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Abstract 

The kidney plays a vital role in the elimination of many endogenous metabolites and 

xenobiotics. Drug transporters expressed in the proximal tubule cells are key factors 

in the ability of the organ to successfully carry out its function. Previously, primary 

human proximal tubule cells have been shown to retain a remarkable degree of 

differentiation in culture and provide a realistic model of the proximal tubule. To 

address the challenge of extrapolation of drug transporter data from animal and human, 

this project was set out to develop a parallel rat proximal tubule cell model. This would 

allow direct comparison of the handling of candidate drugs in both species, and 

provide better understanding of the mechanisms of drug transport. 

A technique to isolate primary rat proximal tubule cells (PTCs) was successfully 

developed using a collagenase digest/Percoll gradient approach. Rat PTCs cultured 

for 6 days were shown to exhibit cobberstone morphology, typical of many epithelial 

cells. A range of transport proteins including Mdr1a/b, Bcrp, Mrp2, Oat1, Oct2, 

Oatp4c1, Slc2a9, Urat1, Mate1, and Mct1 were detected at the mRNA level in these 

cells. Functional expression of Mdr1a/b, Bcrp, Mrp2, Oct2 and Mct1 was also 

detected using fluorescence substrate retention assays. In addition, Mdr1a/b, Bcrp and 

Mrp2 transporters were found localised on the apical membrane of polarised rat PTC 

monolayer, and Oct2 was found on the basolateral membrane.   

The handling of urate by rat PTC monolayers was investigated. The monolayers 

showed absorptive and secretory pathways for urate, although the absorptive pathway 

was 3.2-fold higher in magnitude. Similarly, 3.4-times more urate was predominant 

across the apical than across the basolateral membrane. Oat1 and Bcrp were deduced 

as the transporters responsible for the secretory pathway, and Urat1 and Slc2a9 in the 

absorptive pathway. This was in accordance with the human PTC monolayers, and 

both models were representative of urate transport in vivo.   

Digoxin transport exhibited a net absorptive flux in rat PTC monolayers; absorptive 

flux was 1.7-fold higher in magnitude than the secretory flux. In contrast, in human 

PTC monolayers, digoxin secretory flux was 4.2-fold higher than the absorptive flux. 

In human PTC monolayers, digoxin secretion consisted of OATP4C1-mediated 

digoxin uptake by the basolateral membrane and MDR1-mediated efflux across the 

apical membrane. In rat PTC monolayers in addition to these pathways, a significant 

Oatp-mediated absorptive flux of digoxin located on the apical membrane of rat PTC 

monolayer was identified as the difference between rat and human digoxin handling, 

resulting in a dominant absorptive flux of digoxin in rat compared to net secretion in 

human PTC monolayers.  

These data alone highlight the importance of developing realistic in vitro human and 

rat PTC models to understand species difference in renal drug handling.  



For my grandmother 
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1.1 The kidney 

The kidney is a bean-shaped organ located towards the back of the abdomen of 

mammals. The anatomy of a human kidney can be seen in Figure 1.1A. The 

kidney is highly perfused with around 20 % of cardiac output residing in the kidney. 

The renal artery enters the kidney at the hilus located on the medial surface of 

the kidney along with the ureter and renal vein of each kidney (Madsen and Tisher, 

1976). The cortex and medulla are distinct regions visible on the surface of a 

bisected kidney. In humans, the medulla is divided into several renal pyramids, 

with the base of each pyramid positioned at the corticomedullary boundary and 

the apex towards the renal pelvis. The apexes have small openings which are 

the ends of the collecting ducts. These openings lead into the calyces of the renal 

pelvis which is responsible for draining the urine produced by the pyramidal units. 

The renal pelvis is lined with smooth muscles which enable it to propel urine out 

of the kidney into the ureter and ultimately into the bladder for excretion. In rats, 

and many other small mammals, the kidney consists of a single lobe of renal 

pyramid. In contrast, human kidney is multi-lobar with multiple renal pyramids. 

Apart from that, the gross appearance of the small animal kidneys resembles that 

of the human (Madsen and Tisher, 1976; Haley and Bulger, 1983). 

The cortex of the kidney consists of nephrons, which are the functional units of 

the organ (Figure 1.1B). As many as 1 million nephrons are present in each 

human kidney, which contrasts with approximately 30,000 found in the rat kidney 

(Haley and Bulger, 1983; Nyengaard and Bendtsen, 1992). A unit of nephron 

comprises the Bowman’s capsule that encases the glomerulus, the proximal 

tubule, the loop of Henle, and the distal tubule. Three kinds of nephrons are 

recognised in the kidney – ones with a very short loop of Henle (superficial 

nephrons), ones with a short loop of Henle (mid cortical nephrons) and ones with 

a long loop of Henle (juxtamedullary nephrons). Nephrons that possess long 

loops of Henle have their loops crossing the corticomedullary boundary and 

projecting deep into the medulla. In humans and rats only about 7 % of nephrons 

are juxtamedullary nephrons. In addition to the descending and ascending loops 

of Henle, collecting ducts are also found in the medulla of the kidney (Madsen 

and Tisher, 1976; Haley and Bulger, 1983). 
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The proximal tubule of the nephron is the main site of renal reabsorption and 

secretion of many endogenous metabolite and xenobiotics. The diameter of both 

rat and human proximal tubule cells is around 40 µm (Maunsbach, 1966; Helbert 

et al., 1997). Three morphologically distinct segments (S1, S2 and S3) can be 

identified along the length of the proximal tubule as defined by the epithelial cells 

that form it. The S1 segment comprises the initial convoluted portion of the 

proximal tubule. The cells in this segment have tall brush border on the apical 

membrane, and the basolateral membrane forms extensive lateral invaginations 

with adjacent cells. The S2 segment consists of the rest of the convoluted 

proximal tubule and the initial portion of the straight tubule. The structure of the 

cells in this segment is similar to that of the S1, except for the shorter brush border. 

The S3 segment comprises the remainder of the proximal tubule. The cells in this 

segment have even shorter brush border, though that varies between species, 

and less basolateral invaginations (Bulger, 1965; Madsen and Tisher, 1976; 

Haley and Bulger, 1983). The mitochondria number is also lower in these cells 

than cells of the other two segments (Maunsbach, 1966). 

All three segments play a major role in the reabsorption of a wide range of solutes 

including glucose, amino acids, small peptides and ions such as Na+, K+, Cl-, 

HCO3
- and PO4

3- together with water. For some solutes, 100 % of filtered load is 

reabsorbed along the length of the proximal tubule. For others such as water and 

Na+ approximately 70 % of the filtrate is reabsorbed in the proximal tubule. The 

proximal tubule is also the site of active secretion of many other compounds 

including a large number of xenobiotics (Madsen and Tisher, 1976; Moe et al., 

2004). Movement of this scale across the epithelium of the tubule requires 

membrane bound proteins to facilitate the transport of molecules. A large body of 

evidence supports the expression of a multitude of transporters at both apical and 

basolateral membrane face of the proximal tubule cells that serves this purpose 

(Beringer and Slaughter, 2005; Feng et al., 2010). Whilst all transporters 

expressed in the proximal tubule cells are vital for maintaining renal homeostasis, 

in the context of drug transport, several families of transporters are more 

important. These drug transporters expressed in proximal tubule cells will be the 

focus of this thesis and reviewed in this chapter.  
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Figure 1.1: Anatomy of the human kidney and nephron. 

(A) The cortex and medulla are distinct regions visible on the surface of a 

bisected human kidney. The medulla is divided into several renal pyramids.  

The apexes of the pyramids have small openings which lead into the calyces 

of the renal pelvis which is responsible for draining the urine produced into 

the bladder via the ureter. In rats, only single rena l pyramids are found in 

the medulla of their kidneys. Apart from that, the gross appearance of a rat 

kidney resembles that of the human. (B) A unit of nephron comprises the 

Bowman’s capsule that encases the glomerulus, the proximal tubule, the loop 

of Henle, and the distal tubule. They are found in the cortex of the kidney. In 

addition to the descending and ascending loops of Henle, collecting ducts are 

found in the medulla of the kidney.  
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1.2 Drug transporters 

In its simplest form, transcellular renal transport of any compound is initiated via 

the sequential transfer of the compound by an uptake and then an efflux 

transporter. With its high expression of membrane transporters on the proximal 

tubule epithelial cells, it is widely acknowledged that the kidney can influence 

drug disposition and drug-drug interactions (Bonate et al., 1998; Beringer and 

Slaughter, 2005; Consortium, 2010). As a result, considerable effort has been 

made to understand the impact these uptake and efflux transporters have on drug 

disposition and drug safety in the kidney (Bass et al., 2009; Consortium, 2010).  

1.2.1 OATs 

Uptake transporters are so called because they facilitate the movement of 

substances primarily across the basolateral membrane into the cells. A well-

characterised group of uptake transporter is that of the organic anion transporter 

(OAT) family, with members including OAT1, OAT2 and OAT3 found expressed 

on the basolateral membrane of the human proximal tubule cells (Kojima et al., 

2002; Wright and Dantzler, 2004; Consortium, 2010).  

When transfected into Xenopus  oocytes, OAT1 was found to mediate the 

transport of p-aminohippurate (PAH) (Sekine et al., 1997; Sweet et al., 1997), but 

was inhibited by a range of compounds such as anti-inflammatory drugs 

indomethacin and carprofen (Kuze et al., 1999). PAH uptake by oocytes 

expressing OAT1 was enhanced by pre-treatment with glutarate, indicating that 

PAH uptake could be coupled to the efflux of internal glutarate (Sweet et al., 

1997). This set of data confirms OAT1 wide substrate specificity and its 

importance in drug-drug interactions. Whilst OAT1 is exclusively expressed in the 

kidney, OAT2 is found to express more abundantly in the liver than in the kidney 

(Cha et al., 2001). OAT3, on the other hand, is almost exclusively found in the 

kidney in humans (Kusuhara et al., 1999). Similar to OAT1, when expressed in 

oocytes, OAT2 also mediated the transport of PAH, and also salicylate and 

acetylsalicylate in drug interaction studies (Sekine et al., 1998). In addition to that, 

OAT1 and OAT3 have been implicated in urate secretion by taking up urate from 

the blood across the basolateral membrane of the proximal tubule (Jutabha et al., 

2010). Although the OATs have overlapping substrate specificities, they differ in 
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affinities. PAH is also a substrate of OAT3 but it has a lower affinity for PAH when 

compared to OAT1 and OAT2 (Kusuhara et al., 1999; Hasegawa et al., 2002). 

Studies have also shown glutarate causing the same effect on PAH transport by 

OAT3 (Sweet et al., 2003), which suggests OAT3 could function as a basolateral 

dicarboxylate/organic anion exchanger in the kidney. Rat orthologs of the human 

OATs also exhibit substrate specificities with different affinities. For instance, 

when LLC-PK1 cells were transfected with rat Oat3, the Km for indoxyl sulphate 

was up to 15-fold higher when compared to Oat1 (Deguchi et al., 2004).  

Two other members of the OAT family (OAT4 and OAT5) have been identified. 

OAT4 is highly expressed in the human kidney (Sun et al., 2001), and OAT5 is 

only expressed in the human liver but rat Oat5 is found in rat kidney and liver 

(Sun et al., 2001; Youngblood and Sweet, 2004). Unlike the other OATs, OAT4 

and OAT5 are expressed on the apical membrane of epithelial cells and have 

similar functions (Babu et al., 2002). Uptake of estrone sulphate by cells 

transfected with OAT4 is enhanced by pre-treatment with glutarate and inhibited 

by high concentrations of external glutarate (Ekaratanawong et al., 2004; Hagos 

et al., 2007; Hagos et al., 2008). Succinate also has the same impact on estrone 

sulphate transport by OAT5 (Anzai et al., 2005). This has led some to believe 

apical absorption of organic anions by OAT4 and 5 may be coupled with 

carboxylate elimination from the kidney.  

1.2.2 OATPs 

Another group of organic anion transporters is the organic anion transporting 

polypeptide (OATP) family. All eleven members of OATP are solute carriers with 

the ability to transport a wide range of substrates. They are expressed in multiple 

tissues in rats and humans, but only a few members are found in the kidney 

(König, 2011). For example, OATP1A2/Oatp1a2 has been identified in human 

and rat kidneys as well as other tissues such as the brain (Jacquemin et al., 1994; 

Bergwerk et al., 1996; Lee et al., 2005), although majority of it is found in the 

apical membrane of distal tubules. OATP1A2 substrates include estrone sulphate, 

estradiol-17β-glucuronide and methotrexate (Isern et al., 2001; Badagnani et al., 

2006). Its localisation and substrate specificity indicates its role in xenobiotic 

reabsorption from the urine.  
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Another member of the OATP family found in the human kidney is OATP4C1. It 

is in fact the only OATP family member to be exclusively expressed in the human 

kidney (Yamaguchi et al., 2010). Unlike OATP1A2, OATP4C1 is located in the 

basolateral membrane in human proximal tubule cells, and found to transport 

thyroid hormone and cardiac glycosides such as digoxin and ouabain (Mikkaichi 

et al., 2004; Yamaguchi et al., 2010). OATP4C1 also transports estrone sulphate, 

which is inhibited by cyclosporine A and triiodothyronine. Interestingly, OATP4C1 

mediated transport of estrone sulphate is not affected by digoxin even though 

digoxin is also a substrate of the transporter (Yamaguchi et al., 2010), which 

could be ascribed to multiple recognition sites on the OATP4C1. Rat Oatpc41 

has also been identified in rat kidney (Mikkaichi et al., 2004). In contrast to human 

OATP4C1, a recent publication shows the localisation of rat Oatp4c1 on the 

apical membrane of rat proximal tubule cells, which had the authors suggesting 

the function of the rat Oatp4c1 may be mainly renal reabsorption of substrates 

instead of secretion (Kuo et al., 2012). 

Oatp1a3v1 and Oatp1a3v2 (previously known as OAT-K1 and OAT-K2 

respectively) are the other members of the OATP family found exclusively in the 

rat kidney (Saito et al., 1996; Masuda et al., 1999b). Oatp1a3v1, situated on the 

apical membrane of the proximal tubule cells, was identified as a bidirectional 

transporter of methotrexate that could be inhibited by anti-inflammatory drugs 

such as indomethacin and ibuprofen (Masuda et al., 1997a). Folinic acid, a 

derivative of folic acid, was also found to stimulate methotrexate efflux, which has 

led some to believe Oatp3a1v1 could function as a methotrexate/folinic acid 

exchanger (Takeuchi et al., 2000). Oatp1a3v2 also transports methotrexate 

across the apical membrane and therefore may play the same role in the rat 

kidney as Oatp1a3v1 (Masuda et al., 1999a). Most substrates of OATPs, such 

as thyroid hormones and conjugated steroids, are also transported by Oatp1a3v1 

and v2 (Takeuchi et al., 2001), indicating both transporters also function as 

multispecific transporters in rat kidneys and have the potential to induce drug-

drug interactions. 

1.2.3 OCTs 

Transport of organic cations by members of the OCT family in the kidney is an 

important route of elimination from the blood to urine. Like several OATs, rat Oct1 
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and Oct2 were initially identified and cloned from rat kidneys before human 

versions were identified (Okuda et al., 1996; Chun, 1997; Gorboulev et al., 1997). 

Human OCT1 is predominantly found in the liver, whereas rat Oct1 is ubiquitous 

in the liver and kidney (Gorboulev et al., 1997). OCT2/Oct2 is almost exclusively 

expressed in the kidney of both species, and little expression in other tissues 

(Okuda et al., 1996; Gorboulev et al., 1997). Another member of the transporter 

family (OCT3) has also been identified in human kidney (Wu et al., 2000b). All 

three transporters are located in the basolateral membrane of proximal tubules 

(Urakami et al., 1998; Karbach et al., 2000; Wu et al., 2000b).  

Similar to the other solute carriers mentioned so far, all human OCTs appear to 

have overlapping substrate specificities but different affinities. They were shown 

to be able to transport organic cations such as tetraethyl ammonium (TEA), and 

were inhibited by other organic cations including cimetidine, procainamide and 

quinidine (Grundemann et al., 1994; Okuda et al., 1996). The drug metformin, 

which is used in type 2 diabetes, was transported with higher affinity by human 

OCT2 than OCT1 (Kimura et al., 2005). Similarly, rat Oct2 showed lower Km 

values for dopamine, serotonin and adrenaline compared to Oct1, but higher Km 

than human OCT2 (Urakami et al., 2001).  

Variations within the human OCT2 gene itself also result in substrate affinity 

changes. Various sites with different sequences have been identified within the 

same gene in different people. Some of these changes can cause amino acid 

substitution during mRNA translation, while some have produced proteins that 

not only altered affinity for organic cation MPP+ but also the potency of their 

inhibition by TEA (Leabman et al., 2002). More recently, the variant 808G/T 

resulted in amino acid change A270S, which showed 1.5-fold higher uptake of 

metformin when compared to the control (Chen et al., 2009). This variation in 

OCT2 affinity within the human population could result in differences in renal 

elimination of cation compounds by people who possess the genetic variations in 

the OCT2 gene. OCT2 is thus an important transporter to consider when 

examining the elimination of positively charged xenobiotics in the kidney. 

1.2.4 OCTNs 

In addition to the OCTs, another subfamily of human OCT has been identified. 

Members of the organic cation transporters novel (OCTN) family have been 
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known to interact with several drugs (Pochini et al., 2013). OCTN1 was the first 

to be identified in human foetal liver. Its expression is ceased in adult liver but is 

highly expressed in the kidney (Tamai et al., 1997). It mediates pH-dependent 

transport of TEA in transfected HEK293 cells but at lower affinity than the OCT 

family of transporters (Tamai et al., 1997). Expression in Xenopus oocytes also 

showed transport of other organic cations such as verapamil and pyrilamine, 

indicating OCTN1 is a multi-specific organic cation transporter (Yabuuchi et al., 

1999). A second transporter OCTN2 is also identified in human kidney. Like 

OCTN1, it is not expressed in the liver and mediates transport of a broad 

spectrum of organic cations (Wu et al., 1998; Wu et al., 1999).  

Rat Octn1 and 2 have also been found to be widely distributed in rat tissues (Wu 

et al., 1999; Wu et al., 2000a; Slitt et al., 2002); Octn1 mRNA levels were detected 

at high levels in the rat kidney and moderate levels in the liver, intestine, heart 

and brain. The mRNA levels of rat renal Octn1 was also found to be increasing 

steadily with the age of the rat (Slitt et al., 2002). The functions of rat Octn1 and 

2 are similar to that of the human. Rat Octn1 is a bidirectional pH-dependent 

transporter with affinity for organic cations (Yabuuchi et al., 1999). Octn2 also 

transports organic cations, and has a higher affinity for TEA compared to human 

OCTN2 (Wu et al., 1999). Another transporter, rat Octn3, has also been found in 

the rat kidney (Tamai et al., 2000; Cano et al., 2010), which has the ability to 

mediate transport of L-carnitine in a Na+-independent manner (Cano et al., 2010). 

A major difference between the OCTs and OCTNs is that in addition to organic 

cations, carnitines are also substrates of OCTN1 and 2 whereas OCTs are unable 

to transport this compound. This was observed in cells that were transfected with 

OCTN2 and showed Na+-dependent uptake of L-carnitine, but inhibited by 

quinidine and verapamil (Tamai et al., 1998; Ohashi et al., 1999; Wu et al., 1999). 

OCTN1 was also seen to transport L-carnitine in a Na+-dependent manner but 

with lower affinity than OCTN2. OCTN1, however, a more efficient transporter of 

TEA than OCTN2 (Tamai et al., 2000). It is possible that OCTN1 main role is as 

an organic cation transporter, whereas as OCTN2 favours carnitine.  

OCTN1 and OCTN2 are both situated in the apical membrane of proximal tubules 

(Tamai et al., 2001; Tamai et al., 2003), in contrast to OCTs which are basolateral 

transporters. This provides an indication that OCTN may be important for the 
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reabsorption of carnitine and organic cations from urine rather than their 

elimination. However, due to the bidirectional nature of the OCTN transporters, it 

is hypothesised that they also help in the secretion of organic cations into the 

urine depending on the condition in the tubule (Slitt et al., 2002). Regardless of 

the direction of transport by OCTNs, they are without a doubt involved in 

interactions of many organic cations and constitute potential pharmacologic 

targets in the kidney. 

1.2.5 BCRP 

ATP-binding cassette (ABC) superfamily of transporters is a class of membrane-

bound transporters mainly responsible for the efflux of substrates (Schinkel and 

Jonker, 2003), of which the breast cancer resistance protein (BCRP) is a member. 

BCRP was first identified in breast cancer cell line MCF-7 where it appeared to 

play a role in multidrug resistance (Doyle et al., 1998). BCRP is now known as 

an efflux transporter that prevents drugs from penetrating tissues and is important 

in drug disposition and distribution. 

Screenings in human tissues revealed the transporter is expressed in all major 

organs, such as the brain, liver and the intestines (Allikmets et al., 1998). Studies 

also confirmed moderate BCRP expression at the mRNA and protein level in 

normal human kidney (Doyle et al., 1998), although levels of BCRP mRNA was 

found up-regulated several folds in renal carcinoma (Diestra et al., 2002). 

Expression of functional BCRP was detected in cultures of primary tubule cells 

as Hoechst 33342 efflux from these cells could be specifically blocked by BCRP 

inhibitor fumitremorgin C (Huls et al., 2008). Rat kidneys, on the other hand, have 

constitutively higher mRNA levels of the transporter compared to the human 

(Tanaka et al., 2005).  

Both human BCRP and rat Bcrp are found on the apical membrane of the 

proximal tubule cells (Huls et al., 2006; Huls et al., 2008), where it acts as an 

efflux pump by mediating the unidirectional transport of substrates into the tubule 

(Maliepaard et al., 2001). BCRP substrates are diverse, ranging from drugs such 

as nitrofurantoin, dipyridamole and cimetidine, to endogenous compounds such 

as estrones and bile acids (Jani et al., 2009; Kis et al., 2009; Be et al., 2012). 

BCRP mediated transport may be inhibited by highly potent and specific inhibitors 

such as fumitremorgin C or its analogue Ko143 (Haslam et al., 2011). There is 
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overlap in substrate specificity between BCRP and another ABC transporter, 

MDR1. It is thought that MDR1 generally transports hydrophobic compounds 

whereas BCRP additionally transports hydrophillic conjugated organic anions, 

particularly sulphates, with high affinity (MacLean et al., 2008).  

1.2.6 MDR1 

Multidrug resistance protein 1 (MDR1) is another member of the ABC transporter 

superfamily. It transports a wide variety of substrates including drug molecules 

and like BCRP, expression of MDR1 confers multidrug resistance in the cells 

(Gros et al., 1986). In humans, MDR1 is encoded by one gene (Chen et al., 1986; 

Ueda et al., 1986), whereas in rats two isoforms of the gene exist; Mdr1a and 

Mdr1b (Croop et al., 1989; Devault and Gros, 1990; Deuchars et al., 1992). 

Human MDR1 can be found in various tissues, including the kidney where it is 

located in the apical surface of the proximal tubule cells (Thiebaut, 1987). 

Similarly, rat Mdr1a and b are widely distributed in all tissues. As no isoform is 

more prevalent than the other in rat kidney tissue (Gros et al., 1986; Deuchars et 

al., 1992), the transporters will be collectively addressed as Mdr1 in this thesis 

for simplicity.  

There are various established proximal tubule cell lines that express MDR1/Mdr1. 

This has allowed extensive investigation into the functions of the transporter in 

vitro. For instance, rat cell lines NRK-52E and GERP demonstrated inhibition of 

Mdr1-mediated calcein efflux by PSC833 (van de Water et al., 2007). Expression 

of functional human MDR1 has also been reported in human proximal tubule cell 

line HK-2 (Tramonti et al., 2001; Romiti et al., 2002). These immortalised cells 

lines provide insights to species differences in the transporters sensitivity to the 

same drug and the inhibitory effects of MDR1 inhibitors. For example, LLC-PK1 

cells transfected with MDR1 from human or rat Mdr1 showed inhibition of 

digotoxin efflux by quinidine had far lower IC50 value for human MDR1 when 

compared with rat Mdr1 (Suzuyama et al., 2007).  

The abovementioned studies also indirectly implicated MDR1’s involvement in 

drug-drug interaction. This happens when two or more concomitant drugs are 

substrates of a transporter that leads to the inadvertent inhibition of the transport 

of the other drug. Clinically, the most important substrate of MDR1 in the kidney 

is digoxin. Many drugs are co-administered with digoxin, and due to digoxin’s 
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narrow therapeutic index, drugs that are inhibitors of MDR1 will require clinical 

assessment of their impact on digoxin pharmacokinetics (Koren, 1987). This 

highlights the importance of MDR1 as a renal efflux transporter. 

1.2.7 MRPs 

Another subgroup of the ABC family involved in efflux of substrates in the 

proximal tubule is the multidrug-resistance associated protein (MRP) family. The 

family is made up of nine structurally related members (MRP1-9), which have a 

wide tissue and species distribution (Keppler, 2011). All members function as 

lipophilic anion efflux transporters and are expressed on either the apical or 

basolateral membrane of epithelial cells (Belinsky and Kruh, 1999). MRP1 was 

first identified in the drug-resistant lung cancer cell line H69AR, suggesting that 

this transporter plays a role in drug resistance in cancer cells (Cole et al., 1992). 

MRP2, MRP3, MRP4 and MRP5 have subsequently been identified in various 

cancer cell lines and tissue samples, and all MRPs have been shown to confer 

resistance to many drugs including anti-cancer and anti-viral agents (Kool et al., 

1997). 

MRP1 and MRP2 are the most abundant MRPs in the human kidney (Kool et al., 

1997). MRP3-6 have also been detected in the kidney, but their expression other 

tissue are more abundant, for instance MRP3 expression is more in the liver 

(König et al., 1999; Kool et al., 1999; Belinsky et al., 2002). mRNA of MRP7-9 

have been detected, but functional expressions of these transporters have yet to 

be investigated (Hopper et al., 2001; Yabuuchi et al., 2001). A similar expression 

pattern has been observed in rat kidney with high expression of rat Mrp1, Mrp2 

and Mrp4 but low expression of Mrp3 (Cherrington et al., 2002; Chen and 

Klaassen, 2004). Expression in the kidney appears to be fairly consistent across 

species. MRP2 and MRP4 are located in the apical membrane of proximal tubule 

cells (Schaub et al., 1997; Evers et al., 1998; Schaub et al., 1999; van Aubel et 

al., 2002), whereas MRP5 and 6 are found in the basolateral membrane 

(Wijnholds et al., 2000; Scheffer et al., 2002). MRP1 is not greatly expressed in 

the proximal tubule and is predominantly found in glomeruli and distal tubule cells 

in the basolateral membrane (Peng et al., 1999). 

As with other drug transporters, transfected cells have been used to investigate 

the function and substrate specificity of many of the MRPs. Mammalian cells 
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transfected with MRP1, MRP2 or MRP6 transport glutathione S-conjugates such 

as GS-DNP (Evers et al., 1996; Evers et al., 1998; Belinsky et al., 2002). MRP2 

or MRP4 transfected into SF9 cells mediate ATP-dependent transport of PAH 

with MRP4 showing higher affinity than MRP2 (Van Aubel et al., 2000; Smeets et 

al., 2004). This is particularly significant as PAH is a well known substrate for 

OATs in proximal tubules. MRP4 and MRP5 are able to transport cyclic 

nucleotides such as cAMP and cGMP, and are the only members of the MRP 

family that do so (Jedlitschky et al., 2000; Chen et al., 2001; van Aubel et al., 

2002; Wielinga et al., 2003).   

MRPs also have an important role to play in multidrug resistance and are a major 

elimination pathway for anti-cancer and anti-viral drugs via the kidney. For 

example anti-cancer drugs such as daunorubicin and vinblastine are transported 

by MRP1 and MRP2 (Evers et al., 1996; Evers et al., 1998) and nucleotide analog 

anti-cancer drugs including thiopurine and 6-mercaptopurine are substrates for 

MRP4 and MRP5 (Wijnholds et al., 2000; Wielinga et al., 2002). Anti-viral drugs 

saquinavir, ritonavir and indinavir are transported by MRP2-expressing MDCK 

cells (Huisman et al., 2002) and MRP4 has been shown to be vital for efflux of 

adefovir and tenofovir as high accumulation of these compounds was seen in 

MRP4-knockout mice (Imaoka, 2007). In contrast MRP6 shows low level 

resistance to anti-cancer drugs compared to MRP1 and MRP2 (Belinsky et al., 

2002) suggesting that it does not play a major role in drug resistance in the kidney 

and may function predominantly as a organic anion transporter. 

1.2.8 URAT1 and SLC2A9 

Several organic anion transporters capable of transporting urate in the kidney 

have just recently been identified and characterised. URAT1 (SLC22A12) was 

identified in the apical membrane of proximal tubule epithelial cells in humans 

(Enomoto et al., 2002). Urat1 in rat kidney has been previously identified as renal-

specific transporter but now acknowledged as the homologue of URAT1 (Hu et 

al., 2001; Hosoyamada et al., 2004; Sato et al., 2011). When transfected into 

oocytes, URAT1 mediated the transport of urate but was inhibited by uricosuric 

drugs such as probenecid and benzbromarone (Enomoto et al., 2002; 

Hosoyamada et al., 2004; Sato et al., 2011). Studies have also shown URAT1-

mediated transport of urate was stimulated by high external Cl - and lactate 
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concentrations (Enomoto et al., 2002; Sato et al., 2011). Its function is therefore 

likely to be reabsorption of urate into the proximal tubule from urine via the co-

transport of another molecule. Recently, transport of orotate, a heterocyclic 

precursor of pyrimidine synthesis was also shown in HEK293 cells transfected 

with human URAT1. Transport of orotate is mediated by the same co-transport 

system as urate since it is dependent on Cl- exchange and stimulated by lactate 

(Miura et al., 2011).   

Another important urate transporter has been found in the human kidney. 

SLC2A9 (also known as GLUT9), has been shown to transport urate in the kidney 

and is found in the basolateral membrane of proximal tubule cells (Vitart et al., 

2008). SLC2A9 is also a known glucose/fructose transporter, although the affinity 

of SLC2A9 for urate transport is far higher than for either glucose or fructose, and 

also higher than URAT1 for urate (Caulfield et al., 2008; Vitart et al., 2008). Urate 

transport is inhibited by benzbromarone suggesting that SLC2A9 may possess 

similar binding sites to URAT1 (Caulfield et al., 2008). Uptake of urate by SLC2A9 

is voltage driven and hence is also referred to as URATv1 (Anzai et al., 2008). Its 

location in the basolateral membrane suggests a possible role as an efflux 

transporter in proximal tubules and forms part of a urate transport system with 

URAT1; urate taken up from the lumen by URAT1 is then secreted into the blood 

by SLC2A9 (Anzai et al., 2008).  

1.2.9 MATE1 and MATE2-K 

Multidrug and toxic compound extrusion (MATE) proteins have a wide distribution 

amongst mammal tissues (Otsuka et al., 2005). Bacterial MATE transporters 

have been well characterised as cationic/H+ or Na+ exchangers but it is only in 

recent years that mammalian MATE proteins have been identified (Omote et al., 

2006). Two MATE proteins are found highly expressed in the human kidneys – 

MATE1 and MATE2-K (Otsuka et al., 2005; Masuda et al., 2006). MATE2-K, 

which is unique to the human kidney, is an isoform of MATE2. Another isoform of 

MATE2 is found exclusively in the brain and is designated MATE2-B (Masuda et 

al., 2006). Rat Mate1 is also abundantly expressed throughout rat tissues, but 

surprisingly not in the liver (Ohta et al., 2006; Terada et al., 2006). Also, while rat 

Mate1 is found in the kidney, no Mate2 mRNA has been detected (Lickteig et al., 

2008). Human MATE1, MATE2-K and rat Mate1 are located on the apical 
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membrane of the proximal tubule cells (Otsuka et al., 2005; Ohta et al., 2006), 

and are thus considered as important barriers to substrate toxicity. 

Like the bacterial MATE transporters, human MATE1 and MATE2-K, and rat 

Mate1 are H+-coupled organic cation transporters expressed in the apical 

membrane of proximal tubule cells. They can transport a range of organic cations 

and share similar substrates as OCT including TEA, MPP+, metformin and 

cimetidine (Otsuka et al., 2005; Masuda et al., 2006; Ohta et al., 2006; Terada et 

al., 2006; Komatsu et al., 2011). They also transport certain organic anions such 

as estrone sulphate (Tanihara et al., 2007). As with the other transporters, 

MATE1 and MATE2-K show overlapping substrate specificity but different 

affinities. For example MATE1 Km for acyclovir is lower than that of MATE2-K 

(Tanihara et al., 2007). Inhibition of TEA transport by metformin is also far greater 

in MATE1 than MATE2-K (Tsuda et al., 2009). These data suggest MATE1 and 

MATE2-K may represent high and low affinity transporters in the kidney 

respectively.  

MATE1 and MATE2-K affinities for cationic substrates also differ from that of 

OCTs. For instance, when metformin was exposed to MDCK cells transfected 

with only OCT2, accumulation of metformin was higher when compared to 

doubly-transfected cells with OCT2 and MATE1. Furthermore there was no 

saturation of metformin in OCT2/MATE1 transfected cells over a range of 

concentrations, suggesting efficient efflux by MATE1 (Konig et al., 2011). 

Cimetidine was also found to be a more potent inhibitor of metformin transport by 

MATE1 when compared to OCT2 (Tsuda et al., 2009; Ito et al., 2012). This drug 

interaction with cimetidine could result in accumulation of metformin in proximal 

tubule cells as the drug uptake by OCT2 is less efficiently inhibited than efflux by 

MATE across the apical membrane. OCTs and MATEs are thus assumed to form 

an organic cation transport system in renal proximal tubules.  
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1.3 In vitro renal models 

Much of the information about the functions and substrate specificity of the renal 

transporters had been investigated using in vitro models (Consortium, 2010). The 

systems used in these studies include kidney slices, Xenopus laevis oocytes 

transfected with a transporter, and various established cell lines (Bonate et al., 

1998). The advantages and disadvantages of these systems are discussed in the 

following sections. 

1.3.1 Kidney slices 

Kidney slices can be used to evaluate drug transport in vitro (Vickers et al., 2004). 

They are prepared from kidney cortex which contains many of the drug 

transporters and used to perform transporter experiments. For example, Nelson 

and co-workers used kidney slices to determine the transport systems involved 

in the secretion of cisplatin (Nelson et al., 1984; Bonate et al., 1998). Cisplatin 

was shown to competitively inhibit the uptake of TEA, indicating it was actively 

secreted by the OCT system. These data were in agreement with another set of 

data from in vivo experiments, suggesting kidney slices provided a good in vitro-

in vivo correlation for cisplatin using this approach (Nelson et al., 1984). Although 

kidney slices may have the potential to be a good in vitro model for renal drug-

drug interaction studies, they have several drawbacks including short viability, 

difficulty handling the slices and obtaining enough kidneys for the slices. After 

isolation, the tubular lumens may collapse which makes characterising the efflux 

transporters in kidney slices impossible. These issues limit the usefulness of 

kidney slices as an efficient model system.   

1.3.2 Transfected Xenopus oocytes 

One of the earliest methods used to characterise individual renal transporters 

was to express the transporter of interest in an expression system (Grundemann 

et al., 1994; Okuda et al., 1996). An established method involves the 

microinjection of transporter cRNA into Xenopus oocytes and allowing the 

oocytes to express the protein (Gurdon et al., 1971). This provided a platform for 

the study of only the transporter of interest without the influence of the others. 

Many of the OCTs and OATs functions have been elucidated using this technique 

(Grundemann et al., 1994; Okuda et al., 1996; Sekine et al., 1997). Whilst the 
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oocytes are ideal for the study of individual transporters, there are drawbacks to 

the systems. For instance, Xenopus oocytes only provide transient expression of 

proteins with marked variation in expression levels between batches of oocytes. 

Also, data suggest that kinetic values derived from oocytes differ from those from 

mammalian expression systems (Goldin, 1992), perhaps due to the different lipid 

environments that the transporter sits in. Equally, oocytes do not recapitulate the 

complexity and interactions between transporters found in more complex models. 

1.3.3 Immortalised cell lines 

Transporters of interest have also been transfected in immortalised cell lines. 

Similar to the oocytes, these cell lines can be transfected with a vector, usually a 

plasmid containing cDNA of the transporter (Gründemann et al., 1997). Also 

similar to the oocytes, the disadvantage of these models is that the cell line 

usually expresses a single transporter at a time, although doubly-transfected cells 

have been achieved by Konig et al. (2011). Cell lines provide invaluable data on 

the kinetics and substrate specificity of the transfected transporter, but they still 

lack the complexity and interactions between transporters found in more complex 

models. A further disadvantage is that the transfected cells also do not reflect the 

transporter physiological expression levels because they are driven by the vector 

promoters and the cell translation and transcription machinery.  

Immortalised renal epithelial cell lines can inherently express transporters of 

interest without the need for transfection. For instance, LLC-PK1 cells derived 

from pig kidney express functional MDR1 and have been used to investigate the 

efflux of prototypic substrates (Ohtomo et al., 1996). MDCK cells derived from 

dog kidney have been used to investigate a range of drugs and HK-2 cells, which 

are immortalised human proximal tubule cells, have been used to investigate 

MDR1-mediated efflux of many compounds (Ryan et al., 1994). In addition, HK-

2 cells also showed functional expression of some members of ABC transporter 

and have been used as a model of drug-induced nephrotoxicity (Tramonti et al., 

2001).  

Again, these cell lines have several limitations – the most important of these is 

that the vast majority of cell lines have undergone substantial dedifferentiation 

and have lost most of the basic functions of the cells of their origins. For example, 

MDCKII cells do not express substrate transporters such as Na+-Pi cotransporter 
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2, Na+-glucose cotransporter 1 and 2, or amino acid transporters usually found in 

the proximal tubule. In addition they do not show expression of other key 

transporters that affect drug disposition and drug-drug interactions. The same is 

true for LLC-PK1 cells (Kuteykin-Teplyakov et al., 2010). Recently it was shown 

that HK-2 cells lack many key transporters and are thus poor model for drug 

transporter studies (Jenkinson et al., 2012). On the positive side, a number of 

immortalised human cell lines such as RPTEC and ciPTEC are becoming 

available (Wieser et al., 2008; Jansen et al. 2014). The data on these is still limited 

and they may also suffer from lack of crucial transporter expression (ciPTEC do 

not express OATs) but they are welcome step forward in the search for realistic 

human renal cell models (Jansen et al., 2014).  

1.3.4 Primary cells 

The need for a robust in vitro model of drug transport that describes the 

physiological profile of transporters in intact tissue is apparent. Primary cultures 

of tubular epithelial cells may be seen as one of the solutions to address this. 

Primary tubular cells are usually isolated from intact tissues. An enzymatic 

approach to isolate the proximal tubule cells from human has been successfully 

achieved (Lash et al., 2006; Brown et al., 2008). Human proximal tubule cells 

when grown in vitro express a range of functional transporters including members 

of the OAT and OCT families and ABC transporters including MDR1 and MRP2 

(Lash et al., 2006; Brown et al., 2008), which are missing in many immortalised 

cell lines. These cells have been shown to mediate the transport of prototypic 

organic anion and cation substrates such as PAH and creatinine (Lash et al., 

2006; Brown et al., 2008) and xenobiotics such as rosuvastatin (Verhulst et al., 

2008).  A recent study has also shown that primary proximal tubule cells isolated 

from rat kidney express a similar range of transporters and are able to transport 

prototypic substrates of apical transporters OCTN1 and OCTN2 (Nakanishi et al., 

2011).  

These discoveries make primary cell cultures particularly important as a cell 

model for renal transporter studies. Since there are already studies confirming 

their use as in vitro model for nephrotoxicity studies (Boogaard et al., 1989; 

Boogaard et al., 1990a; Boogaard et al., 1990b), the primary cells’ suitability as 

an in vitro model for drug transporter and drug-drug interaction studies is ever 
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more compelling. Indeed, recent findings show primary human proximal tubule 

cells as a useful tool to investigating renal drug handlings and identifying drug-

drug interactions for a range of drug molecules; they can be used to establish in 

vivo-in vitro correlations for the disposition of the drugs (Brown et al., 2008). With 

the human model in place, the next stage of the process is to develop a rat model 

to understand the renal handling and drug-drug interactions for the same array of 

drug molecules.  
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1.4 Robust in vitro models of human and rat renal drug 

transport 

A major challenge faced in drug discovery and development is the extrapolation 

of drug safety information from animals to humans (Rasmussen, 1983; Lin, 1995). 

Although data from animal studies may be reasonably extrapolated to humans, 

there are certainly some limitations, not least because of the unpredictable 

differences in renal drug handling between the two species (Lin, 1995; Bass et 

al., 2009). However, a rat proximal tubule cell model would provide transport data 

on the handling of candidate drug molecules in this animal. The data could then 

be used to compare, at an early stage, the handling of molecules in similar in vitro 

models derived from the human kidney. With the human and rat screening 

platforms in place, not only would there be a system to investigate drug handling 

in either species, but also direct comparison of the renal handling of a molecule 

between rat and human kidney and flag up any differences they may have. 

Because rat remains as the initial test species in drug development and safety 

determination (Bass et al., 2009), this would provide invaluable data on the 

impact on drug safety and development. 

With that in mind, this project is designed to develop and characterise a rat 

primary proximal tubule model as a platform for drug transporter and drug-drug 

interaction studies, understand which transporters at the apical and basolateral 

membranes of rat proximal tubule cells are key in determining the renal handling 

of drugs, and to compare the species differences in the drug transport. The 

outcome of this work will provide greater understanding of the mechanisms 

underlying the renal handling of drug molecules in both rat and man. 
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1.5 Project Aims 

The aims of this PhD project are three-fold: 

 To generate and characterise a primary rat proximal tubule model as a 

platform for drug safety studies; 

 To determine which transporters are present in the apical and basolateral 

membranes of primary rat proximal tubule cells that are important in 

handling candidate drugs; 

 To compare the species difference in the handling of the same candidate 

drugs between primary rat proximal tubule cells and primary human 

proximal tubule cells. 
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Materials and Methods 
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2.1 Materials 

Cell culture reagents including High-glucose Dulbecco’s modified eagles medium 

(HG-DMEM), Ham’s F-12 Nutrient Mixture, Roswell Park Memorial Institute-1640 

medium (RPMI), foetal calf serum (FCS), penicillin, streptomycin, L-glutamine, 

trypsin (with 0.02 % EDTA), Dulbecco’s phosphate-buffered saline (PBS), mouse 

epithelial growth hormone, and rat collagen were obtained from Sigma-Aldrich, 

UK. SingleQuot kit renal epithelial growth medium supplements and growth 

factors were purchased from Lonza, Switzerland. Percoll was bought from GE 

Healthcare, UK, type 2 collagenase from Worthington Biochemicals, USA, and 

10X HBSS from Invitrogen, USA. 

Cyclosporine A (CsA) was purchased from CalBioChem-Merck, Germany, 5-

chloromethylfluorescein-diacetate (CMFDA) from Invitrogen, USA, and 

Coomassie Blue Dye reagent was from ThermoFisher Scientific, UK. [3-(4,5-

dimethyl-2-yl) – 5 – (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

salt (MTS) was purchased from Promega, UK. Hoescht 33342 dye, 5-(3-(2-(7-

Chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid 

(MK-571) and all other chemicals were from Sigma-Aldrich, UK, and were of the 

highest quality available. 

2.2 Cell culture 

Primary human proximal tubule cells and primary rat proximal tubule cells (PTC) 

were used in this study. Primary human PTCs were isolated from human kidney 

donations that were not suitable for transplant, for which ethical approval for their 

use in this study was granted to the supplier of the kidneys (Scievita Ltd). These 

kidneys were kept on ice after removal from the body and processed within 18 

hours. Rat PTCs were isolated from kidneys excised from 8-12 weeks old 

Sprague-Dawley rats. The rats were bought from Charles River, UK, and had 

access to chow and water. These rats were sacrificed in accordance with 

Schedule 1 of the Animals (Scientific Procedures) Act 1986. All cell culture work 

was performed in a class II vertical laminar flow hood to ensure sterility. The 

protocol for human and rat PTCs isolation was adapted from (Brown et al., 2008)). 

The procedure was as follows: 
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The kidneys were decapsulated and cortex slices were taken. The cortex slices 

were then minced to approximately 1 mm3 pieces before 1 g of tissue was 

suspended per 25 ml of isolation medium. The composition of the isolation 

medium can be found in Table 2.1. Type 2 collagenase (activity of ≈300 units/mg) 

was added to the cell suspension to initiate the digestion of the tissue to a single 

cell suspension. The working concentration of collagenase used was 1 μg/ml.  

The suspension was kept shaken gently for 2.5 hours at 37 °C before cell 

separation. To separate the cells, the cell suspension was passed through a 40 

μm nylon sieve (BD cell strainer) to remove undigested material before 

centrifuged at 1200 rpm for 10 minutes. In this and all subsequent centrifugation 

steps the temperature was maintained at 4 ˚C. The resulting cell pellet was 

resuspended in 25 ml isolation medium before the cells were pelleted again by 

centrifugation at 1200 rpm for 7 minutes (wash step). The cell pellet was then 

loosened and gently resuspended in 10 ml isolation medium.  

To separate out the proximal tubule cells, the cell suspension was loaded on top 

of discontinuous Percoll gradients with densities of 1.04 g/ml and 1.07 g/ml, and 

centrifuged at 3000 rpm for 25 minutes. 1.04 g/ml density Percoll was made up 

with stock Percoll and isolation medium in 5:12 ratio, and 1.07 g/ml density 

Percoll was made up with stock Percoll and PBS in 5:4 ratio. To prevent 

saturation of the density gradients, only 5 ml of cell suspension was loaded onto 

every 7 ml of 1.04 g/ml and 7 ml of 1.07 g/ml density Percoll gradients. After 

centrifugation, PTCs at the intersection of the gradients were aspirated and 

washed as previously described. The cells were resuspended in 10 ml warm renal 

epithelial growth medium (REGM). The composition of REGM is shown in Table 

2.2. The cell yield was estimated using a Coulter Counter (Coulter Electronics, 

UK) or a Cellometer Auto T4 Cell Counter (Nexcelom Bioscience LLC, USA) after 

passing the cell suspension through a large bore needle three times to separate 

aggregated cells.  

The cells were then seeded into cell culture flasks or plates at a range of densities. 

3 μg/cm2 of rat collagen was coated on the surfaces of cell culture flasks and 

plates prior to rat PTC seeding to increase adherence. PTCs were maintained in 

a humidified incubator at 37 ˚C with 5 % CO2 and 95 % air. Medium was changed 

every 2 days and cells seeded on cell culture flasks and plates were cultured for 
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6 to 7 days or to confluency before experimentation. The adherence and growth 

of the epithelial cells were inspected visually under a phase contrast microscope. 

To determine the number of cells after a period of time in culture, 0.25 % trypsin-

EDTA was added to the cells to dislodge them from the culture platform. The cells 

were then processed and counted as mentioned above.  

Isolated PTCs were also cultured on 24-well format Transwell inserts (Corning 

Costar). 200 μl of medium containing PTCs were seeded into the insert’s well 

(apical chamber) and 600 μl of medium was placed in the well of the plate that 

supported the insert (basolateral chamber). The opacity of the polycarbonate filter 

on the insert meant the growth of the cells could not be monitored visually. 

Instead, the transepithelial electrical resistance (TEER) was used as an indicator 

of monolayer formation and hence cell growth. The monolayer resistance, which 

was comprised of the resistance of the filter and cell monolayer, was measured 

using an electric voltohmeter (EVOM, World Precision Instruments, UK). The 

TEER of the monolayer, with the unit of Ω.cm2, was calculated by subtracting the 

base resistance created by the filter submerged in culture medium (90 Ω) and 

then dividing it by the surface area (0.33 cm2) of the filter. Only monolayers with 

TEERs greater than 60 Ω.cm2 were used in experiments. 
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Figure 2.1: Percoll density gradients used in the separation of PTCs from the cellular 

debris. 

5 ml of cell suspension was loaded onto every 7 ml of 1.04 g/ml and 7 ml of 

1.07 g/ml density Percoll gradients. After centrifugation, PTCs at the 

intersection of the gradients were aspirated and washed. The other layers 

were discarded. 
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Supplements Final concentration 

RPMI 
(Basal medium) 

- 

FCS 5 % 

Penicillin 200 units/ml 

Streptomycin 200 µg/ml 

Table 2.1: Composition of isolation medium used in the isolation of human and rat 

PTCs. 

 

Supplements Final concentration 

DMEM/Ham’s F-12 
(Basal medium) 

Ratio of 1:1 

HEPES buffer 10 mM 

Human epithelial growth 
factor 

10 ng/ml 

T3 5 pM 

Ascorbic acid 3.5 µg/ml 

Transferrin 5 µg/ml 

PGE 25 ng/ml 

Sodium Selenite 8.65 ng/ml 

G418 100 µg/ml 

Insulin 5 µg/ml 

L-glutamine 4 mM 

Table 2.2: Composition of culture medium for human primary PTCs. 

10 ng/ml of mouse epithelial growth factor was supplemented into the culture 

medium for rat primary PTCs instead the human epithelial growth factor.  
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2.3 Total cell RNA isolation and quality assessment 

SV Total RNA Isolation System (Promega, UK) was used to isolate total cell RNA 

from freshly isolated and cultured rat PTCs according to the manufacturer’s 

protocol. The yield and purity of the isolated RNA samples were then determined 

using NanoDrop ND-1000 UV-Vis Spectrophotometer (ThermoFisher Scientific, 

USA) where the absorbance at 260 nm and 280 nm (A260 and A280) were 

measured. The yield was calculated from A260, on the basis that an optical 

density reading of 1 is equivalent to 40 µg/ml. The purity of the samples was 

determined by calculating the A260/A280 ratio, where a value of 1.8 and above 

indicated good purity. The quality of the isolated RNA samples was assessed by 

measuring the 18S/28S rRNA ratio using the BioAnalyzer 2100 (Agilent 

Technologies, USA). In addition to the ribosomal RNA ratio, the BioAnalyzer also 

provided a RNA Integrity Number (RIN) software algorithm that took into account 

the entire electrophoretic trace of a sample and classified the RNA on a number 

scale of 1 to 10, with 1 being the most degraded and 10 being the most intact. 

Only RNA samples that had RIN of 8 or above were used in downstream 

applications. 

2.4 Reverse transcription of isolated total cell RNA and 

endpoint PCR 

Total cell RNA was reverse transcribed into cDNA using Moloney murine 

leukaemia virus reverse transcriptase (MMLV-RT) (Promega, UK). The reaction 

was carried out using 1 µg of total RNA mixed with 1 µl of 0.5 mg/ml random 

hexamers and heated for 5 minutes at 65 ˚C and then immediately cooled on ice 

in order to remove any secondary structure. The rest of the reaction mixture, 

which consisted of 0.5 µl MMLT-RT at 200 units/µl, 4 µl 5X RT buffer, 5 µl 2 mM 

dNTPs and 0.25 µl RNasin at 40 units/µl (Promega, UK) to a final reaction volume 

of 20 µl, were added and the samples incubated at 42 ˚C for 2 hours followed by 

10 minutes at 70 degrees. RNasin is a ribonuclease inhibitor added to the 

reaction to prevent degradation of RNA by ribonuclease A. 

Primers for genes of interest were designed using Primer-BLAST from the 

National Center for Biotechnology Information website (NCBI, 
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http://www.ncbi.nlm.nih.gov/tools/primer-blast/), unless otherwise stated. When 

designing the forward and reverse primer pairs, the following criteria were set: 

product size of around 100 base pairs should be amplified by a primer pair, 

individual primer was around 20 base pairs in length, the GC content of the primer 

should be 40-60 %, the melting temperature of individual primer should be 

between 58 and 64 ˚C and within 2 ˚C of each other in a primer pair, and either 

one of a primer pair should cross an exon-exon boundary. The retrieved primers 

by Primer-BLAST were analysed for hetero-dimer, homo-dimer, as well as hairpin 

formation, using the Netprimer software 

(http://www.premierbiosoft.com/netprimer/). The specificity of a primer pair to the 

intended gene was analysed by running the basic local alignment search tool 

(BLAST) on their sequences. HPLC purified primers were then ordered from IDT 

DNA (Belgium) using the checked and vetted sequences. The sequences of the 

primers are listed in Table 2.3. 

Endpoint PCRs were carried out for genes of interest using GoTaq DNA 

polymerase (Promega, UK). A typical endpoint PCR consisted of 0.25 µl GoTaq 

DNA polymerase at activity of 5 units/µl, 2 µl 2 mM dNTPs, 0.5 µM of each primer 

of the gene of interest, 4 µl of 5X Green GoTaq buffer, 1.5 µl of cDNA template 

and molecular grade water to make up to a volume of 20 µl. The amplification 

protocol was as follows: 95 ˚C for 2 minutes, 35 cycles of 95 ˚C for 30 seconds, 

Ta ˚C for 30 seconds and 72 ˚C degree for 30 seconds, then an end stage of 72 

˚C for 10 minutes. Ta denotes the annealing temperature of a primer pair. An 

approximation of the Ta was determined as 5 ˚C below the melting temperature 

of the least stable primer. Reactions were carried out on a Px2 Thermo Cycler 

(Thermo Scientific, USA). The PCR products were separated by gel 

electrophoresis using 1.5 % agarose gels and visualised with 0.01 % (v/v) 

ethidium bromide. Products were excised and cleaned using the MinElute Gel 

Extraction kit (Qiagen, Hilden, Germany) and cloned using pGem T-easy vector 

system 2 (Promega, UK), according to the manufacturers’ protocol. E. coli DH5α 

was used as the competent cells. The cloned vector was extracted from the 

bacteria using the GenElute Plasmid Miniprep kit (Sigma, UK) and sequenced to 

verify that the correct product had been amplified. Sequencing was outsourced 

to Genevision (Newcastle upon Tyne, UK).  
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Gene Sequence 
Product 

Size 
Ta (˚C) 

Bcrp 
(NM_181381) 

F 836TTG ACA GCC TCA CCT TAC TGG856 
95 59 

R 930ACA GTG GTA ACC TGC TGA TGC910 

Mdr1 
(M81855.1) 

F 1609GTC AAG GAA GCC AAT GCC1626 
148 59 

R 1755AAG GAT CTT GGG GTT GCG GAC1735 

Mrp2 
(NM_012833) 

F 1063GTT CTC GTC CTG GAA GAA GC1082 
169 57 

R 1232TTC AGC AGC TGA GGA TTC AG1213 

Oat1 
(NM_017224) 

F 1312ATG CTG TGG TTT GCC ACT AGC1332 
119 59 

R 1431AAC TTG GCA GGC AGG TCC AC1411 

Oct2 
(NM_031584) 

F 1361ATC CCT GAT GAT CTA CAG TGG1381 
127 55 

R 1487CAA GAT TCC TGA TGT ATG TGG1466 

Oatp4c1 
(NM_001002024) 

F 330AGC CCT AAC GCA AGG TAT TGT350 
101 57 

R 430ATA TCA GGC CGG TCA GGG AA411 

Slc2a9 
(NM_001191551) 

F 288CTC TGG TCT GTA ACT GTG TCC309 
104 59 

R 391CAG CAG TGT GTA CTT CCT TCC370 

Urat1 
(NM_001034943) 

F 1551ACA GCC AGC CTC TTG ATG G1570 
109 55 

R 1659ACA GCC AAC TGC AGC ATC C1639 

Mct1 
(NM_012716) 

F 399TAT GCC GGA GGT CCT ATC AGC419 
157 59 

R 555GAC CTC CAA TGA CAC CAA TGC535 

Mate1 
(NM_001014118) 

F 442CCA GAT GTA TCC AGG CTC ACC462 
123 59 

R 564AAC CTG AGG CAG AAC GAT GC555 

Table 2.3: Sequences of primers used in endpoint and qPCR for the amplification of 

drug transporters.  

F and R denotes forward primer sequence and reverse primer sequence, 

respectively. The superscripted numbers are the position of the bases in the 

mRNA sequence. Ta denotes the annealing temperature of the primer pair.  

The number in brackets underneath the gene name is the NCBI reference 

number, from which the mRNA sequence of the gene was obtained.  
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2.5 Quantitative PCR 

Changes in expression of mRNA levels in rat PTCs in different culture conditions 

were performed using quantitative PCR (qPCR). A reaction volume of 10 µl, 

comprising 2.5 µl one-in-three diluted RT as the cDNA template, 5 µl 2X SYBR-

green Master Mix (Roche, UK), 0.5 µl of 10 µM primer mix and 2 µl water, was 

loaded on to a white 96-well format qPCR plate, and PCR run in a Roche 

LightCycler 480 (Roche, UK). The following protocol was used: 95 ˚C for 10 

minutes, 45 cycles of 95 ˚C for 10 seconds, Ta ˚C for 20 seconds and 72 ˚C for 

10 seconds, followed by melt curve step (cooling to 65 ˚C followed by heating to 

97 ˚C), and a cooling step. Each PCR cycle and its corresponding fluorescence 

from each sample were logged by the software LightCycler 480 (version 1.5, 

Roche, UK). The software calculated the fluorescence baseline during the first 15 

cycles of the PCR to create a common starting fluorescence intensity for all the 

samples. A threshold level of fluorescence intensity was also defined by an 

algorithm where it was significantly above the background fluorescence but still 

within the linear phase of amplification. The cycle at which a sample produces 

fluorescence intensity that crosses the threshold is termed the threshold cycle 

(Ct), and is correlated to the starting concentration of the cDNA template; the 

greater the amount of starting cDNA, the earlier the Ct. As such, for the purpose 

of analysis, samples that produced Ct of 35 and above were disregarded.  

Serially diluted cloned PCR product of the gene of interest was also used as the 

DNA template and loaded on the same plate as the samples to produce a 

standard curve for quantification. Efficiency of the PCR was also determined from 

this standard curve. qPCR was also performed on the reference gene Gapdh, 

primers for which were purchased from PrimerDesign, UK. All data generated 

were normalised to the reference gene. 

2.6 Fluorescence substrate retention assays 

Fluorescence compounds, Hoechst 33342, 5-chloromethylfluorescein-diacetate 

(CMFDA), and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) were used 

as tracer substrates to measure the affinity of drug transporters to the compounds 

and drug transporter-specific substrates. Hoechst 33342 is a cell-permeant 

nucleic acid stain that fluoresces when bound to double-stranded DNA. It is also 
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a substrate of Mdr1 and Bcrp. CMFDA is a non-fluorescent derivative of fluorescin, 

which easily permeates across the cell membrane. Inside the cells it is 

transformed via a 2-step process to glutathione methylfluorescein (GSMF). 

GSMF is fluorescent and hydrophilic; its only route of exit from the cell is via Mrp-

mediated efflux. ASP+ is an organic cation substrate specific to Oct2 that changes 

its fluorescence spectrum inside cells. The properties of the fluorescence dyes 

were utilised in determining the functional activity of drug transporters in rat PTC. 

The protocol was as set out by Jenkinson et al. (2012) and is described in brief 

here. 

Modified-Krebs buffer was used as the cell medium in all drug transporter 

experiments. The composition of modified-Krebs buffer is shown in Table 2.4. Rat 

PTCs cultured on 96-well plates were prepared for experiment by aspirating the 

cell culture medium from the wells and the cells washed 3 times with warm 

modified-Krebs buffer. The cells were then incubated with an appropriate inhibitor 

substrate for 40 minutes. CsA and Ko143 were used to inhibit the efflux of 

Hoechst 33342 by Mdr1 and Bcrp, respectively, and MK-571 to inhibit GSMF 

efflux by Mrps. The appropriate dye was then co-incubated with the inhibitor and 

cells for a further 40 minutes. After which, the cells were washed with ice-cold 

modified-Krebs buffer and the intracellular accumulation of fluorescent dyes were 

determined by taking fluorescence reading at their respective excitation and 

emission wavelengths using FLUOstar Omega Microplate Reader (BMG Labtech, 

Germany). The wavelengths used are given in Table 2.5.  

The microplate reader had the facility to read more than one fluorophore 

simultaneously. A novel technique was thus developed to investigate substrate 

specificity of efflux transporters to a range of inhibitor substrates simultaneously. 

As described above, rat PTCs cultured on 96-well plates were incubated with an 

inhibitor substrate for 40 minutes prior to the addition of Hoechst 33342 and 

CMFDA to the same cells and incubated for a further 40 minutes. Controls 

including rat PTCs exposed to Hoechst 33342 and CMFDA, Hoechst 33342 only, 

and CMFDA only, for 40 minutes were also performed to ensure the wavelengths 

of the fluorophores did not interfere with each other’s excitation and emission 

readings. Cells were washed three times with ice-cold modified-Krebs buffer 
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before the fluorescence was read at Hoechst 33342 and GSMF wavelengths 

simultaneously. 

The fluorescence intensity units produced were normalised to the amount of 

protein in the wells, which was assumed to be relative to the number of cells. The 

amount of protein in the wells was measured by adding 100 µl Coomassie blue 

reagent to the wells after fluorescence readings were taken, along with a standard 

curve created using known concentration of serially diluted BSA as the protein 

source. Absorbance of the Coomassie blue was measured at 595nm using the 

same microplate reader, 5 minutes after Coomassie blue introduction. 
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Salt Concentration (mM) 

NaCl 140 

KCl 5.4 

MgSO4 1.2 

NaH2PO4 0.3 

KH2PO4 0.3 

Glucose 5 

CaCl2 2 

HEPES 10 

Tris Base ad hoc to pH 7.4 

 

Table 2.4: Composition of modified-Krebs buffer used in all drug transporter 

experiments. 

Sodium-free buffer was made by replacing sodium chloride with choline 

chloride. For buffer pH to be lower than 7, 10 mM MES was used instead of  

HEPES.  

 

 
Excitation 

wavelength (nm) 
Emission 

wavelength (nm) 

Hoechst 33342 
(when bound to DNA) 

350 (340) 461 (485) 

GSMF 492 (485) 517 (540) 

ASP+ 465 585 

 

Table 2.5: Excitation and emission wavelengths of the fluorescence substrate used in 

the substrate retention experiments. 

The excitation and emission wavelengths of the fluorescence compounds as 

recommended by the supplier. The numbers in brackets are the wavelength of 

the filters used in the microplate reader.  
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2.7 Efflux of CMFDA metabolite by Mrp 

Rat PTCs cultured on 24-well Transwell filter support were used to investigate 

the differentiation and localisation of efflux transporters. Culture medium was first 

aspirated from the insert wells before sequential transfer of the inserts into three 

beakers of 100 ml warm modified-Krebs buffer. The inserts were then placed in 

a clean 24-well plate, each well containing 500 µl of warm modified-Krebs. 200 

µl of modified-Krebs was added to each insert well and the cells were allowed to 

equilibrate for an hour. For the purpose of this study, the insert wells are referred 

to as the apical chamber and the plate wells are referred to as the basolateral 

chamber. Temperature was kept at 37 ˚C by placing the plates on a thermostat-

controlled heated platform. Experiment was started when apical solution was 

replaced with 200 µl of 10 µM MK-571, 5 µM CsA or 1 µM Ko143 and incubated 

for 40 minutes. 1 µM Hoechst 33342 or 1 µM CMFDA was then introduced in the 

apical solution for a further 40 minutes, after which 100 µl and 250 µl were 

sampled from the apical and basolateral chambers, respectively, and transferred 

into a clean 96-well plate. The inserts were washed three times with ice-cold 

modified-Krebs buffer by passing them through three beakers of fresh buffer. The 

fluorescence of the solutions was measured to detect the presence of GSMF and 

the fluorescence per ml of solution calculated. Fluorescence reading was taken 

of the filters at Hoechst 33342 and GSMF wavelengths (Table 2.5).  

2.8 Unidirectional transepithelial fluxes 

Unidirectional transepithelial fluxes in both the apical to basolateral (JA-B) and 

basolateral to apical (JB-A) directions were carried out in PTCs cultured on 24-well 

format Transwell inserts. The schematics of the experiment is shown in Figure 

2.2. The PTC monolayer TEERs were determined as described in Section 2.2 

and they were paired according to their TEERs for JA-B and JB-A experiments prior 

to the start. Rat PTC monolayers were equilibrated as in Section 2.7. Fluxes were 

initiated when either the apical or basolateral solution was replaced with modified-

Krebs buffer containing required concentration of the substrate of interest and the 

same concentration of mannitol. Radiolabelled forms of the substrate and 

mannitol were also included at activity of 1 µCi/ml and 0.1 µCi/ml, respectively, 
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as tracer. Different isotopes were used to distinguish the radioactivity of the 

substrate and mannitol. 

Sampling of the opposite chamber was done at exactly 1 hour, or otherwise 

stated, after flux initiation by transferring half of the volume of buffer in a chamber 

into a scintillation vial. The insert was then washed by transferring it sequentially 

into three beakers containing 100 ml ice-cold modified-Krebs buffer and then 

allowed to dry. To measure the cellular substrate accumulation, the filter on which 

the cells were adhered to was cut from the insert and transferred to a clean 

scintillation vial.  

2 ml of Optiphase Hisafe 2 scintillation solvent (Perkin Elmer, UK) was added to 

all the vials and mixed by vortexing. Radioactivities in the samples were 

determined by liquid scintillation spectrophotometery using Beckman LS5000 

liquid scintillation counter, (Beckman-Coulter Ltd, UK). 100 µl of known 

concentration of the substrate and mannitol was also put through the scintillation 

counter to be used as standard. Background activity was counted using a vial 

containing only 2 ml scintillation fluid and this value was automatically deducted 

from the counts. The amount of substrate was calculated from the counts using 

the following equation:  

Amount of substrate =  
𝚨STD

DPMSTD

 ×  𝟐 ×  𝟑 × DPMSPL 

ASTD represents the amount of substrate in 100 μl of the standard, DPMSTD 

represents the average disintegration per minute of the radiolabelled substrate 

from 3 standards, and DPMSPL represents the disintegration per minute of a 

sample. The constant 2 used in the equation was to double the count of a sample 

as only half the volume of the chamber was sampled, and the constant 3 was 

used to express the result in cm2 (surface area of a Transwell insert was 0.33 

cm2). 
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Figure 2.2: Schematic of unidirectional transepithelial flux carried out on cells 

cultured on Transwell inserts. 

Unidirectional transepithelial fluxes in the apical to basolateral ( JA-B) and 

basolateral to apical (JB-A) directions were carried out in PTCs cultured on 

24-well format Transwell inserts. The PTC monolayer TEERs were 

determined as described in Section 2.2 and only monolayers with TEER 

greater than 60 Ω.cm2 were used in the experiment.   
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2.9 Expression of SLC2A9 and URAT1 in Xenopus laevis 

oocytes 

Urate handling by human SLC2A9 and URAT1 was examined using Xenopus 

oocytes as the expression system for these transporters. Human cDNA clones of 

SLC2A9 and URAT1, inserted into the plasmid pCMV6-XL5, were purchased 

from Origene, USA. To prepare the cDNA for in vitro transcription to capped 

cRNA, the plasmid was linearised. The sequence of the plasmid and its cDNA 

insert was uploaded to the online software NEBcutter (version 2.0, 

http://tools.neb.com/NEBcutter2/index.php) to identify a suitable restriction 

endonuclease (RE) that would digest the plasmid only once, downstream of the 

insert. XBal was identified as a suitable RE for both transporter cDNA. A reaction 

volume of 40 μl was created by mixing 10 μg of plasmid, 200 units of RE, 10 μl 

of 10X RE buffer and 0.01 μg of BSA, and incubated at 37 ˚C for 4 hours. The 

linearised plasmid was then purified by precipitation. This involved adding 10 μl 

of sodium acetate and 250 μl of 100 % ethanol to the reaction mixture, and 

incubated at -20 ˚C for 2 hours. The sample was then centrifuged at 18,000 rpm 

for 30 minutes at 4 ˚C, after which the supernatant was decanted gently to avoid 

dislodging the pelleted cDNA. The cDNA was washed with 70 % ethanol before 

being resuspended in water and the yield quantified using UV spectroscopy. Gel 

electrophoresis was performed with a small aliquot of the purified cDNA to ensure 

complete linearisation of the plasmid. 

The cDNA was transcribed in vitro using the Ambion mMessenger mMachine T7 

and Capped RNA Transcription Kit (Life Technologies, UK). The protocol for the 

transcription and recovery of the transcribed cRNA was followed as 

recommended by the manufacturer of the kit. The yield of the cRNA was 

quantified using UV spectroscopy before it was aliquoted and stored at -80 ˚C. 

2.10 Collection and sorting of Xenopus laevis oocytes 

Xenopus laevis was sacrificed in accordance with Schedule 1 of the Animals 

(Scientific Procedures) Act 1986 and the ovaries collected by manual dissection. 

Separation and defolliculation of the oocytes was achieved by incubation in 0.25 % 

(w/v) collagenase (Roches, USA) with continuous rotation for 2 hours. The 
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defollicullated oocytes were washed five times in calcium-free ORII buffer and 

five times in Barths buffer. These buffers were autoclaved before use and their 

compositions are shown in Table 2.6 and Table 2.7. Oocytes of stages V and VI 

were selected for microinjection and maintained at all times at 18 ˚C in Barths 

buffer. One day after isolation, the oocytes were microinjected with 50 ng of 

SLC2A9 or URAT1 cRNA at the vegetal pole of the oocytes. Water injected 

oocytes were used as controls. The oocytes were used two or three days post-

microinjection. 

Oocyte uptake experiments were carried out at room temperature (≈ 20˚C). The 

oocytes were equilibrated in uptake buffer (Table 2.8) for 5 minutes. The oocytes 

were then incubated for one hour with buffer containing 1 μCi/ml [14C]-urate and 

non-radiolabelled urate, giving a final working concentration of 35 μM urate. 

Adding excess ice-cold uptake buffer to the oocytes stopped the uptake, and they 

were washed 3 times with fresh uptake buffer. The oocytes were then transferred 

to scintillation vials and lysed overnight with 200 µl 10 % (w/v) SDS. 2 ml 

scintillation fluid was then added and mixed by vortexing before radioactivity was 

quantified by liquid scintillation counts. 3 X 100 µl of 35 μM urate used in the 

experiment were also put through the scintillation counter to be used as standards. 

The amount of urate taken up by one oocyte was calculated from the counts using 

the following equation:  

Amount of urate =  
𝟑𝟓𝟎

DPMA

 ×  DPMS 

The constant 350 represents 350 pmol of urate present in 100 μl of standard, 

DPMA represents the average disintegration per minute of the radiolabelled 

substrate from 3 standards, and DPMS represents the disintegration per minute 

from one oocyte.  
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2.11 Statistics 

Data are expressed as mean ± standard error of mean (SEM) of the specified 

number of replicates, where “N” denotes biological replicates, and “n” denotes 

technical replicates. In certain figures, the mean is taken from the all the technical 

replicates in separate experiments, and the most appopriate statistical test was 

performed to determine significant difference. Two-way Analysis of Variance 

(ANOVA) statistical test was performed to compare significance of difference in 

data between 3 or more conditions, as indicated. Two-way ANOVA was only used 

when the biological replicates (N) was used as the parameter. Student t test and 

nonlinear regression were also performed as indicated. GraphPad Prism 4.0 

(GraphPad software Inc, USA) was used to perform the analysis. 
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Compound 
Concentration 

(mM) 

NaCl 88 

KCl 1 

MgSO4 0.82 

CaCl2 0.41 

CaNO3 0.33 

HEPES 10 

NaHCO3 2.4 

Tris Base ad hoc to pH 7.5 
 

Table 2.6: Composition of Barths buffer.  

 

Salt 
Concentration 

(mM) 

NaCl 82.5 

KCl 2 

MgCl2 1 

HEPES 10 

Tris Base ad hoc to pH 7.5 
 

Table 2.7: Composition of calcium-free ORII buffer.  

 

Compound 
Concentration 

(mM) 

NaCl 100 

KCl 2 

MgCl2 1 

CaCl2 1 

HEPES 10 

Tris Base ad hoc to pH 7.4 
 

Table 2.8: Composition of oocyte uptake buffer. 
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3.1 Chapter overview 

This chapter describes the results of the isolation and development processes of 

the rat proximal tubule cells (PTCs). The outcome of the following is discussed: 

 The optimal collagenase concentration used to isolate the rat PTCs from 

minced rat kidney cortex, which took into account the yield and cell viability.  

 The morphology of cultured rat PTCs over a period of 7 days. 

 The low adherence of rat PTCs and the use of collagen-coated cell culture 

platforms to increase adherence. 

 The preservation of surplus rat PTCs using solid medium. 

 The formation and assessment of tight junctions by rat PTCs when they 

were cultured on Transwells. 
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3.2 Collagenase concentration and cell yield 

Collagenase was used to disaggregate rat PTCs. To determine the optimum 

conditions that produced the highest yield, different amounts of collagenase were 

tested in the isolation procedure. Figure 3.1 shows the yield of PTCs from 

different amount of collagenase, whose activity was 300 units/mg. 

As expected, the yield of PTCs increased with the amount of collagenase used. 

The lowest concentration of collagenase used (20 µg of collagenase per gram of 

cortex tissue) yielded 5.04 ± 0.59 × 106 cells. At the other extreme, the highest 

concentration of collagenase used was 35 µg of collagenase per gram of tissue, 

and that gave 14.32 ± 0.77 × 106 cells. The other concentrations of collagenase 

used were 25 µg and 30 µg per gram of tissue. The number of cells retrieved was 

10.65 ± 0.54 × 106 and 13.46 ± 0.76 × 106 cells, respectively.  
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Figure 3.1: Yield of rat PTCs using the specified amount of collagenase to 

disaggregate minced rat kidney cortex.  

The activity of collagenase used was 300 units/mg. 20 µg of collagenase per 

gram of cortex tissue yielded 5.04 ± 0.59 × 10 6 cells. 25 µg and 30 µg 

collagenase per gram of tissue retrieved 10.65 ± 0.54 × 10 6 and 13.46 ± 0.76 

× 106 cells, respectively. The highest concentration of collagenase used was 

35 µg of collagenase per gram of tissue, and that gave 14.32 ± 0.77 × 10 6  

cells. Bars represent mean ± SEM of 3 independent rat PTC isolation 

procedures.  
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3.3 Collagenase concentration and cell viability 

Whilst a high concentration of collagenase gave a high yield of PTCs, it was 

observed that the rate of propagation of cells decreased at high concentrations 

of collagenase. Figure 3.2 shows the number of cells propagated from PTCs 

isolated using a range of collagenase concentrations.  

All concentrations of collagenase produced PTCs that propagated at an average 

of 4,900 ± 960 cells/cm2 at day 3 of culture. PTCs gave a maximum propagation 

rate of 71,450 ± 10,440 cells/cm2 at day 6 when 20 µg of collagenase was used 

to isolate them, decreased to 37,925 ± 6,980 cells/cm2 at day 7, and 19,150 ± 

7,570 cells/cm2 at day 8. The propagation rates by PTCs isolated using 25 µg of 

collagenase were 6,1375 ± 13610 cells/cm2 at day 6 before decreasing to 44,225 

± 6,980 cells/cm2 and 15,050 ± 5,590 cells/cm2 at day 7 and day 8, respectively.  

The rates of propagation of isolated PTCs were lower in PTCs isolated with higher 

concentrations of collagenase. PTCs isolated with 35 µg of collagenase gave cell 

propagation rate of 20,850 ± 2,700 cells/cm2 at day 5 of culture. The number of 

cells fell to 4,675 ± 690 cells/cm2 at day 7, and 4,200 ± 240 cells/cm2 at day 8. 

PTCs isolated with 30 µg of collagenase gave propagation rate of 38,410 ± 

12,410 cells/cm2 at day 6. The rate then decreased to 13,125 ± 2,660 cells/cm2 

and 4,875 ± 610 cells/cm2 at day 7 and 8, respectively. 
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Figure 3.2: Number of cells propagated by rat PTCs over 8 days of culture isolated 

using a range of collagenase concentration. 

An average of 4,900 ± 960 cells/cm2 were produced by all conditions at day 

3 of culture. PTCs gave a maximum propagation rate of 71,450 ± 10,440 

cells/cm2 at day 6 when 20 µg of collagenase was used to isolate them, and 

decreased to 37,925 ± 6,980 cells/cm2 at day 7, and 19,150 ± 7,570 cells/cm2  

at day 8. PTCs isolated with 25 µg of collagenase per gram of tissue 

propagated to a peak of 61,375 ± 13,610 cells/ cm2 at day 6 before decreasing 

to 44,225 ± 6,980 cells/cm2 and 15,050 ± 5,590 cells/cm2 at day 7 and day 8, 

respectively. The rate of propagation of isolated PTCs was lower in PTCs 

isolated with higher concentrations of collagenase. PTCs isolated with 35 µg 

of collagenase gave cell propagation rate of 20,850 ± 2,700 cells/ cm2 at day 

5 of culture. The number of  cells fell to 4,675 ± 690 cells/ cm2 at day 7, and 

4,200 ± 240 cells/cm2 at day 8. PTCs isolated with 30 µg of collagenase gave 

propagation rate of 38,410 ± 12,410 cells/cm2 at day 6. The rate then 

decreased to 13,125 ± 2,660 cells/ cm2 and 4,875 ± 610 cells/cm2 at day 7 and 

8, respectively. Each dot represents the mean ± SEM of 12 replicates obtained 

from 3 independent experiments.  Each experiment was conducted using PTCs 

isolated from different rats.  
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3.4 Cell culture and morphology 

Isolated PTCs from rat kidney cortex were seeded out on to various cell culture 

platforms. Figure 3.3 shows the cells that were grown on a T75 cell culture flask 

over a period of 8 days.  

The morphology of freshly isolated rat PTCs were largely single cells of not more 

than 40 µm in diameter, although larger intact tubules can also be seen (Figure 

3.3A). The optimal time for the attachment of isolated cells to the culture flasks 

was found to be 24 hours. During the first 24 hour, most of the cells adhered to 

the bottom of culture flask and lamellipodia on edges of cells can be identified 

(Figure 3.3B). Defined areas of flattened individual cells in loose contact can be 

seen in Figure 3.3C. In day 3 to 5 of culture, clusters of cuboidal shapes or islets 

of rounded cells were seen (Figure 3.3D). The cells then spread and the typical 

morphology of an almost confluent monolayer could be observed (Figure 3.3E 

and F). During this period the total number of cells on the culture plate doubled 

(Figure 3.2). Thereafter, the cell numbers dropped and the morphology was that 

of cell shrinkage. 
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Figure 3.3: Images of T75 cell culture flask seeded with 3 million rat PTCs over 6 

days of culture.  

(A) The morphology of freshly isolated rat PTCs at day 1 of culture were still  

mainly single cells. (B) Most of the cells were seen adhered to the bottom of 

culture flasks and forming small lamellipodiae (arrow) at day 2. Clusters of 

cuboidal shapes or islets of rounded cells could also be seen. (C) Defined 

areas of flattened individual cells in contact with each other were seen at day 

3. (D) Similar morphology was observed at day 4 but with more confluency. 

(E) The cell aggregates had spread on day 5 and the typical morphology of 

an almost confluent monolayer could be observed. (F) Confluent monolayer 

of rat PTCs was observed at day 6 of culture.  The scale bar at the bottom 

right corner of images represents 200 µm. 
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3.5 Collagen coating of cell culture plates 

Initial experiments showed low adherence of rat PTCs on 96-well plates, and 

collagen coating of wells was tested as a solution to address the problem. The 

amount of collagen used (1 µg/cm2) to coat the wells did not cause a significant 

change in the absorbance of the Bradford reagent used to detect protein. To 

mimic a typical transporter experiment, Bradford reagent was added after the 

wells were washed with modified-Krebs buffer. A change in absorbance was 

assumed to be caused by cellular proteins only. Figure 3.4 shows the differences 

between the amount of protein in collagen-coated or non-coated wells at day 6 of 

culture. 13.86 ± 0.36 pmol/cm2 of protein was detected in collagen-coated wells, 

whereas only 3.75 ± 0.95 pmol/cm2 of protein was detected in non-coated wells. 
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Figure 3.4: The amount of protein per cm2 in collagen-coated and non-coated wells 

of a 96-well plate seeded with PTCs at day 6 of culture.  

The amount of collagen used (1 µg/cm2) to coat the wells did not cause a 

significant change in the absorbance of the Bradford reagent used to detect 

protein. 13.86 ± 0.36 pmol/cm2 of protein was detected in collagen-coated 

wells seeded with rat PTCs, whereas 3.75 ± 0.95 pmol/ cm2 of protein was 

detected in non-coated wells. Each bar represents the mean ± SEM of 18 

replicates obtained from 3 separate rat PTC isolations .  
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3.6 Preservation of surplus isolated rat PTCs 

Surplus freshly isolated rat PTCs were stored in SureTran, a proprietary solid 

medium, for up to 72 hours to find out if these cells could be preserved and thus 

decrease the number of animals sacrificed. Cell viability of stored PTCs was 

determined by MTS assay and Figure 3.5 shows the changes in viability over the 

period of storage.  

Rat PTCs that were stored in SureTran for 24 hours showed no significant change 

in cell viability (P > 0.05). PTCs grown from cells stored for 48 hours had a 1.58-

times decrease when compared to the control (63.4 ± 2.4 % of control, P < 0.05, 

n = 8). Similarly, PTCs grown from cells stored for 72 hours had a 1.61-times 

decrease (62.3 ± 4.1 % of control, P < 0.05, n = 8) in cell viability compared to 

control cells. 

An initial experiment was then carried out to measure the retention of Hoechst 

33342 in cultured cells of freshly isolated rat PTCs and PTCs stored in SureTran 

for 24 hours. Figure 3.6 shows the result of the drug transporter-dependent assay.  

Cells cultured from fresh rat PTCs showed an apparent Vmax of 25,472 ± 4,035 

and Km of 3.017 ± 0.96 µM. Cells cultured from rat PTCs that had been stored for 

24 hours in SureTran showed an apparent Vmax of 24,313 ± 4,470 and Km of 4.97 

± 2.671 µM.  
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Figure 3.5: Percentage change in cell viability of culture rat PTCs that had been 

stored in SureTran.  

Rat PTCs that were stored in solid medium for 24 hours showed no significant 

change in cell viability. PTCs grown from cells stored for 48 hours had 63.4 

± 2.4 % viability of the control. PTCs grown from cells stored for 72 hours 

had a 1.61-times decrease (62.3 ± 4.1 % of control) in ce ll viability compared 

to control cells. Each bar represents the mean ± SEM of 8 replicates  obtained 

from 2 separate rat PTC isolations. Two-way ANOVA statistical test was 

performed to determine significance. *, P < 0.05.  
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Figure 3.6: Fluorescence of intracellular Hoechst 33342 at 480 nm by rat PTCs.  

Cells were cultured from freshly isolated rat PTCs or rat PTCs that had been 

stored in SureTran for 24 hours. Non-linear regression analysis performed 

on cells cultured from fresh rat PTCs showed an apparent Vmax of 25,472 ± 

4,035 and average Km of 3.017 ± 0.96 µM. Cells cultured from rat PTCs that 

had been stored for 24 hours in SureTran showed an apparent Vmax of 24,313 

± 4,470 and average Km of 4.97 ± 2.671 µM. Each point represents the mean 

± SEM of 6 replicates from one representative experiment . The Km was the 

average from two separate experiments.  
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3.7 Transepithelial electrical resistance of rat PTC monolayers 

To reinstate rat PTC monolayer formation, the isolated cells were cultured on 

Transwell filter support. Resistance of an empty Transwell filter support was 

found to be 90 Ω. The resistance of the Transwell filter support and PTC 

monolayer were measured over the culture period and the TEER of the 

monolayers calculated. The result is shown in Figure 3.7. 

TEER of the rat PTC monolayer was negligible at day 1 of culture (result not 

shown), but an average of 12.01 ± 3.01 Ω.cm2 was measured at day 2. The TEER 

went up to 56.31 ± 7.61 Ω.cm2 at day 3 and 73.85 ± 9.71 Ω.cm2 at day 4, before 

peaking at day 5 with 77.48 ± 12.72 Ω.cm2. Day 6 saw a decrease in the TEER 

to 73.89 ± 6.51 Ω.cm2. Thereafter, the TEER decreased even further to 22.1 ± 

5.47 Ω.cm2 and 1.1 ± 0.51 Ω.cm2 at day 7 and 8, respectively. 
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Figure 3.7: TEERs of rat PTC monolayer cultured on Transwell filter support.  

Resistance of an empty Transwell filter sup port was found to be 90 Ω. TEER 

of the rat PTC monolayer was negligible at day 1 of culture (result not shown),  

but an average of 12.01 ± 3.01 Ω.cm2 was measured at day 2. The TEER went 

up to 56.31 ± 7.61 Ω.cm2 at day 3 and 73.85 ± 9.71 Ω.cm2 at day 4, before 

peaking at day 5 with 77.48 ± 12.72 Ω.cm2. Day 6 saw a decrease in the TEER 

to 73.89 ± 6.51 Ω.cm2. Thereafter, the TEER decreased even further to 22.1 

± 5.47 Ω.cm2 and 1.1 ± 0.51 Ω.cm2 at day 7 and 8, respectively. Each bar 

represents the mean ± SEM of 24 replicates. Figure is representative of 3 

independent experiments using PTCs isolated from different rats.  
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3.8 TEER and mannitol paracellular permeability 

TEERs of the rat PTC monolayers were correlated to the mannitol paracellular 

permeability (1 µM) to determine tight junction integrity of the monolayers. Figure 

3.8 shows the relationship between the TEER and the mannitol appearance in a 

receiving chamber. 

As expected, an inverse relationship between TEER and the amount of mannitol 

appearing in the receiving chambers was observed. Monolayers with TEER of 30 

Ω.cm2 and under had poor integrity, which resulted in the large range of mannitol 

permeability (appearance of mannitol ranged from around 100 pmol/cm2/hr to 

over 800 pmol/cm2/hr). Monolayers with TEER of 50 Ω.cm2 and higher had a 

narrow range of mannitol permeability (around 20 pmol/cm2/hr). This equated to 

mannitol paracellular flux of less than 10 % of the amount of mannitol used. 
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Figure 3.8: The relationship between TEER of the rat PTC monolayers and 1 µM 

mannitol paracellular permeability.  

An inverse relationship between TEER and the amount of mannitol appearing 

the in receiving chamber was observed. Monolayers with TEER of 30 Ω.cm2 

and under had poor integrity, which resulted in the large range of mannitol 

permeability (appearance of mannitol ranged from around 100 pmol/ cm2/hr 

to over 800 pmol/cm2/hr). Monolayers with TEER of 50 Ω.cm2 and higher had 

a narrow range of mannitol permeability (around 20 pmol/cm2/hr). This 

equated to mannitol paracellular flux of less than 10 % of the amount 

mannitol used. Each dot represents the TEER of the monolayer and 

corresponding amount of mannitol appearance in the receiving chamber. 

Non-linear regression curve fit was performed to determine the relationship,  

which produced an equation of y = 69505x -1 .811. 
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3.9 Discussion 

3.9.1 Isolation and culture of rat PTCs 

Primary monolayer cultures are generally accepted as an excellent experimental 

model for the investigation of metabolic and enzymatic regulation. Many 

problems are more accurately solved in this system because elementary cell 

properties become accessible to study without being masked by other factors. 

The vital component of a successful in vitro system is the cells that are used to 

represent the system. In the case of renal drug transporter investigations, primary 

proximal tubule cells are the perfect candidates (Bonate et al., 1998). The two 

main methods used in isolating primary tubular cells from intact kidneys are either 

through a mechanical or an enzymatic approach (Sharpe, 1988; Boogaard et al., 

1990a). The mechanical approach to obtain renal cells involves mincing the 

kidney into small pieces and sieving them through a cell strainer (Boogaard et al., 

1990a). Although this method is ideal for the isolation of the glomeruli, the yield 

of other cell types, especially proximal tubule cells, is low and this technique is 

rarely used (Boogaard et al., 1990a). A more effective way for acquiring tubule 

cells is via enzymatic digestion using collagenase (Boogaard et al., 1989). An 

amalgamation of the two methods is used to isolate tubular cells from rat kidneys 

in this project; renal cortex is broken by mechanical means into small renal tissue 

fragments before they are subjected to collagenase digest.  

Whilst this approach has been published (Brown et al., 2008), the protocol was 

optimised for the isolation of human PTCs, and it needed to be adapted to the 

isolation of rat PTCs to ensure good yield and cell viability. The first consideration 

was the amount of collagenase to be used and the exposure time of the tissue to 

the collagenase. A range of concentrations of collagenase were tested in the 

isolation process to identify a concentration along with an incubation time that 

would provide a good yield. As expected, the more collagenase was used and 

longer the period of incubation, the higher the cell yield. Figure 3.1 shows that 

when 35 µg of collagenase for every gram of rat kidney cortex tissue was 

incubated for one and a half hours, the yield was over 14 million cells. However, 

when these cells were cultured, their abilities to propagate were not as great as 

cells isolated using lower concentrations of collagenase (Figure 3.2). PTCs that 
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propagated most after 6 days of culture those isolated with the lowest 

concentration of collagenase at fixed incubation time. This suggests that cell 

viability, by proxy of the ability to propagate, had an inverse relationship with the 

amount of collagenase it was exposed to.  

The collagenase used in the isolation process contained a mixture of proteases, 

and high concentrations have been known to affect cell viability (Boogaard et al., 

1990a). This may explain why using concentrations of above 30 µg/g of tissue 

produced fewer viable cells. The solution to the problem was to use the lowest 

concentration of collagenase that would give the highest yield of viable cells. 

Based on the initial experiments, collagenase concentration of 25 µg/g of tissue 

at exposure time of one and a half hours gave the highest yield of viable cells, 

and was selected as the concentration for all subsequent isolation of rat PTCs. 

This process of cell isolation would produce a mixture of cell types and a method 

of cell separation and purification was needed. This project used the technique 

of equilibrium or isopycnic centrifugation (Sharpe, 1988) to separate intact renal 

cells from denser erythrocytes and leukocytes, and cellular debris. Isopycnic 

centrifugation is a form of density gradient centrifugation that works on the 

principle that a cell will sediment to an equilibrium position in the gradient where 

the gradient density is equal to the density of the cell when a cell mixture is loaded 

on top of a discontinuous density gradient and centrifuged (Pertoft et al., 1977; 

Sharpe, 1988). Although this allowed effective separation of tubule cells from 

cellular debris, the population of isolated cells are not pure PTCs as they would 

contain proximal tubule, distal tubules and collecting ducts (Curthoys and 

Bellemann, 1979; Boogaard et al., 1990a). However, the proportion of tubule cells 

could be maximised by selecting only the kidney cortex for the isolation process. 

It had also been shown that PTCs were among the first cells to adhere to culture 

flaks and this fact could be used to further select for these alone (Curthoys and 

Bellemann, 1979; Gesek et al., 1987). Indeed, media on cell culture platforms 

seeded with freshly isolated rat PTCs were changed after 24 hours of seeding, 

with which unadhered cells were removed, leaving a higher proportion of proximal 

tubule cells. Should the need for pure PTCs arise, immunomagnetic separation 

developed by Baer et al. could be used to separate the different cell type culture 

(Baer et al., 1997).  
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Freshly isolated PTCs in the form of single cells of around 40 µm in diameter 

were grown on various cell culture platforms. Their growth was monitored visually 

using a phase contrast microscope where possible. The culture medium used 

was a recognised renal epithelial growth medium which comprised of several 

supplements and growth factors in the basal medium of DMEM/Ham’s F-12 (Ltd, 

2014). The composition of the supplements had been optimised for primary renal 

cell lines, and upon recommendation by the industry sponsor of this project, 

mouse epithelial growth hormone was used to tailor to the species of rat. 

As mentioned in Chapter 3.4, the different stages of the isolated rat PTC growth 

were observed in culture over a period of eight days. Cobblestone-like 

morphology characteristic of many epithelial cells was evident in the rat PTCs 

after five days of culture. Soon after day 6, the cell number dropped and the 

morphology exhibited was that of apoptotic cells. Apoptosis of the cells occurred 

regardless of how many times the culture medium was changed. While 

overcrowding of the PTCs was suggested as a cause for the programmed cell 

death, lowering of the seeding density of rat PTCs did not see improvement in 

longevity of the cells; the cells still exhibited an apparent apoptotic morphology 

after day 6 or 7 before confluency was achieved (data not shown). Further tests 

would need to be carried out to verify apoptosis. Nonetheless, this initial study 

still suggested an inherent property of the rat PTCs that prevented it from 

proliferating after 6 or 7 days in culture. Because of this, rat PTCs older than day 

6 were not used in experiments to ensure robustness of the data generated. 

Another inherent property of the isolated rat PTC was poor adherence to plastic. 

The reason behind rat PTC poor adherence is still poorly understood, though 

poor adherence of this and other cell types has been documented in several 

publications (Hynes, 1987; Mendrick et al., 1990; Knaggs, 1992). The mechanism 

of cell adherence by freshly isolated rat PTCs were investigated by Mendrick et 

al. (Mendrick et al., 1990). It was found that glycoprotein gp330 on the surface of 

rat epithelial cells played an important role in the attachment of the cell to 

extracellular matrix such as collagen and fibronectin. On collagen-coated plastic 

surfaces, adherence of rat PTCs were significantly increased (Figure 3.4), 

suggesting the limiting factor was not the lack of expression of cell surface 

glycoprotein gp330, but the absence of a matrix for the anchoring of the cells via 
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the glycoprotein. All cell culture platforms were thus coated with collagen prior to 

rat PTCs seeding.  

3.9.2 Preservation of rat PTC 

Preservation of surplus rat PTCs was considered in this project. The clear 

advantage to preserving surplus rat PTCs was the creation of a stock allowing 

these cells to be used as and when needed. This would save on costs as the 

number of rats and amount of reagents and materials used during cell isolation 

would be lowered. In addition to lowering the cost, the use of fewer rats is in line 

with the principles of 3Rs and should be encouraged (Russell and Burch, 1959). 

Of the several methods of cell preservation, cryopreservation and storing of cells 

in solid medium were investigated. Cryopreservation involves suspending cells in 

a serum rich medium containing a cryoprotectant, usually DMSO, to protect the 

cells from rupture by the formation of ice crystals, before controlled freezing to 

temperatures below -135 ˚C. In theory, the cells could be kept in this state of 

suspension for an indefinite period of time. However, when performed on isolated 

rat PTCs, the cells were unable to proliferate after thawing. The reduction in rat 

PTC viability may be due to the harshness of the cryopreservation techniques; 

the process uses cytotoxic organic solvent (DMSO) at high concentration. Indeed, 

unsuitability of cryopreservation of primary cells has been documented. The 

thawed cells often have reduced viability, and at times lose drug transporter 

expression altogether (Alexandre et al., 2002; Badolo et al., 2011).  

The other method of preservation considered was the use of solid medium to 

suspend isolated rat PTCs. SureTran is the proprietary medium used and its 

components remain undisclosed by its manufacturer, Abcellute Ltd. The medium 

is known to be gelatinous at temperatures below 10 ˚C and cells stored in this 

medium could be considered quiescent at this phase. (Palmgren et al., 2013) 

published a study in which they found SureTran to be ideal in storing freshly 

isolated hepatocytes for a short period of time. They were able to prepare and 

maintain hepatocytes in SureTran reasonably well for up to 4 days post cell 

isolation, but cell viability declined thereafter. Rat PTC viability, on the other hand, 

decreased significantly after 48 hours (Figure 3.5). Cells cultured from freshly 

isolated rat PTCs and PTCs stored for 24 hours in SureTran were used in 

experiments to examine any changes in cell functions. Substrate kinetic 
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experiments using Hoechst 33342 as the fluorescence substrate of Mdr1 showed 

saturable kinetics in both sets of cells with similar Vmax values (Figure 3.6).  

However, a difference in Km was evident which suggests variability in the 

expression of Mdr1 transporter between the two sets of cells. From these initial 

data, it was decided that preservation of freshly isolated rat PTCs may not yet be 

feasible, and for robustness of the data for the project, isolation of rat PTCs as 

and when the cells were needed was more pragmatic. 

3.9.3 Rat PTC monolayer layer and its integrity 

Ex vivo primary epithelial cells are known to dedifferentiate. A well known 

example is exhibited in human primary epithelial airway cells. When cultured on 

flat plastics, these cells assume a poorly differentiated state with a “squamous” 

phenotype. However, when these cells were allowed to grow under a polarised 

condition, such as on a Transwell filter support, the morphology and functions 

were more representative of in vivo conditions (Fulcher et al., 2005; Randell et 

al., 2011). Other studies have also shown proximal tubular cells grown on 

Transwell filter support maintained a differentiated state with expression of an 

array of functional drug transporters. For instance, Lash et al. showed better 

protein expression and functional activity of many drug transporters when human 

primary tubule cells were cultured on Transwell filter support (Lash et al., 2006). 

It is reckoned the polycarbonate filter allows the cells to be polarised and bathed 

in medium from the apical and basolateral sides, replicating the physiology of the 

cells in vivo, and hence allowing maintaining their differentiated state (Fulcher et 

al., 2005). With that in mind, to reinstate the formation of rat PTC epithelial barrier 

characteristics, the cells were cultured on Transwell filter support. 

A good indicator of the integrity of the monolayer, and indirectly the viability of the 

cells, was the TEER of the monolayer (Gochoco et al., 1994). TEER is a well-

recognised parameter to examine cell monolayer integrity (Bonsdorff et al., 1985). 

The TEER of rat PTCs grown on Transwell filter support increased from 12.01 ± 

3.01 Ω.cm2 on day 2 of culture, to a plateau of around 77 Ω.cm2 for several days, 

an indication of monolayer formation. Thereafter, the TEER decreased rapidly, 

with negligible resistance after day 8 (Figure 3.7). The resistance did not improve 

with a change of medium, with which TEER of Caco-2 monolayers were shown 

to be revived (Mukherjee et al., 2004). The pattern of the TEER values exhibited 
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by the cells corresponded with results that show the short life span of these rat 

PTCs, further supporting the stance of not using these cells after 6 days in culture. 

TEER of around 70 Ω.cm2 are typical of proximal tubule epithelium, though in 

vivo the TEER of more distal segments of the nephron is sometimes several folds 

higher (Seely, 1973; Bello-Reuss, 1986). 

To investigate the “leakiness” of the epithelium, mannitol paracellular 

permeability across the rat PTC monolayers was performed. 1 µM of mannitol 

was added on one side of a rat PTC monolayer and its appearance on the 

receiving side was measured after an hour, and the amount of mannitol correlated 

to the TEER (Figure 3.8). As expected, a general trend of the higher the TEER, 

the lower the permeability was observed. 

The permeability properties of the rat PTC monolayers have been primarily 

determined by the patterns of expression of cell adhesion proteins at the junctions 

between cells. It was shown that N-cadherin and claudin-2 were the predominant 

tight junction proteins in the proximal tubule in vivo (Hirsch and Noske, 1993), 

and there was evidence to indicate that the leaky phenotype of the proximal 

epithelium may be due to the latter (Furuse et al., 1999).While there was leakage 

of mannitol in rat PTC monolayers, the monolayer was deemed, to a certain 

extent, to be able to act as a barrier to restrict the paracellular movement of 

solutes. Depending on the nature of the experiments with which these rat PTC 

monolayers were used, their TEER values and mannitol paracellular permeability 

were assessed together to determine if the monolayers were suitable for said 

experiment. A criterion for disregarding a monolayer’s inclusion in the experiment 

was if its TEER was below 60 Ω.cm2. For transepithelial transport experiments, 

concomitant administration of mannitol with the substrate of interest would 

provide an indication of monolayer “leakiness” and use information could be used 

to correct for true transport of substrate across the monolayer.  
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3.10 Summary 

The isolation and culture of rat PTCs has been optimised, with the basic 

parameters of growth and viability assessed. Further characterisation of the rat 

PTCs was needed to determine its suitability as a robust model for drug-drug 

interaction studies, which will be addressed in Chapter 4. 
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4.1 Chapter overview 

This chapter highlights the results from the characterisation of rat proximal tubule 

cells (PTCs) at the mRNA level and function level. The following is discussed: 

 The specificity of ten pairs of in-house designed primers to ten different 

membrane transporters that are deemed important in drug transporter 

studies. 

 The quantification of the changes in mRNA expression levels of the ten 

transporters between freshly isolated rat PTCs, rat PTCs cultured on 

plastics, and rat PTCs cultured on Transwells. 

 The functional expression of Mdr1, Bcrp and Mrps in rat PTCs cultured on 

plastics. 

 The functional expression of Oct2 in rat PTCs cultured on plastics. 

 The functional expression of lactate in rat PTCs cultured on Transwells.  

 The development of a novel technique to measure the activity of Mdr1 and 

Mrps simultaneously. 
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4.2 Total cell RNA purity and integrity 

Total cell RNA was isolated from freshly isolated rat PTCs, rat PTCs that had 

been cultured on plastics, and rat PTCs that had been cultured on Transwell filter 

support. The purity of all the isolated RNA samples were assessed and only those 

that exhibited A260/A280 of at least 1.8 and A260/A230 of 2.1 were used in 

downstream applications. All RNA samples also had a concentration of at least 

100 µg/ml. The integrity of all the RNA samples was assessed before use in 

downstream applications. Figure 4.1 shows the electropherograms produced 

when 1 µl RNA samples were run on a BioAnalyzer chip. 

The peak on the left of the trace of the electropherogram represents the 28S 

ribosomal subunit from total cell RNA, and the peak on the right represents the 

18S rRNA subunit. All RNA samples contained ribosomal subunits that elute at 

the same time of around 45 seconds and 50 seconds for the 18S and 28S 

subunits, respectively. The ratio of 28S/18S gave at least 2.1 in all RNA samples. 

Proprietary software algorithm was also performed to give a RNA integrity 

number on all the samples (Schroeder et al., 2006). All samples had RIN of 8 and 

above. 
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Figure 4.1: Representative electropherograms produced by Agilent BioAnalyzer 2100 

with 1 µl RNA samples. 

RNA samples were from (A) freshly isolated rat PTCs, (B) rat PTCs cultured 

on Transwell insert supports for 6 days, and (C) rat PTCs cultured on plastic 

for 6 days. All RNA samples used in  downstream applications had 28S/18S 

ratio of 2.1 and above, and RNA integrity number of at least 8.  
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4.3 PCR screening of drug transporters in rat PTCs 

The expression of several key transporters was investigated using endpoint PCR. 

The PCR products were visualised on 1.5 % agarose gels stained with ethidium 

bromide.  

Figure 4.2 shows the separation of PCR products on the gels. Lane 1 of each of 

the gel was loaded with DNA ladder. Lane 2 was loaded with PCR product 

amplified using cDNA template from freshly isolated rat PTCs. Lanes 3 and 4 was 

loaded with PCR product amplified using cDNA template from rat PTCs cultured 

for 6 days on Transwell filter support, and rat PTCs cultured for 6 days on plastic, 

respectively. Lane 5 shows the negative control for the PCR. Endpoint PCR was 

also performed using Gapdh primers. The gel for Gapdh shows one band in each 

of the lanes with equal intensity, indicating the amount of cDNA template used 

was comparable across all samples. 

4.3.1 Mdr1 

Figure 4.2A shows the gel with PCR products amplified using primers designed 

to amplify both Mdr1a and Mdr1b cDNA (collective referred to as Mdr1 in this 

thesis). A band of approximately 148 base pairs was detected in lanes 2, 3 and 

4, but the intensities between different samples are different. This band was of 

the expected size for the Mdr1 specific primers used. Sequencing of the products 

showed 100 % identity to Mdr1. No bands were detected in the negative control.   

4.3.2 Bcrp 

Figure 4.2B shows the gel with PCR products amplified using Bcrp specific 

primers. A band of the expected size for Bcrp (95 base pairs) was detected in all 

the sample lanes. Sequencing of the products showed 100 % identity to Bcrp. 

The intensity of each of the band in lanes 2, 3 and 4 was similar. No bands were 

detected in the negative control. 

4.3.3 Mrp2 

Figure 4.2C shows the gel with PCR products amplified using Mrp2 specific 

primers. A band of approximately 169 base pairs was detected in lanes 2, 3 and 

4, which was the expected size of the PCR product. Sequencing of the products 



  Chapter 4: Characterisation of Rat PTCs 

71 | P a g e  
 

showed 100 % identity to Mrp2. The intensity of the band in lane 2 was greater 

than in lane 3 or 4. The intensity of each of the band in lanes 3 and 4 was similar 

and no bands were detected in the negative control. 

4.3.4 Oat1 

Figure 4.2D shows the agarose gel with PCR products amplified using Oat1 

specific primers. Lanes 2, 3 and 4 had a band of approximately 119 base pairs. 

Sequencing of the products showed 100 % identity to Oat1. The intensity of each 

of the band in lanes 2, 3 and 4 was similar. No bands were detected in the 

negative control. 

4.3.5 Oct2 

Figure 4.2E shows the gel with PCR products of approximately 127 base pairs 

amplified using Oct2 specific primers in all the sample lanes. Sequencing of the 

products showed 100 % identity to Oct2. The intensity of the band was greatest 

in lane 2 and similar between lanes 3 and 4. No bands were detected in the 

negative control. 

4.3.6 Oatp4c1 

Figure 4.2F shows the gel with PCR products amplified using Oapt4c1 specific 

primers. A band of approximately 101 base pairs was detected in lanes 2, 3 and 

4, which was the expected size for the Oatp4c1 specific primers used. 

Sequencing of the products showed 100 % identity to Oatp4c1. The intensity of 

the band in lane 2 was greater than in lane 3, which in turn was greater than lane 

4. No bands were detected in the negative control. 

4.3.7 Slc2a9 

Figure 4.2G shows the gel with PCR products of around 151 base pairs in lanes 

2, 3 and 4 amplified using Slc2a9 specific primers. The size of the product was 

the expected size for of primers used and sequencing of the products showed 

100 % identity to Slc2a9. The intensity of each of the band in lanes 2, 3 and 4 

was similar. No bands were detected in the negative control. 



  Chapter 4: Characterisation of Rat PTCs 

72 | P a g e  
 

4.3.8 Urat1 

Figure 4.2H shows the gel with PCR products amplified using Urat1 specific 

primers. A band of approximately 109 base pairs was detected in lanes 2, 3 and 

4, but no band was detected in the negative control. The band was of the 

expected size for the Urat1 specific primers used and sequencing of the products 

showed 100 % identity to Urat1. The intensity of the band in lane 2 was greater 

than in lane 3, which in turn was greater than lane 4. 

4.3.9 Mate1 

Figure 4.2I shows the gel with PCR products amplified using Mate1 specific 

primers with similar intensity bands on all sample lanes. The size of the band was 

around 123 base pairs. That was the expected size for the PCR product. 

Sequencing of the products showed 100 % identity to Mate1. No bands were 

detected in the negative control. 

4.3.10 Mct1 

Figure 4.2J shows the gel with PCR products amplified using Mct1 specific 

primers. A band of approximately 157 base pairs was detected in lanes 2, 3 and 

4, but no band was detected in lane 5 (negative control). This band was of the 

expected size for the Mct1 specific primers used. Sequencing of the products 

showed 100 % identity to Mct1. The intensity of band in lanes 2 and 3 was greater 

than lane 4.  
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Figure 4.2: 1.5 % agarose gel showing separation of PCR products amplified using 

primers specific to the transporter.  

The primers used were specific to (A) Mdr1, (B) Bcrp, (C) Mrp2, (D) Oat1, 

(E) Oct2, (F) Oatp4c1, (G) Slc2a9, (H) Urat1, (I) Mct1, and (J) Mate1. DNA 

ladder (lane 1), PCR products amplified using cDNA template from freshly 

isolated rat PTCs (lane 2), rat PTCs cultured on Transwell filter support  for 

6 days (lane 3), rat PTCs cultured for 6 days on plastic (lane 4), and PCR 

negative control (lane 5) were loaded on to the gel. E ndpoint PCR was also 

performed for Gapdh using the same samples to ensure amount of starting 

cDNA template was comparable across all the samples.  
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4.4 Quantifying drug transporter expression changes between 

culture conditions 

qPCR was performed to determine the change in relative mRNA expression 

levels of key drug transporters by rat PTCs in different culture conditions. Figure 

4.3 to Figure 4.12 shows the percentage change in expression levels of drug 

transporters between rat PTCs cultured on Transwell filter support and rat PTCs 

cultured on plastic, compared with the mRNA levels of freshly isolated rat PTCs, 

which had been assigned as the control. The expression levels had been 

normalised to reference gene Gapdh expression level prior to comparison. Table 

4.1 shows the summary of the percentage change in expression level when 

compared to the control. The data are presented as the mean percentage change 

in expression levels from three separate batches of RNA. 

4.4.1 Mdr1 

Rat PTCs cultured on Transwell filter support showed Mdr1 mRNA level was 

expressed at 72.81 ± 5.39 % of control, giving a 1.37-times decrease in 

expression (Figure 4.3, P < 0.05, N = 3). Mdr1 mRNA level in rat PTCs cultured 

on plastic was expressed at 60.25 ± 7.07 % of control, which was a 1.66-times 

down-regulated (P < 0.05, N = 3). No statistical difference was observed between 

Mdr1 mRNA levels of rat PTCs cultured on Transwell filter support and rat PTCs 

cultured on plastic. 

4.4.2 Bcrp 

Rat PTCs cultured on Transwell filter support showed a decrease in Bcrp mRNA 

level when compared to the control (24.98 ± 20.23 % of control, P < 0.01, N = 3, 

Figure 4.4). Bcrp mRNA level in rat PTCs cultured on plastic was decreased 

further when compared to the control (20.23 ± 6.32 %, P < 0.05, N = 3). No 

statistical difference was observed between Bcrp mRNA levels of rat PTCs 

cultured on Transwell filter support and rat PTCs cultured on plastic. 

4.4.3 Mrp2 

Rat PTCs cultured on Transwell filter support showed Mrp2 mRNA level at 37.71 

± 21.19 % of control (Figure 4.5, P < 0.01, N = 3). Mrp2 mRNA level in rat PTCs 

cultured on plastic was at 21.19 ± 10.33 % of control (4.71-times decrease, P < 
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0.01, N = 3) while no statistical difference was observed between Mrp2 mRNA 

levels of rat PTCs cultured on Transwell filter support and rat PTCs cultured on 

plastic. 

4.4.4 Oat1 

At 24.97 ± 7.51 % of control, Oat1 mRNA level of rat PTCs cultured on Transwell 

filter support was decreased almost 4-times (Figure 4.6, P < 0.001, N = 3). Oat1 

mRNA level in rat PTCs cultured on plastic was also decreased by almost 6-times 

when compared to the control (16.50 ± 4.93 % of control, P < 0.001, N = 3). No 

statistical difference was observed between Oat1 mRNA levels of rat PTCs 

cultured on Transwell filter support and rat PTCs cultured on plastic. 

4.4.5 Oct2 

Oct2 mRNA levels of rat PTCs cultured on Transwell filter support was down-

regulated to 36.98 ± 17.71 % of control (Figure 4.7, P < 0.01, N = 3). Mrp2 mRNA 

level in rat PTCs cultured on plastic was also down regulated to 27.68 ± 16.88 % 

of control (P < 0.01, N = 3). No statistical difference was observed between Oct2 

mRNA levels of rat PTCs cultured on Transwell filter support and rat PTCs 

cultured on plastic. 

4.4.6 Oatp4c1 

Oatp4c1 mRNA level of rat PTCs cultured on Transwell filter support and rat 

PTCs cultured on plastic were at 22.81 ± 10.68 % (Figure 4.8, P < 0.01, N = 3) 

and 12.46 ± 7.57 % of control (P < 0.01, N = 3), respectively. No statistical 

difference was observed between Oatp4c1 mRNA levels of rat PTCs cultured on 

Transwell filter support and rat PTCs cultured on plastic. 

4.4.7 Slc2a9 

Rat PTCs cultured on Transwell filter support showed Slc2a9 mRNA level was 

expressed at 23.25 ± 5.61 % of freshly isolated rat PTCs, giving a 4.30-times 

decrease in expression (Figure 4.9, P < 0.05, N = 3). Slc2a9 mRNA level in rat 

PTCs cultured on plastic was shown to express at 35.74 ± 16.91 % of freshly 

isolated rat PTCs. No statistical difference was observed between Slc2a9 mRNA 

levels of rat PTCs cultured on Transwell filter support and rat PTCs cultured on 

plastic. 
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4.4.8 Urat1 

Rat PTCs cultured on Transwell filter support showed Urat1 mRNA level was 

expressed at 19.05 ± 6.20 % of control (Figure 4.10, P < 0.001, N = 3). Urat1 

mRNA level in rat PTCs cultured on plastic was expressed at 25.17 ± 4.53 % of 

control, which equated to a 3.97-times decrease when compared to the control 

(P < 0.001, N = 3). No statistical difference was observed between Urat1 mRNA 

levels of rat PTCs cultured on Transwell filter support and rat PTCs cultured on 

plastic. 

4.4.9 Mate1 

Rat PTCs cultured on Transwell filter support showed Mate1 mRNA level was 

expressed at 28.09 ± 6.00 % of control (Figure 4.11, P < 0.01, N = 3), whereas 

Mate1 mRNA level in rat PTCs cultured on plastic was expressed at 18.93 ± 9.44 % 

of the control (P < 0.01, N = 3). No statistical difference was observed between 

Mate1 mRNA levels of rat PTCs cultured on Transwell filter support and rat PTCs 

cultured on plastic. 

4.4.10 Mct1 

At 26.39 ± 11.77 % of control, Mct1 mRNA level in rat PTCs cultured on Transwell 

filter support showed a 3.79-times decrease in expression (Figure 4.15, P < 0.05, 

N = 3). Similar, Mrp2 mRNA level in rat PTCs cultured on plastic was down-

regulated by 4.15-times (18.93 ± 9.44 % of control, P < 0.05, N = 3). No statistical 

difference was observed between Mct1 mRNA levels of rat PTCs cultured on 

Transwell filter support and rat PTCs cultured on plastic. 
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Figure 4.3: Percentage change in relative expression levels of Mdr1 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Mdr1 mRNA level was 

expressed at 72.81 ± 5.39 % of control, down-regulated by 1.37-times. Mdr1 

mRNA level in rat PTCs cultured on plastic was expressed at 60.25 ± 7.07 % 

of control. No statistical difference was observed between Mdr1 mRNA levels 

of rat PTCs cultured on Transwell filter support and rat PTCs cultured on 

plastic. The expression levels had been normalised to reference gene Gapdh. 

Each bar represents the mean ± SEM percentage change from three batches 

of RNA. One-way ANOVA statistical test was performed on the data set to 

determine significance. *, P < 0.05. 
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Figure 4.4: Percentage change in relative expression levels of Bcrp by freshly isolated 

rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat PTCs 

cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Bcrp mRNA level was 

at 24.98 ± 20.23 % of the control. Bcrp mRNA level in rat PTCs cultured on 

plastic was expressed at 20.23 ± 6.32 % of control. No statistical difference 

was observed between Bcrp mRNA levels of rat PTCs cultured on Transwell 

filter support and rat PTCs cultured on plastic. The expression levels had 

been normalised to reference gene Gapdh. Each bar represents the mean ± 

SEM percentage change from three batches of RNA. One-way ANOVA 

statistical test was performed on the data set to determine significance. **, P 

< 0.01. 
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Figure 4.5: Percentage change in relative expression levels of Mrp2 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Mrp2 mRNA level was 

2.65-times less when compared to the control (37.71 ± 21.19 %). Mrp2 mRNA 

level in rat PTCs cultured on plastic was also down-regulated by 4.71-times 

when compared to the control (21.19 ± 10.33 %). No statistical difference 

was observed between Mrp2 mRNA levels of rat PTCs cultured on Transwell 

filter support and rat PTCs cultured on plastic. The expression levels had 

been normalised to reference gene Gapdh. Each bar represents the mean ± 

SEM percentage change from three batches of RNA. One-way ANOVA 

statistical test was performed on the data set to determine significance. * *, P 

< 0.01. 
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Figure 4.6: Percentage change in relative expression levels of Oat1 by freshly isolated 

rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat PTCs 

cultured on plastic for 6 days.  

Oat1 mRNA level in rat PTCs cultured on Transwell filter support showed 

down-regulation of 4.00-times (24.97 ± 7.51 % of control). Oat1 mRNA level 

in rat PTCs cultured on plastic was also down regulated to 16.50 ± 4.9 3 % of 

control. No statistical difference was observed between Oat1 mRNA levels of 

rat PTCs cultured on Transwell filter support and rat PTCs cultured on 

plastic. The expression levels had been normalised to reference gene Gapdh. 

Each bar represents the mean ± SEM percentage change of three batches of 

RNA. One-way ANOVA statistical test was performed on the data set to 

determine significance. ***, P < 0.001.  
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Figure 4.7: Percentage change in relative expression levels of Oct2 by freshly isolated 

rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat PTCs 

cultured on plastic for 6 days.  

At 36.98 ± 17.71 % of control, Oct2 mRNA level in rat PTCs cultured on 

Transwell filter support was down-regulated. Oct2 mRNA level in rat PTCs 

cultured on plastic was also down-regulated to 27.68 ± 16.88 % of control.  

No statistical difference was observed between Oct2 mRNA levels of rat PTCs 

cultured on Transwell filter support  and rat PTCs cultured on plastic. The 

expression levels had been normalised to reference gene Gapdh. Each bar 

represents the mean ± SEM percentage change of three batches of RNA. One -

way ANOVA statistical test was performed on the data set to determine 

significance. **, P < 0.01. 
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Figure 4.8: Percentage change in relative expression levels of Oatp4c1 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Oatp4c1 mRNA level 

was expressed at 22.81 ± 10.68 % of control. Oatp4c1 mRNA from Rat PTCs 

cultured on plastic was even lower at  12.46 ± 7.57 % of control, though no 

statistical difference was observed between two culture conditions. The 

expression levels had been normalised to reference gene Gapdh. Each bar 

represents the mean ± SEM percentage change of three batches of RNA. One -

way ANOVA statistical test was performed on the data set to determine 

significance. **, P < 0.01. 
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Figure 4.9: Percentage change in relative expression levels of Slc2a9 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Slc2a9 mRNA level was 

expressed at 23.25 ± 5.61 % of control, giving a 4.30 -times decrease in 

expression. Slc2a9 mRNA level in rat PTCs cultured on plastic also decreased, 

but only to 35.74 ± 16.91 % of control. No statistical difference was observed 

between Slc2a9 mRNA levels of rat PTCs cultured on Transwell filter support 

and rat PTCs cultured on plastic. The expression levels had been normalised 

to reference gene Gapdh. Each bar represents the mean ± SEM percentage 

change of three batches of RNA. One-way ANOVA statistical test was 

performed on the data set to determine significance. *, P < 0.05.  
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Figure 4.10: Percentage change in relative expression levels of Urat1 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Urat1 mRNA level was 

down-regulated 5.25-times when compared to the control (19.05 ± 6.20 % of 

control). Urat1 mRNA level in rat PTCs cultured on plastic was also down -

regulated by 3.97-times (25.17 ± 4.53 % of control). No statistical difference 

was observed between Urat1 mRNA levels of rat PTCs cultured on Transwell 

filter support and rat PTCs cultured on plastic. The expression levels had 

been normalised to reference gene Gapdh. Each bar represents the mean ± 

SEM percentage change of three batches of RNA. One-way ANOVA statistical 

test was performed on the data set to determine significance. ***, P < 0.001.  
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Figure 4.11: Percentage change in relative expression levels of Mate1 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Mate1 mRNA level was 

expressed at 28.09 ± 6.00 % of control. Mate1 mRNA level in rat PTCs 

cultured on plastic was expressed at 18.93 ± 9.44 % of control. No statistical 

difference was observed between Mate1 mRNA levels of rat PTCs cultured on 

Transwell filter support and rat PTCs cultured on plastic. The expression 

levels had been normalised to reference gene Gapdh. Each bar represents the 

mean ± SEM percentage change of three batches of RNA. One -way ANOVA 

statistical test was performed on the data  set to determine significance. **, P 

< 0.01. 
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Figure 4.12: Percentage change in relative expression levels of Mct1 by freshly 

isolated rat PTCs, rat PTCs cultured on Transwell filter support for 6 days, and rat 

PTCs cultured on plastic for 6 days.  

Rat PTCs cultured on Transwell filter support showed Mct1 mRNA level was 

expressed at 26.39 ± 11.77 % of control, and rat PTCs cultured on plastics 

showed mRNA level at 18.93 ± 9.44 % of control. No statistical difference 

was observed between Mct1 mRNA levels of rat PTCs cultured on Transwell 

filter support and rat PTCs cultured on plastic. The expression levels had 

been normalised to reference gene Gapdh. Each bar represents the mean ± 

SEM percentage change of three batches of RNA. One-way ANOVA statistical 

test was performed on the data set to determine significance. *, P < 0.05.  
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Gene 

Percentage of control 
expression (fold difference) 

Transwell Plastic 

Mdr1 
72.8 ± 5.4 

(1.4) 
60.2 ± 7.2 

(1.7) 

Bcrp 
24.9 ± 8.5 

(4.0) 
20.2 ± 6.3 

(4.9) 

Mrp2 
37.7 ± 4.3 

(2.7) 
21.2 ± 10.3 

(4.7) 

Oat1 
24.9 ± 7.5 

(4.0) 
16.5 ± 4.9 

(6.1) 

Oct1 
36.9 ± 17.7 

(2.7) 
27.7 ± 16.9 

(3.6) 

Oatp4c1 
22.8 ± 10.7 

(4.4) 
12.5 ± 7.6 

(8.02) 

Slc2a9 
23.2 ± 5.6 

(4.3) 
35.7 ± 16.9 

(2.8) 

Urat1 
19.1 ± 6.2 

(5.2) 
25.2 ± 4.5 

(3.9) 

Mate1 
28.1 ± 6.0 

(3.6) 
18.9 ± 9.4 

(5.3) 

Mct1 
26.4 ± 11.8 

(3.8) 
24.1 ± 18.6 

(4.2) 

  

Table 4.1: Summary of the change in mRNA expression levels of drug transporters in 

rat PTCs cultured on plastics and Transwell filter support compared to freshly 

isolated rat PTCs.  

Expression levels are expressed as a percentage of the control. Numbers in 

brackets are the fold difference in expression when compared to the contro l. 

Expression levels have been normalised to Gapdh expression levels. Data are 

the mean ± SEM of 3 batches of RNA. 
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4.5 Functional expression of ABC transporters 

The functional expression of ABC transporters (Mdr1, Bcrp and Mrps) was 

examined using fluorescent substrate retention assays. The differences in 

fluorescence of retained Hoechst 33342 or GSMF by rat PTCs cultured on plastic 

for 6 days, in the absence or presence of transporter specific inhibitors, are shown 

in Figure 4.13 to Figure 4.16. The figures in this section are representative of 

three independent experiments, and the concentrations that caused half maximal 

fluorescent intensity (Km or IC50) given are the mean of the three experiments.  

4.5.1 Mdr1 activity 

Intracellular retention of Hoechst 33342, a substrate of Mdr1, by rat PTCs was 

measured over a range of Hoechst 33342 concentrations. The results showed 

mean apparent Km of 4.04 ± 0.60 µM (Figure 4.13A). In the presence of 5 µM 

CsA, an Mdr1 inhibitor, the maximum level of intracellular fluorescence remained 

similar, but the mean apparent Km was significantly lower at 0.42 ± 0.06 µM (P < 

0.01, N = 3). The concentration curves generated using a range of CsA 

concentrations upon the inhibition of 1 µM Hoechst 33342 gave mean IC50 value 

of 2.13 ± 0.48 µM (Figure 4.13B).  

Another inhibitor of Mdr1 used to determine its function was GF120918. In the 

absence of GF120918, the mean Km was 3.16 ± 0.36 µM. In the presence of 2 

µM GF120918, the mean Km decreased to 0.48 ± 0.05 µM (Figure 4.14A, P < 

0.01, N = 3). The inhibition of Hoechst 33342 efflux by GF120918 showed mean 

IC50 of 0.19 ± 0.04 µM (Figure 4.14B). 

4.5.2 Bcrp activity 

Hoechst 33342 is also a substrate of Bcrp. The mean Km of Hoechst 33342 

retention by rat PTCs was 4.04 ± 0.60 µM in the absence of Ko143, a Bcrp 

specific inhibitor. But in the presence of 1 µM Ko143, the mean Km was 0.23 ± 

0.04 µM (Figure 4.15A, P < 0.01, N = 3). The inhibition of Hoechst 33342 efflux 

by Ko143 showed a mean IC50 of 5.48 ± 1.09 µM (Figure 4.15B).  
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4.5.3 Mrps activity 

CMFDA metabolite, GSMF, is a substrate of Mrps. Figure 4.16A shows a linear 

relationship between the intracellular fluorescence intensity and the external 

concentration of CMFDA (mean slope of 9,728 ± 258 units/µM, r2 = 0.62, N = 3). 

Intracellular fluorescence intensity was significantly increased in the presence of 

10 µM MK-571 (mean slope of 15420 ± 376.7 units/µM, r2 = 0.71, P < 0.01, N = 

3). The linear increase in intracellular fluorescence relative to extracellular dye 

concentration was maintained with no evidence of saturation of intracellular 

fluorescence. In contrast, GSMF retention was dependent on MK-571 

concentration. Inhibition of GSMF efflux by a range of MK-571 concentrations 

gave mean IC50 value of 1.05 ± 0.34 µM for the ability of MK-571 to inhibit GSMF 

efflux by Mrps (Figure 4.16B).   
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Figure 4.13: Fluorescence of retained Hoechst 33342 by rat PTCs cultured on plastic 

in the presence of CsA.  

(A) Intracellular retention of Hoechst 33342 showed a saturable kinetic with 

mean Km at 4.04 ± 0.60 µM. In the presence of 5 µM CsA, the maximum level 

of intracellular fluorescence remained similar, but Km was significantly lower 

with mean of 0.42 ± 0.06 µM. (B) The concentration curve for the inhibition 

of Hoechst 33342 efflux by CsA had a mean IC50 of 2.13 ± 0.48 µM. Each 

point represents the mean ± SEM of 6 replicates. Each figure is a 

representative of 3 independent experiments, and the Km and IC50 values are 

the mean of the three experiments. Non-linear regression analysis was 

performed to obtain the Km and IC50. 
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Figure 4.14: Fluorescence of retained Hoechst 33342 by rat PTCs cultured on plastic 

in the presence of GF120918.  

(A) In the absence of GF120918, intracellular retention of Hoechst 33342 

showed a saturable kinetic with Km of 3.16 ± 0.36 µM. In the presence of 2 

µM GF120918, the Km decreased to 0.48 ± 0.05 µM. (B) The concentration 

curve for the inhibition of Hoechst 33342 efflux by GF12091 8 showed 

apparent IC50 of 0.19 ± 0.04 µM. Each dot represents the mean ± SEM of 6 

replicates. Each figure is a representative of 3 independent experiments, and 

the Km and IC50 values are the mean of the three experiments. Non-linear 

regression analysis was performed to obtain the Km and IC50. 
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Figure 4.15: Fluorescence of retained Hoechst 33342 by rat PTCs cultured on plastic 

in the presence of Ko143.  

(A) In the absence of Ko143, intracellular retention of Hoechst 33342 showed 

a saturable kinetic with mean Km of 4.13 ± 0.37 µM. In the presence of 1 µM 

Ko143, the mean Km decreased to 0.23 ± 0.04 µM. (B) The concentration 

curve for the inhibition of Hoechst 33342 efflux by Ko143 showed mean IC50 

of 5.48 ± 1.09 µM. Each dot represents the mean ± SEM of 6 replicates. Each 

figure is a representative of 3 independent experiments, and the Km and IC5 0 

values are the mean of the three experiments. Non-linear regression analysis 

was performed to obtain the Km and IC50 values.  
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Figure 4.16: Intracellular fluorescence of retained GSMF by rat PTCs in the 

presence of MK-571.  

(A) A linear relationship between the intracellular fluorescence intensity and 

the external concentration of CMFDA (mean slope of 9,728 ± 258 units/µM, 

r2 = 0.62) was observed. Intracellular fluorescence intensity was significantly 

increased in the presence of 10 µM MK-571 (mean slope of 15420 ± 376.7 

units/µM, r2 = 0.71). (B) The linear increase in intracellular fluorescence 

relative to extracellular dye concentration was maintained with no evidence 

of saturation of intracellular fluorescence. Inhibition of GSMF efflux by a 

range of MK-571 concentrations gave mean IC50 value of 1.05 ± 0.34 µM. 

Each dot represents the mean ± SEM of 6 replicates. Each figure is a 

representative of 3 independent experiments, and the slope and IC50 values 

are the mean of the three experiments. Linear regression analysis was 

performed to obtain the slope, and non-linear regression analysis was 

performed to obtain the IC50. 
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4.6 Functional expression of Oct2 

Uptake of fluorescence substrate ASP+ by rat PTCs cultured on plastic was 

carried out to measure the activity of Oct2. Figure 4.17A shows a representative 

uptake of ASP+ by rat PTCs exhibiting a saturable kinetics, with mean Km of 5.5 

± 1.05 µM (N = 3). 

The effect of Oct2 specific substrates on ASP+ uptake was also tested. Figure 

4.17B shows the percentage change in uptake of ASP+ in the presence of 100 

µM TEA and 100 µM MPP+, both substrates of Oct2. The uptake of ASP+ was 

decreased in the presence of both TEA and MPP+, with TEA exposed rat cells 

taking up 68.43 ± 9.43 % of ASP+, and MPP+ exposed rat PTCs taking up 44.0 ± 

4.78 % of ASP+, when compared to the control. That equated to 1.46-times (P < 

0.05, n = 18, N = 3) and 2.27-times (P < 0.01, n = 18, N = 3) decrease in ASP+ 

uptake.  
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Figure 4.17: Uptake of fluorescence substrate ASP+ by rat PTCs cultured on plastic.  

(A) Uptake of ASP+ by rat PTCs exhibited a saturable kinetic with an average 

Km of 5.5 ± 1.05 µM from three separate experiments. Each dot represents 

the mean ± SEM of 6 replicates. The figure is a representative of 3 

independent experiments, and the Km is the mean of the three experiments.  

Non-linear regression analysis was performed to obtain the Km values. (B) 

The uptake of ASP+ was decreased in the presence of both TEA and MPP +,  

with TEA exposed rat cells taking up 68.43 ± 9.43 % of ASP +, and MPP+ 

exposed rat PTCs taking up 44.0 ± 4.78 % of ASP+, when compared to the 

control. Each bar represents the mean ± SEM of 18 replicates  obtained from 

three separate experiments. One-way ANOVA statistical test was performed 

to determine significance. *, P < 0.05, ** P < 0.01.  
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4.7 Simultaneous measurement of Hoechst 33342 and GSMF 

retention 

A novel technique was developed to investigate the specificity of MK-571 and 

CsA as specific inhibitors of MRPs and MDR1 in HK-2 cells (Jenkinson et al., 

2012). This assay was repeated on rat PTCs.  

Figure 4.18 shows that at Hoechst 33342 emission wavelength of 480 nm, only 

rat PTCs exposed to Hoechst 33342 generated the intracellular fluorescence 

signals. Similarly at GSMF emission wavelength of 520 nm, only rat PTCs 

exposed to CMFDA were fluorescent. More importantly, the magnitude of the 

fluorescent generated by individual substrate did not change significantly in the 

presence of the others.  

To test the specificity of MK-571, CsA and Ko143 as inhibitors of Mrps, Mdr1, or 

Bcrp, respectively, the impact of incubation of cells with either compound, was 

measured upon GSMF and Hoechst 33342 retention. Figure 4.19 shows that the 

exposure of rat PTCs to 10 µM MK-571 resulted in 5.5-fold increase (550.2 ± 

80.7 % of control, P < 0.001, n = 18, N = 3) in GSMF retention, but had not effect 

upon the level of fluorescent generated by Hoechst 33342. In contrast, incubation 

of the rat PTCs with 5 µM CsA was associated with a 2.2-fold increase (219.4 ± 

30.9 % of control, P < 0.01, n = 18, N = 3) and 4.2-fold increase (419.7 ± 18.0 % 

of control, P < 0.01, n = 18, N = 3) in intracellular Hoechst 33342 and GSMF 

fluorescence, respectively. 1 µM Ko143 only caused Hoechst 33342 signal to 

increase significantly, 207.9 ± 31.7 % of control (P < 0.01, n= 18, N = 3).   
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Figure 4.18: Simultaneous measurement of Hoechst 33342 and GSMF fluorescence 

retention in rat PTCs. 

At Hoechst 33342 emission wavelength of 480 nm, only rat PTCs exposed to 

Hoechst 33342 generated the intracellular fluorescence signals. Similarly at 

GSMF emission wavelength of 520 nm, only rat PTCs exposed to CMFDA 

were fluorescent. The magnitude of the fluorescent generated by individual 

substrate did not change significantly in the presence of the others. Each bar 

represents the mean ± SEM of 18 replicates obtained from three separate 

experiments.  
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Figure 4.19: Simultaneous measurement of Hoechst 33332 and GSMF retention in 

rat PTCs to demonstrate substrate specificity.  

The exposure of rat PTCs to 10 µM MK-571 resulted in 5.5-fold increase in 

GSMF retention, but had not effect upon the level of fluorescent generated by 

Hoechst 33342. Incubation of the rat PTCs with 5 µM CsA was associated 

with a 2.2-fold increase and 4.2-fold increase respectively in intracellular 

Hoechst 33342 and GSMF fluorescence. The presence of 1 µM Ko143 only 

saw 2.1-fold increase in Hoechst 33342 retention. Each bar represents the 

mean ± SEM of 18 replicates from three separate experiments. Two-way 

ANOVA statistical test was performed to determine significance. **, P < 0.01, 

*** P < 0.001. 
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4.8 Efflux of fluorescence substrates by rat PTC monolayer 

Rat PTCs were cultured on Transwell filter support to reinstate the formation of 

the monolayer. They were then characterised functionally to identify efflux 

transporters. Figure 4.20 shows the percentage change in efflux of GSMF by rat 

PTC monolayers in the presence of 10 µM MK-571. Efflux of GSMF from the 

basolateral membrane of rat PTC monolayers was significantly lower (12.79 ± 

6.17 %, P < 0.001, n = 12, N = 3) when compared to the efflux from the apical 

membrane. The presence of MK-571 caused a decrease (79.71 ± 8.65 %, P < 

0.05, n = 12, N = 3) in GSMF efflux from the apical membrane when compared 

to the control.  

Figure 4.21 shows the percentage change in intracellular retention of GSMF and 

Hoechst 33342 by rat PTC monolayer on the Transwell filters. Compared to the 

control, the presence of 10 µM MK-571 saw a 1.95-fold increase in GSMF 

retention (195.16 ± 15.32 % of the control, Figure 4.21A, P < 0.01, n = 12, N = 3).  

Hoechst 33342 retention by rat PTC monolayers was also investigated. Figure 

4.21B shows the percentage change in Hoechst 33342 retention by the 

monolayer on Transwell filters. At 202.2 ± 24.01 % (2.02-fold increase, P < 0.01, 

n = 12, N = 3), more Hoechst 33342 was significantly retained in the presence of 

5 µM CsA when compared to the control. Similarly, 1 µM of Ko143 also caused 

Hoechst 33342 retention by the monolayer to increase to 184.1 ± 16.49 % (1.84-

fold, P < 0.01, n = 12, N = 3) when compared to the control.  
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Figure 4.20: Percentage change in GSMF efflux by polarised rat PTC monolayers 

cultured on Transwell filters.  

Efflux of GSMF from the basolateral membrane of rat PTC m onolayers was 

significantly less (12.79 ± 6.17 %) compared to the efflux from the apical 

membrane. The presence of MK-571 caused a decrease (79.71 ± 8.65 %) in 

GSMF efflux from the apical membrane when compared to the control. Each 

bar represents the mean ± SEM of 12 replicates from three separate 

experiments. One-way ANOVA statistical test was performed to determine 

significance. *, P < 0.05, *** P < 0.001.  
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Figure 4.21: Percentage change in GSMF and Hoechst 33342 retention by rat PTC 

monolayers cultured on Transwell filters.  

(A) Compared to the control, the presence of 10 µM MK-571 saw a 1.95-fold 

increase in GSMF retention (195.16 ± 15.32 % of the control). At 202.2 ± 

24.01 % (2.02-fold), more Hoechst 33342 was retained in the presence of 5 

µM CsA when compared to the control. (B) Similarly, 1 µM of Ko143 also 

caused Hoechst 33342 retention by the monolayer to increase to 184.1 ± 

16.49 % (1.84-fold) when compared to the control. Each bar represents the 

mean ± SEM of 12 replicates from three separate experiments. One-way 

ANOVA statistical test was performed to determine significance. ** P < 0.01.  
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4.9 Uptake of ASP+ by rat PTC monolayers 

Along with fluorescence substrate efflux mentioned in Chapter 4.5, rat PTC 

monolayers were also used to determine the functional expression and 

localisation of Oct2. Figure 4.22 shows the percentage change in uptake of ASP+ 

in the presence of 100 µM TEA and 100 µM MPP+.  

Uptake of ASP+ was significantly lower from the apical membrane of the rat PTC 

monolayer (5.06-times lower, P < 0.001, n = 12, N = 3) when compared to the 

basolateral membrane. ASP+ uptake from the basolateral membrane significantly 

decreased in the presence of TEA or MPP+, giving 50.22 ± 4.42 % (P < 0.001, n 

= 12, N = 3) and 46.55 ± 4.99 % (P < 0.01, n = 12, N = 3) of the control, 

respectively. 
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Figure 4.22: Percentage change in uptake of ASP+ by rat PTC monolayers cultured 

on Transwell filters in the presence of inhibitors.  

Uptake of ASP+ was significantly lower from the apical membrane of the rat 

PTC monolayer (5.06-times lower) when compared to the basolateral 

membrane. ASP+ uptake from the basolateral membrane significantly 

decreased in the presence of TEA or MPP+, giving 50.22 ± 4.42 % and 46.55 

± 4.99 % of the control, respectively. Each bar represents the mean ± SEM of 

12 replicates obtained from three separate experiments. Two-way ANOVA 

statistical test was performed to determine significance. *** P < 0.001.  



  Chapter 4: Characterisation of Rat PTCs 

104 | P a g e  
 

4.10 Uptake of lactate by rat PTC monolayers 

Functional expression and localisation of Mct1 was examined in polarised rat 

PTC monolayers. Figure 4.23 shows the amount of lactate taken up by rat PTC 

monolayers in different extracellular conditions. Uptake across the apical 

membrane was 0.55 ± 0.04 pmol/cm2/min, which was 3.63-fold higher than 

uptake across the basolateral membrane (0.15 ± 0.03 pmol/cm2/min, P < 0.01, n 

= 12, N = 3). In the presence of 500 µM phloretin, a Mct1 specific inhibitor, the 

apical uptake of lactate was decreased to 0.26 ± 0.02 pmol/cm2/min (52.7 % of 

control, P < 0.01, n = 12, N = 3). However, the changing of external pH from 7.4 

to 6.0 increased the apical uptake of lactate by 1.58-fold (0.88 ± 0.09 

pmol/cm2/min, P < 0.05, n = 12, N = 3) when compared to the control.  
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Figure 4.23: Amount of lactate uptake by rat PTC monolayers cultured on Transwell 

filters.  

Uptake across the apical membrane was 0.55 ± 0.04 pmol/ cm2/min, which was 

3.63-fold higher than uptake across the basolateral membrane (0.15 ±  0.03 

pmol/cm2/min). In the presence of 500 µM phloretin, the apical uptake of 

lactate was decreased to 0.26 ± 0.02 pmol/cm2/min. However, the change of  

external pH from 7.4 to 6.0 increased the apical uptake of lactate by 1.58 -

fold (0.88 ± 0.09 pmol/cm2/min) when compared to the control. Each bar 

represents the mean ± SEM of 12 replicates  from three separate experiments.  

One-way ANOVA statistical test was performed to determine significance. *, 

P < 0.05, **, P < 0.01. 
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4.11 Discussion 

One of the important properties of a renal cell model is the ability of the transport 

proteins expressed on the basolateral and apical membranes of the cells to 

function as it would in vivo. In this chapter, rat PTCs were cultured on plastics 

and filter support for the initial characterisation of the cells, which focused on 

transporter expression of a range of key proximal tubule transporters at the 

mRNA level and compared the expression patterns with the expression patterns 

found in freshly isolated PTCs. This was followed by a study of the functional 

expression and localisation of some transporters expressed in the proximal 

tubule. 

Of all the transporters expressed in the proximal tubule, focus was given to Mdr1, 

Bcrp, Mrp2, Oat1, Oct2, Oatp4c1, Slc2a9, Urat1, Mate1 and Mct1 in this project. 

A paper published in 2010 by the International Transporter Consortium identified 

the importance of these 10 transporters in drug absorption and disposition in the 

human kidney (Consortium, 2010). Due consideration for the expression and 

function of these transporters are thus needed in the rat PTCs to identify its 

robustness as a model of drug interaction studies.     

4.11.1 Differential mRNA expression of transporters in rat PTCs 

The mRNA expression levels of several transporters in two different cell culture 

conditions were examined. Rat PTCs cultured on plastics for 6 days, and rat 

PTCs cultured on Transwell filter support also for 6 days were compared to 

freshly isolated rat PTCs. Freshly isolated rat PTCs refer to the cells from the 

isolation procedure prior to their growth on various platforms. These cells were 

considered to be representative of the native proximal tubule in vivo and thus 

used as the control. 

Endpoint PCRs performed using cDNA template that was reverse transcribed 

from RNA isolated from the three rat PTC cultures detected the expression of all 

the transporters tested. Visualisation of the PCR products on the agarose gels 

showed the presence of only one product in each of the lanes. This indicated the 

specificity of the primers used as only the gene of interest was amplified. In 

addition, the size of the PCR products and their sequences also validated the 

specificity of the primers. However, even though mRNA expression of all the 
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transporters was detected using endpoint PCR, the difference in the intensity of 

the PCR products between the lanes in the same gel suggested there were 

differences in the level of expression between the two culture platforms and the 

native tissue. For instance, Mrp2 PCR product was amplified from freshly isolated 

rat PTCs, PTCs cultured on plastics, and PTCs cultured on filter support, but the 

intensities of the bands were lower in the latter two. The same pattern of 

expression was detected in Oat1, Oct2, Oatp4c1, Slc2a9, Urat1 and Mct1, 

although Mdr1, Bcrp and Mct1 showed equal PCR product intensity in all samples.  

The intensity of a band on an agarose gel is a qualitative measure of the amount 

of PCR product. For a quantitative measure of the amount of starting PCR 

template, and indirectly the mRNA level, real-time quantitative PCR is a better 

suited technique. The relative mRNA expression levels of the ten transporters 

were determined using this method. The percentage change in expression levels 

between the culture conditions showed similar patterns to the results of the 

endpoint PCR. The expression levels of cultured cells were significantly lower 

than that of freshly isolated cells across the array of transporters tested; in the 

majority expression was down regulated more than 3-fold when compared to the 

native cells.  

As mentioned in the Chapter 3, the decrease in expression of many transporters 

is expected when primary cells are cultured (Bens and Vandewalle, 2008; 

Nakanishi et al., 2011). There is no data in the literature that provides an 

explanation for the phenomenon. However, dedifferentiation of epithelial cells 

may offer an inclination as to why cells lose transporter expression during culture. 

In the context of renal epithelial cells, dedifferentiation is defined as the loss of a 

cell’s epithelial phenotype and acquisition of features of a mesenchymal cell, such 

as the expression of vimentin (Liu, 2004; Russ et al., 2009). Vimentin is an 

intermediate filament protein found only in mesenchymal cytoskeleton (Herrmann 

et al., 2009; Russ et al., 2009), and increases in expression during kidney injury 

(Witzgall et al., 1994). Zhuang et al. showed vimentin was detected in freshly 

isolated mouse PTCs, and the level of vimentin was elevated in culture over a 

period of 7 days (Zhuang et al., 2012).  

Mature renal tubular cells under normal conditions are tightly connected to each 

other via tight-junctions to form an integrated epithelial sheet. They are quiescent 
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and exhibit a differentiated phenotype (Bonventre, 2003). Alterations in the 

structure, for instance, during cell isolation, would destabilise the renal epithelium 

integrity and make cells dissociate from their neighbour and lose their polarity. It 

is this process that seemed to “injure” the cells and initiate the phenotypic switch 

of renal epithelial cells from the quiescent, differentiated state to a 

dedifferentiated one. And it is this dedifferentiation that could have caused the 

transition of these epithelial cells to mesenchymal and the subsequent loss of 

transporters.  

Whilst dedifferentiation was a concern in the culture of the rat PTCs, there was 

general consensus that primary tubule cells do retain their proximal tubule 

phenotype better than other renal cell lines (Terryn et al., 2007; Bens and 

Vandewalle, 2008; Nakanishi et al., 2011). For example, Caki-1 cells lack mRNA 

of several organic anion and organic cation transporters, including OAT1, OAT2, 

OCT1 and OCT2 (Glube et al., 2006; Hilgendorf et al., 2007). Similarly, rat cell 

line NRK-52E, and swine cell line LLC-PK1 lack mRNA expression of these 

transporters (Fauth et al., 1988; Lash, 2006). Furthermore, LLC-PK1, which is 

often used to evaluate renal drug transport, also lack proximal brush-border 

enzymes compared with those in primary cultured PTCs (Terryn et al., 2007). 

Taking these findings together, expression of major transporters was still 

relatively well preserved in the rat PTCs, albeit at a lower expression level than 

the native cells.  

It has been shown that maintenance of primary cells differentiated state, and 

incidentally their brush-border enzyme activity, was greatly influenced by the 

composition of the culture medium, and had been used in this project to 

encourage rat PTCs to differentiate (Taub et al., 1989; Courjault-Gautier et al., 

1995). In addition, it has also been proven that bathing epithelial cells at both the 

apical and basolateral sides, thus replicating the in vivo physiology, enhances 

their ability to remain differentiated (Fulcher et al., 2005). 

4.11.2 Functional expression of ABC transporters and Oct2 

Rat PTCs were examined for their transporter activity to describe the aptness of 

this cell model. Fluorescent substrates, which are removed from or taken up into 

cells by specific transporters, provide a method of measuring the functional 

expression of particular transporters. Hoechst 33342 and CMFDA have been 
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previously used for this purpose (Brown et al., 2008; Jenkinson et al., 2012), and 

were used in this project to characterise Mdr1, Bcrp and Mrps. Fluorescent 

substrate ASP+ was utilised to determine functional expression of Oct1. 

Hoechst 33342 is a cell-permeable nuclear stain that easily diffuses through cell 

membranes. Upon chelation with double stranded DNA, it emits a blue 

fluorescence when excited in the correct spectrum (Lalande et al., 1981). When 

rat PTCs were exposed to a concentration of Hoechst 33342, a state of 

equilibrium was achieved between the amount of Hoechst 33342 inside the cell 

and the amount actively pumped out by Mdr1 and Bcrp. The concentration of 

extracellular Hoechst 33342 that would cause half the maximal amount of 

Hoechst 33342 (Km) inside rat PTCs was approximately 4 μM. As would be 

expected, in the presence of an Mdr1 inhibitor (5 µM CsA) (Gupta et al., 2006), 

efflux of Hoechst 33342 was hindered and the equilibrium shifted to decrease the 

Km to approximately 0.4 μM (Figure 4.13). CsA was also found to inhibit Hoechst 

33342 efflux in a concentration dependent manner, with IC50 of around 2 μM. 

These results provide evidence for the expression of functional Mdr1 by rat PTCs.  

Similarly, expression of functional Bcrp was surmised when the Km of Hoechst 

retention decreased to approximately 0.2 μM when rat PTCs were exposed to 1 

µM Ko143, a Bcrp inhibitor (Haslam et al., 2011). Ko143 also inhibited Hoechst 

33342 efflux with approximate IC50 of 5.5 μM (Figure 4.15).  

GF120918 was also used as an inhibitor of Hoechst 33342 efflux by rat PTCs. 

GF120918 was originally developed as a MDR1 inhibitor (Tan et al., 2000). 

However, it has been shown that GF120918 is also a potent human BCRP and 

rat Bcrp inhibitor in transfected cell lines (Pan et al., 2007; Wang et al., 2008a). 

When GF120918 was used to inhibit the efflux of Hoechst 33342 in rat PTCs, one 

would expect the IC50 to decrease significantly more than with just CsA or Ko143 

alone. Indeed, that was observed in the rat PTCs when GF120918 was used; the 

IC50 was around 0.2 μM whereas it was 2 μM with CsA and 5 μM with Ko143 

(Figure 4.14).  

The CMFDA metabolite, GSMF, is another well established fluorescent substrate 

for the study of Mrp efflux transporters (Gutmann et al., 1999). Treatment of rat 

PTCs with another Mrp substrate MK-517 resulted in an increase in the 

intracellular retention of GSMF when compared to the control (Figure 4.16), 
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suggesting GSMF efflux by Mrps had been blocked. MK-571 was also found to 

inhibit the efflux of GSMF in a concentration dependent manner with apparent 

IC50 of around 1 μM, confirming functional expression of Mrps. 

Unlike the retention of Hoechst 33342 in rat PTCs that began to plateau at 2 µM, 

it appeared impossible to saturate the cells with GSMF even at high extracellular 

CMFDA concentration. The two-step process of CMFDA conversion to GSMF 

inside cells might explain why the relationship between extracellular CMFDA 

concentration and intracellular fluorescence was linear over the concentration 

range tested. Lipophilic CMFDA would easily diffuse across the cell membrane 

before being broken down by esterases to the hydrophilic intermediate 5-

chloromethylfluorescein (CMF). In the second step, CMF reacts with intracellular 

glutathione via glutathione-S-transferase to form fluorescent GSMF (Müller et al., 

2007). This conversion would be rapid and allow more CMFDA to be taken up by 

the cells without saturation. 

Along with ABC transporters, the functional expression of Oct2 was also 

demonstrated. APS+ is a fluorescent organic cation and was first used by  

Pietruck et al. for organic cation transport measurements in rats in vivo (Peitruck 

and Ullrich, 1995). Since then, the use of ASP+ as a fluorescent substrate has 

been carried out in human alveolar (A549), bronchial (Calu-3) and intestinal 

(Caco-2) epithelium, amongst others (Salomon et al., 2012).The uptake of 

fluorescence substrate ASP+ by rat PTCs cultured on plastic showed saturable 

kinetics with Km of 5.5 µM (Figure 4.17A). In the presence of TEA or MPP+, both 

high affinity substrates of Oct2, the uptake was significantly hindered by as much 

as over 2-fold when compared to the control. This result, along with the transcript 

for Oct2 detected, provides evidence for the expression of Oct2 in the rat PTCs.  

4.11.3 Simultaneous measurement of ABC transporter activities  

So far, publications featuring efflux assays had been looking at the action of one 

efflux transporter at a time (van den Berg van Saparoea et al., 2005; Wang et al., 

2008b). A novel technique had been developed to perform simultaneous 

measurement of the activities of two transporters and proved to be advantageous 

(Jenkinson et al., 2012). Figure 4.19 shows an increase in intracellular retention 

of GSMF relative to the control when either 5 µM CsA or 10 µM MK-571 were 

exposed to rat PTCs. However, increased Hoechst 33342 retention was only 
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observed in CsA-treated cells. MK-571 had no effect on the amount of Hoechst 

33342 retained in rat PTCs. The data suggested that whilst MK-571 is a specific 

inhibitor of Mrps at the concentration used, CsA is less specific and inhibits efflux 

mediated by both Mdr1 and Mrps. Similar interactions between CsA and Mrps 

have previously been reported (Schinkel and Jonker, 2003). An advantage of this 

assay was that it used the same set of cells to measure the functional expression 

of two different transporters, thus providing a form of internal control. Another 

benefit of simultaneous measurement of transporter activities is the possibility of 

determining the effects, if any, of a range of compounds, in a quick and effective 

way, as demonstrated by the above.  

4.11.4 Functional expression and localisation of Mrps and Oct2 on 

polarised rat PTCs 

The experiments mentioned thus far had been performed on rat PTCs cultured 

on plastics, and demonstrated the functional expression of several ABC 

transporters and Oct2. To identify the localisation of these transporters, the 

experiments were repeated on rat PTCs cultured on filter support, where the 

apical and basolateral surfaces of the rat PTC monolayers could be 

compartmentalised. 

GSMF is a fluorescent substrate of Mrps, and its appearance in a chamber would 

signify the presence of the transporter adjacent to that chamber. Figure 4.20 

shows GSMF was effluxed 7.8 times more from the apical side. As expected, the 

efflux from the apical membrane was significantly inhibited by 10 µM MK-517, 

which caused the amount of GSMF present in the apical chamber to decrease by 

1.2-fold. This data corresponded with the intracellular retention of GSMF by the 

same set of rat PTC monolayers, in that rat PTC monolayers retained 1.9-fold 

more GSMF in the presence of MK-571, thus confirming the functional expression 

of Mrps on the apical membrane of rat PTC monolayers (Figure 4.21A). This was 

also in accordance with other published works that shows Mrp localisation on the 

apical membrane of renal epithelial cells (Kool et al., 1997; Schaub et al., 1999). 

The compartmentalised uptake of ASP+ from the apical and basolateral 

membranes was also performed. ASP+ was shown to be taken up significantly 

more from the basolateral membrane (5-fold) than the apical membrane, but 

significantly decreased in the presence of TEA or MPP+ (1.99-fold and 2.1-fold 
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respectively), both high-affinity substrates of Oct2 (Figure 4.22). Once again, this 

signified the presence of basolaterally located Oct2 in rat PTC monolayers.  

Unfortunately, Hoechst 33342 would not fluoresce unless bound to DNA. That 

meant its efflux into extracellular solutions by rat PTC monolayers was 

undetectable, though functional expression of Mdr1 and Bcrp could still be 

detected in the monolayers. Hoechst 33342 retention by rat PTC monolayers in 

the presence of CsA was almost up 2-fold when compared to the control (Figure 

4.21B). Similarly, Hoechst 33342 retention was also up 1.8 fold in the presence 

of Ko143 when compared to the control.  

4.11.5 Polarised lactate uptake by rat PTC monolayers 

In agreement with previous studies, high expression of mRNA for Mct1 was 

observed in rat PTCs (Eladari et al., 1999; Wang et al., 2006). Functional 

expression of Mct1 was also performed on rat PTC monolayers. Lactate uptake 

by rat PTCs monolayers showed pH-dependency suggesting the presence of an 

H+-dependent monocarboxylate transporter (Figure 4.23). A marked difference 

between the uptake of lactate from the apical membrane and basolateral 

membrane was also observed. Uptake of lactate from the apical membrane was 

3.6-fold higher than from the basolateral side. Functional expression of Mct1 was 

confirmed when lactate uptake was significantly decreased in the presence of 

phloretin, a potent Mct1 inhibitor (Jackson and Halestrap, 1996).  

The source and uptake route for monocarboxylates in rat PTCs have not been 

characterised in detail. However, initial studies have shown that Mct1 can 

mediate net lactate uptake or excretion depending on the intracellular and 

extracellular pH ratio, and on the relative concentrations of lactate inside or 

outside the cell (Garcia et al., 1994). In the kidney, the proximal tubule is engaged 

in gluconeogenesis and oxidation, and Mct1 may be involved in taking up lactate 

or pyruvate for these processes. Conversely, Mct1 may act as an efflux pathway 

for lactate from glycolysis or from the reabsorption of filtered lactate that has been 

taken up from urine via other transporters (Jackson and Halestrap, 1996).  
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4.12 Summary 

The expression of several important drug transporters by rat PTCs at the mRNA 

and functional levels has been demonstrated in this chapter. Transcripts for 

transporters including Bcrp, Mdr1, Mrp2, Oat1, Oct2, Oatp4c1, Slc2a9, Urat1, 

Mate1 and Mct1 were detected in rat PTCs. The functional expression and 

localisation of some of the transporters on polarised rat PTC monolayers has also 

been elucidated, and is summed up in Figure 4.24. While these data highlight the 

capacity of rat PTCs to reflect proximal tubules in vivo, their capacity as an in vitro 

model for renal drug handling would need to be investigated. The subsequent 

chapters investigate the differences in the renal handling of typical renal 

molecules urate and digoxin by rat and human PTCs. 
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Figure 4.24: The key drug transporters in rat PTCs. 

Of all the transporters expressed in the proximal tubule, focus was given 

Mdr1, Bcrp, Mrp2, Oat1, Oct2, Oatp4c1, Slc2a9, Urat1,  Mate1 and Mct1 in 

this project. mRNA of all ten transporters were detected in freshly isolated 

and cultured rat PTCs. The localisations and functions of some of these  

transporters were based on data obtained in this project. Others were based 

on data from the literature.  
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5.1 Chapter overview 

This chapter discusses the results of the mechanisms of urate handling by rat 

and human proximal tubule cell (PTC) monolayers cultured on Transwells. The 

data from the following experiments are highlighted in this chapter: 

 Unidirectional urate fluxes and uptake by rat and human PTC monolayers.  

 The effects of benzbromarone, an uricouric agent, on the unidirectional 

fluxes and uptake of urate by rat and human PTC monolayers. 

 The effects of Ko143, a BCRP inhibitor, on the unidirectional fluxes and 

uptake of urate by rat and human PTC monolayers. 

 The effects of OAT substrate, p-aminohippuric acid (PAH), on the 

unidirectional fluxes and uptake of urate by rat and human PTC 

monolayers.  

 The effects of MK-571, an MRP inhibitor, on urate unidirectional fluxes and 

uptake up rat and human PTC monolayers.  

 The uptake of urate by Xenopus oocytes transfected with human URAT1 

and SLC2A9. 
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5.2 Urate handling by rat PTC monolayers 

Rat PTC monolayers were used to investigate the renal handling of urate 

molecules by rat proximal tubule. Unidirectional urate transepithelial fluxes in the 

apical to basolateral direction (JA-B), and in the basolateral to apical direction (JB-

A), were carried out using 35 µM urate in all urate experiments. The net flux (JNet) 

was calculated from the difference between the two fluxes. Uptake of urate across 

the apical and basolateral membranes was also determined from the amount of 

intracellular urate in rat PTC monolayers after the flux. 

Figure 5.1A shows urate in rat PTC monolayers exhibited a net absorption 

pathway. JA-B (33.27 ± 3.29 pmol/cm2/hr) was 3.21-fold higher than JB-A (10.34 ± 

2.95 pmol/cm2/hr), which led to an absorptive JNet of 22.93 ± 3.63 pmol/cm2/hr (P 

< 0.01, n = 12, N = 3). The amount of urate taken up across the apical membrane 

and basolateral membrane of the rat PTC monolayers were 4.31 ± 0.91 

pmol/cm2/hr and 1.26 ± 0.42 pmol/cm2/hr, respectively, which was 3.41-fold more 

urate uptake across the apical side (P < 0.01, n = 12, N = 3, Figure 5.1B). 
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Figure 5.1: Unidirectional urate fluxes and uptake by rat PTC monolayers. 

(A) Urate JA-B was 33.27 ± 3.29 pmol/cm2/hr, which was 3.21-fold higher than 

JB-A (10.34 ± 2.95 pmol/cm2/hr). This led to an absorptive J Net of 22.93 ± 3.63 

pmol/cm2/hr. (B) The amount of urate taken up across the apical membrane 

and basolateral membrane of the rat PTC monolayers were 4.31 ± 0.91 

pmol/cm2/hr and 1.26 ± 0.42 pmol/cm2/hr, respectively. Each bar represents 

the mean ± SEM of 12 replicates obtained from 3 separate experiments.  

Student t test was performed to determine statistical significance in the 

differences between the conditions. **, P < 0.01.  
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5.3 The effects of benzbromarone on urate transport by rat 

PTC monolayers 

Urate unidirectional fluxes were carried out in the presence of an uricouric drug 

benzbromarone to determine the mechanism of urate transport in rat PTC 

monolayers. Either the apical or basolateral membranes of the rat PTC 

monolayers were exposed to 50 µM benzbromarone for 30 minutes prior and 

during urate fluxes. Figure 5.2 shows the results of urate JA-B and JB-A in the 

presence of benzbromarone.  

Regardless of whether benzbromarone was on either the apical or basolateral 

membranes, rat PTC monolayers JA-B was significantly decreased in the drug’s 

presence when compared to the control. JA-B had the sharpest decrease in 

magnitude when rat PTC monolayers were treated with benzbromarone on the 

apical membrane (a 72.7 % decrease, from 33.27 ± 3.29 pmol/cm2/hr to 9.09 ± 

3.15 pmol/cm2/hr, P < 0.01, n = 10, N = 3, Figure 5.2A). When the monolayers 

were treated with benzbromarone on the basolateral membrane, JA-B was 15.13 

± 3.32 pmol/cm2/hr, a 54.5 % decrease (P < 0.01, n = 12, N = 3). Urate JB-A was 

16.73 ± 1.69 pmol/cm2/hr and 15.94 ± 1.87 pmol/cm2/hr when benzbromarone 

was present on the apical and basolateral membranes, respectively (Figure 5.2B), 

but when compared to the control JB-A of 10.34 ± 2.95 pmol/cm2/hr, no statistically 

significant difference was observed (P > 0.05, n = 12, N = 3). 

Uptake of urate across the apical membrane showed marked differences as 

shown in Figure 5.3. When benzbromarone was treated from the apical 

membrane, the amount of urate uptake across the apical membrane was 2.29-

times lower than control (1.88 ± 0.29 pmol/cm2/hr, P < 0.01, n = 12, N = 3, Figure 

5.3A). However, uptake of urate was 2.48-fold higher than control when 

benzbromarone was treated on the basolateral side (10.70 ± 1.44 pmol/cm2/hr, 

P < 0.01, n = 11, N = 3). Uptake of urate across the basolateral membrane in the 

presence of apically-treated benzbromarone was 1.26 ± 0.42 pmol/cm2/hr, which 

was not significantly different to the control of 1.50 ± 0.47 pmol/cm2/hr (Figure 

5.3B, P > 0.05, n = 11, N = 3). But when benzbromarone was on the basolateral 

membrane, basolateral uptake was increased in magnitude to 2.73 ± 0.37 

pmol/cm2/hr (P < 0.05, n = 11, N = 3). 
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Figure 5.2: Unidirectional urate fluxes by rat PTC monolayers in the presence of 50 

µM benzbromarone.  

(A) JA-B saw a 72.7 % decrease in magnitude when benzbromarone was on the 

apical membrane (from 33.27 ± 3.29 pmol/cm2/hr to 9.09 ± 3.15 pmol/cm2/hr).  

When the monolayers were treated with benzbromarone on the basolateral 

membrane, JA-B was 15.13 ± 3.32 pmol/cm2/hr (54.5 % decrease) when 

compared to the control. (B) JB-A was 16.73 ± 1.69 pmol/cm2/hr and 15.94 ± 

1.87 pmol/cm2/hr when benzbromarone was present on the apical and 

basolateral membranes, respectively, but when compared to the control JB-A  

of 10.34 ± 2.95 pmol/cm2/hr, no statistically significant difference was 

observed between the conditions. Each bar represents the mean ± SEM of 10 -

12 replicates from three separate experiments. Two-way ANOVA was 

performed to determine significant difference between the conditions. **, P 

< 0.01. 
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Figure 5.3: Uptake of urate by rat PTC monolayers in the presence of 50 µM 

benzbromarone. 

(A) When benzbromarone was treated from the apica l membrane, the amount 

of urate uptake across the apical membrane was 2.29 -times lower than 

control (1.88 ± 0.29 pmol/cm2/hr). However, uptake of urate was 2.48-fold 

higher than control when benzbromarone was treated on the basolateral side 

(10.70 ± 1.44 pmol/cm2/hr). (B) Uptake of urate across the basolateral 

membrane was 1.50 ± 0.47 pmol/cm2/hr and when benzbromarone was present 

on the apical membrane uptake was 1.26 ± 0.42 pmol/ cm2/hr, which was not 

significantly different. But when benzbromarone was on the basolateral 

membrane, basolateral uptake was increased in magnitude to 2.73 ± 0.37 

pmol/cm2/hr. Each bar represents the mean ± SEM of 10-12 replicates from 

three separate experiments. Two-way ANOVA was performed to determine 

significant difference between the conditions. *, P < 0.05, **, P < 0.01.  
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5.4 The effects of Ko143 on urate transport by rat PTC 

monolayers 

The effects of Bcrp inhibitor, Ko143, in urate transport by rat PTC monolayers 

were also investigated. Unidirectional urate fluxes and uptake were carried out 

using rat PTC monolayers pre-treated with 1 µM Ko143. Ko143 was treated and 

present on either the apical or basolateral membrane of the monolayers during 

the experiments. Figure 5.4 and Figure 5.5 summarise the results.  

Urate JA-B exhibited no significant difference in magnitude between the control 

monolayers and monolayers treated with Ko143 (Figure 5.4A). The JA-B  values 

were: control, 33.27 ± 3.29 pmol/cm2/hr, in the presence of apical Ko143, 34.25 

± 3.96 pmol/cm2/hr, in the presence of basolateral Ko143, 35.68 ± 3.08 

pmol/cm2/hr (P > 0.05, n = 12, N = 3). However, JB-A saw a 68.5 % decrease in 

magnitude when Ko143 was present in the apical membrane (from 10.34 ± 2.95 

pmol/cm2/hr to 3.26 ± 1.00 pmol/cm2/hr, P < 0.05, n = 12, N = 3, Figure 5.4B). No 

significant difference was observed in JB-A when Ko143 was present in the 

basolateral membrane (10.92 ± 2.14 pmol/cm2/hr, P > 0.05, n = 12, N = 3). 

No significant difference was also observed in urate uptake across the apical 

membrane of the rat PTC monolayers with Ko143 treatment (Figure 5.5A). 

Uptake across the basolateral membrane, however, saw a significant increase in 

magnitude when ko143 was treated on the apical membrane of the monolayer. 

Uptake of urate was up 2.58-fold when compared to the control (from 1.26 ± 0.42 

pmol/cm2/hr to 3.25 ± 0.64 pmol/cm2/hr, P < 0.05, n = 12, N = 3, Figure 5.5B). No 

significant difference was observed in basolateral uptake when Ko143 was 

treated on the basolateral side of the monolayer (1.63 ± 0.67 pmol/cm2/hr, P > 

0.05, n = 12, N = 3).  
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Figure 5.4: Unidirectional urate fluxes by rat PTC monolayers in the presence of 1 

µM Ko143. 

(A) JA-B exhibited no significant difference in magnitude in the presence of  

Ko143 when compared to the control. (B) However, JB-A saw a 68.47 % 

decrease in magnitude when Ko143 was present in the apical membrane (from 

10.34 ± 2.95 pmol/cm2/hr to 3.26 ± 1.00 pmol/cm2/hr). No significant 

difference was observed in JB-A when Ko143 was present in the basolateral 

membrane (10.92 ± 2.14 pmol/cm2/hr). Each bar represents the mean ± SEM 

of 12 replicates obtained from three separate experiments . Two-way ANOVA 

was performed to determine statistical significant  difference between the 

conditions. *, P < 0.05. 
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Figure 5.5: Urate uptake by rat PTC monolayers in the presence of 1 µM Ko143. 

(A) No significant difference was observed in urate uptake across the apical 

membrane of the rat PTC monolayers with Ko143 treatment. (B) Uptake of  

urate across the basolateral membrane was up 2.58-fold when compared to 

the control (from 1.26 ± 0.42 pmol/cm2/hr to 3.25 ± 0.64 pmol/cm2/hr). No 

significant difference was observed in basolateral uptake when Ko143 wa s 

treated on the basolateral side of the monolayer (1.63 ± 0.67 pmol/ cm2/hr). 

Each bar represents the mean ± SEM of 12 replicates  obtained from three 

separate experiments. Two-way ANOVA was performed to determine 

significant difference between the conditions. *, P < 0.05. 
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5.5 The effects of PAH on urate transport by rat PTC 

monolayers 

Unidirectional urate fluxes were repeated in the presence of 10 µM PAH to 

identify Oat1-mediated component of urate transport in rat PTC monolayers. PAH 

was treated only on the apical or basolateral side of the confluent monolayer. The 

results are shown in Figure 5.6 and Figure 5.7. 

The presence of PAH on the apical or basolateral sides did not affect the 

magnitude of JA-B significantly (P > 0.05, n = 9, N = 3). The values were not 

significantly different to the control (PAH on the apical side; 35.40 ± 3.29 

pmol/cm2/hr, PAH on the basolateral side; 30.66 ± 4.07 pmol/cm2/hr, control; 

33.27 ± 3.29 pmol/cm2/hr, n = 9, N = 3). JB-A was significantly lowered with 

treatment of PAH on the basolateral side of the monolayer when compared to the 

control. The magnitude fell from 10.34 ± 2.95 pmol/cm2/hr to 4.15 ± 0.72 

pmol/cm2/hr, a 59.9 % decrease (P < 0.05, n = 9, N = 3).  

Uptake of urate across the apical membrane did not change significantly with 

apical or basolateral treatment of PAH (P > 0.05, n = 9, N = 3). However, uptake 

of urate across the basolateral membrane saw a 65.9 % decrease in magnitude 

(from 1.26 ± 0.42 pmol/cm2/hr to 0.43 ± 0.25 pmol/cm2/hr, P < 0.05, n = 9, N = 3) 

when PAH was presence in the basolateral side of the rat PTC monolayers. 



Chapter 5: Urate Handing by PTC Monolayers 

126 | P a g e  
 

A 

0

10

20

30

40

Control PAH
on apical

PAH
on basolateral

U
ra

te
 J

A
-B

(p
m

o
l/c

m
2
/h

r)

 

B 

0

2

4

6

8

10

12

14

16
*

Control PAH
on apical

PAH
on basolateral

U
ra

te
 J

B
-A

(p
m

o
l/c

m
2
/h

r)

 

Figure 5.6: Unidirectional urate fluxes by rat PTC monolayers in the presence of 10 

µM PAH.  

(A) The presence of PAH on the apical or basolateral sides did not affect the 

magnitude of JA-B significantly. (B) JB-A was significantly lowered with 

treatment of PAH on the basolateral side of the monolayer when compared to 

the control. The magnitude fell from 10.34 ± 2.95 pmol/ cm2/hr to 4.15 ± 0.72 

pmol/cm2/hr, a 59.9 % decrease. Each bar represents the mean ± SEM of 9 -

10 replicates obtained from three separate experiments. Two-way ANOVA 

was performed to determine significant difference between the conditions. *,  

P < 0.05. 
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Figure 5.7: Urate uptake by rat PTC monolayers in the presence of 10 µM PAH. 

(A) Uptake of urate across the apical membrane did not change significantly 

with apical or basolateral treatment of PAH. (B) However, uptake of urate 

across the basolateral membrane saw a 65.9 % decrease in magni tude (from 

1.26 ± 0.42 pmol/cm2/hr to 0.43 ± 0.25 pmol/cm2/hr) when PAH was presence 

in the basolateral side of the rat PTC monolayers. Each bar represents the 

mean ± SEM of 9-10 replicates from three separate experiments. Two-way 

ANOVA was performed to determine significant difference between the 

conditions. *, P < 0.05. 
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5.6 The effects of MK-571 on urate transport by rat PTC 

monolayers 

Mrp inhibitor, MK-571, was also used during urate fluxes to verify if urate transport 

by rat PTC monolayers had an Mrp-mediated component. Unidirectional urate 

fluxes were performed in rat PTC monolayers in the presence of 10 µM MK-571. 

The results are shown in Figure 5.8. 

Urate JA-B and JB-A were 33.98 ± 3.34 pmol/cm2/hr and 12.09 ± 2.81 pmol/cm2/hr, 

respectively, in the presence of MK-571 (Figure 5.8). These values were not 

significantly different in magnitude when compared to the control JA-B and JB-A (P > 

0.05, n = 12, N = 3). Similarly, uptake across the apical and basolateral 

membranes (4.13 ± 0.73 pmol/cm2/hr and 1.75 ± 0.41 pmol/cm2/hr, respectively) 

in the presence of MK-571 were not significantly different to the controls (P > 0.05, 

n = 12, N = 3). 
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Figure 5.8: Unidirectional urate fluxes and uptake by rat PTC monolayers in the 

presence of 10 µM MK-571. 

(A) Urate JA-B and JB-A were 33.98 ± 3.34 pmol/cm2/hr and 12.09 ± 2.81 

pmol/cm2/hr, respectively, in the presence of MK-571. These values were not 

significantly different in magnitude when compared to the controls. ( B) 

Uptake across the apical and basolateral membranes were 4.13 ± 0.73 

pmol/cm2/hr and 1.75 ± 0.41 pmol/cm2/hr, respectively, in the presence of 

MK-571. These values were not significantly different to the controls. Each 

bar represents the mean ± SEM of 12 replicates  from three separate 

experiments. Student t test was performed to determine significant difference 

between the conditions.  
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5.7 Urate handling by human PTC monolayers 

Unidirectional urate fluxes and uptake were also carried out in human PTC 

monolayers to highlight any differences the rat and human PTC models may have. 

Similar to the experiments using rat PTC monolayers, this series of experiments 

were carried out using 35 µM of urate. 

Like the rat PTC monolayers, human PTC monolayers also exhibit net urate 

absorption (Figure 5.9A). Urate JA-B (47.59 ± 4.83 pmol/cm2/hr) was 3.43-fold 

higher than JB-A (13.87 ± 1.78 pmol/cm2/hr), which gave an absorption JNet of 

33.72 ± 6.30 pmol/cm2/hr (P < 0.001, n = 12, N = 3). Urate uptake was 

predominately across the apical side, which was 7.64 ± 1.16 pmol/cm2/hr, 

compared to the across the basolateral side which was 2.60 ± 0.71 pmol/cm2/hr 

(66.0 % decrease, P < 0.01, n = 12, N = 3, Figure 5.9B). 
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Figure 5.9: Unidirectional urate fluxes and uptake by human PTC monolayers. 

(A) Urate JA-B (47.59 ± 4.83 pmol/cm2/hr) was 3.43-fold more than JB-A (13.87 

± 1.78 pmol/cm2/hr), which gave a JNet absorption of 33.72 ± 6.30 

pmol/cm2/hr. (B) Urate uptake was predominately across the apical side,  

which was 7.64 ± 1.16 pmol/cm2/hr, compared to the across the basolateral 

side which was 2.60 ± 0.71 pmol/cm2/hr,  a 66.0 % decrease. Each bar 

represents the mean ± SEM of 12 replicates  from three separate experiments.  

Student t test was performed to determine statistica l significance. **, P < 

0.01, ***, P < 0.001.  
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5.8 The effects of benzbromarone on urate transport by human 

PTC monolayers 

Unidirectional urate fluxes and uptake by human PTC monolayers were repeated 

in the presence of benzbromarone. 50 µM of benzbromarone was treated on 

either the apical or basolateral membranes of the human PTC monolayers prior 

to the initiation of urate fluxes. The results are presented in Figure 5.10 and 

Figure 5.11. 

Urate JA-B saw marked changes in the presence of benzbromarone (Figure 

5.10A). When benzbromarone was treated on the apical side of the human PTC 

monolayers, JA-B decreased 71.7 % when compared to the control (from 47.59 ± 

4.83 pmol/cm2/hr to 13.47 ± 3.46 pmol/cm2/hr, P < 0.01, n = 11, N = 3). Similarly, 

when benzbromarone was treated on the basolateral side of the monolayer, JA-B 

was decreased to 14.28 ± 4.46 pmol/cm2/hr, a 70.0 % decrease (P < 0.01, n = 

11, N = 3). Conversely, the presence of benzbromarone on the apical membrane 

caused the JB-A to increase by 1.57-fold, from 13.86 ± 1.78 pmol/cm2/hr to 21.81 

± 2.60 pmol/cm2/hr (P < 0.05, n = 11, N = 3, Figure 5.10B). When compared to 

the control, JB-A did not exhibit statistically significant change when 

benzbromarone was on the basolateral membrane.   

Only urate uptake across the apical membrane was significantly different when 

compared to their respective controls. Apical uptake of urate was 2.46 times lower 

in magnitude when benzbromarone was treated on the apical membrane of the 

human PTC monolayer (from 7.64 ± 1.16 pmol/cm2/hr to 3.11 ± 0.69 pmol/cm2/hr, 

P < 0.05, n = 11, N = 3, Figure 5.11B). Urate uptake across the apical membrane 

was increased by 1.88-fold when benzbromarone was on the basolateral 

membrane (14.38 ± 1.54 pmol/cm2/hr, P < 0.05, n = 12, N = 3). Basolateral uptake 

of urate was 3.22 ± 1.04 pmol/cm2/hr and 3.35 ± 0.59 pmol/cm2/hr when 

benzbromarone was on the apical and basolateral membrane of the monolayer, 

respectively. When compared to the control basolateral uptake of urate at 2.60 ± 

0.71 pmol/cm2/hr, no statistically significant differences were calculated (Figure 

5.11B).  
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Figure 5.10: Unidirectional urate fluxes by human PTC monolayers in the presence 

of 50 µM benzbromarone. 

(A) JA-B decreased 71.7 % in the presence of apically-treated benzbromarone 

when compared to the control (from 47.59 ± 4.83 pmol/ cm2/hr to 13.47 ± 3.46 

pmol/cm2/hr). When benzbromarone was treated on the basolateral side of the 

monolayer, JA-B decreased to 14.28 ± 4.46 pmol/cm2/hr (70.0 %). (B) 

Conversely, the presence of benzbromarone on the apical membrane caused 

JB-A to increase by 1.57-fold, from 13.86 ± 1.78 pmol/cm2/hr to 21.81 ± 2.60 

pmol/cm2/hr. When compared to the control, JB-A did not exhibit statistically 

significant change when benzbromarone was on the basolateral membrane. 

Each bar represents the mean ± SEM of 11-12 replicates obtained from three 

separate experiments. Two-way ANOVA was performed to determine 

statistical significance. *, P < 0.05, **, P < 0.01.  
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Figure 5.11: Uptake of urate by human PTC monolayers in the presence of 50 µM 

benzbromarone. 

(A) Apical uptake of urate was 2.46 times lower in magnitude when 

benzbromarone was treated on the apical membrane of t he human PTC 

monolayer (from 7.64 ± 1.16 pmol/cm2/hr to 3.11 ± 0.69 pmol/cm2/hr). Urate 

uptake across the apical membrane was increased by 1.88 -fold when 

benzbromarone was on the basolateral membrane (14.38 ± 1.54 pmol/ cm2/hr).  

(B) Basolateral uptake of urate was 3.22 ± 1.04 pmol/cm2/hr and 3.35 ± 0.59 

pmol/cm2/hr when benzbromarone was on the apical and basolateral 

membrane of the monolayer, respectively. When compared to the control 

basolateral uptake of urate at 2.60 ± 0.71 pmol/ cm2/hr, no statistically 

significant differences were calculated. Each bar represents the mean ± SEM 

of 11-12 replicates from three separate experiments. Two-way ANOVA was 

performed to determine statistical significance. *, P < 0.05.  
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5.9 The effects of Ko143 on urate transport by human PTC 

monolayers 

A series of experiments were carried out where unidirectional urate fluxes and 

uptake were repeated with human PTC monolayers in the presence of human 

BCRP specific inhibitor, Ko143, to identify BCRP-mediated transport of urate. 

Similar to the previous experiment, 1 µM Ko143 was exposed to either the apical 

or basolateral membranes of the human PTC monolayers for 30 minutes prior to 

urate flux initiation. The results are presented in Figure 5.12 and Figure 5.13.  

The presence of Ko143 did not change the magnitudes of urate JA-B by the human 

PTC monolayers significantly. The values of JA-B were 47. 59 ± 4.83 pmol/cm2/hr 

by the control monolayers, 49.21 ± 3.76 pmol/cm2/hr by the monolayers that were 

apically-treated with Ko143, and 50.66 ± 5.80 pmol/cm2/hr by the monolayers that 

were basolaterally-treated with Ko143 (P > 0.05, n = 12, N = 3, Figure 5.12A). JB-

A was significantly decreased when the monolayer was treated with Ko143 from 

the apical membrane. Ko143 caused JB-A to fall from 13.87 ± 1.78 pmol/cm2/hr to 

5.53 ± 1.38 pmol/cm2/hr (P < 0.01, n = 12, N = 3, Figure 5.12B). JB-A was not 

significantly changed when Ko143 was treated on from the basolateral 

membrane (15.22 ± 1.12 pmol/cm2/hr, P > 0.05, n = 12, N = 3).  

A similar pattern was observed in the uptake of urate by human PTC treated with 

Ko143. The presence of Ko143 did not change the magnitudes of urate uptake 

across the apical membrane significantly (Figure 5.13A). However, basolateral 

uptake of urate was increased in the presence of Ko143 in the apical membrane, 

from 2.60 ± 0.71 pmol/cm2/hr to 5.25 ± 0.75 pmol/cm2/hr, a 2-fold increase (P < 

0.05, n = 12, N = 3, Figure 5.13B). 
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Figure 5.12: Unidirectional urate fluxes by human PTC monolayers in the presence 

of 1 µM Ko143.  

(A) The presence of Ko143 did not change the magnitudes of urate JA-B in the 

human PTC monolayers significantly. (B) JB-A was significantly decreased 

when the monolayer was treated with Ko143 from the apical membra ne. 

Ko143 caused JB-A to fall from 13.87 ± 1.78 pmol/cm2/hr to 5.53 ± 1.38 

pmol/cm2/hr. JB-A was not significantly changed when Ko143 was treated on 

from the basolateral membrane. Each bar represents the mean ± SEM of 12 

replicates obtained from three separate experiments. Two-way ANOVA was 

performed to determine statistical significance. **, P < 0.01.  
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Figure 5.13: Uptake of urate by human PTC monolayers in the presence of 1 µM 

Ko143. 

(A) The presence of Ko143 did not change the magnitudes of urate uptake 

across the apical membrane significantly. (B) Basolateral uptake of urate 

was increased in the presence of Ko143 in the apical membrane, from 2.60 ± 

0.71 pmol/cm2/hr to 5.25 ± 0.75 pmol/cm2/hr, a 2-fold increase. The presence 

of Ko143 on the basolateral membrane did not alter the magnitude of  

basolateral uptake of urate significantly. Each bar represents the mean ± 

SEM of 12 replicates from three separate experiments. Two-way ANOVA was 

performed to determine statistical significance. *, P < 0.05.  
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5.10 The effects of PAH on urate transport by human PTC 

monolayers 

Urate unidirectional fluxes by human PTC monolayers were performed in the 

presence of 10 µM PAH, which is an inhibitor of OAT1. PAH was treated to either 

the apical or basolateral side of the monolayers. This will elucidate OAT1’s role 

in basolateral uptake of urate by PTCs. Figure 5.14 and Figure 5.15 show the 

results. 

The magnitudes of JA-B by the human PTC monolayers in the presence of PAH 

in the apical chambers and basolateral chambers were 50.40 ± 3.51 pmol/cm2/hr 

and 53.41 ± 3.66 pmol/cm2/hr, respectively.  These values were not statistically 

different to the control (P > 0.05, n = 9, N = 3). Only JB-A was significantly different 

to the control when PAH was present in the basolateral chamber, which saw the 

JB-A decreased from 13.86 ± 1.78 pmol/cm2/hr to 6.15 ± 1.85 pmol/cm2/hr, a 55.6 % 

decrease (P < 0.05, n = 10, N = 3). 

Uptake of urate across the apical membrane was not affected by the presence of 

PAH on either the apical or basolateral membrane. However, monolayers treated 

with PAH on the basolateral side saw a 60.0 % decrease in uptake across the 

basolateral membrane (from 2.60 ± 0.71 pmol/cm2/hr to 1.04 ± 0.16 pmol/cm2/hr, 

P < 0.05, n = 10, N = 3). 
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Figure 5.14: Unidirectional fluxes of urate by human PTC monolayers in the 

presence of 10 µM PAH. 

(A) JA-B  by the human PTC monolayers in the presence of PAH in the apical 

chambers and basolateral chambers were 50.40 ± 3.51 pmol/ cm2/hr and 53.41 

± 3.66 pmol/cm2/hr, respectively. These values were not statistically different 

to the control. (B) Only JB-A was significantly different to the control when 

PAH was present in the basolateral chamber, which saw the JB-A fell to 6.15 

± 1.85 pmol/cm2/hr, a 55.6 % decrease. Each bar represents the mean ± SEM 

of 9-10 replicates from three separate experiments. Two-way ANOVA was 

performed to determine statistical significance. *, P < 0.05.  
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Figure 5.15: Uptake of urate by human PTC monolayers in the presence of 10 µM 

PAH. 

(A) Uptake of urate across the apical membrane was not affected by the 

presence of PAH, which saw no significant changes in apical uptake of urate 

when PAH was treated either apically or basolaterally.  (B) However, when 

PAH on the basolateral side of the monolayer, a 60.0 % decrease in uptake 

across the basolateral membrane was observed (from 2.60 ± 0.71 pmol/ cm2/hr 

to 1.04 ± 0.16 pmol/cm2/hr). Each bar represents the mean ± SEM of 9 -10 

replicates from three separate experiments. Two-way ANOVA was performed 

to determine statistical significance. *, P < 0.05.  
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5.11 The effects of MK-571 on urate transport by human PTC 

monolayers 

In addition to BCRP, the activity of human MRP in urate transport by human PTC 

monolayers was also examined by initiation urate fluxes in the presence of MK-

571. Unidirectional urate fluxes and uptake were repeated in the presence of 10 

µM MK-571. The results are summarised in Figure 5.16. 

The presence of MK-571 did not alter urate JA-B significantly (48.96 ± 4.30 

pmol/cm2/hr, P > 0.05, n = 12, N = 3, Figure 5.16A). Urate JB-A in the presence of 

MK-571 was 13.78 ± 1.63 pmol/cm2/hr, but was not significantly different to the 

control of 13.87 ± 1.78 pmol/cm2/hr (P > 0.05, n = 12, N = 3). 

Uptake of urate across the apical membranes of the monolayer was not affected 

by MK-571 (P > 0.05, n = 12, N = 3, Figure 5.16B), nor was uptake across the 

basolateral membrane when compared to the controls (P > 0.05, n = 12, N = 3).
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Figure 5.16: Unidirectional urate flux by human PTC monolayers in the presence of 

10 µM MK-571. 

(A) MK-571 did not alter urate JA-B significantly (48.96 ± 4.30 pmol/cm2/hr).  

Urate JB-A in the presence of MK-571 was 13.78 ± 1.63 pmol/cm2/hr, which 

was not significantly different to the control of 13.87  ± 1.78 pmol/cm2/hr. (B) 

Uptake of urate across the apical membranes of the monolayer was not 

affected by MK-571, nor was uptake across the basolateral membrane, when 

compared to the controls. Each bar represents the mean ± SEM of 12 

replicates from three separate experiments. Two-way ANOVA was performed 

to determine statistical significance.  
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5.12 Urate uptake by URAT1 and SLC2A9 expressing Xenopus 

oocytes 

Xenopus oocytes were used as a model to investigate the mechanism of human 

URAT1 and SLC2A9 in urate transport. The effect of benzbromarone was tested 

on the transporters, along with a novel anti-gout drug, lesinurad. A representative 

of the results from 3 independent experiments is shown in Figure 5.17. The 

amount of transporter-mediated urate taken up by oocytes was calculated by 

subtracting away the urate amount in water-injected oocytes. Water-injected 

oocytes showed urate uptake of below 0.05 pmol/oocyte/hr in all instances (data 

not shown). 

URAT1-injected oocytes showed the highest uptake of urate; in the absence of 

any inhibitor, URAT1-injected oocytes were taking up 3.54 ± 0.67 pmol/oocyte/hr. 

In the presence of 50 µM benzbromarone, the influx of urate decreased 84.7 % 

to 0.54 ± 0.07 pmol/oocyte/hr (P < 0.001, N = 10). Similarly, in the presence of 

50 µM lesinurad, the influx of urate fell to 0.48 ± 0.11 pmol/oocyte/hr (P < 0.001, 

N = 10). 

SLC2A9 injected oocytes also showed urate uptake, but the presence of 50 µM 

benzbromarone caused urate uptake by SLC2A9-injected oocytes to decrease 

4.93-times (0.51 ± 0.12 pmol/oocyte/hr, P < 0.01, N = 12), and the presence of 

50 µM lesinurad caused the urate uptake to decrease 2.60-times (0.95 ± 0.15 

pmol/oocyte/hr, P < 0.01, N = 12). 
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Figure 5.17: Uptake of urate by URAT1 and SLC2A9-injected oocytes. 

(A) In the absence of any inhibitor, URAT1-injected oocytes were taking up 

urate at 3.54 ± 0.67 pmol/oocyte/hr. In the presence of 50 µM benzbromarone, 

the influx of urate decreased to 0.54 ± 0.07 pmol/oocyte/hr. Similarly, in the 

presence of 50 µM lesinurad, the influx of urate fell to 0.48 ± 0.11 

pmol/oocyte/hr. (B) SLC2A9-injected oocytes also showed urate uptake, but 

the presence of 50 µM benzbromarone caused urate uptake to decrease 4.93 -

times (0.51 ± 0.12 pmol/oocyte/hr), and the presence of 50 µM lesinurad 

caused the urate uptake to decrease 2.60-times (0.95 ± 0.15 pmol/oocyte/hr).  

The amount of transporter-mediated urate taken up by oocytes was calculated 

by subtracting away the urate amount in water-injected oocytes. Water-

injected oocytes showed urate uptake of below 0.05 pmol/oocyte/hr in all 

instances (data not shown). The experiments were performed using 3 batches 

of oocytes, and results from the representative experiment are expressed as 

mean ± SEM of 10-12 oocytes. Statistical significance was determined by two-

way ANOVA.  
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5.13 Discussion 

The rat PTCs’ ability to retain mRNA and functional expressions of various 

transporters are highlighted in the previous chapters. The cells role as a robust 

in vitro model for drug transporter studies has yet to be validated. In this chapter, 

urate handling by rat PTC monolayers was investigated and compared with the 

handling of urate by human PTC monolayers. Renal transport of urate in humans 

has been extensively studied, which involves a complex interplay of absorption 

and secretory pathways (Guggino and Aronson, 1985; Enomoto et al., 2002; 

Anzai et al., 2005). This makes the use of urate as a candidate molecule to study 

how the two in vitro models reflect the in vivo setting particularly advantageous. 

5.13.1 Mechanism of urate reabsorption 

In humans, urate is filtered via glomerular filtration and enters the proximal tubule 

before more than 90 % is extensively reabsorbed (Roch-Ramel and Guisan, 

1999). The initial transport mechanism predominantly occurs in the proximal 

tubules with the distal tubules and collecting ducts hardly permeable to urate 

(Roch-Ramel and Guisan, 1999). Reabsorption of the filtered urate is initiated by 

the urate/anion exchanger, URAT1. First cloned by Enomoto et al. in 2001, 

URAT1 is a member of the organic anion transporter family and is found on the 

apical membrane of the proximal tubule (Enomoto et al., 2002). Its expression in 

Xenopus oocytes resulted in significant uptake of urate into the oocytes. 

Inactivated mutants of URAT1 were discovered in patients with idiopathic renal 

hypouricemia and hyperuricosuria (Enomoto et al., 2002; Tanaka et al., 2003). 

Taken together, these data suggest URAT1 as a major transporter for urate 

reabsorption.  

Urate fluxes performed on the rat and human PTC monolayers were able to 

replicate the absorptive nature of the proximal tubule; JA-B was significantly higher 

in magnitude than JB-A in both models, resulting in an absorptive JNet. The data 

also showed the amount of urate taken up across the apical membrane was 

significantly more than from across the basolateral membrane in both rat and 

human PTC monolayers. To further verify the handling of urate by both species 

of PTCs, in particular the functional expression of URAT1/Urat1, the fluxes were 

repeated in the presence of known URAT1 inhibitor, benzbromarone (Fox and 



Chapter 5: Urate Handing by PTC Monolayers 

146 | P a g e  
 

Sinclair, 1977). As expected, several folds decrease in magnitude of JA-B in both 

species was observed when benzbromarone was present in the apical 

membrane of the monolayers. This was correlated with a decrease in urate 

uptake across the same membrane. The movement of urate from the basolateral 

to apical direction was increased in the human PTC monolayers. This could be 

explained by the tendency of the monolayer to reabsorb urate. Urate that had 

already been secreted from the basolateral to the apical chamber was 

reabsorbed by the monolayer. But inhibition of URAT1/Urat1 by benzbromarone 

led to significantly less urate being reabsorbed and the observed increase in JB-

A.  

Interestingly, when benzbromarone was exposed only to the basolateral 

membrane of the monolayer, JA-B was also decreased by as much as 3.3-fold. 

One could ascribe that to the uncontrollable leak of benzbromarone from the 

basolateral to the apical chamber during the course of the experiment, leading to 

the inadvertent inhibition of URAT1/Urat1 on the apical membrane. However, the 

uptake of urate across the apical membrane was now higher than the control, 

which should become lower in magnitude. This set of data was more likely the 

effects of the presence of a functional benzbromarone-sensitive transporter 

capable of urate efflux on the basolateral membrane. 

Genome-wide association studies gave the first inclination that renal urate 

transport involved other important protein, which was later shown to be GLUT9, 

or SLC2A9, a member of the facilitative glucose transporter family (Li et al., 2007; 

Vitart et al., 2008; Bobulescu and Moe, 2012). Similar to the discovery of URAT1, 

these studies found loss-of-function mutations in the SLC2A9 gene locus were 

associated with massive hyperuricosuria (Anzai et al., 2008; Matsuo et al., 2008; 

Dinour et al., 2010; Kawamura et al., 2011; Dinour et al., 2012). Its ubiquity in the 

basolateral membrane of proximal tubule cells and the subsequent expression in 

oocytes that showed strong urate transport activity have led many to accept 

SLC2A9 as the principle pathway of urate basolateral exit in the human kidney 

(Augustin et al., 2004; Vitart et al., 2008). SLC2A9 has been shown to be 

sensitive to benzbromarone as well (Caulfield et al., 2008), and most likely the 

transporter involved in the efflux of urate across the basolateral membrane of the 

rat and human PTC monolayers. 
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JA-B is a measure of the rate of urate appearance on the basolateral chamber 

when urate was added on the apical chamber. With the inhibition of SLC2A9 on 

the basolateral membrane by benzbromarone, the transition of urate from the 

intracellular space into the basolateral chamber was impeded, which resulted in 

the diminished appearance of urate in that chamber. Consequently, the amount 

of urate retained in the monolayer would increase as the uptake of urate by 

URAT1 across the apical membrane remained active. The presence of 

functioning rat ortholog of SLC2A9 as a urate efflux transporter can also be used 

to account for the higher basolateral uptake of urate in rat PTC monolayers when 

benzbromarone was treated on the basolateral side. Urate that had successfully 

been secreted was reabsorbed, but because of the inhibition of rat Slc2a9 by 

benzbromarone on the basolateral membrane, the amount of urate retained in 

the monolayer was increased compared to the control. mRNA of Slc2a9 had been 

detected in rat PTCs as shown in Chapter 4. 

5.13.2 Mechanism of urate secretion 

Studies have shown that urate is bi-directionally transported, and reabsorption 

and secretion happen at the same site in the proximal tubule (Hediger et al., 2005; 

So and Thorens, 2010; Lipkowitz, 2012). Indeed, both pathways were observed 

in this study in the rat and human PTC monolayers as JA-B and JB-A. The 

mechanism of urate secretion is less established than urate reabsorption. 

Nonetheless, there are increasing data to suggest the involvement of several key 

transporters. For instance, human OAT1 and OAT3 are postulated as basolateral 

urate uptake transporters as they have been shown to transport urate (Bakhiya 

et al., 2003), and human BCRP and MRP4 are seen as possible urate efflux 

transporter across the apical membrane of proximal tubule cells (Van Aubel et al., 

2005; Woodward et al., 2009).  

To show OAT1-mediated urate transport in human PTC monolayers, PAH was 

used to inhibit activity of OAT1. PAH has been used as an OAT1-specific inhibitor 

in the renal clearance of many drugs, most recently by Maeda et al. (Maeda et 

al., 2014). PAH would compete with the urate for basolaterally located OAT1 and 

prevent the basolateral uptake, and hence JB-A, of urate when PAH were treated 

on the basolateral membrane. This was indeed observed in the experiments, 
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where the uptake of urate and JB-A was significantly decreased when compared 

to the controls. 

BCRP’s involvement in urate transport was tested in the human PTC monolayers 

as well. To identify BCRP-mediated urate transport, Ko143 was used to inhibit 

the activity of BCRP. The results show marked decrease in JB-A only when Ko143 

was present on the apical membrane of the monolayer. This would agree with 

the theory of BCRP acting as a urate efflux transporter on the apical membrane 

as Ko143 blocked the basolateral-to-apical passage. The corresponding effect of 

inhibiting apical secretion of urate by Ko143 would be an increased in urate 

retention in the cells of the monolayer, which was indeed detected in the human 

PTC monolayers. In addition to the functional expressional of BCRP by the cells, 

these data also provide further evidence of BCRP’s involvement in renal urate 

secretion.  

To date, there are no conclusive data on the mechanism of urate secretion by rat 

proximal tubules. A logical assumption would be that the mechanism of urate 

secretion in rats involved rat Oat1 and Bcrp. The functional expression of rat Oat1 

and Bcrp had already been verified in Chapter 4. To substantiate these 

transporters’ involvement in the excretion of urate, the fluxes of urate by rat PTC 

monolayers were repeated in the presence of PAH or Ko143. The rat monolayers 

showed stark similarities to the human PTC model in JB-A and basolateral uptake 

of urate in the presence of the transporter-specific inhibitors. For instance, when 

PAH was present in the basolateral membrane of the rat PTC monolayer, 

basolateral uptake and JB-A were significantly lower than the controls. And when 

Ko143 was present in the apical membrane, JB-A was significantly decreased but 

apical retention of urate was up in rat PTC monolayers apically-treated with 

Ko143. This is evidence of Oat1 and Bcrp’s role in the efflux of urate across the 

apical membrane of rat proximal tubule. 

MK-571, previously shown to modulate the activity of MRPs (Gekeler et al., 1995), 

was used to associate human MRPs and rat Mrps with urate transport in their 

respective PTC monolayers. The inhibition of MRPs/Mrps using MK-571 did not 

exert significant effects on JA-B or JB-A, nor did it affect the retention of urate by 

the monolayer. The role of MRPs/Mrps on renal urate transport was thus not 

conclusive in this instance.  
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5.13.3 The use of human and rat PTC monolayers as in vitro models for 

urate transport 

The importance of renal transporters and their role in the handling of urate in the 

kidney have been highlighted in the previous sections. The transporters provide 

efficient vectorial transport of urate across the proximal tubules. Undoubtedly, 

drugs that regulate the activity of any of the transporters would affect urate 

homeostasis. It is thus surprising that there are still no suitable models for the 

assessment of the effects of novel drugs on urate reabsorption and secretion 

levels in the kidney. Until recently, benzbromarone was one of the common 

uricosuric agents prescribed to treat gout (Rider and Jordan, 2010). However, 

due to its hepatoxicity properties, benzbromarone is no longer prescribed (Lee et 

al., 2008). With the incidence of gout increasing, the search for an alternative 

drug has intensified and so has the need for a tool to develop such a drug (Lee 

et al., 2008; Rider and Jordan, 2010). 

A model system with the ability to showcase urate transporters interactions with 

novel drugs is that of the Xenopus oocytes. To illustrate this, oocytes injected 

with human URAT1 or SLC2A9 cRNA transcripts were used to investigate the 

effect of an established URAT1/SLC2A9 inhibitor (benzbromarone) and a novel 

drug currently being developed for gout treatment (lesinurad). Both sets of 

oocytes showed marked increase in influx of urate compared to the controls, 

indicating the expression of urate transporters by the oocytes, although urate 

influx was 1.43-fold lower in SLC2A9-injected oocytes when compared to 

URAT1-injected oocytes. In the presence of benzbromarone, the magnitude of 

urate influx fell by more than 6.5-fold in URAT1-injected oocytes. Similarly, 

SLC2A9-injected oocytes were also decreased in the presence of 

benzbromarone. These observations were in agreement with published data 

(Witkowska et al., 2012), which suggested the difference in magnitude between 

URAT1 and SLC2A9-mediated urate influx was due to the electrogenic nature of 

SLC2A9. Witkowska et al. found SLC2A9 showed symmetry of uptake and efflux 

of urate, and this balance was determined by the electrochemical gradient of the 

membrane on which the transporter was located (Witkowska et al., 2012). 

Interestingly, in the presence of lesinurad, both URAT1 and SLC2A9-injected 

oocytes showed more than 1.5-fold decrease in urate influx, even though 
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lesinurad was developed as a URAT1-specific inhibitor (Bobulescu and Moe, 

2012).  

Another published model as a potential tool in urate transporter interaction 

studies are the URAT1 and SLC2A9-transfected cells (Shin et al., 2011; 

Nakanishi et al., 2013). Shin et al. stably transfected MDCK cells with URAT1 

and used this system to study URAT1 interactions with drugs like benzbromarone 

(Shin et al., 2011). With the understanding of SLC2A9’s role in renal urate 

handling, Nakanishi et al. then improved on the model by doubly-transfecting 

MDCK cells with URAT1 and SLC2A9 (Nakanishi et al., 2013). Both systems 

showed remarkable potential as in vitro models to demonstrate the interactions 

of the transporters with uricosuric drugs, especially the doubly-transfected MDCK 

system as it drew attention to the functional cooperation of the two transporters 

(Nakanishi et al., 2013).  

However, the drawback of the above mentioned systems lies in their simplicity – 

the systems did not take into account the urate transporters involved in the 

secretory pathway. Likewise, Xenopus oocytes do not fully elucidate the 

operations of the absorptive and secretory pathways and their transporters. On 

that aspect, the human and rat PTC monolayers developed in this project may be 

better suited for this aim. A series of experiments where the effects of lesinurad 

on urate handling by rat and human PTC monolayers were planned, but due to 

the limited supply of the drug the experiments were unable to be performed. 

Nonetheless, the monolayers were still able to demonstrate their value as a 

platform for drug development and drug-drug interaction studies using other 

candidate molecules and are discussed in Chapter 6.  

5.13.4 Species differences in renal handling of urate  

A major challenge faced in drug discovery and development is the extrapolation 

of drug safety information from animals to humans (Rasmussen, 1983; Lin, 1995). 

Although data from animal studies may be reasonably extrapolated to humans, 

there are still limitations, not least because of the differences in physiology of 

renal handling of molecules between the two species (Lin, 1995; Bass et al., 

2009).  
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Take the handling of urate for example: humans lack the enzyme that catalyses 

the breakdown of urate whereas rats do, consequently serum level of urate is 

much higher in humans than rats (Stavric and Nera, 1978). The amount of urate 

the kidneys handle will be different between the species. This is a serious 

limitation faced in the research of urate handling as the rat kidneys may not be 

equipped to handle the elevated amount of urate. Urate levels had been 

genetically manipulated by some to more closely resemble the human situation, 

but the rat kidneys were still not able to mimic the human model (Wu et al., 1994).  

However, when a fixed amount of urate was used to investigate its handling by 

the rat and human PTC monolayers development in this project, the models 

shared remarkable similarities in their magnitudes of urate flux and inhibition. For 

example, urate JA-B  produced by the human PTC was around 47 pmol/cm2/hr, 

which was comparable to the value produced by rat PTC at 33 pmol/cm2/hr as 

these values were not significantly different (P > 0.05, N = 12-18). The urate 

transporter sensitivities to inhibitors in both models were also similar, as indicated 

by their fold-changes in JA-B in the presence of benzbromarone, amongst others.  

Rodents are still the key species in drug development and safety determination 

(Bass et al., 2009), and the relevance of studies using this species for human 

biology has to be interpreted with great caution. Findings from animal studies 

should not be directly extrapolated without some form of validation in humans, 

which makes the development of both the rat and human PTC as in vitro models 

more important. This is because a rat and human drug handling screening 

platform could be used to compare species differences. This will flag up any 

differences the two may have and provide invaluable data that have significant 

impact on drug safety and development. 

5.14 Summary 

The use of the rat PTC monolayer as an in vitro model for renal urate handling 

has been demonstrated in this chapter. The rat model exhibited a net absorptive 

pathway for urate, consistent with the physiology of urate handling in vivo. The 

transporters responsible for the absorption of urate were shown to be Urat1 and 

Slc2a9, found on the apical and basolateral membranes of the monolayer, 

respectively. Both transporters’ transcript were detected and discussed in 
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Chapter 4. The secretory pathway of urate transport were also highlighted, in 

which Oat1 and Bcrp were proposed as the uptake and efflux transporters 

responsible for the movement of urate across the basolateral and apical 

membranes, respectively. The proposed mechanism of urate transport in rat PTC 

monolayers are summarised in Figure 5.18. The series of urate experiments were 

repeated in human PTC monolayers to compare the renal handling of urate 

between the two species. Similarities between the two models suggest the human 

and the rat PTC monolayers may contribute to information on drug safety and its 

development. The use of rat PTC monolayers as an in vitro model for studying 

drug interaction is discussed in Chapter 6.  
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Figure 5.18: Mechanisms of urate transport in rat PTC monolayers. 

Rat PTC monolayers exhibited secretory and absorptive pathways of urate 

transport, consistent with the physiology of urate handling in vivo. The 

transporters responsible for the absorption of urate were shown to be Urat1 

and Slc2a9, found on the apical and basolateral membranes of the mo nolayer,  

respectively. Oat1 and Bcrp were proposed as the uptake and efflux 

transporters of the secretory pathway responsible for the movement of urate 

across the basolateral and apical membranes, respectively.  The absorptive 

pathway dominates the movement of urate, resulting in net absorption of urate.  

The mechanisms of urate transport were similar in human PTC monolayers.   
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6.1 Chapter overview 

This chapter contains the results from the investigation of digoxin handling by rat 

and human proximal tubule cell (PTC) monolayers. Data from the following 

experiments are discussed: 

 Unidirectional digoxin fluxes and uptake by rat and human PTC 

monolayers. 

 The effects of GF120918, an MDR1 inhibitor, on digoxin fluxes and uptake 

by rat and human PTC monolayers. 

 The effects of T3, a substrate of OATPs, on digoxin fluxes by rat and 

human PTC monolayers. 

 The use of human PTC monolayers as an in vitro model for digoxin-drug 

interactions.  
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6.2 Digoxin handling by rat PTC monolayers 

Rat PTC monolayers were used to investigate the renal handling of digoxin 

molecules by rat proximal tubule. Unidirectional transepithelial fluxes in the apical 

to basolateral direction (JA-B), and in the basolateral to apical direction (JB-A), were 

carried out using 1 µM of digoxin. The net flux (JNet) was calculated from the 

difference between the two fluxes. Uptake of digoxin from across the apical and 

basolateral membrane was determined from the amount of intracellular digoxin 

in rat PTC monolayers after the flux. 

Figure 6.1A shows the fluxes of digoxin by rat PTC monolayers. JA-B (48.60 ± 

6.20 pmol/cm2/hr, n = 12, N = 3) was 1.65-fold higher than JB-A (29.53 ± 3.55 

pmol/cm2/hr, P < 0.05, n = 12, N = 3) in rat PTC monolayers. This resulted in net 

digoxin absorption of 19.06 ± 6.07 pmol/cm2/hr. Although intracellular digoxin 

showed uptake across the apical membrane was 0.80 ± 0.11 pmol/cm2/hr, and 

across the basolateral membrane was 1.17 ± 0.15 pmol/cm2/hr, these figures 

were not statistically different (P > 0.05, n = 12, N = 3, Figure 6.1B). 
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Figure 6.1: Unidirectional fluxes and uptake of digoxin by rat PTC monolayers.  

Fluxes of digoxin by rat PTCs showed JA-B at 48.60 ± 6.20 pmol/cm2/hr, which 

was 1.65-fold higher than JB-A, which was 29.53 ± 3.55 pmol/cm2/hr. This 

resulted in digoxin JNet absorption of 19.06 ± 6.07 pmol/cm2/hr. Intracellular 

digoxin showed uptake across the apical membrane was 0.80 ± 0.11 

pmol/cm2/hr, and uptake across basolateral membrane was 1.17 ± 0.15 

pmol/cm2/hr. Statistical test revealed there was no significant difference 

between the two values. Each bar represents the mean ± SEM of 12 r eplicates 

obtained from three separate experiments . Student t test was performed to 

assess statistical significance. *, P < 0.05. 
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6.3 The effects of GF120918 on digoxin fluxes and uptake by 

rat PTC monolayers 

Digoxin JA-B and JB-A were repeated in the presence of an Mdr1 inhibitor, 

GF120918. Figure 6.2 shows the effect of the inhibitor on digoxin JA-B and JB-A, 

and the amount of intracellular digoxin in rat PTC monolayers.  

In the presence of 2 µM GF120918, digoxin JA-B saw no significant change in 

magnitude when compared to the control (Figure 6.2A). However, JB-A was 

significantly decreased to 5.43 ± 1.75 pmol/cm2/hr (81.6 % decrease, P < 0.05, n 

= 12, N = 3) when compared to the control. Figure 6.2B shows the amount of 

intracellular digoxin in the rat PTC monolayers after the flux experiment. The 

amount of digoxin taken up from the apical side was 1.04 ± 0.17 pmol/cm2/hr in 

the presence of 2 µM GF120918. But when compared to the control value of 0.80 

± 0.11 pmol/cm2/hr, no statistical difference was calculated (P > 0.05, n = 12, N 

= 3). However, in the presence of GF120918, the uptake of digoxin from the 

basolateral side was increased 1.73-fold (from 1.17 ± 0.15 pmol/cm2/hr to 2.02 ± 

0.27 pmol/cm2/hr, P < 0.05, n = 12, N = 3), when compared to the control. 
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Figure 6.2: Unidirectional digoxin fluxes and uptake in the presence of 2 µM 

GF120918 by rat PTC monolayers.  

Digoxin JA-B was not significantly different in magnitude between the 

presence and absence of 2 µM GF120918. However, JB-A was significantly 

decreased to 5.43 ± 1.75 pmol/cm2/hr (81.6 % decrease) when compared to 

the control (29.53 ± 3.55 pmol/cm2/hr). The amount of intracellular digoxin 

taken up from the apical side was 1.04 ± 0.17 pmol/ cm2/hr in the presence of 

2 µM GF120918. But when compared to the control value of 0.80 ± 0.11 

pmol/cm2/hr, no statistical dif ference was calculated. However, in the 

presence of GF120918, the uptake of digoxin from the basolateral side was 

increased 1.73-fold (from 1.17 ± 0.15 pmol/cm2/hr to 2.02 ± 0.27 

pmol/cm2/hr). Each bar represents the mean ± SEM of 12 replicates  obtained 

from three separate experiments. Student t test was performed to assess 

statistical significant. *, P < 0.05. 
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6.4 The effects of T3 on digoxin fluxes and uptake by rat PTC 

monolayers 

Digoxin JA-B and JB-A were repeated in the presence of an Oatp inhibitor, T3. 10 

µM T3 was exposed to either the apical or basolateral membrane of rat PTC 

monolayers prior to digoxin flux. Figure 6.3 shows the effect of the inhibitor on 

digoxin JA-B  and JB-A, and Figure 6.4 shows the amount of intracellular digoxin in 

rat PTC monolayers in the presence of 10 µM T3.  

Rat PTC monolayers exposed to T3 only on the apical membrane saw a 65.1 % 

decrease in JA-B  when compared to the control (from 48.60 ± 6.20 pmol/cm2/hr 

to 16.98 ± 3.90 pmol/cm2/hr, P < 0.01, n = 12, N = 3, Figure 6.3A), but saw a 

1.56-fold increase in JB-A (from 29.54 ± 3.55 pmol/cm2/hr to 46.16 ± 4.80 

pmol/cm2/hr, P < 0.05, n = 12, N = 3, Figure 6.3B). The opposite happened when 

only the basolateral membranes of rat PTC monolayers were exposed to T3; the 

magnitude of JA-B  increased significantly to 80.74 ± 6.71 pmol/cm2/hr (1.66-fold 

increase, P < 0.05, n = 12, N = 3) when compared to the control, and JB-A fell to 

11.61 ± 2.95 pmol/cm2/hr (60.1 % decrease, P < 0.01, n = 12, N = 3), when 

compare to the control.  

Exposure of 10 µM T3 to only the apical membranes of rat PTC monolayers saw 

a 58.8 % decrease in apical uptake of digoxin when compared to the control (from 

0.80 ± 0.11 pmol/cm2/hr to 0.33 ± 0.08 pmol/cm2/hr, P < 0.01, n = 12, N = 3, 

Figure 6.4A), but no apparent change was observed in the basolateral uptake. 

Conversely, when rat PTC monolayers were exposed to 10 µM T3 only on the 

basolateral membranes, no significant change in level of apical uptake was 

calculated, but basolateral uptake of digoxin was decreased 57.3 % (from 1.17 ± 

0.15 pmol/cm2/hr to 0.50 ± 0.09 pmol/cm2/hr, P < 0.05, n = 12, N = 3, Figure 6.4B).  
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Figure 6.3: Unidirectional digoxin fluxes by rat PTC monolayers in the presence of 

10 µM T3.  

(A) JA-B  in the presence of T3 on the apical membrane only was 16.98 ± 3.90 

pmol/cm2/hr, a 65.1 % decrease when compared to the control (48.60 ± 6.20 

pmol/cm2/hr), but increased 1.66-fold (80.74 ± 6.71 pmol/cm2/hr) when the 

T3 was on the basolateral membrane. (B) Conversely, JB-A saw a 1.56-fold 

increase from 29.54 ± 3.55 pmol/cm2/hr to 46.16 ± 4.80 pmol/cm2/hr when T3  

was on the apical membrane but decreased to 11.61 ± 2.95 pmol/ cm2/hr (60.1 % 

decrease) when T3 was on the basolateral membrane. Each bar represen ts the 

mean ± SEM of 12 replicates from three separate experiments. Two-way 

ANOVA was performed to assess statistical significance. *, P < 0.05, **, P < 

0.01.  
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Figure 6.4: Uptake of digoxin by rat PTC monolayers in the presence of 10 µM T3.  

(A) Exposure of T3 to only the apical membranes saw a 58.8 % decrease in 

apical uptake of digoxin when compared to the control, from 0.80 ± 0.11 

pmol/cm2/hr to 0.33 ± 0.08 pmol/cm2/hr, but no apparent change was 

observed in the basolateral uptake. (B) When rat PTC monolayers were 

exposed to T3 only on the basolateral membranes, no significant change in 

level of apical uptake was calculated, but basolateral uptake of digoxin was 

decreased 57.2 %, from 1.17 ± 0.15 pmol/cm2/hr to 0.50 ± 0.09 pmol/cm2/hr.  

Each bar represents the mean ± SEM of 12 replicates  from three separate 

experiments. Two-way ANOVA was performed to assess statistical 

significance. *, P < 0.05, **, P < 0.01.  
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6.5 Handling of digoxin by human PTC monolayers 

Unidirectional digoxin fluxes were also carried out in human PTC monolayers. 

Figure 6.5 shows JA-B and JB-A of 1 µM digoxin by human PTC monolayers, and 

the subsequent uptake of digoxin by the cells. 

Digoxin fluxes by human PTC monolayers showed JB-A (66.12 ± 6.71 pmol/cm2/hr, 

n = 12, N = 3, Figure 6.5A) was significantly more than JA-B (15.68 ± 3.92 

pmol/cm2/hr, P < 0.001, n = 12, N = 3), which resulted in a net secretion of digoxin 

(50.43 ± 5.16 pmol/cm2/hr). Uptake of digoxin by the human PTC monolayers 

across the basolateral membrane (3.72 ± 0.51 pmol/cm2/hr) was significantly 

higher than across the apical membrane (0.88 ± 0.32 pmol/cm2/hr, P < 0.01, n = 

12, N = 3, Figure 6.5B). 
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Figure 6.5: Unidirectional digoxin fluxes and uptake by human PTC monolayers.  

(A)At 66.12 ± 6.71 pmol/cm2/hr, JB-A was significantly more than JA-B (15.68 

± 3.92 pmol/cm2/h), which resulted in digoxin JNet secretion (50.43 ± 5.16 

pmol/cm2/hr). (B) Uptake of digoxin by the human PTC monolayers across 

the basolateral membrane (3.72 ± 0.51 pmol/cm2/hr) was significantly higher 

than across the apical membrane (0.88 ± 0.32 pmol/cm2/hr). Each bar 

represents the mean ± SEM of 12 replicates  from three separate experiments.  

Two-way ANOVA was performed to assess statistical significance. **, P < 

0.01, ***, P < 0.001.  
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6.6 The effects of GF120918 on digoxin fluxes and uptake by 

human PTC monolayers 

Digoxin fluxes by human PTC monolayers were repeated in the presence of 2 

µM GF120918, a known MDR1 inhibitor. Figure 6.6 shows the effect of GF120918 

had on digoxin JA-B and JB-A, and the uptake of digoxin by the human PTC 

monolayers.  

In the presence of 2 µM GF120918, digoxin JA-B was 23.38 ± 3.97 pmol/cm2/hr, 

and when compared to the control (15.68 ± 3.92 pmol/cm2/hr), there was no 

statistically significant difference between the two conditions (P > 0.05, n = 10, N 

= 3, Figure 6.6A). JB-A, however, saw a 76.5 % decrease in magnitude in the 

presence of GF120918 when compared to the control (from 66.12 ± 6.71 

pmol/cm2/hr to 15.55 ± 3.74 pmol/cm2/hr, P < 0.001, n = 10, N = 3). Similarly, 

there was no statistically significant difference in the apical uptake of digoxin by 

human PTC monolayers in the presence or absence of 2 µM GF120918 (Figure 

6.6B). Basolateral uptake of digoxin, however, was 2.28-fold higher in the 

presence of GF120918 (8.47 ± 0.95 pmol/cm2/hr, P < 0.05, n = 10, N = 3). 
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Figure 6.6: Unidirectional digoxin fluxes in the presence of 2 µM GF120918 by 

human PTC monolayers.  

(A) There was no statistically significant difference between JA-B of the two 

conditions. JB-A, however, saw a 76.5 % decrease in magnitude in the presence 

of GF120918 when compared to the control (66.12 ± 6.71 pmol/cm2/hr to 

15.55 ± 3.74 pmol/cm2/hr). (B) Similarly, there was no statistically 

significant difference in the apical uptake of digoxin by human PTC 

monolayers in the presence or absence of 2 µM GF120918. Basolateral 

uptake of digoxin, however, was 2.28-fold higher in the presence of  

GF120918 (8.47 ± 0.95 pmol/cm2/hr). Each bar represents the mean ± SEM 

of 10-12 replicates from three separate experiments. Student t test was 

performed to assess statistical significance. **, P < 0.01, ***, P < 0.001.  
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6.7 The effects of T3 on digoxin fluxes and uptake by human 

PTC monolayers 

Digoxin JA-B and JB-A were repeated in the presence of 10 µM T3. T3 was exposed 

to either the apical or basolateral membrane of human PTC monolayers prior to 

digoxin flux. Figure 6.7 shows the effects of the inhibitor on digoxin JA-B and JB-A, 

and Figure 6.8 shows the amount of intracellular digoxin in the human PTC 

monolayers in the presence of T3. 

Digoxin JA-B was 11.81 ± 4.04 pmol/cm2/hr when T3 was present in the apical 

membrane, which was not significantly different to the control (15.68 ± 3.92 

pmol/cm2/hr, P > 0.05, n = 9, N = 3, Figure 6.7A). No statistical significant change 

also was observed in JA-B when T3 was present in the basolateral membrane of 

the human PTC monolayers. JB-A also showed no significant change in magnitude 

when T3 was present in the apical membrane, but JB-A decreased significantly 

from 66.12 ± 6.71  pmol/cm2/hr to 14.53 ± 2.39 pmol/cm2/hr  when T3 was in the 

basolateral membrane, a 78.0 % decrease (P < 0.01, n = 9, N = 3, Figure 6.7B).  

There was no statistical significant difference in the uptake of digoxin across the 

apical membrane between the different conditions (P > 0.05, n = 10, N = 3, Figure 

6.8A), but uptake across the basolateral membrane of the human PTC 

monolayers was significantly decreased when 10 µM T3 was present in the 

basolateral membrane (1.29 ± 0.47 pmol/cm2/hr, P < 0.05, n = 9, N = 3, Figure 

6.8B). 
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Figure 6.7: Unidirectional digoxin fluxes by human PTC monolayers in the presence 

of 10 µM T3.  

(A) Digoxin JA-B was 11.81 ± 4.04 pmol/cm2/hr when T3 was present in the 

apical membrane, which was not significantly different to the control (15.68 

± 3.92 pmol/cm2/hr). No statistically significant change was also observed in 

JA-B when T3 was present in the basolateral membrane of the human PTC 

monolayers. (B) JB-A also showed no significant change in magnitude when 

T3 was present in the apical membrane, but JB-A decreased significantly from 

66.12 ± 6.71  pmol/cm2/hr to 14.53 ± 2.39 pmol/cm2/hr  when T3 was in the 

basolateral membrane, a 78.0 % decrease. Each bar represents the mean ± 

SEM of 9-10 replicates from three separate experiments. Two-way ANOVA 

was performed to assess statistical significance. *, P < 0.05, **, P < 0.01.  
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Figure 6.8: Uptake of digoxin by human PTC monolayers in the presence of 10 µM 

T3.  

(A) There was no statistical significant difference in the uptak e of digoxin 

across the apical membrane between the different conditions, (B) but uptake 

across the basolateral membrane of the human PTC monolayers was 

significantly decreased when 10 µM T3 was present in the basolateral 

membrane (1.29 ± 0.47 pmol/cm2/hr). Each bar represents the mean ± SEM 

of 9-10 replicates from three separate experiments. Two-way ANOVA was 

performed to assess statistical significance. *, P < 0.05. 
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6.8 Drug-drug interactions using digoxin as the substrate in 

human PTC monolayer  

A series of experiments were carried out to determine 1 µM digoxin JB-A by human 

PTC monolayers in the presence of known human MDR1 inhibitors. The inhibitors 

were carvedilol, diltiazem, isradipine, ketoconazole, mibefradil, nicardipine, 

quinidine, ranolazine and verapamil. These experiments provided a measure of 

the inhibitors’ MDR1 inhibitory potency via their IC50. Figure shows the apparent 

permeability of digoxin (Papp) against the concentration range of the inhibitor used. 

In all the figures, the data point in the extreme left represents digoxin Papp in the 

absence of the inhibitor. For the purpose of statistical analysis, a concentration 

10-fold less than the lowest inhibitor concentration had been assigned as the 

minimum inhibitor concentration. The data point in the extreme right represents 

digoxin Papp in the presence of the positive control (2 µM GF120918), and a 

concentration 10-fold more than the highest inhibitor concentration was assigned 

as the maximum inhibitor concentration.  

Human PTC monolayers exhibited digoxin Papp of around 45 nm/s in the absence 

of inhibitors. Digoxin Papp decreased to around 6 nm/s in the presence of the 

positive control. All inhibitors exhibited a dose-dependent relationship with 

digoxin Papp; the higher the concentration of the inhibitor, the lower the Papp. IC50 

of the inhibitor was calculated by performing non-linear regression analysis on 

the data set. At 160.1 µM, isradipine exhibited the highest IC50 (Figure 6.11). 

Carvedilol gave the lowest IC50 at 0.13 µM (Figure 6.9). The other inhibitor’s IC50 

values were as follows: diltiazem was 102.9 µM (Figure 6.10), ketoconazole was 

53.1 µM (Figure 6.12), mibefradil was 2.53 µM (Figure 6.13), nicardipine was 0.91 

µM (Figure 6.14), quinidine was 5.0 µM (Figure 6.15), ranolazine was 34.8 µM 

(Figure 6.16) and verapamil was 1.23 µM (Figure 6.17). Table 6.1 summarises 

the data. 
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Figure 6.9: Papp in the basolateral to apical direction of 1 µM digoxin by human PTC 

monolayers in the presence of carvedilol.  

Digoxin Papp exhibited a concentration-dependent relationship with 

carvedilol, and an apparent IC50 of 0.13 µM was calculated. Each data poin t 

represents the mean ± SEM of 9-12 replicates from three separate 

experiments. Non-linear regression analysis was used to fit the data points 

and calculate the IC50, which lies within the 95 % confidence intervals.  

   

10-4 10-3 10-2 10-1 100 101 102

0

10

20

30

40

50

[Carvedilol] / M

P
a
p
p

(n
m

/s
)



Chapter 6: Digoxin Handling by PTC Monolayers 

172 | P a g e  
 

 

 

Figure 6.10: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of diltiazem.  

An apparent IC50 of 102.9 µM was calculated from the digoxin Papp using a 

range of diltiazem concentrations. The Papp exhibited a concentration-

dependent relationship. Each data point represents the mean ± SEM of 8 

replicates from two separate experiments. Non-linear regression analysis was 

used to fit the data points and calculate the IC50, which lies within the 95 % 

confidence intervals.  
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Figure 6.11: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of isradipine.  

Digoxin Papp exhibited a concentration-dependent relationship with 

isradipine. Non-linear regression analysis was performed to obtain an 

apparent IC50 of 160.1 µM. Each data point represents the mean ± SEM of 9-

12 replicates from three separate experiments. The non-linear regression 

analysis lies within the 95 % confidence intervals.  
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Figure 6.12: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of ketoconazole.  

Digoxin Papp exhibited a concentration-dependent relationship with 

ketoconazole, and an apparent IC50 of 53.1 µM was calculated. Each data 

point represents the mean ± SEM of 8 replicates from two separate 

experiments. Non-linear regression analysis was used to fit the data points 

and calculate the IC50, which lies within the 95 % confidence intervals.  
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Figure 6.13: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of mibefradil.  

An apparent IC50 of 2.53 µM was calculated from digoxin Papp in the presence 

of a range of mibefradil concentrations. Each data point represents the mean 

± SEM of 8 replicates from two separate experiments. Non-linear regression 

analysis was used to fit the data points and calculate the IC50, which lies 

within the 95 % confidence intervals.  
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Figure 6.14: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of nicardipine.  

Digoxin Papp exhibited a concentration-dependent relationship with 

nicardipine, and an apparent IC50 of 0.91 µM was calculated. Each data point 

represents the mean ± SEM of 8 replicates  from two separate experiments .  

Non-linear regression analysis was used to fit the data points and calculate 

the IC50, which lies within the 95 % confidence intervals.  
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Figure 6.15: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of quinidine.  

A range of quinidine concentrations were treated on human PTC monolayers 

and corresponding changes in digoxin Papp  shown. An apparent IC50 of 5.0 

µM was calculated from the concentration-dependent relationship. Each data 

point represents the mean ± SEM of 8 replicates  two separate experiments.  

Non-linear regression analysis was used to fit the data points and calculate 

the IC50, which lies within the 95 % confidence intervals.  
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Figure 6.16: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of ranolazine.  

Digoxin Papp exhibited a concentration-dependent relationship with 

ranolazine. An apparent IC50 of 34.8 µM was calculated. Each data point 

represents the mean ± SEM of 8 replicates  from two separate experiments .  

Non-linear regression analysis was used to fit the data points and calculate 

the IC50, which lies within the 95 % confidence intervals.  
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Figure 6.17: Papp in the basolateral to apical direction of 1 µM digoxin by human 

PTC monolayers in the presence of verapamil.  

Verapamil IC50 determined from inhibition of MDR1-mediated digoxin Papp  

was 1.23 µM. Each data point represents the mean ± SEM of 8 replicates  from 

two separate experiments. Non-linear regression analysis was used to fit the 

data points and calculate the IC50, which lies within the 95 % confidence 

intervals.  
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Compound IC50 (µM) 

Carvedilol 0.13 

Diltiazem 102.9 

Ketoconazole 53.1 

Isradipine 160.1 

Mibefradil 2.53 

Nicardipine 0.91 

Quinidine 5.0 

Ranolazine 34.8 

Verapamil 1.23 

 

Table 6.1: Summary of the MDR1 inhibitor IC50 generated in human PTC 

monolayers. 
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6.9 Discussion 

The ability of the rat PTC monolayers developed in this project to handle the array 

of compounds a normal kidney is exposed to is paramount. In Chapter 5, urate 

reabsorption was demonstrated in rat PTC monolayers. They also showed good 

correlation with the human PTC monolayers in urate handling. Both species 

displayed the potential as in vitro models for drug transporter studies as they 

replicated the handling of urate in vivo. In this chapter, rat and human PTC 

monolayers handling of digoxin was investigated to further substantiate their 

utility as in vitro models. Digoxin is a prototypic drug usually eliminated 

unchanged in the kidneys of healthy humans (Lacarelle et al., 1991), which 

makes it an ideal substrate for drug transporter studies. Furthermore, as digoxin 

has a narrow therapeutic range and one of the most widely prescribed 

concomitant drugs (Fenner et al., 2008), its use in the presence of other drugs 

would provide an indication of the PTC monolayers’ suitability as digoxin-drug 

interaction models.  

6.9.1 Digoxin handling by human PTC monolayers 

Glomerular filtration of digoxin was initially believed to be the sole method of renal 

excretion of the drug in humans (Lacarelle et al., 1991). However, it has since 

been discovered that the renal excretion of digoxin involves both glomerular 

filtration and active tubular secretion, with the latter responsible for more than 50 % 

of excreted digoxin (Ohnhaus et al., 1972; Steiness, 1974; Steiness et al., 1982). 

Through various digoxin-drug interaction studies, it was discovered that digoxin 

is a substrate of MDR1 and it acts as an efflux pump that extrude digoxin from 

the proximal tubule cells into the urine for excretion (Woodland et al., 1998).  

The digoxin secretory pathway was illustrated in this project by human PTC 

monolayers. Unidirectional fluxes showed that digoxin JB-A was significantly 

higher than JA-B, which resulted in net secretion of the drug (Figure 6.5A). In the 

presence of MDR1-specific inhibitor, GF120918 (Tan et al., 2000), JB-A was 

significantly decreased whereas no difference was observed in JA-B (Figure 6.6). 

The decrease in JB-A can be explained by the inhibition of MDR1 by GF120918, 

which resulted in less digoxin being transported out of the human PTCs across 

the apical membrane. As there was no GF120918-sensitive component on the 



Chapter 6: Digoxin Handling by PTC Monolayers 

182 | P a g e  
 

basolateral side of the monolayer that could affect digoxin transport, JA-B was not 

changed. This secretory pathway of digoxin transport was also evident from the 

increase in amount of intracellular digoxin in the presence of GF120918; more 

digoxin was retained in the cells as its apical exit was impeded by GF12918. 

MDR1 was thus shown to be a functional efflux transporter of digoxin in the 

human PTC monolayers. 

An inherent difference between the amount of digoxin taken up across the apical 

and basolateral membranes was also detected in the human PTC monolayers. 

The uptake of digoxin was almost four times higher across the basolateral 

membrane (Figure 6.5B). This marked discrepancy of uptake signified the 

expression of a protein on the basolateral membrane that aided the uptake of 

digoxin. The transporter was most likely OATP4C1 as its expression in the human 

proximal tubule and substrate specificity has previously been verified (Mikkaichi 

et al., 2004; Yamaguchi et al., 2010). To demonstrate OATP4C1-dependent 

digoxin transport in the human PTC monolayer, digoxin fluxes were carried out in 

monolayers treated apically or basolaterally with triiodothyronine (T3), a substrate 

of OATP4C1 (Chu et al., 2007). The results showed significantly less uptake of 

digoxin across the basolateral membrane when T3 was present on the basolateral 

surface of the monolayer, which resulted in the decrease in digoxin JB-A (Figure 

6.7 and Figure 6.8). No other parameters were significantly altered. The 

mechanism of digoxin transport in human PTC monolayer is thus assumed as 

follows: OATP4C1 takes up digoxin from the basolateral surface before MDR1-

mediated efflux on the apical surface. This hypothesis is in agreement with 

previously published data (Steiness, 1974; Steiness et al., 1982; Mikkaichi et al., 

2004; Yamaguchi et al., 2010), confirming the use of digoxin transporter studies 

in this in vitro renal model. 

6.9.2 Digoxin handling by rat PTC monolayers 

In contrast to the human monolayers, rat PTC monolayers showed higher digoxin 

JA-B than JB-A, which resulted in the net absorption of digoxin (Figure 6.1A). In 

addition, the uptake of digoxin across the basolateral and apical membrane was 

not significantly different (Figure 6.1B). Since rat Mdr1 transcript had been 

detected along with its functional expression in the rat PTCs (Chapter 4), it was 

proposed that this transporter was also involved in the handling of digoxin (Hori 
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et al., 1993). Indeed, the presence of GF120918 caused a significant decrease 

in magnitude of digoxin JB-A (Figure 6.2A), proving Mdr1-mediated transport of 

digoxin in the basolateral to apical direction. That was further substantiated by 

the increase in intracellular digoxin when uptake was across the basolateral 

membrane of the monolayer in the presence of GF120918 (Figure 6.2B). 

T3 was then treated on the apical or basolateral side of the monolayer during 

digoxin flux. When T3 was treated only on the apical side, JA-B was decreased 

while JB-A was increased when compared to their respective controls (Figure 6.3). 

The uptake of digoxin across the apical membrane was also significantly lowered 

in apically T3-treated monolayers. It was deduced that there was a T3-sensitive 

component of digoxin transport in the apical membrane of rat PTC monolayers. 

The transporter was taking up digoxin across the apical membrane but was 

inhibited by T3. This resulted in the decrease in apical uptake of digoxin and JA-B. 

The inhibition of apical uptake of digoxin by T3 also meant digoxin that had 

already been transported in the basolateral to apical direction was unable to be 

reabsorbed, which caused the increase in JB-A. 

Similarly, a T3-sensitive component was also detected in the basolateral 

membrane. When T3 was present only on the basolateral side of the rat PTC 

monolayer, JA-B was significantly increased while JB-A was decreased (Figure 6.3). 

The decrease in JB-A could be ascribed to the inhibition of digoxin uptake across 

the basolateral membrane of the monolayer, which also resulted in less 

intracellular digoxin (Figure 6.4). Without the activity of the basolateral digoxin 

uptake transporter, digoxin that was reabsorbed would be unable to be 

transported in the basolateral to apical direction, and hence the observed 

increase in JA-B. 

This series of experiments was able to demonstrate the functional expression of 

T3-sensitive transporters of digoxin on both sides of the polarised rat PTC 

monolayers. The most likely candidates were members of the Oatp family of 

transporters as they are known to express in rat kidneys and their substrates 

include digoxin and T3 (Masuda et al., 1997b; Masuda et al., 1999a; Masuda et 

al., 1999b; Mikkaichi et al., 2004). Members such as Oatp1a3v1 and v2 (formerly 

known as OAT-K1 and OAT-K2, respectively) are expressed on the apical 

membrane of rat proximal tubule (Masuda et al., 1997b; Masuda et al., 1999a), 
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which coincided with the apical uptake of digoxin by the rat PTC monolayers seen 

in the experiments. Analogous with digoxin handling in human PTC monolayers, 

rat Oatp4c1 was then thought to be responsible for the movement of digoxin 

across the basolateral membrane of the rat PTC monolayer before efflux by Mdr1 

across the apical membrane. After all, it is also a member of the Oatp family and 

its mRNA was detected in the rat PTCs (Chapter 4). However, a recent 

publication on the localisation of Oatp4c1 in rat proximal tubule refutes this view.  

Oapt4c1 was initially shown to localise at the basolateral membrane in the rat 

proximal tubule (Mikkaichi et al., 2004). Contradictorily, Kuo et al. managed to 

clone and transfect rat Oatp4c1 in MDCKII cells and found the expression of the 

transporter on the apical membrane of the polarised cells. In addition, the authors 

were also able to generate their own anti-Oatp4c1 antibody with which they used 

to discover expression of Oatp4c1 solely on the apical membrane of freshly 

isolated rat proximal tubules (Kuo et al., 2012). This led the authors to conclude 

that rat Oatp4c1 was involved in the renal reabsorption of compounds, and this 

theory fitted with the data generated in this project. It is very likely that Oatp4c1, 

along with Oatp1a3v1 and Oatp1a3v2 expressed on the apical membrane of the 

rat PTC monolayers, brought about the dominance of digoxin transport in the 

apical to basolateral direction.  

While tubular reabsorption of glomerular filtered digoxin has not been 

documented in human kidneys, this pathway has been detected in various 

species such as rats (Rasmussen et al., 1975; Roman and Kauker, 1976). For 

example, Roman et al. (1976) found micropunctured rat kidneys were 

reabsorbing up to 35 % of glomerular filtered digoxin from the proximal tubule 

(Roman and Kauker, 1976). This discovery was made before the identification of 

Oatps in rat kidneys, which has since been implicated in the transport of digoxin 

(Hori et al., 1993; Mikkaichi et al., 2004). The in-depth mechanism of digoxin 

transport in rat kidney, however, remains unresolved to this date; the identity of 

the basolateral uptake transporter of digoxin is still unknown, nor is the 

mechanism of basolateral efflux of digoxin. This is compounded by the ambiguity 

of the localisation of rat Oatp4c1, and perhaps a lack of suitable in vitro model for 

such studies.  
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The use of the rat PTC monolayer in this project has generated the first report on 

the possible contribution of Oatp4c1 on the absorptive pathway of digoxin in rat. 

For this reason, the rat PTC monolayer remains an attractive model to further 

investigate the mechanisms of digoxin handling in rat kidneys. Assays such as 

immunocytochemistry could be performed on the rat PTC monolayers to identify 

the localisation of the individual components involved, which would provide better 

understanding of how rat kidneys handle digoxin.  

6.9.3 Digoxin-drug interactions   

Digoxin is a cardiac glycoside prescribed to patients suffering from chronic heart 

failure (Fenner et al., 2008). Patients suffering from the disease usually are also 

given other heart medications such as verapamil and quinidine (Woodland et al., 

1998; Hunt, 2005). It was noticed that the co-administration of these drugs 

lowered the renal clearance of digoxin, which was later attributed to the inhibition 

of MDR1-mediated efflux of digoxin by the other drugs (Woodland et al., 1998). 

Digoxin and has a narrow therapeutic window and slight changes in its plasma 

concentration can cause digitalis toxicity (Koren, 1987). Unfortunately, the 

change in digoxin plasma concentration can be brought about by the digoxin-drug 

interaction (DDI) as it causes less digoxin to be excreted from the body. It is 

therefore necessary to evaluate the risks of drugs taken with digoxin in inducing 

DDIs via the inhibition of MDR1 activity.  

There are various platforms for the study of DDI. The pharmaceutical industry 

has been using MDR1 expressing or transfected polarised cell lines such as 

Caco-2 and MDCKII to assess DDIs (Bentz et al., 2013). As digoxin handling by 

the human PTC monolayer has been shown to replicate the in vivo in this project, 

its role in drug interaction studies may also be appreciated. A series of 

experiments were carried out in human PTC monolayers where the digoxin 

apparent permeability (Papp) in the basolateral to the apical direction was 

measured. Papp is the ratio of the flow rate of a compound from a compartment 

into the opposite, to the surface area that the compound crosses (Jung et al., 

2006). It is generally recognised as a unit of measure of the movement of a 

compound (Palumbo et al., 2008). Due to the lack of replication of digoxin 

handling in human kidneys, rat PTC monolayers were deemed unsuitable for this 

study and were not used.  
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Figure 6.9 to Figure 6.17 shows the relationship between digoxin Papp and the 

concentration ranges of nine different drugs. These drugs are common medicines 

patients take with digoxin that have been shown to induce DDIs (Bentz et al., 

2013). A large range of IC50 values between the different drugs was observed. 

This was expected as the drugs had different affinities for MDR1 (Acharya et al., 

2008; Bentz et al., 2013). Some of the IC50s calculated in this project were also 

noticed to be different to the ones reported in the literature. For instance, 

quinidine and verapamil IC50 in the experiment was calculated as 5 µM and 1.23 

µM, respectively. The former was different to the IC50 determined by Kakumoto 

et al. (2002), which was 9.25 µM (Kakumoto et al., 2002). Similarly, Rautio et al. 

(2006) showed verapamil IC50 of MDR1-mediated digoxin transport was 10.7 µM 

in their experimental model, an almost 9-fold change in magnitude when 

compared to the present study (Rautio et al., 2006). The variation in MDR1 

inhibitory potency is not uncommon. Bentz et al. (2013) analysed several inhibitor 

IC50s of MDR1-mediated digoxin transport produced in different laboratories and 

found vast discrepancies in the values even though the laboratories were using 

the same inhibitors. Amongst the tested inhibitors, they found verapamil had the 

most variability in IC50, which gave 20- and 790-fold difference between the 

lowest and highest values, respectively (Bentz et al., 2013).  

While the reason behind the inconsistency was not defined, Bentz et al. (2013) 

reckoned the differences could be due to the MDR1 model upon which the study 

was carried out (Bentz et al., 2013). Different laboratories used different MDR1 

expression systems that ranged from Caco-2 cells to MDR1 containing 

membrane vesicles (Bentz et al., 2013; Ellens et al., 2013). Each of this system 

would no doubt be handling digoxin uniquely to it. Difference within the same 

system could also be an inherent problem. The phenomenon known as 

phenotypic drift, a term more commonly used to describe the dedifferentiation of 

cancer cells (Zavyalova et al., 2013), has also been used to described the 

changes in immortalised cell line after a period of time (Kwatra et al., 2014). 

Phenotypic drift occurs in Caco-2 and MCDKII cells whereby their protein 

expressions change over several passages (Chandler et al., 1993; Cassio, 2013). 

This would inevitably affect their ability to model digoxin transport and produce 

variable data. A robust in vitro model for DDIs is therefore needed.  
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The robustness of the human PTC monolayer makes it an ideal candidate for 

drug interaction studies. The advantage this model has over other cell-base 

models is that it is derived from healthy native tissue. The primary cells has been 

verified as an excellent model for renal xenobiotic handling (Brown et al., 2008), 

and their competency in delivering consistent results in DDIs have been 

demonstrated in the present study. The use of this model also allows the 

influence of OATP4C1 on DDI to be examined, which is often overlooked in other 

systems. By the same token, rat PTC monolayers would also be a suitable 

candidate of drug interactions, albeit not in all substrates are applicable. Further 

investigations into rat PTC monolayer use in this setting are thus essential.  

6.10 Summary 

A summary of the mechanisms of digoxin transport by the human and rat PTC 

monolayer is shown in Figure 6.18. Rat PTC monolayers exhibited a predominant 

absorption pathway of digoxin, whereas human PTC monolayers were more 

representative of the digoxin secretory pathway in vivo. Human PTC monolayers 

were thus deemed a better model for use in digoxin-drug interaction studies. 

Digoxin Papp in the presence of a range of concentrations of several MDR1-

inhibtors was performed and the subsequent IC50 of the inhibitors calculated. The 

human PTC monolayers demonstrated robustness that is ideal for such studies. 

Whilst the mechanism of digoxin transport in rat PTC monolayers was not fully 

elucidated, this was the first study to report the association of Oatp4c1 on the 

absorption pathway in rat proximal tubules. Further investigations into the 

transporters involved in digoxin handling are thus needed.  
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Figure 6.18: The mechanisms of digoxin transport in rat and human PTC 

monolayers. 

(A) Human PTC monolayers exhibited a dominant digoxin secretory pathway. 

It was shown that this pathway involved OATP4C1-mediated uptake of  

digoxin across the basolateral membrane and MDR1-mediated efflux across 

the apical membrane. Digoxin reabsorption in human proximal tubule has not 

been documented, although it was demonstrated in the human PTC mon olayer.  

(B) In contrast, rat PTC monolayers exhibited a dominant absorptive pathway, 

which involved T3-sensitive components. Oatps such as Oatp4c1, Oatp1a3v1 

and Oatp1a3v2 were the most likely candidates of apical absorption of 

digoxin. Digoxin secretory pathway of digoxin was also detected. Mdr1 was 

found to be responsible for the apical efflux of digoxin.  Further investigation 

is required to fully elucidate the mechanism of digoxin transport in both 

models.  
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7.1 Final discussion 

The kidney plays a vital role in the elimination of many endogenous metabolites 

and xenobiotics. Drug transporters expressed on the proximal tubule cells have 

been identified as one of the key factors on the ability of the organ to successfully 

carry out its function (Inui et al., 2000; Beringer and Slaughter, 2005; Fagerholm, 

2007; Consortium, 2010; König et al., 2013). There are various in vitro models of 

renal drug transport, but many do not fully express the array of transporters to 

establish good in vitro-in vivo correlations (Brown et al., 2008; Jenkinson et al., 

2012). Indeed, Lam et al. (2014) recently published a paper showcasing cells 

differentiated from human pluripotent stem cells (hPSCs) as potential in vitro 

proximal tubule cell model, but they have yet to shown the utility of this model in 

the context of drug transport and nehptoxicity. Whilst the group has shown 

evidence of the differentiated hPSCs expressing kidney markers (including N-

cadherin), drug transporters have not been validated (Lam et al., 2014). Primary 

human proximal tubule cells (PTCs), on the other hand, has been shown as a 

good model to address this issue (Lash et al., 2006; Brown et al., 2008). Brown 

et al. (2008) showed explicitly the functional expression of key drug transporters, 

including MDR1 and BCRP, with which factors to promote their expression in the 

differentiated hPSCs would be need. The corollary of this discovery is to develop 

a rat version of the model. This is because the extrapolation of drug transport 

data from animals to humans is still a challenge due to unpredictable species 

differences in drug handling (Rasmussen, 1983; Lin, 1995; Bass et al., 2009). 

With the rat and human PTC models in place, the data from the handling of the 

same molecules by both species can be compared and any difference the two 

may have will be apparent. This project was therefore set out to develop and 

characterise the primary rat PTC as a model for drug transporter and drug 

interaction studies, and compare the handling of candidate molecules with that of 

the human PTC model.  

The results from the isolation and development of the rat PTC model are shown 

in Chapter 3 and 4 of this thesis. Rat PTCs were successfully isolated and 

cultured. More importantly, the mRNA and functional expressions of the multitude 

of drug transporters, such as Mdr1, Mrp2, Oat1, Oct2, Urat1 and Slc2a9, found 

in the native tissue were retained in the cells. This was important as these 
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transporters influence renal drug disposition (Consortium, 2010), and their 

expression would enhance the utility of the rat PTC as an in vitro model of renal 

drug transport.   

Further characterisation of the rat PTC model was also performed. Chapter 5 and 

6 show the results of the handling of an endogenous compound (urate) and a 

xenobiotic (digoxin) by the rat PTC monolayer. The monolayer was able to 

replicate the absorptive pathway of urate, as did the human PTC monolayer. This 

indicated the suitability of both species as models for renal urate transport. In 

addition, direct inference of the workings of urate transporters can be made 

between the species as both models handled urate in similar fashion.  

However, unlike the human, the rat PTC monolayer was unable to reproduce the 

secretory pathway of digoxin. The difference in the handling of digoxin reiterated 

the need for renal drug transporter models from different species. This allows the 

mechanisms with which a species handle the same drug to be ascertained. As 

illustrated in the urate transport experiments, both models demonstrated the 

same route of urate absorption. In the case of digoxin transport, rat PTC 

monolayer showed Oatps dominance that led to more digoxin moving in the 

apical to basolateral direction, whereas human PTC monolayer showed MDR1-

mediatated efflux of digoxin across the apical membrane. This difference also 

meant only human PTC monolayer was suitable for use in experiments to 

showcase its application in digoxin-drug interaction studies.  

Rat and human PTC are not limited to only drug transporter and drug interaction 

studies. Indeed, rat PTC had been used as an in vitro model to study the 

mechanisms of nephrotoxicity. Boogaard et al. had isolated and cultured rat PTCs 

similar to the method described in this project (Boogaard et al., 1989; Boogaard 

et al., 1990a; Boogaard et al., 1990b). They found cultured rat PTCs retained 

expression of enzyme activities such as that of γ-glutamyltranspeptidase, and 

showed that these enzymes could be used as parameters of toxicity; nephrotoxin 

would affect the enzyme activity and correlate to the severity of toxicity (Boogaard 

et al., 1990b). More recently, rat and human PTCs have been used to elucidate 

the mechanism of nephrotoxicity induced by anti-viral drugs by Brown et al. Yet 

to be published data show anti-viral drugs such as tenofovir, adefovir and 

cidofovir were transported via the same pathway in both rat and human PTC. It 
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is hoped that further work on this would provide information on the molecular 

mechanisms of disposition and nephrotoxicity of these compounds. 

Despite the differences in handling of certain molecules, the robustness of both 

models is evident from the experiments performed. For instance, the kinetics of 

several ABC transporters were determined from cells isolated from at least three 

different rats. The Km produced was similar in magnitude in all experiments. The 

fluxes of the urate and digoxin were also similar in magnitude, indicating the lack 

of variability in transporter expression between individuals, although there are 

studies that showed variations in serum urate level between different rodent 

strains (Dan et al., 1990; Preitner et al., 2009). 

As discussed in Chapter 4, the mimic of in vivo condition greatly improves the 

mRNA expression of many drug transporters. There are increasing interests to 

culture cells in a 3D environment, and that has been considered in the culture of 

rat and human PTCs. This involves the introduction of flowing media to recreate 

the movement of basolateral and apical fluids in vivo. Initial data produced in our 

laboratory show cells cultured under the “flow” environment produced higher 

transepithelial resistance and enhanced functional activities of several ABC 

transporters. While the reason behind this is yet to be discovered, this offer an 

improvement of the model on which more drug transporter and drug interaction 

studies can be carried out.  
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7.2 Conclusion 

Rat PTCs can be successfully isolated and cultured. These cells show expression 

of several classes of drug transporters considered important in drug development 

studies. Rat PTCs are also able to be cultured as monolayers with epithelial 

cobberstone-like morphology and be used to perform transepithelial fluxes.  

The handling of endogenous metabolite, urate, by rat PTC monolayers is 

remarkably similar to the handling of urate by human PTC monolayers; both 

species replicate the reabsorption pathway of urate in vivo. However, only human 

PTC monolayers are able to replicate the secretory pathway of digoxin, whereas 

rat PTC monolayers demonstrate a dominant reabsorption pathway. Rat PTC 

monolayers, therefore, are unable to be used as an in vitro model for the renal 

handling of digoxin in humans. A species difference in the handling of a key 

molecule is thus highlighted.  

The aims of this project are to isolate and characterise the rat PTC monolayers, 

and to investigate their suitability as an in vitro drug transporter model. The aims 

have been achieved on both counts. 
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