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ABSTRACT 

The population of the oldest old (aged 85 years and over) is growing. It is estimated 

that 30% of the adults over the age of 65 years experience falls at least once a year. 

This figure rises to 50% per annum for adults over 80 years living either at home or in 

care home. Currently older people are the fastest growing segment of the population. 

In the UK alone, the proportion of people aged 85 years old has increased from 2% to 

4% in the past six decades. This marked increase in growth of population aged over 

85 years is expected to have substantial impact on overall falls rate and pose serious 

issues to meet care needs for social and health care departments. In the light of such 

negative consequences for the faller and the associated costs to society, simple and 

quantitative techniques for falls risk screening can contribute significantly. 

This study describes a semi-automated technique to estimate falls risk of community 

dwelling elderly adults (aged 85 and over). This study presents the detailed analysis 

of tri-axial accelerometer movement data recorded from the right wrist of individuals 

undertaking the Timed Up and Go (TUG) test. The semi-automated assessment is 

evaluated here on 394 subjects’ data collected in their home environment. The study 

compares logistic regression models developed using accelerometer derived features 

against the traditional TUG measure ‘time taken to complete the test’. Gender based 

models were built separately across two groups of participants- with and without 

walking aid. The accelerometer derived feature model yielded a mean sensitivity of 

63.95%, specificity of 63.51% and accuracy of 66.24% based on  leave one-out cross 

validation compared to manually timed TUG (mean sensitivity of 52.64%, specificity 

of 45.41% and accuracy of 55.22%). Results show that accelerometer derived models 

offer improvement over traditional falls assessment. This automated method enables 

identification of older people at risk of falls residing both at home and in care homes 

and to monitor intervention effectiveness of falls management. 
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Chapter 1 

1  Introduction 
 

In many developed countries, falls are emerging as one of the serious health related 

issues among aging populations. One in three of population aged over 60 years’ 

experience falls at least once a year. Of this population 50% of the fallers fall 

repeatedly, 10% of falls result in serious injury and around 20% require medical 

attention. 

In the UK alone, £203 million ($331 million) was spent annually to treat fatal and non-

fatal falls for people aged 80 and over in 2010 imposing a substantial financial burden 

to the health care services [1]. Apart from financial burden falls in elders causes 

additional psychological disturbances. Moreover, elders develop a fear of fall after the 

post fall event, which hinder their regular activities which further increases the risk of 

fall to about 46% and increases the length of rehabilitation and thus cost [2]. 
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Occurrence of falls increases with age. Multiple studies have shown that older people 

(over 65 years) are the fastest growing segment of the population and this trend is 

expected to continue [3]. In the UK alone, the proportion of people aged 85 years old 

has increased from 2% to 4% in the past six decades [4]. This marked increase in 

growth of population aged over 85 years is expected to have substantial impact on 

overall falls rate and pose serious issues to meet care needs for social and health care 

departments. Therefore, in this present scenario given the marked increase proportion 

of elderly population, falls identification and prevention becomes vital. 

Advent of Micro Electro Mechanical Systems (MEMS) technology has driven the 

development of wearable sensors/ambulatory monitors. These wearable sensors allow 

recording body movements during the daily activities of living and detect falls. In the 

past, many falls detection systems [5-7] were implemented using wearable sensors 

which detects falls as occurs. Getting assistance quickly after occurrence of falls 

increases the chances of living and hence many fall detection systems were developed 

to generate alarm for help. Although, detection of falls saves life by significant 

percentage, the injuries and after effects of falls are high in number. Moreover, the 

falls detection system only detects falls. Injury, cost for treatments and psychological 

effects are still pertinent even after falls detection. Therefore a compelling necessity 

has evolved preventing falls than detecting it. A study by Tinetti et al. [8] showed that 

falls can be prevented with effective falls risk assessment strategies which has 

significant benefits of reducing injuries, hospitalizations, nursing home admissions, 

functional decline and reduces the money spend to treatments of falls. 

In 2003, lord et al. [9] described a conceptual model for falls assessment and  identified 

that the main factor for falls is postural instability. The major contributors for postural 

stability are vision, reaction time, muscle force, vestibular function, and peripheral 
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sensation [9]. Hindrances in any of these factors contribute to instability leading to 

falls. As a result, assessments of these factors permit estimating degree of fall risk. 

Similarly, British and American geriatric societies proposed a guideline for falls 

assessment in order to identify and offer interventions preventing falls [10]. The 

simplified flow chart of proposed guideline is shown in the Figure 1.1. Health care 

provider offers the falls screening questionnaire to an elderly adult. Then balance and 

gait is assessed, if any abnormality is detected then multi factorial assessment is 

carried out. Based on its outcomes of multi factorial assessment interventions are 

offered. Once interventions are offered elderly adults are reassessed periodically and 

procedure above is carried out to offer interventions thereby preventing falls. 

It can be seen from the flowchart that gait and balance determine postural stability of 

an elderly and identified as the major factor for assessing falls. Therefore, gait and 

balance has to be assessed to evaluate the falls risk and prevent them. Traditionally, 

gait and balance of an elderly are assessed using clinical tests such as Berg Balance 

test, Tinetti test, Dynamic Gait Index. In particular, one or more clinical tests are 

administered to an elderly participant and performance of the participant is evaluated 

by the examiner/trained clinical staff using clinical scales. As the assessments are 

based on clinical rating scales the results suffer from drawbacks such as examiner bias, 

not accurate and time consuming. 

Wearable sensors allow quantification of body movements during the clinical tests and 

allow overcoming the issues of direct evaluation by an examiner. More interestingly, 

wearable sensors show potential for automating the whole process of gait and balance 

evaluation and thereby identification of falls. Automated and quantified assessment of 

falls permits simple, quick and accurate fallers identification at early stages of balance 

and gait deficits. Early identification of risk factors will allow offering interventions 
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to prevent falls. In addition, quantified assessment allows evaluating falls in elderly 

home living environment, this might broaden the scope of falls assessment beyond the 

clinical setting and contribute to falls risk screening significantly. 

The overall aim of the study is to develop and implement techniques to automatically 

assess balance and gait using wearable sensors that enable to predict falls of elderly 

adults in home living environment.  

1.1. Thesis aims and Objectives 

The primary aim of the research is to investigate the feasibility of using single wrist 

mounted accelerometer to predict fallers automatically in a community dwelling.  

Aims and objectives of the research are outlined as follows: 

1.1.1. Aims 

 The study is undertaken to study the following primary hypothesis: 

 Is it feasible to use single wrist mounted accelerometer to predict fallers in 

the community dwelling? 

 Does accelerometer have any added value and improve falls prediction in 

comparison with traditional falls prediction methods? 

 Is it possible to automate the whole process of falls estimation and can it be 

used in community dwelling environment? 

 Can disability levels be predicted using accelerometer and does it have any 

added value compared to traditional measurement? 
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1.1.2. Objectives 

The study has the following primary objectives: 

 Develop and implement clear, simple and acceptable protocol to automate 

falls prediction that enables application in normal living environment. 

Falls Screening
Evaluate 

Balance and 
Gait

Abnormalities 
Detected

Multifactorial 
assessment

Offer 
Interventions 

Reassess 
Periodically

Figure 1.1  Simplified flowchart of falls assessment described by British and American 

geriatrics society [10].  
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 Extract clinically sensitive features from the signals of accelerometer that 

may associate with falls and health status which enables identifying falls in 

early. 

 Develop and implement classifier independent robust feature selection 

methodologies to select and combine extracted features that have ability to 

predict fallers.  

 To gain insight into the importance of features extracted and study its 

effectiveness. 

1.2. Thesis Contributions  

 The novel contributions of this research study are summarised as below: 

 A novel protocol and algorithm was implemented to identify the actual signals 

of interest from the whole accelerometer recording. The algorithm developed 

delineates signals automatically with mere user tapping the sensor before and 

after the test.  

 The implemented algorithm to identify signals of interest was compared with 

the true measurement and error was found to be less than 0.1s. 

 A new feature known as ‘Number of Frequency Switches (NOS)’ was 

extracted and its ability to discriminate fallers from non-fallers was shown. 

Moreover, this feature’s ability to classify disability levels is also presented.  

 A generalised feature selection algorithm which is independent of classifiers 

was developed. 

 Simple Logistic Regression classifier to identify falls was developed using the 

combination of selected features. The developed model showed an 
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improvement of accuracy of ~10% over the model developed using traditional 

measure. 

 The extracted features have shown its ability to discriminate disability level of 

community dwelling adults. The accelerometer based model outperforms the 

model developed using traditional measure classifying disability levels. On a 

whole, the developed system has an added value and can identity fallers and 

also disability level of an individual living in home environment or in clinical 

environment with minimum user aid.  

1.3. Outline of the thesis  

The basic motivation for this study, aims and objectives are provided in the Chapter 

1, the structure of the thesis is as follows: 

Chapter 2 introduces falls and the risk factors that manifests falls. Subsequently, 

techniques used to asses fall are introduced. Followed by, introduction to ambulatory 

monitors and its benefits of assessing falls over traditional methods. Later, it reviews 

literatures which utilised ambulatory monitors for the assessment of falls risk. Finally, 

it provides background information and theory of feature selection and classification 

system used in this study. 

Chapter 3, Compares the methods of studying falls and approaches to estimate falls. 

The chapter presents the requirements of ambulatory monitor and presents the 

wearable accelerometer used in the study. Finally, it presents the signals obtained from 

the accelerometer and the methodology used for estimating the components of the 

accelerometer signals. 
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Chapter 4, presents the advantages of automatic falls estimation. It details the protocol 

and algorithm developed to semi-automatically estimate falls. Later, the chapter 

presents the methodology of features extracted and its usefulness. Finally, it describes 

the methodology of robust feature selection implemented. 

Chapter 5 presents the results and discussion of the study. The first section of the study 

presents the performance of the signal segmentation algorithm. Subsequently, the 

performance metrics of models developed for falls estimation using the features 

selected and combined are presented.  Finally, it studies the ability of extracted 

features to estimate the disability levels in the community dwelling and presents the 

performance metrics of the models developed. 

Chapter 6 presents the conclusion and future work of the study. 
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Chapter 2 

2. Theory and Background 
 

This chapter depicts the motivation and background information of the study 

undertaken. The chapter is divided into three main sections. The first section 

introduces falls, falls risk factors and techniques that are widely used to assess falls 

risk. The second section of the chapter, describes benefits of ambulatory monitors over 

the traditional methods assessing falls risk. It then details the background information, 

principles of ambulatory monitor-accelerometer used in the study. Subsequently, it 

reviews the literatures on assessment of falls risk using ambulatory monitors. The third 

section of the chapter describes theory and background of components of classification 

system that are utilised in this work. 

2.1. Falls 

In many developed countries, falls are emerging as one of the serious health related 

issues among aging populations. Falls are the biggest risk for the elderly population, 
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particularly for the community-dwelling individuals, leading to loss of functional 

independence. One in three of population aged over 60 years’ experience falls at least 

once a year. Of this population, 50% of the fallers fall repeatedly, 10% of falls result 

in serious injury and around 20% require medical attention [11]. Incidence of falls 

increases with age and falls related admission in hospitals increases exponentially after 

the age of 60 years [12]. Figure 2.1 shows the fatal falls rate by age in USA, it can be 

clearly seen that falls rate increases with age and particularly after 75 years of age falls 

rate is remarkably higher. 

 

Figure 2.1 Fatal falls rate by age in USA 

 

Falls causes many injuries of those injuries hip fracture is the one of the injuries which 

generally leads to serious health adversities [13]. Most of the hip fractures lead to 

death and in case of survival, elderly adults do not recover complete mobility. Apart 

from hip fractures, falls causes multitude of problems such as head injuries, loss of 

independence, institutionalisation and admissions to hospitals. Half of the individuals 

who fall are unable to get up after the fall without assistance, it was reported in the 

study by Tinetti et al.[14] that out of 313 fallers, 47% (148) were unable to get up after 
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fall. Although, some of the falls are non-injurious, lying down after a fall for a long 

time without being able to get up have serious consequences like, fear of falling, 

muscle damage, dehydration and hypothermia. These consequences result in 

hindrance to perform activities of daily living (ADL) which reduces quality of health 

and well-being further increasing the falls risk.  

Falls reduces the quality of life to individuals and also cause enormous cost to the 

government and health care organisations, therefore identifying fallers earlier in time 

and preventing falls is imperative. Past literatures on elderly falls show evidences of 

falls identification and prevention. Although, falls identification systems save life the 

after effect of falls are still persistent and hence falls prevention is superior to falls 

identification. To prevent falls, risk factors associated with falls have to be identified 

at an early stage and timely and targeted interventions have to be provided.  

2.1  Falls Risk Factors  

Falls are caused by multiple risk factors. The risk factors of falls can be broadly 

classified into Extrinsic and Intrinsic factors. The extrinsic factors are environmental 

hazards (poor lighting, slippery floors), lack of safety equipment’s in bathrooms and 

inappropriate walking aids, footwear and clothing [15]. Intrinsic factors are weakness 

in muscular strength, decline in stability, balance and vestibular function and it is 

estimated that over 85% of falls are due to intrinsic factors [14]. It is reported in [16] 

that, multiple disabilities such as limited mobility, poor vision etc.  congregate 

together and cause falls. The underlying causes for falls are compound in nature and 

are difficult to identify appropriately, consequently different literatures identifies 

different falls risk factors.  
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Poor vision is shown to be significant and independent risk factor of falls in multiple 

studies [17-19]. Factors such as low visual acuity and depth perception are shown to 

be important measures of vision that relate to falls risk. 

Another important falls risk factor is the muscle strength. Muscle strength is one of 

the factors that define one’s ability to maintain balance. There are number of studies 

which show that the lower limb strength as a strong single independent predictor of 

falls. In addition to poor vision and muscle strength, ailments such as Alzheimer’s and 

Parkinson’s disease are also found to cause falls [20]. 

Medications taken for the diseases and disabilities have also shown to be significant 

risk factor of falls. It has been reported that medications like benzodiazepines, anti-

depressants and medications that are associated with central nervous systems have 

connection with increased falls risk [21]. Other factors which have shown association 

with falls are poor balance and stability, grip strength, slow walking speed, inactivity, 

poor vision, anxiety, peripheral neuropathy and dependence in performing ADL [14, 

22-24]. Figure 2.2 shows the factors that cause falls and effects of falls. 

Identification of risk factors of falls help in offering interventions. Interventions help 

reducing falls. Literatures have shown to have offered interventions considering both 

single risk factor and multiple risk factors of falls. Although, single factor 

interventions have its benefits, multi factorial interventions is preferred over as it is 

more successful in prevention of falls. Studies have shown that multi factorial 

interventions have led to 25% of less falls [25], 26% less hospitalisations, reduction 

in time of stay at hospitals [26] and significant reduction in falls rate [27, 28]. 
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In a summary, identification of risk factors is the vital aspect to provide timely and 

target specific interventions. Effective timely interventions help reducing falls and 

improve the quality of life of elderly population at risk. 

2.2. Techniques for Assessing Falls Risk 

Falls risk assessment methods allow assessor to evaluate participants falls risk through 

assessing their performance. The methods varies widely requiring participants to fill 

the simple questionnaires to the complex multi factorial assessments which aims to 

assess the falls risk factors described earlier in section 2.2. Some of the assessment 

requires participant to perform only a single task and others require performing 

multiple tasks. Depending upon the number and nature of tasks, assessment methods 

have been applied in variety of environments from community dwelling natural 

environment to the hospital settings.  

The three most widely used falls risk assessment methods applied on community 

dwelling individuals are, Berg Balance Scale (BBS) [29, 30], Dynamic Gait Index 

(DGI) [31] and Timed Up and Go (TUG) test [32]. These tests focus upon the mobility 

and balance of the participant each with different focus. 
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Figure 2.2: Risk factors and effects of falls. Modified and adapted from [33]. 
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2.2.1. Performance Metrics 

In the literatures of falls identification the performance metrics that are widely used 

are presented in this section. The three widely used performance metrics are 

sensitivity, specificity and accuracy. Sensitivity is defined as the percentage of fallers 

correctly identified as fallers; it is also called as true positive rate. Specificity is defined 

as the percentage of non-fallers correctly identified as non-fallers, true negative rate. 

Accuracy is defined as overall correct percentage of the classifier under test.  

2.2.2.  Berg Balance Scale (BBS) 

Berg Balance Scale is valid [29] and widely used test for assessing balance and 

stability [34]. BBS consists of 14 balance related activities and usually undertaken 

under the supervision of the assessor or practitioner. Each of the activity is rated by 

the assessor in the scale ranging from 0 to 4, where 0 indicating poor performance, 

summing up to the total score of 56. The 14 tasks include : sitting to standing, standing 

to sitting, standing unsupported, sitting unsupported, standing with eyes closed, 

standing with feet together, turning to look behind, turning 3600, placing alternate foot 

on stool, standing on one foot on front, standing with one foot on front, transfers, 

reaching forward with outstretched arm and retrieving object from floor. 

BBS has shown to have excellent inter and intra rater reliability and proven as a valid 

screening tool to identify individuals at falls risk [35]. Different literatures show 

different BBS cut off scores for identifying elderly adult at risk. 
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The original recommended cut off by Berg et al. [29] was 45, which differentiates 

healthy participants from  those who require care or further examination. Ability of 

BBS is shown to vary in different studies, Bogle et al. [36] supporting the original 

discriminative score of 45, reported specificity over 90% and sensitivity of 53% 

identifying fallers from non-fallers. Shumway et al.[37] undertook a study to predict 

fallers using cohort of 44 participants and evaluated balance of participants using BBS. 

The authors (Shumway et al.) identified fallers using the cut off value of 49 and 

reported a sensitivity and specificity of 77% and 86%, respectively  

The study by Lajoie et al.[38] using 125 elderly participants found that scores of BBS 

is a significant predictor to identify fallers. A cut off score of 46 was reported as 

statistically effective and yielded a sensitivity and specificity of 82.5% and 93%, 

respectively. Another study utilised BBS to identify fallers with a cut off value of 45 

reported a sensitivity of 53% and specificity of 93%.[36]  

Despite the ability of BBS identifying fallers in multiple studies, there are conflicting 

reports on BBS ability. Studies by O’Brien et al.[39] and Riddle et al. [40] show that 

BBS does not have an ability to discriminate fallers from non-fallers. 

2.2.3.  Dynamic Gait Index (DGI) 

DGI is one of the widely used clinical methods used to assess dynamic gait, balance 

abilities and risk of falling of an individual [31]. The DGI evaluates gait not only 

during the steady state walking but also while performing more challenging tasks. DGI 

consists of 8 tasks and each of the tasks in the range of 0 to 3 where 0 indicates poor 

performance and 3 indicates excellent performance. The scores given to the tasks sums 
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up to a maximum value of 24. The tasks involved are gait on level surfaces, performing 

head turns in horizontal and vertical directions, walking at different speeds, turning 

180o during walking and stopping, stepping over and around objects and stair 

climbing. With the standard cut off value of 19, DGI have been applied in wide variety 

of conditions utilising participants with chronic stroke [41], Parkinson’s disease [42], 

balance and dizziness [43] and relatively healthy old adults [37]to assess the gait. 

Moreover, DGI has been applied to predict fallers. Study by  Shumway et al. [37] 

utilised DGI to predict fallers, with cut off value of 19, yielded a sensitivity and 

specificity of 59% and 64%, respectively. Similarly, Talia et l. [31] applied DGI on 

large cohort of 278 participants yielded a sensitivity of 92% and specificity of only 

3% in classifying fallers with the cut off of 19. 

2.2.4.  Timed Up and Go (TUG) Test 

TUG test is most widely used and accepted test for assessing functional mobility [32]. 

Illustration of TUG is shown in Figure 2.3: Illustration of TUG test.. At the instruction 

of the nurse observer, the participant is asked to stand from the chair, walk 3m at a 

comfortable pace, turn through 180o, return back to the chair and sit down. The test 

performance is dependent on the chair height and 44-47 cms was the recommended 

chair height [44]. In this study the standard chair of height 46 cms was used. Nurse 

assessor observes the participant’s performance and time to complete the test is 

measured using a stopwatch. 
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TUG test is frequently used assessment methods to assess functional mobility and falls 

risk [45]. Podsiadlo and Richardson [32] evaluated TUG in 60 participants in a 

geriatric hospital and reported 30 seconds is the best cut off point to determine the 

functional independence of the participants of the study. TUG possesses high inter-

rate reliability1 in hospital in-patients [32] (ICC =0.99) as well as community dwelling 

older adults (ICC=0.98) [46] and also high test-retest reliability.  

TUG has been reported in multiple studies, Shumway-cook et al. [47] evaluated TUG 

test in 30 community dwelling older adults and to identify fallers under single and 

dual-task conditions (carrying water, counting from 100 to 1 and subtracting 3- a 

cognitive task). It is reported that TUG is sensitive identifying fallers with sensitivity 

and specificity of 87% for 13.5s as the best cut-off. There are different cut off 

thresholds suggested by different studies, a study utilising 413 community dwelling 

adults suggested a cut value of 12s to segregate fallers from non-fallers [48]. The other, 

in-clinic study utilising 110 participants recommended a cut off 15s to identify 

participants with falls risk [49].Alexandre et al.[50], utilised 63 community-dwelling 

elderly adults performing TUG test, 12.47 s was determined as an effective cut off 

score which yielded sensitivity, specificity and accuracy of 73.7% , 65.8% and 68.3%, 

                                                           
1 Inter rate reliability defines degree of agreement of the measurement among the raters. 

 

Figure 2.3: Illustration of TUG test. 
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respectively. Gunter et al. [51] undertook a study with 157 men and women. It was 

reported that TUG has an ability to classify fallers with an accuracy of 71.2%  

TUG test was extensively studied in elderly adults [32],[52],[53],[47] also with variety 

of pathological conditions such as participants with Parkinson’s disease [54], post 

stroke survivors [54] and patients with hip osteoarthritis [46] and fractures [55]. 

2.3.  Ambulatory Assessment of Falls risk  

For a long time, assessment of health through TUG and other clinical tests were 

observational in nature. Observational assessment takes long time, costly, intrusive, 

and not easy to study large cohort and prone to subjective judgement. One of the main 

drawbacks is the assessment of subjects with battery of tests in a clinical environment; 

this may hinder natural individual’s performance in performing activities as described 

in the test protocols. Therefore a need for more practical and objective method of 

assessment became imperative. Developments of wearable sensors technologies allow 

assessing clinical tests through objective methods. Particularly, advances in the 

technology of Micro-Electro Mechanical Systems (MEMS) devices and 3-D 

packaging have driven the development of wearable sensors to record movement in 

both clinical and daily living environments.  

Wearable sensors include pedometers, actometers, goniometers, accelerometers, 

magnetometers and gyroscopes. Pedometer is a simplest device which registers 

locomotion with a help of mass-spring system. It is a device which only counts the 

number of steps and is highly susceptible to noise. Although, pedometers are 

inexpensive, it is not possible to assess frequency, intensity of the movement and 

duration of activity. On the other hand, Accelerometers and Gyroscopes overcome the 

limitation of pedometers and allow measuring frequency and intensity of movements. 
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Nevertheless, Gyroscopes consume relatively more power than accelerometers hence 

cannot be used for long time. 

Accelerometer offers a number of advantages in monitoring human activities. 

Accelerometers respond to frequency and intensity and allow determination of 

duration of activity. Accelerometers sense the gravitational acceleration at rest, this 

information can be used to determine the orientation of the sensor or the orientation 

of the body it is attached with. Recent developments in MEMS has resulted 

miniaturised, low power, less weight accelerometers which allows wearing it for long 

time without obstructing activities of the wearer. Therefore, accelerometers are 

emerging as practical, inexpensive and reliable methods of assessment in clinical and 

in daily living environment [56].  

2.3.1.  TUG vs. BBS and DGI  

One of the primary objectives of this work is to develop a system that is feasible to 

assess falls risk of elderly adults who are aged 85 and over in their natural living 

environments. Particularly for participants over 85 years of age a careful selection of 

assessment method is needed. Moreover, the selected assessment method should be 

feasible and reliable for quantitative measurement using accelerometers. The 

following paragraphs compare the three widely used assessment methods (described 

in the section 2.3).  

TUG, DGI and BBS all have proven valid and reliable. TUG test consists of single 

task where as DGI and BBS test comprises of multiple tasks. Rationally, one would 

argue that DGI and BBS are more comprehensive in nature and would yield better 
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results. This is not true as BBS and DGI suffer from ceiling effects and was shown to 

suffer consistently in multiple studies [43], [57] and [58]. Nevertheless, it takes 

approximately 15-20 minutes to complete the tasks, hence would not engender quick 

assessment of falls risk. In view of elderly adults who are aged over 85 years, tasks 

such as sanding with one foot on front, reaching forward with out-stretched arm, 

stepping over and around objects etc. possess great danger to the participants.   

TUG test requires participants to perform simple day to day activities such as walking, 

turning, sitting and standing. TUG test is relatively simple and would predispose to a 

quicker assessment than other two methods. Unlike BBS and DGI, ceiling effects2 of 

TUG is not observed in any of the previous studies. Apart from being simple, TUG 

also has an ability to test multiple components of balance and mobility in a one single 

task, for an example: stand-to-sit is simple sequential combination of multiple tasks 

[59]. TUG consists of some of the activities of ADL such as walking, sit-to-stand 

which requires cognition function (planning and organisation); as a result, TUG may 

be associated to some degree to the executive function [45]. Association of TUG with 

the cognitive function is reported in several studies [60, 61] and inability to perform 

TUG has relationship with institutionalisation, impaired functioning and even death 

[59, 62]. TUG is measured in continuous scale whereas the other methods BBS and 

DGI are measured in ordinal scale. The ordinal ratings by the assessor is subjective, 

i.e. performance scoring could differ from individual assessor to another and therefore 

it is not standard and accurate. In addition, for a quantitative assessment using the 

ambulatory monitors such as accelerometers, TUG test offers more feasibility than 

others, as TUG comprises of multiple sequential tasks in a one single task.  

                                                           
2 Ceiling effect- Variance in the predictor/independent variable no longer has an effect on the 
dependent variable. 
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British and American geriatrics societies [10] have recommended TUG test as a basic 

screening tool for falls risk owing to ease of use, reliability and its power to identify 

fallers in early health decline. To summarise, TUG test is simple, standard and shows 

feasibility for quantitative assessment of community dwelling elderly adults with ease. 

For the above reasons, TUG test is preferred over other two tests. 

Objective of the current work is to utilise accelerometer as an ambulatory monitor on 

participants performing TUG test to predict fallers. The rest of chapter discusses the 

fundamental theory and background of the accelerometers, then reviews literatures on 

falls risk assessment using body worn sensors and finally discusses components of 

classification system used for identifying fallers. 

2.3.2.  Introduction to Accelerometer 

Accelerometer is an inertial system which measures acceleration. A single-axis 

accelerometer can be modelled as the mass spring system attached to the solid support 

as shown in Figure 2.4 The mass attached to the spring undergoes displacement to the 

distance proportional to the force experienced ( F ) as explained by Hooke’s law. It 

states that within the elastic limit of the spring (the greatest stress that can be applied 

to the spring before the onset of permanent deformation) the force applied to 

elongate/expand the mass spring system is equal to the product of displacement of the 

spring and the spring constant k . This is formulated as  

 kxF   (2.1) 
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The negative sign in the equation represents the Newton’s third law of motion, which 

denotes that the deflection is due to the reaction force of the force applied.  

The principle of operation of accelerometer can be mathematically understood by 

relating Hooke’s law and Newton’s second law of motion. Newton’s second law of 

motion states that the force is directly proportional to the product of mass ( m ) and 

acceleration ( a ). 

 maF   (2.2) 

 

Equating 2.1 and 2.2, 

 

m

kx
a


  

(2.3) 

 

Equation (2.3) explains working of an accelerometer. It shows that the accelerometer 

basically measures force and, acceleration is derived from it. 

 

 

 

 

 

 

 

           Adapted from Analog devices ADXL50 [63]. 

 

 

Figure 2.4 Accelerometer as a mass spring system. 
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2.3.3. MEMS Accelerometer 

 Advent of Micro Electro Mechanical Systems (MEMS) which combines electronics 

and mechanical components makes mechanical accelerometer available in the 

miniaturized form without compromising the effectiveness and also producing outputs 

in the electronic form. The basic working principle of the MEMS accelerometer is 

same as the mechanical accelerometers. A simple MEMS accelerometer has a micro 

machined seismic mass and cantilever beam which acts as the spring. When a force or 

acceleration is experienced, cantilever beam deflects proportional to the acceleration 

from the rest position this displacement is read by the analogue or digital readouts. 

Differential capacitive MEMS accelerometer is most widely used in current 

technologies such as mobile phones, gaming devices. There are many forms of MEMS 

accelerometers, such as piezoelectric piezo resistive and differential capacitive 

accelerometers. The capacitive accelerometers consists of mass suspended between 

two electrodes, the output is proportional to the deflection of mass between the two 

electrodes which is proportional to force or acceleration. The advantages are low 

power consumption higher sensitivity and faster response than other forms of MEMS 

devices. Differential capacitance form of MEMS accelerometer is utilised in the study.  

2.3.4. Accelerations measured by accelerometers  

Normal force is the force which acts perpendicular to the surface of any object. Normal 

force is an equal and opposite force acting on an object which prevents it from sinking 

through the surface placed provided that the surface is hard enough to deliver the 

reaction force. Earth surface is considered as the surface of reference, an object placed 
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horizontal or parallel to the earth surface will apply the force equal to the product of 

weight and acceleration due to gravity and provided forces of friction are absent.  

maF   

 

 

 

 

 

 

 

 

 

Figure 2.5: Forces acing on the accelerometer on the inclined surface. X, Y are 

the axis of an accelerometer. 

Consider an accelerometer resting on the inclined surface as shown in the figure2.5. 

The force acting on the object neglecting the frictional forces is only the force of 

gravity. The accelerometer at rest measures only the normal force. Thus resolving the 

force of gravity due to the mass of an accelerometer, we obtain the cos function 

component responsible for the normal force. The following mathematical equation 

shows the acceleration measurements of an accelerometer at rest at any angle from the 

ground. 

 cosga   (2.4) 

 

Case1: ,0 measurement axis is 90 deg from earth surface,  ga   

Case2: ,90  measurement axis is 0 deg from earth surface, 0a  
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Therefore an accelerometer placed on the horizontal surface (sensitive axis 

perpendicular to it) will measure acceleration equal to the acceleration due to gravity. 

In presence of additional external accelerations or forces the accelerometer, the output 

of an accelerometer is the sum of accelerations due to gravity and due to the additional 

external accelerations. 

2.4. Literature on accelerometer for movement 

analysis 
 

Accelerometers as a wearable sensor have been used in movement / gait analysis, falls 

detection and movement classification. Gait is an important factor which reflects one’s 

ability to live independently, functional status [64] and risk of falls [65].Accelerometer 

can characterise gait patterns and thereby gait abnormalities can be detected. 

Parameters such as step time, stride length and stride symmetry extracted using 

accelerometer placed on the waist and thigh have shown detecting abnormalities in the 

normal gait patterns [66, 67]. It has been also shown that the parameters such as heel 

strike and toe off can also be detected which has the ability to describe abnormalities 

in gait and good predictor of falls [68].  

Apart from gait analysis, with the accelerometer’s ability to capture movements it has 

also been widely used for identifying different movements and activities. 

Accelerometers have been used to discriminate activities such as sitting, lying, 

standing, walking and even stair climbing [69-71]. 

Sit to stand and stand to sit shows functional status and an ability to live independently 

[72]. Narayanan et al. showed that there exists a moderate correlation between the 
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accelerometer parameters extracted during sit to stand and stand to sit movements and 

falls risk [73].  

Falls pose serious problems to elderly. In particular, for individuals aged over 65 years 

living in the community. Inability to get up after falls is major problem, this leads to 

dehydration, in case of any injuries the blood loss that occurs from the injury would 

even kill the person. Therefore falls detection systems were proposed. The falls 

detection systems identify falls when it occurs and generates an alarm to help can be 

reached. Accelerometer was used in many of the falls detection systems [5]. 

Although, falls detection systems are very helpful in reaching for help, the injuries and 

other effects of falls could not be prevented.  Therefore, wearable sensor technology 

has advanced detecting abnormalities in earlier and preventing falls rather than 

detecting it. The following section describes the use of wearable sensors for falls 

assessment.  

 

2.5. Literature on falls assessment using 

ambulatory monitors 
 

In older cohorts, wearable sensors have been applied to the evaluation of standing 

balance [74, 75] falls risk assessment [74, 76, 77] and activities of daily living [78-

80]. Accelerations measure vary depending upon the position of sensor placed and 

also on type of activity performed. In general, the acceleration magnitude increases 

from head to ankle which can be measured by three axes of an accelerometer [56]. In 

the past, sensors have been attached to the part of body which is being studied. For an 

example: Studies such as [81, 82] placed the sensor at the location of leg to study the 
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leg movements. In an intention to study whole body movements, researchers placed 

multiple sensors at different locations of the body and some placed single sensor at 

location closer to the centre of mass of the body. 

There are trade-offs in number of sensors used, cost, acceptability, usability and 

amount of information obtained. Utilising multiple sensors will permit collecting more 

information which will lead to more accurate recognition and classification. However, 

wearing multiple sensors for longer time would obstruct user activities of daily living, 

increases the cost and complexity of the system. On the other hand, single sensor is 

easy to wear, less intrusive to the user performing activity but would engender 

collecting lesser information than multiple sensors. The following survey 

demonstrates the literature utilising single and multiple body worn sensors, in 

evaluation of gait, mobility and assessing the falls risk of an individual.   

Higashi et al. [83] utilised multiple wearable sensors (accelerometers and gyroscope) 

positioned at the upper back and thigh to quantitatively assess the TUG movements 

by evaluating on 20 hemiplegic patients. The authors developed algorithms to measure 

time taken from the individual components of the TUG test, i.e. time taken for sit-

stand, walk, turn etc separately and compared it with the measurements with therapists.   

Weiss et al. [84] conducted similar work utilizing a single accelerometer placed on the 

lower back to evaluate patients with Parkinson’s disease using Timed Up and Go test. 

The authors utilised 32 participants, 17 with Parkinson’s disease and 15 were control 

group. A number of measures was extracted from accelerometer and was shown that 

the measures have a value and serve compliment the prediction of disease progression 

and interventions.  
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Zamperi et al. [85] used TUG test with the five inertial sensors placed at various 

locations of the body such as shanks, wrist and chest. 24 participants were used in the 

study (12- PD and 12- healthy) and showed that the measures extracted from the 

sensors were able to detect the abnormalities in early-mild PD and can detect disease 

progression. 

Similarly, Salariah et al.[86] used single packaged gyroscopes and accelerometer to 

assess balance and mobility of early-mild Parkinson’s patients using TUG test. 

Authors’ utilised 24 participants 12 with Parkinson’s disease and 12 without, results 

suggest that use of sensor is of significant value and has potential for studying disease 

progression, where the stopwatch measure of TUG did not show any difference.  

Similar study by L.Palmerini et al. [87] quantified motor impairment of Parkinson’s 

patients using single accelerometer placed at lower back. Study utilised 34 subjects 

(20 Parkinson’s patients and 14 control/healthy participants) performing TUG. The 

studies [83-86] focus on studying individual measures extracted from the sensors 

whereas [87] combined best features extracted from the accelerometer for 

classification.  

Najafi et al.[77] used a miniature gyroscope placed at the chest to estimate falls risk 

of 11 elderly subjects and compared it to Tinetti balance scale. Three measures were 

extracted from the gyroscope was shown to be significantly correlated with the elderly 

falls risk. 

Giansanti et.al [76] used both gyroscopes and triaxial accelerometer placed on the 

back at L5 to characterize 100 fallers performing balance tests. The measures related 

trunk kinematic parameters were extracted and showed very high discrimination 
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ability 0f high falls risk participants with sensitivity and specificity greater than 0.939 

and 0.930, respectively. 

 In recent studies, Narayanan et al. [73, 88] and Liu et al. [89] extracted a number of 

parameters from a single waist mounted accelerometer to estimate falls risk and 

validated the procedure against a physiological profile assessment. Narayanan et 

al.[73] undertook the study with 68 elderly adults and extracted number of measures 

from the accelerometer. The best selected measures are found to be correlated with the 

falls risk with the Pearson’s correlation coefficient of ρ=0.81. Narayanan et al. work 

was improved by Liu et al. extracting many spectral measures and  with automatic 

segmentation showed a correlation with falls risk of ρ=0.99 . 

Greene et al. [90] utilized two kinematic sensors (tri-axial accelerometers and 

gyroscopes), placed on the shanks of the subjects, to generate parameters related to 

timing, gait and balance to retrospectively predict falls risk with the sensitivity and 

specificity of 77.3% and 75.9%, respectively.  

 

2.6. Summary of falls risk assessment and problems 

with past works 
 

Despite the previous studies described in section 2.5 showing the ability of body worn 

sensors identifying individuals falls risk, they share limitations: the data utilized by 

them were invariably collected in a clinical environment with small sample size and 

utilised manual segmentation of TUG sequence from whole recordings. The current 

study utilizes data collected in the home environment from 394 participants in the 

Newcastle 85+ Study [91], each with records of prior falls in the preceding 12 months 
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and employs a semi-automated protocol to delineate TUG sequence from the whole 

instrument (accelerometer). By automatically delineating and analysing the TUG 

movement sequence, this system may translate simply to routine falls assessment in 

the home environment. 

The present work is the first to assess the utility of a single wrist mounted 

accelerometer for estimating prior falls risk. The use of a single wrist mounted device 

with automated data processing and interpretation may be simple and convenient to 

apply and compatible with falls risk assessment protocols suitable for administration 

at home. The current study focuses on overcoming the challenges to automated TUG 

evaluation and seeks to improve prior faller identification.   

2.7. Components of a classification system 

The approaches of falls risk classification involve a multi-stage process. Broadly, the 

process involves feature extraction, feature selection and classification. Feature 

extraction basically involves dividing the sensor data into multiple window 

components and extracting features from each component. Followed by selection of 

highly discriminating features and finally these features are given to the classifier as 

an input for classification. Stages involved in design of classification system are 

shown in the Figure 2.5. 
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Figure 2.6 Overview of stages involved in design of classification system. 

2.7.1. Feature Extraction 

Feature extraction involves extracting features from the accelerometer that may be 

informative. Broadly, the features extracted are classified as heuristic, spectral and 

temporal. A brief outline of each of categories of feature extraction is given below: 

Temporal Features: Temporal parameters are often statistical in nature; they include 

mean, median, mode, skewness and kurtosis [90]. Correlation-coefficient of different 

axes, different segments of the signal [92] and auto-regressive co-efficient [93] are all 

extracted. The temporal parameters are usually extracted from each of the window 

segments of the sensor signals. In particular to TUG test data, features such as walk 

time, number of steps, cadence and return time are widely extracted [90]. 

Data

Feature Extraction

Feature Selection

Classification
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Spectral Features: Extraction of spectral parameters involves transformation of data 

into frequency domain using techniques such as Fast Fourier Transform (FFT). FFT 

represents frequency distribution and strength of frequencies present. There are many 

features that are extracted from the FFT of the signal; FFT is usually calculated using 

window segments of the signal. Some of the examples of spectral features are power 

[94], intensity, frequency-domain entropy [92], frequency ratio and  magnitude ratio 

[89]. 

Heuristic Features: Different movement patterns result in varying amplitude of 

accelerometer outputs. Heuristic features aim to quantify the strength or amplitude of 

signal present and in turn using them to recognise and classify the movements. 

Heuristic features include Signal Vector Magnitude, Signal Magnitude Area (SMA) 

and Root Mean Square (RMS). These features are generally extracted after filtering 

the gravitational component present in the accelerometer signal. 

2.7.2. Feature Selection  

Feature selection is a technique of selecting the subset of features from the pool of 

features extracted, by discarding features that have less or redundant information. For 

an example: consider two groups, Group A: Less able to walk and Group B: Able to 

walk well. The selected subset of features extracted from originally extracted pool of 

features should show good association within the groups and high discrimination 

between the groups A and B.  
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Broadly, the feature selection techniques are divided into two categories: filter 

methods and wrapper methods. The following paragraph discusses the pros and cons 

of two methods. 

Filter Techniques: Filter is one of techniques of discarding less informative features. 

The method in general works by ranking the feature through relevance score and 

features that score low are discarded. The advantages of filter technique are simplicity, 

quickness and being independent of the classification algorithm. Therefore, the ones 

the subset of features are selected it can be used in any of the classification algorithm. 

The disadvantages of filter technique are that they do not interact with the classifier, 

do not consider feature dependencies and hence sometimes leads to worse 

classification performance. Some of commonly used filter techniques are Fischer 

Discriminant Ratio (FDR) [95], class separability measures such as divergence, 

Bhattacharya and Chernoff bound and measures based on scatter matrices and Fast 

correlation based Feature Selection (FCBF)[95]. 

Wrapper Techniques:  In order to overcome the disadvantages of filter techniques, 

wrapper methods were introduced. It is designed to interact with the classifier and 

account for feature dependencies. The feature selection procedure embeds the model 

hypothesis search within feature subset search. Search algorithm is usually enclosed 

around the classification algorithm to search for feature subsets. The best subset is 

validated using training and testing the data with the specific classification algorithm. 

Search algorithms include exhaustive search, sequential forward feature selection 

(SFS), sequential backward feature selection (SBS) and sequential forward floating 

feature selection (SFFS). The disadvantages are classification algorithm specific 

feature subset selection, high computation complexity and risk of over fitting 

compared to filter techniques. 
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There is third category of feature selection method known as embedded techniques; 

they can be seen as the searching for best subset in the combined space of classification 

algorithm and feature subset. They are less computationally complex than wrapper; 

however they are classification algorithm dependent. 

2.7.3. Classifiers  

The best selected features are given as the input to the classifiers. There are many 

variants of classifiers from low complexity statistical classifiers such regression 

classifiers, Discriminant Analysis (DA) to highly complex machine learning 

algorithms such as Artificial Neural Network (ANN), Decision trees (DT) and Support 

Vector Machine. The statistical algorithms are easier to implement and interpret 

results. Although, machine learning techniques have better classification capability it 

is harder to implement and interpret results. Moreover, for falls risk estimation in 

community dwelling, the algorithms that could be implemented in an on board 

processor would be beneficial. Hence, the statistical algorithms are better due to their 

low complexity. Regression analysis3 is widely used in the falls risk estimation 

literatures. The following section introduces the simple and very common technique 

to measure linear relation called correlation co-efficient and then details about linear 

and logistic regression including underlying assumptions and interpretation of the 

fitted model. 

                                                           
3 Regression Analysis is a method that is used to explain the relationship of variables using statistics. 
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2.7.4. Correlation Coefficient 

Correlation defines the strength of linear association between two sets of variables. 

The two widely used correlation coefficients are: Pearson’s correlation co-efficient 

and Spearman’s correlation coefficient.  

2.1.1.1 Pearson’s Correlation Coefficient ( r ) 

 

Pearson’s correlation co-efficient measures the strength of association of a normally 

distributed variable sets. It is defined as the ratio of product of covariance to the 

product of standard deviations (SD) of the variable sets. r is usually given in the scale 

of +1 to -1, where +1 and -1 defines strong positive and negative correlation, 

respectively, and 0 defines no correlation amongst the variable sets. 

The r of two variable sets 21 , xx  is given by 
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Where, cov is the covariance, E  is the mathematical expectation, 
ix Ex

i
  and 

21
, xx 

are the standard deviations of variables sets 1x and 2x . 

2.7.5. Regression Analysis  

Regression analysis is the common technique for studying relationship between input 

and output variables. In regression analysis, the inputs are defined as the predictors or 

independent variable and output variables are defined as the predicted outcome or 

dependent variables. 
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2.1.1.2 Linear Regression 

 

Linear regression is a widely used technique to describe the relationship between an 

independent variable X and dependent variable Y given as a set of data points  

( ix , iy ). The relationship is expressed as the linear form as: 

 
iii exbby  10  (2.6) 

 

Where 0b  (intercept), 1b  (slope) are the regression coefficients and ie  is the error term 

or residual. Residual is defined as the difference between actual iY  and the point ( ix ,

iy ). The objective is to estimate the coefficients 0b and 1b in such a way that ie  is 

minimized. One of the widely used techniques for estimating unknown coefficients is 

the least square estimation method. This method aims to minimize the sum of the 

square error term or residual, it solution is given as follows. 
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Solving it for 0b and 1b  by getting derivative, we get the following 
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Solving the above equations with 0b  and 1b  from  
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Definitions of variance ( 2

x ) and co-variance ),cov( yx  is defined as: 
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 Using equations 2.15 and 2.14, 0b  and 1b can be rewritten as: 
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(2.16) 

In order to assess the goodness of fit, Pearson correlation coefficient is used as defined 

in equation 2.5. When there is more than one independent variable is present, then the 

linear regression is called multivariate linear regression. Multivariate linear regression 

is an extension of linear regression and is described in the following form 

 exbxbxbby ppi  ........22110
 (2.17) 

Where 0b  , 1b  to 
pb  are the regression coefficients of p independent variables. Many 

research problems, particularly the medical research studies are presented with 

analysis and prediction of dichotomous variables such as presence and absence of 

disease, predict an individual will fall or not and so on. For problems with 
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dichotomous outputs linear regression cannot be used, as linear regression is limited 

to continuous dependent variables. To overcome this limitation Logistic Regression 

(LR) was introduced and became widely available through statistical software from 

1980s [96].   

2.1.1.3 Logistic Regression  

 

Logistic regression is well suited for predicting categorical outputs or dependent 

variables with categorical or continuous predictors (independent variable). For an 

example, let’s consider linear one dependent variable which is dichotomous (anaemia 

presence or absence) and one continuous independent variable (haemoglobin level), 

for this simplest case linear regression line would be as given in the illustration Figure 

2.7 . 

It is evident from the Figure 2.7 that it is difficult to use linear regression for 

dichotomous dependent variables, as extremes in the data plot do not follow linear 

trend and error distribution is not normal or constant.  Therefore, in order to describe 

relationship between categorical dependent variable and continuous independent 

variable logistic distribution is used, for simple case of dichotomous dependent 

variable, relationship is given as: 
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Where, Y  is the outcome of interest and )(x  is the probability of the output when 

1Y (presence of disease or event occurring) and )(1 x is the probability of output 

when, 0Y (absence or event not occurring). 
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Figure 2.7: Illustration of simple linear regression with dichotomous dependent 

variable. 

 

It can be seen that equation 2.18 is non-linear. Hence, Logit transform is applied to 

overcome this, and the simplest logistic model form is given by [97] 
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It can be seen that logit(Y ) and x are linear.  Similar to linear regression coefficients 

0b and 1b  for the above case has to be calculated. This simple case of LR can be 

extended for multiple predictors or independent variables as follows: 
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Similar to linear regression 0b  , 1b  to 
pb  are the regression coefficients of p

independent variables and are commonly estimated using maximum likelihood 

function[98]. LR as the linear regression does not make normality assumptions of the 

independent variables or predictors. Most important characteristic of LR that made 

desirable choice in the medical studies are ease of implementation and interpretation 

of results. 

2.8. Summary 

 

 The chapter describes the nature of human falls, its causes and effects. It is evident 

from the multiple literatures described that identifying risk factors of falls is a first 

step towards falls identification and prevention. Literatures of the past shown to have 

identified single risk factor and some have identified multiple risk factors of falls. Risk 

factors of falls allow identification of fallers and thereby permit offering interventions 

to prevent individuals from falling. Effectiveness and limitations of three widely used 

techniques BBS, DGI and TUG are compared and TUG is preferred over other tests. 

Need for quantitative assessment is discussed particularly focusing on benefits of 

quantitative assessment of TUG over past methods of objective measurement. The 

quantitative assessment of TUG is feasible through ambulatory monitors that can be 

worn over the body. Literatures that use ambulatory monitors with emphasis of 

community dwelling individuals are reviewed. Final sections describe the components 

of classifier system with the theory of logistic regression classifier which is used in 

the current study.  
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Next chapter describes the requirements of ambulatory monitor and discusses about 

the ambulatory monitor used in the study with the nature of the signals obtained from 

the monitor. 
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Chapter 3 

3. Estimation of Falls Risk 

3.1. Introduction 

 

The chapter at first compares the methods (retrospective and prospective) of 

estimating falls. Subsequently, compares the constrained TUG test assessment and 

unconstrained free-living approaches of estimating falls risk. Secondly, the chapter 

presents the requirements of ambulatory monitors and presents the wearable 

accelerometer system (ambulatory monitor) used in the study. Later, chapter interprets 

the accelerometer signals obtained from accelerometer during TUG test. Finally, 

describing the methodology to estimate gravitational components thereby extracting 

the signals related only to the body movements.  
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3.2. Falls Categorisation 

Falls have varying definitions, according to Tinetti et al. [14], a fall is defined as, “an 

event which results in a person coming to rest unintentionally on the ground or lower 

level, not as a result of a major intrinsic event (such as a stroke) or overwhelming 

hazard”. The world health organisation [99] defines falls as “A fall is an event which 

results in a person coming to rest inadvertently on the ground or floor or other lower 

level”. The study by Duncan et al. [100] excluded participants with falls, if they were 

from syncope, acute illness and while doing unusually hazardous activities in which 

even the healthy or fit person would fall. Shumway et al.[37] definition of falls is “A 

fall was defined as any event that led to an unplanned, unexpected contact with a 

supporting surface. We excluded falls resulting from unavoidable environmental 

hazards such as a chair collapsing.” 

Categorisation of falls is important and difference in categorisation leads to difference 

in falls rates and fall prediction. In general, falls are categorised as no-falls, single and 

multiple falls. 50% of fallers, fall repeatedly [11], 48% of the population report fear 

of falling and 20% report activity limitations [101] after a single fall. Fear of falling is 

reported to result in adverse health outcomes such as restriction in activities of daily 

living(ADL), decreased quality of life and depression [102], which in turn leads to 

increased risk of falling in future [103]. Therefore, single or the first fall has great 

implication to the falls and other adversities of health in future. In majority of falls 

studies [42, 53, 74, 90], given the importance of studying single fallers and also due 

to the limited number of participants, the multiple fallers is combined with single 

fallers category and commonly called as fallers as shown in the Figure 3.1. 
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Figure 3.1 Illustration of fall categories, in this thesis report single and multiple 

fallers is combined and commonly called as Fallers. 

 

3.3. Prospective vs. Retrospective Falls 

 

Initially, qualitative methods of assessing falls using questionnaires, dairies and falls 

calendars were considered to be most feasible approach for assessment of falls. Later, 

more accurate and quantitative approaches such mobility assessment; balance scale 

and physiological assessment were introduced. Whether it is a qualitative or 

quantitative method, the falls could be studied either retrospectively or prospectively.  

Prospective design involves assessing the participant using one of the qualitative or 

quantitative methods or both and following up the participant to obtain information 

regarding the falls. Follow up of the participant is usually performed using the 

telephone interview, asking the participant or the care giver to the fill the 

questionnaires. Such an approach is more reliable and considered as the gold standard 

approach to assess the elderly participant falls risk and to offer timely interventions. 

Although, prospective design is more reliable, it requires large sample size for 

assessment and takes longer time for the reliable data collection. Moreover, it is crucial 

                                                                                           Fallers 
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that, all the participants record falls in falls diaries and calendars as they happen, 

appropriately. In contrast, retrospective means of assessing falls can be completed in 

less time even for larger cross-section of participants. Falls risk model can be 

developed with the help of the falls history data and later the model can be used for 

assessment of falls prospectively. Although, falls history data may overestimate falls, 

it is a better tool than the pseudo-falls measure such as measuring balance scale 

(ordinal scale that is used by clinicians to rate the balance of a participant based on 

observation) estimating falls. One of the limitations of retrospective assessment is 

participant ability to remember falls completely. Participant remembering the 

circumstances of falls that took place would allow targeting factors that cause falls and 

to offer targeted interventions. So, there are limitations and effectiveness in both the 

methods of falls assessment. 

The primary objective of this study is to develop automatic ambulatory falls risk 

assessment system using a wearable accelerometer that can be used unobtrusively by 

the elderly adults in the home living environment. The study in particular aims to 

develop a model using features extracted from the accelerometer signal to assess the 

falls risk of the elderly. Therefore, retrospective method of study is more amenable 

and feasible method for studying the falls evaluation. The retrospective method of falls 

assessment allows analysing the characteristics of the data and developing the falls 

estimation model. The developed model using retrospective data could be used for 

prospective falls estimation and studying the clinical significance of features extracted 

in the future. 
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3.4. TUG Test Vs Unconstrained Approach 

Aim of the study is to estimate falls quantitatively in the home living environment. 

There are two different approaches in which data can be collected from the ambulatory 

monitors 

1) Using the data collected from participant doing their activities of daily 

living without any constraints. 

2) From participant performing constrained activities such as TUG test, 

continuous chair stands, alternate step, 10m walk etc.  

The following section describes the advantages and disadvantages of both 

approaches. 

In case of free living unconstrained approach, the participant wearing the sensor can 

perform their activities of daily living freely. The interaction with the sensor is very 

minimal (attaching and detaching the sensor). Nevertheless, there are number of 

disadvantages with the unconstrained data collection, they are: 

1) Complexity in developing the signal processing algorithms becomes 

magnified. This is because participant can perform same task in variety of 

different ways, for an example, consider sit-to-stand, it can be from the 

standard chair, this can be also from couch or kitchen chair, both transitions 

are same but it is obvious that will be easy to stand up from the standard chair 

than the couch. Hence nature of the signals acquired by the sensor will be 

different which requires different and complex processing algorithms to 

recognise them. 

2) The circumstances, environment in which tasks are done are not known, hence 

there is an intrinsic uncertainty in the collected data. This ambiguity in 
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collected data reduces the eminence of results obtained and moreover it does 

not allow targeted assessment of particular disorder. 

3) To assess the falls risk of the participant, a relatively large amount of data 

collection is needed to identify the progression of falls risk. 

In contrast, assessment using constrained task such as TUG test would overcome all 

the disadvantages described earlier. Task like TUG test, where participants are 

restricted to perform activity in a defined way, would reduce the complexity of the 

processing algorithms. Moreover, assessment can be targeted to the specific defects, 

for an example, assessing balance, stepping test can be used. Finally, participants are 

required only to wear sensor only when performing the tasks.  

In light of aforementioned advantages, the constrained assessment of participant gait 

and balance is more reasonable. In this study, constrained retrospective assessment 

using TUG test is utilised to assess the falls of the participants from the data collected 

in the home environment. 

3.5. TUG Test as an Assessment Method  

Although, constrained assessment of participants offers major advantages than the 

data collected in the free living environment, great care has to be taken in selection of 

assessment tasks. In particular, for the system to be used by the older adults the ability 

of participant to perform assessment tasks safely is a major concern. Moreover, for a 

system to be used in a free living unsupervised living environment, all types of 

movements cannot be performed as it is potentially dangerous. For example, for to 

assess the gait of the participant, Dynamic Gait Index test can be followed, this 

involves tasks such as participant performing a balance task of standing in with one 

leg and stretching forward. Such a task appears to be very dangerous to the participant. 



49 
 

Therefore, selected movement task should be simple and also possess less safety risk 

to the participant. 

Other than safety constraints, selecting simple movement task offer advantages, as it 

is easy for the participant to repeat the task, does not require much of the thought 

process and would be more compliant with the participant. 

Reliability of the test, test/retest reliability is a measure of consistency of the test. A 

task or test with good test/retest reliability will yield same results when the test is 

performed later in time in same way with all the previous conditions are met. In case 

of falls estimation, if the test does not have good test and retest reliability the results 

of the test cannot be compared from one time to another and also from one individual 

to another. Hence, it is important that the selected movement task/test have good 

test/retest reliability. 

 Time taken to perform the task, is an important factor to be considered in selection of 

movement task. Less the time taken more advantageous it is, as it allows quick 

assessment and also will be more accommodating by the participant. 

Of all the factors discussed earlier, the most important one is that, the selected 

movement should be able to provide information to estimate falls. With the all the 

qualities mentioned earlier, if the selected test does not have an ability to provide 

information regarding the falls, then the selection of test would be meaningless.  

Considering all the factors that are discussed above, TUG test is selected as the 

assessment task. TUG test is simple, reliable, has ability to offer information regarding 

falls and automation of the test is also amenable. The other advantages of the TUG 

test are previously presented in the section 2.4.1. 
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3.6. Estimation of Falls Using Accelerometer 

Having discussed the benefits of quantitative and automated assessment of falls, an 

approach has been taken to estimate falls of the participant using single wrist mounted 

accelerometer in this study. A healthy set of literatures showing the ability of an 

accelerometer to assess the functional mobility, gait and obviously falls risk of the 

participant are described in section 2.5 of chapter 2. A number of features could be 

extracted from the accelerometer signal and these features may have an ability to 

estimate fallers. Next section describes requirements of wearable inertial system to 

assess fallers in home living environment and accelerometer used in the study. 

3.7.  Requirements of the Wearable System 

The requirements of wearable accelerometer system vary depending upon 

environment (clinical or home) and usage (supervised or unsupervised). In case of, 

clinical supervised setting, there is a higher flexibility, as the user interface such as 

mounting the device on body, switching the device on/off, annotations, removing the 

device are taken care of by the supervising individual. On the other hand, for a use in 

an unsupervised home living environment, the user interfaces has to be made as simple 

as possible. In particular, for elderly individuals, user interfaces and comfort of using 

the device is the primary requirements. This means that the device has to be small, 

lightweight as possible, easy to power on/off and have provisions to wear and remove 

easily.  

Moreover, the accelerometer should be capable enough to capture different strengths 

of accelerations generated during the assessment task. The accelerations generated 

during the movements differ depending upon locations of the body and upon the 
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activity being performed [56]. In general, the accelerations magnitude increases from 

head to foot. It is estimated that almost all of the measured body movements are with 

20 Hz and 99% of the accelerations energy even in gait is constrained below 15 Hz 

[104]. Therefore, it is necessary that the accelerometer system is able to measure 

frequencies from 0- 20 Hz.  

To summarise, the requirements of wearable accelerometer system are, it should be 

comfortable, easy to use, have enough bandwidth and sensitivity to measure the 

accelerations generated by the body movements 

3.8. GENEA Accelerometer 

The GENEA (Gravity Estimator for Normal Everyday Activity) tri-axial 

accelerometer is developed by Unilever Research (Colworth Science Park, 

Sharnbrook, Bedfordshire MK44 1LQ). GENEA contains seismic acceleration sensor 

from STM microelectronics (LIS3LV02DL), Geneva, Switzerland. GENEA 

accelerometer is small with dimensions of 36mmx30mmx12mm (LxWxH) with the 

splash proof casing and weighs only 16 grams. GENEA accelerometer’s top and side 

views are shown in the Figure 3.2. 

 All the three axes have a bandwidth of 640 Hz and ability to measure accelerations 

up to ±6G (1G = 9.8ms-2). It has internal storage space of 500MB, which can store up 

to 8 days of data in 12-bit resolution. GENEA comes with software which allows 

configuring the sensor with the sampling frequency (10 - 80 Hz) and also assists 

downloading the stored data for processing. GENEA accelerometer and screen shot of 

accompanying software is shown in the Figure 3.3 and Figure 3.4. In this study, 

sampling rate of 80Hz is used as the frequency of body movements are within 20 Hz 
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[105] and as it is the maximum sampling rate that can be configured using the 

software. 

With respect to the requirements stated in the previous Section3.1, GENEA is small, 

very light, and comfortable to wear, with adequate abilities to measure accelerations 

generated by the body movements and therefore selected as an ambulatory monitor to 

use in the study. 

 

 

 

 

Figure 3.2: GENEA accelerometer showing top and side views 
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Figure 3.3:  GENEA software screen shot, it allows configuring the data 

collection, downloading and erasing the stored data in the memory of the 

accelerometer. 
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Figure 3.4 : Screen shot of accompanying software which allows configuring 

sampling frequency and setting an offset for the accelerometer. 
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3.9. Accelerometer Placement  

In the past wearable sensors are placed at various locations to collect information 

related to activities being performed. The location of sensors placed should be 

comfortable and unobtrusive to users performing activities. In many of the past 

studies, position of waist is chosen for sensor placement as it may acquire the whole 

body movements being closer to centre of centre of mass [106]. Apart from waist, 

sensors have been placed at various locations which includes shanks [90] , chest [107], 

ankle [108], wrists [109-112] and thigh [113] showing the alternate locations for 

sensor placement. Although, most of literatures in the past have placed the sensor at 

the waist location, its non-compliance with participants is also shown in multiple 

studies [114-116]. In addition, It is documented that during changing clothes, sleeping, 

participating in contact sports and while attending occasions, the waist mounted sensor 

had to be removed, which resulted in considerable reduction in information obtained 

[117]. 

For older adults, especially over 85 years of age, compliance of the sensor placement 

becomes vitally important. Placing sensors over the waist would be uncomfortable and 

hinder their natural movements. Wrist offers higher universal acceptance and proves 

feasible way forward for acquiring data regarding movements from the individuals of 

this age. Wrist mounted GENEA accelerometer’s validity is shown in [110]. Studies 

by Phillips et al.[109], Esliger et al.[110] demonstrated that wrist shows a good 

criterion validity in assessing physical activity, Vanhees et al. [112] showed the 

accuracy of the wrist mounted accelerometer is comparable to the location of waist 

and its acceptance in estimation of daily energy expenditure. In light of such findings, 
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we attempt to investigate the wrist mounted accelerometer in assessing falls risk of the 

community dwelling elderly adults. 

3.10. The Accelerometer Signal 

It is vital to understand the nature of the signal obtained from the GENEA 

accelerometer, before extracting features from it. This section gives a summary of the 

nature of the signals obtained from GENEA accelerometer. 

The GENEA accelerometer has three sensing axes mutually orthogonal to each other. 

Accelerations by three axes are measured relative to the position of the sensor placed, 

not to the global reference frame. In this study accelerations are measured in relative 

to the position of the wrist. 

The accelerometer’s signals comprises of three components, they are: 

1. Gravitational component. 

2. Accelerations due to the body movements. 

3. Intrinsic and extrinsic noise.  

Intrinsic sources of noise are mostly electronic noises that occur internally during 

manufacturing the sensor. Extrinsic sources are accelerometer movement due to 

unintentional contacts with external objects, displacement of accelerometer after 

attachment etc. In this study, external sources of noises are considered absent and also 

noises due to the intrinsic source are neglected. Therefore, the accelerations measured 

by the accelerometer comprises component of body and gravitational acceleration. 
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3.11. Pre-processing of gravitational 

components from body movements 
 

At rest, the accelerometer sensitive axis measures the accelerations equal to cosg , 

as shown in the Figure 2.5 as described in the section 2.3.4. 

Therefore, at rest, the sensitive axis perpendicular to the gravitational vector (g) will 

measure 0g and will measure ±1g when parallel to the g. The body component 

comprises of the accelerations which is the projection of body movements to the 

measurement axis. At rest, the body component of the accelerometer measures zero 

and output is only due to the gravitational component. As the body moves, the 

accelerometer will acquire both the information related to the gravitation as well as 

body movements.  

The body component and gravitational component of an accelerometer signal acquired 

during body movements is inseparable and overlapped in the time domain of the 

signal. In frequency domain, the gravitational components are of 0 to few hertz and 

body components range from 0 to 20 Hz.  Therefore, the information is overlapped 

also in frequency.  

The objective of the current study is to characterise the body movements during TUG 

test to estimate falls risk of the participants. Therefore, body components have to be 

separated from the gravitational components before characterising the movements 

related to body. A proven and well-known method of approximating body and 

gravitational methods is through filtering [118, 119]. A high-pass filter is implemented 

with fourth order elliptical impulse response, cut off frequency of 0.25 Hz [78], Pass 
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Band Ripple4: 0.01, Stop Band Attenuation5: 100db to estimate the gravitational 

components. Body components are approximated by subtracting the estimated 

gravitational components from the raw accelerometer recordings. Figure 3.5 illustrates 

this process. The filtered signal is used in all the following section which describes 

feature selection methodology. 

                                                           
4 Permitted amount of amplitude variations in the pass band. 
5 Minimum permissible range of amplitude in the stop band that are higher/lower than the desired 
amplitude. 
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  Figure 3.5  Delineation of body components using high pass filter from raw accelerometer signal 
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3.12. Data Collection 

This study is nested within the NE85+ Study, a longitudinal study of health and ageing 

[12, 120]. The participants included in the study were aged around 85 years during the 

recruitment which began in 2006. All (63) of the general practices in North Tyneside 

National Health Service (NHS) Primary Care Trusts were requested to participate in 

the study. General practitioners of the agreed trusts (83% of general trust agreed), were 

sent an invitation to individuals (who had registered with them) to participate in the 

study living either in home or in institutions. Individuals who posed a safety concern 

to perform the study’s activities (solely under a supervision of a visiting nurse) and 

those who with end stage terminal illness were excluded. Detailed multi-factorial 

health assessment was conducted at baseline (participants were allowed to decline 

described protocols) in the participant’s usual place of residence by a visiting clinical 

staff. Following baseline assessment (Phase 1: 2006-7, n=854), NE 85+ Study 

participants are re-assessed at 18 months (Phase 2: 2007-9, n=631) and again at 36 

months (Phase 3: 2009-10, n=484). Participant loss between phases 1 and 3 is mainly 

due to death (62.7%, 232/370) with the remainder due to drop out. Participants 

answered the questionnaire regarding the falls in last 12 months, in case of an inability 

of the participant, caregiver answered the questionnaire. 

Ethical approval was obtained from the Newcastle and North Tyneside 1 Research 

Ethics Committee (reference number 06/Q0905/2). Written informed consent was 

obtained from participants and where people lacked capacity to consent, for example 

because of dementia. Further information on ethical approval can be found in [120]. 
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3.13. Evaluation of TUG using Wrist mounted 

Accelerometer 

Following the collection of data regarding the falls in past twelve months, evaluation 

of participants with the TUG test took place at the participant’s home. Staff or nurse 

visited participant’s home or their daily living environment, as the standard procedure 

equipment such as standard chair, measuring tape, marker and stop clock was carried. 

The same standard set of equipment was used in all the participants home. An 

unobstructed straight pathway was selected to carry out the test. Marker was placed 

three meters away from the chair, as shown in the  

Figure 3.6. 

 

 

 

 

 

 

 

 

Figure 3.7 Illustration of TUG test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Experimental set up of TUG test, with the marker at 3m and chair. 
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Participants were asked to wear the accelerometer on their right wrist before the 

performing the test. Participants wore the accelerometer on their right hand wrist as 

shown in Figure 3.7. This was set as the standard protocol for wearing the 

accelerometer in order to maintain uniformity in measurements.  Accelerometers used 

are all configured to acquire data with sampling frequency of 80Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

All the instructions regarding the TUG test were given to the participant before the 

test. They were asked to walk in their natural comfortable pace. Use of walking aid 

was permitted during the test. The test is carried out under the supervision of the 

visiting staff. The supervising staff would also time the test using the stop clock.  

 

Figure 3.7 Shows the wrist mounted GENEA accelerometer 
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Data collected were transferred to a computer, offline using the software described 

earlier in section 3.8. The sample TUG test obtained is shown in the Figure 3.8 . 

 

 

 

 

 

 

 

 

 

 

 

 

3.14. Conclusion 

The chapter described the requirements of the assessment task and wearable 

ambulatory monitor for the estimation of falls in home environment. TUG test is 

chosen as the assessment task as it is reliable, simple, quick and safe as the task 

comprises of components that are performed in the daily activities of living. GENEA 

accelerometer is chosen as the ambulatory monitor as it satisfies all the requirements 

 

Figure 3.8 Example of TUG test accelerometer recordings. 
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that are necessary to capture the movement signals during the selected TUG task, apart 

from being small, lightweight and easy to wear. The signals obtained from the GENEA 

accelerometer are described. The accelerometer signals have two components: the 

gravitational accelerations and acceleration due to body movements. A filter is 

designed to approximate the gravitational components and thereby extracting only the 

component related to the body accelerations. The following chapter presents the 

protocol implemented for automated falls risk estimation and methodology of features 

extraction from the TUG test signals of the accelerometer. 
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Chapter 4 

4. Methodology 

4.1. Introduction 

Automatic falls prediction system not only enables to broaden the elderly falls 

estimation beyond the clinical setting it also allows quicker and objective estimation. 

With the increasing rate of life expectancy, the need for an automatic system for falls 

detection is imperative. Literatures of falls estimation using inertial sensors are 

described in Chapter 2, Section 2.4. Although, the past studies showed the feasibility 

and validity of inertial sensors for falls estimation, one of the common limitations of 

all the past studies is the failure to extract the TUG test movement sequence 

automatically from the complete sensor recordings (Incidental data and actual TUG 

sequence). This does not make the system automatic, where manual segmentation of 

movement sequence from whole recording is required. 



66 
 

This chapter describes the protocol implemented in an attempt to extract the movement 

sequence from the complete sensor recording algorithmically. Following on automatic 

sequence extraction, it describes the methodology of features extracted from the 

movement sequence. Finally, explains the need for feature selection and employed 

methodology of feature selection. 

4.2. Automatic Falls Estimation  

Automatic falls estimation aims to minimise user and external user input in estimation 

of falls. Once the selected movement sequence is performed by an individual, the 

system deployed should function on its own with minimum assistance in assessing the 

falls. The following section describes the methodology of falls estimation and the 

method to automate falls estimation. 

The concise flowchart of methodology of falls estimation using a wearable sensor is 

given in Figure 4.1. All the components described in the Figure 4.1, other than 

participant’s wearing the sensor and performing the assessment can be automated. 

In order to automate the process the first step was to delineate the movement sequence 

from the complete recordings. This is because once the monitor is powered on it starts 

collecting data. Hence the monitor would have recorded the data relevant to attaching 

the device and any other movements that are performed before the actual assessment 

task. Therefore, it was necessary to delineate the movement sequence from the 

incidental noise thereby extracting features only from the movement sequence.  
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Figure 4.1: Method of falls risk assessment using wearable sensor 

In the past, the movement sequence had been delineated manually using the start and 

end annotations (by the supervising staff using a software). Manual segmentation of 

assessment sequence does not allow estimating falls automatically. This procedure 

does not make the system automatic, prolongs the processing time and inhibits falls 

estimation in the community dwelling environments as a result delineation of 

movement sequence is essential.  

Delineation of movement sequence can be done before or after the data transfer as 

shown in Figure 4.2. There are some trade-offs: with both of the methods. In the case 

of delineating the movement sequence before the data transfer- the amount of data 

transferred will be significantly less and would enable longer operation of the battery. 

However, this requires powerful processor to be embedded in the system to delineate 

the movement algorithmically. In contrast, if the automatic delineation procedure is 

done in a remote location after the data transfer then a larger amount of data has to be 

sent which reduces the battery life, but does not require powerful embedded processor 
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with the sensor. This study delineates the genuine movement sequence after data 

transfer to the computer. 

Previous studies have invariably focused on automating the extraction and 

segmentation of components related to body movements and movement sequence as 

a pre-processing step before feature extraction. This does not automate the assessment 

as the delineation of movement sequence from the whole of recording has to be made 

prior to pre-processing step. The delineation of movement sequence automatically will 

make the system completely automatic which enables an individual to use in home 

living environment easily.  

 

Figure 4.2 Delineation of movement sequence, before or after data transfer for 

completely automatic falls risk assessment. 

 

This is the first study investigating delineation of TUG movement sequence 

(automatically) from whole recording, using the data collected from home 
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environment. A protocol was implemented in an attempt to assist the automatic 

isolation of the TUG sequence and thereby estimating falls automatically  

4.3. Identification of Taps for Delineating TUG 

sequence 

To assist the automatic isolation of the movement sequence the visiting clinical staff 

would bracket the test sequence by deliberately tapping the device two or three times 

at the start and end of the test sequence. These taps signatures in the recording have to 

be identified algorithmically delineating the movement sequence from the whole 

recording. The following section presents the detailed methodology of delineation 

procedure. 

A simple threshold based algorithm identifying the taps signatures makes it easy to 

implement and reduces the processing complexity. Appropriate thresholds for 

identifying taps’ signatures have to be determined; to reduce false sequence 

recognition from the whole recording. To understand the characteristics of taps 

signatures and incidental noise, participants’ recordings are studied through visual 

examination. Through visual examination the following were deduced 

1) Noise peaks resembling individual tap signatures are generally lower in 

amplitude than actual tap signatures. 

2) Noise peaks are either closer or further from each other than the actual taps 

signatures. 

3) The protocol demands that three taps be made, however protocol is not 

followed at times and only two taps are only made. 
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4) Some of the taps are not made with enough force (accelerations); hence taps 

amplitude is very weak. 

5) In some of the participants’ recordings either the start or end taps are only 

made. 

6) In few recordings, the taps are not made at all. 

7) In other few, the taps are made but movement sequence is not performed and 

later the taps are again made and sequence is performed. 

The algorithm was developed considering all the above points except for points 5 and 

6. The participant files which fell under points 5 and 6 were considered as not having 

adhered to the protocol correctly. The participant’s recordings which did not adhere to 

the protocol correctly were excluded from automatic delineation algorithm. Out of 395 

files in analysis, 299 (75%) files adhered to the protocol and the remaining were 

excluded from automatic delineation of movement sequence. 

The Figure 4.3 shows the sample plot of whole accelerometer recording with 

annotations of actual sequence and incidental noise.  Considering the characteristics 

of the taps two different thresholds are set as following 

1) Threshold for a minimum amplitude for the tap signatures, as the noise peaks 

(which resemble taps) are lower in amplitude.  

2) Thresholds for minimum and maximum distance between the taps shown in 

Figure 4.4. 

The TUG movement sequences with the taps (numbered) are shown in Figure 4.4. 

 



71 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 :Sample plot showing accelerometer whole recording with annotations of incidental noise and actual sequence.
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Therefore, the thresholds are set as following: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Thresholds for distance between the taps: To determine the thresholds for minimum 

and maximum values for the distances, 50 files were selected at random from all 

participants’ files.  The box plots of distance between the taps are shown in the Figure 

4.5. The mean ± SD distances between any two consecutive taps are 0.47±0.11 

seconds, with a maximum and minimum value of 1.02 seconds and 0.28 seconds, 

 

Figure 4.4 shows the movement sequence with taps numbered from 1 to 6. Where 

start taps are 1-3 and end taps are 4-6. 
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respectively. To accommodate any values in future approximately 30% tolerance was 

set for the minimum values which yields minimum threshold to be 0.2 seconds. Few 

times, first and last tap signatures were only made and missing the 2nd (5th) tap at the 

start (end). Therefore, the maximum distance determined should be doubled to 

accommodate such discrepancies; hence the maximum threshold set was 2.0 seconds 

to identify the taps. 

Threshold for amplitude of the tap: To obtain the minimum threshold value for 

amplitude, sum of the square values of all the three axes of accelerometer recording 

are obtained.  The taps signatures take negative values (see Figure 4.4); this does not 

allow determining a single threshold value. To overcome this issue, sum of the square 

(SS) values were determined, which makes the acceleration value unidirectional and 

moreover, makes the strength of taps signatures stronger for improved recognition. 

 

 

222 zyxSS   (2.3) 

 

Where,  is sum of square value,  are the axes of accelerometer. At first, taps 

were identified using the amplitude thresholds and later the distance between the taps 

were verified using the flowchart shown in Figure 4.6.  
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Figure 4.5 Box plot of inter distance interval (in seconds) between the first 

and last taps sequence obtained from the 50 participants samples measured 

manually. Refer to Figure 4.4 for the taps. 
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For some of the participants, taps were very weak in amplitude and could not be 

identified appropriately leading to false sequence identification. To overcome this, an 

additional algorithm was developed, which verifies all the extractions.  

Initially a threshold value of19 (ms-2)2 was set. In few participants’ recordings, the 

taps were inadequately executed; hence threshold value set initially resulted in large 

number of false sequence identification. To overcome this, an additionally algorithm 

was developed. The most important factor for the false sequence identification is that 

the poor strength of taps.  Hence amplitude thresholds were to be reduced subsequently 

followed by an iterative search in the neighbourhood for tap signatures at lower 

thresholds to find the weak taps. Verification algorithm of the extracted sequence is 

shown in Figure 4.6. 
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Figure 4.6 Flowchart showing the verification process for delineation of TUG 

movement sequence. 
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The movement sequence was identified with the taps. Hence, taps has to be removed 

prior to parameter extraction from the extracted sequence. The taps were removed by 

searching for the peaks greater than 50% of the M value shown in Eq.3. 
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 Where n is the sample number, the search was only made for first and last Nl = 50 

samples of the signal where taps would be present. After the taps, there is an inevitable 

short delay before a movement; similarly, there was a further quiescent period between 

the completion of the TUG test sequence and the end taps. In order to remove this 

delay time, a Redmond et al. [121] algorithm was adapted to remove these quiescent 

periods adjacent to the TUG test movement sequence. Redmond et al. algorithm was 

adapted for the purposes of refinement only. The refinement algorithm is customized 

to search only 4.5s of data from the start taps and also from end taps for computational 

efficiency. From the refined sequence, the time for completion of test was found by 

dividing the number of samples by the sampling frequency (80 Hz), this time was 

called the algorithm extracted time (E-Time).  
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4.4. Placement of the device and features extracted 

It is expected that the participants may not place the accelerometer in the strictly 

defined position. Therefore, attention is to be provided on types of features extracted. 

In a supervised environment, supervising staff would place the sensor on the correct 

position. When it is used in the unsupervised environment, there is no guarantee of 

strict accelerometer placement. Moreover, although the device is placed properly, 

there would be mild to moderate displacement of the accelerometer sensor during the 

test. This limits the type of features extracted.  

If features are extracted without considering device’s placement, features extracted 

would be meaningless. Also, location of the device placed limits the types of features 

extracted. For example: consider extracting the stride length of an individual, device 

placed in the shanks or feet would provide more faithful results than the one placed in 

the upper body. 

4.5. Extracted Features  

A number of features were extracted from the TUG movement sequence delineated 

algorithmically. Features were extracted from the each of the accelerometer axes 

zyx ,, and SVM (refer equation 2.5 of Chapter 2) which may have characteristics to 

estimate fallers. The following section describes the pre-processing procedure 

undertaken and methodology by which features are extracted in detail. 

4.5.1. Pre-processing 
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A high pass filter is implemented to reduce the contribution of gravitational 

components and to analyse signals related to body components (BA(t)). Signal that 

relates only to the body components were extracted using the filter previously 

discussed in the Section 3.7. BA(t)  used in all the feature extraction.   

The features extracted are broadly categorised into two categories 

 Spectral features 

 Energy/intensity features  

4.5.1. Spectral features 

4.5.1.1. Number of Frequency Band Changes/Switches (NOS) 

 

Falls risk factors are described earlier in chapter 3, one of the notable intrinsic risk 

factors of falls is balance and stability. It is expected that fallers have reduced body 

control due to issues with balance and stability and these issues may have reflected in 

movements during TUG test.   

The hypothesis is that due to reduced body movement control (inherent in their 

movement) while performing TUG test participant may tend to modulate frequencies. 

This modulation in frequencies may have an association with the falls. Fallers are likely 

to have lesser balance and control than the non-fallers. Therefore, higher frequency 

modulations are expected from fallers to non-fallers, relatively. To measure these 

modulations, novel feature called as ‘Number of Frequency band changes/switches’ 

(NOS) was extracted. 
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TUG test consists of simple sequential tasks which are usually performed by an 

individual during their daily activities of living. It is already discussed that magnitude 

of accelerations fall within the range of 20Hz in section 3.5 of chapter 3. Four 

frequency bands up to 20 Hz were defined to measure the modulations. Sun et al.[105] 

reported, most of the energy for the daily activities of living lies within 5 Hz. 

Therefore, we define the reference band as, HzBand 50  . Moreover, as 99% of the 

accelerometer magnitudes are contained within 15 Hz [68]. Frequency spectrum was 

further split up to 15Hz into two bands as, HzBandHz 105 1  and

HzBandHz 1510 2  . Final level was defined as HzBand 153   which aimed to 

capture the remaining frequencies.  

In order to identify the frequency band at which the TUG task is performed for a given 

time period, a spectrogram (fs=80Hz, Hamming window with no overlap) is generated 

with a window size of 0.125s, formulated as follows: 
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 Where, STFT is the Short Time Fourier Transform, ][nX  is the input signal, w  is the 

window, m  and k  are the time and frequency parameters, respectively. The power 

within each frequency bands (within the time window of 0.0125s) is summed, 

separately. The band yielding the maximum power amongst the frequency bands was 

considered as the identifying frequency band for particular time interval of the signal. 

This methodology was applied successively throughout the signal. Frequency was 

considered to have switched or changed, if the band identified for a particular time 
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segment did not belong to preceding frequency band. The total number of switches 

was summed up for the whole TUG signal and this number is called NOS.  

The bands defined are purely exploratory in nature; the appropriate values of 

frequencies bands are to be further examined. Example plot shows frequency bands 

switching for fallers and non-fallers.  Features extracted are shown in the Table 4.1 

 

Table 4.1 Summary of NOS features extracted 

 

 

 

 

 

 

 

Feature No Feature Name 

1  TUGT-NOS of  x-axis 

2  TUGT-NOS of  y-axis 

3  TUGT-NOS of  z-axis 

4  TUGT-NOS of  SVM 
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Figure 4.7 Comparison of NOS between (a) Fallers (manually timed TUG =10.19s), (b) Non-

fallers (manually timed TUG =11.47s, freq. region =0.3-15Hz). Peaks in the plot show the 

identified frequency band for particular time interval (for example, in the top figure (a), 

frequency band is defined at level 1 until ~5s and then it shoots to level 3 and level 2, showing 

frequency band changes which may associate with instability issues), It can be seen that 

number of NOS in (a) is higher than (b) which implies that non-fallers tend to switch 

frequency lesser than fallers. Also, time to complete TUG protocol (manually timed TUG) 

for fallers and non-fallers are very similar whereas, NOS parameter has ability to distinguish 

them. 
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4.5.1.2. Sum of Magnitude of Power Spectrum 

 

The ‘Sum of Magnitude of Power Spectrum’ (Smps) and sub features of it, showed 

power spread across the TUG frequency spectrum. It is hypothesized that non-fallers 

may perform the task more smoothly, whereas, fallers may tend to be exhibit greater 

variance due to loss of balance, fatigue and less controlled movements and exhibit 

flatter magnitude spectrum. To, investigate this, number of features from a discrete 

Fourier transform (FT) with a window size (l) of 1s and no overlap between successive 

windows are extracted. This is formulated as: 
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where, k  is the frequency bin number ,  = 0,1,.....,  ,   is the length of the 

signal,   is the block number,  is size of each block  defined by the window,  

denotes frequency bin numbers within each bth block ,  = 0,1.., .  Features 

numbers {5-8} shown in Table 4.2 refers to the mean Smps features extracted. 

Many other sub features of Smps were extracted of the TUG signal in an attempt to 

characterize the TUG signal.  Irregularity in TUG performance may reflect as the 

extreme values in Smps, and hence outliers were also extracted to investigate 

anomalies during the task.  

k 1N N

b L b bK
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Values of Smps greater than or equal to twice the value of the mean Smps are 

considered as outliers or anomalies. Features such as, mean of outlier Smps {13,..,16} 

, number of outliers {17,…,20} and mean Smps after exclusion of outliers {9,12} were 

all derived. In addition, to characterize the steadiness during the TUG task, features 

such as Standard Deviation (SD) of the difference in Smps value {21,…,24} and 

statistical measure Co-efficient Of Variation (COV), {25,…,28} which is the ratio of 

standard deviation to mean are extracted from the TUG signal. Graphical illustration 

of Smps features extraction is shown in Figure 4.9 for the list of intensity features 

extracted, refer to Table 4.2. 
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Figure 4.8 : Illustrates the methodology of Smps parameter extraction from TUG 

sequence extracted automatically using the developed protocol. 
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Table 4.2 Summary of SMPS features extracted 

Feature No Feature Name 

5  Mean Smps of x-axis 

6  Mean Smps of y-axis 

7  Mean Smps of z-axis 

8  Mean Smps of SVM 

9  Outlier excluded mean Smps of x-axis 

10  Outlier excluded mean Smps of y-axis 

11  Outlier excluded mean Smps of z-axis 

12  Outlier excluded mean Smps of SVM 

13  Mean of the outlier Smps of x-axis 

14  Mean of the outlier Smps of y-axis 

15  Mean of the outlier Smps of z-axis 

16  Mean of the outlier Smps of SVM-axis 

17  Number of outliers Smps of x-axis 

18  Number of outliers Smps of y-axis 

19  Number of outliers Smps of z-axis 

20  Number of outliers Smps of SVM-axis 

21  SD of Smps difference of x-axis 

22  SD of Smps difference of y-axis 

23  SD of Smps difference of z-axis 

24  SD of Smps difference of SVM 

25  COV of Smps x-axis 

26  COV of Smps y-axis 
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4.5.1.3. Intensity Features 

 

 Intensity features are extracted to capture intensity spread across the TUG test signals 

of accelerometer. Intensity is a ratio of power to the area under the 1s signal. Sum of 

intensity is sum of all the intensity values under each window across the whole signal, 

given as feature numbers {5-8} in Table 4.3. Similarly, mean intensity is calculated 

and given as feature numbers {1-4}. 

We hypothesized that instability and balance issues arise while performing TUG and 

therefore, the participants may exercise more intensity to overcome the issues. We 

expect, these values would be notably higher than the usual intensity and may not be 

present all the times during TUG, we define these values as the Outliers. The Outliers 

are defined as following: 

 IntensitymeaniIntensityiOutliers 2)()(   (4.2) 

 

Where, i =1 to total number of intensity values for a TUG signal. Features such as 

number of outliers, {13-16} and outliers excluded mean {9-12} are extracted. For a 

normal performance, intensity value under each time window will be approximately 

equal showing the smoothness of the performance. But for participants with balance 

27  COV of Smps z-axis 

28  COV of Smps SVM 

29  SD of COV differences of x-axis 

30  SD of COV differences of Y-axis 

31  SD of COV differences of z-axis 

32  SD of COV differences of SVM 
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issues, intensity values may not be similar and vary throughout TUG test. Features 

such as intensity difference and sub features of it were extracted to quantify the 

changes in intensity. It is expected that, the difference would have direct relationship 

with the level of balance issues with the participants, in other words, more the 

difference, higher the problems with balance and stability. 

Similarly to Smps, features such as, Standard Deviation (SD) of the difference in 

intensity values {25-28}, statistical measure the Co-efficient Of Variation (COV) 

which is the ratio of SD to mean are also calculated. SD and COV are extracted for 

intensity {29-32} and difference in intensity values {33-36}. The sum intensity 

features are calculated referred as feature numbers of {37-40}, respectively. All the 

features are extracted separately for each x, y, z axes of the signal and SVM. For all 

the list of intensity features extracted see Table 4.3. 

 

Table 4.3 Summary of Intensity features extracted 

 

Feature No Feature Name 

33  Mean Intensity of x-axis 

34  Mean Intensity of y-axis 

35  Mean Intensity of z-axis 

36  Mean Intensity of SVM 

37  Sum intensity of x-axis 

38  Sum intensity of y-axis 

39  Sum intensity of z-axis 
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40  Sum intensity of SVM 

41  Outlier excluded mean Intensity of x-axis 

42  Outlier excluded mean Intensity of y-axis 

43  Outlier excluded mean Intensity of z-axis 

44  Outlier excluded mean Intensity of SVM 

45  Number of outliers Intensity of x-axis 

46  Number of outliers Intensity of y-axis 

47  Number of outliers Intensity of z-axis 

48  Number of outliers Intensity of SVM-axis 

49  Power of x-axis 

50  Power  of y-axis 

51  Power  of z-axis 

52  Power of SVM axis 

53  Area of x-axis 

54  Area  of y-axis 

55  Area  of z-axis 

56  Area of SVM axis 

57  SD of intensity difference x-axis 

58  SD of intensity difference y-axis 

59  SD of intensity difference z-axis 

60  SD of intensity difference SVM 

61  COV of intensity  x-axis 

62  COV of intensity y-axis 



89 
 

63  COV of intensity z-axis 

64  COV of intensity SVM 

65  SD of COV intensity differences of x-axis 

66  SD of COV intensity differences of Y-axis 

67  SD of COV intensity differences of z-axis 

68  SD of COV intensity differences of SVM 

 

Considering the sensor placement at the wrist location, features from other studies that 

may be meaningful were also extracted in order to compare the ability of features 

extracted in this study estimating falls. Other features extracted in the study are shown 

in Table 4.4. 

Table 4.4 Others features used in the study  

Feature No Feature Name 

69 TUGT first 6 harm. Freq. ratio of x-axis 

70 TUGT first 6 harm. Freq. ratio of y-axis 

71 TUGT first 6 harm. Freq. ratio of z-axis 

72 TUGT first 6 harm. Freq. ratio of SVM 

73 TUGT Fund. harm. magnitude ratio of  x-axis 

74 TUGT Fund. harm. magnitude ratio of  y-axis 

75 TUGT Fund. harm. magnitude ratio of  z-axis 

76 TUGT Fund. harm. magnitude ratio of  SVM 

77 TUGT 2nd. harm. magnitude ratio of  x-axis 
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78 TUGT 2nd. harm. magnitude ratio of  y-axis 

79 TUGT 2nd. harm. magnitude ratio of  z-axis 

80 TUGT 2nd. harm. magnitude ratio of  SVM 

81 TUGT 3rd. harm. magnitude ratio of  x-axis 

82 TUGT 3rd. harm. magnitude ratio of  y-axis 

83 TUGT 3rd. harm. magnitude ratio of  z-axis 

84 TUGT 3rd. harm. magnitude ratio of  SVM 

85 TUGT 4th. harm. magnitude ratio of  x-axis 

86 TUGT 4th. harm. magnitude ratio of  y-axis 

87 TUGT 4th. harm. magnitude ratio of  z-axis 

88 TUGT 4th. harm. magnitude ratio of  SVM 

89 TUGT even to odd harm. magnitude ratio of  x-axis 

90 TUGT even to odd harm. magnitude ratio of  y-axis 

91 TUGT even to odd harm. magnitude ratio of z-axis 

92 TUGT even to odd harm. magnitude ratio of  SVM 

93 TUGT RMS SVM 

94 TUGT SMA mean 

95 TUGT SMA Variance 

Features numbers 69-92 are adapted from Liu et al.[89] 
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4.6. Feature Selection and Classification 

 

In total 95 features (24 features from other study) were extracted in this study. A large 

number of features extracted show the need for feature selection. Feature selection 

allows reducing the number of features by discarding features that are irrelevant, 

redundant and improves the learning ability of the classification algorithms.  The 

benefits of feature selection are: 

1. Allows, more comprehensibility of results, less features allows interpreting the 

results better and easier. 

2. Limits or avoids over fitting of the model, models built with large number of 

features are subjective to the data under the study and tend to over fit the new 

data. 

3. Reduces the issues with dimensions, if the number of features increases, then 

the dimensions of the data under study for fair result increases. 

4. Takes less time to process and improves performance of the machine learning 

algorithms. 

5. Dimensional reduction techniques such as Principal Component Analysis 

(PCA), transform the features into reduced new feature variables, hence the 

actual feature extracted is lost. Whereas, in feature selection the actual feature 

extracted are preserved and offers more insight into the clinically 

interpretability of the extracted features. 

In this study novel hybrid feature selection algorithm implemented the following 

section presents feature selection methodology implemented in the study.  
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The first step in the feature selection is the Mann-Whitney non–parametric test [4], 

this step significantly reduces the processing time of the feature selection algorithm 

implemented. 

Mann-Whitney test does not assume the data is normally distributed. Mann-Whitney 

non-parametric tests the data in a feature under the null hypothesis that it is same for 

all the participants, against the alternative hypothesis that they are not. Discriminative 

features are features that show ability to discriminative between fallers and non-fallers. 

Discriminative ability is determined by the significance level (p-value) yielded by the 

test for a feature. In our analysis, p-value of 0.05 was set, features that show p-value6 

less than 0.05 were considered as discriminative features (DF).  

4.6.1. Cross-Validation  

Cross-validation is a validation technique of the developed model in order to identify 

the significance of the results in practice or in other words for an unbiased estimate of 

the performance of the model [3]. Validation involves in splitting the data samples 

into testing and training data set. Training data samples are used to train the model and 

testing data samples are unseen by the model (during the training) and are used to 

evaluate the trained model. Cross-validation involves holding the different data 

sample for training and testing data set every time, reducing the variability in 

performance estimates.  The common types of cross-validation are  

1. Hold out method or 2-fold cross validation 

                                                           
6  Probability value (p-value) is the estimated probability of rejecting the null hypothesis when the 
study hypothesis is true. 
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2. K-fold cross validation 

3. Leave-one-out cross-validation  

All the cross-validation methods [8] could be commonly called as K-fold cross-

validation, in which if k equals 2, it means that available data samples are split equally 

into training and testing data set. If we assign variable names to the split, DS1 and 

DS2, 2-fold cross validation involves at first, training the model with DS1 and testing 

it with DS2 and then training it with DS2 and testing it with DS1.  In K-fold cross-

validation, available data samples are split into K equal subsample set and one of the 

subsample set is held as the testing data sample, others as training data sample. This 

process is repeated K-times, withholding different testing data sample each time. 

Leave-One-Out cross validation (LOOCV) is the special case of K-fold cross 

validation where K equals number of data samples. 

LOOCV involves in withholding one of the participants’ data and training the model 

with the remaining. The withheld data known as test data is later estimated using the 

trained model. This process is repeated Nt times, where Nt is the total number of 

participants in a group, each time withholding different test data as shown in Figure 

4.10 Leave-One-Out cross validation (LOOCV) is utilised in the work to obtain 

unbiased evaluation of the model performance. 
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Figure 4.9 Illustrates, Leave one-out cross validation procedure. 

 

For an unbiased estimate of the model’s performance and generalized performance of 

the model, robust feature selection is required. In this thesis, nested LOOCV is used 

for this purpose. For selection of features that are reliable, exhaustive search using the 

scatter matrices as a criterion is utilised. 

The feature selection aims the following: 

1. To maximize the distance between the features 

2. To minimize the distance within the features, 

 

For this purpose, this report uses scatter matrices with the criterion J . 
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Where iP is the prior probability of the class from ci ,..2,1  and iS co-variance matrix 

of the class i  and  


c

i iimPm
10 . Larger the J value shows that data in a feature are 

close to each other and at distant from other class. 

In this thesis, optimal search method exhaustive search was used. In this method all 

the possibility of the feature combinations selected are exhaustively formed and class 

separability measure criterion J was computed. 
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4.6.2. Summary of methodology followed in features 

Selection and evaluation  

In total 95 parameters are extracted from the accelerometer, the methodology of 

parameter selection is shown in the Figure 4.10. Parameter selection involves in five 

steps,  

i) Identifying parameters that has an ability to discriminate the fallers and 

non-fallers (Mann-Whitney non-parametric test) 

ii)  Identified discriminative parameters (parameters that have ability to 

discriminate) were cross-validated (LOOCV1) into training and test sets  

iii)  For each of 1 to ND, utilizing the train set of LOOCV1, exhaustive search 

is performed to identify the best parameter combinations. Different training 

sets yield different subset of parameters, therefore, most repeated subset 

was selected as the best subset for the selected number of combinations 

iv) The train set of LOOCV1 was again cross-validated into LOOCV2, where 

train set of LOOCV2 was utilized for training the logistic regression 

classifier and was evaluated using the test set of LOOCV2 

v) Final best parameter subset were found as the subset which yields best 

accuracy (as evaluated on LOOCV2 test set) and these selected parameters 

were finally validated using the LOOCV1 test set.  
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Figure 4.10. Illustrates the parameter selection procedure and evaluation. 
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4.1. Conclusion 

The methodology for extracting the movement sequence from the whole recording is 

presented. Simple threshold based algorithm is developed which identifies the taps 

signatures at the start and end of the movement sequence. 95 features are extracted 

from the TUG signal and due to large number of features extracted feature selection 

is necessary. Feature selection permits identifying the features of importance that have 

an ability to discriminate fallers from non-fallers. Hybrid feature selection algorithm 

is implemented where the initial screening of features of importance is done using 

Mann-Whitney U test. The identified features are given as an input to the exhaustive 

search algorithm which searches for the best combination of parameters as validated 

by nested LOOCV. 

The next chapter presents the performance of the delineation algorithm developed. 

Followed by performance results of accelerometer model developed using the 95 

features described in this chapter. 
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Chapter 5 

5. Results and Discussions 
 

5.1.  Introduction 

This chapter firstly presents the demographics of the participants participated in the 

study. Secondly, presents the performance of algorithm developed to extract the 

genuine movement sequence from whole accelerometer recordings. Subsequently, 

describing the correlation metrics between the extracted features, reference feature/M-

time and the falls. Thirdly, it expresses the performance of the model developed with 

the optimal features selected using feature selection algorithm and compares it with 

the standard model developed using the reference feature, time taken to complete the 

test (M-time). Finally, it presents the ability of extracted features and feature selection 

algorithm to classify disability levels of the community dwelling individuals. 
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All the 484 participants of the NE85+ phase III study were utilised in the study. Of the 

total 484 participants, 80 participants did not attempt TUG test, one was not able to 

complete the test, two participants’ data were found missing, six accelerometer files 

were corrupted and unreadable and one of the participant data about the use of walking 

aid was missing. These 90 files are excluded from the analysis. Therefore, a total of 

394 (484-90) participants were included in the analysis. Of the 394 participants 42% 

(166/394) participants reported to have fallen at least once in the past 12 months. 

Demographics of the participants utilised in the study is given in Table 5.1. 

 

Table 5.1 The Demographics of Participants of the Study 

 

Algorithm described in the chapter 4 to delineate the TUG movement sequence was 

implemented for all the participants’ recordings in the current study.  

Automated processing of the tri-axial TUG recordings requires careful attention to the 

design and execution of the TUG test protocol. The existing automated protocol places 

limitations on the protocol requiring careful delineation of the TUG test through the 

use of consecutive and consistent taps at an adequate intensity to isolate from 

incidental noise. Out of 394 files, 95 files did not fully adhere to the protocol, requiring 

manual segmentation before parameter extraction. The following are major reasons 

which did not allow the automated delineation of TUG movement sequence. 

Walking Aid N Fallers Non-fallers 

  Male Female Male Female 

Yes 73 16 27 8 22 

No 321 53 70 84 114 
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i) Taps were not found at start or end of the TUG movement recording. 

ii) Only one tap was made at start or end or both of the TUG test. 

iii) No taps were made before and after the TUG test.  

 However, successful automatic segmentation of 299 files (~76%) and consequent 

isolation of the TUG movement sequence demonstrates the feasibility of automated 

processing in the majority of the participants files.  

For 95 participants’ TUG movement sequences could not be extracted automatically 

and hence the movement sequence is delineated manually.  

Comparison of delineated sequence with the reference feature: M-time (Manually 

extracted time) enables measuring the performance of the developed delineation 

algorithm. To compare the delineated sequence with the M-time, time taken from the 

extracted sequence is calculated as shown in equation 5.1. 

 Two different time measures were extracted from the participants’ recordings of the 

study, 

i) Time taken measured from the 299 participants recordings who adhered 

to the delineation protocol using the developed delineation algorithm, 

referred as ‘algorithm extracted time’ (E-time)  

ii)  For the remaining 95 (394-299) participant’s files with altered protocol, 

the TUG movement sequences are segmented manually through visual 

 

 

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑖𝑛 𝑎 𝑇𝑈𝐺 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

 

(5.1) 
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verification and time taken to complete the TUG test  is referred as 

'visually segmented time’.  

Participants using walking aid were analysed separately, as utilisation of aid may have 

an effect in the movements which would have affected the accelerometer recording. 

This is confirmed by using the Mann-Whitney U test of the reference feature between 

participants who used walking aid and those that did not across gender. The results of 

test show statistical significant difference across the groups (with walking aid and 

without walking aid) with p-values of 1.76×10-11 and 2.39×10-19 for males and 

females, respectively. Thus all the analyses in this thesis report are performed 

separately across the groups.  

Within the group, Mann-Whitney test is performed to study whether there were 

significant differences in time taken to complete the test between males and female. 

For the group not using walking aid, p-values appeared as 0.002 and 0.007 for M-time 

and E-time respectively, showing the significant difference. For WA group p-values 

appeared as 0.105 and 0.185 respectively for M-time and E-time respectively and 

show no difference between male and female. The Table 5.2 shows demographics of 

time for fallers and non-fallers, stratified based on gender and group for all 394 

participants.  

From Table 5.2,  it is clear that the E-time extracted from the TUG movement sequence 

shows a mean and standard deviation values very close to the reference (nurse 

recorded time) M-time for both the groups. This shows that the developed algorithm 

for automatic delineation of the movement sequence is successful.  

In addition, bland-Altman plot was plotted to compare the E-time with the reference 

M-time. Bland- Altman plot [9, 122] was widely used to compare the two methods or 
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techniques. It compares a newly developed method with the gold standard method or 

reference method, allows determining how much does the old method differ from the 

new method and also whether an old method can be replaced with the new method.  

Bland-Altman plot (Figure 5.1) compares the reference time (M-time) with the 

algorithm extracted time (E-time).  It could be seen from Figure 5.1 that majority of 

the values are within the limits of agreement (+1.96SD to -1.96SD), indicating that 

almost 95% of values are in agreement. This again validates that the developed 

algorithm that delineates TUG sequence from whole recording is successful and can 

be readily implemented. 

Error was defined as the reference time minus the measured time. 

The maximum difference between M-time and E-time was found to be -10.72 s, mean 

error is -0.9333s with the standard deviation is 1.91s. 

 

 

 

 

 

 

 

 

 
EtimeMtimeError   

(5.2) 
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TABLE 5.2 : Mean and Standard Deviation (SD) Values of Algorithm Extracted 

Time (E-Time), Visually Segmented Time and Manually Timed TUG (M-time) 

for Fallers and Non-Fallers Based on Gender. All the Values in the Table are in 

seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Without Walking Aid 

Variable Fallers (mean±SD) Non-fallers(mean±SD) 

 Male Female Male Female 

M-time (N=321) 16.71±7.38 19.5±11.61 14.13±4.74 16.52±6.72 

E-time (N=258) 17.47±7.44 19.47±7.57 14.76±4.30 16.53±4.67 

Visually segmented 

 time (N=63) 

21.28±7.19 24.49±13.6 20.27±5.27 22.48±10.82 

With Walking Aid 

Variable Fallers (mean±SD) Non-fallers (mean±SD) 

 Male Female Male Female 

M-time (N=73) 47.29±39.21 46.49±27.61 28.06±4.09 43.61±38.28 

E-time (N=41) 32.97±13.59 37.20±19.88 27.74±3.45 33.66±11.54 

Visually segmented 

 time (N=32) 

59.60±52.00 56.49±31.84 29.02±7.44 57.99±57.03 
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In general females have taken longer time than male to complete the TUG test. It can 

be also seen that the visually segmented time is larger than any other times, this shows 

that the participants were frail and could not adhere to the protocol correctly. 

5.2. Feature selection and Modelling 

Table 5.3 shows the features that have the ability to discriminate fallers and non-

fallers. It also shows the best combination of features selected obtained using the 

feature selection methodology described in the section 4.5 of Chapter 4. The best 

combinations of features are selected based on the highest accuracy as evaluated by 

 

Figure 5.1 : Bland-Altman plot for the E-time and M-time. Most of the points are within 

the limits of agreement (+1.96SD to -1.96SD) lines indicating that M-time can be replaced 

with E-time. 
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the training set. The accuracy of various feature combinations is also shown in Figure 

5.2. The feature combination which gives highest accuracy is circled.  

It can be seen from the Table 5.3 that out of 95 features extracted from the 

accelerometer signals, only 13, 20 features for male and female participants’ 

commonly show ability to discriminate fallers and non-fallers for the group With out 

Aid (evaluated by Mann-Whitney test). For the group with aid, only 2 features for 

male and 6 features for female showed significant difference between fallers and non-

fallers. 

It is interesting to see that reference measure M-time is only significant (discriminating 

fallers and non-fallers) for the female participants of the WoA group and non-

significant otherwise. On contrast at least two of the features extracted from 

accelerometer shows discriminating ability and this demonstrates accelerometer 

features significance over M-time. Graphical illustrations of discriminative ability of 

features are shown as the box plots in Figure 5.4 and Figure 5.3. 
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Table 5.3: Features that have the ability to discriminate between fallers and non-

fallers using the Mann-Whitney test. (2nd column). The best selected combination 

of parameters (3rd column) and significance of reference measure (m-time) in 

the last column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Without walking aid(WoA) 

Gender Mann-Whitney test Best combination M-time 

Male {5,8,9,10,11,12,15,30,32,43,93-

95} 

{8,9,10,11,32,93-95} Not 

Significant 

Female {2,3,8,9,10,12,14,17,18,20 

,40,43,45,46,48,50,54,91,93} 

{2,3,8,9,10,14,20,45,48,50,91} 
Significant 

With walking aid 

Gender Mann-Whitney test Best combination M-time 

Male 
{39,60} {20,34} 

Not 

significant 

Female 
{26,30,48,60,78,90} {26,30,60,78} 

Not 

significant 
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From Figure 5.3 and Figure 5.4 it can be seen that the mean Smps and other features 

of Smps show relatively lower value for fallers than non- fallers. As hypothesized, 

non-fallers do not perform the task smoothly; hence a flatter magnitude spectrum 

(white noise has flat magnitude spectra) is obtained which is reflected in the Smps 

features values. In addition, as expected the SD of COV difference is found higher for 

fallers showing the inconsistency/variability during the TUG test compared to non-

fallers. 

 

Figure 5.2  Various feature combinations with accuracy of classification 

fallers and non-fallers for a train set as evaluated by LOOCV, features 

combinations that gives highest accuracy is circled. 
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Figure 5.3: Boxplot showing the discriminating ability of features that are selected as 

best combination for male participants of the group WoA. 1-fallers , 2-Non-fallers. 
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Figure 5.4: Boxplot showing the discriminating ability of features that are 

selected as best combination for female participants of the group WoA. 1-

fallers, 2-Non-fallers. 
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The SMA has been shown to estimate the metabolic energy expenditure [119] [118, 

123]. It is reported in that [124] that higher energy expenditure less prone to falling. 

The box plot of SMA and the features SMA, RMS of this study show that non-fallers 

expend more energy than non-fallers, which again validates the hypothesis. 

 

The Box plot shows higher NOS for fallers than non-fallers which validates the 

hypothesis that more the NOS more prone to falling. As explained earlier in the 

Chapter 4, NOS captures the instability issues during TUG test, hence more the NOS 

more prone to falls. 

5.2.1. Performance of the model developed 

Considering the investigative nature of the study, a simple logistic regression classifier 

was used in this work to comprehend the ability of extracted features predicting falls. 

The theory of regression analysis is described in the section 2.7.5.2 of Chapter 2.  

Models using logistic regression classifier were built for male and female, separately.  

To evaluate the developed models’ performance metrics such as sensitivity, 

specificity, accuracy and Receiver Operating Characteristics (ROC) curve were the 

developed models. Sensitivity is defined as the proportion of fallers identified as the 

fallers. Specificity is defined as Proportion of non-fallers correctly identified as the 

non-fallers. Accuracy is defined as the overall correct classification of fallers and non-

fallers by the developed model.                                         
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Where,  

TP-True Positives: Numbers of fallers classified as the fallers 

FP-False Positives: Number of non-fallers classified as the fallers. 

TN-True Negative: Number of non-fallers classified as non-fallers. 

FN-False Negative: Number of fallers classified as non-fallers. 

 

ROC curves illustrate the performance of the models developed graphically. In 

addition, Area under of the curve (AUC) is also calculated from ROC curve. AUC 

shows the statistical performance of the models developed and it is comparable to the 

Mann-Whitney U test of the two samples non parametric Wilcoxon rank sum test [22]. 

Table 5.4 shows the performance metrics of the logistic regression models developed 

for male and female participants and for the groups.  
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Table 5.4 Compares the logistic regression developed using the best features 

combined and M-time.  The results shown are models performance on 

evaluation of test set. 

 

 

 

 

 

 

 

 

 

 

 

 

ROC of the WOA 

Without Walking Aid 

 Sensitivity Specificity Accuracy AUC 

 E-score M-

Time 

E-score M-

Time 

E-score M-

Time 

E-

score 

M-

Time 

Male 47.17% 22.64% 75.71% 81.42% 63.41% 56.09% 0.63 0.54 

Female 59.52% 16.60% 77.19% 87.70% 69.69% 57.57% 0.71 0.57 

Mean 53.35% 19.62% 76.45% 84.56% 66.55% 56.83% 0.67 0.55 

With Walking Aid 

 Sensitivity Specificity Accuracy AUC 

 E-score M-

Time 

E-score M-

Time 

E-score M-

Time 

E-

score 

M-

Time 

Male 75.00% 75.00% 37.50% 12.50% 62.50% 54.16% 0.50 0.60 

Female 74.07% 70.37% 63.63% 23.80% 69.39% 50.00% 0.72 0.48 

Mean 74.54% 72.69% 50.57% 18.15% 65.94% 52.08% 0.61 0.54 
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Figure 5.5 Compares the ROC of M-time model and E-score model combined 

ROC for both the gender and groups 

 

5.1.  Comparison of results with cut-off values 

determined from other studies 

 

In order to examine the value of the developed models estimating prior falls risk; best 

performance metrics of the E-score model and M-time model were compared. Best 

performance metrics are described based on cut-off value consideration which 

depends upon the application.  

Alexandre et al.[125] investigated ability of the TUG test (only time taken to 

complete)  identifying fallers of the data collected from 60 community dwelling 
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individuals and compared the results to [47],[124]. Results of [125] reported to 

outperform others studies [47],[124].  

Therefore, to understand the value of the current study undertaken, the cut-off value 

described in [125] was utilized to compare M-time and E-score models. Figure 5.5 

compares the M-time and E-score performance for the cut-offs determined by [125] 

and also best cut-off (where the sensitivity and specificity curve intersects) determined 

by the M-time. (Refer Table 5.5). 

Table 5.5 Comparison of accelerometer models performance against M-time 

and past literature [125] for both genders who did not use walking aid 

Cut-Off M-Time E-score 

 Sensitivity Specificity Sensitivity Specificity 

[125] 68.58% 32.09% 68.13% 53.50% 

Best cut off determined 

by M-time of the study 

54.99% 54.99% 67.19% 59.43% 

The values shown in the Table 5.5 are only for the group, without walking aid for both genders. This 

is because all the participants in [125] did not use aid. 

 

M-time model has a best cut-off value of 0.43 as identified from the point of 

intersection as shown in Figure 5.6. For the best cut-off, M-time model yielded both 

sensitivity and specificity value of 54.99% and the E-score model yielded sensitivity 

of 67.19% and specificity of 59.43%.   
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Figure 5.6 Shows the relationship between the sensitivity, specificity and 

probability cut off obtained from E-score model and M-time model (combined 

for both groups and gender).Best cut-off is defined as the point where sensitivity 

and specificity curves intersect. 

 

From Figure 5.6, it is clear that the E-score model outperforms M-time for both the 

cut-offs described. This shows that developed E-score model is valuable. Comparing 

the M-time model’s performance for both the cut-offs, it is obvious that cut off 

determined in the current study shows better performance metrics. This could be 

because of the difference in participants and instructions given to participants of the 

studies.  

Although, the developed E-score model performs better than M-time, it is still unclear 

regarding its clinical significance. Further studies are required to examine whether the 

performance metrics yielded in the study are clinically significant. 
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5.3. Ability of extracted features for disability level 

prediction in community dwelling  

 

It is well known that balance and stability are the important factors that reflect falls 

risk in an individual. Therefore, in this study the features are extracted that reflects 

balance and stability of the participant during TUG test. The balance impairment is 

also identified as one of the major risk factors for disability in older adults.  Hence, it 

is worth to explore the ability of the extracted features predicting disability levels of 

the participants. This investigation is exploratory in nature and it enables analyzing 

the strength of extracted features beyond falls prediction. 

It was already been discussed that quantified assessment of TUG has the ability to 

predict falls of community dwelling adults. However, following about disability are 

not yet known 

1. Whether TUG test has ability to discriminate disability levels. 

2. Whether quantified assessment of TUG test using accelerometer discriminate 

disability level and has added value. 

To investigate these, similar to falls prediction, models were built using the features 

extracted from the TUG test signal.    

5.3.1. Disability level 

Disabilities in older adults develop due to a variety of factors, of which balance 

impairment is one of the major risk factors. Disability in older adults decreases the 

quality of life, physical functioning cause falls and may even lead to death. Disability 
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has many definitions, the WHO defines disability as any restriction or lack (resulting 

from an impairment) of ability to perform an activity within the range considered 

normal for a human being. A disability is said to occur when there is gap between the 

ability of an individual to perform an activity to the activity's demands [122]. In recent 

years, many researchers have reported that disability is an important factor in causing 

health adversities. Assessment of disability level has a paramount value and enables 

offering timely interventions which may improve general health and also deter falls in 

future. In order to assess disability levels many qualitative methods such as Expanded 

Disability Status Scale (EDSS), the Cambridge MS basic score, SCRIPPS scale, 

World Health Organization Disability Assessment Schedule (WHODAS)and 

occasionally Barthel Index and functional independence scale are also used cite [126]. 

These qualitative methods are subjective in nature and do not provide standardized 

results.  

5.3.2. Data 

In order to assess the disability level of the participant, 17 basic questions related to 

activities of the daily living, such as getting in and out from the bed, dressing and 

undressing, washing face and hands, washing all over, cutting toenails, getting on and 

off the toilet, going up and down the stairs, getting in and out of chair, feeding self, 

light housework, heavy house work, preparing and cooking a hot meal, shopping for 

groceries, taking medication, managing money, getting around the house, walking at 

least 400 yards [12] was answered by the participant or the care giver. Participants are 

given a score of either 0 or 1 depending on their ability to complete the task. For an 

activity that the participant could not perform was given a score of 1. The scores are 



119 
 

summed up at the end of all the 17 activities. Therefore the summed scores of disability 

ranges from 0 to 17, where 17 represents the highest and 0 represents the lowest 

disability level. Participant demographics are given in Table 5.6. 

Table 5.6 Demographics of participants’ disability levels separated for male and 

female 

 

 

 

 

 

Similar procedure to falls estimation is followed, as there are more than two categories 

of disabilities, discriminant classifier is used instead of logistic regression classifier. 

The TABLE 5.7 compares the results of models built using extracted features and M-

time. Considering the pilot nature of analysis accuracy of the models are only 

compared. 

 

Table 5.7 Accuracy of developed classifier in estimating disability levels 

Model Kruskal-Wallis 

P<0.01 

Best 

combination of 

features 

Accuracy of 

developed 

model 

Accuracy of 

reference 

feature M-time 

Male 

{,1-3,34,45-

47} 

{34,1-3,68} 68.03% 47.54% 

Female 

{1-3,37-39,45-

47,65} 

{35} 56.28% 30.65% 

 

The box plot of best combination of features showing its ability to discriminate 

disability levels is shown in the Figure 5.7. 

Disability levels 0 1-6 >6 Total 

Male 15 81 56 122 

Female 13 130 26 199 
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Kruskal-Wallis is a non-parametric method for testing the measurements whether they 

are from same distributions. This test is followed as one of dependent variable is 

binomial (falls) and dependent variable (extracted parameters from accelerometer) is 

continuous. Moreover, this test is followed as the extracted parameters do not follow 

normal distribution and has an unequal sample sizes.  

Kruskal-Wallis non-parametric test on M-Time yielded a significant p-values of 

5.54X10-7 and 8.44X10-12 (for male and female participants, respectively) showing its 

ability in discriminating disability levels. Hence, it is evident that TUG test has an 

ability to discriminate disability levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the classifier models built using features extracted from accelerometer and 

reference feature which is the time taken to complete the test (M-time). The features 

 

 

10

20

30

40

50

60

70

80

0 1-6>6
Disability Level

T
U

G
T

-N
O

S
 o

f 
X

-a
x
is

10

20

30

40

50

60

70

0 1-6>6
Disability Level

T
U

G
T

-N
O

S
 o

f 
Y

-a
x
is

0

10

20

30

40

50

0 1-6>6
Disability Level

T
U

G
T

-N
O

S
 o

f 
Z

-a
x
is

0

50

100

150

200

250

300

350

400

01-6>6
Disability Level

M
e

a
n

 I
n

te
n

s
it
y
 o

f 
Y

-a
x
is

1

1.5

2

2.5

3

3.5

4

4.5

0 1-6>6
Disability Level

S
D

 o
f 

C
O

V
 i
n

te
n

s
it
y
 d

if
fe

re
n

c
e

s
 o

f 
X

-a
x
is

Figure 5.7 Box plot of best combination of features showing it ability to 

discriminate disability levels in community dwelling 
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extracted from the accelerometer showed a classification mean accuracy of 62.16%, 

outperforming the M-time (39.10%) classifying disability levels.  This shows that 

quantified assessment of TUG test using accelerometer has ability to discriminate 

disability levels and has an added value over reference measure M-time. 

This chapter at first presents the results of delineation algorithm developed to segment 

the TUG test sequence from the whole accelerometer recordings. Secondly, it shows 

the features of importance that have ability to discriminate fallers from non-fallers. 

Thirdly, it presents the results of the models developed to estimate fallers and it also 

compares results of the reference feature model with the model developed. Finally, it 

shows the results that extracted features also have ability to discriminative disability 

levels in the community dwelling.  The next chapter discusses the conclusions and 

future work. 
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Chapter 6 

6. Conclusions and Future Work 
 

A wrist mounted accelerometer wearable system was developed for assessment of falls 

risk of community dwelling elderly adults. The developed system was validated with 

the 394 participants Timed Up Go (TUG) test data collected in the home environment. 

The system developed is semi–automatic in nature, whereby requiring participants 

only to tap the sensor system before and after each test. 

The absolute error found between algorithmically delineated sequence and reference 

time was less than 1s which demonstrates that it is practical to semi-automatically 

estimate falls in the home environment where a strict protocol were followed. The 

regression model built using best combined features derived from the accelerometer 

features identified prior falls with a mean accuracy of 66.24%, outperforming 

manually timed TUG (54.46%). ROC curves derived illustrated that the models built 

using accelerometer derived features outperform the manually timed TUG in 

estimating prior falls. 
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From the results, M-time (Manually timed TUG) has a very high correlation value 

with the E-time (time that is extracted using the developed algorithm) with a Pearson 

correlation value of 0.966 (p<0.001) combined for groups (With Aid and Without Aid) 

and genders. In general, most of the selected accelerometer features have correlation 

values less than 0.5 with the M-time, which shows that the extracted features, holds 

information independent of M-time.  In concordance with [32] and others [37, 47], 

this study also shows that irrespective of gender and groups, fallers take more time to 

complete the TUG test than non-fallers. In particular, participants using walking aid 

(WA) took relatively longer time than those without (WoA). 

Not all the features extracted from the signals of accelerometer showed significance 

in predicting falls. In total, only 32 features out of 95 features extracted from the 

accelerometer appeared significant estimating falls in community dwelling. It is 

interesting to see that different features appeared significant for male and female 

participants; this could be due to the difference in the characteristics of the movements 

while performing TUG test. It is obvious that the characteristics of the movement of 

the participant who are using walking aid are different from those who did not use aid 

and these differences are reflected in the features that are selected by models. 

Across both the genders, features namely mean SMPS of Z-axis and SVM, Outlier 

excluded mean Smps7 of Y-axis and SVM8, Outlier excluded mean Intensity of Z-axis 

and finally TUGT RMS9 SVM were commonly found significant for the group WoA, 

whereas for the group With aid, only parameter SD10 of Intensity difference of SVM 

was found common. These common features show its importance being consistently 

                                                           
7 Sum of Magnitude of Power Spectrum 
8 Signal Vector Magnitude 
9 Root Mean Square 
10 Standard Deviation 
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significant across the models. The reference feature (M-time) was found significant 

only for female model of the without aid group, for all other gender and groups M-

time was found insignificant. In contrast, at least two of the features derived from the 

accelerometer signals were found significant for all the models developed, refer Table 

5.3. This shows that accelerometer derived features are more valuable holding an 

additional information and can contribute independently to M-time alone to predict 

falls.  

Moreover, the features extracted show capability of predicting disability levels in 

community dwelling. The results of the models built using the accelerometer features 

extracted predict disability levels better than reference feature alone. This shows the 

significance of the extracted features.  

From the results of disability level prediction, it can be seen that the higher intensity 

of TUG signals, lower the disability level. To combine with falls, it is clear that the 

lower the intensity, the higher the disability level and more prone to falling. This 

indicates that less energy is expended while performing the TUG which is associated 

with falls and disability. Similar to the falls, Figure 5.7 shows that higher the NOS, 

higher the disability. All these results show that falls and disability are directly 

related although a specific result that describes the relationship between falls and 

disability is not validated in the study.  

The feature selection methodology developed and implemented in the study was 

robust and independent of the classifier. This is obvious as same procedure is utilised 

with the linear discriminant classifier to predict disability levels in the community 

dwelling. 
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The study suffers from following limitations: Development and adherence to a robust 

protocol of the test was the most limiting constraint of the study. The threshold values 

set for taps identification were vague and it was unclear whether these values will 

suffice identification of all taps in future. As large numbers of samples were used in 

the study set thresholds could be appropriate for future extractions. In future, 

prospective evaluation study the protocol definition needs to be improved, such as tap 

as fast as possible or tap the wrist on the thigh during sitting position this way the taps 

could be clearly identified using simple algorithm.  

The lengths of the TUG signal obtained from different participants were different; this 

could have affected the frequency spectrum extracted and the windows’ sizes utilized 

for feature extraction remains uncertain. A further study is required to find the optimal 

window size and this also may further improve performance of the models.  

In addition, there are obvious limitations to the study with the analysis exploring 

association with prior rather than future falls risk. It has been suggested that this may 

overestimate falls risk [127] in practise. Critically, the approach must be evaluated for 

prospective falls prediction. It is unclear whether system would yield acceptable 

performance metrics with prospective falls data. 

Although, mean performance metrics across both genders and groups show the E-

score model outperforming M-time, for the WoA group the E-Score model improved 

only sensitivity (for both males and females). Overall, this has resulted in better 

accuracy and ROC metrics. Favourably, there is scope for the derivation of other 

parameters which may still improve the performance. Currently, integrated inertial 

measurements units are developed which comprises of accelerometers, gyroscopes 

and magnetometers which allows extracting further information from the sensor 
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system which could be useful. The integrated IMU are small and light weight hence it 

does not cause any restrictions to participants activities. The specific analysis of the 

segments such as sit-stand, walk, turn and stand-sit may also prove to be valuable; 

however in this protocol, such segmentation is not achievable but may prove feasible 

through protocol revision. 

Wrist placement promises high universal acceptance. Although, this study has shown 

improved accuracy for prior falls detection over manual timing alone, it is uncertain 

whether the wrist is the best location for sensor placement and further study is required 

to evaluate this. The true clinical value of the results must also be evaluated in a 

prospective falls prediction study. 

TUG test was selected as the assessment task as it is simple, possesses less danger to 

the participant, reliable and offers potential for automating the falls risk assessment.  

The task could be revised asking the participant to walk 7 meters instead of 3 meters 

as this could enable extracting additional reliable features from gait and offer 

improved prediction of falls.  

Previous studies [73, 84, 89, 90] have commonly demonstrated the potential of 

features collected in a laboratory environment to predict falls risk. The features 

extracted in studies by Narayanan et al. [73] using waist mounted accelerometer and 

its improvement by Liu et al. [128] show good correlation with falls risk. However, 

the studies are reported utilising a smaller cohort of only 68 participants. Moreover, 

studies utilises tests such as TUG test, alternate step test and sit-to-stand with five 

repetitions which is time consuming ,makes harder for the participant to perform the 

test and therefore becomes less complaint. Performing all the tests in the home 

environment would require standard equipment for consistent and longitudinal 
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comparative assessment. The tests described places limitations and possess a great 

challenge to develop consistent and reliable automated algorithm.  

Recently, Greene et al.[90] estimated falls risk with mean sensitivity of 77.3% and 

mean specificity of 75.9%, using multiple kinematic sensors placed on the shanks. 

Utilisation of multiple sensors makes it more intrusive to the wearer, demands more 

time for attaching and detaching devices, increases the overall hardware cost and is 

less amenable to automated processing and interpretation.  

Weiss et al.[84]  utilized a single accelerometer to identify fallers (using multiple 

parameters derived) only from the TUG test and validated the addition of 

accelerometer has an added value. However, this study validated the hypothesis with 

41(23-fallers and 18-healthy) participants. Many features are extracted particularly, 

features from the sit-stand and stand-sit components of accelerometer signals. The 

features derived are individually compared whether or not it is able to differentiate 

fallers from healthy participants. 

None of the previous work reported on automation of the falls risk assessment, this 

current study is the first to report utility of single wrist mounted accelerometer to 

identify fallers with semi-automated data processing and interpretation. The present 

study uses large cohort of 394 participants' TUG data collected in home environment, 

focuses on combining parameters for better classification performance and shows 

potential for automation. Moreover, the feature extracted in the study proves to 

estimate disability level of community dwelling participants as well. 

A semi-automatic falls estimation of community dwelling older adults was developed 

using single wrist mounted tri-axial accelerometer. The study utilises data collected 

from 394 participants performing TUG test in their home environment. Falls 
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prediction models are derived separately for male and female participants using simple 

logistic regression classifier. Models developed show performance metrics which 

outperform M-time alone. The study utilises retrospective falls data and its clinical 

value will be known only during prospective evaluation. Further work will enable to 

properly establish fully robust protocols and to explore whether improved detection 

extends to the prospective identification of falls and have clinical significance. 

In the present scenario, there is a need for falls estimation system that can discriminate 

fallers and non-fallers in the community. The requirements of the system that allows 

to be incorporated in the home environment include: 

 Simple assessment task 

 Quick to perform the assessment task 

 Require little or no external support 

 Compatible with the elderly adults 

 Reliable and Robust. 

Participants using the system require wearing the sensor on their wrist and tapping it 

before and after performing the TUG test. TUG test is proven to be reliable [32]. The 

TUG test is definitely simple to perform and it is evident from the 394 participants 

data (collected from participants aged more than 85 years) of the study. The developed 

system fulfils the requirements and results shows that it outperforms traditional 

methodology.  

What is clear is that potential for single wrist mounted accelerometer to identify fallers 

in the community dwelling. The developed system is simple, easy to use, quick, robust, 

and compliant even for participant of 85+ years of age and can be used in home 

environment. Falls plays significant role in causing diseases, disabilities and other 
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problems such as fear and restricted activities of living in the elderly. These factors 

further reduce quality of life in the elderly and make them more susceptible to falling. 

Moreover, falls impose substantial financial burden to the health care systems. The 

wrist accelerometer based semi-automatic assessment of falls may enable fallers 

monitoring in a consistent and minimally intrusive way. This would facilitate efficient 

and timely intervention for potential fallers beyond the clinical setting. Falls 

estimation in early would permit offering timely interventions, funds available can be 

utilised in the other areas of health care and would significantly improve quality of 

life. 

6.1  Future work 

 

The developed accelerometer system shows the feasibility to predict fallers in the 

community dwelling environment. Even so, there are certain aspects of the study that 

can be improved. In particular, the features extracted from accelerometers are not 

associated with specific risk factors of falls such as lower limb mobility, muscle 

weakness and others. Identifying specific association with factors that causes falls will 

enable targeted interventions. 

The system developed is a first study assessing the value of wrist mounted 

accelerometer to predict fallers of community. The system requires the data to be 

transferred for analysis and to produce the results. This can be enhanced by utilising 

wireless systems to implement data transfer and further processing. Figure 6.1 shows 

the envisaged falls management architecture. As the user/participant performs the 

TUG test the data is transferred wirelessly to the base station in the home and then the 

data is transferred to the cloud processing and storage system. The data uploaded to 
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the cloud system can be accessed securely by doctors with appropriate access to 

analyse the data and provide a feedback or recommend the participant for targeted 

interventative treatments. The data can be accessed from anywhere and can be given 

access to doctors, physiotherapist for analyses and feedback. Therefore falls can be 

managed more comprehensively and aids timely interventative treatments offered for 

the elderly individuals. 
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Figure 6.1: Envisaged falls management system architecture 
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