
 
 

 

 

 

 

The Biochemical Impact of Biochar in Soil Environments 

 

 

 

A thesis submitted to Newcastle University in partial fulfilment of the requirement for 

the degree of Doctor of Philosophy (Integrated) in the Faculty of Science, Agriculture 

and Engineering 

 

 

 

Sani Mu’azu Makarfi 

 

 

 

School of Civil Engineering and Geosciences 

Newcastle University, UK 

 

 

 

 

July, 2014 

http://www.google.co.th/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qriT607RA7d1NM&tbnid=M_XeJkGqFhi7YM:&ved=0CAUQjRw&url=http://www.rtpi.org.uk/education-and-careers/information-for-universities/accredited-qualifications/newcastle-university/&ei=u3GfUZTJN6e50QX9voD4DQ&bvm=bv.47008514,d.d2k&psig=AFQjCNEuItneC0XfL5fQ0U6VVu9Q-Hywyg&ust=1369490234272647


i 
 

Declaration 
 

 

Except where acknowledged, the content of this thesis is the work of the author. No 

part of the material presented has been submitted previously for a degree or other 

qualifications in this, or any other University anywhere. 

 

 

Sani Mu’azu Makarfi 

(July, 2014) 

  



ii 
 

Acknowledgement 

All praise is due to Allah the designer of the universe and all that lies within and 

beyond it. I must thank my supervisors for their valuable contributions towards the 

success of my PhD research. Dr Neil Gray and Professor David Manning answered all 

my questions regardless of how trivial they might have sounded. I must also thank my 

third supervisor, Professor Mark Thomas for facilitating the provision of my first 

biochar samples and also for his other important suggestions.  

I also express my appreciation for the assistance received from Mr Bernie Bowler, Mr 

Phil Green, Mr Stuart Patterson and Mrs Yvonne Hall. Mr Clive Barr of Moorbank 

gardens also deserves my appreciation for his assistance. I must also acknowledge the 

assistance and cooperation received from Miss Obioma Mejeha, Miss Emma Bell, Dr 

Clare McCann and indeed all the members of Professor Ian Head’s group. They 

succeeded in making microbiology appear a bit more comprehensible to me.  

I thank the authorities of Kaduna State University, Nigeria for sponsoring my studies 

through the Education Trust Fund (ETF). I must specifically express my appreciation for 

the contributions of the former vice chancellor of Kaduna state university, Professor 

Ezzeldine Abdurrahman, the late registrar, Dr S. Goje and Alhaji Rilwanu Abdussalam, 

the former deputy librarian and ETF desk officer for their sincere support towards my 

doctoral training. 

I say thank you to the many wonderful Nigerians and other nationals I have interacted 

with both in Newcastle and the rest of the UK. I also thank Noor, Kauthar, Nappaporn 

(Gig) and Chris with whom I shared office in the university for their good company. 

Finally, I must register my sincere gratitude to my trusted friend Umar Ishaq who 

willingly ran all errands on my behalf back in Nigeria while I studied, my cousin Garba 

Bala for his generous financial support, my loving wife Maryam (abar kaunata) for all 

her support and prayers to me and also for managing the home front while I worked, 

and to my mother Hajiya Hauwa’u for the care and special lifelong support she has 

given me as dan auta (last born) and for her constant prayers for my success. May 

Allah the most high reward them abundantly. 

 



iii 
 

 

Glossary 
ANOVA  Analysis of variance 

APS  Ammonium per sulphate 

ATR  Attenuated total reflectance 

BD  Bulk density 

BR  Basal respiration 

CEC  Cation exchange capacity 

DEA  Denitrification enzyme activity 

DGGE  Denaturing gradient gel electrophoresis 

DNA  Deoxyribonucleic acid 

DSC  Differential scanning calorimetry 

EDTA  Ethylene diammine tetra-acetic acid 

ess  Edinburgh biochar produced from ≤10mm Sitka spruce wood chips 

ess400  Edinburgh biochar produced at 400oC 

ess600  Edinburgh biochar produced at 600oC 

ess800  Edinburgh biochar produced at 800oC 

FAO  Food and agriculture organisation 

FC  Fixed carbon 

FTIR  Fourier-transform infrared 

GC-MS  Gas chromatography mass spectrometry 

GHG  Greenhouse gas 

HTT  Highest temperature of treatment 

ibc  Interreg biochar 

IPCC  Intergovernmental panel on climate change 

Kbc800  Previous project biochar produced at 800oC 

NH4-OAc Ammonium acetate 

OM  Organic matter 

PAH  Polycyclic aromatic hydrocarbons 



iv 
 

PCR  Polymerase chain reaction 

QMS  Quadrupole mass spectrometry 

qPCR  Quantitative polymerase chain reaction 

RNA  Ribonucleic acid 

rRNA  Ribosomal RNA 

SA  Surface acidity 

SB  Surface basicity 

SEM  Scanning electron microscopy 

SE  Standard error 

ss  Lancashire biochar produced from ≤2mm saw dust of Sitka spruce wood 

ss400  Lancashire biochar produced at 400oC 

ss600  Lancashire biochar produced at 600oC 

ss800  Lancashire biochar produced at 800oC 

TAE  Tris-acetate EDTA 

TC  Total carbon 

TCE  Trichloroethylene 

TEMED  N, N, N’, N’- tetramethylenediamine 

TG  Thermogravimetry 

TG-DSC  Thermogravimetry differential scanning calorimetry 

TG-DSC-QMS Thermogravimetry differential scanning calorimetry and quadrupole mass 

spectrometry 

TGGE  Temperature gradient gel electrophoresis 

Tmax  Maximum decomposition temperature in the course of pyrolysis 

TOC  Total organic carbon 

UK  United Kingdom 

US  United States 

UV  Ultraviolet 

VM  Volatile matter 

WHC  Water holding capacity 



v 
 

Abstract 

Biochar, a product of thermochemical conversion of biomass, is a way to sequester 

carbon and mitigate climate change, improve soil agronomic properties and enhance 

crop production. However, such uses can only be valuable if the biochar does not 

negatively impact on normal soil microbially mediated processes that are important to 

soil health. The physical and biochemical characterization of biochar products is 

therefore important. One of the two central factors that affect the physicochemical 

properties of biochar is the production temperature (or highest temperature of 

treatment, HTT); the other being nature of the feedstock.  

A study of existing literature on biochar research reveals a lack of a systematic and 

rigorous approach focused on individual feedstock or HTT. It is to fill this gap that this 

study aimed to rigorously examine: the characteristics of biochar in a systematic way 

that focusses on a single feedstock source while varying the HTT from two different 

treatment facilities. It also aimed to assess the impact these biochars had on soil 

properties to which they (biochars) were added. The specific objectives were: 

to synthesize from the same feedstock six biochars, three from each of two different 

production processes (Batch and Continuous) over a range of pyrolysis temperatures 

and then subject the biochars to rigorous characterization;  

to investigate the influence of the synthesized biochars on a range of soil processes, 

and microbial diversities; 

to assess how the addition of the synthesized biochars to two soil types affects the 

physicochemical properties of the amended soil and influences plant growth. 

Sitka Spruce (Picea sitchensis) wood was pyrolysed at 400, 600 and 800oC. 

Experimental methods used included; titrimetric analyses, combined 

thermogravimetry – differential scanning calorimetry – quadrupole mass spectrometry, 

Fourier transform infrared spectroscopy and gas chromatography – mass spectrometry. 

In order to assess the impact of the biochars on the soil environments, a fully 

replicated and systematic plant growth trial was done. The post-harvest amended soils 

were then used to measure soil processes and also determine microbial community 

diversity against chosen controls. 
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Results obtained from this study showed altered physicochemical properties of the 

biochars (increases in pH and total organic carbon; decreases in cation exchange 

capacity and water holding capacity), confirming the first hypothesis that biochemical 

and physical properties of the biochar are systematically altered with increasing HTT. 

However, there was very little difference between the properties of the biochars from 

the different production processes indicating that uniformity can likely be predicted 

based on HTT.  

Biochar addition to soil enhanced its basal respiration rate in the low pH soil but 

suppressed it in the near neutral soil, suppressed denitrification enzyme activity in the 

near neutral soil and these effects were to some extent affected by HTT. Biochar 

addition raised the total organic carbon content and lowered bulk density in both the 

acid and near- neutral soils and also increased the pH in the acid soil but not in the 

near neutral soil. The significant alteration of these soil properties was also influenced 

by changing the HTT. Biochar addition also influenced leek growth compared to the 

controls only in the acid soil. However, altering the biochar HTT had no significant 

effect on leek growth in both soils.  
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Chapter 1 Introduction 

1.1 Background 

The term ‘Biochar’ is applied to the solid product of the thermal decomposition of 

biomass in oxygen-limited environment (Mašek et al., 2013; Wang et al., 2013b) and is 

classed under the wider term ‘black carbon’ which simply refers to the product of 

burnt biomass (Ascough et al., 2011). These materials actually represent a continuum 

embracing the carbon-rich products of incomplete biomass combustion with no agreed 

clear-cut boundaries between products (Bird et al., 2008). The products of burning 

range from slightly charred biomass produced at low combustion temperatures 

through to char, charcoal, soot and graphitised black carbon which are formed at 

progressively higher temperatures (Masiello, 2004).  

 

Figure 1.1 (a) Sitka spruce wood chips (right) and its biochar (left), (b) biochar products from various 
feedstock sources such as rice husk, corn cobs, wheat straw, saw dust and chicken manure.  

Source for (b): carbon-negative US 

a

b
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Biochar has variously been referred to as ‘charcoal’ (Glaser et al., 2002; Bell and 

Worrall, 2011), ‘char’ (Chun et al., 2004), ‘agrichar’ (Lehmann and Joseph, 2009a), 

‘carbonized biomass’ (Ogawa et al., 2006) or even ‘carbonaceous material’ (Gartler et 

al., 2013). These names and their variety depend on the context under which they are 

defined. However, a general definition that seems to be gaining acceptance is one that 

defines biochar as the carbon-rich product of biomass decomposition during pyrolysis, 

that is produced and applied to soil with the intention of improving fertility (Lehmann 

and Joseph, 2009b; Verheijen et al., 2009; Enders et al., 2012). Technically, the 

definition mentions the ‘limited’ or ‘no-oxygen’ conditions under which biochar is 

produced (Lehmann and Joseph, 2009a; Wang et al., 2013b) at temperatures below 

700oC (Lehmann and Joseph, 2009a; Taghizadeh-Toosi et al., 2011). Though, other 

authors differ on this temperature ceiling (Wang et al., 2013b) and go on to suggest a 

maximum pyrolysis temperature of 700oC to optimise some properties of crop straw 

biochar. 

1.1.1 Interest in biochar 

There has been a surging interest in biochar research in the last decade primarily due 

to reports of its potential uses in agriculture (based on the known property of the 

Amazonian terra preta soils on which crops grow better compared to surrounding 

soils), climate change mitigation, other environmental applications such as polluted 

land remediation and as a tool for organic solid waste management/disposal. The ‘bio’ 

in ‘biochar’ differentiates it from charred materials from non-biological sources such as 

plastics (Lehmann and Joseph, 2009a). Verheijen et al. (2009), provided an illustration 

of the growing interest in ‘biochar’ compared to the terms ‘terra preta’ and ‘black 

earth’ using a Google trends search result for a 5-year period (figure 1.2) 
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Figure 1.2 Google Trends
TM

 result of “biochar”, “Terra Preta” and “black earth” search for a 5-year 
period. Adapted from Verheijen et al., (2009) 

1.1.2 Biochar and climate change 

For the average temperature of the Earth to remain stable over long periods of time, 

incoming energy in form of solar radiation from space have to be equal to outgoing 

energy radiated from the Earth’s surface as thermal infrared  back to space 

(http://earthobservatory.nasa.gov/Features/EnergyBalance/page6.php, accessed on 

31/07/14) . The Earth is kept warm because greenhouse gases (GHG), mainly water 

vapour and carbon dioxide (CO2), trap the outgoing heat energy. This is the so called 

natural greenhouse effect. Other major GHG are methane (CH4) and nitrous oxide (N2O) 

(Solomon et al., 2007). Referring to a report by the Intergovernmental Panel on 

Climate Change (IPCC), Steinbeiss et al. (2009) mentioned increases in atmospheric 

CO2 at a yearly rate equivalent to 4.1 x 109 t of C. The concentration of CO2 which is the 

primary greenhouse gas in the atmosphere is increased by human activities in the form 

of fossil fuel combustion and deforestation. For example in 2011 CO2 amounted 

to        of all GHG emission in the  S, with electricity generation and transportation 

as the biggest contributors; similarly in the UK, 2012 estimates show CO2 amounting to 

about 82% of all GHG emissions again with energy supply and transport contributing 

the most (Figure 1.3). 

http://earthobservatory.nasa.gov/Features/EnergyBalance/page6.php
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Figure 1.3: Sectoral contributions to carbon dioxide emissions in the US (left) and the UK (right) 

Sources:  http://www.epa.gov/climatechange/ghgemissions/gases/co2.html, accessed on 31/12/2013 
and https://www.gov.uk/government/publications/final-uk-emissions-estimates, accessed on 
25/03/2014. 

This increase in amounts of CO2 in the atmosphere raises the average global 

temperature unleashing a chain of events (Climate Change): melting snow and ice 

cover; raising water levels in oceans; flooding coastal areas; exposed darker areas 

under snow and ice absorbing more solar radiation further heating the Earth; and 

extreme weather scenarios (heavy rains and droughts). Hence, mitigating climate 

change primarily should involve the removal of the excess CO2 out of the atmosphere 

into a more stable sink or reservoir. 

This is where biochar comes in as a channel through which the C in CO2 can be 

‘captured’ in biochar and ‘sequestered’ or stored in soil (Bell and Worrall, 2011). 

Ogawa et al. (2006), reported a 35-year project on Eucalyptus plantation management 

that could sequester CO2 equivalent to over 1 million t  , about 5   of which will be in 

the form of biochar produced from the wood residues.  ther authors reported the 

possibility of adding large amounts of biochar     0 t/ha  to soil without detrimental 

effects to crop yield (Vaccari et al., 2011). Carbon sequestration using biochar has 

potential with multiple advantages of long term C storage (biochar is recalcitrant) and, 

soil quality improvement (agronomic value), and provides a good way to manage plant 

and animal waste. Otherwise, such waste is left to decompose in the natural way 

releasing in the process more green-houses gases to the atmosphere (CO2 in aerobic 

https://www.gov.uk/government/publications/final-uk-emissions-estimates
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decomposition and CH4 in anaerobic decomposition). Biochar-amended soils have also 

been reported as showing suppressed GHG emissions (Spokas et al., 2009; Yaghoubi 

and Reddy, 2011; Yoo and Kang, 2012; Harter et al., 2013). This adds to the climate 

change mitigating credentials of biochar. 

1.1.3 Biochar and food security 

A publication of the Food and Agriculture Organisation (FAO) of the United Nations 

counsels on the need to increase agricultural production by as much as 60% in the next 

four decades in order to cope with a 39% rise in world population (FAO, 2012). With 

such projected growth in world population coupled with dwindling arable land 

resources, restoring fertility to degraded soils is vital to enhanced global food security 

(Spokas et al., 2012). Biochar has the potential to contribute in achieving this goal 

through improved soil physico-chemical properties that result in enhanced fertility. 

Though biochar has only limited direct nutrient value (Asai et al., 2009; Chan and Xu, 

2009; Sukartono et al., 2011), it indirectly increases fertility through improved 

fertiliser-use efficiency (Chan and Xu, 2009; Hossain et al., 2010; Sohi et al., 2010). It 

does this by enhancing properties like cation exchange capacities (CEC) of amended 

soils which help in retaining nutrients and making them available to plants (Sanchez et 

al., 2009). Other properties that improve productivity include increased organic carbon 

contents of soils (Sukartono et al., 2011; Gartler et al., 2013), lower bulk density 

(Vaccari et al., 2011), ameliorating soil acidity (Masahide et al., 2006; Hossain et al., 

2010), and plant water availability (Masahide et al., 2006; Van Zwieten et al., 2010). 

1.2 Research gap and justification 

The literature survey done and reported in the next chapter revealed many studies and 

reports on biochar lacking in rigor and systematic approach. This gap is evident in the 

way biochars from so many feedstock sources produced at many different pyrolysis 

temperature values are studied together, using various types of procedures and 

reporting in different units. Hence, repeating procedures, comparing results and most 

importantly identifying individual biochar suitability for specific applications (such as 

its impact on soil environments) based on its properties become difficult. It also 

reflects a general lack of a standard for biochar characterization and documentation 

(Spokas et al., 2012). 
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The research work undertaken and reported in this thesis was therefore intended to 

contribute in filling this gap. To achieve that, a multidisciplinary approach was adopted 

with the objectives of assessing the biochemical and agronomic impact of the 

synthesized biochars on soil environment and plant growth. The approach fixes one of 

the most important factors affecting biochar properties (feedstock) and varying 

another (the pyrolysis temperature). The multidisciplinary approach involves a detailed 

physico-chemical characterization of the biochars, using them in a fully replicated 

experimental plant growth trials for agronomic impact assessment followed by 

biochemical study of soil processes and molecular biological determination of 

microbial diversity. An extended presentation of this section is at the end of Chapter 2.   

1.3 Aims 

 To produce and characterize different biochars from a single feedstock based 

on different production processes. 

 To measure their impact on the biochemical and agronomic properties of the 

soil environments. 

1.4 Objectives 

The objectives this research project set out to achieve and test the accompanying 

hypotheses were: 

 Objective 1: Biochar synthesis and characterization 

Synthesize from the same feedstock a set of six biochars, three from each of two 

different production processes (Batch and Continuous) over a range of pyrolysis 

temperatures (400, 600 and 800oC) and then rigorously subject the biochars to a range 

of biochemical and physical characterization. 

 Hypothesis 1: Biological, chemical and physical properties of the biochar such 

as fixed carbon, pH, functional group chemistry, water holding and cation 

exchange capacities, are altered with increasing pyrolysis temperature. 

 Hypothesis 2: The biological and physico-chemical properties of biochars are 

altered differently based on the production process used.  
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 Objective 2: Biochemical impact of biochar in the soil environment 

Investigate and compare the influence of biochars synthesized at different 

temperatures from different production processes on a range of soil processes, and 

microbial diversities relative to chosen controls. 

 Hypothesis 3: Increasing pyrolysis temperature progressively alters biochar’s 

ability to influence the selection of resultant microbial communities and 

microbial mediated processes e.g. respiration, and nitrogen cycling in soil 

environments. 

 Objective 3: Impact of biochar amendment on the agronomic properties of 

the soil environment 

Assess how the addition of biochar produced at different pyrolysis temperature from 

different production processes to two soil types (low and near-neutral pH) affects the 

physicochemical properties of the amended soil and influence plant growth in both 

soils compared to unamended control. To achieve this objective, controlled fully 

replicated pot experiments were conducted in a greenhouse using Leek (Allium porrum) 

as test plant. The biochar was applied to the test soils at three amendment rates; 1, 5 

and 10% w/w equivalent to 10, 50 and 100 t/ha.  

 Hypothesis 4: Different biochar pyrolysis temperatures and their application 

rates will significantly alter the pH, total organic carbon (TOC) contents, bulk 

density (BD) water holding (WHC), and cation exchange capacities (CEC) of 

soils to which the biochar was added. 

 Hypothesis 5: Different biochar pyrolysis temperatures and their application 

rates influence biochar’s ability to impact on the growth rate of leek plant in 

amended soils compared to control soils.  

1.5 Thesis structure 

Eight chapters are presented in this thesis. Introductory notes, aims, objectives and 

research hypotheses are given in Chapter 1. Chapter 2 presents a review of the 

literature on research work around biochar; its production, properties, applications 

and impacts in areas such as agriculture and climate change mitigation. A fuller and 



8 
 

clearer research gap and thus justification for this research work emerge at the end of 

Chapter 2.  

The methodologies adopted and equipment used in measuring the biochemical and 

agronomic parameters studied are presented in Chapter 3. This chapter also gives 

details of sample sourcing, the pre-pyrolysis handling of the Sitka spruce wood chips, 

and the pot experiment design that includes growing the leek seedlings and then 

establishing them in the amended soils in the pots. Results for the fresh biochar 

characterization are presented and discussed in Chapter 4; a similar format is followed 

for the agronomic properties of the amended soil and its impact on leek growth in 

Chapter 5. The results for microbial studies consisting of microbial mediated soil 

processes and microbial community diversity are presented and discussed in Chapter 6. 

Each of the three Chapters (4, 5 & 6) is ended with a conclusion. 

Chapter 7 gives an overall discussion centered on the trend of changes in the various 

measured parameters with the main variable in this study, the pyrolysis temperature 

and also with the biochar amendment rates. Chapter 8 is the final chapter of this thesis 

and hence contains the overall conclusions with some recommendations on future 

work that could be done to further enhance documented scientific information on the 

samples studied in this research project. 
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Chapter 2 Literature review 

2.1 Introduction 

The definition of biochar is somewhat fluid depending on the intent for its production. 

The names char and activated carbon are preferred in fuel/energy and sorption 

applications, while the broader term of black carbon is used in soil science/carbon 

sequestration discussions. Figure 2.1 adapted from Schimmelpfennig and Glaser (2012) 

depicts the various forms of pyrogenic carbon within the black carbon continuum. 

 

Figure 2.1: The various forms of pyrogenic carbon in the black carbon combustion continuum. 
Adapted from Schimmelpfennig and Glaser (2012). 

 

It could therefore be inferred that while all biochar is black carbon, not all black carbon 

is biochar (Spokas et al., 2012). Based on intended use, a recent publication defines 

‘biochar’ as charred organic matter that is deliberately produced and applied to soil 

with the aim of improving soil properties (Lehmann and Joseph, 2009a). What relates 

all these terms is the fact that all are used to refer to the solid residue of partial 
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A B 

combustion or pyrolysis from a single precursor - any type of biomass. The properties 

of biochar are highly dependent on the nature of biomass and production conditions 

such as pre- and post-production treatment, presence or absence of oxygen, residence 

time in the kiln or oven (Wang et al., 2013b) and especially the highest temperature of 

treatment (HTT) (Chan and Xu, 2009; Ahmad et al., 2012). Biochar can be produced 

using traditional mud ovens or industrial pyrolysers as in Figure 2.2. 

 

Chemically, the structure of biochar is considered to be highly aromatic (Bird et al., 

2008) due to the structure of the plant material feedstock which typically contains  

lignin, which is a complex racemic aromatic polymer as depicted by the structure of 

lignin in Figure 2.3  (Shen et al., 2010) and its various possible monomers in Figure 2.4 

(Thevenot et al., 2010).  

 

 

Figure 2.2: Manual oven (A) and Industrial pyrolysis unit (B) for Biochar production 

Source: (A) Marris, E. (2006); (B) biochar-international.org 



11 
 

 

Figure 2.3 The chemical structure of wood-derived lignin. Adapted from Shen et al. (2010). 

 

 

Figure 2.4 Lignin monomers: H-type, V-type, S-type and C-type phenols (Thevenot et al., 2010) 
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Figure 2.5: Scanning electron microscopy image of the fresh Sitka spruce biochar produced at 400
o
C (a) 

and structures   in a Sitka spruce wood (b) taken from Moore (2011). 

  At low pyrolysis temperatures (400oC) the biochar in this study (Figure 2.5a) retained 

some of the annual ring structures of a Sitka spruce wood as recorded in Figure 2.5b 

(Moore, 2011). These porous structures could be conduits for the flow of nutrient-

containing soil solutions and could also serve as havens for soil microbes (Bird et al., 

2008). 

Research work around biochar is said to be motivated by four themes: soil 

improvement, climate change mitigation, energy production and waste (solid) 

management (Lehmann and Joseph, 2009a). These topics have recently received the 

attention of researchers but to varying extents. However, it should be noted that the 

motivations for production and usages of biochar are sometimes mutually exclusive 

(such as when biochar simply results as an insignificant end product in the production 

of bio-oil) while some are mutually inclusive (such as when biochar is produced to 

serve as a soil improver as well as a way to sequester carbon). This literature review 

will discuss these different research themes under the following headings that also 

include physico-chemical characterization since all potential applications to which 

biochar could be deployed will depend on its physico-chemical properties: 

1. Solid waste management. 

2. Fuels/Energy. 

3. Sorption applications. 

4. Carbon sequestration/Greenhouse gas emissions. 

a b 



13 
 

5. Agronomic impact (Soil improvement/Plant growth). 

6. Biochar and soil microbial systems. 

7. Physico-chemical Characterization. 

 Solid waste management 2.1.1

Biochar production and deployment to soil (see 2.1.5) is seen as a very positive way of 

managing both animal, crop and other agricultural wastes that would otherwise be 

dumped in open-air sites or landfills and constitute sources of both surface and 

groundwater pollution (Lehmann and Joseph, 2009a). This understanding has led to 

lots of efforts towards producing biochar from coconut shells (Amuda et al., 2007), saw 

dust (Sun and Zhou, 2008), rice and wheat straw (Qiu et al., 2009), orange peels (Chen 

and Chen, 2009), bagasse (Inyang et al., 2010), poultry litter (Uchimiya et al., 2010), 

waste water sludge (Hossain et al., 2011), rice husk (Enders et al., 2012), and various 

types of wood (Titiladunayo et al., 2012; Liu and Balasubramanian, 2013; Mukherjee 

and Zimmerman, 2013).  

 Fuels/Energy 2.1.2

The production of bio-fuels involves pyrolyzing biomass at high temperature to obtain 

liquid fuel, gaseous fuel in the form of syngas (a mixture of CO, H2 and some CO2) and a 

solid carbon-rich residue (biochar). Most studies on energy from biomass (Ozcimen 

and Karaosmanoglu, 2004; Ozcimen and Ersoy-Mericboyu, 2008; Grierson et al., 2009; 

Sanchez et al., 2009; Agblevor et al., 2010), focus heavily on maximizing bio-oil and 

syngas production. Hence, pyrolysis design has been geared towards minimal 

production of char as it is considered a low value waste product (Sohi et al., 2010; 

Montanarella and Lugato, 2013) and consequently the little biochar produced is 

sometimes gasified (Melchior et al., 2009), or assessed based on its heating value 

(Agblevor et al., 2010) rather than any agronomic value. An important finding from 

these energy studies that relate to biochar production is that slow pyrolysis (low 

temperature and low heating rate) is noted to maximize biochar yield (Demirbas, 2004) 

while fast pyrolysis maximizes bio-oil/syngas output as Figure 2.6 illustrates. Figure 2.7 

shows the schematic outlines of the two processes. 
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Figure 2.6: Relative output proportions from fast and slow pyrolysis processes. 

 

 

Regardless of the yield of biofuel obtained from pyrolysis of biomass, biochar itself has 

been identified as a combustible fuel (Laird et al., 2009), albeit a solid one with a heat 

energy content of about 20 MJ/Kg. However, other workers have reported higher 

calorific values for biochar; 25.3 MJ/Kg for biochar from rapeseed cake (Ozcimen and 

Karaosmanoglu, 2004), 25.96 MJ/Kg and 32.62 MJ/Kg for biochar from coconut fibre 

A B 

Figure 2.7 Schematic diagrams of slow (A) and fast (B) Pyrolysers; Source: (Laird, 2009) 
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and pine wood respectively (Liu and Balasubramanian, 2013). Such high calorific values 

(>20MJ/Kg) satisfy the generally held opinion for a solid fuel to ensure auto-thermal 

combustion (Liu et al., 2012), and this calorific yield is consistent with low moisture 

and fixed-carbon content (Ozcimen and Ersoy-Mericboyu, 2008), low ash and oxygen 

content (Sanchez et al., 2009). Titiladunayo et al. (2012), concluded that the negligible 

sulfur content of some hard wood biochar is a characteristic that makes this biochar 

environmentally friendly in terms of SOx emissions. 

 Sorption applications 2.1.3

Activated carbon, made from carbon-rich biomass (Kalderis et al., 2008)  is used 

industrially as an adsorbent or filter for various volatile organic compounds (Fletcher et 

al., 2007) and heavy metals (Amuda et al., 2007). This is due to its very large surface 

area coupled with  proper micro-porous structure, two properties that are also found 

in biochar (Qiu et al., 2009). Thus, there is a growing interest in deploying biochar as a 

cost-effective adsorbent in place of activated carbon for organic compounds like dyes 

(Qiu et al., 2009), polycyclic aromatic hydrocarbons (Chen and Chen, 2009; Beesley et 

al., 2010), pesticides (Spokas et al., 2009; Yu et al., 2009) and heavy metals like arsenic 

(Hartley et al., 2009), chromium (Wang et al.), copper (Uchimiya et al., 2011)  and lead 

(Liu and Zhang, 2009; Namgay et al., 2010). Qiu et al. (2008), found Pb(II) adsorption to 

be higher in rice straw- and wheat straw-derived biochar than in commercial activated 

carbon.   Biochar may also remove odorants from air (Laird et al., 2009) and, toxins 

from water, food and drugs (Peterson et al., 2013), and is effective in retaining 

nutrients and making them available to plants (Sanchez et al., 2009) while reducing the 

bioavailability of both inorganic and organic contaminants to plants (Beesley et al., 

2010).  The sorptive potentials of biochar may probably be due to electrostatic 

attractions between positive metal ions and negative surface functional groups on the 

biochar (Qiu et al., 2008) which could be carboxylic in nature (Uchimiya et al., 2012). 

Inyang et al. (2012), reported effective removal of heavy metals from aqueous 

solutions by biochar sourced from anaerobically digested diary waste and sugar beet, 

further suggesting the use of anaerobic digestion to biologically ‘activate’ biochar as a 

means of improving its sorptive properties. 
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 Carbon sequestration/Greenhouse gas emissions 2.1.4

Biochar as a product of pyrolysis contains a high percentage of carbon which has been 

found to be stable, and ‘inert’ or ‘recalcitrant’ in the environment (Spokas et al., 2009). 

This property makes biochar when added to soil a potential tool for carbon capture 

and storage (Montanarella and Lugato, 2013) in climate change mitigation. 

Additionally, biochar reduces the emission of greenhouse gases from amended soils. 

The recalcitrance of biochar is ascribed to its resistance to both chemical and microbial 

degradation (Lehmann and Joseph, 2009a) and an index to estimate this property (see 

section 4.3.2 of this thesis) has recently been suggested (Harvey et al., 2012). Biochar 

is estimated to have a mean residence time of 2000 years in temperate soils (Kuzyakov 

et al., 2009), and some researchers suggest biochar may have a half-life in the order of 

thousands of years (Forbes et al., 2006). However, its rate of degradation in soil 

remains controversial (Bird et al., 2008). Nevertheless, biochar appears to provide a 

channel for the removal of carbon from the short-term bio-atmospheric carbon cycle 

and sequestering it into the long-term geological carbon cycle (Bird et al., 1999; Forbes 

et al., 2006; Yoo and Kang, 2012). Vaccari et al. (2011), reported the possibility of high 

rates (60t/ha; 5% w/w) of application of biochar to soil as a way to sequester carbon 

without detrimental effect on crop yield. 

In addition to sequestering carbon, biochar application to soil is reported to suppress 

greenhouse gas (GHG) emissions in the form of N2O and CO2 (Zhang et al., 2012) 

further enhancing its climate change mitigation potential. Others found that laboratory 

incubation of a farmland top soil with biochar over a period of 100 days reduced the 

soil CO2 production for all amendment levels corresponding to field application rates of 

24 – 720 t/ha (Spokas et al., 2009). They also found biochar additions >20% w/w 

significantly suppressed N2O production just as it reduced ambient CH4 oxidation at all 

levels compared to unamended soil. Anthropogenic sources are said to contribute 

about 6.75 million metric tonnes of N2O emissions with 1.5 million tonnes from grazing 

animal excreta (Taghizadeh-Toosi et al., 2011). Yaghoubi and Reddy (2011) reported 

over 40% improvement in CH4 adsorption for a landfill cover soil amended with 5% 

biochar (w/w), while others reported an N2O emission reduction potential of 47% for 

biochar at 2% application rate (Harter et al., 2013). The impact of biochar on 

greenhouse gas emissions from soil environments are said to depend on soil and 

biochar types (Spokas and Reicosky, 2009; Harter et al., 2013), biochar aging and 
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water-filled pore size (Singh et al., 2010). More discussion on proposed mechanisms of 

GHG suppression is provided in section 6.3.2 (Chapter 6) of this thesis. 

 Soil improvement/Plant growth 2.1.5

A considerable amount of published work exists which describes the impact of biochar 

in improving soil quality in terms of enhanced retention and/or availability of nutrients 

(Glaser et al., 2002; DeLuca et al., 2009; Agblevor et al., 2010), water retention and 

cation exchange capacities (Masahide et al., 2006; Asai et al., 2009; Van Zwieten et al., 

2010), reduced plant uptake of pesticides (Yu et al., 2009), heavy metals (Hartley et al., 

2009) and increased microbial abundance (Masahide et al., 2006; Steinbeiss et al., 

2009; Thies and Rillig, 2009). Application of biochar from the bark of Acacia mangium 

(brown Salwood) improved the availability of nutrients like Ca which increased from 

0.79 to 5.86 cmolc/Kg, Mg from 0.27 to 0.55 cmolc/Kg, K from 0.07 to 0.21 cmolc/Kg, 

and total N from 1.3g/Kg to 2.1g/Kg (Masahide et al., 2006). These increases were 

attributed to the biochar’s contents of the relevant nutrients and exchangeable cations. 

Glaser et al. (2002), reported higher levels of available nutrients in a pooled data table 

that showed a Ca increase from 1.00 cmolc/Kg in unamended soil to 13.46 cmolc/Kg in 

soil amended with 300g/Kg of hardwood charcoal. For the same treatment, K 

increased from 0.03 to 0.46 cmolc/Kg, Mg from 0.17 to 0.41 cmolc/Kg and, total N from 

0.7 to 2.4g/Kg. Similarly, P increased from 7.0 to 37.4mg/Kg. Biochar-amended soils 

have lower bulk densities which reduce the tensile strength of the soils and hence give 

lower tillage costs (Vaccari et al., 2011), just as it provides a liming effect to acidic soils 

(Van Zwieten et al., 2010). However, biochar’s impact on soil fertility varies with soil, 

crop type and over time (Mukherjee and Zimmerman, 2013) in addition to the intrinsic 

characteristics of the biochar itself.  

There are reports of biochar’s positive impact on plant growth and crop yields 

(Masahide et al., 2006; Asai et al., 2009; Yu et al., 2009). Asai et al. (2009), investigated 

the impact of biochar application on the physical properties of soil and rice (Oryza 

sativa L.) yield. Their results show saturated hydraulic conductivity of the soil increased 

by 79% at 16 t/ha biochar application rate. This, they explain, suggests not only 

improved soil water permeability but also soil water holding capacity which translates 

into improved water availability to plant. Masahide et al. (2006), studied the effect of 

biochar on the chemical properties of soil and the yields of maize (Zea mays L.), cow 
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pea (Vigna unguiculata L.) and pea nut (Arachis hypogaea L.). From their results, 

biochar application was associated with increases in the pH value of the soil from 4.5 

to 5.4; total N from 1.3 to 2.1g/Kg and cation exchange capacity from 8.85 to 12.38 

cmolc/Kg. A 15.8% increase in maize yield at 20 t/ha biochar amendment has been 

reported (Zhang et al., 2012), while a waste water sludge biochar at half this 

amendment rate is said to have increased cherry tomato yield by over 60% (Hossain et 

al., 2010). Vaccari et al. (2011) reported a 30% increase in biomass and durum wheat 

yield using a wood based biochar, while Major et al. (2010) have shown biochar 

amendment to have increased maize yield by 28, 30 and 140% over three consecutive 

years. This shows the potential of biochar for sustained positive impact on crop yield at 

least in the short term. Some other authors, however, reported no effect on plant 

growth (Hartley et al., 2009), while yet others report depressed crop response (Chan 

and Xu, 2009; Gartler et al., 2013). But some of the data on crop response to biochar 

addition collected in a review paper (Glaser et al., 2002) seem to suggest that low 

amounts of applied biochar perform better compared to high amounts that have 

negative impact on plant growth. For instance, they report a 63% increase in biomass 

production at 5.0 t ha-1 charcoal amendment, while only 29% was obtained at 15.0 t 

ha-1 charcoal amendment for the same soybean plant. These authors reported 

improved soil fertility and high biomass yield at reduced tillage cost which could lower 

the energy cost of production for biofuel crops, making them better climate mitigation 

tools. Table 2.1 provides more information on crop responses to different biochar 

types (Chan and Xu, 2009). 
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Table 2.1 Crop yield responses from biochar applications (Source: Chan and Xu, 2009) 

Feedstock for biochar 
and rate of application 

Crops/plants Responses Reasons for responses 
Given by authors 

References 

Unknown wood 
(0.5 t ha-1) 

Soybean Biomass increased 
by 51% 

Water-holding capacity 
and black colour on 
temperature 

Iswaran et al (1980) 

Unknown wood 
(5t ha-1 and 15t ha-1) 

Soybean Yield reduced by  
37 and 71% 

pH-induced micro-
nutrient deficiency 

Kishimoto and Sugiura 
(1985) 

Wood for charcoal 
Production, unknown 
rates 

Vegetation in charcoal 
hearth and non-hearth 
areas compared after 110 
years 

Tree density and 
basal area were 
reduced by 40% 

Negative responses due 
to changes in soil 
properties 

Mikan and Abrams 
(1995) 

Wood for charcoal 
production, (2t ha-1) 

Trees (Betula pendula and 
Pinus Sylvestris) 

Affected only B. 
pendula and only in 
substrates high in 
phenolics 

Increased N uptake by 
countering the effect of 
phenolics 

Wardle et al 
(1998) 

Bamboo, unknown rate Tea tree Height and volume 
increased by 20 and 
40% 

Retained fertilizer and 
maintained pH 

Hoshi (2001) 

Secondary forest wood 
(68t C ha-1 – 135t C ha-1) 

Rice, cowpea and Oats Biomass of rice 
increased by 17%, 
cowpea by 43% 

Improved P, K and 
possibly Cu nutrition 

Lehmann et al (2003b), 
Glaser et al (2002) 

Bark of Acacia mangium 
(37t ha-1) 

Maize, cowpea and peanut 
at two sites 

Response only at 
one site (less fertile) 
with 200% increase 
(fertilized) 

Increase in P and N 
availability and reduction 
of exchangeable Al3+; 
arbuscular mycorrhizal 
(AM) 

Yamato et al 
(2006) 

Secondary forest wood 
(11t ha-1) 

Rice and sorghum Little response with 
biochar alone, but 
with a combination 
of biochar and 
fertilizer yielded as 
much as 880% more 
than plots with 
fertilizer alone 

Fungal colonization 
Not stated 

Steiner et al 
(2007) 

Rice husk (10t ha-1) Maize, soybean 10-40% yield 
increases 

Not clearly understood, 
dependent upon soil, 
crop and other nutrients  

FFTC (2007) 

Green waste 
(0-100t ha-1) 

 No positive effect 
with biochar up to 
100t ha-1, but with 
added N fertilizer, 
226% increase in dry 
matter 

Indirect effect of 
improving physical 
properties of hard-
setting soil 

Chan et al (2007c) 

Paper mill sludge 
(10t ha-1) 

Wheat Increase in wheat 
height by 30-40% in 
acid soil but not in 
alkaline soil 

Mainly liming value Van Zwieten et al 
(2007) 

 Biochar and soil microbial systems 2.1.6

Soil is a highly complex system that embodies a variety of microhabitats with different 

physico-chemical properties and environmental conditions that serve as havens for soil 

microorganisms (Insam, 2001; Torsvik and Øvreås, 2002). These microorganisms are of 

central importance in sustaining soil health due to  the vital role they play in the 

release and cycling of nutrients and decomposition of organic matter which has  a net 

effect on primary productivity (Rutigliano et al., 2004). Figure 2.8 below depicts the 

connection between biochar properties, soil processes and soil biota (Lehmann et al., 

2011). 
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Figure 2.8 Relationships between soil biota (inner circle), soil properties biochar may influence 
(middle circle) and the properties of biochar (outer circle). Arrows show influence between properties. 
Adapted from Lehmann et al (2011) 

Human activities in the form of soil amendment techniques impact on the structure,  

diversity and activity of microbial populations (Sheppard et al., 2005). Published works 

report the impact of addition of sewage sludge and/or lime on ammonia oxidizing 

bacterial communities (Gray et al., 2003), the impact of N fertilizer treatments on the 

diversity of ammonia-oxidizing bacteria populations (Webster et al., 2002), and the 

impact of repeated long-term addition of anoxically digested sewage sludge on the 

diversity of methanogens (Sheppard et al., 2005). However, the impact of biochar 

amendment on soil biota has been much less studied (Lehmann et al., 2011) compared 

to its impact on the physico-chemical properties of soil. 

In the case of biochar amendments, the impact can be studied in two ways, namely, 

the effect of biochar on the soil microbial community and how the microbes influence 

the biochar itself. On the one hand, addition of biochar to soil has been shown to 

provide pore spaces for colonization by microbes (Bird et al., 2008). Biochar also 

possibly provides the micro-organisms access to nutrients (Brodowski et al., 2005) held 

by the biochar within its pores. Steinbeiss et al. (2009), identified biochar type as the 

driving parameter for any effects on the microbial community. Comparing total 

amount of phospholipid fatty acids in soils before and after incubation as an estimate 
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of microbial biomass they found that while addition of glucose-derived biochar led to a 

significant reduction in microbial biomass, the addition of yeast-derived biochar did 

not have any effect. On the other hand, microbes are reported to influence the 

oxidation or mineralization of biochar in soil with only one study reporting no 

degradation as detailed in the reviews of Schmidt and Noack (2000) and Glaser et al. 

(2002). Kuzyakov et al. (2009), found that only between 1.5 and 2.6% of biochar C was 

incorporated into microbial biomass after incubation for over 89 weeks. However, all 

seem to agree that microbial degradation of biochar is very slow.   

 Physico-chemical characterization of biochar 2.1.7

All the applications to which biochar is deployed (carbon sequestration, soil 

improvement, sorptive potential, energy purposes) ultimately depend on biochars 

physical and chemical nature which in turn depend mainly on the nature of feedstock 

and highest temperature of treatment (HTT). Expectedly, there is a growing interest in 

the physico-chemical characterization of biochar especially in the last decade 

(Fernandes et al., 2003; Ozcimen and Karaosmanoglu, 2004; Zhu et al., 2005; Brown et 

al., 2006; Bourke et al., 2007; Qiu et al., 2008; Chen and Chen, 2009; Song and Peng, 

2010; Ascough et al., 2011; Enders and Lehmann, 2012; Zhao et al., 2013) . The 

sorptive properties of biochar for example are shown to be due to chemisorbed O2 on 

the carbon surface (Boehm, 2002), while Ahmad et al. (2012) attributed the adsorption 

of trichloroethylene (TCE) by crop residue biochars to the high aromatic and low 

polarity nature of their surfaces. Additionally, surface area itself influenced by HTT; 

(Wang et al., 2013b) may explain the sorption of nonpolar pollutants, as Kloss et al. 

(2012) concluded after finding higher concentration of naphthalene in woody biochars 

with increasing HTT (which also increased the surface area of the biochars). Straw- 

based biochar has also been suggested as better than wood based biochar in 

agriculture (Wang et al., 2013b), probably due to their higher contents of soluble 

major and trace elements, boron apart (Kloss et al., 2012). What has not received 

deserved attention is a systematic study focused on the main variables affecting 

biochar’s properties (Feedstock and HTT). This is vital to weaning biochar from being 

considered a waste product (Sohi et al., 2010; Montanarella and Lugato, 2013) to 

having a set of standards (Cheng and Lehmann, 2009) and properties for identifying 

biochar (Schimmelpfennig and Glaser, 2012) aimed at particular applications (Zhao et 

al., 2013) especially  in soil environments which require meeting regulatory constraints 
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(Keiluweit et al., 2012) that set maximum allowable limits for certain pollutant 

contents in materials added to agricultural soils.   

2.2 The research gap and justification 

The study of existing literature on biochar research reveals a lack of a systematic and 

rigorous approach focused on individual feedstock and/or the highest temperature of 

treatment and consequent effects on the properties of biochar. It is these properties 

upon which biochar’s potential benefits for use in climate change mitigation, pollution 

control and agricultural soil improvement are based. This gap is evident in the way 

biochar from so many feedstock sources produced at many different pyrolysis 

temperature values are studied together, using various types of procedures and 

reporting in different units. This reflects a general lack of a standard for biochar 

characterization and documentation (Spokas et al., 2012) which makes it difficult  to 

compare results, repeat procedures and most importantly identify individual biochars 

by their properties suitable for specific applications, a need that has recently been 

echoed by various researchers (Kloss et al., 2012; Schimmelpfennig and Glaser, 2012).  

Titiladunayo et al. (2012), for example studied biochars from three different named 

hard woods at five different HTT’s mainly for their fuel potentials, while others 

analyzed biochar from two different feedstock sources at seven different HTT’s for PAH 

content (Keiluweit et al., 2012). Enders et al. (2012) evaluated 94 different biochars at 

7 different HTT’s for their recalcitrant and agronomic values, while others quantified 

PAH's in over 50 biochars from 22 different feedstock sources using various pyrolysis 

methods at numerous HTT’s between 250-900oC (Hale et al., 2012). Another study 

(Beesley et al., 2010) did not give any information on the identity of the hardwood 

used, or the HTT chosen for producing their biochar or its properties; they simply 

mentioned source company, a situation very similar to that of Major et al. (2010). 

Taghizadeh-Toosi et al. (2011), gave no information on the HTT used to produce the 

biochar they used to study impact on N2O emissions. A more puzzling case is when no 

information is given concerning the feedstock (type or name), HTT or source of the 

biochar in addition to lack of any procedure used in determining the physico-chemical 

characteristics of the biochar used (Saxena et al., 2013). Sometimes as when 

traditional production methods are used, only a range of HTT is mentioned (Schulz et 

al., 2013) which obviously makes repeatability difficult.  
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 It is to fill this gap that we aimed to rigorously study and document the characteristics 

of biochar in a systematic way that focusses on a single feedstock source (Sitka spruce 

wood) while varying the highest temperature of treatment (HTT) from two different 

treatment facilities. HTT is one of the two most important factors that influence 

biochar properties. Additionally, we aimed to assess the impact of the synthesized 

biochars on the soil environments using a unique multidisciplinary approach that 

involved applying the biochars in a fully replicated and systematic plant growth trials in 

multiple soils. The post-harvest soils were then used to measure impacts on soil 

processes (respiration and denitrification) and also employ molecular biology tools to 

determine microbial community diversity on the amended soils against chosen 

controls. 
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Chapter 3 Materials and methods 

 Introduction 3.1

This chapter presents the materials used and their sources, and the various 

experimental procedures and pieces of analytical equipment used to generate the 

results discussed in this thesis. Materials include the feedstock, biochars and soils, 

while analyses conducted include thermal, proximate, elemental, Fourier Transform 

Infra-red (FTIR), pH, soil respiration and Denaturing Gradient Gel Electrophoresis 

(DGGE). Table 3.1 gives details of the materials, their types and sources and production 

process in the case of biochars. Results of the pilot plant growth trials are also 

reported though they were used to understand how best to conduct the pot 

experiments using our synthesized biochars. 

Table 3.1: Sources, types and other details of biochars and soils analysed and used for experiments 

Material Source Type Production 

process 

Feedstock Taylormade Timber Products Ltd Sherburn 

Hill, County Durham DH6 1PS in North East 

England 

Sitka spruce (chips and 

saw dust) 

Not 

applicable 

Biochar Interreg project (German) – (labelled ibc) 

 

Unknown Unknown 

Biochar Previous PhD project – (labelled kbc800) Unknown feedstock but 

produced at 800
o
C 

Unknown 

Biochar Jacobi Carbons Ltd, Moss Estate, Leigh, 

Lancashire, WN7 3PT, UK (labelled ss) 

Produced from Sitka 

spruce at 400, 600 and 

800
o
C 

Batch  

Biochar UK Biochar Research Centre, University of 

Edinburgh, EH9 3JN, UK (labelled ess) 

Produced from Sitka 

spruce at 400, 600 and 

800
o
C 

Continuous 

Soil Fenton Centre, Northumberland, UK 

(Ordnance Survey National Grid Reference NT 

966 334  

Sandy (pH = 4.38) Not 

applicable 

Soil Nafferton farm cottage, Stocksfield, 

Northumberland, UK (Ordnance Survey 

National Grid Reference NZ 066 657 

Loamy/Clayey (pH = 6.67) Not 

applicable 
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 Biochar preparation and pre-treatment 3.2

The feedstock was sourced as detailed in Table 3.1, air dried as in section 3.2.1 and 

processed to produce biochar at the three chosen pyrolysis temperatures; 400, 600 

and 800oC using two different production processes as detailed in section 3.3 below. 

3.2.1 The feedstock 

Sitka Spruce (Picea sitchensis) saw dust and wood chips of mixed sizes were sourced 

from Taylormade Timber Products Ltd, (Sherburn Hill, County Durham, DH6 1PS) in 

North East England. These were air dried to about 10% moisture content then sieved 

to obtain a ≤2mm size from the saw dust and ≤10mm sized sample from the mixed 

wood chips. 

  

 Biochar production  3.3

The ≤2mm wood chips were pyrolysed at Jacobi Carbons Ltd, (Moss Estate, Leigh, 

Lancashire, WN7 3PT, UK) in a batch system using a 10 litre horizontal electrical 

furnace; a residence time at maximum temperature of 30 minutes and a heating rate 

10oC/min, while the 10mm chips were pyrolysed at the UK Biochar Research Centre, 

(University of Edinburgh, EH9 3JN, UK) in a continuous flow system using a stage II 

continuous pyrolyser, with a residence time at maximum temperature of 30 minutes 

and feed rate of 0.5Kg/h. Heat up to furnace set-point took typically 50 min which 

gives a heating rate of between 8-16oC/min for the three temperature values. Both 

production processes were carried out under nitrogen gas atmosphere. The biochars 

were henceforth labelled as ss400, ss600, ss800, ess400; ess600 and ess800 where the 

letters ss stand for biochar produced from Lancashire (Lancashire biochar) and ess 

stand for biochar produced from Edinburgh (Edinburgh biochar), while the numerical 

numbers stand for pyrolysis temperatures at which the biochar was produced.  

Figure 3.1: Sitka spruce wood chips and saw dust processed to produce the biochars studied. 
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3.3.1 Biochar pre-treatment for use in soil amendment and other investigations 

The fresh biochar samples were gently crushed by hand to pass through a 2mm sieve 

and stored in sealed polythene sample bags at ambient temperature in the laboratory 

for use in the various analytical tests and experimental treatments. 

 Biochar recovery post-plant trial experiments 3.4

At the end of soil pot experiments (see section 3.6 of this chapter) sub-samples of the 

soil-biochar mixtures were taken for biochar recovery. One of the methods used for 

the recovery was a flotation method in which about a litre of distilled water was added 

to about 150g of soil-biochar mixture, stirred and allowed to settle after which the 

floating biochar particles were filtered off through a #1 Whatman filter paper. The use 

of tweezers (Nguyen and Lehmann, 2009) under a magnifying glass was also employed 

to manually pick out the  biochar particles from the soil. 

The recovered biochar was investigated using Scanning Electron Microscopy for 

evidence of possible microbial colonisation of the biochar pores (see Figure 2.9 in 

Chapter 2 of this thesis) similar to what other researchers have reported (Brodowski et 

al., 2005). 

 Physico-chemical characterization of the freshly produced biochar.  3.5

3.5.1 Proximate analysis on the biochar samples 

Proximate analysis is aimed at determining the major constituents of the biomass as a 

percentage of its total weight and is mostly undertaken in the energy industry to give 

an insight into the energy potentials of the biomass. The measured constituents are, 

fixed carbon (FC), volatile matter (VM), moisture content and ash content. Ultimate 

analysis quantifies the elemental constituents of the material which are mainly C, H, O, 

S and N. Other elements of interest may be determined as part of the ultimate analysis. 

A Netzsch Jupiter STA449C TG-DSC (thermogravimetry-differential scanning 

calorimetry) system was used for the proximate analysis. About 19mg of sample was 

accurately weighed into an alumina crucible and heated first in helium atmosphere, 

then in air and then back in the inert atmosphere at a flow rate of 30ml/min. A heating 

rate of 20K/min was used. The equipment monitored the percentage mass loss with 

temperature at various stages representing moisture contents, volatile matter, fixed 

carbon and ash as represented in Figure 3.2. 
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3.5.2 Thermal analysis of the raw wood, freshly produced biochar and soil samples. 

Thermal analysis is defined as “a group of 

techniques in which a physical property 

of a substance and/or its reaction 

products is measured as a function of 

temperature whilst the substance is 

subjected to a controlled temperature 

programme”  Anandhan; Mackenzie, 

1979). The samples in this study were 

analysed using thermogravimetry (TG), a 

thermal analysis technique that 

monitors the change in mass of a substance as a function of temperature or time in the 

course of heating the sample specimen through a controlled temperature programme 

Figure 3.3: Coupled thermogravimetric, differential 
scanning calorimetric and quadrupole mass 
spectrometry System 

Figure 3.2: Temperature programme and mass loss profiles for the proximate analysis of the biochar       
samples. 
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(30-900oC in this study) in a controlled atmosphere (mostly inert)  

(http://www.perkinelmer.com/CMSResources/Images/44-

74556GDE_TGABeginnersGuide.pdf), running concurrently with  differential scanning 

calorimetry (DSC), that measures the difference in heat flow rate (mW = mJ/sec) between a 

sample and inert reference as a function of time and temperature 

(http://www4.ncsu.edu/~lalucia/courses/WPS-595B-BIOMATERIALS-CHARACTERIZATION/DSC.pdf). 

Samples were analysed as a fine powder, crushed using an agate pestle and mortar.  

 A subsample of between 17-18mg was accurately weighed into an alumina crucible 

and analysed using a Netzsch Jupiter STA449C TG-DSC (thermogravimetry-differential 

scanning calorimetry) system connected to a Netzsch Aeolos 403C quadrupole mass 

spectrometer (QMS) for the mass spectrometric analysis of the evolved gas. Samples 

were heated from 30°C to 900°C at a rate of 10°C min-1 in an atmosphere of 80% He + 

20% O2 (purge gas, flow rate 30 ml min-1). The protective gas was helium (flow rate 30 

ml min-1).  Adapter heads and transfer lines were heated at 150°C and 300°C, 

respectively. TG and DSC data were acquired and processed using Netzsch TA4 Proteus 

Analysis software.  

3.5.3 Biochar and soil pH determination 

The pH for both biochar and soil samples was measured using the British Standard 

method (BS7755 Section 3.2), which involves scooping out and suspending 5ml of 

sample in 25ml of deionised water in a 60ml plastic bottle. The bottle was mounted 

onto a shaker for 15minutes after which the bottles were removed and the 

suspensions left to stand overnight. The pH was then measured using a JENWAY 3020 

pH meter.  

3.5.4 Water holding capacity (WHC) for biochar and soil samples. 

The water holding capacity for soil samples was determined using a slightly modified 

version of the British Standard method BS 7755-4.4.3:1997. The perforated base of a 

plastic cylinder (50mm length, 60mm diameter) was covered with a filter paper and 

weighed. The cylinder was then partially filled with the soil sample and introduced into 

a water bath at room temperature allowing water to seep through the perforated base 

until it submerged the soil in the cylinder. The sample was then left to soak for 3 hours 

at room temperature, removed from the water and then placed on a draining tray 

containing wet, fine quartz sand to a depth of about 20mm. The soil was left overnight 

http://www.perkinelmer.com/CMSResources/Images/44-74556GDE_TGABeginnersGuide.pdf
http://www.perkinelmer.com/CMSResources/Images/44-74556GDE_TGABeginnersGuide.pdf
http://www4.ncsu.edu/~lalucia/courses/WPS-595B-BIOMATERIALS-CHARACTERIZATION/DSC.pdf
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to drain after which the cylinder containing the drained wet soil was weighed. The soil 

was removed and dried to constant mass in an oven at 105 oC and weighed. 

Water holding capacity was then calculated as a percentage using the equation; 

 

    
            

  
      

Where 

ms is mass of water-saturated soil + cylinder + filter paper in grams; 

mt is mass of empty cylinder + filter paper in grams; 

md is the mass of dried soil in grams. 

Water holding capacity for the biochar samples was measured after the method of 

Nguyen and Lehmann (2009) which involved mixing 19 g of pure white sand (Sigma 

Aldrich no. 274739, -50 +70 mesh; ignited at 500 oC for 24 h) and 1 g biochar material. 

The two were mixed well and placed onto a previously weighed Whatman no. 1 filter 

paper in a funnel. The biochar–sand mixture was then saturated with deionised water. 

After thorough free draining, the saturated biochar-sand mixture was weighed, dried 

at 105 oC for 24 h, cooled in a desiccator and then weighed again. A control 

biochar/sand free filter paper with funnel was used to determine the mass of water 

held by the filter paper which was then subtracted from the water held by the biochar-

sand mixture. Water holding capacity was then calculated as a percentage using the 

relationship; 

 

      
           

  
      

Where 

ms is mass of water saturated biochar-sand mixture in grams; 

md is mass of dried biochar-sand mixture in grams; 

mw is mass of water held by filter paper in grams. 
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3.5.5 Fourier-transform infrared analysis of the biochar samples. 

Fourier transform infra-

red (FTIR) spectroscopic 

measurements were done 

on powdered samples 

using a single reflectance 

attenuated total 

reflectance (ATR) method 

(Seredych et al., 2008; 

Uchimiya et al., 2010). A 

Thermo Scientific 

NICOLET 6700 spectrometer (Thermo Nicolet Corporation, Madison WI 53711) (Figure 

3.4) fitted with a universal diamond ATR platform was used for measurements. Thirty 

two scans were collected for each sample spanning 550–4000 cm-1 at a 4cm-1 

resolution. Spectra were automatically corrected for background collected with a 

sample free ATR crystal. Data collected were processed and analysed using OMNIC 

software package Version 6.1a (1992) from Thermo Nicolet Corporation. Spectral 

interpretation and functional group assignment were achieved through the relevant 

published articles as detailed in Chapter 4 (section 4.3.4) of this thesis.  

3.5.6 Surface acidity/basicity of the biochar. 

Boehm neutralization titrations were employed to measure the two surface 

amphoteric properties (acidity and basicity) of the biochar samples (Boehm, 2002; 

Cheng et al., 2006; Fletcher et al., 2006; Cheng and Lehmann, 2009). For surface acidity, 

about 0.15 g of biochar was added to 15 mL of 0.1 M NaOH solution and shaken with 

an end-over-end shaker for 30 h. The resulting biochar slurry was then filtered using a 

Whatman No. 42 filter paper. An aliquot (5 mL) of the NaOH filtrate was transferred to 

a 10-mL 0.1 M HCl solution that neutralized the unreacted base. The solution was then 

back-titrated with 0.1 M NaOH to an endpoint determined by phenolphthalein 

indicator. The adsorbed base was then converted to surface acidity content (mmol/g) 

of biochar. Surface basicity was measured in a similar manner to surface acidity, but in 

this case an aliquot (5 mL) of the HCl filtrate was directly titrated with 0.1 M NaOH. 

The adsorbed acid was converted to surface basicity content in (mmol/g) of biochar. 

Figure 3.4: Thermo Scientific NICOLET 6700 Fourier-transform infrared 
spectrometer 
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3.5.7 Elemental analysis of the CHN contents of the biochars. 

Powdered samples were analysed for 

Carbon, Hydrogen and Nitrogen 

contents using a Carlo Erba 1108 

Elemental Analyser (Figure 3.5) 

controlled with CE eager200 software, 

run in accordance with manufacturer’s 

guidelines and weighed using a certified 

Mettler MX5 micro balance. The 

equipment was calibrated with 

acetanilide Organic Analytical Standard (batch No. 151853). Oxygen was determined 

by a difference calculation. Samples were also analysed for carbon, nitrogen and 

sulphur using VarioMAX V7.0.5 16.Nov. 05, CNS elemental analyser with Sulfadiazine 

used as the calibration standard. 

3.5.8 Analysis for total organic carbon (TOC) contents of the biochars and soils. 

The total organic carbon for both 

biochar and soil samples was 

determined using the British Standard 

method (BS7755 section 3.8, 1995). 

Approximately 0.1 g of each sample 

was accurately weighed into a porous 

crucible on a tray with numbered 

positions, 1 mL of 4 M hydrochloric 

acid was then added drop wise to remove inorganic carbon contents (i.e. carbonates). 

The crucibles were removed from the tray and placed in a fume cupboard on a 

drainage platform to let the acid drain away for about 4 hours. The crucibles and 

contents were then dried overnight in an oven at 65C. The tray was then removed 

from the oven, covered with aluminium foil to protect against possible contamination 

or loss of sample, allowed to cool and organic carbon content was then determined on 

a Leco CS244 Carbon/Sulphur Analyser (Figure 3.6). An empty crucible was also 

prepared and processed as a procedural blank. 

 

 

Figure 3.5: Carlo Erba 1108 elemental analyser 

Figure 3.6: Leco CS244 Carbon/Sulphur analyser 
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3.5.9 Cation exchange capacity (CEC) for soil and biochar 

Cation Exchange Capacity for the samples was determined according to the method of 

Enders et al. (2012) with some modifications. The modifications include using manual 

in place of mechanical vacuum extractor and Millipore filter paper (Type GV 0.22 

microns) in place of filter pulp. Briefly, 1.00 +/- 0.05 g of biochar was added to 40 mL of 

pH 7.0 buffered ammonium acetate solution (NH4-OAc) and shaken overnight in 60 mL 

glass vials. Contents were transferred using an additional 10 mL NH4-OAc into extractor 

syringes prepared with Millipore filter paper (Type GV 0.22 microns) supporting a bud 

of glass wool. Syringes were mounted in clamps and used to manually extract a total of 

50 mL NH4-OAc solution over approximately 2 h. CEC was determined by adding 60 mL 

of 95% EtOH to the sample syringes to remove NH4-OAc not adsorbed to exchange 

sites. Following this, 50.0 mL of 2 M KCl was added and left overnight to displace NH4
+. 

Samples were then extracted over 2 h and an additional 40 mL of 2 M KCl was added 

to the sample syringes and extracted a second time. The two extractions were pooled 

and brought to 100 mL volume with 2 M KCl. Ammonium was quantified in the extracts 

on Spectroquant Pharo  00 spectrophotometer using MER K’s ammonium test kit 

(Merck KGaA, 64271 Damstadt, Germany). CEC was calculated according to the 

following relationship: 

 

               
                  (   ⁄ )                (  )

        ( )      (    ⁄ )
 

 

3.5.10 Scanning electron microscopy (SEM) 

Fresh biochar crushed to pass 

through a 2mm sieve was used 

for SEM measurements. Small 

amounts of the samples were 

mounted on aluminium stubs 

using carbon double sided 

adhesive tabs. Images were 

recorded using an 

Environmental Scanning 

Electron Microscope-Field Emission Gun (FEI XL30 ESEM-FEG) with a back scattered 

Figure 3.7: Environmental scanning electron microscope 
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electron detector at 20KeV. Biochar samples recovered from pot soils were prepared 

for images that could possibly reveal micro-organisms on the surface or inner cavities 

of the biochar crystals. Sample preparation involved fixing the specimens overnight in 

a solution of 2% gluteraldehyde (CH2(CH2CHO)2) in Sorensons phosphate buffer (a 

mixture of mono and disodium hydrogen phosphates made to pH 7.4), followed by 

two rinses for 15 minutes each with fresh volumes of the same buffer. The samples 

were then dehydrated by soaking for 30minutes each in 25%, 50%, and 75% ethanol, 

followed by soaking in 100% ethanol twice for 60 minutes each. Final dehydration was 

achieved using carbon dioxide in a Baltec Critical Point Dryer. The samples were then 

mounted on aluminium stubs with Acheson Silver Dag, dried overnight and then 

coated with a standard 15nm gold layer using a Polaron SEM Coating Unit. The 

specimens were finally examined using a Stereoscan 240 Scanning Electron Microscope 

(housed within the Electron Microscopy Research Services, Newcastle University) and 

the digital images were collected with Orion6.60.6 software. 

 Leek growth pot trials in soils amended with biochars 3.6

3.6.1 Introduction 

The improvement of agricultural soils by addition of biochars has been reported by 

various researchers. It appears that biochars improve crop yields (Masahide et al., 

2006; Sukartono et al., 2011) by improving soil fertility status through enhanced water 

availability to plants, soil organic carbon contents and reduced leaching of applied N 

fertilizers (Berglund et al., 2004; Spokas et al., 2009; Taghizadeh-Toosi et al., 2011) and 

changing physical properties (Asai et al., 2009). In this study pot based growth trials 

were aimed at assessing the impact of different biochar amendments on the growth 

characteristics or yield of leek (Allium porrum); as well as on soil properties such as pH, 

water holding capacity, CEC, basal respiration and nitrogen dynamics. Microbial 

community composition of the amended soil from the pots has also been investigated. 

Biomass yield was monitored by measuring the above ground stem diameter and the 

leek plant owing to its morphology provided a good model for that purpose. 

The pot experiments consisted of a series of three different trials to investigate the 

growth of a test plant (leek) in two different soils amended at different rates with four 

different biochars as detailed in Table 3.2. The pilot experiment using two types of 

biochars (see Tables 3.1 & 3.2) was designed to develop the right approach taken in 
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the subsequent systematic trials using our synthesized biochars in the two test soils. 

Results of the pilot experiment are reported and discussed along with others in the 

relevant chapters. Artificial lighting was used in the pilot experiment because it ran in 

the winter period that normally has short daylight period with diminished sunshine. 

The results from the pilot experiment pointed to the need for fertilizer application to 

the pot soils before transplanting the leek seedlings, and to address irrigation 

frequency (every other day with deionised water), with early potting of the leek 

seedlings before they overgrow in the growth chamber. The results demonstrated the 

need to investigate the leek growth pattern and biochar impact in a near-neutral soil, 

taking pot soil samples at the beginning of the experiment and at four other intervals 

through the course of the experiment and freezing the samples for microbial 

community analysis.  

Table 3.2 Details on the pilot and the two main pot experiments established in a greenhouse within 
the indicated periods of time. 

Trial Pilot 1st Set 2nd Set 
Parameter  
Trial duration Jan-April, 2012 (14 

weeks) 
May-Aug, 2012 (14 
weeks) 

March-June, 2013 (12 
weeks) 

Biochar used ibc & kbc800 ss (400, 600 & 800
o
C) ess (400, 600 & 800

o
C) 

   ss (400, 600 & 800
o
C) 

Soil used Sandy (pH = 4.38) Sandy (pH = 4.38) Loamy/clayey (pH = 
6.67) 

Amendment rate (wt %) 
(t/ha equivalent) 

1, 5 and 10 
(10, 50 and 100t/ha) 

1, 5 and 10 
(10, 50 and 100t/ha) 

1, 5 and 10 (ess); 5 (ss) 
(10, 50 and 100t/ha) 

Mean Day/Night Temp. (
o
C) 33/21 34/21 31/21 

Photoperiod (hr) 13 Not applicable Not applicable 
Mean light intensity (µmolm

-

2
s

-1
) 

135.0 Not applicable Not applicable 

Fertilization rate (Kg/ha) None N:150, K:275, P:300 N:150, K:275, P:300 

Note: Control soil was in each trial treated same as other pots except it did not have biochar added. 

Table 3.3: Biochar sample codes and their meanings 

Biochar sample code Meaning 

ss Lancashire biochar produced from ≤2mm sized saw dust of Sitka spruce wood 

ss400 Lancashire biochar produced at 400
o
C 

ss600 Lancashire biochar produced at 600
o
C 

ss800 Lancashire biochar produced at 800
o
C 

ess Edinburgh biochar produced from ≤10mm sized Sitka spruce wood chips 

ess40 Edinburgh biochar produced at 400
o
C 

ess600 Edinburgh biochar produced at 600
o
C 

ess800 Edinburgh biochar produced at 800
o
C 

ibc Biochar from the European interreg project 

Kbc800 Biochar from a previous PhD project produced at 800
o
C 
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3.6.2 Seeding leek to obtain seedlings for the pot experiment 

All pot trial experiments were set up 

with transplanted seedlings. To prepare 

the seedlings, leek seeds ‘VEG0 9 

M SSELB RGH’  purchased from 

http://www.nickys-nursery.co.uk) were 

sown in compost within perforated-base 

plastic trays contained in an outer plastic 

trough used to irrigate the seedlings 

from beneath and placed into a growth 

chamber (Figure       3.8) at 21oC ±1 with 11 hour artificial lighting (7am – 6pm). Initially 

a pilot pot experiment using the sandy low pH soil was set up in which the leek  

seedlings at about 15cm in height were transplanted into 250grams of soil in  ”  10cm  

plastic pots (one plant per pot) in a greenhouse at the Moorbank Botanic Garden 

under artificial lighting. At the time of this study, Moorbank Botanic Garden 

(Claremont Road, Newcastle NE2 4NL) was a teaching and research facility under the 

School of Biology, Newcastle University which maintained living collections of plants.  

 

The experimental design contained 

replicated (x3) treatments of 1%, 5% and 

10% by weight biochar/soil mixtures 

using two biochar types: ibc and kbc800. 

A triplicate control containing 

unamended soil only was also included. In 

the pilot experiment, no fertilizer was 

added before or in the course of the 

experiment and potable water was used 

to automatically irrigate the plants daily. The pots were appropriately labelled, 

randomly arranged on a garden table and the experiment lasted for 15 weeks (see 

Table 3.2).  Plant growth was monitored on weekly basis by measuring the diameter of 

the plant at its base just above the soil. A digital calliper (Fisher Scientific, 0 – 150mm, 

accurate to within 0.01mm) was used for the diameter measurement. At the end of 

 

 Figure 3.9 Potted Leeks in the near-neutral soil. 

Figure 3.8 Leek seedlings in a growth chamber 

http://www.nickys-nursery.co.uk/
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the experiment, the plants (including all large bits of roots) were carefully removed 

from the pots and the soil, and discarded. The soil was transferred to the laboratory, 

air dried and stored in polythene sample bags for further analysis.  

A second set of pot experiments was subsequently started with the same replicated 

experimental design as the pilot. However, in this case biochar treatments included 

the use of Sitka spruce biochars obtained from Jacobi Carbons (Lancashire biochar) and 

deionised water for irrigation (every other day). No artificial lighting was used as these 

experiments were conducted during the summer, and fertilizer was added to the same 

type of soil (sandy, low pH) as in the pilot experiment at the rate of 275 Kg/ha (0.1375 

g/Kg soil) for potassium; 300 Kg/ha (0.15 g/Kg soil) for phosphorous and 150 Kg/ha 

(0.075 g/Kg soil) for nitrogen (Defra, 2010). The experiment lasted for 15 weeks with 

an average day/night greenhouse temperature of 34/21oC. 

A third set of pot experiments with a similar experimental design as those conducted 

previously was again started. However, in this case in addition to using mainly Sitka 

spruce biochar from Edinburgh (ess) at the three amendment rates as the pilot, a 

parallel set of pots was introduced in which the Lancashire biochar (ss) was used but 

only at the 5% amendment rate.  Moreover, on the basis of results from our pilot 

experiment, a near-neutral soil (see Table 3.2) was used in this set of experiment 

which lasted for 13 weeks with an average day/night greenhouse temperature of 

31/21oC. 

Pot soil samples were randomly taken at the beginning and (from the same pots) at 

four other intervals during the course of the second and third set of experiments and 

frozen for microbial community analysis. At the end of the experiments the leek plant 

was harvested and pot soil recovered as for the pilot experiment. 

 Soil process assays and molecular biological analysis  3.7

3.7.1 Basal respiration (BR) 

Basal respiration of soils was determined according to ISO 16072 (2002).  Triplicate 

samples of 10 g air dried soil were adjusted to 60 % water holding capacity in 100 ml 

glass serum bottles (Wheaton science products, USA). Bottles were then sealed with 

butyl rubber septa and crimp closed (Sigma-Aldrich, UK). Gas samples were taken at 0, 

20 and 24 hours using a 100 µl gas-tight syringe (Hamilton, Switzerland) with CO2 
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production measured by GC-MS. Analysis 

of headspace CO2 by GC-MS was 

conducted on a Fisons 8060 GC (Figure 

3.10) using split injection (150°C) linked 

to a Fisons MD800 MS operated at 

electron voltage 70eV, emission current 

150µA, source current 600µA, source 

temperature 200°C, multiplier voltage 

500V, and interface temperature of 

150°C. The acquisition was controlled 

using Xcalibur software in full scan mode (1.0-151.0 amu/sec). An equal volume of 

100µl headspace sample gas from each serum bottle was injected in split mode 

through the column and the GC programme and MS data acquisition commenced. 

Separation was performed on a HP-PLOT-Q capillary column (30m x 0.32mm i.d) 

packed with 20um Q phase. The GC was held isothermally at 35°C with Helium as the 

carrier gas with a flow rate of 1ml/min, pressure of 65kPa, and open split at 100ml/min. 

Chromatogram peaks of m/z 44 corresponding to CO2 gas were integrated and 

quantified in Xcalibur and saved as Excel files for further processing. Calibrations were 

carried out by injecting 100,  0,  0,  0, and 20 μL of a 1  CO2 standard gas (Scientific 

& Technical Gases Ltd, UK), based on which %CO2 in the head space of sample bottles 

was determined. 

CO2 values (% in headspace) were converted to mgCO2/g dry soil, using the ideal gas 

equation PV = nRT rearranged to determine n, the number of moles of CO2 produced. 

The product of the number of moles and molar mass of the gas gives its mass in grams. 

In the ideal gas equation: 

P = pressure of the gas standards (1 atm) 

R = universal gas constant, 82.05746 atm*ml*(mol*K)-1 

T = absolute temperature, in this case 298K 

V = volume of the gas in head space in ml, calculated as (%CO2 read off the calibration 

curve * head space volume in ml)*(100)-1 

BR rates expressed in mg CO2*g-1*h-1 dry soil were then determined from the slopes of 

the linear regression of plots of CO2 production against sampling times. 

Figure 3.10: Fisons Gas chromatograph-mass 
spectrometer 
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3.7.2 Denitrification enzyme activity (DEA) 

Denitrification enzyme activity was determined via a miniaturised acetylene block 

method as described by Patra et al. (2006) and Wertz et al. (2006) with a few minor 

modifications (McCann, 2013).  

Field moist soil equivalent to 2 g of oven dried soil was placed in 10 ml serum bottles 

(Wheaton, Sigma-Aldrich, UK) and amended with 2 ml of distilled water containing 

potassium nitrate, KNO3  200 μg N -3– N g−1 dry soil), glucose (0.5 mg C g−1 dry soil) 

and glutamic acid (0.5 mg C g−1 dry soil). The original experiment was carried out in 150 

ml plasma flasks (Wertz et al., 2006), however, with a reduction in soil mass it was 

decided to reduce vessel volume to 10 ml in order to further miniaturise the 

experiment. Supplementary water was added when necessary to achieve 100 % WHC 

in all soils. Bottles were sealed with butyl rubber stoppers and then the headspaces of 

bottles were flushed with oxygen free nitrogen (N2) gas (BOC Gases, UK) followed by 1 % 

acetylene (C2H2) in N2 (CK Gas Products Ltd, UK) and crimp closed (Sigma-Aldrich, UK). 

This provided inhibition of N2O-reductase activity and ensured anaerobic conditions. In 

the original method of Wertz and colleagues, a 90:10 He–C2H2 mixture was used to 

flush headspace. However, this was unfeasible to employ due to safety reasons related 

to the stability of acetylene in such a gas mixture. Instead a stable and safe mixture of 

1 % acetylene C2H2 in N2 was used in all assays within this study.   

Experimental controls were carried out in triplicate, using the same weight of soil, but 

only flushed with N2 to determine natural levels of N2O emissions. Bottles were 

incubated at room temperature and headspace gas samples were measured after 4 

and 6 hours to determine N2O production by GC-MS.  

As for the assessment of BR (section 3.7.1), 100 µl of headspace gas was extracted with 

a gas-tight syringe (Hamilton, Switzerland), flushed with N2. Concentrations of N2O 

were determined using the major ion fragment of NO+ at a mass to charge ratio (m/z) 

of 30. The parent ion of N2O (m/z 44) was not used due to interference with any 

discharged CO2 which also has the same mass to charge ratio of 44. Calibration and 

linear response was checked using a gas standard of 0.988% N2O in N2 (Scientific & 

Technical Gases Ltd,  K  injected with volumes of 100,  0,  0,  0, 20 and 10 μL. G -MS 

equipment and operational parameters were as for BR measurements and the mass of 

N2O produced was calculated as for CO2. Similarly, DEA rates were determined from 

the slopes of the linear regression of plots of N2O production against sampling times 
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and expressed as μg N2O*g-1*h-1 dry soil following calculating rates based on N2O 

accumulation over time. 

3.7.3 Microbial community structure analysis using PCR-DGGE 

Introduction 

Pot soil samples taken in the course of plant growth trials (see section 3.6.2) were used 

to assess changes in the bacterial community composition over time resulting from 

biochar addition. This preliminary assessment involved comparing the DGGE profiles of 

PCR-amplified Bacterial 16S rRNA gene fragments from DNA extracts of amended and 

control soils as detailed in the sections below. 

Soil DNA extraction 

Soil DNA was extracted in replicates (x3) from 0.25 grams each of individual biochar-

amended pot soil samples and control using the ‘Experienced  ser Protocol’ provided 

with PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc., 2746 Loker Ave West, 

Carlsbad, CA 92010).  

 

PCR-amplification of bacterial 16S rRNA genes 

Polymerase Chain Reaction (Torsvik 

and Øvreås, 2002) or Polymer Chain 

Reaction (Liu et al., 2006) is a culture-

independent technique that facilitates 

the investigation of the almost 99% of 

microorganisms that could not be 

routinely cultured in the laboratory 

(Torsvik and Øvreås, 2002; Ghazanfar 

et al., 2010; Hirsch et al., 2010). The 

16S rRNA gene fragments from the DNA extracts were amplified after which the PCR 

products were separated using the Denaturing Gradient Gel Electrophoresis (DGGE). 

DNA extracts were PCR amplified using a TECHNE TC-512 thermal cycler (TECHNE Inc. 

Burlington NJ, USA). Reaction mixtures contained 0.5 µL of template DNA, 23.5 µL of 

MegaMix-Blue (Microzone, Haywards Heath, West Sussex, UK) containing Taq 

polymerase (recombinant) in 1.1 PCR reaction buffer (2.75 mM MgCl2) with 220 µM of 

deoxynucleoside triphosphates, blue agarose loading dye with stabilizer and 0.5 µL 

 Figure 3.11:  Polymerase chain reaction thermal 
cycler 
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each of primers 2 (5'-ATTACCGCGGCTGCTGG-3') and 3. Primer 3 contained a GC clamp 

(a 40-nucleotide G  rich sequence  attached to the 5’ end of the following sequence  

5'-CCTACGGGAGGCAGCAG-3' (Muyzer et al., 1993). The PCR thermal profile went 

through 24 cycles of an initial denaturation at 95oC for 10minutes followed by 65oC for 

30s, 54oC for 30s and 72oC for 30s. PCR products were identified in aliquots (7µL) by gel 

electrophoresis using an ethidium bromide stained, 1% (w/v) agarose gel. 3µL of hyper 

ladder marker was added into each of the two gel lanes that border the sample lanes. 

The resolved PCR products were visualized under UV light in a UVP iBox In vivo imaging 

system. 

 

Denaturing gradient gel electrophoresis 

Denaturing Gradient Gel 

Electrophoresis as a method for 

investigating microbial diversity uses 

different strengths of chemical 

denaturants as a gradient to separated 

DNA (Liu et al., 2006). The principle is 

similar to that of Temperature 

Gradient Gel Electrophoresis (TGGE), 

but in TGGE the gradient is 

temperature in place of chemical denaturants (Gray et al., 2003; Liu et al., 2006). The 

DGGE is considered reliable in its ability to follow changes in microbial populations and 

it allows for gel analysis of multiple samples in a single run (Muyzer, 1999) using 

markers that can be compared across gels. 

DGGE was conducted using a 0.75mm thick 10% polyacrylamide denaturing gel. The 

denaturant gradient ranged from 30% (L) to 70% denaturant (H) (100% denaturant is 7 

mol L-1 urea plus 40% (v/v) deionised formamide in 1 TAE (Tris-acetate EDTA)). To cast 

the denaturing gel, a vertical clamp cassette (Ingeny International BV) was assembled 

holding two thin-walled glass plates between which a 32 teeth plastic comb was 

inserted to form wells at the top of the gel. Twenty four millilitres each of the L and H 

denaturing solutions per gel was then mixed with 50µL of 20% aqueous solution of 

ammonium per sulphate  APS  and 10µL of N,N,N’,N’-tetramethylenediammine 

(TEMED). The low and high solutions were mixed in a BIO RAD gradient former (model 

 Figure 3.12: INGENY denaturing gradient gel 
electrophoresis tank 
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485) and poured between the glass plates in the cassette up to a level just below the 

comb teeth using a peristaltic pump. The polymerised gel was left to set for 2 hours. A 

stacking gel was prepared by adding 60µL APS and 6µL TEMED to 6mL of 0% aqueous 

solution of buffer and 40% Bis/Acrylamide per gel. This was introduced through a 

syringe on top of the polymerised gel to generate the wells needed. 

After an hour, the comb was gently removed from the set stacking gel and the cassette 

holding the gel was immersed in a 1 x TAE buffer (1 x TAE is 40 mM Tris-acetate plus 1 

mM EDTA (pH 8.3)) in a 10L electrophoresis tank (Figure 3.12) at 60oC and the 

electrical terminals connected. The flow tube was also connected to the top of the 

cassette to allow for TAE flow round the gel. Into fresh PCR tubes, 15µL each of the 

sample PCR products and loading dye were mixed and added into the wells with the 

tank at low voltage (LV) and the TAE flow halted. Sample lanes were regularly 

interspersed with gel lanes to which a marker PCR product was added. A BIO RAD 3000 

PowerPac was then set at 100V, the DGGE tank at high voltage (HV) and started for 

about 5 minutes after which the TAE flow through the cassette was restarted. The 

electrophoresis was operated for 16 hours, after which the gel was carefully removed 

from between the glass plates and stained in a solution of 20µL SYBR green in 200mL 

of 1 x TAE for 1 hour and then visualized under UV light in a UVP iBox In vivo imaging 

system.   

 Statistical analyses 3.8

All replicate data sets were statistically analysed on untransformed data by ANOVA 

using IBM SPSS statistical software (IBM SPSS statistics version 21, 1989-2012, New 

York, NY 10022, US). For the soil microbial function trials the effects of biochar 

treatment and biochar pyrolysis temperature were tested through a two-way ANOVA. 

The tests were done using the general linear model Univariate (LSD, post hoc) analysis 

with the relevant microbial function indicator (rates of CO2 production for basal 

respiration or rates of N2O production for denitrification enzyme activity) as 

dependent variable, while amount of biochar added to the soil and pyrolysis 

temperature of the biochar were the fixed factors. For the plant growth trials in both 

the low pH and near neutral soils, the rate of leek growth was the dependent variable 

while amounts of biochar added to the soils and biochar pyrolysis temperature were 

the fixed factors. However, in the case of the pilot experiments (in the low pH soil) only 

the amount of biochar added was the fixed factor due to lack of information on 
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pyrolysis temperature for the ibc biochar. Fisher’s least significant difference post hoc 

test was used to compare means and unless otherwise stated, mean differences were 

significant at the 0.05 level.  
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Chapter 4 Characterization of the freshly synthesized biochars from 

the batch and continuous processes 

 Introduction 4.1

Critical to all the possible functions of biochar (see Chapters 1 and 2) are the physico-

chemical characteristics of individual biochars. For instance, pre- and post-pyrolysis 

composition determine elemental composition and what surface functional groups 

exist, which in turn determine to a large extent pH, and cation exchange capacity (Guo 

and Rockstraw, 2007). Surface area and pore size of the biochar determine its water 

holding capacity (which improves the plant available water holding capacity of the 

biochar amended soils) and also sorption abilities (Amuda et al., 2007; Karhu et al., 

2011). 

Most biochar characteristics ultimately depend on two key factors: the temperature at 

which the biochar is produced, so called highest temperature of treatment (HTT) and 

the nature of feedstock (Enders et al., 2012; Kloss et al., 2012; Zhao et al., 2013). A 

third factor that is sometimes considered is production processes (Schimmelpfennig 

and Glaser, 2012).  

The bulk of research work on biochar appears to be too broad with biochars from 

multiple feedstock sources considered together but confoundingly and 

unsystematically produced at variable production temperatures. In addition these 

biochars may only have been studied with respect to a few physical and chemical 

parameters. Calvelo Pereira et al. (2011), for example studied biochar from three 

different feedstock at two different pyrolysis temperatures to measure properties like 

pH, thermal gravimetry, volatiles and elemental contents. In another study, close to 

twenty different feedstock sources were used in a similar fashion to produce 94 

biochars with four different HTT’s to determine pH, elemental and proximate analysis 

(Enders et al., 2012). The authors aimed at investigating stability properties and 

agronomic values of this large number of biochars in addition to examining the effect 

of feedstock source and HTT on biochar composition. These many factors and variables 

make such a study unsystematic and difficult to easily distinguish the effect of HTT 

from feedstock source. In a similar fashion a total of 66 biochars from 16 different 

feedstock sources produced at 7 different HTT’s using 5 different production processes 
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 that include ‘others’ i.e. unspecified  were analysed (Schimmelpfennig and Glaser, 

2012) with the stated aims of investigating material properties and setting analytical 

properties for biochar identification. The authors found it necessary to state in their 

conclusion the need for further research to better separate biochar characteristics due 

to feedstock and production processes. Hence, to efficiently separate the two principal 

effects on biochar quality there is a great need for rigorous characterization studies 

focussed either on biochars from single feedstock source and the effect of varying 

pyrolysis temperature or production process, or on biochars produced from multiple 

feedstock sources but rigorously produced at the same HTT and using the same 

production process. The gap that this research project seeks to fill is the former: the 

need for rigorous characterization focussed on biochars from a single feedstock source 

while varying the highest temperature of treatment from two different production 

processes.  

It is beyond the scope of this study to investigate the effects of varying both pyrolysis 

temperature (HTT) and feedstock sources simultaneously as this is likely to be 

cumbersome and thus becloud the individual effects of one from the other. This 

approach is necessary if an advocated characterization data library (Enders et al., 2012) 

and/or analytical guideline values (Schimmelpfennig and Glaser, 2012) for biochar are 

to be realised. 
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 Results 4.2

Results on the characterization of freshly synthesized biochar from the same feedstock 

(Sitka spruce) using the batch and continuous production processes are presented and 

discussed. Each of the two production techniques were used to produce a set of three 

biochars at three different pyrolysis temperatures of 400, 600 and 800oC from the 

same feedstock (see Chapter 3, section 3.3 and Table 3.1). Figure 4.1 shows biochar 

samples produced using the continuous process. 

 

 

 Proximate analysis of biochars from the two production processes 4.2.1

The proximate analysis results in Table 4.1 show moisture content fluctuated from a 

large decrease between 400oC to 600oC and a smaller increase between 600oC to 

800oC biochar in both the batch and continuous products (such duplication indicates 

the slight rise at higher temperature is reproducible). Volatile matter (VM; - material 

lost at high temperature in the absence of air) shows a consistent decrease with rise in 

pyrolysis temperature (R2 = 0.91, Figure 4.2 and Table 4.1) for both biochars (values for 

ess used in plotting Figure 4.2), with consistent values for the same temperature of 

production for the two biochar production processes especially between ss/ess600; 

and ss/ess800 (Table 4.1). Fixed carbon (FC) showed a linear increase with rise in HTT 

(R2 = 0.93, Figure 4.2 and Table 4.1). Thus, FC and VM show an inverse relationship as 

shown in Figure 4.3. The trend in the ash content differs between the two biochars; a 

drop and rise for the ss (Lancashire) biochar and a rise and drop for the ess (Edinburgh) 

biochar. 

400oC 600oC 800oC 

Figure 4.1: Biochar samples from continuous process (ess) and their temperature of production 
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Table 4.1: Proximate analysis results for the fresh biochar samples 

 
Biochar 

Parameters 

Moisture content (%) Volatile matter (%) Fixed carbon (%) Ash content (%) 
ibc 1.09 14.67 67.70 16.54 

Kbc800 1.72 18.31 35.33 44.63 

ss400 1.29 28.91 64.38 5.43 

ss600 0.19 8.83 88.82 2.16 

ss800 0.29 3.82 92.89 3.00 

ess400 0.98 25.93 69.87 3.22 

ess600 0.19 8.87 86.31 4.64 

ess800 0.35 3.66 92.02 3.97 
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Figure 4.2: Correlation between fixed carbon (filled triangle), volatile matter (empty triangle) and 
pyrolysis temperature for the ess biochar. 
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Figure 4.3: Correlation between fixed carbon and volatile matter contents of the fresh biochar 
samples. 

  

 Thermal analysis of biochars from the two production processes 4.2.2

Percentage mass losses for thermally unstable components of the biochars are given in 

Table 4.2 along with the temperature ranges within which they occur. The first 

temperature range (59-152oC for Lancashire biochar and 26-146oC for Edinburgh 

biochar) encompasses free moisture loss through evaporation. The other temperature 

ranges represent the loss of labile carbon. The values for moisture loss support the 

trend in proximate analysis, a decrease between 400oC to 600oC HTT and an increase 

between 600oC to 800oC HTT biochar in both the batch and continuous products. Mass 

loss between 152 and 430oC represents the release of labile carbon from the 

decomposition of mostly cellulosic material (Yang et al., 2007) corroborated by the 

identifiable shoulders and peak (at 421oC for the feedstock) on the Differential 

Scanning Calorimetry (DSC) curves in Figure 4.5 (a & b). The last three temperature 

ranges in Table 4.2 cover the loss of recalcitrant carbon from the biochars which 

decompose at different final temperatures as can be seen in the spaced Thermal 

Gravimetric (TG) traces in Figure 4.4 (a & b). Similarly Table 4.3 and Figure 4.5 (a & b) 

show increasing Tmax (maximum decomposition temperature in the course of pyrolysis) 

with increase in HTT for the different biochars and the feedstock. Tmax and HTT 
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correlate well with R2 = 0.86 as shown in Figure 4.6. Fuller explanations will be given 

under the discussion section of this thesis.  

 Table 4.2: Thermal gravimetry parameters and estimated proportions (%) of thermally unstable 

components of the biochars at pyrolysis temperature intervals    

 59-152
o
C 152-430

o
C 430-543

o
C 430-580

o
C 430-625

o
C 

ss400 2.50 22.73 70.65   
ss600 0.39 3.47  92.77  
ss800 0.47 1.35   94.46 
 26-146

o
C 146-400

o
C 400-552

o
C 400-592

o
C 400-640

o
C 

ess400 1.30 14.26 82.07   
ess600 0.37 1.78  91.86  
ess800 0.58 0.74   94.61 
 52-114

o
C 114-480

o
C 480-583

o
C   

Feedstock 4.79  66.43  23.48   

 

 

 

Table 4.3: Differential scanning calorimetry parameters and temperature range of peaks and their 

maximum temperatures (Tmax) 

 1st exotherm (oC) Tmax (
oC) 2nd exotherm 

(oC) 
Tmax (

oC) 

ss400 150-430 (s) 348 430-540 (b) 508 
ss600 n.d. n.d. 430-580 (b) 538 
ss800 n.d. n.d.  430-620 (b) 581  
ess400 150-430 (s) 351 430-550 (b) 511 
ess600 n.d. n.d. 430-590 (b) 559 
ess800 n.d. n.d. 430-640 (b) 581 & 613 
Feedstock 150-480 (b) 421 480-582 (b) 569 

S: shoulder; b: broad; n.d.: not detected 

 

Figure 4.4: Stacked thermal gravimetry plot for Lancashire (a) biochar with raw wood and Edinburgh (b) 
biochar 
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Figure 4.6: Correlation between highest temperature of treatment and maximum temperature of 
decomposition. 

 Elemental and other chemical analyses 4.2.3

 The results for elemental analysis, pH and other chemical characteristics are recorded 

in Table 4.4 below. The pH increases with increase in pyrolysis temperature of the 

biochars (R2 = 0.90) from acidic in the 400oC through near neutral in the 600oC to a 

basic character in the 800oC for both streams of biochar. Total carbon (TC) also 

Figure 4.5: Stacked differential scanning calorimetry plot for Lancashire (a) biochar with raw 
wood and Edinburgh (b) biochar 
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increases with rise in pyrolysis temperature and quite similar values for both biochars. 

The proportion of hydrogen in the biochars drops with rise in HTT, while that of 

nitrogen increases though with small margins. Oxygen determined by difference 

(Calvelo Pereira et al., 2011; Enders et al., 2012), also drops with rise in production 

temperature for the biochars. With higher proportions for total carbon and low 

proportions for both of hydrogen and oxygen with rise in HTT, the elemental ratios 

(O:C, H:C and (O+N):C) decreased from the 400oC to the 800oC HTT biochars for both 

production streams. The significance of these changing ratios and their relationship to 

pyrolysis temperature will be elaborated in the discussion section. Total organic 

carbon (TOC) increases with rise in pyrolysis temperature (R2 = 0.74) and is essentially 

the same as the total carbon (TC) due to the absence of inorganic carbon (see Figure 

4.7 and section 4.3.3), while both cation exchange capacity (CEC) and water holding 

capacity (WHC) decrease with rise in production temperature. In line with the trend in 

H content, the surface acidity (SA) of the biochars measured in mmol/g drops with rise 

in HTT; while surface basicity (SB) increases except for the ss600 biochar which shows 

a negative value for SA and a fairly big spike for SB compared to the ess600.  

An important point to note is that regardless of differences in production processes 

(Batch for Lancashire biochar and Continuous for Edinburgh biochar), Table 4.4 shows 

the 400oC biochars to stand well apart from their higher temperature counterparts in 

many properties such as TC/TOC, WHC, Oxygen, elemental ratios and to some extent 

even CEC. A similar pattern is observed with fixed carbon (see Table 4.1).    
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Table 4.4: Elemental composition and chemical characteristics for the fresh biochars 

 ibc Kbc800 ss400 ss600 ss800 ess400 ess600 ess800 

pH 8.94 7.85 5.53 6.44 8.13 5.03 6.48 9.37 

C (%) 71.89 45.65 75.30 94.08 95.26 83.00 94.18 95.68 

H (%) 1.45 1.13 3.08 2.21 0.74 3.62 2.23 0.61 

N (%) 0.26 0.65 0.05 0.06 0.07 0.09 0.13 0.17 

S (%) n.d. 0.15 n.d. n.d. n.d. n.d. n.d. n.d. 

Ash (%) 14.49 42.35 3.84 3.13 3.61 2.86 2.48 3.01 

O (%) 11.91 10.07 17.73 0.52 0.32 10.43 0.98 0.53 

O:C  0.17 0.22 0.24 0.01 0.01 0.13 0.01 0.01 

H:C  0.02 0.02 0.04 0.02 0.01 0.04 0.02 0.01 

N:C 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

(O+N):C 0.17 0.23 0.24 0.01 0.00 0.13 0.01 0.01 

TOC (%) 66.29 40.96 74.73 89.51 92.41 82.53 93.63 95.35 

CEC (mmolcKg
-1

) n.d. n.d. 7.25 4.63 3.11 10.34 5.66 2.43 

BD (gcm
-3

) 0.32 0.28 0.12 0.12 0.14 0.14 0.14 0.13 

WHC (%) 41.50 41.00 45.79 35.95 36.09 56.94 44.03 47.63 

SA (mmolg
-1

) 0.2 0.4 0.47 -0.20 0.00 0.07 0.00 0.00 

SB (mmolg
-1

) 0.33 0.87 0.00 0.13 0.07 0.07 0.07 0.20 

Note: TOC: total organic carbon; CEC: cation exchange capacity; BD: bulk density; WHC: water holding capacity; SA: 
surface acidity; SB: surface basicity; n.d.: not detected. 
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Figure 4.7: Correlation between total carbon and total organic carbon for the biochar 
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 Fourier-transform infra-red (FT-IR) analysis 4.2.4

The wavenumbers of prominent spectral absorbance bands identified from the results 

of FTIR measurements on the biochars under investigation are marked in Figure 4.8 

and recorded along with assigned functional groups in Table 4.5. Possible functional 

groups assigned based on the absorbance wavenumbers include hydroxyls of water 

and alcohols, carbonyls of carboxylic acid and ketones, and aliphatic and aromatic 

ethers.   

Table 4.5: Main functional groups assignment for the recorded Fourier-transform infrared spectral 
bands of the biochars (Chen and Chen, 2009; Cheng et al., 2006; Shen et al., 2010; Yang et al., 2007; 
Zhao et al., 2013). 

Wavenumber (cm
-1

) Types of bonds, vibrations and compounds 

700-900 C-C stretching; Aromatic C-H 

1024 Aliphatic C-O stretching of R-OH in an alcohol 

1035 C-O stretching in polysaccharides 

1200 Aliphatic C-O-C stretching as in Pyranose ring 

1232 C-O-C stretching in Aryl-alkyl ether linkage 

1370 CH2, alkyl C-CH3 bending 

1430 O-H bending of an acid; CH2 and CH3 bending 

1600 -COO anti-symmetric stretching of amino acids; 

C=O stretching of ketone and carbonyl 

1690 O-H bending in H2O 
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Figure 4.8: Fourier-transform infrared spectral traces for the ss (similar to that for ess) biochar. 
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 Discussion 4.3

 Proximate analysis 4.3.1

The moisture content is largely contributed by the loss of free water by evaporation at 

low temperatures (Chen and Chen, 2009) which may explain the drop with rise in 

pyrolysis temperature. The rise in moisture content from 600oC to 800oC is confirmed 

by the values for moisture content from the thermogravimetry plots (see Table 4.2).  

The volatile matter (VM) contents decrease with rise in pyrolysis temperature, while 

fixed carbon content increases with pyrolysis temperature. A similar trend has been 

reported by Titiladunayo et al. (2012) who studied woody biochars produced at 

temperatures that included 400, 600 and 800oC. The two parameters of FC and VM 

have been used by Liu and Balasubramanian (2013) to calculate the fuel ratio (FR) 

which is defined as the ratio between fixed carbon and volatiles (FC:VM); a 

characteristic value for solid fuels. The higher the fuel ratio the better the fuel quality 

for the solid fuel in addition to an indication of lower volatiles, hence reduced emission 

of air pollutants (Liu and Balasubramanian, 2013). These authors determined a fuel 

ratio of 1.85 for pine wood biochar produced at 350oC. Comparing the biochar samples 

in this study with one of the biochars studied by Titiladunayo et al. (2012) the 

calculated fuel ratio (FC:VM) increased from 2.23 (for ss400) to 10.06 (for ss600) by 

over 350% while the Iroko biochar they used increased by just about 100% from 3.65 

(for the 400oC biochar) to 7.41 (for the 600oC biochar). These results may indicate 

better fuel quality for the biochar derived from Sitka spruce. Volatile matter has also 

been suggested in addition to other parameters as a measure of carbon sequestration 

potential; a volatile matter content exceeding 80% shows such biochar has no C 

sequestration value (Enders et al., 2012). All the biochars investigated in this study 

have less than 30% volatile matter contents (see Table 4.1). 

 Thermal analysis 4.3.2

The total weight loss during the thermogravimetric analysis reflects loss of water, CO2 

and other volatile products of heating the sample. The weight loss (TG) curves in 

Figure 4.4 show all the biochar samples losing weight within a minimum of three 

temperature intervals as recorded in Table 4.2. The mass loss in the first interval (59-

152oC) is attributed to free water (Chen and Chen, 2009); while the second interval 

(152-430oC) could be due the thermal decomposition of the solid residues resulting 
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from the pyrolysis of hemicellulose and cellulose in the original plant material (Yang et 

al., 2007) which is Sitka spruce wood in this project. It is worth noting here that 

temperature intervals for mass loss in TG curves overlap as is obvious from the 

literature. For example, hemicellulose and cellulose or other labile carbon contents are 

said to be lost within 200-350oC (Lopez-Capel et al., 2005), 300-350oC (Lopez-Capel et 

al., 2006) and 220-400oC (Yang et al., 2007). Table 4.2 further shows the labile carbon 

content of the chars decreases with rise in pyrolysis temperature and this is confirmed 

by the fact that while in Figure 4.5, a & b (DSC curves) a clear first exotherm (shoulder) 

is seen for the 400oC biochars, none is discernible for the higher temperature samples 

and this is held as a characteristic of highly condensed black carbon materials (Harvey 

et al., 2012). The largest mass loss is recorded from temperatures >403oC which is 

attributed to the decomposition of mainly aromatic recalcitrant carbon (Lopez-Capel et 

al., 2006).  

Figure 4.4 and Table 4.2 show different upper limits for the third mass loss interval, 

getting higher with rise in HTT for the biochar samples which likely point to the 

breakdown of strong aromatic C=C bonds. Table 4.2 also shows the proportion of 

recalcitrant C contents which are mainly aromatic (Lopez-Capel et al., 2006) increasing 

with rise in HTT as is also supported by the DSC curves in Figure 4.5 which show 

increasing Tmax (maximum decomposition temperature) values with rise in pyrolysis 

temperature. This observation is in line with the report of Enders et al. (2012). The Tmax 

values in Figure 4.5 and also in Table 4.3 indicate increased thermal stability of the 

recalcitrant carbon fractions in the biochar samples with rise in HTT; the higher the 

Tmax the more the thermal stability of the fraction. Hence, recalcitrance of the biochars 

as indicated by Tmax is directly related to aromatic character of the biochar as shown in 

Figure 4.9 (R2 = 0.92). For a single feedstock as the one under investigation therefore, 

the sole influence on the recalcitrance character of the biochars may be the HTT since 

both aromatic character and Tmax increase with increasing HTT as is clear from the R2 

values in Figure 4.10. 
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Figure 4.9: Correlation between aromatic character and highest temperature of decomposition (Tmax) 
for the fresh biochars 

 

 

 

The Tmax values for all samples show those for Edinburgh biochar to be higher than the 

corresponding samples from Lancashire which probably is a factor of difference in 

production process; continuous for Edinburgh and batch for Lancashire. The higher of 
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Figure 4.10: Correlations between aromatic character, highest temperature of decomposition (Tmax) 
and   highest temperature of treatment (HTT) for the biochars. 
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the two Tmax values for both ss800 and ess800 in the DSC plots (Figure 4.5) may likely 

be due to the decomposition of some of the ligneous content since it decomposes over 

a wide range of temperature (Lopez-Capel et al., 2006; Yang et al., 2007; Shen et al., 

2010). Such decomposition may then probably explain the increase in moisture 

content in the 800oC biochars above that for the 600oC biochars as recorded in both 

Tables 4.1 and 4.2. The increased recalcitrance of the biochars assumed from their 

enhanced thermal stability can be further evaluated by applying the recently 

developed (Harvey et al., 2012) method of calculating the recalcitrance index (R50). The 

recalcitrance index is calculated using the equation: 

                                     

Where T50, x and T50, graphite are the temperature values at which half of the weight of 

the carbon material and graphite are respectively lost through oxidation/volatilisation. 

The two parameters are directly obtained from the TG thermograms of x (the 

individual biochar samples in this project) and graphite that have been corrected for 

moisture and ash. Using the T50 values from our corrected TG curves and the T50 value 

of 886oC for graphite as determined by Harvey et al. (2012) the calculated R50 values 

for our biochar samples are:  ss400 (0.54); ss600 (0.59); ss800 (0.62); ess400 (0.52); 

ess600 (0.59); and ess800 (0.64). These values place all the biochars into class B  0.50 ≤ 

R50  < 0.7) on the sequestration potential scale which is an intermediate level above 

that of the uncharred biomass, R50 < 0.5 and below that comparable to graphite, R50  ≥  

0.7 (Harvey et al., 2012). Examples of other reported (Harvey et al., 2012) class B 

biochars produced at 650oC under nitrogen atmosphere include those from loblolly 

pine (R50 = 0.58), eastern red cedar (R50 = 0.56) and swamp oak (R50 = 0.52). These 

examples show the biochar under investigation as more recalcitrant (see section 4.1) 

and hence having better potential as a tool for carbon sequestration since its R50 

values even at 600oC are higher than those for the compared wood biochars prepared 

at 650oC (a higher HTT). The recalcitrance index values also add to the conclusion 

based on their characteristics that the 400oC biochars stand apart from the higher 

temperature ones as observed earlier. 

 Elemental and other chemical analyses 4.3.3

Table 4.4 shows pH values increasing with rise in pyrolysis temperature and this agrees 

with other reports (Pereira et al., 2003; Enders et al., 2012). Increased basic character 
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(decreased H content) with rise in HTT is likely due to depleted concentration of mainly 

carboxylic acid functional groups (Pereira et al., 2003), a reason that is also associated 

with decrease in cation exchange capacity (Enders et al., 2012; Kloss et al., 2012) as 

the correlation plot in Figure 4.11  shows. Hence, a direct relationship between CEC 

and H contents exists in the biochars under investigation (Figure 4.12, R2=0.91). 
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Figure 4.12: Correlation between cation exchange capacity and hydrogen contents of the biochars 
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Figure 4.11: Correlations between highest temperature of treatment versus hydrogen; and cation 
exchange capacity for the biochars under investigation. 
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Decrease in concentration of carboxyl groups with rise in HTT is supported in our 

biochars by the disappearance of FTIR absorption bands associated with these groups 

in the traces for the higher temperature biochars (see Figure 4.8 and Table 4.5). The 

ultimate analysis (elemental composition) results in Table 4.4 show the C content 

increasing with temperature, a trend that agrees with other reports (Chen and Chen, 

2009; Enders et al., 2012; Kloss et al., 2012). The C content values for the 600 and 

800oC biochars almost attain absolute values (100%) and compares well with biochars 

at these temperatures produced from Apa and Iroko woods (Titiladunayo et al., 2012). 

Nitrogen also shows some enrichment with rise in pyrolysis temperature and this 

trend is supported by other reports (Calvelo Pereira et al., 2011; Enders et al., 2012; 

Kloss et al., 2012; Titiladunayo et al., 2012). The proportions of both H and O decrease 

with rise in pyrolysis temperature as shown in Table 4.4 which is in line with the 

observations of many authors (Chen and Chen, 2009; Enders et al., 2012; Titiladunayo 

et al., 2012). The loss of these two elements with rise in HTT may point to the loss of 

functional groups as indicated by the flat line FTIR trace for the 800oC biochars (see 

Figure 4.8).   

Increased C content coupled with decrease in both H and O contents of the biochars 

with rise in temperature means elemental ratios H:C, O:C and (O+N):C decrease with 

rise in temperature. These decreased values point to increased aromaticity with rise in 

temperature (Lopez-Capel et al., 2006; Kloss et al., 2012) as can be exemplified with 

the H contents of cyclohexane (an alicyclic compound with 6 C atoms and 12 H atoms) 

and benzene (an aromatic compound with 6 C atoms but only 6 H atoms). These 

elemental ratios have variously been applied in assessing the potential of biochars as a 

tool for C sequestration, soil amendment and sorption applications. Enders et al. (2012) 

propose that a biochar with volatile matter content < 80%, and O:Corg < 0.2 or H: Corg < 

0.2 may indicate high sequestration value. The values in Table 4.4 therefore show a 

pattern of increasing sequestration potential with increasing pyrolysis temperature for 

the  biochars in this study especially since the total carbon essentially equals the total 

organic carbon (see Figure 4.7 with a slope of 1.0645), a fact supported by the absence 

of any endotherm (carbonate decomposition) beyond 600oC in the DSC thermogram 

(Figure 4.5) for the biochars which would have indicated the presence of inorganic 

carbon. Decreased O:C and H:C may also indicate fewer surface functional groups 
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(Schimmelpfennig and Glaser, 2012) which will hence point to increased aromatic 

character. Disappearance of surface functional groups with rise in HTT is evident in our 

samples from the FTIR  traces of the higher temperature biochars especially at 800oC 

where no absorption bands are discernible. The recorded (see Table 4.4) decrease in 

Cation Exchange Capacity (CEC) for the investigated biochars with rise in pyrolysis 

temperature (see Figure 4.11a) may also be due to the diminished amount of 

functional groups (Kloss et al., 2012). The (O+N):C is a measure of polarity of the 

surface groups (Chen and Chen, 2009) which decreases with rise in temperature for 

the biochar samples in this study. Decreased polarity coupled with significant surface 

area (not measured in this project) in high temperature biochars may enhance 

retention of non-polar pollutants (Kloss et al., 2012). The elemental analysis reported 

zero readings for S (not tabulated) which may indicate its absence in our samples and 

this probably makes these biochars environmentally friendly in terms of SOx emissions. 

Titiladunayo et al. (2012), claimed such environmental friendliness for the biochars 

they investigated for industrial applications even though they contain S concentrations 

of up to 0.30%. The water holding capacity for the biochar samples under investigation 

as recorded in Table 4.4 compares with the value of 34% reported for oak wood 

biochar at 600oC (Nguyen and Lehmann, 2009). 

There seems to be no clear trend in the values for surface amphoteric properties 

especially for the Lancashire biochar as shown in Table 4.4. Edinburgh biochar though 

shows a decrease in surface acidity and increase in surface basicity with rise in HTT. 

This is in line with our pH and FTIR results and agrees with the reports of (Chun et al., 

2004). Negative results for an amphoteric surface property has been reported (Pereira 

et al., 2003) and may indicate high values for the opposing property since surface 

acidic and basic sites co-exist and seem to be inversely related (Boehm, 2002). 

 FT-IR 4.3.4

The bands between 700-900cm-1 (see Figure 4.8) are assigned to aromatic structures 

that include C-H bonds (Yang et al., 2007; Kloss et al., 2012) and their broadening in 

ss600 indicates a shift to more condensed carbon and an increase in aromatic nature 

with rise in HTT which agrees with the findings of a number of authors (Chen and Chen, 

2009; Kloss et al., 2012). This helps to confirm the observed decrease in the 

concentrations of H with rise in pyrolysis temperature (see Figure 4.11a). Kloss et al. 
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(2012) observed that a band at 875cm-1 may also indicate vibrations due to carbonates, 

but this is discounted for the samples here since no endotherm exists on the DSC 

curves in Figure 4.5. The band in the region 1024-1035cm-1 is assigned to aliphatic C-O 

stretching of alcohols (Shen et al., 2010) and polysaccharides (Cheng et al., 2006) 

which are cellulosic materials. The loss of these bands in the higher temperature 

biochars (600 and 800oC) again indicates shift to more recalcitrant carbon as soft 

carbon fractions are eliminated (Chen and Chen, 2009). The band around 1200cm-1 in 

the 400oC biochars is assigned to aliphatic ethers while the one at 1232cm-1 in the 

600oC biochars represents an aryl-alkyl C-O-C linkage (Yang et al., 2007). This 

transformation may also be another indication of developing aromatic character with 

rise in HTT. The band in the region 1310-1370cm-1 is assigned to a methylene group 

(Chen and Chen, 2009) and aliphatic C-CH3 bending vibration (Shen et al., 2010) and 

that band is greatly diminished in the 600oC biochars; and it along with all other 

aliphatic absorption bands completely disappears in the 800oC biochars, again 

indicating gradual dehydrogenation leading to formation of aromatics at higher 

temperatures. This conforms with the observation of Zhao et al. (2013) who explained 

such disappearance of aliphatic groups  results from the dehydration of cellulosic and 

ligneous components. The absorption band at 1430cm-1 is assigned to O-H bending 

vibration of an acid (Yang et al., 2007) and this group appears removed in the trace for 

the 600oC biochars. This goes to support the observed increase in pH with rise in 

pyrolysis temperature and is in line with the observations of Chun et al. (2004), that 

rise in temperature reduces surface acidity. Pereira et al. (2003) also reported 

temperature programmed desorption (TPD) results that showed the removal of acidic 

oxygen groups at 700oC. The strong absorption band at about 1510-1600cm-1 is 

assumed to be due to anti-symmetric stretching vibration of amino acids (Zhao et al., 

2013) and C=O stretching of ketones and carbonyls (Yang et al., 2007). This band 

appears diminished in the 600oC biochars to about a third of its size in the 400oC 

biochars which may indicate decarboxylation of acidic groups that could further 

support increase in basic character with rise in HTT. The final spectral band for our 

samples is around 1690cm-1 and is assigned to O-H bending vibration in water 

molecules (Shen et al., 2010). The band clearly disappears in the 600oC biochars which 

supports measured decreased moisture content and also increased basicity with rise in 

pyrolysis temperature.  
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 Conclusion 4.4

The totality of the results considered goes a long way in addressing the first objective 

and hypothesis put forward in this study; that physico-chemical properties of biochar 

are progressively altered with increasing pyrolysis temperature. The progressive 

changes in properties recorded in this Chapter may provide a framework of 

understanding the trend of biochar amendment impact on plant growth and soil 

processes. With the feedstock source fixed in this study, the results clearly show that 

temperature of production is an important factor that alters both physical and 

chemical properties of biochars (Wang et al., 2013a), a position supported in the case 

of C content by the report of Enders et al. (2012). 

It could also be concluded that as noted in this thesis the 400oC biochar stands well 

apart from the higher temperature biochars which show only minor differences 

between themselves in properties like all proximate analysis (except ash content), pH, 

TC, TOC, thermal behaviour, elemental ratios and CEC. These minor differences in 

many properties between the two higher temperature biochars mean depending on 

the desired property it could be cheaper to produce and use the 600oC biochar rather 

than the 800oC. Production process may also influence some biochar properties as 

shown by identifiable differences, even though small, between the Lancashire and 

Edinburgh biochars produced from the same feedstock and at the same temperatures. 

The Sitka Spruce biochar may have both high fuel quality and C sequestration potential 

as evidenced by its satisfactory fuel ratio and recalcitrant index values. 
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Chapter 5 The impact of biochar amendments on plant growth and the 

physico-chemical properties of amended soils. 

 Introduction 5.1

Considerable research effort (see Chapters 1 and 2) has gone into determining the 

potential of biochar as a vehicle to sequester atmospheric CO2 and hence fight climate 

change. To properly establish the importance of biochar as a soil additive for this 

purpose it must not negatively affect the bio-physicochemical properties of the soil 

which are critical in maintaining soil health. A healthy soil is one that possesses 

qualities which make it fit to provide many important ecosystem goods and services 

(Haygarth and Ritz, 2009) that include supporting the growth of food crops, livestock 

and space for building and recreation (Kennedy and Smith, 1995). The potential impact 

of biochar on the agronomic properties of a given soil could be assessed by 

determining how biochar application impacts on the growth and yield of plant material 

in the amended soil, which will be a reflection of improvements in the bio-physico-

chemical properties of the soil. These properties and how biochar application to soil 

affects them are crucial in determining the health status of the amended soil.  

Masahide et al. (2006) for example reported on the impact of biochar amendments on 

the chemical properties of an acid soil and yield of maize, cowpea and peanut crops in 

a field experiment, but they used a biochar with no definite pyrolysis temperature 

(260-360 oC) and an application rate of 10 Lm-2 both of which create difficulty in results 

comparison. Asai et al. (2009) monitored soil physical properties and grain (rice) yield 

on various soils with pH range of 5.2-8.3 amended with biochar (at 4, 8 and 16t/ha) 

from wood wastes in a field experiment. The authors however, used a commercial 

biochar with no information on its highest temperature of treatment (HTT) which 

makes the investigation unsystematic and results difficult for comparison. Biochar 

from waste water sludge (HTT, 550oC) was used in a greenhouse experiment to study 

the bioavailability of metals and the yield of cherry tomatoes in an acid soil (Hossain et 

al., 2010). The authors monitored plant height as an indicator of plant growth. 

Sukartono et al. (2011), reported on the effect of biochar amendment (in a field 

experiment) on soil fertility and maize yield in a sandy loam soil, though they used 

three non-wood feedstock sources and a biochar production method that only gave a 
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range for HTT (200-300oC) again making it unsystematic and raising difficulties in 

comparing results. Other researchers worked on the possible effect of biochar addition 

to bio-fortify some crops with zinc metal (Gartler et al., 2013) using a large number of 

crops (11) ranging from above ground shrubs such as lettuce to underground tubers 

like carrot. The authors used weight of dry biomass as a measure of amendment 

impact on plant growth. However, making a definite statement on the impact of 

biochar on the agronomic properties of an amended soil is not easy as it depends on 

the nature of the soil-crop-climate trio (Enders et al., 2012). Hence in this study, in 

addition to using a single feedstock source to produce the test biochar, a single plant 

(leek) had been used within a uniform climatic condition in form of the greenhouse, all 

in an effort to make the result of impact clearer. Plant growth in this investigation was 

monitored by measuring the ground level 

diameter of the leek plant which grows 

upwards as a single unbranched shoot (Hay 

and Kemp, 1992) making diameter 

measurement easy. The diameter 

measurement gives a more dependable 

linear dataset compared to monitoring 

biomass weight, which is prone to errors 

resulting from handling during harvest. Diameter measurement also allows continuous 

monitoring of plant growth dynamics and the impact of biochar throughout the 

experimental period while biomass estimation happens only at the end of the 

experiment. 

The influence of biochar on soil fertility and plant growth/yield have been assessed 

using both pot experiments (Hartley et al., 2009; Graber et al., 2010; Hossain et al., 

2010; Gartler et al., 2013) and field studies (Masahide et al., 2006; Asai et al., 2009; 

Sukartono et al., 2011). Parameters measured to monitor plant growth or crop yield 

range from fresh biomass weight (Masahide et al., 2006; Gartler et al., 2013), dry 

biomass weight (Hossain et al., 2010), weight of harvested crop (Asai et al., 2009; 

Sukartono et al., 2011), and weight/height of shoot (Khan et al., 2013; Schulz et al., 

2013). Similarly, various types of crops have been used by researchers as test plants 

and these in most cases include maize (Masahide et al., 2006; Major et al., 2010; 

Figure 5.1: Potted leek plants in the greenhouse 
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Sukartono et al., 2011; Zhang et al., 2012; Gartler et al., 2013), rice (Asai et al., 2009; 

Khan et al., 2013), wheat (Van Zwieten et al., 2010; Vaccari et al., 2011) and tomatoes 

(Graber et al., 2010; Hossain et al., 2010), with a few reporting the use of beans (Van 

Zwieten et al., 2010) and leek (Gartler et al., 2013) amongst others. For the purpose of 

this work, pot experiments were employed using leek (Allium porrum) as the test plant 

in two different soils; sandy of low pH and loamy/clayey of near-neutral pH. Leek 

growth was monitored by measuring the diameter of the above ground part of the 

stem. A preliminary (pilot) pot experiment was conducted as part of method 

development (see Chapter 3, section 3.6 and Table 3.2) for the two subsequent 

experiments. Available data from the pilot experiment are also given here for 

comparison to those from the main experiments. 

The specific objective this chapter sought to achieve was to assess how the addition of 

biochar produced at different pyrolysis temperatures using different production 

processes to two soil types (low and near-neutral pH) affects the physicochemical 

properties of the amended soil and influences plant growth in both soils compared to 

unamended controls. These biochars have already been shown to possess 

systematically variable properties (see Chapter 4) many of which are likely to affect the 

properties of soils to which they could be added. It was hypothesized (see hypotheses 

4 and 5 in Chapter 1 section 1.4) that: 

 Different biochar pyrolysis temperatures and their application rates will 

significantly alter the pH, total organic carbon (TOC) contents, bulk density 

(BD) water holding (WHC), and cation exchange capacities (CEC) of soils to 

which the biochar was added. 

 Different biochar pyrolysis temperatures and their application rates influence 

biochar’s ability to impact on the growth rate of Leek plant in amended soils 

compared to control soils. 

 Results 5.2

The results concerning the impact of biochar addition on the agronomic properties of 

the two types of amended soils (low pH and near-neutral) are graphically presented 

under section 5.2.1 and in Table 5.1. The first section is on the biochars’ impact on the 

physico-chemical properties of the amended soils (pH, TOC, BD, WHC and CEC) while a 

second section (5.2.2) is on the impact of biochar on leek growth (presented as rates) 
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in the two soils against relevant controls. Under both sections, relevant ANOVA 

statistical tables are provided. 

Table 5.1: Summary of the investigated agronomic properties of the amended soils. The sandy acid 

soil was amended with ss biochar and the loamy/clayey was amended with ess biochar. 

Biochar HTT (
o
C) 400 600 800 

                 Amendments (%) Amendments (%) Amendments (%) 
Parameter Soil Type Control 1 5 10 1 5 10 1 5 10 
pH sandy 4.30 4.45 4.46 4.44 4.34 4.42 4.60 4.45 4.76 4.77 

loamy/clayey 6.54 6.46 6.28 6.41 6.50 6.50 6.52 6.53 6.55 6.99 
 sandy (pilot) 5.20 5.42 5.53 6.25    5.50 6.34 6.65 
TOC (%) sandy 2.31 2.81 4.13 6.50 2.94 6.22 7.83 2.99 5.45 7.95 

loamy/clayey 2.19 2.75 5.41 9.02 3.09 6.74 6.01 3.53 6.23 10.84 
 sandy (pilot) 2.69 2.69 4.58 7.23    2.69 4.02 6.54 
BD 
 (g cm

-3
) 

sandy 1.15  0.90   0.87   0.90  
loamy/clayey 1.16  0.78   0.94   0.92  

%CEC incr sandy  21.52 35.18 47.70 21.14 30.25 25.58 18.67 21.75 26.86 
           

WHC (%) sandy 53.53 52.89 73.89 105.36 60.42 75.68 90.07 32.03 79.70 146.77 
loamy/clayey 52.55 54.19 62.48 75.40 54.34 59.64 71.55 56.05 60.02 72.51 

 sandy (pilot) 54.54 60.45 64.64 70.34    56.78 62.71 66.74 

TOC: total organic carbon; BD: bulk density; CEC: cation exchange capacity;  

WHC: water holding capacity (replicated measurements taken only in the acid soil of the pilot 

experiment. 

Note: HTT 400 does not apply to values for the pilot experiment since no HTT is available for the ibc 

biochar. 

5.1.1 Impact on soil properties 

 

Figures 5.2, 5.3a and 5.3b show the impact of the various levels of biochar 

amendments (1, 5 and 10% ; 10, 50 and 100t/ha) on the pH of amended soils. Figure 

5.2 is for the acid soil amended with ibc and kbc800 biochars used in the pilot 

experiment while Figures 5.3a and b are for acid soil amended with ss biochar in the 

first experiment and near neutral soil amended with ess biochar in the second 

experiment respectively. Comparing the controls (unamended soils) with the amended 

soils, statistical treatment of the data (Table 5.2) shows the 5 and 10% amended soils 

in the pilot and first experiments differ significantly from their respective controls 

(Univariate ANOVA, Post Hoc Tests, p = 0.000), while the 1% amendment in both cases 

is not significantly different from the controls. 
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Figure 5.2: Impact of ibc and kbc800 biochars on the pH of the acid soil used in the pilot experiment. 
The initial numbers in the sample codes represent weight percent of added biochar. Error bars 
represent ±SE of the means. 

ibc: an interreg biochar; kbc: biochar from a previous research project (see Chapter 3 Table 3.3). 

 

  

 

 

1ss400, 1ess400: 1% amendment with 400
o
C Lancashire and Edinburgh biochar respectively.  

For the near neutral soil (Figure 5.3b) none of the pH values of the amended soils 

significantly differed from the control; p values are 0.521 for the 1%, and 0.138 for 

each of the 5% and 10% amendment levels (Table 5.2). 

Figure 5.3: Impact of different levels of amendments using biochar at the different highest 

temperature of treatments on soil pH for (a) low pH and (b) near-neutral soils. Error bars represent 
±SE of the means. 
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Table 5.2: Analysis of variance results comparing p values between controls and factors (amendment 
level and highest temperature of treatment) for the amended soil properties investigated. This goes 
to test the fourth hypothesis of this study. 

 Experiment Pilot 1st 2nd 

 Soil type   acid Near neutral 
Variable Amendment 

level (%) 
1 5 10 1 5 10 1 5 10 

pH Control x 0.124 0.000* 0.000* 0.059 0.000* 0.000* 0.521 0.138 0.138 
BD   n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
CEC  n.d. n.d. n.d. 0.000* 0.000* 0.000* n.d. 
TOC  0.991 0.011* 0.000* 0.501 0.007* 0.000* 0.346 0.001* 0.000* 
WHC  0.009* 0.000* 0.000* n.d. n.d. n.d. n.d. n.d. n.d. 
 HTT (

o
C) 400 600 800 400 600 800 400 600 800 

pH Control x n.d. n.d. 0.000* 0.014* 0.012* 0.000* 0.025* 0.612 0.033* 
BD   n.d. n.d. n.d. 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
CEC         n.d. n.d. 0.000* 0.000* 0.000* n.d. 
TOC  n.d. 0.006* 0.031* 0.003* 0.004* 0.003* 0.003* 0.000* 
WHC  n.d. 0.000* n.d. n.d. n.d. n.d. n.d. n.d. 

*mean difference significant at the 0.05 level 

n.d.: not determined; for the pilot experiment due to lack of information on the HTT for one of the 
biochars (ibc). 

BD: bulk density (measured only for 5% amended soils in both test soils). 

 CEC: cation exchange capacity (measured only in the first experiment); TOC: total organic carbon. 

 WHC: water holding capacity (replicated measurements taken only in the pilot experiment). 

1
st

 experiment is the first set of experiments after the pilot where ss biochar was used to amend the acid 
soil (see Chapter 3 section 3.6 Table 3.2) 

2
nd

 experiment is the second set of experiments where ess biochar (at all amendment levels) and ss 
biochar (only at 5% amendment level) were used to amend the near neutral soil (see Chapter 3 section 
3.6 Table 3.2). 

Two factor ANOVA was done on all the soil properties data (Table 5.3) to determine 

differences between the amendment levels and the biochars’ highest temperature of 

treatment (HTT). For the pH, the three amendment levels significantly differ from each 

other in the pilot experiment (Univariate ANOVA, Post Hoc Tests, p = 0.002 (1x5); p = 

0.000 (1x10) and p = 0.004 (5x10)), while in the first experiment there is no significant 

difference between the 5 and 10% amendment levels (Univariate ANOVA, Post Hoc 

Tests, p = 0.153) and no significant difference between the 1 and 5% amendment 

levels for the pH in the near neutral ess amended soil (Univariate ANOVA, Post Hoc 

Tests, p = 0.221). The pH in both the acid and near neutral soils shows significant 

differences between the three HTT’s  except for the insignificant difference between 

the 400 and 600oC biochars  in the acid soil (Table 5.3; Univariate ANOVA, Post Hoc 

Tests, p = 0.933). This reflects the major trend of increased pH values for the biochars 

with rise in HTT (see Chapter 4, section 4.2.3 and Table 4.4). 
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Table 5.3: Analysis of variance results comparing p values within factors (Amendment levels and 
highest temperature of treatment) for the amended soil properties investigated. 

 Experiment Pilot 1st 2nd 

 Soil type   acid Near neutral 
Variable Amendment 

level (%) 
1 5 10 1 5 10 1 5 10 

pH 1  0.002* 0.000*  0.002* 0.000*  0.221 0.006* 
 5          
 10  0.004*   0.153   0.000*  
BD 1          
 5  n.d.   n.d.   n.d.  
 10          
CEC 1     0.013* 0.001*    
 5  n.d.      n.d.  
 10     0.062     
TOC 1  0.004* 0.000*  0.003* 0.000*  0.000* 0.000* 
 5          
 10  0.000*   0.005*   0.000*  
WHC 1  0.001* 0.000*       
 5     n.d.   n.d.  
 10  0.001*        
 HTT (

o
C) 400 600 800 400 600 800 400 600 800 

pH 400     0.933 0.000*  0.014* 0.000* 
 600  n.d.        
 800     0.000*   0.001*  
BD 400     0.236 1.000  0.000* 0.000* 
 600  n.d.        
 800     0.236   0.117  
CEC 400  n.d.   0.010* 0.001*    
 600        n.d.  
 800     0.284     
TOC 400     0.083 0.140  0.992 0.040* 
 600  n.d.        
 800     0.753   0.040*  

*mean difference significant at the 0.05 level 

 n.d.: not determined; for the pilot experiment due to lack of information on the HTT for one of the 
biochars (ibc). 

 

All amended soils show increased TOC contents compared to the controls both in the 

pilot (Figure 5.4) and the other experiments (Figure 5.5). However, the increases in the 

1% amended soils are not significantly different from the controls in all of the pilot 

experiment (Univariate ANOVA, Post Hoc Tests, p = 0.991), the first experiment 

(Univariate ANOVA, Post Hoc Tests, p = 0.501) and the second experiment (Univariate 

ANOVA, Post Hoc Tests, p = 0.346) (Table 5.2). In comparison with the controls all the 

HTT’s of the biochars show significant influence on the TOC contents (Table 5.2) and 

this agrees with the trend of increasing biochar TOC contents with HTT (R2 = 0.74) (see 

Chapter 4, Table 4.4).  
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Figure 5.4: Impact of ibc and kbc800 biochars on the total organic carbon contents of the acid soil used 
in the pilot experiment. The initial numbers in the sample codes represent weight percent of added 
biochar. Error bars represent ±SE of the means. 

Comparison between the amendment levels shows they have significantly different 

impacts on the TOC contents of the amended soils (Table 5.3). But a similar 

comparison between the HTT’s shows significantly different influences on TOC 

contents only between the 400/800 (Univariate ANOVA, Post Hoc Tests, p = 0.040) and 

600/800oC (Univariate ANOVA, Post Hoc Tests, p = 0.040) biochars in the near neutral 

Figure 5.5: Impact of the different biochars used at different amendment levels on the total organic 
carbon contents   of (a) the low pH soil and (b) the near-neutral soil. Error bars represent ±SE of the 
means. 
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soil (Table 5.3). The increases in the TOC contents of the amended soils with both 

amendment levels and HTT’s of the biochars is a reflection of the trend in T   

contents of the biochars (Chapter 4, section 4.2.3, Table 4.4).  

 Figure 5.6 shows all bulk densities of the 5% amended soils are lower than the 

respective unamended controls. There were no post hoc tests for amendments on bulk 

density data (Tables 5.2 and 5.3) because the property was determined on the same 

amendment level (5%) in both soil types. But compared to the control, the different 

biochar HTT’s show a significant lowering effect on the bulk density (Univariate ANOVA, 

Post Hoc Tests, p = 0.000   Table 5.2  in both soil types. However, between the HTT’s 

significantly different influence on the BD exist only between 400/600 and 400/800oC 

biochar pairs in near neutral soil. 

 

 

Cation exchange capacity (CEC) was determined only for the ss amended acid soils and 

is presented as percentage increase in CEC over the control unamended soil (Figure 

5.7). All the amended soils have significantly different CEC from the control at all three 

amendment levels and for all biochar HTT’s (Univariate ANOVA, Post Hoc Tests, p = 

0.000) (Table 5.2). However, comparing p values within the factors (amendment level 

and biochar HTT’s  shows no significant  E  difference between the 5  and 10  

amended soils (Univariate ANOVA, Post Hoc Tests, p = 0.062) (Table 5.3) just as there is 

no significant difference influencing the CEC between the 600 and 800oC biochars 

(Univariate ANOVA, Post Hoc Tests, p = 0.284) (Table 5.3). 

Figure 5.6: Impact of the different biochars at 5% amendment rate on the bulk density of (a) the low       

pH soil and (b) the near- neutral soil. Error bars represent ±SE. 
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Figure 5.7: Percentage increase in cation exchange capacity for the ss amended low pH soils over the 

control. Error bars represent ±SE of the mean. 

  

Figure 5.8 shows changes in water holding capacity (WHC) of the amended acid soil 

from the pilot experiment while Figure 5.9 shows the impact of amendment on the 

acid and near neutral soils. Replicate measurements were only taken on the pilot 

amended soils hence the only ones for which statistical treatment of data are available 

(Tables 5.2 and 5.3). Compared with the control, all the amended soils have 

significantly different WHC values (Table 5.2). The amendment levels also have 

significantly different influences between them on the WHC of the amended soils 

(Table 5.3; p values, 0.000 and 0.001). These ANOVA results could be assumed to be 

true at least for the amended soils of the first experiment (Figure 5.9a) where the 

same soil as the pilot was used. 
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Figure 5.8: Impact of the different levels of biochar amendments on the water holding capacity of the 
low pH soils from the pilot experiment. Error bars represent ±SE of the mean and those not visible 
have too small values. 
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Figure 5.9:  Impact of the different levels of biochar amendments on the water holding capacity of the 
(a) low pH and (b) near-neutral soils. 
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5.2.2 Impact on leek growth 

The rates of Leek growth in mm/week in the pilot experiment are shown in Figure 5.10 

while Figure 5.11 shows the leek growth rates in the two other plant trial experiments. 

Compared to the controls, only 1% (10t/ha) amended acid soil shows significantly 

different (Univariate ANOVA, Post Hoc Tests, p = 0.018) leek growth rate in the pilot 

experiment which from Figure 5.10 is obviously due to the wilted growth of the leeks 

in the 1% amended soil. The reason for this is not clear since if it were toxicity due to 

amendment there should have been a greater effect in the higher amendments. Only 

the 5% amendment in the first experiment (Univariate ANOVA, Post Hoc Tests, p = 

0.015) is significantly different from the control but none of the amendment levels in 

the near neutral soil of the second experiment showed any significant difference 

compared to the control (Univariate ANOVA, Post Hoc Tests, p > 0.05) (Table 5.4).  

Influence of biochar HTT on the growth rate is only significant for the 600oC biochar in 

the acid soil of the first experiment (Table 5.4, Univariate ANOVA, Post Hoc Tests, p = 

0.041). Two factor ANOVA shows no significant difference (p > 0.05) in impact on leek 

growth rate between any pair of amendment levels or biochar HTT’s in both the first 

and second experiments (Table 5.5). 
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Figure 5.10: Leek growth rates in the pilot experiment. The acid soil was amended with the interreg 
(ibc) and previous project (kbc800) biochars. Error bars represent ±SE of the means. 

Rates were calculated as slopes of linear regression lines from plots of leek diameter against sampling 

times for each treatment in the replicated experiments. Percentages are amendment rates and the 

control contained the unamended soil. Negative rate represents wilted growth. 

 



74 
 

 

Figure 5.11 Leek growth rates in (a) the acid soil amended with Sitka spruce (ss) biochar and (b) the 
near-neutral soil amended with Edinburgh Sitka spruce (ess) biochar. 

Rates were calculated as slopes of linear regression lines from plots of leek diameter against sampling 

times for each treatment in the replicated experiments. The biochars on the x-axis represent biochars 

used for amendment in each case while percentages are amendment rates and the control contained 

the relevant unamended soil in each case. Error bars represent ±SE. 

 

Table 5.4: Analysis of variance results comparing controls with factors (amendment levels and highest 
temperature of treatment) for leek growth rates in the amended soils. 

Experiment Pilot 1st 2nd 

Soil type used acid Near neutral 
Amendment level 
(%) 

1 5 10 1 5 10 1 5 10 

Control x 0.018* 0.886 0.360 0.059 0.015* 0.205 0.361 0.370 0.436 
HTT (oC) 400 600 800 400 600 800 400 600 800 
Control x n.d. 0.450 0.057 0.041* 0.094 0.156 0.875 0.324 
*mean difference significant at the 0.05 level 

n.d.: not determined; for the pilot experiment due to lack of information on the HTT for one of the 
biochars (ibc). 

Table 5.5:  Analysis of variance results comparing p values within factors (amendment level and 
highest temperature of treatment) for leek growth rates in the amended soils. 

Experiment Pilot 1st 2nd 

Soil type used acid Near neutral 
Amendment level (%) 1 5 10 1 5 10 1 5 10 
1  0.008* 0.001*  0.365 0.342  0.981 0.845 
5          
10  0.202   0.072   0.864  
HTT (oC) 400 600 800 400 600 800 400 600 800 
400     0.824 0.710  0.078 0.520 
600  n.d.        
800     0.553   0.243  
*mean difference significant at the 0.05 level 
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n.d.: not determined; for the pilot experiment due to lack of information on the HTT for one of the 
biochars (ibc). 

Figure 5.12 shows leek growth rates in the two soils with their respective controls at 5% 

amendment using the ss biochar. Fixing the biochar type (ss) and amendment rate (5%) 

allows for a direct comparison of the influence of biochar HTT’s and soil type on leek 

growth rates in the two different soils. Compared to their respective controls, biochar 

pyrolysis temperature has significant impact on leek growth rates in the acid soil (p < 

0.05) but not in the near neutral soil (p > 0.05) (Table 5.6). Table 5.7 shows significant 

difference in leek growth rate between the two different soil types (p < 0.05) but not 

between pairs of biochar types (p > 0.05). 
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Figure 5.12 Leek growth rates at 5% ss amendment in the two soils 

 

Table 5.6: Analysis of variance results comparing controls with factors for leek growth rates at 5% 
amendment in the acid and near neutral soils 

HTT (oC) 400 600 800 Acid control 

Acid control x 0.002* 0.001* 0.008*  
Near neutral control x 0.206 0.329 0.061 0.000* 
Soil type Near neutral Acid Acid control 
Acid control x 0.000* 0.055  
Near neutral control x 0.823 0.005* 0.000* 
*mean difference significant at the 0.05 level 
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Table 5.7: Analysis of variance results for within factors comparison for leek growth rates at 5% 
amendment in the acid and near neutral soils 

HTT (%) 400 600 800 

400  0.707 0.404 
600    
800  0.233  
Soil type Acid Near neutral  
Acid  0.000*  
Near neutral 0.000*   
*mean difference significant at the 0.05 level 

 

Figure 5.13 compares leek growth rates in 5% ss and ess amended near neutral soil 

which fixes amendment level and soil type and hence allows for assessing the impact 

of the two biochars from the two different production streams on leek growth rates 

and also the influence of HTT on leek growth. Compared to the control, none of 

biochar type and HTT has significant influence on leek growth (p > 0.05) (Table 5.8). 

Similarly there is insignificant difference (p > 0.05) in impact between the factors 

(biochar type and HTT) (Table 5.9)  
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Figure 5.13: Leek growth rates at 5% ss and ess amendments in the near neutral soil 
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Table 5.8: Analysis of variance results comparing controls with factors for leek growth rates at 5% ss 
and ess amendment in the near neutral soil 

HTT (oC) 400 600 800 

Control x 0.236 0.468 0.791 
Biochar type ss ess 
Control x 0.830 0.191 

 

Table 5.9: Analysis of variance results for within factors comparison for leek growth rates at 5% ss and 
ess amendment in the near neutral soil 

HTT (%) 400 600 800 

400  0.556 0.255 
600    
800  0.569  
Biochar type ss ess  
ss  0.124  
ess 0.124   

 

Combined ANOVA was done on all leek growth data across the two soils comparing 

unamended controls with amendment levels of the amended soil, biochar HTT’s and 

soil types (Table 5.10); comparison within the factors (Table 5.11) and interactions 

between the factors (Table 5.12). Significant leek growth increases relative to the 

control resulted from the 5% and 10% amendment levels (Table 5.10, p < 0.05) only in 

the acid soil but there is no significant difference between the two amendment levels 

(Table 5.11, p = 0.583) on influencing leek growth. The 400 and 600oC biochars have 

significantly different influence (p < 0.05) on leek growth compared to the control but 

compared between the HTT pairs there is no significant difference (Table 5.11, p > 

0.05). All these confirm the results of the separate ANOVA treatments (Tables 5.4 – 

5.7). 

Table 5.10: Combined Analysis of variance across experiments and soil types comparing controls with 
factors for leek growth rates 

Amendment level (%) 1 5 10 

Acid control x 0.364 0.007* 0.020* 
Near neutral control x 0.060 0.557 0.414 
HTT (oC) 400 600 800 
Acid control x 0.007* 0.040* 0.064 
Near neutral control x 0.635 0.318 0.222 
Soil type Acid Near neutral 
Acid control x 0.944 0.000* 
Near neutral control x 0.011* 0.404 
*mean difference significant at the 0.05 level 
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Table 5.11: Combined Analysis of variance results across experiments and soil types for within factor 
comparison for leek growth rates 

Amendment level (%) 1 5 10 

1  0.003* 0.024* 
5    
10  0.583  
HTT (oC) 400 600 800 
400  0.294 0.117 
600    
800  0.659  
Soil type Acid Near neutral 
Acid  0.000* 
Near neutral 0.000*  
*mean difference significant at the 0.05 level 

 

Table 5.12: Interactions between factors from the combined analysis of variance on leek growth rates 

Amendment x HTT 0.009* 

Amendment x soil type 0.397 
HTT x soil type 0.466 
HTT x soil type x Amendment 0.190 
*mean difference significant at the 0.05 level 

 

 Discussion 5.3

5.3.1 Soil properties 

The significant increase in pH for the amended acid soils compared to the control is 

consistent with the high pH values of the biochars used for amendment in especially 

the two higher temperature biochars (see Chapter 4, Table 4.4) which agrees with 

other reports (Schulz and Glaser, 2012; Khan et al., 2013). Schulz and Glaser (2012), 

reported significant increase in pH of an acidic infertile sandy soil (pH = 4.5) amended 

with 5% of charcoal produced at about 400oC while (Khan et al., 2013) achieved an 

increase in pH of an acid soil (pH = 5.01) at both 5 and 10% amendment level using a 

sewage sludge biochar in a paddy soil. Wood biochar pyrolysed at 550oC has also been 

reported to raise the pH of an acidic (pH = 5.2) silty loam soil at both 30 and 60t/ha 

(Vaccari et al., 2011). Increased pH values for the biochar amended acid soils may be 

due to the added biochars that have reduced acid functional groups with rise in 

pyrolysis temperature (see Chapter 4, section 4.3.3). For the near-neutral loamy/clayey 

soil, the impact of amendment on pH is insignificant compared to the control (Figure 

5.3b and Table 5.2). The essentially basic nature of the soil and especially the higher 

temperature biochars (ess600 and ess800) intuitively explains the absence of a 
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significant impact on the pH of the amended soil. Similar insignificant biochar 

amendment effect on the pH of a non-acidic soil has been reported by Zhang et al. 

(2012) who amended a high pH (8.38) calcareous loamy soil with a wheat straw 

biochar (pH = 10.4) at 20 and 40 t/ha (about 2 and 4%) amendment levels. Haefele et al. 

(2011) also reported no significant effect on the pH of an anthraquic Gleysol near 

neutral soil (pH = 6.5) amended with 16 t/ha rice husk biochar (pH = 8.6).  

The recorded two factors ANOVA on the pH data (Table 5.3) shows significant 

difference between pH at the three amendment levels in the pilot soils; no significant 

difference between 5 and 10% in the first experiment and no significant difference 

between 1 and 5% in the near neutral soil. Hence, 5% amendment level could then be 

the amendment level of choice across the two soil types dependent on the priorities of 

achieving change in soil properties, maximizing agronomic effects and sequestering 

carbon.  

The significant increases in total organic carbon (TOC) contents in the low pH soil range 

from 79% in 5ss400 to 244% in 10ss800 and from 147% in 5ess400 to 394% in 

10ess800 in the near-neutral amended soil. These compare well with the report of 

Zhang et al. (2012) who recorded 44% increase in soil organic carbon at 20t ha-1 (about 

2%) application rate with a wheat straw biochar; other authors reported a 66.5% 

increase in organic carbon contents at 41.3 t ha-1 (about 4%) using rice husk biochar in 

a near neutral soil (Haefele et al., 2011). Another report (Khan et al., 2013) achieved a 

550% increase in total carbon contents in a 5% amendment using sewage sludge 

biochar in an acidic paddy soil. Organic matter (OM) is comprised mainly of organic 

carbon, and in soils a lot of benefits are derived from OM; it serves as nutrient 

reservoir and source of fertility, acts as a buffer against rapid changes in pH (soil 

reaction), an energy source for soil microorganisms and contributes to soil aeration 

that is important in reducing soil compaction and increasing infiltration rate and water 

storage capacity (Jones et al., 2005). Zhang et al. (2012) compared crop (maize) N 

usage in a fertilized unamended control and wheat straw biochar amended fertilized 

calcareous soil of low organic carbon contents and reported significant increase in N 

use efficiency (and increased crop yield) with increase in soil organic carbon due to 

biochar addition. Biochar addition could also give a positive priming effect on soil 

organic matter decomposition (Vaccari et al., 2011). Hence, the Sitka spruce biochar 
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can potentially boost the organic carbon contents of soils leading to a more stable soil 

organic matter essential to enhanced nutrient availability, reduced bulk density, 

increased aeration and water storage which are all important for boosting crop 

production while simultaneously helping to sequester carbon in the soil environment 

and even mitigate flood risks. 

Biochar amendments have been reported to decrease the bulk density (BD) of soils. 

Haefele et al. (2011), reported a 3% reduction in bulk density over the control at about 

4% amendment with rice husk biochar, while others reported a 4.5% decrease in BD at 

5% amendment rate using sewage sludge biochar produced at 550oC in an acid paddy 

soil (Khan et al., 2013). Results in this study (Figure 5.6 and Table 5.1) show bulk 

density reductions of between 22 – 24% in the acid soil and 19 – 32% in the near-

neutral soil at 5% biochar amendments. The bulk density values show little difference 

between the amended soils as would be expected for same level of treatment and are 

also in line with the almost equal bulk density values of the different biochars added to 

the soils (see Table 4.4 in Chapter 4). But the bulk density is significantly lower than the 

controls in both soils for all biochar HTT’s  Table 5.2 . These reductions are much 

higher than the reported 4.5% using sewage sludge biochar (HTT, 550oC) at 5% 

amendment (Khan et al., 2013); 4% using woody biochar (HTT, 500oC) at 30 t/ha 

amendment (Vaccari et al., 2011); and  19% using wheat straw biochar (HTT, 350-55oC) 

at 40 t/ha (about 4%) (Zhang et al., 2012). The agronomic benefit of lowered bulk 

density in amended soils could be in the form of reduced tensile strength that offers 

cheaper tillage cost (Vaccari et al., 2011) and potential higher yield especially for root 

crops like carrots and beetroot (Gartler et al., 2013). Hence, the biochar under study 

here has the potential of enhancing the physical structure of amended soils making 

them amenable to the growth of tubers and easy flow of water through the system. 

The Cation Exchange Capacity (CEC) of the amended sandy soils was significantly 

increased relative to the control (Table 5.2) across all amendments with percentages 

ranging from 18.67 – 47.70% (Table 5.1). The difference in influence on CEC between 5% 

and 10% amendment levels and between 600 and 800oC biochars is insignificant (Table 

5.3) which makes 5% amendment with 400oC biochar a good choice for raising CEC in 

amended soils. A more significant impact on CEC from 400oC biochar reflects the 

measured CEC levels for the biochars which was highest for the lowest temperature 
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biochar (see Chapter 4, Table 4.4 and section 4.3.3). Increased soil CEC with biochar 

amendment agrees with the observations of DeLuca et al. (2009) and Atkinson et al. 

(2010) on the impact of biochar addition to soils. Enhanced Cation Exchange Capacity 

helps in retention of nutrients (such as K and NH4
+) and cycling within amended soils. 

Though, while some reported CEC increase of about 13% (Sukartono et al., 2011) to as 

high as 40% (Masahide et al., 2006), others reported a decrease of about the same 

margin (Haefele et al., 2011) or no effect (Schulz and Glaser, 2012). This could be due 

to differences in feedstock source, HTT, application rates and/or soil nature.  

The significant increase in water holding capacity (WHC) for the amended soils relative 

to the control in the pilot experiment (Figure 5.8 and Table 5.2) correlates well with 

the TOC contents of the soils (Figure 5.14). Similar correlation plots show good linear 

relationships for the ss amended soil (R2 = 0.72) and ess amended soil (R2 = 0.73). 

However, for the biochars the two measured properties (TOC and WHC) show a linear 

relationship but with a negative slope (Figure 5.15) for both ss and ess biochars (see 

 hapter  , Table  .  . A similar plot for ess biochar gave a Pearson’s coefficient of R2 = 

0.85.  

Increased water holding capacity for an amended soil is a positive agronomic impact 

since enhanced WHC translates into more water availability to plants (Asai et al., 2009) 

and is also a possible remedy in free draining soils (Atkinson et al., 2010) that are 

susceptible to causing the flooding of surrounding infrastructures during storm events. 

Recent changes in the rainfall pattern in the UK that has led to frequent flooding 

events point to the great importance of enhancing the soil’s ability to retain more 

water. 
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Figure 5.14: Relationship between total organic carbon (TOC) and water holding capacity (WHC) for 
the amended acid soil from the pilot experiment. 
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Figure 5.15: Relationship between total organic carbon (TOC) and water holding capacity (WHC) for 
the ss biochar used to amend the acid soil in both the pilot and first experiments. 
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Compared to the controls, our results show WHC increases by between 13 – 174% in 

the sandy soil and 3 – 44% in the near-neutral soil across the amendment rates. Higher 

increase margins in the amended sandy soils compared to the loamy/clayey soils 

confirms a possibility suggested by Atkinson et al. (2010) who reviewed potential 

mechanisms for achieving agricultural benefits through the addition of biochar to 

temperate soils. The authors reported works that showed sandy soils having higher 

water holding capacity on treatment with biochar compared to similarly amended 

clayey or loamy soils.  

5.3.2 Leek growth 

The provision of food crops is one of the most important functions of the soil (Kennedy 

and Smith, 1995), consequently plant growth depends on soil properties such as 

nutrient availability, pH, plant available water, and a functional microbial community 

that plays important role in soil organic matter decomposition. Deficiency and/or 

extremes in any of these variables could limit plant growth (Mingorance et al., 2014). 

The impact of biochar amendment on leek growth is therefore discussed in relation to 

the impact of amendment on the soil properties treated in the previous section. The 

stated objective in this Chapter was to assess how biochar produced at different 

pyrolysis temperatures alters the agronomic properties of soil to which it was added 

and what impact that had on plant growth. To facilitate a systematic investigation, 

biochars used were from same feedstock; same test plant with same level of 

fertilization and water regimen used; and same biochar addition rates. Statistical 

treatment of the overall data was also used to assess interactions between the trio of 

soil type, biochar HTT and amendment rates across the two soil types in addition to 

separate treatment of leek growth data in the two soil types (acidic sandy and near 

neutral loamy/clayey) and three experiments (the pilot, first and second) (see Chapter 

3, Table 3.2). 

Significant leek growth relative to the control in the acid soil resulted only from 5% 

amendment (Univariate ANOVA, Post Hoc Tests, p = 0.015) with ss600 biochar 

(Univariate ANOVA, Post Hoc Tests, p = 0.041) (Tables 5.4 and 5.5). The growth could 

be due to increased TOC, WHC and decreased BD over the control (Table 5.1). TOC 

correlates well with WHC in the acid soil (Table 5.1 and Figure 5.14). Increased biomass 

growth due to biochar addition could result from positive priming on soil organic 
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matter decomposition leading to faster mineralisation and improved nutrient 

availability (Vaccari et al., 2011). These authors used wheat as a test plant and applied 

a wood biochar (HTT, 500oC) into a silty loam soil of pH 5.2. Schulz and Glaser (2012) 

applied barbecue charcoal (HTT, 400oC) along with charcoal + compost and charcoal + 

mineral fertilizer at 5% amendment into a modelled infertile sandy soil planted with 

oat (Avena sativa L.) to test impact on soil fertility and plant growth and concluded 

that biochar addition raised soil organic matter, soil fertility and increased plant 

growth. However, in the near neutral soil biochar addition has no significant impact 

compared to the control  p > 0.05  at all amendment levels for all biochar HTT’s  Table 

5.4) even though from Table 5.1 the amended soils have increased TOC, WHC and 

decreased BD compared to the control. The reason could be due to the soil pH which 

was not greatly affected being already high which itself also may explain the better 

overall leek growth in the near neutral soil (Figure 5.11). 

Both soil types received the same level of mineral fertilization (see Chapter 3, Table 3.2) 

in addition to having similar levels of TOC, WHC and BD (Table 5.1) and therefore none 

of these parameters could be the reason for the limited leek growth in the acid soil 

compared to the near neutral. The pH levels of the amended acid soils (4.42-4.77) and 

the near neutral soils (6.28-6.99) could explain the leek growth differences in the two 

soils (Figure 5.12 and Table 5.6) as the optimum pH for leek growth is estimated to be 

6.0-6.8.  

(http://www.extension.umn.edu/garden/yard-garden/vegetables/leeks/doc/M1230.pdf 

Accessed on 19/05/2014) 

Soil pH could limit plant growth in a number of ways that centre on availability or lack 

of it of nutrients both macro (N, P, K, Ca and Mg) and micro (Fe, Mn and Zn) and also 

the presence and uptake by plants of Al3+ that is phytotoxic in its various forms. Low 

soil pH solubilise Al3+ species in soil which go on to displace macro nutrients from the 

soil and cation exchange sites (Cristancho et al., 2014) thus starving the plant of 

nutrients needed for growth. Masahide et al. (2006) partly ascribed low productivity of 

maize, cowpea and peanut in their control soils to low pH (4.1), low nutrients and high 

Al3+ (2.61 molc/Kg). Other authors also observed that close to neutral pH favours 

nutrient availability and increased crop yield (Vaccari et al., 2011). Schulz and Glaser 

(2012), also reported significant increase in available K with increased soil pH. 

http://www.extension.umn.edu/garden/yard-garden/vegetables/leeks/doc/M1230.pdf
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 Conclusion 5.4

The combined results in this Chapter and statistical treatment of the data positively 

show that addition of Sitka spruce biochar to the test soils did impact to a certain 

extent the growth of leek by altering some of the physico-chemical properties of the 

soil environment in which the plant was grown. Significant soil property changes 

compared to unamended controls include raising the TOC and lowering BD in both the 

acid and near neutral soils (p < 0.05); the pH in the acid soil (p < 0.05) but not in the 

near neutral soil (p > 0.05); and increasing the CEC and WHC (p < 0.05) although 

replicated measurements on these last two properties were only determined in the 

acid soil. The alteration of these soil properties due to biochar addition was also 

significantly influenced by changing the pyrolysis temperatures of the biochars (HTT) 

used for amendment which makes the fourth hypothesis put forward in this study 

acceptable. 

Sitka spruce biochar addition to the test soils significantly influenced leek growth 

compared to the controls only in the acid soil and not in the near neutral soil (Table 

5.10). More directly related to the fifth hypothesis in this investigation, altering the 

biochar HTT had no significant effect on leek growth in both soils (Table 5.11) and 

hence the fifth hypothesis is rejected.  

Another conclusion that could be drawn from this study is that production process did 

not significantly influence the impact of these biochars on leek growth (Figure 5.13 and 

Tables 5.8 & 5.9). 

From the ANOVA results in Tables 5.2 and 5.3, a suggested suitable dosage of Sitka 

spruce biochar  could be 5% (50 t/ha) of 600oC biochars for enhanced pH in sandy acid 

soil; 1% (10 t/ha) of 400oC biochars for enhanced TOC in both acidic sandy soil and 

near neutral loamy clayey soil; 5% of 600oC biochars for enhanced CEC in acid soil; and 

1% amendment level for enhanced WHC in acid soil (no ANOVA result for near neutral 

soil and no HTT chosen due to lack of full information on it since replicate 

measurement for WHC was only determined in the acid soil of the pilot experiment). 

Similarly from the ANOVA results in Tables 5.10 and 5.11, a dose of 5% 400oC biochars 

could be suggested for enhanced leek growth in the acid soil only.  
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Chapter 6 Soil processes and soil microbial community structure as a 

function of biochar amendment 

 : Introduction 6.1

Biochar is receiving increasing attention from researchers due to its use as a soil 

fertility enhancer (Zimmerman et al., 2011; Dempster et al., 2012; Yoo and Kang, 2012) 

and its effect in abating climate change through its potential for both reducing 

greenhouse gas (GHG) emissions (Spokas et al., 2010; Yoo and Kang, 2012; Harter et al., 

2013) and sequestering atmospheric carbon dioxide in soils. This is due to its relative 

inertness and resistance to microbial degradation (Spokas et al., 2009). Carbon dioxide 

(CO2) is the primary greenhouse gas and anthropogenic activities in the form of fossil 

fuel combustion and deforestation are blamed for increases in its atmospheric 

concentrations. Biochar as a product which has a high concentration of carbon 

contributes greatly when used as a soil improver in withdrawing CO2 from the 

atmosphere, in addition to its suppression of basal respiration (CO2 emissions) from 

soil environments (Calvelo Pereira et al., 2011).  

A productive or fertile soil that is essential to sustainable agriculture invariably 

depends on the maintenance of healthy, diverse and functional microbial populations 

(Kennedy and Smith, 1995; Lehmann et al., 2011) due to the pivotal role they play in 

organic matter decomposition, nutrient cycling and many other ecosystem services 

provided by the soil (Liu et al., 2006; Ritz et al., 2009). In an effort to cater for the 

growing world population, human activity has placed many ecosystems under pressure 

from unsustainable use of land resources through deforestation and intensive 

mechanised agricultural production (Kennedy and Smith, 1995). Microbial populations 

are quite intimate in their contact and interaction with the soil environment and are 

therefore very sensitive and respond to such environmental stresses (Kennedy and 

Smith, 1995; Bloem and Breure, 2003; Sheppard et al., 2005) in terms of their structure, 

diversity and functions (Webster et al., 2002; Gray et al., 2003; Harter et al., 2013). 

Thus, the role of biochar as a climate change mitigation tool can only be valuable if the 

biochar does not negatively impact on normal soil microbial mediated processes that 

are central to the maintenance of soil health. 

The term ‘soil health’ is in some ways synonymous to ‘soil quality’ and a healthy soil 

should be fit for contemporary purposes that include the provision of a whole 
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spectrum of ecosystem goods and services (Haygarth and Ritz, 2009), such as food 

crops and livestock and the provision of space for buildings and recreation (Kennedy 

and Smith, 1995). Soils are extremely complex, heterogeneous (Haygarth and Ritz, 

2009) and heavily populated by microorganisms; a gram of soil could be home to close 

to 10 billion microbes with a diversity running into thousands of different species 

(Torsvik and Øvreås, 2002). 

The scope of this Chapter is limited to investigating the impact of biochar amendments 

in a low pH (pH = 4.38) and a near-neutral (pH = 6.67) soils, on: 

 Basal Respiration (BR) measured as evolved carbon dioxide, which doubles as 

an estimate of microbial activity (Winding et al., 2005) and as an intrinsic 

indicator of C cycling which is fundamental to soil function (Ritz et al., 2009). 

  Denitrification Enzyme Activity (DEA) measured as released nitrous oxide 

(N2O), which indicates on soil function in nutrient (N) cycling (Liu et al., 2006), 

and  

 Microbial diversity that is one of the three microbiological parameters (amount 

of biomass, the activity and the diversity of the microbial community) that 

could be measured to monitor environmental stress resulting from 

anthropological soil management practices (Bloem and Breure, 2003).  

The choice of these properties for investigation in this study is based on the very 

sensitive response of microorganisms to environmental stress, which makes biological 

parameters effective candidates as indicators for environmental monitoring and 

ecological risk assessment (Kennedy and Smith, 1995; Bloem and Breure, 2003).  The 

hypothesis (see Chapter 1 section 1.4) to be tested here was, 

 Increasing pyrolysis temperature progressively alters biochar’s ability to 

influence the selection of resultant microbial communities and microbial 

mediated processes e.g. respiration, and nitrogen cycling in soil environments. 

Laboratory-based microcosms were used to incubate biochar-amended soils recovered 

from 12-14 week pot experiments (see Chapter 3 for details on method) and the flux of 

CO2 and N2O in the headspace (as indicators of soil microbial activity), were measured 

for the biochar treated soils and controls (unamended soil and fresh biochar). 
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Although it is said to be recalcitrant (Forbes et al., 2006; Kuzyakov et al., 2009; Harvey 

et al., 2012) and largely unavailable to soil microorganisms (Anderson et al., 2011), 

biochar controls were considered because, it cannot be immune to degradation at 

some rate (Zimmerman, 2010). This degradation is reported to possibly be both abiotic 

(Cheng et al., 2006) and biotic (Zimmerman, 2010). 

To qualitatively assess biochar’s impact on the indigenous microbial population, 

microbial diversity patterns in the amended soils were assessed. To this end, 

Polymerase Chain Reaction (PCR) products of bacterial 16S rRNA genes amplified from 

DNA extracts of the amended soils and controls were separated using Denaturing 

Gradient Gel Electrophoresis (DGGE). DGGE is a culture-independent molecular 

technique (see Chapter 3 for method), where gene fragment separation is achieved 

based on differences in the electrophoretic mobility of denatured (partially melted) 

DNA fragments through a polyacrylamide gel; sequence variants (representing 

individual bacterial species) melt at different temperatures and stop migrating through 

the gel when they melt, hence the separation to produce a barcode pattern 

representing the diversity of the system (Muyzer et al., 1993). Critically DGGE 

represents a rapid if crude diversity fingerprinting method that allows a comparison of 

diversity patterns across the replicated experimental treatments in this study. 

 Results 6.2

6.2.1 Basal respiration (BR) 

The results for basal respiration (as rates in µg CO2/g soil/hour) measured 13 weeks 

after biochar amendment from the plant trial pot soils are presented in Figures 6.1, 6.2 

and 6.3. For the pilot experiment, Figure 6.1 represents rates of CO2 production in the 

microcosms containing the low pH sandy soil amended with ibc and kbc800 biochars  

at the three levels of treatment (1, 5, and 10% equivalent to 10, 50 and 100 t/ha) along 

with a control soil that contained no biochar. Figure 6.2 shows a similar arrangement 

for first experiment in which same type of soil as in the pilot was amended with ss 

biochar while Figure 6.3 shows rates of CO2 production in the microcosms for the ess 

biochar amended near neutral soils and unamended control. In all cases, the observed 

data have been corrected by subtracting gas emissions from the biochar control before 

producing the charts (Spokas et al., 2009). Additionally, all data were adjusted for 

actual mass of soil in microcosms to remove the effect of dilution resulting from 
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amendment additions. The rates were calculated from the slopes of the regression 

plots of CO2 emissions over the three gas sampling times (0, 20 and 24 hours) for each 

of the replicated experiments.  

Statistical treatment of the data presented in Figure 6.1 showed that for all biochars 

combined the 1% amended soil in the pilot experiment did not have significantly 

different rate of CO2 production (Univariate ANOVA, Post Hoc Tests, p = 0.118) 

compared to the biochar-free control (Table 6.1), while the soil at the other two 

amendment levels had significantly different rate of CO2 production (Univariate 

ANOVA, Post Hoc Tests, p = 0.000) compared to control for all biochar types. The 

pyrolysis temperature of the kbc800 biochar showed a significant influence on the rate 

compared to the control (Univariate ANOVA, Post Hoc Tests, p = 0.000). No 

information is available on the production temperature of the ibc biochar. From Table 

6.2, all the three amendment levels significantly differ from one another (Univariate 

ANOVA, Post Hoc Tests, p < 0.05).  
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Figure 6.1: Rates of carbon dioxide production in the pilot experiment. Rates determined after 
subtracting carbon dioxide emissions due to biochar. Control was the unamended soil. Error bars (±SE) 
too small to be seen on plots. 

In the main experiment (Figure 6.2), the rate of CO2 production significantly differed 

from the control soil at all the amendment levels (Univariate ANOVA, Post Hoc Tests, p 

= 0.000) and the amendment levels had significantly different influences on the rate of 

CO2 emissions between them (Univariate ANOVA, Post Hoc Tests, p < 0.05) (Table 6.2). 

However, while all the biochar HTT’s had a significantly different influence on   2 

emissions compared to the control (Table 6.1), the influence of ss800 is not 

significantly different (Univariate ANOVA, Post Hoc Tests, p = 0.149) from that of ss400 

(Table 6.2). 
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Table 6.1: Analysis of variance results comparing unamended controls with factors (amendment level 
and highest temperature of treatment) for rates of carbon dioxide and nitrous oxide production from 
biochar amended soil microcosms. 

 Experime
nt 

Pilot 1st 2nd 

 Soil type 
used 

acid Near neutral 

Variabl
e 

Amendm
ent level 
(%) 

1 5 10 1 5 10 1 5 10 

CO2 Control x 0.118 0.000* 0.000
* 

0.000
* 

0.002
* 

0.000
* 

0.681 0.000
* 

0.000
* 

N2O  0.081 0.032* 0.002
* 

n.d. 0.000
* 

0.000
* 

0.000
* 

 HTT (
o
C) 400 600 800 400 600 800 400 600 800 

CO2 Control x n.d. 0.000
* 

0.000
* 

0.000
* 

0.002
* 

0.001
* 

0.000
* 

0.000
* 

N2O  n.d. 0.028
* 

n.d. 0.000
* 

0.000
* 

0.000
* 

*mean difference significant at the 0.05 level; n.d.: not determined 

1
st

 and 2
nd

 experiments are the first and second sets of experiments after the pilot where ss and ess biochars were 
used to amend the acid and near neutral soils respectively (see chapter 3 section 3.6 Table 3.2). 

Table 6.2: Analysis of variance results comparing factors (amendment level and highest temperature 
of treatment) for their influence on rates of carbon dioxide and nitrous oxide production from biochar 
amended soil microcosms. 

 Experime
nt 

Pilot 1st 2nd 

 Soil type acid Near neutral 
Variabl
e 

Amendm
ent level 
(%) 

1 5 10 1 5 10 1 5 10 

CO2 1  0.001* 0.000*  0.000* 0.000
* 

 0.000* 0.000* 

 5          
 10  0.000*   0.036*   0.000*  
N2O 1  0.552 0.045*     0.000* 0.000* 
 5    n.d.    
 10  0.134      0.000*  
 HTT (oC) 400 600 800 400 600 800 4

0
0 

600 800 

CO2 400     0.000
* 

0.149  0.000* 0.000* 

 600 n.d.       
 800     0.000

* 
  0.076  

N2O 400        0.000* 0.000* 
 600 n.d. n.d.    
 800        0.027*  
*mean difference significant at the 0.05 level; n.d.: not determined 
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Figure 6.3 shows the rates of CO2 production in the near-neutral soil amended with ess 

biochar at all amendment rates. The rates of CO2 production show a progressive drop 

in CO2 production with increase in the amount of biochar for all biochars, but generally 

higher rates of CO2 produced for all treatments and controls compared to the low pH 

soil. However, compared to the unamended soil (control), except for 1% ess400, all 

other soils at all treatments produced CO2 at rates lower than the soil control, hence 

biochar suppressed emission rates. 
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Figure 6.2: Rates of carbon dioxide evolved from ss biochar amended low pH soil. Data points 
represent means ± standard error (n=3). Unseen error bars due to small values of the standard errors. 
Rates were calculated as explained in chapter 3, section 3.7.1. Control is the unamended soil. 

But considering all biochar types, the higher rate for 1% ess400 is not significantly 

different from the control (Univariate ANOVA, Post Hoc Tests, p = 0.681) (Table 6.1). 

The decrease in CO2 production with increasing amendment level (Figure 6.3) is 

significant from Table 6.2 (Univariate ANOVA, Post Hoc Tests, p < 0.05). Compared to 

the control, the highest temperature of treatment (HTT) of the biochars show 

significant influence on the biochars’ impact on   2 production (Table 6.1, Univariate 

ANOVA, Post Hoc Tests, p < 0.05) but the influence is not significantly different 

between ss600 and ss800 biochars (Table 6.2, Univariate ANOVA, Post Hoc Tests, p = 

0.076). 



93 
 

ess amended near-neutral soil

1ess
400

5ess
400

10ess
400

1ess
600

5ess
600

10ess
600

1ess
800

5ess
800

10ess
800

Contro
l 

R
a

te
 (

u
g
 C

O
2
/g

 s
o

il/
h
o

u
r)

0

2

4

6

8

 

Figure 6.3: Rates of carbon dioxide evolved from ess biochar amended near-neutral soil. Data points 
represent mean ±standard error (n=3). Unseen error bars due to small values of the standard errors. 
1ess400 means soil amended with 1% ess400 biochar. Control is the unamended soil. 

 

6.2.2 Denitrification enzyme activity (DEA) 

Results for the DEA are presented in Figures 6.4 and 6.5 as rates of N2O production in 

(µg N2O/g soil/hour). There were no detectable N2O emissions from ss amended low 

pH soil regardless of biochar type or amendment rate while the pilot experiment pot 

amended soils showed some detectable nitrous oxide emissions (Figure 6.4) in a few 

samples but none from the unamended control soil. Moreover, a statistical treatment 

of the combined data for the two biochars showed only one of the biochar treatments 

(10% or 100t/ha) had a rate of N2O production that significantly (Univariate ANOVA, 

Post Hoc Tests, p = 0.045) differed from zero, the rate for the unamended control 

(Tables 6.1 and 6.2). Nitrogen based gas emissions (N2O, NO and N2) are lower in acid 

soils compared to soils with higher pH values (ŠImek and  ooper, 2002).  Khan et al. 

(2013), measured some N2O emissions from an acidic soil (pH = 4.02), but they 

sampled from flux chambers enclosing pots of growing plants while the microcosms 

used in this study used a re-wetted field moist soil transferred from pot experiments. 

Additionally the soil used in this study is more acidic at pH = 4.38 because they 
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measured their soil pH in CaCl2 solution which if converted (Little, 1992) to pH in water 

like in this study would give a pH > 5.0 and hence less acidic.  
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Figure 6.4: Rates of headspace nitrous oxide production in microcosms of ibc and kbc800 amended 
acid soils from the pilot experiment. There were no detectable nitrous oxide emissions from both the 
biochar and unamended controls. Error bars (±SE) too small to be seen on plots. 
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Figure 6.5: Rates of headspace nitrous oxide evolved from microcosms of ess biochar amended near-
neutral soil. Error bars representing standard error of the mean (n=3) are not visible on the bars due 
to small values of the standard errors (order of 10

-5
). 
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Figure 6.5 shows the Nitrous oxide production rates for the ess biochar-amended near-

neutral soils. All the rates fall below that of the unamended control soil which shows 

suppressed rates of N2O production. Compared to the unamended control, the 

changes in N2O production due to amendments with biochars at the different 

amendment levels are significant (Table 6.1, Univariate ANOVA, Post Hoc Tests, p = 

0.000). Similarly, the different biochar HTT’s show significantly different influence 

 Table  .2,  nivariate AN VA, Post Hoc Tests, p < 0.05  on the biochars’ ability to 

impact on the denitrification process responsible for the N2O emissions in this study. 

These reduced production rates with increasing biochar amendment level and the 

different influence from the various biochar pyrolysis temperatures could be directly 

from the changes in the denitrifying microbial community and/or other 

physicochemical factors as presented in the discussion section of this Chapter. 

6.2.3 Microbial community structure 

Microbial community analysis of the post-plant trials pot soils was carried out by 

comparing DGGE profiles for the ss and ess biochar amended soils (both low pH and 

near neutral) and the unamended control soil. PCR was done in triplicate on each of 

soil DNA extract and the PCR products were analysed by DGGE. All the soil samples 

used for the microbial community analysis were amended with 5% of the biochars 

except the controls that did not contain any biochar. The DGGE profile in Figure 6.6 

reflects ss400, ss600; ss800 biochar amended low pH sandy soils at the end of the pot 

experiment (12 weeks) and related unamended control soils at the start of the pot 

experiments (banding patterns 1 and 2). In this preliminary analysis there is no 

apparent loss of bands in the banding patterns in Figure 6.6 compared to the controls 

which may mean biochar amendment did not adversely affect the microbial diversity 

of the amended soils. Figure 6.7 shows the DGGE profile for the ess biochar amended 

near neutral loamy/clayey soils (es4, es6 and es8) at the end of the plant trial 

experiment with the unamended control soils at the beginning (C0) and at the end 

(C12) of the experiment. The banding patterns also show no discernible shift in the 

diversity of the microbial community in all the amended soils for all the biochar types 

compared to the control soil.  
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Figure 6.6: Denaturing gradient gel electrophoresis profile for the ss biochar amended soil samples 
and controls. The banding patterns 1 and 2 represent unamended controls at time zero for the ss400 
and ss600 amended soils respectively while ss4, ss6 and ss8 represent the ss400, ss600 and ss800 
amended soil samples after 12 weeks of running the plant trials respectively. The symbol ‘M’ 
represents the marker.  

 

 

Figure 6.7: Denaturing gradient gel electrophoresis profile for the ess biochar amended soil samples 
and controls. The banding patterns C0 and C12 represent unamended controls at the beginning and 
after 12 weeks while es4, es6 and es8 represent the ess400, ess600 and ess800 amended soil samples 
after 12 weeks of running the plant trials respectively. The symbol ‘M’ represents the marker.  

The addition of biochar to soil could also provide pore spaces for possible colonization 

by microbes as shown in the scanning electron microscope image of the ss400oC 

biochar recovered from the pot experiment of this study (Figure 6.8). 
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Figure 6.8: Scanning electron microscope image (x2500) showing putatively microbial cells within Sitka 
spruce biochar prepared at 400

o
C recovered from pot soil. 

 Discussion 6.3

The impact of biochar amendments on greenhouse gas production from soils depends 

on factors such as type of soil and biochar (Yoo and Kang, 2012; Saarnio et al., 2013), 

available organic substrate (ŠImek and Cooper, 2002; Angst et al., 2013), plant type in 

cultivated soils and environmental conditions (Saarnio et al., 2013), moisture regime 

and biochar application rates (Yoo and Kang, 2012). 

6.3.1 Basal respiration 

The results for basal respiration in the low pH soil (pH = 4.38) used in both the pilot 

and first experiments show different responses based on the biochar used for 

amendment but on the whole more CO2 was produced compared to the controls in 

both experiments (Table 6.3). In the pilot experiment where ibc and kbc800 biochars 

were used, CO2 production was stimulated and showed strong correlation with pH and 

a weak one with TOC (Figure 6.8 and Chapter 5, Table 5.3). 
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Table 6.3: Mean rates of carbon dioxide production from the biochar amended soils and unamended 
controls. Low pH sandy soil was used in the pilot and first experiments, while near neutral 
loamy/clayey soil was used in the second experiment. 

Sample ID Experiment Mean Rates (µg CO2/g 
soil/hour) 

±SE 

1ibc Pilot 4.1 0.0001453 

5ibc  2.9 0.00100167 

10ibc  9.4 0.00034641 

1kbc800  4.8 6.6667E-05 

5kbc800  10.3 0.00073106 

10kbc800  10.3 0.0001453 

control  3.4 0.00017638 

    
1ss400 First  1.8 0.00013333 

5ss400  0.7 3.3333E-05 

10ss400  1.0 3.3333E-05 

1ss600  2.5 8.8192E-05 

5ss600  1.7 5.7735E-05 

10ss600  1.8 0.00017638 

1ss800  1.4 0.0001 

5ss800  0.8 0 

10ss800  1.0 0 

Control  0.7 0.0001 

    
1ess400 Second 5.4 0.00029627 

5ess400  4.3 8.8192E-05 

10ess400  3.7 5.7735E-05 

1ess600  4.6 0.00012019 

5ess600  3.5 0.0001 

10ess600  3.2 3.3333E-05 

1ess800  4.9 0.00013333 

5ess800  4.2 0.0002 

10ess800  1.5 8.8192E-05 

Control  5.1 3.3333E-05 

1, 5 and 10 in the amended soil sample ID’s define amendment levels in percentage with the 

accompanying biochar ID’s. 
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Figure 6.9: Correlation plots of carbon dioxide rate of production in µg CO2/g soil/hour with (a) pH and 
(b) total organic carbon in the amended acid soils of the pilot experiment 

The enhanced CO2 production could therefore be explained more by the increased soil 

pH as a result of amendment than due to positive priming from increased TOC 

contents. The lower enhancement of CO2 production in the ss amended soils (Table 6.3) 

could also be due to the marginal pH increases in the amended soils (Chapter 5, Table 

5.3), though no correlation existed between CO2 production and pH (R2 = 0.23), TOC 

(R2 = 0.12) and WHC (R2 = 0.17). In the ess amended near neutral soil, CO2 production 

showed no correlation with pH but inversely correlated with TOC (Figure 6.9) and WHC 

(R2 = 0.59). The reduced CO2 production compared to control especially with increasing 

amendment level (higher TOC contents) in the near neutral soil could be due to 

negative priming (reduced organic carbon decomposition or substrate exhaustion) as 

the report of Dempster et al. (2012) indicated. These authors noted a decrease in CO2 

evolution at 5 t ha-1 Eucalyptus biochar application rate but no effect at five times that 

amount attributing the decrease in CO2 evolution to negative priming effect from the 

carbonate contents of the added biochar. Yoo and Kang (2012), proposed that 

negative correlation may suggest adsorption of evolved CO2 by the biochar but 

expressed the need for further sorption studies to determine the underlying 

mechanism. Similar suppressed CO2 production with biochar amendment (and 

unknown cause) has been reported by Spokas et al. (2010). It is however worth noting 

that across the two soil types (Figures 6.1-6.3) microbial carbon based respiration may 

not have been negatively affected as a result of biochar additions because even though 

CO2 gas production is suppressed with amendment in the ess amended near neutral 
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soil, the rates are still higher compared to the enhanced rates in the ss amended acid 

soil.  

 

Figure 6.10: Correlation plots of carbon dioxide rate of production with (a) pH and (b) total organic 
carbon in the amended near neutral soils of the second experiment. 

The influence of HTT on how biochar altered rate of CO2 production is significant 

between 400 and 800oC biochars across the two soils. For the acid soils the more 

stimulating effect from the ss600 biochar over the ss400 may simply be due to the 

higher liming effect of the former, though the ss800 biochar should have had the same 

liming effect based on its pH value (see Chapter 4, Table 4.4); while in the ess amended 

near neutral soil, the higher rate of CO2 production from the lower temperature 

biochar (ess400) could be due to its higher labile carbon contents reflected in its higher 

volatile matter (see Chapter 4, Table 4.1) relative to the 600 and 800oC biochars. 

Calvelo Pereira et al. (2011), reported decreased CO2 evolution with increasing HTT for 

three different biochars, and ascribed the trend as partly due to intrinsic labile carbon 

contents of the biochars though they mentioned one of their low temperature samples 

(pine wood at 400oC) did not follow that pattern probably due to its low surface area, 

limited liming ability, absence of carbonate and possible presence of compounds toxic 

to microbes. The authors however, varied both feedstock sources (3) and HTT (2) 

instead of focussing on only one variable as in this study where the feedstock source 

was fixed. 
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6.3.2 Denitrification enzyme activity 

The trace N2O emissions from the acid soil in the pilot experiment showed no 

correlation with any of pH, TOC (Figure 6.10) and WHC (R2 = 0.31), while the 

suppressed rates of N2O production with increasing biochar amendment in the near 

neutral soil showed no correlation with pH but had an inverse correlation with TOC 

(Figure 6.11) and WHC (R2 = 0.66). The trace emission in the acid soil may perhaps be 

due to the intrinsically low carbon to NO3
- ratio in these soils in addition to the low pH 

of the soil which are two of the three primary regulators to the synthesis and activity 

of the enzymes (nitrate reductase, Nar; nitrite reductase, Nir; nitric oxide reductase, 

Nor; and nitrous oxide reductase, Nos) responsible for the denitrification process 

(Cavigelli and Robertson, 2001). Having the only significant N2O emission in the 10% 

amended soil could support this since the carbon to NO3
- ratio is highest at that 

amendment level. 

 

Figure 6.11: Correlation plots of nitrous oxide rate of production in µg N2O/g soil/hour with (a) pH and 
(b) total organic carbon in the amended acid soils of the pilot experiment. 

Reduced or suppressed N2O production in the near neutral soil with increasing biochar 

additions agrees with many other reports (Spokas et al., 2009; Spokas et al., 2010; 

Taghizadeh-Toosi et al., 2011; Case et al., 2012; Yoo and Kang, 2012; Ameloot et al., 

2013; Harter et al., 2013; Khan et al., 2013; Saarnio et al., 2013). 
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Figure 6.12: Correlation plots of nitrous oxide rate of production in µg N2O/g soil/hour with (a) pH and 
(b) total organic carbon in the amended near neutral soils of the second experiment. 

Some of these reports (Case et al., 2012; Khan et al., 2013) show results that do not 

support an earlier report suggesting only biochar amendment rates >20% w/w 

suppress nitrous oxide emissions (Spokas et al., 2010). These authors and others 

proposed various reasons for the sort of decreased N2O emissions with biochar 

amendment observed in this study and most of them suggested reduced availability of 

N to denitrifying microbes. In this study, N2O was measured to assess DEA as a 

microbiological indicator on soil health (section 6.1) hence a suppression of N2O may 

point to decreased activity. However, reasons other than reduced microbial activity 

have been proposed for the decrease in N2O emissions from biochar amended low 

and/or high pH soils as explained in the next paragraph.  

One of the earlier suggestions ascribed reduced nitrous oxide emission to either faster 

rate of N2O reduction to molecular nitrogen or a low rate of its production resulting 

from biochar addition to soil (Spokas et al., 2009). Faster rate of N2O reduction as an 

explanation is not considered in this study because such reduction is blocked by the 

addition of acetylene which was meant to inhibit the activity of N2O-reductase (see 

Chapter 3 section 3.7.2). Angst et al. (2013), believe biochar adsorbs NH4
+ thereby 

retarding the production of NO3
- needed by denitrifiers for N2O production. This view 

is shared by Taghizadeh-Toosi et al. (2011) who added that another possible 

explanation may be the presence of microbial inhibiting chemical compounds on 

biochar surface. The hypotheses of Angst et al. (2013) may not apply in this 

investigation because NO3
-   was added to the microcosms in the DEA assay. Others 
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however, explain the negative correlation between N2O production and increased 

biochar amendment rates they obtained as due to GHG absorption by biochar (Yoo 

and Kang, 2012). Case et al. (2012), while doubting the effect of soil pH on suppressed 

N2O emission, hypothesized a mechanism involving physical or biological 

immobilization of NO3
- needed for denitrification to give N2O. The authors did not 

discuss the mechanism for such immobilization. ŠImek and  ooper  2002 , reviewed 50 

years of published research work on the influence of pH on denitrification noting that 

overall denitrification process is affected by soil pH; the process is less in acid soil 

compared to neutral or slightly alkaline soils. But the authors concluded that the 

influence of pH on the denitrification process is likely indirect in the form of lower 

availability of organic carbon and mineralised N (NH4
+ or NO3

-) to the denitrifying 

bacteria and not direct effect of pH on the denitrifying enzymes. It has been 

hypothesized that nitrate (an anion) immobilization could be in solution within biochar 

pores (Prendergast-Miller et al., 2011), as it cannot be due to improved Cation 

Exchange Capacity (CEC) as suggested by other authors (Van Zwieten et al., 2010) who 

associated greater nutrient retention to higher CEC. Ameloot et al. (2013), further 

added the possible role of increased soil aeration to NO3
- retention by biochar; though 

the reference they cited for the claim of nitrate retention (Cheng et al., 2008) does not 

contain such information. It rather contains reference to the report of Lehmann et al. 

(2003) which showed decreased leaching of applied ammonium in biochar-containing 

soils. Improved plant N uptake in cultivated soils which makes the element less 

available to denitrifiers has also been given as a reason for decreased N2O emissions 

from biochar amended soils (Saarnio et al., 2013). But this does not explain reduced 

emissions with increased biochar addition since in this study a single test plant was 

planted per pot at all amendment levels and more importantly N source was supplied 

in the microcosms. Thus a more plausible explanation for the observed reduction of 

N2O emissions in this study is adsorption and/or immobilization of NO3
- by the added 

biochar which will increase with increase in added biochar leading to decreased NO3
- 

availability and lower N2O emissions hence the inverse correlation between TOC and 

N2O emissions. Moreover such a mechanism does not alter the soil microbial 

community which the DGGE profiles in Figures 6.6 and 6.7 seem to support.    
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6.3.3 Microbial community structure 

Soil microorganisms play a central role in organic matter decomposition and nutrient 

cycling (Liu et al., 2006). The DGGE method is a powerful culture-independent 

analytical tool capable of identifying community constituents representing as low as 1% 

of total microbial populations (Muyzer et al., 1993). Each DGGE band represents many 

copies of a single amplicon (Hirsch et al., 2010), hence the greater the number of 

bands in a DGGE profile the greater the microbial diversity and the higher the intensity 

of a band the higher the microbial abundance or population (Torsvik and Øvreås, 2002; 

Bloem and Breure, 2003). However, Nakatsu (2007) cautions that number of bands 

only represent dominant species and not necessarily overall diversity and band 

intensities point to relative densities of PCR products and should not be taken as 

equivalent to numerical microbial abundance in the original soil community. The 

author further stated that the disappearance of a band may not mean complete 

removal of specie from the community but rather may represent a change to reduced 

presence (to a level below detection limit) relative to other populations within the 

community. 

Results in this study indicate similar community diversity in both the biochar amended 

and unamended control soils across the soil types especially after 12 weeks except for 

the lower intensity bands in the low pH soils. Hence biochar addition did not alter the 

microbial community structure in the test soils. However, it needs to be pointed out 

that these microbial studies are preliminary and a lot more could be done using 

techniques such as quantitative PCR (qPCR) to investigate physical increase or 

decrease of the soil bacterial community populations as a result of biochar addition. 

 Conclusion 6.4

In conclusion, the results under this Chapter indicated that addition of Sitka spruce 

biochar to the two test soils did influence the two microbial mediated soil processes 

measured (BR and DEA) in different ways, enhancing basal respiration in the low pH 

sandy soil and suppressing it in a systematic pattern based on HTT induced biochar 

properties in the near neutral soil. The amendment suppressed DEA in terms of 

reduced N2O production potential in the near neutral soil but had no measurable 

effect in the acid soil. However, the reduced N2O production potential may not be due 

to directly inhibited enzyme activity as other physicochemical reasons such as nutrient 
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immobilisation may explain the reductions. Moreover, there seems to be no change in 

the microbial community structure in the test soils as a result of biochar addition. 

Increasing the pyrolysis temperature of the biochars used in this study did change how 

the biochar influenced the processes measured but not in a progressive way. Taken 

together therefore the hypothesis put forward in this Chapter is partly accepted (HTT 

alters biochars influence on BR and DEA) and partly rejected (HTT alters biochars 

influence on microbial community selection).  

From the perspective of biochar’s other applications in agriculture and the 

environment, the suppression of N2O emission at higher biochar application rate may 

offer double advantages in using biochar as a climate change mitigation tool; solid 

carbon sequestration and reduction in atmospheric N2O concentrations. Additionally, 

the hypothesized mechanism for reduced N2O emission (sorption and immobilisation 

of NH4
+ and NO3

-) could be advantageous in nutrient availability and hence improved 

soil fertility in biochar amended soils.  
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Chapter 7 General discussion 

7.1 Introduction 

This Chapter includes a general discussion in the light of all results as discussed in the 

various chapters of this thesis. Discussions are centred on how biochar properties and 

the impact of biochar addition on soil properties change with changes in our main 

variable, the Highest Temperature of Treatment (HTT), and finally compare the 

properties of the biochar products from the two different production streams; batch 

process from Lancashire and continuous process from Edinburgh. 

7.2 Trends in biochar properties with highest temperature of treatment 

7.2.1 Proximate analysis 

The parameters determined under proximate analysis of the biochar included moisture 

content, volatile matter, fixed carbon and ash content. The trends of changes in these 

properties with pyrolysis temperature are presented in Figure 7.1 (a, b, c & d). 

Moisture content (Figure 7.1a) in both biochars (ss & ess) decreases with increase in 

highest temperature of treatment which agrees with other reports (Titiladunayo et al., 

2012). The little increase in moisture content with the 800oC biochar means the 

influence of HTT on moisture contents of the biochar is not progressive since the 

decrease with rise in HTT is not linear. 

Figure 7.1b shows a linear drop of volatile matter contents with rise in pyrolysis 

temperature for both biochars, while Figure 7.2c shows increasing fixed carbon 

content for the biochar with increase in HTT. The decrease in volatile matter and 

increase in fixed carbon with increasing pyrolysis temperature have both been 

reported by other researchers (Kloss et al., 2012; Crombie et al., 2013; Ronsse et al., 

2013).  

The ash contents of our biochars show no defined pattern (Figure 7.1d) with change in 

pyrolysis temperature. These contrasts with other reports (Titiladunayo et al., 2012; 

Crombie et al., 2013) that indicate increase in ash contents with rise in HTT. However, 

reports exist (Keiluweit et al., 2010; Ronsse et al., 2013) that show a rise and fall in ash 

content with rise in pyrolysis temperature for wood biochars especially at HTT > 700oC 

and residence time above 10 minutes. 
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7.2.2 Physicochemical properties 

Figure 7.2 shows the trends in physico-chemical properties of the biochars under 

investigation with pyrolysis temperature. Figure 7.2a shows a trend of increasing basic 

character for the biochars with increasing pyrolysis temperature. This conforms to 

several other reports (Pereira et al., 2003; Enders et al., 2012; Ronsse et al., 2013; 

Wang et al., 2013b). Increase in pH with HTT is associated with the loss of carboxylic 

acid functional groups from the biochar surfaces (Pereira et al., 2003), an observation 

that is supported in this study by the FTIR results for the  biochars (see Chapter 4, 

Table 4.5 and Figure 4.8). 
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Figure 7.1: Trends of changes in proximate analysis results for the fresh biochar with highest temperature of 
treatment. 
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An inverse relationship is reported between H/C ratio (a measure of aromatic 

character) and pyrolysis temperature (Kloss et al., 2012). Hence, a plot of the 

reciprocal of this ratio (Figure 7.2b) shows a linear increase in aromatic character with 
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Figure 7.2:  Trends of changes in the physicochemical properties of the fresh biochars with highest 

temperature of treatment. 
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rise in HTT for the biochars produced in this study. The results agree with other reports 

(Kim et al., 2012; Kloss et al., 2012; Wang et al., 2013b) and are supported by the 

decreased H contents of the biochars with increase in HTT (see Chapter 4, Table 4.4). 

Moreover, both aromatic character and pH are thought to be more influenced by 

pyrolysis temperature than by nature of feedstock (Zhao et al., 2013). 

The Cation Exchange Capacity (CEC) for our biochars shows a linear decrease with 

pyrolysis temperature (Figure 7.2c) which agrees with other findings (Kloss et al., 2012; 

Wang et al., 2013b). Kloss et al. (2012), ascribe the decrease in CEC to the removal of 

oxygen-containing functional groups on the biochar with rise in HTT, an observation 

that the FTIR results in this study also confirm (see Chapter 4, Table 4.5 and Figure 4.8). 

The total carbon (Figure 7.2d) and total organic carbon (Figure 7.2e) contents of the 

biochars increase with increasing pyrolysis temperature in agreement with other 

reports (Kim et al., 2012; Kloss et al., 2012; Mašek et al., 2013) and also supported by 

similar trends in fixed carbon contents of the biochars (see Chapter 4, Table 4.1). 

Water holding capacity (WHC) decreases with increase in highest temperature of 

treatment (Figure 7.2f). All the three properties in Figures 7.2 d, e & f show a much 

larger change (increase or decrease) between the 400oC and 600oC biochars compared 

to the change between the 600oC and 800oC biochars. The same observation is true 

with all proximate analysis results except ash contents (Figure 7.1 and Chapter 4, Table 

4.1); elemental ratios (Figures 7.3 d, e & f, and Chapter 4, Table 4.4) and thermal 

properties (see Chapter 4, Table 4.2). 

 The percentage amounts of the elements H and O decrease with increase in pyrolysis 

temperature while N content was enhanced (Figure 7.3 a, b & c) in line with other 

reports (Chen and Chen, 2009; Kim et al., 2012; Kloss et al., 2012; Ronsse et al., 2013) 

and supported by the evidence of gradual loss of functional groups on the biochar 

surfaces (see Chapter 4, Table 4.5 and Figure 4.8). However, Wang et al. (2013b) 

reported reduced N content with increasing HTT for bamboo wood which likely reflects 

similar observations made on the fluctuations of N and other mineral elements 

depending on feedstock source (Enders et al., 2012; Zhao et al., 2013). 



110 
 

 

 

 

Figure 7.3: Trends of changes in the physicochemical properties of the fresh biochars with pyrolysis 
temperature. 
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The loss of H from aliphatic chains leads to increased aromatic character while its loss 

from protonated carbonyl groups explains the increased basic character of the 

biochars with rise in pyrolysis temperature. The decrease in O contents helps explain 

decrease in CEC with increase in HTT (Kloss et al., 2012). 

All elemental ratios for the biochars decrease with increasing pyrolysis temperature 

(Figure 7.3 d, e & f). This trend with HTT results from the increase in total C with HTT 

(Figure 7.2d) coupled with decreasing amounts of H and O with increasing pyrolysis 

temperature (Figure 7.3 a & b). Many other reports (Keiluweit et al., 2010; Kloss et al., 

2012; Schimmelpfennig and Glaser, 2012) indicate this trend in elemental ratios for 

biochars.  

7.3 Pyrolysis temperature and the effect of biochar amendment on soil properties 

To assess how the main variable in this research project influenced the impact of the 

test biochars on the properties of the test soils, samples treated at 5% amendment 

rate were chosen for discussion because a larger number of properties were 

determined at this level of amendment. The plots in Figure 7.4 are used for discussion 

along with reference to Tables 5.2 and 5.3 from Chapter 5. 

Figure 7.4a shows some influence of pyrolysis temperature of the biochars on pH of 

the amended soils. In the acid soil, increasing the HTT from 600 to 800oC or 400 to 

800oC influenced a significant (Univariate ANOVA, Post Hoc Tests, p = 0.000) increase 

in pH of the biochar amended soil although there was no significant influence between 

the 400 and 600oC biochars (Univariate ANOVA, Post Hoc Tests, p = 0.933). Changing 

the pyrolysis temperature of the biochars significantly (Univariate ANOVA, Post Hoc 

Tests, p < 0.05) influenced the biochars ability to progressively raise the pH of the 

amended near neutral soil.  

The total organic carbon contents (Figure 7.4b) of the low pH amended soils were not 

significantly altered by increasing the pyrolysis temperature of the ss biochar 

(Univariate ANOVA, Post Hoc Tests, p > 0.05). However, the impact of ess biochar on 

the TOC contents of the near neutral soil was significant with increasing HTT from 400 

to 800oC (Univariate ANOVA, Post Hoc Tests, p < 0.05). But TOC contents for all 

amended soils had significant increases at all biochar amendment rates compared to 
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the control soil (Univariate ANOVA, Post Hoc Tests, p < 0.05)  similar to other reports 

(Haefele et al., 2011; Khan et al., 2013). 

 

 

 

The impact of amendment on the bulk density (Figure 7.4c) of the test soil is not 

significantly influenced by increase in the pyrolysis temperature of the ss biochars 

(Univariate ANOVA, Post Hoc Tests, p > 0.05), while in the amended near neutral soil 

the influence of HTT is significant (Univariate ANOVA, Post Hoc Tests, p = 0.000) when 

increased from 400oC to either 600 or 800oC.  

As mentioned earlier (see Chapter 5, section 5.2.1), cation exchange capacity (CEC) 

was determined only in the low pH soil. The CEC of the amended soils indicates a 
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Figure 7.4: Influence of biochar pyrolysis temperature on the trends of properties change in the         
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dependence on the HTT’s of the biochars used  Figure 7.4d). Increasing the pyrolysis 

temperature of the biochar from 400oC to either 600 or 800oC had significant influence 

(Univariate ANOVA, Post Hoc Tests, p < 0.05) on the impact of the added biochar on 

the CEC of the amended soil.  

7.4 The influence of pyrolysis temperature on how biochar amendment impacts on 

soil processes and leek growth. 

The impact of biochar amendment on soil respiration (Figure 7.5) is significantly 

altered with increase in HTT’s of the biochars in both soils (Univariate ANOVA, Post 

Hoc Tests, p = 0.000), though the influence in both soils was for increase from 400 to 

600oC since in the acid soil there was no significant difference between 400 and 800oC 

biochars (Univariate ANOVA, Post Hoc Tests, p = 0.149) and none between 600 and 

800oC biochars in the near neutral soil (Univariate ANOVA, Post Hoc Tests, p = 0.076).  

There is a significant influence of increasing HTT (Univariate ANOVA, Post Hoc Tests, p 

< 0.000) on the impact of ess biochar on denitrification enzyme activity measured as 

rate of N2O (Figure 7.6), though the suppression of N2O emissions from the amended 

soil compared to the control was not ascribed to reduced microbial activity but rather 

due to other physicochemical reasons (see Chapter 6, section 6.3.2).   
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Figure 7.5: Influence of changes in highest temperature of treatment on the impact of biochar 
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Figure 7.6: Influence of changes in highest temperature of treatment on the impact of biochar 
amendment on the rate of soil nitrous oxide emissions. Error bars (±SE) are not discernible due to the 
small values of the standard error.  

From the ANOVA results on rates of leek growth in both soils (see Chapter 5, Table 5.5), 

the seeming influence of increasing biochar HTT’s on biochar impact  Figure 7.7) is not 

significant (Univariate ANOVA, Post Hoc Tests, p > 0.05). 

 

 

 

 

Figure 7.7: Influence of changes in highest temperature of treatment on the impact of biochar amendment 
on the rate of leek growth. Error bars represent ±SE. 
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7.5 Influence of production process 

Biomass pyrolysis process parameters that could influence the properties of biochar 

include nature of feedstock, highest temperature of treatment (HTT), particle size of 

feedstock, residence time at HTT, heating rate, oven/kiln/furnace atmosphere and 

flow rate of purge gas, the first two being most important (Demirbas, 2004; 

Schimmelpfennig and Glaser, 2012; Crombie et al., 2013; Mašek et al., 2013; Ronsse et 

al., 2013; Wang et al., 2013b). For the biochar samples investigated in this study, 

feedstock type, HTT, residence time at HTT and furnace atmosphere were all the same 

in both the batch and continuous processes (Table 7.1). The heating rate is essentially 

the same, hence the only different parameters between the two production processes 

are particle size of the feedstock and possibly flow rate of purge gas since no 

information on it is available for the batch process (Table 7.1). 

Table 7.1 Biochar production process conditions 

Parameter Production process 

Batch Continuous 

Feedstock Sitka spruce Sitka spruce 

HTT (oC) 400, 600, 800 400, 600, 800 

Particle size of Feedstock (mm) 2 10 

Residence time at HTT (minutes) 30 30 

Heating rate (oC/min) 10 8, 12, 16 

Kiln/Oven atmosphere (Purge gas) Nitrogen Nitrogen 

Flow rate of purge gas (L/min) No information 0.9 

 

The mostly similar production parameters between the two processes may likely 

explain the many similarities in properties of the biochars from the two production 

streams. In terms of trends of properties with pyrolysis temperature, the biochars do 

not appear different from one another as is evident from Figures 7.1 and 7.2. Even 

when actual values are considered, differences exist only between the 400oC biochars 

for only two parameters: oxygen content (Figure 7.3b) and O:C ratio (Figure 7.3e). The 

difference in O:C ratio is directly related to oxygen contents of the biochar which may 

be the result of differences in post-pyrolysis handling of the product. Information 

supplied from the producers of Edinburgh biochar show that in addition to purging the 
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kiln with nitrogen gas throughout the process, at the end, the warm biochar fresh from 

the pyrolysis unit was purged with nitrogen and sealed to avoid oxidation. This may 

explain the lower oxygen content and subsequent O:C ratio for the ess400 biochar 

which possibly was not the case for the batch process. 
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Chapter 8 General conclusions and recommended further work  

8.1 Conclusions 

The results considered in Chapter 4 go a long way in addressing our first hypothesis:  

 Biological, chemical and physical properties of the biochar such as fixed carbon, 

pH, functional group chemistry, water holding and cation exchange capacities, 

are altered with increasing pyrolysis temperature.  

With the feedstock source fixed, the results of this experimental study clearly show 

that temperature of production is the most important factor that alters both physical 

and chemical properties of biochars (Wang et al., 2013b), a position supported in the 

case of C content by the report of Enders et al. (2012). The 400oC biochars from both 

production streams stand well apart from the higher temperature (600 and 800oC) 

biochars which on their part show only minor differences between themselves in 

properties such as all proximate analysis except ash content, pH, TC, TOC, thermal 

behaviour, elemental ratios and CEC. Thus, producing and using the 600oC biochar in 

place of the 800oC biochar could be more cost effective in terms of energy input. The 

Sitka Spruce biochar possesses high fuel quality potentials as evidenced by its 

satisfactory fuel ratio. 

Measurement of microbial mediated soil processes and microbial community diversity 

in the amended soils addressed the third hypothesis of this study: 

 Increasing pyrolysis temperature progressively alters biochar’s ability to 

influence the selection of resultant microbial communities and microbial 

mediated processes e.g. respiration, and nitrogen cycling in soil environments. 

The addition of Sitka spruce biochar to the two test soils did influence the two 

microbial mediated soil processes measured (BR and DEA), enhancing basal respiration 

in the low pH sandy soil and suppressing it in the near neutral soil. The amendment 

suppressed DEA in terms of reduced N2O emissions in the near neutral soil and no 

measurable effect in the acid soil. However, the reduced N2O emissions may not be 

due to decreased enzyme activity as other physicochemical reasons such as nutrient 

immobilisation may explain the reductions. Moreover, there seems to be no change in 
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the microbial community structure in the test soils as a result of biochar addition. But 

increasing the pyrolysis temperature of the biochars used in this study did change how 

the biochar influenced the processes measured but not in a progressive way. Taken 

together therefore the third hypothesis put forward is partly accepted (HTT alters 

biochars influence on BR and DEA) and partly rejected (HTT alters biochars influence 

on microbial community selection).  

Soil amendment using Sitka spruce biochar brought about significant soil property 

changes compared to unamended controls which included raising the TOC and 

lowering BD in both the acid and near- neutral soils (p < 0.05); increasing the pH in the 

acid soil (p < 0.05) but not in the near neutral soil (p > 0.05); and increasing the CEC 

and WHC (p < 0.05) although these last two properties were only determined in the 

acid soil. The significant alteration of these soil properties due to biochar addition was 

also significantly influenced by changing the pyrolysis temperatures of the biochars 

(HTT) used for amendment which makes the fourth hypothesis put forward in this 

study acceptable. The fourth hypothesis was: 

 Different biochar pyrolysis temperatures and their application rates will 

significantly alter the pH, total organic carbon (TOC) contents, bulk density (BD) 

water holding (WHC), and cation exchange capacities (CEC) of soils to which the 

biochar was added. 

From the ANOVA results in Tables 5.1 and 5.2, a suggested suitable dosage of Sitka 

spruce biochar could be 5% of 600oC biochars for enhanced pH in sandy acid soil; 1% of 

400oC biochars for enhanced TOC in both acidic sandy soil and near neutral loamy 

clayey soil; 5% of 600oC biochars for enhanced CEC in acid soil; and 1% amendment 

level for enhanced WHC in the acid soil. Similarly from the ANOVA results in Tables 

5.10 and 5.11, a dose of 5% 400oC biochars could be suggested for enhanced leek 

growth in the acid soil only.  

In answer to our fifth hypothesis: 

 Different biochar pyrolysis temperatures and their application rates influence 

biochar’s ability to impact on the growth rate of leek plant in amended soils 

compared to control soils.   
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The results in Chapter 5 and statistical treatment of the data considered showed that 

addition of Sitka spruce biochar to the test soils significantly influenced leek growth 

compared to the controls only in the acid soil (at 5 and 10% amendment rates) and not 

in the near neutral soil (Table 5.10). Impact of biochar addition on the growth of leek 

was achieved by altering some of the physico-chemical properties of the soil 

environment in which the plant was grown. However, altering the biochar HTT had no 

significant effect on leek growth in both soils (Table 5.11) and hence the fifth 

hypothesis is partly accepted (different biochar application rates influence biochar’s 

ability to impact on the growth rate of leek plant in amended soils compared to 

control soils) and partly rejected (different biochar pyrolysis temperatures influence 

biochar’s ability to impact on the growth rate of leek plant in amended soils compared 

to control soils).  

The totality of our results (see Chapters 4, 5 & 6) and the discussion in section 7.5 of 

Chapter 7, go to answer the second hypothesis put forward: 

 The biological and physico-chemical properties of biochars are altered 

differently based on the production process used.  

There seems to be very little differences between the properties (see Chapter 4, Table 

4.4) of the biochars from the batch and continuous production processes. In a similar 

way production process did not for example significantly influence the impact of these 

biochars on leek growth (see Chapter 5, Figure 5.13 and Tables 5.8 & 5.9). Hence, our 

second hypothesis is rejected. 

On the whole and from the perspective of biochar’s applications in agriculture and the 

environment, the result in this experimental study showed Sitka spruce biochar as 

possessing high percentage of recalcitrant (satisfactory recalcitrant index) organic 

carbon and hence, has strong potential worth pursuing as a tool for carbon 

sequestration. The suppression of N2O emission from amended soil at higher biochar 

application rate (50-100 t/ha) may offer double advantages in using the Sitka spruce 

biochar as a climate change mitigation tool, namely; long term solid carbon 

sequestration and reduction in atmospheric N2O concentrations especially as there is 

some evidence of unaltered microbial community structure in the soils. Additionally, 

the hypothesized mechanism for the observed reduction in N2O emission (sorption 
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and immobilisation of NH4
+ and NO3

-) could be advantageous in nutrient availability 

and hence improved soil fertility in biochar amended soils.  

8.2 Recommended further work 

Consequent upon the strong need for a library or database of properties for individual 

biochars (Enders et al., 2012; Kloss et al., 2012; Schimmelpfennig and Glaser, 2012) 

resulting from systematic studies, a further analysis on the Sitka spruce biochars 

investigated in this study for areas that could not be covered in this thesis is desirable. 

These include a fuller proximate and ultimate analysis of the feedstock, PAH contents 

of the biochars, in addition to nutrient sorption, retention and leaching. Molecular 

analysis could be carried further to the point of identifying the identities of 

microorganisms introduced and/or removed by the biochar amendment. 

The preliminary molecular study done can be improved further by for example, looking 

at other functional genes such as nitrate reductase and ammonia mono-oxygenase and 

how their functions are affected by biochar addition. Next generation DNA sequencing 

technologies could also be used to sequence the soil DNA extracts from the different 

experiments which will provide thousands of sequences for comparison. 
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