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Abstract

The focus of the thesis is black-box modelling and the detection of abnormal events in

multivariate systems. Subspace projection techniques have been widely applied for the

modelling and monitoring of multivariate systems. The popularity of these techniques stems

from the fact that these methods can address multicollinearity, a problem commonly

encountered when modelling using ordinary least squares with strongly correlated input

(process) variables. The subspace techniques of principal component analysis and partial

least squares are the methodology of specific interest throughout the thesis.

Several non-linear PLS algorithms have been proposed over the last decade. In this thesis

analysis of existing non-linear PLS algorithms is undertaken. In particular, following a

mathematical analysis of the non-linear PLS algorithm proposed by Baffi et al., (1999(a», it

is proven that the algorithm is a non-linear extension of reduced rank regression. It is also

argued that a 'true' non-linear generalization to linear PLS should be based on the

maximization of a 'non-linear covariance' function if the spirit of linear PLS is to be

preserved in its non-linear extension. A mathematical analysis of the algorithm of Wold et

al., (1989) is undertaken and it is proven that this algorithm makes an attempt to maximize

the non-linear covariance function but with certain limitations. The limitations of the

algorithm of Wold et al., (1989) are addressed in two new non-linear PLS algorithms,

NLPLS I and NLPLS2. Also following a critical analysis, all existing non-linear PLS

algorithms are divided into three categories namely, quick and dirty, covariance based and

error based depending on the underlying objective functions optimized by the algorithms. An

application of PLS as a parameter estimator is explored and it is shown that when a subspace

of dimension A ( < K, number of input variables) is correlated with the output variable and a

PLS1 model is built using A latent variables then PLS1 gives an unbiased estimate of the

parameters.

One approach to extending PLS to take into consideration the dynamics of the process is to

replace the inner static relationship between the t- and u-scores of conventional PLS by a

dynamic relationship. An algorithm that integrates the dynamics of the data within a PLS

framework is proposed. The performance of the algorithm is evaluated against alternative

methodologies presented in the literature using an artificial data set and two simulations of

chemical processes.
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The second aspect of the thesis is concerned with detecting abnormal changes in variance-

covariance structure of variables. The conventional PCA based monitoring scheme is known

to be insensitive to small changes in the variance-covariance structure of variables. A new

monitoring scheme that derives a monitoring statistic from the PCA model identification

procedure is proposed. The proposed scheme is compared with conventional PCA based

monitoring scheme on two artificial data sets and a data set generated from a continuous

stirred tank reactor system.

A new monitoring scheme for detecting changes in the cross-covariance structure (between

input and output variables) in a PLS based monitoring scheme is proposed. The derivation of

monitoring statistic requires that a recursive algorithm exists for identifying the PLS model

parameters. A new recursive PLS algorithm is derived and the statistic derived from it is used

to detect change in parameters of an artificial system before applying to detect fouling in the

heat exchanger of a CSTR system. The performance of the proposed scheme is also

compared with conventional PLS based monitoring scheme.
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CHAPTERl

Introduction

This thesis is concerned with the modelling and detection of abnormal changes in

multivariate systems (processes). The thesis is divided into two parts. The modelling of

multivariate systems is first considered prior to looking at abnormal change detection. More

specifically the tools considered for both modelling and abnormal change detection are

constrained within the family of multivariate subspace projection techniques. The aim of this

chapter is to provide a brief introduction to the problems of modelling and abnormal change

detection and present the key contributions of the thesis.

1.1 Problem Formulation

This section presents the background from a mathematical perspective to the two areas that

are the focus of the thesis, modelling and abnormal change detection in multivariate systems.

1.1.1 System Modelling

The objective of system modelling is to develop a mathematical representation of a physical

system. The mathematical model of the system is required to explain the behaviour of the

physical system under study and can be used for several applications including, for example,

prediction, simulation and control. Broadly there are two approaches to developing a model

of a system. The first is based on understanding the physics and chemistry of the system and

then defining the mathematical equations governing the system. This approach, known as

first principle based modelling, has been the most popular in science and Newton's famous

equation of motion relating force, mass and acceleration, F =ma , is perhaps one of the

earliest examples of this approach. While the model developed by adopting this approach has

great physical significance and closely describes the 'truth' underlying the system, there are

major challenges when it comes to developing models for engineering systems. Given the

complexity and size of modem engineering systems, it is very difficult and time consuming to

develop a comprehensive first principle model.

The second approach, known as black box modelling or empirical modelling, has become

very popular with the engineering community in the last three decades. The idea behind this



approach is to use the measured data from the underlying system to develop a mathematical

model. Black box modelling may, therefore be thought of as a mapping from the measured

data to a model. The main advantages of this approach are simplicity of the model, less

expensive in terms of time and effort and since the technique is not confined to any particular

system, this methodology is generic in terms of its applicability. The main drawback of this

approach is that the model developed cannot, in general, provide physical understanding of

the system, and therefore may be far from the underlying 'truth' of the system. This however

is acceptable to those practitioners who are not necessarily concerned with the 'truth' and

who are willing to accept 'that the model works' and is hence 'fit for purpose'.

In the engineering literature, a distinction between the two approaches is made, the former is

termed 'system modelling' and the latter 'system identification'. The theory of black box

modelling is well developed and a number of text books (Ljung, 1999; Soderstrom and

Stoica, 1988; Ljung and Soderstrom, 1983) have been specifically dedicated to this subject.

The problem of black box modelling can be formulated as follows. Consider the system

shown in Figure l.l. x(t) e R K denotes the vector containing K input signals to the system

and yet) eR M describes the vector of Mmeasurable output signals of the system. The focus

of this thesis is the case where K and M are greater than unity. The vector bet) eR M

denotes the measurement noise in the output variables.

bet)

x(t) ---+I
System + .._- ..... yet)

Figure 1.1: Illustration of black box modelling

Given N measurements of the input, x and output y, the problem is to identify a suitable

model of the system using these measurements. An important decision that needs to be taken

to solve the above problem is the selection of a suitable structure for the model. To make this

choice, the user has to make a hierarchy of decisions. First, the user has to decide between a
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'static' and 'dynamic' model. Once this decision has been taken, the next issue to be

addressed is to decide between a 'linear' or 'non-linear' model. Before a decision is taken on

these issues, it is very important to understand what the model is to be used for. If, for

example, the model is to be used for the control of a system, a dynamic model should be

developed. If, on the other hand, the model is to be used for prediction, a static model may be

appropriate. Another important decision that a user needs to make is to chose between an

'accurate' and a 'simple' model. It might be the case that the user can get a more 'accurate'

model but at the cost of increased complexity. The issue is whether to opt for greater

'accuracy' and less 'simplicity' or for greater 'simplicity' and less 'accuracy'. There are no

hard and fast rules and the user's experience, intuition and insights into the system plays a

major role in making these choices. For this reason many experts prefer to call black box

modelling an 'art'.

The multivariate modelling techniques considered in this thesis belong to the family of

multivariate subspace projection techniques. These techniques are especially suitable for

systems where a large number of variables are measured, that is, the values of K and M in the

system shown in Figure 1.1 are large. The modelling task in this situation is more challenging

because the measured variables are often highly correlated and corrupted by noise. To

develop a model from this type of data, subspace projection techniques have been widely

applied. The philosophy behind these techniques is that, behind the large number of variables

that are accessible and measured, there lie a smaller number of independent variables which

are latent (hidden), and that all the events in a system are manifestation of variations of these

latent variables. The objective of subspace projection techniques is to extract the latent

variables by analysing the measured variables. The underlying methodology of these

techniques is that the original variables are projected onto a subspace spanned by the latent

variables. Usually the number of latent variables required to explain a 'sufficient' amount of

information contained in the measured variables is smaller than the original number of

variables. Any variation orthogonal to the space spanned by the latent variables is considered

to be noise and is therefore discarded. The subspace projection techniques therefore not only

reduce the dimensionality of the problem but also act as a filter to remove the noise.

The subspace projection techniques can be divided into two families. The first consists of

Principal Component Analysis (PCA), Partial Least Squares (PLS), and Canonical

Correlation Analysis (CCA) with the second family incorporating a set of algorithms

collectively known as Numerical Algorithms for Subspace State Space System Identification

(N4SID). While the first class of algorithms are relatively old and have found a variety of
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applications in different disciplines of science and engineering, the second class of

algorithms were developed in the late 1980's for building state space models of a system. The

aim of this thesis is restricted to the first class of subspace projection techniques with

particular emphasis on modelling using PLS which is the most recent member of this family.

The conventional PLS algorithm assumes that a linear relationship exists between the input

and output variables. This assumption may not be valid in modelling data collected from

complex (chemical) processes where the relationship may be significantly non-linear. To

integrate non-linear features within the PLS framework, several non-linear PLS algorithms

have been proposed over the last decade. It is therefore, essential to analyze which algorithm

represents a 'true' non-linear extension to the PLS algorithm. In particular, a mathematical

analysis of the non-linear PLS algorithm proposed by Baffi et al., (1999(a» is undertaken and

it is proven that the algorithm is a non-linear extension of reduced rank regression. It is

argued that a 'true' non-linear generalization of linear PLS should be based on the

maximization of 'non-linear covariance' function if the spirit of linear PLS is to be preserved

in its non-linear extension. A mathematical analysis of the algorithm of Wold et al., (1989)

revealed that despite this algorithm being considered 'complicated', it makes an attempt to

maximize the non-linear covariance function but with certain limitations. The limitations of

the algorithm of Wold et al., (1989) are addressed in two new non-linear PLS algorithms,

NLPLSI and NLPLS2. Also following a critical analysis, all existing non-linear PLS

algorithms are divided into three categories namely, quick and dirty, covariance based and

error based depending on the underlying objective functions optimized by the algorithms.

In most of the applications of PLS, the objective is to predict the response variables as

accurately as possible. Another application of PLS can be in parameter estimation where the

objective is to estimate the parameters from the data in such a way that they are 'close' to the

'true' parameters. It is known that PLS gives biased estimate of parameters when the number

of latent variables retained in the model is less than the number of input variables. However,

it is shown that when a subspace of dimension A « K, number of input variables) is

correlated with the output variable and a PLS I model is built using latent variables then

PLSI gives unbiased estimate of the parameters.

Another important generalization of conventional PLS is to make it suitable for identifying a

dynamic model of a system. One approach to incorporate dynamics into the PLS framework

has been to change the static inner relationship of conventional PLS to a dynamic relationship

(Lakshminarayan et al., 1997). In this approach, conventional PLS is first performed between
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the input and output data matrices and a dynamic relationship is then fitted between each pair

of corresponding t- and u-scores. The limitation of this methodology, however, is that the

outer weights are not determined by the dynamics of the system and, therefore the

constructed dynamic model may not be optimal in terms of its predictive capability. In the

thesis, a scheme is proposed to optimally determine all the parameters (outer weights and

inner scores model parameters) as per the dynamics of the system.

1.1.2 Abnormal Change Detection

With the increasing complexity of modem technological processes and the need for high

quality and consistent product coupled with additional requirements of safety, ecological and

economic concerns, reducing plant breakdowns, it is of paramount importance that a system

(process) is monitored continuously. The technological challenge is to detect abnormal

changes in the process as quickly as possible to ensure zero-defect products. This is all the

more important in processes that are subject to fluctuating operating conditions. The problem

of abnormal change detection, also known as fault detection or process monitoring, is closely

related to quality control which is concerned with ensuring the quality of the final product.

The first step in developing a monitoring scheme for a system is to develop a mathematical

model of the system when it is operating under normal operating conditions. The system is

then monitored by determining the 'distance' between new observations measured from the

system and the system model. If the 'distance' is below a threshold value, the system is

declared to be operating under normal conditions, otherwise some abnormal event has

occurred in the system. The problem of abnormal change detection can be placed in the

following framework. Let y(t), x(t~lStSN be a sequence of observed random vectors from a

system with conditional density function P9(y(t),x(t~y(t-l),x(t-l),,,,,y(l),x(1»). Before

the occurrence of an abnormal change, the conditional density parameter 9 is constant and is

equal to 80• After the change has occurred, the parameter changes to 8) (~ 80), The problem

of abnormal change detection is to detect the occurrence of the abnormal change as soon as

possible with the smallest possible false alarm rate.

A particular case of the above problem arises when it is assumed that the variables are

multivariate Gaussian. Since the multivariate Gaussian distribution is completely

characterized by the mean vector and the variance-covariance matrix, the abnormal changes

in a system can be divided into two categories. The first category is related to the case where
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the mean vector moves away from its normal value with the second being associated with a

change in the variance-covariance structure of the process variables. While the first category

has attracted a lot of attention from researchers and there exist optimal methods (in the sense

of minimizing the delay for a given false alarm rate) e.g. Cumulative Sum (CUSUM) and

Generalized Likelihood Ratio (GLR) test, very little work has been done to specifically

address the second category of changes. The aim of this thesis is restricted to the second type

of abnormality and a methodology is proposed to detect this change in an optimal way.

1.2 Contributions of the Thesis

The main aim of this thesis is the modelling and abnormal change detection in multivariate

systems using subspace projection techniques. In particular, this thesis proposes extensions to

the conventional PLS methodology so as to make it suitable for the modelling of, non-linear

and dynamic systems. On the abnormal change detection front, a scheme is proposed to

detect the change in the variance-covariance structure of a multivariate system in PCA and

PLS based performance monitoring schemes. More specifically the contributions of the thesis

are:

1. In most applications of PLS, its performance is evaluated based on its predictive

capability. In this thesis, the performance of PLS as a parameter estimator is

considered and evaluated.

2. Several non-linear PLS algorithms have been proposed in the literature. It is

therefore, important to analyze the existing algorithms to identify which are 'true

non-linear PLS' algorithms. In particular, one of the algorithms proposed by Baffi et

al., (1999(a» is analyzed. The reason for selecting this algorithm is that it is well

known for its better predictive capability than other non-linear PLS algorithms. It is

shown that this algorithm is a non-linear extension of Reduced Rank Regression

(RRR), a classical regression technique, and therefore should not be considered as a

'true' non-linear extension ofPLS.

3. It is argued that a 'true' non-linear PLS algorithm should be based on the 'non-linear

covariance criterion'. After careful analysis of the algorithm by Wold et al., (1989) it

is proven that this algorithm attempts to maximize the 'non-linear covariance'

function.
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4. The limitations of the algorithm of Wold et al., (1989) in the optimization of the non-

linear covariance function are identified and two new non-linear PLS algorithms are

proposed to overcome the limitations.

5. All the existing non-linear PLS algorithms are classified into three categories namely

"quick and dirty", covariance based and error based depending on the objective

functions used by the algorithms to determine the model parameters

6. One approach to taking into consideration the dynamics of the data in PLS is through

the algorithm proposed by Lakshminarayan et al., (1997). The algorithm is divided

into two steps. In the first step, conventional PLS is applied to the input and output

data without augmenting the input matrix with lagged values of the input and/or

output variables and in the second step, a dynamic model is fitted between each set of

input and output scores. One limitation of the algorithm is that the outer weights

(parameters in the first step) are not determined as per the dynamics of the data and

therefore, the algorithm can be inefficient in situations where the dynamics are fast.

An algorithm is proposed to overcome this limitation. In the proposed algorithm, all

the parameters (outer weights as well as the parameters of the inner score model) are

determined as dictated by the dynamics of the data

7. peA based monitoring is based on the integration of two statistics, namely Hotelling

T2 and the Q-statistic. The poor sensitivity of this scheme to detect abnormal

changes in the variance-covariance structure of the process is well known (Kano et

al., 2001). An intuitive explanation of the poor sensitivity of HoteHing T2 and the Q-
statistic and the limitations of the scheme proposed by Kano et al., (2001) to detect

changes in variance-covariance are given. A new scheme, that is especially suitable

for detecting small changes in the covariance structure of a multivariate process, is

then proposed. The proposed scheme has the advantage that it is 'nearly optimal' and

can be analytically designed to detect changes.

8. A new monitoring scheme for detecting changes in the cross-covariance structure

(between input and output variables) in a PLS based performance monitoring scheme

is proposed. The monitoring scheme requires that a recursive PLS algorithm exists

for identifying the parameters of the PLS model. A new recursive PLS algorithm that
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converges to the parameters identified by NIPALS algorithm is derived. The

monitoring statistic derived from the algorithm is 'nearly optimal' in its performance.

1. 3 Outline of the Thesis

Chapters 2 to 4 form the part of the thesis which considers the modelling aspects of

multivariate systems with Chapters 6 and 7 concerned with abnormal change detection in

multivariate systems.

Chapter 2 is a review chapter and starts with describing the theory of PCA. The properties of

PCA and its application in regression, Principal Component Regression (PCR), are then

reviewed. Limitations of PCR and ordinary least squares (OLS) are identified and these

provide the motivation for the use of PLS. The PLS algorithm is then explained in detail and

its properties proven. Modifications of Wold's NIPALS algorithm, namely the kernel

algorithms, are then reviewed. A comparison of the predictive abilities of PCR and PLS is

undertaken. Finally within the chapter, the performance of PLS as a parameter estimator is

studied empirically.

Non-linear extension ofPLS form the basis of Chapter 3. The chapter starts with an extensive

literature survey of non-linear PLS. The algorithm proposed by Baffi et al., (1999(a» is

analyzed and it is shown that this algorithm is a non-linear extension of reduced rank

regression. The algorithm of Wold et al., (1989) is then analyzed and it is proven that this

algorithm attempts to maximize the non-linear covariance function between the scores. The

limitations of this algorithm in terms of not determining all the parameters that influence the

'non-linear covariance' function so as to maximize the covariance function are highlighted.

Two new non-linear PLS algorithms, NLPLS1 and NLPLS2, that address these limitations

are then proposed. The performance of the new algorithms is evaluated and compared on two

artificial data sets and a data set generated from a pH neutralization process with linear PLS

and the non-linear PLS algorithm of Wold et al., (1989).

Chapter 4 is concerned with the extension of conventional PLS to model multivariate

dynamic data. The chapter introduces the limitations of conventional PLS for identifying a

dynamic model of the system. A comprehensive review of the approaches to incorporate

dynamics in the PLS algorithm is carried out and a new method is derived. Finally a

comparative study between the proposed method and the existing method is undertaken

through simulations on both artificial data and chemical process data.
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Chapter 5 is a review chapter on process performance monitoring. A brief overview of

univariate monitoring schemes is first presented and the limitations of univariate monitoring

schemes for a multivariate process are stated. Following an overview of multivariate

statistical process control (MSPC, a brief literature survey of MSPC methodologies is

undertaken.

Chapter 6 is specifically concerned with the detection of abnormal changes in the variance-

covariance structure of multivariate Gaussian random vectors. The chapter first describes the

limitations of existing PCA based monitoring schemes to detect these changes. A new

monitoring scheme is then derived from the PCA model identification procedure to detect

these changes in a 'near optimal' way by making use of the classical local approach to

hypothesis testing. A brief introduction to the local approach of hypothesis testing is then

given. The proposed technique is then applied to detect changes in two artificial data sets

before using it to detect fouling in a heat exchanger in a continuous stirred tank reactor

(CSTR) system.

In Chapter 7, a recursive version of PLS is derived and tested on an artificial data set for

convergence. A monitoring statistic from this recursive algorithm is then derived to detect

changes in the cross-covariance structure of the input and output variables in a PLS based

monitoring scheme. The monitoring scheme is then applied to detect a change in a parameter

of an artificial system before using it to detect fouling in a heat exchanger in a CSTR system.

Finally Chapter 8 gives conclusions and suggestions for future work.

1.4 Conclusions

In this chapter the formulation of the problems and the issues to be addressed in the

subsequent chapters of this thesis are given. In particular, the problems of multivariate system

modelling and the detection of abnormal changes are reviewed. A brief outline of each of the

chapters and the contributions made are also summarized.
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CHAPTER2

Review of Multivariate Statistical Modelling Techniques

2.1 Introduction

In the chemical and process industries, a large number of variables are measured frequently

resulting in large databases. The black box modelling of a process requires utilising this

database to build a model of the process. An important feature of the process variables is that

they are typically strongly correlated. One approach to handling this situation is through the

application of statistical projection based techniques. This chapter reviews three multivariate

subspace projection techniques that can be applied for the steady state modelling of a system:

Principal Component Analysis (PCA), Principal Component Regression (PCR) and Partial

Least Squares (PLS).

2.2 Principal Component Analysis

Principal component analysis is a classical statistical method that dates back to 1901

(Pearson, 1901). The method was further investigated by Hotelling (1933) who proposed an

iterative least square method to implement the PCA algorithm. Since then many texts have

been written on PCA (Jolliffe, 1986; Jackson, 1991) and it is included as a topic in most text

books on multivariate statistics (Mardia et al., 1979). On the applications front, PCA was first

applied in the social and behavioural sciences with subsequent applications being in industry

in the area of quality control (Jackson, 1956, 1959; Jackson and Morris, 1957). In the last

three decades PCA has been widely applied in the chemical and process industries for both

the modelling and monitoring of, continuous processes (Kresta et al., 1991; Martin et al.,

1996), batch processes (Nomikos and MacGregor, 1994; 1995), data compression and

rectification (Kramer and Mah, 1994) and the detection of faulty sensors (Dunia et al., 1996).

Principal component analysis is known by alternative names in different disciplines, for

example, in image processing (Jain, 1989) it is referred to as the Karhunen-Loeve transform

or Hotelling transform and in the signal processing community, it is more commonly termed

as the signal subspace or eigenstructure approach (Therrien, 1992). The aim of the

subsequent section is to review the mathematical details of PCA.
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2.2.1 Theory of Principal Component Analysis

Let x ER K be a K-dimensional random vector with (population) mean vector Jl and

(population) covariance matrix 1:. Without loss of generality, the mean vector Jl can be

assumed to be zero, i.e. E {x}= 0, where E {.} denotes the statistical expectation operator.

PCA seeks to find a vector PI ER K such that the projection ofx on PI

f
· - T Ttl = X PI = PI X I (2.1)

has maximum variance. The variance of the projection t1 is given by:

- -
var (t.) = E{tr} - (E{tl})2 = p;E{xx T}PI = P;r.PI (2.2)

where E{tI} = 0 from equation (2.1). Since the variance can become unbounded with an

increase in the magnitude of the vector PI' it is necessary to constrain the magnitude of

vector PI . The mathematical problem of PCA, therefore, can be formulated as a constrained

optimization problem:

l - 2- - {T T
max E{tl } = maxE PI xx PI}
PI PI

- --

(2.3)
I
I

The constrained optimization problem can be solved using the Lagrange multiplier for which

the Lagrangian is:

I (2.4) 1

where A. is a Lagrange multiplier. Taking the derivative of J with respect to PI and equating

the result to zero gives:

(2.5) I

I
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Equation (2.5) shows that PI is a normalized eigenvector of 1: corresponding to the

eigenvalue A.. Pre-multiplying equation (2.5) by pi gives:

~~-=-A.-p-i P-I-~~--------------------------- ------------------------ ------1- ---(2.6YI
--------------------------------------------------------------- --- -- --------- --- -----------------------________ - - J

From equation (2.2), it can be seen that the left hand side of equation (2.6) represents the

variance of tl. Thus the variance will be a maximum if the eigenvalue A. is a maximum. The

solution PI of the optimization problem is therefore, the normalized eigenvector of the

covariance matrix 1: corresponding to the largest eigenvalue. The vector PI is known as the

(first) loading vector and the projection tl is the (first) principal component or latent

variable. The above solution can be interpreted as a set of K variables contained in a vector x

projected onto a single principal component tl that includes maximum information with

respect to the variance. In most situations one principal component t I may not be sufficient

to explain most of the information contained in the vector x. Therefore, there is a need to

extract more latent variables. To extract the second principal component t2, it is required

that t2 and tl are orthogonal (uncorrelated). The idea behind the orthogonality constraint is

that the information contained in principal components t 2 and t I should be mutually

exclusive. Therefore extraction of the second principal component requires determining the

loading vector P2 with unit norm such that the projection t2 = X T P2 has maximum

variance with the constraint that t2 and tl are orthogonal. It can be shown (Anderson, 1984)

that the loading vector P2 is the normalized eigenvector associated with the second largest

eigenvalue of the covariance matrix 1:. In general, the loading vector pj corresponding to the

ilb principal component tj, where tj is orthogonal to all other principal components, is given

by the normalized eigenvector of the covariance matrix corresponding to the ilb largest

eigenvalue. If A (A ~ K) principal components are required to retain a 'sufficient'

proportion of the information contained in the measurements of variables vector x then the

subspace spanned by the loading vectors PI,P2 ...,PA is known as the signal subspace of

dimension A and the subspace spanned by the loading vectors PA+I... P K is the noise

subspace.
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The computational methods for computing the peA solutions (eigenvectors and eigenvalues

of the covariance matrix I.) can be divided into two categories. The first consists of batch

methods, where the eigenvectors and eigenvalues of a matrix are computed through a single

matrix operation. The most important batch method is the application of Singular Value

Decomposition (SVD) (Golub and Loan, 1996) to the matrix X that contains N observations

of the variables vector x. The second category includes methods that compute the eigenvalues

and eigenvectors of the covariance matrix in an iterative manner. The latter method is useful

where not all eigenvalues and eigenvectors of the matrix are required. One of the popular

iterative methods for computing the principal components is the iterative least square method

proposed by Wold (1966(a)) that was later applied to partial least squares (Geladi and

Kowalsky, 1986). Another iterative method is the Power method (Golub and Loan, 1996).

2.2.2 Properties of Principal Component Analysis

The key properties of PCA include:

1. The variance of principal component ti is A.i' Le. the ilh largest eigenvalue of the

covariance matrix:

r -va~(tJ = E{pJ xx TPi} = pJE{xx T}Pi = pJI. Pi
L I (2.7) i

I

Since Pi is an eigenvector of the matrix 1: corresponding to the eigenvalue A.j,

[ (2.8) :
I

Substituting equation (2.8) back into equation (2.7) and noting that pT Pi = 1:

~r (t.) = p:A.·p· = A..p!p, = A..I. 1 1 I I I I I I [ (2.9) 1
I

2. Any two principal components are orthogonal (uncorrelated):

--- ------ (2.10) 1

I
J

E {titj}=E{pJxxTPj}

=p!I.p. =p!A.·p· =A..p!p, =0I J IJJ JIJ
for i:,t: j
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3. Al + 1..2 + •..• 1..A
'\ '\ ,\' defines the percentage of total variance explained by the first A
"'1 + "'2 + .... '"K
principal components.

4. No linear combination of the vector x has a larger variance than Al. This is a result of

the objective function, given in equation (2.3) being maximized when defining the

principal components.

5. The principal components are not scale-invariant.

6. If the covariance matrix}; has rank R <K, then the total variance can be explained by

first R principal components.

7. peA also minimizes the mean square error E{lx-iI12}, where i is the lower

dimensional subspace approximation of x.

2.2.3 Sample Principal Component Analysis

In the previous sub-section, it was assumed that the population covariance matrix}; is

available for computing the eigenvalues and eigenvectors. In most practical situations, the

population covariance matrix is unknown and is estimated from N observations of a random

vector x collected into a matrix X. The unbiased estimate of the (sample) covariance matrix is

computed as:

-
(2.11) I

I

where it is assumed that the matrix X is mean centred. In practice, the loading vectors

PI' P2'''' PK are computed as the normalized eigenvectors of the sample covariance matrix S.

It is, therefore, necessary to understand how the parameters of the sample peA (eigenvectors

and eigenvalues of the sample covariance matrix S) relate to the parameters of the population

peA. The relationships are as follows:

1. If x is a (multivariate) Gaussian random vector with (population) covariance

matrix}; with distinct eigenvalues, then the eigenvectors and eigenvalues of the
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sample covariance matrix are the maximum likelihood estimates of the

corresponding population parameters (Anderson, 1984).

2. It can be proved (Mardia et al., 1979; Anderson, 1984) that the sample

eigenvalues and eigenvectors are asymptotically normally distributed.

2.3 Principal Component Regression

In many applications, building a mathematical model of the system requires establishing a

causal relationship between the measurements on the input variables X, also known as

independent variables or process variables, and the output variables y, also known as the

dependent or quality variable. Assuming a linear relationship exists between y and X, that is:

where P is a vector of regression coefficients and e is the prediction error. Ordinary Least

Squares (OLS) can be applied to find the estimate of P (Draper and Smith, 1998):

\

A T- -1 T
. POLS = (X X) X y (2.13) J

Properties of OLS include the fact that it is known to give the Best Linear Unbiased Estimate

(BLUE) of the parameters (regression vector P) when the Gauss-Markov assumptions

(Montgomery and Peck, 1982) are satisfied. That is, of all possible linear unbiased estimates

of the regression coefficients, the estimates given by OLS have the smallest variance.

One limitation of OLS is where the input variables are strongly correlated. This problem is

often referred to as multicollinearity, and if OLS is used to construct a model in such a

situation then the parameter estimates will be unstable. By instability it is meant that the

parameters will be highly sensitive to small changes in the data, for example, the presence of

an outlier. Also the standard error (deviation) of the parameter estimates will be high making

them unreliable.

Several methods e.g. stepwise regression, ridge regression and variable selection techniques

(Montgomery and Peck, 1982) have been proposed in the literature to overcome this problem.

However, the techniques that have received significant attention to solve the problem of
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multicollinearity in the regression modelling are known as subspace projection methods. The

basic idea behind these techniques is to project the original correlated variables onto

orthogonal latent variables such that the loss of 'information' is minimized. In this section

one such technique, Principal Component Regression (PCR) is introduced.

Principal component regression involves first performing PCA on the predictor variables

matrix X and then using the principal components in place of the predictor variables in the

regression analysis. Since the principal components are mutually orthogonal, the issue of

multicollinearity is addressed. It can be proven that if all the principal components are

retained when building the regression model, the solution is equivalent to the OLS solution

and thus the problem of the large variance of the OLS estimates in the presence of

multicollinearity is not addressed. In practice only a few principal components are included

in the regression model which leads to a reduction in the variance of the estimates but the

cost of reducing the variance of the estimates is that of biased parameter estimates. The

mathematical theory behind PCR is now discussed. The values of the principal components

(referred to as t-scores) for each observation of the input variables are given by:

~---~--- __ IL__(_fl_4) J

where P is a (K x K) loading matrix and T is a score matrix of order (N x K). Since P is an

orthogonal matrix, Xp can be written as:

1 (2.15) I
I
I

where

[ (2.16)

Substitution of equation (2.15) into equation (2.12) gives:

___ l_ (2.17)]

The least square estimate of the new regression vector '1 is given by:
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(2.] 8) I

Since the matrix T is an orthogonal matrix, (TTT) is a diagonal matrix. The estimate of the

regression vector Ii from equation (2.16) is given by:

r PPCR == P1
- - r

(2.19) I
I

A A

It can be proven that the solution PPCR is equal to liOLS' Substituting equation (2.18) into

(2.19) and using equation (2.14) gives:

-_- -- -
PPCR = p(pTXTxp)-lpTXTy =pp-I(XT X)-I(pT)-lpTXTy

T -I T A= rx X) x y= POLS

It can be seen from equation (2.20) that if all the principal components are retained in the

model, there is no advantage to using PCR except that the computation is simplified:

-1 (2.21) I

Since (TTT) is a diagonal matrix, and if d, denotes the ith diagonal element of this diagonal

matrix and Pi denotes the ithcolumn ofP, then equation (2.21) can be written as:

K
A "" -I T T
PPCR = £..J di PiPi X Y

i=)

Assuming that the observations of the output variable are uncorrelated and each has the same

variance, (12, then the variance-covariance matrix of the estimate PPCR is given by:
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where Cov(.) denotes the covariance function. From equation (2.23) it can be seen that
A

multicollinearity leads to large variances for the elements of PPCR . Since the variance of the

ithprincipal component is proportional to d., multicollinearity results in one or more of the

dj's in equation (2.23) being very small resulting in large variances for the elements of the
A

estimated parameter vector PPCR. One approach to reducing the variance of the elements of

A

PPCR is to delete terms in equation (2.22) that correspond to very small values of dj . If

A < K terms are retained in equation (2.23), the estimator becomes:

where it is assumed that d A+I' d A+2' •••, d K are very small. It can be shown (Jolliffe, 1986)

that the covariance matrix of PPCR is given by:

(2.25)

Comparison of equations (2.25) and (2.23) show that the PCR model with fewer principal

components being retained lead to smaller variances for the estimated parameters. But this

reduction in variance comes at the price of introducing bias into the estimates. From
A

equations (2.22) and (2.24), the model parameter PPCR' which is equal to the OLS solution

A -

POLS' and the reduced model parameter PPCR can be related as:

-
K

- - ~ -I T T
PPCR = POLS - c:di PiPi X Y

i=A+I l (2.26) I
I

I

The statistical expectation of the second term on the right hand side of equation (2.26) is

given as:

T
I

(2.27) I
j
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X TX can be decomposed using singular value decomposition:

lXTX= ~~p __iP_T__
(2.28) I

I
___j__---...I

1
I

Substituting (2.28) into (2.27) and noting that the vectors Pi are orthonormal:

-

E{ ±djIPiPTXTy} = ±PiPTP
i=A+l i=A+I

(2.29)
I

I
J

Taking the statistical expectation of both sides of equation (2.26) and using equation (2.29)

gives:

(2.30) 1

where E{POLS} = p. Since the second term on the right hand side of equation (2.30) is

typically not zero, the estimate will be biased.

It is also important to note that it is not always a good strategy to retain the first A principal

components and delete the remaining (K-A) principal components which have small

variances. A principal component that has a small variance can be highly correlated with the

output variable and therefore it would be desirable to include this principal component in the

regression model. Taking this into consideration, a peR model can be defined as in equation

(2.12), where the estimate of the regression coefficient P is computed from:

F
---
-1 T Ti PiPi X y

(2.31) I
j

where Z is an appropriate subset of the principal components.
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2.4 Partial Least Squares

A limitation of PCR is that the direction in which the input variables are projected is

determined so as to explain the maximum variance of X. The objective of a regression model,

however, is to explain "maximally" the output variables Y. The directions which explain the

maximal variance of X need not necessarily be those which explain the maximal variance of

Y. This limitation is overcome by the partial least squares algorithm that was developed in

the 1960's.

2.4.1 Literature Review and Historical Details of PLS

The history of PLS as a modelling tool began in the 1960's when Herman Wold (1966 (a);

1966(b» proposed an iterative algorithm for extracting latent variables both for PCA and the

two-block situation. This algorithm was first known as NILES (Non-Linear Estimation by

Least Squares) and was later termed NIPALS (Non-Linear Iterative Partial Least Squares)

(Geladi, 1988). The initial applications ofPLS were in econometrics (Fornell and Bookstein,

1982 ; Dijkstra, 1983) with the range of applications broadening out to include the disciplines

of psychology, management, education, political science, environmental science and

analytical chemistry (Geladi, 1988; Sellin, 1995;Hulland, 1999).

A key pioneer of the application of PLS in chemometrics was Svante Wold. Some of the

earlier publications in chemometrics involving the application of PLS include (Wold et al.,

1983 (a); 1983(b); Wold et al., 1984; Lorber et al., 1987; Frank, 1987}.The reasons for the

popularity of PLS in chemometrics are a consequence of the fact that in the chemical and

process industries, a large number of variables are measured that are highly correlated

thereby giving rise to the multicollinearity problem. PLS not only effectively handles

multicollinearity but it can also describe the variation of the predictor and response variables

using a reduced set of variables. The second reason is that PLS can identify the causal

relationship between the predictor and response variables even when the number of

observations is less than the number of variables. This situation is common in spectroscopic

data where the number of wavelengths can significantly exceed the number of samples.

In the late 1980's and 1990's a number of researchers Hoskuldsson (1988) and Kaspar and

Ray (1993 (b)) addressed some of the theoretical challenges of PLS including the definition

of the properties of PLS. Additionally, in this period, a number of modifications to PLS to

20



identify non-linear models (Wold et al., 1989; Wold, 1992; Frank, 1990) were proposed.

Furthermore recursive versions ofPLS were proposed (Helland et al., 1992; Qin, 1993; 1998;

Dayal and MacGregor, 1997 (b», where the PLS model was updated on-line to help realize

the modelling of nonstationary data. Dynamic versions of PLS have also been proposed

(Kaspar and Ray, 1992; 1993(a); Lakshminarayan et al., 1997) to take into consideration the

dynamics of the process. One important application of PLS based dynamic models has been

in process control (Lakshminarayan et al., 1997; Patwardhan et al., 1998).

2.4.2 Partial Least Squares -The Algorithms

Let X be a (Nx K) matrix containing N observations on K predictor variables and let Y be

a (Nx M) matrix comprising N observations on M response variables. PLS seeks to find two

vectors WI E R K in the row space of X and VIE R M in the row space of Y such that the

vectors t] and u] in the column space of X and Y respectively, given by

(2.32) 1

have maximum covariance. The vectors t I and u 1 in RN are known as t-scores and u-

scores respectively. The estimate of the covariance between tl and u, is given by:

-
(2.33) I

J

It should be noted from equations (2.32) and (2.33) that if there is no constraint on the

magnitude of w] and VI' then the magnitude of the covariance can be made arbitrarily large

by choosing suitable W I and V I' To keep the magnitude of covariance bounded, the

constraint of unit norm is placed on WI and VI' Mathematically, the problem ofPLS can be

stated as:

subject to IIwlli =llvlll = 1
T (2.34) I

I
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The above constrained optimization problem can be solved using the Lagrangian multiplier

method with the Lagrangian being given by:

-- ---- ---
I

j
(2.35)

IL(wl, VI' ~,A) = (tIT UI) + ~(1-WI TWI) + 0'(1- VITVI)

=WTXTYvl +~(1-WITWI)+O'(l-v/VI)

where (1 and j.L are the Lagrangian multipliers. The optimal solution is found by setting

derivatives of the Lagrangian with respect to parameters, WI and V 1 and the Lagrangian

multipliers, 0' and u, to zero:

1
(2.36) 1

I

t---l(2.37) I

I I
-- -(2.38) 1

From equation (2.37):

---------- ---- - --------- l

__ --'_(_2.]
Substituting equation (2.39) into (2.36) gives

- -~ (2.40)]

From equation (2.40), it can be concluded that the weight vector WI is an eigenvector of the

matrix XTyyTX with eigenvalue A.l. Furthermore WI is an eigenvector corresponding to

the largest eigenvalue of XTyyTX. This is because the covariance functions in equation

(2.33) can be re-written by incorporating equation (2.39):
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"I (2.41)

Pre-multiplying equation (2.40) by wi

1 (2.42):

and then combining equations (2.41) and (2.42) gives:

1 (2.43) I

Since the Cov (.) function is proportional to A), the eigenvalue of XTyyTX that gives

maximum value of the covariance is the eigenvector corresponding to the maximum value of

eigenvalue. It can similarly be proved that the weight vector v 1 is an eigenvector of

Y TXXTY corresponding to the largest eigenvalue.

2.4.2.1 Computation of the Weight Vectors

One method to compute the weight vectors, WI and vI' is to make use of the result proven

in the previous section which states that the weight vectors can be computed by solving the

eigenvalue-eigenvector problem. However, instead of separately computing the eigenvectors

of the two matrices XTyyTX and yTXXTy, the two weight vectors can be computed by

applying Singular Value Decomposition (SVD) (Kaspar and Ray, 1993(b» to the cross

covariance matrix XTy with the weight vector W I being equal to the left singular vector

and v 1 being equal to the right singular vector associated with the largest singular value.

Mathematically, SVD decomposes the matrix X TY as:

r (2.44)
I
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where W is a matrix of left orthonormal singular vectors, V is a matrix of right orthonormal

vectors and D is a diagonal matrix of singular values. The key step to computing the weight

vectors is:

WI =W(:, 1)

VI = V( : ,1)

(2.45) !
I

The weight vectors can also be computed using an iterative method which is at the heart of

the NIP ALS algorithm. The theory behind the iterative computation is now described.

To simplify the situation, it is first assumed that the eigenvalue problem equation (2.40) is

solved, thus the weight vector W I is known. Knowing WI' the t-scores vector can be

calculated as:

----------------- __---- ,
(2.46) I

And the weight vector v I can be calculated using equation (2.39):

yTXw
V - I1-

20'
I

1

(2.47)
I
I
J

Since the weight vector v I should be of unit norm as per the requirements of the objective

function of PLS, the normalized weight vector is given by:

r- (2.48)

l
It should be noted from equation (2.48) that normalization of the weight vector v I to unit

norm eliminates the constant o which appeared in the expression for VI in equation (2.47).

After v 1 is determined, the u-score vector can be determined as:
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(2.49)

The iteration is completed by calculating WI from the u-scores ul by using equation (2.36):

The constant ~ is eliminated when the weight vector W I is normalized to unit norm:

(2.51)

The cycle of computation can be thus summarized as:

~_(_2.52) I
The algorithm described started by defining WI as the eigenvector of XTyyTX and

therefore, the algorithm converges in one iteration. If an arbitrary vector WI E R K , is used

as the starting point, the algorithm will take, in general, more than one iteration to converge.

It should also be noted that it is not necessary to start with the value of W I to reach the

solution. In fact, it is possible to start from anywhere in the cycle given in equation (2.52).

For example, an arbitrary vector u, can be first selected and then WI is computed using

equation (2.51), followed by the computation of t1 and v 1 using equations (2.46) and (2.48)

respectively with the cycle (iteration) ending by computing a new value of u-scores u., using

equation (2.49). If the new value of u1 is sufficiently close to the initial value, the algorithm

is terminated, otherwise the procedure is repeated. The complete iterative procedure is

summarized below.

Given: Matrices X and Y

1. Select an arbitrary u-scores vector u1 ERN. For example, any column of the matrix

y
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2. Compute WI = XTul.

3. Normalize wI to unit length.

4. Compute tl = XWI

5. Compute VI = yT tl

6. Normalize VI to unit length

7. Compute u, = YV1

8. If the distance between the UI vectors computed in step 7 and step 1 is less than a

predefined value, stop otherwise return to step 1 and repeat the procedure until

convergence is attained

To build a predictive model between matrices X and Y, a linear relationship between the

scores tl and u, is fitted using ordinary least squares regression:

-------~
(2.53) I

where b1 is the regression coefficient:

(2.54) I
I

Equation (2.53) defines the so called inner relationship of the PLS model. Since it is only the

original variables that have physical significance, it is important to establish the outer

relationship (between the latent variables and the original input and output variables). To

identify the outer relationship, it should be noted that the score tl contains information about

X (as the score tl is a linear combination of the columns of X) and therefore can be used to

predict matrix X. This can be achieved by selecting vector PI ER K such that:

(2.55) 1

The vector PI is determined such that the norm of the prediction error El is a minimum.

Applying least squares, the regression vector PI is given by:
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I XTt
I

PI =0.
I I 1--------------------

-
(2.56)

The scores vector tl can also be used to predict matrix Y. This can be done by first using tl

to predict the u-scores Ul = b, t) , and then using the predicted u-scores to predict matrix Y

by finding q) such that:

(2.57) i

the norm of'F, is a minimum. This can be determined using least squares:

(2.58)

Equations (2.55) and (2.57) collectively define the outer relationship of the PLS model. In the

terminology ofPLS, the vectors PI and q) are known as the loading vectors and determine

the contributions of the scores vector tl to the input and output matrices.

2.4.2.2 Motivation for the Deflation Procedure

In general, one latent variable is not sufficient to predict the matrix Y (and also X) and

therefore more than one latent variable will be included in the PLS model. The philosophy

behind extracting more than one latent variable is that the latent variables should contain

'independent' information about the input and output measurements. Therefore, to extract the

second latent variable which contains information other than that included in the first set of

latent variables, the contribution of the first latent variables towards the input and output

matrices must be subtracted from matrices X and Y. This procedure is known as deflation.

From equations (2.55) and (2.57), it can be observed that the contributions of the first latent

variable tl to matrices X and Y is tlP{ and b]t]q{ respectively. Therefore, the deflated

matrices X2 and Y2 for extracting the second latent variables are given by:
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(2.59) I

and the second latent variables are given by t2 = X2W 2 and u2 = V2V 2' where the vectors

W 2 and v 2 are the eigenvectors corresponding to the largest eigenvalues of the matrices

XIV2VJX2 and vJx2xIv2 so as to maximize the covariance between the latent

variables t2 and u2' The inner relationship between the scores is given by:

(2.60)l

where b2 is the regression coefficient and is determined from equation (2.54) by replacing

tJ and uJ with t2 and u2 respectively. The outer relationship is similarly denoted as:

I X2 = t2Pi + E2

I V2 = 02QI +F2

The loading vectors P2 and Q2 for the second latent variable can be determined from

equations (2.56) and (2.58) by replacing X and Y with X2 and Y2 and t1 and oJ with t2

and 02 respectively. The decomposition of matrices X and Y, after the extraction of two

latent variables, can be obtained by substituting (2.61) into equation (2.59):

(2.62)

In general, if A latent variables are required to build the PLS model, then the matrices X and

Y can be written as:

A

X= LtipT +E
i=J
A

V= LOjQT +F
i=l

I (2.63)

l
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From the above it can be noted that PLS decomposes matrices X and Y into the summation of

A rank-one matrices. The matrices E and F are the residual matrices for matrices X and Y

respectively when the PLS model is build using A latent variable. Each pair of latent

variables account for a certain percentage of variance for both X and Y with most of the

variability in X and Y being explained by (A < K) latent variables. The remaining

variability typically accounts for the noise in the data. The decision of how many latent

variables should be retained in the PLS model can be made using cross-validation (Wold,

1978).

Geometrically the loading vectors Pi and qi represent the basis vectors of the input and

output space respectively. It is therefore desirable to normalize these vectors to unit length.

This mathematical adjustment can be made to the algorithm by reformulating the scores and

inner regression coefficients. Let t:, u~,P:, q~ and b: denote the quantities defined above

for the ith latent variable but redefined so that the norms of the loading vectors are of unit

•length. The normalized loading vector Pi is given by:

r· p.lPi = lip; II
(2.64) I

and the contribution, tiPT of the ithlatent variable to the matrix X is re-written as:

[
(2.65)"

_ J

•where the redefined score vector tj is given by:

I (2.66) I

•The unit norm loading vector q i is given by:

r-- -----

I q~= 11::11
l

(2.67) I
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The contribution to the V-matrix can be similarly re-written as:

(2.68) I

and the inner regression coefficient can thus be defined as:

(2.69)
I

Substituting equation (2.69) into equation (2.68), gives

(2.70) I

with the regression coefficient in terms of the scaled scores being given by:

1

(2.71) I

j

• •The rescaled scores vector ti can be calculated by rescaling the weight vector wi:

T (2.72) I

where

(2.73)
I

is the rescaled weight vector

One important property that can be proven from the above is that the output weight vectors

*vi and the output loading vectors qj are the same. Without loss of generality, this is shown
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*for the first weight vector VI and loading vector Ql' From equation (2.58), the loading

vector ql is given by:

VTUt b1VTtl VTt)
ql = ui ul = b~tr tl = blti t)

(2.74)

I

and the normalized loading vector is given by:

T (2.75) ~

Comparing this with equation (2.48) for the weight vector v), it can be seen that they are

equivalent.

2.4.2.3 The NIP ALS Algorithm

The concepts previously explained are collated into the NIPALS (Non-linear Iterative Partial

Least Squares) algorithm as proposed by Wold (1966(a); 1966(b». The complete algorithm is

summarized in Table 2.1.

Table 2.1: NIPALS Algorithm

~ Description f
1 I Given: Matrices X and Y I

Mean centre and scale each variable to

I unit variance. Set i (number of latent:

I variable) = 1; j (number of iteration)=1 I
__ +1 and XI =~ VI =V _

21 Initialize the u-scores vector, u j u, ~ some column of Y;

3 I Calculate the w-weight vector I X!u ..

I
w .. = I j,l

j.t T
~ Uj,iU j,i

Equation

I Normalize the w-weight vector W ..
j,l

Wj,i = IIWj,ill

4
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r t .. =X·w··j,l 1 j,l

Predict the u-scores u· = b.t1 11

32

Further details of the PLS algorithm can be found in (Geladi and Kowalsky, ]986;

Hoskuldsson, ]988; Martens and Nes, 1989; Wold et al., 2001(a); Helland, 2001). Historical

details leading to the development of PLS and its impact are given in (Geladi, 1992; Wold,

2001; Martens, 2001) with more recent developments in the algorithm being summarised in

(Wold et al., 2001(b».

Calculate the t-scores

r Fit the inner relation r u .. =b ..t ..+e ..j,l j,l j,l j,l

17.

-
Calculate the new u-scores

-
Calculate the prediction of the u-scores u.. =b ..t ..j,l j,l j,l

Calculate the q -loading vector8 YTA. U ..
1 j,l

qj,i = T
t·kt·kI, 1,

I

I,

I Vj,; = 11:;::11

!u.!.=y.v ..r+ ,I 1 j,l

9 Determine the v- weight vector

10

I If Ilu. !' - u .. II~ E,r+ ,I j,l
11

12 Fit the linear inner relation

else

I go to step 12

I u. = b.t. +e·1 1 1 1

j = j + 1, go to step 3,

13

Determine the p-Ioading vector X!t.
p.=_I_1

1 t! t.
1 1

14

- - - - -
Determine the q-loading vector

,
16 IDeflate the predi:tor matrix - IX;+! = x, - tIP;T

17 Deflate the response matrix Yi+! = Yi - t iq i

18 If additional latent variables are required, i= i+ 1

repeat steps 2-17 by replacing Xi and

Yi with x., and Yi+! respectively.



2.4.2.4 Properties of Partial Least Squares

In this section the properties of the weight and loading vectors in the PLS algorithm are

summarised. These properties were first comprehensively proven by Hoskuldsson (1988). All

the properties of PLS follow from the way the deflated matrix X j is computed from the

previous deflated matrices. The relationship between Xj and Xi for (i<j) can be derived as

follows. From the deflation procedure of the NIPALS algorithm:

X· =X· I -to IP~IJ J- J-J-

=X. _ [tj_It I-I]x.
J-I T J-It· It· IJ- J-

(2.76)

= [I - tj_ltI_I] X·
T J-I
t· It· IJ- J-

= [1- tj_ltI_I] [x. _ tj-2tI-2 X· ]
T J-2 T J-2r: It· It· 2t· 2J- J- J- J-

[ T]t , 2t. 2J- J-=Z X· 2 - X· 2J- T J-r: 2t· 2J- J-

where

(2.77) I

By following the above recursive procedure, the relationship between X j and Xi can be

established:

L-z[x. - tit;] for (i < j)
I t!t.

I I

---

(2.78)

where Z is a matrix written as a cascade of the matrices of the form given in equation (2.77).
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Property 1: The weight vectors Wi's are mutually orthogonal, i.e.

(2.79) I

Proof First it is shown that

for (i <j) (2.80) I

From equation (2.78)

x .w. = z[x. - (t it r Jx. ]w. = z[t. _ (t it r Jt. ] = 0
J 1 1 tTt 1 1 1 tTt 1l iii i

(2.81)

It is also known that the weight vector Wj can be calculated by solving an eigenvector

problem:

r
X~y.Y!x.w· =')..·w·JJJ JJ JJ

(2.82)

J

Taking the transpose of both sides of equation (2.82)

(2.83) I

and then using equation (2.80)

I w~w· =w~X~y.Y!x·w. /». =0JI JJJJJI J
(2.84)

Hence the required proof.

Property 2: The scores are mutually orthogonal, i.e.

[t!t.=o
1 J

(2.85)
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Proof This can be proven by recalling the deflation procedure in the PLS algorithm.

(2.86) IX· =X· I -to IP:IJ J - J- J-

where Z is a matrix product that satisfies the matrix equation. From equation (2.86)

r (2.87)

and then by post multiplying by wi on both sides of equation (2.87):

ITTt. Xiw , =t· t , =0I I J J I J
(2.88)

Hence the required proof.

2.4.2.5 PLS Regression Matrix

The PLS regression matrix BpLS establishes the link between the input variables matrix X

and the output variables matrix Y:

y = XBPLS +FL_ __
(2.89) ,

J

If the PLS model is identified using latent variables, there exist different expressions for the

regression matrix BpLS. One simple expression, given below, was derived by Lindgren et

al., (1993):
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where

r-·WI =WI
• TW2 = (I-WIPI )W2

• T T TWA = (I -WIPI )(1 -W2P2) ...(1 -W A-IPA-I)W A

(2.90) I

(2.91) 1

Another important expression for the PLS regression matrix was derived by Manne (1987)

and Helland, (1988):

where

W=[WI-;2,,,WAl

P=[P, P2 ",PAl
Q = [q, q 2 ... q A ]

(2.92) I

(2.93) ,

It is also worth noting here that a distinction is made between the two PLS algorithms

depending on the number of output variables. If the number of output variables is one, then

the algorithm is referred to as PLSI whilst for the case when there are multiple output

variables the algorithm is designated PLS2. It is observed that the former algorithm is

simpler, has optimal properties and is easier to handle theoretically which makes it suitable

for comparison with other regression methods.

2.4.2.6 Kernel Algorithms - Modifications of the NIPALS Algorithm

The kernel algorithm, as a modification of the NIPALS algorithm, was proposed by Lindgren

et al., (1993). The modification was motivated particularly for situations where the number of

observations is much larger than the number of input andlor output variables. The direct

36



application of the NIPALS algorithm in such a situation would not only require large memory

for the storage of the scores vectors (as the size of a scores vector is equal to the number of

observations) but the computational effort is also significant. One typical application where

the number of objects is much larger than the number of variables is multivariate image

analysis (Geladi and Grahn, 1997). Each pixel represents an object and therefore in a 512 x

512 image the number of objects is 262144 which is much larger than the number of

variables (which is equal to number of wavelengths and typically lies between 5 and 25). The

basic idea is to compute the parameters of PLS, namely the weight vectors,Wi and Vi' the

loading vectors, Pi and the regression matrix, BpLS' without calculating the scores.

From the previous discussion, the weight vectors W j and v j can be determined as the

eigenvectors of the matrices xi Yj yjTx, and yjTx,xTYj where Xi and v, represent the
deflated matrices at the ilh step of the iteration with XI = X and YI = Y. The order of the

matrices XTyjyjTXj and yjTXjXTYj, which are known as the kernel matrices, are (K» K)

and (MxM) respectively and is independent of the number of observations (objects).

Therefore, the resources (speed and memory of computing devices) required for the

computation of the weight vectors are unaffected by a large number of observations. Since

only the eigenvector corresponding to the maximum eigenvalue of the kernel matrices is

required, any iterative method for calculating the eigenvalue of the square matrix, e.g. power

method (Golub and Loan, 1996) can be used to determine the weight vectors. However, only

the weight vector wi need to be determined iteratively as the weight vector Vi and the loading

vector Pi can be determined from knowledge of the weight vector wi. That is, from steps 9,

14 and 15 of the NIPALS algorithm given in section 2.4.2.1:

yT t, yTX.W.
qj=~= TI TI I

t. t, w· X· X,W,
I I I 1 I I

(2.94) [

It should be noted that matrices yiTXi and xi Xi are required to calculate the loading

vectors qi (and weight vector Vi) and Pi. Therefore, it can be concluded that determination
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of the PLS parameters depends on three matrices XiyjyjTXj, yjTXj and x'x.. To

determine these matrices, a deflation procedure that does not require the calculation of scores

is required. Lindgren et al., (1993) proposed a deflation procedure by taking into

consideration the fact that the matrix Y need not be deflated (Hoskuldsson, 1988) and that

matrix X can be deflated by post multiplying it by a matrix of order (Kx K) (this is again

independent of the number of observations N):

T (2.95)

Since the matrix Y need not be deflated, the three kernel matrices can be written as

XiyyTXj, v'x., xixj• Adopting the notation:

r (XTyyTX). = X!yyTX.
I I I

I
(2.96) I

the kernel matrices can be computed recursively (Lindgren et al., 1993):

I (XTyyTX)j+l = (I - W jP;) T(XTyyTX)j(l_ W jP;)

(XTX)i+l = (I-wjpJ)T (XTX)j(1-wjp;)
ITT T
(Y X)i+l = (Y X)i(l- W iPi )

(2.97)

After the weight vectors and the loading vectors have been determined, the regression matrix

can be calculated using the formula given in equation (2.92). This formula is only dependent

on the weight vectors and the loading vectors and, therefore, the regression matrix can be

determined without calculating the scores. The disadvantage of this formula is that it requires

the calculation of an inverse, which can be computationally expensive. Lindgren et al. (1993)

also derived a formula for the regression matrix which does not require the inversion of a

matrix. The formula is given in equations (2.90) and (2.91).

Another Kernel algorithm was proposed by Rannar et al., (1994) and was motivated by

applications where the number of observations (objects) is fewer than the number of

variables. This situation is common in analytical chemistry, e.g. spectroscopic data. Since in

this situation the dimension of the score vectors is less than the weight vectors, the score

vectors are first determined as the eigenvectors of the kernel matrices (Hoskuldsson, 1988)

and the weight vectors are then derived from the score vectors.
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Some improvements to the Kernel algorithm were proposed by Jong and Braak (1994) so as

to increase the speed of computation. They proposed a procedure for the deflation of the

kernel matrices which is computationally less expensive than that given in equation (2.95) for

the kernel algorithm of Lindgren et al., (1993). The core of the argument in (Jong and Braak,

1994) is that if the input matrix X has rank A (say), then matrices X and Y can be

decomposed as:

(2.98)

where T is the score matrix, P and Q are the loading matrices for X and Y and F is the error

matrix. Now

IXTX=PTTTpT =(titl)PIPi +(tjt2)p;pj + +(t~tA)PAP~

I XTY=QTTTQT =(tit))q)Pi +(tIt2)q2Pj + +(t~tA)qAP~

(2.99)

The above equations suggest a deflation procedure as follows:

(XTX)j+1= (XTX)j - (t; tj)PjP;

(XTY)i+1 = (XTY)j - (t; tj)qjp!

(2.100)

Deflation by using equations (2.100) is less expensive compared to equation (2.95) of the

kernel algorithm of Lindgren et al., (1993) since it avoids the multiplication of XTXj and

xlY by the factor (I - W jp l) .Another computational saving is proposed by starting the

iteration with the calculation of the output weight (and loading vector) qi rather than with

the calculation of the input weight vector wi' The logic behind this is that the dimension of

the matrix yjTXjX!Yj is usually smaller than that of X;V VTXj as the number of output

variables is usually smaller than the number of input variables. The main steps of the

algorithm are:

1. Calculate the weight vector qi through either the eigenanalysis of Vir Xi X( Vi or
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2. Calculate the weight vector wi:

W j = X!Yjqj = (XTY)jqj

_ Wj
Wj-F1

(2.101)

3. Calculate the loading vector:

(2.102)

4. Calculate the deflation:

(XTX)j+1 = eXTX)j - et! t)PiP;

eXTY)i+1 = exTY)i - et; ti)qjp!

l (2.103)

The factors et; tj) in the deflation equation (2.103) can be calculated as:

J -
(2.] 04)

Finally the regression matrix can be calculated as previously by using either equation (2.90)

or (2.92).

Some further modifications were proposed by Dayal and MacGregor (1997(b». They proved

in their paper that to get the PLS solution either X or Y need to be deflated. The potential of

this approach is that the user can select which matrix needs to be deflated. For example, if the

input matrix has more variables than the output variables then it is advantageous to deflate

matrix Y. Alternatively, if the number of output variables exceeds that of the input variables

then X should be deflated. In the situation where matrix X is not deflated, the orthogonal

scores can be calculated from the original (undeflated matrix) by finding a transformation

matrix R, whose columns rl' r2 ...r A can be computed recursively (Hoskuldsson, ]988;

Dayal and MacGregor, 1997(b»;
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J (2.105) I

for i> 1

2.5 Comparison of the Predictive Ability of peR and PLS

Partial least squares and principal component regression are widely applied tools for the

modelling of multivariate data. In the literature, their predictive ability has been compared

from two perspectives: through simulations and by analytical means. One of the earlier

comparisons was made by Nes and Martens (1985) who compared PLS and peR using an

artificially generated data set and (real) spectral data. It was shown that for both data sets,

PLS performed better than PCR when the number of latent variables was less than a

particular number (dependent on the data set) and PCR performed better than PLS when the

number of latent variables was more than this number. The disadvantage of comparing the

two methods by simulation is that while it is possible to demonstrate the superiority of one

method over the other for a single data set, it is difficult to generalize the result. To address

this problem for spectroscopic data, Thomas and Haalland (1990) designed a series of

experiments to generate simulated data sets that resembled typical data and compared the

performance of PLS, PCR and other two least squares methods Classical Least Squares

(eLS) or the K- matrix method and the Inverted Least Squares (ILS) or P-matrix method. It

was concluded that the performance of PCR and PLS were 'similar' except that PLS was

found to be more suitable (in terms of prediction) over a wide range of conditions (e.g.

presence of random baseline, presence of noise in the measure variables, etc.). For an

extensive discussion on the relationship of PLS to other spectroscopic modelling techniques,

see (Haaland and Thomas, 1988(a); 1988(b».

Although the approach of Thomas and Haaland (1990) answered some of the important

questions about the predictive ability of the two methods, it was still difficult to generalize

this result as they were specific for spectroscopic data. Helland and Almoy (1994) were the

first to derive the mathematical formulae for the mean square error. They assumed that 'there

exist a number A such that A eigenvectors of the covariance matrix S of input variables, all

corresponding to different eigenvalues, are related with the output variable y' such that the

cross-covariance vector between the output and input variables can be written as:

l (2.106)
I
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where Sxy is the cross-covariance vector between the (multivariate) input variables and a

single output variable, Pi are the eigenvectors of the covariance matrix S of the input

variables and ai are scalar constants.

The eigenvectors, which are correlated with the output variable y are called relevant

eigenvectors and the corresponding eigenvalues are the relevant eigenvalues. The rest of the

eigenvectors and eigenvalues are known as irrelevant. The formula for the average prediction

error FpcR, in a PCR model when the PCR model is identified with a ~ A components is

given by (Helland and Almoy, 1994):

-
(2.107)

The corresponding formula for PLS when the model is identified using A latent variable is

given by:

(2.108) I

where 02 is the variance of the output variable, Ai are the eigenvalues of the matrix S and

(2.109)

From the formulae given in equations (2.107) and (2.1 08), Helland and Almoy (1994),

provided the following conclusions:
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1. If all the irrelevant eigenvalues (corresponding to the eigenvectors of the covariance

matrix of the input variables have no or weak correlations with the output variable)

are small, then there is not much practical difference between the prediction ability of

peR and PLS with both of them giving good predictions when the irrelevant

components are excluded. Also the smaller the size of irrelevant eigenvalues (that is

smaller magnitudes of the irrelevant eigenvalues), the better is the performance of

rca over PLS.

2. As the size of the irrelevant eigenvalue/s increases and approaches the smallest

relevant eigenvalue or if an irrelevant eigenvalue is close in magnitude to any other

relevant eigenvalue, then the performance of peR is poor and in this situation PLS is

better.

3. If the irrelevant eigenvalues lie between the smallest and largest relevant eigenvalues,

then it is difficult to determine which approach is the best and very much depends on

other parameters

4. When the irrelevant eigenvalues are quite high (that is, larger than the highest

relevant eigenvalue) then, peR performs better than PLS

The final conclusions that can be drawn are that peR is best when either the irrelevant

eigenvalues are small or very large and PLS is best for intermediate irrelevant eigenvalues.

Since the difference between peR and PLS is quite small when the irrelevant eigenvalues are

small, and large irrelevant eigenvalues rarely occur in practical data sets, Helland and Almoy

(1994) concluded that PLS is the method of choice in most cases. PLS also has the

advantage that it only requires a decision on the number of components A to be included in

the model whereas in PCR, not only is the selection of the number of components A is

required but it also requires which of the A components should be included in the model. This

further justifies the choice of PLS over peR.

2.6 PLS as a Parameter Estimator

In most application of PLS in chemometrics, it has been primarily used for prediction. A

related problem in chemical and process engineering is parameter estimation (Englezos and

Kalogerakis, 2000) where the objective is to identify the parameter such that it is as 'close' as

possible to the true parameter value. In this section the performance of PLS I when it is used

for parameter estimation is studied. The objective of parameter estimation is to estimate the

regression vector P in the linear regression equation:
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(2.110) 1

as 'accurately' as possible. The common method for estimating the regression vector P is to

use Ordinary Least Squares (OLS). The problem with OLS estimates, as mentioned earlier, is

that if the variables are strongly correlated then the variance of the estimate is high leading to

unreliable estimates. Alternatively PLS can be used for parameter estimation. The expression

for the estimate ~PLS is given by (Helland, 1988):

[ (2.111) I

J

It should be noted from equation (2.111) that the estimator for PLS is fundamentally different

to the OLS and PCR estimators in that the estimate is a non-linear function of the output

variable y. It is well known that the two parameters that are used to evaluate the quality of an

estimator are 'bias' and variance. Because of the non-linearity of the estimator function it is

more difficult to analyse the PLS estimator as compared to OLS and PCR estimators.

However, from equation (2.111) it can be proven that when the number of latent variables A

in PLS is equal to the number of variables K (number of columns) in the X matrix, the
..

estimate PPLS given by PLS is equal to the least square solution, and therefore, is an

unbiased estimate. However, when A (A < K) latent variables are retained in the PLS model

then the estimate, in general, is biased.

Several attempts have been made to estimate the variance (covariance) of the PLS estimator.

Phatak et aI., (1993) linearized the non-linear estimator to estimate the variance and used this

estimate to find the prediction intervals of the estimate. Denham (1997) suggested three

methods namely bootstrapping, cross validation and local linearization of the non-linear

function to estimate the variance of the estimate and the prediction intervals of the predicted

value. Another approach to estimating the covariance matrix of estimates is based on matrix

differential calculus (Phatak et al., 2002).

There is also some disagreement among researchers regarding the significance of regression

coefficients in PLS regression. One group of researchers view the PLS regression coefficients

as a causal link between the observations X and y as in conventional linear regression

whereas the other group views it as a latent variable model (Burnham, et al., 2001) where the

observations X and yare seen as being generated by a common set of latent variables.
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Some comparisons of the PLS estimator with other estimators, namely, OLS estimator and

PCR estimators have also been performed. De long (1995) showed that the Euclidean norm

of the PLS estimate is less than the OLS estimate while Stoica et al., (1995) observed that the

PLS and PCR estimates are equivalent to within a first order approximation.

2.6.1 Unbiased Estimate using Partial Least Squares

In the above section it was noted that the PLS estimate is biased when A (A < K) latent

variables are retained. In this subsection condition, other than A = K, under which the PLS

estimate is unbiased is considered. It is known that if the input vector x and the output

variable y are jointly normally distributed, then equation (2.110) represents the best predictor

of the output variable under the quadratic loss function with the regression parameter vector

Ii given as (Therrien, 1992):

(2.112)

where :E is the (population) covariance matrix of the input variables vector x and (Jxy is the

(population) cross-covariance vector between the input variables x and the output variable y.

The matrix :E can be decomposed using singular value decomposition as:

] (2.113)

Substituting equation (2.113) into equation (2.112) gives:

r K

Ii= ~).:ilpiPT(Jxy
i=1

r (2.114) I

However, it may be that not all the directions, Pi' in the input space are correlated with (Jxy

(and hence the output variable). Consider the case where the first A (A < K) directions

PI' P 2'···'P A are correlated with (Jxy and the remaining (K-A) directions are orthogonal to

(Jxy- that is:
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~
(2.11S)

IP '[(Ixy ¢ 0 for i s A

P '[(Ixy = 0 for i > A l
Using equation (2.11S) in equation (2.114) gives:

A

P = ~)·;ilpiPT (lxy
i=l

From equation (2.120) it can be noted that under the condition described in equation (2.115),

the true regression vector P lies in the subspace spanned by the eigenvectors (PI' P2 ... PA)'

Helland (1990) (Theorem (Zc) proved that the weight matrix W A and the eigenvectors,

(PI' P2 ... PA)' span the same space. Using this theorem, it follows that P lies in the space

spanned by the weight matrix WA' Also from equation (2.111), it can be noted that the PLS
A

parameter estimate PPLS lies in the (column) space spanned by WA' Since the true

regression parameter vector P and the estimate P PLS lie in the same space, the estimate is

unbiased. This is demonstrated using the following simulation example.

2.6.1.1 Example

The properties of PLS as a parameter estimator under the assumption of equation (2.11 S) are

illustrated by an example. Two cases are considered, namely when the measured variables are

strongly correlated, and when they are mutually orthogonal.

Case 1: Collinear data

In this case 1000 observations of 5 measured variables are generated using 2 principal

components (latent variables), tl and t2 as

(2.117) I
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where tl and t2 are orthogonal column vectors each of order (1000 x 1) containing samples

drawn from a Gaussian distribution with mean zero and unit variance. The vectors, PI and

P2 eR 5, are orthonormal loading vectors given as:

pi = [-0.1694 -0.1429 0.3308 0.8321 0.3860Y

pj = [0.7796 0.6079 0.0902 0.1058 0.OS86Y

(2.118)

o is a scalar and controls the multicollinearity in the matrix X. For example, when cS is near

zero, the rank of the matrix is 2 and the variables are highly collinear. As cS increases,

collinearity becomes less severe. The matrix E in this example is considered to be fixed and

its columns are independent and Gaussian distributed with mean zero and unit variance. Now

if it is assumed that only (first) two directions are relevant then the regression vector plies

in the subspace spanned by the first two loading vectors and can be generated as a linear

combination of the first two vectors. The linear combination in the example is chosen as:

T (2.119)
...L __ _.J

The observations of output variables can be generated as:

[y=xp+£ ~_ (2.120)
_ ..J

where £ represents measurement noise in the output variable and is assumed to be Gaussian

distributed with variance 0.25.

Four data sets each consisting of 1000 data points were generated corresponding to 0 =
0.0001,0 = 0.001, cS = 0.01 and 0 = 0.1. The regression parameters are determined using OLS

and PLS for each of the data sets. Tables 2.2 to 2.5 show the mean and standard deviation of

the OLS and PLS estimates calculated over 10000 trials for each of the data sets.

Case 2: Independent input variables

In this case, the five measured variables in matrix X are orthogonal to each other (that is, no

correlation exists between the variables). The matrix X is generated as:
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where T is an orthogonal matrix of order (1000 x 5) and P = [PI P2'''PS] is an orthonormal

matrix of order (5 x 5) given by:

I -0.1694 0.7796 - 0.3210 - 0.5381 0.0136 (2.122)

- 0.1429 0.6079 0.2917 0.7180 0.0016 I
P= 0.3308 0.0902 0.8402 -0.4070 -0.0726L 0.8321 0.1058 - 0.2562 0.1181 0.4458

0.3860 0.0586 - 0.2008 0.1239 - 0.8921

The regression vector P in this case is also assumed to lie in the space spanned by the

loading vectors PI and P2' as in Casel , and is generated by the linear combination given in

equation (2.119). The observations of output variable are generated as in equation (2.120). A

data set comprising one thousand data points is generated and again the parameters are

estimated using OLS and PLS. Table 2.6 shows the mean and standard deviation of the OLS

and PLS estimates calculated over 10000 trials.

Table 2.2: Mean and standard deviation ofOLS and PLS estimates with 0 = 0.0001

Actual Average of estimated vector over Standard deviation of estimated
Parameter 10000 trials vector over 10000 trials
Vector

OLS PLS OLS PLS

- 0.4831 0.7900 -0.4383 104.9964 0.0118

-0.4394 0.4382 -0.4395 156.1201 0.0031

3.0529 6.4343 3.0529 124.4889 0.0097

7.2776 4.9687 7.2775 82.7206 0.0132

3.3600 5.5875 3.3599 133.1420 0.0085

48



Table 2.3: Mean and standard deviation ofOLS and PLS estimates with B= 0.001

Actual Average of estimated vector over Standard deviation of estimated

Parameter 10000 trials vector over 10000 trials

Vector OLS PLS OLS PLS

- 0.4831 -0.5882 -0.4832 10.5958 0.0119
-0.4394 -0.1276 -0.4394 15.5904 0.0032
3.0529 2.9949 3.0529 12.4929 0.0098
7.2776 7.3349 7.2776 8.1911 0.0134
3.3600 3.3143 3.3600 13.1648 0.0085

Table 2.4: Mean and standard deviation ofOLS and PLS estimates with B= 0.01

Actual Average of estimated vector over Standard deviation of estimated

Parameter 10000 trials vector over 10000 trials

Vector OLS PLS OLS PLS

- 0.4831 -0.4625 -0.4830 1.0650 0.0120
-0.4394 -0.4595 -0.4394 1.5568 0.0041
3.0529 3.0773 3.0528 1.2569 0.0101

7.2776 7.2648 7.2778 0.8265 0.0134
3.3600 3.3663 3.3601 1.3332 0.0087

L. ..

Table 2.5: Mean and standard deviation of OLS and PLS estimates with B= 0.1

Actual Average of estimated vector over Standard deviation of estimated

Parameter 10000 trials vector over 10000 trials

Vector OLS PLS OLS PLS

-0.4831 - 0.4835 -0.4834 0.1061 0.0215
-0.4394 - 0.4390 -0.4391 0.1553 0.0268
3.0529 3.0529 3.0525 0.1242 0.0236
7.2776 7.2775 7.2775 0.0830 0.0194

3.3600 3.3604 3.3599 0.1334 0.0244
'-
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Table 2.6: Mean and standard deviation of OLS and PLS estimates for case 2

Actual Average of estimated vector over Standard deviation of estimated

Parameter 10000 trials vector over 10000 trials

Vector OLS PLS OLS PLS

- 0.4831 -0.4834 -0.4831 0.0156 0.0217
-0.4394 - 0.4393 -0.4392 0.0157 0.0215
3.0529 10531 3.0531 0.0157 0.0211
7.2776 7.2777 7.2774 0.0156 0.0175
3.3600 3.3600 3.3598 0.0158 0.0208

The following conclusions can be drawn from the above tables:

1. The parameter estimates determined using PLS is unbiased in all five cases. This is

contrary to the common perception that when a PLS model is identified using fewer

latent variables than the number of input variables, the PLS estimate is biased. The

intuitive explanation for this is that under the assumption that A directions, where A
is in general less than the number of input variables, in the X space are correlated

with the output variable y and when the PLS model is built using A latent variables,

no variance of y is left unexplained by the A latent variables and the estimate is

therefore unbiased.

2. The OLS estimates appear to be biased when the variables are highly collinear

(Tables 2.2 and 2.3). This is, however, contrary to the well known fact that the

estimates in OLS are always unbiased. The explanation behind this anomaly is that

when the variables are highly collinear, the variance, which is a measure of the

uncertainty in parameters, is very high as seen in Tables 2.2 and 2.3 and therefore the

average calculation over a finite data may not lead to the true parameter.

3. The variance estimate of the parameters in PLS is less than the variance of the

estimates using OLS except in the last case where the variance of the PLS estimates

is slightly greater than the OLS estimates. Again this conclusion seems to be contrary

to the well known fact about OLS that it is the best estimate in the sense that no

estimator can have less variance than the OLS estimate. The explanation behind this

aspect is that OLS is a linear estimator in the sense that the estimate is a linear
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function of the observations of the output variable y. When OLS is said to best, it is

best among all linear estimators. A PLS estimator on the other hand is a non-linear

estimator and therefore can have a smaller variance than the OLS estimator.

4. When a PLS model is identified for prediction purpose, the number of latent

variables is not decided based on the fact that the maximum variance of y is to be

explained. This is because by adopting this approach noise in the model will be fitted

and therefore model performance will be poor on unseen data. Therefore, methods

like cross validation are used to select the number of latent variables in the PLS

model. On the other hand when PLS is to be used as a parameter estimator, these

rules for selecting the number of latent variables may not be appropriate.

5. When using PLS as a parameter estimator, the pre-processing of data can have a

serious effect on the estimates. For example, normally the data is auto-scaled before

the model is identified. Auto-scaling of the data, which can be modelled as a linear

operation on the data, can have serious effect on the performance of PLS estimator

since PLS is a non-linear estimator and, therefore, the effect of auto-scaling on the

estimates may be irreversible.

2.7 Conclusions

In a typical process a large number of strongly correlated variables are measured. To identify

a model for the process from the measured data, it is useful to project the variables onto a set

of orthogonal variables such that the new variables retain most of the information contained

in the original data. Two projection techniques that have been widely used in modelling

multivariate data from chemical and process industries are principal component analysis (and

its application in regression, known as principal component regression) and partial least

squares. In this chapter the basic theory behind these techniques has been reviewed and a

literature review has been undertaken.

It can be very difficult for the user to decide whether to use peR or PLS model. These

techniques have been compared with respect to their prediction capability and a number of

guidelines have been proposed for selecting between peR and PLS.

PLS has been most widely applied in chemometrics for prediction. In this chapter an

alternative application of PLS has been proposed namely in parameter estimation. It has been
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shown from simulation study that under the assumption that if exactly A (A <K) directions in

the input space are correlated with the output variables and the PLS model is built using A

latent variables then PLS not only gives unbiased estimates of the parameters but also

identifies them with lesser variance than that given by OLS estimator.

PLS forms the basis of the discussion of the next two chapters where the aim is to modify the

basic PLS algorithm to make it more suitable for handling non-linearity and process

dynamics.
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CHAPTER3

Non-linear Partial Least Squares

3.1. Introdudion

In practice, when dealing with real chemical and physical systems, linear PLS cannot always

be used to model the underlying structure since it may exhibit significant non-linear

characteristics. A number of non-linear extensions to partial least squares have been proposed

over the last decade to integrate non-linear features within the PLS framework. In this

chapter, following an extensive review of non-linear PLS, the existing non-linear partial least

squares algorithms are classified into three categories namely covariance based, quick and

dirty and error based, on the basis of the underlying objective function. More specifically, a

detailed mathematical analysis of the error based non-linear PLS algorithm proposed by Baffa

et al., (1999(a» is undertaken and it is proven that it is a non-linear extension of Reduced

Rank Regression (RRR).

It has been widely reported that linear PLS is based on the maximization of the covariance

between the t-and u-scores. This covariance based criterion realises a straight forward

approach to the calculation of the scores variables and model parameters, as well as

providing statistical interpretation of the parameters. This is essential in terms of assisting in

the understanding of the behaviour of the underlying system. In this chapter it is argued that a

'true' non-linear PLS algorithm should be based on the maximization of a 'non-linear

covariance' function. Following a detailed study of the algorithm by Wold et al., (1989), it is

shown that although it has been considered as 'complicated', it is the only algorithm that

attempts to maximize the non-linear covariance function. The optimization problem solved

by Wold et al., (1989) is however, severely constrained in the sense that not all the

parameters that influence the non-linear covariance function are used to optimize the

objective function. To overcome this limitation, two new non-linear PLS algorithms are

proposed that make use of a different set of constraints to maximize the non-linear covariance

function. The performance of the proposed algorithms is evaluated on two artificial data sets

and a benchmark simulation of a pH process.
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3. 2. Literature Review

There are basically two approaches to extending linear PLS to its non-linear form. In the first

approach, the input variables are first non-linearly transformed and linear PLS is applied to

the transformed data set. For example, to model a quadratic non-linearity, the input data

matrix X can be extended with the square terms, x~ and the cross terms (x.x j)' where Xi

and X j for i.j = 1,2... K , denote the K input variables (Ganadeskian, 1977). This method,

which suffers from the disadvantage of making the size of the augmented matrix X large, was

reviewed by Berglund and Wold (1997). They showed that in quadratic PLS, by including the

squared terms in the data matrix X, both square and cross terms of the latent variables are

implicitly included in the resulting PLS model. The implication of this result is that if a latent

structure is present in the data, that is, if the measured variables are assumed to be generated

by a set of hidden or latent variables then it is not necessary to include the cross terms in the

augmented matrix serving to reduce the size of augmented matrix. The latest development in

this class of algorithms is that of Reproducing Kernel Hilbert Space (RKHS) PLS (Rosipal

and Trejo, 2001). The data in this algorithm is first transformed to a feature space using a

reproducing kernel (Aronszajn, 1950) and then linear PLS is performed in the feature space.

The focus of this chapter is however on the class of algorithms where a non-linear model is

fitted to the (inner) latent variables.

Wold et al., (I989) in their seminal paper proposed that a non-linear relationship be

introduced through the scores rather than through the predictor variables and suggested

updating the weights of the outer relationship in an iterative manner thereby integrating the

non-linearity within the PLS framework. Although they described the approach using a

quadratic non-linear relationship, they stated that the method was applicable for any

differentiable non-linear function. However their algorithm for weight updating was, in their

own words 'complicated' and required to be 'improved by better algorithms'. Along with this

algorithm they also proposed a method, which they termed 'quick and dirty'. For this

approach the outer weights are determined by the standard (linear) PLS algorithm and a non-

linear relationship is then fitted between the corresponding pair of t- and u-scores. This

method, they conjectured, was appropriate for situations where the non-linearity involved

was weak. More flexible non-linear models were proposed by Frank (199O) and Wold

(1992). Whilst the former work included the use ofa smoothing procedure, the technique of

Wold (I992) was based on the use of spline functions. These methods, however, require a
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number of parameters to be decided by the user including degree of spline and number of

knots.

Qin and McAvoy (1992) proposed fitting a feed forward neural network between the

corresponding pairs of scores. Since a feed forward neural network with one hidden layer of

sigmoidal units can approximate any continuous function with arbitrary accuracy (Cybenko,

1989), the method of Qin and McAvoy can be used to approximate any non-linear relation

between the latent variables, and is therefore widely applicable. It should, however, be noted

that for this method the outer weights are not updated as an integral part of the non-linear

relationship. The outer weights are determined as per linear PLS, i.e. this is a 'quick and

dirty' method of identifying a non-linear PLS model. Other approaches to building non-linear

PLS models using neural networks have also been reported. Wilson et al., (1997) described

an approach whereby a Radial Basis Function (RBF) network was used to model the non-

linear relationship between the scores. The methodology was applied to model the Tennessee

Eastman process.

Walczak and Massart (1996) used a RBF network to first non-linearly transform the input

variables prior to applying PLS. A further approach proposed by Malthouse (Malthouse,

1995; Malthouse et al., 1997) to generalize linear PLS to its non-linear form was to project

the predictor variables onto curves (which were parameterized by a feed forward neural

network) instead of lines as in linear PLS. The neural network parameters were determined

by minimizing the sum of squares of the prediction errors between the actual values of the

input and output variables and their corresponding approximations obtained from the

projections. In this way the latent variables are determined so that a compromise is achieved

between the predictably of the output variable and the approximation of the input variables

from the latent variables. One of the limitations of this algorithm is that the latent variables in

the input variables space are not orthogonal as is the case for linear PLS. Doymaz et al.,

(2003) proposed a modified version of the algorithm of Malthouse et al., (1997) which retains

the orthogonal property of the latent variables in the input space.

A revision to the approach of Wold et al., (1989) was proposed by Baffi et al., (l999(a»

whereby the non-linear model was fully integrated within the framework of PLS by updating

the outer weights using the prediction error of the inner scores model. This algorithmic

approach also formed the basis of identifying a non-linear dynamic PLS model (Baffi et al.,

2000). Other approaches to non-linear PLS include the use of Hammerstein and Wiener

filters (Patwardhan et al., 1998), genetic programming (Hiden, et al., 1998) and the Box-
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Tidwell transformation (Li et al., 200 I). Min et al., (2002) suggested using a modified back

propagation algorithm to integrate a feedforward neural network within the PLS framework.

The iterative backpropagation algorithm, they argued, would circumvent the problem of

calculating the pseudo-inverse for updating the weights in the algorithm proposed by Baffi et

al., (1999).

3.3 Comments on Linear PLS

Before undertaking an analysis of non-linear PLS algorithms, some facts about linear PLS are

stated that will be useful later in the chapter.

Remark 3.1:The vectors, Vi' qi and Pi in the PLS algorithm are functions of the weight

vector w, for i= 1,2, ...K

Proof: The response variables projection direction, Vi' is given by:

(3.1) I

and loading vectors, Pi and qi' are given by:

(3.2) I

L _ [
(3.3)

The above equations demonstrate the dependency of Vi' qi and Pi on wi' Thus it can be

concluded that the weight vectors, Wi for i= 1,2,...K , completely characterize the PLS

algorithm in the sense that all other parameters ofPLS can be derived from them.
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Remark 3.2: The vectors Vi and q i lie in the same direction in the response space, i.e. v i is

proportional to qi .

Proof. It follows from equations (5.1) and (5.2) that Vi and qi are related as:

-------- ---- -r (3.4) 1

which proves that v i and qi are oriented in the same direction.

Remark 3.3: The scores vectors, t, and Ui' are determined to have maximum covariance.

Proof. This follows from the objective function ofPLS stated in Chapter 2 (section 2.4.2)

3.4 Review of Error Based Non-Linear Partial Least Squares

This class of algorithms for non-linear PLS was proposed by Baffi et al., (1999) and assumes

that the t- and u-scores are related by a non-linear function, f:

1 (3.5)
I

Wold et al., (1989) and Baffi et al., (I999(a» took f to be a quadratic polynomial whilst a

more general function for f in the form of a feed forward neural network was proposed by

Baffi et al., (1999(b». In these algorithms, the basic framework of PLS formed the basis of

the approach. For example, both the property of orthogonality of the t-scores and the

constraint on Vi to have the same orientation as that of qi were retained in the non-linear

extensions. The algorithms differ from linear PLS in the way that the weights Wi are

determined. As mentioned above, while the maximization of the covariance between the t-

scores and u-scores is the objective function for determining the weight vectors, w., the

approach of Baffi et al., (l999(a» was based on the minimization of sum of squares of

prediction error of the u-scores. Mathematically, the objective function of Error Based Non-

Linear PLS (EBNPLS) proposed by Baffi et al., (I999(a» is:
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,---------- - - --
I JEBNPLS = minlluj -udl2 = minlluj -f(t)112 = minllVjvj -f(XjW)112l Wj Wj Wj

r (3.6) ~

Since the direction, V j , in the objective function is constrained to lie in the same direction as

that of qj, the weight vectors Wj are solutions of the following constrained optimization

problem:

JEBNPLS = minllUj -udl2 = minlluj -f(tj)112 = minllVjvj -f(XjWj)112
Wj Wj Wj

(3.7)

subject to

q j yT U' yT f( t.) yT f(X, W')
V, = __ = I I = I I = I I I

Ilqdl IIVjTUjll IIVjTf(tj)1I IIVjTf(Xjwj)1I

Ilwdl=l

The weight updating procedure for the weight vector, w., is calculated through Newton-

Raphson linearization of the function f:

-
(3.8)

I

I W'+l'J ,I

L

where Z" is a matrix where the first order differential of the non-linear function of the ilb t-J,I

scores with respect to the weight vector, w., are stored and ~w j+l,i is the incremental

change in the weight vector W j for the jth iteration. The complete error-based non-linear PLS

algorithm is summarised in Table 3.1.

Table 3.1: Error based non-linear partial least squares (Baffi et al., 1999(a»

Step I Description f Equation

1 Given: Matrices X and Y I
I Mean centre and scale each variable to I
I unit variance. Set i (number of latent

I variable) = 1; j (number of iteration)=1

L and x, ~X VI = V _j
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2

3

8

Initialize the u-scores vector u

Calculate the w-weight vector

-
Calculate the q -loading vector

9

10

11

12

Determine the v-weight vector

-
Calculate the new u-scores

Update and normalize the weight vector I
I

w (equation 3.8)

Calculate the new t-scores

13

14

15

16

17

18

Check for convergence

Fit the non-linear inner relationship

Predict the u-scores

u, = some column of Yi

X!U ..
_I__.::J.;_,I

Wj,i = T
Uj,iUj,i

-- - - --
4 Normalize the w-weight vector w.:

I wi,' = Ilw:::11 I

- - - ~
5 Calculate the t-scores It .. =X·w .. I

j.i 1 j,1

-- --- --r -- -6 Fit the non-linear inner relationship u.. = f(t ..) +e..j,l j,l j,1

---
Calculate the prediction of the u-scores7 111 .. =f(t ..)j,l j,1

YTA·u ..
I j,1

qj,i = T
t·kt·kI, I,

qj,i

V j,i = Ilq j,i II

U· J' =Yv··r+ ,I 1 j,l

If-lit. J' - t ..II ~ E,J+ ,I J,I

j = j +1, go to step 3,

else

go to step 14

Ui =f(tj)+ej

--- - -
Determine the p-loading vector

----
Deflate the predictor matrix

----1--- --
Determine the q-loading

~ __ ...1...- _
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- r Deflate the response matrix I Vj+1 = Vj - tjqT

I If additionallatent variables are required, t -
repeat steps 2-19 by replacing Xi and I

_--,-I _V_iwith Xi+1 and Vi+1 respectively. 1 _j
The issue is that this algorithm is a non-linear extension of Reduced Rank Regression (RRR)

rather than a non-linear extension of partial least squares. A brief review of reduced rank

regression is given in the next section prior to providing this proof. For more details refer to

(Reinsel and Velu, 1998).

3.5 Brief Overview of Reduced Rank Regression

In (linear) reduced rank regression the objective is to determine the weight vector, w., such

that the t-scores vector t i :

t. =X·w·l I I I
(3.9)

has maximum contribution to the response matrix Vi' The prediction error of the response

matrix is defined as:

E. = Y. - t.q!I I I I
(3.10)1

where qi is a vector that is to be determined such that the norm of the error matrix Ej is a

minimum. The vector qj that has maximum contribution to Vi can be determined using least

squares:

1(3.11) I

I

Since the vector qi depends on vector Wi through t., the prediction error in equation (3.1 0)

is completely determined by the weight vector wi' The objective function of reduced rank

regression can therefore be stated as:
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I (3.12) I
I

Although the objective function in equation (3.12) does not require any constraint to be

imposed on the weight vector Wj in order to keep it bounded, a unit norm constraint is

placed on the weight vector Wj by multiplying the t-scores vector, tj, by a constant b,

which is determined in a similar manner as for qj (minimization of the prediction error in the

response matrix). Equation (3.10) can thus be written as:

r
y. =b.t.q! +K =u.q! +K
I I I I I I I I 1 (3.13) ~

where uj = b.t.. The objective function of reduced rank regression can be re-stated as:

J RRR = minllVj - ~j qT11 = min (trace (ETEj»)
Wj Wj

subject to Ilw dl = 1
I

-
(3.14) I

3.6. Analysis of Error-Based Non-linear Partial Least Squares

To prove the equivalence between reduced rank regression and the algorithm of Baffi et al.,

(1999), the following theorem for reduced rank regression is proven.

Theorem 3.1: The objective function of reduced rank regression can be formulated in terms

of minimizing the (sum of squares) u-scores prediction error with the constraint that the

response variables projection direction v j and the vector qj lie in the same direction. That is,

the objective function of reduced rank regression can be written mathematically as:

JRRR = minllUj -udl2 = minllUj - bjtdl2
w, Wj

subject to

_ q i _ yru j _ yjTb j tj _ Y? tj d II 11- 1

Vj -lIqdl-IIYjTUjll-IIYjTbjtjll-IIYjTtjll an Wj-

(3.15)
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Proof' Define vector v i as:

I (3.16)
j

Multiplying both sides of equation (3.13) by vi gives:

v.v. =u.q!v. +E-v·l I I I I I I I
I (3.17)

Substituting equation (3.16) into (3.17) gives:

(3.18)

Now taking Yiv j = OJ, the u-scores, and E, v j = e, :

_~ ~ ~.1~ I

The weight vectors W j in the RRR can, therefore, also be determined by minimizing the

objective function:

__ 1<3.20)'

provided that the projection direction v i is given as:

1(3.21)

The objective function of (linear) RRR can, therefore, be stated explicitly as in equation

(3.15).
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In the theorems below, the equivalence between the linear version of Baffi's algorithm and

reduced rank regression is established.

Theorem 3.2: When the function, C, is linear, the objective function minimized in the

algorithm ofBaffi et al., (1999(a» is the same as for reduced rank regression.

Proof" Replacing the non-linear function, C,in the inner scores by a linear function gives:

The objective function for the algorithm proposed by Baffi et al., (1999 (a» given in equation

(3.7) under the assumption of a linear relationship between the scores reduces to:

J = minllui -Ui1l2
Wi

subject to

I q. yT u· yTh·t· yT t. II IIv. = _1- = 1 1 = 1 1 1 = 1 1 and Wi = 1i ' Ilq; II IIV;Tu;II IIV;Tb, t; II IIV;' t; II

(3.23)

Comparing equations (3.15) and (3.23), the two objective functions are observed to be

equivalent.

Theorem 3.3: When the function C in the algorithm of Baffi et al., (1999(a» is linear, the

weight vector, Wi' in the iterative algorithm converges to the eigenvector corresponding to

the largest eigenvalue of the matrix expression [XTXirIXTYiYiTXi and is equal to the

weight vector determined by reduced rank regression.

Proof: From Table 3.1, the weight vector, vi' the regression coefficient, hi' and the residual

vector, e., for the jth iteration, can be expressed as a function of wi as follows:
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WT·X!yy.TX·W·b .. = J,I I I I I I

J,I II T T T II T Tw :·X· y-y. Xw. w: ·X· x.w.,J,I I I I 1 I J,I I I J,I

(3.24)

y-y-TX.W·· W~·X!y-y.TX.w.e .. = I I I J,I _ X.w .. J,I I I 1 1 1

J,I II T II I j.t T T II T IIy. X·W·· w··X· X·W·· Y. X·W··I I j.1 j,l I I j,t I I j,l

The change in the weight ~w j+l.i from equation (3.8) is given by:

(3.25)

Consequently the normal ized weight vector for the (j + 1) th iteration is given as:

l [X!X.]-IX!yyTX.w ..
1 I I I I I j,l

Wj+l,j = TIT T
IIXjx.r x, YjYj XjW j,j II

- -

I (3.26)

LJ
The above iteration is equivalent to the Power method (Golub and Loan, 1996) for

determining the eigenvector corresponding to the largest eigenvalue of the

matrix[XTXa-lXTYjYjTXj' It is also known (Reinsel and Velu, 1998) that the weight

vector Wj determined by the reduced rank regression is equal to the eigenvector

Theorems 3.2 and 3.3 demonstrate that the error based algorithm proposed by Baffi et al.,

(1999(a)) is equivalent to classical reduced rank regression for the special case of where a

linear relationship is assumed between the scores.

Remark 3.4: Since the error based iteration procedure converges to the RRR solution, it is

not guaranteed that the scores vectors, tj and OJ, have maximum covariance.
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Remark 3.5: The constraint of v ibeing aligned in the same direction as qi in the error based

cost function results in the residuals of the response variables being minimized instead of the

residuals of the ith scores model being minimized.

Corollary 3.1: The non-linear error based PLS algorithm proposed by Baffi et al., (1999(a»

is a non-linear extension of reduced rank regression.

Proof. This follows from Theorems 3.2 and 3.3 and Remark 3.5. The constraint, that the

directions of the projection direction, Vi' and the loading vector, q j' are equivalent, is

retained in the algorithm of Baffi et al., (l999(a» for the non-linear case. Therefore, the

consequence is that the maximum amount of variance in the response matrix is explained,

which is in keeping with the spirit of (non-linear) reduced rank regression.

3.7 Analysis of the Algorithm of Wold et al., (1989)

Having analyzed the algorithm ofBaffi et al., (I 999(a», the algorithm of Wold et al., (1989)

is now considered and it is proven that this algorithm attempts to maximize the non-linear

covariance function. Before the algorithm is analyzed, a brief overview of the algorithm is

provided.

Wold et al., (1989) extended linear PLS by incorporating a non-linear (quadratic)

relationship:

(3.27)

Updating of the weight vector w, is performed by linearising f'(t.) about the current weight

vector w~ (or the t-scores vector t~) and the parameter vector e~ using a first order Taylor

series expansion of the quadratic function:

o ar at
I u.=fi(t· )+- /lw· +- /le· +e·I I ::l._. I aw I I

UWi w~ i e~
I I

(3.28)

The increment, /lw i' for the current weight vector w~ is calculated as follows:
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1. Define a matrix Zj and a vector d, as:

2. Determine the column vector di as:

3. Normalize dj to unit norm:

4. Evaluate a column vector Sj:

5. Regress u, on Si:

6. The incremental weight vector is then determined as:

where dj(l:K) denotes the first K elements of the vector d,
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7. Update the weight vector w~ as:

Wold et al., (1989) stated that their algorithm 'is fairly complicated and converges slowly

when the data lack structure'. Baffi et al., (1999(a» while proposing a 'simplified' version of

the algorithm of this algorithm raised the following three questions on the weight updating

procedure:

1. Why is the vector d, determined as dj = Z~ Uj , that is as if Zj is being regressed
Uj u,

on u, according to Zj = uid; (Step 2 above) instead of Uj = Zjdj?

2. Why is the vector d, scaled by a constant b, (step 6 above) to determine the

incremental weight vector I1w j?

3. Why is the first order differential of the function Cj included in the matrix Zj if the

incremental function parameter vector I1cj is not to be used for updating the weight

vector Ci?

However, Baffi et al., (1999) did not address these questions. Answers to these questions are

provided in the following lemmas.

Lemma 3.1: The vector d; = [L1W; L1c;l in the updating procedure of Wold et al., (1989)

is determined based on maximizing the covariance between the u-scores vector, u., and the

non-linearly transformed t-scores vector, f(tj), with a unit norm constraint on vector d..

Proof' The covariance between OJ and f(tJ is given by:

T T( 0 ar at)u, f1(t·) = u: fi(t· )+- L1w·+- L1c,
I I I I ::1..-- I a I

UWj w~ Cj c~
I I

I (3.29)
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Since the covariance between two random variables does not change if a constant value is

added to either of the two variables, f(t~) can be removed from the above expression.

Consequently equation (3.29) can be written as:

(3.30)

If the objective function for determining d, is taken as the maximization of the covariance

function given in equation (3.30), subjected to unit norm constraint on d,

max(d.Z! u.)
I I Idj

subj ected to lidj II = 1 __L
then the solution to the above cost function is given by the conventional (linear) PLS solution

for one response variable, i.e. PLS] :

I (3.32)

j
This equation for determining d, is the same as that used in the algorithm of Wold et al.,

(1989) (step 2 in the summary given above)

Lemma 3.2: The incremental function parameter vector ~Cj is a vector of slack variables,

(that is, the variables that are used to optimize the objective function but that are not used in

the model) for the covariance maximization and is used to guarantee the convergence of the

algorithm.

Proof' Since ~Ci' determined by solving the optimization problem in equation (3.31) is not

used to update Cj' it is clearly a slack variable. If ~Cj is not included in the optimization

problem, the incremental weight vector ~w j will always be of unit norm since d, is

constrained to be of unit norm. The consequence of this is that the algorithm will not
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converge since !l.w i cannot tend to zero. Inclusion of !l.ci , therefore enables the algorithm to

converge so that after convergence !l.w j = 0 and !l.Cj is of unit norm so that the constraint

of unit norm on d i is satisfied.

It can therefore be concluded from the two lemmas that the parameters in the algorithm by

Wold et al., (1989) are adjusted using a covariance maximization criterion.

Although the weight vectors Wj in the algorithm of Wold et al., (1989) are obtained such

that the covariance between the u-and the non-linearly transformed t-scores is maximized, the

algorithm suffers from the following limitations:

I. The quadratic function parameter vector, ci' is determined so as to minimize the

prediction error of the inner scores model. However, ci also influences the

covariance between the u-scores u, and the non-linearly transformed t-scores, f(ti).

It is therefore, necessary to determine ci along with Wi to maximize the covariance.

2. Wold et al., (1989) proposed the use of a first order Taylor series expansion for it to

align with the iterative framework of linear PLS. In each iteration, a constraint is

placed on !l.w i by placing a unit norm constraint on di and also on the updated

weight vector wi by normalizing it to unit norm. Since W j is constrained to be of

unit norm, there is no need to impose any constraint on !l.w i or d..

The above problems associated with the algorithm of Wold et al., (1989) are overcome in the

two non-linear PLS algorithms proposed in section 3.9. Prior to discussing the new

algorithms, a classification of existing non-linear PLS algorithms is undertaken.

3.8 Classification of Existing Non-linear PLS Algorithms

This section categorizes the non-linear PLS (NLPLS) algorithms described in the literature

into three categories (I) covariance based (2) quick and dirty algorithms and (3) error based.
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3.8.1 Covariance based Non-linear PLS

The algorithm by Wold et al., (1989) belongs to this category but has a number of limitations

as discussed in section 3.7.

3.8.1 Quick and Dirty Methods

This category includes those algorithms whereby linear PLS is used to determine the t-and u-

scores prior to a non-linear model being fitted between the t- and u-scores. The algorithms of

Frank (1990), Qin et al., (1992), Wilson et al., (1997) are members of this category.

These algorithms clearly do not represent the true non-linear PLS as the outer weights of the

algorithm are not determined as per the non-linearity in the data.

3.8.3 Error Based Non-linear PLS Algorithms

This category of algorithms obtain scores variables that are projected onto the lines as in

linear PLS, and a non-linear relationship is fitted between the corresponding pair of t- and u-

scores. The parameters (the outer weights as well as the inner non-linear model parameters)

are simultaneously updated and are determined so as to minimize the prediction error of the

inner model. The algorithms of Hiden et al., (1998), Baffi et al., (1999), and Li et al., (200 1)

are examples of this approach.

It should be noted, however, that the minimization of the prediction error in the inner scores

model does not guarantee the maximization of the covariance between the t-and u-scores, As

analysed in section 3.7, these algorithms are in fact. a non-linear version of reduced rank

regression and therefore do not represent a true non-linear representation of PLS.

The categorization of the key non-linear PLS algorithms mentioned above is summarized in

the Table 3.2.
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Table 3.2:Categorization of the proposed non-linear PLS algorithms

Category

Covariance Based Quick and dirty Error based

Wold et al., (1989) Frank (1990) Hiden et al., (1998)

Wold (1992) Qin et al., (1992) Baffi et al., (1999)

Wilson et al., (1997) Li et al., (2001)

Patwardhan et al., (1998) Min et al., (2002)

3.9 Non-linear Partial Least Squares using Covariance Maximization

PLS is based on the maximization of a linear covariance function (Hoskuldsson, 1988)

between the t-scores and u-scores. This criterion not only provides a straightforward

calculation of the scores vectors and the model parameters, it also offers statistical

interpretation which is helpful in understanding the underlying structure of the system.

Maximization of the covariance function determines scores variables that are a statistical

compromise between the approximations of the predictor (process) variables and the

prediction of the response (quality) variables. This is in contrast to other regression

techniques such as Multiple Linear Regression (MLR) and Reduced Rank Regression

(RRR» whose objective is to predict the response variables from the predictor variables by

minimizing the prediction error. It has been demonstrated that maximising the covariance

between pairs of scores variables is of benefit in applications such as multivariate statistical

process performance monitoring (MacGregor et al., 1991;Martin et al., 1996). In addition, a

number of comparisons have identified the benefits of PLS in terms of deriving and

encapsulating important qualitative information from chemical data (Haaland and Thomas,

1988(a); 1988(b); Martens and Nes, 1989;Neeset al., 1986;Nes and Martens, 1985; Wold,

et al., 1983(a); 1983(b); Wold et al., 1984).

Considering the importance of covariance maximization in linear PLS, any 'true' non-linear

PLS should be based on the maximization of the 'non-linear covariance function' which

reduces to a (linear) covariance function when the non-linear function is replaced by linear

function. The non-linear covariance function is defined as:

I (3.33) i
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where Cov is the usual covariance function of the two vectors, f is a non-linear function

which is assumed to be quadratic:

[
T· ~f(t.)=co· +c1·t· +C2·t~1 1 ,I ,I 1 ,I 1 J (3.34) ]

It can be seen that this definition of the non-linear covariance function is a generalization of

the usual covariance function since if the non-linear function is replaced by a linear function,

the defmition reduces to the conventional covariance function.

Based on the definition of the non-linear covariance function in equation (3.34), the objective

function of non-linear PLS is to determine the weight vectors v i and Wi' and the scores

vectors such that the non-linear covariance function JNLPLS is maximized. By selecting a

quadratic non-linear function f, it is not only the weight vectors W j and v j that are to be

optimized but also the parameters c, of the function f. The objective function of non-linear

PLS can be stated as:

- _- ---- ----
JNLPLS = max Cov (f(cj,XjW .). YjVj)

Wj'V j,Cj

--------,--~
(3.35)

It should be noted, however, that in the objective function given above, it is necessary to

introduce constraints on the magnitude of the parameter vector c, in addition to having a

constraint of unity norm on the weight vectors wi and v j , as otherwise JNLPLS will be

unbounded. This gives rise to two non-linear PLS algorithms depending on how the

parameter vector e, is constrained. The two algorithms are detailed below.

3.9.1 Non-linear PLS Algorithm Number 1 (NLPLS1)

In the first version of the algorithm, the parameter vector C i like the weight vectors W j

and v j s is constrained to have unit norm. This algorithm is termed NLPLSI and the objective

function is given by:

72



r JNLPL~ = max -r(tj)TUjWj,Vj,Cj
I subject to

Illwlll = 1 Ilvdl = 1 Ilcdl = 1

L__ ~_

3.9.2 Non-linear PLS Algorithm Number 2 (NLPLS2)

In the second version of the algorithm, the magnitude of the parameter vector is indirectly

constrained by placing a constraint on the magnitude of the function f. Since non-linear PLS

should be a generalization of linear PLS, the constraint selected is that the length of f is the

same as that for t:

The algorithm is denoted as NLPLS2 and its objective function is as follows:

J NLPLS2 = max f(t) Tu,Wi,Vj,Cj
subject to

! Ilwdl = 1 Ilvdl = 1

II Tjll =llf(tj)11 = Iltdl

The optimization functions for both non-linear PLS algorithms can be optimized using

gradient ascent algorithm. The gradients of the objective function with respect to parameters

for NLPLS 1 (which are also equal to NLPLS2) can be computed as follows:
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Once the gradients are computed. the objective function can be optimized by updating the

parameters until convergence using the following equations:

where 11 is the learning rate. The constraints on the weight vectors W j and v j and the

parameter vector e, are taken into consideration after each updating. For example. for the

NLPLS 1 algorithm, the updating equations are:

w·
wj(n+l) = Ilw:11

v.(n+l) = v.(n)+l1 aJNLPLS I
I I avj(n)

For the NLPLS2 algorithm. the constraints are implemented as follows:

t. =Xiw.I I I

OJ =YjVj

2T· = fi(t·) = Co' + cl·t. + C2.t:I I ,I ,I I ,I I
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The optimization method given in equation (3.41) uses a gradient based method and may be

slow in convergence. To increase the speed of convergence, second order methods (e.g

Newton's method) can be used.

After the parameters have been optimized, a linear relationship between f(tj) and u, can be
fitted:

, u. =b)·ti(t.)+bo· +e·1 .1 1 .1 1
[ (3.43) I

The parameters, bl,i and bO•i can be determined using ordinary least squares. The prediction

of the response variables can now be calculated from the predicted u-scores, Uj by

calculating the loading vector q j :

1 (3.44)

I
1

The prediction of the response variables is given by:

T (3.45) I
I

After the calculation of the first latent variable, the percentage variance explained by this

latent variable is calculated and in case more latent variables are needed, the above procedure

is repeated by deflating the matrices X and Y as in conventional PLS.

3.10 Summary of the Algorithms

The two algorithms, NLPLSI and NLPLS2 are summarized below.

3.10.1 NLPLSI Algorithm

Given: Input matrix X and output matrix Y.

Mean centre and auto scale the two matrices. Set i= 1 and XI = X, YI = Y
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Step 1: Initialize the weight vectors W j, V j and non-linear function parameter e, to random

values.

Step 2: Compute t-and u-scores

,..--------- -- --
tj =XjWj

Uj =YjVj

Step 3: Compute the gradients

aJNLPLSI = X!«c . + 2 c .t.)T u.)aw. I 1,1 2,1 I I
I

aJNaLPLSI =([1 t t~ ]TUj)
Cj

aJNLPLSI yT[ 2]
--'-=:;"'=;;"~ = . Co' + cl·t· +C2 .t:at ,1 ,11 ,1 IVj

Step 4: Update the parameters

Cj (n+l) = cj(n) + T) aJNLPLS1
aCj(n)

1 cj(n+l)
cj (n+ ) = Ilcj(n+1) II

wj(n+l)=wj(n)+T) aJ~~~n~

w·
wj(n+l) = Ilw:11

vj(n+l) = Vj(n) +" aJNLPLSII _ aVj(n)
v·

: v,(n+l); 11":11

Step 5: Repeat steps 2 and 3 until convergence

Step 6: Fit a linear relationship between the u-scores Uj and the non-linearly transformed t-
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1--
U· =bI·f(t.)+bO· +e·1 ,I 1 ,I 1

Step 7: Calculate predicted u-scores ui

r A-

u, =b)·f(t.)+bo·I 1 ,I 1 ,I

Step 8: Determine the loading vectors Pi and qi

,- X!t.
P - 1 1

I i --tTt

Iii y.Tn·
1 1

qi =-:-:r:::-u, u,

Step 9: Deflate the matrices

Xi+I = Xi - tiP;

Yi+I = Yi - niqT

Step 10: Repeat steps I to 8, with i= i+ 1 if another latent variable is required.

3.10.2 NLPLS2 Algorithm

Given: Input matrix X and output matrix Y.

Mean centre and auto scale the two matrices. Set i= 1 and X I = X, YI = Y

Step 1: Initialize the weight vectors w., viand non-linear function parameter ci to random

values

Step 2: Compute t-and u-scores
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t. =Xiw.I I I

u. = Y.V·I I I

T· =f(t·)=co· +cl·t· +C2·t~I I ,I ,I I ,I I

Step 3: Compute the gradients

aJNLPLSI yT[ 2]
_-,-,=:...:=...o- = . CO·+C)·t· + C2.t:a I ,I ,II ,IIVj

Step 4: Update the parameters

I Cj ~n;l) = Cj (n) + 11aJNLPLS )
aCj(n)

I w ;(n+l) =w ;(n) + 11oj:~n;
I w.m+l) = 11::11

I vj(n+l) = Vj(n)+l1 aJNLPLS)
I _ aVj(n)lv;(n+l) = 11;:11

Step 5: Repeat steps 2 and 3 until convergence

Step 6: Fit a linear relationship between u-scores u, and the non-linearly transformed t-

scores f(tj):

U· =b).ti(t.)+bo· +e·1 ,I 1 ,I 1
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Step 7: Calculate the predicted u-scores OJ

10· =b!.((t.)+bo·1 ,1 1 ,.
l _

Step 8: Determine the loading vectors pj and qj

Step 9: Deflate the matrices

I Xi+l = Xi - tiP;

I Vi+l = Vi - 0iq;

Step 10: Repeat steps 1 to 8, with i= i+ 1 if another latent variable is required

3.11 Application Studies

The algorithms given above are now tested on three data sets, two artificial data sets and a

simulation of a pH neutralization process.

3.11.1 Example 1

In this example, data from a non-linear function described by Cherkassky et al., (1996) and

also used by Baffi et al., (1999(a» forms the basis of study. The function has four

uncorrelated random inputs which are uniformly distributed in the interval [-0.25 0.25]. The

single output variable is related to the input variables as:

I Y= exp(2xl sin(1tx4)) + sin(x2x3)L Xi e [-0.25 0.25] for i= 1,2,3,4

(3.46) I

J
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A data set of 800 samples was generated and was divided into a training data set (600

samples) and a validation data set (200 samples). After the training data set was auto-scaled,

the NLPLS 1 and NLPLS2 algorithms with a quadratic function as the inner non-linear

function were applied to identify non-linear models. The performance of the NLPLS 1 and

NLPLS2 algorithms on the training data set was assessed using the percentage contribution of

each latent variable and their cumulative percentage contribution to the predictor and

response matrices. Furthermore, the Mean Square Prediction Error (MSPE) for the training

and validation data sets were also calculated. The quantitative performance of the NLPLS 1

and NLPLS2 algorithms, as evaluated by these performance indices is summarized in Tables

3.3 and 3.4 respectively. The qualitative performance of the model is shown in Figures 3.1

and 3.3 in term of plots of the measured and predicted values of the response using four latent

variables. The corresponding time series plots of the residuals for the two algorithms are

shown in Figures 3.2 and 3.4 respectively. To compare the performance of NLPLSI and

NLPLS2, the performances of linear PLS, non-linear PLS algorithm of Wold et al., (1989)

and non-linear PLS algorithm of Baffi et al., (1999(a» using a quadratic non-linearity are

summarized in Tables 3.5, 3.6 and 3.7 respectively.

Table 3.3: Performance ofNLPLSI algorithm (example I)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained %variance explained % variance (Training (Validation

LV (X) explained (V) explained Data ) Data)

(X) (V)

1 26.56 26.56 76.29 76.29 0.2367 0.2228

2 24.17 50.73 16.68 92.98 0.0701 0.0692

3 25.80 76.53 1.90 94.88 0.0511 0.0513

4 23.47 100.00 0.43 95.31 0.0469 0.0475
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Table 3.4: Performance ofNLPLS2 algorithm (example I)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)
I 26.37 26.37 77.89 77.89 0.2207 0.2093

2 24.02 50.39 15.97 93.86 0.0613 0.0609

3 26.00 76.39 1.90 95.76 0.0423 0.0457

4 23.61 100.00 0.43 96.19 0.0380 0.0392

Table 3.5: Performance of linear PLS algorithm (example I)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data ) Data)

(X) (Y)
I 27.40 27.40 0.52 0.52 1.07 0.8493

2 25.82 53.22 0.00 0.52 1.07 0.8493

3 22.52 75.74 0.00 0.52 1.07 0.8493

4 24.26 100.00 0.00 0.52 1.07 0.8493

Table 3.6: Performance of Wold et al., (1989) algorithm (example I)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)
1 26.72 26.72 74.22 74.22 0.2574 0.2437

2 24.48 51.20 2.65 76.87 0.2309 0.2424

3 25.10 76.30 4.90 81.77 0.1819 0.1892

4 23.70 100.0 0.63 82.40 0.1757 0.1856
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Table 3.7: Performance ofBaffi et al., (1999(a» algorithm (example 1)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)
1 26.26 26.26 78.05 78.05 0.2091 0.2082

2 23.93 50.19 15.80 93.86 0.0613 0.0608

3 26.10 76.33 1.91 95.77 0.0423 0.0457

4 23.67 100.0 0.41 96.17 0.0382 0.0392
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Figure 3.1: Prediction of response variable using NLPLS 1 algorithm (example 1)
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Figure 3.2: Time series plot of the residuals using NLPLS 1 algorithm (example 1)

4.----r--~----~--~----~--~--~--~--~----~
1

__ Measured
Predicted

1
Y

3

2

o V

·1

-2

-3~--~--~----~--~----~--~--~----~--~--~o 20 40 60 80 100 120 140 160 1EKl 200
Sample Number------------------------~--~

Figure 3.3: Prediction of response variable using NLPLS2 algorithm (example 1)
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Figure 3.4: Time series plot of the residuals using NLPLS2 algorithm (example 1)

The following observations can be made by comparing the performances of linear PLS, the

algorithm of Wold et al., (1989), the algorithm ofBaffi et al., (1999(a» and the NLPLSI and

NLPLS2 algorithms.

1. The percentage variance of X explained is approximately equal for each of the four

latent variables. This is true for all algorithms considered. The reason for this is that

the four input variables are uncorrelated and each of them is uniformly distributed

over the same interval. Each of the four directions in the input space, therefore

account for equal variance.

2. All four latent variables in linear PLS explain only 0.52% of the variance of Y, and

therefore, is unable to model the data. This is understandable as the response

variable, y, is a sum of an exponential and sine function of the input variables and

therefore a non-linear model is required to explain y as a function of the input

variables

3. The application of the algorithm of Wold et al., (1989) with a quadratic inner non-

linearity improves the model. The percentage variance of Y explained by the first

latent variable, for example, increases from 0.52% in the linear PLS model to

74.22%. The second and higher order latent variables, however, do not contribute
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significantly to the variance of Y. The improvement in the model identified by the

algorithm of Wold et al., (1989) from that identified by linear PLS is also reflected in

the lower values of mean square prediction error (MSPE) for both the training and

validation data sets.

4. The NLPLS 1 and NLPLS2 algorithms with a quadratic inner non-linearity further

improve the non-linear model for the data. Application of NLPLS 1 and NLPLS2

algorithms not only increases (by about 4% from the algorithm of Wold et al.,

(1989» the contribution of the first latent variable to Y, but the contribution of the

second latent variable is increased by a significant amount. If a non-linear PLS model

is built using two latent variables, then the resulting MSPE for the training and

validation data sets are much lower for the model identified using NLPLS 1 and

NLPLS2 algorithms than that identified by the algorithm of Wold et al., (1989). The

poor performance of the algorithm of Wold et al., (1989) can be explained, as

mentioned in section 3.7, by the fact that while maximizing the covariance between

the u-scores and the non-linearly transformed t-scores, all the parameters, in

particular the non-linear function parameters, that influence this covariance function

are not optimized. In the NLPLS 1 and NLPLS2 algorithms, on the other hand, all the

parameters (outer weights and inner model parameters) are determined such that the

non-linear covariance function is maximized leading to better performance of the

algorithms.

5. NLPLS2 performs slightly better than NLPLS 1. This may be due to the fact that a

unit norm constraint on the non-linear function parameter in NLPLS 1 is more severe

than the constraint of the non-linearly transformed t-scores having the same norm as

that of the t-scores in NLPLS2.

6. The algorithm ofBaffi et al., (1999(a» performs better than all the other algorithms

considered in terms of percentage variance of Y explained for a given set of latent

variables and mean square prediction error on the training and validation data sets for

this algorithm. The performance of the NLPLS2 algorithm is very close to this

algorithm. The first latent variable, for example, in the algorithm of Baffi et al.,

(1999(a» explains 78.05 % variance of Y which is slightly higher than the

corresponding value (77.89 %) explained in the NLPLS2 algorithm. The second and

higher latent variables, however, explains the same amount of variance of Y in the

NLPLS2 and the algorithm of Baffi et al., (l999(a». The better predictive capability

of the algorithm of Baffi et al., (1999(a» can be explained from the fact that

parameters of the model in this algorithm are determined so as to minimize the

prediction error in the response variables.
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3.11.2 Example 2

In this example the input matrix X is assumed to have a latent structure, that is first latent

variables are generated and then the measured variables are generated as a function of the

latent variables:

1 (3.47):

where tI, t2 and t3 contain one thousand independent observations drawn from a normal

distribution with zero mean and unit variance. The three columns, tj, are mutually

independent and the vectors PI' P2 and P3 form a set of orthonormal vectors in R 5. The

matrix X, therefore, comprises five (measured) variables and ]000 data points. An augmented

matrix Xaug of X is generated by including the squares and cross terms of the original X so

that Xaug is of order (1000 x 20). A regression matrix B of order (20 x 3) is now

generated and 3 output variables with ]000 observations are calculated using the augmented

matrix as follows:

1 (3.48)

The data set is divided into a training data set consisting of 800 data points that is used for

model identification with the remaining 200 data points forming the data set for model

validation.

After the training data set is mean centred and scaled to unit variance, the NLPLS 1 and

NLPLS2 algorithms with a quadratic function as the inner non-linear function are applied to

identify a non-linear model for the data set. The performance of the NLPLS 1 and NLPLS2

algorithms was measured using the same performance indices as in example 1. The numerical

values of the performance indices for the NLPLS I and NLPLS2 algorithms is summarized in

Tables 3.8 and 3.9 respectively and Figures 3.5 and 3.7 show the prediction of the response

variables using the NLPLS 1 and NLPLS2 algorithms respectively with five latent variables

retained in the model. The corresponding time series plots of the residuals for the two

algorithms are shown in Figures 3.6 and 3.8 respectively. The performances of linear PLS,
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algorithm of Wold et al., (1989) and the algorithm of Baffi et al., (l999(a» are given in

Tables 3.9,3.10 and 3.11 respectively.

1. All four algorithms require three latent variables to explain 100% variance of X. This

is because there are three latent variables that generate the matrix X.

2. NLPLS 1 and NLPLS2 algorithms explain a higher percentage of variance of Y for a

given set of latent variables. For example, for two latent variables, the percentage

variance of Y explained for the NLPLS1 and NLPLS2 algorithms are approximately

80% and 85% respectively whereas the corresponding figures for linear PLS and the

algorithm of Wold et al., (1989) are approximately 6% and 57% respectively.

3. NLPLS 1 and NLPLS2 give lower values of mean squares prediction errors for the

training and validation data sets. For two latent variables, for example, the MSPE on

the validation data set for the NLPLS1 and NLPLS2 algorithms are 0.65 and 0.49

respectively and the corresponding figures for linear PLS and the algorithm of Wold

et al., (1989) are 3.03 and 1.33 respectively. The reasons for better performance of

NLPLSI and NLPLS2 as compared to the algorithm of Wold et al., (1989) are as

given in example 1.

4. Also as noted in example 1,NLPLS2 performs slightly better than NLPLSI in terms

of prediction ability of response variables.

5. As far as the prediction ability of response variables is concerned, the algorithm of

Baffi et al., (1999(a» is the best among all the algorithms considered. However,

NLPLSI and NLPLS2 (and also the linear PLS and the algorithm of Wold et al.,

(1989» performs better than Baffi et al., (19999(a»'s algorithm in terms of

approximation ability of input variables (X) for a given set of latent variables. For

example, the percentage variance of X explained by two latent variables in the

NLPLS1 algorithm is 90.18 % which is higher than the corresponding value (77.86

%) in the Baffi et al., (1999(a» algorithm. This can be explained by the fact that the

latent variables in the Baffi et al., (1999(a» algorithm are determined so as to

minimize the prediction error of response variables without any consideration for the

approximation of input variables. The latent variables in the NLPLS I and NLPLS2

algorithms on the other hand are determined so as to maximize the covariance

between the t-and u-scores resulting in a compromise between the predictive ability

of response variables and the approximation of input variables. Since the compromise

between the prediction of response variables and the approximation of input

variables is at the heart of conventional linear PLS algorithm, this example illustrates

that NLPLS I and NLPLS2 represent the 'true' non-linear extension of linear PLS.
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Table 3.8: Performance ofNLPLSI algorithm (example 2)

No. %Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (V) explained Data) Data)

(X) (Y)
I 54.02 54.02 45.24 45.58 1.6305 1.4240

2 36.16 90.18 34.95 80.19 0.6552 0.6140

3 9.82 100.00 2.33 82.53 0.5772 0.5583

4 0.00 100.00 0.01 82.54 0.5719 0.5583

5 0.00 100.00 0.00 82.54 0.5718 0.5583

Table 3.9: Performance ofNLPLS2 algorithm (example 2)

No. %Variance Cumulative %Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)
1 53.67 53.67 46.64 46.64 1.5988 1.3875

2 28.50 82.17 38.88 85.02 0.4488 0.4925

3 17.83 100.00 2.31 87.33 0.3796 0.4115

4 0.00 100.00 0.09 87.42 0.3769 0.4112

5 0.00 100.00 0.00 87.42 0.3767 0.4109

Table 3.10: Performance of linear PLS algorithm (example 2)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (V) explained Data) Data)

(X) (Y)
1 54.01 54.01 4.51 4.51 2.8512 3.0559

2 31.23 85.25 1.45 5.95 2.8054 3.0312

3 14.75 100.00 0.05 6.01 2.8037 3.0340

4 0.00 100.00 0.00 6.01 2.8037 3.0133

5 0.00 100.00 0.00 6.01 2.8037 3.0133
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Table 3.11: Performance of Wold et al., (1989) algorithm (example 2)

No. %Variance Cumulative % Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)
1 54.3448 54.3448 42.9243 42.943 1.7101 1.5509

2 31.4290 85.7738 14.2637 57.1879 1.2828 1.3390

3 14.2262 100.00 8.3476 65.5356 1.0326 1.2836

4 0.00 100.0 0.3112 65.8466 1.0233 1.2798

5 0.00 100.0 0.0588 65.9096 1.0216 1.2744

Table 3.11: Performance ofBaffi et al., (I 999(a» algorithm (example 2)

No. %Variance Cumulative % Variance Cumulative MSPE MSPE

of explained %variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data ) Data)

(X) (Y)
I 53.01 53.01 47.12 47.12 1.5845 1.3632

2 24.85 77.86 41.62 88.73 0.3376 0.3923

3 22.13 99.99 2.79 91.52 0.2540 0.2873

4 0.01 100.0 0.06 91.59 0.2521 0.2882

5 0.00 100.0 0.01 91.59 0.2519 0.2890
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Figure 3.5: Prediction of response variables using NLPLS 1 algorithm (example 2).
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Figure 3.6: Time series plots of the residuals using NLPLS 1 algorithm (example 2)
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Figure 3.7: Prediction of Response variables using NLPLS2 algorithm (example 2).
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Figure 3.8: Time series plots of the residuals using NLPLS2 algorithm (example 2)
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3.11.3 Example 3: pH neutralization process

In the third and final application, data from a pH neutralization process is considered. This

process has been used as a benchmark process for testing the performance of different control

algorithms (Henson and Seborg, 1994; Johansen and Foss, 1997). The process consists of a

tank where a strong acid (nitric acid) is neutralized by a strong base such as sodium

hydroxide. A dynamic model of the process was developed by Henson and Seborg (1994). To

collect steady state data, the flow rates are kept fixed until the process reaches steady state.

Three flow rates Q .. Q2 and Q3 are used as the predictor variables and the three variables

namely pH value, level of tank and the output flow rate are used as the response variables. A

data set consisting of 1000 samples is collected and divided into a training data set (800

samples) and a validation data set (200 samples). The performance of the NLPLSI and

NLPLS2 algorithms is given in Tables 3.13 and 3.14 respectively. Figures 3.9 and 3.11 show

the prediction of the response variables using two latent variables and the corresponding

residuals are shown in Figures 3.10 and 3.12 respectively. The performances of linear PLS,

the algorithm of Wold et al., (1989) and the algorithm ofBaffi et al., (1999(a» are given in

Tables 3.15, 3.16 and 3.17 respectively.

Table 3.13: Performance ofNLPLSI algorithm (example 3)

No. %Variance Cumulative %Variance Cumulative MSPE MSPE

of explained % variance explained %variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)
I 35.79 35.79 63.46 63.46 1.1348 1.1720

2 31.00 66.79 26.97 90.43 0.2061 0.1923

3 33.21 100.00 0.13 90.56 0.2060 0.1923

Table 3.14: Performance ofNLPLS2 algorithm (example 3)

No. % Variance Cumulative %Variance Cumulative MSPE MSPE

of explained % variance explained % variance (Training (Validation

LV (X) explained (Y) explained Data) Data)

(X) (Y)

I 35.72 35.72 65.20 65.20 1.0239 1.0632

2 31.03 66.75 28.60 93.82 0.1833 0.1615

3 33.25 100.00 0.11 93.93 0.1804 0.1586
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Table 3.15: Performance of linear PLS algorithm (example 3)

No. %Variance Cumulative % Variance Cumulative MSPE MSPE

of explained %variance explained % variance (Training (Validation

LV (X) explained (V) explained Data) Data)

(X) (V)

1 35.80 35.80 44.22 44.22 1.7162 1.7443

2 30.97 66.77 2.65 46.87 1.7053 1.7231

3 33.23 100.00 4.90 51.77 1.6982 1.7187

Table 3.16: Performance of Wold et al., (1989) algorithm (example 3)

No. % Variance Cumulative % Variance Cumulative MSPE MSPE

of explained %variance explained %variance (Training (Validation

LV (X) explained (V) explained Data) Data)

(X) (V)

1 30.96 30.96 28.05 28.05 2.1558 1.7511

2 33.69 64.65 1.56 29.61 2.1088 1.7031

3 35.35 100.00 58.93 88.54 0.3428 0.2856

Table 3.17: Performance ofBaffi et al., (1999(a» algorithm (example 3)

No. %Variance Cumulative % Variance Cumulative MSPE MSPE

of explained %variance explained %variance (Training (Validation

LV (X) explained (V) explained Data) Data)

(X) (V)

1 35.74 35.74 65.89 65.89 1.0220 1.0616

2 30.83 66.56 28.11 94.00 0.1799 0.1579

3 33.44 100.00 0.00 94.00 0.1798 0.1580
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Figure 3.9: Prediction of response variables using NLPLSI algorithm (example 3)
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Figure 3.10: Time series plots of the residuals using NLPLSI algorithm (example 3)
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The following conclusions can be drawn from the above results:

1. The percentage variance of Y explained by the NLPLS 1 and NLPLS2 algorithms on

the training data set is higher than the linear PLS and the Wold et al., (1989)

algorithm for a given set of latent variables.

2. The mean square prediction error (MSPE) for NLPLS I and NLPLS2 algorithms is

lower than the corresponding values of MSPE for linear PLS and Wold et al., (1989)

algorithms.

3. NLPLS2 performs slightly better than NLPLS I algorithm in terms of predictive

ability of response variables.

4. The algorithm of Baffi et al., (1999(a» is the best among all the algorithms

considered in terms of prediction ability.

The reasons for these observations are the same as in example 1 and example 2.

3.12 Conclusions

A number of non-linear extensions of PLS have been proposed in the literature. In this

chapter, following a review of the existing algorithms, it is proven that the error based non-

linear PLS algorithm proposed by Baffi et al., (l999(a» maximizes the accuracy with which

the response variables are predicted and is, therefore, a non-linear extension of reduced rank

regression. It is argued that a 'true' non-linear PLS algorithm should be based on the

maximization of the 'non-linear covariance' function so as to preserve the spirit of linear

PLS. After careful investigation, it is proven that the algorithm of Wold et al., (1989) makes

attempts to achieve this objective but has several limitations. To overcome these limitations,

two non-linear PLS algorithms which maximize the non-linear covariance function are

proposed. The performance of these algorithms is compared and contrasted with linear PLS

and the Wold et al., (1989) algorithm. In addition, all the non-linear PLS algorithms in the

literature have been classified into three categories namely covariance based, quick and dirty

and error based depending on the underlying objective functions.

Having incorporated the non-linear feature within the conventional linear PLS algorithm, the

next step is to take into consideration the process dynamics so that a dynamic (and linear)

model can be identified. This is the focus of the next chapter.
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CHAPTER4

Dynamic Partial Least Squares

4.1. Introduction

Partial Least Squares assumes that a linear and static (algebraic) relationship exists between

the variables. In a typical process, however, the data collected for building the empirical

model may exhibit serial correlation and therefore, the application of PLS will be

inappropriate. Also if the model is to be used for process control then it is essential that

process dynamics are included. A number of approaches have been proposed to modify PLS

to take into consideration the dynamics of the process. One possible way is to first apply

static PLS to the input matrices X and Y and then fit a dynamic relationship between the

scores. This approach, which is investigated in this chapter, was used by Lakshminarayan et

al., (1997) to identify and control a multivariate process. This approach, however, has the

disadvantage that the weights of the outer relationship in the PLS model are not determined

utilising the dynamics of the process. The contribution of this chapter is to propose a method

that fully integrates a dynamic model within the PLS framework and determine all the

parameters (outer weights and inner dynamic model parameters) of the PLS model as dictated

by the dynamics of the process.

4.2. Literature Review

There have been two main approaches to introducing the dynamics of a process into the basic

PLS algorithm. One approach is to include lagged values of the input and lor output variables

in the input data matrix X and then use the basic PLS algorithm to identify the dynamic

relationship between the input and output matrices. This method was adopted by Ricker

(1988), but only the lagged values of input variables were included in the input matrix to

identify the impulse response of a model. Qin and McAvoy (1992(a» used lagged values of

both input and output variables to identify a multivariate Autoregressive Moving Average

(ARMA) model. Mathematically, this method can be denoted as:
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where Xdyn is a matrix consisting of measurements of the input variables and lagged values

of the input and/or output variables and Bdyn is the regression matrix relating the matrix

Xdyn to the output matrix Y.

Although simpler to understand, this method has the disadvantage that through the inclusion

of lagged values of the variables in the input matrix, the dimensionality of the input matrix

becomes extremely large, particularly, for Multi-Input and Multi-Output (MIMO) systems in

which the number of input and/or output variables is large, a direct consequence of which is

an increase in computational burden.

To overcome the need to include lagged values of the input and/or output variables, Kaspar

and Ray (1992; 1993(a» proposed a method whereby the dynamics of the data are taken care

of by first filtering the data using a suitable dynamic filter. Their argument was that in this

way, the dynamics of the data are removed and hence the relationship between the output of

the filter and the output variables is algebraic. The filter selected was either based on prior

process knowledge or was designed by optimizing an objective function. The approach was

applied for the identification and design of controllers for a simulated process (Kaspar and

Ray, 1993(a»

Another approach, investigated in this chapter, is where the inner relationship of the basic

PLS algorithm is modified (Lakshminarayan et al., 1997). Instead of using a static

relationship between the scores, the relationship between the scores is replaced by an

appropriate dynamic relationship. The methodology involves first performing PLS on the

input and output data matrices without including lagged values of the input and output

variables in the input matrix and then fitting a dynamic relationship between the resulting

scores. Mathematically, if tj and Uj (i = 1.2...A) denote the latent variables obtained by

applying PLS to matrices X and Y and Gj(tj) denotes the dynamic model fitted between the

latent variables tj and Uj, then the dynamic PLS decomposes the matrix Y as follows:

(4.2)
I

where qi (i = 1.2...A) are the loading vectors
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The main advantage of this approach is that the problem of identifying a MIMO model can be

reduced to the problem of identifying multiple SISO (Single Input Single Output) models.

This strategy, therefore, realises the use of the wealth of identification and control algorithms

that have been developed for SISO systems. This is, particularly useful for non-linear

(dynamic) systems since for example, the structure selection and training of a MIMO neural

network based non-linear model is much more difficult than for (a series of) SISO models.

This approach was successfully used by Lakshminarayan et al., (1997) for identifying and

controlling a multivariate process. However, this method has one shortcoming; the weights in

the outer relationship W j and qj are not determined by the dynamics of the process. The

approach, therefore, may be suboptimal in terms of the predictive ability of the model. This

is, in particular, important for processes that have fast dynamics. In this chapter a method for

determining the outer weights is proposed so that the dynamic relationship between the

scores can be fully integrated within the PLS model. It should be noted, however that a

general limitation of fitting an inner dynamic model between the scores is that it is difficult to

determine the number of delays and the magnitude of the serial correlation of the scores from

knowledge of the delays and serial correlation of measured variables. Each input variable, for

example, may have a different autocorrelation function and since a latent variable is the

weighted sum of the input variables, it may be difficult to determine the autocorrelation

function of the latent variable given the autocorrelation function of the input variables. This

makes it difficult to determine the order of the inner dynamic scores model from the serial

correlation of the measured variables.

4.3. Modified Dynamic Partial Least Squares

Let x(n) and y(n) denote the nthsample of the input and output variables respectively so that

the latent variables for the same sampling instant are given by:

tl(n) = x(n)Twl(n)

and

(4.5) I
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where wl(n) and vl(n) are the outer weights at sampling instant n. Let the ARX (p, q, d)

model between t) and UI be given by:

I ul(n)=a){n)u)(n-I)+a2(n)u)(n--2)+ + ap(n)ul(n-p)+ (4.6)l ~o (njt, (n ~ d) + b)(n)t)(n - d -I) + + bq(n)t)(n - d - q) + e)(n)

with the prediction of the u-scores from equation (4.6) given as:

I u)(n)=a](n)u)(n-l)+a2(n)utCn--2)+ ... + ~p(n)u)(n-::"-p)+- ---1(4.7)]

! bo(n)t) (n - d~+ bj(n)t)(n ~ d - ~ ". + bq(n)t)(n - ~ - q) 1__
Equation (4.7)can be re-written as:

(4.8) ]

where

I 'PI(n) = [ul(n -1) ul(n - 2) ...ul(n - p) tl(n - d) tl(n - d -1) ...tl(n - d - q) ]T (4.9)

91(n) = [a.In) a2(n) ...ap(n) bo(n) b1(n) ... bq(n)]T

To integrate the ARX model within the PLS framework, the weight vectors wl(n), vl(n)

and the ARX model parameter vector 91 (n) are determined such that average of the square

prediction error, J is a minimum:

1 (4.10)

Taking the instantaneous value e?(n) as the estimate of E~?(n)} for the on-line

optimization of the objective function (Widrow, 1985), the derivatives can be computed as

follows:
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- -- -- -
8J = -2(eJ(n)uJ(n - i)

8aj(n)
for

8J =-2(eJ(n)tJ(n-d-j»8bj(n)

- - (4.11) 1
i= 1,2 p

j = O,l, q

From equation (4.11), the derivative of the objective function with respect to the parameter

vector 01 can be written as:

'(:J8J- = -(eJ(nj<i>l(nj)801

Also

(4.13)

Now

IC1e;~-) = C1~J(n)-uJ(n» - =
c1wJ(n) c1wJ(n)
C1eJ(n)= C1(uJ(n)- uJ(n»

I C1vJ(n) C1VJ(n)

aiiJ(n)
c1wt(n)

C1ut(n)
C1vJ(n)

(4.14)

=y(n)

Equation (4.14) requires the computation of the differential of the predicted u-scores with

respect to the outer weight vectors. This can be computed as follows. From equation (4.7):

r (4.15) 1

I

where
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,-- -

Oul(n-i) =0 ~ . 1 2Lor 1=, ,...p
Owl(n)

To compute the differential of the predicted u-scores with respect to the present weight

vector wI (n), the differentials of the past scores tl (n - i) with respect to the present weight

vector WI (n) require to be computed. It is important to note that the past scores also depend

on the present weight vector WI(n). This is because the past scores ten - i) (i = 1,2...q)

depend on the past weight vectors wl(n -i) which in turn are related to the present weight

vector WI(n) through the recursive weight updating equation (4.20).

To compute the differentials in equation (4.15), the following approximation is used. If the

learning rate 11 is small, WI(n) ~ WI(n -1) ... ~ WI (n - q). This assumption is

particularly justified where the order q (and p) of the ARX model is small. Introducing this

assumption into equation (4.14) gives:

-1- aul - ""-'b- (-) att(n-d) b ( ) atl(n-d-1) b (-) atl(n-d-2)
----!.- ...... on + In + 2n + ...
Owt(n) OwI(n-1) OwI(n-1) OwI(n-2)

I

I
b ( ) atl(n-d-q)

...+ q n Owl(n-q)

-
I (4.17) I

From equation (4.4):

(4.18)l

Now substituting this back into equation (4.14) gives:

au
_ _..:,I_ :::::;;bo(n) x(n - d) + bl(n) x(n - d -1) + ...+ bq(n) x(n - d - q)
Owl(n)

(4.]9)

Similarly
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-- - - -
A

I ~ al{n) yen-I) + a2{n) y{n-2) + ...+ ap(n) y{n-q)l avl{n) .

Using equations (4.13) (4.16) and (4.17) in equation (4.12):

(4.20)

---- - - - - -~--ss (4.21)-- = -(el(n) (bo(n) x(n -d) + bl(n) x(n -d -1)+ ...+ bq{n) x(n -d -q»1
Ow I(n)

oj I
-o-vI-{n-)= - (et(n) (y(n) - al(n) yen -1) -a2(n) yen - 2) - ...-ap(n) yen - p»

Once the differentials of the objective function are known, the parameters 91, WI' V I can be

updated using the gradient descent rule:

where 11 is the learning rate and the gradients are given in equations (4.21) and (4.12).

4.3.1 Transfer Function and Prediction

(4.22)
I

To find the transfer function for the first set of latent variables, the Z-Transform (Oppenheim

et al., 1989) is applied to both sides of equation (4.7):

U I(Z) = (at(n) z" + a2(n)z·2 + ... ap(n)z·p )U t(z) +

(ho(n) z·d + bl(n)z-d-I + ... bq(n)z-d-q)TI(z)

(4.23)

where U1(z), U1(z) and TI(z) denote the Z-transform of ul(n), ul(n) and tl (n) respectively.

Once the parameters aj and b, of the ARX model have converged, they are independent of

time and therefore, the time index n in equation (4.23) can be dropped. Denoting
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-----

then, equation (4.23) can be re-written as:

-
(4.24)

It should be noted from equation (4.25) that to predict the u-score at sampling time n, the past

scores u1Cn-j) for j =1,2 ... p and t1Cn-d-i) for i =O,1,2, ... q are required. These scores

in tum require the past outputs yCn - j) and inputs xCn - d - i) to be measured on-line. In

some processes, however, measurements of the output variables are not available on-line and

it would, therefore, be useful if only past values of the inputs xCn - d - i) and hence past t-

scores tl (n - d - i) , are used to predict the u-scores. This can be done if the past predicted

u-scores are used instead of the actual u-scores in equation (4.25). Replacing U1Cz) in
A

equation by U 1(z), the transfer function between the latent variables is given by:

I (4.26)

Once the u-scores has been predicted, the prediction of the output variables y can be achieved

by finding the loading vector q I given by:

1

I
(4.27) I

J

where ul is a vector containing the predictions of the u-scores for all the observations. The
A

prediction YI ofY is thus given by:
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4.3.2 Computation of More than One Latent Variable

The second set of latent variables can be obtained by repeating the above procedure on the

deflated matrices computed as follows:

r ----

I X2 =(1- t~rJxI tl tl

I AY2 =y-y
l

(4.29)

Higher latent variables can be computed similarly.

4.4 Summary of the Algorithm

Given: A matrix X of order NxK, and Y of order NxM

Autoscale each variable of X and Y

Step 1: Initialize the weight vectors WI' V I' and the parameter vector 81 to random values.

Also

chose suitable values for the inner ARX model order, p, q, and d.

Step 2: Compute at time n

I tl(n)=x(n)Twl(n)

I ul(n) = yen) Tvl(n)

ul(n)=al(n)ul(n-1)+a2(n)ul(n-2)+ + ap(n)ul(n-p)+

I bo(n)ul (n - d) + bl(n)tl(n - d -1) + + bq(n)t)(n - d - q)

I e) (n) = u, (n) - u) (n)
I 8J
I - = -(e) (n)<I» (nj]
081

I
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, oJ -
I aw = - (et(n) (bo(n) x(n - d) + bl(n) x(n - d -1) + ... + bq(n) x(n - d - q)) I

I(n)
oJ

O
= - (el(n) (y(n) - al(n) yen -1) - a2(n) yen - 2)- ...- ap(n) yen - p))

vl(n)

Step 3: Update the parameters

Step 4: Repeat steps 2 and 3 for all sampling times n = 1,2...N .

Step 5: Repeat steps 2, 3 and 4 until convergence.

Step 6: Compute t-score tl = XWI

Step 7: Predict u-score at each time:

ul(n)=al(n)ul(n-l)+a2(n)ul(n-2)+ + ap(n)ul(n-p)+l __~(n~Ul (~-d) + bl(n)tl(n -d -1) + + bq(n)t1(n - d - ~

and store all predictions in vector ul

Step 8: Determine the loading vectors

Step 9: Deflate the input and output matrices
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!x-= X-ttp-r

I Y=Y-Utqr J
Step 10: Validate the inner model on the validation data set. Change the values for the inner

model order (p, q, d) and repeat steps 1 to 9. Select the best model order that

explains maximal variance of the response variables for the validation data set.

Step 11: If additional latent variables are required, repeat steps 1 to lOon the deflated

matrices computed in step 9.

4.5 Simulation Studies

In this section, the proposed method is applied to identify a dynamic PLS model, first for

data generated from an artificial system and then for a copolymerization process.

4.5.1 Example 1: Artificial data set

Consider a hypothetical dynamic process having two inputs and two outputs, described by the

following state and measurement equations (Ku et al., 1995).

r

[
0.811

I x(n) = 0.477

I [0.118u(n)-
I 0.847

0.226] [ 0.193x(n -I) +
0.415 0.320

0.689 ] e(n -I)
0.749

(4.30) I

0.191] [1.0
0.264 u(n -I) + 3.0

2.0 ] x(n-I)
4.0

yen) = u(n) + hen)

where D, X and y E R 2 are the state, input and output vectors respectively; e and h are zero

mean Gaussian random vectors consisting of two independent random variables. The

variance of each random variable in e is unity and for b is 0.1.

A data set consisting of 1500 samples is generated and divided into two sets. The first set

(training data set) comprises 1000 samples while the second set (validation data set)

comprises 500 samples. After the training data set is auto-scaled, the algorithm described in
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section 4.5 is applied with an ARX (2, 1, 1) model fitted to each pair scores. The order of

ARX (2, 1, 1) was determined by exploring the predictive capability first on the training data

set and then validated on the validation data set. While the lower order models performed

poorly, higher order models did not show significant increase in terms of their ability to

predict. The percentage of variance captured by each latent variable is listed in Table 4.1. A

PLS model with 2 latent variables is then built.

Table 4.1: Percent variance captured by PLS model (example 1)

No. % Variation Cumulative % % Variation Cumulative %

of explained variance explained explained variance explained

LV (X) (X) (Y) (Y)
1 50.71 50.71 57.04 57.04

2 49.29 100.00 39.41 96.45

The transfer functions HI (z) (between tl and u.) and H2 (z) (between t2 and u2 ) are:

r--- --
H z-J - O.7437z-2

I(z) = 1- O.7876z-J +O.OI11z-2

I H (z) = O.0259z-1 + 0.1771z-2

2 1- O.l792z-1 +O.1795z-2

(4.31)

Plots of the predictions for the two outputs YI and y 2 for the model validation data set are

shown in Figures 4.1 and 4.2 respectively. The lower panel in each of these figures show a

time series plot of the residuals. To test if the model is a good fit to the data, a bivariate plot

of the residuals versus fitted values for the training data set for each of the two outputs is

shown in Figure 4.3. The figure shows that no more 'information' is left in the residuals and

therefore the model is a good fit to the data.

The performance of the algorithm (on the model validation data set) is quantitatively

evaluated by two statistics namely the R-statistic, which is defined as the ratio of the Sum of

Squares (SSQ) of the prediction error (for each individual output) to the SSQ of the measured

signal:

r - - - -- --
R = SSQ( Prediction Error)l_ ~SQ(Measured (original)Signal) ~__I:J
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and the mean square error (MSE), which is defined as:

- - --
MSE = SSQ( Prediction Error)

Number of samples
1 (4.33),

--j__
The idea behind defining these two statistics is that while the MSE measures the absolute

value of the variance in the error, the R-statistic measures the variance in the error expressed

as a fraction of the variance of the original signal.

The values of the statistics, R and MSE, for each of the two outputs on the validation data set

are given in Table 4.2. To investigate the impact of weight updating, inner dynamic models

having the same order as above were built but this time without the outer weights being

updated (Lakshminarayan et al., 1997). For comparison, the values of R and MSE for this

case are also given in Table 4.2

Table 4.2: Summary of values ofthe statistics, Rand MSE, (example I)

Method R MSE

Output Yt Output Y2 Output Yt Output Y2

Integrated dynamic PLS 0.0279 0.0304 0.0360 0.0275

No-weight updating 0.1696 0.1379 0.1539 0.1228

It is seen from Table 4.2 that updating the weights in the PLS model according to the

dynamics of the process has a considerable impact on model performance. For example, the

value of R for the output YI when the outer weights are determined by the dynamics of

process is 0.1696. This means that about 17% of the variance in YI is left unexplained by

the model. This figure reduces to about 2.8 % when the outer weights are used to capture the

dynamics along with the inner model parameters. The higher predictive capability of the

dynamic PLS model when the outer weights are updated is also reflected in the lower values

of the mean square errors. The MSE of output YI when the outer weights are not updated is

0.1539 which drops to 0.0360 when the weights are updated. Similar conclusions about Y2

can also be made.
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Figure 4.1: Time series plots of (a) the original and predicted values for the first output Y1

and (b) the residuals (example 1)
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Figure 4.2: Time series plots of (a) the original and predicted values for the second output

y 2 (b) the residuals (example 1)
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Figure 4.3: Bivariate plots of residuals versus fitted values for the two outputs (example 1)

.0.3

4.5.2 Example 2: Co-polymerization Reactor

The integrated dynamic PLS model was finally applied to a comprehensive simulation of a

continuous stirred tank copolymerization reactor (Achilias & Kiparssides, 1994). In the

reactor monomers methyl methacrylate and vinyl acetate are continuously added to a

perfectly mixed tank along with initiator azobisiobutyronitrile, solvent benzene, and chain

transfer agent acetaldehyde and inhibitor m-dinitrobenzene. The process consists of four

inputs
1. Feed concentration of monomer methyl methacrylate

2. Feed concentration of vinyl acetate

3. Feed concentration of chain transfer agent

4. Coolant temperature in the jacket

and four outputs

1. Reactor temperature

2. Polymerization rate

3. Composition of copolymer

4. Weight average molecular weight of copolymer
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A nominal data set consisting of 1500 samples was generated by exciting the process with

multi-level Pseudo Random Binary Signal (PRBS). The signal to noise ratio was set at 10 by

adding measurement noise. Of the 1500 data samples, 1000 were used to identify the

dynamic PLS model and the remaining 500 were used for model validation. After the data

was autoscaled, the integrated dynamic PLS algorithm was applied with ARX(2,1, 1),

ARX(2,1,1), ARX(4,1,1) and ARX(5,I,I) structures chosen as the inner dynamic models.

The choice of these parameters was determined as in example 1. The transfer functions

identified for the inner dynamic models are:

- - -
H

-O.OI7z-1 +O.2529z-2
I (z)-----------------

1 - 1- O.7564z -I _ O.0361z-2

H (z) = O.2927z-1 +O.0951z-2

2 1-0.5450z-1 -O.1502z-2

H O.0077z-1 + O.1221z-2

I 3(z) = 1- 0.4830z-1 _ O.3819z-2 _ O.1215z-3 + O.0691z-4

H O.0414z-1 + O.1327z-2

I 4(z)= 1-0.4759z-I-O.3552z-2 -O.2120z-3 -O.0345z-4 +O.1767z-s

Table 4.3: Percent variance captured by PLS model (example 2, Co-polymerization reactor)

No. % Variation Cumulative % % Variation Cumulative %

of explained variance explained explained variance explained

LV (X) (X) (Y) (Y)
1 28.38 28.38 59.09 59.09

2 25.42 53.80 23.56 82.65

3 25.04 78.84 8.41 91.06

4 21.16 100.00 0.97 92.03

A PLS model using 3 latent variables was built based on cross-validation. Figures 4.4, 4.5,

4.6 and 4.7 show the prediction of the four outputs on the model validation data set. The

bivariate plots of the fitted values versus residuals for each of the four outputs on the training

data set are shown in Figure 4.8. The values of the R-statistic and the mean square error for

the four outputs on the validation data set are given in Table 4.4. As can be seen from Table

4.4, the conclusions derived in example 1 also hold for this example.
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Table 4.4: Summary of values R-statistic and MSE (example 2, Co-polymerization Reactor)

Method R MSE

Output Output Output Output Output Output Output Output4

1 2 3 4 1 2 3

Integrated 0.0984 0.0454 0.1220 0.0339 0.0067 0.0064 4.54E-6 1.96E+

dynamic 3

PLS
No 0.3388 0.1592 0.3064 0.3041 0.0232 0.0170 1.22E-5 2.04E+

weight 4

updating
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0.4
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Figure 4.4: Time series plots of (a) the measured and predicted value of the reactor

temperature and (b) the residuals (example 2)
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Figure 4.5: Time series plots of (a) the measured and predicted value of the polymerization

rate and (b) the residuals (example 2)
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Figure 4.6: Time series plots of'(a) the measured and predicted values of the copolymer

composition and (b) the residuals Cexample 2)
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Figure 4.7: Time series plots of (a) the measured and predicted values of the weight average

molecular weight and (b) the residuals (example 2).
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4.6 Conclusions

In this chapter a method has been proposed to integrate a dynamic model within the PLS

framework. The advantage of the method is that the task of identification of a MIMO model

reduces to multiple SISO model identifications. The method differs from that previously

proposed by Lakshminarayan et al., (1997) in that the determination of the outer weights and

the inner dynamic relationship between the scores are integrated. The advantage of the

determination of the outer weights according to the dynamics of process was illustrated using

two examples. It was shown that the prediction capability of the model increases if all the

parameters (outer weights and the inner model parameters) are determined in accordance

with the dynamics of the process.
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CHAPTERS

Review of Statistical Process Monitoring Techniques

5.1 Introduction

A major challenge facing the process industries is to consistently manufacture good quality

product. In practice, it is well known that there will be some degree of "inherent or natural"

variability in any production process. This variation, which is caused by unknown factors, is

termed common cause variation. However, other types of variability, known as "assignable

cause variability", may occasionally be present in the process. This variability arises because

of the occurrence of some changes in normal performance e.g, machine errors, operator errors

or defective raw material. Such variability is generally large when compared to the natural

variability and represents an unacceptable level of performance in terms of the final product.

A process that is operating in the presence of assignable cause variability is said to be "out-

of-statistical control".

To achieve tighter control over the critical process steps, and to monitor the performance of

industrial process over time to detect any systematic drift of the process from its normal

operating mode, a set of techniques are commonly employed. These techniques can be

grouped under the heading of statistical process control (SPC) (Montgomery, 1991). The idea

behind SPC is to use variables measurements in a process to detect changes in the equipment

or process. In a typical SPC scheme, variables are first measured and then either the actual

measurements or a statistic derived from them is plotted along with the associated confidence

limits that are known as the warning or action limits. The resulting representation is known as

a control chart. If the trace of the measurements or statistic lies within the confidence limits,

it indicates the process is under statistical control whilst if the point lies outside the limit, this

potentially indicates the occurrence of some abnormal events in the process, i.e. the process

is out-of-statistical-control.

SPC techniques can be divided into two categories depending on how a given set of variables

is monitored. If the variables are monitored individually without taking into consideration the

interrelationship between the variables then the scheme is termed univariate. If the given set

of variables is handled collectively, the methodology is termed as Multivariate Statistical

Process Control (MSPC). The aim of this chapter is to give a brief overview of univariate and
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multivariate monitoring schemes. But before an overview is undertaken. the statistical basis

of SPC techniques is first summarised.

5.2 Statisti~al Basis of Control Charts

There is a strong link between control charts and hypothesis testing. In essence. the control

chart is equivalent to a hypothesis test in which the null and alternative hypotheses are:

Ho: The process is under statistical control

H) : The process is out-of-statistical control

A point on a control chart within the control limits indicates that the process is in statistical

control and thus is equivalent to accepting the null hypothesis. A point outside the control

limit is equivalent to rejecting the null hypothesis and this indicates that the process is not in

statistical control. Similar to hypothesis testing. Type I and Il errors can be defined in the

context of control charts. A Type I error occurs if the null hypothesis is rejected when it is

actually true (that is, a process is concluded to be out-of-statistical-control when it is really in

statistical control). A type II error occurs when the null hypothesis is not rejected when it is

in fact false (that is, a process is concluded to be in statistical control when actually it is out

of statistical control)

The Type I error determines the false alarms rate. Commonly used values for Type I errors

are 0.05 and 0.01. which means that on average. 5%( 1%) of samples on the control chart are

expected to lie outside the control limits even when the process is in control. The Type II

error determines the delay (difference between the time point at which the change occurs and

the time point at which the change is detected) in detecting the change. A more useful

concept that unifies both errors is the Average Run Length (ARL). A run length is defined as

the number of observations that pass from the time at which the change has occurred until the

control chart gives a signal indicating the change. The average of run lengths is calculated

(either theoretically or empirically) to determine the ARL. The number of samples that occur

between the occurrence of a change and its detection is known as the out-of-control ARL.

Since a chart gives a signal indicating the process is out of statistical control even if the

process is in statistical control (a false alarm), the average run length between two false

alarms is known as the in-control ARL.

118



It is desirable that the in-control ARL should be as high as possible (so that there are few

false alarms) whereas the out-of-control ARL should be as low as possible (so that there is

less delay in the detection of a change). Both these objectives, however, cannot be achieved

simultaneously and a trade-off between the false alarm rate and the delay is required for the

implementation of a control chart. Tighter control limits will give a small value for the out-

of-control ARL but at the expense of an increase in the number of false alarms. Conversely,

wider control limits will give fewer false alarms but at the expense of an increase in the delay

in detection of a change in the process.

5.3 Univariate Monitoring Schemes

Three univariate monitoring schemes namely Shewhart, Cumulative Sum (CUSUM) and

Exponentially Weighted Moving Average (EWMA) are now briefly described.

5.3.1 Shewhart Chart

The Shewhart chart is one of the earliest control charts and is still popular today in the

process industries. It was first introduced by Shewhart (1931) at the Bell Laboratories and by

Dudding and Jenett in Britain in 1937 (Banks, 1993). In a typical Shewhart chart for

monitoring the mean, a sample of N measurements on a quality variable are taken and the

sample mean is plotted on the chart along with the confidence limits. A typical Shewhart

control chart, with 95% and 99% confidence limits, is shown in Figure 5.1, where the sample

mean for 100batches, each consisting of 20 samples, is plotted.
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Figure 5.1: A typical Shewhart chart
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A Shewhart chart for the standard deviation can likewise be plotted. It is known that the

Shewhart chart is suitable for detecting larger shifts in the mean which are of the order of two

or more standard deviations (Montgomery, 1991). To detect smaller changes, the cumulative

sum (CUSUM) chart is more appropriate.

5.3.2 Cumulative Sum (CUSUM) Chart

The introduction of the CUSUM chart was driven by the need to detect small changes in the

mean value of a process/quality variable. This chart was first proposed by Page (1954) and is

a modification of the Sequential Probability Ratio Test (SPRT) introduced by Wald (1947).

In a CUSUM chart, a cumulative sum of the deviations between the measurement (or the

statistic) and the target value is plotted. Mathematically, ifxn denotes the current

measurement and Sn-1 denotes the cumulative sum of the deviations between the

measurements and the target value for the past (n-I) observations, then the statistic for the

CUSUM is computed as:

I_ 8~ =max {O,8n-1 + (x, - T)} (5.1)

where T is the target value. Equation (5.1) detects if the shift in the process is above the

target value. A shift below the target value can be detected by plotting the statistic Sn(low):

r Sn(low) = min {O,Sn-l(loW) - (x, - T) } I (5.2) 1

The properties of CUSUM chart have been investigated extensively (Philips, 1969; Hinkely,

1969; 1970; 1971;Moustakides, 1986). One of the attractive properties of the CUSUM chart,

which makes it popular, is its optimal property that was proved by Lorden (1971; 1973). This

property states that the CUSUM chart minimizes the average delay for a given false alarm

rate.

5.3.3 Exponentially Weighted Moving Average (EWMA) Chart

Another popular univariate monitoring scheme is the Exponentially Weighted Moving

Average (EWMA) chart which was first introduced in the late 1950's by Roberts (1959).

Later, Lucas and Saccucci, (1990) investigated the properties and suggested further

enhancements. The EWMA chart is expressed as:
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z(n) = A x(n) + (1- A)z(n -1) --r- (5.3)

where x(n) and z(n) are the sample value and weighted sum at time n, A. is a scalar lying

between 0 and 1 and is known as the weighting parameter. The properties and design

procedures for constructing EWMA charts can be found in the literature (Lucas and

Saccucci, 1990;Montgomery, 1991; Christer and Wang, 1995)

5.4 Limitations of Univariate Control Charts

The difficulty with using independent control charts for each variable in a multivariate setting

can be illustrated with the help of Figure 5.2. Suppose that when the process is running under

normal operating conditions, two quality variables, denoted XI and x2, follow a bivariate

normal distribution each with mean zero and unit variance. Also, let the two variables be

correlated with correlation coefficient, PXIX2 equal to 0.8. A scatter plot of one hundred

observations drawn from this bivariate normal population is shown in Figure 5.2(a). The

ellipse in Figure 5.2(a) represents the 99% confidence bound for the in-control process. An

independent Shewhart chart, with 95% and 99% confidence bounds for each variable is also

plotted in Figures 5.2(b) and S.2(c). It should be noted that following the inspection of both

Shewhart charts reveals that the process is in a state of statistical control and none of the

observations violate the confidence bound. However, a customer could complain about the

quality of product corresponding to observation number 51. If only univariate charts were

used for quality control, then this problem cannot be detected as corresponding to this

observation the Shewhart charts for both variables are within the confidence bounds. The

problem is detetcted in the bivariate plot of XI and x2' where the point corresponding to

sample number 51 lies outside the confidence bound which indicates that the quality of this

product is different from rest of the products.
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Figure 5.2: Illustration of problem of using independent control charts in a multivariate

setting: (a) Scatter plot of two correlated variable with 99% confidence bound (b) Shewhart

control chart with 95% and 99 % confidence bounds for XI and (c) x2

Monitoring of each variable independently, in a multivariate setting, can also be misleading

even if the variables are independent. If for example the variables, XI and X2 considered

above are independent, then the confidence bound for each variable under normal operating

conditions, with a given probability of type I error equal to Cl, is given by:

(5.4)o-z~ 0XI $; XI $; O+Z~ 0XI
2 2

O-Z~OX2 $;X2 $;O+Z~OX2

2 2

where Z(J. is the point of the standard normal distribution such that the probability of
-
2

standard normal random variable z,
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I (5.5)

____l... __ _j
and cx. is the standard deviation for variable Xi for i= 1,2. Since the variables are

I

independent, the probability that both variables lie within their respective confidence bounds

(and hence the probability that the process operates in normal operating conditions) is given

by:

prob(both XI and X2 lie within their respective confidence bounds) = (l-a)2

If <X = 0.05, then the probability in equation (5.5) is equal to (1- 0.05)2 = 0.9025 and

therefore the probability of a false alarm is equal to 1- 0.9025 = 0.0975. It is therefore,

observed that the probability of a false alarm increases from 0.05 to 0.0975 when the two

variables are monitored independently. In general, if K variables in a process are monitored

independently, the probability of a false alarm is equal to 1- (1- a)K . For example, for

K = 10, this value is 0040. It can, therefore, be concluded that false alarms are much too

frequent if a process consists of a large number of variables and each is monitored

independently.

5.5 Multivariate Statistical Process Control

In a typical process industry, a large number of process variables e.g. temperatures, pressures,

flows etc. are measured with high sampling frequency. The quality variables on the other

hand are available at a much lower frequency. Since the quality of the final product

eventually depends on the process variables, it would therefore be advantageous to use the

data from the process variables to determine if the process is running under normal

conditions. One way to do this is to monitor each process variable independently. But as

noted in the previous section, this can be highly misleading. An alternative is to develop a

monitoring scheme, where all the variables are dealt with collectively.

One characteristic property of the data collected on process variables is that they are highly

(cross) correlated. This is because only a few independent events drive the whole process. To

take into consideration the (cross) correlation, subspace projection techniques (peA and
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PLS) are commonly used to model the process data. The advantages of using projection

techniques to model correlated data, as mentioned in Chapter 2, include dimensionality

reduction and noise filtering. It is therefore highly desirable if these techniques could also be

used for process monitoring. In the section given below, PCA based monitoring of a

multivariate process is described.

5.5.1 Principal Component Analysis based Process Monitoring Scheme

The idea behind using projection techniques to monitor a process is to examine the behaviour

of data in a subspace defined by a reduced number of variables (known as latent variables or

principal components). For example in PCA, if a vector X E R K is projected onto A

(A < K) principal components, then the subspace is defined by the set of orthogonal

variables, t}, t2• .. t A:

~---- -
(5.7)

I

Once the subspace is defined, a statistic is then defined to detect any abnormal deviation in

the subspace. One commonly used statistic is Hotelling T2, which in general, is defined as:

----- --
(5.8)

__ -'-- __ 1

where p is the mean vector and 1: is the covariance matrix of vector x. Since the latent

variables which define the subspace are orthogonal, the definition of Hotelling T2 in

equation 5.8, for detecting changes in a subspace reduces to:

l (5.9) ;

where t is a vector of principal components t = [t I t 2 ... t Af ,~t is the covariance matrix of

t and si is the standard deviation of the ilh principal component. It should be noted that in

equation (5.8) it is assumed that each variable is mean centred.
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Aside from keeping track of deviations in the subspace, it is also important to monitor the

residuals between the actual observations and that predicted by the projections onto the

subspace. The residual vector e is defmed as:

le=x-x I (5.10)

where x is the component predicted by the PCA model. A statistic that is used to monitor the

residuals is known as the Q-statistic and is equal to the sum of squares of the components of

the residual vector e. Mathematically, it is given by:

(5.11)

Figure 5.3 shows a geometrical interpretation of Hotelling T2 and Q-statistic. The ellipse

shows the subspace spanned by two principal components PC 1 and PC2. Hotelling T2

measures the square of the distance of a point (marked * in the figure), within the subspace

from the origin (or in general from the mean value). On the other hand, the Q-statistic

measures the square of the distance of a point (marked 0 in the figure) orthogonal to the

subspace spanned by the principal components.

o

Q-Statistic

*
Sample with large
Hotelling T2

Figure 5.3: Geometrical interpretation ofHotelling T2 and the Q-statistic

To design and analyse a change detection algorithm, the distribution functions of Hotelling

r2 and the Q-statistic are required. It has been proven(Mardia et al., 1979; Jackson, 1991)

that Hotelling r2 follows an F distribution:
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r-----
T2 _ A(N-l) Fl - N-A A.N-A

(5.12)

where N is the number of observations and FA•N-A is a F-distribution function with A and

N-A degrees of freedoms. The confidence limit for the Q-statistic can be shown to be equal to

(Jackson and Mudholkar, 1979):

(5.13)

5.5.2 Literature Review

Initial applications of peA for the monitoring of quality variables were reported by HoteHing

(1947; 1957), Jackson (1956; 1959; 1980) and Jackson and Morris (1957). In these

approaches only the quality variables of the products were monitored. The application of

projection techniques to monitor the process variables was first reported in the late 1980's

and the beginning of 1990's. Kresta et al., (1989; 1991) demonstrated the application of peA

and PLS for monitoring simulated data collected from a fluidized bed reactor. Numerous

papers on applications of peA and PLS for the monitoring of continuous processes have been

reported since (MacGregor et al., 1991; MacGregor, 1994; MacGregor and Kourti, 1995;

Martin et al., 1996; Kourti and MacGregor, 1994; 1995). The application of these techniques

to real industrial application have also been reported (Piovoso and Kosanovich, 1991; 1992;

1994; Kourti, et al., 1996;Morud, 1996;Wikstrom et al., 1998). To diagnose the cause of the

occurrence of abnormal events in the process, use is made of contribution plots (Miller et al.,

1993).

Some chemical processes e.g. pharmaceutical, operate in batch mode rather than in

continuous mode. The applications of peA for the monitoring of batch processes have also

been reported in the literature. Since the pioneering work of MacGregor and Nomikos

(MacGregor and Nomikos, 1992; MacGregor et al, 1994; Nomikos and MacGregor, 1994;

1995) in using peA for monitoring batch processes, several modifications have been
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proposed. Wold et al., (1998) proposed a different way of unfolding the batch data to that

used by Nomikos and MacGregor. Louwerse and Smilde (1999) introduced the use of

pARAF Ae and three way models to monitor a batch process. Applications of peA based

scheme to monitor batch process in real industrial applications have been reported (Lennox et

al., 2000; 200 1)

The classical peA based monitoring scheme assumes that the data is collected in a two

dimensional matrix with a linear relationship between the variables and that statistical

independence exists between the observations. These assumptions are not always valid. To

overcome these limitations, a number of alternative peA based monitoring scheme have been

proposed. The non-linear relationship between the variables is dealt with through the

application of non-linear PCA which can be implemented using neural networks (Kramer,

1991) and can be further used in monitoring applications (Jia et al., 1998; 2000). Furthermore

to account for serial correlation, dynamic version of PCA has been proposed and used in

process monitoring Ku et.al., (1995).

The data measured in a typical process does not correspond to one scale. This is because the

events occurring in a process occupy different regions in the time-frequency (or time-scale)

space (Bakshi, 1999). To account for the multi scale nature of the data, multiscale peA using

wavelets was developed and used in process monitoring (Bakshi, 1998; Shao et.al., 1999).

In a practical situation, slow and normal changes can occur in a process. If the process is

monitored with a fixed model, it will give rise to false alarms. The time varying nature of the

process has been taken into consideration in yet another version of peA known as adaptive or

recursive peA (Li et al., 2000; Lane et al., 2003) in which the peA model is updated after

every observation or after a block of observations.

S.6 Conclusions

In this chapter a brief literature review of statistical process monitoring has been presented. It

is shown that independent monitoring of process variables in a multivarite process can be

misleading. It is therefore, recommended to use multivariate monitoring schemes which

handle all the variables collectively. Since, subspace projection techqniues are useful in

identifying a compact model from the cross correlated measurements of process variables, it

is desirable to extend their application to process monitoring. Two statistics, Hotelling T2
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and the Q-statistic, are used in a PCA based performance monitoring scheme. A literature

review for the application of PCA and PLS in process monitoring was also undertaken

Process monitoring forms the basis of the next two chapters. It is shown that a monitoring

scheme based on Hotelling T2 and the Q-statistic in PCA and PLS is particularly insensitive

to a class of changes which lead to a change in the covariance structure of the process

variables. Two new monitoring methods are then proposed to these changes. In Chapter 6, the

focus is on PCA and the statistic is derived from the theory of PCA model identification. In

Chapter 7, a PLS based monitoring scheme is considered. A recursive algorithm for PLS is

first derived and a monitoring statistic is developed.
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CHAPTER6

Detection of Changes in Covariance Structure

6.1 Introduction

Assuming the distribution of the process variables to be multivariate Gaussian, the process is

completely characterized by the mean and variance-covariance matrix of the process

variables. In this situation it is possible to distinguish between two classes of changes

depending on whether the change affects the mean or variance-covariance structure of the

process variables. Although not standard nomenclature, changes affecting the mean value of

one or more of the process variables is termed class I and those that affect the variance-

covariance structure of the process variables are denoted, class 2. A class 1 change can occur

if, for example, a (constant) sensor bias is present whilst the second class is associated with

fluctuations (larger than what is observed normally) about the mean value of the variable.

The conventional monitoring scheme for detecting changes in the normal operating

conditions of a process using subspace projection techniques is based on two statistics,

Hotelling T2 and the Q -statistic. The poor sensitivity of these statistics to detect small

changes in the variance- covariance structure of the process variables (class 2 changes) has

previously been reported in the literature (Kano et al., 2001). Although some work (Kano et

al., 2001), has been proposed to detect these changes more efficiently, there is still a need for

an algorithm that detects small changes with limited delay. The aim of this chapter is to

propose an algorithm which is "nearly optimal" in terms of the detection of the second class

of changes. An optimal algorithm is defined as the one that detects a given change with the

smallest possible delay for a given false alarm rate

6.2 Literature Review

It should be recalled that the parameters of a PCA model, the loading vectors, depend on the

variance-covariance structure of the process data. More specifically, the loading vectors are

the eigenvectors of the varlance-covariance matrix. The problem of abnormal change

detection in the varlance-covariance structure of the process is thus equivalent to the

detection of abnormal changes in the PCA model parameter vector denoted by O.
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One of the desirable characteristics of a monitoring statistic is that it captures the complete

information encapsulated within the data. A statistic with this characteristic is known as a

sufficient statistic (Basseville and Nikiforov, 1993). It is known, particularly in the context of

single-input single-output systems, that the prediction error based statistic, for example the

sum of the squares of the prediction error, is not sufficient for the detection of abnormal

changes in the parameters of the system. This result, the formal proof of which is given in

Basseville and Nikiforov (1993) forms the basis ofa series of papers (Benveniste et al., 1987;

Zhang, et ai, 1994; Basseville, 1998) where research has been undertaken to identify a

sufficient statistic that detects abnormal changes in the parameters of the system. In the works

cited, the monitoring statistic is derived from system identification algorithms. While

Benveniste et al., (1987) derived the monitoring statistic from a recursive algorithm for the

estimation of parameters, Zhang et al., (1994) extended this work to include non-recursive

algorithms in this framework.

The poor sensitivity of Hotelling T2 and the Q-statistic to detect abnormal changes in the

variance-covariance structure (and hence the PeA model parameters) was first reported in the

chemometrics literature by Kano et al., (2001). Since the Q-statistic is the sum of squares of

the prediction errors, the poor sensitivity of the Q-statistic based on the work of Basseville

and Nikiforov (1993) can be easily understood. Kano et al., (2001), in their paper proposed a

new scheme based on determining the revised loading vectors for a moving window and then

calculating the 'distance' between the new loading vectors and the reference loading vectors

as determined under normal operating conditions. The distance was quantified using the dot

product between the calculated and the reference loading vectors. There are limitations

associated with this method. The first is that a number of statistics are required to monitor the

system. For example, consider a process that includes 4 variables, consequently the

covariance matrix is of order 4 x 4 and hence there are 4 loadings vectors. Kano et al.,

(2001) proposed monitoring this process by calculating the dot product between the ilb new

loading vector and its corresponding normal condition loading vector, therefore, 4 metrics

require to be monitored for the detection of changes in the loading vectors. In addition to

these four metrics, they also proposed monitoring the combined subspace spanned by

different combinations of the loadings. In this simple example, two additional statistics for

monitoring the subspace spanned by the first two and first three loading vectors are

additionally derived, therefore, the total number of metrics to monitor a process comprising 4

variables is 6. A clear limitation of this scheme is that it is not efficient for the monitoring of

a process consisting of a large number of variables.
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Secondly, the parameters of the model, namely the loadings, require to be estimated on-line

to determine the 'distance' between the new parameters and the reference parameters. A

more straight forward approach would be if the change in the parameter vector of the model

could be detected by using the 'distance' between the reference model parameter vector and

the data, that is, there is no requirement to re-estimate the model parameters.

Finally, the detennination of the confidence limits for the statistic has not been addressed.

Kano et al., (2001) determined the confidence limits by calculating the statistic over a large

number of data sets. Consequently the determination of the confidence limits of the statistic

where the number of data sets is limited, which is the situation most often, is not viable.

6.3 Poor Sensitivity of Hotelling r2 and the Q-ttatistie: An Intuitive Explanation

Consider a hypothetical process which has (say) 6 correlated process variables. Applying a

PCA model to the process and retaining 3 principal components, the model comprises 6x3

=18 parameters (each loading vector being 6-dimensional). Now suppose the covariance

structure of the process variables has changed which results (in general) in a change in all the

loading vectors. This change, therefore, takes place in an 18-dimensional vector space.

However, the residual vector of the process considered is 6-dimensional and, therefore, may

not capture the "real" extent of the change. Since the Q-statistic is based on the sum of the

squares of the residuals, the statistic will be less sensitive, in particular, to small changes in

the variance-covariance structure.

The poor sensitivity of Hotelling r2 can be understood with the help of Figure 6.1. Recall

that Hotelling r2 measures the distance of projection from the origin (under the assumption

that the data is mean centred) within the subspace spanned by the loading vectors. For the

purpose of illustration, a two dimensional space is considered. Under normal operating

conditions, let the loading vectors be PI and P2 (Figure 6.1). Hotelling r2 for samples

generated from this population (labelled population I) defines a limit for this data with

certain confidence (95 or 99010(Figure 6.1». Now suppose the covariance structure changes,

the loading vectors are now p~ and p~, such that the new data is represented by a smaller

ellipse in Figure 6.1. Since the smaller ellipse lies within the larger ellipse, Hotelling r2 will

not give a alarm despite the fact that the covariance structure has changed.
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Figure 6.1: Graphical illustration of the poor sensitivity of Hotelling T2 to a change in

variance-covariance structure

6.4. A New Monitoring Statistic

Let the process be characterized by parameter vector 0. Now consider this parameter vector

more specifically. Assume that the process variables are multivariate Gaussian and are

independent and identically distributed and recalling that a multivariate Gaussian distribution

is completely characterized by its mean vector and covariance matrix, the parameter vector

o will collectively represent the true (population) mean and covariance matrix. Since in this

study changes in the mean value are not considered, it is assumed that that the mean value of

the variables is known (it is taken as zero without loss of generality), consequently the

parameter vector 0 represents the variance-covariance matrix of the process variables and

determines the behaviour of the process. Suppose that under normal operating conditions

0=00 and when 0 takes values other than 00, abnormal system behaviour is indicated.

The problem of change or abnormality detection in a system can be formulated in the

framework of a hypotheses testing problem. Given a set of observations XI' x2' ... Xn , at

time n, from a process with parameter vector 0, it is necessary to decide whether to reject

the null hypothesis Ho:

for t =1,2, ...r-1
for t = r,r+1, ... n

HO: 0 = 00 for t =1,2,... n

HI: 3 an instance r (1 ~ r ~ n) such that

(6.1) I

132



r is the sampling instance at which the fault occurs.

Let the peA representation for a process be characterized by the parameter vector 6 , where

6 is essentially the loading matrix of the peA representation arranged in a vector form

(columns placed one above the other). Note that 0 and 6 are normally not equal and may

belong to vector spaces of different dimensions (for example, in a process with 5 variables

the covariance matrix is of order 5x5 and 0 is a vector eR 2S • If a peA representation is

built using 3 principal components, say, then 6 is a vector of order R IS). When the process

operates under normal operating conditions, let 6 = 60, Assuming a mapping f exists

between the true process parameter vector 0 and the peA model parameter vector 6, that

is:

f(0) = 6 V 0 and6
I

the abnormality detection problem equation (6.1) can be reformulated as:

HO: f(0) =60 for t = 1,2....... n

HI: 3 an instance r (1 ~ r ~ n) such that

{
f(0) = 90
f(0) =F90

for t = 1,2, ... r-l
for t = r.r+l, ... n

1 (6.2)

(6.3) I

To determine the new statistic, recall that the first loading vector of the peA model under

normal operating conditions is determined by maximizing the variance of the latent variable

tl, that is:

PI = arg maxlE{t? } - A~ T p -1)J
p

Using the properties associated with finding the maxima of a function, the loading vector PI

is given by the solution of the following equation:
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Taking the differential operator inside the statistical expectation operator:

J (6.6) I

and letting

(6.7)

gives

(6.8)

This can be written as:

(6.9)
I

Also in the neighbourhood of PI' ro(Pl) (which does not contain PI):

(6.10) I

From equations (6.9) and (6.10), it follows that if the (first) loading vector of the PCA model

remains equal to PI' the mean of the statistic kl = 2 t.x - 2APJ is equal to zero. A non-zero

value for the mean of kJ indicates that the (first) loading vector of the model is no longer

equal to that determined under normal operating conditions. It is worth noting that A in

equation (6.7) for kl is the eigenvalue corresponding to the first loading (Chapter 2, section

2.1). The second and higher loading vectors of the PCA model are determined in a similar

way.

Corresponding to each loading, Pi' a corresponding statistic k, = 2 t.x - 2Ajpj can be

determined such that the mean of k, = 0, when Pi relates to normal operating conditions.

The mean thus deviates from zero when the loading vector drifts away from normal operating
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conditions. If all the loading vectors are arranged into one column, the vector, 90, of the

parameters corresponding to the normal operating conditions for a peA model is given by:

------ -- -- -----
The corresponding augmented vector k of the statistics is:

Since each component of the vector k has zero mean when the corresponding loading vector

relates to normal operating conditions, it follows that the mean of the augmented vector k is

zero when the peA model parameter vector 90 corresponds to normal operating conditions.

When any, or all, of the loading vectors change, the mean of vector k deviates from zero. The

problem of detecting changes in the peA model, therefore, reduces to detecting a change in

the mean of k.

For the design and analysis of a change detection algorithm based on the statistic k, the

underlying probability density function is required. Determination of the distribution function

of k is not easy to determine theoretically. To overcome this problem, the local approach of

hypotheses testing is considered.

6.5. Local Approach to Hypothesis Testing: An Introduction

The basic statistic for detecting a change in the parameter vector from 90 to 9 is the log-

likelihood ratio (Basseville and Nikiforov, 1993):

r

I
(6.13) 1

where X, is a matrix containing observations from time point 1 to n, Po and Pa, are the

probability density functions with parameters 9 and 90 respectively and In is the natural

logarithm. Although known to be a sufficient statistic, the problem with the log-likelihood

ratio statistic is that its distribution function is difficult to determine for all probability
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density functions, Pe. One solution is to assume that the parameters 9 and 00 are 'close' to

each other, that is, 9 = 90 + Y , where y is a fixed but unknown vector and its magnitude
n

(divided by the sample size, n) represents the amount by which the parameter vector 90 has

changed. For a large sample size, the parameter vector 9 lies close (or locally) to 00 and the

approach to testing a hypothesis under this assumption is known as the local approach of

hypothesis testing. Mathematically, this approach decides between the null and alternative

hypothesis which are defined as:

r
- ---

Ho: 0=90 for t=1,2 n

HI : 3 an instance r (1s r sn) such that

for t =1,2, ... r-1

for t = r,r+1, ... n

Assuming the local approach, the log of the distribution function, Pe, can be expanded

around, Pa, using second order Taylor expansion:

(6.15)

The log-likelihood ratio can be expanded by substituting equation (6.15) into equation (6.13)

Using the definitions of efficient score, zn and information matrix, In (Basseville and

Nikiforov, 1993):
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1-- (6.17) I

I
1

(6.18)

the log-likelihood ratio in equation (6.16) can be re-written as:

(6.19) 1

The distribution function of the log-likelihood ratio in equation (6.19) was determined by

Cam (1986) by proving the following central limit theorem:

LRn(90'0) -+ G 0.5 '1T1(Oo) 1, 1TI(9o)y) under POo
-+ G( - 0.5 1TI(90) 1, 1TI(9o)y) under Po

where G(I', 1:) is the Gaussian distribution with mean I' and covariance matrix 1:

It can be seen from equation (6.20) that a log-likelihood ratio has a Gaussian distribution

under both normal and modified conditions and a deviation in the parameter vector is

reflected as a change in the sign of the mean value of the log-likelihood ratio. It is also

important to note that the variance under both conditions is the same. The local approach thus

has transformed the problem from the detection of a change in the parameter vector to the

detection of a change in the mean value of a Gaussian random variable.

Similar to the expansion of the log-likelihood ratio, under the local hypothesis, the efficient

scores can also be expanded using Taylor series expansion (Basseville and Nikiforov, 1993):

1- (6.21) I
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Based on the condition that the maximum likelihood principle is used for parameter

identification, the central limit theorem for the efficient scores states that (Basseville and

Nikiforov, 1993):

I zn(OO' 0)- --+ 0(0.-1(6~ under POo --

I --+ o( 1(00) 'Y, 1(00») under Po I (6.22)

-'---------- - - - -

Thus a change in the parameter vector is reflected as a change in the mean value of the

efficient scores with covariance matrix remaining the same under both process states.

6.5.1 Generalization to other Monitoring Functions

Although the expansion of the log-likelihood ratio under the local approach has been known

since 1980's, it is the expansion of the efficient scores (equations 6.21 and 6.22) that has led

to the recent popularity of the local approach. An important result, (Benveniste et al., (1987);

Zhang et al., 1994) was established whereby it was shown that the central limit theorem in

equation (6.22) holds not only for the efficient scores but for a large class of estimating

functions (a function k (0, . ) is termed an estimating function for the parameter vector 00 if

the parameter vector 00 is equal to the roots of the equation k (0, .) = 0). Such estimating

functions when used for change detection are known as primary residuals (Basseville, 1997).

The conditions for a finite dimensional vector-valued function k (0,.) to be primary residuals

are:

1. Average value of k(0,.) should be equal to zero when 0 = 00, that is

Eo{k(O, .} = 0 when 0 = 00

2. Average is non-zero when 0 is different from 00

EO{k(O, .} *0 when 0 *00

For a peA model, the function k defined in equation 6.12 satisfies both conditions and

therefore is a valid primary residual. The distribution function of k can be determined by

generalizing equation (6.22). Specifically if k(.) is a primary residual then Benveniste et al.,

(1987) and Zhang et al., (1994) proved that the function rn' also known as improved

residuals, and defined as:
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1 n
rn = r Ik(t)

vn t=1 -l
---~

- -
(6.23) ,

satisfies the following central limit theorem under the local approach of hypothesis testing:

rn(901 9) ~ 0(0, M(90))

~ o( M(90) 'Y, M(90))

under ps,

under Po

M E {
a~,.)} .where M is a Jacobian matrix defined as = 0

0
vu

9=90

1

1

(6.24) ,

is given by computing a scalar Sn:

Once the improved residuals vector, rn' is determined, the optimal test for detecting change

(6.25)

where I.r is the covariance matrix of the improved residuals under normal operating

conditions. The decision rule for detecting a change is given by:

Decide in favour of HI if Sn > to

Decide in favour of Ho if Sn ~ to

where to is a threshold and is determined by noting that (under the null hypothesis) Sn is

'X2 distributed with degrees of freedom equal to the dimension of r .

It should be noted from equation (6.23) that the size of the window over which rn is

computed, tends to infinity as time increases. From a practical point of view, it has been

proposed (Zhang et al., 1994) to compute rn over a fixed size window, that is, a fixed value

no is selected such that:

1 n
r =- Ik(t)
n no + 1 t=n-no
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The choice of DO is determined as a compromise between a large false alarm rate and the

magnitude of the delay in detection. It is known (Zhang et al., 1994) that a smaller window

size (that is a larger value of Do) reduces the number of false alarms but introduces a delay

in change detection. A larger size of window increases the speed of change detection but

results in a higher false alarm rate.

Also since at the start of the algorithm, the value of n is small, and since the local approach is

asymptotic, it is proposed (Zhang et al., 1994) that the algorithm starts after the first 01

samples, where n 1 is suitably selected and is generally of the order of 30-50 samples.

6.6 Summary of the Algorithm

The steps of the local approach based scheme are now summarized:

Given: Matrix X of size NxK, containing N observations on K variables corresponding to the

normal operating condition of a process

Mean centre and scale each variable to unit variance.

Step 1: Build a PCA model using A principal components

Step 2: Compute the primary residuals for each principal component and each sample time

point: kj(t) = 2 tj(t) x(t) - 2l..jpj, where x(t) is the observation vector at sample

time point t, Ai eigenvalue corresponding to ilb loading Pi for i= 1 to A

Step 3: Determine the augmented vector k(t) = [kl(t) k2(t) ... kA(t)]T

Step 4: Remove the bias, i.e, mean centre k(t)

Step 5: Select the window parameter Do (Typical value is in the range 300-500 samples) and

01 (30-50) samples.

Step 6: Compute the improved residuals at each sample time:
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1 n
r =- Lk(t)
n no +1 t=n-no

Step 7: Calculate the covariance matrix ~r of the improved residuals

Step 8: Compute the local statistics at each sample time:

S T ~-1
n = rn --r rn

Step 9: Determine the confidence limits (95%, 99%), to

Step 10: Ifthere are large numbers of false alarms, change the window parameter no and

repeat steps 6-9

Step 11: Finally apply the algorithm to new (experimental) data set by scaling it using the

same values that were used to scale the nominal data set.

6.7 Simulation Studies

The methodology described above is tested first on two artificial data sets and is then applied

to detect abnormal changes in the performance of a continuous stirred tank reactor.

6.7.1 Example 1

In this example a normal data set comprising 2000 samples and two variables was generated

from a population of zero mean and covariance matrix:

I ~ =[55.25
I 0 -1.57

l
-1.57]
18.50 J

(6.27)

An experimental data set consisting of 2000 samples was then generated with the first one

thousand samples drawn from the normal population and the second one thousand samples,

corresponding to a faulty data set, drawn from a population with zero mean and covariance

matrix
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I s, = [18.50 1.57]L 1._57__ 5_5._25 ___I (6.28)

It should be noted that the eigenvectors of I.f

I Plf =[0.0426 0.9910Y

lp~ =[-O.99~O O.0426f

(6.29)

are 90-degrees rotated with respect to the corresponding eigenvectors of original covariance

matrix I.o whose eigenvectors are

PI = [- 0.9910 0.0426Y

P2 = [-0.0426 -O.9910Y

(6.30)
!

The faulty data therefore correspond to a modified covariance structure in which the

eigenvectors have rotated through 90-degrees from the eigenvectors corresponding to the

normal operating mode. After the normal data is auto-scaled, a peA model with one principal

component was built explaining 53.4% of the total variance. The local approach based

algorithm described in the previous section was then applied to the experimental data set. The

size of the window was tuned to 300 and the value of n, was adjusted to 50. The plot of the

statistic, S, for the experimental data set is shown in Figure 6.2(a). Figure 6.2(b) shows a plot

of the statistic for the first one thousand samples (corresponding to the normal operating

conditions) of the experimental data set. The sample number at which the change is detected

is 1052 and hence a delay of 52 samples in detecting the change is incurred.
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The procedure is now repeated by increasing the number of principal components in the PCA

model to two and thus the model accounts for 100% of the variance of the nominal data set.

The plot of the local statistic, S, for the experimental data set is shown in Figure 6.4(a) with

Figure 6.4(b) showing a zoomed-in portion of Figure 6.4(a) corresponding to the plot of the

statistic S for the first one thousand samples of the experimental data. The plots of Hotelling

T2 and Q-statistic are shown in Figure 6.5. It can be seen from Figure 6.4 that the local

approach based statistic detects the change at sample point 1034 and therefore the delay in

detecting the change is 34 sample points.

Figure 6.2: Plot of local statistic versus sample number for (a) the whole experimental data

set and (b) the normal operating condition component of the experimental data set, when one

principal component is retained in the PCA model (example 1).

The plots of Hotelling T2 and Q-statistic for the experimental data set are shown in Figures

6.3(a) and 6.3(b) respectively. It can be seen by comparing Figures 6.2 and 6.3 that while the

conventional monitoring scheme based on Hotelling T2 and the Q-statistic fail to detect the

change. the local approach based scheme successfully identifies the change in the covariance

structure.
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Figure 6.3: Plot of (a) Hotelling T2 and the (b) Q-statistic for the experimental data set,

when one principal component is retained in the PCA model (example 1).
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Figure 6.4: Plot of local statistic versus sample number for (a) the total experimental data set

and (b) the normal operating condition component of the experimental data set, when two

principal components are retained in the PCA model (example 1).
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Figure 6.5: Plot of (a) Hotelling T2 and (b) Q-statistic for the experimental data set, when

two principal components are retained in the PCA model (example 1).

In the conventional monitoring scheme, although Hotelling T2 shows an upward shift after

the introduction of the change, it is not sufficient to identify the occurrence of a change in the

process. It is also interesting to note that the Q-statistic remains equal to zero both before and

after the occurrence of the change. While the Q-statistic is expected to be equal to zero before

the change as 100% variability of the data is explained by the PCA model, a value exactly

equal to zero even after the change is not obvious. This can be explained by recalling the fact

that if PI and P 2 E R 2 form an orthonormal basis of the vector space R 2 , then any vector

X ER 2 can be written as :

-------

where tl and t2 are the projection of vector x onto PI and P2 respectively. Therefore,

even if x and x' belong to different populations (normal and faulty respectively in the

example above), both of them can written as a linear combination of the same basis functions

(the loadings of the PCA model). That is, the vector x' can be written as:
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where tl and t~ are the projections of x' on PI and P2 respectively. Since the

(prediction) error in both cases is zero, the Q-statistic is zero not only for normal operating

conditions but also for the faulty condition.

6.7.2 Simulation Example 2

Consider a 2 x 2 process described by the following state and measurement equations. This

model is taken from Ku et al., (1995) and was considered by Kano et al., (2001). By utilising

this model, a comparison between the performance of the proposed monitoring scheme and

that reported by Kano et al., (2001) is possible.

0.226] x{t -1) + [0.193 0.689 ] x{t _ 1)
0.415 0.320 0.749

2.0 ]x{t -1)
4.0

~----r--- 1
(6.33) I

I x{t) = [0.811
0.477

I

I
l

() [
0.118 0.191] ( ) [1.0ut= ut-l+
0.847 0.264 10

I y{t)=u{t)+h{t)

where u , x and y ER 2 are the state, input and output vectors respectively, e and b are zero

mean Gaussian random vectors comprising two independent random variables. The variance

of each random variable in e is unity and for b is 0.1.

Kano et al., (2001) simulated abnormal changes in the parameters of the above system by

changing the coefficient relating the second state variable, u2 ' to the first input, XI' (the

value of this coefficient under normal operating condition is 3). Three changes, small,

medium, and large were considered which correspond to change from 3.0 to 2.5, 2.0 and 1.0

respectively. These changes are summarized in Table 6.1. The objective is to compare the

proposed monitoring scheme with the conventional PCA based monitoring scheme before

comparing it with the scheme proposed by Kano et al., (200] ).
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Table 6.1: Abnormal changes in the artificial system

Case Type Size

1 (Small) Change of parameter from x. to u 2 3.0 -+ 2.5

2 Change of parameter from x 1 to u2 3.0-+ 2.0
(Medium)

3 (Large) Change of parameter from x 1 to u2 3.0 -+ 1.0

6.7.2.1 Monitoring using Static PCA

The system described in equation (6.26) is a dynamic system and therefore a dynamic model

would be most appropriate to model the data generated from this system. However, as a first

step, monitoring of this system based on a static PCA model is first studied. Two thousand

measurements corresponding to the normal operating conditions of four variables namely two

output and two input variables are collated into a matrix. The data is auto-scaled and PCA

was performed, Table 6.2 lists the percentage contribution of each principal component to

the total variance of the data.

Table 6.2: Variance contribution for static PCA (example I)

Number of Eigenvalue % variance Cumulative %

PC explained variance explained

1 1.9478 48.69 48.69

2 1.3408 33.52 82.21

3 0.6489 16.22 98.43

4 0.0624 1.57 100.00

A PCA model using three principal components (selected using cross-validation) was built. A

further data set (experimental data) comprising two thousand samples was generated with the

first one thousand corresponding to normal operating conditions and the remaining one

thousand corresponding to an abnormal change in the value of the parameter from 3.0 to 2.5

(case 1, smail). The proposed monitoring scheme based on the local approach was applied

with the window parameter DO and n. tuned to 350 and 50 respectively. The plot of the

local statistics for the experimental data set is shown in Figure 6.6(a) with Figure 6.6(b)

showing the plot of the statistic for the first one thousand samples of the experimental data

set. The performance of conventional monitoring scheme is given in Figure 6.7. The

procedure is repeated for the other two changes (medium and large) and the corresponding
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plots for the local statistics for the medium and large changes are shown in Figures 6.8 and

6.10 with Figures 6.9 and 6.11 showing the corresponding performance of the conventional

monitoring scheme based on these changes. The following conclusions can be drawn.

First, the local approach based scheme is able to detect all three changes with delays of 29,

23, and 18 samples for the small, medium and large changes respectively. The conventional

monitoring scheme, on the other hand, is almost insensitive to the small and medium changes

but the Q-statistic for the large change does show an upward shift but is not sufficient to give

a clear indication of the change. Secondly, there are some false alarms both in the proposed

monitoring scheme and in the conventional monitoring scheme. For the conventional

monitoring scheme they can be attributed to the serial correlation in the data but for the local

based monitoring scheme, false alarms are due to the fact that the local approach is

asymptotic, that is, it assumes (ideally) an infinite data set but practice the data set is finite.

False alarms can be reduced (1) by tuning the window size parameter no appropriately or (2)

Zhang et al., (1994) also suggested increasing the theoretical confidence bound by an

'appropriate' amount to account for the asymptotic nature of the local approach. For

example, the theoretical limit calculated by Zhang et al., (1994) for an example given in their

paper was 26.21 but they 'upgraded' the limit to 40 to reduce the false alarm rate.
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Figure 6.6: Plot of the local statistics versus sample number for a static peA based

monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 2.5 at sample number 1000 (b) the normal operating condition component of the

experimental data, (example 2)
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Figure 6.7: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the whole

experimental data set for a static PCA based conventional monitoring scheme when the

system parameter is changed from 3.0 to 2.5 at sample number 1000 (example 2)
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Figure 6.8: Plot of the local statistics versus sample number for a static PCA based

monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 2.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)
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Figure 6.9: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the whole

experimental data set for a static peA based monitoring scheme when the system parameter

is changed from 3.0 to 2.0 at sample number 1000 (example 2)
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Figure 6.10: Plot of the local statistics versus sample number for a static peA based

monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 1.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)
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To compare the proposed scheme with that proposed by Kano et al., (2001), the following

procedure was used (Kano et al., 2001).

(a)
2Or----r--~~--~--_T----T_--_r--~~--~--~--~

(b)
1.5r---_r----r----r----r----r----~---r----r----r----,

200 400 600 800 1000 1200 10400 1800 1800 2000
Sample Number

1. Data is collected from the process when operating under normal conditions and the

control limits for the monitoring statistic are calculated for a given confidence (95%

and 99%).

2. For the data generated after the occurrence of the fault, the percentage of samples

lying outside the control limit is calculated for each simulation. This percentage is

termed 'reliability' and depends on the number of samples used for the calculation. In

the reported study, 100 samples were considered.

3. The average reliability for the 1000 data sets is calculated for each case. This

produces a performance index for the monitoring scheme.
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The average reliability reported by Kano et al., (2001) for the conventional (static) PCA

based monitoring scheme for the three changes mentioned are summarised in Table 6.3.

Figure 6.11: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the

whole experimental data set for a static PCA based conventional monitoring scheme when

the system parameter is changed from 3.0 to 1.0 at sample number 1000 (example 2)



Table 6.3: Average Reliability (%) for the static PCA based conventional MSPC scheme

Monitoring Case
statistic 1 2 3

HotelIing T2 1.2 1.3 2.0

Q-statistic 1.6 3.2 9.5

It is clear from Table 6.3 that the conventional monitoring scheme is poor in terms of

detecting the different levels of change, with the maximum average reliability being less than

10%. To improve the reliability, Kano et al., (2001) proposed monitoring the change in the

covariance structure by monitoring the 'distance' between the eigenvectors (loadings) of the

new (experimental) data collected from a moving window and the reference (nominal)

eigenvectors. The distance was measured using the dot product between the new and the

reference loading vectors. Since the reliability depends on the window size, Kano et al.,

(2001) reported the average reliability for two window sizes (100 and 200 samples). The

maximum average reliability (where the maximum is calculated over window size) for this

scheme for each of the three changes is given in Table 6.4. It is seen that although the

reliability has improved considerably for large change (case 3), it is still low for the small

change (case 1). To see how the local approach based scheme performs in comparison to the

scheme of Kano et.al (2001), the average reliability for the local approach is calculated for

the three changes and is given in Table 6.5

Table 6.4: Average reliability (%) for the static PCA based scheme of Kano et al., (200 1)

Monitoring Case
statistic 1 2 3
Proposed by Kano 17.3 50.2 75.2

et.al (200 1)

Table 6.5: Average reliability (0/0) for the static PCA based local monitoring scheme

Monitoring Case
statistic 1 2 3

Based upon Local 76.9 83.4 87.28
Approach

From Tables 6.4 and 6.5, it can be observed that the average reliability for the local approach

based scheme has improved over the approach proposed by Kano et al., (2001). More

importantly, is that, there is a much greater increase (over 4 times) in the reliability for the
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small change. This illustrates the fact that the local approach is especially suitable for

detecting small changes in a system. This can be explained from the theory of the local

approach (section 6.S) which assumes that the normal and changed parameters are 'close to

one another' .

It is also important to recall that the statistic Sn' which essentially detects a change in the

mean value of the improved residuals rn' is an asymptotically optimal statistic (Basseville

and Nikiforov, 1993). But since, in practical situations, the sample size is finite and rn is

calculated by summing the primary residuals over a finite window of size no, the algorithm

loses its optimal properties. Experience shows that the algorithm works well when the

window size no lies in the range 300 or higher. An analytical study of the effect of window

size on the optimal property, however, needs to be undertaken. This is identified in chapter 8

as an area of future work.

6.7.2.2 Monitoring using Dynamic peA

A static peA model assumes that the observations collected are statistically independent.

Since the data used in this example is generated from a dynamic system, the observations are

serially correlated as is also evident from Figure 6.12 which shows the autocorrelation

function plot for each of the four variables. Ku et al., (199S) addressed the issue of serial

correlation by including lagged variables in the observation matrix and then applying peA.

The number of lagged variables to be included can be decided by determining how many past

observations influence the current observation. If x(t) denotes the current observation

vector, then the number of lagged variables is equal to a, which is determined such that an

autoregressive (AR) model of order a is a 'good' fit to the data:

I a-lx(t)= ~D;X(t-j)+e(t)
(6.27)
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There exist different criteria (Ljung, 1999) for selecting the order of an autoregressive model.

One such criterion is the log of Akaike's Final Prediction Error (AFPE) (Neumaier and

Schneider, 2001). The plot of AFPE for an AR model order 0 to 10 is shown in Figure 6.13.

It can be seen that although the AFPE is a minimum at model order 2, there is not a

significant decrease in the value of AFPE when the model order increases from 1 to 2. It is,

therefore, decided to include one lagged variable in the observation matrix to reduce the cost

(number of parameters) of the model.

A data set comprising four variables and two thousand samples corresponding to the normal

operating conditions are collated into matrix X. The matrix is then augmented with one

lagged value of each variable so that the size of the augmented matrix Xaug is 1999xS. The

matrix is scaled to unit variance and zero mean and PCA is performed. The percentage

variance contribution of each principal component to the total variance of the data is listed in

Table 6.6. A PCA model is built using four principal components. This was identified using

cross-validation. Three additional (experimental) data sets each consisting of 2000 samples

are generated in which the first one thousand samples correspond to normal conditions and

the remaining one thousand correspond to one of three changes. Figures 6.14, 6.16 and 6.18

show the plots of the results following the application of the local statistics to the
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experimental data with the results of the conventional monitoring scheme given in Figures

6.15, 6.17 and 6.19. It is seen from the figures that the local approach based scheme

successfully detects all three changes. The delays for the small, medium and large change are

2,2 and 1 samples respectively. The conventional monitoring scheme is almost insensitive to

small and medium changes but the Q-statistic for the large change clearly indicates the

occurrence of a change
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Figure 6.13:

(example 2)

-
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Plot of logarithm of Akaike's Final Prediction Error (FPE) versus model order

Table 6.6: Variance contribution for dynamic PCA

Number of Eigenvalue % variance Cumulative %

PC explained variance

explained

1 3.399 42.49 42.49

2 2.807 35.10 77.59

3 0.9589 11.99 89.57

4 0.7109 8.89 98.46

5 0.1085 1.36 99.82

6 0.0107 0.13 99.85

7 0.0024 0.03 99.98

8 0.0013 0.02 100.00
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Figure 6.14: Plot of the local statistics versus sample number for the dynamic PCA based

monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 2.5 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)
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Figure 6.15: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the whole

experimental data set for the dynamic PCA based conventional monitoring scheme when the

system parameter is changed from 3.0 to 2.5 at sample number 1000 (example 2)
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Figure 6.16: Plot of the local statistics versus sample number for the dynamic PCA based

monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 2.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)

<8>20~---r--~~---r--~~--~--------~--------~----

I
Figure 6.17: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the whole

experimental data set for the dynamic PCA based conventional monitoring scheme when the

system parameter is changed from 3.0 to 2.0 at sample number 1000 (example 2)
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Figure 6.18: Plot of the local statistics versus sample number for the dynamic PCA based

monitoring (a) the whole experimental data set when the system parameter is changed from

3.0 to 1.0 at sample number 1000 (b) the normal operating condition component of the

experimental data (example 2)
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Figure 6.19: Plot of (a) Hotelling T2 and (b) Q-statistic versus sample number for the whole

experimental data set for the dynamic PCA based conventional monitoring when the system

parameter is changed from 3.0 to 1.0 at sample number 1000 (example 2)
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The average reliability for the conventional monitoring scheme based on dynamic PCA

model reported, calculated as per the procedure given by Kano et al., (200 I) is given in Table

6.7

Table 6.7: Average reliability (%) of the dynamic PCA based conventional MSPC

Monitoring Case
statistic I 2 3

Hotelling T2 1.6 3.8 14.2

Q-statistic 13.6 39.3 65.5

Comparison of Tables 6.3 and 6.7 highlights the importance of selecting an appropriate

model for monitoring. When a dynamic system is monitored using a static model, the

performance of the (conventional) monitoring scheme is much poorer (Table 6.3) than when

a dynamic model based scheme is applied (Table 6.7). For example, the average reliability

for the large change situation for a static PCA model is 9.5% and the corresponding value for

a dynamic PCA based monitoring scheme is 65.5%, approximately a 6 fold increase.

Although the incorporation of the dynamics into the model has considerably increased the

performance (especially for the large change situation) of the conventional monitoring

scheme, its reliability is still poor for the small and medium change cases. The average

reliability for the scheme proposed by Kano et al., (2001) is given in Table 6.8. The

corresponding figures for the local approach based scheme are given in Table 6.9.

Table 6.8: Average reliability (%) for the dynamic PeA based scheme ofKano et al., (2001)

Monitoring Case
statistic I 2 3

Proposed by Kano 291. 81.6 95.4
et.al (200 I)

Table 6.9: Average reliability (%) for the dynamic PeA based local monitoring scheme.

Monitoring Case
statistic I 2 3

Based upon Local 96.79 97.34 98.96
Approach
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It can be observed that the local approach based scheme not only detects the large change

case successfully (with an average delay of one sample) but is almost equally efficient in

detecting the small and medium change cases.

6.7.3. Example 3: Fault Detection in Continuous Stirred Tank Reactor

The proposed statistic for PCA model change detection is now applied to detect a fault in a

continuous stirred tank reactor (CSTR). A schematic diagram of the CSTR is shown in Figure

6.20 (Zhang, 1991). In the reactor an irreversible heterogeneous catalytic exothermic reaction

A ~ B takes place. The objective of the process is to maintain the product concentration at a

desired level by controlling the temperature of the reactor, the height in the reactor and the

reactor mixing conditions. Temperature in the reactor is controlled by manipulating the flow

rate of the feed cold water to the heat exchanger via a cascade control system. Manipulating

the product flow rate controls level in the reactor. The mixing conditions are controlled by

manipulating the recycle flow rate. A SIMULINK based simulator for this process was

developed by Lane (2000).

pipe 9
CWR

PUMP

VAL 1 I pipe 11 t>
pipe 10 ~ ~

R CONC
11

Figure 6.20: Continuous Stirred Tank Reactor Schematic

A nominal data set consisting of 12 process variables and one thousand samples was

generated. The process variables measured were:
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1. Feed flow rate

2. Temperature of feed

3. Concentration of reactant A in feed

4. Pressure of cooling water

5. Temperature of cooling water

6. Control signal to recycling flow valve

7. Height in reactor

8. Temperature in reactor

9. Recycle flow rate

10. Cooling water flow rate

II. Recycle Temperature

12. Product flow rate

After the data was auto-scaled, PCA was performed. The percentage contribution of each

principal component towards the total variance of data is summarized in Table 6.10

Table 6.10: Variance contribution for PCA on CSTR data

Number of Eigenvalue % variance Cumulative %

PC explained variance

ex.plained

1 2.65 22.09 22.09

2 2.03 16.93 39.02

3 1.37 11.38 50.40

4 1.09 9.10 59.50

5 1.07 8.95 68.45

6 1.06 8.87 77.31

7 0.963 8.03 85.34

8 0.832 6.93 92.27

9 0.727 6.06 98.33

10 0.l43 1.20 99.53

11 0.0564 0.47 100.0

12 0.0243 0.00 100.0

A PCA model was built using 8 principal components, as determined from cross validation.

The fault studied was the fouling of the heat exchanger and was simulated by reducing the
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heat transfer coefficient of the heat exchanger from its nominal value. Three experimental

data sets, each comprising 1500 samples with the first one thousand samples corresponding

to normal conditions and the remaining 500 samples corresponding to three different

magnitudes of fouling (i) small (2%) (ii) medium (3%) and large (5%), were generated. The

local approach based monitoring scheme with window parameters no and n, equal to 300

and 50 respectively was applied to each of the experimental data sets. Figures 6.21, 6.23 and

6.25 show the plots of the local statistics for the cases of small, medium and large fouling

respectively. The corresponding performance of the conventional monitoring scheme is

shown in Figures 6.22, 6.24 and 6.26. It can be seen that while the local approach based

scheme detects all these changes without any delay, the conventional approach is almost

insensitive in the cases relating to small and medium changes but is able to detect the case of

large fouling in the heat exchanger.
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Figure 6.21: Plot of the local statistics versus sample number for (a) the whole experimental

data set when is fouling is increased by 2% at sample number 1000(b) the normal operating

condition component of the experimental data set (example 3).
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Figure 6.22: Plot of (a) Hotelling T2 and (b) Q-statistic for the experimental data set

when the fouling is increased by 2% (example 3)
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Figure 6.23: Plot of the local statistics versus sample number for (a) the whole experimental

data set when is fouling is increased by 3% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 3)
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Figure 6.24: Plot of (a) Hotelling T2 and (b) Q-statistic for the experimental data set when

the fouling is increased by 3% (example 3)
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Figure 6.25: Plot of the local statistics versus sample number for (a) the whole experimental

data set when is fouling is increased by 5% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 3)
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Figure 6.26: Plot of (a) Hotelling T2 and (b) Q-statistic for the experimental data set when

the fouling is increased by 5% (example 3)

6.S. Conclusions

In this chapter the abnormal changes that can occur in identical and independent

multivariate Gaussian process variables have been divided into two categories namely (i) a

change in the mean vector and (ii) a change in variance-covariance structure. It has been

shown that although a conventional PCA based monitoring scheme, in particular the Q-

statistic, can detect large changes in the variance-covariance structure, it is not sensitive to

small changes. A new monitoring statistic based on the estimation function of PCA is

derived. To derive the distribution function of the statistic, use is made of the local approach

of hypothesis testing. The performance of this new statistic is tested and compared with a

conventional monitoring scheme for detecting changes in two artificial data sets. It was found

that the proposed scheme detects not only changes of large magnitudes, but is especially

suitable for detecting small changes. The proposed scheme was also compared to the scheme

recently proposed by Kana et al., (2001) on the basis of the performance index proposed by

Kano et al., (2001) and is observed to outperform this scheme. The scheme was finally

applied to detect fouling of heat exchanger in continuous stirred tank. reactor.
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CHAPTER'

Recursive Partial Least Squares with Application to Process

Monitoring

7.1. Introdudion

In the last chapter, it was shown that a conventional PCA based monitoring scheme is

particularly insensitive for the detection of small changes in the variance-covariance structure

of the variables and a new monitoring scheme based on a PCA model identification

procedure was derived. In this chapter, the focus is on the monitoring of cross-covariance

(i.e. between the input and output variables) through a PLS based monitoring scheme. A

recursive algorithm for identifying a PLS model is first developed and then use is made of

this algorithm to derive a monitoring statistic.

7.2 Recunive Partial Least Squares

The most common method for identifying a PLS model is the batch method. It is a two step

procedure (I) the collation of the data into matrices X and Y, and (2) the calculation of the

eigenvalue-eigenvectors of suitable combinations of the matrices X and Y through the

application of the NIPALS algorithm. This method has two limitations. First it can be shown

that the computational complexity of this approach increases at least quadratically with the

dimensionality of the data (Partridge and Calvo, 1998). This can make the method

impractical when the data set is large. Secondly, if the data is nonstationary and the PLS

model requires to be updated regularly, then the single PLS model with constant parameters,

as identified by the batch method, is inefficient. To overcome these limitations, adaptive

methods, also known as on-line or recursive methods, have been proposed. In contrast to the

conventional batch method, adaptive methods do not require the prior storage of data and the

PLS model is updated as and when a sample of the data becomes available.

In general, there are two methods for the computation of recursive subspace projection

techniques for PCA and PLS. In the first class of algorithms, the covariance matrix (for PCA)

and cross-covariance matrix (for PLS) is updated on-line by a rank one modification

procedure and then eigenvalues-eigenvectors of combinations of the updated matrices are

calculated. This method was proposed by Li et al., (2000) and Dayal and MacGregor

(1997(b» for recursive PCA and PLS respectively. In the second class of algorithms, a
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recursive equation for updating the eigenvalues and eigenvectors is derived directly from the

data. This approach for PCA has attracted a great deal of attention in the research community

since it has the additional advantage that the algorithm can be implemented using a neural

network architecture. The latter method is, therefore, sometimes referred to as neural PCA

(Oja, 1982).

The objective of this section is to propose a recursive PLS algorithm, which belongs to the

second class of approaches. Although the proposed algorithm can be used to update the

parameters of the PLS model, the objective is to derive a statistic that can be used to detect

changes in the cross-covariance structure.

7.2.1 Literature Review

The literature on neural PCA is extensive. Neural PCA methods are based on the biologically

motivated unsupervised Hebbian learning rule, which was first proposed by Hebb in his

seminal book 'The Organization of Behaviour' (1949). Hebb hypothesised that "when an

axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in

firing it. some growth process or metabolic change takes place in one or both of the cells

such that A 's efficiency. as one of the cells firing B. is increased. " Putting it more simply,

the rule states that when cells (neurons) A and B are simultaneously excited. the strength of

connection between the two is increased. Oja (1982) first showed that the normalized version

of the Hebbian rule when applied to a neural network consisting of a single linear neuron

converges to the principal eigenvector of the covariance matrix. This work by Oja (1982)

attracted a lot of attention from the neural network community and several researchers,

Sanger (1989), Oja (1989), Foldiak (1989), Kung and Diamantaras (1994). extended Oja's

methodology to extract multiple components of peA using a neural network consisting of

multiple linear neurons. However, one limitation was that the speed of convergence was quite

slow. To increase the speed, modifications to the Hebbian learning rule were proposed by

Partridge and Calvo (1998) and Bannour and Sadjadi (1995). Diamantaras (1994) extended

the Hebbian learning rule to extract principal components where two sets of variables x and y

were available. This work was further generalized by Feng et al., (1998) to extract the

singular components of any general matrix. A comprehensive review of the neural network

implementation of PCA can be found in Diamantaras and Kung (1996).

The chemometrics research community have also attempted to develop an adaptive version

of Partial Least Squares, but these mainly belong to the first class of algorithms. The
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recursive algorithm for PLS was first proposed by Helland et al., (1991). In this algorithm,

the old data is captured by the PLS model loadings (P and Q) and the new data is augmented

with these loadings matrice. The model is then updated by performing the NIPALS algorithm

on these augmented matrices. Qin (1993, 1998) modified this algorithm to identify a dynamic

process model. Wold (1994) proposed exponentially weighted algorithms for both PCA and

PLS. His approach is based on performing NIPALS algorithm on the augmented data set (X

and Y) every time a new data sample becomes available. Dayal and MacGregor (1997(a»

proposed an improved version of this algorithm, in which the covariance and cross-

covariance matrices (and not the data matrices) of x and y are updated using an exponential

forgetting factor. The kernel algorithm (Dayal and MacGregor, 1997(b» is then used to

calculate the parameters of the new model. Lane et al., (2003) and Wang et al., (2003) more

recently used recursive PCA and PLS respectively to monitor time varying chemical

processes.

The recursive algorithm for PLS is now derived in the next sub-section. First the recursive

equations for the extraction of the first latent variable are derived (section 7.2.2) and then the

algorithm is extended to extract A (~1) latent variables (section 7.2.3).

7.2.2 Extraction of First Latent Variable

Let x(n) E RK and yen) E RM be a sample of process and response variables respectively

at time point n. As mentioned in Chapter 2, PLS seeks to find two vectors WI e R K and

vI ER M such that

and

I (7.2) I
__ J

have maximum covariance with the constraint IIw 111 = 1 and Ilv 111 = 1. The covariance J

between tl and Ut is given by:
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I (7.3) 1

where E{.} denotes the statistical expectation operator and it is assumed that t, and u, have

zero mean. The problem, therefore, can be stated as:

max (J) = max E{WITxyTVI}
wI,vI WI,vI

subject to IIwIl1= 1 IlvI11= 1

(7.4)

Differentiating the objective function with respect to the weight vector WI gives:

Likewise differentiating the objective function with respect to the weight vector VI gives:

r a
I -a (J(wi• VI» = E{y xTwI} = E {ytl}

VI
L____

The gradient ascent rules for updating the weights WI and V1 are:

1
1

(7.5) I
J

-
(7.7)

where 11 is the learning rate. To implement the recursive equations in (7.7), the statistical

expectation requires to be estimated. Taking the instantaneous values x(n)u,(n) and y(n)tl(n)

as the estimates of E{x(n)uI(n)} and E{y(n)t,Cn)} respectively, as in the Least Mean Square

(LMS) algorithm (Haykin, 1995), the recursive equations in (7.7) reduce to:

I wl(n+l)= wl(n)+Ttx(n)ul(n)

I V1(n+l) = vr(n) + Ttyen) tl(n)
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It should be noted that the above equations for updating the weight vectors do not take into

consideration the unit norm constraints on the weight vectors w, and v,. Two approaches

can be adopted to take into account these constraints. The first is to normalize the weight

vectors to unit norm after each updating of the weight vectors. This gives the following

updating equations:

-

W len + 1) =w len) + 11x(n) ul(n) (7.9)

w)(n+1)

Ilwl(n+l)11
v l(n + 1) = v l(n) + 11y(n) t1(n)

II 1 vI(n+1)v (n+ ) - ."..-!-.:...___;".

1 - Ilvl(n+1)11

An alternative approach is to use the first order technique adopted in (Oja, 1982). Taylor

1 1
series expansions of 11_ II and 11_ II are calculated and the second and higher

w)(n+l) v,(n+1)

order terms in the learning rate 11 are neglected. For example, the first order Taylor series

expansion of 11_ II is given by:
wl(n+l)

1

Therefore, the updating equation for weight vector w 1 becomes:

~7.l~ J

This can also be written as:

-I w)(n+1) = w I(n) + 11x' (n) ul(n) (7.12) 1

where
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x'(n) = x(n) _ w) (n)t)(n)

Similarly the updating equation for the weight vector v) is given by:

____ __j_ (7.14) J

If h) is the inner regression coefficient between u, and t), that is:

(7.15)

then it can be computed recursively using the LMS rule (Haykin, 1995):

I (7.16) I

where

I (7.17)

7.2.3 Extraction of More Than One Latent Variable

The second and higher order latent variables of PLS in the NIP ALS algorithm are found by

deflating matrices X and Y. Since the recursive algorithm deals with vectors instead of

matrices, the next step is to deflate the vectors. The deflated vector x2(n) for computing the

second latent variable can be obtained by re-writing equation (2.59) in terms of a single

observation of input variables:

(7.18) 1
_J

where PI is the loading vector. Equation (7.18) shows that to compute the deflated vector

x2(n) the loading vector PI needs to be calculated recursively. From equations (2.55) and

(2.56), the loading vector p) is identified as the parameter vector for predicting the input

variables x from the latent variable t, :
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-
(7.19)

and is determined such that the norm of the prediction error el is a minimum. Using the LMS

rule to determine the loading vector PI recursively:

(7.20) 1

where

(7.21) ]

The deflated vector y 2 (from equation 2.59) is given by:

T (7.22) Jy 2(n) = yen) - fll(n) v I

Once the deflated vectors X2 and y 2 are available, the second latent variables t2 and u2

can be calculated by determining the weight vectors w 2 and v 2' The updating equations for

these vectors can be obtained from equations (7.12) and (7.14) by replacing x and y with

X2 and y 2 respectively. Rewriting the updating equations in terms of x and y requires

making use of the fact that it is not necessary to deflate both x and y. It was proven in

Hoskuldsson (1988) that only x needs to be deflated, this was later extended by Dayal et a1.,

(l997(a» by who proved that either x or y can be deflated. Letting:

r t2(n) =w 2T(n)x(n)
I Tu2(n) = v 2 (n)y (n)I __

(7.23) 1

and

I t~(n)=w / (n)xin)

uiCn) = v 2T(n)y 2(n)

(7.24)

i
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The relationship between t2, u2 and t;, u; can be derived by substituting equations (7.18)

and (7.22) into equation (7.24):

ti(n) = w 2T(n)( x(n) - t1(n)Pl(n»
I
u;(n) = V2T(n)(y(n)-Ul(n)V1(n»

I (7.25) 1

These equations can be further simplified to give:

r (7.26)l
where

(7.27)

Now the updating equation for w 2' assuming that x is not deflated but y is deflated, in

accordance with equation (7.12) can be written as:

____l (7.28)J

Similarly the recursive equation for v 2' assuming y is not deflated but that x is deflated, can

be written as:

r v 2(n + 1)= v 2(n) + ll( yen) - v 2(n)u2(n» ti(n) r (7.29) J

The recursive equations for computing d12 and r12 can also be derived. Multiplying both

sides of equation (7.20) by wI and incorporating equation (7.21) gives:

j (7.30)1

173



Similarly, rl2 can be computed by multiplying equation (7.29) on both sides by v rand

using equations (7.26), (7.23) and (7.24), thus:

r
r12(n+l) = rI2(n) + 11(ul(n) - rl2(n)u2(n»t~ (n)

The inner regression coefficient, b2 for the second set of latent variables can be computed as:

- --
b2(n+l) = b2(n) + 11(U;- b2(n)t;(n»t;(n) ----1~7.3~

The above scheme can be extended to extract, in general, the Alh latent variable as follows:

-
w A(n+l) = W A(n) + 11(x(n)-w A(n) tA(n» u~(n» (7.33)

v A(n + I) = v A(n) + 11(yen) - vA(n) uA(n) t~ (n)

where

r A-I

I t~ = tA - i~ldiAt:

A-II u~ =UA - LriAU;l i=1

(7.36)

Also

1 (7.37) 1
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7.3 Summary of the Algorithm

A summary of the algorithm for computing A latent variables is given below:

Step!: Initialize weight vectors W j , V j , inner regression coeffiecient bi for i= 1.2...A and

dij, rij for i= 1,2...A; j = 1,2.. i-1 to random values.

Step 2: Compute at time point n

for i= 1,2,...A

tj(n) = x(n)T W j(n)

Uj(n) = yen)TVj(n)

I if i= 1

I ti (n) = t, (n)
u] (n) = u, (n)
uj (n) = bi(njt] (n)

else

i-I
ti(n)=ti(n)- Ldji(n)tj(n)

j=l

uj (n) = bj (njt] (n)

r-:
u] (n) = Uj (n) - Lrji (n)uj(n)

j=I

Step 3: Update the parameters

~for i= 1.2•... A

W j(n+1) = W j(n) + fI(x(n)- W j(n) tj(n)) u'(n)

vj(n + 1)= vj(n) + fI( yen)- vj(n) uj(n)) tj(n)

b.m+l) = bj(n) + fI(uj - b, (n)tj(n))ti (n)

djj(n+1)=d jj(n) + l1tj(n) tj(n) for each j < i-1
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Step 4: Repeat steps 2 and 3 until convergence

7.4. Simulation Study

To test the above method, an artificial data set was generated. The vector x consists of 5

variables generated as follows: xr, X2, X4 and x, are distributed normally with zero mean and

a variance of unity and X3 = Xl+ X2. Measurement noise, which is Gaussian with zero mean

and a variance of 0.1 is added to each of the input variables. The output vector y consists of 4

variables with the component variables generated as: YI = 2 XI. Y2= XI+ X2 + X3, Y3= 4 X4 and

Y4 = X2 + X3 + X4 + Xs. Gaussian measurement noise with a mean of zero and variance of 0.1

was added to these output variables.

A data set consisting of 200 samples was generated. After the data was auto-scaled, the

recursive algorithm was applied to extract 3 latent variables, that is A = 3. The learning rates

in all the recursive equation was set equal to a fixed value of 0.0 1. The choice of the learning

rate was determined as a compromise between the speed of convergence and instability

(oscillations around the minima). A High learning rate leads to fast convergence but may not

converge to the minima (solution). On the other hand a small value for the learning rate

makes the algorithm converge more slowly. This is illustrated in Appendix 1 for two value of

learning rates, 0.001 and 0.04. The convergence of the first three solutions for the weight

vectors w and v are shown in Figures 7.1 and 7.2 respectively. Figure 7.3 shows the

convergence of the inner regression coefficients. It can be seen from the figures that for the

example considered, approximately 5 iterations are required for the first solution to converge.

The successive solutions, however, require fewer number of iterations because they are

computed in parallel with the first one.
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Figure 7.1: Plot of estimation error Ilw-WNIPALSI12, where WNIPALS is the PLS solution

from the NIP ALS algorithm versus number of iterations for the first three solutions of W (a)
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Figure 7.2: Plot of estimation error Ilv - VNIPALsI1
2

, where vNIPALS is the PLS solution

from the NIP ALS algorithm, against number of iterations for the first three solutions of v (a)
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Figure 7.3: Plot of estimation error lib- bNIPALs11
2
, where bNIPALS is the PLS inner

regression coefficient from the NIPALS algorithm, versus number of iterations for the first

three inner regression coefficients(a) b, (b) b2 (c) b3

7.5 Application to Process Performance Monitoring

In general, a recursive algorithm for estimating a parameter vector 0 can be written as:

O(n + 1) = O(n) + nk. O(n),x(n))

where k, (multiplied by the learning rate 11) represents the change in the parameter vector

o at the current time. For the LMS algorithm, kl is given by the gradient of the

instantaneous estimate of the objective function:

(7.39) I

(7.40) i
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where Jn is an instantaneous estimate of the objective function J, the optimization of which

determines the parameter vector O. For recursive PLS, for example, kl for estimating the

first weight vector WI can be determined from equation (7.11):

1 (7.41) I

Taking the statistical expectation on both sides of equation (7.40) gives:

E{kd = E{!._(Jn(O,x(n)~ } =!'_E~Jn(O,x(n»)9()}
00 10(n) ee n

(7.42)

Now assuming that the nominal model parameter of the system is known and is equal to 00,

if the measurements x(n) from the system correspond to the nominal model parameter 00,

then the right hand side of equation (7.42) evaluated at 00 must be equal to zero:

(7.43) I

This is because, the nominal model parameter 00 corresponds to the optimization of the

objective function E{Jn}, and therefore its gradient at 00 is equal to zero. When the system

parameters do Dot correspond to the nominal parameter 00, the statistical expectation of kl

will be non-zero. The change detection in the parameters of the system is, therefore,

equivalent to detecting a change in the mean of kl.

The weight vectors wi and Vi (fori = 1,2... A) in a PLS model depend on the cross-

covariance (between the input and output variables) structure of the process variables.

Specifically, Wi and Vi are obtained by singular value decomposition of the cross-

covariance matrix. A change in the cross-covariance, therefore, can be detected by detecting a

change in the weight vectors wi and vi' It can, however, be proven (Chapter, 3, remark l)

that vector v i is related to wi and therefore it is sufficient to detect a change in wi in

order to detect a change in the cross-covariance structure.
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As in equation (7.40), corresponding to each wi, a statistic kj can be derived from the

recursive equation for W j, such that the mean of k j is zero under normal conditions but

becomes non-zero when the cross-covariance structure changes from normal conditions. The

expression for ki from equation (7.33) is:

If all the weight vectors are arranged in one column, then the vector 60 of the parameters

corresponding to the normal operating conditions of a PLS model is given as:

~ =[W1W2 ... WA]T _ _ ~.4S)l

The corresponding augmented vector k of the statistic is given by:

Since each component of the vector k has zero mean when the corresponding loading vector

corresponds to normal operating conditions, it therefore follows that the mean of the

augmented vector k is zero when the PLS model parameter vector 60 corresponds to normal

operating conditions. When any or all of the weight vectors change, the mean of vector k

deviates from zero. The vector k, therefore is a primary residual (section 6.5.1). After the

primary residual is determined, the local approach of hypothesis testing (described in

Chapter, 6) can be used to design an algorithm to detect a change in its mean value.

It should be noted from equation (7.44) that calculation of kj requires u] , which in turns

requires the measurement of the quality variables yon-line. In some processes, the quality

variables are not available as frequently as the process variables. To determine the

monitoring statistic in such a situation, u: can be replaced by its predicted value ftj. The

justification for this is that under normal conditions, the covariance between the t-and u-

scores is the same as the covariance between t-and predicted u-scores, that is:

I E{tjui}= E{ti(uj +e)}= E{tiuif 1(7~47)
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The expression for kj can, therefore, be written as:

I (7.48)

7.5.1 Summary of the Change Detection Algorithm

Given: Matrices X and Y corresponding to the normal operating condition of a process

Mean centre and scale each variable to unit variance.

Step 1: Build a PLS model using A latent variables

Step 2: Compute the primary residuals for each principal component at each sample time:

Step 3: Determine the augmented vector ken) = [k)(n) k2(n) ... kA(n)f

Step 4: Remove the bias, i.e., mean centre ken)

Step 5: Select the window size parameter no (typical value is in the range 300-500) and

n) (30-50).

Step 6: Compute improved residuals at each sample time:

lIn
rn =-- Lk(i)l no + 1i=n-no

Step 7: Calculate the covariance matrix l:r of the improved residuals

Step 8: Compute the local statistics at each sample time:
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-r-lS - T -r-ll n - rn "'r rn

Step 9: Determine the confidence limit (95 %,99%) to

Step 10: If there are a large number of false alarms, change the window parameter no and

repeat steps 6-9

Step 11: Finally apply the algorithm to new (experimental) data set by scaling it with the

same values that were used in the scaling of the nominal data set.

7.5.2 Simulation Studies

The algorithm described above is first applied to detect a change in the parameter of an

artificial system and is then applied to detect a fault in a continuous stirred tank reactor.

7.5.2.1 Example 1: Detection of a change in the parameters in an artificial system

In this example the artificial system described in section 6.7.2 is considered. A normal data

set comprising 2000 samples of two input variables x and two output variables y is generated

and stored in matrices X and Y. The matrix X is augmented with one lagged value for each of

the input and output variable so that the size of the augmented matrix Xaug is 1999 x 6 . The

matrices Xaug and Yare auto-scaled and the NIPALS algorithm is applied to the data. The

percentage contribution of different latent variables is summarised in Table 7.1. A PLS

model using three latent variables is then built.

Three (experimental) data sets, each comprising 2000 samples, corresponding to the three

changes (listed in Table 6.1) in the coefficient relating the second state variable, u 2' to the

first input, XI' are generated. The first one thousand sample of each data set correspond to

normal operating conditions and the remaining one thousand correspond to a change in the

parameter. The change detection algorithm with parameters no and n) equal to 300 and 50

respectively was then applied.
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Table 7.1: Percent variance captured by PLS model (example I)

No. % variance Cumulative % % Variation Cumulative %

of explained variance explained explained variance explained

LV (X) (X) (Y) (Y)
I 37.14 37.14 51.48 51.48

2 36.86 74.01 34.02 85.50

3 13.20 87.21 7.48 92.98

4 11.47 98.68 3.54 96.52

5 1.29 99.97 2.16 98.68

6 0.03 100.00 0.04 98.72

Figures 7.4(a), 7.6(a) and 7.8(a) show plots of the local statistic for the experimental data set

corresponding to small, medium and large changes respectively. The lower panel in each of

these figures correspond to the normal operating conditions of the experimental data set. The

performance of conventional PLS based monitoring scheme, which is based on three statistics

namely the Q-statistic in the input space, the Q-statistic in the output space and Hotelling r2 ,
is shown in Figures 7.5, 7.7 and 7.9. It is seen from these figures that the proposed

monitoring scheme successfully detects all the changes. The delays in detecting small,

medium and large change in the system parameters for the proposed algorithm are 23, 17 and

5 samples respectively. The conventional monitoring scheme, in comparison, is insensitive to

small and medium changes but the Q-statistic in the output space does show an upward shift

for the large change after the occurrence of the change. This shift, however, is not sufficient

to give a clear signal of the change.
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Figure 7.4: Plot of the local statistics versus sample number for (a) the whole experimental

data set when the system parameter is changed from 3.0 to 2.5 at sample number 1000 (b) the

normal operating condition component of the experimental data (example 1)
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Figure 7.5: Plot of (a) Hotelling T2 and (b) Q-statistic in the output space (c) Q-statistic in

the input space versus sample number for the whole experimental data set when the system

parameter is changed from 3.0 to 2.5 at sample number 1000 (example 1)
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Figure 7.6: Plot of the local statistics versus sample number for (a) the whole experimental

data set when the system parameter is changed from 3.0 to 2.0 at sample number 1000 (b) the

normal operating condition component of the experimental data (example 1)
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Figure 7.7: Plot of (a) Hotelling T2 and (b) Q-statistic in the output space (c) Q-statistic in

the input space versus sample number for the whole experimental data set when the system

parameter is changed from 3.0 to 2.0 at sample number 1000 (example 1)
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Figure 7.8: Plot of the local statistics versus sample number for (a) the whole experimental

data set when the system parameter is changed from 3.0 to 1.0 at sample number 1000 (b) the

normal operating condition component of the experimental data (example 1)
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Figure 7.9: Plot of (a) Hotelling T2 and (b) Q-statistic in the output space (c) Q-statistic in

the input space versus sample number for the whole experimental data set when the system

parameter is changed from 3.0 to 1.0 at sample number 1000 (example 1)
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The reasons for better performance of the proposed algorithm and the poor sensitivity of

conventional monitoring scheme can be summarized as follows:

(1) Any change in the parameters of the system is reflected as a change in the mean

value of the statistic, k, which is of the same dimension as that of the parameter

vector of the model of the system. For example, in the PLS model, the parameter

vector (equation 7.45) is of dimension (6 x 3 = 18), which is same as that of the

statistic k (equation 7.46). The dimension of the residual vector, on which the Q-
statistics are calculated, is 6 (for the residual in the input space) and 2 (for the

residual in the output space). The residual vectors, therefore, may not be able to

capture the full information about the change.

(2) The proposed algorithm is based on the local approach of hypothesis testing which,

as explained in chapter 6, is especially suitable for detecting small changes in the

parameters

(3) The change in the mean value of statistic k is detected by an algorithm which is

"nearly optimal" in the sense that it minimizes the delay for a given false alarm rate.

7.5.2.2 Example 2: Fault detection in a continuous stirred tank reactor

The proposed scheme is finally applied to detect a fault in a continuous stirred tank reactor

described previously in Chapter 6 (section 6.7.3). Of the 12 measured variables, three

variables namely temperature in the reactor, height in the reactor and product flow rate are

taken as the output variables and the remaining 9 are taken as input variables. A normal data

set consisting of 2000 samples is generated from the SIMULINK based simulator of the

CSTR system. Partial least squares was performed after the data was auto-sealed. The

percentage variance captured by the different latent variables is shown in Table 7.2. A PLS

model using 6 latent variables was built as determined by cross-validation.

Three experimental data sets, each comprising 2000 samples with the first one thousand

samples corresponding to normal conditions and the remaining 1000 samples corresponding

to three different variants of fouling (i) small (2%) (ii) medium (3%) and large (5%), were

generated. The performance of the proposed algorithm for change detection is shown in

Figures 7.10, 7.12 and 7.13. The corresponding performance of conventional PLS based

monitoring seheme is shown in Figures 7.11, 7.13 and 7.15. These results once again show

that while the proposed algorithm detects all these changes without any delay, the
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conventional monitoring scheme only detects the situation where the level of fouling is large

while remaining insensitive to small and medium levels of faults. The reasons for the better

performance of the proposed scheme are the same as given in example 1.

No. % variance Cumulative % % variance Cumulative %

of explained variation explained explained variance explained

LV (X) (X) (Y) (Y)
1 14.86 14.86 36.91 36.91

2 17.71 32.57 9.46 46.37

3 9.77 42.34 4.63 51.00

4 12.82 55.16 3.67 54.67

5 3.80 58.96 21.00 75.67

6 6.59 65.55 9.70 85.37

7 10.88 76.43 0.23 84.60

8 11.57 88.00 0.07 85.67

9 12.00 100.00 0.00 85.67

Table 7.2: Percent variance captured by PLS model (example 2)
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Figure 7.10: Plot of the local statistics versus sample number for (a) the whole

experimental data set when fouling is increased by 2% at sample number 1000 (b) the

normal operating condition component of the experimental data set (example 2)
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Figure 7.11: Plot of {a) Hotelling T2 and (b) Qvstatistic in the output space Cc)Q-statistic in

the input space for the experimental data set when fouling is increased by 2% (example 2)
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Figure 7.12: Plot of the local statistics versus sample number for (a) the whole experimental

data set when fouling is increased by 3% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 2)
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Figure 7.13: Plot of (a) Hotelling T2 and (b) Q-statistic in the output space (c) Q-statistic in

the input space for the experimental data set when fouling is increased by 3% (example 2)
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Figure 7.14: Plot of the local statistics versus sample number for (a) the whole experimental

data set when fouling is increased by 5% at sample number 1000 (b) the normal operating

condition component of the experimental data set (example 2)

190



(a)
20

aM
0

10

a~ 5

0

"er--
Q

:52
~:r:

(b)

(c)

D G ~ D 1~1~1G 1~ 1a~
Sample Number

Figure 7.15: Plot of (a) Hotelling T2 and (b) Q-statistic in the output space (c) Q-statistic in

the input space for the experimental data set when fouling is increased by 5% (example 2)

7.6 Conclusions

In this chapter, a recursive algorithm, which computes parameters for all the latent variables

in parallel, is proposed. The algorithm is shown to converge to the parameters computed by

the NIP ALS algorithm. A statistic was then derived from this recursive algorithm to monitor

a change in the cross-covariance (between the output and the input variables) structure of the

measured variables. The monitoring statistic is especially suitable for detecting small changes

in the covariance structure that cannot be detected by a conventional PLS monitoring scheme.

The proposed monitoring scheme was first tested to detect a change in the parameter of an

artificial system before using it to detect different levels of fouling in a continuous stirred

tank reactor.
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CHAPTER8

Conclusions and Recommendations

8.1 Introduction

This thesis contributes to the two disciplines of modelling and monitoring of multivariate

signals. Specifically, in the first part of the thesis, issues relating to the extension of the

partial least squares algorithm to more complex situations where the data exhibits non-linear

and dynamic behaviour were investigated. The second part was concerned with the detection

of abnormal changes in the variance-covariance structure of the data in PCA and PLS based

monitoring schemes. The contribution and main results of the thesis are summarized in

section 8.2. Recommendations for the future work are given in section 8.3

8.2 Main Contributions and Results

Inmost applications of PLS, the objective is to predict the response variables as accurately as

possible. An alternative application of PLS is that of parameter estimation where the

objective is to estimate the parameters from the data in such a way that they are 'close' to the

'true' parameters. It is known that PLS gives biased estimates of the parameters when the

number of latent variables retained in the model is less than the number of input variables.

However, it is shown that when a subspace of dimension A « K, number of input variables)

is correlated with the output variable and a PLS 1 model is built using A latent variables then

PLS I gives unbiased estimates of the parameters. Furthermore, the variance of the PLS I

estimates can be less than the variance of the estimates using ordinary least squares.

Several non-linear extensions of PLS have been proposed in the literature to model the non-

linear behaviour of complex processes. A detailed investigation of the non-linear PLS

algorithms of Baffi et al., (1999(a» revealed that this algorithm represents a non-linear

extension of reduced rank regression. Conventional PLS is based on the maximization of the

covariance between the t- and u-scores. It is thus argued that a 'true' non-linear PLS should

be a generalization of linear PLS in the sense that when the non-linear function is replaced by

a linear function, non-linear PLS should reduce to linear PLS. A 'true' non-linear PLS

algorithm, therefore, should be based on the maximization of the 'non-linear' covariance

function. After a detailed investigation of the algorithm of Wold et al. (1989) it is proven

that, of all the algorithms existing in the literature, it is the only algorithm that attempts to
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maximize the covariance based function to identify a non-linear PLS model. Further analysis

of the Wold et al., (1989) algorithm revealed some limitations of the algorithm in that all the

parameters that influence the non-linear covariance function are not determined so as to

maximize the covariance function. To overcome this limitation, two new non-linear PLS

algorithms, NLPLS 1 and NLPLS2, are proposed. 10 these algorithms, the 'non-linear

covariance' function is maximized over all the parameters (outer weights and inner non-linear

model parameters). The difference between NLPLSI and NLPLS2 being that they use a

different set of constraints to make the non-linear covariance function bounded. The

application of NLPLS 1 and NLPLS2 algorithms to two artificial data sets and a data

generated from a simulation of a pH neutralization process showed that these two algorithms

perform better than the Wold et al., (1989) algorithm in terms of explaining the variance of

the response matrix Y and the prediction of the response variables for a given number of

latent variables. Of NLPLS 1 and NLPLS2, it was observed that the NLPLS2 performs

slightly better than NLPLS I. Following a critical analysis, the existing non-linear PLS

algorithms are divided into three categories namely quick and dirty, covariance based and

error based depending on the underlying objective function used to determine the model

parameters.

Conventional linear PLS assumes a static relationship between the input and output variables

and therefore, is not suitable in situations where a dynamic model of the process is required.

One approach to extending PLS to take into consideration the dynamics of the process is to

replace the inner static relationship between the t- and u-scores of conventional PLS by a

dynamic relationship. 10 this approach, linear PLS is first performed on the data matrices X

and Y and a dynamic relationship is then fitted between each pair of t- and u-scores

(Lakshminarayan et al., 1997). The limitation of this methodology is that the outer weights

are not determined by the dynamics of the process and the dynamic PLS model thus

identified may not be optimal. To overcome this limitation, an integrated dynamic PLS is

proposed where the dynamic model is fully integrated within the framework of PLS in the

sense that all the parameters (outer weights and inner model parameters) of the dynamic PLS

model are determined as dictated by the dynamics of the data. The application of this

algorithm to model the data collected from an artificial dynamic system and data generated

from a co-polymer reactor simulator showed that the integration of the outer weights and

inner model parameter result in the dynamic model explaining more variance of the response

matrix Y and gives better prediction of the response variables for a given set of latent

variables.
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The abnormal changes in a multivariate Gaussian process can be divided into two categories.

While the first category comprises changes that result in the mean vector of the process

shifting away from its value defined under normal operating conditions, the changes in the

second category are reflected as a change in the variance-covariance structure of the

variables. It is shown that a conventional PCA based monitoring scheme, which uses the two

statistics, Hotelling T2 and the Q-statistic, to detect any systematic shift in the variables, is

particularly insensitive to small changes in the variance-covariance structure of variables. To

overcome this limitation, a new monitoring scheme that derives a monitoring statistic from

the peA model identification procedure is proposed. The key advantage of the proposed

scheme is that a change in the variance-covariance structure is reflected as a change in the

mean value of a statistic that can be detected optimally. To derive the distribution function of

the statistic, and thus to design the change detection algorithm, use is made of the local

approach of hypothesis testing. Another important property of the proposed scheme is that it

is especially suitable for detecting changes of small magnitude. The application of the

proposed scheme to detect changes in the covariance structure of two artificial data sets

showed that while the conventional PCA based monitoring scheme failed to detect the small

changes, the proposed scheme successfully detected these changes. The scheme was finally

applied to detect three different magnitudes of fouling in a heat exchanger in a continuous

stirred tank reactor system. It was observed that while the proposed scheme detects all three

magnitudes of fouling without any delay, the conventional PCA based monitoring scheme is

almost insensitive to small and medium magnitudes of fouling but does give an indication of

change, although weak, when the magnitude of fouling is large.

To detect changes in the cross-covariance (between X and Y) structure, a partial least squares

based performance monitoring scheme is proposed. In this scheme, the derivation of a

monitoring statistic requires that a recursive algorithm exists for identifying the PLS model

parameters. A new recursive PLS algorithm is first derived using the Least Mean Squares

(LMS) algorithm. The algorithm is tested on an artificial data set and is observed to converge

to the solution of the N1PALS algorithm. A monitoring statistic is then derived from this

algorithm. The key properties of the statistic derived from the recursive algorithms are (1) a

change in the cross-covariance structure is reflected as a change in the mean value of the

statistic and (2) it is especially suitable for detecting small changes in the cross-covariance

structure. The distribution function of the statistic derived from the recursive PLS algorithm

is determined using the local approach of hypothesis testing. The proposed scheme was first

applied to detect changes in the parameter of an artificial system before applying it for the

detection of fouling in a heat exchanger in a continuous stirred tank reactor. It was observed
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that while the proposed scheme detects changes of all magnitudes, the conventional PLS

based monitoring scheme can detect changes of large magnitudes only and remains almost

insensitive to changes of small magnitudes.

8.3 Recommendations

Based on the research undertaken in this thesis, certain issues need to be investigated and

explored further. Some recommendations for future directions are given below.

In Chapter 2, the performance of PLS as a parameter estimator has been evaluated on an

artificial data set only. The application of PLS based parameter estimation to a practical

physical/chemical data remains to be addressed.

In Chapter 3, two non-linear PLS algorithms that are based on the 'non-linear covariance

maximization' have been proposed. The non-linearity considered is quadratic and thus the

issue of generalizing the algorithm to a more general non-linearity e.g, feedforward neural

network with a one or more hidden layers, needs to be addressed. Furthermore, extensions to

the modelling of non-linear and dynamic data also need to be explored. Finally 'non-linear

covariance' based algorithms need to be applied for process monitoring and control.

In Chapter 4, the order of the inner dynamic models was selected using a subjective

approach. The reason is that there is no relationship between the number of lags and delays of

the measured variables and the lags and delays of the latent variables, which makes the

selection of the number of lags and delays in the inner dynamic model difficult. This issue

needs to be investigated further. Also the scheme for integrating the outer weights needs to be

extended to the situation when the inner model is non-linear and dynamic, e.g. Hammerstein

and Weiner models.

In Chapter 6, a new statistic to detect a change in the variance-covariance structure has been

proposed. The practical application of the scheme requires the selection of window

parameters which in this thesis has been selected using adhoc approaches. The issue of

systematically selecting the window size parameters and their effect on the optimality of the

change detection algorithm need to be investigated further. Additionally, the extension of this

scheme to monitor the cross-covariance structure in a PLS based monitoring scheme needs to

be undertaken. Also since the derivation of the monitoring statistic requires a model
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identification procedure, the scheme can be extended to detect faults in a non-linear and/or

dynamic PCA based monitoring scheme.

Finally in Chapter 7, a recursive version of the PLS algorithm is proposed. Although the

algorithm can be used to update the parameters of a PLS model on-line in a non-stationary

environment, the issue of its comparison with other recursive PLS algorithm with respect to

speed still remains to be addressed.
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Appendix 1

A.1 Learning rate, 11= 0.001

The plots of the square of the norm of the error versus number of iterations for the first three

w-weight vectors, v-weight vectors and the inner regression coefficients with the learning

rate parameter, 11= 0.001 are shown in Figures A.I, A.2 and A.3 respectively. It is seen

from these figures that for this learning rate convergence for the parameters is slow and some

of the parameters (w 2' W 3' V2' V3 and b.) have not converge even after 100 iterations.

(a)
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0.5

~
0

(b)
e:~z

~ 0.5E
0c:

0
(c)

Number of IterationsL- __

Figure A.1: Plot of estimation error IIW-WNIPALsI12, where wNIPALS is the PLS solution

from the NIP ALS algorithm versus number of iterations for the first three solutions of W (a)

WI (b) W 2 (c) w3 for learning rate 11= 0.001.
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Figure A.3: Plot of estimation error lib - bNIPALs11
2, where bNIPALS is the PLS inner

regression coefficient from the NIPALS algorithm, versus number of iterations for the first
three inner regression coefficients(a) b, (b) b2 (c) b3 for 11= 0.001
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Figure A.2: Plot of estimation error Ilv - v NIPALS f 'where v NIPALS is the PLS solution
from the NIPALS algorithm, against number of iterations for the first three solutions of v (a)
VI (b) v 2 (c) V 3 for learning rate 11= 0.001
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A.2 Learning rate." = 0.04

The plots of the square of the norm of the error versus number of iterations for the first three

w-weight vectors, v-weight vectors and the inner regression coefficients with the learning

rate parameter" = 0.04 are shown in Figures A.4, A.S and A.6 respectively. It is seen from

the figures that error in many of the parameters (w I' W 2' W 3' V I' V 2' V 3' b., b2) does not

become zero after convergence, which implies that the algorithm has not converged to the

'true' (NIPALS) parameters.
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Figure A.4: Plot of estimation error Ilw-wNIPALsI1

2
, where WNTPALS is the PLS solution

from the NIPALS algorithm versus number of iterations for the first three solutions of W (a)

WI (b) W 2 (c) W 3 for " = 0.04
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Figure A.S: Plot of estimation error Ilv - v NIPALSf 'where v NIPALS is the PLS solution
from the NIP ALS algorithm, against number of iterations for the first three solutions of v (a)

VI (b) v2 (c) v3 for 11= 0.04
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Figure A.6: Plot of estimation error lib - bNIPALsf, where bNlPALS is the PLS inner

regression coefficient from the NIPALS algorithm, versus number of iterations for the first
three inner regression coefficients(a) b, (b) b2 (c) h3 for 11= 0.04
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