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ABSTRACTThe urrent understanding of theoretial physis tells us that there exists a unique,nonperturbative quantum theory living in 11D spaetime (M-theory), from whih�ve 10D superstring theories arise as perturbative limits. Finding the expliitform of this M-theory is one of the greatest theoretial hallenges of the twenty�rst entury. In this thesis, we shed the light on some important aspets, va-uum energy, moduli stabilization and gaugino ondensates in the framework of5D heteroti M-theory. The entral question we are trying to answer in this the-sis is: what is the mehanism for radion stabilization?. To answer this questionwe alulate the total bulk vauum energy, whih is the di�erene between thetwisted and untwisted fermion vauum energies, in both at and urved spaes. Itis found that this bulk vauum energy alone doesn't stabilize the radion �eld. Wethen try to add and investigate some non-perturbative e�ets suh as the gauginoondensates and use the tehnique of dimensional redution to reah an e�etivesuperpotential. Dimensional redution is a neessary step required to know howour real 4D world is desribed by a higher dimensional theory. After performingthe dimensional redution, we have a look at the resulting e�etive superpotentialfor a 4D gravitino with ghost �elds. The importane of the ghost vauum energyis in its positive sign whih is helpful in the stabilization proplem when added tothe total fermioni bulk vauum energy with its ordinary negative sign.



CONTENTS
1. Introdution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111.1 Extra dimensions and Brane-worlds . . . . . . . . . . . . . . . . . . 111.2 Kaluza-Klein basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.3 ADD model - large extra dimensions. . . . . . . . . . . . . . . . . . 141.4 The hierarhy problem . . . . . . . . . . . . . . . . . . . . . . . . . 151.5 The predeessors of brane-worlds . . . . . . . . . . . . . . . . . . . 161.6 Einstein Equations on The Brane . . . . . . . . . . . . . . . . . . . 181.7 Randall-Sundrum models and the geometrial origin of the hierarhy 201.8 DGP model (braneworlds with in�nite volume extra dimensions) . . 231.9 Extra time-like dimensions . . . . . . . . . . . . . . . . . . . . . . . 261.10 M-theory story in a nutshell . . . . . . . . . . . . . . . . . . . . . . 261.11 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 272. Moduli stabilization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 302.1 SUSY and SUSY breaking . . . . . . . . . . . . . . . . . . . . . . . 312.2 Mehanisms for radion stabilization. . . . . . . . . . . . . . . . . . . 322.2.1 Introduing a massive salar �eld to the bulk. . . . . . . . . 322.2.2 Casimir energy approah. . . . . . . . . . . . . . . . . . . . 332.2.3 Gaugino ondensation approah - nonperturbative e�ets. . . 352.2.4 Flux ompati�ation approah. . . . . . . . . . . . . . . . . 363. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory : : : 393.1 Horava-Witten theory: the strong oupling behaviour . . . . . . . . 393.2 The 11D low energy ation . . . . . . . . . . . . . . . . . . . . . . . 41



Contents 53.3 The 5D redued Horava-Witten theory . . . . . . . . . . . . . . . . 423.3.1 BPS solution for a simple system of two branes . . . . . . . 443.4 The moduli spae approximation . . . . . . . . . . . . . . . . . . . 473.5 Possible moduli systems . . . . . . . . . . . . . . . . . . . . . . . . 494. Casimir energy for twisted fermion �elds : : : : : : : : : : : : : : : : : : 514.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.2 Twisted and untwisted fermions in �ve dimensions . . . . . . . . . . 524.2.1 Fermion modes . . . . . . . . . . . . . . . . . . . . . . . . . 554.3 Casimir potential in at spae . . . . . . . . . . . . . . . . . . . . . 574.4 Small � limit (small twist) . . . . . . . . . . . . . . . . . . . . . . . 594.5 Casimir potential in urved spae . . . . . . . . . . . . . . . . . . . 604.5.1 A Review for the untwisted ase . . . . . . . . . . . . . . . . 604.5.2 The ase of twisted fermions . . . . . . . . . . . . . . . . . . 634.6 The 5D e�etive potential . . . . . . . . . . . . . . . . . . . . . . . 654.6.1 Numerial evaluation of �G�(�) . . . . . . . . . . . . . . . . 664.7 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675. Gaugino ondensation in an improved heteroti M -theory : : : : : : : : 735.1 Improved heteroti M -theory and its new boundary onditions . . . 735.2 Bakground metri and ux . . . . . . . . . . . . . . . . . . . . . . 745.2.1 Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 755.2.2 Condensate sale . . . . . . . . . . . . . . . . . . . . . . . . 775.2.3 Superpotential . . . . . . . . . . . . . . . . . . . . . . . . . 785.2.4 E�etive superpotential from the 11D theory. . . . . . . . . 795.3 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816. KKLT AdS vauum and Casimir energy. : : : : : : : : : : : : : : : : : : 826.1 Model A: Double-ondensate . . . . . . . . . . . . . . . . . . . . . . 826.2 Model B: Other non-perturbative terms . . . . . . . . . . . . . . . 856.3 Uplifting the KKLT dS vauum . . . . . . . . . . . . . . . . . . . . 89



Contents 66.4 Comparing Vmin and VC . . . . . . . . . . . . . . . . . . . . . . . . . 906.5 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937. 5D redution of the gravitino : : : : : : : : : : : : : : : : : : : : : : : : 947.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947.2 A review to the BRST formalism for the ase of eletromagnetism . 957.3 BRST symmetry for 11D Rarita-Shwinger Field . . . . . . . . . . . 977.4 Redution to 5 dimensions . . . . . . . . . . . . . . . . . . . . . . . 997.4.1 Boundary onditions . . . . . . . . . . . . . . . . . . . . . . 1027.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048. gravitino and ghost �eld vauum energies : : : : : : : : : : : : : : : : : : 1058.1 Eliminating the `mass' term . . . . . . . . . . . . . . . . . . . . . . 1058.2 Warped bulk ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109. Conlusion and Further Work : : : : : : : : : : : : : : : : : : : : : : : : 1149.1 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Appendix 116A. Energy, sales and dimensions : : : : : : : : : : : : : : : : : : : : : : : : 117B. Spinor identities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118B.1 Gamma matries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118B.1.1 Identities for the produts of gamma matries . . . . . . . . 118B.2 Other 11D identities . . . . . . . . . . . . . . . . . . . . . . . . . . 119B.3 Rarita-Shwinger equation . . . . . . . . . . . . . . . . . . . . . . . 119B.3.1 The pure fermioni term . . . . . . . . . . . . . . . . . . . . 119B.3.2 The term ontaining  with G . . . . . . . . . . . . . . . . . 120B.4 Six dimensional identities . . . . . . . . . . . . . . . . . . . . . . . . 120



Contents 7B.5 Five dimensional identities . . . . . . . . . . . . . . . . . . . . . . . 121C. Geometrial onventions : : : : : : : : : : : : : : : : : : : : : : : : : : : 122C.1 Di�erential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122C.1.1 Cartan equations and the urvature tensor form . . . . . . . 122C.2 A review of omplex manifolds and K�ahler geometry . . . . . . . . 123C.2.1 Calabi-Yau spae and Hodge numbers . . . . . . . . . . . . . 124C.3 The tetrad formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 125C.4 Embedding hypersurfaes and ADM (3 + 1) formalism in a nutshell. 126



LIST OF TABLES4.1 The numerial values of G�(�) and �G�(�) for di�erent values of � .all values have been evaluated with � = 35 and � = 25 . . . . . . . . . 688.1 The total vauum energy �G�(�) for the two ghosts  and � evalu-ated numerially at di�erent � . . . . . . . . . . . . . . . . . . . . . 112



LIST OF FIGURES1.1 The orbifold S1=Z2 on whih the extra dimension y is ompati�ed.It is just a irle with two �xed points 0 and � identi�ed and z2symmetry imposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.2 The topology in RS model is R4 multiplied by a line element whihis taken to be a irle with Z2 symmetry in RS1 and an in�nite realline R+ in RS2. The topology in the 5D redued heteroti M-theoryis the same as that of RS1. . . . . . . . . . . . . . . . . . . . . . . . 211.3 The one-loop diagram with massive salars and fermions (branematter �elds) in the loop whih generates the brane Rii salar(Rii salar for 4D graviton). Matter �elds indiated by solid lineand gravitons by wave lines. vertial short lines on matter �eldspropagator indiate that they are massive. . . . . . . . . . . . . . . 253.1 Horava-Witten set up. The orbifold radius � is onneted via thestring oupling gs by � = g2=3s lP . The eleventh dimension is onlyaessible in the strong oupling limit. . . . . . . . . . . . . . . . . 404.1 On the visible brane at z1 we have P+ = 0 and (�zz + 12K +m)P� = 0. On the hidden brane at z2 we have P� = 0 and(�zz + 12K +m)P�� = 0. . . . . . . . . . . . . . . . . . . . . . . . 544.2 Contour used for the ontour integral in (4.62) . . . . . . . . . . . . 644.3 Di�erent plots of the integrand used to evaluate �G�(�) for di�erent� and � . These show that the integral is well-behaved. . . . . . . . 694.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Figures 104.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.7 The potential (4.98) for di�erent � and � = �. . . . . . . . . . . . . 726.1 The values of the volume moduli V1 and V2 at the minimum of thepotential with two ondensates and �=� = 1:2. Here X = b=d andY = =d. The left panel shows values of V1 and the right panelshows values of V2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.2 Plots for model A showing the minimum of the potential (6.12). . . 856.3 Plots of (6.16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876.4 The values of the volume moduli V1 and V2 at the minima of thepotential with Wnp and � = �. X = b=d and Y = =d. The leftpanel shows values of V1 and the right panel shows values of V2. . . 886.5 Plots of (6.30) for model A: Positive Casimir energy of the ghost�elds an uplift the AdS vauum to dS one only at an undesirablylarge values of C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916.6 Plots of (6.30) for model B. . . . . . . . . . . . . . . . . . . . . . . 927.1 The twisted boundary onditions on the visible and hidden branewith the diretion of n taken outward. . . . . . . . . . . . . . . . . 1038.1 (a) 3D plot of the sum of the ghosts potential shows l5 and V2diretions. (b) The sum of the ghosts potential at onstant V2 (V2 = 2).1088.2 (a) A 3D plot of the sum of the at ghost potentials expressed interms of z2 and � . (b) A 3D plot of the sum of the at ghostpotentials expressed in terms of V1 and V2. () A 3D plot of thewarped total ghost Casimir energy (8.32) showing z2 and � diretions.1118.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



1. INTRODUCTION1.1 Extra dimensions and Brane-worldsMost theoretial physiists believe that at high enough energies, lassial GeneralRelativity fails to desribe gravity and must be uni�ed with quantum �eld theory.The supposed quantum gravity theory should ontain signi�ant orretions asthe fundamental energy sale (the Plank sale) is approahed. Superstrings are agood andidate, where all partiles in nature are just di�erent vibrations of stringsof the string sale (� 10�33m).A lass of models has been inspired in the ontext of branes in string theory,alled `brane-world models' (see [9℄ for a review). In suh models, the observableuniverse is regarded as a 3 + 1�dimensional surfae (the brane) embedded in a3 + 1 + d�dimensional spaetime (the bulk). Standard model partiles and �eldsare trapped on the brane and only gravity is free to aess the bulk. At low energies,gravity is loalized at the 3+ 1�dimensional brane allowing General Relativity tobe reovered. At high energies, gravity leaks into the higher dimensional bulk,behaving in a truly higher dimensional theory. These models may di�er fromtraditional Kaluza-Klein models in that the extra dimensions are not neessarilysmall ompared to the length sales aessible to modern aelerators.Although the idea that lower dimensional hypersurfaes onstitute the visibleworld had been suggested before [4, 25℄, the idea only beame popular in 1998 whenthe model of Arkani-Hamed, Dimopoulos and Dvali (ADD)[11℄ was proposed. Thismodel is an attempt to attak the long standing hierarhy problem (that is whygravity is muh weaker than all other fores) through the idea of large extra-dimensions.



1. Introdution 12An important ommon feature of all extra-dimensional models is that they haveadditional salar �elds. These salar �elds ouple to the 4D energy-momentum ten-sor modifying the 4D gravity (and so sometimes alled gravi-salars). However,there are strong experimental onstraints on suh `salar-tensor theories' of grav-ity. For example, in the ase of only one ompat extra-dimension (5D bulk), byalulating the slowing down of binary pulsars due to the radiation of these gravi-salars, it ould be shown that [87, 88℄ the presene of the gravi-salars leads to amodi�ation of Einsteins quadrupole formula by 20%, but observations agree withthe quadrupole formula by better than 0:5%. For more extra-dimensions there willbe more gravi-salars and the problem gets worse.1.2 Kaluza-Klein basisIn 1919 (published only in 1921), Kaluza proposed that gravity and eletromag-netism ould be uni�ed by adding one extra dimension [90℄. His main aim was tounify the Hilbert-Einstein ation with the ation of eletromagnetism. He startedfrom a pure 5D gravitational ation. Then, after integrating out, he ould get theequations of General Relativity, Maxwell's equations and a salar �eld oupled tothe eletromagneti �eld tensor. This means that the additional part in the 5Dmetri gAB gives the Maxwell �eld and a salar �eld (the dilaton �eld).In 1926, Klein [91℄ suggested that the extra dimension has a irular topologyso that the extra oordinate y is periodi. The ompati�ation of the diretion ywith radius L means y and y + 2�L are identi�ed. The spae then has a topologyR4�S1, whih means that there is a little irle at eah point in four-dimensionalspaetime [see Fig.1.1℄.The gravity ation in 5D ould be written asS(5) = M352 Z d4x Z 2�L0 dypg(5)R(5) (1.1)Where 1M35 � 8�G5 � �25 (1.2)



1. Introdution 13The 5D metri ould be expressed in 4 + 1 form asgAB = e�=p30BBB� g�� + e�p3�A�A� e�p3�A�e�p3�A� e�p3� 1CCCA (1.3)Where g��, A� and � are tensor, vetor and salar �elds respetively. The pe-riodiity in y means that the omponents of the �ve dimensional metri an beexpanded in terms of Fourier series [92℄g��(x; y) = n=1Xn=�1 g(n)�� (x)e(2n�y=L) (1.4)A�(x; y) = n=1Xn=�1A(n)� (x)e(2n�y=L) (1.5)�(x; y) = n=1Xn=�1�(n)(x)e(2n�y=L) (1.6)So, the theory desribes an in�nite number of four-dimensional �elds. Themass of the mode n beomes m2n = n2L whih means that the smaller the size Lthe higher the energy required to probe it. Only the zero (massless) mode (1.3) ise�etive at low energies and massive modes will be important at higher energies.After integrating out the extra dimension, the low-energy 5D ation (1.1) be-omes S = (2�L)M352 Z d4xp�g[R� 12������� 14e�p3�F��F ��℄ (1.7)By omparing the above ation with the 4D ation we an get a relation betweenthe 4D Plank sale and the 5D one asM24 = (2�L)M35 (1.8)The additional salar �eld worried Kaluza and Klien, but now physiists expetto see new salar �elds in their theories. Modern higher dimensional theories don'timply the ompati�ation manifold to be a irle.In spite of the beautiful uni�ation of gravity and eletromagnetism, Kaluza-Klein theory failed to inlude other fores. Also, it doesn't explain the weakness



1. Introdution 14of gravity in omparison to eletromagnetism. The Kaluza-Klein theory was es-sentially abandoned until the advent of supergravity and string theory, where theidea of higher-dimensional theories was reintrodued in physis.1.3 ADD model - large extra dimensions.The ADD model was proposed in 1998 [11, 23℄ to solve the hierarhy problembetween the Plank sale and the weak sale. The basi idea is that large volumeompat extra dimensions would lower the fundamental Plank sale to the weaksale, leaving a single sale Mew. We summarize this in the following equationMew � 1TeV � MP l(4+d): (1.9)As in Kaluza Klein theories, the geometry is fatorized (meaning that the 4-dimensional part of the metri does not depend on extra-dimensional oordinates),and the metri reads: ds2 = g��(x�)dx�dx� + gij(x5)dxidxj: (1.10)The spae-time is R4 �Mn, where Mn is an n dimensional ompat manifoldof radius R and volume Rn. The Plank sale MP l(4+n) of this (4 + n) dimensionaltheory is taken to be �Mew.By Gauss law in 4 + n dimensions, for small separation r� R, the Newtonianpotential between two partiles of masses m1 and m2 will be given byVr(r) � m1m2Mn+2P l(4+n) 1rn+1 ; r � R: (1.11)The usual 1=r ould be obtained when the masses are plaed at distanes r� R,that is Vr(r) � m1m2Mn+2P l(4+n)Rn 1r ; (r� R): (1.12)We an write now the e�etive 4-dimensional Plank sale MP asM2P �Mn+2P (4+n)Rn (1.13)



1. Introdution 15So, if we put MP (4+n) � Mew and demand that R be hosen to give the observedMP we get R � 10 30n �17m� �1TeVMew �1+ 2n : (1.14)The ase for n = 1 is empirially exluded as R � 1013m whih implies mod-i�ations for Newton's law over solar system distanes. For n = 2, R � 10�2mwhih suggests modi�ations on the submillimeter sale. Sine the experimentalapabilities are limited, the knowledge of the validity of these laws of nature is lim-ited. For example, very little is known about the behaviour of gravity at distanes< 10�4m or > 1028m [27℄.Unfortunately, while the ADD model solves the hierarhy between the Plankand weak sale, it replaes this with a hierarhy between the fundamental PlanksaleM4+n and the ompati�ation sale � = R�1 (� = 1=r for RS model) [35℄.As we will see, in the Randall-Sundrum model the hierarhy between the Plankand weak sales ould be resolved without the need to introdue a large hierarhybetween M4+n and �.Reduing the fundamental sale to the weak sale gives some hope for theexperimental tests of quantum gravity. Theories of quantum gravity, string theoryfor example, might be aessible at modern olliders suh as the LHC.1.4 The hierarhy problemDespite being in a very good agreement with experiments, the standard model ofelementary partiles (based on the SU(3) � SU(2) � U(1) gauge group) su�ersseveral unattrative features. One of these unattrative features is the gauge hi-erarhy problem, the standard model annot onsistently aommodate the weakenergy sale O(1TeV ) and a muh higher sale suh as the Plank mass saleO(1019)GeV . This is why it has been suggested that the standard model is onlyan e�etive low energy theory embedded in some more fundamental high saletheory that ould ontain gravity.There are in fat two long standing �ne tuning problems, the hierarhy problem



1. Introdution 16

Fig. 1.1: The orbifold S1=Z2 on whih the extra dimension y is ompati�ed. It is justa irle with two �xed points 0 and � identi�ed and z2 symmetry imposed.and the osmologial onstant problem. In both of them there are two fundamentalsales; an experimentally observed sale and a theoretially expeted sale, whihare many orders of magnitude apart.In the hierarhy problem, the observed sale is the energy sale at whih theeletromagneti interation uni�es with the weak interation around 1TeV . Thetheoretial sale is set by quantum orretion to the Higgs mass.The Plank energy sale (at whih a theory of quantum gravity should berevealed) is theoretially alulated to lie at 1019GeV or 10�35m. The hierarhyof sixteen orders of magnitude between these two sales is alled the hierarhyproblem. The model that solves the problem most `eonomially' is the RS modelwith a single extra dimension [2, 3℄.1.5 The predeessors of brane-worldsThe idea of the universe as a domain wall was �rst proposed by Rubakov andShaposhnikov in 1983 [25℄, who imagined partiles on�ned by a 3D potential wellat low energy. A system of two branes of equal and opposite tension boundinga �fth dimension whih ontains bulk salar �elds �rst reeived serious attention



1. Introdution 17after the ompati�ation of Horava-Witten theory to 5 dimensions [12℄.It is widely aepted that the weakly oupled E8 � E8 heteroti string is oneof the most phenomenologially viable of �ve superstring theories. Unfortunately,the predited value for Newton's onstant in this theory is too large. Witten[17℄ has shown that this situation an be resolved in the strong oupling limit ofthe heteroti string, whih is believed to be equivalent at low energy to eleven-dimensional supergravity, with E8 Super-Yang-Mills gauge theories on two branes[4℄. This theory an be ompati�ed to get a 5D theory. It is known that inorder for the theory to predit the orret values of Newton's onstant and granduni�ation gauge ouplings, the orbifold radius must be an order of magnitudeor so larger than the ompati�ation sale. Hene, at some intermediate energysale, the theory has a onsistent �ve-dimensional desription.Lukas et al. [6, 12℄ have derived the �ve-dimensional e�etive ation fromHorava-Witten theory. They have shown that the resulting theory is a gaugedversion of N = 1 supergravity in �ve dimensions, with a non-abelian set of E8gauge �elds on one brane, and spontaneously broken to E6 on the other. Thevauum solution for this theory has a urved bulk metri. This was the truepredeessor of most brane-world senarios.The 5D solution gives rise to an e�etive four dimensional theory in whih theseparation of the domain walls beomes one of the moduli �elds. It is importantto identify e�ets whih an provide a potential for the brane separation and �xthis partiular modulus. This is disussed further in hapter (2). One possiblemehanism is that quantum utuations of the bulk �elds stabilise the branes atphenomenologially aeptable positions. This has been disussed extensively inthe ontext of the Randall-Sundrum brane world senario (see for example [18℄).Previous work of this kind in �ve-dimensional heteroti M-theory has been donefor salar �elds by Garriga et al. [19℄.



1. Introdution 181.6 Einstein Equations on The BraneHow to reah a 4D e�etive theory on the brane is an important question thatshould be answered in any braneworld model. For a single brane system, Shi-romizu, Maeda and Sasaki reahed a useful set of equations by projeting thehigher dimensional Einstein equations onto a Z2 symmetri brane. That means,as in the original Horava-Witten theory [4℄, there exists a Z2 reetion symmetryalong the extra dimension z ! �z.Aording to [1℄, we live on 4D brane (M; q��) in a 5D spaetime (V; g��) withthe indued metri q�� = g�� � n�n� (1.15)Where n� is a unit vetor on M .To relate the 5D and 4D quantities we make use of Gauss' equation(4)R��Æ =(5) R����q��q��q�q�Æ +K�K�Æ �K�Æ K�; (1.16)and the Codai equation D�K�� �D�K =(5) R��n�q��: (1.17)In these equations,K�� = q��q��r�n� � extrinsi urvature on M.K = K�� is the trae.D�=ovariant derivative with respet to q�� .Contrating (1.16) and using the 5D Einstein equation (The idea here is thatthey are trying to eliminate the 5D quantities to an equation restrited to thebrane, but this will not be entirely suessful),(5)R�� � 12g(5)��R = �25T�� (1.18)We get (4)G�� = 2�253 [T��q��q�� + (T��n�n� � 14T �� )q�� ℄ +KK�� (1.19)�K��K�� � 12q��(K2 �K��K��)� E��



1. Introdution 19where E�� is a traeless tensor given in terms of the 5D Weyl tensor C���� asE�� �(5) C����n�n�q��q�� and arries information about the gravitational �eld in the5D bulk. The 5D metri an be put into the formds2 = d�2 + q��dx�dx�; (1.20)with the brane loated at � = 0. The 5D energy momentum tensor isT�� = ��g�� + S��Æ(�) (1.21)Where S�� = ��q�� + ��� (1.22)The reason for inluding �, a bulk osmologial onstant, will be explained inthe next setion. Clearly the Æ(�) funtion is introdued to restrit matter to thebrane. � is the brane vauum energy (brane tension) and ��� is the brane energy-momentum tensor. This singular behaviour in the energy momentum tensor leadsto Israel's juntion onditions [108℄ i.e. a disontinuity (a jump) in the extrinsiurvature K�� aross a hypersurfae (embedded in a higher dimensional spae) isrelated to the energy momentum tensor on that hypersurfae. This reminds uswith what happens in eletromagnetism when the jump of the normal omponentof D aross two di�erent media is related to the harge density on the separationsurfae of the two media. These onditions ould then be written as[K�� ℄ = K+�� �K��� = ��25(S�� � 13q��S); (1.23)where K��� = limy!�0K�� . Applying Z2 symmetry allows us to writeK+�� = �K��� = �12�25(S�� � 13q��S) (1.24)Plugging this into the equation for the 4D Einstein tensor we get(4)G�� = ��4q�� + 8�GN��� + �45��� � E��; (1.25)



1. Introdution 20where �4 = 12�25(� + 16�25�2) (1.26)GN = �45�48� (1.27)��� = �14������ + 112���� + 18q�������� � 124q��� 2 (1.28)The brane osmologial onstant �4 depends on the brane tension and the bulkosmologial onstant. That means a �ne tuning is required to get viable solutions.The 4D Newton's onstant is diretly proportional to the brane tension. There isalso unusual term ��� whih is quadrati in the energy momentum tensor and anprodue a signi�ant hange in the osmologial evolution.1.7 Randall-Sundrum models and the geometrial origin of thehierarhyRandall and Sundrum suggested a set up to solve the hierarhy problem in whihthe extra dimensions are small, but the bakground metri is not at along theextra oordinate; it is a slie of Anti de Sitter (AdS5) spae. This urved spaeauses the energy sales on the two branes to be di�erent, one sale is exponentiallysuppressed on the negative tension brane. This exponential suppression an thennaturally explain why the physial sales observed are so muh smaller than thePlank sale [36℄.Aording to artiles [2, 3℄, the elementary partiles exept for the graviton areloalized on a 3+1 dimensional brane or branes. There are two popular models.The �rst one (RS1) [3℄ has a �nite size for the extra dimension with two braneswith positive and negative tensions respetively [see �g.1.2℄. It attempts to addressthe hierarhy problem geometrially, where the warping of the extra dimensiongenerates a large ratio of energy sales so that the natural energy sale at one endof the extra dimension is muh larger than at the other end.In the seond model (RS2) [2℄, the negative tension brane has been plaedin�nitely far away (the extra dimension is in�nite in size) so that there is only one
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Fig. 1.2: The topology in RS model is R4 multiplied by a line element whih is taken tobe a irle with Z2 symmetry in RS1 and an in�nite real line R+ in RS2. Thetopology in the 5D redued heteroti M-theory is the same as that of RS1.brane left in the model. The generalized RS1 senario with radion stabilizationseems more realisti than the RS2 model. An important feature that has beenpointed out by the RS2 model is that there is an alternative to ompati�ation,meaning that we don't neessarily have to ompatify the extra dimension. Theation of the RS1 model is given byS = Sgravity + Svis + ShidSgravity = Z d4x Z ��� d�p�Gf�� + 2M3RgSvis = Z d4xp�gvisfLvis � �visgShid = Z d4xp�ghidfLhid � �hidg: (1.29)Where � and M are the 5D osmologial onstant and Plank sale respetively.A onstant vauum energy for both branes has been separated out whih an atas a gravitational soure. In order to obtain a Minkowiski brane, we have to set



1. Introdution 22�4 = 0 and then (1.26) implies�5 = ��2�256 ; �25 =M�3: (1.30)meaning that the bulk spae is AdS. Sine AdS is onformally at, E�� = 0 in(1:25). Also, a Minkowiskian brane implies that ��� = 0 and that gives (4)G�� = 0.The above relation is the RS �ne tuning ondition whih ensures the zerovalue of the e�etive osmologial onstant on the brane so that the brane has theindued geometry of Minkowski spaetime. This ondition is the main unattrativefeature of the RS model [22℄ and it seems unlikely as a relation between twoindependent quantities, without a physial basis. The RS1 model is unstableunder small deviations from this �ne tuning between the brane tension and thebulk osmologial onstant. The bulk metri is given byds2 = e�2krj�j���dx�dx� + r2d�2 (1.31)Where k is the urvature of the AdS. Noting that p�G = rp�g(4) and R =e2kr�R(4), the gravitational part Sgravity in (1:29) gives the 4D Plank sale asM2P l = M3k [1� e�2kr�℄: (1.32)In order to investigate the physially observed masses of matter �elds we assumea Higgs �eld with mass mH on the hidden brane. The metri on the visible braneis gvis�� = e�2kr�g�� with g = ghid�� . To get the mass we normalize the Higgs �eld asfollows. The ation for the Higgs �eld on the visible brane isSvis = Z d4xp�gvisfg��visD�HyD�H � �(jHj2 �m2o)2g; (1.33)Where � is an arbitrary oupling onstant. We rede�ne the Higgs �eld to absorbthe warp fator i.e. H ! ekr�H, the ation beomesSvis = Z d4xp�gfg��D� eHyD� eH � �(j eHj2 � e�2kr�m2o)2g; (1.34)Where eH = e�kr�H. So, the observer loated on the visible brane will measure theHiggs mass as m = e�kr�mo. This is a general result; i.e. any �eld on the visible



1. Introdution 23brane with a fundamental mass parameter mo will appear to have the physialmass m = e�kr�mo. For example if m0 �MP l then kr ' 12 leads to m � mew.In order to get an appropriate hierarhy between the Plank sale and theeletroweak sale in RS1 model, the distane between the two branes must beset to about 50 times the bulk urvature sale. Of ourse, this would be moresatisfatory if this value ould be explained by a dynamial mehanism [37℄.The massless degree of freedom in RS model alled the radion. Sine thegeometrial interpretation of the radion is the distane between the two branes,this means that the radius of the extra dimension is not �xed.There have been several attempts in the literature to generate the radion mass,as we will see later on. The simplest radion stabilization mehanism by Goldbergerand Wise [35, 93℄ stabilized the radion without any severe �ne-tuning of the pa-rameters in the full theory. It has been applied to the two brane RS model [53, 63℄to reover gravity onsistent with observation. The ollider signatures for the RS1model have been studied in detail in [65℄.An interesting result was found in [119℄, where the higher KK modes of thegraviton in the RS1 model ouple to the standard model �elds on the brane witha muh larger strength (ekr�M�1P l ) than the zero mode graviton (M�1P l ). It is muheasier then to observe the KK exitations in modern olliders than to observe thegraviton!. The supersymmetri extension of the Randall Sundrum senario hasbeen onsidered in [49{52℄.1.8 DGP model (braneworlds with in�nite volume extradimensions)RS2 [2℄ is an example of an in�nite size extra-dimension brane-world (VN �R dNypG!1). Another in�nite size extra-dimension model has been suggestedin [120℄ (GRS model) in whih gravity is �ve dimensional both at short and largedistane sales, but it is a onventional 4D-gravity at intermediate length sales.However, this last model is onsidered to be inonsistent due to the existene of



1. Introdution 24ghost �elds (see [86℄ and the referenes therein).In the DGP model, a 3-brane is embedded in 5D Minkowiski bulk where gravityin the bulk is taken to be very strong. The Lagrangian for the model isS = M32 Z d5xp�g(5)R(5) � M2pl2 Z d4xp�g(4)R(4) (1.35)+ Z d4xp�g(4)Lm +M3 Z�M d4xp�g(4)KIn the above ation, beause of the di�erent mass sales M (the 5D Planksale) and Mpl (4D Plank sale), gravity propagates di�erently on the brane andon the bulk. When M ! 0 and MP l is �nite, the above ation desribes 4Dgravity on the brane. When MP l ! 0 and M is �nite, it desribes 5D gravity inthe bulk. The two di�erent pre-fators in front of the bulk and the brane ationsgive rise to a harateristi length sale r = M2P l=M3, alled rossover sale. Atdistane sales muh smaller than this harateristi distane, we have the usual4D gravitational physis. On sales larger than r the 5D physis is reovered. Thebrane Rii salar is possibly generated by one loop orretions of massive salarsand fermions loalized on the brane [see �g.1.3℄.The higher dimensional Plank sale M in this model is muh smaller thanin other extra dimensional models. For example, we have seen before that (seeequation (1.13))M2P �Mn+2P (4+n)Vn, with Vn the volume of the extra dimension andn the number of the extra dimensions. But for the ase of Vn ! 1 this relationdoesn't hold, and M an be muh smaller than the TeV sale, making gravity inthe bulk muh stronger.The higher dimensional theory is assumed to be supersymmetri, whilst SUSYis spontaneously broken on the brane. These breaking e�ets an be loalized onthe brane without a�eting the bulk, Only when the in�nite volume gives a largeenough suppression fator. The in�niteness of the extra dimension means there'sno need to stabilize the size of the extra dimension as it is neither ompati�ednor warped.The existene of a ritial length sale r below whih 4D Newtonian gravityis reovered on the brane and above whih modi�ed gravity dominates looks very
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Fig. 1.3: The one-loop diagram with massive salars and fermions (brane matter �elds)in the loop whih generates the brane Rii salar (Rii salar for 4D graviton).Matter �elds indiated by solid line and gravitons by wave lines. vertial shortlines on matter �elds propagator indiate that they are massive.interesting for osmologists. Several attempts have been made to get a onsistentextension of general relativity that modi�es gravity at osmologial distanes whileremains in an agreement with observations at shorter distanes (example [120℄).One of the motivations of these models is to explain something that happens atvery large sales, i.e. the expansion of the universe is aelerating! This is usu-ally explained by introduing a osmologial onstant, or a form of mysterious darkenergy with negative pressure alled dark energy. The DGP model allows a osmo-logial solution in whih aelerated expansion of the universe is realized withoutintroduing a osmologial onstant [121℄. Based on this model, a mehanism thatdilutes the osmologial onstant was also proposed [122℄.Cosmology in the DGP model is governed by the modi�ed Friedmann equation[121℄ H2 = �24�3 � Hr ; (1.36)Where H is the Hubble parameter and � is the matter density on the brane. Thetwo possible hoies of sign lead to two branhes of osmologial evolution. Thenegative sign orresponds to a deelerating expanding universe (of ourse in theabsene of osmologial onstant on the brane). This branh of solutions is alledthe FRW branh. The positive sign orresponds to an aelerating expandinguniverse, this branh of solutions is alled self-aelerating branh.Beause the DGP model is very ompliated, it is often not easy to solve the



1. Introdution 26Einstein equations in the higher dimensional spaetime. The model is ontroversialand its viability is in question [138, 139℄ .1.9 Extra time-like dimensionsThe extra dimensions in almost all extra dimensional models are assumed to bespae-like. This is beause several diÆulties appear in the presene of more thanone time-like diretion. The main problem with time-like ompati�ed dimensionsis the existene of tahyoni modes, whih implies violations of ausality. If weonsider a �ve dimensional spae-time with a signature (1; 1;�1;�1;�1) and at-tempted to ompatify � (the extra time oordinate) on a irle of radius L, thestandard KK exitations beome tahyoni states with imaginary masses, quan-tized in units of i=L. Various issues arising in brane-world senarios with time-likeextra dimensions were disussed in [89℄.1.10 M-theory story in a nutshellAround 1995, it was found that the �ve distint supersymmetri 10-dimensionalstring theories: type I, type IIA, type IIB, SO(32) heteroti, and E8 � E8 het-eroti are related to eah other via S, T and U duality transformations. Thesedualities express an exat quantum equivalene, whih means that the two dualtheories are just two di�erent desriptions of a single theory.The S duality relates the weak oupling limit of one string theory with thestrong oupling limit of another string theory. Type I and SO(32) heteroti arerelated by S duality, where one of them evaluated at strong oupling is equivalentto the other one evaluated at weak oupling. The S duality is a symmetry oftype IIB string theory, and we say that it is self-dual. Beause of the existeneof suh duality, the strong oupling behaviour of type I, type IIB and SO(32)an be determined by a weak oupling analysis. The behaviour of type IIA andE8�E8 heteroti at strong oupling is very di�erent. It is believed that they growan eleventh dimension [115℄.



1. Introdution 27On the other hand, the T duality relates di�erent ompati�ations of di�erenttheories. If the ompat dimension is a irle, and there are two theories A and Bwith ompat dimension radius RA and RB, then they are T dual to eah other ifthey are equivalent and RARB = (ls)2 where ls is a fundamental length sale. Thisrelation means that shrinking the ompati�ed dimension to zero in one theoryorresponds to deompati�ation of the dual theory. The two theories IIA andIIB are T dual and so are the two heteroti theories. Finally, there's a U dualitybetween two theories A and B if theory A ompati�ed on a spae of large (orsmall) volume is equivalent to theory B at strong (or weak oupling) [116℄.The 10D string theories are onneted to the 11D supergravity as well. Carryingout a dimensional redution of 11D supergravity to 10D gives type I, IIA or IIBsupergravity, whih are the low energy limits of I, IIA and IIB superstringsrespetively. In hapter 3 we will desribe the original 11D supergravity and theHorava-Witten theory in detail. Although Witten gave the name M -theory tothe unknown 11D quantum theory whose low energy e�etive desription is 11Dsupergravity, this term is used by many authors to refer to the single 11D theorythat gives the 5 superstring theories as speial limits.1.11 Organization of the ThesisThe dissertation is organized as follows:Chapter One We give a review of di�erent extra-dimensional theories and illustratethe basi idea, advantages and disadvantages of all of them. Uni�ation offundamental interations and solution of the hierarhy problem are the mainmotivations. In this ontext, we explained the meaning of the hierarhyproblem and the moduli stabilization problem.Chapter Two We present a detailed review of the moduli stabilization problem andlassify the attempts to attak it into four main mehanisms: bulk massivesalars, vauum energy, nonperturbative ontributions and non-zero ux on-tributions. We start this hapter with a setion about SUSY breaking whih



1. Introdution 28is a neessary step in any supersymmetri theory to reah a desription ofour SUSY-broken 4D world.Chapter Three We disuss the original 11D Horava-Witten theory and its redu-tion to 5D. The study of the deeply rih struture of the lower dimensionaltheory is an ative area. The useful tehnique of moduli spae approximationis also illustrated and a BPS solution of a dilatoni brane-world is presented.We end the hapter by giving a summary for some possible moduli systemswe are going to use through the thesis.Chapter Four We alulate the total bulk Casimir energy by alulating the dif-ferene between twisted and the untwisted fermion �elds. We do the ase ofat spae �rst and then the urved spae ase. We also prove the attrativityof the bulk Casimir energy.Chapter Five We start by deriving the gaugino ondensate potential in the frame-work of the improved heteroti M-theory suggested by Ian Moss in 2005. Inthe seond part of this hapter, we reah the gaugino ondensate superpo-tential by reduing the 11D Rarita-Shwinger �eld to 4D. The form obtainedagrees with the standard known form of this superpotential in most theories.Chapter Six We add two terms to our gaugino ondensate superpotential derivedin hapter �ve, the ux term and another non-perturbative term that dependson the Calabi-Yau volumes V1 and V2. The two toy models have an AdSKKLT minimum. We then try to use the bulk vauum energy to turn thisinto a dS minimum.Chapter Seven We perform a 5D redution for the gravitino �eld. We review theBRST formalism and make use of it to remove the �I I term using a gauge�xing funtion. This will result in two new ghost �elds, whih are importantfor dealing with the stabilization topi. The vauum energy of the ghost �eldshas a (+ve) sign (that leads to a repulsive fore) while for the real fermions(as we have got in hapter 4) it has a (-ve) sign. We end this hapter by



1. Introdution 29expressing the SUSY breaking parameter � in terms of the ondensate usingthe twisted boundary onditions of the improved heteroti M-theory.Chapter Eight We alulate the vauum energy of the ghost �elds obtained inhapter 7 for the ase of at spae �rst and then the urved spae ase.Conlusion and Further Work We summarize our results and point out variousways with whih one an proeed in future researh.



2. MODULI STABILIZATIONOne of the main theoretial issues in theories with extra dimensions is that ofdetermining their size. As we mentioned in the disussion of the RS1 model,a solution to the hierarhy problem has been proposed in whih the observableuniverse is a 3-brane at an orbifold �xed point of the non-fatorizable geometrygiven by (1.31). The orbifold has �xed points at y = 0 and y = �r. However,the dynamis does not determine the value of r, leaving it a free parameter. Thismeans there is no mehanism to ensure the stability of the system.If we are interested only in one extra dimension, then the salar degree of free-dom governing the separation is alled radion. A solution to the so alled radionstabilization problem in the RS1 model has been found by adding a bulk salar�eld, whih has �ve-dimensional dynamis, to the model [93℄. The mehanism doesnot involve any �ne-tuning and it gives the radion a mass somewhat below the TeVsale. A omplete alulation of the radion mass has been given by Tanaka andMontes [53℄, where they obtained the TeV-sale. However, sine there is no knowl-edge about the origin and atual form of the stabilization potential, very little anbe said about radion masses without further assumptions. A phenomenologialguess for the radion potential has been disussed in [54℄. In the literature, phe-nomenologial aspets of the radion have been studied suh as its deay modes(massive radions may deay into visible partiles [54℄) [56, 57℄, its signatures atpresent and future olliders [58, 60℄ and its e�ets on eletroweak preision mea-surements [61, 62℄. The phenomenology of the radion depends on the strength ofits oupling to the brane �elds.Radion stabilization raises an important question in osmology, i.e. how do westabilize the large extra dimensions while keeping all the virtues and preditions



2. Moduli stabilization 31of the big bang and inationary osmology? This has been disussed in [64℄.2.1 SUSY and SUSY breakingAs it is well known, the Higgs salar in the standard model aquires a non-vanishingvauum expetation value and therefore breaks the eletroweak symmetry. How-ever, the loop orretions to the masses of salar partiles are quadratially di-vergent and this makes the eletroweak symmetry breaking sale unstable againstradiative orretions. Supersymmetri theories are free from quadrati divergenesdue to anellations between boson and fermion loop orretions and this an sta-bilize the hierarhy between the Plank sale and the eletroweak sale.The uni�ation of gauge ouplings is onsidered to be one of the most attrativefeatures of the supersymmetri extension of the standard model. If we plot thee�etive oupling onstants as a funtion of the energy sale, we �nd the threeouplings in the standard model don't unify very preisely. However, after theaddition of SUSY i.e. within the supersymmetri extension of the standard model,they do approah a ommon value (see [123℄).Unfortunately, on the other hand, SUSY doesn't explain the origin of the ele-troweak sale and the mehanism of eletroweak symmetry breaking is still mysteri-ous. The standard model explains the eletroweak symmetry breaking by assumingthe existene of a salar �eld (Higgs �led) that gives masses to the vetor bosonsand fermions, but there is no answer as to why the Higgs �eld should have a non-zero vauum expetation value. It is `too strong' to say that the standard modelexplains the eletroweak sale.Another point is that SUSY introdues new partiles whih are the supersym-metri partners of the standard model partiles. As a requirement of partilephenomenology SUSY must be broken. In other words, if SUSY plays a role inlow energy physis, it must be broken. The resulting theory is a supersymmetriextension of the standard model with SUSY broken a little above the eletroweaksale.



2. Moduli stabilization 32SUSY breaking then is a neessary step in any supersymmetri theory to re-onile SUSY with atual experiments. This ould be ahieved by adding to theLagrangian, de�ned by the SU(3)� SU(2)� U(1) gauge symmetry and superpo-tential W , some extra terms whih respet the gauge symmetry but break super-symmetry in a spei� manner suh that no quadrati terms appear. These extraterms are alled soft SUSY breaking terms. They may arise if SUSY is broken ina hidden high energy setor, but this a�ets the visible setor indiretly. By thehidden setor we mean all �elds and partiles whih don't diretly interat withthe standard model �elds and partiles (gluons, photons, W+, W� and Z bosons).2.2 Mehanisms for radion stabilization.There have been numerous studies of moduli stabilization in general and variousstabilization mehanisms were suggested. We summarize some of these as follows:2.2.1 Introduing a massive salar �eld to the bulk.This mehanism has been proposed by Goldberger and Wise [93℄. In their artilethey introdued a 5D salar �eld. The 5D bulk �eld appears to a 4D observeras an in�nite tower of salar �elds with masses mn, as in usual Kaluza Kleinompati�ation. They started with the 5D ationS = 12 Z d4x Z ��� d�pG(GAB�A��B��m2�2); (2.1)where GAB is given by the RS metri (1.31) and m is of order of Mpl. Afterintegration by parts and performing Kaluza Klien deomposition, this leads to the4D ation S = 12Xn Z d4x(���n���n �m2n�2n) (2.2)For a Randall Sundrum model, the masses mn are given by the solutions of thetransendental equationy�(axn)j�(xn)� j�(axn)y�(xn) = 0 (2.3)



2. Moduli stabilization 33where a = e��kr, mn = kaxn and xn is the n'th positive solution to (2.3). Thefuntions j� and y� are given by the following ombinations of Bessel funtionsj�(z) = 2J�(z) + zJ 0�(z) (2.4)y�(z) = 2Y�(z) + zY 0� (z) (2.5)where the order � of the Bessel funtions is given by� =r4 + m2k2 (2.6)m is the mass of the 5D salar �eld.The introdution of a salar �eld reates an attrative fore between the twobranes whih would ensure equilibrium when the distane between them is preiselythe radius r required to generate the required hierarhy. The potential has aminimum at r without �ne tuning of parameters. Examples of this trend are[38{48℄.The addition of salar �elds in the bulk is favorable from a string theory view-point beause in general a ompati�ation from 10 or 11 dimensions to 5 dimen-sions introdues many 5 dimensional salar �elds [37℄.2.2.2 Casimir energy approah.Instead of introduing an ad-ho lassial interation between the branes (throughthe bulk salar �eld), one may ask whether the Casimir energy of bulk �elds may besuÆient to stabilize the radion. In fat, before branes, Candelas and Weinberg in1984 [76℄ found that the quantum e�ets from matter �elds, or gravity, an be usedto �x the size of ompat extra dimensions. Other examples of this mehanism are[18, 19, 30{32, 66, 68{75℄.In [30℄ it was shown that the ontributions of the Casimir energy of bulk gauge�elds depend logarithmially on the radion. These ontributions stabilize the ra-dion and generate a large hierarhy of sales without �ne tuning. The Casimire�et on the bakground of onformally at braneworld geometries has been in-vestigated in [74℄.



2. Moduli stabilization 34The Casimir e�et is a marosopi quantum e�et, i.e. it is a quantum e�etwhih an be measured in the laboratory. It is an amazing suess of quantum�eld theory and omes from the half quanta of the harmoni osillator ~!k=2. The�elds in QFT are an in�nite set of osillators labelled by the wave number k. Then'th exitation of a single osillator k orresponds to a state with n �eld quantaand energy Ekn = ~!k(n+ 1=2): (2.7)This means the state with no real quanta has a nonzero energyEko = ~!k2 ; (2.8)whih leads to an in�nite total energy of the vauum,ECasimir = ~2Xk !k: (2.9)This divergent sum must be regularized to get a �nite expression. This resultsin the Casimir e�et [29℄, namely the dependene of the vauum energy on theboundary onditions for the �eld. The famous attrative fore between two ele-trial ondutors in three dimensions isF (d) = �2240 ~d4A; (2.10)where A is the area of the plates separated by a distane d. The eletri harge edoes not appear in this expression, whih means that this is not an e�et of ouplingthe eletromagneti �eld to the material plates. Instead of that the attrative foreis due to the hange in zero point or vauum �eld energy (2.8). Vauum energy isrelated to the onept of virtual partiles oming from the unertainty priniple.This result was on�rmed and extended by many researhers who used di�erentapproahes to learn more about this fore and related quantum phenomena [98℄.Casimir [29℄ and other authors [99℄ proposed that this fore ould be regarded as aradiation pressure from the vauum �eld. In general, this Casimir fore arising fromvauum radiation pressure an be either attrative or repulsive [100℄. As in [101℄,the subjet of whether it is attrative or repulsive may depend on many fators



2. Moduli stabilization 35inluding the spae-time dimensionality, the boundary onditions, the spae-timemetri and so on.In most pratial examples the Casimir e�et is onsidered for the eletromag-neti �eld just beause it is strong enough to produe measurable e�et. But, ingeneral, this e�et is not restrited to the eletromagneti �eld and an our forany quantum �eld.In braneworld senarios the �elds obey boundary onditions on the boundarybranes and hene one expets a Casimir-type e�et if we treat the �elds as quantum�elds. The fore between the branes will vary aording to the separation of thebranes and the Casimir e�et will indue a potential for the radion in the dimen-sionally redued theory. The Casimir e�et has been used for radion stabilizationin a number of models [19, 22, 30{32℄.2.2.3 Gaugino ondensation approah - nonperturbative e�ets.Gaugino ondensation is a non-perturbative e�et that may break supersymmetry.The lak of understanding of the mehanism by whih SUSY breaking happens isthe most important missing part of any supersymmetri uni�ation theory, andonstruting a realisti sheme of SUSY breaking is one of the big hallengesto SUSY phenomenology. Consequently, we need a dynamial mehanism thatexplains naturally (without any ad-ho assumptions) the transition to the non-supersymmetri ase. The dynamial formation of Gaugino ondensates is a nat-ural soure of SUSY breaking, The original idea was suggested in Ref. [77℄.The gaugino ondensation mehanism has been disussed in many papers andit is believed to play a ruial role for moduli stabilization and SUSY breaking instring theory [77{82℄. The SUSY breaking sale ould then be set by the ondensatesale. In the ontext of low energy heteroti M-theory, the most likely andidate forforming a fermion ondensate is the gaugino on the hidden brane, sine the e�etivegauge oupling on the hidden brane is larger and runs muh more rapidly into astrong oupling regime than the gauge oupling on the visible brane. Gauginoondensation gives a potential depending on the Calabi-Yau volume [128{131℄.



2. Moduli stabilization 36The ondensate potential is generally a funtion of several moduli �elds [82℄.The size of the moduli �elds should be determined upon the minimization of thepotential over the moduli spae. A typial gaugino ondensate potential is [142℄V (S; T ) � 1ST 3e�3S=4�b; (2.11)with b is the oeÆient of the one-loop beta funtion of the hidden setor group.This potential has a runaway behaviour for both S and T where S and T aremoduli (taken here to be real). Some attempts have been made to avoid therunaway behaviour, suh as multiple gaugino ondensate (or raetrak) models oradding a non-perturbative orretion to K�ahler potential. In the multiple gauginoondensate ase, the superpotential is given as a sum of exponential terms whihgenerate a potential with a loal minimum.In 2003, Kahru, Kallosh, Linde and Trivedi (KKLT, [134℄) introdued the �rstexpliit model in whih all moduli are �xed within type IIB string theory. This wasdone by turning on uxes as a �rst step (see below), whih �x the omplex moduliand the dilaton S, and introduing non-perturbative superpotentials in a seondstep to stabilise the K�ahler modulus T . For a detailed study of the phenomenologyof these models, see [141℄. Unfortunately, the resulting potential for T has an AdSvauum whih needs to be uplifted and that means a third step is needed. We givesome details in the next setion.2.2.4 Flux ompati�ation approah.A partial solution to the moduli problem lies in turning on bakground uxes inthe vauum [143{145℄. Turning on a non-vanishing ux warps the ompati�ationspae away from a pure Calabi-Yau threefold [94℄ and generates a superpotentialof the form [134℄ Wf = ZMG ^ 
 (2.12)where G is a three-form ux and 
 is the holomorphi three-form 
 of the Calabi-Yau threefold. In general, this ux superpotential is diÆult to alulate exeptfor speial ases. The idea here is that when the relevant moduli are stabilized, 




2. Moduli stabilization 37is onstant and then Wf an take any integer +ve or -ve (the di�erent hoies ofCalabi-Yau manifolds and the di�erent values of uxes leads to the string theorylandsape, whih refers to the large number of false vaua in string theory). As hasbeen pointed out in [146℄, the presene of bakground uxes in the ompati�edspae (i.e. non-zero vauum expetation values of ertain �eld strengths) leadsto �xing all omplex struture moduli as well as the dilaton. Unfortunately, itwas found that this mehanism doesn't apply to the modulus parametrizing thesize of the ompat manifold. The KKLT model used nonperturbative e�ets suhas gaugino ondensation on D7 branes to stabilize the remaining modulus. TheKKLT setup requires the presene of a number of D7=D3 branes and an anti D3brane. The major ahievements are that all moduli are �xed and the osmologialonstant is small and positive.The model starts with a 4D supergravity salar potential whih is given byVs =M�2P l eK �KIJDIWDJW � 3jW j2� : (2.13)Where DIW = �IW +W�IK is the K�ahler ovariant derivative of the superpo-tential and KIJ = (�I�JK)�1. The �rst term represents SUSY breaking and theseond term represents the gravitino mass m3=2. After the minimization of thispotential, we an have SUSY broken in the vauum (DiW 6= 0) or not.The total KKLT salar potential isVKKLT = Vs + Vu; (2.14)where Vu is the SUSY breaking ontribution required to uplift an AdS minimumto a de Sitter one. The orret K�ahler potentialK = � ln(S + S)� 3 ln(T + T ); (2.15)leaves the volume modulus T un-stabilized. To stabilize it, the following T -dependent superpotential is addedW = w0 � Ce�aT : (2.16)



2. Moduli stabilization 38w0 is a onstant indued by the uxes and C is a model dependent oeÆient anda is related to the beta funtion of gaugino ondensation on the D7 branes. T isstabilized with DTW = 0. The third step is the uplifting of the minimum. Theuplifting potential due to the presene of the anti D3 brane isVuplift = D(T + T )2 ; (2.17)where D is a tuning onstant allowing to obtain de Sitter vauum. The e�et ofthe uplifting term is to hange the vauum energy to a small positive or zero value.This is ahieved with D � m23=2M2P l � 10�26M4P l. Sine the bakground geometryof the KKLT model is warped, the desired value of D an be obtained by plaingthe anti D3 brane at the appropriate point in the ompat spae.



3. THE 5D REDUCTION OF HORAVA-WITTEN THEORY: 5DHETEROTIC M-THEORYAfter the disovery of the duality transformations whih relate the �ve distint10-dimensional superstring theories with eah other and with 11-dimensional su-pergravity theory, people started to think that all of these theories arise as di�erentlimits of a mother 11-dimensional theory known as M -theory. The size of the 11thdimension in M -theory is related to the string oupling strength and grows as theoupling beomes strong [9℄. Details of M-theory are unknown, but its low energylimit is thought to be 11-dimensional supergravity.3.1 Horava-Witten theory: the strong oupling behaviourIn the HoravaWitten formulation of M-theory [4, 5℄, the gauge �elds of the standardmodel are on�ned on two 9-branes loated at the end points of an S1=Z2 orbifold.The 6 extra dimensions on the branes are ompati�ed on a very small sale, loseto the fundamental sale, and their e�et on the dynamis is felt through moduli�elds, i.e. 5D salar �elds. A 5D redution of the HoravaWitten theory and theorresponding brane-world osmology is given in [6{8℄.We an only speak about the low energy limit ofM -theory, whih is supergrav-ity plus two boundaries. Horava and Witten showed that M-theory on the orbifoldR10�S1=Z2 is dual to the strong oupling limit of the 10D E8�E8 heteroti string.This duality says that M-theory on R10 � S1=Z2 of radius R11 is equivalent to theE8 � E8 heteroti string with oupling onstant gs, where [4, 113℄R11 = g2=3s lP (3.1)This allows us to say that the low energy e�etive theory must approah 11D



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 40

Fig. 3.1: Horava-Witten set up. The orbifold radius � is onneted via the string ouplinggs by � = g2=3s lP . The eleventh dimension is only aessible in the strongoupling limit.supergravity in the strong oupling limit. Relation (3.1) means that when R11 issmall, the string piture is a good desription, and when R11 is large, supergravityis a good desription. This is also the same relation that one �nds between theM-theory on R10 � S1 and Type IIA superstring theory, in the low energy limit.Just like in the ase of the Randall-Sundrummodels, the orbifold S1=Z2 is equiv-alent to an interval, and so in Horava-Witten theory the spae is 11D bounded bytwo 10D orbifold planes with a Z2 reetion symmetry in the eleventh dimension.The eleven dimensional supergravity lives in the bulk. Horava-Witten theory isusually redued to a 5D world R4 � S1=Z2 via ompati�ation on a Calabi-Yauspae with the residual e�ets of the CY manifold being desribed by their moduli.In order to anel the gauge and gravitational anomalies that arise and keepthe gauge and loal SUSY invariane, an E8 gauge group is required to at on eahof the two 10-dimensional planes at the orbifold �xed points x11 = 0; ��, where �is the length sale of the bulk.The 11D Yang-Mills gauge oupling onstant g is �xed in terms of the 11D



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 41gravitational onstant �11 via g2 = 2�(4��211)2=3 (3.2)This leads to [17℄ GN = �21116�2V � ; �G = (2��211)2=32V (3.3)Where V is the CY volume and �G is the GUT sale oupling onstant. Note thathere �2=911 is the 11D Plank sale [124, 125℄. For V = 1=M6G with MG = 3� 1016GeV s the GUT mass and �G = 1=24, one �nds ��2=911 =MG and 1=�� �= 4:7�1015.This explains the Plank sale-Gut sale hierarhy. In other words, this gives usa natural explanation for grand uni�ation ourring below the 4D Plank sale,sine it is the 11D Plank sale that is fundamental and its mass sale is 'MG.So, as one probes to higher energy, our 4-dimensional world �rst goes throughan intermediate regime where the orbifold dimension beomes visible, the universethus appearing �ve dimensional with two boundary branes. Only at energies ofthe order of string sale would the universe look 11-dimensional.3.2 The 11D low energy ationAs we have desribed in the previous setion, the low energy limit of M -theoryis 11D supergravity with two boundaries, 11D supergravity, was onstruted 30years ago [117℄ and it ontains three kinds of �elds (that form the supergravitymultiplet): the graviton �eld or the metri g, the gravitino �eld  I and a threeindex antisymmetri gauge �eld CIJK with a �eld strength G.We have to mention that this theory is non-renormalizable. (This an be showneasily by alulating the mass dimension of its ation. It is not equal to 4). Thisdestroyed the hopes to be a fundamental theory!



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 42The usual supergravity ation is:SSG = 2�2 ZM11 d11xpg ��12R� 12 I�IJKDJ K � 148GIJKLGIJKL (3.4)�p2192 � I�IJKLMN N + 12 J�KL M�GJKLM� p23456�I1I2:::I11CI1I2I3GI4:::I7GI8:::I11# ;where the apital indies I; J; ::: = 0; :::; 9; 11 are used for the 11D spaeM11. Theorbifold S1=Z2 has radius � and the oordinate x11 is restrited to x11 2 [0; ��℄.The gamma matries satisfy f�I ;�Jg = 2gIJ and �I:::K = �[I :::�K℄. The spinorsare Majorana, and  =  T�0.The total 11D Horava-Witten ation then is the supergravity one plus a Yang-Mills ation desribing the two E8 Yang-Mills theories on the two boundaries. Thebosoni part of the boundary ation isSYM = �18��2 � �4��2=3 "ZM(1)10 p�g�tr(F (1))2 � 12trR2� (3.5)� ZM(2)10 p�g�tr(F (2))2 � 12trR2�#where the Yang-Mills oupling onstant is expressed in terms of � aording to [5℄and the boundary trR2 terms are required by supersymmetry [12℄. The ation ofthe low energy limit of M-theory also inludes extrinsi urvature terms [33, 136℄.The bulk �elds in the total ation are the 11D metri gIJ , the three-form CIJKwith bulk �eld strength GIJKL = 24�[ICJKL℄ and the gravitino  I . The two E8gauge �elds AiI , i = 1; 2 with �eld strengths F iIJ and their gaugino superpartners�i live on the 10D hypersurfaes Mi10.3.3 The 5D redued Horava-Witten theoryThe question now is: how do we redue the 11 dimensional theory? The existeneof 10 dimensions in string theory is inompatible with the observed dimensionalityof spae time, whih is 4. Therefore we have to hide the extra 6 dimensions.



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 43When we do this in the ase of 11D M -theory, we end up with the interesting 5Dsystem of two branes (that beame so popular after the RS model) but with manyinteresting new partiles arising from the redution. We an get the 4D e�etivetheory easily by integrating out the 5'th dimension. The resulting 4D e�etivetheory is interesting from the point of view of partile physis phenomenology [6,12, 17, 97, 127℄. In hapter (5) we shall desribe the full redution to 4 dimensions.The redution of the 11D ation to 5 dimensions has been done in Ref. [6℄.In the 11D theory, the supergravity multiplet onsists of the graviton, gravitinoand the �eld C. The total bulk �eld ontent of this 5 dimensional theory is givenby the gravity multiplet (g��; A�;  i�) together with the universal hypermultiplet(V; �; �; ��). V is the Calabi-Yau volume. After the dualization, the three-formC�� produes a salar �eld �. The 5 dimensional e�etive ation an be writtenas [7℄ S5 = Sbulk + Sbound (3.6)WhereSbulk = �12�25 ZM5 p�g �R + 32 �F�� �F �� + 1p2���Æ�A� �F� �FÆ� + (3.7)12V 2��V ��V + 12V 2 �(��� � i(����� � �����)� 2��(x11)A�)�2+ 2V ������� + �23V 2�And Sbound = p2�25 "ZM(1)4 p�gV �1�� ZM(2)4 p�gV �1�# (3.8)� 116��GUT 2Xi=1 ZM(i)4 p�g �V trF (i)�� F (i)�� � �trF (i)�� eF (i)��� :where eF (i)�� = 12�����F (i)�� and the expansion oe�eients �i are�i = �p2 � �4��2=3 1v2=3�i; �i = � 18�2 ZCi tr(R^R): (3.9)with the Calabi-Yau volume V de�ned asV = 1v ZXpg(6) (3.10)where g(6) is the determinant of the Calabi-Yau metri.



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 443.3.1 BPS solution for a simple system of two branesThe spetra of string theories often ontain a speial lass of states alled BPSstates (Bogomol'nyi-Prasad-Sommer�eld). BPS states are stable in the sense thatthey annot deay into other states [126℄. The orresponding solutions are BPSsolutions, desribed by a set of moduli.In the previous setion we have seen that there are a large number of �eldsin the 5D heteroti M -theory ation. It is almost not possible to �nd a generalsolution to all the resulting equations of motions. The simplest ase one an tryis the vauum solution obtained by setting as many �elds as we an to zero. Thesystem then ontains only gravity and a salar �eld. The relevant part of theation then is [8, 15, 16℄S = Z d5xpg�� 12�2R� 12g��������� V(�)� : (3.11)where the potential V(�) is an exponential potential of the formV(�) = �26�2 e�2p2�� (3.12)The dilaton � is related to the Calabi-Yau volume by V = e�, � = p2��. Thissimple model is alled the dilatoni braneworld [15℄ with the salar �eld alleddilaton. The onstant � has units of energy. We are not onsidering movingbranes; our branes are stationary and we will be looking for stati BPS solutions.Potentials of this form arise in many theories of the fundamental interationsinluding superstring and higher dimensional theories [37℄. The ation (3.11) leadsto the following �eld equations(5)R�� � 12g(5)��R = �2[�;��;� � g(5)�� (12�;��;� + V(�)℄ (3.13)where the energy-momentum tensor is given by(5)T�� = �;��;� � g(5)�� (12�;��;� + V(�)) (3.14)To �nd a solution for these equations, we make an ansatzds2 = e�2����dx�dx� + dez2 (3.15)



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 45� = �(ez) and � = �(ez) are ansatz. With this ansatz, the Einstein equations give[see Appendix (C.1.1)℄ 6�02 � �22 �02 + �2V(�) = 0; (3.16)3�00 + 6�02 + �2(�022 + V(�)) = 0;where the prime denotes di�erentiation with respet to ez. We now need boundaryonditions for the salars � and �. The boundary ondition on the dilaton �eldan be found from the variation of the ation (3.8) with respet to � and requiringthat the surfae variation vanishes. This gives�0 = ��e�p2�� (3.17)The boundary onditions for the radion an be found from the juntion onditions.For at branes, the trae of the extrinsi urvatureK = 4�0 at z = z1 ; K = �4�0 at z = z2 (3.18)Traing juntion ondition [K�� � g��K℄ = ��26 T�� givesK = �26 T (3.19)The 4-dimensional energy-momentum tensor an be alulated from the boundaryation (3.8), and after substituting in (3.19) we get the boundary ondition as�0 = �3p2e�p2k� (3.20)The solution to (3.16), (3.17) and (3.20) is� = �16 ln(1�p2�ez) (3.21)It is useful to have expressions for the metri in di�erent oordinate systems.For a onformally at metri, Substitute bak in (3.15)ds2 = (1�p2�ez) 13 ���dx�dx� + dez2 (3.22)= (1�p2�ez) 13 ����dx�dx� + dz2� ;



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 46where dez = dz �1�p2�ez� 16 : (3.23)This gives �1�p2�ez� = � 5�3p2z� 65 (3.24)� � zz1� 65 ; z1 = 3p25� :The metri (3.15) ould then be written in a onformally at form asds2 = e�2�(���dx�dx� + dz2) (3.25)= � zz1� 25 (���dx�dx� + dz2)The dilaton for the onformally at metri (3.25) (also found in [15℄) is�(z) = 3p25� ln zz1 + �o (3.26)The values of z on the two branes, z1 and z2 an be used as the moduli parametersof the bakground solution as we will see in the next setion.The linear dependene of Calabi-Yau volume on the extra dimension ez makesit interesting to ompare the metri (3.40) with the one used by Curio and Krause[132℄ ds2 = � VV1�� 13 ���dx�dx� + � VV1� 13 �glm(xn)dxldxm + (dx11)2� (3.27)where V = (1� S1x11)2V1 (3.28)The quadrati dependene of V on x11 is beause of the de�nition of x11 is di�er-ent from the de�nition for ez due to the di�erent metri bakground. S1 an beexpressed as a power series in �2=3, i.e. S1 = S(1)1 �2=3 + S(2)1 �5=3 + : : : and only forthe �rst term we get a linear volume dependeneV (x11) = (1� 2S(1)1 �2=3x11)V1 +O(�4=3) (3.29)This was also found before in [140℄.



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 473.4 The moduli spae approximationThe moduli spae approximation is an another approah (di�erent from the oneused in setion (1.6)) used to get a 4D e�etive theory from the higher dimensionalone. The moduli spae here ould be de�ned as the olletion of the vauumexpetation values of massless salar �elds [114℄. In [14℄, a 4D low energy theorywas derived from a supergravity-inspired 5D theory using this approah. Themoduli spae approximation is a good approximation only when the time-variationof the moduli �elds is small (the low-veloity assumption). In the ontext ofbraneworlds, this approximation was also used in [106, 107℄.In the framework of 5-dimensional ompati�ation of M-theory [8, 12℄, themoduli spae approximation desribes, through a 4-dimensional e�etive ation,a system of two branes of opposite tension embedded in a 5-dimensional warpedspae-time. Besides the �elds living on the positive tension brane (assumed to beour universe), the moduli assoiated with the position of the branes in the �fthdimension at as two salar �elds thereby leading to an e�etive bisalar-tensortheory of gravity [13℄. This means that for an observer in 4D, the branes arerealized as moduli massless �elds.In RS1 there's a single modulus, alled the radion, related to the thikness ofthe AdS slie. In dilatoni brane-worlds (5D heteroti M-theory), there are twomoduli, one related to the distane between the branes and the another related tovolume of the Calabi-Yau spae.To reah a 4D e�etive theory using this approah, the following assumptionsare made:1. The brane positions z1 and z2 beome dependent on the 4D oordinates,z1(x�) and z2(x�). They are then non-onstant brane-world moduli.2. The 4D Minkowiskian at metri ��� is promoted to 4D urved metri g(4)�� .3. Terms involving more than two derivatives of the brane positions are ignored(a good approximation if the branes are slowly moving). This means we



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 48neglet terms like (�z1)3 in onstruting the e�etive four-dimensional theory.4. Finally, the massive Kaluza Klein states are not inluded.In Ref. [14℄, the ansatz was inserted into the 5D ationSbulk = 12�25 ZM d5xp�g(5)(R� 34[(� )2 + U ℄): (3.30)The bakground metri is ds2 = e�2����dx�dx� + dez2 (3.31)The bulk potential energy of the salar �eld  is related to the boundary super-potential UB by U = ��UB� �2 � U2B (3.32)The boundary potential is an exponential funtion of the �eld  UB = 16(b�2 � 1)k2e2b� (3.33)Comparing this potential with the potential for the heteroti M -theory in (3.12),we get b� = q32 and k = �3p2 whih we will be using. The positions of the �rstand the seond brane ez1 and ez2 are denoted by �(x�) and �(x�). After rede�ningthese two moduli by e�2 = (1� 6k�) 43 (3.34)e�2 = (1� 6k�) 43 ; (3.35)In Ref. [14℄ the 4D ation was given in terms of e� and e� in the Jordan frame.e� = Q osh R (3.36)e� = Q sinh R (3.37)The �nal e�etive ation given in [14℄ has the form of multisalar tensor theorySbulk = 116�G Z d4xp�g(4) �R� 92 (�Q)2Q2 � 32(�R)2� : (3.38)where 16�G = 8�q23�25.



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 49The moduli are massless at the lassial level, but quantum orretions willadd a potential term of the form [19℄S = � Z d4xp�g(4)V (Q;R) (3.39)generated at one loop. 3.5 Possible moduli systemsIn this setion we list some useful moduli systems whih we are going to use todesribe the brane positions for di�erent situations.1. The moduli (ez1; ez2) for the Einstein frame metrids2 = V 13���dx�dx� + dez2 (3.40)where V = (1�p2�ez) is the volume of Calabi-Yau spae.2. The moduli (V1; V2) with V1 and V2 are the Calabi-Yau volumes at z1 and z2respetively.3. The moduli (z1; z2) for the onformally at metrids2 = � zz1� 25 (dz2 + ���dx�dx�) (3.41)This system will be used in hapters 4.4. The moduli (Q;R), related to the onformally at oordinates z1 and z2 byz1 = Q sinh(R) (3.42)z2 = Q osh(R) (3.43)They are onneted with V1 and V2 byQ = qV 4=31 � V 4=32 (3.44)R = tanh�1�V2V1�2=3 (3.45)



3. The 5D redution of Horava-Witten theory: 5D Heteroti M-theory 505. The K�ahler moduli (S; T ) whih are related to V1 and V2 byS = p24 �V 2=31 + V 2=32 �3=2 (3.46)T = 34� �V 2=31 + V 2=32 �1=2 �V 2=31 � V 2=32 � (3.47)Note that when V1 � V2 � V , S � V and T � ��1 (V1 � V2), i.e. S beomesthe volume modulus and T beomes the radion.



4. CASIMIR ENERGY FOR TWISTED FERMION FIELDSIn this hapter we alulate the di�erene in the Casimir potential for the aseof twisted and untwisted fermions in heteroti M�theory. Twisted fermions wereintrodued by Antoniadis and Quiros as an expliit means of SUSY breaking [153℄,and they alulated the vauum energy in the at spae limit. The Casimir po-tential for untwisted fermions in the warped heteroti M�theory bakground wasalulated in [15℄. The work presented in this hapter is original researh done inollaboration with Prof. Ian G. Moss.4.1 IntrodutionThe identity Yp (1� p�s)�1 = 1Xn=1 1ns ; s > 1; (4.1)whih holds for every prime number p 6= 1 (s is a real variable) was found by Eulerwhile investigating prime numbers [102℄. Later, Riemann realized that s shouldbe extended into a omplex variable and denoted the resulting funtion by �(s).Sine that time it is alled Riemann zeta funtion,�(s) = 1Xn=1 1ns ; s 2 C; <(s) > 1: (4.2)The series is onvergent only when the real part of s, <(s), is greater than one.Studies of omplex analyti manifolds led to the de�nition of a zeta funtionassoiated with a type of Laplaian operator [102, 103℄. The zeta funtion for anellipti operator � is de�ned by the funtional trae,��(s) = tr(��s): (4.3)



4. Casimir energy for twisted fermion �elds 52When the operator has a disrete set of eigenvalues �n, we ould write��(s) = 1Xn=1 ��sn (4.4)For 4D spae time, this sum only onverges for <(s) > 2. This restrition ouldbe removed by analyti ontinuation to values of s in the omplex plane.The vauum energy in a stati bakground has been alulated in many ap-pliations [104℄, where the eigenvalues of � in these appliations are of the formk2 + !2n. If we used a ompati�ation length L and take the limit L!1 at theend we get for n-dimensional ase��(s) = Ln Z dnk(2�)n 1Xm=1(k2 + !2m)�s: (4.5)This gives ��(s) = Ln2n� n2 �(s� n2 )�(s) 1Xm=0!n�2sm (4.6)The vauum energy then will beVC = �L�n� 0(0) (4.7)The minus sign is for bosons and the plus sign is for fermions. Note that for !n /l�1, where l is the �nite length sale in the problem, then VC / l�n. Casimir e�etalulations are probably the most notable example for the use of Zeta funtionregularization to remove divergenies in quantum �eld theory.4.2 Twisted and untwisted fermions in �ve dimensionsIn this hapter, we will onentrate on the boundary onditions ommon in su-persymmetri theories where the 5D fermions are usually represented as two fouromponent spinors,  a, a = 1; 2, related by a sympleti transformation. Thesympleti Majorana ondition is  aTC =  a: (4.8)



4. Casimir energy for twisted fermion �elds 53where C is the harge onjugation matrix. The index a is raised with the antisym-metri metri �ab, so that  1 = � 2;  2 =  1: (4.9)These two four spinors an be grouped into a single eight-omponent Majoranaspinor 	 = 0�  1 2 1A (4.10)and eight-omponent  matries an be formed� = 0� A 00 �A 1A : (4.11)The Majorana ondition on the eight-omponent fermion is	TC = 	; (4.12)where C = 0� 0 CC 0 1A : (4.13)and 	 = 	y�0 is the usual Dira adjoint. Assuming that SUSY is broken onlyon the hidden brane at z2, introdue projetion operators on both branes P+ =12(1 +�5) and P� = 12(1+��5) respetively, where the matrix � depends on a realparameter � so that � = 0� os � sin �� sin � os � 1A : (4.14)The twisted (antiperiodi) boundary onditions for twisted bulk fermions arethen P+	 = 0 on M(1) (4.15)P�	 = 0 on M(2) (4.16)where the angle � determines how muh the fermions are twisted. Later, we willrelate � with the gaugino ondensate.
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Fig. 4.1: On the visible brane at z1 we have P+ = 0 and (�zz+ 12K +m)P� = 0. Onthe hidden brane at z2 we have P� = 0 and (�zz + 12K +m)P�� = 0.The aim of this hapter is to alulate the total Casimir energy, whih is equiv-alent to the di�erene between the twisted and untwisted fermion ases. Thisan be illustrated as follows. SUSY implies that the total vauum energy of theuntwisted fermions and untwisted bosons is zero. This means thatVC( untwisted bosons) = �VC(untwisted fermions):Now, the total vauum energy �VC of the twisted �elds is equal to�VC = VC(twisted fermions) + VC(twisted bosons):But, sine there are no known bosons with twisted boundary onditions, the va-uum energy of the twisted bosons is just the vauum energy of the untwistedbosons. It then follows diretly from this disussion that the total vauum energyis equal to �VC = VC(twisted fermions)� VC(untwisted fermions):



4. Casimir energy for twisted fermion �elds 554.2.1 Fermion modesThe Dira eigenfuntions are solutions toD2	 = �	; (4.17)where D is the Dira operator for mass m and D2 is a seond order Laplaian,D2 = ��2 + 14R +m2+ 6�m: (4.18)Aording to Lukas et al. [12℄, the fermion masses in redued heteroti M�theoryare typially of the form m = � �p2V �1; (4.19)where V is the Calabi-Yau volume and the value of  depends on whih fermionis being disussed. We use the onformally at metrids2 = e�2�(dz2 + ���dx�dx�); (4.20)then �0 = ��2z + k2 +m20 + �5m00: (4.21)The 0 index is just a reminder that the operator has been resaled from urved toat spae. m0 is the resaled fermion mass m and given bym0 = e��m = e�� �p2V �1 = 35 z�1; (4.22)using (3.26) in hapter 3, where the Calabi-Yau volume V was expressed in termsof z. The value of  depends on the hoie of the fermion �eld. Later in hapter7 we will give a detailed example for the gravitino and other fermion �elds withdi�erent values of .The eigenvalue equation is then���2z + k2 + 9225 z�2 � 35z�2�	 = �	 (4.23)for �5	 = �	 and m2n = �� k2. Hene,	00 +m2n	� �9225 � 35� z�2	 = 0: (4.24)



4. Casimir energy for twisted fermion �elds 56Comparing with Bessel's equation [20℄W 00 + ��2 � �2 � 14z2 �W = 0; (4.25)then 	 is a Bessel funtion with index is given by� = �12 � 35� : (4.26)The hypermultiplet fermion, for example, has  = 16 . This means � = 25 or 35 . Thesolution gives the wave funtion for fermions in z diretion as [15℄ n(z) = pz �A�J 25 (mnz) +B�Y 25 (mnz) + A+J 35 (mnz) +B+Y 35 (mnz)� (4.27)where A� and B� are onstant spinors (integration onstants). We need the eigen-value equation whih de�nes impliitly the disrete spetrum mn. We apply thetwisted boundary onditions to the wave funtion above.Realling the twisted boundary onditions (4.15) and (4.16), we an write (4.16)as CP�	� iJSP+	 = 0 (4.28)where C = os �2 ; S = sin �2 ; J = 0� 0 11 0 1A : (4.29)The normal or z derivative (denoted by a prime) ips P+ and P�, as desribed inRef.[15℄ C(P+	)0 � iJS(P�	)0 = 0 (4.30)Applying these four boundary onditions on the wave funtion	(z) = pz �A�J�(mnz) +B�Y�(mnz) + A+J�(mnz) +B+Y�(mnz)� (4.31)where � = 1� � and P�A� = 0, we get a system of four equations,A+J�(mnz1) +B+Y�(mnz1) = 0 (4.32)A�Y�(mnz1) +B�J�(mnz1) = 0 (4.33)A�SJ�(mnz2)+B�SY�(mnz2)+ iJA+CJ�(mnz2)+ iJB+CY�(mnz2)) = 0 (4.34)



4. Casimir energy for twisted fermion �elds 57A�CY�(mnz2)�B�CJ�(mnz2)� iJA+SY�(mnz2)+ iJB+SJ�(mnz2)) = 0 (4.35)Non-trivial solutions our only when������������
J�(mnz1) Y�(mnz1) 0 00 0 Y�(mnz1) �J�(mnz1)CJ�(mnz2) CY�(mnz2) SJ�(mnz2) SY�(mnz2)�SY�(mnz2) SJ�(mnz2) CY�(mnz2) �CJ�(mnz2)

������������ = 0:
We then get the eigenvalue equation for the twisted fermions asJ�(mnz1)(CY�(mnz2)� SJ�(mnz2))� Y�(mnz1)(CJ�(mnz2)� SY�(mnz2)) = 0(4.36)Making use of the linear relationY�(x) = J�(x) os(��)� J��(x)sin(��) (4.37)(4.36) beomesJ�(mnz1)(CJ��(mnz2)� SJ�(mnz2))� J��(mnz1)(CJ�(mnz2)� SJ��(mnz2)) = 0(4.38)Later we will onsider � = 2=5 and � = 3=5.4.3 Casimir potential in at spaeFor at spae, the warping fator e�2� = 1, and the metri isds25 = dz2 + ���dx�dx�: (4.39)The operator (4.18) in at spae with zero mass is� = �r2: (4.40)The Dira equation beomes �2�z2un = (k2 �m2n)un; (4.41)



4. Casimir energy for twisted fermion �elds 58whih has the solutionun = A sin��nzl5 � +B os��nzl5 � : (4.42)For at spae and when the branes are very lose to eah other we ould hooserelevant masses mn suh that mnz is very large. For untwisted fermions in atspae, sin(mnz1) os(mnz2)� sin(mnz2) os(mnz1) = 0: (4.43)This gives the fermion masses asmn = n�z1 � z2 ; n = 0; 1; 2; : : : (4.44)We now turn to the twisted bulk fermions where the eigenvalue equation is (4.38).We remember the following relation [20℄ when jzj ! 1J�(z) =r 2�z hos(z � ��2 � �4 ) + e'zO(jz�1j)i ; (jarg zj < �): (4.45)For at spae, the eigenvalue equation ould now be simpli�ed tosin(mnz1) os��2 �mnz2�� os(mnz1) sin�mnz2 � �2� = 0: (4.46)This leads to two equations for fermion massesm(�)n = n� � �2z1 � z2 ; n = 0; 1; 2; ::: (4.47)m(+)n = n� + �2z1 � z2 ; n = 0; 1; 2; ::: (4.48)The � funtion in at spae with a volume 
 ould now be written as�(s) = 
 Z d4k(2�)4 "Xn (m(+)2 + k2)�s +Xn (m(�)2 + k2)�s# : (4.49)This k integral diverges for s < 2 and was evaluated already in [105℄. Introduingx = jk2j=m2 for both integrals we get�(s) = (4.50)Xn 
16�2 �m(+)4�2s Z 10 dx x(x + 1)�s +m(�)4�2s Z 10 dx x(x + 1)�s�= Xn 
16�2 m(+)4�2s(s� 2)(s� 1) +Xn 
16�2 m(�)4�2s(s� 2)(s� 1)



4. Casimir energy for twisted fermion �elds 59The last expression an be analytially ontinued to a funtion with poles at s = 1and s = 2. We still need to evaluate the sum, for this we use�(s; q) = 2�(1� s)(2�)(1�s) "sin �s2 1Xn=1 os 2�nqn1�s + os �s2 1Xn=1 sin 2�nqn1�s # s < 0: (4.51)Then�(s) = 
4�2 1(s� 1)(s� 2) � �z1 � z2�4�2s �(5� 2s)(2�)5�2s sin�(s� 2) 1Xn=1 osn�n5�2s : (4.52)The Casimir energy for twisted fermions, untwisted fermions and the di�erene arerespetively VC(�) = � 0(0) = 332�2 1l45 1Xn=1 osn�n5 ; (4.53)VC(0) � � 0(0)j�=0 = 332�2 1l45 1Xn=1 1n5 ; (4.54)�VC = 332�2 1l45  1Xn=1 osn�n5 � 1Xn=1 1n5! : (4.55)This means that in at spae the Casimir energy is de�nitely attrative, sine�V=�l5 < 0 implies FCasimir > 0 (attrative). We have to investigate this point aswell in urved spae. 4.4 Small � limit (small twist)Eq. (4.55) ould be written as�VC = 332�2 1l45  1Xn=1 1n5 (osn� � 1)! (4.56)= � 3�(3)16�2l45 sin2(n�=2): (4.57)For � << 1, os n� � 1 ' �n2�2=2. We then have�VC = � 364�2 �2l45 �(3): (4.58)The small � limit here means small twist. Later we will relate � with the gauginoondensate on the hidden brane and the small � limit will be interpreted as a smallvalue of gaugino ondensate.



4. Casimir energy for twisted fermion �elds 604.5 Casimir potential in urved spae4.5.1 A Review for the untwisted aseBefore we disuss the twisted fermions ase, we desribe the ase of untwistedfermions alulated in [15℄. This work was based on the method invented byGarriga et al [19, 66, 67℄ and by Flahi et al [32, 68℄.The zeta funtions we are interested in have the form,�(s) = Z d4x Z d4k(2�)4 Xn �k2 +m2n�2R ��s (4.59)Introduing � = z1=z2 and de�ning �n = z2mn, then we have the impliit equationfor �n from (4.36),Funtwisted(�n; �) = J2=5(�n�)Y2=5(�n)� J2=5(�n)Y2=5(�n�) = 0 (4.60)Performing the momentum k integrals by hanging to polar oordinates gives�(s) = �2sR Z d4x �(s� 2)(4�)2�(s)b�(2s� 4)z2s�42 (4.61)For the masses �n we have only an impliit equation whih makes it ompliatedto evaluate the sum over them. Fortunately, the residue theorem allows us to writethe sum over the positive zeros of F (z) as a ontour integral,b�(2s� 4) = ZC dzz4�2s ddz ln jF (z)j (4.62)Where the ontour C is any ontour enloses the positive zeros of F (z) [see �gure(4.2)℄.For the impliit eigenvalue equation (4.60) we must restrit s to lie in the range5=2 < <(s) < 3. The ontribution to the integral (4:62) from the large semi irlevanishes (just beause the funtion inside the ontour vanishes for large z), and weare left with the ontribution along the imaginary axis and the small semi irle.This results inb�(2s� 4) = sin(�s)� Z 1� dxx4�2s ddx ln ��P 0(x)�� + ZC� dz2�iz4�2s ddz ln jF (z)j (4.63)



4. Casimir energy for twisted fermion �elds 61Where P 0(x) = F (ix) and C� is a small semi irle around the origin. Usingformulae for the analyti ontinuation of Bessel funtions,P 0(x) = I�(�x)K�(x)� I�(x)K�(�x) (4.64)The leading order term for large x is denoted by P 0a ,P 0a (x) = I�(x)K�(�x): (4.65)The asymptoti expansion of the Bessel funtions for large x givesI�(x) � exp2�x; K�(x) �r �2xe�x; (4.66)so that P 0(x) � �P 0a (x) � ex(1��)2xp� : (4.67)We an now write the following equationZ 1� dxx4�2s ddx ln ��P 0(x)�� = (4.68)Z 1� dxx4�2s ddx ln ����P 0(x)P 0a (x) ����+ Z 1� dxx4�2s ddx ln ��P 0a (x)��We need these two integrals at s = 0. Analyti ontinuation an provide �niteexpressions for divergent integrals. The main idea here is that the integral on theLHS annot be evaluated analytially or numerially at s = 0 as it diverges. Sowe divide it into two integrals the �rst one ould be evaluated numerially and theseond one ould be evaluated analytially at s = 0. Atually, for large x, the �rstterm on the RHS vanishes and we will have only the seond one, i.e.x4�2s ddx ln ��P 0(x)�� � x4�2s ddx ln ��P 0a (x)�� : (4.69)Unfortunately, one integral on the RHS still diverges and we still need to do moreto regularize it. If we an express I�(x) and K�(x) in terms of power series, byrede�ning them, then after substitution bak in the integral we will be able tosubtrat o� the undesirable terms that leads to divergene.We de�ne new funtions �I�(x) and �K� (x) throughI�(x) = exp2�x�I�(x); K�(x) =r �2xe�x�K� (x); (4.70)



4. Casimir energy for twisted fermion �elds 62and de�ne onstants �n by ln ���I�(x)�� = 1Xn=1 �nx�n: (4.71)Note also that �I�(x) ' �K� (�x): (4.72)Expliit expressions for the �n an be found in [68℄. Now regularized funtions anbe de�ned by subtrating o� the terms whih ause the integrand to diverge atlarge x, UI(x) = ddx ln ���I�(x)�� + 3Xn=0 n�nx�n�1 + 4�4x�5e�k=x (4.73)UK(x) = ddx ln ���K� (x)�� + 3Xn=0(�1)nn�nx�n�1 + 4�4x�5e�k=x (4.74)Now we an write the RHS of (4.69) using (4.73), (4.74),(4.71) and (4.72). Aftertaking the limit � = 0 we get �nally:b�(2s� 4) = �4 sin�s� �g�(s) + b�(s) + a�(s)� 2s�4 + �4k�2s�(2s)(1 + � 2s�4)	(4.75)where the funtions g�(s), b�(s) and a�(s) are de�ned asg�(s) = �14 Z 10 dxx4�2s ddx ln ����P o(x)P oa (x) ���� (4.76)b�(s) = �14 Z 10 dxx4�2sUI(x) (4.77)a�(s) = �14 Z 10 dxx4�2sUK(x): (4.78)At s = 0, the vauum energy is given by� 0(0) = �18�2 �G�(�)z42 + B�z42 + A�z41 �� �48�2 � ln(z1�R)z41 + ln(z2�R)z42 � ; (4.79)where B� = b�(0), A� = a�(0), and G�(�) = g�(0). After integration by parts,G�(�) = Z 10 dxx3 ln�1� I�(�x)K�(x)K�(�x)I�(x)� ; (4.80)



4. Casimir energy for twisted fermion �elds 63whih has a negative numerial value. The � dependene in the vauum energy(4.79) depends on the term � 0(0) � � 18�2 G�(�)z42 (4.81)whih has positive numerial value. The positive sign here ould be interpretedas a repulsive fore whih is not useful for the stabilization problem. This justexpresses the fat that the untwisted bulk fermions don't produe the ordinaryattrative Casimir energy. However, the twisted bulk fermions do produe anattrative Casimir energy as we are going to �nd in the next setion.4.5.2 The ase of twisted fermionsIn this setion we would like to alulate the di�erene between the twisted anduntwisted bulk fermions ases. In other words, we require the di�erene betweenthe two � funtions b� 0twisted(0)� b� 0untwisted(0) (4.82)When alulating the di�erene (4.82), the ontribution to the integral (4.63) fromthe small semi irle in �gure (4.2) vanishes, as well as that from the large semiirle, and then we are left with the ontribution along the imaginary axis only.Eq. (4.38) leads to two twisted fermion masses m+n and m�n whih, unfortu-nately, are given impliitly. We denote the twisted version of Eq. (4.64) withpositive sign by P �+ and the one with negative sign by P ��. Sine P �� is just theomplex onjugate P �+, we will get for the integral (4.62)Z 1� dxx4�2s ddx(ln ��P �+(x)��+ ln ��P ��(x)��) = (4.83)Z 1� dxx4�2s ddx ln ���P �+(x)P �+(x)��� = 2 Z 1� dxx4�2s ddx ln ��P �+(x)��From now on, we drop the (+) and the (�) and ontinue with P �. The zetafuntion for the twisted ase has the form,b�(2s� 4) = sin(�s)�  Z 10 dxx4�2s ddx ln P �P �P �aP �a !+ Z 10 dxx4�2s ddx ln�P �aP �a�!(4.84)
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Fig. 4.2: Contour used for the ontour integral in (4.62)P �(x) denotes P (x) at � 6= 0 and is de�ned from (4.38) asP �(x) = C (I�(�x)K�(x)� I�(x)K�(�x)) (4.85)� iS(I�(�x)K�(x) + I�(x)K�(�x) + (2=�) sin(��)K�(�x)K�(x))P �a (x) is the most divergent part, de�ned asP �a (x) = I�(�x) (CK�(x)� iSK�(x)) : (4.86)The �rst integral in (4.84) is onvergent, but the seond one is divergent. Toregularize it we follow the same proedure used for the untwisted ase alulationswith a small di�erene due to the non-zero value of �. We setI�(x) = exp2�x�I�(x); K�(x) =r �2xe�x�K� (x); (4.87)where ln�K� (x) = ��K� x�n; ��n = C�Kn (�)� iS�Kn (�): (4.88)



4. Casimir energy for twisted fermion �elds 65Then, de�ning the two regularized funtionsU �K(x) = ddx ln �C�K� � iS�K� �+ 3Xn=1 n��nx�n�1 + 4��4x�5e�k=x (4.89)and UI(x) = ddx ln�I� + 3Xn=1 n�In + 4�I4x�5e�k=x (4.90)we get �nally,b�(2s� 4) = �4 sin(�s)� �g�(S) + b�� 2s�4 + a��(s) + k�2S�(2s)(�(�) + 2�4� 2s�4))�(4.91)where g�(s) = �18 Z 10 dx x4�2s ddx ln P �P �P �aP �a (4.92)b�(s) = �18 Z 10 dx x4�2s2UI(x)a��(s) = �18 Z 10 dx x4�2s(U �K + U �K)�(�) = ��4 + ��4 = 2�4C; C = os �The vauum energy of the twisted fermions is then� 0(0; x) = �18�2 �g�(0)z42 + b�(0)z41 + a��(0)z42 �� �44�2 ln(�Rz2)z42 � �44�2 ln(�Rz1)z41 : (4.93)4.6 The 5D e�etive potentialWe now subtrat the � = 0 ase to alulate the di�erene and get the 5D e�etivepotential. Assuming that the SUSY breaking happens on the hidden brane loatedat z2 we an ignore the z1 terms and get the 5D e�etive potential as�VC = � 18�2 ��G�(�)z42 + B(�)z42 �� �4(C � 1)4�2 ln(�Rz2)z42 (4.94)Where �G�(�) = �18 Z 10 x4 ddx  ln P �P �P �aP �a � ln�P 0P 0a �2! (4.95)B(�) = �18 Z 10 x4 ddx ��U �K + U �K�� 2UI(x)� (4.96)



4. Casimir energy for twisted fermion �elds 66The di�erene funtion �G�(�) ould now be written as (after integration byparts), �G��(�) = Z 10 dxx3 ln ����P �(x)P 0a (x)P �aP 0(x) ���� (4.97)whih has positive numerial value. The dependene on � is ontained in the term� 0(0) � � 18�2 �G�(�)z42 : (4.98)4.6.1 Numerial evaluation of �G�(�)At this point we would like to investigate the value of the integral (4.97) at di�erentvalues of � and �. The Bessel funtion orders � and � are 35 and 25 respetively.Clearly for the supersymmetri ase (� = 0), the Casimir energy is zero and theintegral vanishes.For the non-supersymmetri ase as � approahes 1, the two branes are gettingmore loser and the Casimir energy beomes stronger. For example, for � =1:2 and � = � the value of the integral (evaluated numerially using Maple) is466.0. For the same � and � = 1:8 the value is 1.79. For � = � and � = 1:01,�G�(1:01) = 7:52� 107. As one approahes supersymmetry, i.e. as � approaheszero, the Casimir energy is getting lower and lower. In general, for � = n� and nis an integer, the Casimir energy is zero for even n and has the same value for oddn. The integral is large (and positive) for small brane separation means that thevauum energy is large (and negative)and vise versa.The funtion �G��(�) is a part of the Casimir potential (4.94) that beomesdominant at small brane separation (� ! 1), but it doesn't represent all of thephysis. To do that we have to take into onsideration the funtions A� and B�.The integrand (4.97) is plotted as a funtion of x for several values of � in�gures 4.3(a) - 4.3(f) to show that the integral we have got is well-behaved. Valuesof G�(�) and �G�(�) have been tabulated in table 4.1 for � = �; �=2 to show thee�et of the hange of the value of the SUSY parameter �. For the twisted ase,Fig. 4.4(a) shows that the funtion G�(�) dereases as � dereases and as theseparation between the two branes inreases. For the di�erene ase, Fig. 4.4(b)



4. Casimir energy for twisted fermion �elds 67also shows that the funtion �G�(�) dereases as � dereases and as the separationbetween the two branes inreases. Figures 4.6 and 4.5 shows a 3D plot of the totalCasimir energy, approximated by (4.98), in both (z2; �) and (z1; z2) diretions. Thepotential goes to �1, it has no minimum. 2D plots of (4.98) in z2 diretion fordi�erent values of � has been shown in Fig.4.7.4.7 summaryWe have alulated the total bulk vauum energy due to twisted fermion �elds,whih is the di�erene between the twisted and the untwisted ase, for at andurved spae. The total 5D e�etive potential doesn't have a minimum and otherbulk e�ets need to be added to stabilize the radion.
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G�(�) �G�(�)� > 1 G�(�) G�=2(�) �G�(�) �G�=2(�)1.1 3600.725813 110.3501650 7489.713486 3999.3752671.15 707.1716823 21.41545529 1475.631231 789.88988631.2 222.6566867 6.6841251 465.9992946 250.02972531.25 90.7699894 2.719147221 190.4921799 102.38686501.3 43.61064998 1.315347407 91.70708754 49.427579981.35 23.44124127 0.7204989719 49.40907749 26.688289011.4 13.69962736 0.4342920396 28.91960127 15.653896011.45 8.530711681 0.2822211976 18.02691424 9.7746649171.5 5.585122742 0.1949612382 11.80896505 6.4194180041.55 3.809722071 0.1415799066 8.051331216 4.3847948381.6 2.687671769 0.1071208312 5.680682348 3.0995813831.65 1.950597487 0.08381729896 4.116361023 2.2504088301.7 1.450282869 0.06693527726 3.058630712 1.6751750901.75 1.101264244 0.05496962259 2.31789662 1.2718152911.8 0.8516970012 0.04591905370 1.788883642 0.98350053561.85 0.6692604758 0.03938748791 1.402156975 0.77207057721.9 0.5334835670 0.03356146523 1.114560720 0.61491695121.95 0.4306798501 0.02947137658 0.8967776417 0.4954818484Tab. 4.1: The numerial values of G�(�) and �G�(�) for di�erent values of � . all valueshave been evaluated with � = 35 and � = 25 .
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5. GAUGINO CONDENSATION IN AN IMPROVEDHETEROTIC M -THEORYThis hapter on gaugino ondensation ontains some new results for the e�etivepotential and the superpotential whih arise from gaugino ondensation. The workin this hapter was done in ollaboration with Prof. i.G. Moss.5.1 Improved heteroti M -theory and its new boundary onditionsWe start with a quik review of the improved heteroti M -theory [33, 136, 137℄whih we shall use as our framework. As we have seen in setion (3.2), the orig-inal formulation of Horava and Witten of Heteroti M�theory has the followingstruture (see eq. 3.4 and 3.5) S = SSG + SYM (5.1)SSG ontains a fator ��211 , Whilst the matter ation SYM has a fator ���211 , where� is a saling parameter. Anomaly anellation requires that � = O ��2=3� whihmeans that SYM is of order �2=311 ompared to SSG. At order �211 singular termsdepending on the square of the delta-funtion start to arise. This problem has beenoverome [33, 136, 137℄ by modifying the boundary onditions on the gravitino andthe supergravity 3-form, so that now an ation an be onstruted whih is non-singular and supersymmetri to higher orders.The theory is formulated on a manifold M with a boundary onsisting oftwo disonneted omponents M1 and M2 with idential topology. The eleven-dimensional part of the ation is the onventional ation for supergravity, withmetri gIJ , gravitino  I and antisymmetri tensor CIJK [117℄. The original for-



5. Gaugino ondensation in an improved heteroti M -theory 74mulation of Horava and Witten ontained an extra `���	' term, but it is notpresent in the new version.The spei�ation of the theory is ompleted by boundary onditions. For thetangential anti-symmetri tensor omponents,CABC = �p212 � �!YABC � 12!LABC�� p248 � tr���ABC�: (5.2)where !Y and !L are the Yang-Mills and Lorentz Chern-Simons forms. Theseboundary onditions replae the modi�ed Bianhi identity in the old formulation(see for example [12℄). For the gravitino,�AB (P� + ��P�)	A = ��JY A � 12JLA� ; (5.3)where P� are hiral projetors using the outward-going normals and� = 196tr(���ABC�)�ABC : (5.4)JY is the Yang-Mills superurrent and JL is a gravitino analogue of the Yang-Mills superurrent. The resulting theory is supersymmetri to all orders in theparameter �. The gauge, gravity and supergravity anomalies vanish if� = 14� ��114� �2=3 : (5.5)A useful relation for the ondensate on the boundary an be obtained by reall-ing that in heterotiM -theory, we an relate the spin onnetion to the Yang-Mills�eld so that !Y = !L = ! on the hidden brane, and !Y = 0 on the visible brane.Then, CABC = p224 �!ABC � p248 ����ABC� on �M1 (5.6)CABC = p224 �!ABC + p248 ����ABC� on �M2 (5.7)Where the term ����� is non-vanishing for the gaugino ondensate.5.2 Bakground metri and uxThe 11D bakground metri ansatz is based on the produt M �S1=Z2�X whereX is a Calabi-Yau spae. In this metri there are two opies of the 4-dimensional



5. Gaugino ondensation in an improved heteroti M -theory 75manifold M , M1 and M2, separated by a distane l11. The value for the inverseradius of the Calabi-Yau spae is supposed to be of order the Grand Uni�ationsale 1016GeV and the inverse separation would be of order 1014 GeV. The expliitform of the metri isds2 = V �2=3 �dez2 + V 1=3���dx�dx��+ V 1=3egABdxAdxB (5.8)Where ��� is the Minkowiski metri onM , gAB is the Calabi-Yaumetri onX whihis independent of ez and V � V (z), z1 � z � z2. The tilde denotes quantities inEinstein frame.This bakground metri ansatz is similar to one used by Curio and Krause [132℄,exept that we use a di�erent oordinate z in the S1=Z2 diretion. For simpliity,we will restrit the lass of Calabi-Yau spaes to those with only one harmoni(1; 1) form (see appendix C.2.1). To allow for gravity in 4D, the metri is replaedby ds2 = V �2=3 �dez2 + V 1=3Q�2eg��dx�dx��+ V 1=3egABdxAdxB (5.9)Where the fator Q�2 is required to put the metri eg�� into the Einstein frame andis given by (3.44).The volume funtion V = (1 � 6kez) (see 3.40) is the exat solution of the zzomponent of the Einstein equations 1. For the �eld strength G we use the ansatzGabd = 13� (egegbd � egadegb) (5.10)This ansatz solves the �eld equation r:G = 0.5.2.1 CondensatesThe ansatz for a gaugino ondensate on the boundary Mi is [129℄�i�ab�i = �ie"ab (5.11)1 Our solution for V is equivalent to the one used by Lukas et al. in Ref. [12℄ when adaptedto our oordinate system. They express the solution as V = b0H3. It is also equivalent tothe bakground used by Curio and Krause in Ref. [132℄, V = (1 � S1x11)2, when their S1 =�V �2=31 =p2. See hapter 3



5. Gaugino ondensation in an improved heteroti M -theory 76This is the standard expression for ovariantly onstant ondensates [79, 112℄.�i is the spinor represents the gaugino �eld, �i is the ondensation sale and de-pends only on the modulus Vi, e"ab is a ovariantly onstant three-form on theCalabi-Yau spae (on any given Calabi-Yau three-fold X, we have a ovariantlyonstant holomorphi three-form "ab and its anti-holomorphi omplex onjugate"ab). The gaugino ondensate appears in the boundary onditions for the anti-symmetri tensor �eld and indues non-vanishing omponents Cab.Let Cab = 16�e"ab: (5.12)where � is a omplex salar �eld. The �eld strength assoiated with these tensoromponents is Gabz = �(�z�)e"ab: (5.13)The boundary onditions for the Cab �eld from Eqs. (5.6) and (5.7) isCab = 8>>><>>>: p248 ��ie"ab on z20 on z1 (5.14)and the �eld equation is r:G = 0 (5.15)Equation (5.15) ould be written expliitly as�z �gaagbbgg55Gab5� = 0 (5.16)where the �fth dimension z is real and �xed. This implies that Gabz / V 1=3 whihmeans Cab / V 4=3, we then haveCab = Ae"abV 4=3 +Be"ab (5.17)where A and B are onstants that ould be determined easily using the two bound-ary onditions (5.14). We getA = p248 �� 1V 4=31 � V 4=32 (5.18)



5. Gaugino ondensation in an improved heteroti M -theory 77B = �p248 �� V1V 4=31 � V 4=32 (5.19)So Cab = p248 ��e"abV 4=3 � V 4=31Q2 (5.20)where Q2 = V 4=31 � V 4=32 . For the �eld strength, we getGabz = p2��k12Q2 e"abV 1=3: (5.21)The non-zero ux depends on V1 and V2 through the Q term and through �, whihdepends on the volume fators V1 and V2 in the gaugino ouplings.We now onsider the 11D ationS = � 12�211 ZM11 G2qjg(11)jd11x (5.22)The relation between the 11D and the 4D metri follows diretly from (5.9) asqjg(11)j =qjeg(4)jQ�4 (5.23)The ation (5.22) then ould be written in 5D asS = � 12�2 ZM5 �2k2�236Q8 V 1=3(z)qjeg(4)jdx4dz (5.24)After integrating out the extra dimension we get the 4D ation asS = � 12�2 ZM4 �2k2�248Q6 qjeg(4)jdx4 (5.25)So, the G2 term in the ation (5.22) redues to a potential VG in the Einsteinframe, where VG = ��2k2�248Q6 (5.26)In setion 5.2.4 we shall attempt to �nd the potential by a better method, usinga redution of the fermion setor.5.2.2 Condensate saleWe now try to evaluate the ondensate sale �. After the redution to 5D, theYang-Mills ation beomes [12℄SYM =Xi 14g2 ZM4 ViF 2dV (5.27)



5. Gaugino ondensation in an improved heteroti M -theory 78where F is the Yang-Mills �eld strength and g is the Yang-Mills oupling if V = 1.If V 6= 1, we an absorb it into g suh that V2=g2 = 1=g2eff . The oupling geffhanges with energy. Assume the ondensates happen at a sale � =M3, whereMis the mass sale at whih geff(M) � 1. From the renormalization group equation,we have dgeffdt = �(geff) � �1g3eff : (5.28)This gives g�2eff = �1t+ onst:; (5.29)where t = ln(E=�) and � is the renormalization sale. We have theng�2eff � g�2(0)eff = �1 ln(E=�): (5.30)If � = E, then geff = g(0)eff . If E =M then (5.30) leads diretly toM = �e�(�1g2)�1V2 : (5.31)The ondensate sale is just M3, hene� = �3e�3(�1g2)�1V2 : (5.32)5.2.3 SuperpotentialSine any supergravity Lagrangian is expeted to ontain the Einstein-Hilbert La-grangian and the Rarita-Shwinger Lagrangian for the gravitino �eld, we try toredue the 11D Rarita-Shwinger LagrangianLRS = 12�211 � I�IJKDJ K� : (5.33)In hapter 7, we shall see that this an be re-written in a form that is more suitablefor the redution asLRS = 12�211�I  6r � p296 GPQRS�PQRS!�I: (5.34)We use the notation I; P; : : : for eleven{dimensional indies, �; �; : : : for four-dimensional ones, and a; b; : : : for Calabi-Yau spae. �I = �+I (0 
 11). The11-dimensional gamma matries satisfy f�M ;�Ng = 2gMN .



5. Gaugino ondensation in an improved heteroti M -theory 795.2.4 E�etive superpotential from the 11D theory.When reduing on a metri with no warp fator, the higher dimensional gammamatries are deomposed as�� = � 
 11; �a = 5 
 a and �11 = 5 
 7 (5.35)Where 5 = i1234 is the 4D hirality operator.It is useful to onsider a partiular representation for the Dira matries �. Auseful hoie of these matries is given by Majorana representation in whih the matries are either purely real � or purely imaginary (5 and a). The Majoranaondition on the spinor then is just a reality onstraint.When reduing on a warped metri of the general formds2 = e2bds2(4) + e2fds2(6) + e2k(dx11)2; (5.36)in order to retain f�; �g = 2g(4)�� et., (5.35) beomes�� = eb� 
 11; �a = 5 
 efa and �11 = 5 
 ek7 (5.37)So, for the metri (5.9), we have�� = V �1=6Q�1� 
 11; �a = 5 
 V 1=6a and �11 = 5 
 V �1=37: (5.38)For the raised indies,�� = V 1=6Q� 
 11; �a = 5 
 V �1=6a and �11 = 5 
 V 1=37: (5.39)See also appendix (C.3).To perform the dimensional redution we need the metri ansatz given in (5.9)and a spinor ansatz for the embedding of the 4D gravitino  � in the 11D one ��with the help of the internal spinors (the 6D Calabi-Yau spinors in appendix B.4).This ould be written in general as�� = �+� 
 u+ + 5��� 
 u� (5.40)



5. Gaugino ondensation in an improved heteroti M -theory 80Where �� � ��(x� ; z) and u� are ovariantly onstant 6D spinors. A spei� hoieof the funtion ��� gives�� = a �(x�)V �1=6 
 u+ + a� ��(x�)V �1=6 
 u� (5.41)Where a is a omplex number used for normalization. Then,�� = (a � � � �+ a� �� : : : )yQ2V 1=3 (0 
 11) eg�� (5.42)Now, the ovariant derivative transforms to the Einstein frame as6r ! QV 1=6 (� 
 11) er; (5.43)and we have �zabGzab = 4V 1=6(11
 7)abGzab (5.44)= 4V 1=6(11
 7)abp2��36Q2 e"abV 1=3;where �zab = (5 
 7) (5 
 a) (5 
 b) (5 
 ) (5.45)= (11
 7ab):Inserting all that into (5.33) with the help of the relations (B.15) appendix (B) Weget the 5D LagrangianL(5)RS = a2 � V 1=6�V 4=31 � V 4=32 �1=2 6r� � + i��a2V 1=63�V 4=31 � V 4=32 �2 � (5.46)� � �� +  �� ��+ a2V 1=6�V 4=31 � V 4=32 �1=2 �� 6r� ��Integrating out the extra dimension, we get the 4D LagrangianLRS = 6a27 �V 7=61 � V 7=62 ��V 4=31 � V 4=32 �1=2 � � 6r� � +  �� 6r� ��� (5.47)+ i��a23 �V 7=61 � V 7=62 ��V 4=31 � V 4=32 �2 � � �� +  �� ��



5. Gaugino ondensation in an improved heteroti M -theory 81To get the superpotential we just ompare (5.47) with the general form of the RSLagrangian in 4D LRS = 12�2P eK=2 � � 6r � +W � �� (5.48)For the orret normalization of the kineti term we have to pik a2 suh thata2 = 76 �V 4=31 � V 4=32 �1=2�V 7=61 � V 7=62 � (5.49)From the mass term, using (5:32) for �,W = i�3 �3e�3(�1g2)�1V2 (5.50)This �nal superpotential ontains no surprises as it takes the standard formexpeted for a gaugino ondensate in any supersymmetri theory [135℄. It beomeslear also that the ondensate superpotential ontains no orretions due to thewarping of the metri in higher dimensions.Most disussions of the ondensate indued superpotential do not take thewarping of the metri into aount. We have found that the warping of the metribakground has had no e�et on the superpotential as none of the three warpingfators of the metri appears in (5.50). Krause [133℄ also �nds that the warpingdoes not a�et the ondensate ontribution to the superpotential, but he laims awarping dependene in the ux term. In [148℄, Anguelova and Zoubos extratedthe ux-indued superpotential from the gravitino mass term of the 4D e�etivetheory after the dimensional redution of the fermioni terms in the 11D ation.5.3 summaryWe have alulated the Gaugino ondensate potential in the framework of theimproved heterotiM�theory after introduing a metri ansatz and a ux ansatz.The ondensate sale has been evaluated using the renormalization group equation.We then derived the gaugino ondensate superpotential from the redution of the11D Rarita-Shwinger Lagrangian. We then start in the next hapter to make useof this superpotential to alulate the potential in two models.



6. KKLT ADS VACUUM AND CASIMIR ENERGY.Moduli stabilisation an be ahieved by following a similar pattern to moduli sta-bilisation in type IIB string theory [134℄. The �rst stage involves �nding a suitablesuperpotential whih �xes the moduli but leads to an Anti-de Sitter vauum. Thenegative energy of the vauum state is then raised by adding a non-supersymmetriontribution to the energy. The potential is given in terms of the K�ahler potentialK and the superpotential W ,V = ��24 eK �KijDiWDjW � 3 jW j2� ; (6.1)With DiW = e�K�Vi �eKW � : (6.2)Minima of the potential our when DiW = 0. If these minima exist, theirloation is �xed under supersymmetry transformations. However, the boundaryonditions at the potential minima are not generally preserved by supersymmetryand the theory at a supersymmetri minimum is not neessarily supersymmetri.We shall examine the supersymmetri minima of the potential for two toy modelsonentrating on general features rather than obtaining a preise �t with partilephenomenology. 6.1 Model A: Double-ondensateFollowing the type IIB route, we assume the existene of a ux term Wf in thesuperpotential whih stabilises the (2; 1) moduli, and then remains largely inertwhilst the other moduli are stabilised.The gauge oupling on the hidden brane runs to large values at moderateenergies and this is usually taken to be indiative of the formation of a gaugino



6. KKLT AdS vauum and Casimir energy. 83ondensate. Loal supersymmetry restrits the form of this ondensate to [135℄�2 = B2V �1=2CY e��V2 (6.3)where B2 is a onstant and � is related to the renormalization group �-funtionby � = 6�b0�GUT ; �(g) = � b016�2g3 + : : : : (6.4)The gauge oupling on the visible brane is supposed to run to large values only atlow energies to solve the hierarhy problem, and a low energy ondensate wouldhave a negligible e�et on moduli stabilisation. There might, however, be a sep-arate gauge oupling from part of the E6 symmetry on the visible brane whihbeomes large at moderate energies with a signi�ant ondensate term. The re-quirement for this to happen is a large �-funtion, possibly arising from hargedsalar �eld ontributions. The total superpotential for suh a model isW = be��V2 + e��V1 � d; (6.5)where d = �Wf and b,  are onstants, whih we assume to be real but notneessarily positive.The �elds at the minimum of the potential ould be omplex, and we thereforeseparate real and imaginary parts,Vi = ui + ivi: (6.6)With the K�ahler potentialK = �3 ln �(V1 + V1)4=3 � (V2 + V2)4=3� (6.7)The super derivatives of the potential areDV1W = ��e��V1 � 2�u4=31 � u4=32 ��1 u1=31 W; (6.8)DV2W = �b�e��V2 � 2�u4=31 + u4=32 ��1 u1=32 W: (6.9)Solving for the values of V1 and V2 at the minimum of the potential is not veryinformative. Instead, we express the parameters b,  and d in terms of the values
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6. KKLT AdS vauum and Casimir energy. 86The total superpotential for this model is given byW = be��V2 + e��(V1�V2) � d (6.14)= Wg +Wnp +Wf : (6.15)Where Wg is the ondensate potential on the 'hidden' brane.The supergravity KKLT potential with AdS minimum isVKKLT2 = �(2V1)4=3 � (2V2)4=3��3 �142� 2(2V1)2=3 �(2V1)4=3 + 3(2V2)4=3�� (6.16)e�2�(V1�V2) +14(2V2)2=3 �3(2V1)4=3 + (2V2)4=3� (��be��V2 � �e��(V1�V2))2�8�V1V2e��(V1�V2) (��be��V2 � �e��(V1�V2))+4W (�V1e��(V1�V2) + V2(�be��V2 + �e��(V1�V2))) +W 2� :This potential has AdS minimum and is plotted in �gure 6.3(), 6.3(d) for=�=5, � = 0:5 and b=d=1.Realling that for a supersymmetri minimum, �KV = 0 if DiW = 0. whereDi is the K�ahler ovariant derivative, the value of the minimum of the potentialenergy V = eK(KijDiWDjW � 3 jW j2) (6.17)is Vmin: = �3eK jW j2 (6.18)The system of equations DiW = 0 (6.19)should have a solution in the orret phenomenologial range for V1 and V2. Thesuperderivatives areDV1W = ��e��(V1�V2) � 2u1=31 �u4=31 � u4=32 ��1W; (6.20)DV2W = �b�e��V2 + �e��(V1�V2) + 2u1=32 �u4=31 � u4=32 ��1W: (6.21)This time the parameters b,  and d given in terms of the values of V1 and V2 at
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6. KKLT AdS vauum and Casimir energy. 896.3 Uplifting the KKLT dS vauumIn this setion we try to see how muh the dS minimum, we have got in the previoussetion, an be raised via Casimir energy. Reall the 5D metri (5.8),ds2 = V 1=3Q�2eg��dx�dx� + dez2; V = 1� �p2ez (6.24)The warping fator is equal to one for at spae, but when the spae is approxi-mately at we have the 5D distane between the branesl5 = 1�p2(V1 � V2) (6.25)So, when V1 � V2, the bulk Casimir energy is (reall Eq. (4.58))�VC(V1; V2) = C�4 (V1 � V2)�4 (6.26)The onstant C is going to be determined in the following hapters. This expressionneeds to be expressed in the 4D Einstein frame. We do that by omparing thevolumes, we have �eVC = �VCpjg(4)jpjeg(4)j (6.27)That means that the Casimir energy in the 4D Einstein frame is(�eVC) = (�VC)V 2=31 Q�4 (6.28)In the limit of small warping, Q2 � 43V 131 (V1 � V2) (6.29)Adding that to (6.16) we haveVtotal = VKKLT + 916C�4 (V1 � V2)�6 (6.30)Fig. 6.5 shows the total potential (6.30) for the gaugino ondensate model.Unfortunately, it is lear from the plots (6.5(a)-6.5(d)) that the ontribution of theghost vauum energies is only enough to rise the AdS minimum to dS one when Cis large. We get the same result for the non-perturbative model (see Fig. 6.6). In



6. KKLT AdS vauum and Casimir energy. 90the next setion we investigate this analytially by omparing the AdS minimumof the potential with the vauum energy. However, when the branes are very loseto eah other the Casimir energy is overwhelming. In the following hapter we willevaluate C and �nd it is onneted with the ondensates. This is not surprisingbeause the Casimir energy depends on broken SUSY and it vanishes if there areno ondensates. 6.4 Comparing Vmin and VC .We now would like to ompare the minimum of the potential with the Casimirenergy 5D expression to see the possible values that the onstant C must have tobe able to uplift the AdS minimum to a dS one. The minimum of the potential interms of the 4D Plank sale is (see (6.18))Vmin = �3eKjW j2 (6.31)In model B, from (6.20) and (6.21),jW j = 12Q2 �V 1=31 � V 1=32 ��1 �Wg (6.32)Hene Vmin = �323 �2Q�2 �V 1=31 � V 1=32 ��2 �2P�2�2�2 (6.33)So �eVCjVminj � V �11 (V1 � V2)�3�2�2P�2�2 C (6.34)But �2�2P is related to �2GUT by (see [12℄)�2�2P = 43��2�2GUT (6.35)�GUT = 1=40. For VC to be omparable to Vmin we need C to be of order ��2GUT orthe two branes are very lose to eah other. Alternatively, we have to onsider thease of large warping.



6. KKLT AdS vauum and Casimir energy. 91

-0.06

-0.03

V1

-0.04

-0.05

0.80.60.40.20

0

-0.01

-0.02

(a) 2D plot of (6.30) at V2 = 7 for C =5 with minimum at around �0:06.
-0.04

V1

0.80.60.40.20

0.01

0

-0.01

-0.02

-0.03

-0.05(b) 2D plot of (6.30) at V2 = 7 for C =500 with minimum at around �0:055.

V1

0.40.30.20.10

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0() 2D plot of (6.30) at V2 = 7 for C =5400 with minimum at 0. 0.060.040.020

1.11

1.1

1.09

1.08

1.07

1.06

1.05

V1

0.10.08(d) 2D plot of (6.30) at V2 = 7 for C =105 with minimum at around +1:1046Fig. 6.5: Plots of (6.30) for model A: Positive Casimir energy of the ghost �elds anuplift the AdS vauum to dS one only at an undesirably large values of C.



6. KKLT AdS vauum and Casimir energy. 92

V1

-17.5

-18

0.8

-18.5

-19

0.60.40.20(a) 2D plot of (6.30) at V2 = 7 for C =105 with minimum at around �19:3. V1

0.140.12

-8.2

-8.3

0.1

-8.4

-8.5

0.08

-8.6

-8.7

0.06

-8.8

0.040.020(b) 2D plot of (6.30) at V2 = 7 for C =106 with minimum at around �8:83.

V1

0.080.060.040.020

0.6

0.5

0.4

0.3

0.2

0.1

0() 2D plot of (6.30) at V2 = 7 for C =181� 104 with minimum at 0.
2.2

2.15

2.1

2.05

V1

0.040.030.020.010

2.3

2.25

(d) 2D plot of (6.30) at V2 = 7 forC = 2� 106 with minimum at around+2:055Fig. 6.6: Plots of (6.30) for model B.



6. KKLT AdS vauum and Casimir energy. 936.5 summaryWe made use of the gaugino ondensate superpotential alulated in the previ-ous hapter and onstruted two models. In eah of them we add another non-perturbative term with a ux term. Both models lead to AdS minima whih needto be raised to dS minima by some extra e�et. The ghosts assoiated to thegravitino �eld have a positive vauum energy whih may be helpful in obtainingdS minima. We start alulating these positive vauum energy of the ghost �eldsin the next hapters.



7. 5D REDUCTION OF THE GRAVITINO7.1 IntrodutionThis hapter and the next one disuss the Casimir energy ontribution for thegravitino �eld. In this hapter we make a 5D redution to the gravitino �eldstarting by performing the gauge �xing and applying the BRST transformation.This gives two new ghost �elds [150, 151℄. We then perform the dimensionalredution for these three �elds and express the boundary onditions in terms ofthe gaugino ondensates. In the next hapter we alulate the Casimir energyontribution from the gravitino and ghost �elds in at and urved spaes.The subjets of Gauge �xing and dimensional redution for the gravitino �eldare interesting on their own. Dimensional redution is a neessary step that mustbe performed to reah the e�etive theory, while gauge �xing is required whenquantizing a �eld theory with gauge symmetry. Previous work on gauge �xing forthe 11D gravitino has been done by Luki and Moore [152℄, but most of the workpresented in this hapter is original researh done in ollaboration with Prof. IanG. Moss.We now start from the 11D gravitino ation (5.33) and try at �rst to simplifyit by making the following rede�nition I = �I � 19�I ��J�J� (7.1)Then  I = �I + 19 ��J�J��I (7.2)This means �I I = �29�I�I ;  I�I = 29�I�I (7.3)



7. 5D redution of the gravitino 95With the help of the identities derived in appendix (B) for the produts of gammamatries, we �nally getLRS = 12�211 ��I�JDJ�I + 94( I�I)(�JDJ)(�K K)� : (7.4)This agrees with Luki and Moore [152℄. For the terms ontaining the �eld strengthGPQRS, using the same rede�nition for  I , we get the total Lagrangian asL = �I  �JDJ � p296 GPQRS�PQRS!�I + p24 GPQRS�P�QR�S (7.5)�94( I�I) �JDJ + p232 GPQRS�PQRS! (�K K):The full result does not agree with Luki and Moore [152℄. We would like to removethe �I I term using a gauge �xing funtion. In order to ahieve this task, we aregoing to use the BRST mehanism whih will result in two new ghost �elds.7.2 A review to the BRST formalism for the ase ofeletromagnetismWhen using the path integral formalism to generate propagators, one faes a dif-�ulty due to gauge freedom. For example, for the generating funtionalZ = Z DA�ei R Ldx; (7.6)with L invariant under gauge transformations A� ! A� +r��, the integration istaken over all A� inluding those that are related only by a gauge transformation.This gives an in�nite fator in Z and problems for the Green's funtions obtainedby the funtional di�erentiation of Z. The simplest solution is to �x a partiulargauge suh that the integral over A� doesn't inlude values related by the gaugetransformation. This an be done simply by imposing a Lorentz gauge onditionr�A� = 0, and inluding the gauge �xing term (for general �)Lgf = ��2 (r�A�)2 (7.7)



7. 5D redution of the gravitino 96The total Lagrangian now beomesL = Lg + Lgf ; (7.8)where Lg = �14F��F ��. The ase for � = 1 is alled Feynman gauge.Ensuring that the physis of any gauge theory doesn't depend on the hoie ofthe gauge �xing terms is a basi requirement that must be ful�lled. To on�rm thatthe addition of the gauge �xing terms doesn't hange the theory we an follow theBRST approah and ensure that the BRST symmetry is not broken. The BRSTapproah is based on the addition of extra �elds, alled ghosts, to the theory whihanel any extra degrees of freedom introdued by the gauge �xing. We obtainthe BRST transformation by replaing the gauge parameter with a new �eld andadding extra terms to the ation. So, under BRST symmetry, the variation of thewave funtion  and A� iss = ig sA� = r�; (7.9)where  an antiommuting salar. However, the variation of the gauge �xing termwill not vanish sLgf = ��(r�A�)r2: (7.10)We an anel it by adding another term for the ghost �eld,Lgh = r2: (7.11)where s  = 0; s = �(r�A�): (7.12)The total ation then will beI = � Z d�(x)(Lg + Lgh + Lgf ): (7.13)The BRST transformations must satisfy the nilpoteny restrition s2 = 0. Thisonly happens when the ghost �elds satisfy r2 = 0. We an remove this restrition(r2 = 0) by introduing a new ghost �eld (alled an antighost) b. The ompleteset of transformations then issA� = r� s  = 0 s  = ib s b = 0: (7.14)



7. 5D redution of the gravitino 97The gauge �xing Lagrangian whih is invariant under this symmetry isLgf = �ib(r�A�)� 12�b2: (7.15)In the Landau gauge (�!1), b resembles a Lagrange multiplier. We an integrateb out of the theory to reover (7.13).7.3 BRST symmetry for 11D Rarita-Shwinger FieldNow we are going to arry out the same proedure for the 11D Rarita-Shwinger La-grangian (7.5). While, for the ase of eletromagnetism, the gauge �xing term de-pended on r�A� and the BRST transformation of the vetor �eld was sA� = r�,the gauge �xing ondition here depends on �I I and the BRST transformation ofthe fermion �eld is s I = DI�, with � a ghost. An extra ompliation in this aseis that the gauge �xing Lagrangian is not simply the square of the gauge �xingterm, sine now we plae an operator in between to math (7.5), i.e.LGF � 94( I�I) �JDJ + p232 GPQRS�PQRS! (�K K): (7.16)As we will see, this will lead to two ghost �elds, instead of one. To illustrate thiswe start by realling the usual supersymmetry transformation for the 11D super-gravity (BRST transformations are the same as supersymmetry transformationsbut with the parameter � refers to a ghost �eld)ÆeÎ J = 12 ���Î J (7.17)Æ I = DI(
̂)� + p2288 ��IJKLM � 8ÆIJ�KLM� �ĜJKLM (7.18)ÆCIJK = �p28 ���[IJ K℄: (7.19)where CIJK is a three-form whih an be dualized to a salar. The total La-grangian is Ltotal = L + LGF + L� and we require sLtotal = 0. Similar to (7.15),



7. 5D redution of the gravitino 98the gauge �xing Lagrangian whih is invariant under BRST symmetry isLGF = 92b �JDJ + p232 GPQRS�PQRS! (�K K) (7.20)� 94b �JDJ + p232 GPQRS�PQRS! b:For the ghost �eld, L� = � �JDJ � p2288GPQRS�PQRS! �: (7.21)The variation givessLGF = 92b �JDJ + p232 GPQRS�PQRS! (�Ks K) (7.22)= 92b �JDJ + p232 GPQRS�PQRS! �JDJ � p2288GPQRS�PQRS! �sL� = �92b �JDJ + p232 GPQRS�PQRS! �JDJ � p2288GPQRS�PQRS! �:Where we used s(�K K) =  �JDJ � p2288GPQRS�PQRS! (7.23)s� = �92b �JDJ + p232 GPQRS�PQRS!sb = sb = s� = 0:Note s2 = 0, and sLGF + sL� = 0 (7.24)Equation (7.20) ould be rewritten asLGF = �94 �b� � � �JDJ + p232 GPQRS�PQRS! (b� � ) (7.25)+ 94 � �JDJ + p232 GPQRS�PQRS!� 



7. 5D redution of the gravitino 99The new theory now has extra �elds (antighosts or anti�elds) b and b whih areommuting variables, so we shall integrate these �elds out in the path integral,Z db db ei R (L+LGF+L�) = det1=2 �JDJ + p232 GPQRS�PQRS!� (7.26)ei R L+L�+ 94 ���JDJ+p232 GPQRS�PQRS�� Replae the determinant by a new �eld ,det1=2 �JDJ + p232 GPQRS�PQRS! = Z d d ei R ��JDJ+p232 GPQRS�PQRS� (7.27)The � terms in (7.25) anel the � terms in L . ThereforeLtotal = L� + L� + L; (7.28)where L� = �I  �JDJ � p296 GPQRS�PQRS!�I + p24 GPQRS�P�QR�S (7.29)L =  �JDJ � p232 GPQRS�PQRS!  (7.30)L� = � �IDI � p2288GPQRS�PQRS! � (7.31)The additional ghost terms (7:30) and (7:31) here make very important on-tributions to Casimir energy stabilization. The importane of the `ghost' part isthat they give a positive sign for the vauum energy (whih leads to a repulsivefore) while the real fermions (as we have seen before) give a negative sign for thevauum energy. 7.4 Redution to 5 dimensionsRedution to 5D means that we are going to use the 5D Einstein frame. Themetri (5.9) will then be written asds2 = V �2=3 �eg��dx�dx��+ V 1=3 �egabdxadxb + egabdxadxb� : (7.32)



7. 5D redution of the gravitino 100where egab is the Calabi-Yau metri. The gamma matries are given by�� = V �1=3e� 
 11; �a = V 1=6e5 
 ea and �5 = V �1=3e5 
 e7 (7.33)For raised indies,�� = V 1=3e� 
 11; �a = V �1=6e5 
 ea and �5 = V 1=3e5 
 e7 (7.34)The metri (7.32) also impliesqjg(11)AB j = V �2=3qjeg(5)�� j: (7.35)Here, we will inlude some bakground values of the �eld strength G, so that theterm �PQRSGPQRS is�PQRSGPQRS = 4V �1=611
 e7eabGabz + 6V �2=311
 eabdGabd; (7.36)where Gabd = �3 (egaegbd � egadegb) : (7.37)We use the ansatz for the gravitino�� = V �1=6�+� 
 u+ + V �1=65��� 
 u� (7.38)where u� are ovariantly onstant spinors on the Calabi-Yau spae. The onjugatespinor is �� = (V �1=6�+� 
 uy+ � V �1=65��� 
 uy�)V 2=3 (7.39)The ovariant derivative ating on spinors of the form (7.38) redues to�JDJ ! V 1=3 (� 
 11) �J eDJ : (7.40)The fator V �1=6 in (7:38) has been hosen to anel the V 's in the kineti termsin the �eld equations. All other terms will have V 's raised to some power, as wewill see.



7. 5D redution of the gravitino 101After making use of the identities in appendix B.4, the Lagrangian (7.28) re-dues to the 5D LagrangianL� = 12�11 ���+��JDJ�+� � ����JDJ��� �+ V �1=3 ��+��+� � �������+p224 V �1=6 ��+�5��� + ���5�+� �� ie"abGabz�p248 V �1 ��+��+� � ������ � egaegbdGabd# (7.41)L = 12�11 ��+��JDJ+� � ���JDJ�� �+ V �1=3 �+�+� � �����+p28 V �1=6 �+�5�� + ��5+� �� ie"abGabz�p216 V �1 �+�+� � ���� � egaegbdGabd# (7.42)L� = 12�11 ���+��JDJ�+� � ����JDJ��� �+ V �1=3 ��+��+� � �������+p272 V �1=6 ��+�5��� + ���5�+� �� ie"abGabz�p2144V �1 ��+��+� � ������ � egaegbdGabd# (7.43)where  =  y0. From the Lagrangian, we an derive the �eld equations for the�elds ���,��,��� as�JDJ�+� + V �1=3�+� + p224 V �1=65���ie"abGabz � p248 V �1�+�egaegbdGabd = 0(7.44)�JDJ��� + V �1=3��� + p224 V �1=65�+�ie"abGabz � p248 V �1���egaegbdGabd = 0(7.45)�JDJ+� + V �1=3+� + p28 V �1=65��ie"abGabz � p216 V �1+�egaegbdGabd = 0(7.46)�JDJ�� + V �1=3�� + p28 V �1=65+�ie"abGabz � p216 V �1��egaegbdGabd = 0(7.47)�JDJ�+� + V �1=3�+� + p272 V �1=65���ie"abGabz � p2144V �1�+�egaegbdGabd = 0(7.48)



7. 5D redution of the gravitino 102�JDJ��� + V �1=3��� + p272 V �1=65�+�ie"abGabz � p2144V �1���egaegbdGabd = 0(7.49)These equations ould be greatly simpli�ed by removing the `mass' term ontaininge"abGabz by a ertain resaling, as we will see later.7.4.1 Boundary onditionsWe now need boundary onditions for the modes. We take the following boundaryonditions on the hidden brane (see setion 5.1)(P� � ��P+)�� = 0; (7.50)where P� = 12 (11
 11� e5 
 e7) : (7.51)We assume ��ABC� / e"ab, then� = 196��ABC��ABC = 12CI; (7.52)where I = � i485 
 �e"abeab + e"abeab� (7.53)The onstant C is related to the gaugino ondensate � = CV �1=22 (see hapter 6).Substituting from (7.38), ( 7.51) and (7.52) into (7.50), taking "ab"ab = 48, weget the boundary onditions P (4)� �+� � iC�2 P (4)+ ��� = 0 (7.54)P (4)+ ��� � iC�2 P (4)� �+� = 0 (7.55)where P (4)� = (1�5). We assume that the boundary onditions on the visible braneare untwisted (C = 0), while they are twisted on the hidden brane where there isa gaugino ondensate. We would like to ompare these boundary onditions withthe one we used for the twisted fermions alulations in hapter 4,P�	 = 0; (7.56)
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Fig. 7.1: The twisted boundary onditions on the visible and hidden brane with thediretion of n taken outward.where P� = 12 (1 + ��5). Let11 = 0� 1 00 1 1A ; I = 0� 0 11 0 1A ; J = 0� 0 �ii 0 1A ; (7.57)then � ould be expressed as � = os � 11 + iJ sin � (7.58)De�ne P (5)� = 12(1� 5), then (7:56) beomes12 (1 + os � 11 + iJ sin � )P (5)� 	+ 12 (1� os � 11� iJ sin � )P (5)+ 	 = 0 (7.59)Then�os2 �2 11 + iJ sin �2 os �2�P (5)� 	+�sin2 �2 11� iJ sin �2 os �2�P (5)+ 	 = 0 (7.60)Multiplying both sides by os2 �2 � i sin �2 os �2 , noting that J2 = 1 we �nally reahP (5)�  � i�tan �2� JP (5)+  = 0 (7.61)



7. 5D redution of the gravitino 104Comparing with (7.54), we get the relationship between the angle � in the twoboundary onditions as tan �2 = C�2 (7.62)This allows us to express � in terms of the ondensates,� = 2 tan�1�C�2 � (7.63)This equation tells us that the Gaugino ondensates on the hidden brane leadsto a non-vanishing � whih breaks supersymmetry. When C vanishes, � vanishesand supersymmetry is retained.7.5 SummaryWe have reviewed the BRST formalism and made use of it to remove the �I Iterm using a gauge �xing funtion. This proess gave two ghost �elds whih areimportant for dealing with the stabilization topi. We then performed a dimen-sional redution for the total 11D Lagrangian to 5D and got the 5D �eld equationswhih an be simpli�ed by eliminating the mass term whih we do in the nexthapter. We ended by expressing the SUSY breaking parameter � in terms ofthe ondensate using the twisted boundary onditions of the improved heterotiM-theory.



8. GRAVITINO AND GHOST FIELD VACUUM ENERGIES8.1 Eliminating the `mass' termGoing bak to setion (7.4), we would like to �nd eigenmodes for the �elds ���,�� and ��+�. This would be easier if we ould omit the `mass' term ontaininge"abGabz. We an do this by resaling �� in the gravitino Lagrangian, but therewill be a prie beause we will have a modi�ed boundary ondition, as we will see.Before we do this, we reall the two ansatz�e for the uxGabd = �3 (egaegbd � egadegb) ; (8.1)Gzab = �(�z�)e"ab: (8.2)We now start from L� = �I  �JDJ � p296 GPQRS�PQRS!�I (8.3)The mass term ould be written asGPQRS�PQRS = 4 G�ABC���ABC + 6 Gabd�abd (8.4)where G�ABC and Gabd are 5D and 6D objets respetively. The fator 4 omesbeause we have four equal terms with four di�erent arrangements for the index�, and the fator 6 for the six equal terms with six di�erent arrangements for theholomorphi indies a and b. The following resaling an anel the G�ABC termin the �eld equations �JDJ � 4p296 G�ABC���ABC � 6p296 Gabd�abd!�� (8.5)= S�1 �JDJ � 6p296 Gabd�abd!S��:



8. gravitino and ghost �eld vauum energies 106This means we resale �� into �0� = S��, withS = ei� (8.6)The derivative of the resaled �0� givesS�1�JDJ(S��) = i(�JDJ�)�� + �JDJ�� (8.7)Whih means that we require for (8.5) that�4p296 G�ABC���ABC = i(�JDJ�) (8.8)To satisfy this with (8.2) and (7.53), we hoose� = 2p2�I: (8.9)Using the expression for Cab in (5.20), the value of � on the hidden brane is� = ��C2 I: (8.10)Note that I2 = 1. This ahieves the required simpli�ation of (8.5). However, theboundary ondition (7:50) beomes(P� � ��P+)S�1�0� = 0: (8.11)To obtain the new boundary onditions we substitute from (8.6) and (8.9) into(8.11) with � = C2 I. This �nally givesP� 1� itan �tan�1( �C2 )� �C2 �1 + �C2 tan( �C2 ) I!�0� = 0: (8.12)For small C�, the twist part in (8.12) will be anelled up to order (C�)3 and weget the untwisted boundary onditions P��0� = 0. This means, that after resalingthe gravitino mass, the Casimir energy for the graviton multiplet is given by theuntwisted value VC = 0. The situation, however, is expeted to be di�erent forthe ghost �elds beause of the di�erent oeÆients in the mass term. We nowuse the same resaling in (7.30) and (7.31), but for the  and � �elds we have to



8. gravitino and ghost �eld vauum energies 107take � = 3�CI=2 and � = �CI=6 respetively. This gives the twisted boundaryonditions P��1 + i 4�C4 + 3�2C2 I� 0 = 0 (8.13)P��1 + i 4�C12 + �2C2 I� �0 = 0 (8.14)to leading order in �C. Comparing with (7:61) we get the vauum energy for the��eld and ���eld, alulated as the di�erene between the twisted and untwistedases, as (reall eq. (4.58)) �V = 3C2�216�2l45 �(3) (8.15)�V� = C2�2192�2l45 �(3) (8.16)with �(3) = 1:2020569032.We now have a formula for the onstant C whih appeared in the disussion ofradion stabilization in setion 6.3. So far, we have alulated the Casimir energyfor the twisted fermions between the two branes. In hapter 5 we wrote down theformula for the gaugino ondensate potential energy. The aim now is to see if theaddition of the vauum energy of the ghosts  and � an help in stabilization. Cis related to the ondensates, though C � e��V2 . This means we have the ghostvauum energies in terms of l5 and V2 as�V(l5; V2) = 3e�2�V2�216�2l45 �(3) (8.17)�V�(l5; V2) = e�2�V2�2192�2l45 �(3) (8.18)So, in at spae, the twisted ghost �elds lead to a positive vauum energy whihleads to a repulsive fore. In the following setion we turn to the ase of warpedbulk and alulate the ghost vauum energies in urved spae.8.2 Warped bulk aseFor warped bulk, the distane l5 is given byl5 = Z z2z1 � zz1�(1=5) = 56z2�� 15 (1� � 6=5): (8.19)
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8. gravitino and ghost �eld vauum energies 109Comparing the RHS of these equations with the fermion mass M = �V �1=p2 in(4.22), we get  = 1=6;�13=2;�1=2 for the ��, � and �� �elds respetively. Thisleads to the following values for the Bessel funtion index�� = ��25 ; 35� ; � = ���45 ; 95� ; �� = ��15 ; 45� : (8.26)The vauum energy an then be alulated for those �elds using� 0�(0) � � 18�2 �G�(�)z42 ; � 0C(0) � + 18�2 �G(�)z42 ; � 0�(0) � + 18�2 �G�(�)z42 ;(8.27)where �G�(�) = Z 10 dxx3 ln ����P �� (x)P 0a (x)P ��aP 0(x) ���� (8.28)�G(�) = Z 10 dxx3 ln ����P � (x)P 0a (x)P �aP 0(x) �����G�(�) = Z 10 dxx3 ln �����P �� (x)P 0a (x)P ��aP 0(x) �����The funtions P 0a and P 0 are de�ned in hapter 4, and���� P ��(x)P ��a(x) ���� = hC �I 35 (�x)K 35 (x)� I 35 (x)K 35 (�x)� � iS �I 35 (�x)K 25 (x) (8.29)+I 25 (x)K 35 (�x) + 2� sin�25��K 35 (�x)K 35 (x)�� = h�CI 35 (x)K 35 (�x)iSI 25 (x)K 35 (�x)�i���� P � (x)P �a(x) ���� = hC �I 95 (�x)K 95 (x)� I 95 (x)K 95 (�x)� � iS �I 95 (�x)K� 45 (x) (8.30)+I� 45 (x)K 95 (�x) + 2� sin��45��K 95 (�x)K 95 (x)�� = h�CI 95 (x)K 95 (�x)iSI� 45 (x)K 95 (�x)�i����� P �� (x)P ��a(x) ����� = hC �I 45 (�x)K 45 (x)� I 45 (x)K 45 (�x)�� iS �I 45 (�x)K 15 (x) (8.31)+I 15 (x)K 45 (�x) + 2� sin��5�K 45 (�x)K 45 (x)�� = h�CI 45 (x)K 45 (�x)iSI 15 (x)K 45 (�x)�i



8. gravitino and ghost �eld vauum energies 110where the regularization proess goes as has been done in hapter 4.The integrals (8.28) for the gravitino and its ghosts are exatly the same integral(4.97) we have got in hapter 4 for the spin 1=2 twisted fermion ase. Aordingto what we found in this hapter, the gravitino integral vanishes. For the ghostintegrals, the values of these two integrals are tabulated in table (8.1) and plot-ted in Fig.(8.3). The analysis following from Fig.(8.3) is similar to the spin 1=2twisted ase where the ghost Casimir energy beomes stronger as the two branesare getting loser. For small brane separation, the integral is large and positive andthe e�etive vauum energy is large and positive as well. The total ghost vauumenergy then is � 0gh(0) � + 18�2 �G(�) + �G�(�)z42 ; (8.32)Fig. (8.2()) shows no minimum for (8.32). The 5D e�etive potentials for theghosts  and � are�V = 18�2 ��G�(�)z42 + B(�)z42 �� �4(C � 1)4�2 ln(�Rz2)z42 (8.33)�V� = 18�2  �G��(�)z42 + B�(�)z42 !� �4(C � 1)4�2 ln(�Rz2)z42 (8.34)where B(�) is de�ned as in hapter 4.In terms of z2 and � , Eqs. (8.17) and (8.18) an be expressed as�V(z2; �) = 3�2�(3)16�2 e��5�3p2 z2��1=5z42(1� �)4 (8.35)�V�(z2; �) = �2�(3)192�2 e��5�3p2 z2��1=5z42(1� �)4 (8.36)The sum of (8.35) and (8.36) is shown in Fig. 8.2(a). The warped ase tends tothe at ase as � tends to 1. 8.3 SummaryThe mass term we have got in the �eld equations in the previous hapter an beeliminated by resaling the gravitino �eld. However, this resaling modi�es the
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8. gravitino and ghost �eld vauum energies 113boundary onditions and leads to zero vauum energy of the gravitino but notfor the ghost �elds. We then alulated the ghost vauum energy for the at andurved spae making use of our general alulations in hapter 4.



9. CONCLUSION AND FURTHER WORK9.1 ConlusionThe �nal onlusion of the work done in this thesis an be summarized in thefollowing main points:� The total bulk Casimir potential, alulated in the framework of the improved5D heteroti M -theory, does not have a minimum and it is unable alone tostabilize the radion �eld. Other bulk ontributions must be onsidered toget a stabilization.� Considering some non-perturbative e�ets, like gaugino ondensates and oth-ers, an AdS supersymmetri minimum an be obtained whih has to be raisedto a dS stable minimum by adding a non-supersymmetri ontribution. Thenon-supersymmetri ontribution we onsidered in this thesis was the ghost�eld vauum energy.� The dimensional redution of the gravitino �eld to 5D gives rise to two newghost �elds. The boundary onditions of the 5D redued gravitino �eld anbe expressed in terms of the gaugino ondensate on the hidden brane.� The gravitino �eld � gives a zero ontribution to the Casimir energy whenthe warping is small, and only its ghosts ontribute to the Casimir energy.The twisted ghost �elds lead to a positive vauum energy.� The ontribution of the ghosts vauum energy was too small to uplift theAdS minimum to a dS one in the ase we examined and when the warpingis small.



9. Conlusion and Further Work 1159.2 Further WorkThe following work is reommended as a follow-up to this study:� We an make more use of the deeply rih struture of the 5D redued theoryby studying the ontributions from other hypermultiplets and the gravipho-ton to the bulk Casimir energy.� For the gravitino and moduli masses, more an be done regarding the phe-nomenology. The MSSM soft masses are ontrolled by the F-terms, and thenone expets the soft masses to be of the order of the gravitino mass. Themoduli masses are found from derivatives of VSUGRA at the minimum andare also within one-two orders of magnitude from m3=2 [147℄. . .� In hapter 5, it remains to be seen how the other ingredients of low energyheterotiM -theory, whih we have negleted, enter into the mix, for example�ve-branes and anti �ve-branes may play a role in a realisti model. Somefeatures of the present alulation may be helpful in these generalisations.Expressing the superpotential in terms of other moduli systems like the �vedimensional S and T super�elds or the Calabi-Yau volumes V1 and V2 may behelpful. The inlusion of �ve-branes in the improved formalism for heterotiM -theory still remains to be developed.� It really looks interesting to investigate the possible relation that might existsbetween the gaugino ondensates we have studied in this thesis and the BoseEinstein ondensates, this an shed more light on the onnetion betweensuperuidity and high energy physis; for example super Yang-Mills theory[149℄. . .



APPENDIX



A. ENERGY, SCALES AND DIMENSIONSeV (eletron-Volt): The amount of energy gained by an eletron dropping througha potential di�erene of one volt, whih is 1:6� 10�19 joules.MeV (megaeletron-Volt): 106eV .GeV (gigaeletron-Volt) sale: 109eV .TeV (teraeletron-Volt) sale : 1012eV .Plank sale: 1:22� 1019GeV .Eletroweak sale: 102GeV .GUT sale: 1016GeV .Dimensions:Brane harge �: L�1.�24 = 8�G: L2.�25 = 8�G5: L3.�2n = 8�Gn: Ln�2.Bulk length sale �: L.Energy: L�1.ds2: L2.dnxpjgj:Ln, n is the number of dimensions.Rii salar R: L�2.osmologial onstant �: L�2.Potential (energy/unit volume): 1=L4.Moduli �elds: All moduli �elds are dimensionless and measure the form of theinternal manifold relative to the dimensionful quantities � and �.



B. SPINOR IDENTITIESB.1 Gamma matriesFlat spae Gamma matries satisfy��A;�B	 = 2�AB: (B.1)B.1.1 Identities for the produts of gamma matries�I1:::In�J1:::Jm = min(n;m)Xr=0 �nr��mr �(�1)nr�rr!Æ[I1[J1 : : : ÆIrJr�Ir+1:::In℄Jr+1:::Jm℄; (B.2)�I1:::In�J1:::Jm�I1:::In = min(n;m)Xr=0 �d�mn� r��mr �(�1)r+(m�1)n�n�J1:::Jm: (B.3)where �r = (�1)r(r+1)=2 = +;�;�;+ for r = 0; 1; 2; 3. In our 11D ase, this givesfor example �I�K = �IK + ÆIK; (B.4)�IJ�K = �IJK � 2ÆK [I�J℄;�K�IJ = �IJK + 2ÆK [I�J℄;�IJK�L = �IJKL + 3ÆID�JK℄;�L�IJK = �LIJK + 3Æ[IL�JK℄;Results for ontrations depend on the number of dimensions. In 11 dimensions,�IJK�K = 9�IJ ; (B.5)�L�LJK = 9�JK;�IJ�J = 10�I ;�J�J = 11:



B. Spinor identities 119B.2 Other 11D identities
�I�IJKLMP = 6�JKLMP ; (B.6)�IJKLMP�P = 6�IJKLM ;�I�IJKLMP�P = 7�JKLM ;�I�IJKLMP = ���JKLMP � �P�JKLM � 4�J�KLMP ;�I�IJKLM = ���JKLM � 4�J�KLM ;�JKLMP�P = �JKLM�� 4�JKL�P ;�KLMP�P = �KLM�� 3�KL�M :with � � �I�I . B.3 Rarita-Shwinger equationB.3.1 The pure fermioni termIn this appendix we derive Eq. (7.4) from (5.33). With the help of the 11D gammamatries identities (B.4), we an write I�IJKDJ K = �I�IJKDJ�K � 19�I�IJKDJ�K ��L�L� (B.7)+ 19 ��M�M��I�IJKDJ�K � 181 ��M�M��I�IJKDJ�K ��L�L�where we used (7.3). Using (B.4) and (B.5), we get19�I�IJKDJ�K ��L�L� = ��L�L� ��JDJ� ��K�K�� �JDJ ��K�K� ; (B.8)19 ��M�M��I�IJKDJ�K = ��I�I� ��JDJ� ��K�K�� ��I�I�DJ�J ; (B.9)181 ��M�M��I�IJKDJ�K ��L�L� = 109 ��I�I� ��JDJ� ��L�L� ;Inserting that in (B.7) yields I�IJKDJ K = �I�JDJ�I + 94( I�I)(�JDJ)(�K K): (B.10)



B. Spinor identities 120B.3.2 The term ontaining  with GThe Lagrangian isLG = p2192GJKLM � I�IJKLMP P + 12 J�KL M� (B.11)Making use of the identities (B.6), the �rst term is I�IJKLMP P = ��I + 19��I��IJKLMP ��P � 19�P�� (B.12)= ����JKLMP � �P�JKLM � 4�J�KLMP��P+ 23��JKLMP�P � 23�I�IJKLM�� 1427��JKLM�= �13� ��JKLM�� 4�JKL�M�� �P�JKLM�P� 4�J ��KLM�� 3�KL�M�+ 23��JKLM�+ 83�J�KLM�� 1427��JKLM�= ��P�JKLM�P � 527��JKLM�+ 12�J�KL�M :and the seond term is12 J�KL M = 12��J + 19��J��KL��M � 19�M�� (B.13)= 12�J�KL�M + 43��JKL�M � 43�J�KLM�� 427��JKLM�= 12�J�KL�M � 427��JKLM�:The Lagrangian then beomesLG = p2192GJKLM ���P�JKLM�P � 13��JKLM�+ 24�J�KL�M� : (B.14)B.4 Six dimensional identitiesThe ovariantly onstant spinors are denoted by u�uy�u� = 0; uy�u� = 1; ru� = 0; uy�abu� = 0; (B.15)uy�abu� = �i"ab; 7u� = �u�:



B. Spinor identities 121uy�abdu� = 16(gagbd � gadgb); uy�abdu� = 0; (B.16)uy�abu� = �gab; au+ = 0;abu� = �gabu�; abu+ = i"abu�; abu� = i"abu+;abu+ = 0; abu� = 0;abu+ = 2ga[b℄u+; aa = 6P+; aa = 6P�;P�u� = u�; P�u� = 0;Iu� = u�; Ju� = �iu�; Ku� = �u�:where "��Æ���Æ� = i5!; "��Æ���Æ = i4!�: (B.17)B.5 Five dimensional identitiesA useful antiommutation relation for the 5-dimensional �5 where �5 = N5 andN is 5D normal, f6N;6rg = �A�BNArB + �B�ANArB (B.18)= �2�rN + K2 � :



C. GEOMETRICAL CONVENTIONSC.1 Di�erential FormsA di�erential form of order r is a totally antisymmetri tensor of type (0; r). If vis a p�form and w is a q�form, thenv = 1p!va1:::apdxa1 ^ : : : dxap : (C.1)The wedge produt is de�ned as(v ^ w)a1:::abb1:::bq = (p+ q)!p!q! v[a1:::abwb1:::bq ℄: (C.2)This implies (v ^ w) = (�1)pqw ^ p: (C.3)The exterior derivative operator d is de�ned asd = dxa ^ �a (C.4)Then (dv)a1:::ap+1 = (p+ 1)�[a1va2 :::ap+1℄ (C.5)d(v ^ w) = dv ^ w + (�1)pv ^ dw (C.6)A p�form ! is losed if d! = 0 and exat if ! = d� = 0 for some globally de�nedp� 1 form �.C.1.1 Cartan equations and the urvature tensor formThe urvature omponents of the metri (3.15) has been alulated using Cartan'sstruture equations whih are T a = d�a + !ab ^ �b (C.7)
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ab = d!ab + !a ^ !b (C.8)For the torsion and urvature 2-form respetively. For the metrids2 = e�2����dx�dx� + dez2 (C.9)we get R5�5� = (�00 � (�0)2)g��; (C.10)R�� = (�00 � 4(�0)2)g��;R55 = 4(�00 � (�0)2);R = 8�00 � 20(�0)2:C.2 A review of omplex manifolds and K�ahler geometryIn analogy to the notion of a real 2k-dimensional manifold M whih is de�nedas a set of points that behaves loally like R2k, suh that 2k real parameters(x1; :::; x�; :::; x2k) are oordinates on M [34℄, we an de�ne a omplex q- dimen-sional manifold as a set of points that behaves loally like Cq. A omplex manifoldalways admits a hermitian metri [118℄. A Hermitian manifold is a omplex man-ifold with a preferred oordinate systems suh thatgab = g�a�b = 0: (C.11)The line element then beomes ds2 = 2ga�bdzadz�b: (C.12)On any Hermitian manifold, a real 2-form an be de�ned suh that! = iga�bdza ^ dz�b: (C.13)where !� is de�ned to be a set of 2k omplex oordinates where the index runsthrough the k holomorphi (unbarred) indies, then through the antiholomorphi(barred) indies. Now we an ome to the de�nition of a K�ahler manifold whih is



C. Geometrial onventions 124a Hermitian manifold whose 2-form is losed, i.e. d! = 0. In this ase ! is alledthe K�ahler form. That leads to the ondition�agb�� � �bga�� = 0; (C.14)whih is used also to de�ne a K�ahler manifold. Now, suppose that a Hermitianmetri g��� is given in terms of a salar funtion K byga�b = �a��bK (C.15)This metri learly satis�es the ondition (C.14) and hene it is K�ahler. Itan be shown that any K�ahler metri is loally expressed as (C.15). The salarfuntion K is alled the K�ahler potential of a K�ahler metri.Now, given a Rii tensor R�� of a K�ahler manifold, the Rii form is de�ned by< = Rabdza ^ dzb (C.16)The Rii form is losed and de�nes a non-trivial element 1(M) � <=2� whihis alled the �rst Chern lass. A ompat K�ahler manifold with vanishing �rstChern lass is alled a Calabi-Yau manifold. Equivalently, Calabi-Yau manifold isa K�ahler manifold with Rii at metri.C.2.1 Calabi-Yau spae and Hodge numbersCalabi-Yau manifolds have a ohomology groups struture that may be summedup by the so alled Hodge diamond 10 00 h1;1 01 h1;2 h2;1 10 h1;1 00 01
(C.17)



C. Geometrial onventions 125The Hodge numbers hp;q are the equivalent to Betti numbers for a real mani-fold. Formally, they are the dimensions of the respetive ohomology groups themanifold admits, i.e. hp;q = dim Hp;q: (C.18)So this diamond simply says that for a Calabi-Yau manifold we have:� A single (3; 0) Hodge number h3;0 = dim H3;0 = 1, This is the holomorphivolume form 
, and h3;0 = h0;3 = h0;0 = h3;3 = 1.� h1;0 = h0;1 = h0;2 = h2;0 = h2;3 = h3;2 = h3;1 = h1;3 = 0.� The values of the remaining Hodge numbers h1;1 and h2;1 depends on thepartiular hoie of the Calabi-Yau manifold.C.3 The tetrad formalismThe desription of gravity in terms of a metri tensor g�� is suÆient when thematter �elds, to whih gravity is oupled, are restrited to salars, vetors andtensors. But when gravity is oupled to spinor �elds, then the tetrad formulationof gravity is more onvenient. The tetrad eba� is onneted to the metri byg�� = �babb eba� ebb� (C.19)Where the indies �, �,... label general oordinates with basis dx� and ba, bb,::: labeloordinates in a loally inertial oordinate system whih we take as orthonormalframe. The Lorentz metri �babb = diag(+1;+1; :::;�1). We have then orthonormalbasis �eba = eba� dx�	 onstruted by the vielbein �eld. The vielbein dual e�ba is itsinverse so that eba� e�bb = Æbabb; (C.20)eba� e�ba = Æ��: (C.21)For the Calabi Yau metri in (5.9), we havegab = V 1=3egab: (C.22)



C. Geometrial onventions 126Hene eaba = V 1=6 eeaba; eaba = V �1=6 eeaba: (C.23)Sine, �a = eaba �ba: (C.24)we arrive at Eqs. (5.38) and (5.39) for the fators of V in the redution formulaefor the gamma matries.C.4 Embedding hypersurfaes and ADM (3 + 1) formalism in anutshell.For the sake of ompleteness, we summarize here the mathematial basis of theembedding hypersurfaes.A hypersurfae is an (n�1) dimensional (o-dimension one) submanifold � of ann dimensional manifoldM . In the ADM (Arnowitt, Deser and Misner) formalism,spaetime is deomposed into layers of three-dimensional spae-like hypersurfaes(slies), threaded by a time-like normaln� = (1;���)� : (C.25)where � and �� are the lapse funtion (de�nes the proper time between onseutivelayers of spatial hypersurfaes) and shift vetor (propagates the oordinate systemfrom 3-surfae to 3-surfae) respetively. The general spaetime metri is writtenas ds2 = (��2 + ����)dt2 + 2��dx�dt+ ��dx�dx�: (C.26)With �� is the indued spatial 3-metri on the hypersurfae. It is related to the4-metri via �� = g�� + n�n� . Another onept that is losely related to theindued metri is alled the projetion tensor ?�� and de�ned asg���� = Æ�� + n�n� � ?�� : (C.27)



C. Geometrial onventions 127Given any vetor V � 2 TP (M), the projetion tensor an projet it tangent tothe hypersurfae (that means orthogonal to n�):(?��V �)n� = 0: (C.28)Using n�,and assuming that the integral urves of n� are not geodesis ,we ande�ne a quantitiy alled 'the aeleration' asa� = n�r�n�: (C.29)Another quantity an be de�ned using n� whih is the extrinsi urvatureK�� . If the embedded slide is bent, the normal vetor n� hanges along eahoordinate. This is expressed by the non-vanishing of the ovariant four derivativer�n�. Then, the projetion of this derivative is the hange of the normal vetor foran in�nitesimal displaement within the surfae and de�nes the extrinsi urvaturetensor K�� = �?��?��n�;� (C.30)Projeting all indies of the 4D Riemann tensor onto the slie gives the Gaussequation (? denotes projetion over all free indies)?R(n+1)���� = Rn���� +K��K�� �K��K�� (C.31)Contrating of one index with the normal vetor and then subsequent projetionof the remaining indies gives the Codai equation?R(n+1)���� = D�K�� �D�K�� (C.32)Finally, Einstein equations ould be written as Hamiltonian and momentumonstraints:R(n) +K2 �K��K�� = 16�� Hamiltonian onstraint (C.33)r� (K�� � ��K) = 8�ja momentum onstraint (C.34)Where � and ja are matter terms given by projetions of the stress energy tensorT��.



C. Geometrial onventions 128Glossary of Terms
(Anti)de Sitter (AdS) a onstant-urvature spaetime with maximal symmetry de-sribing a positive (negative) osmologial onstant.AdS/CFT the onjeture of the equivalene between the gravity (string theory)on an AdS spae and a CFT on its boundary.Axion the RR salar �eld of type IIB string theory that ombines with the dilatoninto a omplex salar ontrolling the Sl(2; R) symmetry of the theory.�-funtion a funtion giving the running of the oupling onstant with the saleof the theory.BPS solution a speial type of supersymmetri solution.Braneworld senarios models in whih matter �elds are on�ned to a hypersurfaewithin a higher-dimensional geometry.BRST transformations (Behi-Rouet-Stora-Tyutin) a fermioni invariane of theextended ation. It is usually represented by a di�erential s.Calabi-Yau a geometrial spae with speial properties (ie, a omplex strutureand vanishing Rii tensor) normally used for ompati�ation of string/M-theory down to four/�ve dimensions.CFT (Conformal Field Theory) a onformally-invariant �eld theory.Chern-Simons forms arise in gauge theories, although they are not themselvesgauge invariant.Compati�ation a proedure to redue the number of dimensions by onsideringsome of them to be ompat and very small.



C. Geometrial onventions 129Conformal symmetry the group of transformations that leaves angles invariant.D = 11 SUGRA eleven-dimensional supergravity theory onsidered as low-energylimit of M-theory.D-brane a speial ase of a p-brane on whih open strings an end.Dilaton a salar �eld in string theory whose vauum expetation value ontrolsthe string oupling onstant gS.Domain wall topologial defet of o-dimension one, ie, an objet separating thespae (along one oordinate) into two disjoint regions.Duality the property of two (apparently) di�erent theories whih desribe the samephysis for di�erent values of their parameters.Eletroweak theory a theory uni�es the eletromagnetism and the weak intera-tions. The the uni�ation energy is of order of 102 GeV above whih theymerge into a single eletroweak fore. Its gauge group is SU(2)� U(1).Fixed-point solution SUGRA solution with onstant salars.Gaugino the superpartner of the gauge boson.Gaugino ondensate Non-zero vauum expetation value of the gaugino.Gauged SUGRA theory of SUGRA ontaining (at least) some gauge vetors thatserve to gauge some rigid symmetry of the ungauged version.Gauge �xing proedure followed when eliminating undesired gauge degrees of free-dom from a theory.Ghost ommutative fermion or spin 12 boson.Grand uni�ation theory (GUT) theory that would inorporate the strong andeletroweak fore within on single theory.Hadrons strong interating partiles (e.g., quarks, protons, neutrons, et.).



C. Geometrial onventions 130Heteroti string onsistent losed string theory supporting 16 superharges andgauge group SO(32) or E8 � E8.Hidden brane the brane at whih SUSY breaking happens.IR region (infrared) desribes the behavior of a theory at large distanes (smallenergies).Israel Juntion ondition the disontinuity in the extrinsi urvature aross a hy-persurfae is related to the energy momentum tensor on that hypersurfae.M2-brane fundamental objet of M-theory extended in two spatial diretions.M5-brane the magneti dual of a M2-brane.Moduli spae the spae parametrized by the salars (moduli) of the theory.Modulus stabilization getting a minimum for the modulus potential.Majorana spinors spinors onstrained by a reality ondition.Majorana-Weyl spinors spinors with both Majorana and Weyl properties.M-theory a quantum theory believed to desribe all �ve string theories and D = 11SUGRA as di�erent limits.Orbifold The resultant quotient spae � � M=G with M is a manifold and G isa disrete group ats on M . The resultant spae � has some singular pointsat whih we loate the brane with matter (reall israel juntion ondition).p-form a �eld desribed by a skew-symmetri tensor of rank p.QCD (Quantum Chromodynamis) quantum �eld theory of the strong intera-tions, based on the gauge group SU(3).QED (Quantum Eletrodynamis) unifying theory of weak and eletromagnetiinterations, based on the gauge group SU(2)� U(1).



C. Geometrial onventions 131R-symmetry automorphism group of extended SUSY that rotates superhargesinto eah other.RS senario (Randall-Sundrum) a partiular realization of braneworlds with one(or two) 3-brane(s) embedded in a �ve-dimensional spae.S-duality a duality relating the strong oupling regime of a theory with the weakoupling desription of another, or the same, theory.Self-duality property of some p-forms of having self-dual (under Hodge duality)�eld strength, realized in D = 2, D = 6 and D = 10 (for spaes withMinkowski signature).Standard Model (still inomplete) a theory unifying all non-gravitational fores(strong and eletro-weak). Its symmetry group is U1 � SU(2) � SU(3) andit is still inomplete.String theory a theory of elementary partiles where the fundamental onstituents(e.g., the eletron, the photon, et.) are desribed as di�erent vibrationmodes of a fundamental string.Supergravity a supersymmetri version of general relativity (loal supersymmetryinludes gravity).Superpotential funtion whose square and derivative squared determines the po-tential of a theory.Supersymmetry a symmetry onneting bosons to fermions and vie versa. Itimplies the existene of a superpartner for eah known elementary partile.Susy breaking a neessary step from whih a non-supersymmetri theory is ob-tained from a supersymmetri theory.Type I string string theory of losed and open strings supporting 16 superharges.Type IIA string string theory of losed strings ontaining N = 2 MW spinors (32superharges) of opposite handedness.



C. Geometrial onventions 132Type IIB string string theory of losed strings ontaining N = 2 MW spinors (32superharges) with the same handedness.UV region (ultraviolet) desribes the behavior of a theory at small distanes (largeenergies).Visible brane The brane on whih we are living, also alled the TeV brane.weak nulear fore one of the four fundamental fores, best known for mediatingradioative deay.Weyl spinors spinors restrited via a hirality projetion.Yang-Mills theory Non-abelian Gauge theory based on the SU(N) group. In otherwords, if the gauge group of the theory is non-ommutative then the gaugetheory is alled Yang-Mills theory.



C. Geometrial onventions 133Notation
Ation S, SEH, SYM , et.Antisymmetri rank-3 �eld C���.Bessel funtions J�, Y�, I� and K�.Beta funtion �(g).BRST di�erential s.Calabi-Yau metri 
AB or gab.Calabi-Yau volumes V , V1 and V2.hirality operator P� (untwisted) and P�� (twisted).Condensate sale �.Cosmologial onstant �.Coupling onstants g, gs, �G (for GUT) and �(in RS Svis)Covariant derivative r�, D�.Covariantly onstant spinors u�, A� and B�.Dilaton �.Dira operator D.Energy-momentum tensor T�� .Einstein tensor G��Extrinsi urvature K�� .



C. Geometrial onventions 134Field strength G����Gamma matries � and .SUSY breaking parameters � and �.Ghosts  and �.Gravitino �� and  �.Graviton ea�, g�� , h�� .K�ahler metri KIJ .K�ahler potential K.Lagrangian density L.eletromagneti vetor A�.Planklength lp � 10�33 mmass Mp � 1019 GeVRadion �.Renormalization sale �R.Rii salar R.Salar potential V (�).Superpotential W .Super�elds S and T .Vauum energy VC(0), VC(�) �V and �V�.Vielbeins e�a.



C. Geometrial onventions 135Wave funtion 	 and  .Zeta funtion �.
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