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Abstract

The focus of the thesis is black-box modelling and the detection of abnormal events in
multivariate systems. Subspace projection techniques have been widely applied for the
modelling and monitoring of multivariate systems. The popularity of these techniques stems
from the fact that these methods can address multicollinearity, a problem commonly
encountered when modelling using ordinary least squares with strongly correlated input
(process) variables. The subspace techniques of principal component analysis and partial

least squares are the methodology of specific interest throughout the thesis.

Several non-linear PLS algorithms have been proposed over the last decade. In this thesis
analysis of existing non-linear PLS algorithms is undertaken. In particular, following a
mathematical analysis of the non-linear PLS algorithm proposed by Baffi et al., (1999(a)), it
is proven that the algorithm is a non-linear extension of reduced rank regression. It is also
argued that a ‘true’ non-linear generalization to linear PLS should be based on the
maximization of a ‘non-linear covariance’ function if the spirit of linear PLS is to be
preserved in its non-linear extension. A mathematical analysis of the algorithm of Wold et
al., (1989) is undertaken and it is proven that this algorithm makes an attempt to maximize
the non-linear covariance function but with certain limitations. The limitations of the
algorithm of Wold et al., (1989) are addressed in two new non-linear PLS algorithms,
NLPLS1 and NLPLS2. Also following a critical analysis, all existing non-linear PLS
algorithms are divided into three categories namely, quick and dirty, covariance based and
error based depending on the underlying objective functions optimized by the algorithms. An
application of PLS as a parameter estimator is explored and it is shown that when a subspace
of dimension 4 (< K, number of input variables) is correlated with the output variable and a
PLS1 model is built using A4 latent variables then PLS1 gives an unbiased estimate of the

parameters.

One approach to extending PLS to take into consideration the dynamics of the process is to
replace the inner static relationship between the t- and u-scores of conventional PLS by a
dynamic relationship. An algorithm that integrates the dynamics of the data within a PLS
framework is proposed. The performance of the algorithm is evaluated against alternative
methodologies presented in the literature using an artificial data set and two simulations of

chemical processes.



The second aspect of the thesis is concerned with detecting abnormal changes in variance-
covariance structure of variables. The conventional PCA based monitoring scheme is known
to be insensitive to small changes in the variance-covariance structure of variables. A new
monitoring scheme that derives a monitoring statistic from the PCA model identification
procedure is proposed. The proposed scheme is compared with conventional PCA based
monitoring scheme on two artificial data sets and a data set generated from a continuous

stirred tank reactor system.

A new monitoring scheme for detecting changes in the cross-covariance structure (between
input and output variables) in a PLS based monitoring scheme is proposed. The derivation of
monitoring statistic requires that a recursive algorithm exists for identifying the PLS model
parameters. A new recursive PLS algorithm is derived and the statistic derived from it is used
to detect change in parameters of an artificial system before applying to detect fouling in the
heat exchanger of a CSTR system. The performance of the proposed scheme is also

compared with conventional PLS based monitoring scheme.
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CHAPTER 1

Introduction

This thesis is concerned with the modelling and detection of abnormal changes in
multivariate systems (processes). The thesis is divided into two parts. The modelling of
multivariate systems is first considered prior to looking at abnormal change detection. More
specifically the tools considered for both modelling and abnormal change detection are
constrained within the family of multivariate subspace projection techniques. The aim of this
chapter is to provide a brief introduction to the problems of modelling and abnormal change

detection and present the key contributions of the thesis.

1.1 Problem Formulation

This section presents the background from a mathematical perspective to the two areas that

are the focus of the thesis, modelling and abnormal change detection in multivariate systems.

1.1.1 System Modelling

The objective of system modelling is to develop a mathematical representation of a physical
system. The mathematical model of the system is required to explain the behaviour of the
physical system under study and can be used for several applications including, for example,
prediction, simulation and control. Broadly there are two approaches to developing a model
of a system. The first is based on understanding the physics and chemistry of the system and
then defining the mathematical equations governing the system. This approach, known as
first principle based modelling, has been the most popular in science and Newton’s famous
equation of motion relating force, mass and acceleration, F = ma, is perhaps one of the
earliest examples of this approach. While the model developed by adopting this approach has
great physical significance and closely describes the ‘truth’ underlying the system, there are
major challenges when it comes to developing models for engineering systems. Given the
complexity and size of modern engineering systems, it is very difficult and time consuming to

develop a comprehensive first principle model.

The second approach, known as black box modelling or empirical modelling, has become

very popular with the engineering community in the last three decades. The idea behind this



approach is to use the measured data from the underlying system to develop a mathematical
model. Black box modelling may, therefore be thought of as a mapping from the measured
data to a model. The main advantages of this approach are simplicity of the model, less
expensive in terms of time and effort and since the technique is not confined to any particular
system, this methodology is generic in terms of its applicability. The main drawback of this
approach is that the model developed cannot, in general, provide physical understanding of
the system, and therefore may be far from the underlying ‘truth’ of the system. This however
is acceptable to those practitioners who are not necessarily concerned with the ‘truth’ and

who are willing to accept ‘that the model works’ and is hence ‘fit for purpose’.

In the engineering literature, a distinction between the two approaches is made, the former is
termed ‘system modelling’ and the latter ‘system identification’. The theory of black box
modelling is well developed and a number of text books (Ljung, 1999; Soderstrom and
Stoica, 1988; Ljung and Soderstrom, 1983) have been specifically dedicated to this subject.

The problem of black box modelling can be formulated as follows. Consider the system
shown in Figure 1.1. x(t) € RX denotes the vector containing K input signals to the system
and y(t) € R describes the vector of M measurable output signals of the system. The focus

of this thesis is the case where K and M are greater than unity. The vector h(t) € RM

denotes the measurement noise in the output variables.

h(t)

System
x(ty —» y(®

Figure 1.1: Illustration of black box modelling

Given N measurements of the input, x and output y, the problem is to identify a suitable
model of the system using these measurements. An important decision that needs to be taken
to solve the above problem is the selection of a suitable structure for the model. To make this

choice, the user has to make a hierarchy of decisions. First, the user has to decide between a



‘static’ and ‘dynamic’ model. Once this decision has been taken, the next issue to be
addressed is to decide between a ‘linear’ or ‘non-linear’ model. Before a decision is taken on
these issues, it is very important to understand what the model is to be used for. If, for
example, the model is to be used for the control of a system, a dynamic model should be
developed. If, on the other hand, the model is to be used for prediction, a static model may be
appropriate. Another important decision that a user needs to make is to chose between an
‘accurate’ and a ‘simple’ model. It might be the case that the user can get a more ‘accurate’
model but at the cost of increased complexity. The issue is whether to opt for greater
‘accuracy’ and less ‘simplicity’ or for greater ‘simplicity’ and less ‘accuracy’. There are no
hard and fast rules and the user’s experience, intuition and insights into the system plays a
major role in making these choices. For this reason many experts prefer to call black box

modelling an ‘art’.

The multivariate modelling techniques considered in this thesis belong to the family of
multivariate subspace projection techniques. These techniques are especially suitable for
systems where a large number of variables are measured, that is, the values of K and M in the
system shown in Figure 1.1 are large. The modelling task in this situation is more challenging
because the measured variables are often highly correlated and corrupted by noise. To
develop a model from this type of data, subspace projection techniques have been widely
applied. The philosophy behind these techniques is that, behind the large number of variables
that are accessible and measured, there lie a smaller number of independent variables which
are latent (hidden), and that all the events in a system are manifestation of variations of these
latent variables. The objective of subspace projection techniques is to extract the latent
variables by analysing the measured variables. The underlying methodology of these
techniques is that the original variables are projected onto a subspace spanned by the latent
variables. Usually the number of latent variables required to explain a ‘sufficient’ amount of
information contained in the measured variables is smaller than the original number of
variables. Any variation orthogonal to the space spanned by the latent variables is considered
to be noise and is therefore discarded. The subspace projection techniques therefore not only

reduce the dimensionality of the problem but also act as a filter to remove the noise.

The subspace projection techniques can be divided into two families. The first consists of
Principal Component Analysis (PCA), Partial Least Squares (PLS), and Canonical
Correlation Analysis (CCA) with the second family incorporating a set of algorithms
collectively known as Numerical Algorithms for Subspace State Space System Identification
(N4SID). While the first class of algorithms are relatively old and have found a variety of



applications in different disciplines of science and engineering, the second class of
algorithms were developed in the late 1980°s for building state space models of a system. The
aim of this thesis is restricted to the first class of subspace projection techniques with

particular emphasis on modelling using PLS which is the most recent member of this family.

The conventional PLS algorithm assumes that a linear relationship exists between the input
and output variables. This assumption may not be valid in modelling data collected from
complex (chemical) processes where the relationship may be significantly non-linear. To
integrate non-linear features within the PLS framework, several non-linear PLS algorithms
have been proposed over the last decade. It is therefore, essential to analyze which algorithm
represents a ‘true’ non-linear extension to the PLS algorithm. In particular, a mathematical
analysis of the non-linear PLS algorithm proposed by Baffi et al., (1999(a)) is undertaken and
it is proven that the algorithm is a non-linear extension of reduced rank regression. It is
argued that a ‘true’ non-linear generalization of linear PLS should be based on the
maximization of ‘non-linear covariance’ function if the spirit of linear PLS is to be preserved
in its non-linear extension. A mathematical analysis of the algorithm of Wold et al., (1989)
revealed that despite this algorithm being considered ‘complicated’, it makes an attempt to
maximize the non-linear covariance function but with certain limitations. The limitations of
the algorithm of Wold et al., (1989) are addressed in two new non-linear PLS algorithms,
NLPLS1 and NLPLS2. Also following a critical analysis, all existing non-linear PLS
algorithms are divided into three categories namely, quick and dirty, covariance based and
error based depending on the underlying objective functions optimized by the algorithms.

In most of the applications of PLS, the objective is to predict the response variables as
accurately as possible. Another application of PLS can be in parameter estimation where the
objective is to estimate the parameters from the data in such a way that they are ‘close’ to the
‘true’ parameters. It is known that PLS gives biased estimate of parameters when the number
of latent variables retained in the model is less than the number of input variables. However,
it is shown that when a subspace of dimension 4 (< K, number of input variables) is
correlated with the output variable and a PLS 1 model is built using latent variables then
PLS1 gives unbiased estimate of the parameters.

Another important generalization of conventional PLS is to make it suitable for identifying a
dynamic model of a system. One approach to incorporate dynamics into the PLS framework
has been to change the static inner relationship of conventional PLS to a dynamic relationship
(Lakshminarayan et al., 1997). In this approach, conventional PLS is first performed between



the input and output data matrices and a dynamic relationship is then fitted between each pair
of corresponding t- and u-scores. The limitation of this methodology, however, is that the
outer weights are not determined by the dynamics of the system and, therefore the
constructed dynamic model may not be optimal in terms of its predictive capability. In the
thesis, a scheme is proposed to optimally determine all the parameters (outer weights and

inner scores model parameters) as per the dynamics of the system.

1.1.2 Abnormal Change Detection

With the increasing complexity of modern technological processes and the need for high
quality and consistent product coupled with additional requirements of safety, ecological and
economic concerns, reducing plant breakdowns, it is of paramount importance that a system
(process) is monitored continuously. The technological challenge is to detect abnormal
changes in the process as quickly as possible to ensure zero-defect products. This is all the
more important in processes that are subject to fluctuating operating conditions. The problem
of abnormal change detection, also known as fault detection or process monitoring, is closely

related to quality control which is concerned with ensuring the quality of the final product.

The first step in developing a monitoring scheme for a system is to develop a mathematical
model of the system when it is operating under normal operating conditions. The system is
then monitored by determining the ‘distance’ between new observations measured from the
system and the system model. If the ‘distance’ is below a threshold value, the system is
declared to be operating under normal conditions, otherwise some abnormal event has

occurred in the system. The problem of abnormal change detection can be placed in the

following framework. Let y(t), x(t)]l <y De 8 sequence of observed random vectors from a

system with conditional density function pg(y(t), X(Dfy(t 1), x(t —1),... y(1), x(1)). Before
the occurrence of an abnormal change, the conditional density parameter 0 is constant and is
equal to 6y. After the change has occurred, the parameter changes to 0, (# 6,) The problem

of abnormal change detection is to detect the occurrence of the abnormal change as soon as

possible with the smallest possible false alarm rate.

A particular case of the above problem arises when it is assumed that the variables are
multivariate Gaussian. Since the multivariate Gaussian distribution is completely
characterized by the mean vector and the variance-covariance matrix, the abnormal changes

in a system can be divided into two categories. The first category is related to the case where



the mean vector moves away from its normal value with the second being associated with a
change in the variance-covariance structure of the process variables. While the first category
has attracted a lot of attention from researchers and there exist optimal methods (in the sense
of minimizing the delay for a given false alarm rate) e.g. Cumulative Sum (CUSUM) and
Generalized Likelihood Ratio (GLR) test, very little work has been done to specifically
address the second category of changes. The aim of this thesis is restricted to the second type
of abnormality and a methodology is proposed to detect this change in an optimal way.

1.2 Contributions of the Thesis

The main aim of this thesis is the modelling and abnormal change detection in multivariate
systems using subspace projection techniques. In particular, this thesis proposes extensions to
the conventional PLS methodology so as to make it suitable for the modelling of, non-linear
and dynamic systems. On the abnormal change detection front, a scheme is proposed to
detect the change in the variance-covariance structure of a multivariate system in PCA and
PLS based performance monitoring schemes. More specifically the contributions of the thesis

are:

1. In most applications of PLS, its performance is evaluated based on its predictive
capability. In this thesis, the performance of PLS as a parameter estimator is

considered and evaluated.

2. Several non-linear PLS algorithms have been proposed in the literature. It is
therefore, important to analyze the existing algorithms to identify which are ‘true
non-linear PLS’ algorithms. In particular, one of the algorithms proposed by Baffi et
al., (1999(a)) is analyzed. The reason for selecting this algorithm is that it is well
known for its better predictive capability than other non-linear PLS algorithms. It is
shown that this algorithm is a non-linear extension of Reduced Rank Regression
(RRR), a classical regression technique, and therefore should not be considered as a

‘true’ non-linear extension of PLS.

3. It is argued that a ‘true’ non-linear PLS algorithm should be based on the ‘non-linear
covariance criterion’. After careful analysis of the algorithm by Wold et al., (1989) it
is proven that this algorithm attempts to maximize the ‘non-linear covariance’

function.



The limitations of the algorithm of Wold et al., (1989) in the optimization of the non-
linear covariance function are identified and two new non-linear PLS algorithms are

proposed to overcome the limitations.

. All the existing non-linear PLS algorithms are classified into three categories namely
“quick and dirty”, covariance based and error based depending on the objective
functions used by the algorithms to determine the model parameters

One approach to taking into consideration the dynamics of the data in PLS is through
the algorithm proposed by Lakshminarayan et al., (1997). The algorithm is divided
into two steps. In the first step, conventional PLS is applied to the input and output
data without augmenting the input matrix with lagged values of the input and/or
output variables and in the second step, a dynamic model is fitted between each set of
input and output scores. One limitation of the algorithm is that the outer weights
(parameters in the first step) are not determined as per the dynamics of the data and
therefore, the algorithm can be inefficient in situations where the dynamics are fast.
An algorithm is proposed to overcome this limitation. In the proposed algorithm, all
the parameters (outer weights as well as the parameters of the inner score model) are
determined as dictated by the dynamics of the data

PCA based monitoring is based on the integration of two statistics, namely Hotelling

T? and the Q-statistic. The poor sensitivity of this scheme to detect abnormal

changes in the variance-covariance structure of the process is well known (Kano et

al., 2001). An intuitive explanation of the poor sensitivity of Hotelling T? and the Q-
statistic and the limitations of the scheme proposed by Kano et al., (2001) to detect
changes in variance-covariance are given. A new scheme, that is especially suitable
for detecting small changes in the covariance structure of a multivariate process, is
then proposed. The proposed scheme has the advantage that it is ‘nearly optimal’ and
can be analytically designed to detect changes.

. A new monitoring scheme for detecting changes in the cross-covariance structure
(between input and output variables) in a PLS based performance monitoring scheme
is proposed. The monitoring scheme requires that a recursive PLS algorithm exists
for identifying the parameters of the PLS model. A new recursive PLS algorithm that



converges to the parameters identified by NIPALS algorithm is derived. The

monitoring statistic derived from the algorithm is ‘nearly optimal’ in its performance.

1. 3 Outline of the Thesis

Chapters 2 to 4 form the part of the thesis which considers the modelling aspects of
multivariate systems with Chapters 6 and 7 concerned with abnormal change detection in

multivariate systems.

Chapter 2 is a review chapter and starts with describing the theory of PCA. The properties of
PCA and its application in regression, Principal Component Regression (PCR), are then
reviewed. Limitations of PCR and ordinary least squares (OLS) are identified and these
provide the motivation for the use of PLS. The PLS algorithm is then explained in detail and
its properties proven. Modifications of Wold’s NIPALS algorithm, namely the kernel
algorithms, are then reviewed. A comparison of the predictive abilities of PCR and PLS is
undertaken. Finally within the chapter, the performance of PLS as a parameter estimator is

studied empirically.

Non-linear extension of PLS form the basis of Chapter 3. The chapter starts with an extensive
literature survey of non-linear PLS. The algorithm proposed by Baffi et al., (1999(a)) is
analyzed and it is shown that this algorithm is a non-linear extension of reduced rank
regression. The algorithm of Wold et al., (1989) is then analyzed and it is proven that this
algorithm attempts to maximize the non-linear covariance function between the scores. The
limitations of this algorithm in terms of not determining all the parameters that influence the
‘non-linear covariance’ function so as to maximize the covariance function are highlighted.
Two new non-linear PLS algorithms, NLPLS1 and NLPLS2, that address these limitations
are then proposed. The performance of the new algorithms is evaluated and compared on two
artificial data sets and a data set generated from a pH neutralization process with linear PLS
and the non-linear PLS algorithm of Wold et al., (1989).

Chapter 4 is concerned with the extension of conventional PLS to model multivariate
dynamic data. The chapter introduces the limitations of conventional PLS for identifying a
dynamic model of the system. A comprehensive review of the approaches to incorporate
dynamics in the PLS algorithm is carried out and a new method is derived. Finally a
comparative study between the proposed method and the existing method is undertaken
through simulations on both artificial data and chemical process data.



Chapter 5 is a review chapter on process performance monitoring. A brief overview of
univariate monitoring schemes is first presented and the limitations of univariate monitoring
schemes for a multivariate process are stated. Following an overview of multivariate
statistical process control (MSPC, a brief literature survey of MSPC methodologies is
undertaken.

Chapter 6 is specifically concerned with the detection of abnormal changes in the variance-
covariance structure of multivariate Gaussian random vectors. The chapter first describes the
limitations of existing PCA based monitoring schemes to detect these changes. A new
monitoring scheme is then derived from the PCA model identification procedure to detect
these changes in a ‘near optimal’ way by making use of the classical local approach to
hypothesis testing. A brief introduction to the local approach of hypothesis testing is then
given. The proposed technique is then applied to detect changes in two artificial data sets
before using it to detect fouling in a heat exchanger in a continuous stirred tank reactor

(CSTR) system.

In Chapter 7, a recursive version of PLS is derived and tested on an artificial data set for
convergence. A monitoring statistic from this recursive algorithm is then derived to detect
changes in the cross-covariance structure of the input and output variables in a PLS based
monitoring scheme. The monitoring scheme is then applied to detect a change in a parameter

of an artificial system before using it to detect fouling in a heat exchanger in a CSTR system.
Finally Chapter 8 gives conclusions and suggestions for future work.

1.4 Conclusions

In this chapter the formulation of the problems and the issues to be addressed in the
subsequent chapters of this thesis are given. In particular, the problems of multivariate system

modelling and the detection of abnormal changes are reviewed. A brief outline of each of the

chapters and the contributions made are also summarized.



CHAPTER 2

Review of Multivariate Statistical Modelling Techniques

2.1 Introduction

In the chemical and process industries, a large number of variables are measured frequently
resulting in large databases. The black box modelling of a process requires utilising this
database to build a model of the process. An important feature of the process variables is that
they are typically strongly correlated. One approach to handling this situation is through the
application of statistical projection based techniques. This chapter reviews three multivariate
subspace projection techniques that can be applied for the steady state modelling of a system:
Principal Component Analysis (PCA), Principal Component Regression (PCR) and Partial
Least Squares (PLS).

2.2 Principal Component Analysis

Principal component analysis is a classical statistical method that dates back to 1901
(Pearson, 1901). The method was further investigated by Hotelling (1933) who proposed an
iterative least square method to implement the PCA algorithm. Since then many texts have
been written on PCA (Jolliffe, 1986; Jackson, 1991) and it is included as a topic in most text
books on multivariate statistics (Mardia et al., 1979). On the applications front, PCA was first
applied in the social and behavioural sciences with subsequent applications being in industry
in the area of quality control (Jackson, 1956, 1959; Jackson and Morris, 1957). In the last
three decades PCA has been widely applied in the chemical and process industries for both
the modelling and monitoring of, continuous processes (Kresta et al., 1991; Martin et al.,
1996), batch processes (Nomikos and MacGregor, 1994; 1995), data compression and
rectification (Kramer and Mah, 1994) and the detection of faulty sensors (Dunia et al., 1996).

Principal component analysis is known by alternative names in different disciplines, for
example, in image processing (Jain, 1989) it is referred to as the Karhunen-Loeve transform
or Hotelling transform and in the signal processing community, it is more commonly termed
as the signal subspace or eigenstructure approach (Therrien, 1992). The aim of the

subsequent section is to review the mathematical details of PCA.
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2.2.1 Theory of Principal Component Analysis

Let xe RX be a K-dimensional random vector with (population) mean vector p and
(population) covariance matrix X. Without loss of generality, the mean vector p can be

assumed to be zero, i.e.E{x} =0, where E{} denotes the statistical expectation operator.

PCA seeks to find a vector p, € R¥ such that the projection of x on p,

T

t,=x'p=p X @1
has maximum variance. The variance of the projection t, is given by:

var (t,) = E{t}} - (E{t;})* = p{ E{xx"}p, =P/ Ip, s

where Eft, }=0 from equation (2.1). Since the variance can become unbounded with an
increase in the magnitude of the vector p,, it is necessary to constrain the magnitude of

vector p,. The mathematical problem of PCA, therefore, can be formulated as a constrained

optimization problem:

max E{t,z} = ma.xE{p,Txpr,} “Pl“ a1 2.3)

P P

The constrained optimization problem can be solved using the Lagrange multiplier for which

the Lagrangian is:
J=p{Zp, +Ml-PiP) 2.4)

where A is a Lagrange multiplier. Taking the derivative of J with respect to p, and equating

the result to zero gives:

Ip, =Ap, (2.5)
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Equation (2.5) shows that p, is a normalized eigenvector of ¥ corresponding to the

eigenvalue A. Pre-multiplying equation (2.5) by plT gives:

PiEP =PI =2 | *' " | <z;a>“J";

From equation (2.2), it can be seen that the left hand side of equation (2.6) represents the
variance of t;. Thus the variance will be a maximum if the eigenvalue A is a maximum. The
solution p; of the optimization problem is therefore, the normalized eigenvector of the
covariance matrix I corresponding to the largest eigenvalue. The vector p, is known as the
(first) loading vector and the projection t; is the (first) principal component or latent
variable. The above solution can be interpreted as a set of K variables contained in a vector x

projected onto a single principal component t; that includes maximum information with

respect to the variance. In most situations one principal component t; may not be sufficient
to explain most of the information contained in the vector x. Therefore, there is a need to

extract more latent variables. To extract the second principal component t,, it is required
that t, and t; are orthogonal (uncorrelated). The idea behind the orthogonality constraint is
that the information contained in principal components t, and t; should be mutually
exclusive. Therefore extraction of the second principal component requires determining the
loading vector p, with unit norm such that the projection t, = prz has maximum
variance with the constraint that t, and t, are orthogonal. It can be shown (Anderson, 1984)
that the loading vector p, is the normalized eigenvector associated with the second largest
eigenvalue of the covariance matrix Z. In general, the loading vector p, corresponding to the
i principal component t;, where t, is orthogonal to all other principal components, is given
by the normalized eigenvector of the covariance matrix corresponding to the i" largest
eigenvalue. If 4 (A <K ) principal components are required to retain a ‘sufficient’
proportion of the information contained in the measurements of variables vector x then the
subspace spanned by the loading vectors p,,p,...p, is known as the signal subspace of
dimension 4 and the subspace spanned by the loading vectors p ,,,...px is the noise

subspace.
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The computational methods for computing the PCA solutions (eigenvectors and eigenvalues
of the covariance matrix ¥ ) can be divided into two categories. The first consists of batch
methods, where the eigenvectors and eigenvalues of a matrix are computed through a single
matrix operation. The most important batch method is the application of Singular Value
Decomposition (SVD) (Golub and Loan, 1996) to the matrix X that contains N observations
of the variables vector x. The second category includes methods that compute the eigenvalues
and eigenvectors of the covariance matrix in an iterative manner. The latter method is useful
where not all eigenvalues and eigenvectors of the matrix are required. One of the popular
iterative methods for computing the principal components is the iterative least square method
proposed by Wold (1966(a)) that was later applied to partial least squares (Geladi and
Kowalsky, 1986). Another iterative method is the Power method (Golub and Loan, 1996).

2.2.2 Properties of Principal Component Analysis
The key properties of PCA include:

1. The variance of principal component t; is A;, i.e. the i" largest eigenvalue of the

covariance matrix:

var (t;) =E{p; xx"p} =p/E(xx"}p; =p; TP, @7)
Since p; is an eigenvector of the matrix £ corresponding to the eigenvalue A;,

Ip; =Ap; (23)

Substituting equation (2.8) back into equation (2.7) and noting that piTpi =13

var (t,) = PiTkiPi =Api Pi = A (2.9)
2. Any two principal components are orthogonal (uncorrelated):
CE {t;t;)=E{p{xx"p;} (2.10)

=pIEp;=piA;p; =A;pip;=0 fori# j
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3. , defines the percentage of total variance explained by the first 4
11 + x2 %+ oo .XK

principal components.

4. No linear combination of the vector x has a larger variance than A;. This is a result of
the objective function, given in equation (2.3) being maximized when defining the
principal components.

5. The principal components are not scale-invariant.

6. If the covariance matrix I has rank R < K, then the total variance can be explained by

first R principal components.
s All2 An
7. PCA also minimizes the mean square error E{Ix—x“ }, where X is the lower

dimensional subspace approximation of x.

2.2.3 Sample Principal Component Analysis

In the previous sub-section, it was assumed that the population covariance matrix X is
available for computing the eigenvalues and eigenvectors. In most practical situations, the
population covariance matrix is unknown and is estimated from N observations of a random

vector x collected into a matrix X. The unbiased estimate of the (sample) covariance matrix is

computed as:
‘ T (2.11)
! X' X
N-1

where it is assumed that the matrix X is mean centred. In practice, the loading vectors
Py, P2---Px are computed as the normalized eigenvectors of the sample covariance matrix S.
It is, therefore, necessary to understand how the parameters of the sample PCA (eigenvectors
and eigenvalues of the sample covariance matrix S) relate to the parameters of the population

PCA. The relationships are as follows:

1. If x is a (multivariate) Gaussian random vector with (population) covariance

matrix £ with distinct eigenvalues, then the eigenvectors and eigenvalues of the
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sample covariance matrix are the maximum likelihood estimates of the
corresponding population parameters (Anderson, 1984).
2. It can be proved (Mardia et al., 1979; Anderson, 1984) that the sample

eigenvalues and eigenvectors are asymptotically normally distributed.

2.3 Principal Component Regression

In many applications, building a mathematical model of the system requires establishing a
causal relationship between the measurements on the input variables X, also known as
independent variables or process variables, and the output variables y, also known as the

dependent or quality variable. Assuming a linear relationship exists between y and X, that is:
y=Xp+e (2.12)

where P is a vector of regression coefficients and e is the prediction error. Ordinary Least

Squares (OLS) can be applied to find the estimate of p (Draper and Smith, 1998):

Bos = X™X)'X"y 2.13)

Properties of OLS include the fact that it is known to give the Best Linear Unbiased Estimate
(BLUE) of the parameters (regression vector B) when the Gauss-Markov assumptions

(Montgomery and Peck, 1982) are satisfied. That is, of all possible linear unbiased estimates

of the regression coefficients, the estimates given by OLS have the smallest variance.

One limitation of OLS is where the input variables are strongly correlated. This problem is
often referred to as multicollinearity, and if OLS is used to construct a model in such a
situation then the parameter estimates will be unstable. By instability it is meant that the
parameters will be highly sensitive to small changes in the data, for example, the presence of
an outlier. Also the standard error (deviation) of the parameter estimates will be high making

them unreliable.
Several methods e.g. stepwise regression, ridge regression and variable selection techniques

(Montgomery and Peck, 1982) have been proposed in the literature to overcome this problem.

However, the techniques that have received significant attention to solve the problem of
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multicollinearity in the regression modelling are known as subspace projection methods. The
basic idea behind these techniques is to project the original correlated variables onto
orthogonal latent variables such that the loss of ‘information’ is minimized. In this section

one such technique, Principal Component Regression (PCR) is introduced.

Principal component regression involves first performing PCA on the predictor variables
matrix X and then using the principal components in place of the predictor variables in the
regression analysis. Since the principal components are mutually orthogonal, the issue of
multicollinearity is addressed. It can be proven that if all the principal components are
retained when building the regression model, the solution is equivalent to the OLS solution
and thus the problem of the large variance of the OLS estimates in the presence of
multicollinearity is not addressed. In practice only a few principal components are included
in the regression model which leads to a reduction in the variance of the estimates but the
cost of reducing the variance of the estimates is that of biased parameter estimates. The
mathematical theory behind PCR is now discussed. The values of the principal components

(referred to as t-scores) for each observation of the input variables are given by:
T=XP (2.14)

where P is a (K x K ) loading matrix and T is a score matrix of order (N x K'). Since P is an

orthogonal matrix, X can be written as:

Xp = XPP"B =Ty (2.15)
where
v=PTp (2.16)

Substitution of equation (2.15) into equation (2.12) gives:
ly=Ty+e (2.17)

The least square estimate of the new regression vector ¥ is given by:

16



$=T"D'TTy (2.18)

Since the matrix T is an orthogonal matrix, (T'T) is a diagonal matrix. The estimate of the

regression vector  from equation (2.16) is given by:

ﬁPCR =Py (2.19)

It can be proven that the solution ﬁpCR is equal to ﬁOLS- Substituting equation (2.18) into

(2.19) and using equation (2.14) gives:

Bocx =P@TX'XP)'PTX"y = PP'X" X)'(PT)'P"X"y (2.20)
5 (XTX)"xTy = ﬁon,s

It can be seen from equation (2.20) that if all the principal components are retained in the

model, there is no advantage to using PCR except that the computation is simplified:
ﬁPCR = P(TTT)'ITTy (2.21)

Since (T"T) is a diagonal matrix, and if d; denotes the i" diagonal element of this diagonal

matrix and p; denotes the i" column of P, then equation (2.21) can be written as:

2 (2.22)
di'pipi X'y

M=

BPCR =

Il
—

Assuming that the observations of the output variable are uncorrelated and each has the same

variance, 62, then the variance-covariance matrix of the estimate f}pCR is given by:
Cov(Bocg) =0 PTTT) (T'TYT'T)'P" =c’P(T'T)'P’ (2.23)

K
- °2Zdi—lPiPiT

i=1
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where Cov(.) denotes the covariance function. From equation (2.23) it can be seen that
multicollinearity leads to large variances for the elements of ﬁpCR . Since the variance of the

i" principal component is proportional to d;, multicollinearity results in one or more of the

d;’s in equation (2.23) being very small resulting in large variances for the elements of the
estimated parameter vector ﬁPCR . One approach to reducing the variance of the elements of

ﬁPCR is to delete terms in equation (2.22) that correspond to very small values of d;. If

A < K terms are retained in equation (2.23), the estimator becomes:

(2.24)
Zd Pi pTXT

where it is assumed that d ,,;,d 4,5,...dx are very small. It can be shown (Jolliffe, 1986)

that the covariance matrix of ﬁpCR is given by:

! T (2.25)
Cov(Bpcr) = GzzdilpipiT
i=1

Comparison of equations (2.25) and (2.23) show that the PCR model with fewer principal
components being retained lead to smaller variances for the estimated parameters. But this

reduction in variance comes at the price of introducing bias into the estimates. From

equations (2.22) and (2.24), the model parameter flPCR , which is equal to the OLS solution

6013 , and the reduced model parameter ﬁpCR can be related as:

§s i 2 (2.26)
Becr = BoLs — Zd Pi P.

i=A+1

The statistical expectation of the second term on the right hand side of equation (2.26) is

given as:
K 4 K 2.27)
{Zd ppTXTyt= Y di'pip! X"Ely}= D d'pipi X' XP
i=A+1 i=A+1 i=A+1
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XTX canbe decomposed using singular value decomposition:

. (2.28)
X'X=Ydpipi

i=1
Substituting (2.28) into (2.27) and noting that the vectors p; are orthonormal:

(2.29)

K K
E{ de‘pip?XTY} = > pipi B

i=A+1 i=A+l

Taking the statistical expectation of both sides of equation (2.26) and using equation (2.29)

gives:

E{EPCR }’-‘ B- iPiPiTp 5

i=A+l

where E{ﬁOLS} =P . Since the second term on the right hand side of equation (2.30) is

typically not zero, the estimate will be biased.

It is also important to note that it is not always a good strategy to retain the first 4 principal
components and delete the remaining (K-4) principal components which have small
variances. A principal component that has a small variance can be highly correlated with the
output variable and therefore it would be desirable to include this principal component in the
regression model. Taking this into consideration, a PCR model can be defined as in equation

(2.12), where the estimate of the regression coefficient p is computed from:
PBrcr = Zdi—IPiPiTXTy (2.31)
z

where Z is an appropriate subset of the principal components.
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2.4 Partial Least Squares

A limitation of PCR is that the direction in which the input variables are projected is
determined so as to explain the maximum variance of X. The objective of a regression model,
however, is to explain “maximally” the output variables Y. The directions which explain the
maximal variance of X need not necessarily be those which explain the maximal variance of
Y. This limitation is overcome by the partial least squares algorithm that was developed in
the 1960’s.

2.4.1 Literature Review and Historical Details of PLS

The history of PLS as a modelling tool began in the 1960’s when Herman Wold (1966 (a);
1966(b)) proposed an iterative algorithm for extracting latent variables both for PCA and the
two-block situation. This algorithm was first known as NILES (Non-Linear Estimation by
Least Squares) and was later termed NIPALS (Non-Linear Iterative Partial Least Squares)
(Geladi, 1988). The initial applications of PLS were in econometrics (Fornell and Bookstein,
1982 ; Dijkstra, 1983) with the range of applications broadening out to include the disciplines
of psychology, management, education, political science, environmental science and
analytical chemistry (Geladi, 1988; Sellin, 1995; Hulland, 1999).

A key pioneer of the application of PLS in chemometrics was Svante Wold. Some of the
earlier publications in chemometrics involving the application of PLS include (Wold et al.,
1983 (a); 1983(b); Wold et al., 1984; Lorber et al., 1987; Frank, 1987). The reasons for the
popularity of PLS in chemometrics are a consequence of the fact that in the chemical and
process industries, a large number of variables are measured that are highly correlated
thereby giving rise to the multicollinearity problem. PLS not only effectively handles
multicollinearity but it can also describe the variation of the predictor and response variables
using a reduced set of variables. The second reason is that PLS can identify the causal
relationship between the predictor and response variables even when the number of
observations is less than the number of variables. This situation is common in spectroscopic

data where the number of wavelengths can significantly exceed the number of samples.

In the late 1980’s and 1990’s a number of researchers Hdskuldsson (1988) and Kaspar and
Ray (1993 (b)) addressed some of the theoretical challenges of PLS including the definition
of the properties of PLS. Additionally, in this period, a number of modifications to PLS to
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identify non-linear models (Wold et al., 1989; Wold, 1992; Frank, 1990) were proposed.
Furthermore recursive versions of PLS were proposed (Helland et al., 1992; Qin, 1993; 1998;
Dayal and MacGregor, 1997 (b)), where the PLS model was updated on-line to help realize
the modelling of nonstationary data. Dynamic versions of PLS have also been proposed
(Kaspar and Ray, 1992; 1993(a); Lakshminarayan et al., 1997) to take into consideration the
dynamics of the process. One important application of PLS based dynamic models has been
in process control (Lakshminarayan et al., 1997; Patwardhan et al., 1998).

2.4.2 Partial Least Squares -The Algorithms

Let X bea (Nx K ) matrix containing N observations on K predictor variables and let Y be
a (Nx M) matrix comprising N observations on M response variables. PLS seeks to find two
vectors w; € R¥ in the row space of X and v, € R™ in the row space of Y such that the

vectors t,; and u, in the column space of X and Y respectively, given by

; tl = xwl (2‘32)
“1 = le

have maximum covariance. The vectors t; and u, in R¥ are known as t-scores and u-

scores respectively. The estimate of the covariance between t, and u, is given by:

It should be noted from equations (2.32) and (2.33) that if there is no constraint on the

magnitude of w, and v, then the magnitude of the covariance can be made arbitrarily large
by choosing suitable w, and v,. To keep the magnitude of covariance bounded, the
constraint of unit norm is placed on w, and v, . Mathematically, the problem of PLS can be

stated as:

- J=max (t,Tu,) subject to [w,|=[v,[ =1 (2.34)

o
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The above constrained optimization problem can be solved using the Lagrangian multiplier

method with the Lagrangian being given by:
Lw, v )= u) +pl-w, W) +o(l-v, V) o

= w,TXTYvl +p(l —wlTw,) +o(l —v,Tv,)

where o and p are the Lagrangian multipliers. The optimal solution is found by setting
derivatives of the Lagrangian with respect to parameters, w; and v, and the Lagrangian

multipliers, o and p, to zero:

2.36
9 LWy, vy 1) = (XTYy,) - 20w, =0 it
‘ 5“'1
L 237
—‘?—L(w,,v,, ) =(Y Xw,)-20v,=0 o)
avl
2.38

—a—L(w,,vl, Ho)=w,w,-1=0 i

op

—aL(w vV, 1o)=viv,-1=0

s 1 Vis M B

From equation (2.37):

o (2.39)

Vi =5 (VT Xwy)

Substituting equation (2.39) into (2.36) gives
XTYY"Xw, = dopw, =AW, (2.40)

From equation (2.40), it can be concluded that the weight vector w is an eigenvector of the
matrix XTYY "X with eigenvalue ;. Furthermore W, is an eigenvector corresponding to

the largest eigenvalue of X"YYTX . This is because the covariance functions in equation

(2.33) can be re-written by incorporating equation (2.39):
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Cov(tl.“1)=t1Tll| =WirXTYvl =El—(wlTxTYYwal) (2.41)
(0]

Pre-multiplying equation (2.40) by w,T
| W;FXTYYTXWI = Xlw;rwl =)"l (2‘42)

and then combining equations (2.41) and (2.42) gives:

- (243
COV(tI, ul)=;_(l’ ( )

Since the Cov (.) function is proportional to A, the eigenvalue of X"YYTX that gives

maximum value of the covariance is the eigenvector corresponding to the maximum value of

eigenvalue. It can similarly be proved that the weight vector v, is an eigenvector of

YXx'y corresponding to the largest eigenvalue.

2.4.2.1 Computation of the Weight Vectors

One method to compute the weight vectors, w, and v, is to make use of the result proven

in the previous section which states that the weight vectors can be computed by solving the

eigenvalue-eigenvector problem. However, instead of separately computing the eigenvectors

of the two matrices X' YY X and Y"XX"Y, the two weight vectors can be computed by
applying Singular Value Decomposition (SVD) (Kaspar and Ray, 1993(b)) to the cross

covariance matrix X'Y with the weight vector w, being equal to the left singular vector

and v, being equal to the right singular vector associated with the largest singular value.

Mathematically, SVD decomposes the matrix XTY as:

X"y =wpv’ (2.44)
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where W is a matrix of left orthonormal singular vectors, V is a matrix of right orthonormal

vectors and D is a diagonal matrix of singular values. The key step to computing the weight

vectors is:
w, =W(:,1) (2.45)
v;=V(:,1)

The weight vectors can also be computed using an iterative method which is at the heart of

the NIPALS algorithm. The theory behind the iterative computation is now described.

To simplify the situation, it is first assumed that the eigenvalue problem equation (2.40) is

solved, thus the weight vector w, is known. Knowing w,, the t-scores vector can be

calculated as:

t, = Xw, (2.46)

And the weight vector v, can be calculated using equation (2.39):

o e T

Since the weight vector v, should be of unit norm as per the requirements of the objective

function of PLS, the normalized weight vector is given by:

¥'s (2.48)
Y|

It should be noted from equation (2.48) that normalization of the weight vector v, to unit
norm eliminates the constant ¢ which appeared in the expression for v, in equation (2.47).

After v, is determined, the u-score vector can be determined as:
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u, =Yy, (2.49)

The iteration is completed by calculating w, from the u-scores u, by using equation (2.36):

wﬂ - )V(TYvl Xy 250
: 2n 2p

The constant p is eliminated when the weight vector w is normalized to unit norm:

X’u; (2.51)
[X"u|

W|=

The cycle of computation can be thus summarized as:

W, ot oV, DU oOw, (2.52)

The algorithm described started by defining w, as the eigenvector of X"YY'X and

therefore, the algorithm converges in one iteration. If an arbitrary vector w, € RX, is used
as the starting point, the algorithm will take, in general, more than one iteration to converge.
It should also be noted that it is not necessary to start with the value of w, to reach the
solution. In fact, it is possible to start from anywhere in the cycle given in equation (2.52).

For example, an arbitrary vector u,; can be first selected and then w, is computed using
equation (2.51), followed by the computation of t; and v, using equations (2.46) and (2.48)
respectively with the cycle (iteration) ending by computing a new value of u-scores u,, using
equation (2.49). If the new value of u, is sufficiently close to the initial value, the algorithm

is terminated, otherwise the procedure is repeated. The complete iterative procedure is

summarized below.

Given: Matrices X and Y
1. Select an arbitrary u-scores vector u; € R N For example, any column of the matrix

Y
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2. Compute w, = X 'u,.

3. Normalize w to unit length.
4. Compute t; = Xw,
Compute v, =Yt
Normalize v, to unit length

Compute u; = Yv,

oo TR R

If the distance between the u, vectors computed in step 7 and step 1 is less than a

predefined value, stop otherwise return to step 1 and repeat the procedure until

convergence is attained

To build a predictive model between matrices X and Y, a linear relationship between the

scores t; and w, is fitted using ordinary least squares regression:

lll - bltl +e| (2-53)

where b, is the regression coefficient:

u; Ty (2.54)

t,Tt,

b

Equation (2.53) defines the so called inner relationship of the PLS model. Since it is only the
original variables that have physical significance, it is important to establish the outer
relationship (between the latent variables and the original input and output variables). To

identify the outer relationship, it should be noted that the score t; contains information about

X (as the score t, is a linear combination of the columns of X) and therefore can be used to

predict matrix X. This can be achieved by selecting vector p, € R* such that:

| X= t plT +E, 7 $p)

The vector p, is determined such that the norm of the prediction error E; is a minimum.

Applying least squares, the regression vector p, is given by:
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XTt, (2.56)

RIS

P

The scores vector t; can also be used to predict matrix Y. This can be done by first using t,
to predict the u-scores @, = b,t,, and then using the predicted u-scores to predict matrix Y

by finding q; such that:
PN T
Y=ugq, +F=btgq, +F oo

the norm of F, is a minimum. This can be determined using least squares:

X'e (2.58)

Equations (2.55) and (2.57) collectively define the outer relationship of the PLS model. In the

terminology of PLS, the vectors p, and q, are known as the loading vectors and determine

the contributions of the scores vector t, to the input and output matrices.

2.4.2.2 Motivation for the Deflation Procedure

In general, one latent variable is not sufficient to predict the matrix Y (and also X) and
therefore more than one latent variable will be included in the PLS model. The philosophy
behind extracting more than one latent variable is that the latent variables should contain
‘independent’ information about the input and output measurements. Therefore, to extract the
second latent variable which contains information other than that included in the first set of
latent variables, the contribution of the first latent variables towards the input and output
matrices must be subtracted from matrices X and Y. This procedure is known as deflation.

From equations (2.55) and (2.57), it can be observed that the contributions of the first latent
variable t, to matrices X and Y is t,p; and b,t,q, respectively. Therefore, the deflated

matrices X, and Y, for extracting the second latent variables are given by:
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X, = X-tp] (2.59)
Y, =Y-bt,qf

and the second latent variables are given by t, = X,w, and u, =Y,v,, where the vectors

w, and v, are the eigenvectors corresponding to the largest eigenvalues of the matrices

X}-YzYzT X, and Y2T sz;rYz so as to maximize the covariance between the latent

variables t, and u,. The inner relationship between the scores is given by:
u, =b,t, +e, (2.60)

where b, is the regression coefficient and is determined from equation (2.54) by replacing
t, and u; with t, and u, respectively. The outer relationship is similarly denoted as:
X, =t,p; +E, 2614

Y, =ﬁzq; +F,

The loading vectors p, and q, for the second latent variable can be determined from
equations (2.56) and (2.58) by replacing X and Y with X, and Y, and t, and &, with t,
and 0, respectively. The decomposition of matrices X and Y, after the extraction of two
latent variables, can be obtained by substituting (2.61) into equation (2.59):

T T 62) |
X=t;p; +t;p, +E; s |

Y=iq, +i,q," +F,

In general, if A latent variables are required to build the PLS model, then the matrices X and

Y can be written as:

A 2.63)
X= ZtiPiT +E |

i=1

A
Y= Zﬁlq;r +F
i=1
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From the above it can be noted that PLS decomposes matrices X and Y into the summation of
A rank-one matrices. The matrices E and F are the residual matrices for matrices X and Y
respectively when the PLS model is build using 4 latent variable. Each pair of latent
variables account for a certain percentage of variance for both X and Y with most of the
variability in X and Y being explained by (A4<K) latent variables. The remaining
variability typically accounts for the noise in the data. The decision of how many latent
variables should be retained in the PLS model can be made using cross-validation (Wold,
1978).

Geometrically the loading vectors p; and q; represent the basis vectors of the input and

output space respectively. It is therefore desirable to normalize these vectors to unit length.

This mathematical adjustment can be made to the algorithm by reformulating the scores and

inner regression coefficients. Let t;,u;,p;, q; and b; denote the quantities defined above

for the i™ latent variable but redefined so that the norms of the loading vectors are of unit

length. The normalized loading vector p; is given by:

* Pi (2.64)
Pi =5
I
and the contribution, tipiT of the i" latent variable to the matrix X is re-written as:
R R A (2.65)
tip; =t[pilpi =tip;
where the redefined score vector ti‘ is given by:

o (2.66
ti = tilpif ’
The unit norm loading vector q; is given by:

. q; (2.67)

q =—
" il
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The contribution to the Y-matrix can be similarly re-written as:
4 g
i,q; =b;t,q =D, m% i
1

and the inner regression coefficient can thus be defined as:

£ kﬂ

Substituting equation (2.69) into equation (2.68), gives

..‘T

i,q; =b;tiq] =bitiq;
with the regression coefficient in terms of the scaled scores being given by:

o o
-l
| ttlbﬂ 8%

‘ .
The rescaled scores vector t; can be calculated by rescaling the weight vector w;:

| & - Xiwilpi] = X;wi
where
wi =wilpi]

is the rescaled weight vector

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

One important property that can be proven from the above is that the output weight vectors

v; and the output loading vectors ‘Ii. are the same. Without loss of generality, this is shown

30



for the first weight vector v, and loading vector q;. From equation (2.58), the loading

vector ¢, is given by:

ya Y Y (2.74)
i bt bt

i o
u

and the normalized loading vector is given by:

; YTt (2.75)

"YTt,

q

Comparing this with equation (2.48) for the weight vectorv,, it can be seen that they are

equivalent.

2.4.2.3 The NIPALS Algorithm

The concepts previously explained are collated into the NIPALS (Non-linear Iterative Partial
Least Squares) algorithm as proposed by Wold (1966(a); 1966(b)). The complete algorithm is

summarized in Table 2.1.

Table 2.1: NIPALS Algorithm
Step Description Equation
1 ' Given: Matrices X and Y
Mean centre and scale each variable to
| unit variance. Set i (number of latent
variable) = 1; j (number of iteration)=1

2 Initialize the u-scores vector, u u, = some column of Y,
3 Calculate the w-weight vector 4
Wi = S
RO
ujilti
4 ' Normalize the w-weight vector W
W= J.
sl
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'5 | Calculate the t-scores t. =X,w..
M M

18

repeat steps 2-17 by replacing X, and
Y, with X,,,and Y,,, respectively.

6 Fit the inner relation u; = bj,itj.i +e;;
T ' Calculate the prediction of the u-scores .. = bt
B i b X
'8 " Calculate the q-loading vector Yla..
M
q e
tixtix
9 Determine the v- weight vector q;;
V= s ot
o
10 Calculate the new u-scores ug,; = Yivj,i
11 | Check fc
eck for convergence If "uj+l,i ~u;; " > e,
j=j+1,gotostep 3,
else
go to step 12
12 ' Fit the linear inner relation u;, =b;t; +e;
13 Predict the u-scores i, =b;t
I
14 Determine the p-loading vector xiTti
Loy
115 ' Determine the g-loading vector YiTﬁi
B Tt T
u; u;
[ T . . T
16 Deflate the predictor matrix X =X, -t;p;
17 Deflate the response matrix Y. =Y -tqf
" If additional latent variables are required, i=1i+1

Further details of the PLS algorithm can be found in (Geladi and Kowalsky, 1986;
Hoskuldsson, 1988; Martens and Nees, 1989; Wold et al., 2001(a); Helland, 2001). Historical
details leading to the development of PLS and its impact are given in (Geladi, 1992; Wold,
2001; Martens, 2001) with more recent developments in the algorithm being summarised in
(Wold et al., 2001(b)).
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2.4.2.4 Properties of Partial Least Squares

In this section the properties of the weight and loading vectors in the PLS algorithm are

summarised. These properties were first comprehensively proven by Hoskuldsson (1988). All

the properties of PLS follow from the way the deflated matrix X j is computed from the

previous deflated matrices. The relationship between X; and X for (i< j) can be derived as

follows. From the deflation procedure of the NIPALS algorithm:

T
X=X - tiPj i
e
=X L‘u o
j—ltj—l
l: '—lt x.i—l
t.
J—l g |
bt}
2%j-2
xj~2 P SR
1-1‘1—1 tiatia
4
2tj2
Z[ J' tJ x]—Z}
_|—2 2
where
(2.77)
ol it
that

By following the above recursive procedure, the relationship between X; and X; can be

established:

(2.78)

il G
X, =Z Xi——t-TT for (i < j)

where Z is a matrix written as a cascade of the matrices of the form given in equation (2.77).
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Property 1: The weight vectors W, ’s are mutually orthogonal, i.e.

w.=0 fori# j

Proof: First it is shown that

' Xw. =0 for(i<j)

From equation (2.78)

It is also known that the weight vector w j can be calculated by solving an eigenvector

problem:

T y § 7

Taking the transpose of both sides of equation (2.82)

U T

and then using equation (2.80)

wiw, =wX]Y,YX;w;/A;=0

Hence the required proof.

Property 2: The scores are mutually orthogonal, i.e.

| t{t; =0

1)
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(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)



Proof: This can be proven by recalling the deflation procedure in the PLS algorithm.

X; =X, ~t;pp ol

T
4 x A xj'_le'_ltj_lx_i_l
3 tT ¢t
J-1%j-1

T
Wit X
=X;,|1 __J"T_J‘_L_
(tiatj)

T
=[xi-1;1‘— i}z
tt;

where Z is a matrix product that satisfies the matrix equation. From equation (2.86)

R (2.87)

i4hj [l i t'irti

]Z=0 fori<j

and then by post multiplying by w; on both sides of equation (2.87):

Hence the required proof.

2.4.2.5 PLS Regression Matrix

The PLS regression matrix By, ¢ establishes the link between the input variables matrix X

and the output variables matrix Y:

If the PLS model is identified using latent variables, there exist different expressions for the

regression matrix Bpp g. One simple expression, given below, was derived by Lindgren et

al., (1993):
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2 DRE R F
Bpis =Wiq; +W)q; +... +W,q it

where

W, =W, (291)

wy =(I-w,p))w,

Wy =@-w;p)A-w;p3) .=, pl W,

Another important expression for the PLS regression matrix was derived by Manne (1987)
and Helland, (1988):

By = W(PTW)—I QT (2.92)
where

W=[w, wy..w,] (2.93)
P= [Pl P2 ---PA]

Q=[q,q;..9,]

It is also worth noting here that a distinction is made between the two PLS algorithms
depending on the number of output variables. If the number of output variables is one, then
the algorithm is referred to as PLS1 whilst for the case when there are multiple output
variables the algorithm is designated PLS2. It is observed that the former algorithm is
simpler, has optimal properties and is easier to handle theoretically which makes it suitable

for comparison with other regression methods.
2.4.2.6 Kernel Algorithms - Modifications of the NIPALS Algorithm
The kernel algorithm, as a modification of the NIPALS algorithm, was proposed by Lindgren

et al., (1993). The modification was motivated particularly for situations where the number of

observations is much larger than the number of input and/or output variables. The direct
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application of the NIPALS algorithm in such a situation would not only require large memory
for the storage of the scores vectors (as the size of a scores vector is equal to the number of
observations) but the computational effort is also significant. One typical application where
the number of objects is much larger than the number of variables is multivariate image
analysis (Geladi and Grahn, 1997). Each pixel represents an object and therefore in a 512 x
512 image the number of objects is 262144 which is much larger than the number of
variables (which is equal to number of wavelengths and typically lies between 5 and 25). The

basic idea is to compute the parameters of PLS, namely the weight vectors, w; and v,, the

loading vectors, p; and the regression matrix, Bp, g, without calculating the scores.

From the previous discussion, the weight vectors w; and v; can be determined as the
eigenvectors of the matrices X| Y,Y."X; and Y;"X;X[Y; where X and Y; represent the
deflated matrices at the i" step of the iteration with X; = X and Y, = Y. The order of the
matrices X; Y;Y;' X; and Y,"X; XY, , which are known as the kernel matrices, are (Kx K)
and (MxM) respectively and is independent of the number of observations (objects).
Therefore, the resources (speed and memory of computing devices) required for the
computation of the weight vectors are unaffected by a large number of observations. Since
only the eigenvector corresponding to the maximum eigenvalue of the kernel matrices is

required, any iterative method for calculating the eigenvalue of the square matrix, e.g. power

method (Golub and Loan, 1996) can be used to determine the weight vectors. However, only
the weight vector w; need to be determined iteratively as the weight vector v; and the loading
vector p; can be determined from knowledge of the weight vector w;. That is, from steps 9,

14 and 15 of the NIPALS algorithm given in section 2.4.2.1:

YiTti YiTxiwi (2.94)
| el PR 1 3

tt, w, X Xw,;
L
1

"qi"

_X{'t; Xi X;w;
t;rti wiTXiTXiwi

It should be noted that matrices Y,'X; and XX, are required to calculate the loading

vectors q; (and weight vector v;)and p; Therefore, it can be concluded that determination
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of the PLS parameters depends on three matrices X Y;Y'X;, Y'X; and X[X,. To
determine these matrices, a deflation procedure that does not require the calculation of scores
is required. Lindgren et al., (1993) proposed a deflation procedure by taking into
consideration the fact that the matrix Y need not be deflated (Hskuldsson, 1988) and that
matrix X can be deflated by post multiplying it by a matrix of order (Kx K) (this is again

independent of the number of observations N):
X =X(T-wp;)A-w;p;)... A=W, p,) 18-93)

Since the matrix Y need not be deflated, the three kernel matrices can be written as

XTYY'™X;, Y'X,, XX, Adopting the notation:

X'YY™X), =X]YY'X, (2.96)
the kernel matrices can be computed recursively (Lindgren et al., 1993):

XTYY'X),, = @-wp)) XYY X),d-w;p) Q)
X'X);, =A-wp))'X'X),d-w;p])
Y'X)  =(Y'X,d-w;p))

After the weight vectors aﬁd the loading vectors have been determined, the regression matrix
can be calculated using the formula given in equation (2.92). This formula is only dependent
on the weight vectors and the loading vectors and, therefore, the regression matrix can be
determined without calculating the scores. The disadvantage of this formula is that it requires
the calculation of an inverse, which can be computationally expensive. Lindgren et al. (1993)
also derived a formula for the regression matrix which does not require the inversion of a

matrix. The formula is given in equations (2.90) and (2.91).

Another Kernel algorithm was proposed by Rannar et al., (1994) and was motivated by
applications where the number of observations (objects) is fewer than the number of
variables. This situation is common in analytical chemistry, e.g. spectroscopic data. Since in
this situation the dimension of the score vectors is less than the weight vectors, the score
vectors are first determined as the eigenvectors of the kernel matrices (Hskuldsson, 1988)

and the weight vectors are then derived from the score vectors.
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Some improvements to the Kernel algorithm were proposed by Jong and Braak (1994) so as
to increase the speed of computation. They proposed a procedure for the deflation of the
kernel matrices which is computationally less expensive than that given in equation (2.95) for
the kernel algorithm of Lindgren et al., (1993). The core of the argument in (Jong and Braak,
1994) is that if the input matrix X has rank 4 (say), then matrices X and Y can be

decomposed as:

x = tlpir +t2p§ +"'tAp.; = TPT (2°98)
| Y=t,q +t,q; +..t s +F=TQ" +F

where T is the score matrix, P and Q are the loading matrices for X and Y and F is the error

matrix. Now

XTX = PT"TP" = (tt,)p,p} +(t5t,)p,p! + ...+ (t5t)p,p] (2.99)
X'Y=QT'TQ" = (t;t)q;p; +(t;t,)q,p; + ...+ (tyt )q,p

The above equations suggest a deflation procedure as follows:

| (XTX)M =(X"X); - (t{ t,)p;p! (2.100)
(XTY),, =XV, -]t )qp!

Deflation by using equations (2.100) is less expensive compared to equation (2.95) of the
kernel algorithm of Lindgren et al., (1993) since it avoids the multiplication of XX, and
XiTY by the factor (I -—wip;r). Another computational saving is proposed by starting the
iteration with the calculation of the output weight (and loading vector) q; rather than with

the calculation of the input weight vector w;. The logic behind this is that the dimension of

the matrix YiTXiXiTY- is usually smaller than that of XY Y'X; as the number of output

1
variables is usually smaller than the number of input variables. The main steps of the

algorithm are:

1. Calculate the weight vector q; through either the eigenanalysis of YiTXiX;rYi or

by SVD of (Y;' X;)
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2. Calculate the weight vector w;:

w, =X]Y,q, =X"Y)q, (2.101)
W, = il
=i
Iwil
3. Calculate the loading vector:

& Xi X;w; Ee (X"X),w, (2.102)
Y WX Xiw;  wi(XTX),w

i
4. Calculate the deflation:

XTX);, = (XTX); = (t{t)p;p] (2.103)
X"V =XTY), - (t]t)q;p]

The factors (tiTti) in the deflation equation (2.103) can be calculated as:
tit =w X{ Xiw; =w{(X"X);w; (2.104)

Finally the regression matrix can be calculated as previously by using either equation (2.90)
or (2.92).

Some further modifications were proposed by Dayal and MacGregor (1997(b)). They proved
in their paper that to get the PLS solution either X or Y need to be deflated. The potential of
this approach is that the user can select which matrix needs to be deflated. For example, if the
input matrix has more variables than the output variables then it is advantageous to deflate
matrix Y. Alternatively, if the number of output variables exceeds that of the input variables
then X should be deflated. In the situation where matrix X is not deflated, the orthogonal
scores can be calculated from the original (undeflated matrix) by finding a transformation

matrix R, whose columns ry,r,..r, can be computed recursively (Hoskuldsson, 1988;

Dayal and MacGregor, 1997(b)):

40



n=w, (2.105)

& T T T .
N =W, —p;Wif —p,Wih, — .piw;ir,; fori>1

2.5 Comparison of the Predictive Ability of PCR and PLS

Partial least squares and principal component regression are widely applied tools for the
modelling of multivariate data. In the literature, their predictive ability has been compared
from two perspectives: through simulations and by analytical means. One of the earlier
comparisons was made by Nas and Martens (1985) who compared PLS and PCR using an
artificially generated data set and (real) spectral data. It was shown that for both data sets,
PLS performed better than PCR when the number of latent variables was less than a
particular number (dependent on the data set) and PCR performed better than PLS when the
number of latent variables was more than this number. The disadvantage of comparing the
two methods by simulation is that while it is possible to demonstrate the superiority of one
method over the other for a single data set, it is difficult to generalize the result. To address
this problem for spectroscopic data, Thomas and Haalland (1990) designed a series of
experiments to generate simulated data sets that resembled typical data and compared the
performance of PLS, PCR and other two least squares methods Classical Least Squares
(CLS) or the K- matrix method and the Inverted Least Squares (ILS) or P-matrix method. It
was concluded that the performance of PCR and PLS were ‘similar’ except that PLS was
found to be more suitable (in terms of prediction) over a wide range of conditions (e.g.
presence of random baseline, presence of noise in the measure variables, etc.). For an
extensive discussion on the relationship of PLS to other spectroscopic modelling techniques,

see (Haaland and Thomas, 1988(a); 1988(b)).

Although the approach of Thomas and Haaland (1990) answered some of the important
questions about the predictive ability of the two methods, it was still difficult to generalize
this result as they were specific for spectroscopic data. Helland and Almoy (1994) were the
first to derive the mathematical formulae for the mean square error. They assumed that ‘there
exist a number A such that A eigenvectors of the covariance matrix S of input variables, all
corresponding to different eigenvalues, are related with the output variable y’ such that the

cross-covariance vector between the output and input variables can be written as:

A (2.106)
Syy = Zaipi
i=1
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where Sxy is the cross-covariance vector between the (multivariate) input variables and a

single output variable, p; are the eigenvectors of the covariance matrix S of the input

variables and a; are scalar constants.

The eigenvectors, which are correlated with the output variable y are called relevant
eigenvectors and the corresponding eigenvalues are the relevant eigenvalues. The rest of the

eigenvectors and eigenvalues are known as irrelevant. The formula for the average prediction

error Fpcg , in a PCR model when the PCR model is identified with @ > 4 components is

given by (Helland and Almoy, 1994):

(2.107)

asl) 1o el a? 1
FPCR" (I'I'T)'F—N' le Z_——Z +0 N

j=a+l r=1 7\.,(1., —Aj)

The corresponding formula for PLS when the model is identified using A latent variable is

given by:
A+1Y 1 & (2.108)

2
i)l (1)
,_,x(x AJ) A N

where o is the variance of the output variable , A; are the eigenvalues of the matrix S and

(A, —xj)) (2.109)

From the formulae given in equations (2.107) and (2.108), Helland and Almoy (1994),

provided the following conclusions:
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1. If all the irrelevant eigenvalues (corresponding to the eigenvectors of the covariance
matrix of the input variables have no or weak correlations with the output variable)
are small, then there is not much practical difference between the prediction ability of
PCR and PLS with both of them giving good predictions when the irrelevant
components are excluded. Also the smaller the size of irrelevant eigenvalues (that is
smaller magnitudes of the irrelevant eigenvalues), the better is the performance of
PCR over PLS.

2. As the size of the irrelevant eigenvalue/s increases and approaches the smallest
relevant eigenvalue or if an irrelevant eigenvalue is close in magnitude to any other
relevant eigenvalue, then the performance of PCR is poor and in this situation PLS is
better.

3. Ifthe irrelevant eigenvalues lie between the smallest and largest relevant eigenvalues,
then it is difficult to determine which approach is the best and very much depends on
other parameters

4. When the irrelevant eigenvalues are quite high (that is, larger than the highest
relevant eigenvalue) then, PCR performs better than PLS

The final conclusions that can be drawn are that PCR is best when either the irrelevant
eigenvalues are small or very large and PLS is best for intermediate irrelevant eigenvalues.
Since the difference between PCR and PLS is quite small when the irrelevant eigenvalues are
small, and large irrelevant eigenvalues rarely occur in practical data sets, Helland and Almoy
(1994) concluded that PLS is the method of choice in most cases. PLS also has the
advantage that it only requires a decision on the number of components 4 to be included in
the model whereas in PCR, not only is the selection of the number of components 4 is
required but it also requires which of the 4 components should be included in the model. This
further justifies the choice of PLS over PCR.

2.6 PLS as a Parameter Estimator

In most application of PLS in chemometrics, it has been primarily used for prediction. A
related problem in chemical and process engineering is parameter estimation (Englezos and
Kalogerakis, 2000) where the objective is to identify the parameter such that it is as ‘close’ as
possible to the true parameter value. In this section the performance of PLS1 when it is used
for parameter estimation is studied. The objective of parameter estimation is to estimate the

regression vector B in the linear regression equation:
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y:xTa+e (2.110)

as ‘accurately’ as possible. The common method for estimating the regression vector B is to

use Ordinary Least Squares (OLS). The problem with OLS estimates, as mentioned earlier, is
that if the variables are strongly correlated then the variance of the estimate is high leading to

unreliable estimates. Alternatively PLS can be used for parameter estimation. The expression

for the estimate ﬁpLs is given by (Helland, 1988):

~

Brus = W, (WIXTXW, ] WIXTy i
It should be noted from equation (2.111) that the estimator for PLS is fundamentally different
to the OLS and PCR estimators in that the estimate is a non-linear function of the output
variable y. It is well known that the two parameters that are used to evaluate the quality of an
estimator are ‘bias’ and variance. Because of the non-linearity of the estimator function it is
more difficult to analyse the PLS estimator as compared to OLS and PCR estimators.
However, from equation (2.111) it can be proven that when the number of latent variables 4

in PLS is equal to the number of variables K (number of columns) in the X matrix, the
estimate ﬁPLS given by PLS is equal to the least square solution, and therefore, is an

unbiased estimate. However, when 4 (4 < K) latent variables are retained in the PLS model

then the estimate, in general, is biased.

Several attempts have been made to estimate the variance (covariance) of the PLS estimator.
Phatak et al., (1993) linearized the non-linear estimator to estimate the variance and used this
estimate to find the prediction intervals of the estimate. Denham (1997) suggested three
methods namely bootstrapping, cross validation and local linearization of the non-linear
function to estimate the variance of the estimate and the prediction intervals of the predicted
value. Another approach to estimating the covariance matrix of estimates is based on matrix

differential calculus (Phatak et al., 2002).

There is also some disagreement among researchers regarding the significance of regression
coefficients in PLS regression. One group of researchers view the PLS regression coefficients
as a causal link between the observations X and y as in conventional linear regression
whereas the other group views it as a latent variable model (Burnham, et al., 2001) where the

observations X and y are seen as being generated by a common set of latent variables.



Some comparisons of the PLS estimator with other estimators, namely, OLS estimator and
PCR estimators have also been performed. De Jong (1995) showed that the Euclidean norm
of the PLS estimate is less than the OLS estimate while Stoica et al., (1995) observed that the

PLS and PCR estimates are equivalent to within a first order approximation.
2.6.1 Unbiased Estimate using Partial Least Squares

In the above section it was noted that the PLS estimate is biased when 4 (4 < K) latent
variables are retained. In this subsection condition, other than 4 = K, under which the PLS
estimate is unbiased is considered. It is known that if the input vector x and the output
variable y are jointly normally distributed, then equation (2.110) represents the best predictor

of the output variable under the quadratic loss function with the regression parameter vector

B given as (Therrien, 1992):

p=X"'s (2.112)

where X is the (population) covariance matrix of the input variables vector x and @, is the

(population) cross-covariance vector between the input variables x and the output variable y.

The matrix X can be decomposed using singular value decomposition as:

K (2.113)
L= inPiPiT
i=1

Substituting equation (2.113) into equation (2.112) gives:

s (2.114)
B=2 APipioy

i=I
However, it may be that not all the directions, p;, in the input space are correlated with o,

(and hence the output variable). Consider the case where the first 4 (4 < K) directions

Pi.P2,.-.P 4 are correlated with @, and the remaining (K-A4) directions are orthogonal to

Oy, that is:

45



piTu,‘y #0 fori <4 (2.115)

piTo,y=0 fori >4

Using equation (2.115) in equation (2.114) gives:

R | 2.116
B= Z)";lpiprcxy : :

i=1

From equation (2.120) it can be noted that under the condition described in equation (2.115),
the true regression vector B lies in the subspace spanned by the eigenvectors (p,,pP,...P4)-
Helland (1990) (Theorem (2c)) proved that the weight matrix W, and the eigenvectors,
(P, P2 P4), span the same space. Using this theorem, it follows that B lies in the space

spanned by the weight matrix W . Also from equation (2.111), it can be noted that the PLS
parameter estimate ﬁpw lies in the (column) space spanned by W,. Since the true

regression parameter vector B and the estimate By g lie in the same space, the estimate is

unbiased. This is demonstrated using the following simulation example.

2.6.1.1 Example
The properties of PLS as a parameter estimator under the assumption of equation (2.115) are
illustrated by an example. Two cases are considered, namely when the measured variables are

strongly correlated, and when they are mutually orthogonal.

Case 1: Collinear data

In this case 1000 observations of 5 measured variables are generated using 2 principal

components (latent variables), t, and t, as

X=[t, t;][pyp. ] +3E @.117)
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where t; and t, are orthogonal column vectors each of order (1000x 1) containing samples

drawn from a Gaussian distribution with mean zero and unit variance. The vectors, p, and

p; € R?, are orthonormal loading vectors given as:

pr =[-01694 -0.1429 0.3308 0.8321 0.3860] (e
ps =[0.7796 0.6079 0.0902 0.1058 0.0586]"

d is a scalar and controls the multicollinearity in the matrix X. For example, when & is near
zero, the rank of the matrix is 2 and the variables are highly collinear. As & increases,
collinearity becomes less severe. The matrix E in this example is considered to be fixed and
its columns are independent and Gaussian distributed with mean zero and unit variance. Now
if it is assumed that only (first) two directions are relevant then the regression vector B lies
in the subspace spanned by the first two loading vectors and can be generated as a linear

combination of the first two vectors. The linear combination in the example is chosen as:
B=5p,+7p, (2.119)

The observations of output variables can be generated as:

y=Xp+e (2.120)

where € represents measurement noise in the output variable and is assumed to be Gaussian

distributed with variance 0.25.
Four data sets each consisting of 1000 data points were generated corresponding to & =
0.0001, 8= 0.001, 5 = 0.01 and = 0.1. The regression parameters are determined using OLS

and PLS for each of the data sets. Tables 2.2 to 2.5 show the mean and standard deviation of
the OLS and PLS estimates calculated over 10000 trials for each of the data sets.

Case 2: Independent input variables

In this case, the five measured variables in matrix X are orthogonal to each other (that is, no

correlation exists between the variables). The matrix X is generated as:
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X=TP'

(2.121)

where T is an orthogonal matrix of order (1000x5) and P = [p 1 pz...pS] is an orthonormal

matrix of order (5x5) given by:

[~ 0.1694
-0.1429
P=| 0.3308
0.8321
| 0.3860

0.7796 -0.3210 -0.5381 0.0136 |
0.6079 0.2917 0.7180 0.0016
0.0902 0.8402 -0.4070 -0.0726
0.1058 -0.2562 0.1181  0.4458

0.0586 -0.2008 0.1239 —0.8921 |

(2.122)

The regression vector B in this case is also assumed to lie in the space spanned by the

loading vectors p, and p,, as in Casel, and is generated by the linear combination given in

equation (2.119). The observations of output variable are generated as in equation (2.120). A

data set comprising one thousand data points is generated and again the parameters are

estimated using OLS and PLS. Table 2.6 shows the mean and standard deviation of the OLS

and PLS estimates calculated over 10000 trials.

Table 2.2: Mean and standard deviation of OLS and PLS estimates with & = 0.0001

Actual Average of estimated vector over Standard deviation of estimated
S 10000 trials vector over 10000 trials

Vector

OLS PLS OLS PLS

[~ 0.4831] 0.7900 | [-0.4383 ] 104.9964 [0.0118]
-0.4394 0.4382 -0.4395 156.1201 0.0031
3.0529 6.4343 3.0529 124.4889 0.0097
7.2776 4.9687 14775 82.7206 0.0132
3.3600 | 5.5875 | 13,3599 | | 133.1420 [ 0.0085 |
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Table 2.3: Mean and standard deviation of OLS and PLS estimates with 6 = 0.001

Actual Average of estimated vector over Standard deviation of estimated
Parameter 10000 trials vector over 10000 trials
Vector OLS PLS OLS PLS
[—0.4831] (- 0.5882 [-0.4832] 10.5958]] [0.0119]
—-0.4394 -0.1276 -0.439% 15.5904 0.0032
3.0529 2.9949 3.0529 12.4929 0.0098
7.2776 7.3349 7.2776 8.1911 0.0134
3.3600 | [3.3143 | 3.3600 | 13.1648 | | 0.0085 |

Table 2.4: Mean and standard deviation of OLS and PLS estimates with § = 0.01

Actual Average of estimated vector over Standard deviation of estimated
Parameter 10000 trials vector over 10000 trials

Vector OLS PLS OLS PLS
[—0.4831] [-0.4625 [~ 0.4830] 1.0650 | [0.0120]
-0.4394 -0.4595 -0.4394 1.5568 0.0041
3.0529 3.0773 3.0528 1.2569 0.0101
7.2776 7.2648 7.2778 0.8265 0.0134
3.3600 | 3.3663 | [3.3601 | 1.3332 | 0.0087 |

Table 2.5: Mean and standard deviation of OLS and PLS estimates with § = 0.1

Actual Average of estimated vector over Standard deviation of estimated
Parameter 10000 trials vector over 10000 trials
Vector OLS PLS OLS PLS
[-0.4831] [~ 0.4835] [~ 0.4834] [0.1061 | 0.0215]
-0.4394 -0.4390 -0.4391 0.1553 0.0268
3.0529 3.0529 3.0525 0.1242 0.0236
7.2776 7.2775 1.2775 0.0830 0.0194
3.3600 | 3.3604 3.3599 ] 0.1334 | 0.0244 |
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Table 2.6: Mean and standard deviation of OLS and PLS estimates for case 2

Actual Average of estimated vector over Standard deviation of estimated
Parameter 10000 trials vector over 10000 trials
Vector OLS PLS OLS PLS
[-0.4831] - 0.4834] [~ 0.4831] (0.0156 | (0.0217]
-0.4394 -0.4393 -0.4392 0.0157 0.0215
3.0529 3.0531 3.0531 0.0157 0.0211
7.2776 7.2777 7.2774 0.0156 0.0175
3.3600 | 3.3600 | 3.3598 | 0.0158 |  0.0208 |

The following conclusions can be drawn from the above tables:

1. The parameter estimates determined using PLS is unbiased in all five cases. This is
contrary to the common perception that when a PLS model is identified using fewer
latent variables than the number of input variables, the PLS estimate is biased. The
intuitive explanation for this is that under the assumption that 4 directions, where 4
is in general less than the number of input variables, in the X space are correlated
with the output variable y and when the PLS model is built using 4 latent variables,
no variance of y is left unexplained by the A latent variables and the estimate is

therefore unbiased.

2. The OLS estimates appear to be biased when the variables are highly collinear
(Tables 2.2 and 2.3). This is, however, contrary to the well known fact that the
estimates in OLS are always unbiased. The explanation behind this anomaly is that
when the variables are highly collinear, the variance, which is a measure of the
uncertainty in parameters, is very high as seen in Tables 2.2 and 2.3 and therefore the

average calculation over a finite data may not lead to the true parameter.

3. The variance estimate of the parameters in PLS is less than the variance of the
estimates using OLS except in the last case where the variance of the PLS estimates
is slightly greater than the OLS estimates. Again this conclusion seems to be contrary
to the well known fact about OLS that it is the best estimate in the sense that no
estimator can have less variance than the OLS estimate. The explanation behind this

aspect is that OLS is a linear estimator in the sense that the estimate is a linear
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function of the observations of the output variable y. When OLS is said to best, it is
best among all linear estimators. A PLS estimator on the other hand is a non-linear

estimator and therefore can have a smaller variance than the OLS estimator.

4. When a PLS model is identified for prediction purpose, the number of latent
variables is not decided based on the fact that the maximum variance of y is to be
explained. This is because by adopting this approach noise in the model will be fitted
and therefore model performance will be poor on unseen data. Therefore, methods
like cross validation are used to select the number of latent variables in the PLS
model. On the other hand when PLS is to be used as a parameter estimator, these

rules for selecting the number of latent variables may not be appropriate.

5. When using PLS as a parameter estimator, the pre-processing of data can have a
serious effect on the estimates. For example, normally the data is auto-scaled before
the model is identified. Auto-scaling of the data, which can be modelled as a linear
operation on the data, can have serious effect on the performance of PLS estimator
since PLS is a non-linear estimator and, therefore, the effect of auto-scaling on the

estimates may be irreversible.

2.7 Conclusions

In a typical process a large number of strongly correlated variables are measured. To identify
a model for the process from the measured data, it is useful to project the variables onto a set
of orthogonal variables such that the new variables retain most of the information contained
in the original data. Two projection techniques that have been widely used in modelling
multivariate data from chemical and process industries are principal component analysis (and
its application in regression, known as principal component regression) and partial least
squares. In this chapter the basic theory behind these techniques has been reviewed and a

literature review has been undertaken.

It can be very difficult for the user to decide whether to use PCR or PLS model. These
techniques have been compared with respect to their prediction capability and a number of
guidelines have been proposed for selecting between PCR and PLS.

PLS has been most widely applied in chemometrics for prediction. In this chapter an
alternative application of PLS has been proposed namely in parameter estimation. It has been
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shown from simulation study that under the assumption that if exactly 4 (4 < K) directions in
the input space are correlated with the output variables and the PLS model is built using A
latent variables then PLS not only gives unbiased estimates of the parameters but also

identifies them with lesser variance than that given by OLS estimator.
PLS forms the basis of the discussion of the next two chapters where the aim is to modify the

basic PLS algorithm to make it more suitable for handling non-linearity and process

dynamics.
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CHAPTER 3

Non-linear Partial Least Squares

3.1. Introduction

In practice, when dealing with real chemical and physical systems, linear PLS cannot always
be used to model the underlying structure since it may exhibit significant non-linear
characteristics. A number of non-linear extensions to partial least squares have been proposed
over the last decade to integrate non-linear features within the PLS framework. In this
chapter, following an extensive review of non-linear PLS, the existing non-linear partial least
squares algorithms are classified into three categories namely covariance based, quick and
dirty and error based, on the basis of the underlying objective function. More specifically, a
detailed mathematical analysis of the error based non-linear PLS algorithm proposed by Baffi
et al., (1999(a)) is undertaken and it is proven that it is a non-linear extension of Reduced
Rank Regression (RRR).

It has been widely reported that linear PLS is based on the maximization of the covariance
between the t-and u-scores. This covariance based criterion realises a straight forward
approach to the calculation of the scores variables and model parameters, as well as
providing statistical interpretation of the parameters. This is essential in terms of assisting in
the understanding of the behaviour of the underlying system. In this chapter it is argued that a
‘true’ non-linear PLS algorithm should be based on the maximization of a ‘non-linear
covariance’ function. Following a detailed study of the algorithm by Wold et al., (1989), it is
shown that although it has been considered as ‘complicated’, it is the only algorithm that
attempts to maximize the non-linear covariance function. The optimization problem solved
by Wold et al., (1989) is however, severely constrained in the sense that not all the
parameters that influence the non-linear covariance function are used to optimize the
objective function. To overcome this limitation, two new non-linear PLS algorithms are
proposed that make use of a different set of constraints to maximize the non-linear covariance
function. The performance of the proposed algorithms is evaluated on two artificial data sets

and a benchmark simulation of a pH process.
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3. 2. Literature Review

There are basically two approaches to extending linear PLS to its non-linear form. In the first
approach, the input variables are first non-linearly transformed and linear PLS is applied to

the transformed data set. For example, to model a quadratic non-linearity, the input data

matrix X can be extended with the square terms, x? and the cross terms (x;X;), where Xx;
and X; for i,j=12...K, denote the X input variables (Ganadeskian, 1977). This method,

which suffers from the disadvantage of making the size of the augmented matrix X large, was
reviewed by Berglund and Wold (1997). They showed that in quadratic PLS, by including the
squared terms in the data matrix X, both square and cross terms of the latent variables are
implicitly included in the resulting PLS model. The implication of this result is that if a latent
structure is present in the data, that is, if the measured variables are assumed to be generated
by a set of hidden or latent variables then it is not necessary to include the cross terms in the
augmented matrix serving to reduce the size of augmented matrix. The latest development in
this class of algorithms is that of Reproducing Kernel Hilbert Space (RKHS) PLS (Rosipal
and Trejo, 2001). The data in this algorithm is first transformed to a feature space using a
reproducing kernel (Aronszajn, 1950) and then linear PLS is performed in the feature space.
The focus of this chapter is however on the class of algorithms where a non-linear model is

fitted to the (inner) latent variables.

Wold et al., (1989) in their seminal paper proposed that a non-linear relationship be
introduced through the scores rather than through the predictor variables and suggested
updating the weights of the outer relationship in an iterative manner thereby integrating the
non-linearity within the PLS framework. Although they described the approach using a
quadratic non-linear relationship, they stated that the method was applicable for any
differentiable non-linear function. However their algorithm for weight updating was, in their
own words ‘complicated’ and required to be ‘improved by better algorithms’. Along with this
algorithm they also proposed a method, which they termed ‘quick and dirty’. For this
approach the outer weights are determined by the standard (linear) PLS algorithm and a non-
linear relationship is then fitted between the corresponding pair of t- and u-scores. This
method, they conjectured, was appropriate for situations where the non-linearity involved
was weak. More flexible non-linear models were proposed by Frank (1990) and Wold
(1992). Whilst the former work included the use of a smoothing procedure, the technique of
Wold (1992) was based on the use of spline functions. These methods, however, require a
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number of parameters to be decided by the user including degree of spline and number of
knots.

Qin and McAvoy (1992) proposed fitting a feed forward neural network between the
corresponding pairs of scores. Since a feed forward neural network with one hidden layer of
sigmoidal units can approximate any continuous function with arbitrary accuracy (Cybenko,
1989), the method of Qin and McAvoy can be used to approximate any non-linear relation
between the latent variables, and is therefore widely applicable. It should, however, be noted
that for this method the outer weights are not updated as an integral part of the non-linear
relationship. The outer weights are determined as per linear PLS, i.e. this is a ‘quick and
dirty’ method of identifying a non-linear PLS model. Other approaches to building non-linear
PLS models using neural networks have also been reported. Wilson et al., (1997) described
an approach whereby a Radial Basis Function (RBF) network was used to model the non-
linear relationship between the scores. The methodology was applied to model the Tennessee

Eastman process.

Walczak and Massart (1996) used a RBF network to first non-linearly transform the input
variables prior to applying PLS. A further approach proposed by Malthouse (Malthouse,
1995; Malthouse et al., 1997) to generalize linear PLS to its non-linear form was to project
the predictor variables onto curves (which were parameterized by a feed forward neural
network) instead of lines as in linear PLS. The neural network parameters were determined
by minimizing the sum of squares of the prediction errors between the actual values of the
input and output variables and their corresponding approximations obtained from the
projections. In this way the latent variables are determined so that a compromise is achieved
between the predictably of the output variable and the approximation of the input variables
from the latent variables. One of the limitations of this algorithm is that the latent variables in
the input variables space are not orthogonal as is the case for linear PLS. Doymaz et al.,
(2003) proposed a modified version of the algorithm of Malthouse et al., (1997) which retains
the orthogonal property of the latent variables in the input space.

A revision to the approach of Wold et al., (1989) was proposed by Baffi et al., (1999(a))
whereby the non-linear model was fully integrated within the framework of PLS by updating
the outer weights using the prediction error of the inner scores model. This algorithmic
approach also formed the basis of identifying a non-linear dynamic PLS model (Baffi et al.,
2000). Other approaches to non-linear PLS include the use of Hammerstein and Wiener
filters (Patwardhan et al., 1998), genetic programming (Hiden, et al., 1998) and the Box-
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Tidwell transformation (Li et al., 2001). Min et al., (2002) suggested using a modified back
propagation algorithm to integrate a feedforward neural network within the PLS framework.
The iterative backpropagation algorithm, they argued, would circumvent the problem of
calculating the pseudo-inverse for updating the weights in the algorithm proposed by Baffi et
al., (1999).

3.3 Comments on Linear PLS

Before undertaking an analysis of non-linear PLS algorithms, some facts about linear PLS are

stated that will be useful later in the chapter.

Remark 3.1: The vectors, v;, q; and p; in the PLS algorithm are functions of the weight
vector w; fori=12,..K
Proof: The response variables projection direction, v, , is given by:

Y'Tﬁi 22 Yiniti e YiTxiwi ‘ (3.1)

YiTﬁi Yiniti Y Xiw,

and loading vectors, p; and q;, are given by:

i YiTﬁi i YiTxiwi | (3.2)
: ﬁiTﬁi b; wiTxiTxiwi
X's  X'Xw 2 A%
Pi = T

The above equations demonstrate the dependency of v;, q; and p; on w;. Thus it can be

concluded that the weight vectors, w; for i=12,...K, completely characterize the PLS

algorithm in the sense that all other parameters of PLS can be derived from them.
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Remark 3.2: The vectors v; and q; lie in the same direction in the response space, i.e. v, is
proportional to q; .

Proof: It follows from equations (5.1) and (5.2) that v; and q; are related as:

qi (3.4)
Vi =T
"‘li"

which proves that v, and q; are oriented in the same direction.

Remark 3.3: The scores vectors, t;and u;, are determined to have maximum covariance.

Proof: This follows from the objective function of PLS stated in Chapter 2 (section 2.4.2)

3.4 Review of Error Based Non-Linear Partial Least Squares

This class of algorithms for non-linear PLS was proposed by Baffi et al., (1999) and assumes

that the t- and u-scores are related by a non-linear function, f:
u; =f(t;) + ¢ (3.5)

Wold et al., (1989) and Baffi et al., (1999(a)) took f to be a quadratic polynomial whilst a
more general function for f in the form of a feedforward neural network was proposed by
Baffi et al., (1999(b)). In these algorithms, the basic framework of PLS formed the basis of
the approach. For example, both the property of orthogonality of the t-scores and the

constraint on v; to have the same orientation as that of q; were retained in the non-linear
extensions. The algorithms differ from linear PLS in the way that the weights w; are
determined. As mentioned above, while the maximization of the covariance between the t-
scores and u-scores is the objective function for determining the weight vectors,w;, the

approach of Baffi et al., (1999(a)) was based on the minimization of sum of squares of
prediction error of the u-scores. Mathematically, the objective function of Error Based Non-
Linear PLS (EBNPLS) proposed by Baffi et al., (1999(a)) is:
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jéém,,-s = min ||ui —ﬁi"z = min"ui —f(ti)"2 = min ||Yivi —f(Xiwi)"2 (3.6)
Wi i wi

Since the direction, v, , in the objective function is constrained to lie in the same direction as

that of q;, the weight vectors w; are solutions of the following constrained optimization

problem:
JEBNPLS = ';’:" J; ‘ﬁillz o ':’:""“i —f(ti)"z of ':'vi" "Yivi "f(xiwi)uz S
i i i
. subject to
voo & Yia Vi)  YiXw)
el e e ferocwo
Iwill =1

The weight updating procedure for the weight vector, w,, is calculated through Newton-

Raphson linearization of the function f:

| ' 1T
AW, = [ZIi Z] le,iej,i (3.8)
- Wi +ij,,,'i
jtLi

where Z i is a matrix where the first order differential of the non-linear function of the i t-
scores with respect to the weight vector, w;, are stored and Aw,,; is the incremental

change in the weight vector w; for the j* iteration. The complete error-based non-linear PLS

algorithm is summarised in Table 3.1.

Table 3.1: Error based non-linear partial least squares (Baffi et al., 1999(a))

- Step Description Equation
11 ' Given: Matrices X and Y |

Mean centre and scale each variable to

unit variance. Set i (number of latent

variable) = 1; j (number of iteration)=1

‘andx|=x Y|=Y
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10

11

112

Bii2

14

15

16

17

18

' Initialize the u-scores vector u

" Calculate the w-weight vector

' Normalize the w-weight vector

" Calculate the t-scores
| Fit the non-linear inner relationship
' Calculate the prediction of the u-scores

" Calculate the q-loading vector

' Determine the v-weight vector

Calculate the new u-scores

' Update and normalize the weight vector

w (equation 3.8)

" Calculate the new t-scores

" Check for convergencé

Fit the non-linear inner relationship

f Predict the u-scores

" Determine the p-loadihg vector

' Determine the q-loading vector

| Deflate the predictor matrix
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u; = some column of Y;
T
I Xiu ji
Ji T
uj’iuj‘i
W..
iR
w e
j,l
Wil
tJl = xi‘v.| i
i =A(t;)
T -
i Yiu
S
tictix
q;i
G e
||‘h'.i
i Yiv ji

s = XiW i

If Jt,0: -t > &

i

j=j+1,gotostep3,
else

go to step 14

ﬁi =f(tl)
oY

o < Y0
: ﬁiTui

Xin =X -t;p]



19 Deflate the response matrix Y.

T
o = Y —4q;
20 ' If additional latent variables are required,
repeat steps 2-19 by replacing X; and
Y, with X;,; and Y,,, respectively.
The issue is that this algorithm is a non-linear extension of Reduced Rank Regression (RRR)
rather than a non-linear extension of partial least squares. A brief review of reduced rank

regression is given in the next section prior to providing this proof. For more details refer to

(Reinsel and Velu, 1998).
3.5 Brief Overview of Reduced Rank Regression

In (linear) reduced rank regression the objective is to determine the weight vector, w,, such

that the t-scores vector t;:

t. = X.w. (3.9)

has maximum contribution to the response matrix Y;. The prediction error of the response

matrix is defined as:
E =Y, -tq/ (3.10) |

where q; is a vector that is to be determined such that the norm of the error matrix E; is a

minimum. The vector q; that has maximum contribution to Y; can be determined using least

squares:
2 Yt G.11)
ot

Since the vector q; depends on vector w; through t,, the prediction error in equation (3.10)
is completely determined by the weight vector w;. The objective function of reduced rank

regression can therefore be stated as:
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| JRRR = min"Yi -t q,T" = min (trace (EiTEi)) (3.12)
; W W

Although the objective function in equation (3.12) does not require any constraint to be

imposed on the weight vector w; in order to keep it bounded, a unit norm constraint is
placed on the weight vector w; by multiplying the t-scores vector, t;, by a constant b,

which is determined in a similar manner as for q; (minimization of the prediction error in the

response matrix). Equation (3.10) can thus be written as:
Y, =bit,q +E; =i;q] +E; (.13)

where @; = b;t;. The objective function of reduced rank regression can be re-stated as:

Tagn = min¥, ~ i q] | = mintrace (ETE,)) (3.14)
W, W,

' subjectto |w;|=1

3.6. Analysis of Error-Based Non-linear Partial Least Squares

To prove the equivalence between reduced rank regression and the algorithm of Baffi et al.,

(1999), the following theorem for reduced rank regression is proven.

Theorem 3.1: The objective function of reduced rank regression can be formulated in terms

of minimizing the (sum of squares) u-scores prediction error with the constraint that the
response variables projection direction v; and the vector q; lie in the same direction. That is,

the objective function of reduced rank regression can be written mathematically as:

Trrg = minu; =], = minju; - b;t;], (3.15)
! i Wi

subject to

. Y'd, o Y bit; f Yi't;
"qlll YiTﬁi" Yiniti YiTti

and Jw,| =1
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Proof: Define vector v; as:

9qi (3.16)

Vi=—

"qi "

Multiplying both sides of equation (3.13) by v, gives:

Y'V' =ﬁlq;rv| +Eivi (3'17)

Substituting equation (3.16) into (3.17) gives:

Ta. (3.18)
Yivi = ﬁi (ﬁ‘ ql +Eivi
¢Ii"

Now taking Y;v; = u;, the u-scores, and E,v; =e;:

ui =ﬁi+ei (3'19)

The weight vectors w; in the RRR can, therefore, also be determined by minimizing the

objective function:

Jpre = min|u; -0;], (3.20)

wI
provided that the projection direction v; is given as:

LA e A (321
Yal Ny

qi
V: = =
" fail

The objective function of (linear) RRR can, therefore, be stated explicitly as in equation
(3.15).
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In the theorems below, the equivalence between the linear version of Baffi’s algorithm and

reduced rank regression is established.

Theorem 3.2: When the function, f, is linear, the objective function minimized in the

algorithm of Baffi et al., (1999(a)) is the same as for reduced rank regression.

Proof: Replacing the non-linear function, f, in the inner scores by a linear function gives:

| ﬁi =biti (3.22)

The objective function for the algorithm proposed by Baffi et al., (1999 (a)) given in equation

(3.7) under the assumption of a linear relationship between the scores reduces to:

J=min||“i —ﬁi"z (3'23)
Wi
subject to

q Y4 . Y, b;t; o Y't;

R Y o et e

Comparing equations (3.15) and (3.23), the two objective functions are observed to be

equivalent.

Theorem 3.3: When the function f in the algorithm of Baffi et al., (1999(a)) is linear, the

weight vector,w;, in the iterative algorithm converges to the eigenvector corresponding to

the largest eigenvalue of the matrix expression [X! X;]”'X|Y,Y, X, and is equal to the

weight vector determined by reduced rank regression.

Proof: From Table 3.1, the weight vector, v, , the regression coefficient, b;, and the residual

vector, e;, for the j"‘ iteration, can be expressed as a function of w; as follows:
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% YiTxi wii (3.24)
vj'i __.T—
Y X; wj.i"
NI WIixiTYiYiTxiWi
4 wIixiTYiYiTxiwi w}:ixiTxiwj,i
‘ YiYiTxiwj,i X WIiXiTYiYiTxiwi
Pt * S — AW
YiTxiwj,i" WIixiTxi“’j,i YiTxiwj,i"

The change in the weight Aw ;,,; from equation (3.8) is given by:

Aw ., =[XTX.]" xiTYiYiTXin,i"Xin,i : et (3.25)
i i 4% :
: v X w j'i||2 .

Consequently the normalized weight vector for the (j + 1)™ iteration is given as:

XXXV, Y Xiw (3.26)
Wini = >
) XiTXi] lXiTYiYiTxin.i "

The above iteration is equivalent to the Power method (Golub and Loan, 1996) for

determining the eigenvector corresponding to the largest eigenvalue of the
matrix[X] X;]7'X] Y, Y, X;. It is also known (Reinsel and Velu, 1998) that the weight
vector w; determined by the reduced rank regression is equal to the eigenvector

corresponding to the largest eigenvalue of the matrix [X] X,]7' XY, Y/'X;.

Theorems 3.2 and 3.3 demonstrate that the error based algorithm proposed by Baffi et al.,
(1999(a)) is equivalent to classical reduced rank regression for the special case of where a

linear relationship is assumed between the scores.

Remark 3.4: Since the error based iteration procedure converges to the RRR solution, it is

not guaranteed that the scores vectors, t; and u;, have maximum covariance.



Remark 3.5: The constraint of v, being aligned in the same direction as q; in the error based

cost function results in the residuals of the response variables being minimized instead of the

residuals of the i" scores model being minimized.

Corollary 3.1: The non-linear error based PLS algorithm proposed by Baffi et al., (1999(a))

is a non-linear extension of reduced rank regression.

Proof. This follows from Theorems 3.2 and 3.3 and Remark 3.5. The constraint, that the
directions of the projection direction,v;, and the loading vector, (;, are equivalent, is

retained in the algorithm of Baffi et al., (1999(a)) for the non-linear case. Therefore, the
consequence is that the maximum amount of variance in the response matrix is explained,

which is in keeping with the spirit of (non-linear) reduced rank regression.
3.7 Analysis of the Algorithm of Wold et al., (1989)

Having analyzed the algorithm of Baffi et al., (1999(a)), the algorithm of Wold et al., (1989)
is now considered and it is proven that this algorithm attempts to maximize the non-linear
covariance function. Before the algorithm is analyzed, a brief overview of the algorithm is

provided.

Wold et al., (1989) extended linear PLS by incorporating a non-linear (quadratic)

relationship:
u = f(tl) = f(xi,wi,ci) = cO‘i " cl’iti + cZ,itiz 5 ei (3'27)

Updating of the weight vector w; is performed by linearising f(t;) about the current weight

vector w? (or the t-scores vector t? ) and the parameter vector c? using a first order Taylor

series expansion of the quadratic function:

(3.28)
Ac; +e¢;

¢/

ui=f(t?)+—'aL Awi‘l“ir—
awi wo

The increment, Aw ., for the current weight vector w! is calculated as follows:
1 1
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1. Define a matrix Z; and a vector d; as:

2 &
ow.

of

w? Oc;

]

2. Determine the column vector d; as:

c;

3. Normalize d; to unit norm:
d.
4 =
" ail

4. Evaluate a column vector s;:

6. The incremental weight vector is then determined as:

where d;(1:KX') denotes the first K elements of the vector d,



7. Update the weight vector w? as:

=y
Wiy =W + AW,

Wold et al., (1989) stated that their algorithm ‘is fairly complicated and converges slowly
when the data lack structure’. Baffi et al., (1999(a)) while proposing a ‘simplified’ version of
the algorithm of this algorithm raised the following three questions on the weight updating

procedure:

: 4
i Ui
T

u; u;

1. Why is the vector d;determined as d; = , that is as if Z; is being regressed

on u; according to Z; =u;d; (Step 2 above) instead of u; = Z,d,?

2. Why is the vector d; scaled by a constant b; (step 6 above) to determine the
incremental weight vector Aw, ?

3. Why is the first order differential of the function ¢; included in the matrix Z; if the
incremental function parameter vector Ac; is not to be used for updating the weight

vector ¢;?

However, Baffi et al., (1999) did not address these questions. Answers to these questions are

provided in the following lemmas.

Lemma 3.1: The vector diT = [A\wiT AciT] in the updating procedure of Wold et al., (1989)
is determined based on maximizing the covariance between the u-scores vector, u;, and the

non-linearly transformed t-scores vector, f(t;), with a unit norm constraint on vector d;.
Proof: The covariance between u; and f(t;) is given by:

% & (3.29)
u/fit) =u’ f(t?)+—‘ Aw; +—| Ac;
Milwe ¢!

de;
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Since the covariance between two random variables does not change if a constant value is
added to either of the two variables, f(t?) can be removed from the above expression.

Consequently equation (3.29) can be written as:

u'f(t) =u’ Ot o [Awi} (3.30)
i awi W? aci C? Ac;
=uf Z;d,

If the objective function for determining d; is taken as the maximization of the covariance

function given in equation (3.30), subjected to unit norm constraint on d;

max(d,Z]u,) (3.31)

subjected to |d;] =1

then the solution to the above cost function is given by the conventional (linear) PLS solution

for one response variable, i.e. PLS1:

_Zjv, (3.32)

This equation for determining d; is the same as that used in the algorithm of Wold et al.,

(1989) (step 2 in the summary given above)

Lemma 3.2: The incremental function parameter vector A¢; is a vector of slack variables,

(that is, the variables that are used to optimize the objective function but that are not used in
the model) for the covariance maximization and is used to guarantee the convergence of the

algorithm.

Proof: Since Ac;, determined by solving the optimization problem in equation (3.31) is not
used to update ¢;, it is clearly a slack variable. If Ae¢; is not included in the optimization

problem, the incremental weight vector Aw; will always be of unit norm since d; is

constrained to be of unit norm. The consequence of this is that the algorithm will not
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converge since Aw; cannot tend to zero. Inclusion of Ac;, therefore enables the algorithm to
converge so that after convergence Aw; =0 and Ac; is of unit norm so that the constraint

of unit norm on d; is satisfied.

It can therefore be concluded from the two lemmas that the parameters in the algorithm by

Wold et al., (1989) are adjusted using a covariance maximization criterion.

Although the weight vectors w; in the algorithm of Wold et al., (1989) are obtained such

that the covariance between the u-and the non-linearly transformed t-scores is maximized, the

algorithm suffers from the following limitations:

1. The quadratic function parameter vector, ¢;, is determined so as to minimize the
prediction error of the inner scores model. However, ¢; also influences the
covariance between the u-scores u; and the non-linearly transformed t-scores, f(t;) .

It is therefore, necessary to determine c; along with w; to maximize the covariance.

2. Woid et al., (1989) proposed the use of a first order Taylor series expansion for it to
align with the iterative framework of linear PLS. In each iteration, a constraint is

placed on Aw,; by placing a unit norm constraint on d; and also on the updated
weight vector w; by normalizing it to unit norm. Since W, is constrained to be of

unit norm, there is no need to impose any constraint on Aw; or d;.

The above problems associated with the algorithm of Wold et al., (1989) are overcome in the
two non-linear PLS algorithms proposed in section 3.9. Prior to discussing the new
algorithms, a classification of existing non-linear PLS algorithms is undertaken.

3.8 Classification of Existing Non-linear PLS Algorithms

This section categorizes the non-linear PLS (NLPLS) algorithms described in the literature
into three categories (1) covariance based (2) quick and dirty algorithms and (3) error based.
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3.8.1 Covariance based Non-linear PLS

The algorithm by Wold et al., (1989) belongs to this category but has a number of limitations

as discussed in section 3.7.

3.8.2 Quick and Dirty Methods

This category includes those algorithms whereby linear PLS is used to determine the t-and u-
scores prior to a non-linear model being fitted between the t- and u-scores. The algorithms of
Frank (1990), Qin et al., (1992), Wilson et al., (1997) are members of this category.

These algorithms clearly do not represent the true non-linear PLS as the outer weights of the

algorithm are not determined as per the non-linearity in the data.

3.8.3 Error Based Non-linear PLS Algorithms

This category of algorithms obtain scores variables that are projected onto the lines as in
linear PLS, and a non-linear relationship is fitted between the corresponding pair of t- and u-
scores. The parameters (the outer weights as well as the inner non-linear model parameters)
are simultaneously updated and are determined so as to minimize the prediction error of the
inner model. The algorithms of Hiden et al., (1998), Baffi et al., (1999), and Li et al., (2001)

are examples of this approach.

It should be noted, however, that the minimization of the prediction error in the inner scores
model does not guarantee the maximization of the covariance between the t-and u-scores. As
analysed in section 3.7, these algorithms are in fact, a non-linear version of reduced rank

regression and therefore do not represent a true non-linear representation of PLS.

The categorization of the key non-linear PLS algorithms mentioned above is summarized in
the Table 3.2.
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Table 3.2: Categorization of the proposed non-linear PLS algorithms

Category
Covariance Based Quick and dirty Error based
Wold et al., (1989) Frank (1990) Hiden et al., (1998)
Wold (1992) Qin etal.,, (1992) Baffi et al., (1999)
Wilson etal., (1997) Li etal, (2001)
Patwardhan et al., (1998) Min et al., (2002)

3.9 Non-linear Partial Least Squares using Covariance Maximization

PLS is based on the maximization of a linear covariance function (H&skuldsson, 1988)
between the t-scores and u-scores. This criterion not only provides a straightforward
calculation of the scores vectors and the model parameters, it also offers statistical
interpretation which is helpful in understanding the underlying structure of the system.
Maximization of the covariance function determines scores variables that are a statistical
compromise between the approximations of the predictor (process) variables and the
prediction of the response (quality) variables. This is in contrast to other regression
techniques such as Multiple Linear Regression (MLR) and Reduced Rank Regression
(RRR)) whose objective is to predict the response variables from the predictor variables by
minimizing the prediction error. It has been demonstrated that maximising the covariance
between pairs of scores variables is of benefit in applications such as multivariate statistical
process performance monitoring (MacGregor et al., 1991; Martin et al., 1996). In addition, a
number of comparisons have identified the benefits of PLS in terms of deriving and
encapsulating important qualitative information from chemical data (Haaland and Thomas,
1988(a); 1988(b); Martens and Nas, 1989; Nas et al., 1986; Nas and Martens, 1985; Wold,
et al., 1983(a); 1983(b); Wold et al., 1984).

Considering the importance of covariance maximization in linear PLS, any ‘true’ non-linear
PLS should be based on the maximization of the ‘non-linear covariance function’ which

reduces to a (linear) covariance function when the non-linear function is replaced by linear

function. The non-linear covariance function is defined as:

Tnups = Cov (£(t;), u; ) = Cov(f(X;W;, Y;v,)) (3.33)
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where Cov is the usual covariance function of the two vectors, f is a non-linear function

which is assumed to be quadratic:

| Ti = f(tl) = cO'i +cl,iti +c2‘iti2 (3‘34)

It can be seen that this definition of the non-linear covariance function is a generalization of
the usual covariance function since if the non-linear function is replaced by a linear function,

the definition reduces to the conventional covariance function.

Based on the definition of the non-linear covariance function in equation (3.34), the objective

function of non-linear PLS is to determine the weight vectors v; and w,, and the scores
vectors such that the non-linear covariance function Jy;p s is maximized. By selecting a
quadratic non-linear function f, it is not only the weight vectors w; and v, that are to be

optimized but also the parameters ¢; of the function f. The objective function of non-linear

PLS can be stated as:

J NLpLs = max Cov(f(c;,xiwi), Y;vi) (3.35)
wi’vi’ci

It should be noted, however, that in the objective function given above, it is necessary to

introduce constraints on the magnitude of the parameter vector ¢; in addition to having a
constraint of unity norm on the weight vectors w; and v;, as otherwise JyppLs will be

unbounded. This gives rise to two non-linear PLS algorithms depending on how the

parameter vector ¢; is constrained. The two algorithms are detailed below.

3.9.1 Non-linear PLS Algorithm Number 1 (NLPLS1)

In the first version of the algorithm, the parameter vector ¢; like the weight vectors w;

and v, is constrained to have unit norm. This algorithm is termed NLPLS1 and the objective

function is given by:
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Tairs: = max f(t)"u, (3.36)
Wov,e,

subject to
wl=1 vil=t el =t

3.9.2 Non-linear PLS Algorithm Number 2 (NLPLS2)

In the second version of the algorithm, the magnitude of the parameter vector is indirectly
constrained by placing a constraint on the magnitude of the function f. Since non-linear PLS
should be a generalization of linear PLS, the constraint selected is that the length of f is the

same as that for t:
[=ill = e =il (337)
The algorithm is denoted as NLPLS2 and its objective function is as follows:

hansy= max £t)'w, (3.38)

subject to
Iwil =1 |vil =1

| =il =leceol =il

The optimization functions for both non-linear PLS algorithms can be optimized using
gradient ascent algorithm. The gradients of the objective function with respect to parameters

for NLPLS1 (which are also equal to NLPLS2) can be computed as follows:

& (3.39)
—;:V%L—Sl = X ((c1; +2¢5;t)"wy)
) wipLsi g L
de; " ]
ns

T 2
=Y, [co; +cy3t; +C5;t7]

ov;
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Once the gradients are computed, the objective function can be optimized by updating the

parameters until convergence using the following equations:

T (3.40)
de, (n)

wi(nH) = wi(n) + n—agfﬂf)'

¢; (n+l) =¢;(n)+n

vi(ntl) = v;(n)+ n——aJNLPLS L

dv;(n)

where 1 is the learning rate. The constraints on the weight vectors w; and v; and the

parameter vector ¢; are taken into consideration after each updating. For example, for the

NLPLS]1 algorithm, the updating equations are:

¢ (ntl) = 'Ei(n)+n-a—{;-:—[.‘—(gtl‘l% (3.41)
| _ @)
D R
R w0 e AL
: s 2 ow;(n)
Bk 1

|(n+l) 55

For the NLPLS2 algorithm, the constraints are implemented as follows:

6 =X, )
u, =Y,v,
=A(t;) = cq; +Cyt; +Cy5t]
=il
2
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The optimization method given in equation (3.41) uses a gradient based method and may be
slow in convergence. To increase the speed of convergence, second order methods (e.g
Newton’s method) can be used.

After the parameters have been optimized, a linear relationship between f(t;) and u; can be
fitted:

u; =b,;f(t;) +by; +e, (3.43)

The parameters, b,; and b,; can be determined using ordinary least squares. The prediction
of the response variables can now be calculated from the predicted u-scores, u; by

calculating the loading vector q;:

YTa (3.44)

The prediction of the response variables is given by:

Y a, ‘IiT (3.45)
After the calculation of the first latent variable, the percentage variance explained by this
latent variable is calculated and in case more latent variables are needed, the above procedure
is repeated by deflating the matrices X and Y as in conventional PLS.

3.10 Summary of the Algorithms

The two algorithms, NLPLS1 and NLPLS2 are summarized below.

3.10.1 NLPLS1 Algorithm

Given: Input matrix X and output matrix Y.

Mean centre and auto scale the two matrices. Set i=1and X, =X, Y, =Y
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Step 1: Initialize the weight vectors w;, v, and non-linear function parameter ¢; to random
values.
Step 2: Compute t-and u-scores

[t =Xw,

u; =Y;v;

Step 3: Compute the gradients

sy _ X{ (e +2¢5t) "))

ow,;
———aj”;%s L=([1 ¢t t]]"w;)
1
- alJ
_NTL\F.LS_l = Y{'[co; +Cyt; +Cy;t]]
1
Step 4: Update the parameters

% () = (o) AL

&)
" few@n]

# (1) = wi(n)+nm'——

ow (n)

w;(ntl) =

Vi) = vi(m) + n——aJ““’LS '

dv;(n)
V; (n+1) = ﬂ

Step 5: Repeat steps 2 and 3 until convergence

Step 6: Fit a linear relationship between the u-scores u; and the non-linearly transformed t-

scores f(t;):
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Step 7: Calculate predicted u-scores u;

u; =b,;f(t;,) +by;

Step 8: Determine the loading vectors p; and q;

_Xit
Pi= tiTti
_Yi,
o ﬁiT“i

Step 9: Deflate the matrices

Xig =X; -t;p/
Y=Y, -ﬁiqiT

Step 10: Repeat steps 1 to 8, with i =i+ 1 if another latent variable is required.

3.10.2 NLPLS2 Algorithm

Given: Input matrix X and output matrix Y.

Mean centre and auto scale the two matrices. Set i=1and X, =X, Y, =Y

Step 1: Initialize the weight vectors w;, v; and non-linear function parameter ¢; to random

values

Step 2: Compute t-and u-scores
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t = Xjw;
u; =Y;v;
=f(t;) = co; +Cy;t; +Cyt]
il
Tl

Step 3: Compute the gradients

._aJ__N_w = XiT((c“ 2 c2,iti)Tui)

ow;
aJ
i = b 3 T
i
)
_%L:.Lﬁ =Y/ [co; +cyt; +Cg5t7]
Step 4: Update the parameters

¢; (ntl) =¢;(n)+ QM_I

aci(n)
w.(ntl) =w;(n)+ nﬂiﬂs'—
1 1 awi(n)
wi(ntl) = —
|l II
~ e 0J NipLs 1
Vi(ntl) = V.(n)+1r|—————avi ®)

vi(ntl) = "~—"

Step 5: Repeat steps 2 and 3 until convergence

Step 6: Fit a linear relationship between u-scores u; and the non-linearly transformed t-

scores f{(t;):

‘ lli =b|,if(ti)+b0,i +ei
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Step 7: Calculate the predicted u-scores 1,

u; =b,;f(t;) +by;

Step 8: Determine the loading vectors p; and q;

T Xit;
1
YiTﬁl
.- aATa
u; u

Step 9: Deflate the matrices

X =X; -t;p{
Yia=Y, _ﬁiqiT

Step 10: Repeat steps 1 to 8, with i =i+ 1 if another latent variable is required

3.11 Application Studies

The algorithms given above are now tested on three data sets, two artificial data sets and a

simulation of a pH neutralization process.

3.11.1 Example 1

In this example, data from a non-linear function described by Cherkassky et al., (1996) and
also used by Baffi et al., (1999(a)) forms the basis of study. The function has four
uncorrelated random inputs which are uniformly distributed in the interval [-0.25 0.25]. The

single output variable is related to the input variables as:

y = exp(2x, sin(nx 4)) + sin(X X 3) (3.46)
x; €[-0.25 0.25] for i=1,23,4
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A data set of 800 samples was generated and was divided into a training data set (600
samples) and a validation data set (200 samples). After the training data set was auto-scaled,
the NLPLS1 and NLPLS2 algorithms with a quadratic function as the inner non-linear
function were applied to identify non-linear models. The performance of the NLPLS1 and
NLPLS2 algorithms on the training data set was assessed using the percentage contribution of
each latent variable and their cumulative percentage contribution to the predictor and
response matrices. Furthermore, the Mean Square Prediction Error (MSPE) for the training
and validation data sets were also calculated. The quantitative performance of the NLPLSI
and NLPLS2 algorithms, as evaluated by these performance indices is summarized in Tables
3.3 and 3.4 respectively. The qualitative performance of the model is shown in Figures 3.1
and 3.3 in term of plots of the measured and predicted values of the response using four latent
variables. The corresponding time series plots of the residuals for the two algorithms are
shown in Figures 3.2 and 3.4 respectively. To compare the performance of NLPLS1 and
NLPLS2, the performances of linear PLS, non-linear PLS algorithm of Wold et al., (1989)
and non-linear PLS algorithm of Baffi et al., (1999(a)) using a quadratic non-linearity are

summarized in Tables 3.5, 3.6 and 3.7 respectively.

Table 3.3: Performance of NLPLS1 algorithm (example 1)

No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV X) explained Y) explained Data ) Data)

(X) (Y)

1 26.56 26.56 76.29 76.29 0.2367 0.2228

2 24.17 50.73 16.68 92.98 0.0701 0.0692

3 25.80 76.53 1.90 94.88 0.0511 0.0513

4 23.47 100.00 0.43 95.31 0.0469 0.0475
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Table 3.4: Performance of NLPLS?2 aigorithm (example 1)

No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV X) explained (Y) explained Data ) Data)
X) (Y)
1 26.37 26.37 77.89 77.89 0.2207 0.2093
2 24.02 50.39 15.97 93.86 0.0613 0.0609
3 26.00 76.39 1.90 95.76 0.0423 0.0457
4 23.61 100.00 0.43 96.19 0.0380 0.0392
Table 3.5: Performance of linear PLS algorithm (example 1)
No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV X) explained Y) explained Data ) Data)
X) (Y)
1 27.40 27.40 0.52 0.52 1.07 0.8493
2 25.82 53.22 0.00 0.52 1.07 0.8493
3 22.52 75.74 0.00 0.52 1.07 0.8493
4 24.26 100.00 0.00 0.52 1.07 0.8493
Table 3.6: Performance of Wold et al., (1989) algorithm (example 1)
No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance (Training | (Validation
LV X) explained Y) explained Data ) Data)
X) (Y)
1 26.72 26.72 74.22 74.22 0.2574 0.2437
2 24.48 51.20 2.65 76.87 0.2309 0.2424
3 25.10 76.30 490 81.77 0.1819 0.1892
4 23.70 100.0 0.63 82.40 0.1757 0.1856

81




Table 3.7: Performance of Baffi et al., (1999(a)) algorithm (example 1)

No. % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance (Training | (Validation
LV (X) explained Y) explained Data ) Data)
(X) (Y)

1 26.26 26.26 78.05 78.05 0.2091 0.2082

2 23.93 50.19 15.80 93.86 0.0613 0.0608

3 26.10 76.33 1.91 95.77 0.0423 0.0457

4 23.67 100.0 0.41 96.17 0.0382 0.0392

—— Measured
—— Predicted

Figure 3.1: Prediction of response variable using NLPLS1 algorithm (example 1)
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Figure 3.2: Time series plot of the residuals using NLPLS1 algorithm (example 1)

—— Measured
I Predicted

Figure 3.3: Prediction of response variable using NLPLS2 algorithm (example 1)
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Figure 3.4: Time series plot of the residuals using NLPLS2 algorithm (example 1)

The following observations can be made by comparing the performances of linear PLS, the
algorithm of Wold et al., (1989), the algorithm of Baffi et al., (1999(a)) and the NLPLS1 and
NLPLS?2 algorithms.

1. The percentage variance of X explained is approximately equal for each of the four
latent variables. This is true for all algorithms considered. The reason for this is that
the four input variables are uncorrelated and each of them is uniformly distributed
over the same interval. Each of the four directions in the input space, therefore
account for equal variance.

2. All four latent variables in linear PLS explain only 0.52% of the variance of Y, and
therefore, is unable to model the data. This is understandable as the response
variable, y, is a sum of an exponential and sine function of the input variables and
therefore a non-linear model is required to explain y as a function of the input
variables

3. The application of the algorithm of Wold et al., (1989) with a quadratic inner non-
linearity improves the model. The percentage variance of Y explained by the first
latent variable, for example, increases from 0.52% in the linear PLS model to

74.22%. The second and higher order latent variables, however, do not contribute



significantly to the variance of Y. The improvement in the model identified by the
algorithm of Wold et al., (1989) from that identified by linear PLS is also reflected in
the lower values of mean square prediction error (MSPE) for both the training and
validation data sets.

The NLPLS1 and NLPLS2 algorithms with a quadratic inner non-linearity further
improve the non-linear model for the data. Application of NLPLS1 and NLPLS2
algorithms not only increases (by about 4% from the algorithm of Wold et al.,
(1989)) the contribution of the first latent variable to Y, but the contribution of the
second latent variable is increased by a significant amount. If a non-linear PLS model
is built using two latent variables, then the resulting MSPE for the training and
validation data sets are much lower for the model identified using NLPLS1 and
NLPLS?2 algorithms than that identified by the algorithm of Wold et al., (1989). The
poor performance of the algorithm of Wold et al.,, (1989) can be explained, as
mentioned in section 3.7, by the fact that while maximizing the covariance between
the u-scores and the non-linearly transformed t-scores, all the parameters, in
particular the non-linear function parameters, that influence this covariance function
are not optimized. In the NLPLS1 and NLPLS2 algorithms, on the other hand, all the
parameters (outer weights and inner model parameters) are determined such that the
non-linear covariance function is maximized leading to better performance of the

algorithms.

. NLPLS2 performs slightly better than NLPLS1. This may be due to the fact that a

unit norm constraint on the non-linear function parameter in NLPLS1 is more severe
than the constraint of the non-linearly transformed t-scores having the same norm as
that of the t-scores in NLPLS2.

The algorithm of Baffi et al., (1999(a)) performs better than all the other algorithms
considered in terms of percentage variance of Y explained for a given set of latent
variables and mean square prediction error on the training and validation data sets for
this algorithm. The performance of the NLPLS2 algorithm is very close to this
algorithm. The first latent variable, for example, in the algorithm of Baffi et al.,
(1999(a)) explains 78.05 % variance of Y which is slightly higher than the
corresponding value (77.89 %) explained in the NLPLS2 algorithm. The second and
higher latent variables, however, explains the same amount of variance of Y in the
NLPLS2 and the algorithm of Baffi et al., (1999(a)). The better predictive capability
of the algorithm of Baffi et al., (1999(a)) can be explained from the fact that
parameters of the model in this algorithm are determined so as to minimize the

prediction error in the response variables.
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3.11.2 Example 2

In this example the input matrix X is assumed to have a latent structure, that is first latent
variables are generated and then the measured variables are generated as a function of the

latent variables:

where t;, t, and t; contain one thousand independent observations drawn from a normal

distribution with zero mean and unit variance. The three columns, t;, are mutually

independent and the vectors p,, p, and p; form a set of orthonormal vectors in R°. The

matrix X, therefore, comprises five (measured) variables and 1000 data points. An augmented

matrix Xy of X is generated by including the squares and cross terms of the original X so

that Xgyo is of order (1000x20). A regression matrix B of order (20%3) is now

generated and 3 output variables with 1000 observations are calculated using the augmented

matrix as follows:

Y = Xg0B (3.48)

The data set is divided into a training data set consisting of 800 data points that is used for
model identification with the remaining 200 data points forming the data set for model

validation.

After the training data set is mean centred and scaled to unit variance, the NLPLS1 and
NLPLS2 algorithms with a quadratic function as the inner non-linear function are applied to
identify a non-linear model for the data set. The performance of the NLPLS1 and NLPLS2
algorithms was measured using the same performance indices as in example 1. The numerical
values of the performance indices for the NLPLS1 and NLPLS2 algorithms is summarized in
Tables 3.8 and 3.9 respectively and Figures 3.5 and 3.7 show the prediction of the response
variables using the NLPLS1 and NLPLS2 algorithms respectively with five latent variables
retained in the model. The corresponding time series plots of the residuals for the two

algorithms are shown in Figures 3.6 and 3.8 respectively. The performances of linear PLS,
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algorithm of Wold et al., (1989) and the algorithm of Baffi et al., (1999(a)) are given in
Tables 3.9, 3.10 and 3.11 respectively.

1.

All four algorithms require three latent variables to explain 100% variance of X. This
is because there are three latent variables that generate the matrix X.

NLPLS! and NLPLS2 algorithms explain a higher percentage of variance of Y for a
given set of latent variables. For example, for two latent variables, the percentage
variance of Y explained for the NLPLS1 and NLPLS2 algorithms are approximately
80% and 85% respectively whereas the corresponding figures for linear PLS and the
algorithm of Wold et al., (1989) are approximately 6% and 57% respectively.
NLPLS1 and NLPLS2 give lower values of mean squares prediction errors for the
training and validation data sets. For two latent variables, for example, the MSPE on
the validation data set for the NLPLS1 and NLPLS2 algorithms are 0.65 and 0.49
respectively and the corresponding figures for linear PLS and the algorithm of Wold
et al., (1989) are 3.03 and 1.33 respectively. The reasons for better performance of
NLPLS1 and NLPLS2 as compared to the algorithm of Wold et al., (1989) are as
given in example 1.

Also as noted in example 1, NLPLS2 performs slightly better than NLPLS]1 in terms
of prediction ability of response variables.

As far as the prediction ability of response variables is concerned, the algorithm of
Baffi et al., (1999(a)) is the best among all the algorithms considered. However,
NLPLS1 and NLPLS2 (and also the linear PLS and the algorithm of Wold et al.,
(1989)) performs better than Baffi et al., (19999(a))’s algorithm in terms of
approximation ability of input variables (X) for a given set of latent variables. For
example, the percentage variance of X explained by two latent variables in the
NLPLS]1 algorithm is 90.18 % which is higher than the corresponding value (77.86
%) in the Baffi et al., (1999(a)) algorithm. This can be explained by the fact that the
latent variables in the Baffi et al., (1999(a)) algorithm are determined so as to
minimize the prediction error of response variables without any consideration for the
approximation of input variables. The latent variables in the NLPLS1 and NLPLS2
algorithms on the other hand are determined so as to maximize the covariance
between the t-and u-scores resulting in a compromise between the predictive ability
of response variables and the approximation of input variables. Since the compromise
between the prediction of response variables and the approximation of input
variables is at the heart of conventional linear PLS algorithm, this example illustrates
that NLPLS1 and NLPLS2 represent the ‘true’ non-linear extension of linear PLS.
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Table 3.8: Performance of NLPLS1 algorithm (example 2)

No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV X) explained (Y) explained Data ) Data)
X) (Y)
1 54.02 54.02 45.24 45.58 1.6305 1.4240
2 36.16 90.18 34.95 80.19 0.6552 0.6140
3 9.82 100.00 2.33 82.53 0.5772 0.5583
4 0.00 100.00 0.01 82.54 0.5719 0.5583
5 0.00 100.00 0.00 82.54 0.5718 0.5583
Table 3.9: Performance of NLPLS2 algorithm (example 2)
No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV X) explained (Y) explained Data ) Data)
X) (Y)
1 53.67 53.67 46.64 46.64 1.5988 1.3875
2 28.50 82.17 38.38 85.02 0.4488 0.4925
3 17.83 100.00 2.31 87.33 0.3796 0.4115
4 0.00 100.00 0.09 87.42 0.3769 0.4112
5 0.00 100.00 0.00 87.42 0.3767 0.4109
Table 3.10: Performance of linear PLS algorithm (example 2)
No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV (X) explained (Y) explained Data ) Data)
X) Y)
1 54.01 54.01 4.51 4.51 2.8512 3.0559
2 31.23 85.25 1.45 5.95 2.8054 3.0312
3 14.75 100.00 0.05 6.01 2.8037 3.0340
4 0.00 100.00 0.00 6.01 2.8037 3.0133
5 0.00 100.00 0.00 6.01 2.8037 3.0133
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Table 3.11: Performance of Wold et al., (1989) algorithm (example 2)

No. % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance (Training | (Validation
LV X) explained (Y) explained Data ) Data)
(X) (Y)
1 54.3448 54.3448 42.9243 42.943 1.7101 1.5509
2 31.4290 85.7738 14.2637 57.1879 1.2828 1.3390
3 14.2262 100.00 8.3476 65.5356 1.0326 1.2836
4 0.00 100.0 0.3112 65.8466 1.0233 1.2798
5 0.00 100.0 0.0588 65.9096 1.0216 1.2744
Table 3.12: Performance of Baffi et al., (1999(a)) algorithm (example 2)
No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV (X) explained Y) explained Data ) Data)
X) (Y)
1 53.01 53.01 47.12 47.12 1.5845 1.3632
2 24.85 77.86 41.62 88.73 0.3376 0.3923
3 22.13 99.99 2.79 91.52 0.2540 0.2873
4 0.01 100.0 0.06 91.59 0.2521 0.2882
5 0.00 100.0 0.01 91.59 0.2519 0.2890
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—— Measured
e Predicted

Figure 3.5: Prediction of response variables using NLPLS1 algorithm (example 2).

Figure 3.6: Time series plots of the residuals using NLPLS1 algorithm (example 2)



—— Measured
—— Predicted

Figure 3.7: Prediction of Response variables using NLPLS2 algorithm (example 2).

Figure 3.8: Time series plots of the residuals using NLPLS2 algorithm (example 2)
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3.11.3 Example 3: pH neutralization process

In the third and final application, data from a pH neutralization process is considered. This
process has been used as a benchmark process for testing the performance of different control
algorithms (Henson and Seborg, 1994; Johansen and Foss, 1997). The process consists of a
tank where a strong acid (nitric acid) is neutralized by a strong base such as sodium
hydroxide. A dynamic model of the process was developed by Henson and Seborg (1994). To
collect steady state data, the flow rates are kept fixed until the process reaches steady state.
Three flow rates Q;, Q; and Q; are used as the predictor variables and the three variables
namely pH value, level of tank and the output flow rate are used as the response variables. A
data set consisting of 1000 samples is collected and divided into a training data set (800
samples) and a validation data set (200 samples). The performance of the NLPLS1 and
NLPLS?2 algorithms is given in Tables 3.13 and 3.14 respectively. Figures 3.9 and 3.11 show
the prediction of the response variables using two latent variables and the corresponding
residuals are shown in Figures 3.10 and 3.12 respectively. The performances of linear PLS,
the algorithm of Wold et al., (1989) and the algorithm of Baffi et al., (1999(a)) are given in
Tables 3.15, 3.16 and 3.17 respectively.

Table 3.13: Performance of NLPLS1 algorithm (example 3)

No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV (X) explained (Y) explained Data ) Data)
X) Y)
1 35.79 35.79 63.46 63.46 1.1348 1.1720
2 31.00 66.79 26.97 90.43 0.2061 0.1923
3 33.21 100.00 0.13 90.56 0.2060 0.1923
Table 3.14: Performance of NLPLS2 algorithm (example 3)
No. % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV X) explained Y) explained Data ) Data)
X) (Y)
1 35.712 35.72 65.20 65.20 1.0239 1.0632
2 31.03 66.75 28.60 93.82 0.1833 0.1615
3 33.25 100.00 0.11 93.93 0.1804 0.1586
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Table 3.15: Performance of linear PLS algorithm (example 3)

No. % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance (Training | (Validation
LV X) explained (Y) explained Data ) Data)
X) Y)
1 35.80 35.80 44.22 44.22 1.7162 1.7443
2 30.97 66.77 2.65 46.87 1.7053 1.7231
3 33.23 100.00 4.90 51.77 1.6982 1.7187
Table 3.16: Performance of Wold et al., (1989) algorithm (example 3)
No. % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance | (Training | (Validation
LV (xX) explained Y) explained Data ) Data)
X) (Y)
1 30.96 30.96 28.05 28.05 2.1558 1.7511
2 33.69 64.65 1.56 29.61 2.1088 1.7031
3 35.35 100.00 58.93 88.54 0.3428 0.2856
Table 3.17: Performance of Baffi et al., (1999(a)) algorithm (example 3)
No. | % Variance | Cumulative | % Variance | Cumulative MSPE MSPE
of explained | % variance | explained | % variance (Training | (Validation
LV X) explained Y) explained Data ) Data)
X) (Y)
1 35.74 35.74 65.89 65.89 1.0220 1.0616
2 30.83 66.56 28.11 94.00 0.1799 0.1579
3 33.44 100.00 0.00 94.00 0.1798 0.1580
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—— Measured
—— Predicted

Figure 3.9: Prediction of response variables using NLPLSI algorithm (example 3)

Figure 3.10: Time series plots of the residuals using NLPLS1 algorithm (example 3)



———

—— Measured
—— Predicted

Figure 3.11: Prediction of response variables using NLPLS2 algorithm (example 3)

Figure 3.12: Time series plot of the residuals using NLPLS2 algorithm (example 3)
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The following conclusions can be drawn from the above results:

1. The percentage variance of Y explained by the NLPLS1 and NLPLS2 algorithms on
the training data set is higher than the linear PLS and the Wold et al., (1989)
algorithm for a given set of latent variables.

2. The mean square prediction error (MSPE) for NLPLS1 and NLPLS2 algorithms is
lower than the corresponding values of MSPE for linear PLS and Wold et al., (1989)
algorithms.

3. NLPLS2 performs slightly better than NLPLSI1 algorithm in terms of predictive
ability of response variables.

4. The algorithm of Baffi et al, (1999(a)) is the best among all the algorithms

considered in terms of prediction ability.
The reasons for these observations are the same as in example 1 and example 2.
3.12 Conclusions

A number of non-linear extensions of PLS have been proposed in the literature. In this
chapter, following a review of the existing algorithms, it is proven that the error based non-
linear PLS algorithm proposed by Baffi et al., (1999(a)) maximizes the accuracy with which
the response variables are predicted and is, therefore, a non-linear extension of reduced rank
regression. It is argued that a ‘true’ non-linear PLS algorithm should be based on the
maximization of the ‘non-linear covariance’ function so as to preserve the spirit of linear
PLS. After careful investigation, it is proven that the algorithm of Wold et al., (1989) makes
attempts to achieve this objective but has several limitations. To overcome these limitations,
two non-linear PLS algorithms which maximize the non-linear covariance function are
proposed. The performance of these algorithms is compared and contrasted with linear PLS
and the Wold et al., (1989) algorithm. In addition, all the non-linear PLS algorithms in the
literature have been classified into three categories namely covariance based, quick and dirty

and error based depending on the underlying objective functions.

Having incorporated the non-linear feature within the conventional linear PLS algorithm, the
next step is to take into consideration the process dynamics so that a dynamic (and linear)

model can be identified. This is the focus of the next chapter.



CHAPTER 4
Dynamic Partial Least Squares

4.1. Introduction

Partial Least Squares assumes that a linear and static (algebraic) relationship exists between
the variables. In a typical process, however, the data collected for building the empirical
model may exhibit serial correlation and therefore, the application of PLS will be
inappropriate. Also if the model is to be used for process control then it is essential that
process dynamics are included. A number of approaches have been proposed to modify PLS
to take into consideration the dynamics of the process. One possible way is to first apply
static PLS to the input matrices X and Y and then fit a dynamic relationship between the
scores. This approach, which is investigated in this chapter, was used by Lakshminarayan et
al., (1997) to identify and control a multivariate process. This approach, however, has the
disadvantage that the weights of the outer relationship in the PLS model are not determined
utilising the dynamics of the process. The contribution of this chapter is to propose a method
that fully integrates a dynamic model within the PLS framework and determine all the
parameters (outer weights and inner dynamic model parameters) of the PLS model as dictated

by the dynamics of the process.

4.2. Literature Review

There have been two main approaches to introducing the dynamics of a process into the basic
PLS algorithm. One approach is to include lagged values of the input and /or output variables
in the input data matrix X and then use the basic PLS algorithm to identify the dynamic
relationship between the input and output matrices. This method was adopted by Ricker
(1988), but only the lagged values of input variables were included in the input matrix to
identify the impulse response of a model. Qin and McAvoy (1992(a)) used lagged values of
both input and output variables to identify a multivariate Autoregressive Moving Average
(ARMA) model. Mathematically, this method can be denoted as:

Y= Xdy,,den +E (4.1)
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where xdyn is a matrix consisting of measurements of the input variables and lagged values
of the input and/or output variables and den is the regression matrix relating the matrix

Xdyn to the output matrix Y.

Although simpler to understand, this method has the disadvantage that through the inclusion
of lagged values of the variables in the input matrix, the dimensionality of the input matrix
becomes extremely large, particularly, for Multi-Input and Multi-Output (MIMO) systems in
which the number of input and/or output variables is large, a direct consequence of which is

an increase in computational burden.

To overcome the need to include lagged values of the input and/or output variables, Kaspar
and Ray (1992; 1993(a)) proposed a method whereby the dynamics of the data are taken care
of by first filtering the data using a suitable dynamic filter. Their argument was that in this
way, the dynamics of the data are removed and hence the relationship between the output of
the filter and the output variables is algebraic. The filter selected was either based on prior
process knowledge or was designed by optimizing an objective function. The approach was
applied for the identification and design of controllers for a simulated process (Kaspar and
Ray, 1993(a))

Another approach, investigated in this chapter, is where the inner relationship of the basic
PLS algorithm is modified (Lakshminarayan et al., 1997). Instead of using a static
relationship between the scores, the relationship between the scores is replaced by an
appropriate dynamic relationship. The methodology involves first performing PLS on the
input and output data matrices without including lagged values of the input and output

variables in the input matrix and then fitting a dynamic relationship between the resulting

scores. Mathematically, if t; and u; (i=12..A) denote the latent variables obtained by
applying PLS to matrices X and Y and G(t;) denotes the dynamic model fitted between the

latent variables t; and u;, then the dynamic PLS decomposes the matrix Y as follows:

Y= Gl(tl)qlT "'Gz(tz)‘lzT +.. 'GA(tA)qAT +E (825

where q; (i =12..A) are the loading vectors
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The main advantage of this approach is that the problem of identifying a MIMO model can be
reduced to the problem of identifying multiple SISO (Single Input Single Output) models.
This strategy, therefore, realises the use of the wealth of identification and control algorithms
that have been developed for SISO systems. This is, particularly useful for non-linear
(dynamic) systems since for example, the structure selection and training of a MIMO neural
network based non-linear model is much more difficult than for (a series of) SISO models.
This approach was successfully used by Lakshminarayan et al., (1997) for identifying and
controlling a multivariate process. However, this method has one shortcoming; the weights in
the outer relationship w; and q; are not determined by the dynamics of the process. The
approach, therefore, may be suboptimal in terms of the predictive ability of the model. This
is, in particular, important for processes that have fast dynamics. In this chapter a method for
determining the outer weights is proposed so that the dynamic relationship between the
scores can be fully integrated within the PLS model. It should be noted, however that a
general limitation of fitting an inner dynamic model between the scores is that it is difficult to
determine the number of delays and the magnitude of the serial correlation of the scores from
knowledge of the delays and serial correlation of measured variables. Each input variable, for
example, may have a different autocorrelation function and since a latent variable is the
weighted sum of the input variables, it may be difficult to determine the autocorrelation
function of the latent variable given the autocorrelation function of the input variables. This
makes it difficult to determine the order of the inner dynamic scores model from the serial

correlation of the measured variables.

4.3. Modified Dynamic Partial Least Squares

Let x(n) and y(n) denote the n™ sample of the input and output variables respectively so that

the latent variables for the same sampling instant are given by:

t,(n) = x@) Tw, (0) )

and

u,(n) = y() "v,(n) (4.5)



where w (n) and v,(n) are the outer weights at sampling instant n. Let the ARX (p, q, d)

model between t;and u; be given by:

u(n)=a,(nu,(n-1)+a,(mu,(n-2)+ ... + ay(nu,(n-p)+ (4.6)
bo(n)t;(n—=d)+by(n)t;(n-d-1)+...+by(n)t;(n—d-q)+e,(n)

with the prediction of the u-scores from equation (4.6) given as:

d,(n) =a,(u,(n - 1) +a,u,(n-2)+ ... + a,(n)u,(n—p)+ 4.7)
bo(n)t;(n—d)+by(n)t;(n—d-1)+...+b (mt,(n -d-q)

Equation (4.7) can be re-written as:
i(n) = ¢ (m)0,(n) (4
where

@,m)=[u,(n-1) u,(n-2)..u,(n-p)t,(n—d) t,a-d-1)..t,n-d-q)]7 (9
0,(n) = [a,(n) a,(n) ..a,(n) by(n) by()...b,m)]"

To integrate the ARX model within the PLS framework, the weight vectors w,(n),v,(n)
and the ARX model parameter vector 0,(n) are determined such that average of the square

prediction error, J is a minimum:
1=Ef?m)}=Efu,m)- §,@)} @10

Taking the instantaneous value e;(n) as the estimate of E{e,2 (n)} for the on-line

optimization of the objective function (Widrow, 1985), the derivatives can be computed as

follows:
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& i @.11)
__aai ) =-2(e;(n)u,(n -1)) . {%ldo

oJ : 1=01...
5@~ e -d-i) j=0l.-4q

From equation (4.11), the derivative of the objective function with respect to the parameter

vector 0, can be written as:

al 4.12
=) )
Also
d) ( de,(n )J (4.13)
aw,(n) ow (n)
e de,(n)
v® 2("‘(“) av.(n))
Now
de,(n) i 3(u,(n)—ﬁ|(n)) ik 8ﬁl(n) (4.14)
ow (n) ow(n) ow,(n)
de,(n) A d(uy(n) - 0,(n)) = i) ou,(n)
dv,(n) ov,(n) ov,(n)

Equation (4.14) requires the computation of the differential of the predicted u-scores with

respect to the outer weight vectors. This can be computed as follows. From equation (4.7):

%, _ tn-d) o @-d-1) ot,(n—d -2) 4.15)
S R an T e
dt;(n-d-q)
.+bq(n) an(n)
where
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du,(n—i) . (4.16)
————==0 fori=|,2,...
ow,(n) P

To compute the differential of the predicted u-scores with respect to the present weight

vector w(n), the differentials of the past scores t;(n —i) with respect to the present weight
vector w,(n) require to be computed. It is important to note that the past scores also depend
on the present weight vector w,(n). This is because the past scores t(n—1i) (i=12...q)
depend on the past weight vectors w;(n —i) which in turn are related to the present weight

vector w,(n) through the recursive weight updating equation (4.20).

To compute the differentials in equation (4.15), the following approximation is used. If the
learning rate n is small, w;(n)=w,(n-1)...~ w;(n—q). This assumption is
particularly justified where the order q (and p) of the ARX model is small. Introducing this

assumption into equation (4.14) gives:

% ~ °(“)"“—_§:v'.(?n_-dl)) +b,(n)————a:9'v(vr:(;d_;)l) + bz(n)——a‘a'v‘v“l(‘nd_‘z)z’ o B
.ot b(n) atalv(:(;d_ q;l)
From equation (4.4):
| %—Q=x(n—d—i) fori=01,2,...q 529
Now substituting this back into equation (4.14) gives:
o, (4.19)

o ~ by(n)x(n —d) +b;() x(n —d - 1) +...+ by (n) x(n -d - q)

Similarly
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6va:i(ln) ~ a,(n) y(n-1) +a,(n) y(n-2) +...+a,(n) y(n-q) o

Using equations (4.13) (4.16) and (4.17) in equation (4.12):

aWanJ(n) == (&y(n) (by(n) x(n —d) + b;(n) x(n —=d ~1) +...+ by(n) x(n —d - q)) o
avalin) == (&) (y()-a,(n)y(n-1)-a,(m) y(n -2) -...—a,(n) y(n - p))

Once the differentials of the objective function are known, the parameters 0,,w,,v, can be

updated using the gradient descent rule:

4.22
01 (n+1)=6,(n)—naoLG) ( )
1
w(+) = wy(m) -7 aw‘”(n)
1
v,(0+) = v.(n)—na%)
1

where 1) is the learning rate and the gradients are given in equations (4.21) and (4.12).

4.3.1 Transfer Function and Prediction

To find the transfer function for the first set of latent variables, the Z-Transform (Oppenheim
et al., 1989) is applied to both sides of equation (4.7):

U, =(a,m)z" +a,m)z” +. . .a,m)z" )U (2) + (4.23)
(bo(m)z +by(n)z™ 4 +.. b @z " T,(2)

where 01(2), U,(z) and T;(z) denote the Z-transform of G;(n), u,(n)and t,(n) respectively.
Once the parameters a; and b; of the ARX model have converged, they are independent of

time and therefore, the time index n in equation (4.23) can be dropped. Denoting
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A@=a,z" +a,z7 +..a,27 (4.24)

B(@)=b,z¢ +b,z*" +..bz*"
then, equation (4.23) can be re-written as:
01”(2) - A,(2)U,(2) +B,(2)T|(2) (4.25)

It should be noted from equation (4.25) that to predict the u-score at sampling time n, the past
scores u,(n- j) forj=1,2...p and t,(n-d -1i) for i =0,1,2,...q are required. These scores
in turn require the past outputs y(n - j) and inputs x(n—d —1) to be measured on-line. In
some processes, however, measurements of the output variables are not available on-line and
it would, therefore, be useful if only past values of the inputs x(n —d —1) and hence past t-
scores t,(n—d -1), are used to predict the u-scores. This can be done if the past predicted

u-scores are used instead of the actual u-scores in equation (4.25). Replacing U,(z) in

equation by ﬁ, (z), the transfer function between the latent variables is given by:

__Bi(2) (4.26)
e T |

Once the u-scores has been predicted, the prediction of the output variables y can be achieved

by finding the loading vector q, given by:

YTa, @2
| Buitr, >
uw

where 1, is a vector containing the predictions of the u-scores for all the observations. The

prediction \A(l of Y is thus given by:

Y=iq' (4.28)
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4.3.2 Computation of More than One Latent Variable

The second set of latent variables can be obtained by repeating the above procedure on the

deflated matrices computed as follows:

T T\ (4.29)
X, =[ "Ti]x

6t
Y2=Y'Y

Higher latent variables can be computed similarly.

4.4 Summary of the Algorithm

Given: A matrix X of order NxK, and Y of order NxM
Autoscale each variable of X and Y

Step 1: Initialize the weight vectors w,,V,, and the parameter vector 0, to random values.

Also
chose suitable values for the inner ARX model order, p, q, and d.

Step 2: Compute at time n

t,(n) =x(n) Tw,(n)

uy () = y()"v,(n)
Uy(n)=a;(mu(n-N+a,(nu(n-2)+ ... + a,(nu;(n-p)+
bo(n)u,(n-d)+b(mt,(n-d-1)+...+b (n)t;(n-d-q)

e;(n)=u,(n)-10,(n)

2L = e @)

1
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aJ
ow 1(n)
0J

g ot (e,(n) (y(n)-a,(n)y(n -1)-a,(n)y(n-2)-...—a,(n) y(n - p))

=—(e;(n)(by(n)x(n—=d)+b;(n)x(n-d-1) +...+ bg(n) x(n- d-q))

Step 3: Update the parameters

0, (a+) = 0,(n)—na%n)
1
w, () = wy (@) —n avfj(n)
1
v, (a+) = v.(n)—n-ava—im
1

Step 4: Repeat steps 2 and 3 for all sampling times n =1,2...N.
Step 5: Repeat steps 2, 3 and 4 until convergence.
Step 6: Compute t-score t; = Xw,

Step 7: Predict u-score at each time:

dy(n) =a,(nuy(n-1)+a,(mu;(n-2)+ ... + a (nu,(n-p)+
bo(n)u;(n-d)+b,(n)t,(n-d-1)+.. 4+ bg(mty(n -d-q)

and store all predictions in vector U,

Step 8: Determine the loading vectors

X YTa,
Py Wt

t'lrtl a

Step 9: Deflate the input and output matrices
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X=X-t,p/
Y=Y-igq/

Step 10: Validate the inner model on the validation data set. Change the values for the inner
model order (p, q, d) and repeat steps 1 to 9. Select the best model order that

explains maximal variance of the response variables for the validation data set.

Step 11: If additional latent variables are required, repeat steps 1 to 10 on the deflated

matrices computed in step 9.
4.5 Simulation Studies

In this section, the proposed method is applied to identify a dynamic PLS model, first for

data generated from an artificial system and then for a copolymerization process.
4.5.1 Example 1: Artificial data set

Consider a hypothetical dynamic process having two inputs and two outputs, described by the

following state and measurement equations (Ku et al., 1995).

| OB11 0226) 0193 o689 ) (430)
Y=0477 0415 | | 0320 0.749

@ (0.118 0.191'“(n l)+'1.o 2.0 (a-1)

n) = - x(n-

0847 0264 30 4.0

y(n) = u(n) + h(n)

where u,xand y € R? are the state, input and output vectors respectively; e and h are zero
mean Gaussian random vectors consisting of two independent random variables. The

variance of each random variable in e is unity and for h is 0.1.
A data set consisting of 1500 samples is generated and divided into two sets. The first set

(training data set) comprises 1000 samples while the second set (validation data set)

comprises 500 samples. After the training data set is auto-scaled, the algorithm described in
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section 4.5 is applied with an ARX (2, 1, 1) model fitted to each pair scores. The order of
ARX (2, 1, 1) was determined by exploring the predictive capability first on the training data
set and then validated on the validation data set. While the lower order models performed
poorly, higher order models did not show significant increase in terms of their ability to
predict. The percentage of variance captured by each latent variable is listed in Table 4.1. A
PLS model with 2 latent variables is then built.

Table 4.1: Percent variance captured by PLS model (example 1)

No. % Variation Cumulative % % Variation Cumulative %
of explained variance explained explained variance explained
LV (X) (X) (Y) (Y)

1 50.71 50.71 57.04 57.04

2 49.29 100.00 39.41 96.45

The transfer functions H;(z) (between t;andu,)and H,(z) (between t, and u, ) are:

z7' —0.743727 (4.31)
H,(z) = 3 =2
1-0.7876z"' +0.0111z
0.0259z7" +0.177122
H,(z) =

1-0.1792z7" +0.1795272

Plots of the predictions for the two outputs y, and y, for the model validation data set are
shown in Figures 4.1 and 4.2 respectively. The lower panel in each of these figures show a
time series plot of the residuals. To test if the model is a good fit to the data, a bivariate plot
of the residuals versus fitted values for the training data set for each of the two outputs is
shown in Figure 4.3. The figure shows that no more ‘information’ is left in the residuals and

therefore the model is a good fit to the data.

The performance of the algorithm (on the model validation data set) is quantitatively

evaluated by two statistics namely the R-statistic, which is defined as the ratio of the Sum of

Squares (SSQ) of the prediction error (for each individual output) to the SSQ of the measured

signal:

R = SSQ( Prediction Error) (4.32)
SSQ(Measured (original)Signal)
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and the mean square error (MSE), which is defined as:

SSQ(Prediction Error)
Number of samples

MSE = (4.33)

The idea behind defining these two statistics is that while the MSE measures the absolute
value of the variance in the error, the R-statistic measures the variance in the error expressed

as a fraction of the variance of the original signal.

The values of the statistics, R and MSE, for each of the two outputs on the validation data set
are given in Table 4.2. To investigate the impact of weight updating, inner dynamic models
having the same order as above were built but this time without the outer weights being
updated (Lakshminarayan et al., 1997). For comparison, the values of R and MSE for this

case are also given in Table 4.2

Table 4.2: Summary of values of the statistics, R and MSE, (example 1)

Method R MSE

Output y, Output y, Output y, | Output y,
Integrated dynamic PLS 0.0279 0.0304 0.0360 0.0275
No-weight updating 0.1696 0.1379 0.1539 0.1228

It is seen from Table 4.2 that updating the weights in the PLS model according to the

dynamics of the process has a considerable impact on model performance. For example, the
value of R for the output y, when the outer weights are determined by the dynamics of
process is 0.1696. This means that about 17 % of the variance in y, is left unexplained by

the model. This figure reduces to about 2.8 % when the outer weights are used to capture the
dynamics along with the inner model parameters. The higher predictive capability of the

dynamic PLS model when the outer weights are updated is also reflected in the lower values

of the mean square errors. The MSE of output y, when the outer weights are not updated is

0.1539 which drops to 0.0360 when the weights are updated. Similar conclusions about Yy,

can also be made.
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—— Original
—— Predicted

Figure 4.1: Time series plots of (a) the original and predicted values for the first output y,

and (b) the residuals (example 1)

—— Original
—— Predicted

Figure 4.2: Time series plots of (a) the original and predicted values for the second output
¥y (b) the residuals (example 1)
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Figure 4.3: Bivariate plots of residuals versus fitted values for the two outputs (example 1)

4.5.2 Example 2: Co-polymerization Reactor

The integrated dynamic PLS model was finally applied to a comprehensive simulation of a

continuous stirred tank copolymerization reactor (Achilias & Kiparssides, 1994). In the

reactor monomers methyl methacrylate and vinyl acetate are continuously added to a

perfectly mixed tank along with initiator azobisiobutyronitrile, solvent benzene, and chain

transfer agent acetaldehyde and inhibitor m-dinitrobenzene. The process consists of four

inputs
1.
2.
3.
4.

Feed concentration of monomer methyl methacrylate
Feed concentration of vinyl acetate

Feed concentration of chain transfer agent

Coolant temperature in the jacket

and four outputs

i

2
3
4

Reactor temperature

Polymerization rate

Composition of copolymer

Weight average molecular weight of copolymer
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A nominal data set consisting of 1500 samples was generated by exciting the process with
multi-level Pseudo Random Binary Signal (PRBS). The signal to noise ratio was set at 10 by
adding measurement noise. Of the 1500 data samples, 1000 were used to identify the
dynamic PLS model and the remaining 500 were used for model validation. After the data
was autoscaled, the integrated dynamic PLS algorithm was applied with ARX(2,1,1),
ARX(2,1,1), ARX(4,1,1) and ARX(S5,1,1) structures chosen as the inner dynamic models.
The choice of these parameters was determined as in example 1. The transfer functions

identified for the inner dynamic models are:

-0.017z7" +0.2529z72 (4.34)

H,(z) =

1-0.7564z7" —=0.0361z2
0.2927z7" +0.0951z2

H,(2)= = 3

1-0.5450z"" —=0.1502z
| 0.0077z7" +0.1221z72

Hy(2)= e 3 a3 )

1-0.4830z7" = 0.3819272 - 0.1215z° +0.0691z
0.0414z7" +0.1327272
H,(2) =

1-0.4759z7" —0.355227%2 - 0.2120z° - 0.0345z™* +0.17672"°

Table 4.3: Percent variance captured by PLS model (example 2, Co-polymerization reactor)

No. % Variation Cumulative % % Variation Cumulative %
of explained variance explained explained variance explained
LV (X) (X) (Y) (Y)

1 28.38 28.38 59.09 59.09

i 25.42 53.80 23.56 82.65

3 25.04 78.84 8.41 91.06

4 21.16 100.00 0.97 92.03

A PLS model using 3 latent variables was built based on cross-validation. Figures 4.4, 4.5,
4.6 and 4.7 show the prediction of the four outputs on the model validation data set. The
bivariate plots of the fitted values versus residuals for each of the four outputs on the training
data set are shown in Figure 4.8. The values of the R-statistic and the mean square error for
the four outputs on the validation data set are given in Table 4.4. As can be seen from Table

4.4, the conclusions derived in example 1 also hold for this example.
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Table 4.4: Summary of values R-statistic and MSE (example 2, Co-polymerization Reactor)

Method R MSE
Output | Output | Output | Output | Output | Output | Output | Output4
1 2 3 4 1 2 3
Integrated | 0.0984 | 0.0454 | 0.1220 | 0.0339 | 0.0067 | 0.0064 | 4.54E-6 | 1.96E+
dynamic 3
PLS
No 0.3388 | 0.1592 |0.3064 |0.3041 |0.0232 |0.0170 | 1.22E-5 | 2.04E+
weight 4
updating

Measured
Predicted

Figure 4.4: Time series plots of (a) the measured and predicted value of the reactor

temperature and (b) the residuals (example 2)
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—— Measured
—— Predicted

Figure 4.5: Time series plots of (a) the measured and predicted value of the polymerization
rate and (b) the residuals (example 2)

—— Measured
—— Predicted

Figure 4.6: Time series plots of (a) the measured and predicted values of the copolymer

composition and (b) the residuals (example 2)
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—— Measured
| ez Predicted

Figure 4.7: Time series plots of (a) the measured and predicted values of the weight average
molecular weight and (b) the residuals (example 2).

Figure 4.8: Bivariate plots of the residuals versus the fitted values (example 2)
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4.6 Conclusions

In this chapter a method has been proposed to integrate a dynamic model within the PLS
framework. The advantage of the method is that the task of identification of a MIMO model
reduces to multiple SISO model identifications. The method differs from that previously
proposed by Lakshminarayan et al., (1997) in that the determination of the outer weights and
the inner dynamic relationship between the scores are integrated. The advantage of the
determination of the outer weights according to the dynamics of process was illustrated using
two examples. It was shown that the prediction capability of the model increases if all the
parameters (outer weights and the inner model parameters) are determined in accordance

with the dynamics of the process.
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CHAPTER §

Review of Statistical Process Monitoring Techniques

5.1 Introduction

A major challenge facing the process industries is to consistently manufacture good quality
product. In practice, it is well known that there will be some degree of “inherent or natural”
variability in any production process. This variation, which is caused by unknown factors, is
termed common cause variation. However, other types of variability, known as “assignable
cause variability”, may occasionally be present in the process. This variability arises because
of the occurrence of some changes in normal performance e.g. machine errors, operator errors
or defective raw material. Such variability is generally large when compared to the natural
variability and represents an unacceptable level of performance in terms of the final product.
A process that is operating in the presence of assignable cause variability is said to be “out-

of-statistical control”.

To achieve tighter control over the critical process steps, and to monitor the performance of
industrial process over time to detect any systematic drift of the process from its normal
operating mode, a set of techniques are commonly employed. These techniques can be
grouped under the heading of statistical process control (SPC) (Montgomery, 1991). The idea
behind SPC is to use variables measurements in a process to detect changes in the equipment
or process. In a typical SPC scheme, variables are first measured and then either the actual
measurements or a statistic derived from them is plotted along with the associated confidence
limits that are known as the warning or action limits. The resulting representation is known as
a control chart. If the trace of the measurements or statistic lies within the confidence limits,
it indicates the process is under statistical control whilst if the point lies outside the limit, this
potentially indicates the occurrence of some abnormal events in the process, i.e. the process

is out-of-statistical-control.

SPC techniques can be divided into two categories depending on how a given set of variables
is monitored. If the variables are monitored individually without taking into consideration the
interrelationship between the variables then the scheme is termed univariate. If the given set
of variables is handled collectively, the methodology is termed as Multivariate Statistical

Process Control (MSPC). The aim of this chapter is to give a brief overview of univariate and
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multivariate monitoring schemes. But before an overview is undertaken, the statistical basis

of SPC techniques is first summarised.

5.2 Statistical Basis of Control Charts

There is a strong link between control charts and hypothesis testing. In essence, the control
chart is equivalent to a hypothesis test in which the null and alternative hypotheses are:

H,, : The process is under statistical control

H, : The process is out-of-statistical control

A point on a control chart within the control limits indicates that the process is in statistical
control and thus is equivalent to accepting the null hypothesis. A point outside the control
limit is equivalent to rejecting the null hypothesis and this indicates that the process is not in
statistical control. Similar to hypothesis testing, Type I and II errors can be defined in the
context of control charts. A Type I error occurs if the null hypothesis is rejected when it is
actually true (that is, a process is concluded to be out-of-statistical-control when it is really in
statistical control). A type Il error occurs when the null hypothesis is not rejected when it is
in fact false (that is, a process is concluded to be in statistical control when actually it is out

of statistical control)

The Type I error determines the false alarms rate. Commonly used values for Type I errors
are 0.05 and 0.01, which means that on average, 5%(1%) of samples on the control chart are
expected to lie outside the control limits even when the process is in control. The Type Il
error determines the delay (difference between the time point at which the change occurs and
the time point at which the change is detected) in detecting the change. A more useful
concept that unifies both errors is the Average Run Length (ARL). A run length is defined as
the number of observations that pass from the time at which the change has occurred until the
control chart gives a signal indicating the change. The average of run lengths is calculated
(either theoretically or empirically) to determine the ARL. The number of samples that occur
between the occurrence of a change and its detection is known as the out-of-control ARL.
Since a chart gives a signal indicating the process is out of statistical control even if the
process is in statistical control (a false alarm), the average run length between two false

alarms is known as the in-control ARL.
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It is desirable that the in-control ARL should be as high as possible (so that there are few
false alarms) whereas the out-of-control ARL should be as low as possible (so that there is
less delay in the detection of a change). Both these objectives, however, cannot be achieved
simultaneously and a trade-off between the false alarm rate and the delay is required for the
implementation of a control chart. Tighter control limits will give a small value for the out-
of-control ARL but at the expense of an increase in the number of false alarms. Conversely,
wider control limits will give fewer false alarms but at the expense of an increase in the delay

in detection of a change in the process.

5.3 Univariate Monitoring Schemes

Three univariate monitoring schemes namely Shewhart, Cumulative Sum (CUSUM) and
Exponentially Weighted Moving Average (EWMA) are now briefly described.

5.3.1 Shewhart Chart

The Shewhart chart is one of the earliest control charts and is still popular today in the
process industries. It was first introduced by Shewhart (1931) at the Bell Laboratories and by
Dudding and Jenett in Britain in 1937 (Banks, 1993). In a typical Shewhart chart for
monitoring the mean, a sample of N measurements on a quality variable are taken and the
sample mean is plotted on the chart along with the confidence limits. A typical Shewhart
control chart, with 95% and 99% confidence limits, is shown in Figure 5.1, where the sample

mean for 100 batches, each consisting of 20 samples, is plotted.

Figure 5.1: A typical Shewhart chart
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A Shewhart chart for the standard deviation can likewise be plotted. It is known that the
Shewhart chart is suitable for detecting larger shifts in the mean which are of the order of two
or more standard deviations (Montgomery, 1991). To detect smaller changes, the cumulative

sum (CUSUM) chart is more appropriate.

5.3.2 Cumulative Sum (CUSUM) Chart

The introduction of the CUSUM chart was driven by the need to detect small changes in the
mean value of a process/quality variable. This chart was first proposed by Page (1954) and is
a modification of the Sequential Probability Ratio Test (SPRT) introduced by Wald (1947).

In a CUSUM chart, a cumulative sum of the deviations between the measurement (or the

statistic) and the target value is plotted. Mathematically, ifx, denotes the current

measurement and S, , denotes the cumulative sum of the deviations between the

measurements and the target value for the past (n-1) observations, then the statistic for the
CUSUM is computed as:

'S, =max{0,S,_, +(x, - T)} (5.1)

where T is the target value. Equation (5.1) detects if the shift in the process is above the

target value. A shift below the target value can be detected by plotting the statistic Sp(jow):

Satow) = min {0’ Seiagem ik, - T) } (5.2)

The properties of CUSUM chart have been investigated extensively (Philips, 1969; Hinkely,
1969; 1970; 1971; Moustakides, 1986). One of the attractive properties of the CUSUM chart,
which makes it popular, is its optimal property that was proved by Lorden (1971; 1973). This
property states that the CUSUM chart minimizes the average delay for a given false alarm
rate.

5.3.3 Exponentially Weighted Moving Average (EWMA) Chart

Another popular univariate monitoring scheme is the Exponentially Weighted Moving
Average (EWMA) chart which was first introduced in the late 1950’s by Roberts (1959).
Later, Lucas and Saccucci, (1990) investigated the properties and suggested further
enhancements. The EWMA chart is expressed as:
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z(n) =Ax(n)+(1-A)z(n-1) (5.3)

where x(n) and z(n) are the sample value and weighted sum at time n, A is a scalar lying
between 0 and 1 and is known as the weighting parameter. The properties and design
procedures for constructing EWMA charts can be found in the literature (Lucas and
Saccucci, 1990; Montgomery, 1991; Christer and Wang, 1995)

5.4 Limitations of Univariate Control Charts

The difficulty with using independent control charts for each variable in a multivariate setting

can be illustrated with the help of Figure 5.2. Suppose that when the process is running under
normal operating conditions, two quality variables, denoted X, and X,, follow a bivariate
normal distribution each with mean zero and unit variance. Also, let the two variables be

correlated with correlation coefficient, p, ., equal to 0.8. A scatter plot of one hundred

observations drawn from this bivariate normal population is shown in Figure 5.2(a). The
ellipse in Figure 5.2(a) represents the 99% confidence bound for the in-control process. An
independent Shewhart chart, with 95% and 99% confidence bounds for each variable is also
plotted in Figures 5.2(b) and 5.2(c). It should be noted that following the inspection of both
Shewhart charts reveals that the process is in a state of statistical control and none of the
observations violate the confidence bound. However, a customer could complain about the
quality of product corresponding to observation number 51. If only univariate charts were
used for quality control, then this problem cannot be detected as corresponding to this
observation the Shewhart charts for both variables are within the confidence bounds. The
problem is detetcted in the bivariate plot of X, and X,, where the point corresponding to

sample number 51 lies outside the confidence bound which indicates that the quality of this
product is different from rest of the products.
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Figure 5.2: Illustration of problem of using independent control charts in a multivariate
setting: (a) Scatter plot of two correlated variable with 99% confidence bound (b) Shewhart
control chart with 95% and 99 % confidence bounds for X, and (¢) X;

Monitoring of each variable independently, in a multivariate setting, can also be misleading
even if the variables are independent. If for example the variables, X, and X, considered

above are independent, then the confidence bound for each variable under normal operating

conditions, with a given probability of type I error equal to o, is given by:

W-Z. o, s x50+, 0, (54)
2 1
0-Z, 04, SX;S0+Z, 0y
2 2

where Z, is the point of the standard normal distribution such that the probability of
3

standard normal random variable z,
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' ; g [ (5.5)
prob(z 2 Zg] =

2

N R

and Oy, is the standard deviation for variable x; for 1=1,2. Since the variables are

independent, the probability that both variables lie within their respective confidence bounds

(and hence the probability that the process operates in normal operating conditions) is given
by:

prob(both x, and x, lie within their respective confidence bounds) = (1 — a) (5.6)

If o =0.05, then the probability in equation (5.5) is equal to (1—0.05)2 =0.9025 and
therefore the probability of a false alarm is equal to 1-0.9025 = 0.0975. It is therefore,
observed that the probability of a false alarm increases from 0.05 to 0.0975 when the two

variables are monitored independently. In general, if K variables in a process are monitored

independently, the probability of a false alarm is equal to l—(l—o.)K. For example, for

K =10, this value is 0.40. It can, therefore, be concluded that false alarms are much too
frequent if a process consists of a large number of variables and each is monitored

independently.
5.5 Multivariate Statistical Process Control

In a typical process industry, a large number of process variables e.g. temperatures, pressures,
flows etc. are measured with high sampling frequency. The quality variables on the other
hand are available at a much lower frequency. Since the quality of the final product
eventually depends on the process variables, it would therefore be advantageous to use the
data from the process variables to determine if the process is running under normal
conditions. One way to do this is to monitor each process variable independently. But as
noted in the previous section, this can be highly misleading. An alternative is to develop a

monitoring scheme, where all the variables are dealt with collectively.
One characteristic property of the data collected on process variables is that they are highly

(cross) correlated. This is because only a few independent events drive the whole process. To

take into consideration the (cross) correlation, subspace projection techniques (PCA and
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PLS) are commonly used to model the process data. The advantages of using projection
techniques to model correlated data, as mentioned in Chapter 2, include dimensionality
reduction and noise filtering. It is therefore highly desirable if these techniques could also be
used for process monitoring. In the section given below, PCA based monitoring of a

multivariate process is described.

5.5.1 Principal Component Analysis based Process Monitoring Scheme

The idea behind using projection techniques to monitor a process is to examine the behaviour

of data in a subspace defined by a reduced number of variables (known as latent variables or

principal components). For example in PCA, if a vector X € RX is projected onto A

(A < K) principal components, then the subspace is defined by the set of orthogonal

variables, t,t,..t ;:

t,=x'p, fori=12.. 4 (5.7)

Once the subspace is defined, a statistic is then defined to detect any abnormal deviation in

the subspace. One commonly used statistic is Hotelling T , which in general, is defined as:
T? =(x-w)'Z7'(x-p) (.8)

where p is the mean vector and X is the covariance matrix of vector x. Since the latent

variables which define the subspace are orthogonal, the definition of Hotelling T2 in

equation 5.8, for detecting changes in a subspace reduces to:

A 2 (5.9)
2 Te-lg i
T =R t-zg
1= 1

where t is a vector of principal components t = [t, t,...t /], £, is the covariance matrix of

tand s; is the standard deviation of the i" principal component. It should be noted that in

equation (5.8) it is assumed that each variable is mean centred.
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Aside from keeping track of deviations in the subspace, it is also important to monitor the
residuals between the actual observations and that predicted by the projections onto the

subspace. The residual vector e is defined as:
e=x-X (5.10)

where X is the component predicted by the PCA model. A statistic that is used to monitor the
residuals is known as the Q-statistic and is equal to the sum of squares of the components of

the residual vector e. Mathematically, it is given by:

Q=¢Te (5.11)

Figure 5.3 shows a geometrical interpretation of Hotelling T? and Q-statistic. The ellipse

shows the subspace spanned by two principal components PC1 and PC2. Hotelling T4
measures the square of the distance of a point (marked * in the figure), within the subspace
from the origin (or in general from the mean value). On the other hand, the Q-statistic
measures the square of the distance of a point (marked o in the figure) orthogonal to the

subspace spanned by the principal components.

Q-Statistic PC2
Sample with large
s Hotelling T?
Figure 5.3: Geometrical interpretation of Hotelling T2 and the Q-statistic

To design and analyse a change detection algorithm, the distribution functions of Hotelling
T2 and the Q-statistic are required. It has been proven(Mardia et al., 1979; Jackson, 1991)

that Hotelling T2 follows an F distribution:
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_A(N-1) (5.12)

where N is the number of observations and F', y_, is a F-distribution function with 4 and

N-A degrees of freedoms. The confidence limit for the Q-statistic can be shown to be equal to
(Jackson and Mudholkar, 1979):

i (5.13)
0,hy(hy —1) _ c/20,h7 [* |
Q = 91 1+ 3 +
3 & 2 S 3 29193
where el = Zki’ 62 = Z)\.i,93 = ZA.I and h0=1- 3
i=A+] i=A+l i=A+l 392

5.5.2 Literature Review

Initial applications of PCA for the monitoring of quality variables were reported by Hotelling
(1947; 1957), Jackson (1956; 1959; 1980) and Jackson and Morris (1957). In these
approaches only the quality variables of the products were monitored. The application of
projection techniques to monitor the process variables was first reported in the late 1980°s
and the beginning of 1990’s. Kresta et al., (1989; 1991) demonstrated the application of PCA
and PLS for monitoring simulated data collected from a fluidized bed reactor. Numerous
papers on applications of PCA and PLS for the monitoring of continuous processes have been
reported since (MacGregor et al., 1991; MacGregor, 1994; MacGregor and Kourti, 1995;
Martin et al., 1996; Kourti and MacGregor, 1994; 1995). The application of these techniques
to real industrial application have also been reported (Piovoso and Kosanovich, 1991; 1992;
1994; Kourti, et al., 1996; Morud, 1996; Wikstrom et al., 1998). To diagnose the cause of the
occurrence of abnormal events in the process, use is made of contribution plots (Miller et al.,
1993).

Some chemical processes e.g. pharmaceutical, operate in batch mode rather than in
continuous mode. The applications of PCA for the monitoring of batch processes have also
been reported in the literature. Since the pioneering work of MacGregor and Nomikos
(MacGregor and Nomikos, 1992; MacGregor et al, 1994; Nomikos and MacGregor, 1994;

1995) in using PCA for monitoring batch processes, several modifications have been
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proposed. Wold et al., (1998) proposed a different way of unfolding the batch data to that
used by Nomikos and MacGregor. Louwerse and Smilde (1999) introduced the use of
PARAFAC and three way models to monitor a batch process. Applications of PCA based
scheme to monitor batch process in real industrial applications have been reported (Lennox et
al., 2000; 2001)

The classical PCA based monitoring scheme assumes that the data is collected in a two
dimensional matrix with a linear relationship between the variables and that statistical
independence exists between the observations. These assumptions are not always valid. To
overcome these limitations, a number of alternative PCA based monitoring scheme have been
proposed. The non-linear relationship between the variables is dealt with through the
application of non-linear PCA which can be implemented using neural networks (Kramer,
1991) and can be further used in monitoring applications (Jia et al., 1998; 2000). Furthermore
to account for serial correlation, dynamic version of PCA has been proposed and used in

process monitoring Ku et.al., (1995).

The data measured in a typical process does not correspond to one scale. This is because the
events occurring in a process occupy different regions in the time-frequency (or time-scale)
space (Bakshi, 1999). To account for the multiscale nature of the data, multiscale PCA using
wavelets was developed and used in process monitoring (Bakshi, 1998; Shao et.al., 1999).

In a practical situation, slow and normal changes can occur in a process. If the process is
monitored with a fixed model, it will give rise to false alarms. The time varying nature of the
process has been taken into consideration in yet another version of PCA known as adaptive or
recursive PCA (Li et al., 2000; Lane et al., 2003) in which the PCA model is updated after

every observation or after a block of observations.
5.6 Conclusions

In this chapter a brief literature review of statistical process monitoring has been presented. It
is shown that independent monitoring of process variables in a multivarite process can be
misleading. It is therefore, recommended to use multivariate monitoring schemes which
handle all the variables collectively. Since, subspace projection techqniues are useful in

identifying a compact model from the cross correlated measurements of process variables, it

is desirable to extend their application to process monitoring. Two statistics, Hotelling T2
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and the Q-statistic, are used in a PCA based performance monitoring scheme. A literature

review for the application of PCA and PLS in process monitoring was also undertaken

Process monitoring forms the basis of the next two chapters. It is shown that a monitoring

scheme based on Hotelling T? and the Q-statistic in PCA and PLS is particularly insensitive
to a class of changes which lead to a change in the covariance structure of the process
variables. Two new monitoring methods are then proposed to these changes. In Chapter 6, the
focus is on PCA and the statistic is derived from the theory of PCA model identification. In
Chapter 7, a PLS based monitoring scheme is considered. A recursive algorithm for PLS is
first derived and a monitoring statistic is developed.
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CHAPTER 6

Detection of Changes in Covariance Structure

6.1 Introduction

Assuming the distribution of the process variables to be multivariate Gaussian, the process is
completely characterized by the mean and variance-covariance matrix of the process
variables. In this situation it is possible to distinguish between two classes of changes
depending on whether the change affects the mean or variance-covariance structure of the
process variables. Although not standard nomenclature, changes affecting the mean value of
one or more of the process variables is termed class 1 and those that affect the variance-
covariance structure of the process variables are denoted, class 2. A class 1 change can occur
if, for example, a (constant) sensor bias is present whilst the second class is associated with

fluctuations (larger than what is observed normally) about the mean value of the variable.

The conventional monitoring scheme for detecting changes in the normal operating

conditions of a process using subspace projection techniques is based on two statistics,
Hotelling T? and the Q-statistic. The poor sensitivity of these statistics to detect small

changes in the variance- covariance structure of the process variables (class 2 changes) has
previously been reported in the literature (Kano et al., 2001). Although some work (Kano et
al., 2001), has been proposed to detect these changes more efficiently, there is still a need for
an algorithm that detects small changes with limited delay. The aim of this chapter is to
propose an algorithm which is “nearly optimal” in terms of the detection of the second class
of changes. An optimal algorithm is defined as the one that detects a given change with the

smallest possible delay for a given false alarm rate
6.2 Literature Review

It should be recalled that the parameters of a PCA model, the loading vectors, depend on the
variance-covariance structure of the process data. More specifically, the loading vectors are
the eigenvectors of the variance-covariance matrix. The problem of abnormal change
detection in the variance-covariance structure of the process is thus equivalent to the

detection of abnormal changes in the PCA model parameter vector denoted by 0.

129



One of the desirable characteristics of a monitoring statistic is that it captures the complete
information encapsulated within the data. A statistic with this characteristic is known as a
sufficient statistic (Basseville and Nikiforov, 1993). It is known, particularly in the context of
single-input single-output systems, that the prediction error based statistic, for example the
sum of the squares of the prediction error, is not sufficient for the detection of abnormal
changes in the parameters of the system. This result, the formal proof of which is given in
Basseville and Nikiforov (1993) forms the basis of a series of papers (Benveniste et al., 1987;
Zhang, et al, 1994; Basseville, 1998) where research has been undertaken to identify a
sufficient statistic that detects abnormal changes in the parameters of the system. In the works
cited, the monitoring statistic is derived from system identification algorithms. While
Benveniste et al., (1987) derived the monitoring statistic from a recursive algorithm for the
estimation of parameters, Zhang et al., (1994) extended this work to include non-recursive
algorithms in this framework.

The poor sensitivity of Hotelling T? and the Q-statistic to detect abnormal changes in the
variance-covariance structure (and hence the PCA model parameters) was first reported in the
chemometrics literature by Kano et al., (2001). Since the Q-statistic is the sum of squares of
the prediction errors, the poor sensitivity of the Q-statistic based on the work of Basseville
and Nikiforov (1993) can be easily understood. Kano et al., (2001), in their paper proposed a
new scheme based on determining the revised loading vectors for a moving window and then
calculating the ‘distance’ between the new loading vectors and the reference loading vectors
as determined under normal operating conditions. The distance was quantified using the dot
product between the calculated and the reference loading vectors. There are limitations
associated with this method. The first is that a number of statistics are required to monitor the
system. For example, consider a process that includes 4 variables, consequently the
covariance matrix is of order 4x4 and hence there are 4 loadings vectors. Kano et al.,
(2001) proposed monitoring this process by calculating the dot product between the i new
loading vector and its corresponding normal condition loading vector, therefore, 4 metrics
require to be monitored for the detection of changes in the loading vectors. In addition to
these four metrics, they also proposed monitoring the combined subspace spanned by
different combinations of the loadings. In this simple example, two additional statistics for
monitoring the subspace spanned by the first two and first three loading vectors are
additionally derived, therefore, the total number of metrics to monitor a process comprising 4
variables is 6. A clear limitation of this scheme is that it is not efficient for the monitoring of

a process consisting of a large number of variables.
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Secondly, the parameters of the model, namely the loadings, require to be estimated on-line
to determine the ‘distance’ between the new parameters and the reference parameters. A
more straight forward approach would be if the change in the parameter vector of the model
could be detected by using the ‘distance’ between the reference model parameter vector and
the data, that is, there is no requirement to re-estimate the model parameters.

Finally, the determination of the confidence limits for the statistic has not been addressed.
Kano et al., (2001) determined the confidence limits by calculating the statistic over a large
number of data sets. Consequently the determination of the confidence limits of the statistic

where the number of data sets is limited, which is the situation most often, is not viable.

6.3 Poor Sensitivity of Hotelling T2 and the Q-statistic: An Intuitive Explanation

Consider a hypothetical process which has (say) 6 correlated process variables. Applying a
PCA model to the process and retaining 3 principal components, the model comprises 6x3
=18 parameters (each loading vector being 6-dimensional). Now suppose the covariance
structure of the process variables has changed which results (in general) in a change in all the
loading vectors. This change, therefore, takes place in an 18-dimensional vector space.
However, the residual vector of the process considered is 6-dimensional and, therefore, may
not capture the “real” extent of the change. Since the Q-statistic is based on the sum of the
squares of the residuals, the statistic will be less sensitive, in particular, to small changes in

the variance-covariance structure.

The poor sensitivity of Hotelling T2 can be understood with the help of Figure 6.1. Recall

that Hotelling T? measures the distance of projection from the origin (under the assumption
that the data is mean centred) within the subspace spanned by the loading vectors. For the

purpose of illustration, a two dimensional space is considered. Under normal operating
conditions, let the loading vectors be p, and p, (Figure 6.1). Hotelling T? for samples

generated from this population (labelled population 1) defines a limit for this data with
certain confidence (95 or 99% (Figure 6.1)). Now suppose the covariance structure changes,

the loading vectors are now p; and p'z , such that the new data is represented by a smaller

ellipse in Figure 6.1. Since the smaller ellipse lies within the larger ellipse, Hotelling T2 will

not give a alarm despite the fact that the covariance structure has changed.
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Figure 6.1: Graphical illustration of the poor sensitivity of Hotelling T2 o a change in

variance-covariance structure
6.4. A New Monitoring Statistic

Let the process be characterized by parameter vector @ . Now consider this parameter vector
more specifically. Assume that the process variables are multivariate Gaussian and are
independent and identically distributed and recalling that a multivariate Gaussian distribution
is completely characterized by its mean vector and covariance matrix, the parameter vector
© will collectively represent the true (population) mean and covariance matrix. Since in this
study changes in the mean value are not considered, it is assumed that that the mean value of
the variables is known (it is taken as zero without loss of generality), consequently the
parameter vector @ represents the variance-covariance matrix of the process variables and
determines the behaviour of the process. Suppose that under normal operating conditions

© =0, and when O takes values other than @, abnormal system behaviour is indicated.
The problem of change or abnormality detection in a system can be formulated in the
framework of a hypotheses testing problem. Given a set of observations X, X,, ...X,, at
time n, from a process with parameter vector @ , it is necessary to decide whether to reject

the null hypothesis H :

Hy: ®=0, for t=1,2,...n (6.1)
H,: 3 an instance r (1 <r <n) such that

0=0, for t=1,2,...r-1

0 #0, for t=r,r+l,...n
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r is the sampling instance at which the fault occurs.

Let the PCA representation for a process be characterized by the parameter vector 0, where
0 is essentially the loading matrix of the PCA representation arranged in a vector form
(columns placed one above the other). Note that @ and 0 are normally not equal and may

belong to vector spaces of different dimensions (for example, in a process with 5 variables
the covariance matrix is of order 5x5 and @ is a vector € R¥ . If a PCA representation is

built using 3 principal components, say, then 0 is a vector of order R'®). When the process
operates under normal operating conditions, let ©=0,. Assuming a mapping f exists

between the true process parameter vector ® and the PCA model parameter vector 0, that

is:
f®)=0 VvV O and 0 (6.2)
the abnormality detection problem equation (6.1) can be reformulated as:

Hy: f(©®)=0, for t=12......n (6.3)
H,: 3 aninstance r (1 £r < n) such that

f®)=0, for t=1.2,...rl
f(®) #0, for t=rr+l,...n

To determine the new statistic, recall that the first loading vector of the PCA model under

normal operating conditions is determined by maximizing the variance of the latent variable

t,, that is:

p, =arg maxlE{t,2 }— }»(pr - I)J _ (6.4)
P

Using the properties associated with finding the maxima of a function, the loading vector p,

is given by the solution of the following equation:

7 6.5
P =arg%[E{tf}—X(pr—1)]=o (6.5)

133



Taking the differential operator inside the statistical expectation operator:

p, = arg[E{2t,x}-2Ap] = arg[E{2t,x~2Ap}] =0 (6.6)
and letting

k,=2t,x-2Ap | (6.7)
gives

py=argE{k;} =0 (6.8)
This can be written as:

E{k,}lp a5 -0 (6.9)

Also in the neighbourhood of p;, @(p;) (which does not contain p, ):

E{k,)] #0 (6.10)

pco(py)

From equations (6.9) and (6.10), it follows that if the (first) loading vector of the PCA model
remains equal to p,, the mean of the statistic k; = 2t,x —2Ap, is equal to zero. A non-zero
value for the mean of K, indicates that the (first) loading vector of the model is no longer

equal to that determined under normal operating conditions. It is worth noting that A in

equation (6.7) for Kk, is the eigenvalue corresponding to the first loading (Chapter 2, section

2.1). The second and higher loading vectors of the PCA model are determined in a similar

way.

Corresponding to each loading, p;, a corresponding statistic k; =2t;x—2A;p; can be
determined such that the mean of k; =0, when p; relates to normal operating conditions.

The mean thus deviates from zero when the loading vector drifts away from normal operating
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conditions. If all the loading vectors are arranged into one column, the vector, 0, of the

parameters corresponding to the normal operating conditions for a PCA model is given by:

0, =[p; PPl (6.11)

The corresponding augmented vector k of the statistics is:
k=[k, k,..k,]" (6.12)

Since each component of the vector k has zero mean when the corresponding loading vector

relates to normal operating conditions, it follows that the mean of the augmented vector k is

zero when the PCA model parameter vector 0, corresponds to normal operating conditions.

When any, or all, of the loading vectors change, the mean of vector k deviates from zero. The
problem of detecting changes in the PCA model, therefore, reduces to detecting a change in

the mean of k.

For the design and analysis of a change detection algorithm based on the statistic k, the
underlying probability density function is required. Determination of the distribution function
of k is not easy to determine theoretically. To overcome this problem, the local approach of

hypotheses testing is considered.
6.5. Local Approach to Hypothesis Testing: An Introduction

The basic statistic for detecting a change in the parameter vector from 0, to 0 is the log-

likelihood ratio (Basseville and Nikiforov, 1993):

6.13
LR, (8,,0) = In-Len) )

Po,,(xn)

where X, is a matrix containing observations from time point 1 to n, pg and pg, are the
probability density functions with parameters @and 0, respectively and /n is the natural

logarithm. Although known to be a sufficient statistic, the problem with the log-likelihood

ratio statistic is that its distribution function is difficult to determine for all probability

135



density functions, pg . One solution is to assume that the parameters @ and 0, are ‘close’ to
each other, that is, 0 =0, +l , where ¥y is a fixed but unknown vector and its magnitude
n

(divided by the sample size, n) represents the amount by which the parameter vector 0, has

changed. For a large sample size, the parameter vector 0 lies close (or locally) to 0, and the

approach to testing a hypothesis under this assumption is known as the local approach of
hypothesis testing. Mathematically, this approach decides between the null and alternative
hypothesis which are defined as:

Ho: =0, for t=12.....n (6.14)
H,: 3 an instance r (1<r<n) such that
0=0, for t=1,2,.. .r

0=00+l for t=rrtl,...n
n

Assuming the local approach, the log of the distribution function, pg, can be expanded

around, py, using second order Taylor expansion:

- X a(t’npa( ) iy 9*(Inpe(.)) 7 | (6.15)
Inpg(.)= Inp, (. )+JH - 2 i1y = Jr_,l :
9 0=0,

The log-likelihood ratio can be expanded by substituting equation (6.15) into equation (6.13)

¥y a(lnpo( ) 14 9%(Inpy(.)) 7 | (6.16)

LR ,(80,0) ~

Using the definitions of efficient score, z,, and information matrix, 1, (Basseville and

Nikiforov, 1993):
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1 3(In Pe(-))l [ 61D
2,(0p) = —m et
Vo @ |g=p,
1 0%(Inpy(. (6.18)
0=0,
the log-likelihood ratio in equation (6.16) can be re-written as:
(6.19)

1
LR ,(0,,0) ~ szn(eo)—Ele.,(em

The distribution function of the log-likelihood ratio in equation (6.19) was determined by
Cam (1986) by proving the following central limit theorem:

LR,(0,,0) — G(05y"I(85)y, Y"I(8)y) under po, [ (620)
- G(-05y"1(8,) v, Y"I(8,)y) under p, |

where G(p, X) is the Gaussian distribution with mean p and covariance matrix X

It can be seen from equation (6.20) that a log-likelihood ratio has a Gaussian distribution
under both normal and modified conditions and a deviation in the parameter vector is
reflected as a change in the sign of the mean value of the log-likelihood ratio. It is also
important to note that the variance under both conditions is the same. The local approach thus
has transformed the problem from the detection of a change in the parameter vector to the

detection of a change in the mean value of a Gaussian random variable.

Similar to the expansion of the log-likelihood ratio, under the local hypothesis, the efficient

scores can also be expanded using Taylor series expansion (Basseville and Nikiforov, 1993):

2 (6.21)
2a(0) = 2,(05) + -2 Rel-)
n 00 08,
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Based on the condition that the maximum likelihood principle is used for parameter
identification, the central limit theorem for the efficient scores states that (Basseville and

Nikiforov, 1993):

2,(0,,8) — G(0, 1(8,)) under pg, (6.22)
— G(1(8,) 7, 1(8,)) under p,

Thus a change in the parameter vector is reflected as a change in the mean value of the

efficient scores with covariance matrix remaining the same under both process states.

6.5.1 Generalization to other Monitoring Functions

Although the expansion of the log-likelihood ratio under the local approach has been known
since 1980’s, it is the expansion of the efficient scores (equations 6.21 and 6.22) that has led
to the recent popularity of the local approach. An important result, (Benveniste et al., (1987);
Zhang et al., 1994) was established whereby it was shown that the central limit theorem in

equation (6.22) holds not only for the efficient scores but for a large class of estimating
functions (a function k (0, . ) is termed an estimating function for the parameter vector 0 if
the parameter vector 0 is equal to the roots of the equation k (0, .) = 0). Such estimating

functions when used for change detection are known as primary residuals (Basseville, 1997).

The conditions for a finite dimensional vector-valued function k (0,.) to be primary residuals
are:

1. Average value of k(0,.) should be equal to zero when 0 =0, that is

Eg{k(0,.} =0 when 0 =0,

2. Average is non-zero when 0 is different from 0,

Eg{k(0, .} #0 when 0 #0,

For a PCA model, the function k defined in equation 6.12 satisfies both conditions and
therefore is a valid primary residual. The distribution function of k can be determined by
generalizing equation (6.22). Specifically if k(.) is a primary residual then Benveniste et al.,

(1987) and Zhang et al., (1994) proved that the function r,, also known as improved

residuals, and defined as:
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(6.23)
=— t
r, ‘ng()

satisfies the following central limit theorem under the local approach of hypothesis testing:

r,(0,,0) — G(0, M(8,)) under pg, (6.24)
- G(M(8,) v, M(8,)) under p,

where M is a Jacobian matrix defined as M = Egq {—Q-kie’—l} l ’
® lo-g,

Once the improved residuals vector, ry,, is determined, the optimal test for detecting change

is given by computing a scalar S, :

S =rTxl'r (6.25)

where X_ is the covariance matrix of the improved residuals under normal operating
conditions. The decision rule for detecting a change is given by:

Decide in favour of Hy if S, > tg
Decide in favour of H if S, <t

where t; is a threshold and is determined by noting that (under the null hypothesis) S, is

x2 distributed with degrees of freedom equal to the dimension of r .

It should be noted from equation (6.23) that the size of the window over which ry, is
computed, tends to infinity as time increases. From a practical point of view, it has been

proposed (Zhang et al., 1994) to compute r,, over a fixed size window, that is, a fixed value

n, is selected such that:

n (6.26)
Fy=—— YK

Ny +1 t=n-n,
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The choice of n, is determined as a compromise between a large false alarm rate and the

magnitude of the delay in detection. It is known (Zhang et al., 1994) that a smaller window

size (that is a larger value of n) reduces the number of false alarms but introduces a delay

in change detection. A larger size of window increases the speed of change detection but

results in a higher false alarm rate.

Also since at the start of the algorithm, the value of n is small, and since the local approach is

asymptotic, it is proposed (Zhang et al., 1994) that the algorithm starts after the first n,

samples, where n, is suitably selected and is generally of the order of 30-50 samples.

6.6 Summary of the Algorithm
The steps of the local approach based scheme are now summarized:

Given: Matrix X of size NxK, containing N observations on K variables corresponding to the

normal operating condition of a process
Mean centre and scale each variable to unit variance.
Step 1: Build a PCA model using 4 principal components

Step 2: Compute the primary residuals for each principal component and each sample time
point: k;(t) = 2 t,(t) x(t) — 2A;p;, where x(t) is the observation vector at sample

time point t, A; eigenvalue corresponding to i loading p; fori=1toA

Step 3: Determine the augmented vector k(t) = [k,(t) k,(t)...k A(t)]T
Step 4: Remove the bias, i.e, mean centre k(t)

Step 5: Select the window parameter n, (Typical value is in the range 300-500 samples) and

n, (30-50) samples.

Step 6: Compute the improved residuals at each sample time:
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f=—— Yk

N +1 t=n-n,

Step 7: Calculate the covariance matrix X, of the improved residuals

Step 8: Compute the local statistics at each sample time:

=l B,
Step 9: Determine the confidence limits (95%, 99%), t,

Step 10: If there are large numbers of false alarms, change the window parameter n, and

repeat steps 6-9

Step 11: Finally apply the algorithm to new (experimental) data set by scaling it using the

same values that were used to scale the nominal data set.
6.7 Simulation Studies

The methodology described above is tested first on two artificial data sets and is then applied

to detect abnormal changes in the performance of a continuous stirred tank reactor.

6.7.1 Example 1

In this example a normal data set comprising 2000 samples and two variables was generated

from a population of zero mean and covariance matrix:

832 -1.57 (6.27)
20 =
-1.57 1850

An experimental data set consisting of 2000 samples was then generated with the first one
thousand samples drawn from the normal population and the second one thousand samples,
corresponding to a faulty data set, drawn from a population with zero mean and covariance

matrix
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1850 1.57 (6.28)
Zf=
1.57 55.25

It should be noted that the eigenvectors of X¢

pir =[0.0426 09910]" (6.29)
Py =[-0.9910 0.0426]"

are 90-degrees rotated with respect to the corresponding eigenvectors of original covariance

matrix X, whose eigenvectors are

p, =[-0.9910 0.0426] (6.30)
p, =[-00426 -0.9910]

The faulty data therefore correspond to a modified covariance structure in which the
eigenvectors have rotated through 90-degrees from the eigenvectors corresponding to the
normal operating mode. After the normal data is auto-scaled, a PCA model with one principal
component was built explaining 53.4% of the total variance. The local approach based
algorithm described in the previous section was then applied to the experimental data set. The
size of the window was tuned to 300 and the value of n; was adjusted to 50. The plot of the
statistic, S, for the experimental data set is shown in Figure 6.2(a). Figure 6.2(b) shows a plot
of the statistic for the first one thousand samples (corresponding to the normal operating
conditions) of the experimental data set. The sample number at which the change is detected

is 1052 and hence a delay of 52 samples in detecting the change is incurred.
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Figure 6.2: Plot of local statistic versus sample number for (a) the whole experimental data

set and (b) the normal operating condition component of the experimental data set, when one

principal component is retained in the PCA model (example 1).

The plots of Hotelling T? and Q-statistic for the experimental data set are shown in Figures
6.3(a) and 6.3(b) respectively. It can be seen by comparing Figures 6.2 and 6.3 that while the

conventional monitoring scheme based on Hotelling T? and the Q-statistic fail to detect the
change, the local approach based scheme successfully identifies the change in the covariance

structure.

The procedure is now repeated by increasing the number of principal components in the PCA
model to two and thus the model accounts for 100% of the variance of the nominal data set.
The plot of the local statistic, S, for the experimental data set is shown in Figure 6.4(a) with
Figure 6.4(b) showing a zoomed-in portion of Figure 6.4(a) corresponding to the plot of the
statistic S for the first one thousand samples of the experimental data. The plots of Hotelling

T2 and Q-statistic are shown in Figure 6.5. It can be seen from Figure 6.4 that the local
approach based statistic detects the change at sample point 1034 and therefore the delay in
detecting the change is 34 sample points.
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Figure 6.3: Plot of (a) Hotelling T? and the (b) Q-statistic for the experimental data set,

when one principal component is retained in the PCA model (example 1).

L s A

Figure 6.4: Plot of local statistic versus sample number for (a) the total experimental data set

and (b) the normal operating condition component of the experimental data set, when two
principal components are retained in the PCA model (example 1).
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Figure 6.5: Plot of (a) Hotelling T? and (b) Q-statistic for the experimental data set, when

two principal components are retained in the PCA model (example 1).

In the conventional monitoring scheme, although Hotelling T? shows an upward shift after
the introduction of the change, it is not sufficient to identify the occurrence of a change in the
process. It is also interesting to note that the Q-statistic remains equal to zero both before and
after the occurrence of the change. While the Q-statistic is expected to be equal to zero before
the change as 100% variability of the data is explained by the PCA model, a value exactly

equal to zero even after the change is not obvious. This can be explained by recalling the fact

that if p, and p, € R? form an orthonormal basis of the vector space R?2, then any vector

X €R? can be written as :

o e S B

where t, and t, are the projection of vector X onto p, and p, respectively. Therefore,
even if X and X belong to different populations (normal and faulty respectively in the
example above), both of them can written as a linear combination of the same basis functions

(the loadings of the PCA model). That is, the vector x can be written as:

x'= tip; +t5p2

it } (6.32)l
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where ti and t'2 are the projections of x’ on p, and p, respectively. Since the

(prediction) error in both cases is zero, the Q-statistic is zero not only for normal operating

conditions but also for the faulty condition.
6.7.2 Simulation Example 2

Consider a 2x 2 process described by the following state and measurement equations. This
model is taken from Ku et al., (1995) and was considered by Kano et al., (2001). By utilising
this model, a comparison between the performance of the proposed monitoring scheme and
that reported by Kano et al., (2001) is possible.

.. Tost1 06 [0.193  0.689 (6.33)
x(t)= x(t-1)+ x(t-1)

| 0.477  0.415 | | 0320 0.749

| [0.118  0.191] (10 20
e~ 0.847  0.264 | 5 3.0 4.0]"(t 4

y(t)=u(t)+h(t)

whereu,xandy € R? are the state, input and output vectors respectively, e and h are zero
mean Gaussian random vectors comprising two independent random variables. The variance

of each random variable in e is unity and for h is 0.1.

Kano et al., (2001) simulated abnormal changes in the parameters of the above system by
changing the coefficient relating the second state variable,u, , to the first input,x,, (the
value of this coefficient under normal operating condition is 3). Three changes, small,
medium, and large were considered which correspond to change from 3.0 to 2.5, 2.0 and 1.0
respectively. These changes are summarized in Table 6.1. The objective is to compare the
proposed monitoring scheme with the conventional PCA based monitoring scheme before

comparing it with the scheme proposed by Kano et al., (2001).
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Table 6.1: Abnormal changes in the artificial system

Case Type Size
1 (Small) |  Change of parameter from X, to u, 30525
2 Change of parameter from X to u, 3.0>2.0
(Medium)
3 (Large) |  Change of parameter from X; to uy 3.0-1.0

6.7.2.1 Monitoring using Static PCA

The system described in equation (6.26) is a dynamic system and therefore a dynamic model
would be most appropriate to model the data generated from this system. However, as a first
step, monitoring of this system based on a static PCA model is first studied. Two thousand
measurements corresponding to the normal operating conditions of four variables namely two
output and two input variables are collated into a matrix. The data is auto-scaled and PCA
was performed. Table 6.2 lists the percentage contribution of each principal component to
the total variance of the data.

Table 6.2: Variance contribution for static PCA (example 1)

Number of Eigenvalue % variance Cumulative %
PC explained variance explained
1 1.9478 48.69 48.69
2 1.3408 33.52 82.21
3 0.6489 16.22 98.43
4 0.0624 1.57 100.00

A PCA model using three principal components (selected using cross-validation) was built. A
further data set (experimental data) comprising two thousand samples was generated with the
first one thousand corresponding to normal operating conditions and the remaining one
thousand corresponding to an abnormal change in the value of the parameter from 3.0 to 2.5

(casel, small). The proposed monitoring scheme based on the local approach was applied
with the window parameter n, and n; tuned to 350 and 50 respectively. The plot of the
local statistics for the experimental data set is shown in Figure 6.6(a) with Figure 6.6(b)
showing the plot of the statistic for the first one thousand samples of the experimental data
set. The performance of conventional monitoring scheme is given in Figure 6.7. The

procedure is repeated for the other two changes (medium and large) and the corresponding
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plots for the local statistics for the medium and large changes are shown in Figures 6.8 and
6.10 with Figures 6.9 and 6.11 showing the corresponding performance of the conventional

monitoring scheme based on these changes. The following conclusions can be drawn.

First, the local approach based scheme is able to detect all three changes with delays of 29,
23, and 18 samples for the small, medium and large changes respectively. The conventional
monitoring scheme, on the other hand, is almost insensitive to the small and medium changes
but the Q-statistic for the large change does show an upward shift but is not sufficient to give
a clear indication of the change. Secondly, there are some false alarms both in the proposed
monitoring scheme and in the conventional monitoring scheme. For the conventional
monitoring scheme they can be attributed to the serial correlation in the data but for the local
based monitoring scheme, false alarms are due to the fact that the local approach is
asymptotic, that is, it assumes (ideally) an infinite data set but practice the data set is finite.
False alarms can be reduced (1) by tuning the window size parameter n, appropriately or (2)
Zhang et al., (1994) also suggested increasing the theoretical confidence bound by an
‘appropriate’ amount to account for the asymptotic nature of the local approach. For
example, the theoretical limit calculated by Zhang et al., (1994) for an example given in their

paper was 26.21 but they ‘upgraded’ the limit to 40 to reduce the false alarm rate.

Figure 6.6: Plot of the local statistics versus sample number for a static PCA based
monitoring (a) the whole experimental data set when the system parameter is changed from
3.0 to 2.5 at sample number 1000 (b) the normal operating condition component of the

experimental data, (example 2)
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Figure 6.7: Plot of (a) Hotelling T? and (b) Q-statistic versus sample number for the whole
experimental data set for a static PCA based conventional monitoring scheme when the

system parameter is changed from 3.0 to 2.5 at sample number 1000 (example 2)

Figure 6.8: Plot of the local statistics versus sample number for a static PCA based
monitoring (a) the whole experimental data set when the system parameter is changed from
3.0 to 2.0 at sample number 1000 (b) the normal operating condition component of the
experimental data (example 2)
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Figure 6.9: Plot of (a) Hotelling T? and (b) Q-statistic versus sample number for the whole
experimental data set for a static PCA based monitoring scheme when the system parameter
is changed from 3.0 to 2.0 at sample number 1000 (example 2)

Figure 6.10: Plot of the local statistics versus sample number for a static PCA based
monitoring (a) the whole experimental data set when the system parameter is changed from
3.0 to 1.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)
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Figure 6.11: Plot of (a) Hotelling T? and (b) Q-statistic versus sample number for the
whole experimental data set for a static PCA based conventional monitoring scheme when

the system parameter is changed from 3.0 to 1.0 at sample number 1000 (example 2)

To compare the proposed scheme with that proposed by Kano et al., (2001), the following
procedure was used (Kano et al., 2001).

1. Data is collected from the process when operating under normal conditions and the
control limits for the monitoring statistic are calculated for a given confidence (95%
and 99%).

2. For the data generated after the occurrence of the fault, the percentage of samples
lying outside the control limit is calculated for each simulation. This percentage is
termed ‘reliability’ and depends on the number of samples used for the calculation. In
the reported study, 100 samples were considered.

3. The average reliability for the 1000 data sets is calculated for each case. This

produces a performance index for the monitoring scheme.

The average reliability reported by Kano et al., (2001) for the conventional (static) PCA

based monitoring scheme for the three changes mentioned are summarised in Table 6.3.
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Table 6.3: Average Reliability (%) for the static PCA based conventional MSPC scheme

Monitoring Case
statistic 1 p) 3
Hotelling T2 12 13 2.0
Q-statistic 1.6 32 9.5

It is clear from Table 6.3 that the conventional monitoring scheme is poor in terms of
detecting the different levels of change, with the maximum average reliability being less than
10%. To improve the reliability, Kano et al., (2001) proposed monitoring the change in the
covariance structure by monitoring the ‘distance’ between the eigenvectors (loadings) of the
new (experimental) data collected from a moving window and the reference (nominal)
eigenvectors. The distance was measured using the dot product between the new and the
reference loading vectors. Since the reliability depends on the window size, Kano et al.,
(2001) reported the average reliability for two window sizes (100 and 200 samples). The
maximum average reliability (where the maximum is calculated over window size) for this
scheme for each of the three changes is given in Table 6.4. It is seen that although the
reliability has improved considerably for large change (case 3), it is still low for the small
change (case 1). To see how the local approach based scheme performs in comparison to the
scheme of Kano et.al (2001), the average reliability for the local approach is calculated for
the three changes and is given in Table 6.5

Table 6.4: Average reliability (%) for the static PCA based scheme of Kano et al., (2001)

Monitoring Case
statistic 1 2 3
Proposed by Kano 17.3 50.2 75.2
et.al (2001)

Table 6.5: Average reliability (%) for the static PCA based local monitoring scheme

Monitoring Case
statistic 1 2 3
Based upon Local 76.9 834 87.28
Approach

From Tables 6.4 and 6.5, it can be observed that the average reliability for the local approach
based scheme has improved over the approach proposed by Kano et al., (2001). More
importantly, is that, there is a much greater increase (over 4 times) in the reliability for the
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small change. This illustrates the fact that the local approach is especially suitable for
detecting small changes in a system. This can be explained from the theory of the local
approach (section 6.5) which assumes that the normal and changed parameters are ‘close to

one another’.

It is also important to recall that the statistic S,,, which essentially detects a change in the
mean value of the improved residuals ry,, is an asymptotically optimal statistic (Basseville
and Nikiforov, 1993). But since, in practical situations, the sample size is finite and ry, is
calculated by summing the primary residuals over a finite window of size n, the algorithm
loses its optimal properties. Experience shows that the algorithm works well when the
window size n lies in the range 300 or higher. An analytical study of the effect of window

size on the optimal property, however, needs to be undertaken. This is identified in chapter 8

as an area of future work.

6.7.2.2 Monitoring using Dynamic PCA

A static PCA model assumes that the observations collected are statistically independent.
Since the data used in this example is generated from a dynamic system, the observations are
serially correlated as is also evident from Figure 6.12 which shows the autocorrelation
function plot for each of the four variables. Ku et al., (1995) addressed the issue of serial
correlation by including lagged variables in the observation matrix and then applying PCA.
The number of lagged variables to be included can be decided by determining how many past

observations influence the current observation. If x(t) denotes the current observation

vector, then the number of lagged variables is equal to a, which is determined such that an

autoregressive (AR) model of order a is a ‘good’ fit to the data:

x(t) = i D,x(t—i)+e(t) e |

i=0

153



Figure 6.12: Autocorrelation function plots for the four measured variables (example 2)

There exist different criteria (Ljung, 1999) for selecting the order of an autoregressive model.
One such criterion is the log of Akaike’s Final Prediction Error (AFPE) (Neumaier and
Schneider, 2001). The plot of AFPE for an AR model order 0 to 10 is shown in Figure 6.13.
It can be seen that although the AFPE is a minimum at model order 2, there is not a
significant decrease in the value of AFPE when the model order increases from 1 to 2. It is,
therefore, decided to include one lagged variable in the observation matrix to reduce the cost

(number of parameters) of the model.

A data set comprising four variables and two thousand samples corresponding to the normal

operating conditions are collated into matrix X. The matrix is then augmented with one

lagged value of each variable so that the size of the augmented matrix Xg,o is 1999%8. The

matrix is scaled to unit variance and zero mean and PCA is performed. The percentage
variance contribution of each principal component to the total variance of the data is listed in
Table 6.6. A PCA model is built using four principal components. This was identified using
cross-validation. Three additional (experimental) data sets each consisting of 2000 samples
are generated in which the first one thousand samples correspond to normal conditions and
the remaining one thousand correspond to one of three changes. Figures 6.14, 6.16 and 6.18
show the plots of the results following the application of the local statistics to the
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experimental data with the results of the conventional monitoring scheme given in Figures
6.15, 6.17 and 6.19. It is seen from the figures that the local approach based scheme
successfully detects all three changes. The delays for the small, medium and large change are
2, 2 and 1 samples respectively. The conventional monitoring scheme is almost insensitive to

small and medium changes but the Q-statistic for the large change clearly indicates the

occurrence of a change

Figure 6.13: Plot of logarithm of Akaike’s Final Prediction Error (FPE) versus model order
(example 2)

Table 6.6: Variance contribution for dynamic PCA

Number of Eigenvalue % variance Cumulative %
PC explained variance
explained
1 3.399 42.49 42.49
2 2.807 35.10 77.59
3 0.9589 11.99 89.57
4 0.7109 8.89 98.46
5 0.1085 1.36 99.82
6 0.0107 0.13 99.85
7 0.0024 0.03 99.98
8 0.0013 0.02 100.00
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Figure 6.14: Plot of the local statistics versus sample number for the dynamic PCA based
monitoring (a) the whole experimental data set when the system parameter is changed from
3.0 to 2.5 at sample number 1000 (b) the normal operating condition component of the
experimental data (example 2)
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Figure 6.15: Plot of (a) Hotelling T? and (b) Q-statistic versus sample number for the whole
experimental data set for the dynamic PCA based conventional monitoring scheme when the

system parameter is changed from 3.0 to 2.5 at sample number 1000 (example 2)
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Figure 6.16: Plot of the local statistics versus sample number for the dynamic PCA based
monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 2.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)
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Figure 6.17: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the whole
experimental data set for the dynamic PCA based conventional monitoring scheme when the
system parameter is changed from 3.0 to 2.0 at sample number 1000 (example 2)
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Figure 6.18: Plot of the local statistics versus sample number for the dynamic PCA based
monitoring (a) the whole experimental data set when the system parameter is changed from
3.0 to 1.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)

Figure 6.19: Plot of (a) Hotelling T? and (b) Q-statistic versus sample number for the whole
experimental data set for the dynamic PCA based conventional monitoring when the system

parameter is changed from 3.0 to 1.0 at sample number 1000 (example 2)
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The average reliability for the conventional monitoring scheme based on dynamic PCA
model reported, calculated as per the procedure given by Kano et al., (2001) is given in Table
6.7

Table 6.7: Average reliability (%) of the dynamic PCA based conventional MSPC

Monitoring Case
statistic 1 2 3
Hotelling T2 1.6 3.8 14.2
Q-statistic 13.6 39.3 65.5

Comparison of Tables 6.3 and 6.7 highlights the importance of selecting an appropriate
model for monitoring. When a dynamic system is monitored using a static model, the
performance of the (conventional) monitoring scheme is much poorer (Table 6.3) than when
a dynamic model based scheme is applied (Table 6.7). For example, the average reliability
for the large change situation for a static PCA model is 9.5% and the corresponding value for
a dynamic PCA based monitoring scheme is 65.5%, approximately a 6 fold increase.
Although the incorporation of the dynamics into the model has considerably increased the
performance (especially for the large change situation) of the conventional monitoring
scheme, its reliability is still poor for the small and medium change cases. The average
reliability for the scheme proposed by Kano et al.,, (2001) is given in Table 6.8. The
corresponding figures for the local approach based scheme are given in Table 6.9.

Table 6.8: Average reliability (%) for the dynamic PCA based scheme of Kano et al., (2001)

Monitoring Case
statistic 1 2 3
Proposed by Kano 291. 81.6 95.4
et.al (2001)

Table 6.9: Average reliability (%) for the dynamic PCA based local monitoring scheme.

Monitoring Case
statistic 1 2 3
Based upon Local 96.79 97.34 98.96
Approach
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It can be observed that the local approach based scheme not only detects the large change
case successfully (with an average delay of one sample) but is almost equally efficient in

detecting the small and medium change cases.

6.7.3. Example 3: Fault Detection in Continuous Stirred Tank Reactor

The proposed statistic for PCA model change detection is now applied to detect a fault in a
continuous stirred tank reactor (CSTR). A schematic diagram of the CSTR is shown in Figure
6.20 (Zhang, 1991). In the reactor an irreversible heterogeneous catalytic exothermic reaction
A— B takes place. The objective of the process is to maintain the product concentration at a
desired level by controlling the temperature of the reactor, the height in the reactor and the
reactor mixing conditions. Temperature in the reactor is controlled by manipulating the flow
rate of the feed cold water to the heat exchanger via a cascade control system. Manipulating
the product flow rate controls level in the reactor. The mixing conditions are controlled by

manipulating the recycle flow rate. A SIMULINK based simulator for this process was

developed by Lane (2000).
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Figure 6.20: Continuous Stirred Tank Reactor Schematic

A nominal data set consisting of 12 process variables and one thousand samples was

generated. The process variables measured were:
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Feed flow rate

Temperature of feed

Concentration of reactant A in feed
Pressure of cooling water
Temperature of cooling water
Control signal to recycling flow valve
Height in reactor

Temperature in reactor

B0 o N LS TS R B

Recycle flow rate

—
(=

. Cooling water flow rate
11. Recycle Temperature
12. Product flow rate

After the data was auto-scaled, PCA was performed. The percentage contribution of each

principal component towards the total variance of data is summarized in Table 6.10

Table 6.10: Variance contribution for PCA on CSTR data

Number of Eigenvalue % variance Cumulative %

PC explained variance

explained
1 2.65 22.09 22.09
2 2.03 16.93 39.02
3 1.7 11.38 50.40
4 1.09 9.10 59.50
5 1.07 8.95 68.45
6 1.06 8.87 77.31
7 0.963 8.03 85.34
8 0.832 6.93 92.27
9 0.727 6.06 98.33
10 0.143 1.20 99.53
11 0.0564 0.47 100.0
12 0.0243 0.00 100.0

A PCA model was built using 8 principal components, as determined from cross validation.
The fault studied was the fouling of the heat exchanger and was simulated by reducing the
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heat transfer coefficient of the heat exchanger from its nominal value. Three experimental
data sets, each comprising 1500 samples with the first one thousand samples corresponding
to normal conditions and the remaining 500 samples corresponding to three different
magnitudes of fouling (i) small (2%) (ii) medium (3%) and large (5%), were generated. The
local approach based monitoring scheme with window parameters n, and n, equal to 300

and 50 respectively was applied to each of the experimental data sets. Figures 6.21, 6.23 and
6.25 show the plots of the local statistics for the cases of small, medium and large fouling
respectively. The corresponding performance of the conventional monitoring scheme is
shown in Figures 6.22, 6.24 and 6.26. It can be seen that while the local approach based
scheme detects all these changes without any delay, the conventional approach is almost
insensitive in the cases relating to small and medium changes but is able to detect the case of

large fouling in the heat exchanger.

Figure 6.21: Plot of the local statistics versus sample number for (a) the whole experimental

data set when is fouling is increased by 2% at sample number 1000(b) the normal operating

condition component of the experimental data set (example 3).
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Figure 6.22: Plot of (a) Hotelling T? and (b) Q-statistic for the experimental data set
when the fouling is increased by 2% (example 3)

Figure 6.23: Plot of the local statistics versus sample number for (a) the whole experimental

data set when is fouling is increased by 3% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 3)
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Figure 6.24: Plot of (a) Hotelling T? and (b) Q-statistic for the experimental data set when
the fouling is increased by 3% (example 3)

Figure 6.25: Plot of the local statistics versus sample number for (a) the whole experimental
data set when is fouling is increased by 5% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 3)
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Figure 6.26: Plot of (a) Hotelling T? and (b) Q-statistic for the experimental data set when
the fouling is increased by 5% (example 3)

6.8. Conclusions

In this chapter the abnormal changes that can occur in identical and independent
multivariate Gaussian process variables have been divided into two categories namely (i) a
change in the mean vector and (ii) a change in variance-covariance structure. It has been
shown that although a conventional PCA based monitoring scheme, in particular the Q-
statistic, can detect large changes in the variance-covariance structure, it is not sensitive to
small changes. A new monitoring statistic based on the estimation function of PCA is
derived. To derive the distribution function of the statistic, use is made of the local approach
of hypothesis testing. The performance of this new statistic is tested and compared with a
conventional monitoring scheme for detecting changes in two artificial data sets. It was found
that the proposed scheme detects not only changes of large magnitudes, but is especially
suitable for detecting small changes. The proposed scheme was also compared to the scheme
recently proposed by Kano et al., (2001) on the basis of the performance index proposed by
Kano et al., (2001) and is observed to outperform this scheme. The scheme was finally
applied to detect fouling of heat exchanger in continuous stirred tank reactor.
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CHAPTER 7
Recursive Partial Least Squares with Application to Process

Monitoring
7.1. Introduction

In the last chapter, it was shown that a conventional PCA based monitoring scheme is
particularly insensitive for the detection of small changes in the variance-covariance structure
of the variables and a new monitoring scheme based on a PCA model identification
procedure was derived. In this chapter, the focus is on the monitoring of cross-covariance
(i.e. between the input and output variables) through a PLS based monitoring scheme. A
recursive algorithm for identifying a PLS model is first developed and then use is made of

this algorithm to derive a monitoring statistic.
7.2 Recursive Partial Least Squares

The most common method for identifying a PLS model is the batch method. It is a two step
procedure (1) the collation of the data into matrices X and Y, and (2) the calculation of the
eigenvalue-eigenvectors of suitable combinations of the matrices X and Y through the
application of the NIPALS algorithm. This method has two limitations. First it can be shown
that the computational complexity of this approach increases at least quadratically with the
dimensionality of the data (Partridge and Calvo, 1998). This can make the method
impractical when the data set is large. Secondly, if the data is nonstationary and the PLS
model requires to be updated regularly, then the single PLS model with constant parameters,
as identified by the batch method, is inefficient. To overcome these limitations, adaptive
methods, also known as on-line or recursive methods, have been proposed. In contrast to the
conventional batch method, adaptive methods do not require the prior storage of data and the
PLS model is updated as and when a sample of the data becomes available.

In general, there are two methods for the computation of recursive subspace projection
techniques for PCA and PLS. In the first class of algorithms, the covariance matrix (for PCA)
and cross-covariance matrix (for PLS) is updated on-line by a rank one modification
procedure and then eigenvalues-eigenvectors of combinations of the updated matrices are
calculated. This method was proposed by Li et al., (2000) and Dayal and MacGregor
(1997(b)) for recursive PCA and PLS respectively. In the second class of algorithms, a
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recursive equation for updating the eigenvalues and eigenvectors is derived directly from the
data. This approach for PCA has attracted a great deal of attention in the research community
since it has the additional advantage that the algorithm can be implemented using a neural
network architecture. The latter method is, therefore, sometimes referred to as neural PCA
(Oja, 1982).

The objective of this section is to propose a recursive PLS algorithm, which belongs to the
second class of approaches. Although the proposed algorithm can be used to update the
parameters of the PLS model, the objective is to derive a statistic that can be used to detect

changes in the cross-covariance structure.

7.2.1 Literature Review

The literature on neural PCA is extensive. Neural PCA methods are based on the biologically
motivated unsupervised Hebbian learning rule, which was first proposed by Hebb in his
seminal book ‘The Organization of Behaviour’ (1949). Hebb hypothesised that ‘‘when an
axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both of the cells
such that A’s efficiency, as one of the cells firing B, is increased. >’ Putting it more simply,
the rule states that when cells (neurons) A and B are simultaneously excited, the strength of
connection between the two is increased. Oja (1982) first showed that the normalized version
of the Hebbian rule when applied to a neural network consisting of a single linear neuron
converges to the principal eigenvector of the covariance matrix. This work by Oja (1982)
attracted a lot of attention from the neural network community and several researchers,
Sanger (1989), Oja (1989), Foldiak (1989), Kung and Diamantaras (1994), extended Oja’s
methodology to extract multiple components of PCA using a neural network consisting of
multiple linear neurons. However, one limitation was that the speed of convergence was quite
slow. To increase the speed, modifications to the Hebbian learning rule were proposed by
Partridge and Calvo (1998) and Bannour and Sadjadi (1995). Diamantaras (1994) extended
the Hebbian learning rule to extract principal components where two sets of variables x and y
were available. This work was further generalized by Feng et al., (1998) to extract the
singular components of any general matrix. A comprehensive review of the neural network

implementation of PCA can be found in Diamantaras and Kung (1996).

The chemometrics research community have also attempted to develop an adaptive version

of Partial Least Squares, but these mainly belong to the first class of algorithms. The
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recursive algorithm for PLS was first proposed by Helland et al., (1991). In this algorithm,
the old data is captured by the PLS model loadings (P and Q) and the new data is augmented
with these loadings matrice. The model is then updated by performing the NIPALS algorithm
on these augmented matrices. Qin (1993, 1998) modified this algorithm to identify a dynamic
process model. Wold (1994) proposed exponentially weighted algorithms for both PCA and
PLS. His approach is based on performing NIPALS algorithm on the augmented data set (X
and Y) every time a new data sample becomes available. Dayal and MacGregor (1997(a))
proposed an improved version of this algorithm, in which the covariance and cross-
covariance matrices (and not the data matrices) of x and y are updated using an exponential
forgetting factor. The kernel algorithm (Dayal and MacGregor, 1997(b)) is then used to
calculate the parameters of the new model. Lane et al., (2003) and Wang et al., (2003) more
recently used recursive PCA and PLS respectively to monitor time varying chemical

processes.

The recursive algorithm for PLS is now derived in the next sub-section. First the recursive

equations for the extraction of the first latent variable are derived (section 7.2.2) and then the

algorithm is extended to extract 4 (2 1) latent variables (section 7.2.3).
7.2.2 Extraction of First Latent Variable

Let x(n) e R and y(n)e R™ be a sample of process and response variables respectively
at time point n. As mentioned in Chapter 2, PLS seeks to find two vectors w, € R%X and

v, € R such that

t, =,T;'IT; L ) (7.1) |
and
w =v]y 2

have maximum covariance with the constraint |w,|=1 and |v,|=1. The covariance J

between t;and u, is given by:
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Jw,,v,)=E{tu,} (7.3)

where E{} denotes the statistical expectation operator and it is assumed that t, and u, have

zero mean. The problem, therefore, can be stated as:

max (J) = max E{w, xy'v,} (7.4)
had ok W'Y

subject to ||w,|| =1 “vl" =1
Differentiating the objective function with respect to the weight vector w, gives:

Wal(.l(wpvl)):E{xyTvl}=E{xu]} (7.5)

Likewise differentiating the objective function with respect to the weight vector v, gives:

a .
5. 0w, v) =Ely x'w,;}=E {yt;} (7.6)
1

The gradient ascent rules for updating the weights w, and v, are:

w,(n+1)=w,(n)+ n;j—(.l) =w(n)+nE {x(n) u;(n)} S

Vi@+D) = ¥+ 15 0) =¥, + 1E iy 4 @)
1

where 1) is the learning rate. To implement the recursive equations in (7.7), the statistical

expectation requires to be estimated. Taking the instantaneous values x(n)u;(n) and y(n)t,(n)
as the estimates of E{x(n)u;(n)} and E{y(n)t;(n)} respectively, as in the Least Mean Square
(LMS) algorithm (Haykin, 1995), the recursive equations in (7.7) reduce to:

w,(n+1) = w,(n) + nx(n)u,(n) (7.8)
vi(ntl) = vi(n)+ny(n)t(n)
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It should be noted that the above equations for updating the weight vectors do not take into
consideration the unit norm constraints on the weight vectors w; and v,. Two approaches

can be adopted to take into account these constraints. The first is to normalize the weight

vectors to unit norm after each updating of the weight vectors. This gives the following

updating equations:

W (n+1)=w;(n)+nx(n)u,(n) I 49.9)
& w,(n+1)
wi(n+1) ———“W](ﬂ“'l)"
Vi(n+1) =v,(n)+ny(n)t,(n)
_ Vi(n+1)
vin+l)= ———||'\7‘(n+l )"

An alternative approach is to use the first order technique adopted in (Oja, 1982). Taylor
1 1 1

m an

Wi " W@

order terms in the learning rate 1 are neglected. For example, the first order Taylor series

series expansions of are calculated and the second and higher

expansion of m is given by:
1

1 7.10
o e 5
1

Therefore, the updating equation for weight vector w, becomes:

Wy @H) = wy (@) + 1y (x@)- Wy @) @)y () 5 @]
This can also be written as:
w,(n+1) = w,(n) + nx’ (n) u,(n) (7.12)
where
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x'(n) = x(n) — w,(n)t,(n)

Similarly the updating equation for the weight vector v, is given by:
vi(n+1) =v,(0)+n(y®)-v,(n)u,(n)) t,(n)

If b, is the inner regression coefficient between u,; andt,, that is:

| u; =b;t, +e,

then it can be computed recursively using the LMS rule (Haykin, 1995):

- by(n+1) = by(n) + ne,(n)t;(n) = by(n) + n(u,(n) - G, ())t;(n)

where

,(n) = by()t,(n)

7.2.3 Extraction of More Than One Latent Variable

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

The second and higher order latent variables of PLS in the NIPALS algorithm are found by

deflating matrices X and Y. Since the recursive algorithm deals with vectors instead of

matrices, the next step is to deflate the vectors. The deflated vector X,(n) for computing the

second latent variable can be obtained by re-writing equation (2.59) in terms of a single

observation of input variables:

x,(n) = x(n) - t;(n)p,

(7.18)

where p, is the loading vector. Equation (7.18) shows that to compute the deflated vector

X,(n) the loading vector p, needs to be calculated recursively. From equations (2.55) and

(2.56), the loading vector p, is identified as the parameter vector for predicting the input

variables x from the latent variablet, :
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x=t,p,+e (7.19)

and is determined such that the norm of the prediction error €, is a minimum. Using the LMS

rule to determine the loading vector p, recursively:

p,(n+l) = p,(n) + ne,(n) t,(n) (7.20)
where
e,(n) = x(n) - t,(n)p,(n) (7.21)

The deflated vector y, (from equation 2.59) is given by:

y,(n) = y(n) - §,(n) v, (122)

Once the deflated vectors X, and y, are available, the second latent variables t, and u,
can be calculated by determining the weight vectors w, and v,. The updating equations for
these vectors can be obtained from equations (7.12) and (7.14) by replacing X and y with
x, and y, respectively. Rewriting the updating equations in terms of x and y requires
making use of the fact that it is not necessary to deflate both x and y. It was proven in

Hoskuldsson (1988) that only x needs to be deflated, this was later extended by Dayal et al.,
(1997(a)) by who proved that either x or y can be deflated. Letting:

() =w, (n)x(n) (7.23)
uy(m) = v, (n)y ()
and
(1.24) |

t,(n) = W, (0)x,(n)

uy(n) = v, ()y,(0)
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The relationship between t,, u, and t,, u’, can be derived by substituting equations (7.18)
and (7.22) into equation (7.24):

ty(m) = w," (0)(X(n) - t,(n) p,(n)) (7.25)
uy(0) = v, () (y(n) - d,(n)v,(n))

These equations can be further simplified to give:

tlz(n) = tz(n)—tl(n)dlz(n) (7.26)

u5(n) = u,(n) - 4,(n) rp,(n)

where

dy(m) =w, ()p,(n) (7.27)

() = v, (0) vy(n)

Now the updating equation for w,, assuming that X is not deflated but y is deflated, in

accordance with equation (7.12) can be written as:
W (1r+]) = W, (0) + 1(x(0)~ W, (n) t,(0)) u)(n) (7.28)

Similarly the recursive equation for v,, assuming y is not deflated but that x is deflated, can

be written as:
vy(n+1) = vy(n) + n(y(n) - v,(n)u,(n)) ty(n) (7.29)

The recursive equations for computing d;, and 1, can also be derived. Multiplying both

sides of equation (7.20) by w} and incorporating equation (7.21) gives:

dyp(n+1) = dyy(m) + Mty (0) — t,()d () t,(n) (7.30)
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Similarly, r;, can be computed by multiplying equation (7.29) on both sides by v,T and
using equations (7.26), (7.23) and (7.24), thus:

r5(n+) = 1,(n) + n(u,(n) - r,()uy ()t (n) (7.31)
The inner regression coefficient, b, for the second set of latent variables can be computed as:
by(n) = by(n) + n(u; — ()t (M)t (n) (7.32)

The above scheme can be extended to extract, in general, the A" latent variable as follows:

w () = w ,(0) + n( X(0) = W 4(n) t ,(n)) Uy () (7.33)
V(0 +1) = v ,(0) + n(y@) = V @) u 4()) t, () (1.34)
where

; té =w,"x : (7.35)
u,=v ATy

v owt, -Az-ldmt; - (7.36)
i=1
A-1
Uy, =u, — Yral;
i=1
Also
dia(nH)=d;,(n) +n3 t(n) ti(n) fori< A | (7.37) |
£,40+]) =1, ,(0) + Ny () 1, ,(M)u (M)t () fori <4 (7.38)
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7.3 Summary of the Algorithm
A summary of the algorithm for computing A4 latent variables is given below:

Stepl: Initialize weight vectors w,, v, , inner regression coeffiecient b; for i =1,2...4 and

dij, Tij for i=12..4; j=12..i-1 torandom values.

Step 2: Compute at time point n

fori=12..A
t;(n) = x(n)"'w;(n)
u;(n) = y(n)"v(n)
if 1=1
ti(n) =t;(n)
uf(n) = u;(n)
i (n) = b;(n)t} (n)

else
ti(n) =tj(n)- ii;d ji(m)tj(n)
o
4} (n) = by ()t} (n)
uj(n) = uj(n)- lilrji (n)dj(n)

=

Step 3: Update the parameters

fori=12,..4
w;(n+1) = w;(n) + n(x(n)— w;(n) t;(n)) uj(n)
vi(n+1)=v;(n)+n(y(n) - vi(n)u;(n)) tj(n)
b;(n+1) = b;(n) + n(uj - b;(m)t;(n))t;(n)
di(n+1)=d (n) +ntj(n) tj(n)  foreachj<i-1
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r;;(n+1) =r;;(n) +n(u;(n) - rj(n)u(n))t;(n) foreach j<i-1

Step 4: Repeat steps 2 and 3 until convergence

7.4. Simulation Study

To test the above method, an artificial data set was generated. The vector X consists of 5
variables generated as follows: x,, X,, X4 and xs are distributed normally with zero mean and
a variance of unity and x; = x;+ X, Measurement noise, which is Gaussian with zero mean
and a variance of 0.1 is added to each of the input variables. The output vector y consists of 4
variables with the component variables generated as: y; = 2 X, 2= Xi+ Xo + X3, y3 = 4 x4and
ya = X3 + X3 + X4 + X5. Gaussian measurement noise with a mean of zero and variance of 0.1

was added to these output variables.

A data set consisting of 200 samples was generated. After the data was auto-scaled, the
recursive algorithm was applied to extract 3 latent variables, that is 4 = 3. The learning rates
in all the recursive equation was set equal to a fixed value of 0.01. The choice of the learning
rate was determined as a compromise between the speed of convergence and instability
(oscillations around the minima). A High learning rate leads to fast convergence but may not
converge to the minima (solution). On the other hand a small value for the learning rate
makes the algorithm converge more slowly. This is illustrated in Appendix 1 for two value of
learning rates, 0.001 and 0.04. The convergence of the first three solutions for the weight
vectors w and v are shown in Figures 7.1 and 7.2 respectively. Figure 7.3 shows the
convergence of the inner regression coefficients. It can be seen from the figures that for the
example considered, approximately 5 iterations are required for the first solution to converge.
The successive solutions, however, require fewer number of iterations because they are

computed in parallel with the first one.
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Figure 7.1: Plot of estimation error ||w-w Nﬂ,m“z , where Wyparg is the PLS solution

from the NIPALS algorithm versus number of iterations for the first three solutions of w (a)

w, (b) wy(c) w3

2
Figure 7.2: Plot of estimation error “v -vmmll , where Vypars is the PLS solution

from the NIPALS algorithm, against number of iterations for the first three solutions of v (a)

vi(b) v, () V3
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2, where bypars is the PLS inner

Figure 7.3: Plot of estimation error “b'bNIPALS|

regression coefficient from the NIPALS algorithm, versus number of iterations for the first
three inner regression coefficients(a) b; (b) b, (c) bs

7.5 Application to Process Performance Monitoring

In general, a recursive algorithm for estimating a parameter vector 0 can be written as:

0(n +1) = 8(n) + ik, B(n), x(m) (139)

S R ke L |

where k, (multiplied by the learning rate m) represents the change in the parameter vector
0 at the current time. For the LMS algorithm, Kk, is given by the gradient of the

instantaneous estimate of the objective function:

(7.40)
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where J, is an instantaneous estimate of the objective function J, the optimization of which
determines the parameter vector @ . For recursive PLS, for example, k, for estimating the

first weight vector w, can be determined from equation (7.11):
Ky =(x(m)- w,(0) t;())u,(n) (7.41)

Taking the statistical expectation on both sides of equation (7.40) gives:

| 5 (742)
| E{k,} =E 5(1.,(0, x(n)j

i

Now assuming that the nominal model parameter of the system is known and is equal to 0,
if the measurements x(n) from the system correspond to the nominal model parameter 0,

then the right hand side of equation (7.42) evaluated at 0, must be equal to zero:
| E(k,}|g =0 (7.43)

This is because, the nominal model parameter 0, corresponds to the optimization of the
objective function E{J, }, and therefore its gradient at 0 is equal to zero. When the system

parameters do not correspond to the nominal parameter 0, the statistical expectation of Kk,
will be non-zero. The change detection in the parameters of the system is, therefore,

equivalent to detecting a change in the mean of k.

The weight vectors w; and v; (fori=12..4) in a PLS model depend on the cross-
covariance (between the input and output variables) structure of the process variables.
Specifically, w; and v; are obtained by singular value decomposition of the cross-
covariance matrix. A change in the cross-covariance, therefore, can be detected by detecting a
change in the weight vectors w; and v, . It can, however, be proven (Chapter, 3, remark 1)
that vector v; is related to w; and therefore it is sufficient to detect a change in w; in

order to detect a change in the cross-covariance structure.
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As in equation (7.40), corresponding to each w;, a statistic k; can be derived from the
recursive equation for w;, such that the mean of k; is zero under normal conditions but
becomes non-zero when the cross-covariance structure changes from normal conditions. The

expression for k; from equation (7.33) is:

k; = (x(@)-w, (@) t;(n)) uj(n) - (7149)

If all the weight vectors are arranged in one column, then the vector 0 of the parameters
corresponding to the normal operating conditions of a PLS model is given as:

=W, w;..w,]" (7.45)

The corresponding augmented vector k of the statistic is given by:

k=[k, ky...k,]T (7.46)

Since each component of the vector k has zero mean when the corresponding loading vector
corresponds to normal operating conditions, it therefore follows that the mean of the
augmented vector k is zero when the PLS model parameter vector 8, corresponds to normal
operating conditions. When any or all of the weight vectors change, the mean of vector k
deviates from zero. The vector Kk, therefore is a primary residual (section 6.5.1). After the
primary residual is determined, the local approach of hypothesis testing (described in

Chapter, 6) can be used to design an algorithm to detect a change in its mean value.

It should be noted from equation (7.44) that calculation of k; requires uj, which in turns

requires the measurement of the quality variables y on-line. In some processes, the quality
variables are not available as frequently as the process variables. To determine the
monitoring statistic in such a situation, u! can be replaced by its predicted value Uf. The
justification for this is that under normal conditions, the covariance between the t-and u-

scores is the same as the covariance between t-and predicted u-scores, that is:

*Bltjui) = Bt (@ + o)} = B{yi) 040
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The expression for k; can, therefore, be written as:

k; = (x(n)—w;(n)t;(n))i;(n) (7.48)

7.5.1 Summary of the Change Detection Algorithm

Given: Matrices X and Y corresponding to the normal operating condition of a process
Mean centre and scale each variable to unit variance.

Step 1: Build a PLS model using A4 latent variables

Step 2: Compute the primary residuals for each principal component at each sample time:
k;(n) = (x()- w;t;(n))i}(n)

Step 3: Determine the augmented vector k(n) = [k,(n) k,(n)..k A(n)]T

Step 4: Remove the bias, i.e., mean centre k(n)

Step 5: Select the window size parameter n(typical value is in the range 300-500) and

n, (30-50).

Step 6: Compute improved residuals at each sample time:

f=—— ki)

Ny +1;270g

Step 7: Calculate the covariance matrix X of the improved residuals

Step 8: Compute the local statistics at each sample time:
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Sg = r,',r 2;.1 s

Step 9: Determine the confidence limit (95 %, 99%) t,,

Step 10: If there are a large number of false alarms, change the window parameter n, and

repeat steps 6-9

Step 11: Finally apply the algorithm to new (experimental) data set by scaling it with the

same values that were used in the scaling of the nominal data set.

7.5.2 Simulation Studies

The algorithm described above is first applied to detect a change in the parameter of an

artificial system and is then applied to detect a fault in a continuous stirred tank reactor.
7.5.2.1 Example 1: Detection of a change in the parameters in an artificial system

In this example the artificial system described in section 6.7.2 is considered. A normal data
set comprising 2000 samples of two input variables x and two output variables y is generated

and stored in matrices X and Y. The matrix X is augmented with one lagged value for each of
the input and output variable so that the size of the augmented matrix Xy, is 1999x 6. The
matrices Xg,o and Y are auto-scaled and the NIPALS algorithm is applied to the data. The

percentage contribution of different latent variables is summarised in Table 7.1. A PLS

model using three latent variables is then built.

Three (experimental) data sets, each comprising 2000 samples, corresponding to the three

changes (listed in Table 6.1) in the coefficient relating the second state variable, u,, to the

first input, X, , are generated. The first one thousand sample of each data set correspond to
normal operating conditions and the remaining one thousand correspond to a change in the

parameter. The change detection algorithm with parameters n, and n, equal to 300 and 50

respectively was then applied.
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Table 7.1: Percent variance captured by PLS model (example 1)

No. % variance Cumulative % % Variation Cumulative %
of explained variance explained explained variance explained
LV X) (X) (Y) Y)

1 37.14 37.14 51.48 51.48

2 36.86 74.01 34.02 85.50

3 13.20 87.21 7.48 92.98

4 11.47 98.68 3.54 96.52

5 1.29 99.97 2.16 98.68

6 0.03 100.00 0.04 98.72

Figures 7.4(a), 7.6(a) and 7.8(a) show plots of the local statistic for the experimental data set
corresponding to small, medium and large changes respectively. The lower panel in each of
these figures correspond to the normal operating conditions of the experimental data set. The

performance of conventional PLS based monitoring scheme, which is based on three statistics

namely the Q-statistic in the input space, the Q-statistic in the output space and Hotelling T2,
is shown in Figures 7.5, 7.7 and 7.9. It is seen from these figures that the proposed
monitoring scheme successfully detects all the changes. The delays in detecting small,
medium and large change in the system parameters for the proposed algorithm are 23, 17 and
5 samples respectively. The conventional monitoring scheme, in comparison, is insensitive to
small and medium changes but the Q-statistic in the output space does show an upward shift
for the large change after the occurrence of the change. This shift, however, is not sufficient

to give a clear signal of the change.
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Figure 7.4: Plot of the local statistics versus sample number for (a) the whole experimental

data set when the system parameter is changed from 3.0 to 2.5 at sample number 1000 (b) the

normal operating condition component of the experimental data (example 1)

1 R N o

Figure 7.5: Plot of (a) Hotelling T? and (b) Q-statistic in the output space (c) Q-statistic in
the input space versus sample number for the whole experimental data set when the system

parameter is changed from 3.0 to 2.5 at sample number 1000 (example 1)
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Figure 7.6: Plot of the local statistics versus sample number for (a) the whole experimental

data set when the system parameter is changed from 3.0 to 2.0 at sample number 1000 (b) the

normal operating condition component of the experimental data (example 1)

1|

L}

Figure 7.7: Plot of (a) Hotelling T? and (b) Q-statistic in the output space (c) Q-statistic in

the input space versus sample number for the whole experimental data set when the system

parameter is changed from 3.0 to 2.0 at sample number 1000 (example 1)
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Figure 7.8: Plot of the local statistics versus sample number for (a) the whole experimental
data set when the system parameter is changed from 3.0 to 1.0 at sample number 1000 (b) the

normal operating condition component of the experimental data (example 1)

Figure 7.9: Plot of (a) Hotelling T? and (b) Q-statistic in the output space (c) Q-statistic in
the input space versus sample number for the whole experimental data set when the system

parameter is changed from 3.0 to 1.0 at sample number 1000 (example 1)
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The reasons for better performance of the proposed algorithm and the poor sensitivity of

conventional monitoring scheme can be summarized as follows:

(1) Any change in the parameters of the system is reflected as a change in the mean
value of the statistic, k, which is of the same dimension as that of the parameter
vector of the model of the system. For example, in the PLS model, the parameter
vector (equation 7.45) is of dimension (6x3 =18), which is same as that of the

statistic k (equation 7.46). The dimension of the residual vector, on which the Q-
statistics are calculated, is 6 (for the residual in the input space) and 2 (for the
residual in the output space). The residual vectors, therefore, may not be able to
capture the full information about the change.

(2) The proposed algorithm is based on the local approach of hypothesis testing which,
as explained in chapter 6, is especially suitable for detecting small changes in the
parameters

(3) The change in the mean value of statistic k is detected by an algorithm which is

“nearly optimal” in the sense that it minimizes the delay for a given false alarm rate.

7.5.2.2 Example 2: Fault detection in a continuous stirred tank reactor

The proposed scheme is finally applied to detect a fault in a continuous stirred tank reactor
described previously in Chapter 6 (section 6.7.3). Of the 12 measured variables, three
variables namely temperature in the reactor, height in the reactor and product flow rate are
taken as the output variables and the remaining 9 are taken as input variables. A normal data
set consisting of 2000 samples is generated from the SIMULINK based simulator of the
CSTR system. Partial least squares was performed after the data was auto-scaled. The
percentage variance captured by the different latent variables is shown in Table 7.2. A PLS

model using 6 latent variables was built as determined by cross-validation.

Three experimental data sets, each comprising 2000 samples with the first one thousand
samples corresponding to normal conditions and the remaining 1000 samples corresponding
to three different variants of fouling (i) small (2%) (ii) medium (3%) and large (5%), were
generated. The performance of the proposed algorithm for change detection is shown in
Figures 7.10, 7.12 and 7.13. The corresponding performance of conventional PLS based
monitoring scheme is shown in Figures 7.11, 7.13 and 7.15. These results once again show

that while the proposed algorithm detects all these changes without any delay, the
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conventional monitoring scheme only detects the situation where the level of fouling is large
while remaining insensitive to small and medium levels of faults. The reasons for the better

performance of the proposed scheme are the same as given in example 1.

Table 7.2: Percent variance captured by PLS model (example 2)

No. % variance Cumulative % % variance Cumulative %
of explained variation explained explained variance explained
LV (X) (X) (Y) (Y)

1 14.86 14.86 36.91 36.91

2 17.71 32.57 9.46 46.37

3 9.77 42.34 4.63 51.00

4 12.82 55.16 3.67 54.67

5 3.80 58.96 21.00 75.67

6 6.59 65.55 9.70 85.37

7 10.88 76.43 0.23 84.60

8 11.57 88.00 0.07 85.67

9 12.00 100.00 0.00 85.67

AT

Figure 7.10: Plot of the local statistics versus sample number for (a) the whole

experimental data set when fouling is increased by 2% at sample number 1000 (b) the

normal operating condition component of the experimental data set (example 2)
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Figure 7.11: Plot of (a) Hotelling T> and (b) Q-statistic in the output space (c) Q-statistic in
the input space for the experimental data set when fouling is increased by 2% (example 2)

AT

Figure 7.12: Plot of the local statistics versus sample number for (a) the whole experimental
data set when fouling is increased by 3% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 2)
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Figure 7.13: Plot of (a) Hotelling T? and (b) Q-statistic in the output space (c) Q-statistic in
the input space for the experimental data set when fouling is increased by 3% (example 2)

ATV,

Figure 7.14: Plot of the local statistics versus sample number for (a) the whole experimental
data set when fouling is increased by 5% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 2)
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Figure 7.15: Plot of (a) Hotelling T? and (b) Q-statistic in the output space (¢) Q-statistic in
the input space for the experimental data set when fouling is increased by 5% (example 2)

7.6 Conclusions

In this chapter, a recursive algorithm, which computes parameters for all the latent variables
in parallel, is proposed. The algorithm is shown to converge to the parameters computed by
the NIPALS algorithm. A statistic was then derived from this recursive algorithm to monitor
a change in the cross-covariance (between the output and the input variables) structure of the
measured variables. The monitoring statistic is especially suitable for detecting small changes
in the covariance structure that cannot be detected by a conventional PLS monitoring scheme.
The proposed monitoring scheme was first tested to detect a change in the parameter of an

artificial system before using it to detect different levels of fouling in a continuous stirred

tank reactor.
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CHAPTER 8

Conclusions and Recommendations

8.1 Introduction

This thesis contributes to the two disciplines of modelling and monitoring of multivariate
signals. Specifically, in the first part of the thesis, issues relating to the extension of the
partial least squares algorithm to more complex situations where the data exhibits non-linear
and dynamic behaviour were investigated. The second part was concerned with the detection
of abnormal changes in the variance-covariance structure of the data in PCA and PLS based
monitoring schemes. The contribution and main results of the thesis are summarized in

section 8.2. Recommendations for the future work are given in section 8.3

8.2 Main Contributions and Results

In most applications of PLS, the objective is to predict the response variables as accurately as
possible. An alternative application of PLS is that of parameter estimation where the
objective is to estimate the parameters from the data in such a way that they are ‘close’ to the
‘true’ parameters. It is known that PLS gives biased estimates of the parameters when the
number of latent variables retained in the model is less than the number of input variables.
However, it is shown that when a subspace of dimension 4 (< K, number of input variables)
is correlated with the output variable and a PLS1 model is built using 4 latent variables then
PLS1 gives unbiased estimates of the parameters. Furthermore, the variance of the PLSI

estimates can be less than the variance of the estimates using ordinary least squares.

Several non-linear extensions of PLS have been proposed in the literature to model the non-
linear behaviour of complex processes. A detailed investigation of the non-linear PLS
algorithms of Baffi et al., (1999%(a)) revealed that this algorithm represents a non-linear
extension of reduced rank regression. Conventional PLS is based on the maximization of the
covariance between the t- and u-scores. It is thus argued that a ‘true’ non-linear PLS should
be a generalization of linear PLS in the sense that when the non-linear function is replaced by
a linear function, non-linear PLS should reduce to linear PLS. A ‘true’ non-linear PLS
algorithm, therefore, should be based on the maximization of the ‘non-linear’ covariance
function. After a detailed investigation of the algorithm of Wold et al. (1989) it is proven
that, of all the algorithms existing in the literature, it is the only algorithm that attempts to
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maximize the covariance based function to identify a non-linear PLS model. Further analysis
of the Wold et al., (1989) algorithm revealed some limitations of the algorithm in that all the
parameters that influence the non-linear covariance function are not determined so as to
maximize the covariance function. To overcome this limitation, two new non-linear PLS
algorithms, NLPLS1 and NLPLS2, are proposed. In these algorithms, the ‘non-linear
covariance’ function is maximized over all the parameters (outer weights and inner non-linear
model parameters). The difference between NLPLS1 and NLPLS2 being that they use a
different set of constraints to make the non-linear covariance function bounded. The
application of NLPLS1 and NLPLS2 algorithms to two artificial data sets and a data
generated from a simulation of a pH neutralization process showed that these two algorithms
perform better than the Wold et al., (1989) algorithm in terms of explaining the variance of
the response matrix Y and the prediction of the response variables for a given number of
latent variables. Of NLPLS1 and NLPLS2, it was observed that the NLPLS2 performs
slightly better than NLPLS1. Following a critical analysis, the existing non-linear PLS
algorithms are divided into three categories namely quick and dirty, covariance based and
error based depending on the underlying objective function used to determine the model

parameters.

Conventional linear PLS assumes a static relationship between the input and output variables
and therefore, is not suitable in situations where a dynamic model of the process is required.
One approach to extending PLS to take into consideration the dynamics of the process is to
replace the inner static relationship between the t- and u-scores of conventional PLS by a
dynamic relationship. In this approach, linear PLS is first performed on the data matrices X
and Y and a dynamic relationship is then fitted between each pair of t- and u-scores
(Lakshminarayan et al., 1997). The limitation of this methodology is that the outer weights
are not determined by the dynamics of the process and the dynamic PLS model thus
identified may not be optimal. To overcome this limitation, an integrated dynamic PLS is
proposed where the dynamic model is fully integrated within the framework of PLS in the
sense that all the parameters (outer weights and inner model parameters) of the dynamic PLS
model are determined as dictated by the dynamics of the data. The application of this
algorithm to model the data collected from an artificial dynamic system and data generated
from a co-polymer reactor simulator showed that the integration of the outer weights and
inner model parameter result in the dynamic model explaining more variance of the response
matrix Y and gives better prediction of the response variables for a given set of latent

variables.
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The abnormal changes in a multivariate Gaussian process can be divided into two categories.
While the first category comprises changes that result in the mean vector of the process
shifting away from its value defined under normal operating conditions, the changes in the
second category are reflected as a change in the variance-covariance structure of the

variables. It is shown that a conventional PCA based monitoring scheme, which uses the two

statistics, Hotelling T? and the Q-statistic, to detect any systematic shift in the variables, is
particularly insensitive to small changes in the variance-covariance structure of variables. To
overcome this limitation, a new monitoring scheme that derives a monitoring statistic from
the PCA model identification procedure is proposed. The key advantage of the proposed
scheme is that a change in the variance-covariance structure is reflected as a change in the
mean value of a statistic that can be detected optimally. To derive the distribution function of
the statistic, and thus to design the change detection algorithm, use is made of the local
approach of hypothesis testing. Another important property of the proposed scheme is that it
is especially suitable for detecting changes of small magnitude. The application of the
proposed scheme to detect changes in the covariance structure of two artificial data sets
showed that while the conventional PCA based monitoring scheme failed to detect the small
changes, the proposed scheme successfully detected these changes. The scheme was finally
applied to detect three different magnitudes of fouling in a heat exchanger in a continuous
stirred tank reactor system. It was observed that while the proposed scheme detects all three
magnitudes of fouling without any delay, the conventional PCA based monitoring scheme is
almost insensitive to small and medium magnitudes of fouling but does give an indication of

change, although weak, when the magnitude of fouling is large.

To detect changes in the cross-covariance (between X and Y) structure, a partial least squares
based performance monitoring scheme is proposed. In this scheme, the derivation of a
monitoring statistic requires that a recursive algorithm exists for identifying the PLS model
parameters. A new recursive PLS algorithm is first derived using the Least Mean Squares
(LMS) algorithm. The algorithm is tested on an artificial data set and is observed to converge
to the solution of the NIPALS algorithm. A monitoring statistic is then derived from this
algorithm. The key properties of the statistic derived from the recursive algorithms are (1) a
change in the cross-covariance structure is reflected as a change in the mean value of the
statistic and (2) it is especially suitable for detecting small changes in the cross-covariance
structure. The distribution function of the statistic derived from the recursive PLS algorithm
is determined using the local approach of hypothesis testing. The proposed scheme was first
applied to detect changes in the parameter of an artificial system before applying it for the

detection of fouling in a heat exchanger in a continuous stirred tank reactor. It was observed
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that while the proposed scheme detects changes of all magnitudes, the conventional PLS
based monitoring scheme can detect changes of large magnitudes only and remains almost

insensitive to changes of small magnitudes.

8.3 Recommendations

Based on the research undertaken in this thesis, certain issues need to be investigated and

explored further. Some recommendations for future directions are given below.

In Chapter 2, the performance of PLS as a parameter estimator has been evaluated on an
artificial data set only. The application of PLS based parameter estimation to a practical
physical/chemical data remains to be addressed.

In Chapter 3, two non-linear PLS algorithms that are based on the ‘non-linear covariance
maximization’ have been proposed. The non-linearity considered is quadratic and thus the
issue of generalizing the algorithm to a more general non-linearity e.g. feedforward neural
network with a one or more hidden layers, needs to be addressed. Furthermore, extensions to
the modelling of non-linear and dynamic data also need to be explored. Finally ‘non-linear
covariance’ based algorithms need to be applied for process monitoring and control.

In Chapter 4, the order of the inner dynamic models was selected using a subjective
approach. The reason is that there is no relationship between the number of lags and delays of
the measured variables and the lags and delays of the latent variables, which makes the
selection of the number of lags and delays in the inner dynamic model difficult. This issue
needs to be investigated further. Also the scheme for integrating the outer weights needs to be
extended to the situation when the inner model is non-linear and dynamic, e.g. Hammerstein

and Weiner models.

In Chapter 6, a new statistic to detect a change in the variance-covariance structure has been
proposed. The practical application of the scheme requires the selection of window
parameters which in this thesis has been selected using adhoc approaches. The issue of
systematically selecting the window size parameters and their effect on the optimality of the
change detection algorithm need to be investigated further. Additionally, the extension of this
scheme to monitor the cross-covariance structure in a PLS based monitoring scheme needs to

be undertaken. Also since the derivation of the monitoring statistic requires a model
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identification procedure, the scheme can be extended to detect faults in a non-linear and/or

dynamic PCA based monitoring scheme.

Finally in Chapter 7, a recursive version of the PLS algorithm is proposed. Although the
algorithm can be used to update the parameters of a PLS model on-line in a non-stationary
environment, the issue of its comparison with other recursive PLS algorithm with respect to

speed still remains to be addressed.
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Appendix 1

A.1 Learning rate_n = 0.001

The plots of the square of the norm of the error versus number of iterations for the first three
w-weight vectors, v-weight vectors and the inner regression coefficients with the learning
rate parameter, 1 =0.001 are shown in Figures A.1, A.2 and A.3 respectively. It is seen
from these figures that for this learning rate convergence for the parameters is slow and some

of the parameters (W, , W3, V,, V3 and b;) have not converge even after 100 iterations.

Figure A.1: Plot of estimation error “w-w NIPALS “2 , where Wypars is the PLS solution

from the NIPALS algorithm versus number of iterations for the first three solutions of w (a)
w, (b) W, (c) w3 for learning rate N = 0.001.
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Figure A.2: Plot of estimation error “v - VNIPALS II , where Vypars is the PLS solution
from the NIPALS algorithm, against number of iterations for the first three solutions of v (a)
v,(b) v, (¢) v, for learning rate 1 = 0.001

Figure A.3: Plot of estimation error ||b-bmpALs ||2 , where bypas is the PLS inner
regression coefficient from the NIPALS algorithm, versus number of iterations for the first
three inner regression coefficients(a) by (b) b, (c) bs for n= 0.001
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A.2 Learning rate_n = 0.04

The plots of the square of the norm of the error versus number of iterations for the first three
w-weight vectors, v-weight vectors and the inner regression coefficients with the learning
rate parameter 1 = 0.04 are shown in Figures A.4, A.5 and A.6 respectively. It is seen from
the figures that error in many of the parameters (W,,W,,W3,V,V,,V3,b;,b,) does not
become zero after convergence, which implies that the algorithm has not converged to the
‘true’ (NIPALS) parameters.

Figure A.4: Plot of estimation error “w-w NIPALS “2 , where Wypars is the PLS solution
from the NIPALS algorithm versus number of iterations for the first three solutions of w (a)
w, (b) w,(c) wj for n=0.04
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Figure A.5: Plot of estimation error "v - VNIPALS “ , where Vypars is the PLS solution
from the NIPALS algorithm, against number of iterations for the first three solutions of v (a)
Vl(b) \f) (C) V3 for = 0.04

Figure A.6: Plot of estimation error ||b-bmp,u||2, where bypars is the PLS inner
regression coefficient from the NIPALS algorithm, versus number of iterations for the first
three inner regression coefficients(a) b, (b) b, (c) by for n=0.04
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