich in recrystallized faecal pellets (Chapter 3), and are a substantial part of the gas-

producible porosity encountered in interlayered faecal pellet and silt-rich laminae of the 

Eagle Ford Shale (Schieber et al., 2012).  

Apart from the lake plain deposits, we did not find evidence of a substantially different 

distribution of mercury pore sizes in gas mature, fossil-bearing shales in comparison to their 

clay-rich equivalents. Likewise, we did not find differences in porosities other than resulting 

from the varied organic content between organic- lean siliciclastic shales with distinct 
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physical and biogenic sedimentary structures and often laminated, organic-rich mudstones. 

Therefore, unlike in the immature Wealden, we recognize that the impact of the original shale 

texture on the total porosity and mercury pore apertures at high maturities is obliterated by 

diagenesis and hydrocarbon generation. Even with similar mercury pore size distributions, 

shale fabric continues to keep a strong hold on the alignment of pores. In this study, higher 

aspect ratio pores were found in the aligned, clay-rich, organic-rich mudstone as compared to 

a mudstone with more randomly-oriented clay platelets (Figure 4.24). The origin of the less 

oriented shale with more chaotic orientation of the clay sheets could not be determined from 

the thin section, but such a clay arrangement is often found in rapidly resedimentated muds. 

The significance of the clay orientation was demonstrated by Lash and Engelder (2005) who 

showed that shales with planar arrangements of clay grains are more prone to developing 

horizontal fractures related to stresses active during kerogen-to-bitumen conversion. In this 

study, this mechanism could have contributed to the formation of the microscopically 

distinguishable horizontal, bitumen-filled microcracks in the B10458 shale (Figure 4.10) and 

thus explain the horizontal arrangement of many organic pores found therein (Figure 4.24c, 

d ). Another implication of a pore system composed of the preferably aligned pores is a 

potentially less tortuous path for the hydrocarbon flow within an unfractured reservoir 

(Chalmers et al., 2008; Soedrer, 1988; Thomas and Clouse, 1990). As the alignment of clays 

in poorly aligned shales controls the distribution and alignment of the dispersed bitumen 

(Figure 4.24e, f), such an arrangement is likely to slow the gas diffusion rate to a fracture and 

a wellbore and thus limit its final production. 

 

Summary and Conclusions 

 

In this study, an attempt was undertaken to classify shales based on selected 

petrophysical and geochemical attributes and provide a practical meaning to the lithological 

variability as observed in core and thin sections. The shale samples were initially 

characterized in terms of the mineralogical composition, texture, presence of sedimentary 

structures, organic content, kerogen type and maturity. The subsequent experimental setup 

involved the determination of a range of porosities using different techniques, each probing 

pores of different sizes and selectively differentiating between the size of pore throats and 

bodies. The visual heterogeneity of the German Wealden was captured at the thin section 

scale, and led to the differentiation of microlithofacies within the sequence of 
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stratigraphically linked deposits (Bohacs, 1998). Image analysis of thin sections revealed that 

even such sharply defined intervals are highly heterogeneous on a submillimetre and 

micrometre scale and thus their experimentally defined bulk properties represent average 

values. All measurements were conducted at two levels of thermal maturation, corresponding 

to early oil window and gas window, and when coupled with petrographic evidence, allowed 

a direct comparison of shales differentiated by the level of thermal maturity.  This approach 

provided promising results in terms of screening for the abundance of organic and inorganic 

pores and pointing out locations of potential microreservoirs of gas. As changes in observed 

shale properties parallel changes in their lithological characteristics, we believe that our 

results can be easily validated or at least compared to additional studies of shales with similar, 

or conversely, distinct lithologies.  

This study showed that lithological variability, and most notably clay and carbonate 

abundance, are primary factors in defining principal rock characteristics, such as porosity and 

organic carbon content, with a partial overlap of values between rocks of differing lithology 

(Figure 4.20). In the low maturity calcareous mudstones and limestones, a positive relation 

between total porosity and TOC exists, despite the variable nature of the carbonate 

component (carbonate concretion, shell debris, pelagic carbonates). Hence, we presume that 

different environmental conditions associated with the episodic precipitation of cements, 

deposition of the shell debris and the supply of pelagic carbonates are directly reflected in a 

variable but mutually linked preservation of both organic and inorganic pores. In siliciclastic 

mudstones devoid of carbonate, shale porosities are again dependent on the general texture, 

and are enhanced by the greater abundance of the silt fraction associated with sediment 

reworking, and possibly more oxygenated bottom waters (Figure 4.3i). In the most organic-

rich, often laminated, siliciclastic sediments (>5 wt.% TOC) with well-preserved type I 

kerogen, total porosities reach a minimum, possibly controlled by the ratio of the porosity 

held by kerogen as compared to the bulk inorganic matrix.  

At gas window maturities, the variation in total porosities within clay and carbonate 

enriched rocks is still notable, despite a diagenetic overprint within the carbonate and quartz 

phases. There is a strong, positive correlation between organic carbon content and total 

porosity within siliciclastic and fossiliferous mudstones and limestones, with two distinct 

slopes of the porosity-TOC relation in rocks of differing lithology. Different slopes between 

the two parameters in fossil-poor and fossil-enriched rocks indicate the important role of the 

inorganic framework in the preservation of inorganic pores and the trapping of generated 

hydrocarbons at oil window maturities (see Chapter 2). High porosities of the fossil-bearing 
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shales with TOC < 2 wt.% point to either dissolution of the shale framework or enhanced 

preservation of inter- and intrafossil porosity in mature rocks that underwent oil generation 

and/or migration.  In contrast to the low maturity shale, siliciclastic mudstones do not show 

elevated porosities at low organic concentrations, suggesting framework compaction 

accompanying hydrocarbon generation.  

The most notable result for the suite of the gas window shales analyzed in this study is a 

lack of influence of the level of maturity attained on the values of total porosity. We presume 

that this reflects the maturity range over which organic porosity is generated, constrained by 

the physiochemical properties of the organic phase, and mimicking similar observations in 

cokes (Loison, 1989). The specific timing of porosity evolution explains the location of the 

large, complex organic pores in the oil-saturated bitumen (see Chapter 3), preferentially 

trapped in the vicinity of mineral grains and crystals (Figure 4.24e), and co-existing with the 

bubble-like-shape intraorganic pores, the growth of which is inhibited by the solidification of 

the host organic polymer (Tiem et al., 2008). If the varied pore morphologies reflect the 

diminishing potential for evolution of pores within the organic phase, any loss of hydrogen 

and exsolution of gas beyond the threshold maturity level continued only within the 

previously formed porous network and hence did not further affect the measurable porosity of 

the shale. The exact timing of organic porosity development could not be constrained due to a 

lack of samples with < Ro 1.5%, but it most likely corresponds to wet gas window maturities.  

After examination of gas window maturity siliciclastic shales with high resolution SEM 

microscopy, we note that the best potential microreservoirs of gas are associated with 

compaction shadows of carbonate grains and crystals. This specific location of macropores is 

interpreted as a dual effect of carbonate dissolution in the volumes of active generation of 

hydrocarbons, as well as the subsequent decomposition of bitumen trapped in the vicinities of 

such grains. In contrast, no enhanced porosities and therefore no visible microreservoirs were 

encountered in kerogen type III/IV dominated shales. For these, different mechanisms and/or 

timing of gas exsolution are implied. We also showed that the shale composition and fabric 

has an impact on the arrangement of pores and pore body sizes, potentially varying at similar 

levels of organic carbon concentration. For instance, the presence of oriented clay flakes is 

reflected in pore size and orientation, with potential consequences for connectivity.  

Constraining this heterogeneity, potentially linked back to depositional mechanisms and 

environments, will have a direct impact on estimations of the efficiency of delivery of 

produced hydrocabons to the wellbore. Interestingly, despite the varied distribution of 

observed macropores in different shales, the total amount of porosity measured in high 
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maturity shales was found to be independent of the sizes of the pore apertures and thus may 

affect estimations of permeabilities when only pore size distribution is taken into account. 
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Chapter 5: Summary and conclusions 
 

Key results 

 

Determination of sample porosity and its pore size distribution in the shale successions is 

a first step towards understanding of the variability of physical properties on larger scales. 

However, due to a fine-grained nature of mudstones, the pure estimation of their porosities is 

not as straightforward and the results may differ depending on the technique used, the 

experimental conditions and the sample size.  Our results showed that due to a small size of 

pores, often exceeding the resolution of the technique deployed, porosities of shales are not 

suitable for the analysis with traditional methods alone, such as mercury porosimetry. On the 

other hand, more sophisticated gas sorption techniques, despite being efficient in 

quantification of porosity held by the finest pores, do not measure macropores, or even larger 

mesopores. In this study, the size of pores encountered in the investigated shale samples 

spanned from > 6 nm to ~5 µm. Such broad pore size distribution is a diagnostic feature of 

shales and is the primary reason for the unsuitability of any single technique to yield 

descriptive statistical information about the full spectrum of pores. The limitations of each of 

the measuring techniques used should be thus bore in mind while interpreting and comparing 

porosities between different samples. To overcome those limitations, a multi-technique 

approach is preferably used. As shown in this study, the combination of the mercury and gas 

sorption methods was critical to show the connectivity of the shale pore system in samples of 

maturities ca. 0.5-1.9% Ro. As the injection of mercury under high pressures may introduce 

an effect comparable to a deformation of the shale framework and/or its organic component, 

the exact agreement between the two porosity values and the total porosity of the shale varies, 

and is likely controlled by the content of the organic matter. This control is expressed a 

strong dependence of the mercury retraction on the content of the organic carbon. One of the 

techniques often deployed to avoid the uncertainties related to the sample compression, and 

on the other hand, those related to always limited accuracy of models converting sorption or 

mercury pore volume to a specific diameter value, is a high resolution microscopy. In this 

study, the microscopic pore visualization and the image analysis have proved to be a useful 

complementary technique with a huge potential to quantify macroporosity that could not be 

directly quantified neither by the mercury porosimetry nor the sorption techniques. The main 

advantage of the image pore visualization was a direct grouping of pores into pore bodies and 
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pore throats with an accuracy not attained by the mercury porosimetry alone. Moreover, the 

image technique, especially when coupled with the low resolution petrographic analysis, was 

capable to provide a valid geological background and mineralogical context for the porosities 

measured experimentally. Still, during our analysis, we found that the experimental feasibility 

may pose constraints on the interpretation of the image analysis results, as the higher sample 

representativeness is often a compromise for the lower image resolution. The last may thus 

pose a problem in very heterogeneous shales with a strong variability on the > cm scale. 

In this study, we analysed a centimetre-and micrometer scale mudstone samples that are 

small enough to avoid many issues of the larger scale mudstone heterogeneity and thus can 

be directly used to interpret the influence of diagenesis and organic matter maturation on the 

measured physical rock properties. The Posidonia case study showed that although the 

maturity of the organic matter is an important factor in interpreting the change in porosities in 

relatively homogeneous calcareous mudstone successions, the influence of the mechanical 

compaction and the high- temperature carbonate diagenesis should not be neglected. We 

demonstrated that the theoretical porosity gain due to the expulsion of hydrocarbons in the oil 

window is effectively counteracted by the shale framework collapse and occlusion of pores 

by the generated organic phase. Despite blocking pores, the retention of the petroleum phase 

generated in situ or migrated from adjacent beds has also a positive effect, as it arrests calcite 

cementation and therefore prevents further porosity loss. The net effect of the increasing 

thermal maturity on porosity is stepwise, and the initial loss of porosity and the decline in the 

size of the accessible pore apertures is arrested, and even reversed in the gas window. The 

porosity balance approach showed that this late porosity gain is primarily accounted for by 

the evolution of the secondary organic pores, interpreted as the result of cracking of the 

residual solid bitumen and oil retained in shale. By studying a large set of shale samples 

containing Type I (Wealden) and II kerogen (Posidonia) we showed that the organic porosity 

evolution is constraint to the early (wet) gas window conditions, at which point the 

compositional differences between different aquatic kerogens (marine vs lacustrine) are not 

significant. The specific but prolonged timing for pores evolution is most plausibly controlled 

by the physiochemical properties of the organic phase and its progressive conversion into 

light hydrocarbons and pyrobitumen. Such interpretation offers a plausible explanation for  

the heterogeneity of pore morphologies encountered in the studied shales, could account for 

the presence of large irregular pores developed in the oil-saturated bitumen trapped in the 

stress-protected vicinities of mineral grains and can explain the size distribution of the 

bubble-like-shape intraorganic pores.  
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The full realization of the porosity change within the heterogeneous shale successions 

cannot be achieved without constraining the lithological and mineralogical framework of the 

inorganic matrix. In this study the analysis of the heterogeneous succession of the German 

Wealden shale shed light onto the levels of such porosity variation between and within 

groups of the shale samples statistically differentiated with selected petrophysical and 

geochemical characteristics. We demonstrated that the clay-rich mudstones can be 

differentiated from the carbonate bearing-mudstones by a different covariation with the 

embedded organic matter at both low (early oil window) and high (gas window) levels of 

maturity. Within the two lithological groups, the variation of porosity is similarly strong and 

follows the change in the rock texture and composition. Our most significant observation 

showed that within the gas window maturity shale the total porosity-TOC covariation is 

positive for both clay-rich and calcareous lithologies. Moreover, while comparing the 

Wealden and Posidonia shale, the nanofossil-bearing calcareous shale bore more resemblance 

to the carbonate-poor siliciclastic shale than to the macroshell carbonate-bearing beds. In 

combination, these two observations stress not only the significance of the organic porosity in 

the gas mature shales but also a different supportive role in its evolution of the embedded 

carbonate phases.  

The significance of the low scale heterogeneity as revealed within the analyzed shale 

sequences has major implications from the practical point of the shale gas exploration. This 

study unequivocally showed that the location of the potential microreservoirs of free gas is 

linked to the compaction shadows of the mineral grains, nannofossil aggregates, or even 

diagenetic dolomite grains.  Although the shale pores are typically connected through pore 

throats < 20-40 nm, the alternation of the clay and organic rich layers with the macroporous 

and rigid laminae, such as those packed with faecal pellet aggregates, may be favourable 

from the production standpoint. As the clay-rich lithologies and the organic phase remain 

mostly meso- and microporous, those would offer more potential for the storage of the sorbed 

gas. 
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Future work 
 

The successful study of the controls on porosity of mudstones depends on the proper 

design of the initial sampling strategies for the future geochemical, petrophysical and 

microscopic work. The consistent selection of samples is crucial for simplification of the 

shale work flow and reducing the number of variables between subsequent experimental set-

ups. In other words, this must involve comparison of shale lithologies bearing similar 

maturities and kerogen types, or alternatively, those that vary in terms of the level of the 

thermal maturation but show no significant lithological variation.  

In the light of this work, and to better understand the timing of the organic porosity 

generation, the future work should direct its focus onto the shale-rich lithologies representing 

the late oil window - wet gas window maturities. Such recommendation stems from the visual 

observations of pores and the experimentally measured porosity values in the type I and II 

shale investigated in this study. The significance of the organic porosity timing from the 

reservoir standpoint entails different exploration and production strategies. 

In order to better place investigated mudstone samples in a broader stratigraphic 

framework, we see necessity in constraining its heterogeneity by higher resolution 

chemostratigraphic methods. The elemental data can be acquired using inductively coupled 

plasma spectrometry optical emission spectrometry (ICP OES) and inductively coupled 

plasma spectrometry mass spectrometry (ICP MS), following a Li-metaborate fusion 

preparation. The knowledge about the elemental distribution will enable to track lateral and 

vertical changes in physical properties of shales, determine the environmental conditions of 

its deposition with redox, and productivity proxies,  and thus extend the interpretation of the 

porosity parameters into broader conext. Finally, we see opportunity in combination of the 

high resolution porosity and geochemical data in modelling the distribution of highly 

productive shales and the organic deposition. 
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Chapter 6: Appendices 
 

Appendix A 

 

Table A 1. TOC and Rock-Eval data for the Wealden shale, samples taken every 1 m, wells A (0.5-
0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). 
Sample Depth 

(m) 

TOC 

(%) 

S1 

(mgHC/g) 

S2 

(mgHC/g) 

S3 

(mgHC/g) 

HI 

(mgHC/gTOC) 

OI 

(mgHC/gTOC) 

Tmax 

(°C) 
G010269 831.5 0.50 0.01 0.44 0.19 89.0 38.0 424 

G010270 832.1 0.46 0.02 0.41 3.30 90.0 724.0 430 

G010271 832.3 0.46 0.02 0.38 1.06 82.0 229.0 424 

G010272 833.3 1.72 0.06 3.64 1.06 212.0 62.0 428 

G010273 834.7 1.10 0.04 1.85 0.91 168.0 83.0 430 
G010274 835.1 1.38 0.05 2.67 0.63 193.0 46.0 427 

G010275 836.0 1.82 0.06 5.15 1.12 283.0 62.0 427 

G010276 836.6 4.27 0.21 23.21 1.45 544.0 34.0 429 

G010277 837.4 7.25 0.20 53.68 0.95 740.0 13.0 439 

G010278 838.1 0.52 0.03 0.63 2.75 121.0 529.0 437 

G010279 838.7 0.69 0.03 0.75 0.28 108.0 40.0 430 

G010280 839.2 1.27 0.04 2.27 1.52 179.0 120.0 432 

G010281 840.8 8.99 0.30 64.74 0.64 720.0 7.0 443 

G010282 842.9 5.83 0.24 40.53 0.64 695.0 11.0 438 

G010283 847.3 9.15 0.55 58.27 2.76 637.0 30.0 429 

G010284 847.8 0.93 0.04 0.91 0.49 98.0 53.0 426 

G010285 848.9 2.19 0.10 7.70 1.43 352.0 65.0 436 

G010286 849.3 7.77 0.23 51.00 0.73 656.0 9.0 440 

G010287 850.2 4.33 0.19 13.60 1.56 314.0 36.0 424 

G010288 850.4 2.19 0.08 3.99 1.03 182.0 47.0 425 
G010289 909.5 5.96 0.62 41.96 1.73 704.0 29.0 437 

G010290 910.2 10.00 1.01 82.15 2.17 822.0 22.0 444 

G010291 911.1 3.73 0.89 28.61 1.03 767.0 28.0 441 

G010292 911.7 4.46 0.81 27.02 1.64 606.0 37.0 438 

G010293 912.5 4.52 0.78 34.73 1.66 768.0 37.0 441 

G010294 913.5 6.20 1.19 51.99 1.50 839.0 24.0 441 

G010295 913.9 5.27 1.23 44.81 1.01 850.0 19.0 443 

G010296 914.5 2.76 1.11 17.20 1.39 623.0 50.0 435 

G010297 915.9 1.98 0.31 12.43 1.46 628.0 74.0 438 

G010298 916.5 3.80 0.33 28.98 1.34 763.0 35.0 440 

G010299 917.0 3.79 3.53 30.33 0.89 800.0 23.0 438 

G010300 918.0 7.29 1.01 53.44 2.79 733.0 38.0 432 

G010301 918.9 2.03 0.10 11.14 1.33 549.0 66.0 440 

G010302 919.3 4.68 0.43 27.89 1.79 596.0 38.0 433 
G010303 920.4 1.54 0.14 6.74 1.69 438.0 110.0 438 

G010304 923.5 5.81 0.28 48.34 1.18 832.0 20.0 442 

G010305 923.7 11.80 0.93 91.48 1.47 775.0 12.0 446 

G010306 925.9 2.61 0.27 13.24 2.06 507.0 79.0 430 

G010307 926.4 1.00 0.08 2.71 2.27 271.0 227.0 433 

G010308 927.3 0.96 0.06 2.43 2.32 252.0 241.0 433 

G010309 928.3 0.67 0.04 1.29 1.95 193.0 292.0 438 

G010310 966.4 0.93 0.04 3.68 2.35 394.0 252.0 444 

G010311 967.3 2.46 0.11 15.61 1.02 635.0 41.0 439 

G010312 967.8 1.64 0.24 10.13 0.79 618.0 48.0 434 

G010313 968.8 5.28 0.39 43.21 1.38 818.0 26.0 443 

G010314 969.8 3.76 0.49 18.46 0.68 491.0 18.0 436 

G010315 970.3 1.62 3.02 12.70 0.61 784.0 38.0 435 

G010316 972.6 13.50 1.17 102.90 1.68 762.0 12.0 449 

G010317 972.8 9.28 1.22 67.73 1.50 730.0 16.0 437 
G010318 974.4 1.37 1.77 8.43 1.10 615.0 80.0 435 

G010319 974.6 8.07 1.10 57.82 1.44 716.0 18.0 440 

G010320 992.3 11.40 1.07 86.84 0.52 762.0 5.0 448 

G010321 994.1 5.02 0.44 43.46 0.71 866.0 14.0 446 

G010322 994.9 4.45 0.33 29.79 0.78 669.0 18.0 437 

G010323 996.4 2.96 0.18 18.58 0.90 628.0 30.0 436 

G010324 997.3 3.56 0.26 20.15 1.16 566.0 33.0 433 

G010325 997.8 1.79 0.12 9.36 1.25 523.0 70.0 437 

G010326 1029.2 4.14 0.48 26.74 1.41 646.0 34.0 429 



222 
 

G010327 1029.7 1.59 0.06 8.09 1.22 509.0 77.0 444 

G010329 1031.0 10.20 0.56 77.87 0.93 763.0 9.0 448 

G010330 1031.7 0.50 0.03 1.74 0.82 347.0 163.0 440 
G010331 1031.9 0.95 0.04 3.19 0.97 336.0 102.0 441 

G010332 1032.6 13.50 0.87 101.07 1.05 749.0 8.0 449 

G010333 1033.6 2.64 0.25 15.95 0.85 604.0 32.0 436 

G010334 1034.5 0.66 0.03 1.29 1.29 196.0 196.0 436 

G010335 1036.9 0.65 0.06 2.68 1.27 412.0 195.0 440 

G010336 1037.3 3.11 0.16 17.35 2.06 558.0 66.0 438 

G010337 1038.4 12.30 0.71 89.86 0.60 731.0 5.0 448 

G010338 1039.2 1.26 0.06 4.76 0.74 378.0 59.0 440 

G010339 1040.1 0.75 0.11 3.48 0.84 466.0 112.0 437 

G010340 1040.8 4.71 0.65 32.25 1.37 685.0 29.0 429 

G010341 1042.6 1.42 0.06 6.58 0.45 463.0 32.0 440 

G010342 1043.5 15.30 0.74 115.84 0.99 757.0 6.0 453 

G010343 1043.9 1.19 0.07 3.08 0.76 259.0 64.0 441 

G010344 1044.6 0.93 0.04 4.08 0.76 441.0 82.0 441 

G010345 1045.2 1.51 0.09 2.96 0.82 196.0 54.0 426 
G010346 1045.6 5.72 0.51 33.51 1.14 586.0 20.0 423 

G010347 1046.0 0.47 0.03 1.01 0.57 215.0 122.0 428 

G010348 1046.4 1.89 0.15 10.22 0.72 541.0 38.0 435 

G010349 1048.0 5.32 0.21 40.01 0.62 752.0 12.0 442 

G010350 1048.5 0.33 0.02 0.45 1.07 135.0 320.0 442 

G010351 1050.1 17.50 0.82 116.19 0.54 664.0 3.0 452 

G010352 1051.3 0.53 0.23 28.18 0.72 5317.0 136.0 438 

G010353 1051.7 3.82 0.22 27.35 0.77 716.0 20.0 439 

G010354 1052.4 0.63 0.04 2.53 0.76 405.0 122.0 441 

G010355 1053.6 0.35 0.02 0.32 1.38 91.0 391.0 433 

G010356 1054.4 1.58 0.12 7.66 0.63 483.0 40.0 437 

G010357 1055.0 5.44 0.34 43.16 0.45 793.0 8.0 440 

G010358 1055.3 1.94 0.13 7.96 0.67 410.0 35.0 437 

G010359 1055.8 0.64 0.03 2.39 0.46 371.0 71.0 439 

G010360 1056.6 2.24 0.16 16.32 0.76 729.0 34.0 439 
G010361 1058.0 10.40 0.74 75.68 0.91 728.0 9.0 446 

G010362 604.3 1.98 1.21 4.17 0.36 211.0 18.0 408 

G010363 608.8 3.72 2.54 7.01 0.47 188.0 13.0 444 

G010364 609.9 2.76 2.06 5.07 0.85 184.0 31.0 441 

G010365 610.4 3.21 1.81 4.34 0.61 135.0 19.0 453 

G010366 610.8 3.74 2.95 5.58 0.27 149.0 7.0 447 

G010367 611.5 1.05 0.58 1.37 2.37 130.0 226.0 451 

G010368 611.6 2.19 1.31 3.29 0.51 150.0 23.0 449 

G010369 613.1 6.45 4.85 12.20 0.44 189.0 7.0 449 

G010370 613.4 0.79 0.23 1.01 0.15 128.0 19.0 383 

G010371 614.6 3.50 2.38 6.63 0.17 189.0 5.0 443 

G010372 615.8 0.75 0.17 0.81 0.16 109.0 21.0 430 

G010373 616.4 0.80 0.18 0.84 0.20 106.0 25.0 448 

G010374 617.0 1.66 0.65 1.82 0.94 110.0 57.0 453 
G010375 708.9 0.88 0.41 1.14 1.30 130.0 148.0 417 

G010376 709.4 1.32 0.61 1.74 0.67 132.0 51.0 425 

G010377 709.8 2.16 1.26 3.10 0.63 144.0 29.0 428 

G010378 710.6 4.29 4.29 8.72 0.66 203.0 15.0 440 

G010379 711.5 1.12 0.65 1.69 0.44 151.0 39.0 378 

G010380 712.7 1.52 1.08 2.64 0.83 174.0 55.0 419 

G010381 713.2 1.30 0.79 2.02 0.49 155.0 38.0 406 

G010382 715.0 1.22 1.13 2.65 1.41 217.0 116.0 418 

G010383 715.9 2.09 2.48 4.83 2.53 231.0 121.0 425 

G010384 716.7 0.48 0.09 0.53 0.33 111.0 69.0 453 

G010385 717.8 2.07 1.21 3.23 0.37 156.0 18.0 413 

G010386 718.3 1.84 0.82 2.39 2.11 130.0 115.0 429 

G010387 719.1 1.26 0.48 1.45 1.12 115.0 89.0 415 

G010388 720.8 1.92 0.97 1.92 0.71 100.0 37.0 464 

G010389 728.0 6.13 3.07 5.46 2.15 89.0 35.0 472 
G010390 827.8 4.09 0.82 1.31 0.77 32.0 19.0 466 

G010391 828.0 1.32 0.26 0.77 0.93 58.0 70.0 465 

G010392 829.3 3.34 0.61 1.22 0.43 37.0 13.0 461 

G010393 831.2 4.64 0.55 1.29 0.62 28.0 13.0 474 

G010394 831.4 2.73 0.45 0.91 0.65 33.0 24.0 463 

G010395 833.3 2.23 0.38 0.89 1.33 40.0 60.0 471 

G010396 834.9 3.47 0.55 1.10 1.14 32.0 33.0 470 

G010397 854.3 6.33 0.62 1.52 0.69 24.0 11.0 489 

G010398 854.9 1.91 0.22 0.72 1.03 38.0 54.0 446 



223 
 

G010399 855.8 7.14 1.12 1.82 0.61 25.0 9.0 472 

G010400 856.2 1.64 0.31 0.85 0.60 52.0 37.0 505 

G010401 857.2 6.17 0.72 1.71 1.97 28.0 32.0 520 
G010402 858.3 2.64 0.43 1.01 2.12 38.0 80.0 501 

G010403 877.1 2.34 0.35 0.92 1.08 39.0 46.0 506 

G010404 877.8 2.48 0.34 0.90 0.59 36.0 24.0 505 

G010405 878.3 2.51 0.32 0.84 0.67 33.0 27.0 470 

G010406 878.5 2.57 0.39 0.88 0.73 34.0 28.0 465 

G010407 880.4 2.65 0.35 0.87 0.76 33.0 29.0 473 

G010408 881.2 1.74 0.23 0.74 1.53 43.0 88.0 508 

G010409 882.1 2.12 0.35 0.86 0.83 41.0 39.0 475 

G010410 883.3 3.19 0.55 1.19 1.57 37.0 49.0 508 

G010411 884.6 1.82 0.18 0.67 1.22 37.0 67.0 514 

G010412 885.7 1.48 0.14 0.60 1.85 41.0 125.0 509 

G010413 887.2 1.87 0.20 0.80 4.28 43.0 229.0 442 

G010414 888.3 1.43 0.11 0.54 1.03 38.0 72.0 517 

G010415 889.7 2.13 0.17 0.66 0.78 31.0 37.0 482 

G010416 919.9 12.90 0.14 2.90 0.31 22.0 2.0 541 
G010417 920.8 3.29 0.11 0.95 0.54 29.0 16.0 532 

G010418 921.2 17.40 0.24 4.13 1.00 24.0 6.0 554 

G010419 922.1 1.00 0.02 0.32 0.28 32.0 28.0 533 

G010420 923.1 0.75 0.02 0.29 7.48 39.0 995.0 548 

G010421 924.0 2.06 0.06 0.55 0.43 27.0 21.0 546 

G010422 924.8 0.61 0.05 0.39 9.27 64.0 1515.0 496 

G010423 926.0 1.33 0.10 0.54 0.96 41.0 72.0 517 

G010424 926.5 2.23 0.07 0.46 0.18 21.0 8.0 589 

G010425 927.7 4.41 0.16 0.68 1.31 15.0 30.0 597 

G010426 929.3 5.07 0.17 0.74 1.78 15.0 35.0 501 

G010427 930.2 0.98 0.03 0.30 1.08 31.0 111.0 563 

G010428 931.1 1.18 0.03 0.36 0.37 31.0 31.0 529 

G010429 932.0 4.15 0.11 0.59 1.12 14.0 27.0 598 

G010430 933.0 1.14 0.04 0.37 0.51 32.0 45.0 498 

G010431 933.6 0.63 0.09 0.63 0.41 100.0 65.0 277 
G010432 934.5 6.67 0.29 0.90 0.78 13.0 12.0 487 

G010433 935.4 6.77 0.18 0.74 1.76 11.0 26.0 600 

G010434 936.5 0.52 0.06 0.50 1.08 96.0 208.0 539 

G010435 937.0 1.15 0.03 0.31 1.37 27.0 119.0 574 

G010436 937.3 0.75 0.02 0.29 3.79 38.0 503.0 547 

G010437 938.5 1.18 0.03 0.38 1.11 32.0 94.0 550 

G010438 939.5 0.47 0.04 0.39 0.36 82.0 76.0 495 

G010439 940.6 1.71 0.05 0.45 0.57 26.0 33.0 574 

G010440 941.6 6.50 0.13 0.68 2.16 10.0 33.0 599 

G010441 980.5 0.64 0.09 0.51 0.92 80.0 144.0 315 

G010442 983.2 1.20 0.20 0.74 0.91 62.0 76.0 307 

G010443 984.9 0.88 0.12 0.59 0.34 67.0 38.0 468 

G010444 985.8 1.06 0.21 0.91 1.22 86.0 115.0 371 

G010445 986.3 4.79 1.71 2.82 1.78 59.0 37.0 461 
G010446 987.7 1.20 0.31 1.03 0.49 86.0 41.0 392 

G010447 988.9 2.19 0.70 1.85 0.54 84.0 25.0 375 

G010448 989.6 2.13 0.76 1.89 0.28 89.0 13.0 358 

G010449 990.4 2.90 1.02 2.23 0.20 77.0 7.0 320 

G010450 991.2 7.12 4.27 5.94 0.95 83.0 13.0 472 

G010451 992.4 3.22 0.96 1.48 0.82 46.0 25.0 453 

G010452 993.0 3.67 1.40 2.25 0.58 61.0 16.0 453 

G010453 995.3 2.13 1.14 2.30 0.26 108.0 12.0 345 

G010454 996.0 1.55 0.57 2.01 1.88 130.0 121.0 395 

G010455 996.6 4.58 1.29 1.90 0.58 41.0 13.0 457 

G010456 996.8 5.50 1.39 2.28 0.48 41.0 9.0 459 

G010457 997.2 1.16 0.18 0.72 0.69 62.0 59.0 450 

G010458 1000.6 4.18 1.05 1.64 0.82 39.0 20.0 460 

G010459 1002.0 0.82 0.09 0.53 0.77 65.0 94.0 310 

G010460 1002.9 0.82 0.10 0.54 0.81 66.0 99.0 486 
G010461 1006.0 0.75 0.11 0.57 0.30 76.0 40.0 489 

G010462 1007.1 0.65 0.06 0.45 0.60 69.0 92.0 491 

G010463 1008.6 0.77 0.08 0.48 0.26 62.0 34.0 490 

G010464 1009.1 0.74 0.07 0.44 0.44 60.0 60.0 492 

G010465 1010.0 0.97 0.10 0.54 0.81 56.0 84.0 491 

G010466 1010.9 1.16 0.16 0.70 1.25 61.0 108.0 504 

G010467 1012.0 0.59 0.05 0.41 0.38 70.0 65.0 487 

G010468 1013.5 0.53 0.04 0.37 0.36 70.0 68.0 490 

G010469 1015.9 0.84 0.09 0.52 0.45 62.0 54.0 484 
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G010470 1150.1 2.12 0.26 0.76 0.60 36.0 28.0 489 

G010471 1150.2 1.31 0.14 0.61 0.87 47.0 66.0 514 

G010472 1152.4 1.56 0.14 0.61 0.93 39.0 60.0 530 
G010473 1153.0 2.61 0.43 1.24 0.65 48.0 25.0 525 

G010474 1154.4 5.82 0.17 0.66 1.65 11.0 28.0 491 

G010475 1155.1 0.59 0.11 0.55 0.89 94.0 152.0 314 

G010476 1155.7 2.10 0.66 1.55 1.19 74.0 57.0 528 

G010477 1157.1 5.84 0.18 0.71 1.12 12.0 19.0 484 

G010478 1157.4 2.36 0.30 0.82 0.80 35.0 34.0 488 

G010479 1158.9 4.42 0.13 0.69 1.53 16.0 35.0 528 

G010480 1159.7 1.16 0.11 0.56 1.31 48.0 113.0 525 

G010481 1160.3 2.51 0.16 0.64 1.63 25.0 65.0 599 

G010482 1160.9 3.83 0.28 0.78 0.91 20.0 24.0 300 

G010483 1161.7 1.72 0.09 0.52 0.40 30.0 23.0 504 

G010484 1162.4 2.40 0.17 0.66 0.79 27.0 33.0 492 

G010485 1163.3 2.72 0.12 0.63 0.89 23.0 33.0 462 

G010486 1164.1 1.01 0.10 0.54 0.60 53.0 59.0 321 

G010487 1164.9 3.97 0.09 0.52 0.52 13.0 13.0 324 
G010488 1165.9 2.03 0.08 0.53 2.97 26.0 146.0 551 

G010489 1166.7 3.99 0.14 0.61 1.09 15.0 27.0 313 

G010490 1167.3 2.47 0.17 0.69 1.09 28.0 44.0 310 

G010491 1169.2 1.50 0.10 0.57 0.14 38.0 9.0 319 

G010492 1170.5 7.53 0.38 1.37 0.64 18.0 8.0 533 

G010493 1171.4 1.52 0.07 0.45 0.48 30.0 32.0 511 

G010494 1172.8 1.50 0.07 0.45 0.37 30.0 25.0 501 

G010495 1173.7 2.90 0.08 0.49 1.06 17.0 37.0 482 

G010496 1174.5 2.20 0.32 1.41 2.14 64.0 97.0 582 

G010497 1175.6 0.94 0.02 0.38 0.86 40.0 92.0 483 

G010498 1176.7 3.45 0.08 0.49 0.63 14.0 18.0 321 

G010499 1176.3 2.79 0.10 0.66 0.19 24.0 7.0 597 

G010500 1177.6 2.09 0.06 0.46 0.58 22.0 28.0 485 

G010501 1178.4 2.37 0.27 0.77 0.50 32.0 21.0 475 

G010502 1179.4 1.77 0.05 0.42 0.88 24.0 50.0 490 
G010503 1180.4 1.85 0.05 0.39 0.43 21.0 23.0 581 

G010504 1182.1 2.47 0.07 0.46 0.54 19.0 22.0 482 

G010505 1183.1 2.40 0.30 0.80 0.95 33.0 40.0 478 

G010506 1183.6 2.35 0.07 0.47 0.90 20.0 38.0 490 

G010507 1184.8 1.95 0.15 0.64 0.47 33.0 24.0 484 

G010508 1185.6 1.30 0.04 0.41 0.95 32.0 73.0 489 

G010509 1285.3 2.66 0.51 1.07 0.49 40.0 18.0 600 

G010510 1286.0 1.81 0.08 0.50 0.77 28.0 43.0 296 

G010511 1287.0 2.65 0.26 0.76 0.70 29.0 26.0 601 

G010512 1288.0 2.23 0.12 0.68 0.27 30.0 12.0 315 

G010513 1289.3 1.70 0.32 0.81 0.76 48.0 45.0 315 

G010514 1289.9 4.44 0.09 0.59 0.85 13.0 19.0 600 

G010515 1296.6 2.53 0.13 0.61 1.28 24.0 51.0 280 

G010516 1297.4 5.56 0.08 0.52 0.62 9.0 11.0 600 
G010517 1298.7 3.60 0.10 0.55 0.50 15.0 14.0 316 

G010518 1299.1 1.95 0.23 0.73 0.32 38.0 16.0 283 

G010519 1299.5 0.43 0.01 0.19 0.29 44.0 67.0 593 

G010520 1300.0 2.01 0.09 0.52 0.43 26.0 21.0 308 

G010521 1301.0 2.49 0.17 0.65 0.40 26.0 16.0 291 

G010522 1301.7 3.54 0.06 0.43 2.25 12.0 64.0 601 

G010523 1302.1 0.91 0.07 0.57 0.76 63.0 83.0 297 

G010524 1332.3 7.85 0.11 0.57 0.70 7.0 9.0 600 

G010525 1332.7 8.94 0.22 0.73 0.32 8.0 4.0 600 

G010526 1333.0 2.77 0.29 0.82 0.13 30.0 5.0 286 

G010527 1333.3 2.50 0.04 0.34 0.31 14.0 12.0 599 

G010528 1334.0 6.75 0.38 0.93 0.83 14.0 12.0 279 

G010529 1334.5 1.60 0.14 0.61 0.35 38.0 22.0 322 

G010530 1335.2 2.14 0.04 0.37 0.29 17.0 14.0 599 

G010531 1336.0 6.35 0.22 0.76 0.14 12.0 2.0 284 
G010532 1336.9 2.96 0.29 0.81 0.51 27.0 17.0 300 

G010533 1337.8 4.05 0.11 0.55 1.24 14.0 31.0 304 

G010534 1338.3 6.35 0.07 0.47 0.41 7.0 6.0 600 

G010535 1339.9 6.91 0.13 0.61 0.41 9.0 6.0 298 

G010536 1340.2 2.34 0.12 0.58 0.32 25.0 14.0 277 

G010537 1340.9 2.76 0.32 0.82 0.70 30.0 25.0 290 

G010538 1341.4 1.40 0.24 0.78 0.46 56.0 33.0 596 

G010539 1344.4 5.31 0.18 0.67 0.21 13.0 4.0 289 

G010540 1346.4 1.85 0.20 0.70 0.29 38.0 16.0 293 
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G010541 1347.8 3.34 0.22 0.72 0.54 22.0 16.0 280 

G010542 1348.6 2.72 0.18 0.68 0.97 25.0 36.0 598 

G010543 1349.6 1.79 0.03 0.30 0.15 17.0 8.0 597 
G010544 1560.4 1.45 0.07 0.55 0.41 38.0 28.0 307 

G010545 1561.4 5.31 0.23 0.75 0.28 14.0 5.0 299 

G010547 1564.0 3.85 0.07 0.51 1.42 13.0 37.0 601 

G010548 1564.8 3.39 0.05 0.44 0.45 13.0 13.0 598 

G010549 1565.6 0.47 0.03 0.53 0.69 113.0 147.0 308 

G010550 1565.7 4.32 0.16 0.68 0.95 16.0 22.0 255 

G010551 1566.6 5.56 0.09 0.52 0.44 9.0 8.0 309 

G010552 1567.7 1.64 0.04 0.40 0.67 24.0 41.0 513 

G010553 1568.5 1.38 0.12 0.67 0.41 49.0 30.0 254 

G010554 1569.4 3.06 0.09 0.52 0.63 17.0 21.0 284 

G010555 1570.5 2.76 0.05 0.42 0.66 15.0 24.0 314 

G010556 1570.9 2.25 0.13 0.61 0.81 27.0 36.0 281 

G010557 1572.5 3.01 0.08 0.48 0.81 16.0 27.0 600 

G010558 1573.5 1.05 0.06 0.52 0.79 50.0 75.0 277 

G010559 1574.2 3.24 0.14 0.62 0.21 19.0 6.0 277 
G010560 1574.6 2.93 0.11 0.56 0.30 19.0 10.0 281 

G010561 1577.3 2.53 0.12 0.59 0.26 23.0 10.0 317 

G010562 1577.9 1.90 0.07 0.46 0.19 24.0 10.0 309 
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Table A 2. Porosities measured with different techniques for investigated Wealden shale samples, 
wells A (0.5-0.7% Ro), B (1.6-2.4% Ro) and C (1.5-1.9% Ro). 

Sample Total porosity 
(%) 

Hg porosity 
(%) 

Porosity < 5.6 
nm (%) 

Hg access 
radius (nm) 

Grain density 
(g/cm

3
) 

EX-B 010444 7.62 4.70 2.92 7.2 2.80 
EX-B 010455 9.73 8.54 1.19 11.8 2.62 

EX-B 010457 6.72 5.71 1.01 8.3 2.67 
EX-B 010458 9.06 7.55 1.51 8.9 2.65 

EX-B 010464 5.87 4.44 1.43 11.9 2.67 
EX-B 010469 5.33 4.72 0.61 9.2 2.69 

EX-B 010475 6.36 5.97 0.38 9.2 2.71 

EX-B 010482 7.05 6.06 0.99 10.6 2.71 
EX-B 010485 10.57 7.11 3.46 12.1 2.77 

EX-B 010494 5.96 4.63 1.32 8.1 2.73 
EX-B 010501 8.54 6.04 2.51 8.1 2.71 

EX-B 010509 8.23 5.05 3.14 8.9 2.57 
EX-B 010514 11.78 8.56 3.32 8.3 2.64 

EX-B 010517 8.29 6.64 1.55 7.7 2.67 
EX-B 010518 7.48 5.68 1.80 7.3 2.71 

EX-B 010524 12.46 5.62 6.84 6.9 2.65 
EX-B 010525 12.43 6.56 5.87 5.8 2.64 

EX-B 010529 7.63 5.02 2.61 10.3 3.03 
EX-B 010530 6.45 4.01 2.44 5.9 2.69 

EX-B 010533 8.61 5.61 3.00 6.5 2.70 
EX-B 010537 6.47 4.43 2.05 7.6 2.72 

EX-B 010543 7.38 4.63 2.75 8.0 2.73 
EX-B 010547 8.94 6.08 2.86 6.9 2.73 

EX-B 010551 8.94 5.67 3.27 7.0 2.69 

EX-B 010553 5.46 4.36 1.10 8.4 2.81 
EX-B 010554 4.85 5.10 0.25 9.7 2.72 

EX-B 010562 3.95 3.01 0.93 7.0 2.84 
EX-B 010544 4.76 1.75 3.01 20.9 2.80 

EX-B 010523 9.81 5.26 4.55 9.8 2.78 
EX-B 010549 1.60 0.38 1.23 6.3 2.91 

EX-C 010362 6.51 4.18 2.33 8.0 2.62 
EX-C 010371 7.01 5.66 1.35 8.5 2.59 

EX-C 010374 7.19 5.25 1.93 7.9 2.74 
EX-C 010375 6.11 4.91 1.20 8.0 2.75 

EX-C 010378 11.50 9.09 2.41 14.6 2.60 
EX-C 010382 6.09 4.80 1.29 8.0 2.72 

EX-C 010385 6.18 5.01 1.18 7.2 2.64 
EX-C 010386 10.26 8.96 1.30 11.0 2.73 

EX-C 010388 12.35 5.25 7.10 9.6 2.76 

EX-C 010390 8.74 7.28 1.47 10.3 2.64 
EX-C 010394 10.37 5.90 4.47 7.2 2.67 

EX-C 010396 8.38 5.78 2.61 7.9 2.70 
EX-C 010397 7.20 4.61 2.60 7.9 2.60 

EX-C 010401 10.96 7.68 3.28 10.6 2.57 
EX-C 010404 8.03 5.08 2.94 8.5 2.72 

EX-C 010410 8.23 5.08 3.14 7.4 2.68 
EX-C 010415 6.69 4.81 1.88 9.6 2.71 

EX-C 010416 5.02 3.01 2.01 7.1 2.36 
EX-C 010417 4.34 3.72 0.62 18.0 2.64 
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EX-C 010418 4.56 2.62 1.94 7.6 2.23 
EX-C 010421 5.36 4.67 0.69 29.4 2.69 

EX-C 010423 5.77 5.26 0.52 15.5 2.72 
EX-C 010426 11.94 8.58 3.36 10.9 2.69 

EX-C 010432 11.95 9.23 2.72 11.9 2.58 
EX-C 010440 10.72 8.60 2.12 10.9 2.60 

EX-C 010393 7.68 4.27 1.51 11.8 2.64 
EX-C 010384 1.12 0.86 0.25 11.0 2.72 

EX-C 010436 8.10 6.99 1.11 8.4 2.81 
EX-C 010438 2.05 0.70 1.36 9.6 2.76 

EX-C 010439 9.61 5.96 3.65 8.3 2.73 

EX-A 010270 18.32 13.42 4.90 26.0 2.92 
EX-A 010278 12.41 12.09 0.32 15.3 2.82 

EX-A 010282 9.46 8.50 0.95 8.2 2.46 
EX-A 010283 15.69 13.11 2.58 18.2 2.31 

EX-A 010289 9.59 8.83 0.76 17.1 2.44 
EX-A 010295 8.57 6.51 2.07 56.1 2.63 

EX-A 010300 18.28 15.24 3.04 21.3 2.45 
EX-A 010299 13.01 10.49 2.52 1045.3 2.59 

EX-A 010303 14.79 10.72 4.34 19.7 2.72 
EX-A 010305 12.91 5.54 7.36 6.2 2.22 

EX-A 010312 10.01 6.85 3.16 25.9 2.69 
EX-A 010315 8.43 6.92 1.51 3511.6 2.82 

EX-A 010320 7.38 4.12 3.26 9.3 2.23 
EX-A 010321 8.02 6.17 1.85 118.9 2.60 

EX-A 010326 9.63 9.42 0.21 19.9 2.53 
EX-A 010333 10.37 7.31 3.06 7.1 2.65 

EX-A 010341 8.65 6.00 2.65 6.5 2.64 

EX-A 010342 3.45 3.01 0.43 11.7 2.10 
EX-A 010343 5.28 4.49 0.79 13.8 2.67 

EX-A 010355 14.24 12.16 2.08 33.0 2.80 
EX-A 010347 1.91 0.60 1.31 9.4 2.73 

EX-A 010350 6.66 5.69 0.97 19.7 2.81 
EX-A 010353 3.86 2.20 1.66 7.3 2.55 

EX-A 010359 5.82 4.60 1.22 35.0 2.69 

 

 

 

 

 

 


