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Physiological effects of global climate change on common British marine 

invertebrates 

Abstract: Climate change is likely to have profound effects on marine animals due to 

the predicted increases in water temperature and acidity. Many studies have examined 

the effects of these elevated temperatures and decreased pH at the extreme 

temperatures expected in the summer season, but few studies have investigated how 

climate change may affect animals in the winter. In this study, we investigate the 

effects of both winter and summer temperatures on the growth rates, body 

composition and metabolic rate of four species of intertidal marine invertebrates: two 

calcified (common mussel - Mytilus edulis and edible periwinkle – Littorina littorea) 

and two non-calcified (beadlet anemone – Actinia equina and sea squirts – Ascidiella 

aspersa) species. Samples divided to two groups, one group exposed to winter 

temperature condition and the second group exposed to summer temperature 

condition. Following a period of acclimatization during which temperature was 

gradually increased and pH decreased, animals were exposed to the predicted climatic 

conditions of 2050 (TR 2050) and 2100 (TR 2100) for six weeks. During the study 

period, the mortality rates were monitored as well as growth rates by taking body 

weight, buoyant weight and body morphometrics (length and Width). At the end of 

experiments, body composition were measured by taking water content, dry shell and 

dry body weight weight, fat content and C:N ratio. In addition, metabolic rates were 

measured using a closed-system respirometry. During the experiments, seawater 

parameters such as acidity, temperature, salinity and dissolved oxygen were 

measured. The results of the experiments found that there was a significant increase in 

mortality of A. aspersa at the higher temperatures and water acidity in winter. 

Furthermore, growth rates of A. equina and A. aspersa were significantly reduced at 

TR 2050. On the other hand, it was observed that the C:N ratio of L. littorea was 

significantly increased at TR 2050 and that metabolic rate was significantly higher at 

TR 2100. However, under summer conditions, L. littorea there was a significant 

decrease in buoyant weight at TR 2050. While there was no mortality amongst A. 

equina, a significant reduction growth was found at elevated temperature and 

decreased pH level. The results in this study indicate that inter-species responses to 

environmental changes are likely to differ but also that the inter-species response will 

also vary depending on the season and life stage of the animal.  
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Chapter 1. Introduction 

 

1.1 Background: 

 The world has begun to clearly see the effects of changes in the Earth’s 

climate. Elevated temperatures (air and ocean), floods, hurricanes, and heavy rains are 

the most notable effects that have been recognised reflecting this change in the global 

climate (IPCC, 2007). Climate change may also cause agricultural land to flood, 

forests to burn, sea levels to rise, and polar and glacial ice to melt (IPCC, 2007). 

These phenomena may cause changes in natural habitats and ecosystems (Markham, 

1996; Justus and Fletcher, 2001), which may threaten the biodiversity (Cheung et al., 

2009) and the food security of humans (Schubert et al., 2006). So far, no one can 

determine with any degree of accuracy the size, rate and timing of these changes 

(Justus and Fletcher, 2001), which increases concerns about the effects that might 

arise from these changes.  

 

1.2 Greenhouse Gases: 

To date, perhaps the most prominent phenomenon related to global warming is 

the blockage of heat generated by the sun’s rays from exiting the Earth’s atmosphere. 

This blockage occurs due to a group of gases called greenhouse gases. The most 

important of these gases are carbon dioxide (CO2), methane (CH4), and nitrous oxide 

(N2O) (IPCC, 2007). These gases are emitted during some human activities, 

predominantly fossil fuel (gas, coal, and oil) burning and various agricultural 

activities (IPCC, 2007). The most important source of CO2 is the burning of fossil 

fuels (IPCC, 2007; Doney, 2009) by human activities (Doney, 2006). It is now largely 

accepted by the scientific community that continuing increases in CO2 emissions at 

the same levels as at present will, in the future, have strong effects on the warming 

and acidification of the ocean. 
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1.3 Global Warming and Ocean Warming: 

Greenhouse gases including CO2 contribute to rising air temperatures, which 

have actually risen by almost one degree Celsius (1 °C) during the past 100 years 

(IPCC, 2007). This rate of increase is expected to result in further temperature 

increases by up to 1 °C to 6.4 °C by the end of this century, due to increased CO2 

emissions (IPCC, 2007). The seawater surface (SS) will be affected by increased air 

temperatures more than the depths of the oceans, due to its proximity to the 

atmosphere (Brierley and Kingsford, 2009). Already the seawater surface temperature 

(SST) has increased by 0.76 °C since the 19th century (IPCC, 2007; Findlay et al., 

2008), which means that future warming will continue to affect the ocean (Tyrrell, 

2011) as the rate of CO2 emissions continue. The global mean temperature will be 

slightly higher than the SST that has been predicted for the future (Gruber, 2011). The 

current predictions indicate an increase in ocean temperature by 2050 of up to 2 °C 

(IPCC, 2007) and reaching 4 °C in 2100 (Findlay et al., 2008)  (see Fig. 1.1). 

 

1.4 Increased Seawater Temperatures: 

The ability of organisms to cope with changes in temperature varies from one 

species to another (Peck et al., 2004). Organisms that have a high ability to withstand 

temperature changes are likely to be less susceptible to the negative effects of the 

temperature rise (Noone et al., 2013). Among organisms that may experience the 

greatest effects of changes in temperature are the ectothermal marine organisms 

(Brierly and Kingsford, 2009). Temperature is the main factor that controls the 

metabolic and respiratory rates in ectothermal marine organisms (Somero, 2010; 

Noone et al., 2013), so seawater temperature is a critical environmental factor 

affecting their physiological processes (Hochachka and Somero, 2002; Sokolova and 

Portner, 2003; Dong et al., 2011), growth (Dong et al., 2008; Ji et al., 2008), seasonal 

timing (Portner and Knust, 2007), survival (Barange et al., 2010), thermal limits, and 

species distribution (Harley et al., 2006; Noone et al., 2013). If increased, 

temperatures can have direct impacts on physiological processes and growth (Byrne et 

al., 2009). An increase in temperature may negatively influence the performance and 

survival of marine organisms (Harley et al., 2006). 
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Table 1.1 The best estimates for the highest temperatures and the likely temperature 

range at the end of this century, according to the Special Report on Emissions 

Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC, 2007) 

due to greenhouse gas emissions from anthropogenic sources and a number of 

different expectations. Among these scenarios, the least extreme is B1, wherein the 

volume of emissions in the atmosphere is expected to reach 600 ppm, followed by the 

A1T scenario at 700 ppm, then B2 at 800 ppm, A1B at 850 ppm, and A2 at 1250 ppm. 

The worst expectation is under the A1F1 scenario, in which anthropogenic 

greenhouse gases emissions in the atmosphere are expected to reach 1550 ppm; they 

are currently at around 390 ppm. Adapted from (IPCC, 2007). 

Case 

Temperature change 

(ºC from 2090-2099 relative to 1980-1999) 

Atmospheric 

CO2 levels 

(ppm) Best estimate Likely range 

Constant year 2000 

concentrations 
0.6 0.3 - 0.9  

B1 scenario 1.8 1.1 – 2.9 600 

A1T scenario 2.4 1.4 – 3.8 700 

B2 scenario 2.4 1.4 – 3.8 800 

A1B scenario 2.8 1.7 – 4.4 850 

A2 scenario 3.4 2.0 – 5.4 1250 

A1F1 scenario 4.0 2.4 – 6.4 1550 

 

 

Usually increases in seawater temperature lead to increased metabolic and 

behavioral activities in aquatic ectotherms, leading to a rise in their rate of oxygen 

consumption, and thus reduced energy reserves, which could decrease opportunities 

for growth (Levinton, 2009). For example, the weight of sea cucumber (Apostichopus 

japonicus) decreased gradually upon gradual increases in temperature (Ji et al., 2008). 

Also, in some calcified marine invertebrates increasing temperatures up to summer 

averages led to increased calcification (Marshall and Clode, 2004; Langdon and 

Atkinson, 2005), followed by decreased calcification when temperatures exceeded 

average summer temperatures (Clausen and Roth, 1975; Abramovitch-Gottlib et al., 

2002; Rodrigues and Grottoli, 2006). Predicting the impact of changes in temperature 

on thermal stress to these model organisms is central to the goal of exploring the 

consequences of climate change (Helmuth et al., 2002). Somero (2005; 2010) 

reported that many organisms are already living at temperatures near their thermal 
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tolerance limits, for example, porcelain crabs, genus Petrolisthes (Stillman, 2002) and 

turban snails, genus Tegula (Hellberg, 1998). Therefore, any additional increase in 

temperature may exacerbate the existing negative effects of climate change (Vihtakari 

et al, 2013). However, the temperature is just one of a range of climate change factors 

and one cannot as accurately predict future effects by relying solely on the 

relationship between organisms and the temperatures of their habitats (Harley et al., 

2006). 

 

1.5 Ocean Acidification: 

In addition to contributing to global warming, CO2 plays a central role in 

ocean acidification. The amount of CO2 estimated to be present in the atmosphere in 

the middle of the 18th century was 280 ppm (IPCC, 2007; Bulling et al., 2010). This 

value had risen to 379 ppm by 2005 (IPCC, 2007; De Bodt et al., 2010) as a result of 

human activities (Feely et al., 2004; Bibby et al., 2008; Fabry et al., 2008). This 

represents an addition of approximately 5.6 × 10
11

 tons of CO2 to the atmosphere; 

slightly more than half of which has now been absorbed by the sea (Doney et al., 

2009). As a result, the pH level of the surface ocean has decreased by 0.1 unit 

compared to the pH levels prior to 1750 (Caldeira and Wickett, 2003; Orr et al., 2005; 

Arnold et al., 2009). The ocean’s pH levels were estimated to have been 8.1 before 

2007 (IPCC, 2007), and this pH value is expected to decrease by around 0.22 units 

from current levels by 2050 (Caldeira and Wickett, 2005; Vézina et al., 2008) to reach 

approximately 7.88. The pH levels of the ocean are currently expected to decline by 

further approximately 0.4 units by 2100 to 7.7 (Findlay et al., 2008), when CO2 

concentrations may rise to 1200 ppm (Caldeira and Wickett, 2003; Raven et al., 2005; 

Arnold et al., 2009). The ocean pH levels are expected to continue to decrease during 

the next two centuries to approximately 6.7, a decrease of 1.4 units compared to the 

current pH of 8.1 (Caldeira and Wickett, 2005; Harley et al., 2006). Such a drop in pH 

may have severe biological consequences (Caldeira and Wickett, 2005).  

The importance of these abiotic interactions lies in the fact that such chemical 

changes in seawater may affect the metabolic processes, ecosystems, and biodiversity 

of marine organisms (Kleypas et al., 2005; Raven et al., 2005; Fabry et al., 2008). 
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Scientists expect the increased temperatures and decreased pH that are direct effects 

of increased [CO2] (carbon dioxide) (Fabry et al., 2008) to have measurable 

consequences for marine organisms (Kurihara et al., 2004) and marine ecosystems 

(Findlay et al., 2008) in the future. Increased [CO2] and decreased pH in themselves 

both affect marine organisms (Wood et al., 2008). According to Gutowska et al. 

(2008) low pH has negative effects on a range of marine invertebrates, such as 

molluscs, crustaceans, and sea urchins (Wood et al., 2008) because it directly 

influences the physiological processes of these creatures (Pörtner et al., 2004; Raven 

et al., 2005; Arnold et al., 2009). As is the case for all living organisms, survival rates 

generally depend on the efficiency of all physiological processes (Findlay et al., 

2009a). So, in the case of marine invertebrates, increases in [CO2] can cause the 

animal’s body fluids to acidify and deviate from the pH optima for many enzymes, 

thereby reducing metabolic efficiency (Reipschläger et al., 1997; Pörtner et al., 1998; 

Portner et al., 2000; Langenbuch et al., 2006). However, the ability to mitigate such 

acidification in the ocean environment differs among various species of marine 

organisms (Pörtner et al., 2004; Wood et al., 2008). 

Feely et al. (2004), Harley et al. (2006), and Wood et al. (2008) have pointed 

out that the organisms most affected by acidification are those species with 

exoskeletons composed of calcium carbonate (CaCO3), because the pH-dependent 

rate of metal reduction as it affects calcium saturation in these organisms affects rates 

of calcification (Fabry, 1990; Gattuso et al., 1998; Orr et al., 2005; Findlay et al., 

2008). Among calcareous organisms, calcification is an important process for 

organising the body’s internal pH, growth, and calcium homeostasis (Pörtner, 2008; 

Findlay et al., 2009a). Decreases in pH typically result in decreases in activity levels 

and metabolic rates of calcified marine invertebrates (Gutowska et al., 2008). 

 

1.6 CO2 and Ocean Chemistry: 

Oceans are often thought of as large reservoirs that take up CO2 gas from the 

Earth’s atmosphere (Feely et al., 2004; Sabine et al., 2004; Morse et al., 2006; Arnold 

et al., 2009) by absorbing approximately 30% of the total CO2 emitted into the 

atmosphere (Sabine et al., 2004; Fabry et al., 2008). This represents 50% of the CO2 
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output resulting from human activities during the past 100 years (Sabine et al., 2004; 

Harley et al., 2006; Fabry et al., 2008). Therefore, the oceans have a role in mitigating 

the effects of CO2 on the Earth's atmosphere (Orr et al., 2005). As the [CO2] increases 

in the atmosphere, its absorbance by seawater increases. When carbon dioxide 

dissolves in ocean water, it reacts with seawater (H2O) to form carbonic acid (H2CO3) 

(Doney, 2006). Most of the carbonic acid (H2CO3) that is formed then decomposes 

rapidly to bicarbonate ions (HCO3
-1

) by losing hydrogen ions (H
+
) (Findlay et al., 

2009a). This process may also produce carbonate ions (CO3
-2

) and more hydrogen 

ions (H
+
) from the decomposition of bicarbonate ions (HCO3

-1
) (Fabry et al., 2008). 

Thus, abundant hydrogen ions (H
+
) will be produced, which can react again with the 

carbonate ions (CO3
-2

) to form more bicarbonate ions (HCO3
-1

) (Fabry et al., 2008). 

Carbonate ions (CO3
-2

) can interact with water (H2O) and carbon dioxide (CO2) 

dissolved in water to form still more bicarbonate ions (HCO3
-1

) (Orr et al., 2005). 

This abundance of hydrogen ions (H
+
) causes pH to decrease, leading seawater to 

become more acidic (Orr et al., 2005). This change in seawater chemistry upon 

reaction with dissolved CO2 (Wood et al., 2008; Zeebe and Wolf-Gladrow, 2010) is 

known as ocean acidification (OA). 

Hence, there will be an abundance of bicarbonate ions (HCO3
-1

) and hydrogen ions 

(H
+
), and lower concentrations of carbonate ion (CO3

-2
), which are necessary for the 

formation of calcium carbonate (CaCO3) that some marine organisms require to build 

structures and calcareous shells (Fabry et al., 2008). The relevant chemical reactions 

are illustrated and summarised by the following equations: 

CO2 + H2O → H2CO3                                                                               (1.1) 

H2CO3 → HCO3
-1

 + H
+
                                                                             (1.2) 

HCO3
-1

 → CO3
-2

 + H
+
                                                                               (1.3) 

H
+
 + CO3

-2
 → HCO3

-1
                                                                               (1.4) 

CO2 + CO3
-2

 + H2O → 2HCO3
-1

                                                               (1.5) 

Ca
+2

 + CO3
-2

 → CaCO3                                                                             (1.6) 
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Figure 1.1  Decreases in the pH the oceans are expected to continue in the future 

(Caldeira and Wickett, 2003), with effects on surface water occurring faster than in 

deeper water. These projections indicate the possibility of decreases in pH of 0.1–0.2 

units by 2050 and 0.3–0.4 units by 2100 compared to the pH values recorded in 2000 

(Doney, 2006). 

 

1.7 Methodological Comparisons: 

 In the 20th century, scientists became aware of the potential seriousness of OA on 

marine organisms, and research (e.g., Talmage and Gobler, 2009) was initiated in this 

area and has continued until the present. Some researchers (Byrne et al., 2009; 

Havenhand and Schlegel, 2009; Parker et al., 2009; Christensen et al., 2011) 

recognised the need to study the combined effects of high temperature and high [CO2] 

concentration, while other studies focused on the impact of only higher temperatures 

on marine organisms continue (e.g., Dong et al., 2011). In recent years, researchers 

have started to take different approaches, with some studies conducted over only a 

few hours (Kurihara et al., 2007; Comeau et al., 2009), while others are conducted for 

several days (Kurihara et al., 2004; Miles et al., 2007; Dupont et al., 2008; Kurihara 
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et al., 2008b). Other researchers have proposed that it is necessary to expose animals 

for several weeks to the pH and temperature conditions expected in the future, in 

order to give animals time to acclimatize to these conditions (Wood et al., 2008; 

Gooding et al., 2009). However, only a few studies have been conducted for extended 

periods (several months) (Jokiel et al., 2008; Findlay et al., 2009a; Findlay et al., 

2009b). Most research studies have been conducted in laboratories (Li and Gao, 

2012), although field experiments have been conducted from time to time (Andersson 

et al., 2009), and some researchers have performed both laboratory and field 

experiments (Green et al., 2009). Studies have examined the effects of climate change 

variables on adult animals (Findlay et al., 2009a; McDonald et al., 2009) and effects 

on larval stages (Dupont et al., 2008; Arnold et al., 2009; Findlay et al., 2010). While 

most of these experiments have been conducted on living marine organisms with 

calcified structures (Bibby et al., 2008; Ellis et al., 2009; Ries et al., 2009), very few 

studies have been conducted on non-calcified marine organisms (Connell and Russell, 

2010). 

 

 

Figure 1.2 This schematic diagram depicts the process of absorption of atmospheric 

CO2 by the ocean. Adapted from (Doney, 2006). 
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It is worth mentioning that most of these research projects used carbon dioxide gas 

(CO2) to manipulate seawater pH conditions to the required acidity levels (Dashfield 

et al., 2008; Gutowska et al., 2008; Kurihara and Ishimatsu, 2008; Kurihara et al., 

2008b) to demonstrate the toxic effects of carbon dioxide (CO2) in itself on marine 

organisms. However, some researchers have used strong acids such as HCl to control 

seawater pH levels (Andersson et al., 2009; Kuroyanagi et al., 2009).  

Seasonality is a particularly important factor to account for during analysis of 

invertebrate marine animals because some of them breed in summer and others do so 

in winter (Kurihara et al., 2008b). De Moel et al. (2009) found a difference in shell 

weight that depended upon the season. Also, growth rates tend to be higher in the 

summer than at other times of the year (Levinton, 2009). However, few researchers 

have investigated seasonal effects (Batten and Bamber, 1996) as they relate to OA.  

Many studies have contributed to our understanding of OA, as the importance 

of this phenomenon to our environment becomes increasingly evident. However, 

more studies of the combined effects of decreased pH and increased temperature on 

the physiology of individual animals, as well as on broader ecosystem processes, 

should be undertaken (Findlay et al., 2008). Byrne et al. (2009) and Gooding et al. 

(2009) have reported a few examples of such investigations. The former mentioned 

that temperature, not acidification, was the factor responsible for the negative effects 

observed on the animals under investigation. The latter, in contrast, found that the 

negative effect of decreased growth was due to reduction of pH, as was found by 

Comeau et al. (2009). Therefore, many more studies will be required to determine the 

future implications of combined acidification and temperature increases, and to 

distinguish whether only one of these factors might be responsible for any adverse 

effect on the physiology of marine invertebrates. While many results indicate that 

acidification has adverse effects on marine organisms, other experiments have shown 

otherwise. Widdicombe and Needham (2007), for example, did not report any 

significant differences in mortality or metabolic rates of Nereis virens at elevated 

temperatures and lowered pH. This difference appears more clearly in the findings of 

Wood et al., (2008), whose results showed a greater increase in the growth and 

metabolism than had been expected in the organisms they studied. Havenhand and 

Schlegel (2009), Hauton et al. (2009) and Kurihara and Ishimatsu (2008) showed 
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clear examples of the potential negative impacts of ocean acidification, and 

emphasised the need to continue in this type of research, although their results did not 

conclusively demonstrate substantial damage to species exposed to projected acidic 

pH conditions. A study of sperm motility and fertilization kinetics (Havenhand and 

Schlegel, 2009) found no significant effects of seawater acidification on the oyster 

Crassostrea gigas. There were no significant effects on the growth and survival of the 

amphipod Gammarus locusta under high [CO2] seawater and pH reduction of up to 

0.5 units (Hauton et al., 2009). Similarly, Kurihara and Ishinatsu (2008) also showed 

no significant effects of exposure to OA on survival, body size, or egg production in 

Acartia tsuensis. It is important to realize that some previous experiments were 

carried out at very high, unrealistic [CO2] that were also not close to the expected 

concentrations (Findlay et al., 2008). As the worst estimates predicted by IPCC 

(2007) indicate a future pH decrease of 0.4 units by 2100, it is not strictly relevant to 

conduct experiments under a pH lower than 7.5, as done by Bibby et al., (2007) and 

Widdicombe and Needham (2007). Similarly, the exposure of animals to 

concentrations of pCO2 exceeding 1500 ppm (Kurihara and Ishimatsu, 2008), and 

Gutowska et al. (2008) was also not realistic. Neither of the experiments immediately 

above were conducted under conditions closely approximating conditions anticipated 

for the middle to end of this century. Studies that exposed animals for short periods 

(Kurihara et al., 2008a) are less relevant, as the animals were not gradually exposed to 

the final temperature and pH levels required. These approached would not permit the 

marine invertebrates to adjust to new temperatures, pH, or [CO2] in the seawater. 

Therefore, experiments with medium-term exposure, ranging from five to eight 

weeks, with one to two weeks to allow the animals to adjust gradually to the new 

variables, may be informative. Not many previous experiments compared conditions 

and parameters in summer and winter, despite the importance of seasonal pH changes 

(Findlay et al., 2009a).  

Higher temperatures, up to the maximum levels recorded in summer, may lead 

to increased rates of calcification (Marshall and Clode, 2004; Rodrigues and Grottoli, 

2006). However, low temperatures increase the likelihood of decomposition of 

calcium carbonate (CaCO3) (Findlay et al., 2008). It may therefore be important to 

include future experiments that compare the effects of acidification and rising 

temperatures on marine invertebrate organisms in summer and winter. Despite the 



11 
 

evidence that high [CO2] has a direct impact on marine life (Kurihara et al., 2004), 

some experiments still use strong acids such as HCl to alter the pH of seawater 

(Kuroyanagi et al., 2009). Because it is important to observe treatment effects under 

the most realistic conditions possible, and because seawater can be acidified using 

CO2, the use of strong acids to change the acidity of seawater for laboratory testing 

can no longer be justified. Thus, under the realistic conditions applied in this study I 

hope to provide a more realistic estimate of the physiological effects that could result 

from increased temperatures and increased acidity due to high concentrations of CO2. 

 

1.8 Hypotheses and Aims: 

 This study investigates the effect of elevated temperatures and decreased pH 

(using CO2 to adjust pH) on both calcifying and non-calcifying coastal marine 

invertebrates. Laboratory experiments were conducted in winter and summer by 

exposing the animals under study to temperatures and acidity levels near those 

expected to occur in the oceans in the years 2050 and 2100. 

1.8.1 Aims: 

The aims of this research are: 

1. To determine the combined effects of high temperature and high carbon dioxide 

concentrations, and consequent reduced pH, on marine invertebrates; 

2. To estimate the potential of these species of marine organisms to adapt and survive 

despite higher temperatures and higher carbon dioxide concentrations in the future, 

according to parameters measured under experimental pH and temperature conditions 

expected in 2050 and 2100; and 

3. To clarify some of the risks that may arise for marine biodiversity due to 

combinations of high temperature and high carbon dioxide concentrations during 

winter and summer seasons. 
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1.8.2 Hypotheses: 

1. Calcified marine invertebrates are expected to be more susceptible to the adverse 

effects of elevated temperature and lower pH than non-calcified marine invertebrates, 

due to their requirement for carbonate ions during the calcification of their calcium 

carbonate exoskeletons. 

2. Coastal marine invertebrates are expected to be more susceptible to the adverse 

effects of elevated temperature and lower pH during the summer than during the 

winter, due to the maximal temperatures reached in seawater during the summer. 

Strong responses to increased temperature and decreased pH may lead to sharp 

declines in physiological processes and levels of calcification in most of the 

organisms studied here. Some organisms may respond by increasing their formation 

of lime, or other metabolic processes that could protect the organisms from the 

changes in their surrounding environment. Thus, non-calcified marine invertebrates 

may have a greater capacity to adapt and resist the impact of the acidification than do 

the calcified marine invertebrates, because the non-calcified species do not need to 

expend energy for the growth and maintenance of shells or other structures. Seasonal 

conditions might also influence physiological processes and calcification under 

conditions of acidification. Finally, do the seasons affect the calcification rates and 

metabolism of the organisms under study? 

 

1.9 About this thesis: 

 This thesis has been divided into eight chapters. Chapter 1 comprises the 

Introduction, and presents the research background and the literature review. Chapter 

2 describes the methods employed in these studies, the study sites, the species of 

animals studied, the parameters measured, and the devices used in this study. 

Chapters 3 and 4 describe results of the study of potential effects of climate conditions 

projected for the next century on animals under study in winter. Chapters 5 and 6 

discuss results of the same kinds of studies as performed in the two previous chapters, 

but during the summer. Chapter 7 presents comparisons between the results from the 
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studies conducted during winter and summer for most of measurements obtained in 

the previous chapters.  
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Chapter 2. Methods 

 

2.1 Choices and Collection of Animals: 

2.1.1 Choices of Animals: 

Four species of coastal marine invertebrates were chosen (Fig. 2.1) including two 

species that are calcified species (see 1 & 2 below), and two that are non-calcified 

(see 3 & 4 below): 

1. Common Blue Mussel (Mytilus edulis): 

M. edulis is a calcified intertidal zone invertebrate and is an important food source 

for other marine organisms, as well as birds and humans (Beesley et al., 2008; Bibby 

et al., 2008). These mussels are also used widely as an indicator species in toxicology 

studies, and they play an important role in many marine ecosystems (Beesley et al., 

2008). They occur in temperate coastal regions of the Atlantic Ocean and the 

Mediterranean Sea,  along the coasts of France and Canada to the coasts of Chile and 

Argentina, and the west coast of the North American continent (Berge et al., 2006). 

This species is also found around the North Sea, the Baltic Sea, and the English 

Channel. These mussels feed by filtering plankton from sea water, and grow to sizes 

of up to 100 mm (Hook, 2008). Blue mussels from the North Sea have quite a wide 

range of thermal tolerance from sub-zero temperatures in the winter to 35°C in 

summer (Brenner and Buck, 2011). They can have extended life spans of 18 to 24 

years old (Zagata et al., 2008) (see Fig. 2.1A).  

2. Common Periwinkle (Littorina littorea): 

L. littorea, are calcified invertebrates that are food for various seabirds that are 

common to the North Atlantic (Hook, 2008). They are often highly abundant in 

intertidal zones, where they play an important role as grazers (Bibby et al., 2007). 

Common Periwinkles are also found in the western and eastern Atlantic and from 

southern Portugal to the White Sea (Cummins et al., 2002). This species has a wide 

range of thermal tolerance from sub-zero to 30°C (Jackson, 2008). Individuals usually 

grow to sizes between 15 and 40 mm. In the field, they may live for at least five years, 



15 
 

while in captivity their life span may extend up to nine years (Oehlmann, 2004)  (see 

Fig. 2.1A). 

3. Beadlet Anemone (Actinia equina): 

The Cnidarian species A. equina, is an abundant non-calcified invertebrates that 

inhabit many ecologically diverse marine environments (Gadelha et al., 2010). This 

species plays an environmentally significant role, as it is widespread in the marine 

environments of the North Sea (Scandinavia) and the English Channel. Its range 

extends to the Atlantic northwestern side of the Iberian Peninsula, and is abundant 

along the Portuguese coast, and also in the Mediterranean Sea and along the coast of 

Morocco. These sea anemones are highly adapted to the intertidal zone, where they 

tolerate extremes of temperature and drought. They can reach body sizes of up to 50 

mm (Hook, 2008). They are able to move very slowly, and feed on whatever arrives 

in the currents and falls onto their tentacles and oral disc (Davenport et al., 2011) (see 

Fig. 2.1A). 

4. European Sea Squirt (Ascidiella aspersa): 

A. aspersa are roughly block-shaped invertebrates, up to 10 cm in length (Naylor, 

2005) that exist in the shallow subtidal zone at depths between 5 meters and 90 

meters, and are commonly attached by their bases to marina piers (Morton and 

Dinesen, 2011). A. aspersa can also be found in the intertidal (Inglis et al., 2005) and 

lower intertidal zone (Curtis, 2005; Mackenzie, 2011). They are widely distributed in 

bodies of water such as the English Channel, the North Sea, the Baltic Sea, and the 

Mediterranean Sea. A. aspersa gametes are released in spring, and it has a relatively 

short 18-month life cycle that lasts from mid-summer to the winter of the following 

year (Morton and Dinesen, 2011) (see Fig. 2.1B). 

The criteria for choosing the animal species for this study included species 

availability and abundance on British coastal beaches, and that these species are not 

threatened by extinction. Another relevant criterion was the diversity of the biological 

characteristics of the selected species. We selected two main groups: the first group 

includes two species of calcified marine invertebrates and the second group includes 

two species of non-calcified marine invertebrates. Some of the study species are semi-

mobile (A. equina and L. littorea) and others are sessile (A. aspersa) and sedentary     
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( M. edulis). There is also diversity in the manner in which each organism feeds: some 

are carnivorous (A. equina and M. edulis), and some feed on algae and plankton (L. 

littorea, A. aspersa, and M. edulis). Some of these animals actively seek and collect 

their food (A. equina, L. littorea and M. edulis), while others feed by filtration (A. 

aspersa and M. edulis). 

 

 

 

 

 

 

 

 

 

Figure 2.1   A: Photograph above show collected marine invertebrates; two of the 

species, M. edulis and L. littorea, are calcified, and the other one, A. equina, is non-

calcified (photo by researcher). B: Photograph of non-calcified species: A. aspersa 

(photo by researcher). 

 

2.1.2 Collection Methodology: 

All of these species of coastal marine invertebrates were collected during low 

tide between the high and low water marks. Animals were collected during the winter 

2011/2012 and the summer 2012, near Newbiggin-by-the-Sea, Northumberland 

County (55°10’38”N, 001°31’59”W ) and Hartlepool Marina, Hartlepool, North 

England, United Kingdom (54°41’10”N, 001°12’45”W) (Fig. 2.2 and Fig 2.3).  

Animals were collected on a total of six occasions (Table 2.1). 

 

 

  

A

 

B
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Table 2.1 Dates of collection of animal species under study and when animals from 

each collection date were used. The first collection was performed to ensure that 

animals could survive in aquaria under average summer temperature conditions. 

Results from the second collection were not used because the experiment missed 

samples of A. aspersa. 

Dates collected Species Experimental group 

01 February 2012 All species Winter conditions 

24 May 2012 All species Summer conditions 

19 July 2012 All species Summer conditions 

24 September 2012 All species Winter conditions 

 

 

Animals were collected by hand and placed in plastic containers containing 

local seawater. They were then transported to the laboratory at Newcastle University 

and held in seawater at temperatures near those of the environment from which they 

were collected. Debris such as small bits of rock and shell (such as shells of barnacles) 

were cleaned from the study animals, parasites such as worms and Gammarus spp. 

that were visible on A. aspersa were also removed. Table 2.2 Shows the number of 

animals that were used in each experiment in summer and winter, and in each 

microcosm. 

 

Table 2.2  Number of animals surviving after acclimatization period. Mortality 

percentage over a two-week period of acclimatization was not calculated. 

Seasons Treatments 

 TR 2011 TR 2050 TR 2100 

 M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. 

Winter1 41 28 36 30 43 32 32 22 25 24 34 23 

Winter2 43 38 17 72 38 37 14 75 33 39 15 53 

Summer1 49 55 25 18 45 53 25 18 54 52 25 19 

Summer2 22 47 28 15 26 55 25 19 24 54 21 21 
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Figure 2.2  Maps showing the locations of sample collection. (Box top right): 

Newbiggin-by-the-Sea; species collected included Mytilus edulis, Littorina littorea, 

and Actinia equina. (Box bottom right): Hartlepool Marina; species collected included 

Mytilus edulis and Ascidiella aspersa. The maps from: (Marine Digimap Service). 

 

2.2 Experimental Design: 

The experimental designs used here followed that reported by Widdicombe 

and Needham (2007), Gazeau et al. (2007), Findlay et al. (2008), Dashfield et al. 

(2008), Munday et al. (2009) and Suwa et al. (2010) with some modifications. 

Experiments took place in a constant temperature room (C.T.R.) on the 5th floor, 

School of Biology, Newcastle University. Sterile filtered (5 µm filter) seawater was 

used throughout. Seawater was placed in three header tanks (mixer tanks) 

representing the conditions of pH and temperature predicted for three current and 

future time periods: current 2011, 2050, and 2100. Each header tank (mixer tank) 
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consisted of a plastic container (depth = 40 cm; width = 60 cm; height = 42 cm; 

volume = 80 l) filled with ~40 litres of seawater. These tanks were placed beneath the 

microcosm tanks (see Fig. 2.4) that were provided with ceramic heaters (Aquael 

Plastic Neo Heater), one or more as needed, to raise the microcosm temperature to the 

required levels. The water was aerated using an air pump (Clear Seal LP-60) 

connected to an airstone diffuser (from Aqua Medic) placed at the bottom of the tank.  

 

 

 

 

Figure 2.3  Photographs of the sites of study animal collections. A: Hartlepool 

Marina; species collected from the marine pier included Mytilus edulis and Ascidiella 

aspersa. B: Newbiggin-by-the-sea; species collected from the rocky shore included 

Mytilus edulis, Littorina littorea, and Actinia equina. (photo A and B taken by 

researcher). 

 

A B 
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A pH computer (Aqua Medic, resolution pH 0.01) was used to maintain and 

modify the pH of the seawater in the header tank (mixer tank). The system consisted 

of a pH electrode (Aqua Medic) that constantly measured and reported the pH of the 

seawater to the connected pH computer that was also connected to a carbon dioxide 

CO2 cylinder (Aqua Medic) via a solenoid valve (Aqua Medic) to control the passage 

of carbon dioxide (CO2) that would control the seawater pH. The solenoid valve was 

connected via a fine 4 mm clear plastic tube (Reefphyto Company, UK) to an airstone 

(Aqua Medic) that was placed at the bottom of the header tank and adjusted to 

provide small bubbles that allowed the gas to dissolve easily into the seawater. When 

the pH electrode senses that the pH in the header tank has increased, the electrode 

signals the pH computer to open the solenoid and allow the CO2 to be released. The 

gas flow rate was controlled using a gas bubble counter (Aqua Medic). When the 

required pH is attained, the pH computer closes the solenoid valve and stops the flow 

of CO2. The pH computer was calibrated weekly using buffers of pH 7.00 and pH 

4.00 (Aqua Medic). An air pump (Clear Seal LP-60) was used to pump atmospheric 

air into the header tank using an airstone (Aqua Medic) placed at the bottom of the 

tank. 

Approximately 20 l of seawater was pumped from each header tank to a 

microcosm (D: 40 cm; W: 80 cm; H: 25 cm; Vol: 62 l) that was placed above the 

header tanks. The water pump (Rio 3100, Powerhead) constantly pumped the 

seawater from the header tanks to the microcosms at a rate of approximately 60 l.h
-1

. 

Seawater was recycled back to the header tank via several overflows (see Fig. 2.4).  

Acidity and temperature levels in the microcosms were monitored constantly 

using a pH electrode (Pico Technology; resolution pH 0.02) and a thermistor (Pico 

Technology; 0.01 °C at 25 °C) connected to a laptop computer via an analogue–to-

digital converter (Pico Technology; DrDAQ Data Logger) (see Fig. 2.5). The laptop 

ran proprietary software (PicoLog; Pico Technology) and was used for data collection.  

Five litres of seawater of the same composition and pH as the seawater in each 

header tank was added to each header tank daily (equivalent to 25% of the total 

seawater in the header tank) up to five days a week. As the extra seawater was mixed 

with the existing seawater, a further overflow siphoned the extra seawater into a waste 

container. The new seawater was added slowly to the header tank at a speed of 
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approximately (2 l.h
-1

) to avoid any sudden changes in the acidity or temperature of 

the seawater in the system (see Fig. 2.6). 

The first system (S1) represents current levels of pH and temperature 

replicating the 2011 conditions and is designated treatment 2011 (TR 2011). The 

second and third systems (S2 & S3) represent the levels of pH and temperature 

expected to occur at the middle and end of this century (2050 & 2100), and are 

designated treatment 2050 and treatment 2100 (TR 2050 & TR 2100), respectively. 

Animals were divided randomly into three groups and initially placed in conditions 

similar to the temperature and pH conditions from which they were collected. Each 

treatment group was then acclimatised gradually over a period of of 10 to 15 days 

(Anestis et al., 2008; Anthony et al., 2008) to the temperature and pH levels required 

for each treatment (TR 2011, TR 2050 and TR 2100) (see Fig. 2.6). 

In order to be able to identify individual animals and because some of the 

animals are able to climb out of the water, animals were studied individually. Cages 

were made to separate the experimental animals that can move, such as Littorina 

littorea and Actinia equina, and to prevent them from climbing above the level of the 

seawater (see Fig. 2.7). Cages were made of non-stick mesh 33 × 40 cm (Planit 

Products Ltd., UK). These cages isolated the animals but the mesh ensured that the 

animals were still exposed to the same seawater conditions as all the other animals in 

the same treatment. Furthermore, by using mesh cages, it was possible to visually 

monitor the animals. 

Light was provided by two daylight fluorescent tubes and animals were 

exposed to 8:16 h (L:D) to simulate the winter period and 16:8 h (L:D) to simulate the 

summer period, where; L = light, D = dark, and h = hours. 
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Figure 2.4   The photograph above, which was taken in the constant temperature 

room (CTR), shows each of the three systems (S1, S2, and S3). Each system includes 

a microcosm (M) to hold the animals and is linked by tubing to the header tank (mixer 

tank) (HT). As can be seen, condensation inside the microcosms indicates that the 

tanks are completely closed. Inside each enclosure, there are cages (C) to keep the 

animals underwater, a water pump (Wp) and a manual thermometer (mT) to monitor 

the temperature of the seawater even in the event that the automated monitor system 

were disrupted (photograph by researcher). 

 

2.3 Feeding: 

The animals under study were fed five times a week on a standard marine 

aquarium diet of phytoplankton (Nannochloropsis spp.) (purchased from Reefphyto 

Company). The phytoplankton were cultured in the laboratory in large conical flasks 

(2 and 3 l) using the same seawater that was used to fill the aquaria. At the start of 

phytoplankton culture, Liquid Starter Culture Nannochloropsis (Reefphyto Company) 

 

S1 

S2 
S3 

M 

HT 

C 

Wp 

mT 
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was used to stimulate growth, and Phyto Nutrient – Modified F/2 Medium (Reefphyto 

Company) was used to provide nutrients to the algae culture during the experiments 

(see Fig. 2.8). Study animals were also fed brine shrimp (Artemia spp.). Brine shrimp 

eggs (Reefphyto Company) were hatched and grown in the laboratory using the same 

seawater source that was used to fill the aquaria. Eggs were added to the seawater in 

the ratio of 2.5 ml.l
-1

 of seawater (see Fig. 2.7). No special diet was provided to L. 

littorea, but it fed on the algae that grew in the microcosms.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Photograph shows three DrDAQ Data Loggers (Pico Technology) with a 

resolution of pH 0.02 and temperature of 0.01 °C at 25 °C (enclosed in three plastic 

containers to maintain humidity levels around the devices), connected to a Toshiba 

laptop (photograph by researcher). 
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Figure 2.6 The diagram above shows the various parts of the experimental design for 

the control treatment (TR 2011). TR 2011 represents the first system, S1, which 

includes a header tank (mixer tank) linked to microcosms by tubes. Header tanks 

include a heater, pH electrode, a water pump, an airstone for O2 bubbles, and an 

airstone for CO2 bubbles. Microcosms include cages for animals, a pH electrode, and 

a temperature thermistor. Also shown is the CO2 system, which includes a CO2 

cylinder linked to a pH computer via a solenoid valve (drawing by researcher).  

 

2.4 Care of Aquaria: 

The microcosms were cleaned weekly to remove waste and excess food by 

using a water siphon or vacuum made from 0.5 m tube (6 mm). Any dead animals 

were removed from the microcosms as soon as they were detected. All header tanks 

and microcosms were cleaned with 70% alcohol swabs and rinsed with water 

thoroughly before and after each experiment. 



25 
 

2.5 Measurement of Seawater Parameters: 

2.5.1 Acidity (pH) and Temperature: 

The pH in each header tank was measured by taking a reading every 10 

minutes using a DrDAQ Data Logger and PicoLog software (Pico Technology), 

calibrated weekly using buffers of 4.00, 7.00 and 9.21 (Aqua Medic). Temperature 

was measured every 10 minutes using a thermistor connected to the computer via a 

converter (DrDAQ Data Logger; Pico Technology). The computer ran proprietary 

software (PicoLog; Pico Technology), and was calibrated weekly using a digital 

thermometer (Aqua Medic) with an accuracy of ± 0.5 °C. See Table 2.3. 

 

2.5.2 Salinity: 

 Salinity was measured daily in the morning and before and after the addition 

of any fresh seawater by directly sampling from each microcosm using a handheld 

salinity refractometer on a scale of 0-100% (DIGI T – 100 ATC). When necessary, 

the salinity of the seawater was adjusted to (34-35 ppt) by adding some distilled water 

(Sokolova and Pörtner, 2003). 

 

 

2.5.3 Dissolved Oxygen: 

 The amount of dissolved oxygen in the microcosm seawater was measured 

daily by dipping an Oakton DO 6 Dissolved Oxygen Meter (Cole-Parmer, accuracy of 

± 0.3) electrode into the seawater for five minutes, then taking a reading.  

 

2.6  Survival: 

 Survival was calculated after the end of a period of acclimatization, as animals 

lost per day; results were calculated weekly. Mortality was determined by visual 

observation; all dead animals were removed as soon as they were identified to avoid 

any contamination of the microcosms (LeBlanc et al., 2010). Deaths of M. edulis 

were determined by noting any individuals with open shells in the absence of any 

tactile stimulation. Deaths of L. littorea were very difficult to determine by visual 

observation, so the animals checked weekly by direct examination of the aperture and 
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operculum. In A. equina, death was apparent upon the emergence of a large gap in the 

middle of the animal together with atrophy and early tissue decay (Fig 2.9). 

Animals found in this condition were immediately removed from the 

microcosm to avoid spread of detrimental microbes as the process of death can take 

several days. Deaths of A. aspersa were identified upon discovery of the animals’ 

internal organs scattered about the microcosm after an animal burst.  

The following equation was used to calculate the percentage survival over the 

experimental period of six weeks:  

SRV (%) = (NS - NE) /NS × 100;                                (2.1) 

where SRV (%) is percentage of survival, NS is initial number of animals after 

the acclimatization period at the start of week 0, and NE is the final number of 

animals at the end of week 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 The photograph shows sea anemones, Actina equina, in their separate cage, 

and shows a sea anemone trying to escape from the cage (photograph by researcher).  
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Figure 2.8   Phytoplankton and brine shrimp cultures grown in flasks (2 and 3 L) and 

using a deck lamp for light and heat (temperature range was 27 ºC – 30 ºC) 

(photography by researcher). 

 

2.7  Growth Changes: 

Individual animals were selected randomly from each species and 

measurements were carried out in the first week and then measured again in the sixth 

week (over a six-week period). 

2.7.1  Body Weight: 

Animals were removed from aquaria and placed on filter paper for three to 

five minutes to get rid of as much excess water as possible, then were weighed in 

ambient air using an open-top balance (Precisa 310M). The following equation was 

used to calculate the percentage weight change over the experimental period of six 

weeks:  
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PWG (%) = (Wf - Wi) /Wi × 100;                                 (2.2) 

where Wi is the initial body weight (g) after the acclimatization period at the 

start of week 0, and Wf is the final body weight (g) at the end of week 6.  

 

  

Figure 2.9  The two photos above illustrate the gap that appears in the centre of 

animal when individuals of A. equina  are beginning to die. 

 

2.7.2 Buoyant Weight: 

We determined buoyant weight using the method described by Davies (1989) 

with some modifications. Briefly, a small cage was hung from the bottom of a balance 

(Precisa 310M) by a small length of string. The balance was placed on a table in 

which a hole had been cut to allow the string to reach a 5 l container filled with 

seawater (see 2.10) placed below the table, and the cage was submersed in the 

seawater container without touching its bottom surface.  Each animal was then taken 

out of the microcosm, placed in the cage, and left for a period not less than four 

minutes to allow the balance reading to stabilise. Data were then recorded. Buoyant 

weight (BW) was calculated using the following equation (Jokiel et al., 1978; Ferrier-

Pages et al., 2000): 

BW (g) = Wwater / [1 - (Dwater / Dobject)]    (2.3) 

where BW is buoyant weight in g, Wwater is the weight of the sample under seawater 

(g), Dwater  is the seawater density in g.ml
-1

, and Dobject is the mean sample density in 

g.ml
-1

. 
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The percentage of buoyant weight change (PBWR) is ultimately calculated 

using the following equation: 

 PBWR % = [(Wf - Wi)/ Wi] x 100     (2.4) 

where PBWR is percentage buoyant weight %, Wf is final buoyant weight, and 

Wi is initial buoyant weight. 

 

 

Figure 2.10   Apparatus used to measure buoyant weight. A: sensitive balance 

(Precisa 310M); B: table with a hole (not visible) for the string to pass through; C: a 5 

l container filled with seawater. Inside the container is a small cage to put the animals 

in for weighing. The cage is attached to the balance by a string and the cage does not 

rest on the bottom of the seawater container (personal photograph). 

 

A 

B 

C 
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Measurement of weight underwater was performed because buoyant weight is 

neutralized by the weight of water and mucus in the body (Jokiel et al., 1978; 

Rodrigues and Grottoli, 2006) and thus gives more accurate measurements of growth. 

This method was also used to determine calcification in calcified marine 

invertebrates, because most of the weight changes in calcified marine invertebrates 

are due to increased exoskeletal mass and are thus effective measures of calcification 

(Bucher and Harrison, 2000). Also, in calcified marine invertebrate changes 

measurement of morphological parameters (e.g. shell length and mass) one of 

methods to calculate the calcification (Findlay et al., 2009b).  

2.7.3 Morphometric analyses: 

Morphometric analyses of the animals were performed over a six-week period 

using a digital calliper. For M. edulis, shell lengths and widths were measured, while 

for L. littorea and A. aspersa, only the length measurements were taken (see Fig. 

2.11). Body lengths in A. equina were not measured because the structure and size of 

these animals depends on the amount of water flowing through their bodies, which is 

constantly changing. 

The following equation was used to calculate the percentage body length change over 

the experimental period of six weeks:  

PL (%) = (Lf - Li) /Li × 100                                        (2.5) 

where PL (%) is percentage body length change, Li is the initial body length 

(mm) after the acclimatization period at the start of week 0, and Lf is the final body 

length (mm) at the end of week 6. Further, the following equation was used to 

calculate the percentage body width change over the experimental period of six weeks:  

PWd (%) = (Wdf - Wdi) /Wdi × 100                                 (2.6) 

where PWd (%) is percentage body width change, Wdi is the initial body 

width (mm) after the acclimatization period at the start of week 0, and Wdf is the final 

body length (mm) at the end of week 6. 
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2.8  Metabolic Rates: 

Metabolism rates were measured after the six-week experimental period using 

closed-system respirometry (Edmunds et al., 2011). Briefly, each animal was placed 

in a 50 ml container with a lid and left for around 15 minutes to acclimate 

(Christensen et al., 2011). The container was filled with seawater and left under the 

water to make sure that there were no air bubbles. The container was then slowly and 

carefully closed with Parafilm
TM

 (Edmunds et al., 2011) and replaced in the original 

microcosm to maintain the temperature. After around 2 hours (the actual duration of 

each experiment having been recorded), 1.5 ml of seawater was removed using a 2.5 

ml syringe fitted with a needle. The needle was then removed (to minimise air 

bubbles) and water was injected gently into the measuring chamber and allowed to 

settle, then the reading was recorded. One of the sample containers contained only 

seawater, for which the rate of oxygen consumption was recorded after the same time 

period as for the experiment. Then the oxygen consumption rate (VO2) was calculated 

as suggested (Zhang et al., 2012) using the following equation: 

VO2 (mgO2.g
-1

.h
-1

) = (Co – Ct) V / (WW.T)   (2.6) 

   

where OCR is the oxygen consumption rate, Co is the oxygen content in the 

blank bottles, Ct is the oxygen content in the animal bottles (mgO2.L
-1

), WW is the 

wet weight of the animal in (g), T is the duration of time the animal remained in the 

container in (h), and V is the volume of water in the bottle (l). The oxygen meter was 

calibrated before and after each series of measurements. A volume of 1–1.5 ml of 

aerated water was placed in the measuring chamber for calibration, then 1-1.5 ml of a 

solution of sodium sulphite was placed in the measuring chamber until the oxygen 

meter reading reached zero, and thus calibration was complete. The oxygen content of 

the distilled aerated water and the oxygen content of the seawater in the microcosm at 

the start of the experiment were recorded. 

 

2.9  Storage of Samples: 

At the end of the experimentation period, the animals were weighed and then 

placed in 60 ml plastic containers with a screw cap (VWR, UK) and were placed in 

the freezer at -80 ºC for subsequent analysis. 
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2.10  Freeze-drying:  

 All samples for analysis of body composition, were freeze-dried (Kerr et al., 

1982; Pierson and Stack, 1988; Speakman, 2001). Animals were placed in open 

plastic containers that were placed in the freeze dryer (MODUL YOD Freeze Dryer, 

Thermo Electron Corporation). After confirming that no leakage was occurring, the 

samples were dried for 48 hours.  

 

 

 

 

 

 

 

 

 

 

Figure 2.11    Diagrams of the morphometric parameters of the animals (A and B 

refer to length and width for M. edulis, and C and D refer to length for A. aspersa and 

L. littorea, respectively) that were recorded. The arrows indicate the locations of the 

measurements that were taken. Images were taken from (Campbell and Nicholls, 

1977). 

 

2.11  Body Composition Analysis: 

2.11.1  Water Content: 

 The percentage total water content of the total body mass was calculated after 

the six-week experimental period by calculating the difference between the weight of 

C  

 

A  B  

 

D  
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the sample before freeze-drying and the weight of the sample after freeze-drying, 

using the following equation:  

 PTW (%) = (Wair – Wdry) / Wair × 100     (2.7) 

where PTW is the percentage total water content (%), Wair is body weight before 

dehydration (g), and Wdry is body weight after dehydration (g). 

2.11.2  Dry weight: 

The whole body weights and total body masses after freeze-drying of animals 

were determined, including both soft tissues and shells of calcified organisms, or only 

soft tissue for non-calcified organisms. Percentage dry weight (DW) values at the end 

of the six-week period were calculated from the data using the following equation: 

DW (%) = Wdry / Wair × 100      (2.8) 

where DW is percentage dry weight (%), Wdry is body weight after 

dehydration (g), and Wair is body weight before dehydration (g).   

2.11.3  Shell weight: 

 This measurement was taken only for calcified animals (M. edulis and L. 

littorea). Shell weight was determined after the six-week experimental period by 

separating the soft tissue from the hard tissue (shell) then weighing hard tissue and 

soft tissue separately. Percentage shell weight of the total dry weight was calculated 

using the following equation: 

 SHW (%) = DW / ShW × 100     (2.9) 

where SHW is the percentage shell weight (%), ShW is shell weight (g), and 

DW is total dry weight (g). 

2.11.4  Soft Tissue Weight: 

All soft tissue weights including gonads, so dry weight is similar to soft tissue 

weight in non-calcified marine invertebrates. In calcified marine invertebrates the soft 

tissue weight of total body mass was determined after the six-week experimental 

period by separating the soft tissue from the hard tissue (shell) and then weight of 
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hard tissue and soft tissue separately. Then was calculated by using the following 

equation: 

 STW (%) = STW(g) / DW(g) × 100     (2.10) 

where STW(%) is presented percentage soft tissue weight change; STW(g) is 

presented soft tissue weight (g) and DW is presented dry weight of total body mass 

(g).  

2.11.5  Lipid Content: 

 The lipid content of only dried total (including gonads) soft tissue was 

measured after the six-week experimental period using a Soxhlet apparatus 

(Speakman, 2001) (see Fig. 2.12).  

 Analytical procedure: 

Each sample was weighed (whole animal for non-calcified marine invertebrates 

and without shell for calcified marine invertebrates) before being put into a cellulose 

thimble. The samples were kept in place with a small plug of cotton wool. The 

thimble containing the sample was then placed into the extraction tube. Solvent 

(petroleum ether) was then added to the system (about 90 ml in a 100-ml flask). The 

solvent within the flask was heated using a hot plate until it boiled slowly. Solvent 

vapours condensed when they reached the condenser coils and dripped slowly into the 

extraction tube containing the thimble, bathing the thimble and sample in hot 

petroleum ether. When the solvent in the extraction tube reached a particular level, the 

solvent was siphoned back into the boiling flask. The solvent was then reheated and 

the cycle was repeated over a total period of approximately 4 h. The thimble 

containing the sample was then removed from the extraction tube and placed in a 

drying oven at a temperature of 70 ºC for 8–10 hours to completely evaporate the 

solvent. After drying, the sample was weighed and the fat content was determined by 

calculating the difference between the dry mass of the animal before extraction and 

the dry mass of the animal after extraction. The percentage fat content was calculated 

using the following equation: 

 PFC = (DMdry – DMextr.) / DMdry × 100    (2.11) 
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where PFC is percentage fat content (%); DMdry is dry weight before 

extraction (g), and DMextr. is dry weight after extraction (g). 

 

 

 

Figure 2.12 Diagram showing the various components of the Soxhlet apparatus 

(Speakman, 2001). 

 

2.11.6  C:N Ratio: 

 C:N ratios were determined after the six-week experimental period, on only 

dried soft tissue,  using a vario MACRO Cube CN Analyser (Elementar) linked to a 

computer. Briefly, these methods are based on combustion in an oxygen atmosphere 

and post-combustion analysis of samples in a reduction tube in the furnace of the 

analyser. Samples of 0.1 g are placed into the analyser, which determines C and N 
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content of combustion products by gas chromatography. Results are obtained in terms 

of carbon mass, nitrogen mass, and the C:N ratio.  

 

2.12 Determination of Temperatures and pH Levels for Treatments: 

 While both air and ocean temperatures are expected to increase in the future, 

ocean temperatures are predicted to increase by less than half the anticipated increase 

in air temperatures (Brown and McLachlan, 2002). This study focuses on the 

physiological changes likely to result in coastal marine invertebrates that inhabit the 

marine tidal zone under future environmental conditions predicted to include higher 

temperatures and [CO2]. Because the natural surface-water habitat of these 

invertebrates is in direct contact with the air, and global average air temperatures will 

vary only slightly from the ocean surface temperatures (Gruber, 2011), monitoring 

water temperatures and average air temperatures in the northeast of England, as 

recorded on the website of the UK Met Office (http://www.metoffice.gov.uk/) was 

necessary for the present study. Average water temperatures of the North Sea during 

the course of the year range from 18 ºC in the summer to 3 ºC in the winter (Wiltshire 

and Manly, 2004). Data from the Met Office website was used to determine typical 

temperatures during the winter and the summer for the control treatments (TR 2011) 

based on the average temperatures for the past 30 years (1981–2010) (see Fig. 2.13 

and Fig. 2.14). We found that the temperatures ranged from 4 ºC to 5 ºC in winter and 

from 14 ºC to 15 ºC in the summer along the northeastern coast of the UK. Air 

temperatures are predicted to have increased from 4 ºC to 6 ºC by 2100 (IPCC, 2007), 

as the best estimate of the worst-case scenario (A1F1) in the present study. 

Temperatures were calculated to determine the expected temperature ranges in 2050 

and 2100 (see Table 2.3). 

The pH levels to be used in the experimental procedures were determined 

according to Turley and Findlay, (2009) (adapted from (Turley et al., 2006) using data 

from Pearson and Palmer (2000), with a range of ± 0.5 units for each treatment). In 

2011, pH of seawater in the study region was predicted to be between 8.00 and 8.10, 

so for the purpose of our experiment, pH was adjusted to 8.05 (see Table 2.3). These 

figures agree with those predicted by (Harrould-Kolieb and Savitz, 2009), which 
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indicated that under a ‘business-as-usual’ greenhouse gas emissions scenario, pH 

would have decreased to 8.09, decreased further to between 7.91 and 7.97 by 2050, 

and to 7.78 by 2100. Similarly Fabry et al. (2008), predicted that ocean pH would 

range between 8.05 and 8.06 by 2010, between 7.91 and 7.92 for 2050, and between 

7.76 and 7.74 by 2100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 The map above shows the 30-year mean temperature winter average from 

1981–2010 in degrees Celsius (ºC) (Met Office website). The circle indicates the 

region from which samples were collected and experiments were conducted. 
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Figure 2.14 The map above shows the 30-year mean temperature summer average 

from 1981–2010 in degrees Celsius (ºC) (Met Office website). The circle refers to the 

region from which samples were collected and the experiments were conducted. 
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Table 2.3   Three treatments are presented: current (TR 2011) represents the control, 

while the conditions expected for the middle of this century (TR 2050) and the end of 

the century (TR 2100) represent estimates for pH and temperature based on 

predictions from a wide range of previous publications, a target pH range of ± 0.5 

units for the present study.  

 TR 2011 TR 2050 TR 2100 

Predicted temperature; 

Experimental temperature  (winter)  

4 °C–5 °C; 

4.7 °C 

6.2 °C–6.9 °C; 

6.4 °C 

8.5 °C–10.5 °C; 

8.7 °C 

Predicted temperature; Experimental 

temperature (summer)  

14 °C–15 °C; 

14.8 °C 

16.2 °C–16.9 °C; 

17.0 °C 

18.5 °C–20.5 °C; 

19.2 °C 

Predicted pH; Experimental pH 

(winter and summer)  

8.00–8.10; 

8.05 

7.87–7.97; 

7.84–7.90 

7.73–7.83; 

7.65–7.75 

 

 

2.13  Statistics: 

The IBM SPSS Statistics 21 predictive analytics software was used to perform 

the statistical analyses. All percentage data (body weight change, body length change, 

body width change, buoyant weight change, dry weight (and conversely, water 

content), soft tissue weight, shell weight, and lipid content) were converted to 

proportional positive data and then arc-sine square-root transformed (Dytham, 2011). 

C:N ratio and VO2 (respiration rate) data were square-root or log transformed. Tests 

for normal distribution were performed using a Shapiro-Wilk's test, then homogeneity 

of variances were assessed using Levene's test. When data were normally distributed 

and homogeneous (equal variances), variation between treatments was tested using 

one-way ANOVA and specific differences were identified using the post hoc 

Scheffe's test. When normality tests indicated that data were non-normally distributed 

or that variances were heterogeneous, the non-parametric Kruskal-Wallis test was 

used to perform one-way analysis of variance, and if positive, the Mann-Whitney U 

test was then used to test for differences between specific treatments. An Excel 

program was used to create graphics from the data. 
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Chapter 3. Effect of Elevated Temperature and Reduced pH on Four 

Marine Invertebrates in Winter 

 

Abstract: 

Increased human activities and the associated increased emissions have led to 

higher atmospheric concentrations of CO2, a greenhouse gas that contributes to rising 

ocean surface temperatures and acidity due to absorbed CO2. The present study 

investigated the effects of higher ocean temperature and acidity by subjecting four 

marine invertebrate species (two calcified and two non-calcified) to the climatic 

conditions expected to occur during winter in 2050 and 2100. After being given two 

weeks to adapt to the experimentally altered climatic conditions, animals were 

exposed over six weeks to lower ph and higher temperatures predicted to occur later 

in this century. Survival and growth parameters based on body weight changes, 

morphometric changes, buoyant weight changes, and dry weights were assessed 

during the experimental period. The calcified invertebrates (both sedentary and 

mobile species) were able to survive and grow, albeit at a lower rate, under the higher 

temperatures and lower pH predicted for the future. Increased survival rates but 

slower growth rates were observed in the sea anemone Actinia equina, a semi-motile, 

non-calcified invertebrate, suggesting that future conditions may be favourable to this 

species. However, in the case of the sea squirt, Ascidiella aspersa (a non-calcified, 

sessile invertebrate), there was a significant increase in mortality under the higher 

temperatures and water acidity. These results indicate that each species is likely to 

respond to environmental changes in different ways. Calcified animals, such as 

Mytilus edulis and Littorina littorea, might be able to buffer the effects of increased 

acidity on their shells through increased ion regulation, facilitated by increased 

temperature elevating their metabolic rates (see Chapter 4). In the long term, such a 

strategy could only be maintained by increased food consumption to fuel an increased 

metabolic rate, which may not be sustainable. Surprisingly, the greatest effects of 

elevated temperature and decreased pH were seen in non-calcified invertebrates, in 

particular A. aspersa, which may not be able to regulate its body fluids to adapt to 

these environmental changes.  
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3.1   Introduction: 

The average global ocean temperature has been increasing since at least 1976, 

especially during the winter (Stachowicz et al., 2002). This amounts to an increase of 

0.13 ºC per decade because of continuing increases in atmospheric [CO2]. Disastrous 

consequences are predicted if global temperatures rise by 2 ºC relative to the period 

before the industrial revolution if atmospheric [CO2] in the reaches an expected 450 

ppm by the middle of this century (Brierley and Kingsford, 2009). If CO2 

concentrations reach 710 ppm (pH = 7.8) in 2100 (Walther et al,. 2009) a temperature 

increase of more than 4 ºC could occur (IPCC, 2007). According to Portner and Knust 

(2007), at the end of this century the temperature of the North Sea could increase by 

3.9 ºC. Temperatures in the North Sea range between 3 ºC and 6 ºC in the winter, and 

between 15 ºC and 18 ºC in the summer, with an annual average of 10.4 ºC (Sokolova 

and Portner, 2003). This means that if expected temperatures reach 9.9 ºC in the 

winter, although still below the annual average temperature, the temperature would be 

close to temperatures characteristic of spring.  

Animal populations in the North Sea already suffer due to increased 

temperatures (Portner et al., 2001) and will continue to do so upon exposure to low 

pH in the future. Usually, low winter temperatures reduce animal nutrition and 

biomechanical strength. Therefore, in winter they rely more on food reserves such as 

stored lipid to produce energy (Findlay et al., 2009a). Because the body temperatures 

of ectotherm marine invertebrates fluctuate depending on the temperature of the 

surrounding environment, these animals are strongly affected by changes in 

temperature (Brierly and Kingsford, 2009). Increased temperatures may negatively 

affect species’ biological processes and survival (Harley et al., 2006), because higher 

temperatures lead to increased metabolic processes and consumption of larger 

amounts of stored lipids. With the limited availability of food during the winter, the 

continuation of this process for too long may lead to decreased levels of vital protein, 

which may promote mortality (Barnes et al., 1963; Findlay et al., 2009a). 

Overwintering populations usually are the basis of breeding in the spring and summer 

months, so the exposure of animals to heat stress during this period (winter) could 

have serious implications for their survival, and even those that survive must then 

have enough energy reserve to continue to growth into adults and perform their vital 

reproductive role through the following months (Lischka et al., 2011). For example, 
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Mytilus edulis begins to form gametes during the winter in preparation for spawning, 

which occurs during the spring and summer (Zagata et al., 2008). If the temperature 

rises to a sufficient degree in the spring the process of spawning is stimulated by the 

rise in temperature and food availability (Christian et al., 2010). Also, gonads of the 

marine snail Littorina littorea mature from winter to early spring, as spawning takes 

place from winter through the end of spring (Christian et al., 2010). In addition to its 

impact on the timing of regeneration, the change in seawater temperatures in the 

winter warmer years may also affect the rate of survival (Ruiz et al., 1999; Pappal, 

2010). Alitta virens also shifts from responses expected during the winter to those 

responses during the summer due to increased temperatures (Godbold and Solam, 

2013). 

 Expected increases in temperatures will be combined with expected decreases 

in pH due to continuing increased emissions of CO2 into the atmosphere. The 

phenomenon of ocean acidification (OA) is expected to continue and will likely affect 

growth and mortality in addition to particular effects on calcified organisms that will 

find it difficult to form and maintain structures made of calcium carbonate (Raven, 

2005). Many studies of the synergistic effects of high temperature with low pH have 

been carried out, for example in Echinometera lacunter, in which decreased 

calcification in winter compared to summer, and low buoyant weights similar to the 

levels expected for winter conditions in 2100 were found (Courtney et al., 2013; 

Uthicke et al., 2014). Also, exposure to low pH and high temperatures led to a 

decrease in the rate of calcification in the coral species Lophelia pertusa (Maier et al., 

2009), similar to that observed in the coral Acropora longicyathus (Bucher and 

Harrison, 2000). Combined higher temperature and lower pH also resulted in 

decreased shell weight in the foraminifera Ammonia tepida (Dissard et al., 2010). 

Furthermore, there were synergistic and negative effects of higher temperatures and 

lower pH on the rate of survival in the barnacle (Findlay et al., 2009a) and petropod 

(Lischka et al., 2011). In M. edulis the growth rate and the length of the shell 

decreased in the winter (Melzner et al., 2011). However, Landes and Zimmer (2012) 

showed that the marine snails L. littorea were better able to build their shells in 

response to the presence of a predator at high temperature and low pH. But Melatunan 

et al., (2013) found decreased percentage increase in shell length in L. littorea under 

exposure to both low pH and high temperature. In coralline algae, combined high 
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temperature and low pH cause necrosis and death of the algae (Martin and Gattuso, 

2009).  

In contrast, little is known about the responses of non-calcified marine 

invertebrates to higher temperatures and lower pH (Suggett et al., 2012) due to 

current research bias towards calcified organisms (Connell and Russell, 2010; Suggett 

et al., 2012). For example, a synergistic effect of increased temperature and decreased 

pH had a positive effect on the abundance of some seaweeds, and the biomass of algal 

turfs doubled (Connell and Russell, 2010). 

 In the following chapter, the effects of higher winter temperatures and lower 

pH resulting from expected future increases in [CO2] on the mortality and growth of 

calcified and non-calcified marine invertebrates will be investigated. 

 

3.2   Methods: 

In this chapter the species under study (M. edulis, L. littorea, A. equina, and A. 

aspersa) were exposed to the increased temperatures and decreased pH levels 

expected in the future. Animals were collected and taken directly to the laboratory, 

and were cleaned. All 4 species were held together in the same microcosm, at a 

temperature of 4 ºC – 5 ºC at the same pH as the water in which they were found. The 

next day, the animals were divided randomly into three separate microcosms. Each 

microcosm contained a group of animals representing all four species of marine 

invertebrates under study. The numbers of animals of each species in the microcosm 

depended on the total number of animals that had been collected in the previous day. 

The temperature was gradually raised and the pH gradually lowered to levels expected 

in the future in the second microcosm (TR 2050) and the third (TR 2100) microcosm 

48 h after animals were collected. The temperature in each experimental microcosm 

was increased at a rate of 0.5 ºC every two days, and the pH was decreased at a rate of 

0.02 units per day and animals were held under these conditions for two weeks to 

acclimatze the animals. All measurements started after the end of this point. This 

point was called the (APEP) Acclimatization Period End Point. The control 

experiments were conducted in the winter under the conditions expected for the 



44 
 

winter in the period from 01 February 2012 to 28 March 2012, and from 24 

September 2012 to 22 November 2012 (Table 3.1).  

A total of 12 individuals of each species were used to measure wet weight, 

buoyant weight, metabolism, and dry weight under each treatment. In addition, body 

length was measured to M. edulis, L. littorea and A. aspersa, and body width was 

measured only in M. edulis. All animals in this set of experiments were used to 

determine percent survival. Some individuals of A. equina had to be removed from 

the microcosms when a large gap formed in their center before they were completely 

dead to avoid contaminating the microcosm as they decayed. Table 3.2 explains the 

numbers of samples of each species used for parameters measured in these two 

experiments. However, in some instances, fewer than 12 animals were studied due to 

reduced survival. 

Table 3.1  Dates of collections and experimental periods for winter experiments. 

Experiment No. Collection date Experimental period 

1 01 February 2012 01 February – 28 March 2012 

2 24 September 2012 24 September – 22 November 2012 

 

 

After the completion of each experiment, some of the samples were prepared 

for analysis of protein contents, calorimetry, and histology (see Appendices) of the 

animals under study. Some samples were also preserved at -80 ºC until needed for 

future studies. 

 

Table 3.2  Numbers of samples used for parameters measured in the winter condition 

experiments for the species under study.  

Parameters Treatments 

 TR 2011 TR 2050 TR 2100 

 M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. 

No. of animals at start 84 66 53 102 81 69 46 97 78 63 49 89 

No. of animals at end 84 66 34 98 68 67 34 63 71 62 35 16 

No. of animals survivinga 84 66 53 102 81 69 46 97 78 63 49 89 

Body weight 12 12 12 14 12 12 12 9 12 12 11 4 

Body length 12 12 --- 14 12 12 --- 9 12 12 --- 4 

Body width 12 --- --- --- 12 --- --- --- 12 --- --- --- 

Buoyant weight 12 12 12 14 12 12 12 9 12 12 11 4 

Dry weight 6 5 6 6 6 5 5 5 6 6 6 2 

Here, 
a
 is the number of animals used to calculate survival, M.e. refers to M. edulis, 

L.l. refers to L. littorea, A.e. refers to A. equina, and A.a. refers to A. aspersa. 
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3.2.1   Seawater Parameters: 

This study was designed to investigate the potential impacts of climate change 

from combined high temperature and low pH, so three sets of treatments were used. 

The control group was maintained at the levels of temperature (4.7 ± 0.2) and the pH 

(8.05 ± 0.07) surrounding the animals when they were collected. As this study is 

examining the effects of future conditions forecast for 2050 and 2100, the temperature 

was raised and the pH was lowered in each treatment. The temperatures were raised 

by 6.4 ±0.2 ºC and 8.7 ±0.24 ºC for 2050 and 2100 treatments, respectively, and pH 

was decreased to 7.9 ±0.06 and 7.75 ±0.07 units, respectively. The salinity was 

maintained at levels normal at Newbiggin-by-the-Sea (35 ppt) and Hartlepool (34 

ppt), so salinity averages settled at 36.1 ±1.08% for the control group for year 2011 

(TR 2011), at 36.0 ±1.18% for the middle of this century (TR 2050), and at 35.9 

±1.11% for the end of this century (TR 2100). Dissolved oxygen (O2) in the water 

was maintained at greater than 95% for all treatments to ensure an abundant supply, 

as a lack of oxygen will affect the physiological processes. Seawater parameters of 

temperature, salinity, and dissolved oxygen (O2) were measured daily during the 

experiments (Table 3.3). 

Table 3.3  Seawater chemistry parameters during the winter condition experiments 

under control and future treatment conditions treatments (Mean ± S.E.). 

Treatment  Temperature (°C) Salinity (ppt) pH  O2 (%) 

TR 2011 4.7 (±0.20) 36.1 (±1.08) 8.05 (±0.07) 97.4 (±1.40) 

TR 2050 6.4 (±0.20) 36.0 (±1.18) 7.90 (±0.06) 97.3 (±1.60) 

TR 2100 8.7 (±0.24) 35.9 (±1.11) 7.75 (±0.07) 96.8 (±1.74) 

 

After the acclimatisation period, any dead animals were removed from the 

microcosms and counted daily starting from the third week until the eighth week 

(during the six-week experimental period) (for more about methods see Chapter 2).  
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3.3  Results: 

3.3.1  Survival: 

Survival did not differ significantly for M. edulis, L. littorea, or A. equina 

among treatments, but did differ among treatments for A. aspersa (² = 51.60, df = 2, 

p = 0.05). A pairwise comparison was used to determine which treatments differed in 

A. aspersa,  Chi-square test for binomially distributed data TR 2011 compared with 

TR 2050, p = 0.018; TR 2011 compared with TR 2100, p < 0.01; and TR 2050 

compared with TR 2100, p < 0.01). Figures 3.1, 3.2, 3.3, and 3.4 show the changes in 

percent survival for all species under study. 

Table 3.4  Percentage survival of four species under different treatments over a six-

week period. 

Species 
TR 2011 TR 2050 TR 2100 

n Survival % n Survival % n Survival % 

M. edulis 84 100 81 84 78 91 

L. littorea 66 100 69 97 63 98 

A. equina 53 64 46 74 49 71 

A. aspersa 102 96 97 65 89 18 

 

 

Figure 3.1   Percentage survival of M. edulis over a six-week experimental period for 

all treatments. The experimental treatment TR 2011 is represented by blue diamonds, 

TR 2050 is represented by red squares, and TR 2100 is represented by green triangles.  

APEP represents the acclimatisation period end point. 
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Figure 3.2   Percentage survival of L. littorea over a six-week experimental period for 

all treatments. The experimental treatment TR 2011 is represented by blue diamonds, 

TR 2050 is represented by red squares, and TR 2100 is represented by green triangles. 

APEP represents the acclimatisation period end point. 

 

 

 

Figure 3.3  Percentage survival of A. equina over a six-week experimental period for 

all treatments. The experimental treatment TR 2011 is represented by blue diamonds, 

TR 2050 is represented by red squares, and TR 2100 is represented by green triangles. 

APEP represents the acclimatisation period end point. 
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Figure 3.4   Percentage survival of A. aspersa over a six-week experimental period 

for all treatments. The experimental treatment TR 2011 is represented by blue 

diamonds, TR 2050 is represented by red squares, and TR 2100 is represented by 

green triangles. APEP represents the acclimatisation period end point. 

3.3.2  Body weight change, Size change, Buoyant weight change, and Dry Weight 

Parameters: 

M. edulis: 

Data for body weight change, body length change, body width change, and 

buoyant weight change were not normally distributed, according to a Shapiro-Wilk's 

test. So, a non-parametric Kruskal-Wallis test was used to determine whether there 

were any significant treatment effects. A Mann-Whitney U test was then used post 

hoc to test for significant differences between treatments (Table 3.5). However, data 

for dry weight was normally distributed and treatments were compared by one-way 

ANOVA (Table 3.6). 
 

Table 3.5  Statistical analysis of body weight change, body length change, body width 

change, and buoyant weight change in M. edulis. 

 Normality test Treatment comparison 

 Shapiro-Wilk's test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body weight 0.815 36 0.001 0.662 2 0.718 

Body length 0.836 36 0.001 4.236 2 0.120 

Body width 0.919 36 0.012 5.497 2 0.064 

Buoyant weight 0.920 36 0.013 7.222 2 0.027 
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Table 3.6   Statistical analysis of dry weight in M. edulis. 

 ANOVA test Normality test Homogeneity test 

Parameter One-way Shapiro-Wilk's test Levene's test 

 n F p Statistic df p Statistic p 

Dry weight 18 0.027 0.973 0.955 18 0.505 1.867 0.189 

 

There were no significant differences in the body weight change, body length 

change; body width change, or dry weight of M. edulis over the six-week period 

between three treatments (see Table 3.5 and Table 3.6). However, there was a 

significant difference in the buoyant weight change between TR 2011 compared with 

TR 2050 (p = 0.008) according to the Mann-Whitney U test. 

 

Table 3.7  Mean percentage (%) ± standard error (SE) for parameters measured in M. 

edulis. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change 6.33 ±2.90 2.69 ±1.66 4.66 ±1.95 

Body length change 1.51 ±0.52 0.28 ±0.38 0.14 ±0.12 

Body width change 0.92 ±0.53 -0.51 ±0.91 0.40 ±0.23 

Buoyant weight change 7.84 ±1.82 1.56 ±2.64 6.14 ±1.95 

Dry weight 49.78 ±3.47 48.77 ±3.05 50.02 ±4.96 

 

 

 

Figure 3.5  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body weight change in M. edulis at  six weeks.  
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Figure 3.6  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body length change in M. edulis at six weeks. 

 

 

 

Figure 3.7  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body width change in M. edulis at six weeks. 
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Figure 3.8  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) buoyant weight change in M. edulis at six weeks. 

 

 

 

Figure 3.9  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) dry weight in M. edulis at the end of the experiment. 
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L. littorea: 

A Shapiro-Wilk's test indicated that data for body length change was not 

normally distributed. So, the non-parametric test Kruskal-Wallis was used to 

determine whether there were any significant treatment effects (Table 3.8). However, 

body weight change, buoyant weight change, and dry weight were normally 

distributed, so treatments for those parameters were compared with one-way ANOVA 

(Table 3.9). 

 

Table 3.8  Statistical analysis of body length change in L. littorea. 

 Normality test Treatment comparison 

 Shapiro-Wilk's test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body length 0.930 36 0.026 3.918 2 0.141 

 

Table 3.9  Statistical analysis of body weight change, buoyant weight change, and dry 

weight in L. littorea. 

  ANOVA test Normality test Homogeneity test 

Parameter One-way Shapiro-Wilk's test  Levene's test  

 n F p  Statistics df p  Statistics p  

Body weight 36 0.128 0.880 0.978 36 0.678 1.632 0.211 

Buoyant weight 36 0.303 0.740 0.951 36 0.109 3.270 0.051 

Dry weight 16 0.545 0.593 0.918 16 0.158 0.113 0.894 

 

There were no significant differences in the all parameters measured in L. 

littorea over a six-week period among the three experimental treatments (see Table 

3.8 and Table 3.9). 

Table 3.10  Mean percentage (%) ± standard error (SE) for parameters measured in L. 

littorea. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change 2.62 ±0.70 1.82 ±1.05 2.18 ±1.46 

Body length change 0.13 ±0.08 -0.14 ±0.17 -0.02 ±0.08 

Body width change --- --- --- --- --- --- 

Buoyant weight change 2.13 ±0.83 1.49 ±0.96 3.01 ±2.03 

Dry weight 80.69 ±1.60 78.51 ±1.71 80.14 ±1.25 
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Figure 3.10  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body weight change in L. littorea at six weeks. 

 

 

 

 

Figure 3.11  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body length change in L. littorea at six weeks. 
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Figure 3.12  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) buoyant weight change in L. littorea at six weeks. 

 

 

 

 

Figure 3.13  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) dry weight of L. littorea at the end of the experiment. 
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A. equina: 

Shapiro-Wilk's tests indicated that data for body weight change, buoyant 

weight change, and dry weight were not normally distributed. Therefore, a non-

parametric test Kruskal-Wills test was used to determine whether there were any 

significant treatment effects. Then the Mann-Whitney U test was used post hoc to test 

for significant differences between treatments (Table 3.11).  

 

Table 3.11  Statistical analysis of body weight change, buoyant weight change, and 

dry weight in A. equina. 

 Normality test Treatment comparison 

 Shapiro-Wilk's test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body weight 0.815 36 0.001 10.460 2 0.005 

Buoyant weight 0.920 36 0.013 0.673 2 0.714 

Dry weight 0.866 17 0.019 0.295 2 0.863 

 

 

There were no significant differences in buoyant weight change over six 

weeks or dry weight at the end of the experiment in A. equina between these three 

treatments (see Table 3.11 and Table 3.12). However, there was a significant 

difference in body weight change between TR 2011 and TR 2050 (p = 0.001) 

according to the Mann-Whitney U test. 

Table 3.12  Mean percentage (%) ± standard error (SE) for parameters measured in A. 

equina. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change 4.41 ±6.94 -28.43 ±4.74 1.12 ±18.17 

Body length change --- --- --- --- --- --- 

Body width change --- --- --- --- --- --- 

Buoyant weight change -6.12 ±8.58 -6.73 ±5.26 -4.69 ±4.45 

Dry weight 19.73 ±2.32 20.45 ±0.51 20.18 ±1.38 
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Figure 3.14  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body weight change of A. equina at six weeks. 

 

 

 

Figure 3.15  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) buoyant weight change in A. equina at six weeks. 
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Figure 3.16  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) dry weight of A. equina at six weeks. 

 

A. aspersa: 

A Shapiro-Wilk's test indicated that data for dry weight was not normally 

distributed. Therefore, the non-parametric test Kruskal-Wallis test was used to 

determine whether there were any significant treatment effects (Table 3.13). Body 

weight change, body length change, and buoyant weight change were normally 

distributed, so treatment effects for those parameters were compared using one-way 

ANOVA (see Table 3.14). Scheffe's method was used post hoc to test for significant 

differences between treatments. 

 

Table 3.13   Statistical analysis of body weight change, body length change, buoyant 

weight change, and dry weight in A. aspersa. 

 ANOVA test Normality test Homogeneity test 

Parameter One-way Shapiro-Wilk's test  Levene's test  

 n F p  Statistics df p  Statistics p  

Body weight 27 8.895 0.001 0.977 27 0.793 1.295 0.292 

Body length 27 4.078 0.030 0.954 27 0.272 0.458 0.638 

Buoyant weight 27 2.446 0.108 0.972 27 0.666 0.361 0.701 

Dry weight 13 0.457 0.646 0.881 13 0.074 2.906 0.101 
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There were no significant differences in the buoyant weight change over the 

six-week experimental period or in dry weight at the end of the experiment in A. 

aspersa between these three treatments (see Table 3.13). However, there were 

significant differences in body weight change between TR 2011 and TR 2050 (p = 

0.002), and in body length change between TR 2011 and TR 2050 (p = 0.040) 

according to the Mann-Whitney U test. 

 

 

Table 3.14  Mean percentage (%) ± standard error (SE) for parameters measured in A. 

aspersa. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change -31.79 ±4.44 -56.25 ±3.67 -50.48 ±4.48 

Body length change -8.53 ±2.09 -18.37 ±3.31 -8.36 ±3.42 

Body width change --- --- --- --- --- --- 

Buoyant weight change -18.44 ±6.29 -40.17 ±8.37 -34.98 ±11.25 

Dry weight 6.63 ±0.92 5.61 ±0.65 5.56 ±0.02 

 

 

 

 

 

 

Figure 3.17  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body weight change in A. aspersa at six weeks. 
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Figure 3.18  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) body length change in A. aspersa at six weeks. 

 

 

 

 

Figure 3.19  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) buoyant weight change in A. aspersa at six weeks. 
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Figure 3.20  Effect of increased temperature and decreased pH on mean percentage 

(with SE bar) dry weight in A. aspersa at the end of the experiment. 

 

3.4  Discussion: 

3.4.1  Effect of Experimental Conditions on M. edulis: 

These results and previous studies (Findlay et al., 2009b; Ries et al., 2009) 

show the complex differential responses of calcified coastal benthic organisms to low 

pH coupled with high temperatures expected to occur in the oceans at the middle and 

end of this century. Mytilus edulis mortality was very low (Table 3.4, Fig. 3.1), and 

under all treatments there were low levels of growth and calcification (Figs. 3.5, 3.6, 

3.7 and 3.8), and no significant differences among treatments (Table 3.5), except 

under TR 2050, in which there was a significant decrease in buoyant weight change (p 

= 0.008). These results show that exposure to predicted future conditions will have a 

negative impact on mussels and lead to reduced calcification (1.56 ±2.64%, Table 

3.7). However, these changes did not appear to result in severe damage to these 

organisms (Appelhans et al., 2012). The results of the present study illustrate the 

conflicting results to date regarding the sensitivity of Mytilus edulis to future levels of 

temperature and pH (Landes and Zimmer, 2012). The slower growth observed under 

TR 2050 and TR 2100 (Fig. 3.5) may be due to reduced metabolic rates as the result 

of decreased oxygen consumption under exposure to high [CO2] (Michaelidis et al., 
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2005), or it could be an adaptive response to overcome and resist the stress imposed 

by surrounding conditions (Findlay et al., 2009b). 

3.4.2  Effect of Experimental Conditions on L. littorea: 

This study also revealed that Littorina littorea displays a high capacity for 

survival (Table 3.4, Fig 3.2), similar to some other marine snails, as mortality did not 

exceed 5% (Comeau et al., 2009; Eklöf et al., 2012). Likewise, no statistically 

significant differences were found for weight or length changes, or in calcification 

(Table 3.8 and 3.9) compared with the control treatment (TR 2011) (similar to Bibby 

et al., 2007). Thus, these species of intertidal organisms are apparently able to adapt 

to and survive under predicted future changes in pH levels and temperatures. There 

were no significant differences in body or buoyant weights between treatments in any 

live snails (Fig. 3.10). However, there were conflicting results in terms of how the 

snail shells were affected by the increased temperature and acidification (Fig. 3.12). 

Although the length of the animal (shell length) decreased (Fig. 3.11), we found an 

increase in buoyant weight change under TR 2100 compared to TR 2011 conditions 

(Fig. 3.12). This could indicate concomitant building and dissolution of the shell. For 

example, (Melatunan et al., 2013) showed that exposure to expected future levels of 

temperature and pH resulted in changes to the morphological characteristics of the 

shell. This could indicate loss of the shell on the one hand (dissolution) and rebuilding 

of the carbon structure on the other hand as reflected by increased buoyant weight, 

which supports the observations of Findlay et al. (2009b) who also observed an 

exchange between the building and the dissolution of shell. While acidification did 

not prevent Littorina littorea from undergoing increased calcification, there may be 

considerable dissolution of the shell. Increased calcification, especially under TR 

2100 conditions (3.01 ±2.03%, Table 3.10), was greatest under the highest 

temperatures and levels of carbon dioxide (CO2), which may indicate that these 

marine molluscs are still able to produce calcium carbonate (CaCO3) under even 

unfavourable conditions. Such calcification under these conditions may be a reaction 

to the increased dissolution of the shells. In other words, it might be explained as a 

trade-off between calcification and dissolution (Findlay et al., 2009b). 
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3.4.3  Effect of Experimental Conditions on A. equina: 

Sea anemones (Actinia equina) were able to survive when exposed to 

predicted future climate conditions (Table 3.4, Fig. 3.3) in these experiments. 

However, although there were no statistically significant differences in survival, these 

organisms may be able to adapt to the new conditions of higher temperature and lower 

pH. Body weight change increased over the six-week period under TR 2011 

conditions (Fig. 3.10), but this increase was no longer apparent under TR 2050 

conditions. Also, buoyant weight decreased in all treatments, reflecting decreased 

growth (Fig. 3.15). Survival was greatest under the TR 2050 conditions, but growth in 

terms of buoyant weight change and body weight change was lowest under that 

treatment. This could mean that the sea anemones are attempting to redistribute 

energy consumption to the maintenance and repair of body’s cells, rather than to 

increased growth during adaptation and survival under the new environmental 

conditions. In any case, there were no statistically significant differences between any 

treatments (Table 3.11), except for body weight between TR 2011 and TR 2050 (p = 

0.001). These results also support the findings of (Kroeker et al., 2010) that there no 

statistically significant effects of ocean acidification on the growth of non-calcified 

non-invertebrate marine organisms (e.g. fish, multicellular algae, and seagrass). 

Furthermore, some Cnidarian species increase in abundance and size in more acidic 

environments (Suggett et al., 2012). Although this Cnidarian species may tolerate 

higher temperatures and lower pH conditions in the oceans in the near future, 

exposure to low temperatures over the long term may negatively affect survival in A. 

equina. 

3.4.4  Effect of Experimental Conditions on A. aspersa: 

Calcified invertebrates differ in their responses to high temperatures and low 

pH levels. Similarly, considerable variation in response to these conditions has also 

been noted. Higher temperatures and increased acidity appear to have a significant 

negative impact on the ability of Ascidiella aspersa to survive (Table 3.4). Mortality 

rose linearly in proportion to increased temperature and [CO2] levels Fig. 3.4), 

indicating a direct effect of both factors on the physiology of these invertebrates, to 

which they were not able to adapt and maintain viability. Under TR 2100 conditions, 

these sea squirts suffered from a significant increase in the number of deaths, reaching 
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a mortality rate of 82%. This result is contrary to the results of Dupont and Thorndyke 

(2009) who noted an increase in the survival rate upon lowering the pH by 0.4 units. 

Under TR 2050 the mortality rate reached 45%, combined with significantly 

decreased weight and length, which reflect lower metabolism and redirection of 

energy towards the maintenance and repair of cells and survival. A non-significant 

reduction in buoyant weight change (Fig. 3.19) was observed (F = 2.446, p = 0.108, 

Table 3.14).  

The paucity of research on the response of filter-feeding, sessile invertebrates 

in the class Ascidiacea to near-future climate changes prevented any clear 

comparisons with similar or related species. Such sessile and filter-feeding organisms 

may experience strongly negative effects due to seawater conditions resulting from 

expected future climate changes. Responses to lower pH are direct as the animals are 

forced to take in water upon feeding, which could quickly lead to a pH imbalance 

inside the cells. Without an easy mechanism to rebalance pH, such as by shell 

dissolution, these organisms experience increased mortality. 

 

3.5  Conclusion: 

This study of four species of coastal marine animals showed that calcified 

organisms were able to cope with the rising temperatures and lower pH conditions in 

the sea expected in the near future slightly better if they are motile calcified organisms 

(L. littorea) rather than sedentary calcified organisms (M. edulis). These climate 

changes also appeared to be less adverse for the non-calcified sedentary invertebrates 

(A. equina) that succeeded in adapting to and surviving these conditions. In contrast, 

negative effects of acidification and temperature increases were observed for other 

non-calcified sessile invertebrates (A. aspersa), as reflected clearly in their 

substantially increased mortality.  
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Chapter 4. Effects of elevated temperature and decreased pH on the 

Body Composition of four Common British Marine Invertebrates in 

winter 

 

Abstract:  

It is predicted that increasing temperatures will continue in the North Sea 

+4ºC during this century coinciding with a decrease in pH level to -0.4 units. This is 

on account of continuing emissions of CO2 in the atmosphere resulting from the 

continued burning of fossil fuels because of anthropogenic emissions. Negative 

effects are also expected as regards biological activity in coastal marine invertebrates. 

Most research has a bias towards calcified marine invertebrates. Therefore, this study 

investigated the effects expected in the middle and end of this century on calcified 

marine invertebrates and non-calcified marine invertebrate. Four marine invertebrates 

(Mytilus edulis, Littorina littorea, Actinia equina and Ascidiella aspersa) were 

exposed to levels expected from the high temperatures and low pH in the future for a 

period of six weeks following two weeks of acclimatizion. At the end of the study 

period, the water content, somatic weight, shell weight (of calcified marine 

invertebrates), fat content, carbon/nitrogen ratio (C:N ratios) and the metabolic rates 

of organisms were measured. It was observed that the calcified and non-calcified 

invertebrates recorded no statistical significance in most measurements, however the 

study found significant positive results in the metabolic rate of L. littorea (mobile) at 

levels expected in 2100. Positive statistical significance numbers were also observed 

in the same species’ C:N ratios, which were at levels expected in 2050. In addition, L. 

littorea recorded the best ratio of survival, while non-calcified invertebrates did not 

improve their ability of survival. These results indicate that each species enjoys 

particular personal way with a potential to adapt or not adapt to climatic conditions 

which are expected in the near future. This highlights the need for further study of the 

expected effects of these climatic changes on non-calcified invertebrates. 
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4.1  Introduction: 

The results of the previous chapter (Chapter 3) showed variations in the 

growth and survival of the species under study to the different treatments. This 

chapter attempts to contribute to the clarification of the relationship between the 

effects of the interaction of the common factors of high temperature and low pH as a 

result of increased CO2 in the seawater. Investigating metabolic rates may offer an 

explanation about the costs of maintaining or increasing calcified carbon structures. It 

may also be that the cost of growth or maintenance of the cells increases the chances 

of survival in the species under study. Adults feed on a minimum amount and do not 

use a lot of energy to grow in the winter (Findlay et al., 2009a). According to Melzner 

et al. (2011) winter is an important factor as regards reducing the rate of filtering 

seawater 34% less than that of the summer in M. edulis. The report by Sanford (2002), 

lent support by stating that colder temperatures lead to reduced food consumption, 

and substantially affect the feeding rates, however the growth change was balanced by 

the lower costs of metabolism. Growth may be a result of the adoption of the food 

reserve (fat stores) (Findlay et al., 2009a), thus intertidal animals under winter 

temperatures usually continue to feed, grow and be active (Sokolova and Portner, 

2003). The temperature of the bodies of marine ectotherms fluctuate dependant on the 

temperature of the surrounding environment (North Sea surface water temperatures 

range from 3 to 6 in winter), due to critical metabolic adjustments in response to 

changes in temperature (Sokolova and Portner, 2003). It has been noted that, in 

winter, many seawater molluscs experience a reduced level of activity and feeding 

due to depression of metabolic rates (Sokolova and Portner, 2003). Temperature 

control for determining the time of spawning is important to reproduction and growth 

of species, which need more energy and an abundance of food to increase the ability 

of metabolic rate. For example: mussels begin spawning in the spring until the end of 

the summer due to increased temperatures and the availability of food (Nagarajan et 

al., 2006). Gamete production usually commences in late autumn and early winter and 

this process will continue throughout the winter months (Gray et al., 1997). 

Increasing temperatures and the availability of food cause the spawning to begin. 

Temperatures may increase in winter to rates close to those in early spring, this may 

lead to a phenological shift and an increase in metabolic rates. It is clear that staying 

healthy during the winter is important for completion of the life cycle of organisms 
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and continuation of reproduction. Experiments carried out by Rodolfo-Metalpa et al. 

(2009) demonstrated that an increase in temperature to 3 ºC in the winter leads to 

stimulation of the coral metabolism. This study will also offer a contribution as 

regards clarifying the physiological effects on sessile organisms  which may arise due 

to the high levels of CO2 and temperature in the winter, as little is known about the 

response of this species of coastal marine invertebrates in future changes to increased 

temperature and decreased pH level (Findlay et al., 2009a). 

 

4.2 Methods: 

The methods in this chapter are similar to those previously mentioned in 

chapter 3, however the measurements in this chapter concerned the water content, 

somatic weight (including gonads), lipid content, C:N ratio and metabolic rate. Table 

4.1 explains the numbers of samples used in the measurements of the two experiments 

together for each species (see Chapter 2 and 3 for additional information). 

 

Table 4.1  Numbers of samples applicable for the measurements of the experiments in 

winter for species under study.  

Parameter Treatments 

 TR 2011 TR 2050 TR 2100 

 M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. 

Water content 6 5 6 6 6 5 5 5 6 6 6 2 

Somatic weight 6 5 6 6 6 5 5 5 6 6 6 2 

Shell weight 6 5 --- --- 6 5 --- --- 6 6 --- --- 

Lipid content 6 5 6 6 6 5 5 5 6 6 6 2 

C:N ratio 9 6 9 9 9 5 8 9 9 4 6 7 

Metabolic rate 10 12 12 12 12 12 12 12 12 12 11 8 

Where M.e. refers to M. edulis, L.l. refers to L. littorea, A.e. refers to A. equina and 

A.a. refers to A. aspersa. 
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4.3 Results: 

4.3.1 Body composition analysis and metabolic rates: 

M. edulis: 

 A Shapiro-Wilk tests showed normal distribution of C:N ratio and lipid 

content but the homogeneity test were not equal. The non-parametric test Kruskal-

Wallis test was used to compare treatment means (Table 4.2). Content of water, soft 

tissue weight, shell weight, and metabolic rate were normally distributed and 

treatments were compared with one-way ANOVA (Table 4.3). Scheffe's method was 

applied post hoc to test the significance between the treatments. 

Table 4.2  Statistical analysis of C:N ratio and lipid content of M. edulis. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-Square df p value 

Lipid content
a
 0.969 18 0.777 1.059 2 0.589 

C:N ratio
 b 

0.959 27 0.354 4.328 2 0.115 
a 

Lipid content tested by Kruskal-Wallis test because the test for homogeneity of 

variances was significant (p = 0.038). 
b 

C:N ratio tested by Kruskal-Wallis test because the test for homogeneity of variances 

was significant (p = 0.004). 

 

Table 4.3  Statistical analysis of content of water, soft tissue weight, shell weight and 

metabolic rate of M. edulis. 

 Treatment comparison Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Content of water 18 0.027 0.973 0.955 18 0.505 1.867 0.189 

Soft tissue weight 18 0.154 0.858 0.899 18 0.054 0.090 0.915 

Shell weight 18 0.154 0.858 0.899 18 0.054 0.090 0.915 

Metabolic rate 34 6.489 0.004 0.958 34 0.209 0.941 0.401 

 

 There were no significant differences in the content of water, soft tissue 

weight, shell weight, lipid content and C:N ratio of M. edulis at the end of the 

experiments (see Table 4.2 and Table 4.3). However, when the Mann-Whitney U test 

was used there was a significant difference in the metabolic rate between TR 2011 vs 

TR 2100 (p = 0.011) and between TR 2050 vs TR 2100 (p = 0.024). 
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Table 4.4  Mean percentage (%) ± standard error (SE) of M. edulis for each parameter 

measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 50.22 ± 3.47 51.23 ± 3.05 49.98 ± 4.96 

Soft tissue weight 7.00 ± 1.92 6.46 ± 1.70 5.61 ± 1.78 

Shell weight 93.00 ± 1.92 93.54 ± 1.70 94.39 ± 1.78 

Lipid content 14.03 ± 3.21 12.71 ± 1.61 11.45 ± 1.45 

C:N ratio 4.21 ± 0.07 3.88 ± 0.15 4.03 ± 0.05 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.38 ± 0.04 0.47 ± 0.08 0.39 ± 0.08 

 

 

 

 

 

Figure 4.1   Effect of increased temperature and decreased pH level on the mean 

percentage water content (±SE) in M. edulis at the end of the experiment. 
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Figure 4.2   Effect of increased temperature and decreased pH level on the mean 

percentage soft tissue weight (±SE) in M. edulis at the end of the experiment. 

 

 

 

 

Figure 4.3   Effect of increased temperature and decreased pH level on the mean 

percentage shell weight (±SE) in M. edulis at the end of the experiment. 
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Figure 4.4   Effect of increased temperature and decreased pH level on the mean 

percentage lipid content (±SE) in M. edulis at the end of the experiment. 

 

 

 

 

Figure 4.5   Effect of increased temperature and decreased pH level on the mean 

percentage C:N ratio (±SE) in M. edulis at the end of the experiment. 
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Figure 4.6   Effect of increased temperature and decreased pH level on the mean 

oxygen consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in M. edulis at the end of the 

experiment. 

 

L. littorea: 

A Shapiro-Wilk test showed normal distribution of content of water, soft 

tissue weight, shell weight, lipid content, C:N ratio and metabolic rate, and treatments 

when compared with one-way ANOVA (Table 4.5). Scheffe's method was used post 

hoc to test significance between the treatments.  

Table 4.5  Statistical analysis of content of water, soft tissue weight, shell weight, 

lipid content, C:N ratio and metabolic rate of L. littorea. 

 Treatment comparison Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Content of water 16 0.545 0.593 0.918 16 0.158 0.113 0.894 

Soft tissue weight 16 1.102 0.361 0.991 16 1.00 2.748 0.101 

Shell weight 16 1.102 0.361 0.991 16 1.00 2.748 0.101 

Lipid content 16 0.773 0.482 0.905 16 0.098 0.157 0.856 

C:N ratio
 

15 7.617 0.007 0.932 15 0.296 1.706 0.223 

Metabolic rate 36 6.297 0.005 0.980 36 0.748 1.004 0.377 
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There were no significant differences in the content of water, soft tissue 

weight, shell weight and lipid content of L. littorea at the end of the experiments (see 

Table 4.5). However, there were significant differences in the C:N ratio between TR 

2011 vs TR 2050 (p = 0.007) and the metabolic rate between TR 2011 vs TR 2100 (p 

= 0.006) when using Scheffe's method. 

Table 4.6  Mean ± standard error (SE) of L. littorea for each parameter measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 19.32 ± 1.60 21.49 ± 1.71 19.86 ± 1.25 

Soft tissue weight 6.26 ± 1.24 5.05 ± 0.29 4.41 ± 0.77 

Shell weight 93.74 ± 1.24 94.95 ± 0.29 95.59 ± 0.77 

Lipid content 11.38 ± 1.91 11.83 ± 1.98 9.24 ± 0.98 

C:N ratio 4.01 ± 0.07 4.67 ± 0.19 4.33 ± 0.08 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.43 ± 0.05 0.56 ± 0.04 0.63 ± 0.04 

 

 

  

 

Figure 4.7   Effect of increased temperature and decreased pH level on the mean 

percentage content of water (±SE) in L. littorea at the end of the experiment. 
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Figure 4.8   Effect of increased temperature and decreased pH level on the mean 

percentage soft tissue weight (±SE) in L. littorea at the end of the experiment. 

 

 

 

 

Figure 4.9  Effect of increased temperature and decreased pH level on the mean 

percentage shell weight (±SE) in L. littorea at the end of the experiment. 
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Figure 4.10  Effect of increased temperature and decreased pH level on the mean 

percentage lipid content (±SE) in L. littorea at the end of the experiment. 

 

 

 

Figure 4.11   Effect of increased temperature and decreased pH level on the mean 

percentage C:N ratio (±SE) in L. littorea at the end of the experiment. 
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Figure 4.12   Effect of increased temperature and decreased pH level on the mean 

oxygen consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in L. littorea at the end of the 

experiment. 

 

A. equina: 

A Shapiro-Wilk test showed a non-normal distribution of content of water and 

soft tissue weight. A non-parametric test Kruskal-Wallis test was used to compare 

treatment means (Table 4.7). The C:N ratio and metabolic rate were normally 

distributed and treatments were compared with one-way ANOVA (Table 4.8). 

Table 4.7  Statistical analysis of the content of water, soft tissue weight and lipid 

content of A. equina. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-Square df p value 

Content of water 0.866 17 0.019 0.295 2 0.863 

Soft tissue weight 0.866 17 0.019 0.295 2 0.863 

Lipid content
a
 0.945 17 0.383 0.413 2 0.813 

a 
Lipid content tested by Kruskal-Wallis test because test of homogeneity of variances 

was significant (p = 0.024). 
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Table 4.8  Statistical analysis of C:N ratio and metabolic rate of A. equina. 

 Treatment comparison Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

C:N ratio 23 0.199 0.821 0.953 23 0.339 0.050 0.952 

Metabolic rate 35 2.102 0.139 0.955 35 0.161 0.313 0.733 
 

There were no significant differences in all measurements of A. equina at the 

end of the experiments (see Table 4.7 and Table 4.8).  

Table 4.9  Mean percentage (%) ± standard error (SE) of A. equina for each 

parameter measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 80.27 ± 2.32 79.55 ± 0.51 79.82 ± 1.38 

Soft tissue weight 19.73 ± 2.32 20.45 ± 0.51 20.18 ± 1.38 

Lipid content 12.91 ± 1.26 14.44 ± 1.65 11.45 ± 2.19 

C:N ratio 4.43 ± 0.06 4.43 ± 0.05 4.48 ± 0.06 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.33 ± 0.09 0.51 ± 0.25 0.72 ± 0.20 

 

 

 

 

Figure 4.13   Effect of increased temperature and decreased pH level on the mean 

percentage content of water (±SE) in A. equina at the end of the experiment. 
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Figure 4.14   Effect of increased temperature and decreased pH level on the mean 

percentage soft tissue weight (±SE) in A. equina at the end of the experiment. 

 

 

 

 

Figure 4.15   Effect of increased temperature and decreased pH level on the mean 

percentage lipid content (±SE) in A. equina at the end of the experiment. 
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Figure 4.16   Effect of increased temperature and decreased pH level on the mean 

percentage C:N ratio (±SE) in A. equina at the end of the experiment. 

 

 

 

 

Figure 4.17   Effect of increased temperature and decreased pH level on the mean 

oxygen consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in A. equina at the end of the 

experiment. 
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A. aspersa: 

Shapiro-Wilk tests showed t normality distributed of content of water, soft 

tissue weight, lipid content, C:N ratio and metabolic rate. Treatments were compared 

with one-way ANOVA (Table 4.10). 

Table 4.10  Statistical analysis of content of water, soft tissue weight, lipid content, 

C:N ratio and metabolic rate of A. aspersa. 

 Treatment comparison Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Content of water 13 0.457 0.646 0.881 13 0.074 2.906 0.101 

Soft tissue weight 13 0.457 0.646 0.881 13 0.074 2.906 0.101 

Lipid
 
content 13 1.054 0.384 0.961 13 0.770 3.630 0.065 

C:N ratio 25 0.174 0.841 0.948 25 0.228 2.404 0.114 

Metabolic rate 32 0.909 0.414 0.974 32 0.609 1.601 0.219 

 

There were no significant differences in all measurements of A. aspersa at the 

end of the experiments (see Table 4.10).  

Table 4.11  Mean percentage (%) ± standard error (SE) of A. aspersa for each 

parameter measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 93.37 ± 0.92 94.39 ± 0.65 94.44 ± 0.02 

Soft tissue weight 6.63 ± 0.92 5.61 ± 0.65 5.56 ± 0.02 

Lipid content 6.47 ± 0.72 6.59 ± 0.50 8.86 ± 2.85 

C:N ratio 5.13 ± 0.31 5.18 ± 0.19 5.30 ± 0.10 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.26 ± 0.03 0.24 ± 0.02 0.30 ± 0.06 
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Figure 4.18   Effect of increased temperature and decreased pH level on the mean 

percentage content of water (±SE) in A. aspersa at the end of the experiment. 

 

 

 

Figure 4.19   Effect of increased temperature and decreased pH level on the mean 

percentage soft tissue weight (±SE) in A. aspersa at the end of the experiment. 
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Figure 4.20   Effect of increased temperature and decreased pH level on the mean 

percentage lipid content (±SE) in A. aspersa at the end of the experiment. 

 

 

 

 

Figure 4.21   Effect of increased temperature and decreased pH level on the mean 

percentage C:N ratio (±SE) in A. aspersa at the end of the experiment. 
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Figure 4.22   Effect of increased temperature and decreased pH level on the mean 

oxygen consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in A. aspersa at the end of the 

experiment. 

 

4.4 Discussion: 

4.4.1 Effects on M. edulis: 

The measurements did not show any statistically significant change between 

the various treatments of M. edulis, apart from significant differences in the metabolic 

rate (F = 6.489, p = 0.004, Table 4.3, Fig. 4.6). There were significant increases in the 

rate of oxygen consumption in the medium treatment (TR 2050) compared to the two 

other treatments TR 2011 (p = 0.011) and TR 2100 (p = 0.024). In Chapter 3 it was 

shown that the medium treatment (TR 2050) recorded the lowest body weight change 

and buoyant weight change, together with the highest mortality rate 16%, compared 

with 0% for the control treatment and 9% for TR 2100. It is clear that mussels made a 

major effort to use the energy resulting from metabolic processes for restoration and 

maintenance. They also used reduced rates of growth and calcification as a 

physiological reaction to mitigate the negative effects which could arise due to 

increased temperatures and high levels of ocean acidification. These results confirm 

the findings of Melzner et al. (2011) that there are no significant differences in soft 

tissue weight and shell weight. This study also concurred with Thomsen and Melzner 
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(2010) and Thomsen et al. (2010) that there is no significant difference in soft tissue 

weight of M. edulis. 

4.4.2 Effects on L. littorea: 

The results for L. littorea showed an increase in the metabolic rate which was 

directly proportional to increases in temperature and decreased pH levels (Fig. 4.12). 

This increase was a significant rise in TR 2100 (p = 0.006) compared with that of the 

control. When these results were compared, as noted in Chapter 3, it is clear that this 

rise in metabolism also led to an increase in calcification in TR 2100. This coincides 

with a reduction in soft tissue weight and lipid content in TR 2100 (Fig. 4.8 and 

4.10). This decrease may be explained as a successful attempt by L. littorea to resist 

the changing environmental conditions from the increase in temperature and levels 

of acidification of seawater. A slight reduction of growth was accompanied by an 

increase in calcification but with a high cost to compensate for the decay of the shell 

(Findlay et al., 2009b). This adaptation resulted in the maintenance of low mortality 

rates that did not exceed 2%; the first death was recorded in the fifth week of the 

experiment. These results show that L. littorea has a high potential to adapt to new 

circumstances and to make changes in the mechanism of energy expenditure 

appropriate to the physiological changes required to maintain the vitality of the cells. 

On the other hand, a decrease in soft tissue weight and lipid content were observed 

(Table 4.6), although they were not significant (Table 4.5). Nevertheless, the 

increased use of lipid content for vital maintenance could lead to a decrease in the 

vital protein that can promote death (Barnes et al., 1963; Findlay et al., 2009a) in the 

long term.  

The findings were similar to those of Eklof et al. (2012) that there was no 

significant difference in the percentage of water content for every treatment. The 

results of this study contradict the results obtained by (Melatunan et al., 2011), 

possibly because they conducted their experiments at temperatures higher than those 

used in this study. The study’s findings contrasted with the conclusions made by 

Melatunan et al. (2013) that exposure to the future dual factors of heat and acidity 

may disrupt metabolism, which could be on account of exposing the animals to 

temperatures up to 20° C. This may confirm that reactions to acidification and rising 

temperatures are different and complex, not only because of the different species of 
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organisms and rates and durations of exposure, but also due to reactions which vary 

by seasons of the year or even by months. It can be concluded, that the marine snail 

L. Littorea managed to cope with the surrounding environmental conditions in 

various ways, either by increasing calcification or by reducing growth and directing 

more energy to vital maintenance operations. This offers evidence of its ability to 

adapt to the temperature and acidification levels expected during this century, 

without which there would be a serious threat of extinction. 

4.4.3 Effects on A. equina: 

A. equina’s results showed no significant differences between the 

measurements of the different treatments (Tables 4.7 and 4.8). These results support 

the Chapter 3 discussion, in which it was stated that there were no significant 

differences among treatments. Metabolic levels did not show significant differences 

but rose proportionally in accordance with the increases in temperature and 

decreased pH levels (Fig. 4.17). Sea anemones did not reduce their metabolism as an 

adaptation strategy but in future treatments their metabolic rates increased, which led 

to a very slight increase in soft tissue weight compared with the control treatment 

(Fig. 4.14). In view of the results obtained in the previous chapter, it was found that 

growth was significantly lower in the medium treatment (TR 2050). This indicates 

that the sea anemone reduced growth changes whilst increasing metabolic rates as a 

reaction to the increased levels of acidification and temperature. This resulted in a 

reduction in mortality rates for future treatments compared with the control 

treatment. The study found that TR 2100 produced an increased metabolism and 

lower growth changes, resulting in a survival rate of 71% and adaptation to the 

surrounding circumstances. No death cases were recorded after the fourth week. The 

same process and results occurred in TR 2050, however, in TR 2050, the metabolic 

rate was slightly lower, and the growth change was clearly reduced compared with 

TR 2100. In spite of these changes, TR 2050 had the highest survival rate, at 74%, 

and did not record any cases of mortality in the sixth week. An increase in somatic 

weight due to rising temperature and CO2 levels was recorded by Widdicombe and 

Needham (2007). All of these results may be interpreted as responses which may be 

slightly positive to the extent that it eventually led to reduced mortality rates in 
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future treatments compared with the control, with taking in account that the minor 

differences were not statistically significant. 

4.4.4 Effects on A. aspersa: 

In A. aspersa the soft tissue weight decreased in TR 2050 and TR 2100 

compared with TR 2011 (Table 4.11, Fig. 4.19). This decline was accompanied by 

an increase in the content of lipid (Fig. 4.20), especially in treatment expected at the 

end of this century (8.86 ± 2.85%, Table 4.11). The same changes occurred with the 

rate of oxygen consumption but were not statistically significant (F = 0.909, p = 

0.414, Table 4.10). This rise in metabolism could not build and repair cells and soft 

tissues, so it had a negative impact on the significant increase in the proportion of 

survival which did not exceed 18% (Chapter 3). On the other hand, there was a slight 

decrease in metabolism in TR 2050 (0.24 ± 0.02, Table 4.11) which coincided with a 

small decline in soft tissue weight (5.61 ± 0.65%). In the third chapter, the presence 

of significant fall in body weight change and a clear reduction in buoyant weight 

change compared to the control was noted. In spite of these changes, the survival 

rate was 65% (Chapter 3). This result indicates that TR 2050 used the strategy of 

reducing metabolism and growth and directing more energy to be spent on the 

restoration and maintenance of cells in order to lower the mortality rate as much as 

possible. This strategy may have succeeded when compared to the mortality rate in 

TR 2100. This strategy is known to be adaptive and may be useful in the short term, 

but long-term use could have negative effects on living organisms (Widdicombe and 

Needham, 2007). This major damage found in the future treatments conflicted with 

the expectations of some studies (e.g., Connell and Russell, 2010) that rising 

temperature and acidity levels expected in the future would have a positive effect on 

non-calcified marine invertebrates, and on A. aspersa in particular (Dupont and 

Thorndyke, 2009). 

 

4.5 Conclusion: 

A study of four species of coastal marine animals showed that body 

composition analyses which measured calcified invertebrates reactions to different 

climate conditions did not significantly disrupt metabolism rates or reduce soft tissue 
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weight. However, the results discussed in the previous chapter make clear the 

difficulty and complexity of interpreting the various reactions of different organisms 

to climate change. The previous results also show that, responses to different 

biological measurements varied within a single species of marine invertebrates. 

Calcified organisms (L. littorea and M. edulis) could cope better with the expected 

near-future climatic conditions of rising temperatures and lower pH levels in the 

ocean. It was also noted that these climate changes did not prevent (A. equina) from 

successfully adapting and biological maintaining its survival. By contrast, very bad 

effects arose on non-calcified (A. aspersa) from acidification and the expected rise in 

temperature in the mid and late 21
st
 century (2050 and 2100).  
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Chapter 5. The Effects of Decreased pH level and increased 

Temperature on Four Common British Marine Invertebrates in 

summer 

 

Abstract:  

Increases in global temperatures and ocean acidification are predicted to have 

a significant impact on coastal marine invertebrate organisms. In order to understand 

the effects that these environmental changes will have on marine organisms, four 

species of marine invertebrates (two calcified and two non-calcified) were exposed to 

the climatic conditions expected to prevail in 2050 and 2100. Animals under study 

were gradually adapted over two weeks to the levels of acidity and temperatures 

predicted for 2050 and 2100, and were then held under those conditions for a further 

six weeks. During the study period, the mortality rate was monitored as well as the 

body weight, body morphometrics, buoyant weight, and dry weight. The calcified 

invertebrates were observed to be able to survive and grow, albeit at a lower rate than 

under control conditions. Increased survival but slower growth was observed in the 

sea anemone Actinia equina (non-calcified invertebrate), suggesting that future 

warmer, more acidic conditions may be favourable to this species. Also, there was no 

significant increase in mortality at the higher temperatures and lower pH in the case of 

the sea squirt Ascidiella aspersa (a non-calcified, sessile invertebrate). These results 

indicate that each species is likely to respond to environmental changes in different 

ways. Calcified animals, such as Mytilus edulis and Littorina littorea, may be able to 

mitigate the effects that decreased pH may have on their shells through an increase in 

ion regulation, which might be facilitated by increased temperature through elevation 

of the metabolic rate (see Chapter 6). Such an enhanced metabolic rate could probably 

only be maintained through an increase in food consumption, this may not be 

sustainable in the long term.  
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5.1  Introduction: 

Under warmer temperatures in the spring months that then reach a maximum 

in the summer when food is plentiful, the adult organisms begin to regain full 

physiological activity and increase growth rates. The combined effects on four species 

of coastal marine invertebrates of increased temperature and decreased pH at the 

levels expected during the summer at mid-century in 2050 (+0.2 pH, +2 °C) and at the 

end of this century in 2100 (+0.4 pH, +4 °C) will be investigated in this study. Several 

previous studies (e.g. Berge et al., 2006; Gazeau et al., 2007) have shown negative 

effects of ocean acidification on the growth of some calcified organisms such as M. 

edulis. In contrast, some other research has shown enhanced growth in M, edulis 

under higher pCO2 (Thomsen et al., 2010). On the other hand, there was no response 

to lower pH in growth of M. edulis in the study conducted by Ries et al. (2009), 

although the same study reported a decrease in the degree of calcification in L. 

littorea. Such expected decreases in pH due to elevated [CO2] coincide with the 

expected increase in average temperatures in the troposphere in the future. Many 

researchers have studied the combined effects of elevated temperature and decreased 

pH on many marine invertebrates and observed some negative effects. For example, 

Martin and Gattuso (2009) noticed decreased calcification and increased necrosis and 

mortality of coralline algae under higher temperature and lower pH. According to 

Maier et al., (2009) both increased temperature and decreased pH cause reductions in 

coral calcification. Lischka et al., (2011) recorded an increase in the mortality rate of 

a pteropod species Limacina helicina after exposure to high temperature and low pH. 

Climate has changed and likely will continue to change; the 21st century has been 

characterized by the creation of significant new and conditions that are harmful to 

marine organisms (Brierley and Kingsford, 2009).  

In general, different species of organisms differ in their ability to adapt to 

temperature variation (Peck et al., 2004). Continuation of the rise in temperatures due 

to climate change will be the most difficult challenge for ectothermic organisms. This 

temperature increase may reduce the scope of growth, and under certain temperatures 

animal activity would stop and they would be unable to perform biological functions 

(Levinton, 2009). Temperatures affect the rates of physiological processes of aquatic 

ectothermal organisms (Hochachka and Somero, 2002; Bolton and Havenhand, 2005) 

and will likely have a negative impact on survival in marine organisms (Harley et al., 
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2006). These expected changes in the physical and chemical properties of seawater 

will determine which among extant calcified and non-calcified marine invertebrates 

will survive in the future. Competition within the same habitat, such as between A. 

aspersa and M. edulis, which both feed by filtering seawater, will likely become more 

intense. Species with a greater capacity to acclimate to the new environmental 

conditions in the future will be able to dominate the habitat and displace other species. 

5.2  Methods: 

The methods described in this chapter follow the methods reported in Chapter 

2 and Chapter 3, with some adjustments. For example, species and parameters 

measured were the same, but the date of collections and temperatures differed. The 

two experiments in this chapter were conducted under artificial summer conditions 

from 01 February 2012 to 28 March 2012 and from 24 September 2012 to 22 

November 2012 (Table 5.1). Animals were collected and taken directly to the 

laboratory, and were cleaned. All four species (Mytilus edulis, Littorina littorea, 

Actinia equina, and Ascidiella aspersa) were held together in the same microcosm, at 

a temperature of 14-15 °C and current pH level (see Chapter 2). Table 5.2 explains the 

numbers of samples used to measure parameters in both experiments for each species. 

However, sometimes the final number of replicates was less than 12 due to reduced 

survival. 

Table 5.1  Dates of collections and experimental periods for summer condition 

experiments. 

Experiment No. Collection date Experimental period 

1 24 May 2012 24 May – 17 July 2012 

2 19 July 2012 19 July – 13 September 2012 

 

 

After the completion of each experiment, some of the samples were prepared 

for the detection of protein contents, histology (see Appendices) and test energy in the 

animals under study. However, some samples were preserved at -80 °C until needed 

for future studies. These contingencies explain why not all the available samples were 

used for the current set of experiments. 
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Table 5.2  Numbers of samples used for summer condition measurements of 

parameters for the species in this study.  

Parameters Treatments 

 TR 2011 TR 2050 TR 2100 

 M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. 

Start No. 71 102 53 33 71 108 50 37 78 106 46 40 

End No. 64 98 53 5 56 100 50 6 61 95 46 9 

No. of Individuals 

Survivinga 
71 102 53 33 71 108 50 37 78 106 46 40 

Body weight 12 12 12 4 11 11 12 3 12 11 12 2 

Body length 12 12 --- 4 11 11 --- 3 12 11 --- 2 

Body width 12 --- --- --- 11 --- --- --- 12 --- --- --- 

Buoyant weight 12 12 12 4 11 11 12 3 12 11 12 2 

Dry weight 5 5 5 3 5 5 5 3 5 5 5 3 

Above, 
a
 is the number of animals used to calculate survival, M.e. refers to M. edulis, 

L.l. refers to L. littorea, A.e. refers to A. equina, and A.a. refers to A. aspersa. 

  

 

5.2.1  Seawater Measurements:  

This study was designed to investigate the potential combined impacts of high 

temperatures and low pH levels together, as could result from climate change, so three 

sets of treatments were used. The control treatment comprised an ambient temperature 

of 14.8 ±0.13 °C and pH of 8.05 ±0.14. As this study is examining the potential future 

impacts of conditions forecast for 2050 and 2100, the temperature was raised and the 

pH level was lowered in the treatment tank. The experimentally applied temperatures 

were 17.0 ±0.20 °C or 19.2 ±0.20 °C, and the experimental pH was 7.84 ±0.11 or 7.65 

±0.08 for, respectively. The salinity was kept at the level normal for Newbiggin-by-

the-Sea (35 ppt) and for Hartlepool (34 ppt), so salinity averages were 36.3 ±1.23 for 

the control treatment in year 2012 (TR 2011), 36.6 ±1.20 in the middle of the century 

(TR 2050), and 36.6 ±1.22 at the end of this century (TR 2100). The levels of 

dissolved oxygen (O2) in the seawater were maintained at greater than 95% for all 

treatments in these experiments to ensure an abundant supply of oxygen, the lack of 

which may adversely affect physiological processes. Therefore, seawater parameters 

including temperature, salinity, and dissolved oxygen (O2) were measured daily 

during these experiments (Table 5.1). 
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Table 5.3  Seawater chemistry parameters during the winter condition experiments 

relative to the control treatment and model future condition treatments (Mean ±S.E.). 

Treatment  Temperature (°C) Salinity (ppt) pH  O2 (%) 

TR 2011 14.8 (±0.13) 36.3 (±1.23) 8.05 (±0.14) 96.6 (±1.45) 

TR 2050 17.0 (±0.20) 36.6 (±1.20) 7.84 (±0.11) 97.0 (±1.45) 

TR 2100 19.2 (±0.20) 36.6 (±1.22) 7.65 (±0.08) 96.8 (±1.46) 

 

After the acclimatisation period, any dead animals were collected and counted daily 

during 6 weeks period starting from the third week until the eighth week (for more 

detail about methods, see Chapter 2).  

 

5.3  Results: 

5.3.1  Survival: 

 After the end of the acclimatisation period, dead animals were collected and 

counted weekly starting from the third week until the eighth week (Table 5.2). No 

significant differences in survival rate among all species were found using the Chi-

square test. However, a linear decrease in the survival of animals under the treatments 

TR 2050 and TR 2100 compared with the Control TR 2011 was observed for M. 

edulis, which was accompanied by a very slight decline in the survival rate of L. 

littorea, while no mortality was recorded for A. equina. On the other hand, there was a 

linear decrease in mortality for A. aspersa, which showed improvement in survival 

rates under TR 2100, despite the huge increase in mortality for this species observed 

under all treatments. 

 

Table 5.4  Percentage survival of four species under different treatments over six 

weeks. 

Species TR 2011 TR 2050 TR 2100 

 n Survival % n Survival % n Survival % 

M. edulis 71 90 71 79 78 78 

L. littorea 102 96 108 93 106 90 

A. equina 53 100 50 100 46 100 

A. aspersa 33 15 37 16 40 23 
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Figure 5.1  Percentage survival of M. edulis over a six-week experimental period 

under all treatments. Blue diamonds represent the experimental treatment TR 2011, 

red squares represent treatment TR 2050, green triangles represent treatment TR 

2100, and APEP represents the acclimatisation period end point. 

 

 

 

Figure 5.2  Percentage survival of L. littorea over a six-week experimental period 

under all treatments. Blue diamonds represent the experimental treatment TR 2011, 

red squares represent treatment TR 2050, green triangles represent treatment TR 

2100, and APEP represents the acclimatisation period end point. 
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Figure 5.3  Percentage survival of A. equina over a six-week experimental period 

under all treatments. Blue diamonds represent the experimental treatment TR 2011, 

red squares represent treatment TR 2050, green triangles represent treatment TR 

2100, and APEP represents the acclimatisation period end point. 

 

 

 

Figure 5.4  Percentage survival of M. edulis over a six-week experimental period 

under all treatments. Blue diamonds represent the experimental treatment TR 2011, 

red squares represent treatment TR 2050, green triangles represent treatment TR 

2100, and APEP represents the acclimatisation period end point. 
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5.3.2  Body weight change, size change, buoyant weight change, and dry weight 

parameter measurements: 

M. edulis: 

 Data for body weight change, body width change, buoyant weight change, 

and dry weight were not normally distributed according to the Shapiro-Wilk test. 

Therefore, a non-parametric Kruskal-Wallis test was used to test for significant 

differences in these parameters under each condition (Table 5.5). However, data for 

body length were found to be normally distributed, so the effects of treatments were 

compared using one-way ANOVA (Table 5.6). 

 

Table 5.5  Statistical analysis of body weight change, body width change, buoyant 

weight change, and dry weight of M. edulis. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body weight 0.918 35 0.013 2.017 2 0.365 

Body width 0.879 35 0.001 0.510 2 0.775 

Buoyant weight 0.879 35 < 0.001 3.154 2 0.207 

Dry weight 0.843 15 0.014 0.260 2 0.878 

 

Table 5.6  Statistical analysis of body length change of M. edulis. 

  Treatment comparison Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test  Levene's test  

 n F p  Statistics df p  Statistics p  

Body length 35 2.936 0.068 0.947 35 0.090 2.431 0.104 

 

Table 5.7  Mean percentage (%) ± standard error (SE) of M. edulis for each parameter 

measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change 2.19 ±0.69 1.44 ±0.54 1.02 ±0.39 

Body length change 0.05 ±0.02 0.02 ±0.02 0.08 ±0.03 

Body width change 0.009 ±0.02 0.03 ±0.04 0.04 ±0.04 

Buoyant weight change 7.25 ±2.80 2.60 ±2.10 2.26 ±1.06 

Dry weight 48.5 ±4.49 48.5 ±6.00 47.4 ±5.38 
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There were no significant differences among the three treatments for 

parameters measured in M. edulis over six weeks (see Table 5.5 and 5.6).  

 

 

 

Figure 5.5  Effect of increased temperature and decreased pH on mean percentage 

body weight change (±SE) in M. edulis at six weeks. 

 

 

 

Figure 5.6  Effect of increased temperature and decreased pH on mean percentage 

body length change (±SE) in  M. edulis at six weeks. 
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Figure 5.7  Effect of increased temperature and decreased pH on mean percentage 

body width change (±SE) in M. edulis at six weeks. 

 

 

 

Figure 5.8  Effect of increased temperature and decreased pH on mean percentage 

buoyant weight change (±SE) in M. edulis at six weeks. 
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Figure 5.9  Effect of increased temperature and decreased pH on mean percentage dry 

weight (±SE) in M. edulis at the end of the experiment. 

 

L. littorea: 

A Shapiro-Wilk test indicated that data for body length change were not 

normally distributed. Therefore, the non-parametric Kruskal-Wallis test was used to 

compare treatment means (Table 5.8). Body weight change, buoyant weight change, 

and dry weight were found to be normally distributed, so treatment effects on the 

latter parameters were compared using one-way ANOVA (Table 5.9). Scheffe's 

method was used as the post-hoc test for significant differences among treatments. 

 

Table 5.8  Statistical analysis of body length change in L. littorea. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body length 0.871 34 0.001 1.959 2 0.376 

 

Table 5.9  Statistical analysis of body weight change, buoyant weight change, and dry 

weight of L. littorea. 

  Treatment comparison  Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test  Levene's test  

 n F p  Statistics df p  Statistics p  

Body weight 34 8.062 0.002 0.962 34 0.287 3.193 0.077 

Buoyant weight 34 7.426 0.002 0.969 34 0.422 2.790 0.077 

Dry weight 15 0.020 0.980 0.956 15 0.627 3.134 0.080 
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There were no significant differences in body length change over a six-week 

period or dry weight of L. littorea at the end of experiment among these three 

treatments (see Table 5.8 and Table 5.9). However, significant differences were found 

in body weight change for TR 2011 compared with TR 2050 (p = 0.003) and for TR 

2011 compared with TR 2100 (p = 0.015).  However, a significant difference in 

buoyant weight change for TR 2011 compared with TR 2050 (p = 0.003) was found 

using Scheffe's method. 

 

Table 5.10  Mean percentage (%) ± standard error (SE) of L. littorea for parameters 

measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change 1.42 ±0.23 -0.03 ±0.25 0.21 ±0.30 

Body length change 0.001 ±0.004 -0.02 ±0.013 0.01 ±0.01 

Body width change --- --- --- --- --- --- 

Buoyant weight change 4.62 ±1.38 -1.3 ±1.26 1.74 ±0.75 

Dry weight 76.46 ±0.65 76.65 ±1.55 76.44 ±0.77 

 

 

 

Figure 5.10  Effect of increased temperature and decreased pH on mean percentage 

body weight change (±SE) in L. littorea at six weeks. 
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Figure 5.11  Effect of increased temperature and decreased pH on mean percentage 

body length change (±SE) in L. littorea at six weeks. 

 

 

 

Figure 5.12  Effect of increased temperature and decreased pH on mean percentage 

buoyant weight change (±SE) in L. littorea at six weeks. 
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Figure 5.13  Effect of increased temperature and decreased pH on mean percentage 

dry weight (±SE) in L. littorea at the end of the experiment. 

 

 

A. equine: 

A Shapiro-Wilk test indicated that data for body weight change and dry weight 

were not normally distributed. Therefore, a non-parametric Kruskal-Wills test was 

used to compare treatments. The Mann-Whitney U post-hoc test was used to test for 

significant differences between treatments (Table 5.10). Buoyant weight change was 

found to be normally distributed, so treatments were compared using one-way 

ANOVA. 

 

Table 5.11  Statistical analysis of body weight change and dry weight in A. equina. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body weight 0.889 36 0.002 19.483 2 < 0.001 

Dry weight 0.840 15 0.013 1.040 2 0.595 

 

Table 5.12  Statistical analysis of buoyant weight of A. equina. 

 Treatment comparison  Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Buoyant weight 36 3.039 0.061 0.979 36 0.710 1.533 0.231 
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No significant differences in buoyant weight change or dry weight of A. 

equina were found among these three treatments (see Table 5.11 and 5.12). However, 

over a six-week period a significant difference in body weight change between TR 

2011 compared with TR 2050 (p <0.001) and between TR 2011 compared TR 2100 

(p = 0.002) was found using the Mann-Whitney U test. 

 

Table 5.13  Mean percentage (%) ± standard error (SE) of A. equina for parameters 

measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ±SE Mean (%) ±SE Mean (%) ±SE 

Body weight change 3.46 ±5.07 -20.10 ±2.23 -16.72 ±4.21 

Buoyant weight change -17.88 ±3.30 -5.86 ±3.17 -17.09 ±5.43 

Dry weight 12.7 ±1.68 14.15 ±1.43 14.01 ±1.06 

 

 

 

Figure 5.14  Effect of increased temperature and decreased pH on mean percentage 

body weight change (±SE) in A. equina at six weeks. 
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Figure 5.15  Effect of increased temperature and decreased pH on mean percentage 

buoyant weight change (±SE) in A. equina at six weeks. 

 

 

 

Figure 5.16  Effect of increased temperature and decreased pH on mean percentage 

dry weight (±SE) in A. equina at the end of the experiment. 
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A. aspersa: 

Data for all parameters measured over a six-week period and at the end of the 

experiment were found to be normally distributed using the Shapiro-Wilk test. 

Therefore, treatments were compared using one-way ANOVA (see Table 5.14).  

 

Table 5.14   Statistical analysis of body weight change, body length change, buoyant 

weight change, and dry weight of A. aspersa. 

 Treatment comparison  Normality test Homogeneity test 

Parameter ANOVA One-way Shapiro-Wilk test  Levene's test  

 n F p  Statistics df p  Statistics p  

Body weight 9 0.196 0.827 0.951 9 0.698 2.184 0.194 

Body length 9 0.053 0.949 0.912 9 0.333 2.092 0.204 

Buoyant weight 9 0.532 0.613 0.944 9 0.628 1.179 0.370 

Dry weight 8 2.959 0.142 0.967 8 0.870 1.064 0.412 

 

 

There were no significant differences between three treatments for any of the 

parameters measured in A. aspersa over a six-week period and at the end of the 

experiment (see Table 5.13).  

 

 

 

Figure 5.17  Effect of increased temperature and decreased pH on mean percentage 

body weight change (±SE) in  A. aspersa at six weeks. 
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Figure 5.18  Effect of increased temperature and decreased pH on mean percentage in 

body length change (±SE) in A. aspersa at six weeks. 

 

 

 

 

Figure 5.19  Effect of increased temperature and decreased pH on mean percentage 

buoyant weight change (±SE) in  A. aspersa at six weeks. 
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Figure 5.20  Effect of increased temperature and decreased pH on mean percentage 

dry weight (±SE) in  A. aspersa at the end the of experiment. 

 

Table 5.15  Mean percentage (%) ± standard error (SE) of parameters measured in A. 

aspersa. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Body weight change -3.00 ± 2.61 -2.08 ± 2.52 -6.92 ± 0.19 

Body length change -0.32 ± 0.19 -0.29 ± 0.15 -0.33 ± 0.02 

Buoyant weight change -16.41 ± 37.05 31.19 ± 18.31 5.82 ± 38.31 

Dry weight 4.28 ± 0.60 4.62 ± 0.20 5.62 ± 0.45 

 

5.4 Discussion: 

5.4.1 Effects of increased temperature and decreased pH on M. edulis:   

All treatments had the potential to promote increases in growth with TR 2011 

had the greatest effect on increasing relative body weight change (Fig. 5.5) and 

increasing buoyant weight change (Fig. 5.8). This was not a surprise; as the survival 

curve clearly indicates that the rate of survival recorded under TR 2011 was at least 

10% greater than that under TR 2050 or TR 2100 (Fig. 5.1). The graph of survival 

also shows a slight improvement in survival, reduction of mortality rate from the fifth 

week of TR 2050. This slight reduction in mortality may indicate that this species was 
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beginning to adapt to the experimental temperature and pH conditions. Despite the 

increase in the proportion of body weight change (2.19 ±0.69%, Table 5.7) and the 

increase in buoyant weight (7.25 ±2.80%) in M. edulis under TR 2011, no significant 

differences were detected between any treatments for all measured parameters (Table 

5.5 and 5.6). Increases in body length change (0.08 ±0.03%, Fig. 5.6) and body width 

change (0.04 ±0.04%, Fig. 5.7) were also recorded under TR 2100. These increases in 

growth in length and width under the TR 2100 treatment were accompanied by a 

decrease in buoyant weight when compared with that under the TR 2011 treatment, 

which may indicate an increase in calcification on the one hand or a reduction in 

calcification on the other hand. This may also explain how M. edulis use the 

calcification processes to maintain its internal acid-base balance to be able to cope 

with future seawater chemistry changes. 

These results support the findings of Beesley et al. (2008), in which no 

substantial statistically significant differences in mortality appeared when testing M. 

edulis over a period of two months. Our results also support the findings of Berge et 

al. (2006), which indicated an increase in the proportion of mortality when 

temperatures increase. Mortality did increase in the present experiments under TR 

2050 and TR 2100 treatments when compared with the TR 2011 treatment, although 

no significant differences were shown. The increase in the percentage of growth in 

length and width at pH = 7.75 under the TR 2100 treatment compared to those 

parameters under the TR 2011 treatment is similar an experiment (Melzner et al., 

2011) that showed an increase in shell growth at a pH of 7.70. The growth increases 

observed for M. edulis in all the treatments applied in this experiment have also been 

reported by Thomsen et al. (2010) at approximately the same pH. The results in 

growth observed in the present study also supported the findings of Appelhans et al. 

(2012) and Michaelidis et al. (2005), which show that there were no statistically 

significant differences between treatments in growth at pH levels close to those used 

in the present experiments. Present results for buoyant weight change in M. edulis (p 

= 0.207, Table 5.5 and 5.6, Fig. 5.8) agreed with the findings of Ries et al. (2009) in 

finding no significant difference between treatments. The results of the present 

experiment regarding reduced calcification also agreed those in an experiment 

conducted by Gazeau et al. (2007), which indicated significantly reduced calcification 

compared to the control treatment due to decreased pH. The significantly reduced 
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calcification in Gazeau et al. (2007) might have been due to the absence of an 

adaptation period or to the short duration of the experiment. Alternatively, it could 

also have been due to the use of a different method for calculating calcification. The 

results of the present study indicated a negative impact on mussels under increased 

temperatures and decreased pH, which contributed to reduced rate of survival and 

decreases in body weight and buoyant weight. Increases in length and width were 

inversely proportional to the observed decreases in weight, which may indicate an 

attempt by the organism to overcome chemical degradation of its shell (Findlay et al., 

2009b). 

5.4.2  Effects of increased temperature and decreased pH on L. littorea:  

At least 90% of the marine snail L. littorea individuals survived in all 

treatments (Table 5.4, Fig. 5.2), which shows that these organisms might have the 

ability to adapt to future conditions (mortality began to appear only after the second 

week of changed temperature and pH). Body weight change and body length change 

(Fig. 5.10 and 5.11) measurements clearly show how this organism managed to 

reduce mortality during the period of the experiment. Although the smallest growth 

measurements were recorded under TR 2050 (Table 5.10), significantly lower than 

the values under the TR 2011 treatment, this species still managed to maintain a 93% 

survival rate, only 3% less than that under the control treatment TR 2011 and 3% 

more than that under TR 2100 treatments (90%, Table 5.4). The responses of L. 

littorea in body weight change, body length change, and buoyant weight change (Fig. 

5.12) under TR 2050 compared to those parameters under TR 2011 and TR 2100, in 

combination with its 93% survival rate and its improved survival curve in the fifth 

week, may indicate that this species could relatively successfully adjust to the 

changing conditions. Reduced metabolic processes, and in particular calcification 

processes might have favoured maintenance and repair of the body’s cells so as to 

allow the organisms to survive and adapt to increased temperature and reduced pH in 

their surroundings. These results demonstrate that L. littorea has a strong ability to 

survive, as observed for some other marine snails, similar to the results of Eklof et al. 

(2012), who reported a minimum of 95% survival for all treatments (see also Cmeau 

et al., 2009). In addition, the lack of significant differences in the dry weight under all 

treatments (Table 5.8, Fig. 5.13) indicated that L. littorea underwent decreased growth 
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when exposed to dual factors of high temperatures and acidity levels, as also reported 

by Melatunan et al. (2013). The results were also similar to those found by Melatunan 

et al. (2013) who found no statistically significant changes in shell length (Table 5.8, 

Fig 5.11). Organisms exposed to expected future temperature and pH conditions 

showed mixed responses in terms of the morphological characteristics of their shells 

(Melatunan et al., 2013). Under our treatment TR 2100, shells showed continued 

growth (0.01 ±0.01%, Table 5.10) while under treatment TR 2050, loss of shell was 

indicated (-0.02 ±0.013%). 

5.4.3  Effects of increased temperature and decreased pH on A. equina: 

Actinia equina showed great tolerance to higher temperatures and lower pH. 

This was clear from the high ability of individuals of this species to survive, as no 

mortality was observed for the duration of these experiments under all treatments 

(Table 5.4, Fig. 5.3). However, there was significant reduction in body weight change 

under the TR 2050 (-0.03 ±0.25%, Table 5.13) and TR 2100 (0.21 ±0.30%, Table 

5.13) treatments (F = 19.483, p < 0.001, Table 5.11, Fig 5.10) compared to the control 

treatment TR 2011 (1.42 ±0.23%, Table 5.13). This might indicate a decrease in 

metabolic activity in organisms subjected to expected future treatment conditions (TR 

2050 and TR 2100) as a way to maintain the integrity of the body’s cells and to 

survive. The high percentage of survival in this species was not surprising, as some 

other species of Cnidaria have been observed in more acidic environments that led to 

an increase in their abundance and size (Suggett et al., 2012). Such an observation for 

Cnidaria may indicate that this invertebrate species may have a high degree of 

tolerance to higher temperatures and reduced pH in the oceans. 

5.4.4 Effects of increased temperature and decreased pH on A. aspersa: 

High rates of mortality in all treatments were recorded for A. aspersa (Table 

5.4, Fig 5.4). This was not surprising as very few samples of adults can be obtained at 

the time of year these collections were made. The large increases in the number of 

deaths under all treatments decreases confidence in the results of body weight change, 

body length change, buoyant weight change, and dry weight measurements. 

Nevertheless, a slight improvement in survival under increased temperatures and 

decreased pH was noted, as well as a decrease in the number of individual deaths 
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under the TR 2050 and 2100 treatments in the fifth week. This might indicate an 

improvement in the ability of this species to cope with such conditions. In particular, 

the percentage of survival in TR 2100 reach to 23% by increase 8% than TR 2011 

(15%, Table 5.4), that reinforce what Dupont and Thorndyke (2009) said that a 

decrease in pH level of -0.4 units led to an increase in the rates of survival in A. 

aspersa. However, Dupont and Thorndyke (2009) did not give any more information 

about how, when and where they conducted the experiment. These results of the 

present study might be a warning for the possible extinction of this species of marine 

invertebrate under higher temperatures and lower pH because their presence and 

survival in the future will depend on their ability to adapt to changes in temperature 

and pH in the oceans during the early stages of growth in summer. There has been 

little research on the physiological responses of sessile invertebrate filter feeder 

species in the Ascidiacea class, to projected future environmental conditions, so 

hopefully, the present study may provide some initial insights into the responses of 

such species to climate change. 

 

5.5 Conclusion: 

This study of four species of coastal marine invertebrate showed that the 

sedentary non-calcified invertebrate A. equina has a strong ability to cope with 

predicted future climatic conditions including higher temperatures and increased 

acidification in the oceans. This adaptability is shared to some extent by the mobile 

calcified invertebrate L. littorea, which is clearly superior in terms of adaptability 

when compared to its sedentary counterpart M. edulis. However, these results showed 

a significant increase in the proportion of deaths in A. aspersa under all treatment 

conditions even without any significant differences among treatments for all other 

parameters. This suggests that such dramatic mortality might have been caused by 

seasonal effects or was due to the life cycle of the organism, but not necessarily due to 

the environmental effects expected under climate change in these experiments. 
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Chapter 6. The Effects of Global Climate Change on Body 

Composition of Common British Marine Invertebrates in summer 

 

Abstract: 

It is expected that the increase in temperature and decrease in pH levels 

predicted globally for the middle and at the end of this century will have an impact on 

the coastal marine organisms of invertebrates. Therefore, for this study, we first 

exposed four species of calcified marine invertebrates and non-calcified marine 

invertebrates to the climatic conditions of the 2011/2012 summer. Subsequently, the 

animals under study were given two weeks to adapt and then exposed to future levels 

of acidity and warmth for a period of six weeks. At the end of the study period, the 

content of water, somatic weight, shell weight (for calcified marine invertebrates), 

content of lipid, C:N ratios and metabolic rates were measured. It was observed that 

for the majority of the measured calcified and non-calcified invertebrates, no 

statistical significance was recorded. However, the study found significant positive 

results in the metabolic rate for M. edulis at levels expected to occur in 2100. Also, 

numbers of positive statistical significance were observed for the same species at 

levels expected in 2050 according to C:N ratios. In L. littorea, positive significant 

results were recorded for content of fat, C:N ratio and increased metabolic rates for 

TR 2100 with acceptable numbers for mortality. These results were replicated for A. 

equina in the form of increased metabolic rates for TR 2100 with good amounts of 

lipid content which indicates health results that reflected positively on survival. The 

study showed an improvement in survival for TR 2100 of A. aspersa due to higher 

metabolism to levels that reflected significant differences in comparison with other 

treatments. These results indicate that each animal has a special response and 

potential to adapt or not to adapt to the climatic conditions expected in the near future. 

These findings highlight the need for further study of the expected effects of these 

climatic changes on the non-calcified invertebrates. 
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6.1  Introduction: 

In ocean ectothermic species most of the physiological processes are optimum at 

narrow thermal range (Bolton and Havenhand, 2005). The metabolic rate is directly 

proportional to the temperature rise due to increased burning of carbohydrates for 

energy production (Levinton, 2009) which leads to increased consumption of oxygen 

(Zainal et al., 1992; Walther et al., 2009). A continuation of this rise over a long 

period of time will reduce energy reserves and animals will not be able to regulate 

their metabolic processes above a certain temperature (Levinton, 2009). This could 

have a negative impact on the biological processes and survival (Harley et al., 2009). 

An expected increase in temperature in the coming years of this century is expected 

that goes along with a decrease in pH. This decrease in pH is caused by the increased 

continuous rise in the amount of CO2 in the atmosphere and oceans (see Chapter 1). 

The increase in CO2 has led to a reduction in the metabolism of marine invertebrates 

due to acidification of body fluids (Langenbuch et al., 2006) and a reduction of 

energy transduction (Melatyunan et al., 2013). Molluscs, crustaceans and sea urchins 

which have structures of calcium carbonate will particularly be affected by ocean 

acidification (Wood et al., 2008). Various marine species differ in their ability to deal 

with low pH level (Wood et al., 2008). For example, Michaelidis et al. (2005) 

reported a decreased metabolic rate in Mytilus galloprovincialis, however, Thomsen 

and Melzner (2010) observed increased metabolism in Mytilus edulis and L. littorea 

demonstrated by a significant drop in metabolic rates (Melatunan et al., 2011). On the 

other hand, many of the studies included that most of the biological processes had 

non-significant impact with regard to near-future ocean acidification on non-calcified 

invertebrate (Kroeker et al., 2010). High temperatures and low pH interact 

synergistically to have a positive effect on the abundance of algal turfs (Connell and 

Russell, 2010). Nereis virens showed a non-significant effect on metabolic rate to 

decrease pH (Widdichombe and Needham, 2007). Chapter 5 of this study showed that 

there were non-significant effects on calcified marine invertebrate responses to high 

temperature and low pH levels expected during the current century. On the other 

hand, this study recorded a significant fall in body weight in A. equina. However, 

there were no significant effects of various treatments in the A. aspersa. This chapter 

will try to help to clarify the impact of climate change on the invertebrates under 
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study and the ability of these organisms to adapt to near-future conditions in terms of 

survival and growth. 

 

6.2  Methods: 

The methods in this chapter are similar to those previously mentioned in 

Chapter 5, but the measurements in this chapter deal with the water content, somatic 

weight (include gonads), lipid content, C:N ratio and metabolic rate. Table 6.1 

explains the numbers of samples used in the measurements of the two experiments 

together of each species (for more see Chapters 2 and 5). 

Table 6.1 Numbers of samples used for summer condition the measurements of 

parameters for the species in this study.  

Parameters Treatments 

 TR 2011 TR 2050 TR 2100 

 M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. 

Water content 5 5 5 2 5 5 5 3 5 5 5 3 

Somatic weight 5 5 5 2 5 5 5 3 5 5 5 3 

Shell weight 5 5 --- --- 5 5 --- --- 5 5 --- --- 

Lipid content 5 5 5 3 5 5 5 3 5 5 5 2 

C:N ratio 5 5 5 3 5 5 5 3 5 5 5 4 

Metabolic rate 12 12 12 7 12 12 12 10 12 12 12 10 

Where M.e. refer to M. edulis, L.l. refer to L. littorea, A.e. refer to A. equina and A.a. 

refer to A. aspersa. 

 

 

6.3  Results: 

6.3.1  Body composition analysis and metabolic rates: 

M. edulis: 

A Shapiro-Wilk test indicated that the distribution of content of water and C:N 

ratio were not normal. The non-parametric Kruskal-Wallis test has been used (Table 

6.2). Soft tissue weight, shell weight, lipid content and metabolic rate were normally 

distributed and treatments were carried out as comparisons with one-way ANOVA 

(Table 6.3). Scheffe's method was used post hoc to test the significance between 

treatments. 
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Table 6.2  Statistical analysis of content of water and C:N ratio of M. edulis. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameters Statistics df p value Chi-square df p value 

Content of water 0.843 15 0.014 0.260 2 0.878 

C:N ratio
 a 

0.946 15 0.467 0.860 2 0.651 
a 
C:N ratio tested by Kruskal-Wallis test because test of homogeneity of variances was 

significant (p = 0.004).  
 

Table 6.3  Statistical analysis of soft tissue weight, shell weight, lipid content and 

metabolic rate of M. edulis. 

 Treatment comparison Normality test Homogeneity test 

Parameters One-way ANOVA Shapiro-Wilk test Levene's test 

 n F P Statistic df p Statistic P 

Soft tissue weight 15 0.171 0.845 0.928 15 0.253 2.839 0.098 

Shell weight 15 0.171 0.845 0.928 15 0.253 2.839 0.098 

Lipid content 15 4.065 0.045 0.965 15 0.783 0.761 0.488 

Metabolic rate 15 5.845 0.007 0.978 34 0.722 0.624 0.542 
 

 There were no significant differences in the content of water, soft tissue 

weight, shell weight and C:N ratio of M. edulis at the end of the experiments (see 

Table 6.2 and Table 6.3). However, there were significant differences in lipid content 

between TR 2011 and TR 2050 (p = 0.048), in the metabolic rate between TR 2011 

and TR 2100 (p = 0.013) and between TR 2050 and TR 2100 (p = 0.042) when using 

Scheffe's method. 

Table 6.4  Mean percentage (%) ± standard error (SE) of M. edulis for each parameter 

measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 51.50 ± 4.49 51.49 ± 6.00 52.60 ± 5.38 

Soft tissue weight 10.20 ± 2.94 8.56 ± 1.14 10.38 ± 2.13 

Shell weight 89.80 ± 2.43 91.44 ± 1.14 89.62 ± 2.13 

Lipid content 7.20 ± 1.05 11.48 ± 1.32 9.72 ± 0.76 

C:N ratio 4.48 ± 0.24 4.31 ± 0.13 4.46 ± 0.03 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.59 ± 0.13 0.48 ± 0.08 0.88 ± 0.12 
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Figure 6.1  Effect of increased temperature and decreased pH level on mean 

percentage content of water (±SE) in M. edulis at the end of experiment. 

 

 

 

 

Figure 6.2  Effect of increased temperature and decreased pH level on mean 

percentage soft tissue weight (±SE) in M. edulis at the end of experiment. 
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Figure 6.3  Effect of increased temperature and decreased pH level on mean 

percentage shell weight (±SE) in M. edulis at the end of experiment. 

 

 

 

 

Figure 6.4  Effect of increased temperature and decreased pH level on mean 

percentage lipid content (±SE) in M. edulis at the end of experiment. 
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Figure 6.5  Effect of increased temperature and decreased pH level on mean 

percentage C:N ratio (±SE) in M. edulis at the end of experiment. 

 

 

 

  

Figure 6.6  Effect of increased temperature and decreased pH level on mean oxygen 

consumption (VO2 (mg O2.g
-1

.h
-1

)) in M. edulis at the end of experiment. 
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6.3.1.2  L. littorea: 

A Shapiro-Wilk tests indicated that the distribution of all measurements were 

normal. Treatments were carried out as comparisons with one-way ANOVA (Table 

6.5). Scheffe's method was used post hoc to test the significance between treatments.  

 

Table 6.5  Statistical analysis of content of water, soft tissue weight, shell weight, 

lipid content, C:N ratio and metabolic rate of L. littorea. 

 Treatment comparison Normality test Homogeneity test 

Parameters One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Content of water 15 0.020 0.980 0.956 15 0.627 3.134 0.080 

Soft tissue weight 15 0.905 0.431 0.979 15 0.962 2.055 0.171 

Shell weight 15 0.905 0.431 0.979 15 0.962 2.055 0.171 

Lipid content 15 8.284 0.005 0.968 15 0.821 0.030 0.970 

C:N ratio
 

15 7.640 0.007 0.932 15 0.293 3.328 0.071 

Metabolic rate 36 18.926 <0.001 0.955 36 0.145 2.839 0.073 

 

There were no significant differences in the content of water, soft tissue 

weight and shell weight of L. littorea at the end of experiments (see Table 6.5). 

However, there were significant differences in lipid content between TR 2011 and TR 

2100 (p = 0.006), in C:N ratio between TR 2011 and TR 2100 (p = 0.013),between 

TR 2050 and TR 2100 (p = 0.027), in the metabolic rate between TR 2011and TR 

2050 (p = 0.018), between TR 2011 and TR 2100 (p = 0.014) and between TR 2050 

and TR 2100 (p < 0.001) when using Scheffe's method. 

Table 6.6  Mean percentage (%) ± standard error (SE) of L. littorea for each 

parameter measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 23.54 ± 0.65 23.35 ± 1.55 23.56 ± 0.77 

Soft tissue weight 4.91 ± 0.38 4.38 ± 0.49 4.22 ± 0.20 

Shell weight 95.09 ± 0.38 95.62 ± 0.49 95.78 ± 0.20 

Lipid content 4.58 ± 0.61 7.03 ± 0.78 8.97 ± 0.92 

C:N ratio 3.90 ± 0.04 3.94 ± 0.08 4.25 ± 0.08 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.77 ± 0.06 0.52 ± 0.04 1.03 ± 0.08 
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Figure 6.7  Effect of increased temperature and decreased pH level on mean 

percentage content of water (±SE) in L. littorea at the end of experiment. 

 

 

 

Figure 6.8  Effect of increased temperature and decreased pH level on mean 

percentage soft tissue weight (±SE) in L. littorea at the end of experiment. 
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Figure 6.9  Effect of increased temperature and decreased pH level on mean 

percentage shell weight (±SE) in L. littorea at the end of experiment. 

 

 

 

 

Figure 6.10 Effect of increased temperature and decreased pH level on mean 

percentage lipid content (±SE) in L. littorea at the end of experiment. 
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Figure 6.11  Effect of increased temperature and decreased pH level on mean 

percentage C:N ratio (±SE) in L. littorea at the end of experiment. 

 

 

 

 

Figure 6.12  Effect of increased temperature and decreased pH level on mean oxygen 

consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in L. littorea at the end of experiment. 
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A. equina: 

A Shapiro-Wilk tests indicated that the distribution of content of water and 

soft tissue weight were not normal. A non-parametric Kruskal-Wallis test has been 

used (Table 6.7). However, lipid content was normally distributed and treatments 

were carried out as comparisons with one-way ANOVA (Table 6.8). Scheffe's method 

was used post hoc to test the significance between treatments.  
 

Table 6.7  Statistical analysis of content of water and soft tissue weight of A. equina. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameters Statistics df p value Chi-Square df p value 

Content of water 0.840 15 0.013 1.040 2 0.595 

Soft tissue weight 0.840 15 0.013 1.040 2 0.595 
 

 

Table 6.8  Statistical analysis of lipid content, C:N ratio and metabolic rate of A. 

equina. 

 Treatment comparison Normality test Homogeneity test 

Parameters One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Lipid
 
content

 
15 15.476 <0.001 0.941 15 0.401 0.510 0.613 

C.N ratio 15 1.943 0.186 0.967 15 0.816 0.820 0.464 

Metabolic rate 36 8.837 0.001 0.946 36 0.77 0.781 0.466 
 

Table 6.9:  Mean percentage (%) ± standard error (SE) of A. equina for each parameter 

measured. 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 87.30 ± 1.68 85.86 ± 1.43 85.99 ± 1.06 

Soft tissue weight 12.70 ± 1.68 14.15 ± 1.43 14.01 ± 1.06 

Lipid content 12.08 ± 0.73 17.77 ± 0.56 14.91 ± 0.80 

C:N ratio 4.15 ± 0.10 4.25 ± 0.10 4.41 ± 0.07 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.36 ± 0.08 0.47 ± 0.08 1.08 ± 0.21 

 

There were no significant differences in the content of water, soft tissue 

weight, shell weight and C:N ratio of A. equina at the end of the experiments (see 

Table 6.7 and Table 6.8). However, there were significant differences in lipid content 

between TR 2011 and TR 2050 (p < 0.001), between TR 2011 and TR 2100 (p = 
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0.043), in the metabolic rate between TR 2011 and TR 2100 (p = 0.001) and between 

TR 2050 and TR 2100 (p = 0.014) when using Scheffe's method. 

 

 

Figure 6.13 Effect of increased temperature and decreased pH level on mean 

percentage content of water (±SE) in A. equina at the end of experiment. 

 

 

 

Figure 6.14  Effect of increased temperature and decreased pH level on mean 

percentage soft tissue weight (±SE) in A. equina at the end of experiment. 
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Figure 6.15  Effect of increased temperature and decreased pH level on mean 

percentage lipid content (±SE) in A. equina at the end of experiment. 

 

 

 

 

Figure 6.16  Effect of increased temperature and decreased pH level on mean 

percentage C:N ratio (±SE) in A. equina at the end of experiment. 
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Figure 6.17  Effect of increased temperature and decreased pH level on mean oxygen 

consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in A. equina at the end of experiment. 

 

A. aspersa: 

A Shapiro-Wilk tests were indicated that all measurements were normally 

distributed (Tables 6.10 and 6.11). The content of water, soft tissue weight, lipid 

content and metabolic rate were normally distributed, then the treatments were carried 

out as comparisons with one-way ANOVA (Table 6.11). Scheffe's method was used 

post hoc to test the significance between treatments.  

Table 6.10  Statistical analysis of C:N ratio of A. aspersa. 

 Test of normality Treatment comparison 

 Shapiro-Wilk test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-Square df p value 

C:N ratio
a
 0.925 18 0.161 0.364 2 0.834 

a
 C:N ratio tested by Kruskal-Wallis test because test of homogeneity of variances 

was significant (p = 0.004).  

 

There were no significant differences in the content of water, soft tissue 

weight, lipid content and C:N ratio of A. aspersa at the end of experiments (see Table 

6.10 and Table 6.11). However, there was a significant difference in the metabolic 

rate between TR 2011 and TR 2100 (p < 0.001) and between TR 2050 and TR 2100 

(p < 0.001) when using the Scheffe's method. 
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Table 6.11  Statistical analysis of content of water, soft tissue weight, lipid content 

and metabolic rate of A. aspersa. 

 Treatment comparison Normality test Homogeneity test 

Parameter One-way ANOVA Shapiro-Wilk test Levene's test 

 n F p Statistic df p Statistic p 

Content of water 8 2.938 0.143 0.975 8 0.933 1.309 0.349 

Soft tissue weight 8 2.938 0.143 0.975 8 0.933 1.309 0.349 

Lipid content 8 1.480 0.313 0.941 8 0.623 1.406 0.328 

Metabolic rate 15 56.762 <0.001 0.890 15 0.066 1.543 0.253 

 

Table 6.12  Mean percentage (%) ± standard error (SE) of A. aspersa for each 

parameter measured. 

 

Parameter TR 2011 TR 2050 TR 2100 

 Mean (%) ± SE Mean (%) ± SE Mean (%) ± SE 

Content of water 95.72 ± 0.60 95.39 ± 0.20 94.38 ± 0.45 

Soft tissue weight 4.28 ± 0.60 4.62 ± 0.20 5.62 ± 0.45 

Lipid content 9.89 ± 0.52 8.50 ± 0.35 7.89 ± 1.04 

C:N ratio 5.73 ± 0.55 5.42 ± 0.18 5.12 ± 0.21 

 Mean  ± SE Mean  ± SE Mean  ± SE 

Metabolic rate 0.69 ± 0.26 0.15 ± 0.02 1.06 ± 0.11 

 

 

 

Figure 6.18 Effect of increased temperature and decreased pH level on mean 

percentage content of water (±SE) in A. aspersa at the end of experiment. 
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Figure 6.19  Effect of increased temperature and decreased pH level on mean 

percentage soft tissue weight (±SE) in A. aspersa at the end of experiment. 

 

 

 

 

Figure 6.20 Effect of increased temperature and decreased pH level on mean 

percentage lipid content (±SE) in A. aspersa at the end of experiment. 
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Figure 6.21  Effect of increased temperature and decreased pH level on mean 

percentage C:N ratio (±SE) in A. aspersa at the end of experiment. 

 

 

 

Figure 6.22  Effect of increased temperature and decreased pH level on mean oxygen 

consumption (VO2 (mg O2.g
-1

.h
-1

)) (±SE) in A. aspersa at the end of experiment. 
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6.4 Discussion: 

6.4.1 Effects on M. edulis 

Most measurements of M. edulis were not significantly different (Tables 6.2 

and 6.3). However, there was a significant rise in oxygen consumption (F = 5.845, p = 

0.007) in TR 2100 compared with TR 2011 (p = 0.013) and TR 2050 (p = 0.042), 

which means an increase in the metabolic rate (Fig. 6.5). Referring back to the results 

of Chapter 5, we found that TR 2100 recorded the lowest growth of body weight and 

buoyant weight changes. With rising rates of metabolism and a lack of growth, this 

may be an indication that future conditions of high temperatures and low pH levels 

did not disturb metabolisms, but led to the conversion of energy consumption used in 

the growth to be used in the maintenance and repair for maintaining survival. In this 

way the organisms were able to resist and reduce the mortality rate to reach about 

20% only compared to 10% for the control treatment. Soft tissue weight did not 

record a significant change in all the measurements (Table 6.3, Fig. 6.2), which are 

similar to the results obtained by Thomsen and Melzner (2010) and Thomsen et al. 

(2010). This study has also seen an increase in the rates of metabolism in treatment 

TR 2100 at pH (7.65) and 19.2 ºC which are similar to the same rates of Thomsen and 

Melzner (2010). This increase in metabolic rate may indicate the probability of 

increasing the cost of cellular calcification and balance at low pH levels, combined 

with high temperatures (Thomsen et al., 2010). It should be noted here that there had 

been a decrease in metabolism in TR 2050 (0.48 ± 0.08, Table 6.4) compared to TR 

2011 (0.59 ± 0.13, Table 6.4), although not at significant levels, but it was 

accompanied by a slight reduction in dry soft tissue weight compared to the control 

treatment (Fig. 6.2). A significant rise in the proportion of the lipid content 

demonstrated (F = 4.071 ± 0.045%, Table 6.3, Fig 6.4) when compared to TR 2011 (p 

= 0.046). This may indicate that medium treatment may be affected by exposure to 

the temperature and pH levels expected in 2050, which led to changes in metabolism 

resulting in an increase in lipid content with a decrease in soft tissue weight. This may 

be a kind of resistance to survive, especially when compared to the results of Chapter 

5 which indicate an increase in the body and buoyant weight changes in TR 2050 

compared to TR 2100 and a decrease in growth when compared with the control 

treatment (TR 2011). Results in the previous chapter showed improvement in the 
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mortality rate in the fifth week which may indicate the development of a kind of 

ability to cope with the conditions and the surrounding variables, represented by 

dissolution of the shell and reduction of the metabolism as a means to maintain the 

stability of pH in the cells at TR 2050 (see Gazeau et al., 2007). This may be due to 

the exposure of mussels M. galloprovincialis to high levels of acidity up to pH 7.3. It 

is thus clear that the increased temperatures and decreased pH levels, as expected 

during the middle and end of this century in the summer months, had an impact on 

calcified organisms and led to a decrease in growth and an increase in mortality, 

however these organisms have managed to reduce this effect and continue to live. 

Those changes were not a significant danger that could threaten these organisms in 

the near-future. 

6.4.2 Effects on L. littorea 

The marine snail (L. littorea), which was exposed to the expected conditions 

in the middle of this century, provides a typical example for survival by reducing 

growth calcification rates (see Chapter 5). The organism showed a significant 

reduction in the rates of oxygen consumption in TR 2050 (p = 0.018, Fig. 6.6), 

resulting in a decrease in the rates of metabolism and therefore the reduction of total 

growth rates. All of this for the sake of survival by up to 93%, which is only less by 

3% compared to TR 2011 (see Chapter 5 and Gazeau et al., 2007). This was 

accomplished by exposing the marine snail animals under study to the expected rises 

in temperature at the end of this century by as much as 19.2 º C and in pH levels by 

7.65 (TR 2100), which led to a significant increase in metabolic rate (p = 0.014). 

Also, there was a significant rise in the lipid content of TR 2100 (p = 0.006, Fig. 

6.10). These are in comparison with the results obtained in Chapter 5 which indicated 

a reduction in the body weight change and buoyant weight change compared with the 

control treatment, while maintaining a mortality rate at under 10%, which is only 6% 

in TR 2100 less than the control treatment. It is clear from all of the above that  

exposure to the double factors expected in 2100 has had a negative impact on the L. 

littorea caused by the increase in the cost of producing the energy needed for the 

restoration, maintenance and preservation of the vitality of the cells, especially in case 

of the availability of food. 
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6.4.3 Effects on A. equina 

At the same time, it was clear that there was a positive impact for future levels 

of temperature and pH levels on A. equina. This study found higher rates of oxygen 

consumption (F = 8.837, p = 0.001, Table 6.7, Fig. 6.17) for TR 2050 and TR 2100 

associated with high levels of lipid content (F = 15.476, p < 0.001, Table 6.8, Fig. 

6.15) in the dry soft tissue weight, which in turn was high when compared to the 

control treatment. This explains the ability of these organisms to survive by 100% 

during the experiments if we go back to the results of Chapter 5. These results also 

indicate an increase in the body weight change of the control treatment accompanied 

by a decrease in buoyant weight change and this may be due to the increased water 

content and not due to increased soft tissue weight, which is a very slight increase. 

These results of the dry weight gain (Table 6.7, Fig 6.13), with increasing 

temperatures and decreasing pH levels, appeared in algal turfs (see Connell and 

Russell, 2010).  

6.4.4 Effects on A. aspersa 

In A. aspersa exposed to the climatic conditions expected at the end of this 

century (TR 2100), metabolism was not disrupted due to these changes; on the 

contrary, there was a significant rise in oxygen consumption (p < 0.001, Fig. 6.22) 

concurrent with a decrease in lipid content (non-significant) and an increase in the 

percentage of soft tissues compared with the other two treatments (TR 2011 and TR 

2050) strengthen the results obtained when studying some non-calcified organisms 

(Attrill et al., 2007; Richardson and Gibbons, 2008; Connell and Russell, 2010). This 

may also strengthen the results of Chapter 5 that treatment TR 2100 obtained the 

highest percentage of survival, which was 23%, an increase of 8% compared to the 

control treatment. TR 2050 showed a significant drop in metabolic rates compared 

with TR 2100 (p < 0.001, Fig. 6.22) but with a rise in buoyant weight change 

(Chapter 5). This indicates that it has been able to adapt to changing conditions to 

continue the physiological processes even with a decrease as an expected reaction to 

resist these changes in ocean temperature and pH. 
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6.5. Conclusion: 

This study conducted on adult members of the four species of coastal marine 

invertebrates for six weeks under estimated future climatic conditions of high 

temperatures and low pH in the middle and at the end of the twenty-first century. Our 

results showed a significant rise in the metabolic rates in all species when exposed to 

the climatic conditions expected at the end of this century. This indicates increased 

cost of energy for their growth and survival (biological processes) (Thomsen et al., 

2010). While the medium treatment TR 2050 recorded a significant decrease in only 

one case, in L. littorea, which did not affect the general functionality significantly but 

was one of the methods used to survive by lowering metabolic rates (Michaelidis et 

al., 2005), this is a well-known strategy for adaptation (Widdicombe and Needham, 

2007). These results dramatically demonstrate that the fears of climate impact 

threatening marine invertebrates at the temperatures expected during this century are 

grounded in reality, however may be exaggerated to some extent. Moreover, the 

disruption in the vital functions that may occur when exposed to climatic conditions is 

greater than expected during this century (Thomsen and Melzner, 2010). On the other 

hand, even the unexpected positive changes may be evidence of disorders in the 

ecosystems (Connell and Russell, 2010), which may have a negative effect over the 

long term. These results show complex reactions to future climate changes not only 

for the different species of marine invertebrates, but also for the observed difference 

in reactions between the same species on the expected changes during the middle and 

end of this century. It is also noted here that the decrease in metabolic rate does not 

depend on the increase in the reduced levels of pH that could occur within the next 

50–100 years but it might be true in the high levels of acidification (Thomsen and 

Melzner, 2010). 
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Chapter 7. Seasonal Effects of Temperature and pH on four 

Common British Marine Invertebrates and General Discussion 

 

Abstract: 

Climate change is likely to have profound effects on marine animals due to the 

predicted increases in seawater temperature and acidity. Many studies have examined 

the effects on marine animals of climate change at the extreme temperatures expected 

for the summer season, but few studies have investigated how altered temperature 

profiles may affect these animals in the winter. This study conducted two series of 

laboratory experiments and investigated the effect of both winter and summer 

temperatures on the metabolic rate of intertidal marine invertebrate species: two 

calcified (Mytilus edulis and Littorina littorea) and two non-calcified (Actinia equina 

and Ascidiella aspersa). Following a period of acclimatisation during which the 

temperature was gradually increased and pH decreased, animals were exposed to the 

climatic conditions predicted for 2050 (TR 2050) and 2100 (TR 2100) over a six-

week period. During these experiments, survival, body weight change, and buoyant 

weigh change were measured. At the end of the experiments, metabolic rates, and 

lipid content were measured. The present study revealed a contrast between calcified 

and non-calcified marine organisms as to the manner in which each deals with the 

high temperatures and high acidity in different seasons. These distinctions became 

even clearer the variation in how the same species dealt with the different levels of 

acidity and different temperature regimes. Calcified animals showed positive growth 

and survival responses in all seasons in comparison with the non-calcified animals, 

although they were in their best condition in the winter season. There were no 

statistically significant differences in growth in any of the species used in this study 

due to season. There was a significant decrease in lipid content in L. littorea under the 

summer treatment (TR 2011S) compared with the winter treatment (TR 2011W). 

Metabolic rates showed a noticeable increase in all species of summer treatment (TR 

2100S). The summer treatment results in a significant increase in metabolic rates 

when compared with winter treatments for M. edulis, L. littorea, and A. aspersa. In 

this study two separate series of experiments were performed, but conducting 

experiments on the same sample animals over an entire year might allow more 
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comprehensive findings on the ability of these organisms to adapt to variable seasons 

and long-term exposure to high temperature and low pH.   

 

 7.1  Introduction: 

A review of the research on the impact of climate change on marine 

invertebrates reveals a scarcity of studies concerned with seasonal influences or 

comparisons between winter and summer, despite the importance of seasonality in pH 

changes (Findlay et al., 2009a). During the summer, pH can drop to 7.5 and during 

the winter increase again by 1.0 unit up to 8.5 (Findlay et al., 2008). In addition to the 

fact that temperatures reach maxima in the summer and minima in the winter, rising 

temperatures could lead to maximally increased rates of calcification (Marshall & 

Clode, 2004; Rodrigues & Grottoli, 2006) in summer (Rodolfo-Metalpa et al., 2009; 

Rodolfo-Metalpa et al., 2010). However, any temperature decrease may increase 

dissolution of CaCO
3
 from shells (McClintock et al., 2009) and thus decrease 

calcification rates in winter (Rodolfo-Metalpa et al., 2009; Rodolfo-Metalpa et al., 

2010). For example, we find that more than 90% of the growth of mussel shells was 

recorded in the period between April and September (Boyden, 1971; Nagarajan et al., 

2006). At the same time, a decrease in temperature in winter is accompanied by a 

decrease in phytoplankton abundance (Bayne and Worrall, 1980; Nagarajan et al., 

2006) and thus a decrease in the growth of invertebrates. When surrounding 

temperatures are less than 10 °C in winter and greater than 20 °C in summer, growth 

in the mussel decreases (Bayne and Worrall, 1980; Nagarajan et al., 2006). High 

temperatures within the optimal limits, together with abundant food increases 

observed growth. For example when temperatures are at their highest summer 

average, conditions are suitable for the highest observed rates of calcification in corals 

(Marshall & Clode, 2004; Rodrigues & Grottoli, 2006). However, when summer high 

temperature tend to be above average, lower rates of calcification are observed 

(Clausen and Roth, 1975; Rodrigues and Grottoli, 2006). Low winter water 

temperatures near 5 °C have been shown to affect Cerastoderma edule, snails that are 

also known as cockles, and led to decreased growth (Jones, 1979; Nagarajan et al., 

2006). Mussels also display the same growth inhibition at 5 °C (Melzner et al., 2011), 
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which indicates the effect of seasonality on variation in shell weight (De Moel et al., 

2009).   

In any case, semi-fatal effects such as low growth may arise due to prolonged 

exposure to extreme temperatures, whether high in summer or low in winter. 

Furthermore, increased warming during the seasons that are supposed to be relatively 

cool can send early signals of season change and cause animals to respond to such 

signals at seasonally inappropriate times (known as a shift in phenology) (Noone et al., 

2013). 

In this chapter, results of the studies comparing changes in body weight, 

buoyant weight, lipid content, and metabolism between winter treatments and 

corresponding summer treatments are presented. Data from the winter and summer 

control treatments were compared; then the TR 2050 winter treatment, TR 2050W 

was compared with the TR 2050 summer treatment, TR 2050S; and finally the TR 

2100 winter treatment, TR 2011W, was compared with its TR 2100 counterpart in the 

summer, TR 2100S.  

 

7.2  Methods: 

The methods of this chapter were described in detail in Chapter 2, and 

methods specific to the winter and summer seasons were described in Chapters 3 and 

5, respectively. Tables 7.1, 7.2, and 7.3 give information about dates of animal 

collections and experimental periods, numbers of animals used for each measurement, 

and seawater parameters measured during these experiments (for more see Chapters 2, 

3, and 5).  

 

Table 7.1  Dates of collections and experimental periods of winter and summer 

experiments. 

Season Experiment No. Collection date Experiment period 

Winter 
1 01 February 2012 01 February–28 March 2012 

2 24 September 2012 24 September–22 November 2012 

Summer 
1 24 May 2012 24 May–17 July 2012 

2 19 July 2012 19 July–13 September 2012 
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Table 7.2  Numbers of samples used to measure parameters in these study species for 

the winter and summer experiments. 

Parameters Treatments 

measured TR 2011 TR 2050 TR 2100 

 M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. M.e. L.l. A.e. A.a. 

No.
a
 at start

 w
 84 66 53 102 81 69 46 97 78 63 49 89 

No.
a
 at start

 s
 71 102 53 33 71 108 50 37 78 106 46 40 

No.
a
 at end

 w
 84 66 34 98 68 67 34 63 71 62 35 16 

No.a at end
 s
 64 98 53 5 56 100 50 6 61 95 46 9 

No.
a
 surviving

w 
84 66 53 102 81 69 46 97 78 63 49 89 

No.
a
 surviving

s 
71 102 53 33 71 108 50 37 78 106 46 40 

Body weight
w 

12 12 12 14 12 12 12 9 12 12 11 4 

Body weight
s 

12 12 12 4 11 11 12 3 12 11 12 2 

Buoyant weight
w 

12 12 12 14 12 12 12 9 12 12 11 4 

Buoyant weight
s 

12 12 12 4 11 11 12 3 12 11 12 2 

Lipid content
w 

6 5 6 6 6 5 5 5 6 6 6 2 

Lipid content
s 

5 5 5 3 5 5 5 3 5 5 5 2 

Metabolic rate
w 

10 12 12 12 12 12 12 12 12 12 11 8 

Metabolic rate
s 

12 12 12 7 12 12 12 10 12 12 12 10 
a
 refers to number of animals used to calculate survival; 

w 
refers to the winter season; 

s 

refers to the summer season; M.e. refers to M. edulis; L.l. refers to L. littorea; A.e. 

refers to A. equina; and A.a. refers to A. aspersa. 

 

Table 7.3  Parameters of seawater chemistry measured during the summer and winter 

experiments in the control the treatment and future condition treatments TR 2050 and 

TR 2011 (Mean ± S.E.). 

Season Treatment  Temperature (°C) Salinity (ppt) pH  O2 (%) 

Winter 

TR 2011 4.7 (± 0.20) 36.1 (± 1.08) 8.05 (± 0.07) 97.4 (± 1.40) 

TR 2050 6.4 (± 0.20) 36.0 (± 1.18) 7.90 (± 0.06) 97.3 (± 1.60) 

TR 2100 8.7 (± 0.24) 35.9 (± 1.11) 7.75 (± 0.07) 96.8 (± 1.74) 

Summer 

TR 2011 14.8 (± 0.13) 36.3 (± 1.23) 8.05 (± 0.14) 96.6 (± 1.45) 

TR 2050 17.0 (± 0.20) 36.6 (± 1.20) 7.84 (± 0.11) 97.0 (± 1.45) 

TR 2100 19.2 (± 0.20) 36.6 (± 1.22) 7.65 (± 0.08) 96.8 (± 1.46) 

 

 

7.3 Results: 

7.3.1 Effect of Seasonality on Survival: 

Mytilus edulis: 

 The results of survival analysis revealed an increase in mortality in the 

summer in comparison with the corresponding treatments in the winter (Table 7.4, 
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Fig. 7.1). The largest difference (13%) was between TR 2100W (91%) compared with 

TR 2100S (78%), although this value was very close to the difference in mortality 

observed between the summer and winter controls (10%). 

Littorina littorea: 

 The results of survival analysis showed an increase in mortality in the summer 

in comparison with the corresponding treatments during the winter. Generally, the 

mortality rate is very low; the lowest value was recorded in TR 2100S and did not 

exceed 10% (Table 7.4, Fig. 7.2). However, the difference in mortality between TR 

2100W compared with TR 2100S was 8%, while the difference in mortality between 

the control treatments was 4%. 

Actinia equina: 

 The results showed that the preponderance of individuals survive the summer 

in comparison with the results for winter in all treatments. No deaths were recorded in 

the summer, while the highest winter mortality rate of 36% recorded the control 

treatment TR 2011W (Table 7.4, Fig. 7.3). 

Ascidiella aspersa: 

 Summer mortality rates were very high for all treatments and resemble rates 

observed in the winter treatment at the highest temperature and acidity levels (TR 

2100W). The percentage survival under the control treatment in the winter (TR 

2011W) reached 96% (Table 7.4, Fig. 7.4). 

Table 7.4  Percentage survival of the four study species under different treatments 

over a six-week period in the winter and summer treatments. 

Season Species 
TR 2011 TR 2050 TR 2100 

n Survival % n Survival % n Survival % 

Winter 
M. edulis 

84 100 81 84 78 91 

Summer 71 90 71 79 78 78 

Winter 
L. littorea 

66 100 69 97 63 98 

Summer 102 96 108 93 106 90 

Winter 
A. equina 

53 64 46 74 49 71 

Summer 53 100 50 100 46 100 

Winter 
A. aspersa 

102 96 97 65 89 18 

Summer 33 15 37 16 40 23 
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Figure 7.1 Percentage survival of M. edulis over a six-week experimental period for 

all treatments under winter and summer conditions. In the treatment labels, "W" 

represents winter and "S" represents summer. The experimental winter treatment TR 

2011W is represented by blue diamonds, TR 2050W is represented by red squares, 

and TR 2100W is represented by green triangles. The experimental summer treatment 

TR 2011S is represented by purple Xs, TR 2050S is represented by cyan asterisks, 

and TR 2100S is represented by orange circles. APEP represents the acclimatization 

period end points. 

 

Figure 7.2  Percentage survival of L. littorea over a six-week experimental period for 

all treatments under winter and summer conditions. In the treatment labels, "W" 

represents winter and "S" represents summer. The experimental winter treatment TR 

2011W is represented by blue diamonds, TR 2050W is represented by red squares, 

and TR 2100W is represented by green triangles. The experimental summer treatment 

TR 2011S is represented by purple Xs, TR 2050S is represented by cyan asterisks, 

and TR 2100S is represented by orange circles. APEP represents the acclimatization 

period end points. 
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Figure 7.3  Percentage survival of A. equina over a six-week experimental period for 

all treatments under winter and summer conditions. In the treatment labels, "W" 

represents winter and "S" represents summer. The experimental winter treatment TR 

2011W is represented by blue diamonds, TR 2050W is represented by red squares, 

and TR 2100W is represented by green triangles. The experimental summer treatment 

TR 2011S is represented by purple Xs, TR 2050S is represented by cyan asterisks, 

and TR 2100S is represented by orange circles. APEP represents the acclimatization 

period end points. 

 

 

Figure 7.4  Percentage survival of A. aspersa over a six-week experimental period for 

all treatments under winter and summer conditions. In the treatment labels, "W" 

represents winter and "S" represents summer. The experimental winter treatment TR 

2011W is represented by blue diamonds, TR 2050W is represented by red squares, 

and TR 2100W is represented by green triangles. The experimental summer treatment 

TR 2011S is represented by purple Xs, TR 2050S is represented by cyan asterisks, 

and TR 2100S is represented by orange circles. APEP represents the acclimatization 

period end points. 
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Figure 7.5 The chart compares survival rates for all species and treatments under 

study. Seasonal effects were observed more for non-calcified organisms than for 

calcified marine invertebrates. In the treatment labels, "W" represents winter and "S" 

represents summer. 

 

 7.3.2  Effect of Seasonality on Growth and Body Composition: 

Mytilus edulis: 

Results of Shapiro-Wilk's tests indicated that data for body weight change, 

buoyant weight change, and dry weight in M. edulis were not normally distributed, so 

the non-parametric Kruskal-Wallis test was used to compare treatment effects (Table 

7.5). The Mann-Whitney U test was then used post hoc to test for significant 

differences between specific treatments. However, metabolic rate was normally 

distributed, so treatments were compared with one-way ANOVA (Table 7.6) and 

Scheffe's method was then used post hoc to test for differences between treatments. 

 

There were no significant differences in body weight change or lipid content 

in M. edulis between the corresponding treatments under winter and summer 

conditions (see Tables 7.5 and 7.6, and Fig. 7.6 and Fig. 7.8). Although there was a 

significant difference in buoyant weight change between some treatments, there was 

no significant difference between corresponding treatments in winter and summer 

conditions (Table 7.5, Fig. 7.7). Also, a significant difference in metabolic rate (Table 
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7.6, Fig. 7.9) between TR 2100W compared with TR 2100S (p = 0.032), was 

identified using the Mann-Whitney U test 

 

Table 7.5  Statistical analysis of body weight change, buoyant weight change, and 

lipid content of M. edulis. 

 Normality test Treatment comparison 

 Shapiro-Wilk's test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body weight 0.770 71 < 0.001 4.050 5 0.542 

Buoyant weight 0.886 71 < 0.001 11.374 5 0.044 

Lipid content
a
 0.960 33 0.261 7.196 5 0.206 

a 
Treatment effects for lipid content were analysed using the Kruskal-Wallis test 

because its variance was not homogeneous; the Levene's test for homogeneity of 

variances was significant (p = 0.003). 

 

Table 7.6  Statistical analysis of metabolic rate of M. edulis. 

  ANOVA test Normality test Homogeneity test 

Parameter One-way Shapiro-Wilk's test  Levene's test  

 n F p  Statistics df p  Statistics p  

Metabolic rate 72 3.448 0.008 0.979 72 0.259 1.663 0.156 

 

 

Figure 7.6   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) body weight change in M. edulis over a six-week 

period. Winter treatments represented by blue columns and summer treatments 

represented by red columns.  
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Figure 7.7   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) buoyant weight change in M. edulis over a six-

week period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 

 

 

Figure 7.8   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) lipid content in M. edulis at the end of these 

experiments. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.9   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) metabolic rate (VO2 (mg O2.g
-1

.h
-1

)) of M. edulis at 

the end of these experiments. Winter treatments represented by blue columns and 

summer treatments represented by red columns. 

Littorina littorea: 

 The Shapiro-Wilk's test indicated that data for body weight change was 

not normally distributed. Therefore, the non-parametric Kruskal-Wallis test was used 

(Table 7.7) with a post hoc Mann-Whitney U test to detect significant differences 

between treatments. However, lipid content and metabolic rate were normally 

distributed and treatments effects for those parameters were compared using one-way 

ANOVA (Table 7.8). Scheffe's method was then used post hoc to test for significant 

differences between treatments. 

 

Table 7.7  Statistical analysis of body weight change and buoyant weight change in L. 

littorea. 

 Normality test Treatment comparison 

 Shapiro-Wilk's test  Kruskal-Wallis test  

Parameter Statistics df p value Chi-square df p value 

Body weight 0.931 70 0.001 13.917 5 0.016 

Buoyant weight
a 

0.975 70 0.171 11.126 5 0.050 
a 

Buoyant weight change was analysed using the Kruskal-Wallis test because the 

Levene's test for homogeneity of variances was significant (p = 0.020). 
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Table 7.8  Statistical analysis of lipid content and metabolic rate in L. littorea. 

  ANOVA test Normality test Homogeneity test 

Parameter One-way Shapiro-Wilk's test  Levene's test  

 n F p  Statistics df p  Statistics p  

Lipid content 31 5.360 0.002 0.963 31 0.351 0.396 0.847 

Metabolic rate 72 9.244 <0.001 0.970 72 0.088 1.853 0.115 

 

There was no significant difference in buoyant weight change in L. littorea 

between the corresponding treatments in winter and summer (see Table 7.7, Fig. 

7.11). However, there was a significant difference in body weight change between 

some treatments, but not between corresponding treatments in winter and summer 

(Table 7.7, Fig. 7.10). Also, significant differences were found in lipid content (Table 

7.8, Fig. 7.12) between TR 2011W and TR 2011S (p = 0.016), and in metabolic rate 

(Table 7.8, Fig. 7.13) between TR 2100W and TR 2100S (p = 0.029) using the Mann-

Whitney U test. 

 

 

Figure 7.10   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) body weight change in L. littorea over a six-week 

period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.11   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) buoyant weight change in L. littorea over a six-

week period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 

 

 

Figure 7.12   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) lipid content in L. littorea at the end of these 

experiments. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.13   Effect of increased temperature and decreased pH in winter and summer 

on mean (with SE bar) metabolic rate (VO2 (mg O2.g
-1

.h
-1

)) in L. littorea at the end of 

these experiments. Winter treatments represented by blue columns and summer 

treatments represented by red columns. 

 

Actinia equina: 

 Data for lipid content change were not normally distributed according 

to a Shapiro-Wilk's test, therefore, the non-parametric Kruskal-Wallis test was used to 

compare treatments (Table 7.9). The Mann-Whitney U test was then used post hoc to 

test for significant differences between specific treatments. However, data for body 

weight change, buoyant weight change, and metabolic rate were normally distributed, 

so treatments were compared by one-way ANOVA (Table 7.10). Scheffe's method 

was then used as a post hoc test for significant differences between treatments. 

 

Table 7.9  Statistical analysis of lipid content in A equina. 

 Normality test Treatment comparison 

Parameter Shapiro-Wilk's test  Kruskal-Wallis test  

Measurement Statistics df p value Chi-Square df p value 

Lipid content
a 

0.968 32 0.439 12.109 5 0.033 
a 

Lipid content analysed using the Kruskal-Wallis test because according to the 

Levene's test there was significant (p < 0.001) for homogeneity of variances, that 

mean the variance of this lipid content was not homogeneous . 
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Table 7.10  Statistical analysis of body weight change, buoyant weight change, and 

metabolic rate in A. equina. 

  One-way  Normality test Homogeneity test 

Parameter  ANOVA Shapiro-Wilk's test  Levene's test  

 n F p  Statistics df p  Statistics p  

Body weight 67 8.469 <0.001 0.973 67 0.155 1.241 0.301 

Buoyant weight 70 1.618 0.168 0.980 70 0.307 1.462 0.215 

Metabolic rate 71 3.970 0.003 0.991 71 0.876 0.400 0.847 

 

There was no significant difference in buoyant weight change in A. equina 

between the corresponding treatments in winter and summer (see Table 7.10, Fig. 

7.15). However, there were significant differences in body weight change, lipid 

content, and metabolic rate between some treatments, but not between corresponding 

treatments in winter and summer (Table 7.10, Fig. 7.14, Fig. 7.16, and Fig. 7.17).  

 

 

Figure 7.14   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) body weight change in A. equina over a six-week 

period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.15   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) buoyant weight change in A. equina over a six-

week period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 

 

 

Figure 7.16   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) lipid content in A. equina at the end of these 

experiments. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.17   Effect of increased temperature and decreased pH in winter and summer 

on mean (with SE bar) metabolic rate (VO2 (mg O2.g
-1

.h
-1

)) in A. equina at the end of 

these experiments. Winter treatments represented by blue columns and summer 

treatments represented by red columns. 

 

Ascidiella aspersa: 

The Shapiro-Wilk's test indicated that metabolic rate data were not normally 

distributed. However, although body weight change, buoyant weight change, and lipid 

content were normally distributed, variances for those parameters were not 

homogeneous (Table 7.11). Therefore, the non-parametric Kruskal-Wallis test was 

used to compare treatment effects for body weight change, buoyant weight change, 

and lipid content. Then the Mann-Whitney U test was used post hoc to test for 

significant differences between treatments.  

 

There were no significant differences in buoyant weight change and lipid 

content of A. aspersa between the corresponding treatments in winter and summer 

(see Table 7.11, Fig. 7.19 and Fig. 7.20). However, there was a significant difference 

in body weight change between some treatments, but not between corresponding 

treatments in winter and summer (Table 7.11, Fig. 7.18). Also, there was significant 

difference in metabolic rate (Table 7.11, Fig. 7.21) between TR 2011W compared 

with TR 2011S (p = 0.019), between TR 2050W compared with TR 2050S (p = 
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0.008) and between TR 2100W compared with TR 2100S (p < 0.001), using the 

Mann-Whitney U test. 

 

Table 7.11  Statistical analyses for body weight change, buoyant weight change, lipid 

content, and metabolic rate in A aspersa. 

Parameter Normality test Treatment comparison 

 Shapiro-Wilk's test  Kruskal-Wallis test  

 Statistics df p value Chi-Square df p value 

Body weight
a 

0.958 35 0.206 12.533 5 0.028 

Buoyant weight
b 

0.942 31 0.096 8.233 5 0.144 

Lipid content
c 

0.991 21 0.999 8.506 5 0.130 

Metabolic rate
 

0.374 61 <0.001 35.758 5 <0.001 

a 
Body weight change was analysed using the Kruskal-Wallis test because the 

variance for this parameter was not homogeneous (Levene's test was significant (p = 

0.018)). 
b 

Buoyant weight change tested using the Kruskal-Wallis test because its 

variance was not homogeneous; the Levene's test for homogeneity of variances was 

significant (p = 0.005). 
c 
Lipid content tested using the Kruskal-Wallis test because the 

significant (p = 0.034) Levene's test for homogeneity of variances indicated that its 

variance was not homogeneous. 

 

 

 

Figure 7.18   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) body weight change in A. aspersa over a six-week 

period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.19   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) buoyant weight change in A. aspersa over a six-

week period. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 

 

 

 

Figure 7.20   Effect of increased temperature and decreased pH in winter and summer 

on mean percentage (with SE bar) lipid content in A. aspersa at the end of these 

experiments. Winter treatments represented by blue columns and summer treatments 

represented by red columns. 
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Figure 7.21   Effect of increased temperature and decreased pH in winter and summer 

on mean (with SE bar) metabolic rate (VO2 (mg O2.g
-1

.h
-1

)) in A. aspersa at the end of 

these experiments. Winter treatments represented by blue columns and summer 

treatments represented by red columns. 

 

7.4  Seasonal and General Discussion: 

7.4.1  Effects on M. edulis: 

No significant differences in growth parameter changes between the 

corresponding treatments in winter and summer were observed in M. edulis (Table 

7.5) (Thomsen et al., 2010). However, an increase in growth in TR 2011W and TR 

2100W was apparent in comparison to corresponding treatments in summer (Fig. 7.6 

and Fig. 7.7), with a slight increase in TR 2050S compared to TR 2050W (Fig. 7.6 

and Fig. 7.7). These findings support the notion that some marine invertebrates 

require an optimal temperature range for the optimal growth (Levinton, 2009) and that 

deviation from this range, whether lower or higher, can lead to reduced growth 

(Rodrigues and Grottoli, 2006). Non-significant differences in lipid content were 

recorded for winter and summer treatments (Table 7.5, Fig 7.8). However, an 

otherwise expected (Nagarajan et al., 2006) increase in lipid content for M. edulis in 

winter (Fig. 7.8) was observed. A significant increase in metabolic rate was recorded 

for TR 2100S compared to TR 2100W (p = 0.032, Fig. 7.9), which was expected 

because metabolic rates normally increase due to increased temperatures in the 
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summer. The increased growth observed in winter may be attributable to greater 

abundance of food combined with reduced energy requirements (Findlay et al., 

2009a). The trends for all parameters measured in the summer and winter TR 2100 

treatments track those in the TR 2011 treatments, except that the increased metabolic 

rates observed in the summer were significant at the high temperature limits. This 

increase did not reflect a significant impact on the growth in summer when compared 

to winter, perhaps due to the inability of the organism to synchronize energy 

expenditure to match their rate of food consumption (Nagarajan et al., 2006). The 

results showed an increase in mortality (22%), by difference of 13% compared to 

winter treatment (9%) (Table 7.4, Fig. 7.1, and Fig 7.5). There were strong similarities 

in survival data for TR 2050 between summer and winter (79% and 84%, 

respectively, Table 7.4, Fig 7.1)). Overall survival rates were best in the winter for all 

treatments, but were not high. Generally, these results indicate that the ability of these 

organisms to grow and carry on necessary physiological processes reflected their 

ability to survive. 

Under exposure to the higher temperatures and seawater acidity expected in 

winter at the end of this century, M. edulis experienced reduced survival and slower 

growth in the present study. Together, these outcomes reflect conflicting results 

regarding the sensitivity of M. edulis to predicted future higher temperatures and 

lower pH (Landes and Zimmer, 2012). On the other hand, their results were similar to 

those in the present study for TR 2050, which revealed no significant effects on 

metabolic rates, with low differences in growth recorded for all measurements. In 

summer, M. edulis showed an increase in mortality rates directly proportional to the 

increase in temperature and acidity levels. In TR 2100, there was also a decrease in 

wet weight and the buoyant weight, and an increase in the size of the shell with an 

increase in the metabolic rate, which may reflect responses to resist shell dissolution 

in this treatment (Findlay et al., 2009b). Although there were different responses in 

TR 2050, M. edulis showed evidence of short-term adaptation through significantly 

reduced rates of metabolism. Despite the fact that most of the differences in 

parameters under future conditions were not statistically significantly different from 

controls, the present results indicated that the predicted future adverse effects of 

higher temperature and lower pH on M. edulis can lead to increased mortality, 
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reduced body weight, and reduced buoyant weight, but were not critical (Appelhans et 

al., 2012). 

7.4.2  Effects on L. littorea: 

The growth changes observed in corresponding treatments were not 

significantly different in summer and winter in L. littorea. Decreased growth in winter 

experiments and increased growth in summer were expected, especially as reflected in 

buoyant weight measurements (Rodolfo-Metalpa et al., 2010) but these expectations 

were not met in the future treatments (Fig 7.10 and Fig. 7.11). However, the effects of 

concurrent increased availability of food, with low metabolic rates and low energy 

expenditure on other physiological processes may lead to increased growth in all 

winter treatments. The irregular responses were noted in the summer treatments when 

the temperature rose above the seasonal average (Godbold and Solan, 2013), while an 

increase in the metabolic rate under TR 2011S (Fig. 7.13) occurred in tandem with a 

non-significant increase in growth under the same treatment in winter (Fig. 7.10 and 

Fig. 7.11). In TR 2050, a non-significant decrease in growth in the summer was 

observed. Differences in metabolic rates and lipid content were also non-significant 

between corresponding treatments under winter and summer conditions, except for 

the increased metabolic rate recorded for treatment TR 2100S (p = 0.029. Table 7.8, 

Fig. 7.13). As seen in M. edulis, and as expected, metabolic rate increased under TR 

2100S in L. littorea in the summer and rose significantly under TR 2100W. Such an 

increase in metabolic rate, combined with lower growth and intermediate lipid content 

indicates increased energy consumption directed to the restoration and maintenance of 

tissues, and increased cost of growth and calcification to compensate for dissolved 

shell components (Fig 7.11 and Fig. 7.13). The increase in metabolic rate observed in 

TR 2100S coincided with decreased summer survival (90%) compared with the 

winter treatment (98%). The highest difference in mortality observed was between 

corresponding treatments (8%), which was no more than 4% in the other treatments 

(Table 7.4, Fig. 7.2, and Fig. 7.5). Generally, winter treatments showed better growth 

and survival parameters when compared to the summer treatments, except that the 

largest change in growth was observed under TR 2011S compared with TR 2011W. 

 L. littorea showed a high capacity for survival in winter, while exhibiting a 

decrease in body growth offset by an increase in the growth of the shell. This 
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coincided with an increase in metabolic rate. Therefore, it is clear that increasing the 

acidity levels and temperatures did not disrupt metabolism or decrease calcification, 

although deficits in length and weight change may indicate a reciprocal relationship 

between the dissolution of old structures and the formation of new structures (Findlay 

et al., 2009b). However, none of these effects were statistically significant, possibly 

due to the ability of L. littorea to convert energy and thereby reduce growth and 

increase calcification to cope with the new environmental conditions and survive at 

higher rates. The present results showed decreases in the growth of L. littorea in 2050 

and in 2100 due to elevated temperature and decresed pH, as shown decreases in body 

weight under the higher temperature and decreased pH (Melatunan et al., 2013) in the 

summer. The lower growth together with high metabolism might be a response to the 

TR 2100 treatment that would improve individual animals’ ability to survive. 

Otherwise, growth would have increased, boosted by the animals’ high fat content as 

compared to that of animals under the control treatment. This response also reveals 

shell dissolution under the TR 2050, which indicates the occurrence of divergent 

responses to the phenotypic characteristics of the shell between treatments (Melatunan 

et al., 2013). These results show that higher temperature and lower pH have a small 

but negative impact on L. littorea that may be due to the increased cost of producing 

the energy needed for the restoration, maintenance, and preservation of cell viability 

and shell integrity. 

7.4.3  Effects on A. equina: 

A. equina as a species tends to tolerate a broad range of thermal conditions, 

because its tidal habitat tends to exhibit a wide range of seasonal and daily 

temperatures (Levinton, 2009). The findings in this study supported the hypothesis 

that an increase in temperature may affect the abundance of some non-calcified 

marine invertebrate species. Mortality was zero in the summer season (0%), while the 

mortality rate ranged from 26% to 36% under all winter treatments and was highest 

under TR 2011W (64%, Table 7.4, Fig 7.3 and Fig 7.5). However, there were no 

significant responses for any measurements under corresponding treatments under 

winter and summer conditions. Decreased pH under future condition treatments in 

winter might have played a role in reducing mortality and reducing the difference 

between winter and summer treatments, unlike the effects observed on calcified 

invertebrates in the present study (Fig, 7.5). A. equina might have a strong ability to 
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adapt to future environmental conditions, via energy conversion and reduced growth 

to increase its ability to survive. Under summer conditions, these animals were highly 

successful, but the winter usually tough on A. equina. Elevated temperatures and low 

pH of the predicted future conditions might have improved the ability of these 

organisms to seasonally adapt. 

The ability of A. equina to survive in winter were similar under future 

treatment conditions, with a slight non-significant increase in survival compared to 

control, which indicates that some non-calcified invertebrates may become more 

abundant in a more acidic environment. Suggett et al. (2012), for example, suggested 

that the abundance of Cnidaria would increase. In addition, these results showed an 

increase in metabolic rates directly proportional to the temperature and acidity 

increases, together with decreased growth change. This may indicate that reduced 

growth and higher rates of metabolism allowed the animals to cope with the more 

difficult environment and maintain acceptable levels of survival. Under summer 

conditions, there were no surprises for any of the responses measured in A. equina, 

which were within expectations. Results for A. equina demonstrated that these 

animals tolerated increased temperatures and acidity, and have a high capacity to 

adapt, which led to an absence of mortality in all treatments. 

7.4.4  Effects on A. aspersa: 

A. aspersa is a species with seasonal mortality and a short life cycle (Schmidt, 

1983), These animals are typically quite abundant when animals are collected at the 

beginning of winter, but are less abundant in the middle of winter. Adult animals 

greater than 25 mm in size were rarely observed in the summer. Hence, most adults 

might reach the end of their life cycle in the summer while others do so in the middle 

of winter. Percentage mortality in the summer for all treatments ranging from 77% to 

85% (Table 7.4), approaching the mortality rate of 82% observed in TR 2100W (Fig. 

7.3 and Fig. 7.5). The lowest mortality rate of 4% under winter treatments was 

observed in TR 2011W, while 35% mortality was recorded for TR 2050W. These 

results showed that mortality increased significantly in winter treatments under 

predicted future conditions, while there was slight improvement in survival in the 

summer treatments under predicted future conditions (TR 2050S and TR 2100S). 

Despite the impact of a short life cycle (18 months) (Morton and Dinesen, 2011) on 
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its mortality rates, temperature increases of more than 7 °C may have led these 

animals to sense a change of season. That may lead to a phenology shift so that 

behavioral responses that are expected to begin in one season start to occur earlier or 

later (Godbold and Solan, 2013). Here, responses expected to occur in the summer 

start to occur late in the winter and the animals inappropriately transition to the next 

phase, resulting in a higher mortality rate. A. aspersa showed responses different to 

some extent from those for other marine invertebrate species, when comparing the 

corresponding treatments in summer and winter. In this species, there were non-

significant responses in growth and lipid content, while all corresponding treatments 

showed significant treatment responses in metabolic parameters during the winter and 

summer seasons (Table 7.11, Fig. 7.21). Hence, the present study found that elevated 

temperature had a negative effect on impact on this species of marine invertebrate, 

which is affected by seasonality. The winter season launches the animals into 

readiness for the beginning of a new life cycle in the spring, so increased temperature 

and decreased pH may both reduce viability and the chances for reproductive success 

for these marine organisms. 

The results of the present study of predicted future climate effects on A. 

aspersa in winter were in stark contrast to positive responses to decreased pH land 

increased temperature on non-calcified marine invertebrates reported in other studies 

(Connell & Russell, 2010, Kroeker et al., 2010). The present study results indicated 

higher and statistically significant percent mortality in direct proportion to the higher 

temperature and acidity levels in winter. Furthermore, generally lower growth (body 

weight change and dry weight), with increased metabolic rates under TR 2100 

conditions, and lower metabolic rates under TR 2050 conditions were recorded. For 

A. aspersa summer responses, factors related to these organisms’ short life cycle 

might have led to very high percentage mortality under all treatments, including the 

control treatment. However, the level of improvement in survival rates when 

temperature and acidity levels increased to their treatment maxima, supports what 

Dupont and Thorndyke (2009) noted that a lower pH of -0.4 units led to increases in 

the rate of survival. Slight increases appeared in buoyant weight, body weight, and 

lipid content. Metabolic rate showed variable responses; a significant increase was 

observed under TR 2100 conditions, but a significant decrease was observed under 
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TR 2050 conditions. These results illustrate the variability of responses to different 

pH and temperature levels by one species in the same season. 

 

8.4  Future Work: 

Further tests based on the results obtained so far will be performed, including 

calorimetric energy calculations and protein content determinations in dried tissues. 

These tests will be integrated with the present results partially by scanning electron 

microscopy of tissues from the marine invertebrate species to determine whether 

environmental conditions resulting from climate change have any effects on any 

structures or tissues of the study species, specifically on mitochondria in the epithelial 

layer (see Appendices). 
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Appendices: 

Appendix I: Histology of M. edulis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

Transmission Electron Microscopy (TEM) sections of M. edulis tissues showing 

effects of experimental conditions on mitochondria in the epithelial layer of the gills 

to all treatments (TR 2011, TR 2050 and TR 2100) in summer. 
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Appendix II: Histology of L. littorea. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transmission Electron Microscopy (TEM) sections of L. littorea tissues showing 

effects of experimental conditions on mitochondria in the epithelial layer of the 

midgut to all treatments (TR 2011, TR 2050 and TR 2100) in summer. 
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Appendix III: Histology of A. equina. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transmission Electron Microscopy (TEM) sections of A. equina tissues showing 

effects of experimental conditions on mitochondria in the epithelial layer of the 

tentacle to all treatments (TR 2011, TR 2050 and TR 2100) in summer. 

 

 

 

 

  

 

TR 2011 TR 2050 

TR 2100 



183 
 

Appendix IV: Histology of A. aspersa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transmission Electron Microscopy (TEM) sections of A. aspersa tissues showing 

effects of experimental conditions on mitochondria in the epithelial layer of the gut to 

all treatments (TR 2011, TR 2050 and TR 2100) in summer. 
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