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Abstract 

 

Drug induced liver injury (DILI) due to the isoxazolyl β-lactam antibiotic, 

flucloxacillin, is a rare idiosyncratic adverse drug reaction. The underlying mechanism 

remains unclear but a recent association with the human leukocyte antigen class I allele, 

HLA-B*57:01, indicated a possible T-cell mediated reaction. This study aimed to 

identify further genetic determinants conferring susceptibility to this form of DILI and 

to study metabolic and immune mechanisms of this toxicity. 

Flucloxacillin DILI cases (n=150) and matched population controls (n=282) were 

genotyped for HLA-B*57:01, confirming the previous association with disease (OR = 

40.1, 95% CI 22.7 – 70.7). Cases negative for HLA-B*57:01 (n=26) were genotyped for 

HLA-B alleles and this analysis showed a borderline significant association with HLA-

B*13:02 (p = 0.0376). Genotyping of all cases for additional immune-related candidate 

genes such as KIR3DL1/KIR3DS1 and for variants detected in limited exome 

sequencing studies, performed by others, resulted in confirmation of a significant 

difference in frequency compared with community controls (n=235) for a Caspase-5 

polymorphism (rs45483102) (OR = 2.39 95% CI 1.22 – 4.68).  

Reporter gene studies were performed to further investigate the ability of flucloxacillin 

to act as a ligand for the xenobiotic-sensing nuclear receptors, pregnane X receptor 

(PXR) and constitutive androstane receptor (CAR). No flucloxacillin activation of CAR 

was observed but flucloxacillin was confirmed to be a PXR ligand and studies 

comparing PXR activation by the isoxazolyl penicillin’s cloxacillin and dicloxacillin 

showed dicloxacillin to be a stronger PXR agonist than flucloxacillin. DILI cases due to 

cloxacillin (n=3) and dicloxacillin (n=2) were found not to possess the HLA-B*57:01 

allele suggesting that the mechanism for DILI due to these drugs is different. 

Flucloxacillin metabolism pathways were studied using human liver microsomes, 

recombinant cytochrome P450 isoforms and rat B13/H cells which differentiate to a 

hepatocyte-like phenotype, with flucloxacillin penicilloic acid the major metabolite 

detected. Despite previous reports, formation of the metabolite 5'-hydroxymethyl 

flucloxacillin which was believed to be CYP3A4-mediated, could not be confirmed in 

any of the systems studied. 
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Preliminary studies on T-cell mediated responses to flucloxacillin, by exposure of 

peripheral blood mononuclear cells (PBMCs) from  HLA-B*57:01 expressing 

flucloxacillin-DILI patients and from HLA-B*57:01 positive and negative 

flucloxacillin-naïve donors to flucloxacillin, indicated increased expression of 

interferon-γ at the RNA level in 2 out of 3 of the patient samples but not in controls. 

This finding was generally consistent with reported findings by others. 

In summary, a novel HLA-B association involving some flucloxacillin DILI cases has 

been detected, HLA-B*57:01 does not appear to be an important risk factor for DILI 

due to other isoxazolyl penicillin’s and the ability to act as a PXR agonist appears to be 

a general feature of these penicillin’s so may not be directly relevant to the mechanism 

for flucloxacillin DILI. The confirmed association with caspase 5 may represent a minor 

additional risk factor for flucloxacillin DILI. 
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2 

 

1. Introduction 

 

1.1 Adverse Drug Reactions 

 

Adverse Drug Reactions (ADRs) are a common and significant cause of morbidity and 

mortality in healthcare facilities worldwide. In the UK it is estimated ADRs cause up to 

10 000 deaths each year and are a large financial burden to the NHS (Pirmohamed et al., 

2004). There is no standard definition of an ADR but the most widely used definition 

remains the 1972 World Health Organisation (WHO) defined ADRs as “any response to 

a drug that is noxious and unintended and occurs at doses used for the prophylaxis, 

diagnosis or therapy”. A more recent definition was proposed by Edwards and Aronson 

that aimed to include error as a source of an adverse event as well as taking into account 

the effect of the additional ‘inactive’ constituents of drugs and possible contaminants in 

medicines (Edwards and Aronson, 2000). 

ADRs that result in hospitalisation can occur in both outpatients, therefore being the 

cause of admission, or with  in-patients after hospital admission (Davies et al., 2009). A 

meta-analysis of 39 prospective studies by Lazarou et al put the total incidence of ADR 

hospitalisation at 6.7% with 2.1% occurring after hospital admission (Lazarou et al., 

1998). In the UK, a study of 19000 admissions found that ADRs were estimated to be 

responsible for 6.5% of hospital admissions in the UK (Pirmohamed et al., 2004). A 

prospective study of 3695 in-patients estimated the incidence of an ADR occurring to 

hospitalised patients to be 14.7%, resulting in prolonged hospitalisation and financial 

strain on the NHS estimated at approximately £637 million per year (Davies et al., 

2009). A national time-trend study of ADRs as the cause of admission to UK hospitals, 

reported that the overall incidence of ADRs increased by 45% in the period 1998 – 2005 

(Patel et al., 2007). 

Drugs most frequently implicated in causing ADR hospitalisations are non-steroidal 

anti-inflammatory drugs (NSAIDs), the most common ADR being gastrointestinal 

bleeding caused by aspirin (Pirmohamed et al., 2004). Drugs most frequently associated 

with in-patient ADRs are warfarin, opioid analgesics, and loop diuretics (Davies et al., 

2009). 
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ADRs tend to be more common in elderly patients, which may be reflected by a higher 

prevalence of concomitant chronic conditions like renal, hepatic or cardiac disease and 

the prescription of multiple drugs for the treatment of chronic conditions. 

ADRs can be generally classified as being either type A or B reactions. Type A 

reactions are common, dose-dependent, predictable in terms of the pharmacology of the 

drug and usually reproducible in animal models. Type B or idiosyncratic reactions 

typically do not have a dose-relationship, are unpredictable and affect only a minority of 

those using the drug. A common feature of  idiosyncratic adverse reactions is a delay of 

onset of toxicity, typically weeks or months after the first exposure to the drug, whereas 

toxicity usually occurs rapidly with type A reactions (Uetrecht, 2007).  

Although less common than type A reactions, idiosyncratic reactions are proportionally 

more severe and have a higher mortality rate (Pirmohamed and Park, 2001). In most 

cases, the factors influencing idiosyncratic drug reactions are unknown or seldom 

characterised, but genetic variations leading to a predisposition to an ADR are likely, 

along with other host and environmental factors.    

Idiosyncratic reactions are difficult to detect during drug development. Unlike Type A 

reactions, they are difficult to reproduce in animal models and, owing to the small 

number of individuals affected, they are rarely detected in clinical trials which are 

limited to a few thousand people. This poses a significant problem to the drug industry 

as these reactions are nearly always only discovered after the drug is on the market and 

in use.  

 

1.2 Drug Induced Liver Injury (DILI) 

 

1.2.1 Introduction 

 

The liver is considered the most important organ in drug toxicity. This is due to the 

physiological functions that it performs and its anatomical location, situated at a point 

where systemic circulation meets the site of absorption from the gastrointestinal tract. 

75% of blood reaching the liver arrives via the hepatic portal vein bringing with it 

xenobiotics absorbed by the gut (Jaeschke et al., 2002). The liver is involved in 
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numerous physiological functions that are vital for metabolic processes and homeostatic 

regulation of the body. Examples of these functions include the synthesis, storage and 

secretion of various biochemicals, metabolic regulation of carbohydrates and lipids, and 

the biotransformation and excretion of endogenous and exogenous substances. As the 

main site of xenobiotic metabolism and detoxification, the liver is regularly exposed to 

toxins making it an important site for ADRs.  

Drug-induced liver injury (DILI) is a rare but potentially serious adverse condition and 

is the most common reason for termination of drug development and post market drug 

withdrawal (Watkins, 2005). Over 1000 drugs or herbal products have been associated 

with DILI which manifests predominantly with a hepatocellular, cholestatic or mixed 

pattern of injury, although it can mimic all forms of acute and chronic liver disease 

(Abboud and Kaplowitz, 2007). DILI is the leading cause of acute liver failure (ALF) in 

Western countries accounting for 52% of ALF in the U.S, but the majority of these 

cases relate to overdose of paracetamol (Ostapowicz et al., 2002; Russmann et al., 

2009). The majority of DILI is caused by idiosyncratic drug reactions rather than overt 

dose-related toxicity as with paracetamol toxicity. One particular reason for this is the 

improvement in drug screening and testing during development that eliminates many of 

the compounds that cause dose-related hepatotoxicity. Conversely, idiosyncratic DILI is 

difficult to detect during both drug development, owing to the low incidence and 

detection in clinical trials, and in a post-market setting due to limited follow up 

procedures and challenges that exist in its diagnosis.  

Recently the US National Centre for Toxicological Research (NTCR) has assessed 

prescription drugs, approved for at least ten years, for their potential to cause DILI 

(Chen et al., 2011). A Liver Toxicity Knowledge Base (LTKB) benchmark dataset was 

established by searching the DailyMed database using a set of keywords commonly 

used in FDA labels for DILI. From this, 287 prescription drugs were highlighted, 137 of 

which were classified as giving the most DILI concern and included drugs that had been 

withdrawn or given ‘black-box’ warnings highlighting a potential risk of serious injury 

or death. Examples of drugs that have been withdrawn from use because of 

idiosyncratic hepatotoxicity include bromfenac, lumiracoxib, troglitazone and 

ximelagatran while examples of drugs given black-box warnings include amiodarone, 

didanosine, isoniazid and tolcapone (Chen et al., 2011).  
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1.2.2 Epidemiology of DILI 

 

It is difficult to determine the true incidence of DILI due to under-reporting, a lack of 

standardised and universally accepted diagnostic criteria and the relatively low 

frequency of incidence compared to other common types of liver injury (Fontana, 

2010). The majority of DILI reactions are idiosyncratic and therefore extremely rare, 

with the incidence to be estimated between 1 in 10000 and 1 in 100000 individuals 

exposed to a particular drug (Larrey, 2002). Most studies of DILI incidence are 

retrospective and suffer from incomplete data registries, highly variable diagnostic 

criteria and the extent that other forms of liver disease have been excluded (Bjornsson, 

2010). As a result, true incidence of DILI is probably underestimated as the majority of 

cases are typically asymptomatic outpatients whereas severity is probably overestimated 

due to focus of DILI hospitalisation in studies from tertiary referral centres (Fontana, 

2010). Several retrospective studies of DILI have been performed and describe a crude 

incidence of DILI in the range of 1 – 3 per 100000 inhabitants, although these figures 

are potentially an underestimation (de Abajo et al., 2004; De Valle et al., 2006; 

Hussaini et al., 2007). Prospective population-based studies into DILI are rare. Until a 

recently, there had been only one study of DILI incidence within a general population. 

Sgro and colleagues estimated a crude incidence of hepatic ADRs in outpatients to be 

approximately 14 in 100000 people per year, based on data collected by 139 physicians 

in France over a period of 3 years in a study population of 81301 (Sgro et al., 2002). 

Recently, a second prospective population-based cohort study into DILI incidence was 

published by Bjornsson et al (Bjornsson et al., 2013). This study recruited DILI cases 

nationwide in Iceland over a period of 2 years and, in contrast to the French study, 

consisted of DILI reports from inpatients as well as outpatients. The crude incidence of 

DILI, estimated as approximately 19 per 100000 people per year, is similar but slightly 

higher than that observed in the French study. 82% of the patients developed DILI as 

outpatients, with approximately a quarter of those hospitalised because of their 

symptoms, mainly due to jaundice. Incidence was standardised for age and showed a 

clear trend of increasing DILI incidence with age. Amoxicillin-clavulanate (augmentin) 

was found to be the most common causative agent as has been reported elsewhere 

(Andrade et al., 2005; Chalasani and Bjornsson, 2010). However when incidence to 

individual drugs was quantitated, azathioprine (1 of 133 users) and infliximab (1 of 148 
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users) where found to have the highest incidence whereas incidence of amoxicillin-

clavulanate DILI was 1 per 2350 treated patients.     

There have been three prospective registries formed to collect information with the aim 

to enhance our understanding of DILI. These are the Regional Registry of 

Hepatotoxicity in Spain, the U.S. Acute Liver Failure Study Group (ALFSG), and the 

Drug-Induced Liver Injury Network (DILIN) (Bell and Chalasani, 2009). Data from 

these registries has provided detailed information regarding the incidence and types of 

DILI, patient characteristics, risk factors and what drugs are implicated in causing 

disease. Data from the Spanish registry estimated an overall annual incidence of 

hepatotoxicity to be 34.2 ± 10.2 cases per 10
6
 inhabitants per year (Andrade et al., 

2005). The ALFSG has provided data regarding drug-induced ALF in the U.S. Two 

studies have estimated idiosyncratic liver disease is responsible for approximately 11 - 

13% of ALF and is the second most common cause of ALF after paracetamol toxicity 

(Ostapowicz et al., 2002; Reuben et al., 2010). The severity of drug-induced ALF is 

emphasised by a mortality rate among cases of almost 34%.          

       

1.2.3 Risk factors for DILI 

 

Other than genetic risk factors, which are discussed in detail in section 1.4, there are a 

number of factors that may facilitate the development of DILI. The set-up of various 

DILI networks and registries that allow an ongoing recruitment of patients have helped 

facilitate the study of risk factors in DILI including a range of host-related, 

environmental and compound-specific factors.  

There exists conflicting evidence regarding the role that age has as a risk factor for the 

susceptibility of DILI. The relevance of age as a risk factor may be related to the 

particular DILI-causing drug and there are a number of drugs where there appears to be 

a trend of increasing DILI incidence with increasing age (Chalasani and Vuppalanchi, 

2013). Examples of these include isoniazid, amoxicillin-clavulanate, halothane and 

flucloxacillin. A 7-year study in a US tuberculosis centre shows that for isoniazid, 

incidence of hepatotoxicity rose from 4.4 per 1000 for patients aged 25-34 to 20.8 per 

1000 for patients aged 50 and above (Fountain et al., 2005).  
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The recent population-based study by Bjornsson et al, described above, showed an 

increasing incidence of DILI when standardised for age. DILI incidence for individuals 

aged 15-24 was estimated to be 6.5 per 100000 while for individuals aged 80 and above 

it was found to be 41 per 100000 (Bjornsson et al., 2013). However, findings of a study 

from the Spanish Registry of Hepatotoxicity did not show a distinct age difference for 

DILI susceptibility in a prospective cohort of 650 patients (Lucena et al., 2009). 

However, both of these studies showed an apparent relationship that increasing age is 

associated with a cholestatic phenotype whereas younger patients are more likely to 

display hepatocellular damage although no explanations are given for these 

observations. The reasons for increasing age as a risk factor for DILI are unclear. There 

doesn’t appear to be a significant difference in levels or activity of hepatic metabolising 

enzymes in the elderly but a decrease in renal function and hepatic blood flow may lead 

to increased concentrations of drugs in the liver (Chalasani and Bjornsson, 2010). Mean 

prescription rate has been correlated with age and polypharmacy may play a role in 

DILI risk but this is also unclear.  

Various epidemiological studies have reported a higher prevalence of DILI in females, 

however a systematic review of multiple studies taking into account DILI from all 

causes failed to show gender differences for DILI prevalence (Chalasani and 

Vuppalanchi, 2013). It has been suggested that females may often be over-represented 

in DILI epidemiological studies due to prescription patterns but for some individual 

drugs a higher prevalence may have a biological basis (Chalasani and Bjornsson, 2010). 

Obesity has been linked to increased DILI due to certain drugs but there appears to be 

no apparent overall trend as a general risk factor for DILI. However, it has been 

suggested that obesity is linked to a poorer outcome from severe DILI and underlying 

fatty liver disease caused by obesity may be a potential factor for increased DILI 

susceptibility. CYP2E1 activity is increased in obese individuals and may be an 

additional risk factor where CYP2E1 has a role in the mechanism of DILI as suggested 

with paracetamol and halothane (Jaeschke et al., 2002). 

It is unclear what effect underlying comorbidities have on susceptibility to DILI and 

again it is likely to depend on the individual causative drug. Underlying diabetes, and 

chronic liver diseases such as those caused by non-alcoholic fatty liver disease 

(NAFLD) and hepatitis C infection are potential risk factors for DILI.  
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With regards to environmental risk factors, the link between alcohol consumption and 

paracetamol-induced hepatotoxicity has been extensively studied. Alcohol consumption 

is a criteria used in the RUCAM scoring system widely used to diagnose cases of DILI, 

however, the effect of alcohol consumption as a risk factor for idiosyncratic DILI has 

not been shown except for a few drugs that, like paracetamol, are linked to alcohol-

induced induction of CYP2E1.   

 

1.2.4 Prediction and diagnosis of DILI 

 

There are many challenges regarding the prediction, detection and diagnosis of DILI 

both during drug development and for clinicians in the post marketing setting. During 

early drug development many probable hepatotoxic compounds are identified and 

discarded during the preclinical phase. Drug companies have developed a range of 

preclinical tests to try and identify potential unpredictable hepatotoxins and reactive 

metabolites. These include in silico assays that identify potentially hazardous 

toxicophores, in vitro covalent binding and glutathione adduct formation assays, bile 

salt export pump (BSEP) inhibition assays, and studies of mitochondrial function and 

oxidative stress generation (Park et al., 2011; Przybylak and Cronin, 2012; Kaplowitz, 

2013). Other, novel methods and technologies are being developed that look to discover 

accurate and reproducible DILI-predicting biomarkers. One such area is the ‘omic-

based technologies such as metabolomics, transcriptomics and proteomics. Animal 

testing is used to discover and eliminate hepatotoxic compounds during drug 

development. High drug dosage testing is usually successful at identifying hepatotoxic 

compounds that are likely to cause intrinsic, predictable liver injury in man, but is far 

more unsuccessful at identifying compounds that could cause rare, idiosyncratic 

hepatotoxicity. Identification of idiosyncratic hepatotoxins is also rare during the 

clinical trial phases of drug development. This is due to the individual nature and rarity 

of the reactions. Typically, clinical trials involve a limited sample size of approximately 

2000 individuals that are treated for a short period of time. Many idiosyncratic DILI 

reactions have a typical delay of onset and occur at a frequency of 1 in 10000 

individuals or less. This means idiosyncratic adverse effects are likely to not be 

discovered until the drug is given approval and has been on the market several months 

or years.     
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Even when potential drug-induced liver reactions are presented to clinicians it is 

difficult to identify whether a drug is the cause of the reaction with complete certainty. 

DILI can manifest as a wide range of symptoms that are often not drug specific and may 

mimic various other types of liver disease. In addition, the clinical signature of any 

given drug may vary between individuals (Garcia-Cortes et al., 2011). The assessment 

of a patient that has potential DILI requires a complete, detailed patient and drug-use 

history. The drug history should include the use of any prescriptions, over-the-counter, 

herbal or alternative medications (Lee, 2003). A temporal relationship should be sought 

between the initiation of a drug therapy, onset of DILI symptoms, the course of the 

reaction and the response to drug withdrawal. The patient history should take into 

account risk factors for individual susceptibility to DILI such as age, gender, pregnancy, 

alcohol use or underlying disease (Chalasani and Bjornsson, 2010). Before a DILI 

diagnosis can be confirmed, it is important to exclude any other liver disease as the 

cause of injury. This includes viral hepatitis (A, B, C and E), autoimmune liver diseases, 

biliary diseases (e.g. cholelithiasis), alcohol abuse, non-alcoholic fatty liver disease 

(NAFLD) or any hereditary conditions (Tajiri and Shimizu, 2008; Verma and 

Kaplowitz, 2009).  

There is still a lack of sensitive, reliable, highly specific biomarkers to detect and 

diagnose DILI. Biochemical liver parameters are commonly used as biomarkers for its 

diagnosis. Elevations of serum alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), serum total bilirubin (TBL) and alkaline phosphatase (ALP) 

may be indicative of liver injury, although small increases in liver test abnormalities 

may be transient and resolve even with continuous use of the drug through a process of 

adaptation (Aithal et al., 2011). To support the diagnosis of DILI, various causality 

assessment scoring systems have been developed to determine the likelihood that liver 

injury has been caused by a drug. The most commonly used of these systems, and 

regarded as generally the most reliable, is the Roussel Uclaf Causality Assessment 

Method (RUCAM) developed in 1993 (Danan and Benichou, 1993; Aithal et al., 2011). 

The scale was established by the Council for International Organisations of Medical 

Sciences (CIOMS) from a panel of experts based on international DILI consensus 

criteria. The scheme provides an initial semi-quantitative classification of liver injury by 

dividing DILI into three classes - hepatocellular, cholestatic or mixed pattern of disease, 

on the basis of ALT and ALP levels at the onset of disease. The categorisation of DILI 
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is based upon the calculation of the ‘R’ ratio of serum ALT to ALP with respect to their 

upper limits of normal (ULN), so that: 

 

R = (ALT/ULN) / (ALP/ULN) 

 

Generally, an R value ≥ 5 defines hepatocellular injury, ≤ 2 defines cholestatic damage 

and cases with an R value between 2 and 5 show a mixed phenotype. When calculating 

R ratio’s it is important to consider the time point within the course of the illness that 

the liver function tests are performed. Occasionally, initial ALT to ALP levels may not 

coincide with peak levels further into the course of the disease. In some cases there may 

be a greater initial ALT increase during early disease progression and often cases may 

be misdiagnosed as hepatocellular when tests at a later time point may indicate that they 

were actually mixed or cholestatic (Fontana et al., 2010). 

A RUCAM score is calculated by placing a score of -3 to 3 on each of the following 

seven key criteria ( the R-ratio is used to support scoring in the first three criteria) 

(Garcia-Cortes et al., 2011): 

  

 Time to DILI onset (calculated from the first day of drug treatment to day of 

onset of first symptom, or laboratory test abnormality) 

 Course of illness - rate of resolution after medication stopped, interpreted as the 

time taken for a 50% decrease of liver enzyme levels from the peak value 

 Risk factors - e.g. age > 55 years, alcohol consumption 

 Concomitant drug use 

 Exclusion of other aetiologies – e.g. viral hepatitis, biliary obstruction, alcoholic 

liver disease 

 Existing information of the drug’s hepatotoxic potential – e.g. if drug has a 

label-warning for DILI causing potential 

 Response to rechallenge – usually inadvertent rechallenge of causative agent 

Detailed elements of the scoring system are displayed in Table 1.1. A final score, in a 

range of -8 to +14, is produced to which the degree of drug association as the cause of 
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liver injury is interpreted as highly probable (score > 8), probable (score of 6 – 8), 

possible (3 – 5), unlikely (1 – 2) or excluded (≤ 0).   
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Table 1.1 – Details of the Roussel Uclaf Causality Assessment Method (RUCAM) 

scale scoring system for DILI (adapted from (Aithal et al., 2011))  

Hepatocellular Injury   Cholestatic or Mixed Liver Injury  
 

 

1. Temporal relationship of start of 

drug to ALT>2x ULN   

 

 

Score 

  

1. Temporal relationship of start of drug 

to ALP>2x ULN   

 

 

Score 

 

Initial treatment 5–90 days; subsequent 

treatment course: 1–15 days 

 

2 

 

Initial treatment 5–90 days; subsequent 

treatment course: 1–90 days  

 

2 

 

Initial treatment <5 or >90 days; 

subsequent treatment course: >15 days 

 

1 

  

Initial treatment <5 or >90 days; subsequent 

treatment course: >90 days 

 

1 

 

 

From cessation of drug: <15 days, or 

<15 days after subsequent treatment 

 

1 

 

From cessation of drug: <30 days, or <30 

days after subsequent treatment 

 

1 

 

Otherwise 

 

0 

  

Otherwise 

 

0 

     

2. After drug cessation- difference 

between peak ALT and upper limits 

normal 

  2. After drug cessation - difference 

between peak ALP or total bilirubin and 

ULN 

 

 

Decreases >50% within 8 days 

 

3 

  

Decreases >50% within 180 days 

 

2 

 

Decreases >50% within 30 days 

 

2 

  

Decreases <50% within 180 days 

 

1 

 

No information or decrease >50% after 

>30 days, or inconclusive 

 

0 

  

Persistence or increase or no information   

 

0 

 

Decrease <50% after 30 days or 

recurrent increase 

 

-2 

  

If drug is continued – inconclusive 

 

0 

     

3. Risk factors (Scoring is the same for 

Hepatocellular and Cholestatic/Mixed Injury) 

 

 

Score 

 

 

No alcohol use 

 

0 

 

 

Alcohol use 

 

1 

 

 

Age <55 years   

 

0 

 

 

Age >55 years 

 

1 

 

     

4. Concomitant drug (Scoring is the same for 

Hepatocellular and Cholestatic/Mixed Injury) 

 

 

Score 

 

 

No concomitant drug administered 

 

0 

 

 

Concomitant drug with suggestive or compatible 

time of onset  

 

-1 

 

 

Concomitant known hepatotoxin with suggestive or 

compatible time of onset   

 

-2 

 

 

Concomitant drug with positive rechallenge or 

validated diagnostic test    

 

-3 
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5. Nondrug causes:  

Six are primary: recent hepatitis A, B, or C, biliary 

obstruction, acute alcoholic hepatitis (AST > 2x 

ALT), recent hypotension 

Secondary group: Underlying other disease; 

possible CMV, EBV or HSV infection  

(Scoring is the same for Hepatocellular and 

Cholestatic/Mixed Injury) 

 

 

 

 

 

Score 

 

 

All primary and secondary causes reasonably ruled 

out:  

 

2 

 

 

All 6 primary causes ruled out  

 

1 

 

 

4 or 5 primary causes ruled out  

 

0 

 

 

< 4 primary causes ruled out (max. negative score 

for items 4 and 5: –4) 

 

 

-2 

 

Nondrug cause highly probable  -3  

 

6. Previous information on hepatotoxicity of the 

drug in question (Scoring is the same for 

Hepatocellular and Cholestatic/Mixed Injury) 

 

 

 

Score 

 

 

Package insert or labelling mention  

  

2 

 

 

Published case reports but not in label  

 

1 

 

 

Reaction unknown  

 

0 

 

 

7. Rechallenge (Scoring is the same for 

Hepatocellular and Cholestatic/Mixed Injury) 

 

 

Score 

 

 

Positive (ALT doubles with drug in question alone)  

 

3 

 

 

Compatible (ALT doubles with same drugs as 

given before initial reaction)   +1 

 

1 

 

 

Negative (Increase in ALT but <2x ULN, same 

conditions as when  

reaction occurred)  

 

-2 

 

 

Not done, or indeterminate result  

 

0 

 

 

 

Total (range of algebraic sum: –8 to +14) 

 

  

Score Interpretation: Highly probable >8;  

Probable  6–8;Possible  3–5;  Unlikely  1–2;  

Excluded  <0 
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1.2.5 Classification of DILI 

 

Predictable, high incidence, dose-related hepatotoxic events caused by drugs, e.g. 

paracetamol, usually occurs rapidly, within a few days of drug administration and result 

from direct toxicity of the drug or its metabolites. Conversely, idiosyncratic hepatotoxic 

events occur at low incidence with varying periods of latency depending on the drug in 

question and type of injury, ranging from a few days to a year.  

DILI as a term, describes a wide range of liver injury but is broadly classified as 

hepatocellular, cholestatic or ‘mixed’-pattern. The recent epidemiological study by 

Bjornsson et al found 42% of DILI-patients to have hepatocellular injury, 32% with 

cholestatic type injury and 26% with a ‘mixed’-pattern (Bjornsson et al., 2013). 

Although DILI is represented primarily by hepatocellular or cholestatic injury, drug 

toxicity should be considered when any form of hepatobiliary injury, e.g. fibrosis, 

granulomas and steatosis, is presented (Abboud and Kaplowitz, 2007).  

 

1.2.5.1 Hepatocellular Injury 

 

A hepatitis pattern of injury indicates hepatocellular damage that consists of cellular 

degeneration and death through pathways such as necrosis, apoptosis and steatosis. 

Although the exact mechanism for hepatotoxicity is not fully clear, it seems in many 

instances a drug is metabolised to a reactive metabolite which then proceeds to interact 

with various cellular components such as proteins, lipids and nucleic acids. These 

interactions disrupt important cellular processes such as mitochondrial function, leading 

to cell death and possible liver failure (Holt and Ju, 2006). 

Patients may present as asymptomatic or may experience fatigue, pain in the right upper 

quadrant, jaundice or in severe cases, show signs of coagulopathy and encephalopathy 

indicating ALF (Verma and Kaplowitz, 2009). Examples of common drugs that have 

been known to cause a hepatocellular pattern of DILI include rifampicin, isoniazid, 

statins and ibuprofen (Devarbhavi, 2012). 

Hepatocellular liver damage is characterised by an increase in serum ALT levels, an 

indication of enzyme release from dying or dead hepatocytes. Hepatocellular damage is 
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classified as ALT levels greater or equal to three times the ULN, and where the ratio of 

ALT:ALP ≥ 5. ALP is usually not markedly elevated in cases of hepatocellular injury 

and as such could be tentatively used to distinguish between hepatocellular and 

cholestatic/mixed episodes. However, it has been suggested that a better indicator of 

hepatocellular injury may be to define it through the use of R > 5 (ALT X ULN / ALP 

X ULN) since increases in ALP are occasionally observed in some serious cases of 

hepatocellular injury (Kaplowitz, 2013). Care must also be taken when interpreting 

increased ALT levels as it does not always correlate to the severity of liver disease 

(Verma and Kaplowitz, 2009). This is because hepatocytes have a regenerative capacity 

to heal damage and develop an adaptive tolerance to damage. Impaired liver function is 

a more accurate indicator and can be measured by serum bilirubin levels (Navarro and 

Senior, 2006). Bilirubin levels are controlled by functions of the liver which remove 

bilirubin from the blood to bile. If damaged, this control is lost and increased levels of 

bilirubin can be found in the blood (hyperbilirubinaemia) which presents 

symptomatically as jaundice. Hyman Zimmerman described that there is a mortality rate 

of approximately 10% when hepatocellular injury is accompanied by jaundice and 

bilirubin levels ≥ 3 X ULN. Referred to as ‘Hy’s Law’, it is used by the FDA as a guide 

to monitoring hepatotoxicity, with recent studies confirming its validation as an 

indicator for DILI prognosis (Bjornsson and Olsson, 2005).  

 

1.2.5.2 Cholestatic DILI 

 

The cholestatic pattern of injury may arise from a functional defect in bile formation in 

the hepatocytes or from damage to cholangiocytes resulting in inhibition of 

drug/bilirubin/bile salt transport and canalicular excretion, causing build-up of bile acids 

and obstruction of bile ductules or ducts (Zollner and Trauner, 2008). The intracellular 

build-up of drug metabolites/bile acids leads to further hepatotoxicity (Ansede et al., 

2010). In contrast to hepatocellular damage, cholestatic injury is characterised by a 

more prominent rise in serum levels of ALP not ALT (ALP ≥ 2 X ULN), with an ALT: 

ALP ratio ≤ 2. The main symptoms of cholestasis are jaundice and pruritus, along with 

possible acute abdominal pain associated with acute biliary obstruction (Abboud and 

Kaplowitz, 2007). However, drug-induced cholestasis can mimic other intrahepatic or 

extrahepatic forms of cholestasis so a detailed drug history is vital for diagnosis and 



16 

 

avoidance of prolonged exposure of the toxic drug (Padda et al., 2011). Cholestasis 

tends to be less severe than hepatocellular injury with the majority of patients 

recovering fully after withdrawal of the offending drug. However, the course of disease 

is often much more prolonged than hepatocellular injury and may take several months 

to be fully resolved after drug withdrawal. It has been suggested that cholestatic damage 

is more persistent due to the slower repair and regenerative capacity of cholangiocytes 

compared to hepatocytes (Abboud and Kaplowitz, 2007). In rare cases, long-term 

progressive damage to small bile ducts may lead to a condition termed ‘vanishing duct 

syndrome’ and ductopenia (Ramachandran and Kakar, 2009). Some examples of drugs 

that cause acute cholestasis include amoxicillin-clavulanic acid (augmentin), 

flucloxacillin and erythromycin. Chlorpromazine has been implicated in chronic 

cholestasis, although numerous other drugs can cause chronic episodes on rare 

occasions (Kaplowitz, 2013).   

 

1.2.5.3 Mixed pattern of DILI 

 

The mixed pattern of DILI is characterised by the presence of both acute hepatocellular 

and cholestatic injury.  Hepatitis usually resembles an atypical or granulomatous form 

and there is a moderate elevation of both ALT and ALP with an ALT / ALP ratio 

between 2 and 5 (2 < R < 5) (Kaplowitz, 2013). Drugs that cause cholestatic injury may 

also present a mixed pattern of injury and vice versa (Verma and Kaplowitz, 2009). 

Examples include flucloxacillin, amoxicillin-clavulanic acid, diclofenac and 

carbamazepine (Bjornsson and Olsson, 2005). Fatalities have been recorded in cases of 

mixed pattern DILI but mortality is generally lower than in cases of purely 

hepatocellular or cholestatic damage (Bjornsson and Olsson, 2005).        
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1.3 Pathogenesis of DILI  

 

1.3.1 Overview of DILI pathogenesis 

 

One of the challenges preventing the full understanding of the mechanism of DILI is 

that the pathways that lead to symptomatic disease are usually not just the result of the 

initial drug toxicity response. Most forms of DILI are multicellular events and involve 

several mechanisms with complex interactions (Russmann et al., 2009). To gain a 

greater understanding of the mechanisms of DILI requires an integrated understanding 

of the chemical, biochemical, molecular, cellular and physiological pathways that are 

active (Antoine et al., 2008). As much as there is still unknown, the pathogenesis of 

DILI can broadly be categorised into two major pathways. The first involves the 

intrinsic hepatotoxicity of a drug or more commonly its metabolites in susceptible 

individuals. The second mechanism is the involvement of the immune system in adverse 

immune reactions causing inflammation and hepatic injury (Holt and Ju, 2006). Immune 

mediated reactions usually have characteristic symptoms of drug hypersensitivity such 

as fever, rash, eosinophilia and a rapid response to drug rechallenge that are absence in 

cases of non-immune, ‘metabolic’-DILI (Walgren et al., 2005). Both hepatocellular and 

cholestatic injury can result from immune-mediated reactions or non-immune mediated 

DILI. 

High incidence, dose-related, direct hepatotoxicity is almost always detected in 

preclinical studies during drug development meaning that the overwhelming majority of 

available DILI causing drugs are associated with rare, idiosyncratic hepatotoxicity 

where injury is unrelated to the pharmacology of the drug. Therefore, for the purpose of 

this report the main focus will be on drugs and the mechanisms that cause idiosyncratic 

drug hepatotoxicity of which the mechanisms are particularly poorly understood.  

 

1.3.2 Non-immune mechanisms of drug hepatotoxicity 

 

1.3.2.1 Drug metabolism and reactive metabolites 
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One of the liver’s major functions is the metabolism and clearance of xenobiotics and 

consequently it is regularly exposed to high concentrations of potentially toxic drugs. 

To facilitate this function, the liver has an abundance of metabolising enzymes capable 

of phase I or phase II metabolism. Through these pathways, lipophilic compounds 

undergo biotransformation to water-soluble derivatives that can be readily excreted.  

Although, generally, these pathways are detoxifying, occasionally metabolism can 

adversely lead to bioactivation of a drug producing a more reactive metabolite than the 

parent compound (Antoine et al., 2008). Reactive metabolites may cause toxicity by 

interacting with cellular macromolecules such as proteins, lipids or nucleic acids 

causing protein dysfunction, DNA damage, mitochondrial dysfunction or oxidative 

stress (Srivastava et al., 2010). In most instances of immune-mediated DILI, reactive 

metabolites are also thought to be more important in the initiation of immune pathways 

than the parent drug itself (Amacher, 2012).   

The primary phase I metabolism pathway of xenobiotics, is oxidative biotransformation 

catalysed by the cytochrome P450 (CYPs) enzyme family. Completion of the human 

genome project has confirmed that in humans there are 57 functional CYP genes 

grouped into 18 families and 44 subfamilies (Guengerich, 2008; Zanger and Schwab, 

2013). As well as playing a key role in the biotransformation of xenobiotics, CYP 

enzymes also have many physiological roles and act on endogenous compounds. 

Important roles include cholesterol metabolism, bile acid biosynthesis and steroid 

hormone biosynthesis and metabolism (Nebert and Russell, 2002). CYP enzymes are 

responsible for the primary metabolism of approximately 75% of commercially 

available drugs. Of this, about 95% are metabolised by five CYP450 enzymes, namely 

CYP3A4 (including CYP3A5 when expressed), CYP2D6, CYP2C19, CYP2C9 and 

CYP1A2 (Guengerich, 2007). Examples of DILI-causing drugs that undergo CYP450 

metabolism are shown in Table 1.2. It has been reported that drugs that undergo 

significant hepatic metabolism are potentially more hepatotoxic than drugs that undergo 

lesser degrees of hepatic metabolism (Lammert et al., 2010). 
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Table 1.2 – Examples of DILI-causing drugs reported in a prospective study by 

DILIN that are known to undergo significant CYP450 metabolism (Chalasani et 

al., 2008; Zanger et al., 2008) 

Drug P450 

 

Atorvastatin 

Celecoxib 

Diclofenac 

Duloxetine 

Ibuprofen 

Nevirapine 

Phenytoin 

Valproate 

 

3A4/5 

2C9, 3A4/5 

2C9 

1A2 

2C9, 2C8 

2B6 

2C9, 2C19 

2C9, 2A6, 2B6 
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Drug oxidation by CYP450s can lead to the formation of electrophilic intermediate 

metabolites, free radicals, reactive oxygen species (ROS), epoxides and quinones (Attia, 

2010). Such compounds have the ability to undergo various reactions including the 

covalent binding of reactive species with nucleophilic sites in proteins and nucleic 

acids, or the depletion of reduced glutathione leading to oxidative stress. These 

reactions have a direct adverse effect on organelles such as the mitochondria leading to 

cellular necrosis or the activation of apoptotic pathways (Kaplowitz, 2004). In addition 

to cytochrome P450 enzymes, reactive metabolites can be produced by other phase I 

metabolising enzymes including flavin-containing monooxygenases, peroxidases and 

amine oxidases (Tang and Lu, 2010). 

Phase II drug-metabolising enzymes are important for conjugation of electrophilic 

products of phase I metabolism to aid excretion. They are rarely implicated in producing 

reactive species themselves unless their function is compromised. An exception to this 

is the production of acyl glucuronides by uridine 5’ diphosphate-glucuronyltransferase 

(UGT) enzymes, particularly with drugs that contain carboxylic acid functional groups 

(Russmann et al., 2009). Examples of drugs that produce reactive acyl glucuronide 

conjugates are NSAIDs, benoxaprofen or bromfenac which were both promptly 

withdrawn after several cases of fatal hepatotoxicity (Walgren et al., 2005). However, 

carboxylic acid containing NSAIDs, such as ibuprofen and diclofenac, are still available 

and have been associated with DILI (Aithal et al., 2004).      

The bioactivation of a drug to a reactive metabolite doesn’t necessarily lead to toxicity. 

In balance with bioactivation pathways are detoxifying defence mechanisms involving 

phase I and phase II metabolising enzymes and drug transporters. Hence, genetic and 

environmental factors leading to inter-individual differences in the ability to metabolise 

and clear particular xenobiotics may increase an individual’s susceptibility to DILI. 

Decreased capacity to metabolise or clear a drug may cause an increased build-up and 

exposure to toxic drugs or metabolites. Variation in CYP450 metabolising capacity can 

have a significant impact on DILI susceptibility.  
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1.3.2.2 Mitochondrial disruption and cellular stress responses 

 

Some drugs and reactive drug metabolites have been shown to cause hepatotoxicity 

because of reactions with hepatocyte mitochondria. Mitochondria are present in high 

concentrations in hepatocytes where they produce the large amounts of adenosine 

triphosphate (ATP) required as an energy source for the liver to perform its many roles. 

Mitochondria perform numerous other roles vital to cell survival such as control of cell 

apoptosis pathways (Tang and Lu, 2010). It has been suggested that the double lipid 

bilayer membrane found in mitochondria is a favourable environment for accumulation 

of lipophilic drugs and metabolites (Tang and Lu, 2010). Accumulation of toxic 

metabolites can result in binding and damage to mitochondrial components, and 

alteration of mitochondrial pathways such as an impairment of electron transfer in the 

respiratory chain and fatty acid oxidation pathways, or ROS production causing 

oxidative stress (Porceddu et al., 2012). Oxidative stress in mitochondria has numerous 

adverse effects such as lipid peroxidation, further protein modification and damage via 

ROS, and activation of cellular apoptotic pathways leading to cell death (Russmann et 

al., 2009). A number of drugs have been implicated in causing mitochondrial 

dysfunction including the anti-epilepsy drug valproic acid and the antiretroviral 

nucleoside reverse transcriptase inhibitors (NRTIs) - zidovudine and didanosine 

(Begriche et al., 2011). Although mechanisms of how drugs and reactive metabolites 

may cause mitochondrial dysfunction have been described there is still a significant lack 

of understanding on what causes the idiosyncratic nature of these reactions. 

Mitochondrial stress by a drug or metabolite can lead to alteration of various cellular 

signalling pathways. Cellular responses may include the up-regulation of cellular 

defence mechanisms that lead to adaptation and tolerance by the hepatocyte to the drug-

induced stress. Conversely, if cellular stress by a drug or metabolite reaches a critical 

threshold then cell death signalling pathways may dominate leading to apoptosis and 

necrosis of hepatocytes (Han et al., 2013). Due to the rarity of idiosyncratic DILI and 

lack of suitable animal models, most of what is known about hepatocellular responses to 

drug-induced stress has been gained from extensive study of paracetamol which causes 

dose-related predictable hepatotoxicity. 

A minor pathway in the metabolism of paracetamol, primarily by CYP2E1, leads to the 

production of a highly reactive metabolite N-acetyl-p-benzo-quinoneimine (NAPQI). 
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This electrophilic metabolite readily binds covalently to nucleophilic thiol groups in 

cellular proteins and thiol-containing organic molecules such as glutathione. High doses 

of paracetamol, as found with overdose, cause extensive binding and subsequent 

depletion of hepatocellular glutathione. This leads to increased production of ROS, 

oxidative stress and the activation of cellular apoptotic pathways leading to hepatocyte 

death and liver injury (Russmann et al., 2009). 

Mammalian cells have evolved a highly regulated cellular defence system to protect 

against cellular stress caused by reactive species through the transcriptional up-

regulation of various detoxification and antioxidant enzymes (Copple et al., 2010). 

These antioxidant response pathways provide the basis of hepatocellular adaptation to 

drug-induced stressors that in most individuals will protect from drug-induced toxicity.  

One of the key regulators of the antioxidant response pathway is the activity of the 

transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf-2). Nrf-2 in 

unstressed cells is repressed through its binding in the cytoplasm to Kelch-like ECH-

associated protein 1 (Keap1). Within Keap1 there are a multitude of cysteine residues 

that bind to cellular reactive species inducing a conformational change in the dimer 

leading to nuclear translocation of Nrf-2 and subsequent transcription of multiple anti-

oxidative target genes that remove the chemical insult to the cell (Bryan et al., 2013).  

It has been shown in mouse liver that toxic and non-toxic doses of paracetamol activate 

Nrf-2-dependent cellular defences in a dose dependent manner (Goldring et al., 2004). 

NAPQI has been shown to bind to thiols within Keap1 thus promoting nuclear 

translocation of Nrf-2 (Copple et al., 2008). In the nucleus, Nrf-2 binds to the 

antioxidant response element (ARE) regulatory motif leading to the transcription of 

numerous cytoprotective genes. Through the up regulation of protective mechanisms the 

cell can adapt to the chemical damage it is exposed to. However, in cases of 

paracetamol overdose, high doses of the drug lead to these mechanisms becoming 

overwhelmed. Glutathione synthesis machinery becomes severely depleted leading to 

hepatocyte death via both necrosis and through the activation of apoptotic pathways 

such as the JNK pathway (Bryan et al., 2013). 
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1.3.2.3 BSEP inhibition 

 

Another potential mechanism of non-immune mediated DILI relates to inhibition of the 

bile-salt export pump (BSEP, encoded by ABCB11). BSEP is an ATP-dependent 

transporter expressed on the apical plasma membrane of hepatocytes between the 

hepatocyte and bile canaliculus. It acts as an efflux transporter to maintain bile acid 

secretion required for  bile production which aids the absorption of dietary components 

and for the elimination of endo- and xenobiotics from hepatocytes into bile for excretion 

(Morgan et al., 2010). Inhibition of BSEP could therefore result in accumulation of 

inherently toxic bile acids and/or potentially toxic drugs/metabolites in hepatocytes 

(Andrews et al., 2010; Tang and Lu, 2010). Polymorphisms in the ABCB11 gene that 

cause reduced transcription, expression or activity of BSEP result in the hereditary 

cholestatic conditions such as progressive familial intrahepatic cholestasis type 2 

(PFIC2) (Dawson et al., 2012). New-borns with this condition rapidly develop 

cholestasis that is fatal unless liver transplantation is performed.  

There is evidence that a number of drugs can cause functional BSEP inhibition and that 

this may contribute to the development of cholestatic disease. Examples of drugs where 

BSEP inhibition has been implicated in liver injury include bosentan, erythromycin, 

cyclosporine and troglitazone (Morgan et al., 2010; Dawson et al., 2012). In vitro BSEP 

inhibition studies have shown significantly higher incidence and potency of BSEP 

inhibition in drugs that are known to cause cholestatic/mixed DILI than those 

implicated in hepatocellular injury or non-DILI causing drugs (Dawson et al., 2012).  

 

1.3.3 Immune mediated idiosyncratic liver injury  

 

1.3.3.1 Overview of immune mechanisms 

 

In addition to mechanisms of metabolic idiosyncrasy, there is a large body of evidence 

that suggests that the immune system plays a key role in the development of most 

instances of idiosyncratic drug hepatotoxicity. These types of injury are termed 

‘allergic’ type reactions and usually present with immune-like clinical features such as 

symptoms like rash, fever and eosinophilia, a typical delay of onset usually 1-8 weeks, 
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and a rapid reoccurrence of toxicity upon re-challenge with the culprit drug. But a clear 

indicator of immune system involvement is the frequent presence of antibodies specific 

to native or drug-conjugated liver proteins in sensitised patients (Aithal et al., 2004; 

Holt and Ju, 2006). Clinical characteristics are usually different for different drugs and 

may be different for the same drug in individual patients. Drug-induced immune 

mediated injury may be localised to the liver or the reaction may be part of a general 

systemic drug hypersensitivity (Uetrecht and Naisbitt, 2013). Several hypotheses have 

been proposed for how the immune system may mediate idiosyncratic drug reactions. 

Of these, there are three major pathways that can provoke a response from the innate 

and adaptive immune system – the hapten hypothesis, the danger hypothesis and the 

pharmacological interaction.  

  

1.3.3.2 The Hapten Hypothesis 

 

It has long been proposed that small, low-molecular-weight organic molecules such as 

drugs are not immunogenic, i.e. unable to induce an immune response. However if a 

reactive molecule, or ‘hapten’, irreversibly binds to a macromolecule such as a protein it 

may be able to induce an adaptive immune response (Adam et al., 2011). This has 

become known as the hapten hypothesis (Figure 1.1). Most drugs are not chemically 

reactive but drug metabolism, usually via cytochrome P450 metabolism, can produce 

reactive electrophilic species that can covalently react and bind to endogenous proteins. 

The conjugation of a drug modifies the protein producing a drug-protein adduct or 

neoantigen that may be recognised by the immune system as foreign, inducing a hapten-

specific response. Factors such as the extent and nature of protein binding and the 

mechanism of exposure to immune cells are likely to influence the ability of drug-

protein haptens to initiate an immune response (Ju and Reilly, 2012). For an immune 

response to occur the neoantigen needs to be presented and recognised by circulating T-

cells (Uetrecht, 2008). Cellular processing of the drug-modified protein by proteasomes 

produces peptide chains that are recognised by the major histocompatibility complex 

[MHC] proteins, which in humans are referred to as the human leukocyte antigen 

(HLA) proteins. The HLA molecule binds peptide fragments, usually of 8-9 amino 

acids in length, in the endoplasmic reticulum followed by translocation of the protein 

complex to the cell membrane. The HLAs can be divided into two main classes: HLA 
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class I, of which the major genes, HLA-A, HLA-B and HLA-C; and HLA class II, 

which consists of the groups, HLA-DR, HLA-DP and HLA-DQ. HLA class I are found 

on all nucleated cells and present intracellular peptides on the cell surface to T-cells via 

an interaction with the T-cell receptor (TCR). Cytotoxic T-cells express a glycoprotein, 

CD8 that also reacts with the HLA class I complex strengthening the interaction. 

Activation of cytotoxic T-cells in the liver via HLA antigen presentation causes the 

release of cytokines and cytotoxins causing local cellular damage. HLA class II 

molecules present extracellular antigens to T-cells and are found on specialised antigen 

presenting cells (APCs) and immune-response cells such as B lymphocytes, dendritic 

cells and macrophages (Janeway et al., 2001). Antigen presentation on these cells leads 

to activation of CD4+ T-helper cells, that have no cytotoxic ability but whose 

proliferation can lead to activate of a wider B-cell and macrophage response. Immune 

recognition of class II antigens leads to APC migration to the lymph nodes. Here they 

interact with naive T-cells leading to clonal expansion of long-lived antigen specific 

memory T-cells. This ‘sensitisation’ means that on re-exposure to the antigen there is a 

rapid stimulation of the antigen-specific T-cells leading to an immune response 

(Naisbitt et al., 2000). 

 

1.3.3.3 Danger Hypothesis 

 

Often in individuals exposed to a reactive drug/metabolite, antibodies are detected that 

are specific to that particular compound. This is a sign that an immune response has 

occurred, specifically a B-cell response, against such an antigen. However this doesn’t 

necessarily signify an adverse reaction as commonly antibodies to a drug or metabolite 

are detected individuals in the absence of any apparent idiosyncratic drug reaction 

(Aithal et al., 2004). This has led to the hypothesis that haptenisation of a 

drug/metabolite alone may be insufficient for an immune response to occur and a 

secondary ‘danger’ signal is required to act as an adjuvant. This theory is supported by 

the knowledge that the activation of a T-cell response requires an additional co-

stimulatory interaction, in addition to the interaction between the HLA complex and the 

TCR. Danger signals generated may up regulate the required co-stimulatory molecules 

leading to APC and T-cell activation. The general understanding is that the immune 

system response to the majority of antigens is tolerance, and only with the additional 
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‘danger signal’ is there a full immune response (Naisbitt et al., 2000). It is suggested 

that the danger signal may arise from initial cell injury or cell stress and may provide 

the necessary signals leading to activation of APCs (Uetrecht, 2008). Potential danger 

signal include cytokines released by innate immune cells or damage associated 

molecular patterns (DAMPs) in response to cell injury (Williams and Jaeschke, 2012).  

 

1.3.3.4 The pharmacological interaction (p-i) hypothesis 

An alternate theory for T-cell activation is without hapten formation, processing and 

presentation. The pharmacological interaction (p-i) concept hypothesises that some 

drugs are able to directly bind to either HLA or TCR with sufficient strength to initiate 

T-cell stimulation (Figure 1.1) (Pichler, 2002). This hypothesis can explain why drugs 

that do not form reactive metabolites can initiate immune responses and was developed 

after the observation that some T-cells in sulfamethoxazole-hypersensitive patients 

recognised the parent drug itself rather than the reactive metabolite (Schnyder et al., 

1997; Ju and Reilly, 2012). Various experimental procedures have been developed that 

are reported as providing evidence for this mechanism including: i) the activation of 

drug-specific T-cells by a parent drug incubated with aldehyde-fixed APCs, that are 

unable to process or present drug-protein haptens in the classical HLA manner, ii) drug 

binding to the HLA/TCR is much more labile than covalent hapten binding and can be 

washed away, and iii) calcium influx in T-cell clones (as a measure of T-cell 

stimulation) is rapid in response to the addition of the drug, before sufficient time has 

elapsed for drug uptake, processing and antigen presentation (Pichler et al., 2011). A 

recent study has reported that flucloxacillin is able to directly activate drug-specific T-

cells in a manner that supports the p-i hypothesis. This is explained in detail in section 

1.6.2.3 (Wuillemin et al., 2013).       
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Figure 1.1 – Proposed mechanisms of DILI – The Hapten-Hypothesis and the 

Pharmacological-interaction (pi) theory.  

The Hapten-Hypothesis proposes that the formation of a reactive metabolite in the 

hepatocyte leads to covalent binding to hepatocellular proteins forming a ‘hapten’. 

Intracellular processing of this hapten via the Human Leukocyte Antigen (HLA) 

pathway results in extracellular HLA presentation and binding, of the hapten, to the T-

cell receptor of circulating T-cells leading to T-cell mediated responses. The 

Pharmacological-interaction (pi) proposes that a drug can bind directly to expressed 

HLA molecules or T-cell receptors leading to the initiation of a HLA-T-cell response.  
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1.3.3.5 Innate immune response in DILI and the inflammatory stress hypothesis 

 

In addition to lymphocytes, there are a number of innate immune cell populations found 

in the liver including Kupffer cells (KCs) and natural killer (NK) cells (Ju and Reilly, 

2012). There are also a number of cell populations that have innate and adaptive 

immune properties including γδ T-cells and natural killer T (NKT)-cells that are found 

in the liver in higher concentrations than peripheral blood (Williams and Jaeschke, 

2012). The innate immune system provides a rapid, non-specific first line defence 

against pathogens through the recognition of pathogen-associated molecular patterns 

(PAMPs). It has been suggested that cellular stress and inflammation caused by 

underlying infection or disease can increase the risk of hepatotoxicity to a drug by 

lowering the threshold at which drug toxicity occurs and by activating pathways of the 

innate immune system. An animal model has been developed where hepatotoxicity can 

be induced upon the co-administration to rodents of a DILI-causing drug and 

lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls that can 

induce inflammatory stress in vivo. (Shaw et al., 2010). Such a model has been used to 

describe a potential mechanism of toxicity to trovafloxacin via cytokine production and 

leukocyte recruitment leading to further immune pathways and cytotoxicity (Shaw et 

al., 2007). 

 

1.4 Genetic risk factors of DILI 

 

1.4.1 Introduction to DILI genetic studies 

 

The idiosyncratic nature of DILI where upon drug toxicity is unpredictable and occurs 

only in a few susceptible individuals suggests that the disease has a strong genetic basis. 

DILI is considered a complex disease that likely involves a multitude of genetic and 

environmental factors in its pathogenesis. Deciphering a genetic basis of the disease 

remains a great challenge due to the rarity of disease, the number and range of drugs 

suspected of causing DILI, and the variety of phenotypes that the disease manifests as 

(Chalasani and Bjornsson, 2010). Genetic risk factors remain poorly understood and 

most studies so far have largely been hypothesis driven, focusing on potential 

candidate-genes for DILI susceptibility. Such studies have had limited success due to a 
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number of reasons including the relatively small number of patients and selection of 

inappropriate candidate genes or non-functional polymorphisms (Daly, 2012a). 

Technological advances over the last decade such as sequencing of the human genome 

has led to a much more detailed understanding of polymorphisms and haplotype 

relationships through projects and collaborations such as the Single Nucleotide 

Polymorphism Consortium and the HapMap project (Daly and Day, 2013). This has 

helped to revolutionise the study of complex genetic diseases allowing the possibility of 

wider ranging genome-wide association (GWA) studies that have already achieved 

some success in finding genetic determinants of DILI. A continuing problem however 

the recruitment of enough cases for use in GWA studies, which typically require at least 

1000 cases and controls. This is especially difficult with regards to DILI where the 

incidence of disease is particularly low. To aid with this, several consortia groups are 

now in force to work together in collecting DNA from DILI patients and controls to use 

in the study of determining a genetic basis of liver injury to various drugs. These groups 

include the Drug-Induced Liver Injury Network (DILIN), the International Serious 

Adverse Event consortium (ISAEC) and the DILIGEN project, led by Prof. Ann Daly 

here at Newcastle University. Collaborative work of these consortia has already 

achieved some success in finding genetic determinants of DILI, for example in the case 

of flucloxacillin which will be discussed further below.  

As described, there are a number of mechanisms and pathways suspected to be 

important in the pathogenesis of DILI. The genes that regulate key proteins in these 

pathways may increase susceptibility of an individual to DILI by a particular drug. 

Some pathways relate to the pharmacokinetic properties of a drug such as 

polymorphisms of drug metabolising enzymes or pathways that control a drugs 

disposition e.g. drug transporter proteins. The pharmacogenetics of immune related 

genes are of particular interest as there is a growing body of evidence linking DILI 

reactions to an immune response particularly the highly polymorphic HLA system. 

 

1.4.2 Xenobiotic metabolism and excretion 

 

Metabolising enzymes are required for the detoxification and clearance of many drugs 

but they may also be a cause of bioactivation of drugs to reactive metabolites. This 

makes drug metabolising enzymes a prime target for investigating genetic susceptibility 
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to DILI and it has been recently reported that drugs with greater than 50% hepatic 

metabolism are more likely to cause DILI than drugs that don’t undergo significant 

metabolism (Lammert et al., 2010). Biotransformation of drugs involves several steps 

including phase I metabolism that introduces a functional moiety to the compound, 

followed by phase II metabolism which produces hydrophilic conjugated products that 

facilitates their excretion. Drug transporters are also a plausible target for genetic DILI 

studies as they are involved in the efflux of drugs and bile acids from hepatocytes. 

Impairment of transporter function can result in cholestasis as is demonstrated in some 

inherited cholestatic diseases associated with mutations in drug transporter genes (Daly 

and Day, 2012) 

There is considerable interindividual and interethnic variation in genes that encode drug 

metabolising enzymes and transporters. This results in a wide range of phenotypes that 

affects expression and activity that may influence an individual’s ability to metabolise 

and excrete certain drugs. Examples of polymorphisms that have been associated with 

susceptibility to DILI are described in the following sections.  

 

1.4.2.1 Phase I enzyme polymorphisms 

 

The majority of phase I metabolism is performed by the cytochrome P450 superfamily 

of enzymes and are often implicated in the formation of toxic reactive metabolites. A 

number of polymorphisms have been described for these isoforms that lead to 

phenotypic differences in enzyme catalytic activity. It is proposed that an altered 

phenotype can result in toxicity via three main outcomes – i) if the parent drug is 

potentially toxic and the route of elimination is exclusive to a polymorphic enzyme, 

then impaired metabolism can lead to accumulation of the compound and subsequent 

toxicity, ii) if a polymorphic enzyme results in impaired metabolism, a secondary 

metabolising pathway may come into use that results in the formation of a toxic reactive 

product, iii) if a reactive metabolite is the cause of DILI then polymorphisms resulting 

in greater enzyme activity will lead to increased formation of the toxic product 

(Eichelbaum et al., 1992; Amacher, 2012). Despite the polymorphic nature of 

cytochrome enzymes only a handful of examples exist where a causative link to DILI 

has been shown.  
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CYP2C9 and 2C19 are involved in the metabolism of many drugs including NSAIDs, 

phenytoin, warfarin (by CYP2C9) and proton pump inhibitors, antidepressants and 

antiepileptics (by CYP2C19) (Chalasani and Bjornsson, 2010). Studies have been 

performed on both CYP2C9 and CYP2C19 for a potential role in DILI. The two most 

common variant alleles of CYP2C9 are CYP2C9*2 and CYP2C9*3 which are both 

associated with impaired enzyme activity (Daly, 2003). CYP2C9 genotype was studied 

in relation to diclofenac hepatotoxicity (Aithal et al., 2000). Cases of diclofenac DILI 

were genotyped for CYP2C9*2 and CYP2C9*3 but no differences were observed 

between cases and controls. These alleles were genotyped in another study with relation 

to an overall risk factor to DILI from a variety of drugs but again no associations were 

observed (Pachkoria et al., 2007). A recent publication has identified CYP2C9*2 

genotype as a potential risk factor for bosentan-induced liver injury. Liver injury to 

bosentan is thought to arise from toxicity to the parent drug. CYP2C9*2 is associated 

with reduced CYP2C9 function which may result in decreased metabolism leading to 

accumulation of bosentan and subsequent toxicity in individuals carrying this allele 

(Markova et al., 2013). Polymorphisms in CYP2C19 have been implicated as a risk 

factor in troglitazone-induced liver injury (Kumashiro et al., 2003). Homozygous 

mutant alleles were more frequently observed in troglitazone-DILI cases compared to 

controls, although only 8 cases were studied. Pachkoria et al did not find CYP2C19 

genotype to be a risk factor for DILI to drugs overall (Pachkoria et al., 2007).  

Perhaps the most significant of the CYP enzymes in relation to drug metabolism is the 

CYP3A subfamily. These enzymes are the most abundant cytochrome enzymes in the 

liver comprising between 30 and 50% of total liver CYP content (Plant, 2007). CYP3A 

enzymes also have a wide range of drug substrates and are responsible for the 

metabolism of approximately 50% of prescribed medications. The most abundant 

CYP3A isoform in adult liver is CYP3A4. CYP3A5 has similar substrate specificity to 

CYP3A4 but is only detected in 10 – 20 % of adult livers (Daly, 2003). A particular 

feature of CYP3A4 biology is the large inter-individual variability observed in basal 

expression of the enzyme. There are a substantial number of CYP3A4 variant alleles 

reported in the coding and 5’flanking regions of the gene but many are thought to exert 

little biological significance and are observed at low population frequencies and so are 

thought unlikely to fully account for the large inter-individual variability reported 

(Plant, 2007; Amacher, 2012). A new CYP3A4 variant has recently been discovered 

termed CYP3A4*22 and has been associated with decreased CYP3A4 expression 
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(Wang et al., 2011). Although, rare this variant has been associated with a decrease in 

metabolism of atorvastatin that could lead to adverse toxicity (Klein et al., 2012). 

Full understanding for high inter-individual variability in CYP3A4 expression is unclear 

but rather than variation in the CYP3A4 gene, it may possibly be explained by genetic 

variation of factors controlling the transcriptional regulation and activation of the 

enzyme. CYP3A4 expression is under the control of a combination of transcriptional 

regulatory mechanisms that include the binding of various transcription factors in 

regulatory regions upstream of the CYP3A4 promoter. The most important regulator of 

CYP3A4 expression is the ligand-activated nuclear receptor, pregnane X receptor 

(PXR). Polymorphisms leading to altered mRNA expression of these transcription 

factors significantly correlates to basal 3A4 expression (Lamba et al., 2010). A 

polymorphism in the upstream region of PXR, associated with lower PXR expression, 

has been linked to flucloxacillin induced liver injury (Andrews et al., 2010). 

CYP2E1 is mainly involved in the metabolism of low molecular weight compounds and 

toxicants such as acetone, ethanol and nitrosamines but also plays a role in the 

metabolism of certain xenobiotics such as paracetamol, halothane and isoniazid (Daly, 

2003; Daly and Day, 2013). The type of oxidative reactions that CYP2E1 performs have 

been implicated in the toxicity and carcinogenicity of various compounds such as 

benzene and chloroform (Neafsey et al., 2009). With paracetamol overdose, CYP2E1 

plays a role in the formation of toxic quinone intermediates. Functional non-

synonymous polymorphisms in CYP2E1 are rare but interindividual variation in adult 

liver CYP2E1 expression has been shown to exist (Lipscomb et al., 2003). Possession 

of a wild-type CYP2E1*1A/1A genotype has been reported to carry an increased risk of 

isoniazid toxicity compared to heterozygous and individuals homozygous for a variant 

alleles (Huang et al., 2003; Sun et al., 2008). Wild-type CYP2E1 is associated with 

higher activity than variant alleles and may lead to increased production of reactive 

metabolites. This appears to be the case with isoniazid which undergoes N-

acetyltransferase 2 (NAT2) mediated acetylation in the liver to acetylisoniazid then 

hydrolysis to form acetylhydrazine, which can then undergo CYP2E1 oxidation to 

various hepatotoxins (Huang et al., 2003). Some 5’-upstream region polymorphisms 

have been described and associated with altered enzyme expression (Zanger and 

Schwab, 2013). Several CYP2E1 variants were genotyped in DILI cases caused by anti-

tuberculosis drugs by Ching Soon Ng at Newcastle University but no significant 

associations were observed (Ng, 2011). 
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1.4.2.2 Phase II enzyme polymorphisms 

 

N-acetyltransferase 2 (NAT2) is important for the detoxification of isoniazid and 

sulphonamides through acetylation (Russmann et al., 2010). NAT2 is highly 

polymorphic and shows interindividual and considerable ethnic variation. Individuals 

with two copies of a deficient variant allele have reduced NAT2 activity and are termed 

‘slow acetylators’. Slow acetylators, especially in Asian populations, are thought to be 

at an increased risk of isoniazid hepatotoxicity (Sun et al., 2008). Acetylhydrazine is a 

product of isoniazid metabolic pathways and is thought to be responsible for toxicity 

either inherently or via further oxidation to toxic products by CYP2E1. It is postulated 

that NAT2 can detoxify acetylhydrazine to diacetylhydrazine but this route is 

compromised in individuals were NAT2 activity is reduced, resulting in increased levels 

of acetylhydrazine and toxic CYP2E1 metabolites (Daly and Day, 2013). A number of 

studies report the association between ‘slow acetylator’ phenotype and increased risk of 

isoniazid-DILI in various ethnic populations (Huang et al., 2003; Bozok Cetintas et al., 

2008; Lee et al., 2010; Bose et al., 2011). However, there are still unresolved issues 

regarding this association as a number of studies do not report NAT2 genotype as 

relevant (Vuilleumier et al., 2006; Yamada et al., 2009). Recent work by Ching Soon 

Ng at Newcastle University has studied the association of NAT2 genotype with 

isoniazid-DILI further (Ng, 2011). 26 cases of isoniazid-DILI from Europe (n=13) and 

South Asia (n=13) were genotyped for NAT2 and grouped for either ‘slow’ or ‘rapid’ 

acetylator phenotype. A significant association was observed for slow acetylators and 

risk of isoniazid-DILI in the combined European and South Asian cohort. Interestingly, 

when considered separately, there was significance for this association in the South 

Asian cohort but not in the European cohort. However, a polymorphism (-9796T>A) in 

the promoter region of NAT2, that has been associated with decreased expression of 

NAT2, was found to be significant in the European cohort but not the South-Asian 

cohort. A recent meta-analysis has attempted to confirm the association of NAT2 

genotype and susceptibility to isoniazid-DILI (Du et al., 2013). This analysis included 

26 case-control studies involving 1198 cases and 2921 controls and found an overall 

significant association between slow acetylator genotype and risk of disease. 

Interestingly, when a stratified analysis of ethnicity was performed significance was 

observed in East Asians, South Asians, Brazilians and Middle Eastern cases but not in 
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Caucasian cases agreeing with the observation by Ching Ng Soon in South Asian and 

European cohorts. Since NAT2 and CYP2E1 both play a role in the metabolism of 

isoniazid, it has been postulated that polymorphisms in CYP2E1 and NAT2 may act 

synergistically in the development of isoniazid hepatotoxicity (Chalasani and 

Bjornsson, 2010). 

Glutathione S-transferases (GSTs) are conjugation enzymes that play a major role in 

defence against cellular oxidative stress by detoxifying ROS as well as conjugating 

reactive products from phase I metabolism. There are various GST isoforms but 

polymorphisms in the GSTM1 and GSTT1 isoforms that lead to absent enzyme 

expression (null alleles) has been associated with increased susceptibility to DILI, 

particularly from antimicrobials and NSAIDs (Lucena et al., 2008). 

Glucuronidation catalysed by UGT enzymes is generally a detoxification process but in 

certain instances can produce reactive acyl glucuronide metabolites that have been 

attributed to being a factor in DILI. Diclofenac is one such example where 

glucuronidation by UGT2B7 produces an acyl glucuronide metabolite that has been 

reported as being able to form adducts leading to hepatotoxicity (Aithal et al., 2004). 

Possession of the UGT2B7*2 allele is associated with increased UGT activity and a 

greater susceptibility to diclofenac-DILI presumably via increased acyl glucuronide 

formation (Daly et al., 2007). Polymorphisms in the enzyme UGT1A6 have been 

associated with elevated aminotransferase levels in individuals exposed to the catechol-

O-methyltransferase inhibitor tolcapone (Acuna et al., 2002). It is postulated that such 

polymorphisms result in reduced UGT1A6 activity leading to slower elimination of the 

parent drug and subsequent toxicity (Daly and Day, 2012).   

 

1.4.2.3 Phase III transporter polymorphisms 

 

Detoxification of xenobiotics via phase II glucuronide, sulphate or glutathione 

conjugation forms products that are substrates for efflux hepatobiliary transporters. 

Transporters of the ATP binding cassette (ABC) family such as the P-glycoprotein 

(MDR1, ABCB1), multidrug resistance-associated protein (MRP2, ABCC2) and the bile 

salt export pump (BSEP, ABCB11) play a vital role in the efflux of xenobiotics from the 

hepatocyte into the canaliculus for excretion into bile (Chalasani and Bjornsson, 2010).  
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BSEP mediates the efflux of bile acids and xenobiotics into the bile canaliculus and 

BSEP inhibition has been suggested as a mechanism in the pathogenesis of DILI via 

accumulation of toxic bile acids leading to cholestasis. BSEP impairment is the cause of 

a number of cholestatic diseases including intrahepatic cholestasis of pregnancy (ICP) 

which is associated with a common BSEP polymorphism (c.1331T > C) (Kubitz et al., 

2012). In a study of 36 patients who suffered DILI from a range of drugs, an association 

was also discovered with this polymorphism which is thought to confer to a decreased 

expression of BSEP (Choi et al., 2007; Lang et al., 2007). MRP2 is important for the 

efflux of organic anions, plus glucuronide and glutathione conjugates. A study in a 

Korean population revealed 12 polymorphisms in MRP2 that may play a role in a 

predisposition to DILI (Choi et al., 2007). Analysis of MRP2 haplotypes showed two 

major haplotypes responsible for allelic variations. Interestingly, each haplotype was 

observed to be associated with different types of DILI, one associated with 

cholestatic/mixed injury (labelled Haplotype 1) and the other with hepatocellular injury 

(Haplotype 3). A C-24T polymorphism, that exists in the MRP2 haplotype 3, has been 

associated with diclofenac toxicity where a greater number of cases where found to 

possess the T variant that confers to lower MRP2 activity (Daly et al., 2007). 

 

1.4.3 Oxidative Stress  

 

Mitochondria are the main source of ROS which if allowed to accumulate may lead to 

oxidative stress and cellular injury and propagation of DILI. To prevent this, 

mitochondria contain defence mechanisms that reduce ROS including the enzymes, 

superoxide dismutase (SOD) which reduces superoxide to hydrogen peroxide, and 

glutathione peroxidase (GPX) and catalase which reduce hydrogen peroxide to water. 

As such, genetic polymorphisms in these ROS detoxifying enzymes may contribute to 

DILI susceptibility.  

A common SNP exists in mitochondrial manganese-dependent SOD (MnSOD, SOD2) 

where the presence of C/T at position 1183 results in the incorporation of either alanine 

or valine at position -9 of the mitochondrial targeting sequence (Pessayre et al., 2012). 

The alanine MnSOD variant (C genotype) leads to a better import of the enzyme into 

mitochondria and was found to be associated with increased susceptibility to DILI by a 

range of drugs, particularly anti-tuberculosis medications (Huang et al., 2007). A further 
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study using 185 cases of DILI from a range of drugs found the homozygous Ala/Ala 

genotype to be associated with an increased risk to cholestatic/mixed injury (Lucena et 

al., 2010). In the same study, a glutathione peroxidase I (GPX1) genotype associated 

with decreased enzyme activity was found to be a risk factor for cholestatic DILI. 

Unexpectedly, the alanine MnSOD variant is associated with greater MnSOD activity. It 

is suggested that greater MnSOD mitochondrial levels may result in increased 

production of toxic hydrogen peroxide, overwhelming detoxification mechanisms 

(Huang et al., 2007). Furthermore, glutathione peroxidase converts hydrogen peroxide 

to water so impairment of its activity may also serve to increase accumulation of 

hydrogen peroxide leading to cellular damage.       

 

1.4.4 Immune related genes 

 

1.4.4.1 Human Leukocyte Antigen 

 

The strongest genetic associations seen with idiosyncratic drug reactions, including 

DILI, are found within the human leukocyte antigen (HLA) found in the Major 

Histocompatibility Complex (MHC) on chromosome 6. Specific associations between 

certain drugs and HLA alleles support the hypothesis that there is a strong immune 

component to DILI and that covalent binding of drugs/reactive metabolites to host 

peptides are an important process in its pathogenesis. The HLA contain the most 

polymorphic genes in the human genome characterised by high linkage disequilibrium 

(LD) over large genetic distances (Daly, 2012a). The huge diversity of HLA alleles 

maximises the peptide binding capacity as allotypic differences predominantly map to 

residues in the peptide binding groove that come into contact with peptides (Bharadwaj 

et al., 2012). 

Candidate-gene association studies provided the first evidence of HLA association in 

DILI. An example of which is the finding from two independent small cohort studies 

that HLA class II allele DRB1*15:01 is a susceptibility factor for amoxicillin-

clavulanate (co-amoxiclav) DILI (Hautekeete et al., 1999; Donaldson et al., 2010). The 

advancement of our understanding of the human genome and development of 

genotyping techniques that allow simultaneous genotyping of a large number of SNPs 

has aided the study of complex diseases such as DILI. GWA studies have been used in 
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four studies to investigate genetic susceptibility to DILI. Each study, involving a 

different DILI causing drug, showed a significant association with a particular HLA 

class I or II allele (summarised in Table 1.3). 
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Table 1.2 – Summary of Genome Wide Association Studies (GWAS) with DILI-

causing drugs that show significant HLA associations  

 

Drug 

 

Number 

of Cases 

 

P - value 

 

Odds 

ratio 

(95% CI) 

 

HLA 

nomenclature 

 

Reference 

 

Ximelagatran 

 

74 

 

6.0 x 10
-6

 

 

Not 

calculated 

 

HLA-DRB1*07:01 

– DQA1*02:01 

 

(Kindmark 

et al., 2008) 

 

Flucloxacillin 

 

51 

 

8.7 x 10
-33

 

 

45 (19.4 – 

105) 

 

HLA-B*57:01 

 

(Daly et al., 

2009) 

 

Lumiracoxib 

 

41 

 

2.8 x 10
-10

 

 

5.3 (3.0 – 

9.2) 

 

HLA-DRB1*15:01-

DQB1*06:02 

 

(Singer et 

al., 2010) 

 

Amoxicillin-

clavulanate 

 

201 

 

3.5 x 10
-11

 

 

2.8 (2.1 – 

3.8) 

 

HLA-DRB1*15:01-

DQB1*06:02 

HLA-A*02:01 

 

(Lucena et 

al., 2011) 

(table adapted from (Daly, 2012a)) 
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The earliest GWAS relating to a serious adverse reaction was performed on 

hepatotoxicity cases caused by the anticoagulant drug Ximelagatran. Although, this 

GWAS was limited, by a relatively low number of single nucleotide polymorphisms 

(SNPs) covered (266000) compared to later GWAS, a significant association was 

discovered with HLA-DRB1*07:01 and HLA-DQA1*02:01(Kindmark et al., 2008). A 

GWAS performed on amoxicillin-clavulanate DILI cases from a Spanish registry 

confirmed earlier observed associations with HLA-DRB1*15:01 and discovered further 

additional HLA associations. A second HLA class II association was reported with an 

increased frequency of HLA-DQB1*06:02 in cases of amoxicillin-clavulanate-DILI 

cases (Lucena et al., 2011).  The DQB1*06:02 allele is found to be part of a DR2 

haplotype along with DRB1*15:01 (Daly and Day, 2013). A novel class I allele HLA-

A*02:01 association was also detected in cases of amoxicillin-clavulanate-DILI (Lucena 

et al., 2011). A study on 41 cases of DILI caused by the restricted NSAID, lumiracoxib, 

also found a highly significant association with the HLA DR2 haplotype containing the 

class II alleles DQB1*06:02 and DRB1*15:01 observed in amoxicillin-clavulanate-DILI 

cases (Singer et al., 2010). This observation is interesting since there are no obvious 

structural similarities between lumiracoxib and either amoxicillin or clavulanic acid 

(thought to be the hepatotoxic component) as shown in Figure 1.2. The pattern of liver 

injury is also different with co-amoxiclav-DILI predominantly cholestatic/mixed and 

lumiracoxib mainly hepatotoxic (Daly and Day, 2013).  

Although HLA-class II associations have been more commonly reported in relation to 

DILI, the strongest HLA association with DILI was discovered for a class I allele in 

relation to flucloxacillin induced liver injury. A GWAS genotyped 51 cases and 

matched controls for 900000 SNPs. A number of SNPs in the MHC region were found 

to be significant with the strongest association in LD with the class I allele HLA-

B*57:01 (Daly et al., 2009). This association is described in further detail in section 

1.6.2.1. 
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Figure 1.2 – Chemical structures of DILI causing drugs with significant HLA 

associations 
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1.4.4.2 Innate immunity 

 

In addition to the established HLA associations there is also evidence that 

polymorphisms in genes involved with innate immunity may influence susceptibility to 

DILI. To date, most reports of such genetic polymorphisms focus on pro- and anti-

inflammatory cytokine mediators (Daly and Day, 2012). An example of this is the 

association of interleukin-10 (IL-10) and interleukin-4 (IL-4) genotype with diclofenac-

DILI in a small cohort of patients (Aithal et al., 2004). The polymorphisms found 

frequently in the DILI cases were linked to decreased expression of IL-10 and increased 

expression of IL-4. IL-10 is a potent anti-inflammatory cytokine that has many 

protective and immunoregulatory functions (Pachkoria et al., 2008). Contrastingly, IL-4 

is a pro-inflammatory cytokine that assists in mediation of Th2 immune responses. A 

further investigation, with a larger cohort into the relevance of IL-10 and IL-4 

genotypes in relation to DILI in a variety of drugs, failed to confirm the association as a 

general risk factor for DILI. They did observe that low IL-10 was associated with a low 

eosinophil count that may be linked to DILI progression although this is not well 

understood (Pachkoria et al., 2008).      

 

1.5 Flucloxacillin-induced Liver Injury 

 

1.5.1 Background 

 

Flucloxacillin is a semi-synthetic beta-lactam antibiotic used since the 1970s in the UK, 

Scandinavia and Australia for the treatment of many gram positive bacterial infections. 

In the UK, it is the first line of defence for the treatment of soft tissue staphylococcal 

infections and is particularly effective against penicillinase-producing resistant strains 

(Carey and van Pelt, 2005; Huwyler et al., 2006). It is typically given orally for skin, 

soft tissue or respiratory tract infections or may be used intravenously to treat severe 

infections by methicillin-sensitive Staphylococcus aureus (MSSA) (Ritchie et al., 

2007). 

Flucloxacillin belongs to the isoxazolyl family of β-lactamase resistant penicillin’s that 

also includes the closely related oxacillin, cloxacillin and dicloxacillin. The chemical 

structures of the isoxazolyl penicillin’s differ by the degree and nature of halogenation 
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at the 2-phenyl and 6-phenyl positions of the isoxazole side chain, where oxacillin has 

no halogenation, cloxacillin contains a 2-chloro group, dicloxacillin has two chlorinated 

positions and flucloxacillin has a 2-chloro and 6-fluoro group (Figure 1.3). 
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Figure 1.3 Structures of the isoxazolyl penicillins – oxacillin, cloxacillin, 

dicloxacillin and flucloxacillin 

Isoxazolyl penicillin structure differs by the degree and nature of halogenation on the 

isoxazole side chain where oxacillin has no halogenation, cloxacillin is chlorinated at 

the 2-phenyl position, dicloxacillin is chlorinated at both the 2-phenyl and 6-phenyl 

positions and flucloxacillin is chlorinated at the 2-phenyl position and fluorinated at the 

6-phenyl position. 
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A report of penicillin use in Europe showed that isoxazolyl penicillins are widely used 

in the U.K. and Scandinavian countries including Iceland and Sweden (Figure 1.4, blue 

bars indicate β-lactamase resistant isoxazolyl use) (Ferech et al., 2006). This study 

showed that 10 of 25 European countries prescribed isoxazolyl penicillins at less than 

1% of penicillin use. Flucloxacillin was mostly used in the U.K, Sweden, Ireland and 

Portugal whereas dicloxacillin was mainly used in Iceland, Denmark and Norway, 

cloxacillin in Iceland, Spain and France and oxacillin in France (Ferech et al., 2006). 

The antibacterial activity of the isoxazolyl penicillin’s is similar to that of other β-

lactamase resistant penicillin’s, nafcillin and methicillin, but with the advantage of 

being gastric acid stable allowing oral administration. Dicloxacillin and flucloxacillin 

are better absorbed and more slowly cleared than oxacillin and cloxacillin producing 

higher and prolonged total serum concentrations. Flucloxacillin is reported as having 

higher activity than dicloxacillin due to lesser binding to serum albumin resulting in 

higher free serum levels (Sutherland et al., 1970).  
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Figure 1.4 – Outpatient penicillin use in 25 European countries in 2003 expressed 

as defined daily dose (DDD) per 1000 inhabitants per day. 

Green bars indicate narrow-spectrum penicillins (e.g. β-lactamase-sensitive penicllins 

such as benzyl penicillin and phenoxymethylpenicllin), yellow bars indicate broad-

spectrum penicillins (e.g. ampicillin, amoxicillin and piperacillin), red bars indicate 

combinations of penicillins with β-lactamase inhibitors (e.g. amoxicillin-clavulanic 

acid) and blue bars indicate β-lactamase resistant penicillins (e.g. the isoxazolyl 

penicillins).(Figure reproduced with permission from (Ferech et al., 2006)). 
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1.5.2 Epidemiology of isoxazolyl and flucloxacillin-induced liver injury 

 

Isolated reports linking hepatotoxic events to the isoxazolyl penicillin’s date as far back 

as the 1960’s when an initial report was published describing oxacillin-induced hepatitis 

(Freedman, 1965). Through the 1980’s and early 1990’s a growing number of case 

reports began to emerge from Sweden and Australia describing liver injury specifically 

related to flucloxacillin use, while reports of liver injury due to the other isoxazolyl 

penicillin’s remained extremely rare (Kleinman and Presberg, 1986; Turner et al., 1989; 

Miros et al., 1990; Olsson et al., 1992).  

In 1992, Olsson and colleagues performed a retrospective study of DILI cases 

spontaneously reported between 1981 and 1990 to the Swedish Adverse Drug Reaction 

Advisory Committee (SADRAC) (Olsson et al., 1992). A total of 77 probable and 

possible DILI cases associated with isoxazolyl penicillin’s were reported including 32 

probable flucloxacillin liver injury cases, 5 probable cloxacillin and 6 probable 

dicloxacillin cases. In Australia, two case series were published in 1989 and 1990 

describing a total of 11 cases of flucloxacillin induced liver injury (Turner et al., 1989; 

Miros et al., 1990). This led to an effort by the Australian Adverse Drug Reactions 

Advisory Committee (ADRAC) to increase awareness of reporting of flucloxacillin 

induced liver reactions, and by 1994 310 reports of flucloxacillin associated liver 

disease had been received which included 17 cases with a fatal outcome (Russmann et 

al., 2005). While awareness and reporting of adverse hepatic events attributed to 

flucloxacillin had increased, flucloxacillin dispensing rates were also still rising 

(Roughead et al., 1999). As a result of this concern and because of the frequency and 

severity of adverse hepatic events attributed to flucloxacillin, regulatory action was 

taken by the Australian Department of Human Services and Health. Measures 

introduced included restriction of the use of flucloxacillin to severe staphylococcal 

infections only, ceasing of all manufacturer advertising and approving the introduction 

of cephalexin, erythromycin and dicloxacillin as safer alternatives (McNeil et al., 1999; 

Roughead et al., 1999). The decision to introduce dicloxacillin as a safer alternative was 

based on the belief that flucloxacillin induced liver injury was substantially more 

common than dicloxacillin associated toxicity, a hypothesis that was supported by the 

earlier findings of Olsson and colleagues (Olsson et al., 1992). Additionally, in the USA 

and Canada it is dicloxacillin, not flucloxacillin, that is widely used yet there is a virtual 

absence of liver injury reports associated to its use in these countries (Devereaux et al., 



47 

 

1995). This suggests that dicloxacillin poses a lower risk of liver injury than 

flucloxacillin but due to how adverse events are recognised and reported and the lack of 

any population based epidemiological studies; this cannot be said with absolute 

certainty.  

Pharmacovigilance of flucloxacillin-induced liver injury was much greater in Sweden 

and Australia in the early 1990’s than in other countries where flucloxacillin was also 

widely used, such as New Zealand, the Netherlands and the UK. It is thought that this 

was largely due to Sweden’s compulsory regulation for the reporting of serious adverse 

reactions and Australia’s sustained publicity and heightened awareness between health 

professionals of flucloxacillin’s potential risks (Devereaux et al., 1995). Two 

retrospective cohort studies, published in the Australian literature, were performed at 

this time using data from the UK General Practice Research Database (GPRD) (Derby 

et al., 1993; Jick et al., 1994). Combined, these studies examined a cohort of 209 642 

individuals who had received flucloxacillin and estimated the incidence of flucloxacillin 

induced liver injury to be approximately 7 in 100 000 first time users of the drug. In 

2005, a follow up study included a further 283 097 patients who had received 

flucloxacillin in the period from the end of the previous study to 2002. This study 

yielded a similar estimated risk of flucloxacillin induced liver injury of 8.5 per 100 000 

users which equates to approximately 1 in 12 000 patients (Russmann et al., 2005). 

Studies into the various drugs responsible for DILI have shown that in countries where 

it is still commonly prescribed, flucloxacillin is often the most common single agent 

associated with idiosyncratic drug hepatotoxicity (Bjornsson and Olsson, 2005; 

Sistanizad and Peterson, 2013). It has also been reported as the leading cause of liver 

failure and death unless transplantation is performed amongst drugs that cause 

idiosyncratic DILI (Bjornsson et al., 2005). While these comparative studies do not take 

into account the relative numbers of prescriptions of each drug it suggests that 

flucloxacillin is the cause of frequent and potentially serious DILI. 

The discontinuation of flucloxacillin in countries such as Australia, in favour of 

dicloxacillin, and the observation that flucloxacillin remains a common cause of DILI in 

countries where it is still in use, begs the question as to why flucloxacillin is still 

preferred. There doesn’t appear to be stand-out significant clinical merits of using 

flucloxacillin over dicloxacillin. The preference for flucloxacillin may result in limited 

pharmacokinetic and pharmacodynamic data. Although, data suggests that flucloxacillin 
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and dicloxacillin have superior oral absorption and longer elimination half-lives than 

oxacillin and cloxacillin there appears to be little difference between flucloxacillin and 

dicloxacillin themselves. The only slight difference reported that may make 

flucloxacillin a more effective drug is that it has a slightly lower degree of serum 

protein binding compared to dicloxacillin, reported as 92-95% compared to 96-97% 

with dicloxacillin (Turnidge, 2012). Effectively it appears that the two compounds can 

be used interchangeably to treat the same type of infections and although hepatotoxicity 

associated with flucloxacillin is an issue that warrants further attention, due to the rarity 

of the disease it does not appear that this issue is given high enough priority in countries 

where it is still currently in use. 

 

1.5.3 Symptoms of flucloxacillin-induced liver injury  

 

Evidence gathered from episodes of flucloxacillin-induced liver injury and subsequent 

epidemiological studies have helped to build up some knowledge of the disease. It is 

established that the type of liver injury caused is predominantly cholestatic in nature 

though a mixed - hepatocellular and cholestatic phenotype is observed in some cases. 

Similarly, liver injury caused by the other halogenated isoxazolyl penicillin’s – 

cloxacillin and dicloxacillin, is also predominantly cholestatic, however injury caused 

by oxacillin is mainly hepatocellular (Olsson et al., 1992; Bjornsson and Olsson, 2005). 

Prominent symptoms in the majority of flucloxacillin hepatotoxicity cases are painless 

jaundice and pruritus while there may also be nausea, abdominal pain and fever 

(Russmann et al., 2005; Andrews and Daly, 2008). Flucloxacillin-induced cholestasis is 

characterised by abnormalities in liver function tests primarily a rise in serum 

concentrations of bilirubin, alkaline phosphatase and γ – glutamyl transferase 

(Devereaux et al., 1995).     

As with many idiosyncratic adverse reactions there is a delay of onset of the disease, 

typically flucloxacillin hepatotoxicity presents between 1 and 45 days after treatment 

commences and often after the treatment course has ended (Russmann et al., 2005; 

Andrews and Daly, 2008). Occasionally, liver injury due to flucloxacillin may present 

itself after 45 days but this is rare.  Liver injury caused by flucloxacillin is typically 

protracted with an average duration of 11 weeks before symptoms are resolved although 

in a minority of cases cholestasis may exist for periods exceeding six months 
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(Devereaux et al., 1995).  The majority of reports describing flucloxacillin-induced liver 

injury describe moderate to severe cholestasis with evidence of an inflammatory 

response including eosinophilia, lymphocyte infiltration and a proliferation of  kupffer 

cells (Bengtsson et al., 1985; Olsson et al., 1992; Devereaux et al., 1995).               

 

1.5.4 Susceptibility factors for flucloxacillin-induced liver injury 

 

The precise mechanisms by which flucloxacillin causes liver toxicity remains to be 

elucidated. However, knowledge built-up from case reports and epidemiological studies 

has provided some understanding of potential risk factors for susceptibility to the 

disease. Previously, it was reported that increasing age and a treatment course of over 

14 days were risk factors for flucloxacillin-DILI (Fairley et al., 1993). Russmann et al 

were unable to confirm a link between disease and treatment duration as they found that 

most cases had a treatment course of less than 14 days. They did however confirm that 

the disease appears to be age related with patients over the age of 60 estimated to have a 

six-fold higher risk of disease (Russmann et al., 2005). There is also some evidence to 

suggest that females may be at a greater risk than males at developing the disease 

(Russmann et al., 2005; Daly et al., 2009).  

 

1.5.5 Flucloxacillin metabolism 

 

There are limited studies on the pharmacokinetics and metabolism of flucloxacillin. It 

has been reported that flucloxacillin is highly protein bound in serum with values of 92 - 

95% reported (Roder et al., 1995). It has been estimated that peak serum concentrations 

of flucloxacillin are reached approximately 45 minutes after a single oral dose and that 

approximately 35 – 50 % of flucloxacillin is excreted unchanged in urine (Sutherland et 

al., 1970; Roder et al., 1995). Full metabolic pathways of flucloxacillin have yet to be 

fully elucidated but early work by Thijssen and co-workers found flucloxacillin to have 

three different metabolites: 5`-hydroxymethyl flucloxacillin, and penicilloic acid 

derivatives of flucloxacillin and the 5’-hydroxymethyl metabolite (Thijssen, 1979) 

(Figure 1.5). 5’-hydroxymethylflucloxacillin is thought to be the main active metabolite 

and is formed by hydroxylation of the 5-methyl group of the isoxazole ring. The 
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penicilloic acid metabolites are products of hydrolysis and ring-opening of the β-lactam 

structure in penicillin’s. This may be a spontaneous reaction, as occurs readily at 

alkaline pH, or may be enzyme-mediated in local physiological conditions that are not 

alkaline (Kitteringham et al., 1987; Carey and van Pelt, 2005). 
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Figure 1.5 – Proposed metabolism pathways for flucloxacillin – 

Flucloxacillin has been proposed to proceed via two pathways -  formation of a 5’-

hydroxymethyl flucloxacillin metabolite by likely enzymatic oxidative metabolism or 

formation of flucloxacillin-penicilloic acid through spontaneous opening of the β-

lactam ring. Additional formation of the penicilloic acid of the 5’-hydroxy methyl 

flucloxacillin metabolite has also been proposed. 
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Although, 5’-hydroxymethyl flucloxacillin is the main flucloxacillin metabolite it has 

been reported that very little of it is produced either in vivo or in vitro. Thijssen reported 

peak ratios of 5’hydroxymethyl flucloxacillin to flucloxacillin to be 1:25 in serum after 

an oral dose (Thijssen, 1980). Similarly, Lakehal et al found that 5’-hydroxymethyl 

flucloxacillin production in hepatocytes was approximately 1% that of flucloxacillin 

(Lakehal et al., 2001). 

The monooxygenase activity of cytochrome P450 enzymes has been postulated to be 

important in the formation of 5`-hydroxymethyl flucloxacillin. Lakehal and colleagues 

reported that the cytochrome isoform CYP3A4 had a specific role through studies in 

CYP3A-induced rat liver microsomes, human liver microsomes and human 

recombinant CYP3A4 yeast vectors (Lakehal et al., 2001). They reported that 

troleandomycin inhibition of CYP3A activity attenuated production of the metabolite, 

whereas specific inhibitors of CYP1A2 or 2C9 did not. The involvement of cytochrome 

P450 in flucloxacillin metabolism has been disputed, however, by Huwyler et al, who 

stated that flucloxacillin was not a substrate for cytochrome P450 enzymes (Huwyler et 

al., 2006). Further work is needed to better understand how flucloxacillin is metabolised 

and will be one of the aims of this current study. 

 

1.6 Pathogenesis of flucloxacillin-induced liver injury 

 

1.6.1 Metabolic basis of flucloxacillin induced liver injury 

 

1.6.1.1 Toxicity of flucloxacillin and its metabolites 

 

There are relatively few studies that examine the metabolic basis of flucloxacillin-

induced liver injury. Lakehal and colleagues reported that flucloxacillin was not 

intrinsically toxic to cells but a compound produced by hepatocytes, believed to be 5`-

hydroxymethyl flucloxacillin, may be toxic to biliary epithelial cells (BECs) (Lakehal et 

al., 2001). Conditioned media from flucloxacillin treated hepatocytes was incubated 

with BECs and found to cause toxicity in 7 of 12 preparations. Similarly, media from 

flucloxacillin treated human liver microsomes incubated with 8 BEC preparations was 

found to cause toxicity in 50% of the samples suggesting that a toxic metabolite is being 

produced. It is suggested that cytotoxicity from 5’-hydroxymethyl flucloxacillin may 
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arise from depletion of glutathione and oxidation of protein thiols leading to oxidative 

stress. Cytotoxicity in BECs but not hepatocytes has been attributed to the glutathione 

content with BECs containing over 60% less than hepatocytes (Parola et al., 1990; 

Lakehal et al., 2001).  

It remains unclear whether the penicilloic acid metabolites of flucloxacillin and 5`-

hydroxymethylflucloxacillin are also toxic but it is thought that these metabolites are 

likely to be responsible for adduct formation via the opened β-lactam ring (Carey and 

van Pelt, 2005).  

 

1.6.1.2 Nuclear Receptors 

 

The studies of Lakehal and colleagues suggest a role for CYP3A4 in the metabolism of 

flucloxacillin, although this has been disputed and the issue is yet to be fully resolved. 

The possibility of a role for CYP3A4 metabolism, however, leads to a discussion as to 

whether inter-individual variation in CYP3A4 activity may affect susceptibility to 

flucloxacillin-induced liver injury. Studies of CYP3A4 polymorphisms suggest that 

mutations in the CYP3A4 gene are not likely to exert a significant effect on CYP3A4 

metabolism (Lamba et al., 2002). Functionally significant polymorphisms have been 

shown in the minor CYP3A isoforms, CYP3A5 and CYP3A7 (Lamba et al., 2002). For 

example, CYP3A5 is only expressed in 10-15% of Caucasians but may account for up 

to 50% of CYP3A metabolising activity (Andrews and Daly, 2008). A recent study has 

failed to show a significant difference in CYP3A5 genotype between flucloxacillin-

induced DILI cases and controls (Andrews et al., 2010).  

Considering CYP3A4, as a risk factor for flucloxacillin-induced toxicity, it may be 

more important to look at the regulatory factors that control the enzymes induction and 

expression rather than genetic variation in the enzyme itself. Transcriptional induction 

of CYP3A4 is mediated by members of the nuclear hormone receptor family. The 

receptor described as being primarily responsible for CYP3A4 regulation is the 

pregnane X receptor, PXR (NR1I2) but also the constitutive active/androstane receptor 

(CAR) (Moore et al., 2000). PXR and CAR are both highly expressed in the liver where 

they co-ordinately regulate genes involved in all phases of xenobiotic metabolism as 

well as playing a role in the maintenance of bile acid homeostasis. PXR has been shown 

to have a large ligand binding domain compared to other nuclear receptors and can be 
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activated by a wide range of structurally diverse unrelated compounds including 

antimacrolide antibiotics such as rifampicin, glucocorticoids, statins, environmental 

pollutants, organic pesticides and endogenous compounds such as steroids and bile acid 

salts (di Masi et al., 2009; Li et al., 2012). Ligand binding to PXR leads to its nuclear 

translocation and formation of a heterodimer with the retinoid X receptor (RXR). PXR 

activates the transcription of CYP3A4 by binding as a heterodimer to various specific 

response elements in the 5’upstream promoter region: the proximal promoter ER6, the 

distal DR3 motif in the xenobiotic-responsive enhancer module (XREM), the ER6 in 

the far distal enhancer module and a recently identified DR4 motif (Ihunnah et al., 

2011).   

Cholestasis arises as a result of ineffective bile formation in the hepatocyte or 

impairment of bile secretion leading to accumulation of toxic bile acids. PXR and CAR 

regulate the expression of enzymes and transporters involved in bile acid synthesis and 

detoxification. To facilitate excretion, bile acids must undergo phase I and II 

metabolism. Bile acids are hydroxylated by CYP3A4 which is regulated by PXR and 

CAR. Bile acids such as lithocholic acid are PXR ligands whereas bilirubin can activate 

CAR (Staudinger et al., 2001). Phase II metabolism through sulphate and glucuronide 

conjugation is mediated via enzymes such as SULT2A1 which is mainly CAR regulated 

and UGT1A enzymes which are CAR and PXR mediated. These mechanisms suggest a 

protective role for CAR and PXR against cholestasis.  

Reporter studies have been used to show that flucloxacillin is a PXR ligand (Andrews et 

al., 2010). Flucloxacillin has also been shown to be able to induce transcription of 

CYP3A4 and MDR1, both under control of PXR regulation (Huwyler et al., 2006; 

Andrews et al., 2010). Furthermore, there is evidence linking a PXR polymorphism, 

(rs3814055, C-25385T) and flucloxacillin DILI cases, with an increased frequency of 

CC homozygotes in disease cases compared to drug-treated controls and healthy 

community controls (Andrews et al., 2010). This allele has previously been associated 

with decreased CYP3A4 expression when compared to TT homozygotes.  

This evidence suggests that flucloxacillin may influence PXR regulation of genes 

important in drug disposition and bile acid homeostasis. If flucloxacillin is metabolised 

by CYP3A4, genetic polymorphisms in PXR that result in decreased expression of 

CYP3A4 may lead to increased accumulation of flucloxacillin in hepatocytes, possibly 

influencing the toxicity of the drug. There have been no studies assessing whether 
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flucloxacillin has any impact on other nuclear receptors such as CAR. Like PXR, CAR 

is also activated by a range of xenobiotics and is involved in the induction of 

metabolising enzymes including CYP3A4.  

 

1.6.1.3 Transporters 

 

Flucloxacillin is thought to undergo approximately 28% extra-renal or biliary excretion 

(Nauta and Mattie, 1975). This means that flucloxacillin is a substrate for at least one 

hepatic drug efflux transporter such as P-glycoprotein (MDR1), MRP2 or BSEP. At 

present, there is very little knowledge about flucloxacillin's interactions with drug 

transporters, except for one report that flucloxacillin is not a substrate for P-

glycoprotein (MDR1) (Huwyler et al., 2006). As described in section 1.3.2.3, drug 

transporters play a vital role in bile acid homeostasis as well as the excretion of drugs. 

Impairment of drug transporter function can contribute to cholestasis with BSEP 

inhibition in particular associated as a risk factor to some DILI. There is evidence that 

flucloxacillin inhibits BSEP in vitro, although the functional effect of this is unknown 

(Dawson et al., 2012). The same study reported that two other isoxazolyl penicillin’s - 

cloxacillin and dicloxacillin, were also able to inhibit BSEP. Polymorphisms in drug 

transporter genes have briefly been studied in relation to flucloxacillin-DILI (Bhatnagar 

et al., 2008). 36 polymorphisms were genotyped in MDR1, MDR3, BSEP and MRP2 in 

56 cases of flucloxacillin-DILI and 199 healthy controls. No significant associations 

were found except for a modest association in a missense variant in exon 25 of MRP2 

(V1188E). However, the authors state that the functional significance of this variant is 

unknown as is MRP2’s relevance in flucloxacillin efflux (Bhatnagar et al., 2008).     

 

1.6.2 Immune basis of flucloxacillin induced liver injury 

 

There is now enough evidence to confidently suggest that there is a strong immune 

basis to the pathogenesis of flucloxacillin induced liver disease.  Originally, this 

stemmed from the presence of immune-like symptoms in episodes of injury, such as 

rash, fever and eosinophilia, and from an unforeseen incident where such symptoms 

were caused after an inadvertent re-challenge of flucloxacillin in a patient (Lobatto et 

al., 1982; Andrews and Daly, 2008).  
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1.6.2.1 HLA-B*57:01 associations with flucloxacillin-DILI and abacavir 

hypersensitivity 

 

Genetic associations with DILI in immune-related genes have been described with the 

strongest associations typically found in the highly polymorphic HLA gene locus. Such 

an association was discovered in relation to flucloxacillin-induced liver injury as a 

result of a genome-wide association study (GWAS) in 2009 by Daly et al, under the 

DILIGEN project (Daly et al., 2009). 51 cases of flucloxacillin DILI and 282 controls 

were genotyped for 900 000 SNPs and a significant associations were discovered in the 

MHC region on chromosome 6. The top SNP found was a missense polymorphism, 

rs2395029, in the HCP5 gene found 100kb centromeric of HLA-B on chromosome 6. 

This SNP has previously been shown to be in complete linkage disequilibrium with the 

HLA allele HLA-B*5701 and has been used as a cheaper, less labour intensive method 

of screening for the B*5701 allele (Colombo et al., 2008). Subsequent genotyping of the 

flucloxacillin-DILI cases and controls showed a highly significant association between 

disease and HLA-B*5701 with an 80 fold increased risk of developing disease with this 

allele present (Daly et al., 2009). Among cases, 85% carried the HLA-B*5701 allele 

compared to approximately 8% in the general British Caucasian population. Despite this 

strong association, it has been estimated that the incidence of developing disease with 

this genotype after flucloxacillin treatment is only 1 in every 500 to 1000 individuals 

suggesting that other events or genetic factors are also involved. 

A similar association between HLA-B*57:01and an ADR has been previously described 

for a hypersensitivity reaction to the antiretroviral agent, abacavir (Hetherington et al., 

2002; Mallal et al., 2002). Unlike flucloxacillin-induced DILI this ADR is a general 

hypersensitivity reaction and not restricted to the liver. The association between HLA-

B*57:01 and abacavir hypersensitivity appears to be stronger than the flucloxacillin 

association with approximately 50% of individuals possessing HLA-B*57:01developing 

a reaction when exposed to abacavir compared to less than 1 in 500 exposed to 

flucloxacillin. Genotyping for HLA-B*57:01 prior to commencing abacavir therapy 

now takes place on a global scale and has been successful at reducing incidence of 

abacavir hypersensitivity reactions (Mallal et al., 2008). 
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The association of the class I allele HLA-B*57:01 and flucloxacillin-DILI and abacavir 

hypersensitivity suggests a possible role for T-cell mediated pathways in the diseases. 

This is also supported by the observation that lymphocytes from certain flucloxacillin 

DILI patients can be stimulated in vitro by flucloxacillin (Maria and Victorino, 1997; 

Spanou et al., 2006). However, this was not observed in all patients and was not 

replicated subsequently by others (Monshi et al., 2013). Compared to flucloxacillin-

DILI, T-cell responses are relatively well characterised with regards to abacavir 

hypersensitivity. A landmark study by Chessman et al recently defined the role of HLA-

B*57:01 in abacavir hypersensitivity. Stimulation was achieved of abacavir specific 

CD8
+
 T-cells in vitro using peripheral blood mononuclear cells (PBMCs) from 

abacavir-hypersensitive patients and abacavir-naïve HLA-B*5701 positive donors  

(Chessman et al., 2008). They demonstrated that the CD8
+
 T-cells secreted the 

inflammatory mediators tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) that 

were cytotoxic to abacavir-loaded antigen presenting cells (APC’s). These mechanisms 

were found to be restricted to individuals expressing HLA-B*57:01 and shown to be 

dependent on the presence of functional TAP and tapasin molecules suggesting a 

mechanism of T-cell activation that requires the binding of intracellular processed 

haptenised-peptides that are presented to HLA-B*57:01 and expressed for T-cell 

recognition. 

 

1.6.2.2 Flucloxacillin-hapten formation and T-cell mediated responses 

 

Recent work by Monshi et al has uncovered some of the mechanisms of flucloxacillin 

mediated T-cell activation (Monshi et al., 2013). As with abacavir, drug-specific T-cell 

responses producing IFN-γ and granzyme B secretion were observed in PBMCs from 

patients who have suffered from flucloxacillin-induced liver injury but unlike abacavir, 

this could not be replicated using PBMC’s from either flucloxacillin tolerant or naïve 

HLA-B*57:01 positive donors. However, it was possible to prime flucloxacillin specific 

CD8+ T-cell clones in naïve individuals that were activated to secrete cytokines and 

express chemokine receptors following flucloxacillin stimulation in a similar manner to 

CD8+ clones from patients. Interestingly, flucloxacillin-reactive T-cell clones were 

generated from a HLA-B*57:01 negative patient but these were found to be CD4+ in 

nature suggesting that an alternative method of T-cell mediation may exist in B*57:01 

negative patients.  
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Similarly to earlier work with abacavir, Monshi et al described a method of 

flucloxacillin-mediated T-cell activation that requires the formation of flucloxacillin-

peptide haptens followed by intracellular processing and presentation to HLA 

molecules. Previously, flucloxacillin has been shown to form adducts in vitro and in 

vivo. Penicillin’s can form adducts in vitro with proteins via ring opening of the β-

lactam ring structure and it has been demonstrated that flucloxacillin can form adducts 

with lysine residues in human serum albumin (Kitteringham et al., 1987; Jenkins et al., 

2009). With regards to in vivo adduct formation, western blot studies using a specific 

polyclonal antisera to synthetic flucloxacillin-protein conjugates raised by immunisation 

of rabbits have shown the presence of flucloxacillin adducts in the livers of treated rats 

(Carey and van Pelt, 2005). Six different adducts were discovered varying in subcellular 

location and molecular weight. Interestingly, an adduct was found in the microsomal 

fraction that corresponded in molecular weight to the cytochrome P450 enzymes 

suggesting that possible adduct formation may occur with the metabolising enzymes. 

Monshi et al suggest that this could possibly correspond to an flucloxacillin adduct to 

albumin which they demonstrated was able to stimulate T-cell responses (Monshi et al., 

2013).      

 

1.6.2.3 The p-i concept and flucloxacillin-DILI 

 

A recent study by Wuillemin et al has provided evidence that the pharmacological 

interaction (p-i) concept of T-cell stimulation may play a role in flucloxacillin mediated 

immune responses (Wuillemin et al., 2013). The group generated cytotoxic, 

predominantly CD8+, flucloxacillin specific T-cell clones and T-cell lines from both 

HLA-B*57:01 positive and negative flucloxacillin-naïve healthy donors as reported 

elsewhere (Spanou et al., 2006; Monshi et al., 2013). The reactivity pattern of T-cell 

activation was studied by stimulating the T-cell clones with either flucloxacillin-pulsed 

autologous APCs or with APCs to which flucloxacillin was freshly added to in solution. 

Using these conditions the group stated that they could differentiate between a stable, 

covalent association between flucloxacillin and HLA as is produced by an intracellular 

processed and HLA-presented drug-peptide hapten and a reversible, noncovalent direct 

pharmacological interaction (p-i) between flucloxacillin and T-cells. 
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They report that flucloxacillin specific T-cells from all tested HLA-B*57:01 positive 

individuals reacted immediately with flucloxacillin in solution, independent of 

proteasomal processing, forming a complex that was not resistant to extensive washing. 

This suggests a mechanism that involves a direct, reversible bond between 

flucloxacillin, HLA and the T-cell receptor that is independent of haptenisation and 

HLA presentation as is described by the p-i concept. Conversely, the group observed 

that flucloxacillin specific T-cells from HLA-B*57:01 negative individuals did not react 

in this manner but were found to be activated by flucloxacillin-pulsed APCs. Activation 

here was time-dependent, required proteasome activity and was resistant to washing 

suggesting a mechanism that required hapten processing, presentation and covalent 

binding to the HLA.  

Approximately 35% of HLA-B*57:01 positive T-cell lines also reacted in a hapten-like 

manner suggesting a probable role for both mechanisms in the HLA-B*57:01 response. 

The authors conclude, however, that because activation by the p-i concept route is 

specifically restricted to the HLA-B57:01 allele, whereas flucloxacillin reactive T-cells 

can be activated by haptens presented by various HLA alleles, the dominant pathway for 

flucloxacillin mediated T-cell activation is that of direct interaction of the drug and T-

cell receptor i.e. the p-i concept.   

 

1.6.2.4 Novel mechanisms for peptide binding to HLA-B*57:01 

 

Recently, novel mechanisms have been described with regards to abacavir activation of 

T-cell responses. These mechanisms describe how abacavir can alter the nature of the 

peptide repertoire binding to HLA-B*57:01 resulting in the binding of novel self-

peptides (Illing et al., 2013). Illing and colleagues demonstrated that abacavir can bind 

non-covalently to the antigen binding cleft of B*57:01 altering the confirmation of the 

peptide anchoring site. The authors suggest that this change in the chemistry of the 

antigen binding cleft alters the repertoire of endogenous peptides that are usually 

tolerated upon binding to B*57:01, thus creating an ‘altered-self’ repertoire and 

neoantigens that can activate T-cells (Illing et al., 2012). This was followed by an in 

silico study of randomised peptide libraries that showed that peptides with valine, 

alanine or isoleucine at the C-terminus had enhanced affinity for B*57:01 in the 

presence of abacavir (Ostrov et al., 2012). A slightly different mechanism was proposed 
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by Norcross and colleagues. They demonstrated that abacavir enhances the binding of 

novel self-peptides to HLA-B*57:01 by binding of abacavir to self-peptides that are not 

in the constitutive repertoire of HLA-B*57:01 presentation (Norcross et al., 2012). 

Interestingly, flucloxacillin was also used in this study but was not found to be able to 

increase binding of the self-peptide to B*57:01 used in the assay. This suggests that 

flucloxacillin may not bind to HLA-B*57:01 and induce loading of novel self-peptides 

but further investigation would be required to confirm this.            

       

1.7 Aims of the study 

 

The principal aim of this study was to determine underlying mechanisms of 

flucloxacillin-induced liver injury. The discovery of a strong association with HLA-

B*57:01 and susceptibility to disease will be built upon and genetic polymorphisms 

studied in a case-control approach to identify novel genetic associations in metabolic 

and immune pathways. Regulatory responses in target genes are studied including the 

nuclear receptors PXR and CAR. Building on previous work, the interaction between 

flucloxacillin and PXR will studied alongside various other isoxazolyl penicillin’s. The 

relevance of CAR in flucloxacillin-DILI is studied through the use of a reporter gene 

assay to study CAR activation and genotyping of polymorphisms in common CAR 

haplotypes. Flucloxacillin metabolic pathways are studied in a variety of in vitro 

systems to determining the role of cytochrome P450 in the metabolism of the drug. 

Mechanisms of flucloxacillin mediated T-cell activation are studied through incubation 

of patient peripheral blood mononuclear cells (PBMCs) with flucloxacillin and 

measurement of cytokine gene expression by real-time PCR. Genetic associations 

within killer-cell immunoglobulin-like receptors (KIR) are investigated using a case-

control study approach. 
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Chapter 2. General Materials and Methods 
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2.1 Materials  

 

Chemicals and reagents were purchased from the named suppliers listed in Table 2.1.  

As far as possible all reagents were analytical or molecular grade. Aqueous solutions 

were prepared with reverse osmosis distilled water. Solutions, glassware and other 

equipment were sterilised by autoclaving at 120 °C, 15 pounds per inch (PSI) pressure 

for 20 min. Plastic ware was either purchased sterilised or autoclaved where necessary. 

Solutions used for tissue culture were filter-sterilised using 0.2 mm filters (Millipore). 

PCR primer dilutions and reaction master mixes were made using pre-purchased sterile 

water (Fresenius Kabi Limited). For RNA work, diethyl pyrocarbonate (DEPC) treated, 

nuclease free water (Fisher Scientific) and RNase free plastic ware was used 

throughout. Compositions of frequently used stock solutions are listed in Table 2.2. 
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Table 2.1 – List of suppliers and addresses  

Supplier Address 

 

Applied Biosystems 

 

Paisley, UK 

Bioline London, UK 

Eurofins MWG Operon London, UK 

Fermentas York, UK 

Fisher Scientific Loughborough, UK 

Greiner Bio-One Stonehouse, UK 

Invitrogen Paisley, UK 

Millipore Watford, UK 

New England Biolabs (NEB) Hitchin, UK 

Novagen Nottingham, UK 

Promega Southampton, UK 

QIAGEN  Crawley, UK 

Sarstedt Leicester, UK 

Sigma Aldrich Gillingham, UK 

Thermo Scientific Barnstead, UK 
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Table 2.2 – Composition of frequently used stock solutions 

Solution Constituents 

 

10 X TBE 

 

0.9 M Tris-Base 

0.9 M Boric acid 

20 mM EDTA   

 

DNA gel loading buffer 

 

0.25 % (w/v) bromophenol blue 

0.25 % (w/v) xylene cyanol 

30 % glycerol 

 

Nuclear Lysis Buffer  

 

0.4 M Tris-HCl, pH 8.0 

60 mM EDTA 

150 mM sodium chloride 

1% (w/v) sodium dodecyl sulphate) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

2.2 Flucloxacillin-DILI case and control recruitment 

 

2.2.1 Patient recruitment 

 

The DILIGEN and iDILIC studies aim to identify genetic determinants susceptibility of 

DILI through the collection of patient DNA samples retrospectively and prospectively. 

The DILIGEN study described the study based in the UK which is now part of a larger 

international study called iDILIC. A number of drugs are under investigation including 

co-amoxiclav, anti-TB drugs and flucloxacillin. In 2009, a GWA study performed by 

Daly et al included 51 cases of flucloxacillin-DILI collected from UK regional liver 

units (Daly et al., 2009). These cases were subsequently used in studies performed by 

Elise Andrews at Newcastle University as part of her PhD studies.  A further 21 

DILIGEN cases were subsequently collected and included in further GWAS analysis 

and in these studies. A further 78 cases that have since been collected, as part of the on-

going iDILIC project, have also been included in the present study. Of these additional 

cases, 21 have been collected from liver units in Sweden while the rest are from liver 

units across the UK. Clinical and biochemical parameters for the total number of 

patients (n=150) are listed in Table 2.3. Ethical approval for the UK study was provided 

by the Leeds East Research Ethics committee with the Swedish study obtaining separate 

approval in Sweden. After consent was given, patient suitability was assessed using the 

criteria detailed below.  
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Table 2.3 – Clinical and biochemical variables of DILI patients exposed to 

flucloxacillin included in the present study 

 

Sex (F/M) 

 

104/46 

 

Age at onset (years) 

 

64.0 ± 13.6 

 

Time to onset (days) 

 

24.0 ± 18.1 

 

Total days on drug 

 

10.4 ± 6.2 

 

Pattern of liver injury 

 Cholestatic 

 Hepatocellular 

 Mixed 

 

 

92 (0.61) 

12 (0.08) 

46 (0.31) 

ICC scoring 

 3 – 5 (possible) 

 6 – 8 (probable) 

 8 (highly probable) 

 Not known 

 

17 (0.11) 

61 (0.41) 

71 (0.47) 

1 (0.01) 

Peak Bilirubin (µmol/l) 263.7 ± 228.1  

Peak ALT (U/l) 404.6 ± 256.5 

Peak ALP (U/l) 570.7 ± 677.5 

ALT/ALP decreased by ≥ 50% 

above ULN after drug 

discontinuation 

 Yes 

 No 

 Not known 

 

 

 

142 (0.95) 

6 (0.04) 

2 (0.01) 

Time taken for ALT/ALP to 

decrease to ≥ 50% after drug 

discontinuation (days) 

 

 

66.9 ± 71.8 
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2.2.2 Causality assessment 

 

A causal relationship of liver injury to flucloxacillin was assessed using the 

international consensus criteria (ICC) RUCAM method and biochemical parameters. 

Biochemical criteria used for inclusion of suspected flucloxacillin-DILI cases included 

(i) clinically apparent jaundice or bilirubin > 40 µmol/l (after exclusion of cases due to 

hemolysis), (ii) ALT > 5 X ULN or (iii) ALP > 2 X ULN plus any raised bilirubin 

above ULN. Causality assessment by the RUCAM is outline in section 1.2.3 and cases 

due to flucloxacillin were scored numerically as ‘unlikely’, ‘possible’, ‘probable’ or 

‘highly probable’.  

 

2.2.3 Recruitment of controls 

 

64 individuals who had been exposed to flucloxacillin in the previous five years without 

any adverse effects were recruited from UK hospitals and general practices. Controls 

were made up of 27 males and 37 females, with a mean age of 54.9 years, range 24 – 90 

years. A control group consisting of 282 matched Population Reference Sample 

(POPRES) controls that were used in the Daly et al GWA study, have also been used for 

PLINK genotyping analysis. These controls were selected by a principal component 

analysis (PCA) for samples of Northern European origin from a total of 468 controls 

(Daly et al., 2009).  

 

2.3 Nucleic Acid Extraction Methodology 

 

2.3.1 Genomic DNA Extraction 

 

Cells were pelleted by centrifugation at 3000 g for 10 min at 4 °C (Sigma 3-16PK 

centrifuge) and resuspended in 2 ml nuclear lysis buffer (400 mM tris-HCl pH 8.0, 60 

mM EDTA, 150 mM sodium chloride and 1% (w/v) sodium dodecyl sulphate). 0.5 ml 5 

M sodium perchlorate was added and the sample mixed at room temperature for 15 

minutes on a rotary mixer (Stuart Scientific) followed by incubation at 65 °C for 30 

minutes in a Techne Dri-Block. 2.5 ml chloroform was added and the samples rotary 
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mixed at room temperature for 10 minutes to homogenise the mixture. Samples were 

centrifuged at 3000 g for 10 min at 4 °C to separate the organic and aqueous phases. 

The upper DNA-containing aqueous phase was carefully transferred to a clean 15 ml  

polypropylene centrifuge tube to which 5 ml ethanol was added, and the tube inverted 

several times to precipitate the DNA out of solution. The DNA was spooled onto a 

sterile disposable loop and allowed to air-dry for 10 min at room temperature before 

being dissolved overnight at 60 °C in 200 µl 5 mM tris-HCl buffer (pH 8.0) in a sterile 

1.5 ml microfuge tube. 

 

2.3.2 RNA extraction methodology 

 

2.3.2.1 RNA isolation 

 

RNA was extracted from cell samples using TRI Reagent solution (Applied 

Biosystems). 1 ml TRI reagent was added per 5 – 10 x 10
6
 cells and the sample 

homogenised by pipetting. The mixture was transferred to an RNase free 1.5 ml 

microfuge tube and incubated at room temperature for 5 minutes to allow complete 

dissociation of the nucleoprotein complexes. 200 µl chloroform was added and mixed 

by vigorous shaking for 15 seconds before incubation at room temperature for 10 

minutes. Samples were centrifuged at 13000 rpm, at 4 °C for 15 minutes and the RNA -

containing aqueous phase transferred to a fresh tube. 500 µl isopropanol was added to 

precipitate RNA and the samples vortexed before incubation at room temperature for 10 

minutes. The samples were centrifuged at 13000 rpm for 8 minutes at room temperature 

to pellet the RNA and the supernatant carefully removed and discarded. 1 ml of 75 % 

ethanol was added to wash the RNA pellet before a final centrifugation at 13000 rpm 

for 5 minutes at room temperature. The ethanol was carefully removed and the RNA 

pellet allowed to air dry before resuspension in an appropriate volume of nuclease-free 

water (typically 30 – 50 µl). RNA samples were stored at – 80 °C.  

 

2.3.2.2 Determining RNA integrity by agarose gel electrophoresis 

 

A 1% agarose gel was prepared by dissolving 1 g agarose in 88 ml water by microwave 

heating, to which, after cooling to 60 °C, 10 ml 10 X MOPS buffer ( 0.2 M MOPS (3-
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[N-morpholino] propanesulfonic acid), 0.05 M sodium acetate, 0.01 M EDTA, pH 7.0) 

and 2.7 ml 37% formaldehyde was added. 100 µl RNA loading buffer was prepared 

containing 10 µl 10 X MOPS buffer, 11.5 µl RNase-free water, 50 µl deionised 

formamide, 17.5 µl 37% formaldehyde, 10 µl 10 X loading dye (50 % sterile glycerol, 1 

mM EDTA, 0.25% bromophenol blue, 0.25% xylene cyanol FF) and 1 µl ethidium 

bromide (10 mg/ml). 1 µg RNA was added to 5 µl loading buffer and incubated at 65 

°C for 10 min then chilled on ice for 2 min before being loaded onto the gel. 

Electrophoresis was performed at a constant voltage of 100 V, for 45 min in 1 X MOPS 

buffer. The integrity of the RNA was determined by gel visualisation. Complete RNA 

will show two strong bands corresponding to the ribosomal RNA. The large 28S band is 

approximately of 5 kb size, while the smaller 18S band is approximately 2 kb. 

 

2.3.3 Evaluation of nucleic acid yield and purity 

 

DNA and RNA yield and purity was measured using a Nanodrop spectrophotometer 

ND-1000 (Thermo Scientific). An absorbance unit of 1 at 260 nm is equivalent to 50 

µg/ml double stranded DNA and 40 µg/ml RNA. The ratio of the 260 nm measurement 

to the 280 nm measurement is used to indicate purity. Ratios of 1.8 to 2.0 indicate pure 

DNA/RNA.  

 

2.3.4 Storage of nucleic acid samples 

 

Quantified DNA samples were diluted to concentrations of 50 µg/ml and stored at – 20 

°C. RNA samples were stored in 1.5 ml RNase-free screw-cap microfuge tubes and 

stored at – 80 °C. 

 

2.4 Polymerase Chain Reaction (PCR) Methodology 

 

2.4.1 Primer design 

 

Primers for PCR were taken from literature sources, where stated, or otherwise designed 

using the public tool, Primer BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Primers were designed, where possible, to have a length of approximately 18-20 

nucleotides, melting temperatures (Tm) between 52 – 58 °C and a GC content of 

approximately 50 %. The annealing temperature of each primer pair was determined 

through PCR optimisation, beginning at 5 °C below the specified Tm. All primers were 

purchased from Sigma-Aldrich, UK, and resuspended in sterile water to 200 µM. 

Working stocks (25 µM) were made and stored at 4 °C, with remaining stocks stored at 

- 20 °C.  

 

2.4.2 PCR protocol 

 

Genomic template DNA (50 ng) was amplified in a total reaction volume of 20 µl 

containing 1 X ThermoPol reaction buffer (NEB), 0.25 µM forward primer, 0.25 µM 

reverse primer (Sigma-Aldrich, UK), 0.25 mM dNTP’s (Bioline), 0.5 U Taq 

Polymerase (NEB). Reactions were conducted in 0.2 ml sterile thin-walled tubes (Fisher 

Scientific) and thermocycling performed on an Applied Biosystems 2720 Thermal 

Cycler. Cycling conditions typically consisted of the following standard programme, 

with varying primer annealing temperatures optimised specifically to each assay primer 

set; 

 

DNA denaturation - 5 min - 94 °C 

35 cycles of 

Denaturation - 30 sec - 94 °C 

Annealing – 30 sec – at optimised temperature 

Extension – 30 sec – 72 °C 

Final extension – 7 min - 72 °C 

 

PCR efficiency was determined by running 10 µl of the product on a 2 % agarose gel as 

in section 2.5.1. 
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2.5 Electrophoresis and visualisation of DNA 

 

2.5.1 Agarose gel electrophoresis 

 

2 % agarose gels were prepared by dissolving 2 g DNase and RNase free agarose 

powder in 100 ml 1 X TBE buffer to which ethidium bromide was added (0.5 µg/ml). 1 

µl of 6 X gel loading buffer (0.25% bromophenol blue, 0.35% xylene cyanol, 30% 

glycerol) was mixed with 5 µl DNA product and loaded onto the gel alongside a 100 – 

1000 bp molecular weight marker (NEB). Electrophoresis was performed at 80V for ~ 

30 min in 1 X TBE buffer followed by gel visualisation as described in section 2.5.3.  

 

2.5.2 Polyacrylamide gel electrophoresis (PAGE) 

 

10 % polyacrylamide gels were prepared containing 30 % acrylamide-bis acrylamide 

29:1 (Fisher Scientific) in 1 X TBE buffer, 0.4 mg/ml ammonium persulphate (APS) 

and 0.1 % TEMED. The mixture was poured between two 200 mm x 200 mm sealed 

glass plates separated by 0.8 mm spacers and the gel allowed to polymerise. 7 µl gel 

loading buffer was added to 20 µl DNA digestion product and loaded into gel wells. 

Electrophoresis was performed at 150 V for 3 – 4 hours in 1 X TBE buffer. Following 

electrophoresis, gels were stained in a solution of 1 X TBE buffer containing 0.5 µg/ml 

ethidium bromide for 20 min followed by gel visualisation as described in section 2.5.3.        

 

2.5.3 Gel visualisation 

 

Gels were visualised on a Syngene GENi v1.1.1.14 gel documentation system 

(Syngene, Cambridge, UK). 

 

2.6 Quantitative real-time PCR methodology 

 

2.6.1 cDNA synthesis by Reverse Transcription 
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First strand cDNA was synthesised using Moloney Murine Leukemia Virus (M-MuLV) 

reverse transcriptase (NEB). 1 µg RNA was added to 1 µl random hexamers (0.4 µg/µl) 

(QIAGEN), 1 µl dNTP’s (10 mM) (NEB) and 6 µl DEPC water and incubated at 65 °C 

for 10 minutes. Samples were placed on ice for 2 minutes before being added to a 

reverse transcriptase master mix containing 2 µl 10 X RT buffer (75 mM KCl, 50 mM 

Tris-HCl, 3 mM MgCl2, 10 mM dithiothreitol, pH 8.3 at 25 °C) (NEB), 50 U M-MuLV 

reverse transcriptase (200 000 U/ml) (NEB), 4 U RNase inhibitor (40 000 U/ml) (NEB) 

and DEPC water to make a total reaction volume of 20 µl. Samples were incubated on a 

thermal cycler at 37 °C for 50 minutes to synthesis cDNA followed by 70 °C for 15 

minutes to inactivate the reverse transcriptase. cDNA samples were stored at – 20 °C.  

 

2.6.2 Quantitative real-time PCR (qPCR)  

 

Quantitative real-time PCR (qPCR) is a powerful tool that allows quantification of gene 

expression. Quantification of the amplicon is performed during the exponential 

amplification phase of the reaction based on the continuous collection of fluorescent 

signals over a range of cycles in ‘real-time’ (Dorak, 2006). The fluorescent signals are 

produced by a reporter dye where the increase in fluorescence is directly proportional to 

the increase of amplified product in the PCR reaction. Quantification of the reaction is 

based on the cycle at which fluorescence significantly exceeds the baseline background 

fluorescence during the exponential phase. The cycle at which this occurs is arbitrarily 

set and termed the threshold cycle (Ct). The Ct value is inversely proportional to the 

amount of amplicon in the reaction i.e. the lower the Ct, the greater the amount of 

amplicon (Schmittgen and Livak, 2008). There are generally two different chemistries 

available for detection of qPCR amplicons including non-specific double stranded DNA 

binding dyes, e.g. SYBR Green I and sequence specific fluorescent probes e.g. TaqMan 

assays. Both of these techniques are used and described in these studies. 

Gene expression measured by qPCR data can be presented as either absolute or relative 

expression. Absolute quantification provides the exact copy number of a target 

determined by a standard curve of known concentrations. Data can also be presented as 

relative expression (ΔCt) where expression level of a target gene is compared to that of 

a ‘house-keeping’ reference gene used to normalise for differences in the amount of 

initial cDNA added to each reaction. A suitable house-keeping gene should be abundant 



73 

 

and relatively constant in various tissues and cell types. Examples of commonly used 

control genes include glyceraldehyde-3-phosphate (GAPDH), β-actin and 18S 

ribosomal RNA (18S rRNA) (Livak and Schmittgen, 2001). 

In the present study, relative gene expression in qPCR experiments was measured using 

the ΔΔCt method of analysis. Expression of the target gene is normalised to expression 

of the internal control using the equation:  

 ΔCt = Ct (target gene) – Ct (internal control) 

Next, treated samples are calibrated to untreated samples so that: 

ΔΔCt = ΔCt (treated) – ΔCt (untreated) 

Relative fold change in target gene expression is then determined by 2
-
 
ΔΔCt

 (Livak and 

Schmittgen, 2001).  

 

2.6.2.1 Gene expression by qPCR using SYBR Green I 

 

Primer sequences used for qPCR are displayed in Table 2.4. CAR primers were from 

Lamba et al (Lamba et al., 2004). CYP3A4 primers and primers for the housekeeping 

control gene GAPDH were taken from the thesis of Elise Andrews, Newcastle 

University. Reaction conditions were optimised by standard PCR and primers validated 

for linear amplification to allow for the ΔΔCt method of analysis. cDNA was amplified 

in a total reaction volume of 20 µl containing 10 µl 2 X SYBR Green JumpStart Taq 

ReadyMix (Sigma-Aldrich), 300 nM forward primer and 300 nM reverse primer. PCR 

amplification was performed in MicroAmp® Fast Optical 48-well PCR plates (Applied 

Biosystems) on an Applied Biosystems StepOne™ Real-Time PCR system. 
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Table 2.4 – Primers used for SYBR Green I qPCR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Name 

 

 

Primer Sequences 

 

CAR 

 

F - 5’-GGAGAGGCATTCCATACCAG-3’ 

R – 5’- TTCCCACTCCAGTGTATCCAG-3’ 

 

CYP3A4 

 

F – 5’-TGTCCTACCATAAGGGCTTTTGTA-3’ 

R – 5’-TTCACTAGCACTGTTTTGATCATG-3’ 

 

GAPDH 

 

 

F – 5’-GGGTGTGAACCATGAGAAGTATGA-3’ 

R – 5’-CATGAGTCCTTCCACGATACCAA-3’ 
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2.6.2.2 qPCR with TaqMan Gene Expression Assay 

 

cDNA was amplified in a total reaction volume of 20 µl containing 2 X TaqMan 

Universal Master Mix, 20 X TaqMan Gene Expression Assay and DNase free water. 

Reactions were performed in triplicate and non-template controls were included. PCR 

amplification was performed in MicroAmp® Fast Optical 48-well PCR plates (Applied 

Biosystems) on an Applied Biosystems StepOne™ Real-Time PCR system. 

Thermocycling conditions consisted of an initial hold stage of 10 min at 95 °C to 

activate the AmpliTaq Gold® polymerase, followed by 40 cycles of denaturation at 95 

°C for 15 sec and annealing/extension at 60 °C for 1 min. Gene expression data was 

calculated by the comparative Ct (ΔΔCt) method and analysed using StepOne Software 

version 2.1. 

 

2.7 Mammalian cell culture 

 

2.7.1 Culture of adherent cell lines 

 

HepG2 cells (human hepatocellular carcinoma cell line) and Caco-2 cells (human colon 

adenocarcinoma cell line) were supplied by Fiona Fenwick (Institute of Cellular 

Medicine, Newcastle University). LS180 (human colon adenocarcinoma cell line) were 

purchased from the European collection of cell cultures (ECACC, Porton Down, UK). 

Cell culture was performed under aseptic conditions in a Class II laminar flow 

microbiological safety cabinet. All cell lines were routinely cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) (Sigma-Aldrich) supplemented with 10 % heat-

inactivated foetal bovine serum (FBS), 1 % non-essential amino acids (0.1 mM), 2 mM 

L-glutamine, 100U/ml penicillin and 100 µg/ml streptomycin. All cell lines were 

cultured as monolayers in 75 cm
2
 flasks and incubated at 37 °C with 5 % CO2 in 

humidified air. All media were stored at 4°C and warmed to 37°C before use.  

 

2.7.2 Passage of cells  
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Upon reaching approximately 80 % confluency, cell were passaged. Cell medium was 

aspirated and the cell monolayer washed with sterile 1 x phosphate buffered saline 

(PBS). Cells were detached from the flasks using 0.25 % trypsin- 0.02 % EDTA in PBS 

solution at 37 °C. Once detached, 10 ml cell culture medium was added, the suspension 

transferred to a sterile 50 ml Falcon tube and centrifuged at 1500 rpm for 5 minutes. 

The supernatant was discarded and the cell pellet re-suspended in 10 ml fresh complete 

media.  Cells were either then seeded for cell maintenance or counted  on a 

haemocytometer counting chamber  then seeded accordingly for experimental protocols 

as described. 

 

2.8 Reporter gene assay methodology 

 

2.8.1 E.Coli transformation 

 

Plasmid DNA was synthesised via transformation of JM109 E. coli Competent cells 

(Promega, UK). Cells were split into working aliquots of 100 µl in polypropylene 

culture tubes and stored at – 80 °C. For transformation, cells were thawed on ice and 50 

ng plasmid DNA added followed by incubation on ice for 30 minutes. The E. coli were 

then heat shocked at precisely 42 °C for 45 seconds before being returned to ice for 5 

minutes. 500 µl cold sterile L-broth (1 % tryptone, 0.5 % yeast extract, and 1 % sodium 

chloride) was added to the transformed cells and the culture incubated in an orbital 

incubator at 150 rpm, at 37 °C for 1 hour. The cells were pelleted by brief 

centrifugation, part of the supernatant was removed leaving approximately 100 µl 

medium in which the cells were resuspended. The resuspended cells were spread onto 

LB-agar plates contacting the appropriate antibiotic selection marker for the particular 

plasmid (ampicillin (100 µg/ml) or kanamycin (50 µg/ml)) and incubated overnight at 

37 °C. 

 

2.8.2 Plasmid DNA extraction 

 

A single, well-defined white colony was picked following overnight incubation and 

used to inoculate 10 ml of sterile LB medium containing the appropriate antibiotic 

selection marker. A starter culture was then produced by growing the cells overnight in 
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an orbital incubator at 150 rpm at 37 °C. The bacterial cells were harvested by 

centrifugation at 1500 rpm for 10 min at 4 °C to pellet the cells and plasmid DNA was 

extracted using a QIAGEN miniprep plasmid extraction kit (QIAGEN, UK). DNA was 

eluted in 50 µl sterile water and DNA concentration determined as described in section 

2.3.3. 

 

2.8.3 Cell seeding 

 

Cells were seeded into 24-well plates at a density of 5 x 10
4
 cells/ml per well in DMEM 

medium and allowed to adhere until 50 - 80 % confluency was achieved. Medium was 

removed and replaced with 200 µl fresh DMEM per well. 

 

2.8.4 Transfection protocol 

 

Cell transfections were performed using GeneJuice Transfection Reagent (Novagen, 

UK). For each well, 1.5 µl GeneJuice reagent was added to 100 µl serum-free medium, 

briefly vortexed and incubated at room temperature for 5 minutes. Experimental 

reporter plasmid DNA was added to the mixture as required by the procedure being 

followed and is described in Chapter 4. 0.05 µg of pRL-TK Renilla Luciferase reporter 

vector was added per well as an internal control. The reaction mixture was incubated at 

room temperature for 15 minutes before adding 100 µl drop wise to the 200 µl of 

complete medium already in each well. After 4 hours incubation, transfection reagents 

were replaced with 1 ml fresh growth medium. Experimental treatment procedures are 

described in chapter 4. 

 

2.8.5 Luciferase assay 

 

Reporter activity was assessed using the Dual-Luciferase Reporter Assay system 

(Promega, UK). This ‘dual-glo’ assay exploits the simultaneous expression of two 

individual reporter enzymes in one system. The activity of an experimental reporter 

construct consisting of the firefly luciferase enzyme is correlated to the activity of the 

co-transfected internal control consisting of the renilla luciferase enzyme. Normalising 
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the activity of the experimental construct to that of the internal control minimises 

variability caused by differences in transfection efficiency, cell viability, cell lysis 

efficiency, etc.  

Following treatment, drug-containing medium was removed from cells which were then 

washed in sterile PBS before the addition of 100 µl 1 X Passive Lysis Buffer per well. 

Plates were incubated at room temperature, with shaking, for 15 minutes to disrupt the 

cells. While cells were incubating, the Dual-Luciferase assay reagents were prepared 

according to the manufacturer’s instructions. Luciferase Assay Reagent (100 µl) was 

added to 20 µl cell lysate in a clear 1.5 ml microfuge tube and mixed thoroughly. Firefly 

luciferase activity (in relative light units) was then measured using a bench top 

luminometer (GloMax-Multi Jr, Promega, UK). Firefly luciferase activity was quenched 

by the addition of Stop and Glo reagent (100 µl). The mixture was briefly vortexed 

before a second luminescence reading was taken to measure renilla luciferase activity. 

Luminescence readings were taken as an average of 10 consecutive readings over 10 

seconds. 
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Chapter 3. Genotyping of candidate genes in Flucloxacillin-DILI 
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3.1 Introduction 

 

There is a strong relationship between carriage of the HLA-B*57:01 allele and risk of 

flucloxacillin-induced liver injury but this association cannot explain fully the genetic 

basis of susceptibility to the disease. Most but not all cases of flucloxacillin-DILI are 

positive for HLA-B*57:01. In this chapter, additional cases of flucloxacillin are 

genotyped for the HLA-B*57:01 association and a set of HLA-B*57:01 negative cases 

are genotyped for HLA-B alleles to investigate whether any additional HLA-B 

associations may exist. Apart from the HLA-B*57:01 association with flucloxacillin-

DILI and abacavir hypersensitivity, there are various other HLA-B associations reported 

as having a role in adverse drug reactions including DILI, with an association reported 

between the HLA-B*18:01 allele and susceptibility to liver injury by the penicillin 

antimicrobial co-amoxiclav, though this was detected only in a Spanish population 

(Stephens et al., 2013). In addition to investigating other possible HLA-B associations, 

flucloxacillin-DILI cases will also be genotyped for HLA-C allele C*06:02 using a tag 

SNP approach. HLA-C, and in particular HLA-C*06:02, has been associated in a 

number of studies as the major susceptibility gene for increased risk of the T-cell 

mediated inflammatory skin disease, psoriasis (Nair et al., 1997; Helms et al., 2005; 

Nair et al., 2006; Liu et al., 2008). A number of other MHC associations also exist 

suggesting an apparent psoriasis susceptibility locus (PSORS1) (Feng et al., 2009). One 

of these associations is with HLA-B*57:01, as has been shown in a GWAS by Liu and 

colleagues who identified the HLA-B*57:01 proxy SNP, rs2395029 in HCP5, 

significant in psoriasis patients with an odds ratio of 4.1 (p = 2.13 x 10
-26

) (Liu et al., 

2008). HLA-B*57:01 and HLA-C*06:02 associations also exist in a subset of human 

immunodeficiency virus-1 (HIV-1) infected individuals that results in a clinical 

phenotype whereby these individuals are able to maintain a low level of circulating 

virus in plasma thus restricting disease progression (Fellay et al., 2007). The HLA-

B*57:01 association was described by Migueles and colleagues in a cohort of HIV-1 

non-progressors where they found that 11/13 where HLA-B*57:01 positive compared to 

19/200 in HIV-1 progressor controls (Migueles et al., 2000). A large number of 

subsequent studies in various cohorts, including numerous GWA studies, have 

confirmed this association along with other genetic associations including some 

involving HLA-C (Carrington and O'Brien, 2003; Fellay et al., 2009; Limou et al., 

2009; van Manen et al., 2009). A recent analysis by Chen et al compared HLA region 
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SNP associations between a cohort of psoriasis patients and controls and a cohort of 

HIV-1 non-progressors and controls (Chen et al., 2012). They found that there was a 

pattern of several SNPs that were observed in both psoriasis susceptibility and HIV-1 

non-progressor phenotype with the two most significant observations found in HLA-

B*57:01 and HLA-C*06:02. 

In addition to the role of HLA-B*57:01 in the slow progression of HIV-1 infection, 

there is also an apparent synergistic relationship with genes that encode receptors 

involved in innate immunity. Killer immunoglobulin-like receptors (KIRs) are 

expressed on the surface of natural killer (NK) cells, a subset of lymphocytes that play 

an important role in innate immunity against pathogens and tumours by targeting 

infected host cells (Cerwenka and Lanier, 2001). Although they are cells of the innate 

immune system, NK cell actions share many similarities with those of T-cells. Like 

CD8
+
 cytotoxic T-cells, NK cells can also secrete perforin and granzyme as a 

mechanism to kill infected cells and also produce cytokines such as interferon-γ (Lanier, 

2005). NK cell function is controlled by various activating and inhibitory cell surface 

receptors that regulate their activation, proliferation and effector functions. KIRs 

recognise HLA class I molecules expressed on host cells and can confer both an 

activating or inhibitory signal to regulate NK cell responses. Most KIRs are thought to 

exhibit an inhibitory effect on NK cell function. This means that HLA class I expression 

on host cells inhibits NK cell activity preventing targeting of host cells. However, if 

HLA expression is down-regulated, as may occur when cells are infected or transformed 

into tumour cells, it leads to the generation of a ‘missing-self’ signal that results in NK 

cell-mediated cytotoxicity against the cell (Bashirova et al., 2006). KIR genes are 

located on chromosome 19q13.4 in the leukocyte receptor complex (LRC) and, like 

HLA genes, are highly polymorphic (Wende et al., 1999). There are over a dozen KIR 

genes described including KIR3DL1 and KIR3DS1 that were previously considered to 

be two separate genes but have been shown to actually segregate as alleles of the same 

locus (Bashirova et al., 2006). KIR3DL1 encodes an inhibitory KIR molecule whereas 

KIR3DS1 encodes a receptor molecule thought to activate NK cells. KIR3DL1 

specifically recognises HLA-B molecules that contain a Bw4 motif at amino acid 

positions 77-83 (Bashirova et al., 2011). The Bw4 epitope is found in approximately 

one third of HLA-B molecules including HLA-B*57:01, therefore cells expressing 

HLA-B*57:01 are ligands for KIR3DL1 and inhibit NK cell activity. The remaining 

two thirds of HLA-B molecules contain a Bw6 epitope (Martin et al., 2002). Ligands 
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for KIR3DS1 have not been determined but it is thought that they are similar to those of 

KIR3DL1 since the two alleles share 97% sequence homology (Martin et al., 2007). 

Martin et al described an epistatic synergistic interaction between KIR3DS1 and HLA-

B alleles expressing the Bw4 motif with isoleucine at position 80 (Bw4-80Ile) that 

conferred a protective effect against HIV-1 progression (Martin et al., 2002). This 

suggests that this activating KIR allele may bind to HLA-B Bw4-80Ile expressing HIV-

1 infected host cells targeting them for NK cell destruction. This study also showed that 

HLA-B*57:01 expresses the Bw4-80Ile motif that interacts with KIR3DS1. 

Interestingly, the recent study by Chen et al showed that increased risk of psoriasis was 

associated with HLA-B alleles containing the Bw4-80Ile epitope and KIR3DS1 

genotype in patients (Chen et al., 2012). In this chapter, flucloxacillin-DILI cases and 

controls are genotyped for KIR3DL1 and KIR3DS1. We hypothesise that an association 

between KIR3DS1 and flucloxacillin-DILI cases may provide a potential mechanistic 

pathway of immune-mediated flucloxacillin toxicity in a fashion that is inverse to how 

KIR3DS1 and HLA-B*57:01 confer protection in HIV-1 non-progressors. If KIR3DS1 

is associated with flucloxacillin-DILI it could indicate that a potential interaction exists 

with HLA-B*57:01 expressed in host cells in the liver leading to activation of NK cells 

and cytotoxic responses. 

Collaborative studies to determine genetic risk factors for flucloxacillin-DILI are in 

progress elsewhere. This has included exome sequencing of flucloxacillin-DILI cases 

which has provided some novel data (Daly, A.K., Goldstein J and Daly, M.J., 

unpublished). The most significant findings involved variants located on chromosome 

6, including variants characteristic of HLA-B*57*01. Two variants not on chromosome 

6, rs41475144 in ubiquitin specific peptidase 8 (USP8) gene on chromosome 15 (p = 

1.46 x 10
-23

 in exome sequencing analysis) and rs45483102 in caspase 5 (CASP5) on 

chromosome 11 (p = 0.000163) were chosen for further analysis in additional 

flucloxacillin-DILI cases. These variants were chosen based on their location and for 

their possible roles in apoptosis and inflammatory responses, which seemed biologically 

relevant to flucloxacillin-DILI.   
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Table 3.1 – A summary of the variants studied in this chapter 

 

Gene 

 

 

SNP  

 

Samples genotyped 

 

 

HCP5 (Tag SNP for HLA-

B*57:01) 

 

rs2395029 

 

All additional flucloxacillin-DILI cases 

 

High-resolution HLA-B allele 

genotyping  

 

N/A 

 

HLA-B*57:01 negative flucloxacillin-

DILI cases and cloxacillin/dicloxacillin-

DILI cases  

 

KIR3DL1 and KIR3DS1 

 

N/A 

 

All flucloxacillin-DILI cases and 

controls 

 

HLA-C*06:02 

 

rs12191877 

 

All flucloxacillin-DILI cases and 

controls 

 

USP8 

 

rs41475144 

 

All flucloxacillin-DILI cases and 

controls 

 

CASP5 

 

 

rs45483102 

 

All flucloxacillin-DILI cases and 

controls 
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3.2 Methods 

 

3.2.1 Case and Control recruitment 

 

150 cases of flucloxacillin-DILI and 63 healthy flucloxacillin-treated controls, as 

described in section 2.2.1 and 2.2.3, were included for genotyping analysis. 282 

POPRES controls were also included for PLINK genotyping analysis of flucloxacillin 

GWAS data. PLINK is a free, open source software that allows genotype analysis of 

whole genome association datasets (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell 

et al., 2007).  

A subset of POPRES controls consisting of 107 North-western European (NW-EU) 

individuals that have been previously been genotyped for HLA-B alleles were used for 

HLA analysis. Where SNP markers were not included in flucloxacillin GWAS data, 

rendering POPRES controls unavailable for PLINK analysis, an additional cohort of 

healthy population controls, supplied by Dr Peter Donaldson, were used for genotyping 

analysis (Donaldson et al., 2006). 

For KIR genotyping analysis a control group was selected from the Allele Frequency 

Net Database (AFND) (http://www.allelefrequencies.net/). The AFND is a free public 

online repository containing information on the frequencies of several immune genes, 

including KIR loci, in different worldwide populations (Gonzalez-Galarza et al., 2011). 

KIR genotype frequencies in this study were compared to an English population cohort 

containing 483 Caucasian individuals genotyped for KIR3DL1 and KIR3DS1.  

 

3.2.2 HCP5 (rs2395029) genotyping of flucloxacillin-DILI cases by PCR-RFLP 

 

Additional flucloxacillin-DILI cases recruited as part of the iDILIC project were 

genotyped for rs2395029 (T/G) by PCR using the following primers – 5’-

ATTGTGTGACAGCAGCCATG-3’ and 5’-CACCTGTCGTGGGATTTTGC-3’. PCR 

was performed as described in section 2.4.2 with standard cycling conditions and an 

annealing temperature of 55°C. The PCR product (10 µl) was digested overnight at 

60°C with 2U of BstNI, with added 1 X bovine serum albumin (BSA). Digested PCR 

products were separated on a 10% polyacrylamide gel and electrophoresis performed 

followed by gel visualisation as described in sections 2.5.2 and 2.5.3 respectively. 

http://pngu.mgh.harvard.edu/purcell/plink/
http://www.allelefrequencies.net/
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3.2.3 HLA genotyping of HLA-B*57:01 negative flucloxacillin-DILI cases 

 

26 HLA-B*57:01 negative flucloxacillin-DILI cases were genotyped for HLA-B alleles 

using an AllSet
+
™ Gold sequence-specific primer (SSP) HLA-B Locus High Res Kit 

(Invitrogen) according to the manufacturer’s instructions. The SSP method is a PCR 

based technique that uses sequence-specific primers for genotyping of the HLA-B locus 

at a high resolution allelic level. The kit consists of a 96 well PCR test plate in which 

each well contains a lyophilised SSP solution consisting of allele and/or group-specific 

primers as well as a control primer pair of a non-allelic sequence amplified in all 

samples. 608 µl water and 7µl Taq Polymerase (5 units/µl) were added to the PCR 

buffer solution provided and mixed by pipetting. 10 µl of the master mix was added to 

the negative control well in the 96 well plate. 125 µl of sample DNA (50 ng/µl) was 

added to the remaining master mix and 10 µl added to each remaining well. The PCR 

plate was sealed and amplified on an Applied Biosystems 2720 Thermal Cycler set to 

the cycling conditions specified in the manufacturer’s protocol. PCR products from 

each well were loaded directly onto a 2% agarose gel containing ethidium bromide 

(0.5µg/ml) and electrophoresis was performed at 100 V for 45 min in 1 X TBE buffer. 

Gels were visualised as described in section 2.5.3. Positive lane amplifications were 

identified and HLA-B alleles determined by analysis with UniMatch® PLUS 6.0 SSP 

software (Invitrogen). 

 

3.2.4 KIR genotyping of flucloxacillin-DILI cases by SSP-PCR 

 

KIR genotyping of flucloxacillin-DILI cases was performed using a KIR Typing Kit 

(MACS molecular, Miltenyi Biotec, UK) according to the manufacturer’s instructions. 

KIR genotype was determined by PCR using sequence-specific primers (SSPs). Briefly, 

25 µl resuspension buffer was added to the negative control well. To the remaining 575 

µl resuspension buffer, 3 µg genomic DNA was added and the solution mixed well. 25 

µl was dispensed onto the lyophilised enzyme mix in each of the remaining 21wells. 

The plate was sealed and amplified on an Applied Biosystems 2720 Thermal Cycler 

following cycling conditions according to the manufacturer’s instructions. After 

thermocycling, 10 µl per sample was loaded directly onto a 2 % agarose gel and 
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electrophoresis was performed as described in section 2.5.1. Following electrophoresis, 

gels were visualised as described in section 2.5.3 and KIR genotype was interpreted 

with the evaluation form supplied with the kit.  

 

3.2.5 KIR3DS1/KIR3DL1 genotyping by multiplex PCR 

 

Flucloxacillin-DILI cases and controls were genotyped for KIR3DL1 or KIR3DS1 

genotype by a multiplex SSP-PCR described by Kulkarni et al (Kulkarni et al., 2010). 

KIR3DL1 was amplified using primers - 5’- CGCTGTGGTGCCTCGA-3’ and 5’- 

GGTGTGAACCCCGACATG-3’ producing a PCR product of 191 bp. KIR3DS1 was 

amplified by the primers – 5’-AGCCTGCAGGGAACAGAAG-3’ and 

5’GCCTGACTGTGGTGCTCG-3’ producing a product of 300 bp. All primers were 

used at a concentration of 5 µM and PCR was performed as described by the protocol in 

section 2.4.2 with an initial denaturation step of 3 min at 94 °C; 5 cycles of 15 sec at 94 

°C, 15 sec at 65 °C and 30 sec at 72 °C; 21 cycles of 15 sec at 94 °C, 15 sec at 60 °C 

and 30 sec at 72 °C; 4 cycles of 15 sec at 94 °C. 60 sec at 55 °C and 120 sec at 72 °C 

followed by a final extension step of 7 min at 72 °C. Following amplification, agarose 

gel electrophoresis was performed as described in section 2.5.1 and gels were visualised 

as in section 2.5.3. 

 

3.2.6 HLA-C (rs12191877), USP8 (rs41475144) and CASP5 (rs45483102) 

genotyping by TaqMan qPCR  

 

Flucloxacillin-DILI cases and controls were genotyped for three SNPs by qPCR using 

TaqMan SNP assays. The CASP5 (rs45483102) SNP was purchased as a readymade 

‘off-the-shelf’ assay whereas assays for HLA-C (rs12191877) and USP8 (rs41475144) 

were custom designed. Before custom assay design, the SNPs were confirmed to satisfy 

the requirements needed for successful assay design. For optimal assay design, an 

approximate 600 nucleotide length of the target SNP flanking sequence was imported 

from data for each SNP on the 1000 genomes website (http://www.1000genomes.org/) 

and the SNP nucleotide change highlighted. Sites that contain ambiguous bases were 

masked and a BLAST query was performed on the target sequence to verify the 

uniqueness of the sequence (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). TaqMan 

http://www.1000genomes.org/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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SNP assays are designed so that they contain two different TaqMan MGB fluorescent 

probes, one FAM labelled and one VIC labelled, to distinguish the two different 

nucleotides present in the SNP.  The two labelled probes and an unlabelled primer mix 

are supplied as an assay mix. Genotyping is performed in a total reaction volume of 20 

µl containing 50 ng genomic DNA, 2 X TaqMan Universal Master Mix, 20 X TaqMan 

SNP assay mix and DNase free water. Non-template controls were included and PCR 

amplification was performed in MicroAmp® Fast Optical 48-well PCR plates (Applied 

Biosystems) on an Applied Biosystems StepOne™ Real-Time PCR system. 

Thermocycling conditions consisted of an initial hold stage of 10 min at 95 °C to 

activate the AmpliTaq Gold® polymerase, followed by 40 cycles of denaturation at 92 

°C for 15 sec and annealing/extension at 60 °C for 1 min. Allelic determination was 

performed using StepOne Software version 2.1.  

 

3.2.7 Statistical analysis 

 

Two-tailed probabilities were calculated for allele and genotype distributions using 

Fisher’s exact test on Prism software (GraphPad). Adherence to the Hardy-Weinberg  

equilibrium for genotypes was determined by the chi-squared test using a web-based 

calculator available at http://www.tufts.edu/. Univariate analysis was performed on 

HLA-B allele genotyping and P-values were not corrected for multiple testing.   

 

 

 

 

 

 

 

 

 

 

 

http://www.tufts.edu/
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3.3 Results 

 

3.3.1 HCP5 (rs2395029) genotyping of flucloxacillin-DILI cases 

 

In the 2009 GWA study by Daly et al, a missense polymorphism, rs2395029, in HCP5 

was found to be the top SNP associated with flucloxacillin-DILI (Daly et al., 2009). 

This SNP has been shown to be in complete linkage disequilibrium with HLA-B*57:01 

and direct genotyping for HLA-B*57:01 in the 51 cases of flucloxacillin-DILI included 

in the GWAS showed a perfect correlation between HLA-B*57:01 and rs2395029 

genotypes. Since the GWAS, a further 99 cases of flucloxacillin-DILI have been 

collected as part of the iDILIC project. These cases have been genotyped, with 

assistance from Julia Patch, for rs2395029 using a PCR-restriction fragment length 

polymorphism (RFLP) approach. Figure 3.1 shows the BstNI restriction digest of three 

samples. This enzyme cuts the wild-type allele (T) producing fragment sizes of 134 bp, 

61 bp and 55 bp (Lane 1) and the mutant risk allele (G) producing fragments that have 

sizes of 72 bp, 62 bp, 61 bp and 55 bp. Individual 1 is TT homozygous and individuals 

2 and 3 are TG genotype.  

Genotype distributions for rs2395029 for the 51 original cases, the 99 additional cases 

and POPRES controls are shown in Table 3.2. In the original cohort of 51 cases, 43 

(84.3%) carried the mutant G allele. This is replicated here, where, among the 99 

additional cases, 81 (81.8%) carry the mutant G allele. Carriage of the mutant G allele is 

associated with HLA-B*57:01 genotype. Direct genotyping by SSP-PCR for HLA-

B*57:01 was performed by Julia Patch using an AllSet+™ Gold SSP B17 High Res Kit 

(Invitrogen) which confirmed HLA-B*57:01 carriage. In the GWA study, carriage of 

the risk G allele for rs2395029 was significantly associated with flucloxacillin-DILI 

compared to POPRES controls with an odds ratio of 45.2 (95% CI 19.4 – 105.1). This 

association is replicated here, in the 99 additional flucloxacillin-DILI cases with a p-

value of 2.06 x 10
-39

 and OR of 37.8 (95% CI 20.0 – 71.4). Combining the total number 

of flucloxacillin-DILI cases gives a p-value of 3.67 x 10
-52

 and an OR of 40.1 (95% CI 

22.7 – 70.7).  
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Figure 3.1 – PCR-RFLP analysis of HCP5 (rs2395029) 

Restriction analysis of HCP5 (rs2395029) PCR amplicon after digestion by BstNI on a 

10% polyacrylamide gel. Lane 1 shows a homozygous wild type (TT) genotype, whereas 

lanes 2 and 3 show heterozygous GG individuals. 
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Table 3.2 – Distribution of HCP5 (rs2395029) genotypes in flucloxacillin-DILI 

cases and POPRES controls 

 GG 

 

GT TT P-value OR (95% CI) 

POPRES 

controls 

(n=282) 

 

Original 

flucloxacillin-

DILI case 

GWAS 

cohort (n=51) 

 

 

Additional 

flucloxacillin-

DILI cases 

(n=99) 

 

 

Total 

flucloxacillin-

DILI cases 

(n=150) 

 

 

 

 

0 (0.0) 

 

 

 

 

 

4 (7.8) 

 

 

 

 

 

0 (0.0)  

 

 

 

 

 

4 (2.7) 

 

 

30 (10.6) 

 

 

 

 

 

39 (76.5) 

 

 

 

 

 

81 (81.8)  

 

 

 

 

 

120 (80.0) 

 

 

252 (89.4) 

 

 

 

 

 

8 (15.7) 

 

 

 

 

 

18 (18.2) 

 

 

 

 

 

26 (17.3) 

 

 

 

 

 

 

 

 

 

2.64 x 10
-26 

 

 

 

 

 

2.06 x 10
-39

 

 

 

 

 

 

3.67 x 10
-52 

 

 

 

 

 

 

 

 

45.2 (19.4 – 105.1) 

 

 

 

 

 

37.8 (20.0 – 71.4) 

 

 

 

 

 

40.1 (22.7 – 70.7) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval. P-values are 

uncorrected. 
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3.3.2 HLA-B allele genotyping of HLA-B*57:01 negative flucloxacillin-DILI cases 

 

The 26 flucloxacillin-DILI cases that do not possess the HLA-B*57:01 allele were 

genotyped for HLA-B genotype by SSP-PCR to investigate whether any other HLA-B 

associations existed. A total of 24 different HLA-B alleles were detected in the 26 

samples with 24 of these heterozygous and two homozygous for a single allele. HLA-B 

genotypes for each case sample are displayed in Appendix A. HLA-B alleles and 

carriage frequencies are displayed in Table 3.3. Allele carriage frequencies were 

calculated as a percentage of the individuals who have a particular allele. The most 

common alleles detected were HLA-B*08:01 which was found in 7/26 patients (5 

heterozygotes, 2 homozygotes) giving a carriage frequency of 34.6% and HLA-B*44:02 

in 8/26 patients (8 heterozygotes) giving a carriage frequency of 30.8%.  

To investigate whether any of these alleles were associated with flucloxacillin-DILI a 

suitable control population was required for analysis. A subset of the POPRES control 

cohort was selected as a suitable control group for comparison. This subset cohort has 

previously been produced through a principal component analysis of POPRES controls 

to capture much of the genetic substructure of North-western European individuals. 

This North-western European (NW-EU) control cohort contains 107 individuals and has 

previously been used for direct genotyping for HLA allele carriage (Lucena et al., 

2011). HLA-B allele carriage frequencies from NW-EU controls are also displayed in 

Table 3.3. The most common alleles reported for this population were HLA-B*07:02 at 

a carriage frequency of 29.9%, HLA-B*08:01 at 29.0%, HLA-B*44:02 at 15.9% and 

HLA-B*15:01 at 15.0%.  

Allele carriage frequencies overall were similar between flucloxacillin-DILI cases and 

NW-EU controls. Increased allele carriage frequencies were observed in cases 

compared to controls for HLA-B*08:01 (34.6% vs. 29.0%), HLA-B*44:02 (30.8% vs. 

15.9%) and HLA-B*55:01 (11.5% vs. 6.5%) but these were not found to be significant. 

A significant association was observed for HLA-B*13:02 which was observed in 7.7% 

of cases but not observed in the controls giving a p-value of 0.0376 and an OR of 21.24 

(95% CI 1.00 – 449.6). A decreased frequency of HLA-B*07:02 (11.5% vs. 29.9%) was 

observed in cases compared to controls but this was not significant. Overall, the only 

significant differences in HLA-B allele distribution between cases and controls was 

with HLA-B*13:02. Although the number of cases is small, the increased frequency of 

HLA-B*13:02 compared to population controls may suggest a possible role in risk of 
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disease and merits further investigation as more HLA-B*57:01 negative cases become 

available. Allele carriage frequencies of 13 HLA-B alleles that were not observed in the 

genotyped flucloxacillin-DILI cases but are present in the NW-EU control cohort are 

displayed in Appendix B. No significant differences between HLA-B distribution 

between cases and controls was observed. 

As part of the iDILIC project, several confirmed cases of DILI caused by isoxazolyl 

penicillins other than flucloxacillin have been recruited including three cases of 

cloxacillin-induced liver injury (two from Spain and one from Iceland) and two cases of 

dicloxacillin-induced liver injury (both from Iceland). To determine whether HLA-

B*57:01 genotype was a factor in these cases; they were genotyped for HLA-B allele 

carriage. Table 3.4 shows that the HLA-B*57:01 genotype was not found in any of the 

cases of liver injury to cloxacillin or dicloxacillin suggesting that HLA-B*57:01 may 

not be associated to liver injury caused by these drugs.  
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Table 3.3 – HLA-B allele carriage frequencies in 26 HLA-B*57:01 negative 

flucloxacillin-DILI cases and 107 North-western European (NW-EU) controls 

 

HLA-B 

allele 

 

Flucloxacillin-

DILI cases 

(n=26)  

 

NW-EU 

Controls 

(n=107)  

 

P –value 

 

B*07:02 

 

3 (11.5) 

 

32 (29.9) 

 

0.1076 

B*08:01 9 (34.6) 31 (29.0) 0.6631 

B*08:34 1 (3.8) 0 (0.00) 0.1955 

B*13:02 2 (7.7) 0 (0.00) 0.0376 

B*14:01 1 (3.8) 7 (6.5) 1.0000 

B*14:02 1 (3.8) 4 (3.7) 1.0000 

B*15:01 1(3.8) 16 (15.0) 0.2085 

B*15:57 1 (3.8) 0 (0.00) 0.1955 

B*18:01 2 (7.7) 9 (8.4) 1.0000 

B*35:01 1(3.8) 7 (6.5) 1.0000 

B*37:01 2 (7.7) 4 (3.7) 0.3334 

B*38:01 2 (7.7) 2 (1.9) 0.1727 

B*39:06 1 (3.8) 1 (0.9) 0.3534 

B*40:01 3 (11.5) 13 (12.1) 1.0000 

B*40:02 1 (3.8) 3 (2.8) 0.5834 

B*41:01 1 (3.8) 0 (0.00) 0.1955 

B*44:02 8 (30.8) 17 (15.9) 0.1130 

B*44:03 2 (7.7) 11 (10.3) 1.0000 

B*44:05 1 (3.8) 0 (0.00) 0.1955 

B*44:52N 1 (3.8) 0 (0.00) 0.1955 

B*45:01 1 (3.8) 0 (0.00) 0.1955 

B*51:01 3 (11.5) 10 (9.3) 0.7229 

B*53:01 1 (3.8) 2 (1.9) 0.4807 

B*55:01 3 (11.5) 7 (6.5) 0.4161 

Number of individuals with a particular allele is shown with the allele carriage frequency shown 

as a percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls. P-values are uncorrected. 

 



94 

 

Table 3.4 – HLA-B genotypes of Cloxacillin and Dicloxacillin-induced liver injury 

cases  

 

Isoxazolyl penicillin 

 

HLA-B genotype 

 

 

Cloxacillin 

 

Spanish Patient A 

Spanish Patient B  

Iceland Patient A 

 

 

 

07:02 + 44:02 

08:01 + 35:08  

40:01 + 40:01 

 

 

Dicloxacillin 

 

Iceland Patient B 

Iceland Patient C 

 

 

 

 

08:52 + 51:08 

07:02 + 44:02 
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3.3.3 HLA-C*06:02 genotyping of flucloxacillin-DILI cases and controls 

 

To investigate the hypothesis of whether  HLA-C*06:02 genotype is associated with 

flucloxacillin-DILI, a total of 150 flucloxacillin-DILI cases and 60 flucloxacillin-treated 

healthy controls were genotyped for the SNP  rs12191877 (C/T) which has been shown 

to be in complete linkage disequilibrium (LD) with HLA-C*06:02 (Feng et al., 2009).  

Carriage of the T-allele associates with possession of the HLA-C*06:02 allele. 

Genotyping results for rs12191877 in flucloxacillin-DILI cases, flucloxacillin-treated 

controls and POPRES controls are displayed in Table 3.5. The genotype frequencies for 

rs12191877 in the control groups were in adherence to Hardy-Weinberg equilibrium. 

124 of the 150 flucloxacillin-DILI cases (82.7%) were found to carry the T allele 

compared to 16 out of 60 flucloxacillin-treated controls (26.7%). This was found to be 

significant with a p-value of 2.31 x 10
-14

 and an OR of 13.1 (95% CI 6.4 – 26.7). 68 out 

of 282 POPRES controls (24.1%) carried the T-allele giving a significant difference to 

flucloxacillin-DILI cases with a p-value of 1.05 x 10
-32

 and an OR of 15.0 (95% CI 9.1 

– 24.8). This is to be expected due to the tight LD between HLA-B*57:01 and HLA-

C*06:02.  

To investigate whether HLA-C*06:02 is a risk factor in HLA-B*57:01 negative 

flucloxacillin-DILI cases, rs12191877 genotype distribution was compared to the 

POPRES control cohort (Table 3.6). No differences in T allele carriage where observed 

between HLA-B*57:01 negative cases and POPRES controls. 6 out of 26 HLA-

B*57:01 negative cases (23.1%) carried the T allele compared to 68 out of 282 

POPRES controls (24.1%) giving a p-value of 1.0000 and an OR of 0.94 (95% CI 0.36 

– 2.45).    
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Table 3.5 – Distribution of HLA-C*06:02 (rs12191877) genotypes in flucloxacillin-

DILI cases and controls 

 

 

 

CC 

 

 

CT 

 

TT 

 

P-value 

 

OR (95% CI) 

 

Flucloxacillin-

DILI cases 

(n=150) 

 

 

 

 

26 (17.3) 

 

 

 

110 (73.3) 

 

 

 

14 (9.3) 

  

 

Flucloxacillin-

treated 

controls 

(n=60) 

 

 

 

 

 

44 (73.3) 

 

 

 

 

15 (25.0) 

 

 

 

 

1 (1.7) 

 

 

 

 

2.31 x 10
-14

 

 

 

 

 

13.1 (6.4 – 26.7) 

 

POPRES 

controls 

(n=282) 

 

 

 

 

214 (75.9) 

 

 

 

65 (23.0) 

 

 

 

3 (1.1) 

 

 

 

1.05 x 10
-32

 

 

 

 

15.0 (9.1 – 24.8) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance of T-

allele carriage between cases and controls; OR = odds ratio, CI = confidence interval  
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Table 3.6 - rs12191877 genotype distribution in HLA-B*57:01 negative 

flucloxacillin-DILI cases and POPRES controls 

 

 

 

CC 

 

 

CT 

 

TT 

 

P-value 

 

OR (95% CI) 

 

HLA-B*57:01 

negative 

Flucloxacillin-

DILI cases 

(n=26) 

 

 

 

 

 

 

20 (76.9) 

 

 

 

 

 

4 (15.4) 

 

 

 

 

 

2 (7.7) 

  

 

POPRES 

controls 

(n=282) 

 

 

 

 

214 (75.9) 

 

 

 

65 (23.0) 

 

 

 

3 (1.1) 

 

 

 

1.0000 

 

 

 

0.94 (0.36 – 2.45) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance of T-

allele carriage between cases and controls; OR = odds ratio, CI = confidence interval  
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3.3.4 KIR3DL1 and KIR3DS1 genotyping of flucloxacillin-DILI cases 

 

24 cases of flucloxacillin-DILI were genotyped for KIR alleles by a SSP-PCR approach 

using a commercially available KIR Typing Kit (MACS molecular, Miltenyi Biotec). 

KIR allele genotypes were determined by evaluating primer amplification in the relevant 

wells. Figure 3.2 shows a typical result of a KIR3DL1/KIR3DS1 heterozygous 

individual (A), a KIR3DL1 homozygous individual (B) and a KIR3DS1 homozygous 

individual (C). 

As a cheaper method of genotyping for KIR3DL1/KIR3DS1 in flucloxacillin-DILI cases 

and flucloxacillin-treated healthy controls, a multiplex PCR protocol was adapted from 

Kulkarni et al (Kulkarni et al., 2010). Results from the KIR typing kit served as a 

positive control to validate the multiplex PCR assay in the remaining cases and controls. 

KIR3DL1/KIR3DS1 alleles were determined by gel electrophoresis by positive or 

negative amplification of the correct bands. Figure 3.3 shows a typical result with a 

KIR3DL1/KIR3DS1 heterozygous individual (lane 1), a KIR3DL1 homozygous 

individual (lane 2) and a KIR3DS1 homozygous individual (lane 3).  
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Figure 3.2 – Typical KIR genotyping result by SSP-PCR 

2% agarose gel of KIR genotypes of three flucloxacillin-DILI patients, showing A) 

KIR3DL1/KIR3DS1 heterozygous individual, B) a KIR3DL1 homozygous individual and 

C) a KIR3DS1 homozygous individual.  
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Figure 3.3 – Typical result for KIR3DL1/3DS1 genotyping by multiplex PCR 

A 2% agarose gel electrophoresis of KIR3DL11 and KIR3DS1 PCR products, showing 

lane 1) a KIR3DL1/KIR3DS1 heterozygous individual, lane 2) a KIR3DL1 homozygous 

individual and lane 3) a KIR3DS1 homozygous individual.   
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KIR3DL1/KIR3DS1 genotyping results in cases and flucloxacillin-treated controls are 

displayed in Table 3.7. Genotype frequencies in flucloxacillin-treated controls were in 

adherence of Hardy-Weinberg equilibrium (Χ
2
 = 1.29, p = 0.26). Although, there 

appears to be an apparent increase of heterozygous individuals and a decrease of 

KIR3DL1 homozygous individuals in flucloxacillin-DILI cases, the association of 

KIR3DS1 carriage in cases versus controls was not found to be significant (p = 0.1166, 

OR = 1.72, 95% CI 0.90 – 3.26).  

KIR3DL1/KIR3DS1 genotype frequencies were determined in flucloxacillin-DILI cases 

and flucloxacillin-treated controls by calculating the percentage of individuals that 

possessed each allele. Genotype frequencies were compared to an English population 

cohort from the Allele Frequency Net Database (AFND) containing 483 Caucasian 

individuals (Table 3.8). KIR3DL1 frequency was similar in cases and the two control 

groups. There was an apparent increase of KIR3DS1 frequency in flucloxacillin-DILI 

cases (40.7%) compared to drug-treated controls (28.6%) and population controls 

(37.0%), however this was not found to be significant. 

Whether KIR3DLI/ KIR3DSI  genotype frequencies were associated with HLA-B*57:01 

status of flucloxacillin-DILI cases was investigated (Table 3.9). A increased frequency 

of KIR3DS1 allele carriage was observed in HLA-B*57:01 positive cases (42.6%) 

compared to HLA-B*57:01 negative cases (32.0%). Comparison of KIR3DS1 allele 

carriage in HLA-B*57:01 positive and negative cases to the population control group 

showed that observed differences were not significant.  
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Table 3.7 - KIR3DL1 and KIR3DS1 genotype distribution in flucloxacillin-DILI 

cases and flucloxacillin-treated controls 

 

 

 

KIR3DL1 

homozygous 

 

 

KIR3DL1/ 

KIR3DS1 

 

KIR3DS1 

homozygous 

 

P-

value 

 

OR (95% CI) 

 

Flucloxacillin-

DILI cases 

(n=140) 

 

 

 

 

83 (59.3) 

 

 

 

52 (37.1) 

 

 

 

5 (3.6) 

  

 

Flucloxacillin-

treated 

controls 

(n=63) 

 

 

 

 

 

 

45 (71.4) 

 

 

 

 

15 (23.8) 

 

 

 

 

3 (4.8) 

 

 

 

 

0.1166 

 

 

 

 

1.72 (0.90 – 

3.26) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance for 

KIR3DS1 carriage between cases and controls. 
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Table 3.8 - KIR3DL1 and KIR3DS1 genotype frequencies in flucloxacillin-DILI 

cases, flucloxacillin-treated healthy controls and an English KIR population 

control cohort 

 

 

 

KIR3DL1 

 

 

KIR3DS1 

 

P-value 

 

OR (95% CI) 

 

Flucloxacillin-

DILI cases 

(n=140) 

 

 

 

 

96.4 

 

 

 

40.7 

  

 

Flucloxacillin-

treated 

controls 

(n=63) 

 

 

 

 

 

95.2 

 

 

 

 

28.6 

 

 

 

 

0.1166 

 

 

 

 

1.72 (0.90 – 3.26) 

 

KIR England 

population 

controls 

(n=483)  

 

 

 

 

 

91.0 

 

 

 

 

37.0 

 

 

 

 

0.4308 

 

 

 

 

1.17 (0.79 – 1.71) 

Genotype Frequency - Percentage of individuals carrying allele (Individuals / n). Two-tailed 

Fisher’s exact test was used to calculate significance of KIR3DS1 frequency between cases and 

controls; OR = odds ratio, CI = confidence interval 
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Table 3.9 - KIR3DL1 and KIR3DS1 genotype frequencies in HLA-B*57:01 positive 

and negative flucloxacillin-DILI cases  

 

 

 

 

 

Genotype Frequency  

 

 

 

P - value 

 

 

OR (95% CI) 

 

KIR3DL1 

 

 

KIR3DS1 

  

 

KIR England 

population 

controls 

(n=483)  

 

 

 

 

 

91.0 

 

 

 

 

37.0 

  

 

HLA-B*57:01 

positive 

(n=115) 

 

HLA-B*57:01 

negative 

(n=25) 

 

 

 

 

96.5 

 

  

 

96.0 

 

 

 

42.6 

 

 

 

32.0 

 

 

 

0.2864 

 

 

 

0.6758 

 

 

 

1.26 (0.83 – 1.91) 

 

 

 

0.80 (0.34 – 1.89) 

Genotype Frequency - Percentage of individuals carrying allele (Individuals / n). Two-tailed 

Fisher’s exact test was used to calculate significance of KIR3DS1 frequency between cases and 

population controls; OR = odds ratio, CI = confidence interval 
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3.3.5 HLA-Bw4 motif carriage in HLA-B*57:01 negative flucloxacillin-DILI cases 

 

HLA-B alleles either have a Bw4 or Bw6 motif at amino acid positions 77 – 83. HLA-B 

molecules expressing Bw4 epitopes have been shown to interact with KIR3DL1 and 

possibly KIR3DS1. Furthermore, Bw4 motifs that contain an isoleucine amino acid at 

position 80 (Bw4-80Ile), instead of threonine (Bw4-80Thr), have been previously 

associated with KIR3DS1 genotype in disease (Korner and Altfeld, 2012). HLA-

B*57:01 molecules have been shown to contain the Bw4-80Ile epitope suggesting that 

interaction with KIRs may occur (Sidney et al., 2008).  

To investigate whether an association existed with Bw4 frequency in HLA-B*57:01 

negative flucloxacillin-DILI cases, Bw4 and Bw6 motif frequency was determined for 

the previously identified HLA-B alleles from a published (Sidney et al., 2008). Table 

3.10 shows Bw4/Bw6 epitope frequencies in HLA-B*57:01 negative flucloxacillin-

DILI cases and HLA-B*57:01 negative controls from the NW-EU group. 18/26 (69.2%) 

HLA-B*57:01 negative flucloxacillin-DILI cases were found to carry at least one HLA-

B allele that expressed a Bw4 epitope compared to 16/97 (52.6%) of controls, however 

the difference was not significant (p = 0.1816, OR = 2.03 95% CI 0.81 – 5.11). 5/26 

(19.2%) of HLA-B*57:01 negative flucloxacillin-DILI cases expressed the specific 

Bw4-80Ile epitope compared to 16/97 (16.5%) of controls, however the difference was 

also not significant (p = 0.7715, OR = 1.21 95% CI 0.40 – 3.67).     
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Table 3.10 – Carriage of HLA-Bw4 motif in HLA-B*57:01 negative flucloxacillin-

DILI cases and NW-EU controls 

 

Bw4 status 

 

 

Flucloxacillin-

DILI cases 

(n=26)  

 

NW-EU 

Controls 

(n=97)  

 

Bw4-80Ile / Bw4-80Ile 

Bw4-80Ile /Bw4-80Thr 

Bw4-80Ile/Bw6 

Bw4-80Thr/Bw4-80Thr 

Bw4-80Thr/Bw6 

Bw4 positive 

 

2 

2 

1 

1 

12 

18 

 

1 

1 

14 

4 

31 

51 

 

Bw6/Bw6 

 

 

8 

 

46 

Number of individuals with a particular Bw4 or Bw6 motif genotype is shown. Two-tailed 

Fisher’s exact test was used to calculate significance between cases and controls 
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3.3.6 CASP5 and USP8 genotyping of flucloxacillin-DILI cases 

 

Two SNPs were chosen for genotyping from exome sequencing results on 

flucloxacillin-DILI cases and controls based on their significance, chromosomal 

location and function of the gene they are located in. One of the SNPs is rs45483102 

from the CASP5 gene located on chromosome 11. This gene encodes a member of the 

cysteine-aspartic acid protease (caspase) family of enzymes. The SNP is described as a 

non-synonymous missense SNP resulting in the substitution of an adenine (A) base for a 

thymine (T) base. The genotyping results are displayed in Table 3.11. No homozygous 

AA individuals were detected in cases, flucloxacillin-treated controls or community 

controls. For analysis, A allele carriage from heterozygous individuals was compared in 

cases and controls. An increase of A allele carriage was observed in flucloxacillin-DILI 

cases compared to flucloxacillin-treated controls (15.7% to 11.0%), but this was not 

found to be significant. As rs45483102 was not present as a marker in the flucloxacillin-

DILI GWA study, there is no POPRES control data available for this SNP. As a 

population control group a cohort of healthy community controls (n=235) donated by 

Dr Peter Donaldson was also genotyped for rs45483102. Similarly, no AA homozygous 

genotypes were observed. An increased frequency of heterozygotes was again observed 

in flucloxacillin-DILI cases compared to this control group (15.7% to 7.2%). A 

significant difference was observed with carriage of the minor A allele in cases 

compared to community controls giving a p-value of 0.014 with an OR of 2.39 (1.22 – 

4.68). 
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Table 3.11 – Distribution of genotypes for CASP5 (rs45483102) in flucloxacillin-

DILI cases, flucloxacillin-treated controls and community controls 

  

TT 

 

 

AT 

 

AA 

 

P-value 

 

OR (95% CI) 

 

Flucloxacillin-

DILI cases 

(n=140) 

 

 

118 (84.3) 

 

22 (15.7) 

 

0 (0.00) 

  

 

Flucloxacillin-

treated 

controls 

(n=63) 

 

 

56 (88.9) 

 

7 (11.0) 

 

0 (0.00) 

 

0.516 

 

1.49 (0.60 – 3.70) 

 

Community 

controls 

(n=235) 

 

 

218 (92.8) 

 

17 (7.2) 

 

0 (0.00) 

 

0.014 

 

2.39 (1.22 – 4.68) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval 
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The second SNP genotyped from the exome sequencing results was rs41475144 located 

on chromosome 15 in the USP8 gene encoding a member of the ubiquitin specific 

protease family of enzymes. Genotyping results for rs41475144 for flucloxacillin-DILI 

cases and flucloxacillin-treated controls are shown in Table 3.12. Genotyping results 

show a significant association of C allele carriage in flucloxacillin-DILI cases compared 

to controls giving a p-value of 2.17 x 10
-14

 with and OR of 13.08 (6.44 – 26.58). 

However, after genotyping was performed it was discovered that this SNP has been 

previously identified by others as to being found within a pseudogene for USP8 located 

upstream of HLA-C within chromosome 6 (Veal et al., 2002). Since, genes of the MHC 

are located on chromosome 6, it is almost certain that this SNP is in LD with HLA-

B*57:01 producing the result in the exome sequencing study. As a result, it was decided 

not to genotype the community control cohort as with the SNP in CASP5.  
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Table 3.12 – Distribution of genotypes for USP8 (rs41475144) in flucloxacillin-

DILI cases and flucloxacillin-treated controls 

  

TT 

 

 

CT 

 

CC 

 

P-value 

 

OR (95% CI) 

 

Flucloxacillin-

DILI cases 

(n=140) 

 

 

24 (17.1) 

 

101 (72.1) 

 

15 (10.7) 

  

 

Flucloxacillin-

treated 

controls 

(n=63) 

 

 

46 (73.0) 

 

16 (25.4) 

 

1 (1.59) 

 

2.17 x 10
-14 

 

13.08 (6.44 – 26.58) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 

 

3.4 Discussion 

 

Genome-wide association studies have led to the discovery of a strong association 

between HLA-B*57:01 and flucloxacillin-induced liver injury that has provided some 

mechanistic insights into what makes certain individuals susceptible to the disease. The 

original flucloxacillin-DILI GWA study consisted of 51 cases collected between 2004 

and 2007, 84% of which were found to carry the risk allele that conferred HLA-

B*57:01 genotype (Daly et al., 2009). Direct genotyping of HLA-B*57:01 in 

flucloxacillin-DILI cases and flucloxacillin-treated controls found that HLA-B*57:01 

genotype was associated with increased risk to flucloxacillin-DILI with an odds ratio of 

80.6 (Daly et al., 2009). A SNP in the HCP5 gene, rs2395029, has been found to be in 

complete linkage disequilibrium with HLA-B*57:01. Genotyping for this SNP therefore 

provides a cheaper alternative method suitable for processing large number of DNA 

samples easily by PCR-RFLP (Colombo et al., 2008). In the present study, an additional 

99 cases of flucloxacillin-induced liver injury that have been subsequently collected 

through the on-going DILIGEN and iDILIC projects were genotyped for the rs2395029 

SNP. Cases that possessed the G allele associated with HLA-B*57:01 carriage were 

directly genotyped to confirm HLA-B*57:01 possession with 100% accuracy. When the 

150 cases now available were pooled, the frequency of HLA-B*57:01 genotype 

remained similar to the 83% observed in the GWAS. 

Though the strong association of flucloxacillin-DILI with HLA B*57:01 has now been 

confirmed and this is the strongest association with a particular HLA allele reported for 

any type of DILI up to the present, the clinical utility of genotyping for HLA B*57:01 is 

limited (Daly, 2012b). As discussed previously (Daly et al., 2009), the incidence of 

flucloxacillin-DILI in the UK is approximately 1 case for 10,000 patients treated which 

corresponds to a "number needed to harm" of 10,000. Since 5% of the population will 

be positive for at least one B*57:01 allele and a large majority of flucloxacillin DILI 

cases are also positive for this allele, we can assume that 1 in every 500 individuals 

positive for B*57:01 and prescribed flucloxacillin will develop DILI. If genotyping was 

performed prior to treatment with flucloxacillin, this would mean that 10,000 patients 

would need to be genotyped and 499 patients would have to be deprived unnecessarily 

of flucloxacillin treatment and given an alternative antimicrobial to prevent one case of 

DILI. In contrast, for abacavir hypersensitivity, which is also B*57:01 associated, 50% 

of those positive for this allele have been reported to develop hypersensitivity so only 
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approximately 50 patients need to be genotyped and one to two patients deprived 

unnecessarily of abacavir treatment to prevent one case of hypersensitivity (Mallal et 

al., 2008). The findings on other genes described in the current chapter do not decrease 

the number of patients needing to be screened to prevent flucloxacillin-DILI as the 

effect sizes found for any additional genes or alleles were considerably lower than that 

for B*57:01. However, the finding that over 80% of all flucloxacillin-DILI cases are 

positive for B*57:01 may be of relevance to the diagnosis of this form of DILI and help 

rule out other causes of liver disease. 

Although an additional 99 cases of flucloxacillin-DILI have been recruited and included 

in the present study, it has not been possible to recruit and directly genotype for HLA-

B*57:01 additional flucloxacillin-treated healthy controls, to add to the 64 from the 

GWA study. Since HLA-B*57:01 and rs2395029 genotypes have been found to 

correlate 100%, previously and, in the present study, it was decided to study HLA-

B*57:01 genotype distribution in the new cohort of cases by comparing rs2395029 

genotype distribution to the POPRES control cohort containing 282 individuals. It 

would have been interesting to perform multivariate analysis on data from 

flucloxacillin-DILI cases and controls for additional variables such as age and gender. 

However, while such data was available for flucloxacillin-DILI cases and the drug-

exposed control cohort, this data was not available for the POPRES control cohort. Due 

to the small size of the drug-exposed control group, compared with the flucloxacillin 

DILI case group, performing multivariate analysis was considered inappropriate and 

instead all comparisons of genotype frequencies involved using univariate analysis 

involving the cases and larger POPRES control group only. Analysis of rs2395029 

genotype in the 99 newer flucloxacillin-DILI cases versus POPRES controls showed 

that HLA-B*57:01 was associated with increased risk of flucloxacillin-DILI (OR 37.8; 

p = 2.06 x 10
-39

), which rose to 40.1 (p = 3.67 x 10
-52

) when the 150 cases were pooled. 

However, there remains a minority of flucloxacillin-DILI cases, 17% or 26 cases, which 

do not possess the identified risk HLA allele. In this chapter, these cases were 

genotyped for HLA-B allele carriage to investigate the possibility that other HLA-B 

associations existed. 24 different HLA-B alleles were detected in the 26 cases. Increased 

genotype frequencies were observed for HLA-B*08:01, HLA-B*44:02 and HLA-

B*55:01 in flucloxacillin-DILI cases, compared to a North-Western European 

population control cohort. A single significant association was observed with HLA-

B*13:02 which was found at frequency of 7.7% in HLA-B*57:01 negative cases while 
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not at all in the control group (p = 0.0376). This suggests that this allele may also play a 

role in susceptibility to flucloxacillin-DILI. However, although the association is found 

to be significant, the presence of this genotype is in only 2 of the 26 cases. As more 

HLA-B*57:01 negative cases are discovered, it will be interesting to see if this 

association remains. As this is the only significant HLA association observed in these 

cases it is likely that mechanisms independent of HLA genotype may be causal factors 

of DILI in these cases. This seems plausible since, even despite the strong association 

with HLA-B*57:01, only 1 in every 500 to 1000 individuals with HLA-B*57:01 

genotype develop DILI when exposed to flucloxacillin suggesting other undetermined 

genetic or environmental factors exist for susceptibility to the disease (Daly et al., 

2009).  

Apart from flucloxacillin, liver injury caused by the other isoxazolyl penicillins is 

extremely rare. As a result, no large scale genetic studies exist like the GWAS that was 

performed on flucloxacillin-DILI cases that discovered the association with HLA-

B*57:01 carriage and susceptibility to disease. Whereas, flucloxacillin is the preferred 

isoxazolyl analogue for patient treatment in the UK, in most other European countries, 

alternative isoxazolyl penicillins such as cloxacillin and dicloxacillin are prescribed. As 

part of the iDILIC project, DILI cases from other isoxazolyl penicillins have been 

collected including five in the present study consisting of three cases of cloxacillin-

induced liver injury (two from Spain and one from Iceland) and two cases of 

dicloxacillin-induced liver injury (both from Iceland). To study whether DILI to these 

isoxazolyl analogues were associated with HLA-B*57:01, these cases were also 

genotyped for HLA-B allele carriage. None of the cases from either cloxacillin or 

dicloxacillin were found to be positive for HLA-B*57:01 suggesting different 

mechanisms may exist in the pathogenesis of DILI caused by other isoxazolyl 

penicillins.  

HLA-C*06:02 genotype has been identified, along with HLA-B*57:01 genotype, as a 

risk factor for psoriasis susceptibility and for a protective role in restricting HIV-1 

infection progression (Fellay et al., 2007; Liu et al., 2008). HLA-B*57:01 and HLA-

C*06:02 have been reported as part of a relatively common extended haplotype that also 

contains the HLA-class II alleles, DQB1*03:03 and DRB1*07:01 (Ahmad et al., 2003). 

This is likely to explain their similar associations in psoriasis susceptibility and HIV 

protection. In psoriasis susceptibility, this haplotype association is thought to be 

primarily driven by HLA-C*06:02, whereas in HIV-1 non-progressors it is thought that 
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HLA-B*57:01 plays the predominant role (Chen et al., 2012). Genotyping of 

flucloxacillin-DILI cases for HLA-C*06:02 shows a significantly higher frequency 

compared to flucloxacillin-treated controls, which reflects the haplotype association 

between HLA-C*06:02 and HLA-B*57:01. This is confirmed when HLA-C*06:02 

genotype in HLA-B*57:01 negative cases is compared to POPRES population controls 

showing no difference in observed genotype distribution  

Carriage of the KIR3DS1 allele has been linked with having a role in various human 

diseases including increased risk of some autoimmune diseases (Lopez-Larrea et al., 

2006; Korner and Altfeld, 2012). HLA-B*57:01 and KIR3DS1 genotype are believed to 

interact synergistically to confer protection from HIV-1 progression in certain 

individuals (Martin et al., 2002). Some HLA-B molecules, including HLA-B*57:01, 

display a Bw4 epitope at amino acid positions 77 – 83. HLA-B molecules with this 

motif present are natural ligands for KIR3DL1 leading to NK cell inhibition. It is still 

not fully clear if Bw4 expressing HLA-B molecules are ligands for KIR3DS1 but 

genetic associations have been discovered for Bw4-80Ile expressing HLA-B alleles and 

KIR3DS1 in protecting from HIV progression and decreased risk of hepatocellular 

carcinoma (Martin et al., 2002; Lopez-Vazquez et al., 2005). HLA-B molecules 

expressing a Bw6 motif do not appear to interact with KIRs. Genotyping was first 

performed to investigate whether there was an association between KIR3DS1 genotype 

and flucloxacillin-DILI cases. No significant associations with KIR genotype and 

flucloxacillin-DILI were observed. An increased frequency of KIR3DS1 genotype was 

observed in HLA-B*57:01 positive cases compared to HLA-B*57:01 negative (42.6% 

vs. 32.0%) but this was also not significant when compared to controls. Due to the 

known interaction of HLA-Bw4 motifs and KIRs and the fact that HLA-B*57:01 

expresses a Bw4 motif, analysis of Bw4 and Bw6 epitopes in HLA-B alleles of the 

HLA-B*57:01 negative cases was performed. Although there was an increased 

frequency of Bw4 expressing HLA-B alleles in these cases, compared to controls, it was 

not found to be significant. The data presented does not show any evidence of genetic 

associations with KIR3DL1 or KIR3DS1 in flucloxacillin-DILI nor is there significant 

Bw4 motif associations in cases other than HLA-B*57:01.  

Genotyping was performed on two SNPs that were found to be associated with 

flucloxacillin-DILI in an exome sequencing study. One of the SNPs was identified as 

being located in the USP8 gene on chromosome 15. However, it was discovered that 

this association was actually caused by a pseudogene of USP8 on chromosome 6 so was 
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likely to be the effect of LD with HLA-B*57:01. This was confirmed by genotyping 

studies in flucloxacillin-DILI cases and flucloxacillin-treated controls. The second SNP 

studied, rs45483102, was located in the CASP5 gene on chromosome 11. Analysis of 

this SNP showed no significant observation between flucloxacillin-DILI cases and 

drug-treated controls but a significant difference was observed when a larger 

community control cohort was compared (p=0.014). The role of this gene in 

flucloxacillin-DILI may warrant further investigation due to an apparent role for 

caspase-5 in activation of inflammatory cytokines (Fuentes-Prior and Salvesen, 2004). 

Interestingly, caspase-5 has been found to be upregulated in psoriatic skin lesions 

(Salskov-Iversen et al., 2011). As described, HLA-B*57:01 is also thought to have a 

suspected role in psoriasis. 

In summary,  

 The strong association of HLA-B*57:01 in flucloxacillin-DILI cases was 

confirmed in additional cases.  

 17% of flucloxacillin-DILI cases were found to not possess HLA-B*57:01 and 

genotyping of HLA-B alleles discovered a borderline association with HLA-

B*13:02. Genotyping of additional HLA-B*57:01 negative cases, when they 

become available, will help determine whether this association is important.  

 It does not appear that DILI due to cloxacillin and dicloxacillin is related to 

HLA-B*57:01 but this needs further investigation.  

 HLA-C*06:02 is unlikely to be associated with flucloxacillin-DILI 

independently of HLA-B*57:01 and there appears to be no genetic association 

between flucloxacillin-DILI and KIR3DL1 or KIR3DS1.  

 A significant association was described for the rs45483102 SNP in the gene 

encoding caspase-5. It would be of interest to investigate this association further 

to ascertain whether it has a functional impact on the mechanism of 

flucloxacillin-induced liver injury. 
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Chapter 4. Interaction of Flucloxacillin and Isoxazolyl Penicillins with 

the Nuclear Receptors - CAR and PXR 

 

 

 

 

 

 

 

 

 

 

 



117 

 

4.1 Introduction 

 

To avoid the accumulation of lipophilic, potentially toxic compounds in the body, there 

is a requirement for such substances to be metabolised and excreted. Detoxification 

processes are performed by a variety of phase I and II enzymes and transporters 

expressed in multiple tissues and organs though primarily the liver. Modulation of these 

pathways predominantly occurs via the binding of ligands to nuclear receptors that 

control transcription of genes encoding metabolising enzymes and transporters 

regulating their levels and activity. This cellular defence mechanism has evolved so that 

xenobiotic exposure can cause the induction of metabolic proteins to meet the particular 

requirements of that xenobiotic challenge. 

The nuclear receptor, NR1I subfamily members, the pregnane X receptor (PXR) and the 

constitutive active/androstane receptor (CAR) are the most important nuclear receptors 

with regards to xenobiotic metabolism and excretion and are both highly expressed in 

the liver. PXR and CAR regulate the transcription of large number of genes involved in 

all phases of xenobiotic metabolism and excretion but their function was originally 

characterised by their transcriptional regulation of the cytochrome P450 isoforms, 

CYP3A and CYP2B respectively (Figure 4.1). When bound and activated by their 

ligands, both PXR and CAR translocate from the cytoplasm to the nucleus where they 

form a heterodimer with the retinoid X receptor (RXR). PXR activates the transcription 

of CYP3A4 by binding as a heterodimer to various specific response elements in the 

5’upstream promoter region: the proximal promoter ER6, the distal DR3 motif in the 

xenobiotic-responsive enhancer module (XREM), the ER6 in the far distal enhancer 

module and a recently identified DR4 motif (Ihunnah et al., 2011). Similarly CAR 

mediates CYP2B6 transcriptional activation via two synergistically acting response 

elements lying upstream of the CYP2B6 promoter, the phenobarbital-responsive 

enhancer molecule (PBREM) and a distal responsive element, termed the XREM 

(Wang et al., 2003). Although PXR and CAR were originally shown to regulate CYP3A 

and CYP2B genes, respectively, it has since been established that there is significant 

cross talk between the two receptors and considerable overlap in both ligands and target 

genes (Chai et al., 2013). This crosstalk includes the regulation of CYP2B genes by 

PXR  and CAR regulation of CYP3A (Goodwin et al., 2001; Maglich et al., 2002; 

Faucette et al., 2006). 



118 

 

 

Figure 4.1 – A representation of the hallmark mechanisms of CAR and PXR 

activation 

CAR or PXR are activated by their ligands in the cytosol which is followed by nuclear 

translocation. In the nucleus, both form heterodimers with RXR and subsequently bind 

to their corresponding response elements in their target genes leading to transcription 

characterised by CYP2B6 with CAR and CYP3A4 with PXR. 
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As described in section 1.6.1.2, PXR and CAR both also play a role in bile acid 

homeostasis that protects the liver from cholestasis making them interesting targets for 

understanding the underlying mechanisms of cholestatic DILI. Although PXR and CAR 

serve to protect the liver, in certain circumstances their activation and induction of 

metabolising enzymes and transporters can lead to bioactivation and enhanced 

formation of toxic, reactive metabolites (Tompkins and Wallace, 2007). For example, it 

has been reported that  flucloxacillin may be metabolised via CYP3A4 to a potentially 

toxic and reactive metabolite, 5’hydroxymethyl flucloxacillin (Lakehal et al., 2001). 

Flucloxacillin has also been shown to be a PXR ligand which could result in increased 

CYP3A4 induction and accumulation of reactive metabolites (Andrews et al., 2010). An 

expression microarray analysis identified a number of PXR regulated genes, including 

CYP3A4 and MDR1, whose expression changed in response to flucloxacillin treatment 

(Andrews, 2009). These findings are supported by Huwyler and colleagues who showed 

that flucloxacillin can induce CYP3A4 and MDR1 gene expression in LS180 cells and 

human hepatocytes (Huwyler et al., 2006). Flucloxacillin was shown to be a PXR 

ligand through a reporter gene study. Treatment with flucloxacillin led to increased 

luciferase activity of the reporter gene construct, containing a concatamer of PXR ER6 

response elements, compared to the untreated control suggesting that flucloxacillin can 

enhance PXR activation. However, this activation was mild compared to that of the 

classic PXR activator rifampicin suggesting that flucloxacillin is a weak PXR agonist in 

comparison. It is currently unknown whether flucloxacillin interacts with CAR as it 

appears to do with PXR. Preliminary findings at Newcastle showed CYP2B6 induction 

following flucloxacillin treatment of human hepatocytes in a sandwich culture (D. 

Cowie and M.C.Wright, unpublished). This suggests possible activation of CAR by 

flucloxacillin. Flucloxacillin activation of CAR will be investigated in this chapter using 

a reporter gene study. Since CAR can also regulate the transcription of numerous 

metabolising enzymes and transporters important in drug metabolism and excretion, 

including CYP3A4, it is important to determine whether, like PXR, flucloxacillin also 

interacts with this receptor.   

Additionally, polymorphisms in the PXR and CAR genes may influence the expression, 

function and mediated responses leading to decreased drug clearance and liver toxicity. 

Such a risk has been associated with flucloxacillin induced liver injury. A previously 

identified polymorphism -25385C/T (rs3814055) in the PXR promoter region suggested 

that the presence of the T allele was associated with higher CYP3A induction than the C 
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allele (Zhang et al., 2001). 51 cases of flucloxacillin-induced liver injury were 

genotyped for the -25385C/T polymorphism and a significant association was 

discovered between the CC homozygous genotype and flucloxacillin-induced liver 

injury with an odds ratio of 3.37 compared to drug-treated controls (Andrews et al., 

2010). It is therefore hypothesised that individuals with the CC genotype have 

decreased PXR function and a lower ability to clear flucloxacillin leading to drug 

accumulation and possible adduct formation. Decreased PXR activity may also have an 

effect on many other processes such as bile acid detoxification which may also 

contribute to drug-induced liver injury. In the present study, an additional 99 cases of 

flucloxacillin-induced liver injury that have been subsequently collected as part of the 

DILIGEN project were genotyped for the -25385C/T SNP to investigate this association 

in greater detail. As well as this polymorphism in the PXR gene, this chapter also 

describes the study of a number of SNPs in the CAR gene to investigate possible 

associations in flucloxacillin-DILI.    

Whereas flucloxacillin is a common cause of idiosyncratic DILI, reports in the literature 

of liver injury caused by the other isoxazolyl penicillins, including cloxacillin and 

dicloxacillin, are rare. This is perhaps surprising due to similarity between the structures 

of the drugs with only a difference the substituted atom at the position 6 of the phenyl 

ring of the isoxazole side chain. Furthermore, dicloxacillin is the isoxazolyl penicillin 

commonly prescribed in Denmark and Iceland and has also superseded flucloxacillin as 

the drug of choice for treating soft tissue infections caused by Staphylococcus aureus 

(S. aureus) in Australia and the United States. This suggests that it is not hepatotoxic in 

susceptible individuals in a manner that flucloxacillin is. However, at present there have 

not been any population-based studies investigating the risk of liver disease caused by 

dicloxacillin and so it is possible that differences in reporting of potential dicloxacillin-

DILI cases may influence the observed differences. Genetic factors affecting DILI due 

to dicloxacillin are considered in further in Chapter 3. Here, a study was performed to 

compare PXR activation by the isoxazolyl penicillins - cloxacillin, dicloxacillin and 

flucloxacillin using the (ER6)3 PXR reporter construct described above.    
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4.2 Methods 

 

4.2.1 Genotyping of CAR in flucloxacillin-DILI cases and controls 

 

Genotyping for three SNPs in the CAR (NR1I3) gene, rs3003596, rs6686001 (both in 

Intron 1) and rs2307418 (Intron 8) was performed on 72 flucloxacillin-DILI cases from 

the flucloxacillin GWA study and 64 drug-treated healthy controls by PCR-RFLP. 

Primers were designed for each SNP as describe in section 2.4.1 and are shown in 

Table 4.1.   

These SNPs were chosen based on their identification as Tag SNPs for the common 

CAR haplotypes using data from the HapMap database (http://www.hapmap.org) 

exported into Haploview 4.2 software (http://www.broad.mit.edu/mpg/haploview). 

Haploview was used to generate linkage disequilibrium (LD) plots as shown in Figure 

4.2. Tag SNPs were selected using the Haploview Tagger function, with a pairwise 

tagging algorithm set to select SNPs with a minor allele frequency (MAF) ≥ 0.08 and an 

r
2
 ≥ 0.8. Five additional SNPs from this CAR haplotype were analysed by PLINK 

analysis using data collected previously from the flucloxacillin GWA study.  

 

 

 

 

 

 

 

 

 

 

 

http://www.broad.mit.edu/mpg/haploview
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Table 4.1 – Primer sequences used for RFLP genotyping of CAR SNPs 

 

SNP 

 

Forward (5’-3’) 

 

Reverse (3’-5’) 

 

Amplicon 

Size 

 

rs6686001 

 

TGT GCC CAA AGG TCC 

CCA CG 

 

TGG ACA CAG CCC ATT 

AGT CA 

 

161bp 

 

rs3003596 

 

CTG CAA AAG ATC CAA 

GAT TA 

 

AGT TGT ACA GTC AGT 

ATT CA 

 

161bp 

 

rs2307418 

 

CAG CTC CCT ATC TTA 

CAG AC  

 

CTG GTG TGG CCT CCA 

AGC CC 

 

171 bp  
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Figure 4.2 – Linkage Disequilibrium (LD) plot of CAR tag SNPs  

A total of 9 tag SNPs in the CAR gene were generated using Haploview 4.2 software 

and displayed in a LD plot with the standard D’-plot colour scheme. Blocks that are 

bright red/blue define where D’=1 indicating ‘complete LD’. D’ = 1 unless highlighted 

by a numerical value e.g. 86 equals a D’ value of 0.86.  Tag SNPs were selected using 

the Haploview Tagger function. 
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4.2.1.1 CAR rs6686001 G → T  

Cycling conditions were standard with an annealing temperature of 55 °C and an 

amplicon of 161 bp was produced. The forward primer was designed so that it contained 

an engineered site (G → C) that created a restriction site for the enzyme, BsaAI, 

allowing RFLP genotyping of the product. The restriction enzyme cuts in the presence 

of the T allele producing fragments of 142 bp and 19 bp, while the G allele remains 

uncut. The PCR product (10 µl) was digested overnight at 37 °C with 2U of BsaAI and 

products separated on a 10 % polyacrylamide gel as described in section 2.5.2. A typical 

separation of digestion products is displayed in Figure 4.3. 

 

 

 

 

Figure 4.3 – PCR-RFLP analysis of CAR (rs6686001) 

A typical gel image for the restriction digest of CAR (rs6686001) with BsaAI; lane 1 

shows homozygous TT, lane 2 shows heterozygous GT and lane 3 shows homozygous 

GG     
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4.2.1.2 CAR rs3003596 A → G 

The annealing temperature of the PCR reaction was 50 °C and all other cycling 

conditions remained standard. The forward primer was designed containing an 

engineered site (C → T) creating a restriction site for the enzyme, MseI. The PCR 

product (10 µl) with amplicon size 161 bp was digested overnight at 37 °C with 2U 

MseI and the products separated on a 10 % polyacrylamide gel as described in section 

2.5.2. Figure 4.4 shows a typical separation of digest products. The restriction enzyme 

cuts in the presence of the A allele producing fragments of 143 bp and 18 bp, while the 

G allele remains uncut. 

 

 

 

 

Figure 4.4 – PCR-RFLP analysis of CAR (rs3003596) 

A typical gel image for the restriction digest of CAR (rs3003596) with MseI; lane 1 

shows homozygous AA, lane 2 shows heterozygous AG and lane 3 shows homozygous 

GG     
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4.2.1.3 CAR rs2307418 A → C 

Cycling conditions were standard and the annealing temperature was 51°C. The 171 bp 

PCR product (10 µl) was digested overnight at 37 °C with 2U of DdeI and the digestion 

products separated on a 10 % polyacrylamide gel as described in section 2.5.2. Figure 

4.5 shows a typical separation of digest products. The restriction enzyme cuts the A 

allele to produce fragments of size 143 bp and 23 bp. The C allele remains uncut.  

 

 

 

 

Figure 4.5 – PCR-RFLP analysis of CAR (rs2307418) 

A typical gel image for the restriction digest of CAR (rs2307418) with DdeI; lane 1 

shows homozygous AA, lane 2 shows heterozygous AC. No homozygous CC genotypes 

were observed.   
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4.2.2 Measurement of endogenous CAR levels in cell lines by SYBR Green I qPCR 

 

HepG2, LS180 and Caco-2 cells were cultured as described in section 2.7. RNA was 

extracted from cells as described in section 2.3.2.1 and cDNA synthesised by reverse 

transcription as described in section 2.6.1. SYBR Green I real-time PCR was performed 

as described in section 2.6.2.1 with primers for CAR and GAPDH displayed in Table 

2.4 in Chapter 2.  

 

4.2.3 CAR Reporter Gene Assay 

  

To investigate whether flucloxacillin is an activator of CAR a luciferase reporter gene 

system was adopted. A reporter gene construct containing the 1.6kb promoter region of 

the CYP2B6 gene, PBREM and XREM ligated into a basic p-GL3 vector containing the 

firefly luciferase gene and a human CAR expression vector was kindly donated by Dr. 

Masahiko Negishi (National Institutes of Health, North Carolina, USA). 

Plasmid DNA was synthesised via transformation of JM109 E.coli Competent cells as 

described in section 2.8.1 and extracted as described in section 2.8.2. For transfections, 

HepG2 and Caco-2 cells were cultured to approximately 70% confluency then seeded 

into 24 well plates at a density of 5 x 10
4
 cells/ml per well as described in section 2.8.3. 

Non-transfected control wells were seeded in triplicate. Transfections were performed 

as described in section 2.8.4, with the addition of 100 ng CYP2B6/PBREM/XREM 

reporter construct and 30 ng of pRL-TK Renilla Luciferase control vector per well. For 

co-transfection experiments, 50 ng human CAR expression plasmid was added per well 

along with the CYP2B6/PBREM/XREM reporter construct and Renilla control. After 

transfection, culture media was replaced and cells treated in triplicate with 0.1% DMSO 

(for vehicle control), CITCO (1 µM) or flucloxacillin at concentrations of 100 µM, 500 

µM and 1 mM for 24 hours. Following treatment, reporter activity was assessed as 

described in section 2.8.5. 
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4.2.4 Genotyping of PXR -25385T (rs3814055) in new flucloxacillin-DILI cases 

 

Flucloxacillin-DILI cases and controls were genotyped for the PXR SNP rs3184055 by 

qPCR using a TaqMan SNP assay. The protocol for the genotyping assay is identical to 

that described in section 3.2.6.  

 

4.2.5 PXR reporter gene assay 

 

To investigate PXR activation by flucloxacillin and the isoxazolyl penicillins – 

cloxacillin and dicloxacillin, a plasmid reporter gene containing a luciferase construct 

ligated to a concatamer of three ER6 response elements specific to PXR was used 

(Andrews et al., 2010). Plasmid DNA was synthesised via transformation of JM109 

E.coli Competent cells as described in section 2.8.1 and extracted as described in 

section 2.8.2. HepG2 cells were cultured to approximately 70% confluency then seeded 

into 24 well plates at a density of 5 x 10
4
 cells/ml per well, as described in section 2.8.3. 

Non-transfected control wells were seeded in triplicate. Transfections were performed 

as described in section 2.8.4, with the addition of 500 ng of p-(ER6)3 reporter construct 

and 50 ng of pRL-TK Renilla Luciferase control vector per well.  After transfection, 

culture media was replaced and cells treated in triplicate with 0.1% DMSO (for vehicle 

control), rifampicin (20 µM) or flucloxacillin/cloxacillin/dicloxacillin at concentrations 

of 500 µM, 1 mM and 2 mM for 72 hours. Following treatment, reporter activity was 

assessed as described in section 2.8.5. 

 

4.2.6 Measurement of CYP3A4 induction in LS180 cells by SYBR Green I qPCR 

 

LS180 cells were routinely cultured as described in section 2.7 then seeded into 6 well 

plates at a density of 2 x 10
5
 cells/ml per well. Cells were treated with vehicle (0.1% 

DMSO), rifampicin (20 µM) or flucloxacillin/dicloxacillin at concentrations of 250 µM, 

500 µM, 1 mM or 2 mM for 72 hours. RNA was extracted from cells as described in 

section 2.3.2.1 and cDNA synthesised by reverse transcription as described in section 

2.6.1. SYBR Green I real-time PCR was performed as described in section 2.6.2.1 with 

primers for CYP3A4 and GAPDH displayed in Table 2.4 in Chapter 2.  
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4.2.7 Statistical analysis 

 

Genotype distributions between cases and controls were compared with Fisher’s exact 

test on Prism 3.0 software (GraphPad). Adherence to the Hardy-Weinberg  equilibrium 

for genotypes was determined by the chi-squared test using a web-based calculator 

available at http://www.tufts.edu/. 

Gene expression was calculated by the ΔΔCt method of analysis as described in section 

2.6.2 and is expressed as relative fold induction as the mean ± S.D. of triplicate 

experiments. Comparisons of gene expression between individual treatment groups and 

the untreated control group were analysed by performing unpaired two-tailed students t-

tests using GraphPad Prism 3.0 software. 

For reporter gene analysis, significance was assessed by student’s t-tests and one-way 

ANOVA. 
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4.3 Results 

 

4.3.1 Investigation of CAR genotypes and susceptibility to flucloxacillin DILI  

 

Three SNPs in the CAR (NR1I3) gene, rs3003596, rs6686001 (both in Intron 1) and 

rs2307418 (Intron 8) were selected for study. These SNPs were chosen as tag SNPs for 

the main CAR haplotypes, using European data from the HapMap database and 

Haploview. Genotyping was performed on 72 cases of flucloxacillin-DILI from the 

flucloxacillin-GWAS and 64 flucloxacillin-treated controls by PCR-RFLP. An 

additional comparison was made between flucloxacillin-DILI cases and a freely 

available online control cohort from the 1000 Genomes Project that contained 379 

individuals of European descent. Table 4.2 shows the genotyping results for the three 

CAR SNPs. Control groups for all SNPs were found to be in Hardy-Weinberg 

equilibrium. No significant difference in genotype frequency between cases and 

controls were observed for any of the SNPs.  

In addition to the three CAR tag SNPs genotyped by PCR-RFLP, a further 5 CAR tag 

SNPs, were analysed by PLINK analysis using data from the GWAS on flucloxacillin 

(Daly et al., 2009). POPRES control data was used for comparison of flucloxacillin-

DILI cases and controls. Table 4.3 shows the genotype results for these SNPs and 

POPRES controls. Similarly, no significant associations were found between 

flucloxacillin-DILI cases and POPRES controls in these five SNPs in the CAR gene. 
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Table 4.2 – Distribution of CAR genotypes in flucloxacillin-DILI cases, 

flucloxacillin-treated healthy controls and 1000 Genomes EUR population cohort 

 

CAR 

 

Genotype 

 

P – 

value 

 

OR (95% CI) 

 

rs6686001 

 

 

Cases (n=72) 

 

Controls (n=64) 

 

1000 Genomes 

EUR (n=379) 

 

 

GG 

 

48 (0.67) 

 

43 (0.67) 

 

254 (0.67) 

 

 

 

 

GT 

 

23 (0.32) 

 

20 (0.31) 

 

115 (0.31) 

 

 

 

 

TT 

 

1 (0.01) 

 

1 (0.02) 

 

10 (0.02) 

 

 

 

 

 

 

 

 

1.0000 

 

1.0000 

 

 

 

 

 

 

 

 

0.98 (0.48 – 2.00) 

 

0.98 (0.58 – 1.68) 

 

 

 

 

rs3003596 

 

 

Cases (n=72) 

 

Controls (n=64) 

 

1000 Genomes 

EUR (n=379) 

 

 

 

AA 

 

17 (0.24) 

 

21(0.33) 

 

118 (0.31) 

 

 

 

 

AG 

 

39 (0.54) 

 

32 (0.50) 

 

182 (0.48) 

 

 

 

 

GG 

 

16 (0.22) 

 

11 (0.17) 

 

79 (0.21) 

 

 

 

 

 

 

 

 

0.5225 

 

0.7552 

 

 

 

 

 

 

 

 

1.38 (0.59 – 3.24) 

 

1.09 (0.59 – 1.99) 

 

 

 

rs2307418 

 

 

Cases (n=72) 

 

Controls (n=64) 

 

1000 Genomes 

EUR (n=379) 

 

 

 

 

AA 

 

56 (0.78) 

 

43 (0.67) 

 

286 (0.75) 

 

 

 

AC 

 

16 (0.22) 

 

21 (0.33) 

 

87 (0.23) 

 

 

 

CC 

 

0 (0.00) 

 

0 (0.00) 

 

6 (0.02) 

 

 

 

 

 

 

 

0.1815 

 

0.7647 

 

 

 

 

 

 

 

1.71 (0.80 – 3.66) 

 

1.14 (0.62 – 2.08) 

 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval 
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Table 4.3 – Distribution of CAR genotypes in flucloxacillin-DILI cases and 

POPRES controls 

 

CAR 

 

Genotype 

 

P – 

value 

 

OR (95% CI) 

 

rs4073054 

 

 

Cases (n=72) 

 

Controls (n=282) 

 

 

GG 

 

13 (0.18) 

 

40 (0.14) 

 

 

GT 

 

37 (0.51) 

 

139 (0.49) 

 

 

TT 

 

22 (0.31) 

 

103 (0.37) 

 

 

 

 

 

 

0.4076 

 

 

 

 

 

 

1.31 (0.75 – 2.28) 

 

 

rs2307420 

 

 

Cases (n=72) 

 

Controls (n=282) 

 

 

 

GG 

 

0 (0.00) 

 

0 (0.00) 

 

 

 

GA 

 

3 (0.04) 

 

15 (0.05) 

 

 

 

AA 

 

69 (0.96) 

 

267 (0.95) 

 

 

 

 

 

 

 

1.0000 

 

 

 

 

 

 

 

0.78 (0.22 – 2.75) 

 

 

rs2307424 

 

 

Cases (n=72)  

 

Controls (n=282) 

 

 

 

TT 

 

8 (0.11) 

 

35 (0.12) 

 

 

 

TC 

 

30 (0.42) 

 

121 (0.43) 

 

 

 

CC 

 

34 (0.47) 

 

126 (0.45) 

 

 

 

 

 

 

 

0.7909 

 

 

 

 

 

 

 

1.11 (0.66 – 1.86) 

 

 

rs2502815 

 

 

Cases (n=72)  

 

Controls (n=282) 

 

 

 

 

TT 

 

2 (0.03) 

 

12 (0.04) 

 

 

 

TC 

 

29 (0.40) 

 

115 (0.41) 

 

 

 

CC 

 

41 (0.57) 

 

155 (0.55) 

 

 

 

 

 

 

 

0.7918 

 

 

 

 

 

 

 

0.92 (0.55 – 1.56) 

 

 

rs2501873  

 

 

Cases (n=72) 

 

Controls (n=282) 

 

 

 

 

 

AA 

 

14 (0.19) 

 

44 (0.16) 

 

 

 

AG 

 

36 (0.50) 

 

142 (0.50) 

 

 

 

GG 

 

22 (0.31) 

 

96 (0.34) 

 

 

 

 

 

 

 

0.6746 

 

 

 

 

 

 

 

1.17 (0.67 – 2.05) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval 
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4.3.2 Study into the effects of flucloxacillin on CAR activation 

 

4.3.2.1 Determination of endogenous CAR in LS180, HepG2 and Caco-2 cell lines 

 

Before transfection of the reporter construct into cells for investigation, a suitable cell 

line that expressed high levels of endogenous CAR needed to be found. This was 

achieved by assessing endogenous CAR levels by real-time PCR in three different cell 

lines – the hepatoblastoma cell line, HepG2, and two colorectal cell lines, LS180 and 

Caco-2. Real-time PCR (qPCR) was performed with SYBR Green I, using GAPDH as a 

housekeeping gene for normalisation of data. Results from qPCR are normalised to 

expression levels in LS180 cells and are displayed in Figure 4.6. HepG2 cells were 

found to contain a 1.65 ± 0.55 fold increase in CAR expression relative to LS180 cells 

although this was not found to be statistically significant (p = 0.1307). Caco-2 cells 

were found to have 3.25 ± 1.01 fold greater expression of CAR than LS180 (p = 

0.0194). From these qPCR results it was decided that Caco-2 and HepG2 cells were to 

be used for subsequent transfection studies with the CYP2B6/PBREM/XREM reporter 

plasmid. 
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Figure 4.6 – Relative mRNA expression of endogenous CAR in LS180, HepG2 and 

Caco-2 cell lines 

Expression of endogenous CAR was determined in LS180, HepG2 and Caco-2 cells by 

qPCR. CAR expression in LS180 cells is normalised to 1 to show comparative 

expression levels between the different cell lines. Data represents mean ± S.E.M, n = 3, 

* p < 0.05, students t-tests were performed to compare differences between groups. A 

significant difference in CAR expression was observed between LS180 and Caco-2 cells 

(p=0.0194).   

 

 

 

 

 

 

 

 

 

 

 

 



135 

 

4.3.2.2 Optimisation of the CAR reporter assay in HepG2 and Caco-2 cells 

 

The transfection protocol was tested by treating cells with the potent CAR agonist, 

CITCO (1µM). CITCO should activate CAR leading to heterodimer formation with 

RXR, binding to motifs within PBREM and XREM and transcription of the 

CYP2B6/PBREM/XREM reporter construct. This leads to the expression and 

intracellular accumulation of the firefly luciferase enzyme which can be detected by 

subsequent analysis. For analysis, cells were lysed and reporter firefly luciferase (in 

relative light units) and control renilla thymidine kinase activity (in relative light units) 

analysed using the Dual-Glo Luciferase Assay System (Promega, UK). Data was then 

normalised against renilla luciferase activity and expressed as fold induction versus 

untreated cells. Figure 4.7 shows that CITCO treatment had very little effect on reporter 

luciferase activity in both HepG2 and Caco-2 cells. This suggests that either the 

protocol doesn’t work efficiently or that there are actually low amounts of endogenous 

CAR present in these cell lines.  

To test this hypothesis, HepG2 and Caco-2 cells were co-transfected with the 

CYP2B6/PBREM/XREM reporter gene construct and a human CAR expression vector 

(also kindly donated by Dr. M. Negishi). Co-transfecting a CAR expression vector into 

the cells led to a much greater CYP2B6/PBREM/XREM reporter gene response in both 

the vehicle (0.5% DMSO) and CITCO treated cells as is also shown in Figure 4.7. 

Reporter activity was significantly increased in vehicle control groups by co-

transfection with the CAR expression vector in Caco-2 cells (p < 0.0001) and HepG2 

cells (p = 0.0090). This response in untreated cells can be explained by the 

constitutively active nature of CAR whereupon it can spontaneously translocate to the 

nucleus and activate its target genes (Goodwin et al., 2001). However, in CITCO treated 

cells co-transfected with the CAR expression vector, a significant response is observed 

in Caco-2 cells (p = 0.0003) but not in HepG2 (p = 0.2262) when compared to untreated 

cells transfected with the reporter only. 

Reporter activity was compared between untreated and CITCO treated cells that were 

co-transfected with the reporter construct and CAR expression vector in HepG2 and 

Caco-2 cells. CITCO treatment gave a significant increase in reporter activity in Caco-2 

cells (p = 0.0150) but not in HepG2 cells (p = 0.8180). This led to the decision to 

subsequently use Caco-2 cells for further studies.  
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Figure 4.7 – Effect of co-transfection of a human CAR expression vector on 

luciferase activity of a CYP2B6/PBREM/XREM reporter construct in Caco-2 and 

HepG2 cells 

Caco-2 and HepG2 cells were either transfected with (+) or without (-) a hCAR 

expression vector alongside the CYP2B6/PBREM/XREM promoter reporter construct 

and treated with vehicle (0.1% DMSO) or CITCO (1 µM) for 24 hours. Reporter 

luciferase activity was normalised for renilla luciferase activity. Data represents mean 

± S.E.M, n = 3 of technical replicates, * p < 0.05, ** p < 0.01, *** p < 0.001 One-Way 

ANOVA followed by a Bonferroni post-test was performed to compare differences in 

luciferase activation between all groups. Addition of the hCAR expression vector led to 

a significant increase of reporter activity in both cell lines. However, only in Caco-2 

cells was a significant response observed by treatment with the positive control, CITCO 

in cells co-transfected with the hCAR vector.    
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4.3.2.3 Reporter gene assay to study the effects of flucloxacillin on CAR activation 

 

Caco-2 cells were co-transfected with the CYP2B6/PBREM/XREM reporter gene 

construct and the human CAR expression vector and treated with CITCO (1 µM) or 

varying concentrations of flucloxacillin – 100 µM, 500 µM and 1 mM for 24 hours. 

Luciferase activity of the reporter construct was normalised for renillla activity and 

results shown as fold increase relative to the vehicle (0.5% DMSO) control group 

(Figure 4.8). CITCO treatment gave a 1.51 ± 0.09 fold increase in reporter activity 

compared to the vehicle control group (p < 0.001). Flucloxacillin was not found to 

cause reporter gene activation, suggesting that it does not activate CAR leading to 

CYP2B6 and reporter transcription. 
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Figure 4.8 – Effect of flucloxacillin treatment on the luciferase activity of a 

CYP2B6/PBREM/XREM reporter construct in Caco-2 cells 

Reporter luciferase activity was normalised for renilla luciferase activity. Cells were 

transfected with a hCAR expression vector alongside a CYP2B6/PBREM/XREM 

promoter reporter construct and treated with vehicle (0.1% DMSO), CITCO (1 µM) or 

flucloxacillin at 100 µM, 500 µM or 1 mM for 24 hours. Data represents mean ± S.E.M, 

n = 3 of technical replicates,*** p < 0.001 students t-tests were performed to compare 

treatment groups to vehicle control.  
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4.3.3 Genotyping of additional flucloxacillin-DILI cases for PXR -25385C/T 

 

Previous studies at Newcastle University showed a significant association between the -

25385C/T (rs3814055) polymorphism in PXR and flucloxacillin-DILI (Andrews et al., 

2010). In those studies, the original 51 cases of flucloxacillin-DILI from the 

flucloxacillin-GWAS were genotyped along with drug-treated controls (n=64) and 

healthy community controls (n=90). In the present study, an additional 99 cases of 

flucloxacillin-DILI were genotyped for the PXR -25385C/T polymorphism (Table 4.4). 

Due to the increased size of the flucloxacillin-DILI case cohort, the POPRES control 

group (n=282) was used to increase statistical power. The genotype frequencies for 

rs3814055 in this group were found to be in Hardy-Weinberg equilibrium (Χ
2
 = 0.20, p 

= 0.6536).   

Analysis of the original 51 cases of flucloxacillin-DILI versus the POPRES controls  

showed a significant difference in genotype frequency with 57% of these cases having a 

CC genotype compared to 41% of the controls, giving an odds ratio of 1.89 with a 95% 

confidence interval of 1.03 – 3.45 (p = 0.0458). However, analysis of the additional 99 

cases failed to confirm this observation with 36% of these cases found to have the CC 

genotype compared to 41% of the controls (p = 0.4743). Combination of the two 

flucloxacillin-DILI cohorts showed 43% of the total cases carry the CC genotype which 

was not significantly different to the POPRES control group (p = 0.6823). 

The combined effect of -25385CC genotype and HLA-B*57:01 carriage was 

investigated in the combined cohort of flucloxacillin-DILI cases. Of the 65 PXR -

25385CC cases, 56 were also HLA-B*57:01 positive but this frequency was not 

significantly different to that in POPRES controls (p = 0.5131) (Table 4.5).      
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Table 4.4 - PXR SNP genotyping results in flucloxacillin-DILI cases and POPRES 

population control cohort 

 

PXR 

 

-25385 

(rs3814055) 

 

 

Genotype 

 

 

P – 

value 

 

OR (95% CI) 

 

CC 

 

CT 

 

TT 

 

 

POPRES controls 

(n=282) 

 

 

 

116 (0.41) 

 

 

127 (0.45) 

 

 

39 (0.14) 

 

 

 

 

 

 

 

 

Original 

genotyped cases 

(n=51) 

 

 

 

 

29 (0.57) 

 

 

 

 

14 (0.27) 

 

 

 

 

8 (0.16) 

 

 

 

 

0.0458 

 

 

 

1.89 (1.03 – 3.45) 

 

New cases (n=99) 

 

 

36 (0.36) 
 

42 (0.43) 
 

21 (0.21) 
 

0.4743 
 

0.82 (0.51 – 1.31) 

 

 

Combined cases 

(n=150) 

 

 

 

65 (0.43) 

 

 

56 (0.37) 

 

 

29 (0.19) 

 

 

0.6823 

 

 

1.09 (0.73 – 1.63) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval 
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Table 4.5 - Effect of PXR C-25385T genotype in relation to HLA B*57:01 genotype 

on risk of developing flucloxacillin-DILI in cases compared to POPRES controls 

 

-25385 

(rs3814055) 

 

 

 

Genotype 

 

 

P - value 

 

 

OR (95% CI) 

 

CC 

 

CT 

 

TT 

 

POPRES 

controls 

(n=282) 

 

 

 

 

116 (0.41) 

 

 

 

127 (0.45) 

 

 

 

39 (0.14) 

  

 

HLA-B*57:01 

positive 

(n=124) 

 

HLA-B*57:01 

negative (n=26) 

 

 

 

56 (0.45) 

 

 

9 (0.35) 

 

 

 

45 (0.36) 

 

 

11 (0.42) 

 

 

 

23 (0.19) 

 

 

6 (0.23) 

 

 

 

 

0.5131 

 

 

0.4043 

 

 

 

1.18 (0.77 – 1.80) 

 

 

0.67 (0.28 – 1.61) 

Number of individuals with each genotype is shown with the genotype frequency shown as a 

percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls; OR = odds ratio, CI = confidence interval 
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4.3.4 Activation of PXR by isoxazolyl penicillins 

 

To determine PXR activation by various isoxazolyl penicillins, a reporter gene system 

containing a luciferase construct with a concatamer of the ER6 response element 

specific to PXR was used. HepG2 cells were transfected with the reporter construct and 

an internal control renilla-thymidine kinase construct. Cells were exposed to 500µM, 

1mM and 2mM concentrations of cloxacillin, dicloxacillin and flucloxacillin for 72 

hours, with the classic PXR activator, rifampicin (20 µM), as a positive control.  These 

isoxazolyl penicillin concentrations were chosen based on a previous study of 

flucloxacillin-PXR activation by Elise Andrews at Newcastle University. In this study, 

no effect on PXR activation was observed with concentrations below 500 µM, and it is 

suggested that these concentrations are comparable to peak plasma flucloxacillin 

concentrations achieved after a 1 g dose (Andrews, 2009; Andrews et al., 2010). 

Luciferase activity of the reporter construct was normalised for renillla activity and 

results shown as fold increase relative to the vehicle (0.5% DMSO) control group 

(Figure 4.9)  

The findings of this study found that rifampicin produced the greatest PXR activity with 

a 3.28 ± 0.41 fold increase in luciferase activity of the reporter construct (p = 0.0054). 

Flucloxacillin produced significant dose-dependent increases in luciferase activity at the 

concentrations tested. A 1.44 ± 0.14 fold increase (p = 0.0453) was observed at the 

lowest concentration of 500 µM, with a 1.99 ± 0.17 fold (p = 0.0053)  and a 2.11 ± 0.27 

fold (p = 0.0167) stimulation at 1 mM and 2 mM, respectively. 

Dicloxacillin was also found to produce a dose-dependent activation of PXR activity. 

Dicloxacillin produced a 1.95 ± 0.19 fold increase (p = 0.0079)  at 500 µM. At 1 mM, a 

2.11 ± 0.31 fold increase (p = 0.0239)  was observed with the greatest increase of 

luciferase activity seen with 2 mM, with a 2.51 ± 0.12 fold increase (p = 0.0003).  

In contrast to flucloxacillin and dicloxacillin, cloxacillin was not found to significantly 

increase PXR activity. A slight increase in report activity was observed at the highest 

concentration tested but this was not found to be significant (p = 0.1335).   

The findings of this study suggest that flucloxacillin and dicloxacillin both activate PXR 

with dicloxacillin being the stronger of the two. Luciferase activities at each 

concentration for flucloxacillin and dicloxacillin were compared by one-way ANOVA 
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with a Bonferroni’s multiple test comparison. Results show that the reporter activities 

between the groups at each concentration were not significantly different. 
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Figure 4.9 - Effect of isoxazolyl penicillin treatment on luciferase activity of PXR-

(ER6)3 reporter construct in HepG2 cells 

Reporter luciferase activity was normalised for renilla luciferase activity. HepG2 cells were 

treated with vehicle (0.1% DMSO), rifampicin (20 µM) or with flucloxacillin (top), dicloxacillin 

(middle) and cloxacillin (bottom) at 500 µM, 1 mM or 2 mM for 72 hours. Data represents 

mean ± S.E.M, n = 3 of technical replicates, * p < 0.05, ** p < 0.01, *** p < 0.001 students t-

tests were performed to compare treatment groups to vehicle control.  
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4.3.5 CYP3A4 induction in LS180 cells by flucloxacillin and dicloxacillin 

 

Following the observation that dicloxacillin appears to be a stronger activator of PXR 

than flucloxacillin, studies were performed to determine whether this observation 

translated to stronger induction of the PXR regulated enzyme, CYP3A4. For this, 

LS180 cells were treated with flucloxacillin (250 µM – 2 mM), dicloxacillin (250 µM – 

2 mM) or rifampicin (20 µM) as a positive control for 72 hours. CYP3A4 mRNA 

expression was measured by SYBR Green I real-time PCR. Rifampicin (20 µM) was 

observed to produce a 10.10 ± 0.62 fold increase (p = 0.0001) in CYP3A4 expression.   

Figure 4.10 shows the qPCR analysis of CYP3A4 mRNA expression due to 

flucloxacillin and dicloxacillin exposure relative to the untreated vehicle control. 

Flucloxacillin showed a marginal increase in CYP3A4 expression over the 

concentration ranges which was significant at 1 mM and 2 mM concentrations with 1.64 

± 0.20 (p = 0.0435)  and 2.17 ± 0.24 (p = 0.0105)  fold increases respectively. CYP3A4 

expression was markedly increased in dicloxacillin treated cells in a dose-dependent 

manner. Treatment with 2 mM produced a highly significant 5.78 ± 0.40 fold increase 

(p = 0.0003) in CYP3A4 expression.  
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Figure 4.10 – Relative mRNA expression of CYP3A4 in LS180 cells  

Expression of CYP3A4 was determined in LS180 cells by qPCR. Cells were treated with 

vehicle (0.1% DMSO), rifampicin (20 µM) or with flucloxacillin (top) and dicloxacillin 

(bottom) at 250 µM, 500 µM, 1 mM or 2 mM for 72 hours. Data represents mean ± 

S.E.M, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001 students t-tests were performed to 

compare treatment groups to vehicle control.  
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4.4 Discussion 

 

The metabolism and excretion of a large number of xenobiotics, as well as key 

pathways maintaining bile acid homeostasis, are regulated by the nuclear receptors PXR 

and CAR. These xenosensing receptors regulate the transcription of a large, overlapping 

set of genes encoding numerous metabolising enzymes and drug transporters that are 

activated to perform functions that protect the liver from accumulation of toxic 

compounds. 

Flucloxacillin is a common cause of DILI but reports of DILI by the other isoxazolyl 

penicillins are rare. In this chapter, PXR activation by the isoxazolyl penicillins – 

cloxacillin and dicloxacillin was compared to flucloxacillin with a reporter gene study 

using a plasmid containing the (ER6) PXR response element transfected into HepG2 

cells. Such a study has previously shown that flucloxacillin is able to activate the (ER6) 

response element suggesting that PXR plays a role in the disposition of flucloxacillin in 

the liver (Andrews et al., 2010). The findings of the current study confirmed that 

flucloxacillin and dicloxacillin can activate the PXR (ER6) response element to a 

similar extent,  but it appears that cloxacillin does not. Previously flucloxacillin and 

dicloxacillin have both been shown to induce the expression of the PXR-mediated 

genes, CYP3A4 and the drug efflux transporter MDR1, in cellular assays (Huwyler et 

al., 2006; Yasuda et al., 2008; Andrews et al., 2010). CYP3A4 and MDR1 mRNA 

expression in LS180 cells in response to flucloxacillin and dicloxacillin was determined 

in the current study, confirming that both drugs induce expression of these genes and 

showing that dicloxacillin perhaps does so to a slightly greater extent. It could be 

hypothesised that greater activation of PXR by dicloxacillin in vivo results in greater 

clearance from the liver in comparison to flucloxacillin. If accumulation of the drug or 

reactive metabolites is a factor in DILI caused by dicloxacillin or flucloxacillin, a higher 

level of PXR activation may be protective against toxicity. However, the overall 

difference between PXR activation by flucloxacillin and dicloxacillin is debatable 

suggesting a probable negligible overall effect on flucloxacillin disposition in the liver. 

Additionally, this hypothesis does not seem to apply to instances of cloxacillin-induced 

liver injury as no apparent PXR activation was observed.  

There is a lack of detailed, thorough investigation of penicillin use in individual 

countries but a study of 25 European countries found that β-lactamase resistant 
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isoxazolyl penicillins are not widely prescribed compared to broad spectrum penicillins, 

narrow-spectrum penicillins and penicillins combined with β-lactamase inhibitors 

(Ferech et al., 2006). In this report, 40% of the countries studied  were reported to 

prescribe isoxazolyl penicillins at less than 1% of their countries total penicillin 

prescriptions. Only in four countries - Denmark, Sweden, Iceland and the U.K., did β-

lactamase resistant isoxazolyl penicillin prescriptions exceed 10% of total penicillin use. 

Of these countries, flucloxacillin is the preferred isoxazolyl penicillin for use in the 

U.K. and Sweden, whereas in Denmark, dicloxacillin is prescribed and in Iceland, 

cloxacillin and dicloxacillin are both used. The use of flucloxacillin in the U.K. and 

Sweden is accompanied by frequent reports of flucloxacillin-induced liver injury with 

the drug commonly the most frequent cause of DILI in these countries (Suzuki et al., 

2010). However, in Iceland where dicloxacillin is predominantly prescribed, reports of 

DILI are extremely rare and in Denmark where dicloxacillin prescriptions have more 

than doubled in the period 1996 to 2008 there are no reports in the literature of 

dicloxacillin-induced liver injury (Dalager-Pedersen et al., 2011; Bjornsson et al., 

2013). From this, one could assume that dicloxacillin, although widely prescribed 

within a population, is not as hepatotoxic as flucloxacillin. The differences in PXR 

activation by the two drugs may potentially be a reason for this.  

An upstream polymorphism, -25385C/T in the PXR promoter region has previously 

been found to be associated with cases of flucloxacillin-DILI where there was an 

observed increase of CC genotype in 51 cases compared to controls (Andrews et al., 

2010). This genotype is associated with decreased PXR expression and CYP3A4 

induction suggesting that these individuals have a decreased ability to clear 

flucloxacillin from the liver which may make them more susceptible to toxicity. In the 

current study, an additional 99 cases of flucloxacillin-DILI were genotyped for the -

25385C/T  polymorphism. Although a significant association of CC genotype in the 

original 51 case-cohort from the flucloxacillin GWA study was found when compared 

to POPRES population controls, this association was not repeated when the 99 

additional cases were included. The more in depth study of this SNP, with a greater 

number of cases, suggests that the original observation that there is an association 

between this SNP and flucloxacillin-DILI cases was incorrect due to small numbers of 

both cases and controls.  

The potential for flucloxacillin to interact with CAR in a designed and optimised 

reporter gene assay was investigated in this chapter. A luciferase reporter construct 
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containing the CAR response elements - PBREM and XREM and the CYP2B6 

promoter region was used for transfection studies. Caco-2 cells were chosen as a 

suitable cell line for studies due to them being found to have the highest levels of 

endogenous CAR compared to the other tested cell lines -  LS180 cells and HepG2 

cells, and from preliminary transfection assays that showed a greater activation of the 

luciferase reporter in Caco-2 cells compared to HepG2 cells. Another reason for using 

Caco-2 cells preferentially over HepG2 is due to the relative PXR content of each cell 

type. PXR has been shown to also be able to bind to motifs in the PBREM and XREM 

and activate transcription of CYP2B6 (Goodwin et al., 2001). It is thought that there is 

little active PXR in Caco-2 cells since treatment with the PXR ligand rifampicin is 

unable to induce CYP3A4 or MDR1 gene expression which are typical of PXR 

activation (Pfrunder et al., 2003). This is in contrast to HepG2 cells which have been 

used for study of PXR mechanisms owing to the endogenous levels of the nuclear 

receptor (Andrews, 2009). Cells were also transfected with a human CAR expression 

vector to increase cellular CAR levels. Confirmation that the transfection assay was 

valid was achieved by significant activation of the reporter construct by the human CAR 

ligand, CITCO. CITCO was chosen as a positive control as it is a selective CAR  

activator that doesn’t interact with PXR, thus minimising potential cross-activation of 

the CYP2B6 reporter construct through PXR. However, even though CITCO activation 

of CAR was significant it would have been preferable to seek a positive control that 

produced a much stronger activation of the reporter construct. CITCO has been used in 

previous studies by others as a positive control in reporter gene studies of CAR 

activation  (Maglich et al., 2003). It has also been observed that several variants of CAR 

exist, including a CAR3 variant that is expressed at high levels in the liver along with 

wild-type CAR1 (Faucette et al., 2006). CAR3 has been shown to have low basal 

activity but is extensively activated by CITCO (Auerbach et al., 2005). The assay used 

in the current study, unlike previous groups, is primarily a study of wild-type CAR1 

activation as it involved the co-transfection of a CAR1 expression vector. It would be 

interesting to study CAR activation via the CAR3 variant but due to the unavailability 

of a CAR3 expression vector this was not possible. 

Treatment of transfected cells with various concentrations of flucloxacillin for 24 hours 

failed to see an increase in luciferase activity of the reporter construct. This leads to the 

conclusion that flucloxacillin does not bind and activate wild-type CAR1 to bind to its 

response elements and is unlikely to be a ligand for CAR. However, it would be 



150 

 

interesting to perform additional studies to determine whether flucloxacillin is a ligand 

for other CAR splicing variants including CAR3. The finding that flucloxacillin does 

not interact with CAR suggests that CAR does not influence flucloxacillin disposition in 

the liver and is unlikely to be a factor in  flucloxacillin-DILI. This is supported by 

genotyping analysis of polymorphisms in the CAR gene in cases of flucloxacillin-DILI. 

Genotyping of 8 Tag SNPs found no significant associations between cases and drug-

treated controls or population controls. 

In summary,  

 This chapter confirms previous observations that flucloxacillin and dicloxacillin 

are activators of the nuclear receptor PXR and that dicloxacillin appears to be a 

marginally stronger ligand of the two. Flucloxacillin and dicloxacillin are both 

widely prescribed in different countries but hepatotoxicity is only frequently 

reported due to flucloxacillin treatment. Greater PXR activation by dicloxacillin 

may result in increased clearance by the liver which could be a factor for the 

differences in observed hepatotoxicity. 

 However, a previously reported genetic association in flucloxacillin-DILI that 

results in decreased PXR expression has not been replicated in the current study. 

 In addition to PXR, the interaction of flucloxacillin and CAR was investigated. 

The findings suggest that flucloxacillin does not activate CAR in vitro and no 

genetic associations were found in flucloxacillin-DILI cases for SNPs in 

common CAR haplotypes. 
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Chapter 5. Studies on the Metabolism of Flucloxacillin 
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5.1 Introduction 

 

The formation of reactive metabolites is thought to be a key mechanism in the 

pathogenesis of DILI. It has been proposed that bioactivation of drugs leads to the 

production of toxic compounds that can cause direct cellular damage or lead to adduct 

formation with cellular proteins. Peptides derived from these adducted proteins may 

then be presented to T cells by HLA proteins on the surface of antigen presenting cells. 

The chemically modified adducted peptides are recognised as foreign peptides 

provoking an inappropriate T cell response. 

There is still some dispute over the pathways for flucloxacillin metabolism. Studies by 

Thijssen in the 1970’s discovered that the isoxazolyl penicillins – oxacillin, cloxacillin, 

dicloxacillin and flucloxacillin, were metabolised in vivo to anti-bacterially active 

5’hydroxymethyl metabolites (Thijssen and Mattie, 1976; Thijssen, 1979; Thijssen, 

1980). As with penicillins in general, hydrolytic cleavage of the β-lactam ring also 

occurs with the isoxazolyl penicillins producing biologically inactive penicilloic acid 

products. Murai and colleagues reported that HPLC analysis of urine after flucloxacillin 

administration in fasted individuals showed that 64.8 % of the dose was excreted 

unchanged as flucloxacillin while 10.5% was metabolised to 5’-hydroxymethyl 

flucloxacillin, 3.8% was excreted as the penicilloic acid of flucloxacillin and 1.0% as 

the penicilloic acid of 5’-hydroxymethyl flucloxacillin (Murai et al., 1983b). Thijssen 

reported that peak serum levels of 5’-hydroxymethyl flucloxacillin after flucloxacillin 

administration were 4% of the parent drug suggesting that production of the 

5’hydroxymethyl metabolite is low (Thijssen, 1980). Comparison of 5’-hydroxymethyl 

metabolite formation showed that flucloxacillin yielded the least amount of the 

metabolite at 14.4%, compared to oxacillin (50.6%), cloxacillin (17.8%) and 

dicloxacillin (44.8%) (Murai et al., 1983a).  

The early studies into flucloxacillin and other isoxazolyl penicillin metabolism 

suggested that 5’-hydroxymethyl metabolite formation likely occurred in the liver, via 

hydroxylation of the 5-methyl group on the isoxazole ring, as a result of 

monooxygenase enzyme metabolism. It has also been suggested that degradation to 

penicilloic acid derivatives may also occur in the liver but may be spontaneous as 

degradation can occur slowly in aqueous solutions and, interestingly, rapidly in the 

presence of β-lactamase (Cole and Hewitt, 1973).  
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More recent studies into the specific pathways of flucloxacillin metabolism were 

performed in 2001 when Lakehal and colleagues performed studies using various in 

vitro assays including induced rat liver microsomes, human liver microsomes (HLM) 

and yeast-microsomes expressing various recombinant human cytochrome P450 

isoforms (Lakehal et al., 2001). Lakehal reported that conditioned medium from human 

hepatocytes treated with flucloxacillin for 24 hours was toxic to approximately 58% 

biliary epithelial cell (BEC) preparations, whereas flucloxacillin itself was found not to 

be toxic to any cell preparations. This suggests the formation of a toxic compound with 

flucloxacillin incubation with hepatocytes. Supernatant from flucloxacillin incubated 

with HLMs was found to be toxic to 50% of all BEC preparations suggesting that the 

toxic compound is derived from flucloxacillin metabolism. Supernatant from 

flucloxacillin incubated with recombinant CYP enzymes showed toxicity when the drug 

was incubated with CYP3A4 microsomes but not from incubations with CYP1A2, 

CYP2C9 or CYP3A5 microsomes.  

Further studies with rat liver microsomes that were induced with CYP1A, 2B and 3A, 

followed by analysis by HPLC showed a time and NADPH dependent formation of a 

metabolite that was greatest in rats treated with dexamethasone to induce CYP3A. This 

metabolite was identified by using mass spectrometry and 
1
H nuclear magnetic 

resonance (NMR), as 5’hydroxymethyl flucloxacillin. Subsequently, these researchers 

purified this metabolite from CYP3A-induced rat liver microsomes and used it as a 

standard in further experiments which showed it could be formed in HLMs and 

recombinant-CYP3A4 microsomes.  

The results of the studies by Lakehal and colleagues seemed to strongly suggest that 5’-

hydroxymethyl flucloxacillin could be generated in vitro and that its production was 

mediated by CYP3A4. The observations that flucloxacillin can activate PXR and induce 

expression of CYP3A4, as was confirmed in Chapter 4, suggest a role for CYP3A4 in 

its metabolism. However, this has been disputed by studies performed by Huwyler and 

colleagues who investigated possible drug-drug interactions between flucloxacillin and 

the immunosuppressant drug, cyclosporine (Huwyler et al., 2006). It had been observed 

that co-treatment with flucloxacillin seemed to lead to decreased plasma levels of 

cyclosporine causing kidney rejection in transplant patients. They concluded that 

cyclosporine disposition was significantly affected by CYP3A4 and MDR1 induction 

by flucloxacillin through PXR-mediated pathways. However, in vitro assays performed 
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with recombinant-CYP isoforms showed that flucloxacillin was not a substrate for 

cytochrome P450s 3A4, 1A2, 2C9, 2C19 or 2D6.  

In this chapter, flucloxacillin metabolism will be further studied using HLMs, 

recombinant-CYP isoforms and a cell-based assay using a specialised differentiated rat 

cell line, B13/H. The AR42J-B-13 cell line (simply termed B-13 cell line), is a rat 

pancreatic acinar adenocarcinoma cell line that was observed to be able to differentiate 

into a hepatocyte phenotype with glucocorticoid treatment (Shen et al., 

2000).Glucocorticoids are potent hormones often used in stem cell differentiation 

protocols and it has been shown that treatment of B13 cells with the glucocorticoid, 

dexamethasone, led to the differentiation of the cells to express liver based proteins 

(Burke et al., 2006; Wallace et al., 2010). Termed B13/H cells, differentiated B13s have 

also been shown to express metabolically active cytochrome P450 enzymes at levels 

comparable to freshly isolated hepatocytes (Marek et al., 2003). To perform in vitro 

studies of liver functions such as drug metabolism and biotransformation there are a 

variety of available liver preparations that can be utilised. The closest to achieving in 

vivo functionality of the liver in vitro is through the use of liver preparations either in 

the form of whole liver perfusion, liver slices of isolation of primary hepatocytes. 

Whole liver perfusions and liver slices retain specific liver structures and cell types but 

are difficult to obtain, labour intensive and limited to short term studies. Primary 

hepatocytes can be isolated from liver and are available commercially and are regularly 

used to study liver functions. Primary hepatocytes express drug metabolising enzymes 

comparable to the hepatocyte phenotype in vivo but major disadvantages are that the 

cells are difficult to proliferate in culture meaning  and also rapidly undergo de-

differentiation losing expression of drug metabolising enzymes after a number of days 

(Wilkening et al., 2003; Wallace et al., 2010). Hepatoma cancer cell lines such as 

HepG2 are also widely used to study certain liver functions. Unlike, primary 

hepatocytes these cells are easily expanded in culture and are cost effective in 

comparison. However, they have been shown to express low levels of active drug 

metabolising enzymes which make them unsuitable for the studies described in this 

chapter. Although, they essentially do not express drug metabolising enzymes they are 

still useful for other investigations, for example, the studies described in chapter 4, 

investigating the regulatory mechanisms of drug metabolism via the nuclear receptors 

CAR and PXR. 



155 

 

The characterisation of the trans-differentiation phenomena in the B-13 cell line 

showing the cells to express genes and proteins displaying a hepatocellular phenotype 

including drug metabolising enzymes has allowed them to be used as cost effective, 

expandable progenitor for functional hepatocytes (Wallace et al., 2010). It is for these 

reasons that B13/H cells will be used in these studies instead of hepatoma cell lines. 
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5.2 Methods   

 

5.2.1 Materials 

 

5-hydroxymethyl flucloxacillin was purchased from Sarchem Laboratories (New Jersey, 

USA). Bactosomes prepared from E. coli co-expressing human NADPH-cytochrome 

P450 reductase and individual human cytochrome P450s (CYP3A4, CYP2C8 and 

CYP2C9) were purchased from CYPEX (Dundee, UK). Human liver microsomes, 

pooled from 50 donors, were purchased from GIBCO (Invitrogen).   

 

5.2.2 Flucloxacillin incubations with Human Liver Microsomes and recombinant 

CYP-expressing Bactosomes 

 

Human liver microsomes or CYP-expressing bactosomes were incubated in 1.5 ml 

microcentrifuge tubes in a reaction volume of 100 µl with 500 µM or 1mM 

flucloxacillin in 0.1 M sodium phosphate buffer (pH 7.4) to give final P450 

concentrations of 0.5 nmol/ml and 50 pmol/ml respectively. 5 µl NADPH-regeneration 

system solution A (BD Biosciences) and 1 µl NADPH-regeneration system solution B 

(BD Biosciences) was added to initiate the reaction. Tubes were incubated at 37 °C in a 

water bath with agitation for 60 minutes. 50 µl sodium phosphate:acetonitrile mix (2:1 

ratio) was added to the tubes to terminate the reactions. Reaction tubes were centrifuged 

at 19000 g for 5 min to pellet protein and the supernatant removed to fresh tubes which 

were stored at - 20°C until HPLC analysis. 

 

5.2.3 Flucloxacillin incubation with B13/H cells  

 

5.2.3.1 B13 cell differentiation to B13/H cells and induction of Cyp3a1 

 

B13 cells were routinely cultured in DMEM supplemented with 10 % heat-inactivated 

FBS, 1 % non-essential amino acids (0.1 mM), 2 mM L-glutamine, 100U/ml penicillin 

and 100 µg/ml streptomycin in 75 cm
2
 flasks and incubated as described in section 

2.7.1. When B13 cells reached approximately 70% confluence, cells were seeded into 6-
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well plates at a density of 2 x 10
5
 cells per well then treated with 10 nM dexamethasone 

for 14 days to induce differentiation to B13/H cells. B13/H cells were further treated 

with 10 µM dexamethasone for another 3 days, to induce Cyp3a1. 

 

5.2.3.2 Flucloxacillin treatment of cells and extraction of metabolites 

 

Cyp3a1-induced B13/H cells were treated with 1 mM flucloxacillin for 2 hours or 24 

hours. After treatment, culture medium was removed from cells and subjected to solid 

phase extraction using Sep-Pak Light C18 columns (Waters, UK) as described by 

Lakehal et al (Lakehal et al., 2001). Briefly, samples were applied to the columns and 2 

ml water was added to the columns as a wash step. Products were eluted in 3 ml 

acetonitrile and evaporated to dryness under nitrogen. Samples were resuspended in 200 

µl 0.1 M sodium phosphate (pH 7.4):acetonitrile mix (2:1) and centrifuged at 12000 g 

for 5 minutes to pellet any remaining precipitate. Supernatants were transferred to fresh 

1.5. ml microfuge tubes and stored at – 20°C until HPLC analysis.  

 

5.2.4 HPLC analysis 

 

Supernatants from HLM, recombinant-CYP bactosomes and cell extracts were analysed 

by reverse-phase HLPC. Separations were carried out using a C8 MOS-2 Hypersil 

column (Thermo Scientific) on a Shimadzu HPLC system. The column was equilibrated 

at a flow rate of 1 ml min
-1

 in solution A (0.1 M ammonium acetate, pH 4.6). Samples 

were applied in solution A and eluted at a linear gradient of 0 – 70 % solution B 

(acetonitrile/methanol/water, 70:20:10 v/v/v) in solution A over 30 minutes. Analytes 

were detected by an online UV spectrophotometer at 260 nm. The limit of detection of 

5’hydroxymethyl flucloxacillin was determined to be 1 µM. Peaks were analysed on 

LCanalysis software v1.21 (LCsolution, Shimadzu).  
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5.3 Results 

 

5.3.1 HPLC detection of flucloxacillin and 5’-hydroxymethyl flucloxacillin 

 

For studies into the metabolism of flucloxacillin, HPLC conditions previously described 

by Lakehal et al were adopted (Lakehal et al., 2001). Figure 5.1 displays two overlaid 

chromatograms showing the UV detection at 260 nm of 1) flucloxacillin and 2) 

5’hydroxymethyl flucloxacillin, both in 0.1 M sodium phosphate buffer (pH 7.4). The 

HPLC method gives a good resolution of the two compounds with the retention time of 

flucloxacillin and 5’hydroxymethyl flucloxacillin being approximately 18.5 min and 16 

min respectively. The HPLC method was subsequently used for the in vitro studies into 

the metabolism of flucloxacillin. 

 

 

Figure 5.1 – HPLC detection of flucloxacillin and 5’-hydroxymethyl flucloxacillin 

HPLC chromatogram showing flucloxacillin (1) and 5’hydroxymethyl flucloxacillin (2) 

in 0.1 M sodium phosphate buffer (pH 7.4). Flucloxacillin and the 5’-hydroxymethyl 

flucloxacillin standard have distinctly different retention times of approximately 18.5 

minutes and 16 minutes respectively, showing that the two compounds can easily be 

identified by this HPLC method.  
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5.3.2 Incubation of flucloxacillin with Human Liver Microsomes 

 

Flucloxacillin was incubated with HLM for 60 minutes or 24 hours. Figure 5.2 shows 

chromatograms for the incubation of flucloxacillin and HLM at time points 0 minutes 

and 60 minutes. Overlaying the chromatograms shows that there was no obvious 

decrease in flucloxacillin concentration or formation of 5’hydroxymethyl flucloxacillin 

or penicilloic acid derivatives over this time period. 

Figure 5.3 shows a chromatogram for the incubation of flucloxacillin with HLM for 24 

hours. Again there is no obvious formation of either 5’hydroxymethyl flucloxacillin or 

penicilloic acid compounds.  

These results indicate that flucloxacillin does  not appear to be metabolised by HLM to 

5’hydroxymethyl flucloxacillin. In contrast to CYP-expressing bactosomes (see below), 

there was also no indication that flucloxacillin was degraded to penicilloic acid. 
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Figure 5.2 – Chromatograms showing the 60 minute incubation of flucloxacillin 

and Human Liver Microsomes.  

Human Liver Microsomes were incubated with 500 µM flucloxacillin (1) in the 

presence of NADPH regenerating system for 60 minutes. Chromatograms for 0 and 60 

minute time points are displayed. Overlaying of the time points show no formation of 

flucloxacillin metabolites.  
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Figure 5.3 – Chromatogram showing the 24 hour incubation of flucloxacillin and 

Human Liver Microsomes.  

Human Liver Microsomes were incubated with 1mM flucloxacillin (1) in the presence of 

NADPH regenerating system for 24 hours. A chromatogram showing the 24 hour 

incubation of HLM and flucloxacillin overlaid with a chromatogram (pink trace) for the 

5’hydroxymethyl flucloxacillin control(4) shows that there was no formation of the 

5’hydroxymethyl metabolite or of the penicilloic acid stereoisomers.  
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5.3.3 Incubation of flucloxacillin with recombinant CYP-expressing bactosomes 

 

Flucloxacillin was incubated for 60 min with recombinant bactosomes each individually 

expressing the human cytochrome P450s CYP3A4, CYP2C8 and CYP2C9. It has been 

previously reported that CYP3A4 is responsible for the metabolism of flucloxacillin to 

its 5’hydroxymethyl metabolite. Figure 5.4 shows chromatograms for the incubation of 

flucloxacillin with CYP3A4-expressing bactosomes. Figure 5.4A shows a 

chromatogram for CYP3A4-bactosomes alone. Figure 5.4B and Figure 5.4C show 

chromatograms for CYP3A4 bactosomes after the incubation with flucloxacillin for 60 

minutes in the absence and presence of NADPH, respectively. In incubations with or 

without NADPH, there is the apparent production of two new compounds producing 

peaks at approximately 15.0 minutes (compound 2) and 16.5 minutes (compound 3). 

Figure 5.4D shows Figure 5.4C overlaid with a chromatogram of 5’hydroxymethyl 

flucloxacillin and flucloxacillin in 0.1 M sodium phosphate buffer (pH 7.4) and shows 

that the two products do not correspond with the retention time of the 5’hydroxymethyl 

flucloxacillin control. 

Figure 5.5 shows chromatograms for flucloxacillin incubations with CYP2C8 and 

CYP2C9 expressing bactosomes. As with CYP3A4-bactosomes, there is production of 

two peaks after 60 minute incubations, showing that the production of these peaks isn’t 

restricted to CYP3A4-expressing bactosomes. Similarly, these peaks were also 

produced in the absence of NADPH (data not shown). 

Mass spectrometry was performed by Dr. Jeremy Palmer to aim to identify these two 

products. Results show that these products were the 5R and 5S stereoisomers of the 

ring-opened penicilloic acid derivatives of flucloxacillin. These products have 

previously been detected in in vivo studies of flucloxacillin metabolism (Everett et al., 

1989).  
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Figure 5.4 – Chromatograms showing the incubation of flucloxacillin and 

CYP3A4-expressing bactosomes 

CYP3A4 bactosomes (A) were incubated with 500 µM flucloxacillin for 60 minutes in 

the absence (B) or presence (C) of NADPH-regenerating system. Chromatographs show 

flucloxacillin (1), and the formation of two unidentified products (2 + 3). Comparison 

with a chromatogram (pink trace) of 5’hydroxymethyl flucloxacillin control (4) show 

that these products are not the 5’hydroxymethyl metabolite. 
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Figure 5.5 - Chromatograms showing the incubations of flucloxacillin and 

CYP2C9 and CYP2C8-expressing bactosomes  

CYP2C9 and CYP2C8 bactosomes were incubated with 500 µM flucloxacillin for 60 

minutes in the presence of NADPH-regenerating system. Chromatographs show 

flucloxacillin (1), and the formation of two unidentified products (2 + 3). 
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5.3.4 Incubation of flucloxacillin with cyp3a1-induced B13/H cells 

 

5.3.4.1 Differentiation of B13 to B13/H cells and induction of cyp3a1 

 

B13 cells were routinely cultured until at approximately 70% confluency then induced 

to differentiate to a B13/H phenotype with treatment of 10 nM dexamethasone for 14 

days. Figure 5.6 shows a photomicrograph image of the change in observed phenotype. 

Cells were observed to increase in size and cell proliferation decreased. B13/H cells 

were treated with 10 µM dexamethasone for 3 days to induce cyp3a enzymes. Figure 

5.7 shows relative cyp3a1 mRNA expression in B13/H cells compared to cyp3a1-

B13/H as measured by qPCR. Cyp3a1 expression was undetectable in undifferentiated 

B13 cells. Treatment of 10 µM dexamethasone led to a highly significant 279.6 ± 11.3 

fold induction of cyp3a1 mRNA expression (p < 0.0001). 

 

 

 

 

 

 

Figure 5.6 – Differentiation of B13 cells to B13/H cells with dexamethasone 

treatment 

10 x magnification photomicrographs of B13 cells and differentiated B13/H cells after 

treatment with 10 nM dexamethasone treatment for 14 days  

 

B13 B13 + Dex 



166 

 

 

 

Figure 5.7 – Relative mRNA expression of cyp3a1 in B13/H cells and cyp3a1-

induced B13/H cells by qPCR  

Expression of cyp3a1 was determined in B13/H cells and in B13/H cells induced for 

cyp3a1 following treatment with 10 µM dexamethasone. Expression of cyp3a1 in 

uninduced B13/H cells is normalised to 1 for comparison. Expression of cyp3a1 was not 

detected in undifferentiated B13 cells. Data represents mean ± S.E.M, n = 3, *** p < 

0.0001, students t-tests were performed to compare differences between groups.  
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5.3.4.2 Flucloxacillin incubation with cyp3a1-induced B13/H cells 

 

Cyp3a1-induced B13/H cells were treated with 1 mM flucloxacillin for 2 hours or 24 

hours. Cell media was extracted by solid phase extraction and applied to HPLC 

analysis. Figure 5.8 shows chromatograms for cell extracts at 0, 2 and 24 hours and a 

chromatogram for flucloxacillin treated undifferentiated B13 cells for comparison.   

As with preceding assays, there was no obvious evidence of 5’hydroxymethyl 

flucloxacillin production over a period of 24 hours. It appears there is rapid formation of 

products that are likely to be flucloxacillin penicilloic acid stereoisomers that remain 

relatively stable over 24 hours. Flucloxacillin appears to steadily decrease over a 24 

hour period. 
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Figure 5.8 – Chromatograms showing the 0, 2 and 24 hour incubation of 

flucloxacillin and Cyp3a1-induced B13/H cells and a chromatogram for 

undifferentiated B13 cells after 24 hour incubation of flucloxacillin 

Cyp3a1-induced B13/H cells were incubated with 1mM flucloxacillin (1) in the 

presence of NADPH regenerating system for 24 hours. Chromatograms for 0, 2 and 24 

hour time points are displayed overlaid with chromatograms (pink trace) for the 

5’hydroxymethyl flucloxacillin control. A chromatogram showing a 24 hour incubation 

of 1 mM flucloxacillinin undifferentiated B13 cells is also displayed. No evidence was 

5’-hydroxymethyl flucloxacillin was apparent. 
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5.4 Discussion 

 

After dosing, the majority of flucloxacillin is excreted in urine in unchanged form. 

Approximately 10% of the drug is metabolised in vivo by hydroxylation to 

5’hydroxymethyl flucloxacillin and  undergoes hydrolysis to penicilloic acid derivatives 

(Thijssen, 1980). Studies by Lakehal et al reported that 5’hydroxymethyl flucloxacillin 

was produced by human hepatocytes, CYP-induced rat liver microsomes and HLM and 

stated that this was mediated by CYP3A4 (Lakehal et al., 2001). However, this has 

since been disputed by Huwyler and colleagues who did not find flucloxacillin to be a 

substrate for cytochrome P450 enzymes (Huwyler et al., 2006). The aims of this chapter 

were to determine whether flucloxacillin was metabolised to 5’hydroxymethyl 

flucloxacillin using in vitro assays similar to those used in the previous studies 

Flucloxacillin was incubated at various conditions with HLM, bactosomes prepared 

from E. coli expressing CYP3A4, CYP2C8 and CYP2C9, and cyp3a1-induced rat 

B13/H cells. There was no indication of 5’hydroxymethyl flucloxacillin production by 

any of these assays using HPLC analysis by the method previously described by 

Lakehal et al (Lakehal et al., 2001). An advantage of the present studies over those 

performed by Lakehal et al was the use of a commercially developed 5’hydroxymethyl 

flucloxacillin standard. HPLC analysis of this standard showed a clear retention time 

that was sufficiently different to that of the parent drug, flucloxacillin. Unlike the 

studies performed in this chapter, Lakehal and colleagues reported to produce 

5’hydroxymethyl flucloxacillin in large quantities through dexamethasone treated 

cyp3a-induced rat liver microsomes which was purified by semi-preparative HPLC. 

This compound was used as 5’hydroxymethyl flucloxacillin in subsequent experiments 

that showed its formation after flucloxacillin incubations with HLM and human 

hepatocytes. In the present study, data comparison of the 5’hydroxymethyl 

flucloxacillin standard to HPLC traces from flucloxacillin incubations with HLM for 60 

minutes showed no indication of 5’hydroxymethyl flucloxacillin production as was 

claimed by Lakehal and colleagues. Incubations were also performed for 24 hours with 

no apparent flucloxacillin metabolism. 

Flucloxacillin metabolism was also studied in recombinant CYP-expressing 

bactosomes. Bactosomes are bacterial membranes prepared from E.coli expressing 

individual CYP isoforms in large quantities. Since CYP3A4 has been reported as 
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mediating the production of 5’hydroxymethyl flucloxacillin, a CYP3A4 expressing 

bactosome was studied along with CYP2C8 and CYP2C9 as controls. No indication of 

5’hydroxymethyl flucloxacillin formation was observed in CYP3A4 bactosomes or 

CYP2C8 and CYP2C9 bactosomes with comparison to the 5’hydroxymethyl 

flucloxacillin standard. However, two new products were produced that were found not 

to be dependent on NADPH, and were found in all bactosome preparations. Mass 

spectrometry performed on these compounds determined that they were 5R and 5S 

diastereoisomers of flucloxacillin penicilloic acid. These stereoisomers have previously 

been observed in the urine of rats after high dose administration of flucloxacillin by 

19
Fluorine NMR techniques (Everett et al., 1989) (Figure 5.9). 

 

 

 

Figure 5.9 – Structures of flucloxacillin and the penicilloic acid diastereoisomers 

(5R)-flucloxacillin penicilloic acid and (5S)-flucloxacillin penicilloic acid 

The two products detected by flucloxacillin incubations with cytochrome-P450 

expressing bactosomes were identified by mass spectrometry as 5R and 5S 

diastereoisomers of penicilloic acid.  
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Interestingly, Lakehal and colleagues reported additional compounds in the medium of 

hepatocytes after flucloxacillin treatment that they state could possibly be penicilloic 

acid derivatives. They also state that they cannot rule out the possibility that these 

compounds contribute to the toxicity observed when media from flucloxacillin treated 

hepatocytes was incubated with BEC preparations. An interesting observation also from 

the Lakehal paper is that they briefly mention that the compound identified as 

5’hydroxymethyl flucloxacillin was predominantly produced in dexamethasone cyp3a-

induced rat liver microsomes, but was also produced from liver microsomes from 

methylcholanthrene (cyp1a inducer) and phenobarbital (cyp2b/3a inducer) treated rats. 

This could of course result from cyp3a activity in rat liver microsomes but may also 

suggest that production of 5’hydroxymethyl flucloxacillin was not cyp3a-specific.  

Flucloxacillin metabolism was also studied in cells to examine the mechanism in an in 

vitro model of a cellular system. The rat pancreatic cell line, B13, that upon simple 

glucocorticoid treatment differentiates to display a hepatic phenotype, has allowed these 

cells to be used as a source of hepatocytes acting as a progenitor cell line for expandable 

functional hepatocytes (Fairhall et al., 2013). B13/H cells have been shown to express 

functional cytochrome P450 enzymes with activity comparable to hepatocytes (Marek et 

al., 2003). Key advantages for using B13/H cells over hepatocytes, however, include 

significant cost-effectiveness, and the characteristic that they remain differentiated and 

maintain cytochrome P450 activity whereas hepatocytes lost substantial hepatic 

functions within a few days of culture (Wallace et al., 2010). Like hepatocyte 

preparations, B13/H cells also respond to treatment with cytochrome P450 inducers. In 

this study, B13/H cells were induced for cyp3a enzymes by treatment with 

dexamethasone. Incubation of flucloxacillin with B13/H cells show no obvious 

formation of 5’hydroxymethyl flucloxacillin. Detection of flucloxacillin penicilloic 

compounds occurred rapidly suggesting that the hydrolysis of flucloxacillin is a rapid 

procedure and levels of the penicilloic acid stereoisomers remained relatively steady 

over 24 hours.  

The findings presented in this chapter have indicated the detection of flucloxacillin 

penicilloic acid in microsomal and cellular assays and not 5’hydroxymethyl 

flucloxacillin. 5’hydroxymethyl flucloxacillin has previously been suggested as the 

product of oxidative metabolism and as a potential reactive metabolite that has a role in 

flucloxacillin-DILI. That no evidence was found of its production in vitro in these 

assays suggests that it is either not a product of oxidative metabolism or that it is 
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produced in small quantities undetectable by the HPLC analysis performed. 

Diastereoisomers of flucloxacillin penicilloic acid were detected in the HPLC analysis. 

These products did not appear to be a result of oxidative metabolism and have 

previously been suggested to form spontaneously. The opening of the penicillin β-

lactam ring creates a penicilloyl moiety that can bind to endogenous proteins forming 

neoantigens. Such reactions have been suggested as the major determinant of penicillin 

allergy (Baldo, 1999). Flucloxacillin has been shown to bind to human serum albumin 

in vitro and in vivo by ring opening and binding to numerous lysine residues (Jenkins et 

al., 2009). Flucloxacillin adducts in livers of treated rats have also been detected (Carey 

and van Pelt, 2005). Findings from this study suggest that penicilloic acid derivatives of 

flucloxacillin are formed rapidly in rat cells and are relatively stable over time. This was 

not shown directly for human liver microsomes but it seems likely that the findings for 

B13 cells will also extrapolate to humans. It seems reasonable to hypothesise that the 

presence of stable flucloxacillin penicilloic acid may lead to the formation of haptens 

with cellular proteins in the liver that could contribute to immune activation via HLA 

presentation and liver toxicity in susceptible individuals. The possibility that 

5'hydroxymethyl flucloxacillin is produced at very low levels cannot be discounted and 

it remains possible that its production could be a factor in DILI. However, the current 

studies have been unable to confirm that it is a major metabolite as suggested by 

Lakehal et al. (2001) and are generally consistent with the more recent report from 

Huwyler et al. (2006). To explore further the possibility of very low levels of 

5'hydroxymethylflucloxacillin metabolite production, more sensitive detection using 

LC-MS would be required.  

In summary, 

 A HPLC method was employed that allowed the identification of both 

flucloxacillin, 5’-hydroxymethyl flucloxacillin and flucloxacillin penicilloic acid 

stereoisomers 

 5’-hydroxymethyl flucloxacillin was not found to be a product of flucloxacillin 

metabolism in human liver microsomes, CYP3A4 expressing bactosomes or in 

cyp3a induced B13/H cells 

 Formation of flucloxacillin penicilloic acid stereoisomers was observed in 

cytochrome P450 bactosome preparations, that was independent of NADPH 

presence indicating that it likely not cytochrome P450 mediated 
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 A more sensitive LC/MS method of detection could help detect any very low 

levels of flucloxacillin metabolites produced.  
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Chapter 6. Ex vivo Stimulation of Peripheral Mononuclear Blood 

Cells by Flucloxacillin 
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6.1 Introduction 

 

The covalent modification of cellular proteins followed by presentation to circulating T 

cells by HLA molecules on the cell surface is proposed as a likely mechanism of 

immune-mediated DILI reactions. Since the discovery of the strong association of 

HLA-B*57:01 genotype and increased risk to flucloxacillin-DILI, there have been a 

number of studies that have provided evidence that T-cell mediated mechanisms are 

involved in the pathogenesis of this disease.  

Before the association between HLA-B*57:01 and flucloxacillin-DILI had been 

discovered by GWAS, an association with HLA-B*57:01 genotype had already been 

established as a risk factor for a hypersensitivity reaction to the anti-retroviral drug, 

abacavir (Hetherington et al., 2002; Mallal et al., 2002). The association of HLA-

B*57:01 with abacavir hypersensitivity syndrome  is one of the strongest HLA-drug 

associations currently understood, with an estimated 2 – 8 % of those exposed to 

abacavir developing an adverse reaction (Cutrell et al., 2004). This is in contrast to 

flucloxacillin-DILI where even with B*57:01 possession, disease manifestation remains 

rare, with approximately between 1 in 500 and 1 in 1000 individuals with HLA-

B*57:01 developing disease when exposed to flucloxacillin (Daly et al., 2009). The 

reasons why these two structurally distinct compounds should both interact with HLA-

B*57:01, to initiate adverse immune responses, as well as why abacavir produces a 

much more frequent adverse reaction remain poorly understood.  

Some insights into the mechanism of abacavir hypersensitivity  were provided by 

Chessman et al who showed that abacavir could stimulate peripheral blood mononuclear 

cells (PBMCs) from abacavir hypersensitivity patients in vitro to secrete inflammatory 

cytokines including interferon-gamma (IFN-γ). T-cell stimulation was abacavir-specific 

and only occurred in individuals possessing HLA-B*57:01. This was possible in 

abacavir naïve HLA-B*57:01 positive volunteers, in addition to abacavir 

hypersensitivity HLA-B*57:01 positive patients (Chessman et al., 2008). Notable also 

was the observation that cytokine secretion was mediated by T-cells expressing the CD8 

co-receptor, not CD4+ T-cells. CD8+ T-cells recognise antigen peptides presented to 

HLA class I molecules leading to their activation and proliferation.  

CD8+ T-cells are primarily  known for their direct cytotoxic activity through the release 

of cytolytic molecules like perforin, Fas ligand and granzyme B (Uetrecht and Naisbitt, 
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2013). However, some CD8+ T-cell subsets can also mediate a cytokine secretion 

pattern similar to that of CD4+ T-helper 1 (Th1) cells such as secretion of IFN-γ 

(Mosmann et al., 1997). IFN-γ co-ordinates a multitude of cellular immune responses 

via transcriptional regulation of immune genes and is also produced by Natural Killer 

(NK) cells, B-cells and dendritic cells (Billiau and Matthys, 2009). Some of IFN-γ’s 

effects include the recruitment and activation of immune cells, stimulation of Th1-like 

effector mechanisms and the secretion of inflammatory cytokines. IFN-γ also affects the 

HLA class I antigen presentation pathway, up-regulating cell surface expression of HLA 

molecules and altering the manner of peptide binding further increasing T-cell 

recognition of antigens (Schroder et al., 2004).  

Similarly to abacavir, recent studies have been reported on PBMCs from flucloxacillin-

DILI patients that show evidence for a T-cell mediated reaction. Lymphocyte 

transformation tests (LTT) can be beneficial for diagnosing whether a patient has 

developed a T-cell response to a specific drug although its value as a reliable tool has 

been questioned (Pichler and Tilch, 2004). LTTs measure T-cell proliferation to drug 

treatment in vitro as a means of determining whether an individual is ‘sensitised’ to a 

particular drug. LTTs have been performed on PBMCs from flucloxacillin-DILI 

patients with mixed results (Maria and Victorino, 1997; Monshi et al., 2013). In the 

study by Maria and Victorino, PBMCs from a flucloxacillin-DILI patient, taken 3 

months after disease onset, were found to be proliferate in response to flucloxacillin 

stimulation, an observation that was repeated a further 3 months from the first study 

(Maria and Victorino, 1997). More recently, Monshi et al were unable to stimulate 

PBMCs from flucloxacillin-DILI patients to proliferate by LTT (Monshi et al., 2013). 

However, they were able to detect PBMC responses by measuring IFN-γ secretion by 

ELISpot assay in flucloxacillin-DILI patients but not in flucloxacillin tolerant or naïve 

HLA-B*57:01 positive donors. Further characterisation of PBMC responses by 

generation of flucloxacillin-responsive T-cell clones showed that they were 

predominantly CD8+ in nature, similar to abacavir-specific T-cell clones. In contrast, 

Wuillemin et al generated CD8+ flucloxacillin-specific T-cells from both HLA-B*57:01 

positive and negative healthy donors, that were IFN-γ secreting and cytotoxic, after 

repeated rounds of stimulation (Wuillemin et al., 2013) (Figure 6.1) .  
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Figure 6.1 – An overview of studies performed into flucloxacillin stimulation of 

peripheral-blood mononuclear cells (PBMCs) and generation of flucloxacillin-

specific T-cell Clones (TCCs)  

In studies performed by Monshi et al, PBMCs were directly stimulated with 

flucloxacillin in 5/6 flucloxacillin-DILI patients but not in PBMCs from healthy donors. 

Both Monshi and Wuillemin generated flucloxacillin-specific TCCs from PBMC 

stimulation by flucloxacillin, co-cultured with autologous antigen presenting cells 

(APCs) and IL-2. Further stimulation of these TCCs by both groups resulted in T-cell 

responses that were predominantly but not exclusively CD8+ in nature.  
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In this present chapter, PBMCs were extracted from the blood of flucloxacillin-DILI 

patients and healthy HLA-B*57:01 positive and negative donors to investigate whether 

PBMCs can be stimulated by flucloxacillin to up-regulate IFN-γ gene expression. 

Interleukin-8 (IL-8) expression will also be investigated in flucloxacillin treated PBMCs  

as a candidate for studying chemokine expression. IL-8 was chosen based on 

preliminary findings by Matthew Pletcher and colleagues (Pletcher M, personal 

communication to A. Daly and (Pletcher et al., 2011). These studies involved 

stimulating donor PBMCs that were positive or negative for various HLA alleles with 

their corresponding reactive drug (Pletcher et al., 2011). The drug-associations studied 

included HLA-B*57:01 with abacavir and flucloxacillin and HLA-B*15:02 with 

carbamazepine. The group studied expression of 27 genes coding for cytokines and 

chemokines, including IL-8, by stimulation with the particular drug of PBMCs from 

donors expressing the reactive HLA haplotype. Some changes in gene expression 

including in IL-8 were reported. IL-8 (also known as CXCL8) is a potent neutrophil 

attracting chemokine (Baggiolini, 2001). Drug-specific T-cells can produce IL-8 in 

large amounts to activate neutrophil recruitment and inflammation. In relation to DILI, 

neutrophils are thought to play a role in halothane-induced liver injury in a mouse 

model (You et al., 2006). With regard to flucloxacillin-specific T-cells, it is interesting 

to note that T-cell clones generated from a patient with flucloxacillin-induced interstitial 

nephritis were able to be stimulated to produce considerable amounts of IL-8 when 

treated with flucloxacillin (Spanou et al., 2006). More recently, Catherine Bell at 

Liverpool University, observed that flucloxacillin treatment of PBMCs from HLA-

B*57:01 positive and negative healthy volunteers affected the expression of several 

genes including the upregulation of IL-8 in both HLA-B*57:01 positive and negative 

donors (Bell, 2012). 

The aims of the studies described in the current chapter were to explore flucloxacillin 

stimulation of cytokine expression in PBMCs to test whether previously reactive T-cells 

from HLA-B*57:01 positive flucloxacillin-DILI patients can be stimulated and to 

explore whether PBMCs from HLA-B*57:01 positive flucloxacillin naïve donors can be 

stimulated compared to a HLA-B*57:01 negative flucloxacillin naïve donor (Figure 

6.2). In line with the report from Pletcher and colleagues, a simple mRNA based assay 

of measuring cytokine expression by real-time PCR was used to ascertain its suitability 

as a method of detecting cytokine stimulation by flucloxacillin.    
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Figure 6.2 – Flucloxacillin stimulation of T-cells from HLA-B*57:01 positive 

flucloxacillin-DILI patients and HLA-B*57:01 positive and negative flucloxacillin-

naïve healthy donors 

Overview of the studies performed in this chapter investigating whether flucloxacillin 

can stimulate T-cells from HLA-B*57:01 positive flucloxacillin-DILI patients that are 

hypothesised to be previously sensitised to the drug and whether flucloxacillin can 

stimulate T-cells from flucloxacillin-naïve healthy individuals with either HLA-B*57:01 

positive or negative genotype. 
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6.2 Methods 

 

6.2.1 Flucloxacillin-DILI patients and healthy donors 

 

20 ml blood samples from three confirmed HLA-B*57:01 positive flucloxacillin-DILI 

patients were collected as well as samples from one HLA-B*57:01 negative 

flucloxacillin naïve and two HLA-B*57:01 positive flucloxacillin naïve healthy 

volunteers. Blood was collected in EDTA-coated blood collection tubes and used 

immediately for PBMC isolation.  

 

6.2.2 Isolation of PBMCs from whole blood 

 

PBMCs were freshly isolated from whole blood using Lymphoprep™ solution (Axis 

Shield, Norway). Blood samples were transferred to sterile 50 ml centrifuge tubes and 

diluted 1:1 with sterile PBS (Lonza). In a separate step, 15 ml Lymphoprep™ was 

added to a sterile 50 ml LeucoSep™ centrifuge tube (Greiner Bio-One) and centrifuged 

at 400 g for 5 min at room temperature to partition the Lymphoprep™ beneath the 

porous barrier. The diluted blood was added to the Lymphoprep containing LeucoSep 

tube on top of the barrier and centrifuged at 800 g for 20 min at room temperature after 

which lymphocytes form a distinct band at the sample/medium interface. Lymphocytes 

were removed from the interface using a sterile Pasteur pipette and transferred to a fresh 

sterile 50 ml centrifuge tube. PBS was added to make a total volume of 10 ml and the 

cells pelleted by centrifugation at 600 g for 10 min at room temperature. PBS was 

removed and replaced with 10 ml fresh PBS to wash the pellet before a further 

centrifugation step at 600 g for 5 min. This wash spin step was repeated and  then the 

cell pellet was  resuspended in 10 ml sterile RPMI-1640 medium (Lonza) supplemented 

with 10% foetal calf serum (FCS), 2 mM L-Glutamine, 20 U/ml penicillin and 20 µg/ml 

streptomycin. 

   

6.2.3 Cell Treatments 
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PBMCs (2 x 10
6
/well) were seeded in a volume of 2 ml sterile complete RPMI-1640 

medium in 24 well plates and cultured with flucloxacillin (250 µM or 500 µM), 

abacavir (25 µM) or protein purified derivative of tuberculin (PPD, 2 µg/ml) as a 

positive control. Negative control wells contained PBMCs only. After 24 hours, cell 

suspensions were transferred to sterile 1.5 ml microfuge tubes and the cells pelleted by 

centrifugation. The supernatant was removed and discarded and the cell pellet washed 

with fresh sterile PBS. Total RNA was isolated from cells as described in section 

2.3.2.1. 

 

6.2.4 Measurement of IFNγ and IL-8 gene expression by real-time PCR 

 

cDNA was synthesised from RNA as described in section 2.7.1. TaqMan Gene 

Expression Assays were purchased from Applied Biosystems, UK for interferon-gamma 

(assay I.D. - Hs00989291_m1) and interleukin-8 (assay I.D. - Hs00174103_m1). 

GAPDH (assay I.D. - Hs99999905_m1) was used as a control to normalise for any 

differences in sample RNA added in each reaction. Assays that spanned exon 

boundaries were chosen so to prevent amplification of genomic DNA. Each assay 

contains forward and reverse primers (at final concentrations of 900 nM) and a TaqMan 

probe (250 nM) containing a fluorescent reporter dye 6-FAM (6-carboxyfluorescein) at 

the 5’ end and a MGB (dihydrocyclopyrroloindole tripeptide minor groove binder) non-

fluorescent quencher at the 3’ end of the probe. qPCR reactions were performed as 

outlined in section 2.6.2.2.      

 

6.2.5 Statistical Analysis 

 

Gene expression was calculated by the ΔΔCt method of analysis as described in section 

2.6.2 and is expressed as fold induction relative to the untreated control. Fold induction 

of gene expression is displayed as the mean ± S.D. of triplicate experiments. 

Comparisons of gene expression between individual treatment groups and the untreated 

control group were analysed by performing unpaired two-tailed students t-tests using 

GraphPad Prism 3.0 software.    
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6.3 Results 

 

6.3.1 Interferon-γ and interleukin-8  expression in flucloxacillin-naïve HLA-

B*57:01 negative and HLA-B*57:01 positive healthy donors 

 

PBMC’s from one HLA-B*57:01 negative flucloxacillin-naïve healthy donor and two 

HLA-B*57:01 positive flucloxacillin-naïve healthy donors were stimulated with two 

concentrations of flucloxacillin (250 µM and 500 µM) or abacavir (25 µM) for 24 

hours. M. tuberculosis purified protein derivative (PPD) was used as a positive control. 

The effect of flucloxacillin and abacavir treatment on mRNA expression of interferon- γ 

(IFNγ) and interleukin-8 (IL-8) was evaluated by quantitative real-time PCR (qPCR) 

and is expressed as fold induction relative to an untreated control.  

Significant increases in IFNγ expression were observed in response to treatment with 

the positive control, PPD, in the HLA-B*57:01 negative and HLA-B*57:01 positive 

flucloxacillin-naïve healthy donors. However, IFNγ expression was not observed to be 

affected by flucloxacillin or abacavir treatment in either the HLA-B*57:01 negative 

healthy donor or the two HLA-B*57:01 positive donors (Figure 6.3).  

Figure 6.3 also shows IL-8 expression in the HLA-B*57:01 negative flucloxacillin-

naïve  healthy donor and two HLA-B*57:01 positive flucloxacillin-naïve healthy 

donors. PPD produced a significant stimulation of IL-8 expression in the PBMCs from 

all healthy volunteers. Flucloxacillin treatment did not affect IL-8 expression in HLA-

B*57:01 negative or positive flucloxacillin-naïve healthy donors. Abacavir treatment 

appeared to increase IL-8 expression in HLA-B*57:01 negative and positive donors 

although this was only found to be significant in HLA-B*57:01 positive individual A 

with a 2.64 ± 0.16 (p = 0.0014) fold increase in IL-8 expression. 

In summary, flucloxacillin treatment did not appear to affect the mRNA expression of 

IFNγ or IL-8 in PBMCs from HLA-B*57:01 negative or HLA-B*57:01 positive 

flucloxacillin-naïve healthy donors. Abacavir treatment did not appear to affect IFNγ 

expression in healthy donors irrespective of HLA-B*57:01 status, but did cause an 

increase in IL-8 expression in one of the two HLA-B*57:01 positive healthy donors.    
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Figure 6.3 - Interferon-γ and IL-8 expression in PBMCs from a HLA-B*57:01 

negative flucloxacillin naïve healthy donor and two HLA-B*57:01 positive 

flucloxacillin naïve healthy donors 

Isolated PBMCs were treated for 24 hours with flucloxacillin (250 µM or 500 µM), 

abacavir (25 µM) or PPD ( 2 µg/ml) as a positive control. IFNγ and IL-8 mRNA 

expression was measured by qPCR and is expressed as fold induction relative to 

untreated samples. Results are shown as the means ± S.E.M of triplicate experiments. 

Statistical significance was determined by t-test, * p < 0.05, ** p < 0.01    
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6.3.2 Interferon-γ and interleukin-8  expression in HLA-B*57:01 positive 

flucloxacillin-DILI patients 

 

IFNγ and IL-8 expression was also measured by qPCR in PBMCs from three HLA-

B*57:01 positive flucloxacillin-DILI patients stimulated with two concentrations of 

flucloxacillin (250 µM and 500 µM), abacavir (25 µM) or purified protein derivative 

(PPD) as a positive control for 24 hours. 

Figure 6.4 shows IFNγ expression in response to treatment. Flucloxacillin treatment 

produced a significant increase in IFNγ expression in two of the three of patients at both 

tested concentrations. Flucloxacillin produced a significant increase in IFNγ expression 

in Patient A, at 250 µM with a 3.40 ± 0.39 (p = 0.0039) fold expression increase and at 

500 µM, with a 4.78 ± 0.20 (p < 0.0001) fold expression increase. No effect on IFNγ 

expression was observed by abacavir treatment. In Patient B, flucloxacillin produced a 

similar increase in IFNγ expression at both 250 µM and 500 µM concentrations. At 250 

µM, a 1.84 ± 0.28 (p = 0.0465) fold increase in expression was observed and at 500 

µM, a 1.80 ± 0.18 (p = 0.0157) fold increase was observed. As with Patient A, no effect 

on IFNγ expression was observed with abacavir treatment. In Patient C, there were no 

significant differences in IFNγ expression due to flucloxacillin treatment at either 

concentration in Patient C, and as in Patients A and B, abacavir had no effect on IFNγ 

expression.  

Figure 6.4 also shows IL-8 expression in the treated PBMCs from the three HLA-

B*57:01 positive flucloxacillin-DILI patients. Flucloxacillin produced an increase in 

IL-8 expression in the PBMCs of 1/3 flucloxacillin-DILI patients. In Patient A, neither 

flucloxacillin nor abacavir had any effect on IL-8 expression. In Patient B, flucloxacillin 

treatment at both 250 µM and 500 µM concentrations produced a significant increase in 

IL-8 expression with a larger increase observed at 250 µM with a 5.88 ± 0.94 (p = 

0.0093) fold increase compared to a 4.78 ± 0.58 (p = 0.0063) fold increase observed at 

500 µM. Abacavir treatment appeared to produce an increase in IL-8 expression in 

Patient B, but this was not found to be statistically significant. In Patient C, no effect on 

IL-8 expression was observed with flucloxacillin treatment at either concentration 

although a significant fold increase of 1.55 ± 0.09 (p = 0.0382) was observed with 

abacavir treatment. 



185 

 

In summary, flucloxacillin treatment led to an increase in IFNγ expression in two of the 

three of flucloxacillin-DILI patients (Patients A and B) at the two concentrations tested 

and in one of these patients (Patient B) a significant increase in IL-8 expression was 

also detected. IL-8 expression was not affected by flucloxacillin treatment in the two 

other flucloxacillin-DILI patients (Patients A and C). Abacavir treatment did not cause a 

change in IFNγ expression in any of the flucloxacillin-DILI patients but did appear to 

lead to an increase in IL-8 expression in two of the patients, although this was only 

found to be significant in Patient C.   
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Figure 6.4 – Interferon-γ and Interleukin-8 (IL-8) expression in treated PBMCs 

from three HLA-B*57:01 positive flucloxacillin-DILI patients. 

Isolated PBMCs were treated for 24 hours with flucloxacillin (250 µM or 500 µM), 

abacavir (25 µM) or PPD ( 2 µg/ml) as a positive control. IFNγ and IL-8 mRNA 

expression was measured by qPCR and is expressed as fold induction relative to 

untreated samples. Results are shown as the means ± S.E.M of triplicate experiments. 

Statistical significance was determined by t-test, * p < 0.05, ** p < 0.01 
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6.4 Discussion 

 

Recent studies have provided evidence of a T-cell mediated mechanism in 

flucloxacillin-induced liver injury. Flucloxacillin-specific T-cell clones have been 

expanded from the PBMCs of flucloxacillin-DILI patients (Monshi et al., 2013). These 

were shown to be predominantly CD8+ cytotoxic T-cells capable of secreting IFNγ and 

cytolytic molecules. Flucloxacillin was also shown to activate naïve T-cells from HLA-

B*57:01 positive volunteers after priming and restimulation with flucloxacillin and 

dendritic cells. Wuillemin et al have also described the expansion of flucloxacillin-

specific, predominantly, CD8+ T-cell clones from flucloxacillin-naïve HLA-B*57:01 

positive donors after rounds of restimulation with flucloxacillin and autologous PBMCs, 

but interestingly were also able to generate CD4+ T-cell clones from HLA-B*57:01 

negative individuals (Wuillemin et al., 2013).     

The characterisation of T-cell responses in flucloxacillin-DILI patients and HLA-

B*57:01 positive individuals in the Monshi and Wuillemin studies have been based on 

the expansion of T-cell clones over a period 14 days, followed by rounds of 

restimulation with flucloxacillin and autologous PBMCs as antigen-presenting cells. In 

this chapter, I have described the direct stimulation of PBMCs from flucloxacillin-DILI 

patients with flucloxacillin to express IFNγ mRNA. IFNγ expression was significantly 

up-regulated in 2 out of 3 HLA-B*57:01 positive flucloxacillin-DILI patients with 

flucloxacillin treatment for 24 hours at 250 µM and 500 µM concentrations. PBMCs 

from a HLA-B*57:01 negative flucloxacillin-naïve healthy donor as well as two HLA-

B*57:01 positive flucloxacillin-naïve healthy donors were also treated with 

flucloxacillin but no effect on IFNγ expression was observed. As well as generating 

flucloxacillin-specific T-cell clones from patient PBMCs, Monshi et al also directly 

stimulated PBMCs from 5/6 flucloxacillin-DILI patients, including one that was HLA-

B*57:01 negative, to secrete IFNγ (Monshi et al., 2013). Stimulation was performed 

with flucloxacillin concentrations of 500 µM, 1 mM and 2 mM for 48 hours and IFNγ 

measured by ELISpot assay. No stimulation of PBMCs was observed in flucloxacillin-

tolerant individuals or HLA-B*57:01 positive flucloxacillin-naïve individuals. These 

findings are in line with what is described in this chapter, though I have shown 

stimulation at lower concentrations and at a shorter incubation period of 24 hours 

compared to 48 hours. However, since effects on gene transcription should be 

measurable sooner than effects on protein levels so use of a 24 hour drug incubation 
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period followed by mRNA measurement in the current experiment seems comparable to 

treatment for 48 hours followed by protein measurements. 

Activation of T-cells in DILI is proposed to occur via covalent hapten binding or by 

direct non-covalent binding of the drug to HLA molecules or T-cells.  Direct activation 

of PBMCs by flucloxacillin suggests that metabolism of the drug might not be required 

for T-cell activation. Flucloxacillin has been shown to bind to, and be presented by, 

HLA-B*57:01 as a covalently bound hapten but there is also evidence that it can 

activate T-cells through direct non-covalent binding to HLA-B*57:01 molecules 

expressed on the surface of cells, as described by the p-i concept (Wuillemin et al., 

2013). Activation of flucloxacillin-responsive PBMCs, as described in this chapter, 

could potentially result from either of these methods as HLA class I molecules are 

expressed on all nucleated cells, including PBMCs.  

In the present work, abacavir was not found to have an effect on IFNγ expression in 

either patient PBMCs or from HLA-B*57:01 positive volunteers. Abacavir has been 

shown to stimulate IFNγ expression in PBMCs from HLA-B*57:01 positive abacavir 

hypersensitive patients but not from HLA-B*57:01 abacavir-naïve positive healthy 

donors after a 40 hour incubation period (Chessman et al., 2008). Ideally, in the present 

study, responses should have been studied in PBMCs from an abacavir hypersensitive 

patient control but this was not feasible. Monshi et al were unable to stimulate 

flucloxacillin-induced T-cell clones from flucloxacillin-DILI patients or HLA-B*57:01 

positive volunteers with abacavir (Monshi et al., 2013). These findings suggest that, 

although both abacavir and flucloxacillin-induced adverse reactions share a common 

HLA association with HLA-B*57:01, there appear to be key differences in the 

mechanisms of drug-HLA association and T-cell activation, with circulating memory T-

cells in flucloxacillin-DILI patients and AHS patients being reactive specifically to their 

causative drugs. 

Also in this chapter, IL-8 mRNA expression in the treated PBMCs from flucloxacillin-

DILI patients and HLA-B*57:01 positive and negative healthy volunteers was 

measured. There has been reported evidence of flucloxacillin stimulation of IL-8 

expression in PBMCs from HLA-B*57:01 positive volunteers (Pletcher, unpublished 

data) and in T-cells clones expanded from PBMCs of a flucloxacillin-induced interstitial 

nephritis patient (Spanou et al., 2006; Pletcher et al., 2011). In the present work, IL-8 

expression was increased in response to flucloxacillin treatment in the PBMCs from 1 
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out of the 3 flucloxacillin-DILI patients. In this patient, IFNγ expression was also 

upregulated. Interestingly, abacavir treatment was found to increase IL-8 expression in 

2 of the 3 flucloxacillin-DILI patients and in a HLA-B*57:01 positive individual. Up-

regulation of IL-8 expression has been observed in abacavir treated PBMCs from 

abacavir hypersensitivity patients but to our knowledge has not been studied in PBMCs 

from unexposed individuals (Almeida et al., 2008). However, these findings are 

consistent with report from Chessman et al that PBMCs from abacavir-naïve HLA-

B*57:01 negative individuals can be stimulated to proliferate if exposed to abacavir.  

The work described in this chapter shows that flucloxacillin can induce cytokine and 

chemokine responses in PBMCs from some HLA-B*57:01 positive flucloxacillin-DILI 

patients after a relatively short incubation period of 24 hours. IFNγ and IL-8 were 

chosen to study cytokine and chemokine responses based on previous observations. 

Studies performed concurrently to the present work, showed that abacavir and 

flucloxacillin stimulated IL-8 mRNA expression in PBMCs from both HLA-B*57:01 

positive and negative healthy volunteers after 24 hour treatment (Bell, 2012). The 

current findings support this apparent increase of IL-8 mRNA expression in HLA-

B*57:01 positive and negative healthy volunteers in response to abacavir stimulation, as 

observed by Bell, although this was only found to be statistically significant in one 

HLA-B*57:01 positive healthy donor. However, unlike in the previous study, I did not 

observe flucloxacillin stimulation of IL-8 in HLA-B*57:01 positive or negative drug-

naïve volunteers. One possible reason for this is the concentrations used in the two 

studies. In Dr Bell’s studies, PBMCs were stimulated with 50 µM abacavir and 1 mM 

flucloxacillin whereas in my studies, 25 µM abacavir and 250 µM and 500 µM 

flucloxacillin, were used. These concentrations were chosen based on initial preliminary 

observations of flucloxacillin and abacavir toxicity in PBMCs but if further studies were 

to be performed, higher concentrations than those used in the current study could be 

used. In addition to IFNγ and IL-8, there are numerous other genes that merit study to 

assess their response to flucloxacillin or abacavir treatment. Studies by Monshi and 

Wuillemin found that flucloxacillin-specific T-cell responses were generally CD8+ in 

nature. Both studies showed flucloxacillin stimulation of flucloxacillin-specific T-cell 

clones to secrete markers of CD8+ responses such as granzyme B, FasL, perforin 

(Monshi study) and CD107a (Wuillemin study) in addition to IFNγ (both studies). It is 

unknown whether such responses can be detected by changes in mRNA expression in 

fresh PBMCs from patients or volunteers, rather than restimulated flucloxacillin-
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specific T-cell clones. Its investigation would be of interest to increase the 

understanding of flucloxacillin-induced T-cell responses, particularly whether they 

occur rapidly in flucloxacillin-DILI patient PBMCs and whether they can be rapidly 

induced in drug-naïve healthy donors. 

In summary, 

 Flucloxacillin was shown to induce cytokine and chemokine responses in 

PBMC’s from some HLA-B*57:01 positive flucloxacillin-DILI patients after a 

24 hour stimulation. 

 Abacavir was found to stimulate a response in HLA-B*57:01 positive and 

negative healthy volunteers. However, this couldn’t be replicated with 

flucloxacillin. 

 Further studies looking at additional immune candidate genes would be of 

interest such as the study of specific markers of CD8+ T-cell stimulation. 
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7.1 General Discussion 

 

Idiosyncratic drug-reactions remain an important concern for the pharmaceutical 

industry and in healthcare due to their rare, unpredictable but often severe nature. Drug-

induced liver injury (DILI) is a type of idiosyncratic serious adverse reaction associated 

with a diverse range of drugs. Many of these idiosyncratic reactions are often not 

detected during drug development due to their rarity. Consequently, many idiosyncratic 

DILI reactions are only identified when a drug has been in use in wide populations for 

several months or years, making DILI a leading cause of post-market labelling 

restrictions and drug withdrawal. The mechanism involved in idiosyncratic DILI, 

although probably not related to the pharmacological effect of the drug, is often drug-

specific and remains poorly understood. It is likely that idiosyncratic DILI involves a 

combination of genetic and environmental factors that result in an individual having an 

increased susceptibility to disease on the basis of their genetics. A better understanding 

of the mechanism of DILI and of predisposing pharmacogenetic factors leading to 

disease susceptibility could enable better prevention, diagnosis and treatment of DILI in 

the future.    

This aims of this study were to gain further understanding of the mechanism of DILI 

caused by the isoxazolyl β-lactam antibiotic flucloxacillin. Like several other forms of 

DILI, it is now known that a contributing factor in flucloxacillin-induced liver injury is 

the activation of components of the host’s immune system, though this was only 

discovered quite recently. A landmark GWA study published in 2009 reported a strong 

association between flucloxacillin-DILI and the HLA class I allele, HLA-B*57:01 

(Daly et al., 2009). This association has been confirmed in an additional 99 cases of 

flucloxacillin-DILI in the current study. However, only between 1 in 500 to 1 in 1000 

individuals who possess HLA-B*57:01 will develop flucloxacillin-DILI when exposed 

to the drug, suggesting that the presence of HLA-B*57:01 alone is insufficient to cause 

disease. Genotyping studies described in the current work have also shown that 

approximately 20% of confirmed flucloxacillin-DILI cases do not possess the HLA-

B*57:01 risk allele. Analysis of HLA-B genotypes in these cases discovered an 

additional association between HLA-B*13:02 and flucloxacillin-DILI when compared 

to HLA-B genotypes in a population control cohort. However, due to the small number 

of HLA-B*57:01 negative cases available at present, there remains a possibility that this 

association is chance and, therefore,  should be studied further with the availability of 
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additional cases. It is possible that some of the HLA-B*57:01 negative cases were 

misdiagnosed despite positive adjudication by skilled assessors but this seems unlikely 

for the majority of the negative cases.  

Whole genome sequencing remains the most comprehensive method of detecting rare 

genetic variants in disease cases, but remains expensive to conduct on a large scale and 

also the bioinformatic analysis is still challenging (Ng and Kirkness, 2010). An 

alternative method is to perform sequencing of protein coding sequences i.e. the exome, 

which constitutes approximately 1% of the human genome (Ng et al., 2009). Following 

on from the flucloxacillin GWAS, exome sequencing of flucloxacillin-DILI cases has 

also been performed. A number of SNPs were identified and an association with a 

polymorphism in the caspase-5 gene on chromosome 11 was confirmed in the present 

study by direct genotyping of flucloxacillin-DILI cases and controls. Caspase-5 belongs 

to the caspase-1 subfamily that are activated in cells of the innate immune system where 

they have been implicated in the activation of inflammatory responses (Martin et al., 

2012). It is interesting to note that caspase-5 is upregulated in psoriatic skin and is 

activated by IFNγ (Salskov-Iversen et al., 2011). As described in chapter 3, an 

association also exists between HLA-B*57:01 and psoriasis susceptibility. At present, 

the role of this SNP and whether caspase-5 has a role in the immune mechanism of 

flucloxacillin-DILI is unknown. In addition, the variant allele frequency, though 

showing a significantly higher frequency in cases compared with controls, remains low 

and it seems unlikely that caspase-5 variation is important in most cases of 

flucloxacillin-DILI. Undiscovered rare variants in other genes could also contribute 

though. At the time of writing, a second GWAS is in progress as part of the iDILIC 

project. The GWAS is being performed on 747 DILI cases relating to various drugs 

including 125 flucloxacillin-DILI cases. The inclusion of a greater number of 

flucloxacillin-DILI cases could provide significant power to detect additional new 

genetic risk factors with smaller effect sizes than HLA-B*57:01 such as the caspase-5 

variants. The combination of DILI cases from a variety of drugs may also uncover 

common more general genetic determinants of DILI. 

One other genetic risk factor for flucloxacillin DILI has emerged from other ongoing 

studies in Newcastle. In a recent report, a nonsynonymous polymorphism in PTPN22 

(rs2476601), a gene which is involved in the regulation of the T cell response, was 

found to be a risk factor for DILI due to co-amoxiclav (Lucena et al. 2011). Further 

studies in the Newcastle flucloxacillin DILI case collection showed that this SNP was 
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also a risk factor for DILI due to flucloxacillin with a odds ratio of 1.9 (p = 0.02) 

compared to an odds ratio of 2.9 (p = 0.00033) seen for co-amoxiclav (M. Alshabeeb 

and A.K.Daly, unpublished). It is possible that susceptibility to DILI due to 

flucloxacillin, similar to more common complex genetic diseases such as type II 

diabetes, may involve a relatively large number of SNPs, which impart a slight though 

significant elevation in risk, in addition to the strong effect from HLA B*5701. These 

additional risk factors could be a mix of both common and rare variants. 

Some understanding of the biological significance of the association of HLA-B*57:01 

and flucloxacillin has been recently shown through T-cell studies from HLA-B*57:01 

expressing individuals including flucloxacillin-DILI patients. Characterisation of 

reactive flucloxacillin-specific T-cells has shown that they are predominantly CD8+ and 

IFNγ secreting providing important insights into potential mechanisms of cellular 

damage (Monshi et al., 2013; Wuillemin et al., 2013). Findings in this study, showed a 

rapid T-cell response in HLA-B*57:01 expressing flucloxacillin-DILI patients but not 

in flucloxacillin-naïve HLA-B*57:01 positive or negative donors. From this it could be 

suggested that a recall response is occurring with the priming and activation of memory 

T-cell populations that were generated in vivo in previously sensitised patients. This 

could explain the observation of a rapid immune response in a flucloxacillin-DILI 

patient inadvertently rechallenged with the drug (Derby et al., 1993).  

In addition to the association with flucloxacillin-DILI, HLA-B*57:01 is also strongly 

associated with hypersensitivity to abacavir (Hetherington et al., 2002; Mallal et al., 

2002). Unlike flucloxacillin toxicity, this is a general hypersensitivity reaction and not 

restricted to the liver. The association with HLA-B*57:01 is also stronger in abacavir 

hypersensitivity than with flucloxacillin-DILI with 55% of HLA-B*57:01 expressing 

individuals experiencing an adverse reaction when exposed to abacavir (Mallal et al., 

2008). Like flucloxacillin, CD8+ T-cell responses are implicated to play a key role in 

the aetiology of abacavir hypersensitivity. The differences in strength of the respective 

HLA-B*57:01 associations, however, suggest that there are differences in the 

mechanism of T-cell activation. This is supported by evidence presented in the current 

work and by others that abacavir can stimulate responses in drug-naïve volunteers 

(Chessman et al., 2008). There is also emerging evidence that abacavir can interact with 

HLA-B*57:01 in a manner that has not been observed with flucloxacillin. One of these 

novel mechanisms described how through direct binding to HLA-B*57:01, abacavir, 

but not flucloxacillin, can alter the structure of HLA-B*57:01 and induce the loading of 
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novel drug-induced self-peptides to HLA-B*57:01 leading to an auto-immune like 

response (Norcross et al., 2012). 

It is still not known why flucloxacillin specifically causes liver toxicity whereas 

abacavir causes a general hypersensitivity reaction. Further studies are required to 

determine how and why flucloxacillin-responsive T-cells attack hepatic cells. 

Upregulation of chemokine receptors thought to be involved in T-cell migration and 

accumulation in the liver, in flucloxacillin-specific T-cell clones, may suggest a specific 

mechanism for hepatic injury but needs further exploration (Monshi et al., 2013). 

Flucloxacillin metabolism has been implicated as a possible reason for specific toxicity 

to the liver. The flucloxacillin metabolite 5’hydroxymethyl flucloxacillin has previously 

been reported as toxic to biliary epithelial cells but not to hepatocytes (Lakehal et al., 

2001). Studies performed in the present work, failed to observe 5’hydroxymethyl 

flucloxacillin production in vitro, but did show the formation of penicilloic acid 

derivatives of flucloxacillin. Drug-adduct formation with cellular peptides is proposed 

as a key step in flucloxacillin-induced T-cell mediated hepatotoxicity and flucloxacillin-

adducts have previously been detected in the livers of treated rats (Carey and van Pelt, 

2005). The opening of the β-lactam ring to form penicilloic acids has been hypothesised 

as a major route for adduct formation. 5’hydroxymethyl flucloxacillin has been detected 

excreted in urine in higher concentrations than penicilloic acid derivatives however, 

findings presented here, show greater formation of penicilloic acids in vitro. What this 

means to the in vivo situation is unclear but it could be possible that lower urinary 

concentrations of penicilloic acid may result from slower rates of clearance due to 

higher protein binding and adduct formation in vivo. Further investigations are needed 

to study adduct formation by flucloxacillin and 5’hydroxymethyl flucloxacillin. In the 

present study, due to the limited availability of patient PBMCs and 5’hydroxymethyl 

flucloxacillin, the investigation of 5’hydroxymethyl flucloxacillin stimulation of 

PBMCs could not be performed.  

The observation that flucloxacillin only causes DILI in a small percentage of HLA-

B*57:01 expressing individuals exposed to the drug suggest that there are additional 

mechanisms or ‘danger’ signals that are required for a full hepatotoxic event. Pathways 

affecting the disposition of flucloxacillin in the liver are logical targets for factors in 

flucloxacillin-DILI. Liver injury caused by the isoxazolyl penicillins is predominantly 

of a cholestatic phenotype characterised by an impairment of bile flow and increase of 

toxic bile acids (Staudinger et al., 2001). Increased cellular bile acid concentrations 
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induce changes in expression of various genes that decrease bile acid biosynthesis and 

increase their efflux (Teng and Piquette-Miller, 2007). PXR is activated by bile acids 

such as lithocholic acid and classic PXR activators such as rifampicin have been used to 

treat symptoms of cholestasis (Xie et al., 2001). Previously, flucloxacillin and 

dicloxacillin have been shown to be activators of the liver expressed nuclear receptor, 

PXR (Yasuda et al., 2008; Andrews et al., 2010). In this study, a reporter gene assay 

was used to compare, for the first time, PXR activation by the isoxazolyl penicillins – 

cloxacillin, dicloxacillin and flucloxacillin, showing that the order of PXR activation 

was lowest with cloxacillin and greatest with dicloxacillin. A role for PXR in 

flucloxacillin-DILI has previously been suggested due to the discovery of a genetic 

association in cases thought to cause decreased PXR expression. However genotyping 

performed in this study, of an additional 99 cases to the original 51, failed to confirm 

this association. Flucloxacillin has been shown to be a frequent cause of DILI; however 

reports of DILI due to the other almost identically structured isoxazolyl penicillins, such 

as cloxacillin and dicloxacillin, are in comparison extremely rare. There is a lack of data 

describing the wider population use of cloxacillin and dicloxacillin in countries that 

commonly prescribe these drugs in preference to flucloxacillin. However, cloxacillin 

and dicloxacillin are prescribed in a number of countries including Australia, Spain, 

Denmark and Iceland instead of flucloxacillin. Reports of DILI causes from these 

countries suggest that both cloxacillin and dicloxacillin are less hepatotoxic than 

flucloxacillin or DILI caused by these drugs are under-reported. A recent study of DILI 

incidence in Iceland where both cloxacillin and dicloxacillin are prescribed showed that 

there was one case of DILI due to each of the drugs indicating an incidence of 1 in 3659 

treated patients with cloxacillin and 1 in 22320 patients treated with dicloxacillin but 

these frequencies need to be treated with caution due to being based on single cases 

only (Bjornsson et al., 2013). In the current study, 3 cases of cloxacillin-DILI (two from 

Spain and one from Iceland) and 2 cases of dicloxacillin-DILI (both from Iceland) were 

found to be negative for HLA-B*57:01 suggesting that at least, in part, there are 

differences in the mechanism of liver injury to that predominantly observed in 

flucloxacillin-DILI. Both the non-flucloxacillin isoxazolyl penicillin DILI cases and the 

HLA-B*57:01-negative flucloxacillin DILI cases could have similarities with DILI due 

to other penicillins such as amoxicillin. DILI due to amoxicillin alone is rarer than DILI 

due to flucloxacillin or amoxicillin-clavulanate but cases are occasionally seen. For 

example, the iDILIC case collection currently being analysed by GWAS includes DNA 

samples from 16 cases of DILI due to non-isoxazolyl penicillins, mainly amoxicillin. 
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The possibility that there is a specific HLA risk factor involved will become clearer 

once the GWAS has been completed as imputation of HLA genotype will be performed 

on the data. 

In summary, the studies described in this thesis have confirmed the major role of HLA-

B*57:01 in DILI due to flucloxacillin and have provided some new insights into genetic 

risk factors for DILI due to related penicillins and in cases of flucloxacillin DILI not 

related to HLA-B*57:01. The interaction with PXR reported previously for 

flucloxacillin has been shown to be a more general feature of isoxazolyl penicillins. It 

has not been possible to confirm findings of others that CYP3A4 converts flucloxacillin 

to 5'-hydroxymethyl flucloxacillin. This needs follow-up using more sensitive methods 

for metabolite detection. KIR3DSI genotype did not appear to be a significant risk 

factor for flucloxacillin DILI but caspase-5 genotype appears to be an interesting minor 

risk factor. 
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Appendix A – HLA-B genotypes of HLA-B*57:01 negative flucloxacillin-DILI 

cases 

 

HLA-B genotype 

 

UK cases 

 

44:02 

44:05 

44:03 

08:34 

07:02 

08:01 

18:01 

08:01 

13:02 

07:02 

35:01 

44:02 

44:02 

40:01 

44:02 

18:01 

08:01 

40:01 

08:01 

37:01 

08:01 

07:02 

08:01 

38:01 

 

 

Swedish cases 

 

15:57 

15:01 

 

 

 

55:01 

45:01 

51:01 

13:02 

44:52N 

44:02 

44:02 

14:02 

40:02 

08:01 

39:06 

53:01 

55:01 

44:02 

40:01 

38:01 

08:01 

44:02 

44:03 

55:01 

41:01 

14:01 

08:01 

51:01 

 

 

 

 

51:01 

37:01 
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Appendix B – HLA-B alleles observed in the NW-EU control cohort that are 

absent in genotyped HLA-B*57:01 negative flucloxacillin-DILI cases 

 

HLA-B 

allele 

 

Flucloxacillin-

DILI cases 

(n=26)  

 

NW-EU 

Controls 

(n=107)  

 

P –value 

B*15:17 0 (0.00) 1 (0.9) 1.0000 

B*15:18 0 (0.00) 1 (0.9) 1.0000 

B*15:24 0 (0.00) 1 (0.9) 1.0000 

B*27:05 0 (0.00) 12 (11.2) 0.1313 

B*35:03 0 (0.00) 1 (0.9) 1.0000 

B*39:01 0 (0.00) 4 (3.7) 1.0000 

B*47:01 0 (0.00) 1 (0.9) 1.0000 

B*49:01 0 (0.00) 1 (0.9) 1.0000 

B*50:01 0 (0.00) 3 (2.8) 1.0000 

B*52:01 0 (0.00) 1 (0.9) 1.0000 

B*56:01 0 (0.00) 1 (0.9) 1.0000 

B*73:01 0 (0.00) 1 (0.9) 1.0000 

Number of individuals with a particular allele is shown with the allele carriage frequency shown 

as a percentage in parenthesis. Two-tailed Fisher’s exact test was used to calculate significance 

between cases and controls 
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Appendix C – Abstract for a poster presentation at the joint meeting of the 

International Symposium on Microsomes and Drug Oxidations (MDO) and the 

European Regional meeting of the International Society of the Study of 

Xenobiotics (ISSX) in Noordwijk aan Zee, The Netherlands, June 17
th 

– 21
st
 2012  

 

Nuclear Receptor Interactions with Isoxazolyl Penicillins 

 

Thomas C. Chamberlain, Elise Glen, David Cowie, Matthew C. Wright and Ann K. 

Daly 

Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK 

 

The β-lactamase resistant penicillin, flucloxacillin, is a common cause of idiosyncratic 

drug-induced liver injury (DILI). Flucloxacillin belongs to a family of semi-synthetic 

isoxazolyl penicillins that include oxacillin, cloxacillin and dicloxacillin. In contrast to 

flucloxacillin, reports of liver injury caused by the other isoxazolyl penicillins are 

extremely rare [1,2]. Previous work has shown that flucloxacillin is an activator of the 

pregnane X-receptor (PXR) and inducer of CYP3A4 [3]. Further studies on human 

hepatocytes using sandwich culture have shown induction of CYP2B6 in addition to 

CYP3A4. In view of the effect of flucloxacillin on CYP2B6, the possibility that 

flucloxacillin is also a constitutive androstane receptor (CAR) agonist was investigated. 

CAR shares an overlap in some substrate specificities and transcriptional targets with 

PXR. Reporter gene studies were performed to establish whether flucloxacillin also 

interacts with CAR. A CYP2B6 reporter construct containing two distal response 

elements to which activated CAR binds was transiently transfected into Caco-2 cells 

along with a human CAR expression vector. Cells were treated for 24 hours with 

flucloxacillin over a concentration range of 100 μM to 1 mM, with the known hCAR 

activator CITCO as a positive control. Compared to the untreated control, flucloxacillin 

had no effect on CAR activation at any of the described concentrations suggesting that 

it is unlikely that flucloxacillin is a CAR substrate. Three tag SNP’s for the main 

haplotypes in the CAR (NR1I3) gene were also genotyped in a number of flucloxacillin-

DILI case samples and controls from flucloxacillin-prescribed healthy individuals. No 

significant differences in genotype frequency were found between cases and controls. 



202 

 

Reporter gene studies were performed to compare PXR activation by flucloxacillin to 

that of cloxacillin and dicloxacillin. A luciferase construct for CYP3A4 activation was 

transfected into HepG2 cells which were treated with flucloxacillin, cloxacillin and 

dicloxacillin at concentrations of 500 μM to 2 mM for 72 hours. Cloxacillin and 

dicloxacillin were found to be more potent PXR activators than flucloxacillin. 

Comparative studies on CYP3A4 induction in LS180 cells by the isoxazolyl penicillins 

are in progress. We postulate that this greater PXR activation may affect drug 

metabolism and clearance and be a factor in differences seen in hepatotoxicity between 

the drugs.  
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