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Abstract

This thesis consists of two parts.
Part I of this thesis is concerned with the Higman-Thompson group G2,1. We

review and apply Definitions, Lemmas and Theorems described in a series of lectures
delivered by Graham Higman during a visit to the Australian National University
from July 1973 to October 1973 on a family of finitely presented infinite groups Gn,r

for n ≥ 2 and r ≥ 1. This thesis will concentrate on the group G2,1 (otherwise know
as Thompson’s group V).

We give a brief account of the history of the Higman-Thompson group G2,1, we
clarify the proof of the conjugacy problem for elements in quasi-normal form and we
prove that the power conjugacy problem for the group G2,1 is decidable.

Part II of this thesis concentrates on the existence and structure of mixed and
unmixed Beauville p-groups, for p a prime. We start by exhibiting the first explicit
family of mixed Beauville 2-groups and find the corresponding surfaces. We follow
this up by exploring the method that was used to construct the family; this leads to
further ramification structures for finite p-groups giving rise to surfaces isogenous
to a higher product of curves. We finish by classifying the non-abelian Beauville p-
groups of order p3, p4 and provide partial results for p-groups of order p5 and p6.
We also construct the smallest Beauville p-groups for each prime p.
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Chapter 1

Introduction

In Part I, the work of Graham Higman [Hig74] is used to provide a detailed account
of the many properties of Richard Thompson’s group V. This work takes the uni-
versal algebra view of Thompson’s group V, which we will refer to as the Higman-
Thompson group G2,1 throughout this thesis. Part of this work has been submitted
to a refereed journal, [Bar11].

Aims of this work I

We begin Part I of this thesis with a review of two of three main ways elements of
the Higman-Thompson group G2,1 are viewed.

We start by describing the representation of elements of G2,1 as the group of
right-continuous bijections of the unit interval that maps dyadic rational numbers
to dyadic rational numbers that are differentiable except at finitely many dyadic
rational numbers and such that on each maximal interval in which the function is
differentiable the function is linear with derivative a power of 2, originally outlined
by Richard Thompson in [Tho].

We follow this by describing the representation of elements of G2,1 as tree pairs
(which was first given in [CFP96], although we will follow [BGG11] treatment of the
topic).

Remark 1.0.1. We prefer to reference [Tho] as the first place the elements of G2,1 are
described as dyadic rearrangements, even though [CFP96] is the classical reference.
We do this as the unpublished notes of Richard Thompson are now available online.

We now give a brief synopsis of the main results of Part I of this thesis. All
concepts will be defined in due course in the appropriate chapters.

The start of Chapter 2 outlines the important concepts from Universal Algebra
which will be needed in this part of the thesis. We use the work of [Cohn91, Chapter
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Chapter 1. Introduction

1] to define Ω-algebras, congruences on Ω-algebras, free algebras and varieties of
free algebras.

The main part of Chapter 2 is then devoted to the definition of the free algebra
V2,1, originally defined by Graham Higman in [Hig74]. We place the work of [Hig74,
Section 2] in the context of the definitions from Sections 2.1-2.3. We follow this with
a formal definition of the group G2,1, as the algebra automorphism group of the free
algebra V2,1.

Chapter 2 concludes with the definitions of semi-normal and quasi-normal forms
for elements of the group G2,1.

Chapter 3 is devoted to decision problems for the group G2,1. Specifically, con-
jugacy problems for elements given in quasi-normal form of the group G2,1. The
chapter starts by considering a general element ψ of G2,1 and looking at two ψ-
invariant subalgebras of V2,1, Theorem 3.1.1. Theorem 3.1.1 gives the first condition
for conjugacy between two elements of G2,1.

Following this, a formal introduction to the classical decision problems of Dehn
is given.

To put Chapter 3 into some context, we note that Graham Higman originally
solved the conjugacy problem for the Higman-Thompson groups G2,1 (in fact for the
infinite family of finitely presented groups Gn,r, n ≥ 2, r ≥ 1, which we do not discuss
here) in [Hig74, Section 9]. However, since this proof is acknowledged to be difficult,
we have deconstructed Higman’s proof into small lemmas, which we prove using
Higman’s original techniques. We start by proving a series of lemmas in Section 3.3.1
that give conditions for two elements of G2.1 to be conjugate.

The work of [SD10] provides a different solution to the conjugacy problem for
the Higman-Thompson group G2,1, using the revealing tree pair representation of
elements defined by Matt Brin [Brin04].

The first part of Section 3.3.1 is devoted to the conjugacy problem for regular
infinite elements of G2,1, the main result is the following.

Proposition 3.3.21: Let ψ and ϕ be regular infinite elements of G2,1 in quasi-
normal form with respect to X and Y respectively.

Then, ψ is conjugate to ϕ if and only if there exists a map ρ0 ∈ R(ψ; ϕ) such that
ρ0 extends to an element ρ of G2,1 with ρ−1ψρ = ϕ.

The second part of Section 3.3.1 is devoted to the conjugacy problem for periodic
elements of G2,1, the main result is the following.

Proposition 3.3.6: Let ψ and ϕ be torsion elements of G2,1 in quasi-normal form
with respect to the bases X and Y respectively. Then, ψ is conjugate to ϕ if and only
if ψ and ϕ have the same cycle type.

3



Chapter 1. Introduction

The work on the conjugacy problem for elements in quasi-normal form is con-
cluded in Section 3.3.2, where an algorithm (Algorithm 3.3.25) is given. Thus, we
have the following theorem (as originally proved in [Hig74, Section 9]).

Theorem 3.3.26:[Hig74, part of Theorem 9.3] The conjugacy problem is soluble in
G2,1.

The final part of Chapter 3 considers the power conjugacy problem for elements
in quasi-normal form. The problem (Problem 3.4.1) is defined and the intermediate
results rely on results of Section 3.3.1. An algorithm (Algorithm 3.4.12) is presented
in Section 3.4.2 which leads to the following conclusion.

Theorem 3.4.13: The power conjugacy problem for the Higman-Thompson group
G2,1 is solvable.

1.1 Richard Thompson’s Groups F, T and V

Richard J. Thompson in the late 1960s defined three new groups (of permutations of
dyadic splittings of the unit interval) which he called P (Thompson’s Group F), G
(Thompson’s Group T) and V, with very interesting properties.

In some unpublished notes [Tho] Thompson shows P is a finitely presented group
that is isomorphic to P̂, a non-abelian torsion-free infinite group generated by order
preserving permutations of the unit interval [0, 1]. We now present some of this un-
published material (which can now be found in the introductory article on Thomp-
son’s Groups F, T and V by Cannon, Floyd and Parry [CFP96]).

Let P be the group given by the presentation

〈R0, R1|[R−1
0 R1, R0R1R−1

0 ], [R−1
0 R1, R2

0R1R−2
0 ]〉 (1.1)

where [x, y] = xyx−1y−1. It can be shown that all proper quotient groups of P are
abelian (see [CFP96, Theorem 4.3]).

We define P̂ to be the group generated by the following permutations of the unit
interval [0, 1],

R̂0(x) =


1
2 x, if 0 ≤ x ≤ 1

2 ,

x− 1
4 , if 1

2 ≤ x ≤ 3
4 ,

2x− 1, if 3
4 ≤ x ≤ 1.

and R̂1(x) =



x, if 0 ≤ x ≤ 1
2 ,

1
4 +

1
2 x, if 1

2 ≤ x ≤ 3
4 ,

x− 1
8 , if 3

4 ≤ x ≤ 7
8 ,

2x− 1, if 7
8 ≤ x ≤ 1.

4



Chapter 1. Introduction

We note that R̂0R̂1(x) 6= R̂1R̂0(x), so P̂ is non-abelian. Furthermore, since P̂ is a
torsion-free non-trivial order preserving permutation group of the interval [0, 1], we
see that P̂ is infinite. The group P̂ satisfies the relations given in the Presentation
(1.1) and so P̂ is isomorphic to a quotient group of P. However, as P̂ is non-abelian,
P̂ can only be isomorphic to P.

To the presentation of the group P, Presentation (1.1), we add a new generator C1

and some extra relations

C1 = R1C1R−1
0 R1, R0R1R−1

0 R1C1R−1
0 = R1R1C1R−1

0 R−1
0 R1,

R0C1 = (R1C1R−1
0 )2 and C3

1 = 1

to create a new group G. Since P can be shown to be a subgroup of G (see [CFP96,
Lemma 5.4]) this gives G as a finitely presented infinite group. Thompson identified
G with the group Ĉ given by amending the presentation of P̂ by adding the generator,

Ĉ1(x) =


1
2 x + 3

4 , if 0 ≤ x ≤ 1
2 ,

2x− 1, if 1
2 ≤ x ≤ 3

4 ,

x− 1
4 , if 3

4 ≤ x ≤ 1,

and the new relations

Ĉ1 = R̂1Ĉ1R̂−1
0 R̂1, R̂0R̂1R̂−1

0 R̂1Ĉ1R̂−1
0 = R̂1R̂1Ĉ1R̂−1

0 R̂−1
0 R̂1,

R̂0Ĉ1 = (R̂1Ĉ1R̂−1
0 )2 and Ĉ3

1 = 1.

It is then shown that Ĉ is a simple group and G ∼= Ĉ.
Furthermore, Thompson obtained the group V̂ by adjoining a new generator

π̂1(x) =


1
2 x + 1

2 , if 0 ≤ x ≤ 1
2 ,

2x− 1, if 1
2 ≤ x ≤ 3

4 ,

x, if 3
4 ≤ x ≤ 1,

and new relations to the presentation of the group Ĉ. He then showed that V̂ is a
simple group too. Thompson also stated that V̂ can be 2-generated and gave explicit
generators, one of order 4 and another of order 6.

We note that multiplication of elements of the groups P̂, Ĉ and V̂ is achieved by
composition of functions.

We now make the formal definitions of the Thompson’s groups F, T and V.

Definition 1.1.1 (Thompson’s groups F, T and V). We define F to be the group of

5



Chapter 1. Introduction

piecewise linear homeomorphisms of the closed interval [0, 1] to itself that are differ-
entiable except at finitely many dyadic rational numbers and such that on intervals
of differentiability the derivatives are powers of 2.

We define T to be the group of piecewise linear homeomorphisms of the cir-
cle S1 (the interval [0, 1] with the endpoints 0 and 1 identified) to itself that map
dyadic rational numbers to dyadic rational numbers, that are differentiable except at
finitely many dyadic rational numbers and such that on intervals of differentiability
the derivatives are powers of 2.

We define V to be the group of right-continuous bijections of the interval [0, 1]
that map dyadic rational numbers to dyadic rational numbers, that are differentiable
except at finitely many dyadic rational numbers and such that on each maximal
interval on which the function is differentiable the function is linear with derivative
a power of 2.

It was shown in [CFP96], that F ∼= P̂, T ∼= Ĉ and V ∼= V̂.

1.2 Tree pairs and Dyadic rearrangements

Taking the description of the group V in terms of right-continuous bijections of the
interval [0, 1], Section 1.1, we can represent this group in a diagrammatic way. Many
authors use a tree pair description. We follow the description of [Brin04, Section 10].

We will now describe elements of V as a pair of trees with a permutation.

Figure 1.2.0.1: A dyadic rearrangement of the interval [0, 1] representing an element of V.

Let J be the set of finite words (including the empty word ε) on {0, 1}. It is a
monoid under concatenation (and in fact the free monoid on two generators) with
the empty word ε as the identity.

Let T be the infinite binary tree. We can think of J as the set of nodes of T (we
refer to elements of J as nodes of T when we do so) since we can think of v0 and v1
as the left and right child nodes of the node v ∈ T . The empty word ε is the root of
T .

6



Chapter 1. Introduction

Figure 1.2.0.2: A tree pair representing figure 1.2.0.1 element of Thompson’s Group V.

Definition 1.2.1. A dyadic pattern P on the unit interval I is a finite collection of or-
dered dyadic rational numbers (together with zero and one) i.e. P = {0, x1, ..., xn, 1}
such that xi = a

2b with b nonnegative integer and a ≤ 2b − 1 a nonnegative odd
integer, for i = 1, ..., n and 0 < x1 ≤ ... ≤ xn < 1.

An interval in a dyadic pattern is the half open interval [xi, xi+1) for xi, xi+1 ∈ P
(except the final interval [xn, 1] for xn ∈ P).

Example 1.2.2. The finite collection {0, 1
4 , 1

2 , 1} is the dyadic pattern associated to the
first interval splitting in Figure 1.2.0.1 with intervals [0, 1

4 ), [
1
4 , 1

2 ) and [ 1
2 , 1].

Definition 1.2.3. A dyadic rearrangement is a right continuous bijection f : I → I that
maps intervals of one dyadic pattern to another.

From the above definition, it is clear that Thompson’s group V can be seen to be
the group of all dyadic rearrangements of the unit interval [0, 1].

Each node in T corresponds to an interval in a dyadic pattern on I. Recursively
ε corresponds to I itself and if v corresponds to [a, b), then v0 corresponds to [a, c)
and v1 corresponds to [c, b) where c = (a + b)/2.

Here, a finite binary tree will be a finite subset D of T so that

1. every prefix of a node in D is also in D;

2. for all nodes v in D, v0 is in D if and only if v1 is in D.

We will refer to finite binary trees simply as finite trees, when the meaning is clear.
The leaves of such a D will be the nodes in D whose children are not in D. Nodes

of a tree that are not leaves are called interior nodes of a tree. The root of every tree is
the empty word ε.

The leaves of a finite tree D give a dyadic pattern in I by taking the intervals in
I corresponding to the leaves of D. Two trees D and R (domain and range) with the
same number, n, of leaves define two dyadic patterns in I with the same number of

7



Chapter 1. Introduction

intervals. If we are given a one-to-one correspondence between the leaves of D and
the leaves of R, then we can build a right continuous bijection from [0, 1] to itself.

We now think of elements of Thompson’s group V as triples [D, R, σ] where D
and R are finite trees with the same number, n, of leaves and where σ is a bijection
from the leaves of D to the leaves of R. An example1 is given in figure 1.2.0.2.

We will return to tree pairs in Chapter 5, where we will discuss a particular form
representing tree pairs for an element of Thompson’s group V.

Remark 1.2.4. From now on we will refer to Thompson’s group V as the Higman-
Thompson group G2,1.

1This graphic was generated by a java scripted program, created by Roman Kogan. Further tree
pairs given in this thesis are created using the LaTeX package qtrees.
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Chapter 2

Universal Algebra and the
Higman-Thompson group G2,1

Graham Higman in [Hig74] gave a representation of Thompson’s group V as the
automorphism group of a free algebra in a variety of a particular class of free alge-
bras. We will now introduce the concepts of free algebra and variety of free algebras,
which come from Universal Algebra.

We start by introducing the terminology of operations on sets, definitions of Ω-
algebra and Ω-subalgebra (in the sense of [Cohn91, Chapter 1], which we follow
closely throughout Sections 2.1-2.3). We follow this with a definition of congruence
on an Ω-algebra which then leads to a definition of free algebra and variety of free
algebras.

This set up will then be used in Section 2.4, where the free algebra correspond-
ing to the construction from Graham Higman [Hig74] gives rise to the Higman-
Thompson group G2,1.

2.1 Ω-algebra

For any integer n ≥ 0 we define an n-ary operation on a set S to be a mapping of Sn

into S. The number n is called the arity of the operation. A finitary operation is defined
to be a mapping which is n-ary for some n ∈N0 (the natural numbers together with
zero).

Remark 2.1.1. We say unary for 1-ary and binary for 2-ary. A 0-ary operation on S is
just a specific element of S, sometimes called a constant operation on S.

An algbera A here is thought of as a set S with certain finitary operations defined
on it. In order to compare different algebras, we need to establish a correspondence
between their sets of operations. This is achieved by indexing the operations in each

9



Chapter 2. Universal Algebra and the Higman-Thompson group G2,1

algebra by a given index set. An element of the set of operations is called an operator
and has a given arity.

Definition 2.1.2. An operator domain is a set Ω and a mapping a : Ω → N0. The
elements of Ω are called operators; if ω ∈ Ω, then a(ω) is called the arity of ω. We
shall write Ω(n) = {ω ∈ Ω|a(ω) = n}, and refer to the members of Ω(n) as n-ary
operations.

An Ω-algebra is defined as a pair (S, Ω) consisting of a set S with a family of
operations indexed by Ω:

ω : Sn → S for each ω ∈ Ω(n), n=0,1,2,... . (2.1)

The set S is called the carrier of the algebra and the set Ω is called the operator
domain or the signature of the algebra.

Strictly speaking, we should denote the algebra by (S, Ω, ϕ), where ϕ is the family
of mappings ϕn : Ω(n) → Map(Sn, S) defined by (2.1), but usually we shall not
distinguish notationally between an algebra and its carrier.

We now give an example, which we will refer back to throughout Sections 2.1-2.3.

Example 2.1.3 (Groups). A group (G, ·,−1 , 1) is given by a binary operation (multi-
plication, ·), a unary operation (inversion, −1) and a constant operation (the neutral
element 1), satisfying certain laws.

Given an Ω-algebra (S, Ω) and f ∈ Ω with arity n, we can apply f to any n-tuple
s1, ..., sn ∈ S and obtain another element of S, which is written s1...sn f . In the case
n = 0, we just single out an element of S, denoted by f .

We say that a subset T ⊆ S is closed under the operations of Ω if for all f (of arity n)
in Ω and for all s1, ..., sn ∈ T the element s1...sn f is also an element of T.

Definition 2.1.4. Given an Ω-algebra (S, Ω), an Ω-subalgebra is an Ω-algebra (S′, Ω)

whose set S′ is a subset of S which is closed under the operations of Ω, as defined in
S i.e. S′ is Ω-closed.

We can clearly see that the intersection of any family of subalgebras is again a
subalgebra. Hence, for any subset X of the set S we can form the intersection of all
subalgebras containing X. This is called the subalgebra of (S, Ω) generated by X.

The subalgbera of (S, Ω) generated by X may also be formed by applying the
operations of Ω to X and repeating this operation a finite number of times. If the
subalgebra generated by X is the whole of S, then X is called a generating set for S.

A mapping g : A → B between two Ω-algebras A = (S, Ω),B = (S′, Ω) is said to
be compatible with f ∈ Ω of arity n if for all s1, ..., sn ∈ S,

(s1g)...(sng) f = (s1...sn f )g.

10



Chapter 2. Universal Algebra and the Higman-Thompson group G2,1

If g is compatible with each f ∈ Ω, it is called a homomorphism from A = (S, Ω) to
B = (S′, Ω). If a homomorphism g from A to B has an inverse g−1 which is again a
homomorphism, g is called an isomorphism and then the Ω-algebras A = (S, Ω),B =

(S′, Ω) are said to be isomorphic.
An isomorphism of an algebra A = (S, Ω) with itself is called an automorphism

and a homomorphism of an algebra into itself is called an endomorphism.
A homomorphism is determined once it is known on a generating set, as stated

in the next proposition (without proof).

Proposition 2.1.5. ([Cohn91, Proposition 1.1]) Let g, h : A → B be two homomorphisms
between Ω-algebras A = (S, Ω),B = (S′, Ω). If g and h agree on a generating set, then
they are equal.

We now introduce the notion of direct product of Ω-algebras, in preparation for
the next section on congruences on an Ω-algebra.

From a family {Ai}m
i=1 (Ai = (Si, Ω)) of Ω-algebras we can form the direct product

P = ∏m
i=1Ai of Ω-algebras. Its set is the Cartesian product S of the Si, and the

operations are carried out componentwise. Thus, if πi : S → Si are the projections
from the product to the factors then any f ∈ Ω of arity n is defined on Sn by the
equation

(p1...pn f )πi = (p1πi)...(pnπi) f ,

where pi ∈ S.
Let C be a class of Ω-algebras, whose elements we will call C-algebras. By a

free C-algebra on a set X we mean a C-algebra F in C with the following universal
property:

there is a mapping µ : X → F such that every mapping f : X → A into a C-
algebra A can be factored uniquely by µ to give a homomorphism from F to A, i.e.
there exists a unique homomorphism f ′ : F → A such that µ f ′ = f . It is worth
noting that Theorem 2.3.3 shows that WΩ(X) is the free algebra on X in the class of
all Ω-algebras.

Not every class has free algebras, but they exist in some cases as we will see in
Proposition 2.3.6.

A free product is defined in a similar way, replacing the set X by a collection of
C algebras. Given an indexing set I and for each i ∈ I an Ω algebra Ai from C the
free product A of {Ai}i∈I , written A = ∗i∈IAi, is an Ω-algebra in C satisfying the
following property.

There exists mappings µi : Ai → A, for all i ∈ I, such that for any Ω-algebra B
and family of mappings fi : Ai → B, for all i ∈ I, there exists a unique homomor-
phism f ′ : A → B such that µi f ′ = fi for all i.

11
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Given collections {Ai}i∈I and {Bi}i∈I of Ω-algebras such that there exists free
products A = ∗i∈IAi, B = ∗i∈IBi, then the definition above gives maps µi : Ai → A,
µ′i : Bi → B for all i ∈ I. Suppose there exists homomorphisms fi : Ai → Bi for all
i ∈ I. Then fiµ

′
i is a homomorphism from Ai to B for all i ∈ I so there exists a unique

homomorphism f ′ : A → B with µi f ′ = fiµ
′
i for all i ∈ I. We denote f ′ by ∗i∈I fi.

2.2 Congruence on an Ω-algebra

The main objective of this section is to define what is meant by a "congruence on an
Ω-algebra."

Firstly, a correspondence between any two sets S and R is defined to be a subset of
the Cartesian product S× R.

Definition 2.2.1. Let S and R be any sets. A mapping f : S → R is a correspondence
Γ f ⊂ S× R with the following properties:

• (everywhere defined) for each s ∈ S there exists r ∈ R such that (s, r) ∈ Γ f ,

• (single-valued) if (s, r), (s, r′) ∈ Γ f then r = r′.

We now define two operations on correspondences. For any correspondence Γ ⊂
S× R we have the inverse, defined as

Γ−1 = {(r, s) ∈ R× S|(s, r) ∈ Γ};

next, if Γ ⊂ S× R and ∆ ⊂ R× T, then their composition is given by

Γ ◦ ∆ = {(s, t) ∈ S× T|(s, x) ∈ Γ and (x, t) ∈ ∆ for some x ∈ R}.

If Γ ⊂ S× R and S′ ⊂ S we define

S′Γ = {r ∈ R|(s, r) ∈ Γ for some s ∈ S′}.

There are two natural correspondences one can define. On every set S there is
the identity correspondence 1S = {(s, s)|s ∈ S} and the universal correspondence S2 =

{(s, s′)|s, s′ ∈ S}.

Definition 2.2.2. An equivalence on S is a subset Γ of S2 with the properties

1. (transitivity) Γ ◦ Γ ⊂ Γ,

2. (symmetry) Γ−1 = Γ,

3. (reflexivity) 1S ⊆ Γ.

12
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The equivalence class of s ∈ S is {s′ ∈ S|(s, s′) ∈ Γ} = {s}Γ.

Given any subset U of S× S, the equivalence generated by U is the smallest equiv-
alence E on S containing U. It can be seen that

E =
⋂
{V ⊆ S× S|V is an equivalence and U ⊆ V}.

Also, it follows that E is

{(a, b) ∈ S× S|there exists a0, ..., an such that a0 = a, an = b and (ai, ai+1) ∈ U}.

To use correspondences in the study of Ω-algebras, we need to know their be-
havior as subalgebras. Firstly, if A = (S, Ω) and B = (R, Ω) are Ω-algebras and
Γ ⊂ S× R is a correspondence which is closed under the operations of Ω, as defined
in A× B, then (Γ, Ω) is a subalgebra of A× B. In this case we abuse notation and
say Γ is a subalgebra of A×B.

Lemma 2.2.3. ([Cohn91, Lemma 2.1, Chapter 1]) Let A,B, C be Ω-algebras and let Γ, ∆ be
subalgebras of A × B,B × C respectively. Then Γ−1 is a subalgebra of B × A, Γ ◦ ∆ is a
subalgebra of A× C and for any subalgebra A′ of A, A′Γ is a subalgebra of B.

Let S and T be any sets and f : S→ T a mapping between them. Then the image of
f is defined as SΓ f , also written im f ; the kernel of f is defined as the correspondence

ker f = {(x, y) ∈ S2|x f = y f }.

This is an equivalence on S; the different equivalence classes are just the inverse
images of elements in the image (sometimes called the fibres of f ).

Example 2.2.4 (Groups). If we look at the definition of the kernel above of then we can
relate it to the kernel of a homomorphism of groups. Given a group homomorphism
f : G → H, the kernel of f is the inverse image under f of the unit element of H. This
is a normal subgroup N of G and the different cosets of N in G are just the fibres of
f .

So, the equivalence classes of ker f from the definition above, are the cosets of N
in G.

Let S and T be any sets and Γ a correspondence from S to T. The correspondence
Γ will be used to define a system of subsets of S, T.

For any subset X of S we define a subset X∗ of T by

X∗ = {y ∈ T|(x, y) ∈ Γ for all x ∈ X} = ∩x∈X{x}Γ,

13
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and similarly, for any subset Y of T we define a subset Y∗ of S by

Y∗ = {x ∈ S|(x, y) ∈ Γ for all y ∈ Y} = ∩y∈Y{y}Γ−1.

We thus have mappings X 7→ X∗ and Y 7→ Y∗ of the power sets of S and T with the
following properties:

X1 ⊆ X2 ⇒ X∗1 ⊇ X∗2 , Y1 ⊆ Y2 ⇒ Y∗1 ⊇ Y∗2 , (2.2)

X ⊆ X∗∗, Y ⊆ Y∗∗, (2.3)

X∗∗∗ = X∗, Y∗∗∗ = Y∗. (2.4)

A pair of mappings X 7→ X∗ and Y 7→ Y∗ between the power sets of S and T
satisfying (2.2-2.4) is called a Galois connexion.

A congruence on an Ω-algebra A = (S, Ω) is an equivalence on S which is also a
subalgebra of A2 i.e. an equivalence Γ ⊂ S× S which is Ω-closed. From the above,
1A and A2 are congruences on A.

Given any subset U ⊆ S× S the congruence generated by U is

C =
⋂
{V| V is a congruence and U ⊆ V}.

It follows that C is the smallest congruence on A containing U.
LetA be an Ω-algebra. By definition a congruence is an equivalence which admits

the operations ω (ω ∈ Ω(n)). Now each n-ary operator ω defines an n-ary operation
on A:

(a1, ..., an)→ a1...anω for a1, ..., an ∈ A. (2.5)

By giving fixed values in A to some of the arguments, we obtain r-ary operations for
r ≤ n; in particular, if we fix all the ai except one, x ∈ A, we obtain for any n− 1
elements a1, ..., an−1 ∈ A and any i = 1, ..., n a unary operation

x → a1...ai−1xai...an−1ω. (2.6)

We say that the operation (2.6) is an elementary translation derived from (2.5) by spe-
cialisation in A.

Proposition 2.2.5. ([Cohn81, Proposition 6.1, Chapter6] An equivalence q on an Ω-algebra
A is a congruence if and only if it admits all translations; more precisely, a congruence admits
all translations, while any equivalence admitting all elementary translations is a congruence.

Remark 2.2.6. If U ⊆ S× S, then the congruence generated by U can be seen to consist
of pairs (a, b) ∈ S× S such that there exists a0, ..am, ai ∈ S with n ≥ 0, with

14
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• a0 = a, am = b

• (ai, ai+1) = (uiτ, ui+1τ)

where τ is an elementary translation (including τ = Identity) and (ui, ui+1), (ui+1, ui) ∈
U. i.e. there exists s1, ..., sn−1 ∈ S, u ∈ S, 0 ≤ j ≤ m and ω ∈ Ω(n) such that

uτ = (s1, ..., sj−1u, sj, ..., sn−1)ω

so
ai = (s1, ..., sj−1ui, sj, ..., sn−1)ω,

ai+1 = (s1, ..., sj−1ui+1, sj, ..., sn−1)ω

(or ai = ui, ai+1 = ui+1) with (ui, ui+1), (ui+1, ui) ∈ U.

The next two theorems explain the significance of congruences for Ω-algebras and
will be used in the following section on free algebras and varieties.

Theorem 2.2.7. ([Cohn91, Theorem 2.2, Chapter 1]) Let g : A → B be a homomorphism of
Ω-algebras. Then im f is a subalgebra of B and ker f is a congruence on A.

For any congruence q on A, we define an algebra structure, denoted A/q, such
that the natural mapping A → A/q is a homomorphism with kernel q. This is
formalized in the following theorem.

Theorem 2.2.8. ([Cohn91, Theorem 2.3, Chapter 1]) Let A be an Ω-algebra and q a congru-
ence on A. Then, there exists a unique Ω-algebra, denoted A/q, with carrier the set of all
q-classes such that the natural mapping ν : A → A/q is a homomorphism.

The algebra A/q is called the quotient algebra of A by q, with the natural homomor-
phism ν : A → A/q.

Example 2.2.9 (Group). Given a group G with a normal subgroup N, we can put a
group structure on the set G/N (the quotient group) such that the natural mapping
G → G/N is a homomorphism.

2.3 Free algebras and varieties

To study Ω-algebras one needs to form expressions in indeterminates. Let X =

{x1, x2, ...} be any set, called an alphabet, and Ω any operator domain, with Ω ∩ X =

∅.
We define an Ω-algebra as follows: An Ω-row in X is a finite sequence of elements

in the set Ω ∪ X. The set of all Ω-rows in X is denoted W(Ω; X). The length of an
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Ω-row w ∈ W(Ω; X) is written |w| and is the number of terms in w i.e. if w =

w1...wm where wi ∈ Ω ∪ X then |w| = m. We define an action of Ω on W(Ω; X) by
juxtaposition; thus if fi ∈ Ω, of arity ni, and u1, ..., uni ∈ W(Ω; X), then the effect of
fi on the ni-tuple (u1, ..., uni) is the row u1...uni fi. That is to say that the carrier S of
our Ω-algebra is W(Ω; X), the set of Ω-rows. By abuse of notation we will refer to
W(Ω; X) as an Ω-algebra.

It is clear that X ⊂ W(Ω; X) and we call the subalgebra generated by X the
Ω-word algebra on X, denoted by WΩ(X). Its elements are Ω-words in the alphabet X.

There is a clear distinction between Ω-rows which are Ω-words and those that
are not. For example, if there is one binary operation f , then

x1x2x3 f x4 f f = (x1, ((x2, x3) f , x4) f ) f

is a Ω-row which is also an Ω-word while x1 f f x2 f x3 is an Ω-row which is not an
Ω-word.

Definition 2.3.1. ([Cohn91, Chapter 1]) We define the valency of an Ω-row w =

w1...wm (wi ∈ Ω ∪ X) as v(w) = ∑m
i=1 v(wi) where

v(wi) =

1, if wi ∈ X,

1− ni, if wi ∈ Ω, of arity ni.

Proposition 2.3.2. ([Cohn91, Proposition 3.1, Chapter 1]) An Ω-row w = w1...wm in
W(Ω; X) is an Ω-word if and only if every left-hand factor ui = w1...wi of w satisfies

v(ui) > 0 for i = 1, ..., m,

and
v(w) = 1.

Moreover, each word can be obtained in just one way from its constituents.

Let A be an Ω-algebra. If in an element w of WΩ(X) we replace each element
of X by an element of A we obtain a unique element of A. For |w| = 1, this is
clear, so assume |w| > 1 and we will use induction on the length of w. We have
w = u1...uni fi ( fi ∈ Ω, ui ∈ WΩ(X)), where the ui are uniquely determined once w is
given, by Proposition 2.3.2. By induction each ui becomes ai ∈ Awhen we replace the
elements of X by elements of A, hence w becomes a1...ani fi which is another element
of A.

This leads to the universal property of the Ω-word algebra, that is that WΩ(X) is
the free Ω-algebra on X, freely generated by X.
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Theorem 2.3.3. ([Cohn91, Theorem 3.2, Chapter 1]) Let A be an Ω-algebra and X a set.
Then any injective mapping θ : X → A extends in just one way to a homomorphism θ̄ :
WΩ(X)→ A.

Given any Ω-algebra A, we can take a generating set X of A and apply the
construction of Theorem 2.3.3 to give the corollary below.

Corollary 2.3.4. ([Cohn91, Corollary 3.3, Chapter 1]) Any Ω-algebra A can be expressed
as a homomorphic image of an Ω-word algebra WΩ(X) for a suitable set X. Here X can be
taken to be any set corresponding to a generating set of A.

When we come to define a concrete class of algebras, we do so by specifying its
operations fi ∈ Ω, a set S and equations holding identically for all elements of S.
Generally, by an identity or law over Ω in X we mean a pair (u, v) ∈WΩ(X)×WΩ(X)

or an equation formed from the pair u = v. We say that the law (u, v) holds in the Ω-
algebra A or that A satisfies the equation u = v if every homomorphism WΩ(X)→ A
maps u and v to the same element of A.

This relation between sets of laws and classes of algebras establishes a Galois
connexion.

• Given any set Σ of laws, we can form VΩ(Σ), the class of all Ω-algebras sat-
isfying all the laws in Σ. This class VΩ(Σ) is called the variety generated by
Σ.

• Given a class C of Ω-algebras we can form the set q = q(C) of all laws which
hold in all algebras of C.

This Galois connexion relates each variety of Ω-algebras to a correspondence q

on WΩ(X), which is also a congruence.
A subalgebra of an Ω-algebra A is called fully invariant if it is mapped into itself

by all endomorphisms of A. This definition also extends to congruences Γ on A,
viewed as subalgebras of A2. The fully invariant congruence generated by Γ is

C =
⋂
{V| V is a fully invariant congruence and Γ ⊆ V}.

It follows that C is the smallest invariant congruence on A generated by Γ.
The congruence properties of q(C) are shown in the following way: in every class

C of Ω-algebras we have u = u for any u ∈WΩ(X). If u = v holds then so does v = u
and if u = v, v = w then u = w holds too. Further, if ui = vi for i = 1, ..., n are laws
holding in A and ω ∈ Ω of arity n, then u1...unω = v1...vnω holds in A.

To show that q(C) is a fully invariant congruence, let (u, v) ∈ q(C) and let θ be any
endomorphism of WΩ(X). If α : WΩ(X) → A, where A ∈ C, is any homomorphism,
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then so is θα, hence uθα = vθα. Thus the law uθ = vθ holds in A, so (uθ, vθ) ∈ q(C)
and this shows that q(C) is a fully invariant congruence.

Theorem 2.3.5. ([Cohn91, Theorem 3.5, Chapter 1]) Let W = WΩ(X) be the Ω-word
algebra on an infinite alphabet X. Then the Galois connexion between Ω-algebras and laws
establishes a natural bijection between varieties of Ω-algebras and fully invariant congruences
on W.

That is:

{Varieties of Ω-algebras} ←→ {Fully invariant congruences on WΩ(X)}.

Free algebras exist in varieties.

Proposition 2.3.6. ([Cohn91, Proposition 3.6, Chapter 1]) Let V be a variety of Ω-algebras
and q the congruence on WΩ(X) (the Ω-word algebra generated by X) consisting of all the
laws on V i.e. the fully invariant congruence q(V). Then WΩ(X)/q is the free V-algebra on
X.

Suppose Σ is a set of laws over Ω in X and let V = VΩ(Σ) and q = q(V). Then
Σ ⊆ q and, from Proposition 2.3.6, q is a fully invariant congruence and WΩ(X)/q is
the free V-algebra.

Now let p be the fully invariant congruence generated by Σ. Then, as Σ ⊆ q

and q is a fully invariant congruence, we have p ⊆ q. Let A = WΩ(X)/p. Then A
is an Ω-algebra, in which every law of Σ holds (as Σ ⊆ p). Thus A is a V-algebra.
Then, from Proposition 2.3.6, the natural map X → A extends to a homomorphism
WΩ(X)/q→ A. It follows that q ⊆ p. Therefore p = q = q(V).

This argument above will be used to construct the Higman algebra in Section 2.4
using the fact that the equivalence relation generated by Σ (Definition 2.4.2) is a fully
invariant congruence which is equal to q(VΩ(Σ)).

2.4 The Higman Algebra V2,1

We are now going to put Graham Higman’s definition of his free algebra V2,1 into the
set-up of Sections 2.1-2.3. We will point out at each stage the parts of [Hig74, Section
2] we are referring to and the terminology that Graham Higman used.

We start with an Ω-algebra A with carrier S and operator domain Ω = {λ, α1, α2},
with a(αi) = 1 for i = 1, 2 and a(λ) = 2.

We call the one binary operation λ,

λ : S2 → S
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a contraction and the two unary operations,

αi : S→ S

descending operations, for i = 1, 2.
For any v ∈ S, we denote

vα := (vα1, vα2).

Thus, α is a map,
α : S→ S2,

which we shall call an expansion. For any subset Y of S, a simple expansion of Y consists
of substituting some element y of Y by the two elements of the tuple yα. A series of d
simple expansions of Y is called a d-fold expansion of Y. Similarly, a simple contraction
of two distinct elements {y1, y2} of Y consists of substituting {y1, y2} by (y1, y2)λ.

We now define WΩ({x}) to be the Ω-word algebra (with Ω as above). That is,
WΩ({x}) is the free Ω-algebra on the generating set {x}, freely generated by {x} (see
Section 2.3).

Remark 2.4.1. In the terminology that was used in [Hig74, Section 2], the set of stan-
dard forms over {x} is a subset of the Ω-word algebra WΩ({x}).

We shall now build a particular instance of the free algebra that Graham Higman
defined in [Hig74] by considering a variety of Ω-algebras and using Proposition 2.3.6.

Definition 2.4.2. Let Σ be the following sets of laws,

1. for any w ∈WΩ({x}),
wαλ = w,

(or explicitly wα1wα2λ = w).

2. for any pair (w1, w2) ∈WΩ({x})2,

w1w2λαi = wi for i = 1, 2.

Let V2 be the variety of Ω-algebras which satisfy the laws in Σ (see Definition
2.4.2).

Definition 2.4.3. Let the q be the congruence on WΩ({x}) generated by the set

RΣ = {(wα1wα2λ, w)|w ∈WΩ({x})}

∪ {(w1w2λα1, w1), (w1w2λα2, w2)|w1, w2 ∈WΩ({x})}.
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From Proposition 2.3.6, and the comments following it, q is the fully invariant
congruence q(V2) and V2 = VΩ(Σ) = VΩ(q). Moreover WΩ({x})/q is the free V2-
algebra on {x}.

Remark 2.4.4. We now mention the work of [Hig74, Section 2]. Let A = {α1, α2} and
V2,1 denote the free algebra of V2 freely generated by {x}. Graham Higman defines
a standard form over X as one of the finite sequences of elements of {x} ∪ A ∪ {λ}
specified by the following rules:

(i) xαi1 ...αik is a standard form whenever k ≥ 0 and 1 ≤ ij ≤ 2 for j = 1, . . . , k.

(ii) If w1, w2 are standard forms, then so is w1w2λ unless there is a standard form u
such that wi = uαi for i = 1, 2.

(iii) No sequence is a standard form unless this follows from (i) and (ii).

Graham Higman made the set of standard forms into an Ω-algebra by defining
the operations α1, α2, λ as follows:

(xαi1 ...αik)αi = xαi1 ...αik αi

(w1w2λ)αi = wi

for i = 1, 2 and

(w1, w2)λ = w1w2λ

unless there is a standard form u such that wi = uαi for i = 1, 2 in which case Graham
Higman defines

(w1, w2)λ = (uα1, uα2)λ = u.

Graham Higman then goes on to prove that the algebra of standard forms is a
free algebra of V2, freely generated by {x} ([Hig74, Lemma 2.1]). This is already
given here by the set up from the previous sections (specifically Theorem 2.3.3 and
Proposition 2.3.6).

Remark 2.4.5. By [Hig74, Corollary 2, page 12] (which states that Vn,r ∼= Vn,s if and
only if r ≡ s mod n − 1) for n = 2 V2,r ∼= V2,1, for all r ≥ 1 and r = |X|, X a
generating set.

Lemma 2.4.6. Let {w}∗ be an equivalence class of elements of WΩ({x}) given by the fully
invariant congruence q. Then, there exists a unique minimal length element u in {w}∗. The
unique minimal length elements of equivalence classes are precisely the standard forms of
Higman.
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Proof. The proof depends on an explicit description of the congruence q. First define
a translation to be a map τ from WΩ({x})2 given by one of the rules

(u, v)τ = (u, v) or

(u, v)τ = (uαi, vαi), i ∈ {1, 2} or

(u, v)τ = (uwλ, vwλ), w ∈WΩ({x} or

(u, v)τ = (wuλ, wvλ), w ∈WΩ({x},

for all (u, v) ∈WΩ({x})2.
Next, for (u, v) ∈WΩ({x})2, we define translation closure of (u, v) to be the subset

(u, v) of WΩ({x})2 with the following recursive definition. Namely, (u, v) is the
smallest subset of WΩ({x})2 such that

1. (u, v) ∈ (u, v) and

2. if (r, s) ∈ (u, v) then (r, s)τ ∈ (u, v) for all translations τ.

That is, (u, v) consists of the elements of WΩ({x})2 obtained by applying a finite
sequence of translations to (u, v). Now define the translation closure R̄Σ of RΣ to be

R̄Σ =
⋃

(u,v)∈RΣ

(u, v).

We claim that q is the equivalence generated by R̄Σ. Temporarily denote this
equivalence by p. As R̄Σ is closed under translation it follows (see Proposition 2.2.5)
that p is a congruence; so p ⊇ q, as p ⊇ RΣ. Furthermore, if p′ is a congruence
containing RΣ then p′ is closed under translation, so contains R̄Σ. Thus p′ ⊇ p. In
particular q ⊇ p, as required. Therefore q is the equivalence generated by R̄Σ, as
claimed.

Now we shall show that R̄Σ has the following 2 properties. If (a, b) ∈ R̄Σ then

(I) |a| > |b| and

(II) there exist Ω-rows w0 and w1 in W(Ω, {x}) and (u, v) ∈ RΣ such that a =

w0uw1 and b = w0vw1.

If (a, b) ∈ R̄Σ then (a, b) is obtained by applying a sequence of t translations to some
(u, v) ∈ RΣ. (I) and (II) are proved by induction on the number t of translations
required. If t = 0 then (a, b) ∈ RΣ and I holds by definition of RΣ and II holds
with w0 and w1 trivial. Assume both these results hold for elements obtained by at
most t− 1 applications of translations, to an element of RΣ. We have (a, b) = (c, d)τ,
for some translation τ and some (c, d) ∈ R̄Σ which is obtained from (u, v) by t− 1
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applications of translations. From the inductive hypothesis |c| > |d| and, since every
translation changes the length of left and right hand sides of a pair by the same
amount, it follows that |a| > |b|. Also, from the inductive hypothesis c = w0uw1 and
d = w0vw1, for some Ω-rows w0 and w1. Depending on the type of τ we have (a, b) =
(c, d), or (a, b) = (cαi, dαi) = (w0uw1αi, w0vw1αi) or (a, b) = (w0uw1sλ, w0vw1sλ) or
(a, b) = (sw0uw1λ, sw0vw1λ), where s ∈ WΩ({x}). In all cases (a, b) can be seen to
have the form required by (II). By induction (I) and (II) hold for all (a, b).

We regard R̄Σ as a reduction system on WΩ({x}) (see for example [BO93]) and
write a =⇒ b if (a, b) ∈ R̄Σ and a ∗

=⇒ b if (a, b) is in the reflexive, transitive closure

of R̄Σ. (Thus a ∗
=⇒ b if and only if a = b or there is a seqence a = a0, . . . , an = b, such

that ai =⇒ ai+1.) As q is the reflexive, symmetric, transitive closure of R̄Σ, the first

statement of the lemma will follow if we show that R̄Σ is

(a) terminating (every sequence a0
∗

=⇒ · · · ∗
=⇒ an

∗
=⇒ · · · is eventually stationary)

and

(b) locally confluent: whenever b⇐= a =⇒ c there exists d such that b ∗
=⇒ d ∗⇐= c.

As R̄Σ is length reducing it is certainly terminating, so we must show it is locally
confluent. Before embarking on the proof of this fact, we consider the ways in which
it is possible for words of WΩ({x}) to overlap. To this end suppose that p = ab,
and q = bc are elements of WΩ({x}), with b non-trivial. If a is non-trivial then we
have 1 = v(p) = v(a) + v(b) and v(a) ≥ 1, so v(b) ≤ 0. However (see Proposition
2.3.2) this means that b must be trivial, a contradiction. Hence if p and q overlap
then p is a subword of q or vice-versa. Assuming that q is a proper subword of
p we then have p = p0qp1, where one of p0, p1 is non-trivial. If p1 is non-trivial
then 1 = v(p) = v(p0q) = v(p0) + v(q) = v(p0) + 1, so v(p0) = 0, contradicting
Proposition 2.3.2 again. We conclude that if p and q overlap and are not equal then
one is a subword of the other and, assuming q is a subword of p,

p = p0qp1, with p1 non-trivial. (2.7)

Now suppose that b ⇐= a =⇒ c. From property (II) above, we have Ω-rows
w0, w1, w′0 and w′1, and elements (u, v), (r, s) ∈ RΣ, such that (a, b) = (w0uw1, w0vw1)

and (a, c) = (w′0rw′1, w′0sw′1). If a factors as w0uwrw′1 then setting d = w0vwsw′1 we
have b = w0vwrw′1 =⇒ d ⇐= w0uwsw′1 = c, so local confluence holds in this case.
Similarly, if a = w′0rwuw1 then we have local confluence. Assume then that a has no
such factorisation. This means that u and r are overlapping subwords of a. Therefore,
interchanging b and c if necessary, we may assume that r is subword of u. Thus, there
exist Ω-rows p and q such that u = prq. We may therefore restrict to the case where
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a = u, b = v and c = psq. We consider in turn the various forms that u may take.
First consider the case u = wα1wα2λ, for some w ∈ WΩ({x}). Applying (2.7),

r may be a subword of w in wα1, equal to wα1, a subword of w in wα2 or equal to
wα2 (but may not begin in wα1 and end in wa2). If r is a subword of w in wα1 then
u = w′rw′′α1wα2λ, where w = w′rw′′ and we have

b = w = w′rw′′ ⇐= u = w′rw′′α1wα2λ =⇒ w′sw′′α1wα2λ = c

and then c = w′sw′′α1w′rw′′α2λ and (w′sw′′α1w′sw′′α2λ, w′sw′′) ∈ RΣ so

b = w′rw′′ =⇒ w′sw′′ ⇐= w′sw′′α1w′sw′′α2λ⇐= c = w′sw′′α1w′rw′′α2λ.

On the other hand if u = rwα2λ with r = wα1 then (r, s) ∈ RΣ implies w = w1w2λ

and s = w1, so c = swα2λ = w1w1w2λα2λ, for some wi ∈ WΩ({x}). In this case
swα2 = w1(w1w2λα2)λ =⇒ w1w2λ,

b = w⇐= u = rwα2λ =⇒ swα2λ = c

and
b = w1w2λ⇐= swα2λ = c.

The cases where r is a subword of w in wα2 or r is equal to wα2 follow similarly.
Now consider the case where u = w1w2λαi, for i = 1 or 2. In this case r may be

a subword of wi, for i = 1 or 2, or r may equal w1w2λ. In the latter case, (r, s) ∈ RΣ

implies that r = wα1wα2λ and s = w. Thus we have wα1 = v ⇐= u = rα1 =⇒ sα1 =

wα1, and there is nothing further to be proved. Suppose then that r is a subword of
w1, say w1 = w′rw′′. If i = 1 we have

b = w′rw′′ ⇐= u = w′rw′′w2λα1 =⇒ w′sw′′w2λα1 = c

and
b = w′rw′′ =⇒ w′sw′′ ⇐= w′sw′′w2λα1 = c.

If i = 2 then
b = w2 ⇐= u = w′rw′′w2λα2 =⇒ w′sw′′w2λα2 = c

and
b = w2 ⇐= w′sw′′w2λα2 = c.

The case where r is a subword of w2 is similar. In all cases we have local confluence, so
we conclude that (b) holds for R̄Σ. Therefore, (from [BO93, Section 1.1], for example)
every equivalence class of q contains a unique element which is not the left hand side
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of any element of R̄Σ: such elements of WΩ({x}) are called irreducible elements. As
R̄Σ is length reducing it follows that the unique irreducible element of an equivalence
class is an element of minimal length in its equivalence class.

To prove the second statement of the Lemma note that every standard form is
irreducible, so is of minimal length in its equivalence class. Conversely, given an
irreducible element a straightforward induction on its length shows that it is a stan-
dard form.

Definition 2.4.7. Let Y be a subset of V2,1. A set Z obtained from Y by a finite number
of simple expansions is called a descendant of Y.

Alternatively, Y is called an ascendant of Z if it can be obtained by a finite number
of simple contractions from Z.

Example 2.4.8. A simple expansion of the free basis {x} is given by the set {xα1, xα2}.
There are two 2-fold expansions of {x}, they are {xα1, xα2α1, xα2α2} and {xα1α1, xα1α2, xα2}.

Lemma 2.4.9. Any expansion of {x} is a free basis of V2,1.

The proof uses the same arguments as the proof of [Hig74, Lemma 2.3]. In fact,
we will show this by showing that if Y is an arbitrary expansion of {x} that is a free
basis of V2,1, then a simple expansion of Y,

Y′ = Y \ {y} ∪ {yα1, yα2}

is also a free basis of V2,1.

Proof. Let Y be an arbitrary expansion of {x} and assume that Y is a (free) basis of
V2,1. Let

Y′ = Y \ {y} ∪ {yα1, yα2}.

Since y = yα1yα2λ, the set Y′ generates V2,1. We will show that Y′ is a free basis of
V2,1.

Given A ∈ V2 and a map θ : Y′ → A, then there is a unique homomorphism
θ̄ : V2,1 → A extending θ.

Firstly, define θ∗ from Y to A in the following way,

y′θ∗ =

y′θ, for y′ ∈ Y \ {y},

y′α1θy′α2θλ, otherwise.

There is a unique homomorphism θ̄∗ from V2,1 to A extending θ∗, since Y is a
basis. Now

(yαi)θ̄
∗ = (yθ̄∗)αi = (yθ∗)αi = (yα1θyα2θλ)αi = yαiθ.
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Hence θ̄∗ also extends θ.
Furthermore, any other map which extends θ must equal θ̄∗, since any such map

must be defined on Y in the same way as θ∗.

Remark 2.4.10. When I say basis, from now on I mean a basis which is an expansion
of x.

Now that we have a concrete description of the free algebra V2,1 in the variety V2,
we can follow the work of Graham Higman in [Hig74, Section 2] and present some
of the properties of the algebra V2,1 (and its elements) that will be useful in future
sections.

Definition 2.4.11. Let A = {α1, α2} ⊂ Ω. We define 〈A〉 to be the free monoid
{α1, α2}∗ and 〈λ〉 to be the free monoid on λ.

Definition 2.4.12. We write ε for the empty word in 〈A〉.

We first define two types of special subalgebras of V2,1. We shall say that a subset
U of V2,1 is an A-subalgebra if there exists a basis Y of V2,1 such that U = Y〈A〉 i.e.
every element of U is in some expansion of Y. Similarly, we say that a subset U of
V2,1 is an λ-subalgebra if there exists a basis Y of V2,1 such that U = Y〈λ〉 i.e. every
element of U is some contraction of Y.

Remark 2.4.13. The above definitions are not an abuse of the definition of subalgebra
(Definition 2.1.4), since each "subalgebra" U is closed under a subset of the operations
from Ω.

Definition 2.4.14. We say that a subset U of V2,1 is A-closed if it is closed under the
operations of A ⊂ Ω.

Let y be the minimal representative of its equivalence class in V2,1 i.e. y is a
standard form. Then the λ-length of y is the number of times the symbol λ occurs in
y.

Below we give some examples of elements which are standard forms (that is
minimal representatives of equivalence classes in V2,1).

Example 2.4.15. The following elements are all standard forms: x, xα2, xΓ (for Γ ∈
〈A〉), xα2xα1λ (λ-length one), xα2xλxα2

1λ (λ-length two). All standard forms of the
form xΓ for Γ ∈ 〈A〉 have λ-length zero.

A word Γ ∈ 〈A〉 is called primitive if it is not a power of another word; that is, if
Γ (non-trivial) and Γ ∈ 〈∆〉 for ∆ ∈ 〈A〉 implies Γ = ∆.
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Proposition 2.4.16 ([Lot83], Proposition 1.3.1, Chapter 1). If Γn = ∆m with Γ, ∆ ∈ 〈A〉
and n, m ≥ 0, there exists a word Λ such that Γ, ∆ ∈ 〈Λ〉.

In particular, for each word w ∈ 〈A〉, there exists a unique primitive word Λ such that
w ∈ 〈Λ〉.

Proposition 2.4.17 ([Lot83], Proposition 1.3.2, Chapter 1). Two words Γ, ∆ ∈ 〈A〉 com-
mute if and only if they are powers of the same word. More precisely the set of words com-
muting with a word Γ ∈ 〈A〉 is a monoid generated by a single primitive word.

Lemma 2.4.18. Let Y be an arbitrary generating set for V2,1 and y ∈ V2,1, then y〈A〉 \Y〈A〉
is finite.

Proof. Note that if y ∈ V2,1 then y belongs to the algebra generated by Y. Suppose
that, when expressed in terms of the generators Y the λ-length of y is m, then we
have yαi1 ...αir ∈ Y〈A〉 whenever r ≥ m. That is, upon applications of r ≥ m of the
unary operations of Ω to y we get an element which belongs to Y〈A〉. Hence, the
only elements of the set difference y〈A〉 \ Y〈A〉 are those of the form yαi1 ...αir with
r < m, and there are clearly only finitely many in number since we only have two
choices for each αij .

The properties of bases of V2,1 are now investigated, starting with a lemma from
[Hig74].

Lemma 2.4.19. [Hig74, Section 2, Lemma 2.4] Let X be an expansion of {x}. If U is a
subset of V2,1 contained in X〈A〉, then the following are equivalent:

1. U = X〈A〉 ∩Y〈A〉, for some arbitrary generating set Y of V2,1,

2. U is A-closed and X〈A〉 \U is finite,

3. U = Z〈A〉 for some expansion Z of X.

Proof. Firstly, let U = X〈A〉 ∩ Y〈A〉. Since U is the intersection of A-closed sets, it
is also A-closed. By lemma 2.4.18, X〈A〉 \ Y〈A〉 is finite and therefore X〈A〉 \U is
finite. So 1. implies 2.

Secondly, assume that U is A-closed and X〈A〉 \U is finite. We will prove 3. by
induction on the size of |X〈A〉 \U|. If |X〈A〉 \U| = 0, then 3. holds with Z = X.
Otherwise, |X〈A〉 \ U| > 0 and we choose an element w ∈ X〈A〉 \ U of greatest
length (|w| is maximal). Then the set U∗ = U ∪ {w} is A-closed and |X〈A〉 \U∗| =
|X〈A〉 \U| − 1. By induction, there is an expansion Z∗ of X such that U∗ = Z∗〈A〉.
The element w belongs to Z∗, otherwise w would have the form w = zαi1 ...αir , where
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z ∈ Z∗ and r > 0, and hence z ∈ U∗ \ {w} = U. However, U is A-closed and so this
would imply that w ∈ U, a contradiction. If we take

Z = (Z∗ \ {w}) ∪ {wαi|1 ≤ i ≤ 2},

then this is an expansion of {x} and by the choice of w we have wαi ∈ U for each i.
Therefore U = Z〈A〉.

Finally, if U = Z〈A〉 for some expansion Z of X, then it is clear that U = X〈A〉 ∩
Y〈A〉, for some basis Y of V2,1.

Definition 2.4.20. Let u, v be elements of V2,1. Then, u is said to be a proper initial
segment of v if v = uΓ for some non-trivial Γ ∈ 〈A〉.

We will say u is an initial segment of v if u = v or u is a proper initial segment of
v.

Lemma 2.4.21. [Hig74, Section 2, Lemma 2.5(i)-(iii)] Let X be a basis of V2,1 and V a subset
of X〈A〉.

1. If X and V are finite, then V is contained in an expansion of X if and only if the
following condition is satisfied:

(†) no element of V is a proper initial segment of another.

2. If X and V are finite, then V is an expansion of X if and only if (†) is satisfied and
for each u ∈ X〈A〉 there exists v ∈ V such that one of u, v is an initial segment of the
other.

3. V is a set of free generators for the subalgebra it generates if and only if (†) is satisfied.

Proof. 1. If V is contained in an expansion of X then (†) is satisfied.

Suppose V satisfies (†) and write

U = X〈A〉 \ {proper initial segments of elements of V}.

Then (†) implies that V ⊆ U. Also, U is A-closed and X〈A〉 \ U consists of
initial segments of the elements of the finite set V, so it is finite. Thus, by
Lemma 2.4.19, there is an expansion Z of X such that U = Z〈A〉. Therefore,
U ⊆ Z〈A〉, and this implies that V ⊆ Z (for an element of Z〈A〉 \ Z has a
proper initial segment in Z ⊆ U so it can not be in V by the definition of U).
Hence, V is contained in an expansion of X.
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2. If V is an expansion of X then (†) is satisfied and for each u ∈ X〈A〉 there exists
v ∈ V such that one of u, v is an initial segment of the other.

Suppose V satisfies (†) and for each u ∈ X〈A〉 there exists v ∈ V such that
one of u, v is an initial segment of the other. By Part 1, V is contained in an
expansion Z of X. If V 6= Z then there is an element z ∈ Z \ V and hence by
the hypothesis there exists v ∈ V such that one of v or z is an initial segment of
the other. But no element of Z can be an initial segment of another, so this is a
contradiction and hence V = Z.

3. If V is a set of free generators for the subalgebra it generates then (†) is satisfied.

Suppose (†) is satisfied. If V is not a free generating set then the same is true
of some finite subset V0 and clearly (†) is also satisfied with V replaced by
V0. However, V0 ⊆ X0〈A〉 for some finite subset X0 of X. X0 generates a free
sub-Ω-algebra of V2,1 and by [Hig74, Corollary 2, page 12] (since this is a V2-
algebra) it follows that in fact X0 generates an algebra isomorphic to V2,1 and
so contradicts Part 2.

The following corollary is an adaptation to [Hig74, Section 2, Corollary 1].

Corollary 2.4.22. Any finite collection of bases Y1, ..., Yn of V2,1 has a unique minimal com-
mon expansion Z, which satisfies Z〈A〉 = ∩n

i=1(Yi〈A〉).

Proof. For n = 2, let U = Y1〈A〉 ∩ Y2〈A〉. Then U is A-closed and by Lemma 2.4.19,
{x}〈A〉\U is finite. Hence U = Z〈A〉, for some expansion Z of {x}. As Z ⊆ Z〈A〉 ⊆
Yi〈A〉, it follows from Lemma 2.4.21 part 2 that Z is an expansion of Yi, i = 1, 2.
Furthermore, if W is a common expansion of Y1 and Y2 then W ⊆ U, so W ⊆ Z〈A〉,
which implies that W is an expansion of Z.

Let Z〈A〉 = ∩n−1
i=1 (Yi〈A〉) and V = Z〈A〉 ∩ Yn〈A〉, where we assume inductively

that Z is the unique minimal expansion of Y1, ..., Yn−1. From the previous paragraph
there exists a unique minimal expansion W of Z and Yn such that W〈A〉 = V. It
follows that the result holds for Y1, ..., Yn and hence by induction for all n.

Example 2.4.23. Let Y1 = {xα1, xα2α1, xα2α2} and Y2 = {xα1α1, xα1α2, xα2}. Then, a
common expansion of Y1 and Y2 is given by Z = {xα1α1, xα1α2, xα2α1, xα2α2}.

It is easy to see that any other common expansion of Y1 and Y2 is also an expan-
sion of Z.

If we have two bases Y and Z of V2,1, what is the relationship between the two?
The following lemma from Graham Higman gives some information about this.
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Lemma 2.4.24. [Hig74, Section 2, Lemma 2.5(iv)] Let X be a basis of V2,1. Let Y and Z
be d-fold expansions of X, for d ≥ 1. If Y 6= Z then some element of Y is a proper initial
segment of an element of Z.

Proof. We prove this by contradiction. If no element of Y is a proper initial segment
of an element of Z i.e. there exists no y ∈ Y such that there exists Γ ∈ 〈A〉 and z ∈ Z
with yΓ = z, then Y ⊆ Z〈A〉. This implies that Y is an expansion of Z. However, Y
and Z are both d-fold expansions of X and thus Y = Z. This competes the proof.

2.5 The Higman-Thompson group G2,1

We define the group we wish to study for the remainder of Part I of this thesis.

Definition 2.5.1. [Hig74] The Higman-Thompson group G2,1 is the group of Ω-algebra
automorphisms of V2,1.

Remark 2.5.2. Let ψ be an automorphism of V2,1 defined by the map ψ : Y → Z, for
Y, Z bases of V2,1. Then, if we expand y ∈ Y and form the basis Y′ = Y \ {y} ∪
{yα1, yα2}, then yαiψ = yψαi = zαi for i = 1, 2. Thus, if we expand the basis Y, then
the automorphism ψ induces an expansion Z′ of the basis Z such that Y′ψ = Z′.

Throughout this section, let x be a fixed expansion of {x}

Lemma 2.5.3. [Hig74, Lemma 4.1] If {ψ1, ..., ψk} is a finite subset of G2,1 then there is a
unique minimal expansion Y of x such that Yψi ⊆ x〈A〉, for i = 1, ..., k. That is, any other
expansion of x with this property is an expansion of Y.

Proof. [Hig74, Lemma 4.1]
For each i, xψ−1

i is a generating set for V2,1, because x is a generating set and ψi

is an automorphism (but xψ−1
i 6∈ x〈A〉). Let Ui = x〈A〉 ∩ xψ−1

i 〈A〉. Thus by Lemma
2.4.19 Ui is A-closed and there exists an expansion Yi of x such that Ui = Yi〈A〉
(Yi is also a basis of V2,1 by Lemma 2.4.9). Now, Corollary 2.4.22 gives a unique
minimal common expansion Y, of the Yi’s, and Y〈A〉 = ∩k

i=1(Yi〈A〉). Then, for all i,
Y ⊆ Yi〈A〉 = Ui ⊆ xψ−1

i 〈A〉, so Yψi ⊆ x〈A〉.
Let Z be an expansion of x. If Zψi ⊆ x〈A〉, for all i, then (by the definition of

Ui) Z ⊆ Ui = Yi〈A〉, so Z ⊆ ∩k
i=1(Yi〈A〉) = Y〈A〉. Hence, from Lemma 2.4.19 and

Corollary 2.4.22, Z is an expansion of Y.

Remark 2.5.4. The above lemma gives a way of describing the elements of G2,1 as
bijections between expansions of {x} of the same cardinality. Firstly, for the identity
element this is clear, 1G2,1 : x → x. For every element ψ ∈ G2,1, by the lemma above,
there is a unique minimal basis Y of V2,1 such that Yψ = Z ⊂ x〈A〉. Thus Z is also a
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basis and Zψ−1 = Y (Z will be the unique minimal expansion corresponding to ψ−1).
Let ψ : Y → Z and ϕ : U → V, with Y, Z, U and V all bases of V2,1. Then we can
define the product by finding the common expansion W for Z and U, which exists
by Corollary 2.4.22, and expand Y and V according to the images Wψ−1 = Y′ and
Wϕ = V ′, noting that an expansion of an expansion of {x} is an expansion of {x}.
Then,

ψϕ : Y′ → V ′,

that is, Y′ψϕ = Wϕ = V ′, and ψϕ is an element of G2,1. Associativity holds in a
similar way.

Lemma 2.5.5. Let X be a basis of V2,1, let u ∈ V2,1 and let d be a non-negative integer.

1. If v ∈ V2,1 then u = v if and only if uΓ = vΓ, for all Γ ∈ 〈A〉 of length d.

2. If S is a subalgebra of V2,1 then u ∈ S if and only if uΓ ∈ S, for all Γ ∈ 〈A〉 of length
d.

Proof. 1. If u = v then uΓ = vΓ for all Γ ∈ 〈A〉 of length d.

We shall show that given d ≥ 0,

if u, v ∈ V2,1 and satisfy uΓ = vΓ for all Γ ∈ 〈A〉 of length d then u = v.(††)

If d = 0 this holds trivially. We will use induction on d. Assume that d > 0 and
that for all d′ such that 0 ≤ d′ < d (††) holds, with d′ instead of d. Suppose
then that u, v ∈ V2,1 and uΓ = vΓ for all Γ of length d. In this case we will show
that for any ∆ ∈ 〈A〉 of length d− 1 we have u∆ = v∆. In fact, if ∆ has length
d − 1 then ∆αi has length d, for i = 1, 2. Therefore, u(∆αi) = v(∆αi) and we
obtain u∆ = (u∆)α1(u∆)α2λ = (v∆)α1(v∆)α2λ = v∆. This applies to all ∆ of
length d− 1, as required. From the inductive hypothesis u = v.

2. If u ∈ S then uΓ ∈ S for all Γ ∈ 〈A〉 (and certainly for all Γ of length d).

We shall show that given d ≥ 0,

if u ∈ V2,1 and satisfies uΓ ∈ S for all Γ ∈ 〈A〉 of length d then u ∈ S.(?)

If d = 0 this holds trivially. We will use induction on d. Assume that d > 0
and that for all d′ such that 0 ≤ d′ < d (?) holds, with d′ instead of d. Suppose
then that u ∈ V2,1 and uΓ ∈ S for all Γ of length d. In this case we will show
that for any ∆ ∈ 〈A〉 of length d− 1 we have u∆ ∈ S. In fact, if ∆ has length
d− 1 then ∆αi has length d, for i = 1, 2. Therefore, u(∆αi) ∈ S and we obtain
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u∆ = (u∆)α1(u∆)α2λ ∈ S. This applies to all ∆ of length d − 1, as required.
From the inductive hypothesis u ∈ S.

Coming up is a series of subsections which discuss the work of [Hig74, Section
9]. This work will be needed in understanding the solution conjugacy problem.

2.5.1 Semi-normal forms

In [Hig74, Section 9], Higman picks an element ψ of G2,1 and constructs a basis Y for
V2,1 in order to make the study of ψ easy (as he can then just examine the orbits of
elements from Y).

Remark 2.5.6. In Matt Brin [Brin04] and Bleak et al [BGG11] revealing tree pairs di-
vulge the dynamical information for a given element of G2,1 acting on the Cantor set
and this is similar to Higman’s method.

The method is based on studying how ψ-orbits intersect the A-subalgebra x〈A〉
(for our fixed expansion x of {x}). Since ψ is an automorphism of V2,1, we may have
ψ-orbits which intersect the A-subalgebra x〈A〉 in one of four ways:

• the whole of the ψ-orbit is contained in x〈A〉 and is infinite;

• the whole of the ψ-orbit is contained in x〈A〉 and is finite;

• the ψ-orbit intersects x〈A〉 non-trivially, infinitely many times;

• the ψ-orbit intersects x〈A〉 non-trivially, only finitely many times.

We therefore can distinguish each ψ-orbit in the following way (according to its
intersection with the A-subalgebra x〈A〉):

1. Complete infinite orbits. For any y in such an orbit, yψi belongs to x〈A〉 for all
i ∈ Z, and the elements yψi are all different.

2. Complete finite orbits. For any y in such an orbit, yψn = y for some positive
integer n, and y, yψ, ..., yψn−1 all belong to x〈A〉.

3. Right semi-infinite orbits. For some y in the orbit, yψi belongs to x〈A〉 for all i ≥ 0,
but yψ−1 does not. The elements yψi, i ≥ 0, are then, of course, necessarily all
different.

4. Left semi-infinite orbits. For some y in the orbit, yψ−i belongs to x〈A〉 for all i ≥ 0,
but yψ does not. The elements yψ−i, i ≥ 0, are then, of course, necessarily all
different.
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5. Incomplete orbits. For some y in the orbit and some non-negative integer n we
have y, yψ, ..., yψn belonging to x〈A〉 but yψ−1 and yψn+1 do not.

Remark 2.5.7. Incomplete orbits will turn out to have finite intersection with x〈A〉 and
it may be true that several incomplete orbits really belong to the same ψ-orbit in V2,1.

We shall now clarify our terminology regarding the orbits of ψ in V2,1 and the
intersection of such orbits with x〈A〉 and summarise the above.

An orbit of ψ (in V2,1) is a set {yψn|n ∈ Z}, for some fixed y ∈ V2,1. The intersec-
tion of a given orbit of ψ (in V2,1) with x〈A〉 might consist of infinitely many disjoint
sequences yi, . . . , yiψ

ni ; or of infinitely many such things as well as either a left or
right semi-infinite sequence of elements of x〈A〉; or of a left and a right semi-infinite
sequence of elements of x〈A〉 as well as several of these disjoint finite sequences of
elements of x〈A〉; or of finitely many disjoint sequences yi, . . . , yiψ

ni and either a left
or right semi-infinite sequence (or neither).

Now let y ∈ V2,1 and let ψ ∈ G2,1. What Higman means by an “orbit of ψ in x〈A〉”
is a maximal subsequence O of the sequence yψi i=∞

i=−∞ (that is of the orbit of y), such
that all elements of O are in x〈A〉. It then follows that all such“orbits” are of types 1–
5. We will refer to what Higman calls an “orbit of ψ in x〈A〉” as an x〈A〉-component
of an orbit. From the definitions above, 1, 2, 3, 4, and 5 are then the possible types of
x〈A〉-components of orbits.

When we talk about an “incomplete orbit” or a “semi-infinite orbit” we really
mean an x〈A〉-component of an orbit.

Example 2.5.8. Let X = {x} and,

Y = {xα3
1, xα2

1α2, xα1α2, xα2α1, xα2
2}

and
Z = {xα2

1, xα1α2α1, xα1α2
2, xα2

2, xα2α1}.

Let ψ be the automorphism defined by Yψ = Z, such that yiψ = zi for i = 1, ..., 5 with
the ordering given above.

ψ :

1 2 3 4 5
−→

1 2 3 5 4

We can see that xα3
1 is in a left semi-infinite orbit, xα1α2 is in a right semi-infinite

orbit, xα2
1α2 is in a complete infinite orbit and finally xα2α1, xα2

2 are in the same
complete finite orbit. (We defer an example of an incomplete finite orbit until later.)

We can now start to analyze an element ψ of the group G2,1. By Lemma 2.5.3,
for suitable d-fold expansions Y and Z of x, we have Yψ = Z i.e. Y is the unique
expansion given by Lemma 2.5.3 and Z the image of Y under ψ in x〈A〉.
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Given that Z is a d-fold expansion of x, x〈A〉 \ Z〈A〉 is finite. Similarly, it follows
that x〈A〉 \Y〈A〉 is finite.

As we have chosen Y to be the expansion given by Lemma 2.5.3, Y〈A〉 = x〈A〉 ∩
x〈A〉ψ−1, and moreover ψ maps no proper contraction of Y into x〈A〉. Hence

Z〈A〉 = Y〈A〉ψ = x〈A〉ψ ∩ x〈A〉.

Thus, if u ∈ x〈A〉 \ Z〈A〉 then u 6∈ x〈A〉ψ, so uψ−1 6∈ x〈A〉 and hence u is an initial
element either of an incomplete orbit or of a right semi-infinite orbit i.e. in an orbit
of type (3) or (5). Similarly, if v ∈ x〈A〉 \ Y〈A〉 then v 6∈ x〈A〉ψ−1, so vψ 6∈ x〈A〉 and
hence v is a terminal element either of an incomplete orbit or of a left semi-infinite
orbit i.e. in an orbit of type (4) or (5).

If O is an orbit of type (3) or (5), then by definition there exists an element u, an
initial element of O. Therefore, uψ−1 6∈ x〈A〉 so u 6∈ x〈A〉ψ, and so u ∈ x〈A〉 \ Z〈A〉.
Similarly, if O is an orbit of type (4) or (5), then by definition there exists an element
v, which is a terminal element of O. Therefore, vψ 6∈ x〈A〉 so v 6∈ x〈A〉ψ−1 and so
v ∈ x〈A〉 \Y〈A〉.

However, since ψ is an automorphism of V2,1 with Yψ = Z, then Y and Z are both
d-fold expansions for some d, and so |x〈A〉 \ Z〈A〉| = |x〈A〉 \Y〈A〉|.

Let u be an initial element of an incomplete orbit O. By the above, u ∈ x〈A〉 \
Z〈A〉 and by definition of an incomplete orbit, there is some nonnegative integer n
such that u, uψ, ..., uψn all belong to x〈A〉 but uψn+1 does not. Since uψn+1 is a termi-
nal element of the incomplete orbit O, we have that uψn+1 ∈ x〈A〉 \Y〈A〉. Therefore,
the initial elements of incomplete orbits in x〈A〉 \ Z〈A〉 and terminal elements of
incomplete orbits in x〈A〉 \Y〈A〉 pair up.

Given that the initial and terminal elements of the incomplete finite orbits must
be in one-to-one correspondence, all we are left with in |x〈A〉 \ Z〈A〉| (respectively
|x〈A〉 \ Y〈A〉|) are initial (respectively terminal) elements in right (respectively left)
semi-infinite orbits, hence there are as many right semi-infinite obits as left semi-
infinite orbits.

The above can now be summarized by the lemma below (which comes from
Graham Higman) for a given element ψ of G2,1.

Lemma 2.5.9. [Hig74, Lemma 9.1] Let ψ be an element of G2,1. Then there are only finitely
many x〈A〉-components of orbits of ψ in x〈A〉 of type (3), (4) and (5) and there are as many
of type (3) as of type (4).

We define a particularly "good" type of expansion of X (a basis for V2,1) for a
given automorphism of G2,1.

Definition 2.5.10. [Hig74, Section 9] An element ψ of G2,1 is in semi-normal form with
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respect to the basis Y if no elements of Y〈A〉 are in incomplete finite ψ-orbits for ψ

i.e. if Yψ ⊆ x〈A〉 and no elements of Y are in orbits of type (5).

We now quote the following lemma from Higman.

Lemma 2.5.11. [Hig74, Lemma 9.2] For an element ψ of G2,1 there exists a basis with respect
to which ψ is in semi-normal form.

Proof. Let ψ ∈ G2,1 and let Y be the minimal expansion associated to ψ (in the ter-
minology suggested above). We prove the lemma by induction on the number of
elements in Y〈A〉 which belong to an incomplete orbit. Note first that from Lemma
2.5.9 it follows that there are only finitely many elements of x〈A〉, and hence also of
Y〈A〉, which belong to incomplete orbits.

If there are no such elements in Y〈A〉 then we are done. Suppose then that there
exists an element u in Y〈A〉 which belongs in an incomplete orbit. Thus, there exist
y ∈ Y and Γ ∈ 〈A〉 such that u = yΓ and some minimal m, n ∈ N0 such that
uψ−(m+1), uψn+1 6∈ x〈A〉. It follows that yψ−(m+1), yψn+1 6∈ x〈A〉, so that y is also
in an incomplete orbit. Let Y′ = Y\{y} and let Y′′ = Y′ ∪ {yα1, yα2}. Then Y′′ is a
basis for V2,1, and Y′′ψ ⊆ x〈A〉. Furthermore, the number of elements of Y′′〈A〉 in
incomplete orbits is one less than the number in Y〈A〉. Hence, by induction, there
exists a basis with respect to which ψ is in semi-normal form.

Example 2.5.12. Let x = {x} and let ψ be the automorphism of G2,1 corresponding
to the bijective map:

xα2
1ψ = xα2

2, xα1α2ψ = xα2α1, xα2ψ = xα1.

Then, xα2 is in an incomplete orbit. Firstly, xα2ψ−1 6∈ x〈A〉 and secondly, xα2ψ2 6∈
x〈A〉.

ψ :
1 2 3 −→ 3 2 1

However, if we choose to make a simple expansion at xα2, we notice that the
bijective map now looks like this:

xα2
1ψ = xα2

2, xα1α2ψ = xα2α1, xα2α1ψ = xα2
1, xα2

2 = xα1α2.

Hence, all elements of this new basis Y are in finite complete ψ-orbits. Therefore all
elements of Y〈A〉 are in complete finite orbits.

ψ :
1 2 3 4

−→
3 4 2 1

We give specific names to elements of a basis Y giving ψ in semi-normal form,
based on the type of ψ-orbit the element is in. We give the following lemma without
proof.
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Lemma 2.5.13. [Hig74, Lemma 9.3] Let ψ be an element of G2,1 in semi-normal form with
respect to the basis Y. Suppose that y is an element in Y, then one of the following holds,

(A) There exists Γ ∈ 〈A〉 such that yΓ is in a complete finite orbit. In this case y itself
belongs to a complete finite orbit, which consists of elements of Y, and we say y is of type (A).

(B) There exist Γ, ∆ ∈ 〈A〉, with Γ 6= ∆, such that yΓ and y∆ belong to the same orbit.
In this case there exists Λ ∈ 〈A〉, n ∈ Z, n 6= 0, with |n| minimal, such that yψn = yΛ and
we say y is of type (B). If n > 0 then the orbit containing y is right semi-infinite; if n < 0
then the orbit containing y is left semi-infinite.

(C) y is not of type (A) or (B) above and there exists some z ∈ Y of type (B) and non-
trivial ∆ ∈ 〈A〉 such that yψi = z∆. In this case the orbit containing y is infinite; and we
say y is of type (C).

We will often refer to elements of type (A), (B) and (C). We now give the associated
Γ for a type (B) element a name.

Definition 2.5.14. Let u ∈ V2,1 and ψ ∈ G2,1. If uψd ∈ u〈A〉 for some d ∈ Z \ {0} then
u is a characteristic element for ψ.

If u is a characteristic element for ψ then the characteristic of u is the pair (m, Γ)
such that m ∈ Z \ {0}, Γ ∈ 〈A〉 with

• uΓm = uΓ and

• for all n such that 0 < |n| < |m|, uψn 6∈ u〈A〉.

In this case Γ is called the characteristic multiplier and m is the characteristic power for
u, with respect to ψ. If Γ is non-trivial then it is said to be proper and we call u a
proper characteristic element.

Remark 2.5.15. If u is a characteristic element then

1. (m, Γ) is uniquely determined and

2. if v is in the same orbit as u then v is a characteristic element with the same
characteristic as u.

For 1. suppose that u is a characteristic element and with characteristic (m, Γ). If
uψm′ = u∆ and for all n such that 0 < |n| ≤ |m′| uψn 6∈ u〈A〉 then |m′| ≥ |m| by
Definition 2.5.14 and so m = ±m′. If uψ−m = u∆ then u = uψm∆ = uΓ∆, which can
not happen.

For 2. let vψr = vΓ. For all n such that uψn = u∆, ∆ ∈ 〈A〉 we have,

vψn = uψrψn = uψnψr = u∆ψr = uψr∆ = v∆.

Interchanging u and v we see also that whenever vψn = v∆ then uψn = u∆.
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Given this remark we can make the following definition.

Definition 2.5.16. Let ψ be an element of G2,1 and O a ψ-orbit containing a character-
istic element u. Then we define the characteristic of O to be equal to the characteristic
of u.

Example 2.5.17. From Example 2.5.8, the elements in the semi-infinite orbits xα3
1,

xα1α2 are of type (B). In fact xα3
1 is a characteristic element of ψ−1 with Γ1 = α1 and

xα1α2 is a characteristic element of ψ with Γ2 = α2.
Furthermore, the element xα2

1α2 is of type (C) and xα2α1, xα2
2 are elements of type

(A).

We end this subsection with a result that allows us to determine if an element of
G2,1 is of infinite order.

Theorem 2.5.18. [Hig74, Theorem 9.4] An element ψ of G2,1 (given in semi-normal form
with respect to Y) is of infinite order if and only if ψm has a proper characteristic element
for some m. Moreover, if ψ is of infinite order then this proper characteristic element may be
taken to belong to Y.

Proof. [Hig74, Theorem 9.4] Let ψ be in semi-normal form with respect to the basis
Y. If u is a characteristic element for ψm with proper multiplier Γ then uψm = uΓ.
Therefore,

uψmj = uψmψm(j−1) = uΓψm(j−1) = uΓψmψm(j−2) = uψmΓψm(j−2) = uΓ2ψm(j−2) = ... = uΓj,

for j ∈ N. Since Γ is a proper multiplier, the elements uΓj are all different for j ∈ N,
so ψ has infinite order.

Conversely, if no ψm with m ∈ Z has a proper characteristic element then Y has
no elements of type (B) nor type (C). Thus all elements of Y are of type (A), as ψ is in
semi-normal form with respect to the basis Y. Whence ψ is a permutation of Y and
has finite order.

Lemma 2.5.19. Let ψ be in semi-normal form with respect to a basis Y and let u ∈ V2,1. If u
has characteristic (m, Γ) then the orbit of u is semi-infinite (right semi-infinite if m > 0 and
left semi-infinite if m < 0) and contains an element yΓ1, where y ∈ Y, y is of type (B) and y
has characteristic (m, Γ1Γ0), where Γ = Γ0Γ1 and Γ0 is non-trivial. (It is possible that Γ1 is
trivial.)

Proof. Let O be the orbit of u. Note that if v ∈ O then v = uψk, for some k ∈ Z,
so vψm = uψm+k = uΓψk = uψkΓ = vΓ, and it follows that every element v has
characteristic (m, Γ). For some q ≥ 0 we have uΓq ∈ Y〈A〉, so uψmq = uΓq ∈ Y〈A〉.
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Hence we may assume that u ∈ Y〈A〉. Let u = yΛ, where y ∈ Y and Λ ∈ 〈A〉. We
assume first that m > 0. If O is not right semi-infinite then, as ψ is in semi-normal
form with respect to Y, we have uψ−k ∈ O, for all k ≥ 0. Let Λ = Λ0Γj, where Λ0

has no terminal segment equal to Γ. Then uψ−m(j+1) ∈ O, so for some z ∈ Y and
Ξ ∈ 〈A〉, uψ−m(j+1) = zΞ and so

zΞΓj+1 = zΞψm(j+1) = u = yΛ0Γj,

so z = y and ΞΓ = Λ0, a contradiction. Hence O is right semi-infinite. Moreover, we
may assume that Λ has no terminal segment equal to Γ.

Now u = yΛ ∈ O and yΛψm = yΛΓ so, by Lemma 2.5.13, y is of type (B). Suppose
y has characteristic (n, Ω). If the orbit of y is left semi-infinite then yΛψ−k ∈ Y〈A〉,
for all k ≥ 0, so O is not right semi-infinite. Hence y is in a right semi-infinite orbit
and n > 0. If Λ = ΩjΛ1 then yΛ1ψnj = yΩjΛ1 = u, so we may assume that Λ has
no initial segment equal to Ω. Suppose that 0 < n < m and write m = np + r, where
0 ≤ r < n. Then yΛψnp = yΩpΛ and yΩpΛψr = yΛψnp+r = yΛψm = yΛΓ. However,
as y is in a right semi-infinite orbit, yψr = zΞ, for some z ∈ Y and Ξ ∈ 〈A〉. Thus
yΛΓ = yΩpΛψr = yψrΩpΛ = zΞΩpΛ, which implies that z = y and ΛΓ = ΞΩpΛ.
Now, as yψr = yΞ, with 0 ≤ r < n, and y has characteristic (n, Ω), it must be that
r = 0 and Ξ = 1. We have now ΛΓ = ΩpΛ and, as Λ has no terminal segment
equal to Γ and no initial segment equal to Ω, consequently Γ = Γ0Λ and Ω = ΛΩ1.
However this means that yΛψn = yΩΛ = yΛΩ1Λ, and as u = yΛ has characteristic
power m, we infer that n ≥ m, a contradiction.

Hence 0 < m ≤ n. Now yψm = y1∆, y1 ∈ Y, ∆ ∈ 〈A〉, and so yΛΓ = yΛψm =

y1∆Λ. Hence y = y1 and ΛΓ = ∆Λ. As Λ has no terminal segment equal to Γ this
implies that Γ = Γ0Λ so yΛΓ0Λ = y∆Λ, from which it follows that yΛΓ0 = y∆ =

yψm, so m ≥ n. Hence m = n and, setting Λ = Γ1, the proof is complete, in the case
m > 0.

In the case when m < 0 the result follows from the above on replacing ψ by
ψ−1.

Lemma 2.5.20. Let θ ∈ G2,1 and u ∈ V2,1 such that uθn = u∆, where ∆ 6= 1. Then u has
characteristic (m, Γ) with respect to θ, where n = mq and ∆ = Γq, for some positive integer
q.

Proof. Let θ be in semi-normal form with respect to X. Suppose first that n > 0. Then
the (X〈A〉-component of the) orbit O of u is right semi-infinite, and its elements have
characteristic (m, Γ) with respect to θ, for some m > 0 and Γ 6= 1. Then n ≥ m, so we
may write n = mq+ s, where 0 ≤ s < m and q ≥ 0. Thus v∆ = vθn = vθmq+s = vΓqθs,
for all v ∈ O. Choose v ∈ O ∩ X〈A〉 (by choosing v = u∆nk for sufficiently large k).
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Then v = yΛ, for some y ∈ X and Λ ∈ 〈A〉, and y belongs to a right semi-infinite
orbit of θ, as v does. Hence yθs = y′Λ′, for some y′ ∈ X, Λ′ ∈ 〈A〉, and yΛ∆ =

vΓqθs = y′Λ′Γq, so y = y′ and yθs = yΛ′; so vθs = yΛθs = yΛ′Λ. By minimality of
m, we have s = 0, so n = mq. Moreover yΛ∆ = v∆ = vθn = vθmq = vΓq = yΛΓq, so
Λ∆ = ΛΓq, from which ∆ = Γq, as required.

If n < 0 then let ψ = θ−1. We have uψ−n = u∆, so from the previous part of
the proof, u has characteristic (m, Γ), with respect to ψ, where −n = mq, q > 0, and
∆ = Γq. If follows that u has characteristic (−m, Γ), with respect to θ, and −m = nq,
completing the proof.

2.5.2 Quasi-normal forms

A stronger definition than semi-normal form was introduced in [Hig74, Section 9].

Definition 2.5.21. [Hig74, Section 9] An element ψ of G2,1 is in quasi-normal form
with respect to the basis Y if it is in semi-normal form with respect to Y, but not with
respect to any proper contraction of Y.

It follows from Lemma 2.5.3 that for ψ ∈ G2,1 there exists a basis Y with respect
to which ψ is in quasi-normal form.

Once we have ψ in quasi-normal form we have the following lemma from Graham
Higman (given here without proof).

Lemma 2.5.22. [Hig74, Lemma 9.6] If ψ is in quasi-normal form with respect to Y, and if
v = uψm, where m > 0 and u, v ∈ Y〈A〉, then uψi belongs to Y〈A〉, for i = 1, ..., m− 1.

Lemma 2.5.23. Let φ be in quasi-normal form with respect to Y and let y ∈ Y be of type
(B). Suppose that y has characteristic (m, Γ). Then there exist Γi ∈ 〈A〉 and yi ∈ Y,
1 ≤ |i| ≤ |m|, such that y = ym; if i 6= j then yi 6= yj; Γ = Γm · · · Γ1 if m > 0 and
Γ = Γm · · · Γ−1 if m < 0; and

yφi =

{
yiΓi · · · Γ1, for 1 ≤ i ≤ m, if m > 0
yiΓi · · · Γ−1, for − 1 ≥ i ≥ m, if m < 0

.

Moreover, setting ε = m/|m|, yi has characteristic multiplier Γ′i = Γi · · · ΓεΓm · · · Γi+ε, and
yiφ

m = yiΓ′i, for 1 ≤ |i| ≤ |m| − 1.

Remark 2.5.24. The characteristic multiplier of yiΓi · · · Γε is Γ, for all i. However, the
characteristic multipliers of the yi themselves may not equal to Γ.

Proof. Assume m > 0, so the orbit of y is right semi-infinite. The proof in the other
case is similar. Since φ is in quasi-normal form with respect to Y and y and yφm ∈
Y〈A〉, from Lemma 2.5.22 we have yφi ∈ Y〈A〉, for 1 ≤ i ≤ m− 1. Thus there exist
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yi ∈ Y and Φi ∈ 〈A〉 such that yφi = yiΦi, for 1 ≤ i ≤ m− 1. Set ym = y and Φm = Γ,
and the latter holds for 1 ≤ i ≤ m.

As yiΦiφ
m = yφm+i = yΓφi = yiΦiΓ, both yiΦi and yiΦiΓ belong to the same

orbit of y and Lemma 2.5.13 (B) implies that for some ni 6= 0 we have yiφ
ni = yi∆i,

for some ∆i 6= 1. If ni < 0 then it follows that yiφ
j ∈ Y〈A〉, for all j ≤ 0, so

yφi+j = yiΦiφ
j ∈ Y〈A〉, for all j ≤ 0, which is impossible, as the orbit of y is right

semi-infinite. Hence ni > 0, and (using Lemma 2.5.22) in particular yiφ = ziΓi+1, for
some zi ∈ Y and Γi+1 ∈ 〈A〉.

Set Γ1 = Φ1. Then yφ = y1Γ1. Assume inductively that for 1 ≤ k ≤ i− 1 < m we
have yφk = ykΓk · · · Γ1. Then yφi = yφi−1φ = yi−1Γi−1 · · · Γ1φ = yi−1φΓi−1 · · · Γ1 =

zi−1ΓiΓi−1 · · · Γ1. Hence yiΦi = yφi = zi−1Γi · · · Γ1, so zi−1 = yi and Φi = Γi · · · Γ1. By
induction yφi = yiΓi · · · Γ1, for i = 1, . . . , m. In particular, yφm = ymΓm · · · Γ1 and as
ym = y we have Γ = Γm · · · Γ1.

From the above we have yiφ = yi+1Γi+1, so

yiφ
m = yi+1Γi+1φm−1 = . . . = ymΓm · · · Γi+1φi = . . . = yiΓi · · · Γ1Γm · · · Γi+1.

Finally, if 1 ≤ i < j ≤ m and yi = yj, then yiφ = yjφ so yi+1Γi+1 = yj+1Γj+1,
which implies that yi+1 = yj+1 and Γi+1 = Γj+1. Repeating this argument we obtain
eventually ym−j+i = ym = y, and so yφm−j+i = yΓm−j+i · · · Γ1, with m− j + i < m, a
contradiction. Hence the yi are all distinct and the proof is complete.

One of the most useful lemmas of [Hig74] with regard to the ψ-orbits of elements
of V2,1 is given below, with proof. In the cases of interest when we are computing
with elements in G2,1 we assume the automorphism is given by a map between two
bases.

Lemma 2.5.25. [Hig74, Lemma 9.7] Given an element ψ ∈ G2,1 there exists a unique basis
Yψ with respect to which ψ is in quasi-normal form. Moreover, (i) we can effectively construct
the basis Yψ and (ii) for u, v ∈ V2,1 we can effectively decide whether or not u, v are in the
same orbit of ψ, and if so, find the integers m for which uψm = v.

Proof. [Hig74, Lemma 9.7] For part (i), we shall start with an arbitrary basis Y and
modify it until we have ψ given in semi-normal form with respect to a basis Ŷ such
that no contraction of the basis Ŷ gives ψ in semi-normal form.

Suppose ψ is given by a bijection between bases Y and Y′. First we construct such
a Ŷ. For each y ∈ Y we list elements of the orbit with respect to 〈ψ〉,

..., yψ−3, yψ−2, yψ−1, y, yψ, yψ2, yψ3, ... .

We begin with y go forward in the sequence to yψi for i > 1 until we reach for m ≥ 0
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such that,

(1F) either yψm ∈ Y〈A〉 with yψm+1 6∈ Y〈A〉 or,

(2F) for some l with 0 ≤ l < m and for some ŷ ∈ Y and Γ, ∆ ∈ 〈A〉, yφl = ŷΓ and
yφm = ŷ∆.

Similarly, we go backwards in the sequence from y until we reach for n ≥ 0 such that,

(1B) either yψ−n ∈ Y〈A〉 with yψ−(n+1) 6∈ Y〈A〉 or,

(2B) for some l with 0 ≤ l < −n and for some ŷ ∈ Y and Γ, ∆ ∈ 〈A〉, yφl = ŷΓ and
yφ−n = ŷ∆.

Given y ∈ Y, the forward part of the process above produces a sequence of ele-
ments of Y〈A〉, until it halts. As Y is finite it therefore always halts. The backward
part of the process above always halts for the same reason.

If some y satisfies (1F) and (1B), then ψ was not in semi-normal form with respect
to Y. Therefore, we expand Y at the element y and start again. If no y ∈ Y satisfies
(1F) and (1B), then ψ is in semi-normal form with respect to Y by Lemma 2.5.11 and
its proof..

We can now assume ψ is in semi-normal form with respect to Y. We can thus
test all the contractions of the basis Y to find a basis with respect to which ψ is in a
quasi-normal form.

For uniqueness, we will argue by contradiction. Let ψ be in quasi-normal form
with respect to Y1 and Y2, with Y1 6= Y2. By Lemma 2.5.3, there exists a unique
minimal expansion Y such that Yψ ⊆ x〈A〉 and any other basis Z, with the property
Zψ ⊆ x〈A〉, is an expansion of Y. Since ψ is in quasi-normal form with respect to Y1

and Y2 we have Y1 6= Y2, Yiψ ⊆ x〈A〉 for i = 1, 2. Therefore, Y1 and Y2 are expansions
of Y.

Since Y1 6= Y2 and Y1, Y2 are expansions of Y, (without loss of generality) there
exists a contraction of the basis Y1 which gives an element y in Y2. However, ψ is
in semi-normal form with respect to Y2. Thus, we could have contracted Y1 to give
ψ in semi-normal form and hence ψ was not in quasi-normal form with respect to
Y1 (because Y1 was not a minimal expansion of {x} giving ψ in semi-normal form).
Therefore, the expansion of {x} giving ψ in quasi-normal form is unique.

For part (ii), we may assume, by part (i), that we have ψ in quasi-normal form
with respect to a basis Y. If the orbit of u is finite we can list all elements in the
ψ-orbit of u and check to see if v appears in the list. Assume u is in an infinite orbit.
Moreover, for a fixed integer s ≥ 0 we have uψm = v if and only if

(uΓ)ψm = uψmΓ = vΓ
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for all Γ ∈ 〈A〉 of length s (using Lemma 2.5.5). Now, suppose that we have an
algorithm A to decide whether v′ = u′ψm, for some m, for elements u′, v′ of Y〈A〉
(and to return m, if so). Then if u, v are arbitrary elements of V2,1 we may choose
s such that uΓ and vΓ belong to Y〈A〉, for all Γ ∈ 〈A〉 of length s, and input all
these elements to the algorithm A in turn. In the light of the previous remark, this
allows us to determine whether or not u and v belong to the same orbit of ψ (and to
return an appropriate m, if so). Hence we may assume u, v ∈ Y〈A〉 and, by Lemma
2.5.22, as u and v belong to the same orbit of ψ in V2,1, they belong to the same
Y〈A〉-component of an orbit of ψ.

As u ∈ Y〈A〉, we have u = yΛ, where y ∈ Y and Λ ∈ 〈A〉. We now run the
process of part (i) on y. If the process halts with yψm = y, for some m then we may
list the elements uψi = yψiΛ, i = 0, . . . , m− 1, of the orbit of u. In this case v is in
the same orbit as u if and only if it appears in the list, so we are done. Otherwise
the process halts at (1F) and (2B), at (2F) and (1B) or at (2F) and (2B). In all cases we
obtain ỹ ∈ Y such that, for some k 6= l and Λ1 6= Λ2 ∈ 〈A〉, we have yφk = ỹΛ1 and
yφl = ỹΛ2. It follows from Lemma 2.5.13 that ỹ is of type (B). As uφk = yΛφk = ỹΛ1Λ
we may replace u = yΛ with ũ = ỹΛ1Λ. Therefore we now assume that u = yΛ,
where y is of type (B). Now, when we run the process of part (i) on y it halts at (2F)
and (1B) or at (1F) and (2B). Suppose first the forward part halts at (2F). Then y is in a
right semi-infinite orbit and there is a minimal positive integer m such that yψm = yΓ,
with Γ 6= 1.

Thus we have u = yΛ , where y ∈ Y and yψm = yΓ, with m > 0 and Γ 6= 1. If
Λ = ΓiΛ0, where Λ0 has no initial segment Γ, and we set u0 = yΛ0 then,

u0ψmi = yΛ0ψmi = yψmiΛ0 = yΓiΛ0 = yΛ = u,

so u0 is in the same orbit of 〈ψ〉 as u. Hence we may replace u = yΛ by u0 = yΛ0.
Once we have done this we may suppose Λ has no initial segment equal to the
characteristic multiplier Γ of y.

From Lemma 2.5.23 above there exist Γi ∈ 〈A〉 and distinct yi ∈ Y, for i = 1, . . . , m,
with y = ym and Γ = Γm · · · Γ1, such that, setting ∆i = Γi · · · Γ1Γm · · · Γi+1 and Γ′i =
Γi · · · Γ1 (and Γ′0 = 1), we have yψi = yiΓ′i and yi has characteristic multiplier ∆i,
i = 1, . . . m. Thus the Y〈A〉-component of the orbit of y consists of the elements
yψmq+i = yi∆

q
i Γ′i, with q ≥ 0, and finitely many elements yψ−j, where j < 0.

Next we run the process of (i) on u instead of y. As y is in a right semi-infinite
orbit the forward part of the process halts at (2F). As the yi’s are distinct we obtain a
list of elements of the orbit of u of the form

zrΦr, · · · , z1Φ1, u = yΛ, y1Γ′1Λ, . . . , ym−1Γ′m−1Λ, yΓΛ, (2.8)
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where zj ∈ Y, Φj ∈ 〈A〉, zjΦj = uψ−j, for 1 ≤ j ≤ r for some r ≥ 0. If the backward
part of the process halts at (1B) then uψ−r−1 /∈ Y〈A〉. On the other hand, if the
backward part of the process stops at (2B) then, for some s with 0 ≤ s ≤ r, we have
zr = zs (and r is minimal with this property).

As v ∈ Y〈A〉 we also have z ∈ Y and ∆ in 〈A〉 such that v = z∆. If z is in a finite
orbit then v cannot belong to the same orbit as u, so we assume z is in an infinite
Y〈A〉-orbit. As in the case of u, we may adjust v so that z is of type (B). As before
we find a characteristic multiplier Φ for z and, replacing ∆ with a shorter element if
necessary, we may assume that ∆ has no initial segment equal to Φ.

Suppose first that the backward part of the enumeration of the orbit of u halts at
(1B). In this case, the orbit of u has initial element zrΦr. If v = uψd then either d < 0
and v = zdΦd, with 1 ≤ d ≤ r, or d ≥ 0 and v = yi∆

q
i Γ′iΛ, for some q ≥ 0. If the latter

occurs, then z = yi and by our assumption on v we have q = 0, so v = yiΓ′iΛ. In both
cases v appears on the list (2.8). Otherwise u and v do not belong to the same orbit.

Now suppose that the backward part of the enumeration of the orbit of u halts at
steps (2B). Then u is in a complete infinite orbit and, for some s with 0 ≤ s ≤ r, we
have zr = zs. It follows that zs is of type (B) and in a left semi-infinite orbit. As before,
if v = uψd with d ≥ 0 then v = yiΓ′iΛ, for some i with 0 ≤ i ≤ m− 1, so appears
in the list (2.8). Now, if v = uψd with d < 0, then either v = zjΦj with 1 ≤ j ≤ s,
or v lies to the left of zsΦs, in the orbit of u. However, arguing as in the first case,
using Lemma 2.5.23, with zs instead of y, we see that elements in the orbit of u to
the left of zsΦs have the form zjΘ

p
j Φj, where s ≤ j < r, p ≥ 0, Θj is the characteristic

multiplier of zj and zjψ
r−s = zjΘj. Suppose then that v = zjΘ

p
j Φj, for some such j

and p. Writing Φj = Θa
j Φ′j, where Φ′j has no initial segment equal to Θj, we have

z∆ = v = zjΘ
p+a
j Φ′j. Thus z = zj and the condition on ∆ implies that p + a = 0.

Therefore Φj = Φ′j and v = zjΦj, which belongs to the list (2.8).
Therefore, in the case where y is in a right semi-infinite orbit we have v in the

orbit of u if and only if v lies on the list (2.8); and we may compute m such that
uψm = v, if this is the case. Finally, if the enumeration of the orbit of y halts at steps
(1F) and (2B) then the process is essentially the same, except that we deal with a left,
rather than a right, semi-infinite orbit of y.

Example 2.5.26. Let ϕ be in quasi-normal form with respect to the basis

Y = {xα1, xα2α1, xα2
2α2

1, xα2
2α1α2, xα3

2}

and defined by the bijection with the basis

W = {xα3
1, xα2

1α2, xα1α2, xα2α1, xα2
2}
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given by xα1ϕ = xα3
1, xα2α1ϕ = xα2

1α2, xα2
2α2

1ϕ = xα2
2, xα2

2α1α2ϕ = xα1α2, xα3
2ϕ =

xα2α1.
ϕ :

1
2

3 4 5

−→

1 2 4 5 3

We would like to decide if the elements v1 = xα1α2 and v2 = xα2
1α2 are in the

orbit of u = xα2
2α2

1α2. As ψ is in quasi-normal form and u, v1, v2 are in Y〈A〉 we begin
by rewriting u as yΛ so that y ∈ Y and Λ ∈ 〈A〉. That is,

u = xα2
2α2

1α2 = (xα2
2α2

1)α2 = y3α2,

where y3 = xα2
2α2

1 ∈ Y (the third element in the basis).
We now, for some k, find ỹ an element of type (B) such that uϕk = ỹΛ1. From the

above, we can choose ỹ = y3 = xα2
2α2

1 and so k = 0 and Λ1 = Λ. The characteristic
multiplier for ỹ is α2

1 and Λ = α2 has no initial segment equal to α2
1 so we can take

u0 = u = xα2
2α2

1α2. We now look at the orbit of u,

uϕ−1, u, uϕ, uϕ2, uϕ3, uϕ4,

xα2
2α4

1α2, xα2
2α2

1α2, xα3
2, xα2α1, xα2

1α2, xα4
1α2,

STOP 2B y3α2
1α2, y3α2, y5, y2, y1α1α2, y1α3

1α2, STOP 2F

For v1 = xα1α2, we can write v = z∆ with z of type (B). Here, z = y1 = xα1 and
∆ = α2. Since ∆ has no initial segment in common with the characteristic multiplier
α2

1 for z, we can take v0 = v1. We can now check the list above and see that v0 does
not appear in the list and so v is not in the same orbit of u.

For v2 = xα2
1α2, we can write v = z∆ with z of type (B) (we see immediately that

uϕ3 = v but here we will follow the algorithm). Here, z = y1 = xα1 and ∆ = α1α2.
Since ∆ has no initial segment in common with the characteristic multiplier α2

1 for z,
we can take v0 = v2. We can now check the list above and see that v0 does appear in
the list and in fact uϕ3 = v.
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Chapter 3

The conjugacy and power
conjugacy problems in G2,1

In this chapter we examine the conjugacy and power conjugacy problems for the
Higman-Thompson group G2,1.

3.1 Higman’s ψ-invariant subalgebras VP and VRI

Let ψ be an element of G2,1. Higman defined two subalgebras of V2,1, determined by
ψ; namely

• the subalgebra VP,ψ generated by the set of elements of V2,1 which belong to
finite orbits of ψ and

• the subalgebra VRI,ψ generated by the set of elements of V2,1 which have proper
characteristic multipliers (that is elements u such that uψm = uΓ, for some
m ∈ Z and some Γ 6= 1).

Where there is no ambiguity, we will write VP for VP,ψ and VRI for VRI,ψ. If ϕ is any
element of G2,1 then ϕ|VP.ϕ and ϕ|VRI,ϕ are isomorphisms between subalgebras of V2,1.
We write ϕP = ϕ|VP,ϕ and ϕRI = ϕ|VRI,ϕ .

Now suppose that ψ is in semi-normal form with respect to a basis Y. We first
partition Y into the following disjoint sets,

YP = {y ∈ Y| y belongs to a finite orbit of ψ},

and
YRI = Y \YP = {y ∈ Y| y is of type (B) or (C)}.

Higman proved the following Theorem. .

44



Chapter 3. The conjugacy and power conjugacy problems in G2,1

Theorem 3.1.1. [Hig74, Theorem 9.5 and its proof] Let ψ be an element of G2,1. Then with
the notation above, the following hold.

1. V2,1 is a free product of the subalgebras VP and VRI .

2. The subalgebras VP and VRI are ψ-invariant.

3.
VP = YP〈A〉〈λ〉

and
VRI = YRI〈A〉〈λ〉

4. Let θ and ϕ be elements of G2,1. Then θ−1ψθ = ϕ if and only if

• θP = θ|VP,ψ is a map from VP,ψ to VP,ϕ and θRI = θ|VRI,ψ is a map from VRI,ψ to
VRI,ϕ, such that

• θ = θP ∗ θRI , as a map from V2,1 = VP,ψ ∗VRI,ψ to VP,ϕ ∗VRI,ϕ = V2,1 and

• writing ψP = ψVP,ψ , ϕP = ϕVP,ϕ , ψRI = ψVRI,ψ and ϕRI = ϕVRI,ϕ , we have

θ−1
P ψP θP = ϕP and θ−1

RI ψRI θRI = ϕRI .

Example 3.1.2. Let ψ be as in Example 2.5.8. Then ψP is an automorphism of
{xα2α1, xα2

2}〈A〉〈λ〉 defined by,

xα2α1 7→ xα2
2, xα2

2 7→ xα2α1

and ψRI an isomorphism of {xα3
1, xα1α2, xα2

1α2}〈A〉〈λ〉 to {xα2
1, xα1α2

2, xα1α2α1}〈A〉〈λ〉
defined by,

xα3
1 7→ xα2

1, xα1α2 7→ xα1α2
2, xα2

1α2 7→ xα1α2α1.

Part 4 of Theorem 3.1.1 allows us to consider two parts of an element of G2,1

separately. In fact VP and VRI are both isomorphic to V2,1, so we may regard θP and
θRI as automorphisms of V2,1 via this identification.

Let ψ and φ be elements of G2,1, write V1 = VRI,ψ and V2 = VRI,φ, and write
ψ1 = ψRI and φ1 = φRI . (Alternatively, let V1 = VP,ψ and V2 = VP,φ, and let ψ1 = ψP

and φ1 = φP; it doesn’t affect what follows.)
Then ψ1 ∈ Aut(V1) and φ1 ∈ Aut(V2) and Vi is isomorphic to V2,1, for i = 1, 2.

Let f : V1 → V2,1 and g : V2 → V2,1 be fixed isomorphisms, and define ψ̂ = f−1ψ f
and φ̂ = g−1φg. Then ψ̂ and φ̂ are elements of G2,1 and the diagrams in Figure 3.1.0.1
commute.

Now ψ̂ ∼ φ̂ if and only if there exists ρ ∈ G2,1 such that ρ−1ψ̂ρ = φ̂
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V2,1
ψ̂−−−→ V2,1x f

x f

V1
ψ1−−−→ V1

V2,1
φ̂−−−→ V2,1xg

xg

V2
φ1−−−→ V2

Figure 3.1.0.1: Commutative diagrams

if and only if ρ−1 f−1ψ1 f ρ = g−1φ1g

if and only if gρ−1 f−1ψ1 f ρg−1 = φ1

if and only if θ−1ψ1θ = φ1, where θ = f ρg−1.

Here θ is an isomorphism of V1 to V2, so could be taken to be either θP or θRI

in Theorem 3.1.1, as appropriate. Of course, given such a θ, we have ρ = f−1θg,
satisfying all the above.

Note that, if u, v ∈ V2,1 then there exist a, b ∈ V1 such that u = a f and v = b f . In
this case uψn = v if and only if uψn f = v f if and only if u f ψ̂n = v f . It follows that,
if V1 = VP then ψ̂ is periodic, while if V1 = VRI then ψ̂ is regular infinite.

Combining this with Theorem 3.1.1 gives the required decomposition of the con-
jugacy problem into the conjugacy problem for periodic and for regular infinite ele-
ments, separately. At least in principle: the question of finding f and g algorithmi-
cally still remains. It’s true that any isomorphism could be chosen in each case, but
then the maps ψ̂ and φ̂ have to be given with respect to suitable bases, and this will
be unpleasant unless f and g are chosen sensibly.

First we give an outline of the strategy we shall adopt; and then we shall verify
that all the steps do in fact work. The process described here is only for the regu-
lar infinite part of an automorphism; as everything works in the same way for the
periodic part.

Given ψ in semi-normal form with respect to X, and Y = Xψ, let XRI and YRI

be the regular infinite parts of these bases and let V0 = VRI . Find a basis B0 ⊆ x〈A〉
for V0, such that if v is any element of XRI or YRI then v = bΓ, for some b ∈ B0 and
Γ ∈ 〈A〉. Next contract the basis B0 as much as possible: that is until it contains no
pair of elements xΓα1 and xΓα2, x ∈ x. Denote by Z0 the resulting basis of V0. Next
choose a maximal length element of Z0, say z = xΓαi, where x ∈ x, Γ ∈ 〈A〉, and
replace it by xΓ. Let V1 be the algebra generated by Z0\{z} ∪ {xΓ} and define a new
map ψ1, from V1 to itself, obtained from the map XRI to YRI as follows. Given v in
XRI or YRI , if v has the form xΓαi∆, Γ, ∆ ∈ 〈A〉 then replace it with xΓ∆. Having
done this for all such v, map the new sets XRI and YRI to each other in the same
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order as before. Now repeat the process starting with ψ1 instead of ψRI . Continue for
as long as possible. We shall verify below that this process does indeed result in an
isomorphism from VRI to V2,1 such that the automorphism ψ̂ corresponding to ψ, as
above, is automatically given as a map between two bases of V2,1 (contained in x〈A〉).

Example 3.1.3. Let ψ be an element of G2,1 in quasi-normal form with respect to the
basis,

Y = {xα4
1, xα3

1α2, xα2
1α2, xα1α2α1, xα1α2

2, xα2α1, xα2
2α1, xα3

2}

and defined by the bijection with the basis

Z = {xα3
1, xα2

1α2α1, xα2
1α2

2, xα1α2α1, xα1α2
2, xα2α2

1, xα2α1α2, xα2
2}

given by xα4
1ψ = xα3

1, xα3
1α2ψ = xα2

1α2α1, xα2
1α2ψ = xα2

1α2
2, xα1α2α1ψ = xα1α2

2,
xα1α2

2ψ = xα1α2α1, xα2α1ψ = xα2α2
1, xα2

2α1ψ = xα2α1α2 and xα3
2ψ = xα2

2.
ψ :

1 2 3 4 5
6 7 8

−→

1 2 3 5 4 6 7 8

The subsets of elements of Y and Z in infinite orbits are

YRI = {xα4
1, xα3

1α2, xα2
1α2, xα2α1, xα2

2α1, xα3
2},

and
ZRI = {xα3

1, xα2
1α2α1, xα2

1α2
2, xα2α2

1, xα2α1α2, xα2
2}.

The subset of elements of Y and Z in finite orbits is

YP = {xα1α2α1, xα1α2
2} = ZP.

We can see that ψRI is a map from YRI〈A〉〈λ〉 to ZRI〈A〉〈λ〉. For ψRI we can
contract the bases Y and Z so that we remove part of our diagram to form the regular
infinite element ψ̂ given by the tree pair,

1 2 3 4 5 6

−→

1 2 3 4 5 6

.

In a sense we are "pruning" our tree pair at the edge going from xα1 to xα2
1 and

contracting the elements xα2
1, xα1α2α1, xα1α2

2 to the element xα1.

Before we describe the steps of this process in detail we establish some prelimi-
nary results.
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Lemma 3.1.4. Let V be a subalgebra of V2,1 and let Y be a basis of V. Then there exists a
basis Z of V such that

1. for all y ∈ Y there is z ∈ Z such that z is an initial segment of y and

2. if z1, z2 ∈ Z then z1z2λ /∈ x〈A〉.

Such a basis Z is called a contracted basis of V, with respect to Y.

Proof. If Y is contracted (that is the second condition holds for Y) then we may take
Y = Z. Otherwise there exist y1, y2 ∈ Y and Γ in 〈A〉 such that yi = xΓαi, i = 1, 2,
x ∈ x. Then the contraction Y \ {y1, y2}∪ {xΓ} is a basis for V and has fewer elements
than Y. Continuing this way we eventually obtain a contracted basis Z.

Lemma 3.1.5. Let X and Y be free bases of a subalgebra V of V2,1 (with X, Y ⊆ x〈A〉). Then
there exists a basis B of V such that, X ∪Y ⊆ B〈A〉 (and B ⊆ x〈A〉).

Proof. From Lemma 2.4.21 there exist subsets X′ and Y′ of x〈A〉, such that X̂ = X∪X′

and Ŷ = Y ∪ Y′ are expansions of x. Now, if x ∈ X, from Lemma 2.4.21 again, there
exists y ∈ Ŷ such that one of x and y is an initial segment of the other. If y ∈ Y′ and
x is an initial segment of y then y = xΓ, for some Γ ∈ 〈A〉, so y ∈ X〈A〉 ⊆ V and
hence y = y1∆, where y1 ∈ Ŷ, y1 6= y, contradicting Lemma 2.4.21. If y is an initial
segment of x then interchanging roles of X and X′ and of Y and Y′, we have again a
contradiction. Hence, for all x ∈ X there exists y in Y such that one of x and y is an
initial segment of the other. The analogous statement holds for elements of Y.

Now let Z = X ∩Y, X(S) = {x ∈ X|x /∈ Y〈A〉} and Y(S) = {y ∈ Y|y /∈ X〈A〉}. We
shall show that

B = Z ∪ X(S) ∪Y(S)

is a free basis for V. From the previous paragraph, every element x ∈ X is in Y〈A〉
or X(S). If x /∈ Z ∪ X(S) then x ∈ Y〈A〉 so x = yΓ, for some Γ ∈ 〈A〉. If y /∈ Y(S) then
y = x1∆, for some x1 ∈ X and ∆ ∈ 〈A〉, so x = yΓ = x1Γ∆, and Lemma 2.4.21 implies
that x = x1 and Γ and ∆ are trivial. However, this means that x ∈ Z, contrary to the
choice of x. Thus, x /∈ Z and x /∈ X(S) implies that x ∈ Y(S)〈A〉. Therefore B generates
V. From the definition of B it follows that no element of B is an initial segment of
another. Therefore B is a basis for V, as claimed. As B has all the properties listed in
the Lemma, this completes the proof.

Now, as above assume ψ ∈ G2,1 is in semi-normal form with respect to X, let
Y = Xψ, let X0 = XRI and Y0 = YRI be the regular infinite parts of these bases
and let V0 = VRI and let ψ0 = ψRI . As in the proof of Lemma 3.1.5, let X(S)

0 =

{x ∈ X0|x /∈ Y0〈A〉} and Y(S)
0 = {y ∈ Y0|y /∈ X0〈A〉}. Then, from Lemma 3.1.5,

B0 = (X0 ∩ Y0) ∪ X(S)
0 ∪ Y(S)

0 is a free basis for V0, and every element of X0 ∪ Y0
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belongs to B0〈A〉. From Lemma 3.1.4 we may choose a contracted basis Z0 for V0

with respect to B0.
Let z be an element of maximal length in Z0. Then z = xΓαi, for some x ∈ x,

Γ ∈ 〈A〉 and i ∈ {1, 2}. By definition of contracted basis, xΓαj /∈ Z0, for j 6= i. Also,
xΓαj∆ /∈ Z0, for all non-trivial ∆ ∈ 〈A〉, as z is of maximal length. Therefore, for
all u ∈ Z0 \ {z}, no initial segment of u is equal to xΓ. (Here we use Lemma 2.4.21
again.)

Iteration process: Define f0 : V0 → V2,1 by defining it on Z0 as the map given
by u f0 = u, if u 6= z and z f0 = xΓ. Let B1 = Z0 f0 = Z0 \ {z} ∪ {xΓ} and let
V1 = B1〈A〉〈λ〉. Observe that no element of B1 is an initial segment of another: if u is
not equal to z and is an initial segment of xΓ then it’s an initial segment of xΓαi = z,
a contradiction; while if xΓ is an initial segment of u then, as xΓαj∆ /∈ Z0, for all
∆ ∈ 〈A〉, it follows that z = xΓαi is an initial segment of u, again a contradiction.
This means that B1 is a free basis for V1. Thus f0 is an isomorphism (as it maps a free
basis of V0 bijectively to a free basis of V1).

Next, let ψ1 = f−1
0 ψ f0, so ψ1 ∈ Aut(V1), let X1 = X0 f0 and let Y1 = Y0 f0. For

v ∈ X1 we have (unique) u ∈ X0 such that u f0 = v. Then vψ1 = (u f0) f−1
0 ψ0 f0 =

uψ f0 = w f0 = y, for some w ∈ Y0 and y ∈ Y1 such that w f0 = y.
If V1 6= V2,1, take a contracted basis Z1 for B1. As V1 6= V2,1 this basis Z1 is not

equal to x, so the process we may repeated, starting with ψ1 and Z1 instead of ψ0 and
Z0. As ∑b∈B1

|b| < ∑b∈B0
|b| the process must come to a halt after say n repetitions, at

which point we have a sequence V0, . . . , Vn of subalgebras and a sequence f0, . . . , fn−1

of isomorphisms such that fi maps Vi−1 to Vn and Vn = V2,1. Moreover we have
bases Xi and Yi for Vi, such that ψi = f−1

i−1ψi−1 fi−1 maps Xi bijectively to Yi. Setting
f = f0 · · · fn−1 we obtain ψn = f−1ψ0 f , ψn ∈ G2,1, ψn maps Xn bijectively to Yn and
ψn is regular infinite. This ends the iteration process.

Algorithm 3.1.6. Let ψ be an element of G2,1 in quasi-normal form with respect to
the basis X with Xψ = Y.

Step 1: Find the sets XRI = VRI ∩ X and XP = VP ∩ X, then YRI = XRIψ and YP =

XPψ.

Step 2: Either set ψ0 = ψRI , X0 = XRI , Y0 = YRI and V0 = VRI or ψ0 = ψP, X0 = XP,
Y0 = YP and V0 = VP. Find a basis B0 for V0 such that X0 ∪ Y0 ⊆ B0〈A〉 (as in
the proof of Lemma 3.1.5). Set n = 0 and f = 1.

Step 3: Find a contracted basis Zn for Bn.

Step 4: Collapse Zn as above (see Iteration process) to give a new basis Bn+1 and a
map fn.
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Step 5: Set f = fn f .

Step 6: If Bn+1 generates V2,1 output f . Otherwise add 1 to n and repeat from step 3.

Remark 3.1.7. If ψ is in quasi-normal form with respect to X then it can be shown that
the automorphism ψn is in quasi-normal form with respect to Xn.

Now that we have set up this terminology, we will use it in Algorithm 3.3.25.

Definition 3.1.8. Let ψ be an element of G2,1. We shall say that ψ is periodic if and
only if VRI = ∅. We say that ψ is regular infinite if VP = ∅.

Lemma 3.1.9. Let ψ be an element of G2,1, then ψ is a periodic element if and only if there
exists a basis Y giving ψ in semi-normal form such that Yψ = Y i.e. ψ permutes the elements
of Y.

Proof. If Y is a basis giving ψ in semi-normal form such that Yψ = Y , then all
elements of the basis are in a finite orbit. Therefore all elements of V2,1 are in finite
orbits, thus VRI,ψ = ∅.

If VRI,ψ = ∅, then there exists no characteristic elements in V2,1. Since ψ is an
element of G2,1, then exists a basis Y giving ψ in semi-normal form. Since all orbits
in V2,1 are finite, no element y of Y is of type (B) or (C). Thus, by Lemma 2.5.13, y ∈ Y
belongs to a finite orbit which consists of elements of Y.

Lemma 3.1.10. Let ψ be a non-trivial element of G2,1 in semi-normal form with respect to
the basis Y, then the following are equivalent:

• ψ is regular infinite;

• no element of Y is in a finite orbit.

Proof. If ψ is regular infinite then VP,ψ = ∅ and no elements if V2,1 are in a finite orbit.
Since Y ⊂ V2,1 then no element of Y is in a finite orbit.

If there exists no element of Y in a finite orbit, then Y1 = so VP =, from Theorem
3.1.1.

3.2 Conjugacy problems

In order to describe the conjugacy problem for a group we start with the definition
of a group by a presentation, that is from a set of generators and defining relators.

Given a set S of symbols and a set R (possibly empty) of words in the symbols
and their inverses (elements of the free monoid (S ∪ S−1)∗), then G has presentation

〈S|R〉,
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if G is isomorphic to the quotient of a free group on S by the normal subgroup
generated by the relations R.

However, as soon as we wish to determine more information about the group G
defined by the presentation 〈S|R〉 we run into difficulties even if S and R are finite.
One such problem is that the definition of equivalence of words used to obtain G is
non-constructive. Therefore, the problem of deciding whether a word in (S ∪ S−1)∗

defines the identity element becomes a non-trivial question. This problem is the first
of the three fundamental decision problems formulated by Max Dehn [Dehn1911].

Dehn posed the following problems for a group G given by a presentation 〈S|R〉.

Word Problem: For an arbitrary word W in the generators S, decide in a finite num-
ber of steps whether W defines the identity element of G, or not.

Conjugacy Problem: For two arbitrary words W1, W2 in the generators S, decide in
a finite number of steps, whether W1 and W2 define conjugate elements of G,
or not.

Isomorphism Problem: For an arbitrary group G′ defined by means of another pre-
sentation, decide in a finite number of steps whether G is isomorphic to G′, or
not.

The explicit solution (whenever it is possible) of the above problems is always
dependent on a specific presentation (although the existence of a solution does not
depend on a presentation, when we talk about finite presentations). Therefore, we
always talk about the above problems, for a group G, assuming that it is given by a
particular presentation.

In the case considered in this thesis we do something slightly different. Each
element ψ of G2,1 is uniquely represented by a pair of lists of elements Y and Z (up
to reordering), where Y and Z are finite bases of the same cardinality; ψ is in quasi-
normal form with respect to Y and the ith element of Y maps to the ith element of Z.
To decide if two automorphisms are equal we check if these quasi-normal forms are
the same.

Remark 3.2.1. Graham Higman [Hig74, Chapter 8] constructs an explicit finite pre-
sentation for the group G2,1.

For the Higman-Thompson group G2,1 the word and conjugacy problems were
solved by Graham Higman in [Hig74, Section 9]. However, to extract the procedure
for solving the conjugacy problem for the group G2,1 from [Hig74, Section 9] is not
straight forward and an explicit algorithm is not written down.

We, therefore, provide a description of the solution of the conjugacy problem for
the group G2,1. Next we consider the power conjugacy problem.
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3.3 The conjugacy problem for G2,1

By Theorem 3.1.1, ψ is conjugate to ϕ if and only if ψP is conjugate to ϕP and ψRI is
conjugate to ϕRI .

We start by forming a series of lemmas, which will be referred to in the algorithm
of Section 3.3.2.

3.3.1 Conjugacy for periodic and regular infinite elements

Periodic Elements

Definition 3.3.1. Let ψ be a torsion element of G2,1 in quasi-normal form with respect
to the basis Y. The cycle type of ψ is the set of lengths (in increasing order) of ψ-orbits
of elements of Y i.e. for y in Y if m1 is the smallest integer such that yψm1 = y
then the length of the ψ-orbit of y is m1. We write this set of lengths as an r-tuple
(m1, m2, ..., mr).

Example 3.3.2. Let ψ be in quasi-normal form with respect to the basis Y

Y = {xα3
1, xα2

1α2, xα1α2, xα2α2
1, xα2α1α2, xα2

2α1, xα3
2},

and defined by the bijection,

xα3
1 7→ xα2

1α2, xα2
1α2 7→ xα1α2, xα1α2 7→ xα3

1,

xα2α2
1 7→ xα2α1α2, xα2α1α2 7→ xα2α2

1, xα2
2α1 7→ xα3

2, xα3
2 7→ xα2

2α1.

Then the cycle type of ψ is (2, 3).
ψ :

1 2 3 4 5 6 7

−→

3 1 2 5 4 7 6

Our first step is to show that, if the periodic element ψ in quasi-normal form
with respect to X has cycle type (n) (with multiplicity r on the basis X) and the
periodic element ϕ in quasi-normal form with respect to Y has cycle type (n) (with
no multiplicity on the basis Y) then ψ is conjugate to ϕ. The following lemma follows
from the work of [Hig74, Section 6].

Lemma 3.3.3. Let ψ, ϕ be periodic elements of G2,1. Suppose that ψ is in quasi-normal form
with respect to a basis X of size rn, ϕ is in quasi-normal form with respect to Y of size n and
that each element ψ, ϕ has cycles type (n) with respect to these bases. Then there exists an
element ρ of G2,1 which maps X to an n(r− 1) fold expansion Y′ of Y such that ρ−1ψρ = ϕ.
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Proof. Without loss of generality, let ψ be in quasi-normal form with respect to the
basis

X = {x0, ..., xn−1, ...., xrn−n, ..., xnr−1},

defined by xin+jψ = xin+(j+1)mod n
for i = 0, ..., r − 1 and j = 0, ..., n− 1, where (j +

1)mod n means take j + 1 mod n.
Let ϕ be in quasi-normal form with respect to the basis Y = {y0, ..., yn−1} and

defined by yk ϕ = y(k+1)mod n
for k = 0, ..., n− 1.

Let Y′ be a basis of V2,1 which is a n(r− 1)-fold expansion of Y of the form {yjΓi}
for i = 0, ..., r− 1, j = 0, ..., n− 1 and Γi ∈ 〈A〉 such that yjΓ0,....,yjΓr−1 is an (r− 1)-
fold expansion of yj. Define a map ρ by:

xin+j 7→ yjΓi,

for j = 0, ..., n− 1, i = 0, ..., r− 1. Thus, ρ is a bijective map

ρ : X → Y′,

of bases, where |X| = |Y′| = rn and thus ρ is an element of G2,1.
We now check that the equation ψρ = ρϕ holds.

1. We take the basis X and apply ψ then ρ. Thus, we have

xin+jψρ = xin+(j+1)mod n
ρ = y(j+1)mod n

Γi,

for j = 0, ..., n− 1 and i = 0, ..., r− 1.

2. We take the basis X and apply ρ then ϕ. Thus, we have

xin+jρϕ = yjΓi ϕ = yj ϕΓi = y(j+1)mod n
Γi,

for j = 0, ..., n− 1 and i = 0, ..., r− 1.

Hence, ρ conjugates ψ to ϕ.

The second step is to show that, if the periodic element ψ in quasi-normal form
with respect to X has cycle type (n1, ..., nm) (with multiplicity’s r1, ..., rm on the basis
X) and the periodic element ϕ in quasi-normal form with respect to Y has cycle type
(n1, ..., nm) (with no multiplicity’s on the basis Y) then ψ is conjugate to ϕ.

Lemma 3.3.4. Let ψ, ϕ be periodic elements of G2,1. Suppose that ψ is in quasi-normal
form with respect to a basis X of size ∑m

i=1 rini, ϕ is in quasi-normal form with respect to a
basis Y of size ∑m

i=1 ni, rini elements of X have ψ-orbits of length ni and ni elements of Y

53



Chapter 3. The conjugacy and power conjugacy problems in G2,1

have ϕ-orbits of length ni. Then there exists a map ρ from X to some (∑m
i=1 ni(ri − 1))-fold

expansion Y′ of Y that is an element of G2,1 such that ρ−1ψρ = ϕ.

Proof. The proof follows the same method of the proof of Lemma 3.3.3, except we
start (without loss of generality) with a basis for ψ of the form,

X = {xn1,0, ..., xn1,n1−1, ...., xn1,r1n1−n1 , ..., xn1,n1r1−1, ...,

xnm,0, ..., xnm,nm−1, ...., xnm,rmnm−nm , ..., xnm,nmrm−1},

such that xnl ,ilnl+jl ψ = xnl ,ilnl+(jl+1)mod nl
for il = 0, ..., rl − 1 and jl = 0, ..., nl − 1 where

(jl + 1)mod nl means take jl + 1 mod nl , for l = 1, ..., m.
Similarly, we let ϕ be in quasi-normal form with respect to the basis

Y = {yn1,0, ..., yn1,n1−1, ..., ynm,0, ..., ynm,nm−1}

and defined by ynl ,kl ϕ = ynl ,(kl+1)mod nl
for kl = 0, ..., nl − 1 and l = 1, ..., m.

Let Y′ be a basis of V2,1 which is a (∑m
i=1 ni(ri − 1))-fold expansion of Y of the

form {ynl ,jl Γnl ,il} for il = 0, ..., rl − 1, jl = 0, ..., nl − 1 and Γnl ,il ∈ 〈A〉. Define a map ρ

by:
xnl ,ilnl+jl 7→ ynl ,jl Γnl ,il ,

for il = 0, ..., rl − 1, jl = 0, ..., nl − 1 and l = 1, ..., m. Thus, ρ is a bijective map

ρ : X → Y′,

of bases, where |X| = |Y′| = ∑m
i=1 rini and thus ρ is an element of G2,1.

We now check whether the equation ψρ = ρϕ holds.

1. We take the basis X and apply ψ then ρ. Thus, we have

xnl ,ilnl+jl ψρ = xnl ,ilnl+(jl+1)mod nl
ρ = ynl ,(jl+1)mod nl

Γnl ,il ,

for il = 0, ..., rl − 1, jl = 0, ..., nl − 1 and l = 1, ..., m.

2. We take the basis X and apply ρ then ϕ. Thus, we have

xnl ,ilnl+jl ρϕ = ynl ,jl Γnl ,il ϕ = ynl ,jl ϕΓnl ,il = ynl ,(jl+1)mod nl
Γnl ,il ,

for il = 0, ..., rl − 1, jl = 0, ..., nl − 1 and l = 1, ..., m.

Hence, ρ conjugates ψ to ϕ.

A d-fold expansion of {x} has cardinality d + 1.
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Lemma 3.3.5. For any set {n1, ..., nm} ⊂ N, there exists an element ϕ of G2,1 such that ϕ

is in quasi-normal form with respect to a basis Y of size ∑m
i=1 ni, where ni elements of Y have

orbits of length ni.

Proof. Let Y be a basis of V2,1 defined in the following way:
Let Y0 = {y1, ..., ym} be any m− 1-fold expansion of {x} i.e. yi = xΓi for Γi ∈ 〈A〉

for i = 1, ..., m.
Let Y = {y1,1, ..., y1,n1 , ...., ym,1, ...., ym,nm} be any expansion of Y0 such that yi,j =

xΓi∆j for ∆j ∈ 〈A〉, j = 0, ..., ni − 1.
Define ϕ in the following way,

yi,j ϕ = yi,j+1 mod ni .

It is clear that Yϕ = Y is a bijective map between two (identical) bases of V2,1 and
thus ϕ is an element of G2,1. In fact, since no element of y ∈ Y is in an incomplete
orbit, by definition ϕ is in semi-normal form with respect to the basis Y and ϕ is a
periodic element.

If we assume that ϕ is not in quasi-normal form with respect to the basis Y, then
there exists a contraction of the basis Y, Y∗ = Y \ {wα1, wα2} ∪ {w} such that ϕ is in
semi-normal form with respect to Y∗.

However, by definition of the element ϕ above, any contraction of wα1, wα2 ∈ Y
will result in an incomplete finite orbit. Thus ϕ is in quasi-normal form with respect
to Y.

We are now able to state the following result which completely characterises con-
jugacy for periodic elements of G2,1.

Proposition 3.3.6. Let ψ and ϕ be torsion elements of G2,1 in quasi-normal form with respect
to the bases X and Y respectively. Then, ψ is conjugate to ϕ if and only if ψ and ϕ have the
same cycle type.

Proof. If we assume that ψ and ϕ have the same cycle type, then we can apply Lem-
mas 3.3.4 and 3.3.5, and hence ψ and ϕ are conjugate.

Assume ρ is any conjugator, conjugating ψ to ϕ. Then ρ maps the ψ-orbits in V2,1

to ϕ-orbits in V2,1. That is, if u ∈ V2,1 and v is in the ψ-orbit of u then v = uψn, for
some n ∈ Z. In this case vρ = uψnρ = uρρ−1ψnρ = uρϕn. The converse also holds,
by the same argument in reverse, so ρ maps ψ-orbits to φ-orbits, bijectively.

We will now look at the length of the ϕ-orbit uρ. Suppose u ∈ V2,1 and is in a
ψ-orbit of length m. Then uρϕm = uψmρ = uρ and thus uρ is in a ϕ orbit of length at
most m. Given that ρ is an isomorphism, we can take uρ and see that uρρ−1 = u is
in a ψ-orbit of length at least m. However, the ψ-orbit of u is of length m and by the
above uρ must be in a ϕ-orbit of length m.
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Example 3.3.7. Let ψ be the periodic element of G2,1 (in quasi-normal form with
respect to the basis

X = {xα4
1, xα3

1α2, xα2
1α2, xα1α2, xα2α1, xα2

2}),

given by xα4
1ψ = xα3

1α2, xα3
1α2ψ = xα4

1, xα2
1α2ψ = xα1α2, xα1α2ψ = xα2

1α2, xα2α1ψ =

xα2
2 and xα2

2ψ = xα2α1, i.e. ψ has order 2.
ψ :

1 2 3 4 5 6
−→

2 1 4 3 6 5

Let ϕ be a periodic element of G2,1 (in quasi-normal form with respect to the basis

Y = {xα1, xα2}),

given by xα1ϕ = xα2 and xα2ϕ = xα1, i.e. ϕ has order 2. ϕ : 1 2 −→ 2 1
Then ψ is conjugate to ϕ. In fact we can construct a conjugator by applying the

proof of Lemma 3.3.3. Let ρ be the element of G2,1 defined by the bijection between
bases

X = {xα4
1, xα3

1α2, xα2
1α2, xα1α2, xα2α1, xα2

2},

and
Y′ = {xα3

1, xα2
1α2, xα1α2, xα2α2

1, xα2α1α2, xα2
2}

given by xα4
1ρ = xα3

1, xα3
1α2ρ = xα2α2

1, xα2
1α2ρ = xα2

1α2, xα1α2ρ = xα2α1α2, xα2α1ρ =

xα1α2 and xα2
2ρ = xα2

2.
ρ :

1 2 3 4 5 6
−→

1 3 5 2 4 6

We can clearly see that ρ is of infinite order, since xα3
1 is a characteristic element

with characteristic multiplier α1 for ρ−1 (Theorem 2.5.18).

Regular Infinite Elements

In this section we consider regular infinite elements; if ψ is regular infinite then
V2,1 = VRI,ψ.

We begin with a necessary condition for two regular infinite elements to be con-
jugate.

Let ψ be a regular infinite element of G2,1 in quasi-normal form with respect to
X. By Lemma 2.5.9, ψ has finitely many semi-infinite orbits. For those semi-infinite
orbits O that contain a characteristic element let (mO, ΓO) be the characteristic of
O (see Definition 2.5.16). Recall that a semi-infinite orbit contains a characteristic
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element if and only if it contains an element of type (B).
Since there are only finitely many semi-infinite orbits, the set

{(mO, ΓO)| for O a semi-infinite orbit of ψ containing an element of type (B)},

is finite. We now make a formal definition.

Definition 3.3.8. Let ψ be a regular infinite element of G2,1 in quasi-normal form with
respect to X.

Then

Mψ = {(m, Γ)| (m, Γ) = (mO, ΓO), for O containing a characteristic element.},

is called the set of characteristic multipliers and powers for ψ.

Example 3.3.9. Let ψ be in quasi-normal form with respect to,

X = {xα3
1, xα2

1α2, xα1α2, xα2α1, xα2
2α1, xα3

2}

defined by the bijection with the basis

Y = {xα4
1, xα3

1α2, xα2
1α2, xα1α2α1, xα1α2

2, xα2},

given by xα3
1ψ = xα1α2α1, xα2

1α2ψ = xα3
1α2, xα1α2ψ = xα4

1, xα2α1ψ = xα2
1α2, xα2

2α1ψ =

xα1α2
2 and xα3

2ψ = xα2.
ψ :

1 2 3 4 5 6

−→

3 2 4 1 5
6

We have the following semi-infinite orbits,

O1 : xα3
1, xα1α2α1, xα5

1, ...

O2 : xα1α2, xα4
1, xα1α2α2

1, ...

O3 : ..., xα5
2, xα3

2, xα2

O4 : ..., xα6
2, xα4

2, xα2
2.

In this case we have Mψ = {(2, α2
1), (−1, α2

2)} since orbits O1,O2 and O3 contain
elements of type (B). Orbit O4 contains a elements of type (C) but none of type (B).
All other elements of in complete infinite orbits.

Lemma 3.3.10. Suppose that ψ and ϕ are conjugate regular infinite elements of G2,1 in quasi-
normal form with respect to the bases X and Y respectively. Then the set of pairs Mψ and
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Mϕ coincide. Moreover, if ρ ∈ G2,1 is such that ρ−1ψρ = ϕ then ρ maps an orbit which is
semi-infinite with respect to X and has characteristic (m, Γ) to an orbit which is semi-infinite
with respect to Y of the same characteristic.

Proof. Let ψ and ϕ be in quasi-normal form with respect to the bases X and Y respec-
tively and let ρ be such that ρ−1ψρ = ϕ. Then ψρ = ρφ. Thus, if u is an element of
X〈A〉 such that uψm = uΓ, for some m and Γ, then

uρϕm = uψmρ = uΓρ = uρΓ.

The same argument can be applied starting with an element v ∈ Y〈A〉 and inter-
changing ψ and ϕ. Hence if u belongs to an orbit of ψ of characteristic (m, Γ) then
uρ belongs to an orbit of ϕ of characteristic (m, Γ). Thus, from Lemma 2.5.19 an orbit
which has a proper characteristic with respect to ψ maps to an orbit which has the
same proper characteristic with respect to ϕ.

Example 3.3.11. Let ψ be in quasi-normal form with respect to,

X = {xα2
1, xα1α2, xα2}

defined by the bijection with the basis

Y = {xα1, xα2α1, xα2
2},

given by xα2
1ψ = xα1, xα1α2ψ = xα2α1 and xα2ψ = xα2

2. In this case, the set Mψ =

{(1, α2), (−1, α1)}.
ψ :

1 2 3 −→ 1 2 3
Define ϕ = ρ−1ψρ where ρ is as in Example 3.3.7. Then ϕ is in quasi-normal form

with respect to,

Z = {xα4
1, xα3

1α2, xα2
1α2, xα1α2, xα2α2

1, xα2α1α2, xα2
2}

and defined by the bijection with the basis,

W = {xα3
1, xα2

1α2, xα1α2, xα2α2
1, xα2α1α2, xα2

2α1, xα3
2}

given by xα4
1ϕ = xα3

1, xα3
1α2ϕ = xα2α2

1, xα2
1α2ϕ = xα2α1α2, xα1α2ϕ = xα2

2α1, xα2α2
1ϕ =

xα2
1α2, xα2α1α2ϕ = xα1α2 and xα2

2ϕ = xα3
2.

ϕ :

1 2 3 4 5 6 7

−→

1 5 6 2 3 4 7
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The set Mϕ = {(1, α2), (−1, α1)} so coincides with Mψ.

We now build up to Lemmas 3.3.15 and 3.3.16 which will be useful for the remain-
der of the subsection. However before this we will define an equivalence relation on
the elements in a basis which gives an element of G2,1 in quasi-normal form given by
Graham Higman [Hig74, Page 75].

Definition 3.3.12. Let ψ be in semi-normal form with respect to X. The equivalence
relation ≡ on the elements of X, is defined to be the least equivalence relation such
that x ≡ x′ whenever xΓ and x′∆ are in the same ψ-orbit, for some Γ, ∆ ∈ 〈A〉.

Example 3.3.13. Let ψ be as in Example 3.3.11. Then, since xα2
1α2ψ = xα1α2 and

xα1α2ψ = xα2α1 we only have one equivalence class on X.

We shall now make some remarks about this definition. Let ψ be a regular infinite
element in quasi-normal form with respect to X. Firstly, the initial relation x ≡0 y if
and only if xΓ and y∆ belong to the same ψ-orbit (for some Γ, ∆ ∈ 〈A〉) is symmetric
and reflexive but not transitive. Hence, the equivalence relation ≡ (as defined above)
on a subset S of V2,1 relates x to y if and only if there exists an integer n ≥ 0 and a
sequence of elements w0 = x, ..., wn = y in S, Γ0, ..., Γn−1, ∆1, ..., ∆n ∈ 〈A〉 such that
wiΓi and wi+1∆i+1 belong to the same orbit of ψ, for i = 0, ..., n− 1.

Now that we have the definition of the relation ≡, we will use this to make a finer
decomposition of V2,1.

Proposition 3.3.14. Let ψ be a regular infinite element in quasi-normal form with respect to
X. Let X = än

i=1 Xi where the Xi are the equivalence classes of ≡ defined on X under the
action of ψ.

Then V2,1 is the free product of the ψ-invariant subalegbras V1, ..., Vn where each Vi is the
subalgebra generated by Xi.

Proof. As ψ is regular infinite, the sets Xi partition X, so V2,1 is the free product of
the Vi’s.

To show that Vi is ψ-invariant it suffices to show that if x ∈ Xi then xψ and xψ−1

are in Vi. To this end, choose d ≥ 0 such that xψΓ and xψ−1Γ belong to X〈A〉, for all
Γ ∈ 〈A〉 of length d. Then, for Γ of length d, we have xψΓ = y∆ and xψ−1Γ = zΛ,
for some y, z ∈ X and ∆, Λ ∈ 〈A〉. By definition then y ≡ x ≡ z, so x, y, z ∈ Xi.
This implies that xψΓ = y∆ ∈ Vi and xψ−1Γ = zΛ ∈ Vi. This holds for all Γ of
length d, so from Lemma 2.5.5, xψ and xψ−1 belong to Vi, as required. Hence Vi is ψ

invariant.

Lemma 3.3.15. Suppose ψ is a regular infinite element of G2,1 in quasi-normal form with
respect to X, and let Xψ = Z.
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If X = än
i=1 Xi and Z = äm

i=1Zi, where the Xi and Zi are the equivalence classes of ≡
defined on X and Z under the action of ψ and ψ−1 respectively, then n = m and ψ maps the
equivalence classes on X bijectively to the equivalence classes on Z. Moreover, if Xiψ = Zj

then |Xi| = |Zj|.

Proof. Let xi, xj ∈ X. Since Xψ = Z, we have xiψ = zi and xjψ = zj for some zi, zj ∈ Z.
First note that, if k ∈ Z, and Γ, ∆ ∈ 〈A〉 such that xiΓψk = xj∆ then

ziΓψk = xiψΓψk = xiΓψk+1 = xj∆ψ = xjψ∆ = zj∆,

so ziΓ = zj∆ψ−k = zj∆(ψ−1)k.
Conversely, if k ∈ Z, and Γ, ∆ ∈ 〈A〉 such that ziΓ = zj∆ψ−k then ziΓψk = zj∆

and
xiΓψk = ziψ

−1Γψk = ziΓψkψ−1 = zj∆ψ−1 = zjψ
−1∆ = xj∆.

Therefore, for all Γ, ∆ in 〈A〉, xiΓ and xj∆ belong to the same ψ-orbit if and only if
ziΓ and zj∆ belong to the same ψ−1-orbit.

By definition of the equivalence relation ≡ on X under the action of ψ, we have
xi ≡ xj if and only if there exists an integer n ≥ 0, a sequence of elements u0 =

xi, . . . , un = xj of X, and elements Γ0, . . . , Γn−1, ∆1, . . . , ∆n in 〈A〉, such that utΓt and
ut+1∆t+1 belong to the same ψ-orbit, for t = 0, . . . , n − 1. Setting vt = utψ we see
from the first paragraph of the proof that this occurs if and only if the sequence
v0 = zi, . . . , vn = zj has the property that vtΓt and vt+1∆t+1 belong to the same ψ−1-
orbit, for t = 0, . . . , n− 1. The latter holds if and only if zi ≡ zj in the equivalence
relation on Z given by ψ−1. Hence ψ maps Xi bijectively to Zi, for i = 1, . . . , n (up to
relabelling). As ψ maps X bijectively to Z it follows that the number of equivalence
classes for X under ψ must equal the number of equivalence classes for Z under
ψ−1.

Lemma 3.3.16. Let ψ, Xi and Zi be as in Lemma 3.3.15. Let θ1, ..., θn be maps defined by

xθi =

{
xψ if x ∈ Xi,

x if x ∈ Xj for i 6= j,

i = 1, ..., n.
Then each θi extends to an element of G2,1 such that θi commutes with ψ and, for all

j = 1, ..., n, θi, commutes with θj.

Proof. As θi is defined on a basis it extends to a unique endomorphism of V2,1. Since
X = än

i=1 Xi and Z = än
i=1Zi, then (after reordering if necessary) Xiψ = Zi for

i = 1, ..., n (from Lemma 3.3.15). Thus θi maps X to (X \ Xi) ∪ Zi. To show θi is an
automorphism we need to show that (X \Xi)∪Zi is a basis and |X| = |(X \Xi)∪Zi|.
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By Lemma 3.3.15 |X| = |(X \Xi)∪Zi| and so it remains to prove that (X \Xi)∪Zi

is a proper expansion of {x}.
From Lemma 3.3.15, Vi = Xi〈A〉〈λ〉 is ψ invariant and Xiψ = Zi, for all i. From

Lemma 2.4.21, Vi is freely generated by Xi, and so also by Zi. Therefore Vi has bases
Xi and Zi, for all i. As V2,1 = V1 ∗ · · · ∗Vn is free product, if Yi is any basis for Vi then
∪n

i=1Yi is a basis for V2,1. In particular, if J = {1, . . . , n} \ {i} then Zi ∪ (∪j∈JXi) =

(X \ Xi) ∪ Zi is a basis for V2,1, as required. Therefore θi is an automorphism.
We now work for commutativity. Firstly, as Xi and Zi are bases of Vi there exists

a common expansion of Xi and Zi for each i = 1, ..., n.
Finally, we can now show the commutativity of the elements θi and θj of G2,1.

Since Xi and Zi generate Vi, for i = j we have θi|Vi = ψ|Vi , while for j 6= i we have
θi|Vj = Id|Vi .

Now suppose xi ∈ Xi and xiψ = zi ∈ Zi. Then

xiψθi = ziθi = ziψ,

while
xiθiψ = ziψ.

On the other hand, if xi ∈ Xj, j 6= i then

xjψθi = zjθi = zj

and
xjθiψ = xjψ = zj.

Hence ψθi = θiψ for i = 1, ..., n and similarly θiθj = θjθi for i 6= j.

Remark 3.3.17. We note that, if ψ and ϕ are conjugate by a conjugator ρ and θ com-
mutes with ψ, then θρ is also a conjugator.

Lemma 3.3.18. Let ψ and ϕ be regular infinite elements of G2,1, in quasi-normal form with
respect to the bases X and Y respectively.

If ψ and ϕ are conjugate then, given x1, . . . , xn such that xi is an element of type (B) in
Xi, there exists a conjugator ρ such that xiρ is a terminal or initial element in a semi-infinite
orbit for ϕ.

Proof. Since ψ and ϕ are conjugate, by Lemma 3.3.10 the set of characteristic multi-
pliers for ψ and ϕ coincide and there exists an element ρ′ such that ρ′−1ψρ′ = ϕ. Let
xi be the given element of type (B) in Xi. Then, from Lemma 3.3.10, xiρ

′ belongs to a
semi-infinite ϕ-orbit, with the same characteristic as xi. Let yi ∈ Z〈A〉 be an initial or
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terminal element of this orbit. Then there exists ji such that

xiρ
′ = yi ϕ

ji .

Thus, as ρ′ is a conjugator, we can rewrite this as,

yi = yi ϕ
ji ϕ−ji = xiρ

′ϕ−ji = xiψ
−ji ρ′.

For each equivalence class Xi, we define each θi as in Lemma 3.3.16 and a new
(potential) conjugator ρ by

ρ = (
n

∏
i=1

θ
−ji
i )ρ′,

which is an element of G2,1 and conjugates ψ to ϕ, since ∏n
i=1 θ

−ji
i commutes with ψ.

We check, for each chosen xi ∈ Xi,

xiρ = xi(
n

∏
i=1

θ
−ji
i )ρ′ = xiθ

−ji
i ρ′ = xiψ

−ji ρ′ = yi.

Definition 3.3.19. Let ψ and ϕ be regular infinite elements in quasi-normal form with
respect to X and Y and Xi the equivalence classes on X.

We say Ri(ψ, φ) is the set of pairs (xi, yi), where xi is of type (B) in Xi and yj is an
initial or terminal element of a semi-infinite orbit of φ with the same characteristic as
xi.

The set Ri(ψ, φ) is finite since the number of elements of type (B) in X and the
number of semi-infinite orbits for ϕ is finite.

We define a new set R(ψ; ϕ) as follows. Given (xi, yi) ∈ Ri(ψ, φ), i = 1, . . . , n, let
ρ0 be the map from {x1, . . . , xn} to {y1, . . . , yn} given by

x1ρ0 = y1, ..., xn−1ρ0 = yn−1 and xnρ0 = yn.

(Note that from the definitions, the domain and range of ρ0 are n-sets.) Then R(ψ; ϕ)

is the set of all such maps.
Again, it is clear that this set of maps R(ψ; ϕ) is finite, since the number of type

(B) elements of X and the number of semi-infinite orbits for ϕ is finite.

Lemma 3.3.20. Given ρ0 ∈ R(ψ, ϕ), there are finitely many ways of extending ρ0 to an
element ρ of G2,1 such that ϕ = ρ−1ψρ. Moreover the existence of such an extension ρ can be
effectively determined, and if such ρ exists then the images yρ can be effectively determined,
for all y ∈ X.
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Proof. Throughout the proof, when we say ρ exists we mean that an extension ρ of
ρ0 to an element of G2,1 exists and satisfies ϕ = ρ−1ψρ. Note that we may effectively
enumerate the initial part of the orbits of elements of ϕ and ψ, using the process of
Lemma 2.5.25. Thus we may effectively construct the equivalence classes Xi, and the
sets Ri(ψ, ϕ).

First consider a single equivalence class Xi. We are given an element xi of type
(B) and an element yi such that

xiρ0 = yi,

where yi is an initial or terminal element of a semi-infinite orbit of ϕ with the same
characteristic multiplier and power as xi.

Let x ∈ X of type (B). Then, by definition of ≡, we have x ∈ Xi if and only if
there exist elements xi = u0, . . . , un = x of X, elements Γj, ∆j ∈ 〈A〉 and k j ∈ Z with
uj+1∆j+1 = ujΓjψ

k j , for j = 0, . . . , n− 1. Before going any further we show that we
may assume that uj is of type (B), for all j. Suppose not, say uj is of type (C). Then,
by Lemma 2.5.13, there exist k′j ∈ Z, Γ′j ∈ 〈A〉 and u′j ∈ X of type (B) such that

ujψ
k′j = u′jΓ

′
j. Now

uj−1Γj−1ψk j−1+k′j = uj∆jψ
k′j = u′jΓ

′
j∆j

and
u′jΓ
′
jΓjψ

k j−k′j = u′jΓ
′
jψ
−k′j Γjψ

k j = ujΓjψ
k j = uj+1∆j+1,

so we may replace uj by u′j. Continuing this way, eventually all uj will be of type (B).
We show, by induction on n, that there are finitely many possible values of xρ,

for an element ρ ∈ G2,1 such that xϕ = xρ−1ψρ (where xiρ = xiρ0 = yi) and describe
an effective procedure to enumerate the set of all such elements. Suppose first that
n = 1, so x = u1 and we have Γ = Γ0, ∆ = ∆1 and k = k0 such that xiΓψk = x∆.
Given that ρ exists, from Lemma 3.3.10, xρ belongs to a semi-infinite orbit O of
ϕ with the same characteristic as x. Therefore (if ρ exists) there exists an element
(x, w) ∈ Ri(ψ, ϕ) such that w is the initial or terminal element of O; and an integer l
such that wϕl = xρ. This implies that

w∆ϕl = (x∆)ρ = xiΓψkρ = xiΓρϕk = xiρ0ϕkΓ,

so
w∆ϕl−k = xiρ0Γ = yiΓ. (3.1)

Lemma 2.5.25 gives an effective procedure to determine whether an integer l satisfy-
ing (3.1) exists, and if so find it. Given ρ0 and x, the integer k and the elements Γ and
∆ are uniquely determined so, to decide whether an appropriate value xρ exists, we
may check each pair (x, w) in the set Ri(ψ, ϕ) to see if (3.1) holds for some l or not.
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For each such w there is at most one l such that (3.1) has a solution and, as Ri(ψ, ϕ)

is finite, we may effectively enumerate the values w∆ϕl−k that could be assigned to
xρ. Hence the result holds if n = 1.

Now assume that n > 1 and the result holds for all x related to xi by a chain of
length at most n− 1. Then un−1 is of type (B) and by assumption un−1ρ may be given
one of finitely many values, and we have a procedure to enumerate these values.
Suppose then that un−1ρ = v. Now x = un and we have Γn−1, ∆n ∈ 〈A〉 and kn−1 ∈ Z

such that un−1Γn−1ψkn−1 = x∆n. Applying the argument of the case n = 1 with un−1,
Γn−1, ∆n and v in place of xi, Γ, ∆ and y, we see that a finite set of possible values
for xρ may be effectively determined. Therefore, by induction, the result holds for all
x ∈ Xi of type (B).

Finally, if x ∈ Xi is of type (C), then by Lemma 2.5.13 there is a zΣ in the orbit of
x for some z of type (B) and Σ ∈ 〈A〉, i.e. xψp = zΣ for some integer p. Since we have
already determined the possible images of all the type (B) elements in Xi, if ρ exists
we have, for each choice of zρ,

xρ = zΣψ−pρ = zρΣϕ−p

and this determines the image of the type (C) element under ρ (uniquely once we
have made our initial choice for the image of zρ).

We carry out this process on each equivalence class in turn. An extension of ρ0

exists only if the process results in a at least one possible value for each element of
X. If the process returns a potential extension ρ of X then ρ is an extension of ρ0, of
the required type, if Xρ is a basis of V2,1 (i.e. an expansion of {x}); which may be
verified effectively.

We are now able to state the following result which completely characterizes
conjugacy for regular infinite elements of G2,1.

Proposition 3.3.21. Let ψ and ϕ be regular infinite elements of G2,1 in quasi-normal form
with respect to X and Y respectively.

Then, ψ is conjugate to ϕ if and only if there exists a map ρ0 ∈ R(ψ; ϕ) such that ρ0

extends to an element ρ of G2,1 with ρ−1ψρ = ϕ.

Proof. Obviously, if ρ0 extends to an element of G2,1 such that ρ−1ψρ = ϕ, then ψ is
conjugate to ϕ by ρ.

We now assume that ψ is conjugate to ϕ. Lemma 3.3.18 tells us that there exists a
conjugator ρ such that for each equivalence class Xi there exists an element xi of type
(B) in Xi such that xiρ is an initial or terminal element yi of a semi-infinite orbit for
ϕ.
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We define ρ0 to be the map x1 7→ y1, ..., xn 7→ yn, where yi = xiρ for each i =

1, ..., n. Thus, ρ0 is an element of the finite set R(ψ; ϕ). Now ρ0 is the restriction of ρ

to {x1, . . . , xn}, so it certainly extends to ρ, as required.

Example 3.3.22. Let ψ be in quasi-normal form with respect to the basis,

X = {xα1, xα2α2
1, xα2α1α2, xα2

2}

and defined by the bijection with the basis

Z = {xα3
1, xα2

1α2, xα1α2, xα2}

given by xα1ψ = xα3
1, xα2α2

1ψ = xα2, xα2α1α2ψ = xα2
1α2, xα2

2ψ = xα1α2.
ψ :

1
2 3 4

−→
1 3 4 2

This element has four semi-infinite orbits, two of which are right, each with asso-
ciated characteristic multiplier and power pair (1, α2

1),

O1,ψ = {xα1ψk}k∈N0 ,O2,ψ = {xα2
1ψk}k∈N0 ,

and two of which are left each with associated characteristic multiplier and power
pair (−1, α2

1),
O3,ψ = {xα2α2

1ψ−k}k∈N0 ,O4,ψ = {xα2α3
1ψ−k}k∈N0 .

The remaining elements in X〈A〉 are in complete infinite orbits.
Let ϕ be in quasi-normal form with respect to the basis

Y = {xα1, xα2α1, xα2
2α2

1, xα2
2α1α2, xα3

2}

and defined by the bijection with the basis

W = {xα3
1, xα2

1α2, xα1α2, xα2α1, xα2
2}

given by xα1ϕ = xα3
1, xα2α1ϕ = xα2

1α2, xα2
2α2

1ϕ = xα2
2, xα2

2α1α2ϕ = xα1α2, xα3
2ϕ =

xα2α1.
ϕ :

1
2

3 4 5

−→

1 2 4 5 3

This element has four semi-infinite orbits, two of which are right, each with asso-
ciated characteristic multiplier and power pair (1, α2

1),

O1,ϕ = {xα1ϕk}k∈N0 ,O2,ϕ = {xα2
1ϕk}k∈N0 ,
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and two of which are left, each with associated characteristic multiplier and power
pair (−1, α2

1),
O3,ϕ = {xα2

2α2
1ϕ−k}k∈N0 ,O4,ϕ = {xα2

2α3
1ϕ−k}k∈N0 .

The remaining elements in Y〈A〉 are in complete infinite orbits.

Remark 3.3.23. The setMψ = {(1, α2
1), (−1, α2

1)} coincides with the setMϕ = {(1, α2
1), (−1, α2

1)}.

There is only one equivalence class X1 = X under the action of ψ as

xα2
2ψ = (xα1)α2, xα2α1α2ψ = (xα1)α1α2 and (xα2α2

1)α2 = xα2
2ψ−1.

Remark 3.3.24. The type (B) elements in X are xα1 and xα2α2
1.

The setR(ψ, ϕ) consists of the pairs (xα1, xα1), (xα1, xα3
1), (xα2α2

1, xα2
2α1) and (xα2α2

1, xα2
2α2

1).
Let us choose xα1 as our initial choice of the type (B) element. We therefore have

two choices of initial element of a semi-infinite orbit of ϕ, which we we denote by

xα1ρ1 = xα1 and xα1ρ2 = xα2
1,

where ρ1 is one possible conjugator and ρ2 is another.
We shall now apply Lemma 3.3.20 and Proposition 3.3.21 to determine if an actual

conjugator exists. We determine the (potential) images of the other type (B) elements
of X under the action of ρ1 and ρ2 first, then finish by determining the images of the
type (C) elements of X.

The images of xα2α2
1: we first have that (xα2α2

1)α2 = (xα1)α2ψ−2 and use equation
3.1 in the proof of Lemma 3.3.20 to determine the image of xα2α2

1 with ∆ = Γ =

α2, ρ0 = ρ1 or ρ2, k = −2 and either w = xα2
2α2

1 or xα2
2α3

1 so wα2ϕl+2 = xα1ρiα2.

• (i) When w = xα2
2α2

1 we have,

xα2
2α2

1α2ϕl1+2 = xα1ρ1α2

xα2α1ϕl1 = xα1α2

which has no solutions (see Example 2.5.26).

(ii) When w = xα2
2α3

1 we have,

xα2
2α3

1α2ϕl2+2 = xα1ρ1α2

xα1α2ϕl2 = xα1α2

and l2 = 0. Therefore,

xα2
2α3

1α2 = xα1α2ψ−2ρ1 = xα2α2
1α2ρ1,

66



Chapter 3. The conjugacy and power conjugacy problems in G2,1

and thus xα2
2α3

1 = xα2α2
1ρ1.

• (i) When w = xα2
2α2

1 we have,

xα2
2α2

1α2ϕl1+2 = xα1ρ2α2

xα2α1ϕl1 = xα2
1α2

xα2α1ϕ1 = xα2
1α2

and l1 = 1. Therefore,

xα2
2α3

1α2ϕ = xα1α2ψ−2ρ2

xα2
2α2 = xα2α2

1α2ρ2

and thus xα2
2 = xα2α2

1ρ2.

(ii) When w = xα2
2α3

1 we have,

xα2
2α3

1α2ψl2+2 = xα1ρ2α2

xα1α2ψl2 = xα2
1α2

which has no solutions.

So xα2
2α3

1 = xα2α2
1ρ1 and xα2

2 = xα2α2
1ρ2 are the only possibilities. We now look

at the elements of type (C) in X.

The images of xα2
2: we first have that xα2

2ψ = (xα1)α2 and assume ψρi = ρi ϕ for
i = 1, 2 to determine the image of xα2

2,

• xα2
2ρ1 = (xα1ρ1)α2ϕ−1 = xα1α2ϕ−1 = xα2

2α1α2;

• xα2
2ρ2 = (xα1ρ2)α2ϕ−1 = xα2

1α2ϕ−1 = xα2α1.

The images of xα2α1α2: we first have that xα2α1α2ψ = (xα1)α1α2 and assume ψρi =

ρi ϕ for i = 1, 2 to determine the image of xα2α1α2,

• xα2α1α2ρ1 = (xα1ρ1)α1α2ϕ−1 = xα1α1α2ϕ−1 = xα2α1;

• xα2α1α2ρ2 = (xα1ρ2)α1α2ϕ−1 = xα2
1α1α2ϕ−1 = xα1α2.

As the set Xρ1 is not a basis, ρ1 is not an automorphism. However, ρ2 defined by
the map,

xα1ρ2 = xα2
1, xα2

2ρ2 = xα2α1, xα2α1α2ρ2 = xα1α2 and xα2α2
1ρ2 = xα2

2,

is an element of G2,1 and must be a conjugator as can be checked.
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3.3.2 Conjugacy Algorithm

All that is left is to combine Sections Periodic Elements and Regular Infinite Ele-
ments into one algorithm for any element of G2,1.

Algorithm 3.3.25. Let ψ and ϕ be elements in quasi-normal form with respect to the
basis bases X and Y.

Step 1: By Theorem 3.1.1, we split the elements ψ and ϕ into their periodic parts ψP,
ϕP and their regular infinite parts ψRI , ϕRI .

Step 2: For ψRI and ψP use Algorithm 3.1.6 to construct isomorphisms fRI , fP and
regular infinite element ψ̂RI = f−1

RI ψRI fRI and periodic element ψ̂RI = f−1
P ψP fP.

Similarly, use Algorithm 3.1.6 to construct isomorphisms gRI , gP and regular
infinite element ϕ̂RI = g−1

RI ϕRI gRI and periodic element ϕ̂RI = g−1
P ϕPgP.

Step 3: To the elements ψ̂P, ϕ̂P of G2,1, apply Proposition 3.3.6 to determine if there
exists a conjugator ρP. If no conjugator exists, then ψ and ϕ are not conjugate;

Step 4: To the elements ψ̂RI , ϕ̂RI of G2,1 and apply Proposition 3.3.21 to determine
if there exists a conjugator ρRI . If no conjugator exists, then ψ and ϕ are not
conjugate;

Step 5: We combine Step’s 3 and 4 and form a conjugator ρ = ρP ∗ ρRI by Theorem
3.1.1.

Theorem 3.3.26. [Hig74, part of Theorem 9.3] The conjugacy problem is soluble in G2,1.

Proof. Apply Algorithm 3.3.25.

3.4 Power conjugacy problem

The power conjugacy problem naturally arises when you have any group B and G is
an HNN-extension given by

G = 〈a, B|rel B, a−1Wa = V〉,

where W and V are words in the generators of B defining elements of the same order.
It follows from [Mill71, Lemma 5] that if x and y are elements in B that are conjugate
in G but not in B then x and y are conjugate in B to a power of W or V and hence in
G to a power of W.

This motivates the study of the power conjugacy problem in groups.

Problem 3.4.1. [AS74] Given elements x, y of G, do there exist a, b ∈ Z and z ∈ G such
that xa = z−1ybz 6= 1?
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See [Lip66, AS74, Com77, Pride08] for references to this problem. The aim of this
section is to answer this question for the Higman-Thompson group G2,1 (Theorem
3.4.13).

Like the solution to the conjugacy problem, we will break the power conjugacy
problem down into two cases; one for periodic elements and one for regular infinite
elements. Then, we will construct an algorithm that will combine the two parts for a
general pair of elements of G2,1.

3.4.1 Power conjugacy for periodic and regular infinite elements

Torsion elements

Let ψ and ϕ be periodic elements of G2,1 in quasi-normal form with respect to the
bases X and Y, of order n and m respectively.

Then, to test whether ψa is conjugate to ϕb for a, b ∈ Z, we can apply Proposition
3.3.6 to the pair ψa, ϕb for all a ∈ {1, ..., n} and all b ∈ {1, ..., m}.

We define PCP to be the set of all the pairs (a, b) that satisfy the condition that ψa

is conjugate to ϕb.

Regular infinite elements

Let ψ and ϕ be regular infinite elements of G2,1 in quasi-normal form with respect to
the bases X and Y.

We want to compare the characteristic multipliers and powers of ψ with the char-
acteristic multipliers and powers of ψa.

Lemma 3.4.2. Let ψ be a regular infinite element of G2,1 and a a non-negative integer. Then

Mψa = {(m/d, Γq) | (m, Γ) ∈ Mψ, gcd(|m|, |a|) = d and |a| = qd}.

Proof. First we show that the right hand side is contained in the left hand side. If
(m, Γ) ∈ Mψ then there exists an element x of X (of type (B)) such that xψm = xΓ.
Suppose first that a > 0. If d = gcd(|m|, a), p = m/d, q = a/d and k = ma/d,
then x(ψa)p = xψmq = xΓq, (as mq has the same sign as m). If a < 0 then, from
the above, with d = gcd(|m|,−a), p = m/d, q = −a/d and k = −ma/d, we have
xψ−ap = xΓq. In all cases therefore x is a characteristic element of ψa, with power
m/d and multiplier Γq, where d = gcd(|m|, |a|) and q = |a|/d.

Conversely, if x(ψa)r = x∆, with ∆ 6= 1 then, from Lemma 2.5.20, m|ar, which we
can rewrite as pd|qdr, so p|qr. As gcd(|p|, q) = 1, this implies p|r, so that |m/d| =
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|p| ≤ |r|. It follows that (m/d, Γq) is inMψa and so we have

Mψa ⊇ {(m, Γq) | (md, Γ) ∈ Mψ, d > 0, gcd(|m|, q) = 1 and |a| = qd}.

On the other hand, suppose that (r, ∆) ∈ Mψa and assume ψ is in quasi-normal
form with respect to X. (This does not necessarily mean ψa is in semi-normal form
with respect to X.) Assume first that a > 0.Then, from Lemma 2.5.20, there exists
u ∈ V2,1 such that u is a characteristic element of ψ, with characteristic (m, Γ) ∈ Mψ

such that m|ar and ∆ = Γt, where ar = mt, t > 0. Let d = gcd(|a|, |m|), m = pd and
a = qd. Then dqr = pdt, so qr = pt and gcd(|p|, |q|) = 1, so r = pr′ and t = qt′, for
some r′, t′. However, we have u(ψa)p = uψdpq = uψmq = uΓq, and so, by definition of
(r, ∆) ∈ Mψa , we see that |p| ≥ |r|, so r′ = ±1. Since a > 0, r′ = 1. It now follows
that r = p = m/d and ∆ = Γq, and (r, ∆) belongs to the set on the right hand side of
the equality in the lemma. That is

Mψa ⊆ {(m, Γq) | (md, Γ) ∈ Mψ, d > 0, gcd(|m|, q) = 1 and |a| = qd}.

If a < 0 then the lemma follows by applying the result above to Mψ−1(−a) , as for
all θ ∈ G2,1 we have (m, Γ) ∈ Mθ if and only if (−m, Γ) ∈ M−1

θ .

Example 3.4.3. Let ψ be a regular infinite element of G2,1 in quasi-normal form with
respect to

X = {xα3
1, xα2

1α2, xα1α2, xα2},

and defined by a bijective map with

Y = {xα2
1, xα1α2, xα2α1, xα2

2},

given by the map xα3
1ψ = xα1α2, xα1α2ψ = xα2

1, xα2
1α2ψ = xα2α1 and xα2ψ = xα2

2.

ψ :

1 2 3 4
−→

3 1 2 4

ThenMψ = {(-2, α1), (1, α2)}.
We can look at ψ2 in quasi-normal form with respect to

Z = {xα3
1, xα2

1α2, xα1α2α1, xα1α2
2, xα2}

and defined by a bijective map with

W = {xα2
1, xα1α2, xα2α1, xα2

2α1, xα3
2}
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given by xα3
1ψ2 = xα2

1, xα2
1α2ψ2 = xα2

2α1, xα1α2α1ψ2 = xα1α2, xα1α2
2ψ2 = xα2α1 and

xα2ψ2 = xα3
2.

ψ2 :

1 2 3 4
5
−→

1 3 4 2 5

From Lemma 3.4.2, we have the following

Mψa = {(m/d, Γq) | (m, Γ) ∈ Mψ, gcd(|m|, |a|) = d and |a| = qd}.

Therefore, for:

• (-2, α1) ∈ Mψ we have m = -2, Γ = α1, gcd(2, 2) = 2 = d and thus q = 1.
Hence, (-2/2, α2/2

1 ) = (-1, α1) ∈ Mψ2 .

• (1, α2) ∈ Mψ we have m = 1, Γ = α2, gcd(1, 2) = 1 = d and thus q = 2. Hence,
(1/1, α2/1

2 ) = (1, α2
2) ∈ Mψ2 .

Thus,Mψ2 = {(1, α2
2), (-1, α1)} (which can be checked above).

We now need Lemma 3.4.4 and Proposition 3.4.7 to allow us to find "minimal"
pairs (a, b) such that ψa and ϕb are conjugate.

Lemma 3.4.4. Let ψ and ϕ be regular infinite elements of G2,1 and let c be an integer, such
that c is coprime to m, for all m ∈ Z such that (m, Γ) ∈ Mψ ∪Mϕ. Then ψc ∼ ϕc if and
only if ψ ∼ ϕ.

Proof. If ψ ∼ ϕ then it is immediate that ψc ∼ ϕc. For the converse, observe that
we may assume, without loss of generality, that c > 0. Suppose that ψ and ϕ are in
quasi-normal form with respect to bases X and Y, respectively. From Lemma 3.4.2,
Mψc = {(m, Γc)|(m, Γ) ∈ Mψ} andMϕc = {(m, ∆c)|(m, ∆) ∈ Mϕ}.

Let u be an element of X〈A〉 which is characteristic for ψ, with ψ-characteristic
(m, Γ). Then, from Lemma 3.4.2 (and its proof), u has ψc-characteristic (m, Γc) and, as
ψc ∼ ϕc, its image uρ has ϕc-characteristic (m, Γc). Hence, from Lemma 3.4.2 again,
uρ has ϕ-characteristic (m, Γ). As gcd(c, m) = 1, there exist integers s and t such that
ms + ct = 1. Since ψcρ = ρϕc we have, in the case where s > 0,

uψρ = uψms+ctρ = (u(ψm)s)ψctρ = uΓsψctρ = uΓsρϕct

= (uρ)Γs ϕct = (uρ)ϕms ϕct = (uρ)ϕms+ct

= uρϕ.

If s < 0 then we have m(−s) + c(−t) = −1, with −s > 0 and the argument above
implies instead that uψ−1ρ = uρϕ−1. In this case, let v = uψ, so v also has ψ-
characteristic (m, Γ) and replacing u by v gives vψ−1ρ = vρϕ−1 from which it follows
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that uψρ = uρϕ. This applies in particular to all elements of X of type (B). Let y′ be an
element of type (C); so there exists an element y ∈ X of type (B) such that y′ψk = yΩ,
for some k ∈ Z. Then y′ = yΩψ−k, and yψj has the same ψ-characteristic as y, for all
j: and so is a characteristic element for ψ. From the above then yψjρ = (yρ)ϕj, for all
j. Now

y′ψρ = yΩψ1−kρ = yψ1−kρΩ = yρϕ1−kΩ = yρϕ−k ϕΩ

= yψ−kρϕΩ = yψ−kΩρϕ = y′ρϕ.

Therefore, yψρ = yρϕ, for all y ∈ X, so ψ ∼ ϕ.

Definition 3.4.5. Let ψ be a regular infinite element of G2,1 and let a be a positive
integer. Define a map ψ̂a :Mψ →Mψa by ψ̂a(m, Γ) = (p, Γα), where d = gcd(|m|, a),
p = m/d and α = a/d.

Example 3.4.6. Let ψ be as in Example 3.4.3 with a = 2. The map

ψ̂2 :Mψ →Mψ2

can be calculated for each of the elements ofMψ.

ψ̂2(-2, α1) = (-1, α1) and ψ̂2(1, α2) = (1, α2
2).

From Lemma 3.4.2 this is a well defined map, and is surjective. In general it is
not injective. For instance if p, s and t are pairwise coprime positive integers and we
have m1 = ps, m2 = pt and a = st, then d1 = gcd(|m1|, a) = s, d2 = gcd(|m2|, a) = t,
α1 = a/d1 = t and α2 = a/d2 = s. If, for some non-trivial Λ ∈ 〈A〉 we have (m1, Λs)

and (m2, Λt) inMψ then both these elements are mapped by ψ̂a to (p, Λst).

Proposition 3.4.7. Let ψ and ϕ be regular infinite elements of G2,1, let a and b be positive
integers and let the images of ψ̂a and ϕ̂b be

Mψa = {(pi, Γαi
i )|i = 1, . . . , M} andMϕb = {(qi, ∆βi

i )|i = 1, . . . , N}.

For i = 1, . . . , M, let

(ψ̂a)−1(pi, Γαi
i ) = {(mi,j, Γi,j)|1 ≤ j ≤ Mi}

and, for i = 1, . . . , N, let

(ϕ̂b)−1(qi, ∆βi
i ) = {(ni,j, ∆i,j)|1 ≤ j ≤ Ni}.
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If ψa ∼ ϕb then M = N and, after reordering if necessary, we have pi = qi and Γαi = ∆βi .
Moreover, there exist positive integers α, β, di,j, ei,k, si,j,k, ti,j,k, fi,j,k, and Λi,j,k ∈ 〈A〉, for 1 ≤
i ≤ M, 1 ≤ j ≤ Mi and 1 ≤ k ≤ Ni, such that

α = di,j fi,j,kti,j,k and β = ei,k fi,j,ksi,j,k, for all i, j, k,

and
ψα ∼ ϕβ,

where di,j is a positive divisor of mi,j, ei,k is a positive divisor of ni,k, Γi,j = Λ
si,j,k
i,j,k and

∆i = Λ
ti,j,k
i,j,k, and

fi′,j′,k′ |
(

∏
i,j,k

(ti,j,kdi,j)

)
/ti′,j′,k′di′,j′ ,

for all i′, j′, k′.

Proof. Assume ψa ∼ ϕb, with a, b > 0, and that ρ−1ψaρ = ϕb. From Lemma 3.3.10,
Mψa and Mϕb are equal, so M = N, and we may order Mψa so that (pi, Γαi

i ) =

(qi∆
βi
i ), so pi = qi and Γαi

i = ∆βi
i . With the notation for (ψ̂a)−1(pi, Γαi

i ) and (ϕ̂b)−1(qi, ∆αi
i )

given in the statement of the proposition, let di,j = gcd(a, |mi,j|) and ei,k = gcd(b, |ni,k|),
so

mi,j/di,j = pi = qi = ni,k/ei,k

and let
αi,j = a/di,j, βi,k = b/ei,k,

and
Γ

αi,j
i,j = Γαi

i = ∆βi
i = ∆βi,k

i,k ,

by Definition 3.4.5, for 1 ≤ i ≤ M, 1 ≤ j ≤ Mi and 1 ≤ k ≤ Ni.
As Γ

αi,j
i,j = ∆βi,k

i,k , by Proposition 2.4.16, there exist Λi,j,k ∈ 〈A〉 and positive integers

si,j,k, ti,j,k such that Γi,j = Λ
si,j,k
i,j,k and ∆i,j = Λ

ti,j,k
i,j,k. Taking a power of Λi,j,k if necessary,

we may assume that gcd(si,j,k, ti,j,k) = 1. Then

Λ
si,j,kαi,j
i,j,k = Γ

αi,j
i,j = ∆βi,k

i,k = Λ
ti,j,k βi,k
i,j,k ,

so si,j,kαi,j = ti,j,kβi,k. As si,j,k and ti,j,k are coprime this implies that αi,j/ti,j,k =

βi,k/si,j,k = ci,j,k ∈ Z, and αi,j = ci,j,kti,j,k and βi,k = ci,j,ksi,j,k.
Let

g = gcd({ci,j,k|1 ≤ i ≤ M, 1 ≤ j ≤ Mi, 1 ≤ k ≤ Ni}).

Then there exist integers fi,j,k such that ci,j,k = g fi,j,k, for all i, j, k. From Lemma 3.4.2,
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Mψa/g consists of elements (m/p, Γα), where (m, Γ) ∈ Mψ, p = gcd(m, a/g) and
α = a/gp. Similarly, elements of Mϕb/g are of the form (n/q, ∆β), where (n, ∆) ∈
Mϕ, q = gcd(n, b/g) and β = b/gq. Now g|ci,j,k and ci,j,k|αi,j and ci,j,k|βi,k. Therefore
gcd(|mi,j|, a/g) = gcd(|mi,j|, a) = di,j and similarly gcd(|ni,k|, b/g) = ei,k. Thus g is
coprime to

pi =
mi,j

gcd(|mi,j|, a/g)
=

ni,k

gcd(|ni,k|, b/g)
,

for all i, j, k. From Lemma 3.4.4, it follows that ψa/g ∼ ϕb/g.
Now

a/g = αi,jdi,j/g = ci,j,kti,j,kdi,j/g = fi,j,kti,j,kdi,j

and similarly
b/g = fi,j,ksi,j,kei,k,

for all i, j, k. Also

gcd({ fi,j,k|1 ≤ i ≤ M, 1 ≤ j ≤ Mi, 1 ≤ k ≤ Ni}) = 1

so, for fixed i′, j′, k′,

fi′,j′,k′ |
(

∏
i,j,k

(ti,j,kdi,j)

)
/ti′,j′,k′di′,j′ .

Corollary 3.4.8. The power conjugacy problem for regular infinite elements of G2,1 is solv-
able.

Proof. Let ψ and ϕ be regular infinite elements of G2,1. Suppose that ψa is conjugate
to ϕb, for some non-zero a, b. Replacing either ψ or ϕ or both by their inverse, we
may assume that a, b > 0. Then, in the notation of the proposition above, we have
ψα ∼ ϕβ, where α = fi,j,kti,j,kdi,j and β = fi,j,ksi,j,kei,k. From the conclusion of the
theorem it is clear that there are finitely many choices for fi,j,k, si,j,k, ti,j,k, di,j and ei,k.
Hence there are finitely many possible α and β, and we may effectively construct a
list of all possible pairs (α, β). Having constructed this list we may check whether or
not ψα ∼ ϕβ, using Algorithm 3.3.25 Step 3. Hence we may decide whether or not
there exist a, b such that ψa ∼ ϕb.

Example 3.4.9. Let ψ be a regular infinite element of G2,1 in quasi-normal form with
respect to

X = {xα2
1, xα1α2, xα2}
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and defined by a bijective map with

U = {xα1, xα2α1, xα2
2}

given by xα2
1ψ = xα1, xα1α2ψ = xα2α1 and xα2ψ = xα2

2.
Let ϕ be a regular infinite element of G2,1 in quasi-normal form with respect to

Y = {xα1, xα2α3
1, xα2α2

1α2, xα2α1α2, xα2
2}

and defined by a bijective map with

V = {xα2
1, xα1α2α1, xα1α2

2α1, xα1α3
2, xα2}

given by xα1ϕ = xα1α3
2, xα2α3

1ϕ = xα2, xα2α2
1α2ϕ = xα2

1, xα2α1α2ϕ = xα1α2α1 and
xα2

2ϕ = xα1α2
2α1.

Then Mψ = {(1, α2), (-1, α1)} and Mϕ = {(1, α3
2), (-1, α3

1)}. Assume there exists
positive integers a, b such that ψa ∼ ϕb. Therefore, by Proposition 3.4.7 we can define

Mψa = {(pi, Γαi
i ) : i = 1, . . . , M} andMϕb = {(qi, ∆βi

i ) : i = 1, . . . , N}.

We have the map ψ̂a :Mψ →Mψa ,

ψ̂a(1, α2) = (1/d1, αa/d1
2 )

ψ̂a(-1, α1) = (-1/d2, αa/d2
1 )

where d1 = gcd(1, a) = 1 and d2 = gcd(|-1|, a) = 1. Thus, we can write,

Mψa = {(1, αa), (-1, αa
1)}.

We have the map ϕ̂b :Mϕ →Mϕb ,

ϕ̂b(1, α2) = (1/d1, α3b/d1
2 )

ϕ̂b(-1, α1) = (-1/d2, α3b/d2
1 )

where d1 = gcd(1, b) = 1 and d2 = gcd(|-1|, b) = 1. Thus, we can write,

Mϕb = {(1, α3b), (-1, α3b
1 )}.

By Proposition 3.4.7 we require the integers a, b to satisfy a = 3b. The smallest
possibility for (a, b) is (3, 1). We can now apply Step 3 from Algorithm 3.3.25 for
ψ3, ϕ to determine if they are conjugate.
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We find a conjugating element ρ, given by xα1ρ = xα2 and xα2ρ = xα1.

Example 3.4.10. Let ψ be from Example 3.4.3. Let ϕ be a regular infinite element of
G2,1 in quasi-normal form with respect to

X = {xα2
1, xα1α2, xα2}

and defined by a bijective map with

U = {xα1, xα2α1, xα2
2}

given by xα2
1ψ = xα1, xα1α2ψ = xα2α1 and xα2ψ = xα2

2.
Then Mψ = {(-2, α1), (1, α2)} and Mϕ = {(1, α2), (-1, α1)}. Assume there exists

positive integers a, b such that ψa ∼ ϕb. Therefore, by Proposition 3.4.7 we can define

Mψa = {(pi, Γαi
i ) : i = 1, . . . , M} andMϕb = {(qi, ∆βi

i ) : i = 1, . . . , N}.

We have the map ψ̂a :Mψ →Mψa ,

ψ̂a(1, α2) = (1/d1, αa/d1
2 )

ψ̂a(-2, α1) = (-2/d2, αa/d2
1 )

where d1 = gcd(1, a) = 1 and d2 = gcd(|-2|, 1) = 1 or 2. Thus, we can write,

Mψa = {(1, αa), (-2, αa
1)} or {(1, αa), (-1, αa/2

1 )}.

We have the map ϕ̂b :Mϕ →Mϕb ,

ϕ̂b(1, α2) = (1/d1, αb/d1
2 )

ϕ̂b(-1, α1) = (-1/d2, αb/d2
1 )

where d1 = gcd(1, b) = 1 and d2 = gcd(|-1|, b) = 1. Thus, we can write,

Mϕb = {(1, αb), (-1, αb
1)}.

By Proposition 3.4.7, we require thatMψa =Mϕb . Therefore,

Mψa = {(1, αa), (-1, αa/2
1 )}.

This implies that b = a/2 and b = a. Thus, there do not exist integers a, b > 0 such
that ψa is conjugate to ψb by Proposition 3.4.7. The same argument applies replacing
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ψ or ϕ by ψ−1 or ϕ−1 respectively, so no nontrivial power of ψ is conjugate to a power
of ϕ.

Algorithm 3.4.11. Let ψ and ϕ be regular infinite elements in quasi-normal form with
respect to the basis X and Y.

Step 1: Construct the setsMψ andMϕ (see Definition 3.3.8).

Step 2: Calculate the bounds on amax and bmax as in Corollary 3.4.8.

Step 3: For all a, b such that 0 < a ≤ amax and 0 < b ≤ bmax apply the remaining
steps of the algorithm to ψ and ϕ, and to ψ−1 and ϕ.

Step 4: Calculate the sets Mψa and Mϕb using the maps ψ̂a : Mψ → Mψa and
ϕ̂b :Mϕ →Mϕb (see Definition 3.4.5).

Step 5: For each pair (a, b) such that Mψa =Mϕb apply Step 4 of Algorithm 3.3.25
to the elements ψa and ϕb to check for conjugacy.

We define the set PCRI of all the pairs (a, b) that satisfy the condition that ψa is
conjugate to ϕb, and 0 < a ≤ amax and 0 < b ≤ bmax.

3.4.2 Power Conjugacy Algorithm

Algorithm 3.4.12. Let ψ and ϕ be elements in quasi-normal form with respect to the
basis X and Y.

Step 1: By Theorem 3.1.1, we split the elements ψ and ϕ into their periodic parts ψP,
ϕP and their regular infinite parts ψRI , ϕRI .

Step 2: For ψRI and ψP use Algorithm 3.1.6 to construct isomorphisms fRI , fP and
regular infinite element ψ̂RI = f−1

RI ψRI fRI and periodic element ψ̂RI = f−1
P ψP fP.

Similarly, use Algorithm 3.1.6 to construct isomorphisms gRI , gP and regular
infinite element ϕ̂RI = g−1

RI ϕRI gRI and periodic element ϕ̂RI = g−1
P ϕPgP.

Step 3: To the elements ψ̂P, ϕ̂P of G2,1 we work through Section 3.4.1 to give the set
PCP;

Step 4: To the elements ψ̂RI , ϕ̂RI of G2,1 we work through Algorithm 3.4.11 to give
the set PCRI ;

Step 5: We combine Step’s 3 and 4. If PCP or PCRI is empty then there is no non-
trivial power of ψ that is conjugate to a non-trivial power of ϕ. Otherwise,
choose a pair (aRI , bRI) in PCRI and a pair (aP, bP) in PCP and define (a′, b′) by
a′ = kaP and b′ = kbP for k, l ∈ Z \ {0} such that the pair k, l is a solution to the
simultaneous equations kap = laRI , kbp = lbRI . Then ψa′ ∼ ϕb′ .
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Note that, following this algorithm through produces a conjugating element from
ψa′ to ϕb′ if such a pair (a′, b′) exists.

Theorem 3.4.13. The power conjugacy problem for the Higman-Thompson group G2,1 is
solvable.

Proof. Apply Algorithm 3.4.12.
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Introduction

Chapter 5 comprises work conducted under the supervision of Nigel Boston, Norbert
Peyerimhoff and Alina Vdovina. The work in Chapter 5 is published [BBPV11a].

The work presented in Chapter 6 comprises work conducted under the supervi-
sion of Nigel Boston and Ben Fairbairn. This work has been published, [BBF12].

This part of the thesis is concerned with ramification structures coming from
finite groups which give rise to certain algebraic surfaces of general type known as
Beauville surfaces.

Aims of Work Part II

We begin this part of the thesis with a brief introduction into the motivation for the
work in Chapters 5 and 6 from algebraic geometry. We make no attempt to define all
the terms but give a rough outline of the progression of the work in the field in order
to put Chapters 5 and 6 in context. References to the literature for the interested
reader are given throughout.

It is a fundamental fact that a complex algebraic curve of genus zero is isomorphic
to the complex projective line P1.

The search for an similar statement by algebraic geometers in the case of algebraic
surfaces led Max Noether to conjecture that a smooth regular (i.e. irregularity of a
surface S, q(S) = 0) algebraic surface with vanishing geometric genus (Pg(S) = 0)
should be a rational surface (see [Bea96, Mir95],).

The first counterexample to this conjecture was provided by Federgo Enriques in
1896 (see [Enr1896]). This was followed in the 1930s by Lugi Campedelli and Lucian
Godeaux (see [Cam32, Go35]) who constructed more counterexamples to the above
conjecture. These surfaces now form part of the study of algebraic geometry know
as surfaces of general type (see [Bea96, Mir95]).

In the 1970s, many new examples were found, this time the construction of these
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new surfaces came via quotients S = Z/G of simpler (better understood) surfaces Z
by a free action of a finite group G.

Definition 4.0.14 (Free Action). Let G be a group and X a topological space. A group
action G × X → X is called free if for all x ∈ X, gx = x for g ∈ G if and only if
g = IdG.

In 1978, Arnaud Beauville [Bea78] produced a construction by taking Z to be
the direct product of two curves C1 and C2 of genera g1 := g(C1) and g2 := g(C2)

respectively, together with an action of a group G of order (g1 − 1)(g2 − 1).

Remark 4.0.15. This method produces surfaces with self-intersection number of a
canonical divisor for the surface K2 = 8.

Beauville also gave an explicit example as a quotient of two Fermat curves, see
Section 4.1 for more details.

In [Bea78], Beauville’s construction of these particular type of surfaces was gen-
eralized to what is now known as surfaces isogenous to a product of curves. That is,
surfaces which have a finite unramified cover which is biholomorphic to a product
of two curves.

Definition 4.0.16. A surface S is isogenous to a higher product if both curves have
genus greater than or equal to 2.

Remark 4.0.17. If S is a surface isogenous to a higher product, then S is a surface of
general type (see [Bea96]).

As a consequence of several results in complex algebraic geometry (see [Cat00])
any surface S isogenous to a higher product has a unique minimal realisation S ∼=
(C1×C2)/G where G is a finite group acting freely on the direct product C1×C2 with
g1, g2 ≥ 2 chosen as small as possible.

However, we take advantage of the work from [BCG05, BCG06, BCG08] which
translates the technical details from complex algebraic geometry for S to be isoge-
nous to a higher product to conditions on the finite group G which acts freely on
the product of the two curves C1 × C2, with |G| = (g1 − 1)(g2 − 1). We state the
conditions on the finite group G in Chapter 5, where the definitions are introduced
more formally.

It was, therefore, the work of [BCG05, BCG06, BCG08] which motivates the work
of Chapter 5, where the following results are achieved.

We find ramification structures for finite groups constructed as 2-quotients of a
particular infinite group with "special presentation" related to the finite projective
plane of order 2 and which is also the fundamental group of the one skeleton of the
CW-complex of an Ã2 building.
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The ramification structures obtained give rise to specific surfaces of general type,
Beauville surfaces. We find new mixed and unmixed Beauville surfaces coming from
Beauville structures constructed from 2-quotients of 2-power order of the fundamen-
tal group of a certain simplicial complex, in Chapter 5. With the terms defined in
due course, the following theorems are obtained. First, a theorem which provides a
number of unmixed Beauville surfaces.

Theorem 5.3.1: Let 3 ≤ k ≤ 63, r = blog2 kc+ 1 and A = [2r, 2r, 2r]. If k is not a
power of 2, then (T1, T2) is an unmixed Beauville structure of type (A, A) for the group
H2,k.

Secondly, a theorem which can be used to create a number of mixed Beauville
surfaces.

Theorem 5.3.2: Let 3 ≤ k ≤ 10 and r = blog2 kc+ 1. If k is not a power of 2, then
(H2,k, T1) is a mixed Beauville structure of type [2r, 2r, 2r] for the group G2,k.

Mixed Beauville surfaces are known to be rare and creation of new examples are
welcome in the field of algebraic geometry, we will say more on this in Chapter 5.

We finish with Chapter 6 which examines current progress on the existence and
classification of non-abelian Beauville p-groups. With the terms defined in due
course, the following theorems and corollaries are obtained.

An examination of group presentations for 2-generator p-groups of order p5 leads
to the first theorem and corollary.

Theorem 6.0.1: If p > 3, then there exists at least p + 8 Beauville groups of order
p5.

Corollary 6.0.2: The proportion of 2-generated groups of order p5 that are Beauville
tends to 1 as p tends to infinity.

An examination of group presentations for 2-generator p-groups of order p6 leads
to the second theorem and corollary on this subject.

Theorem 6.0.3: If p > 3, then there exist at least p− 1, 2-generated non-Beauville
groups of order p6.

Corollary 6.0.4: The proportion of 2-generated groups of order p6 that are Beauville
does not tend to 1 as p tends to infinity.

Throughout Chapter 6, computer calculations using the computer algebra pro-
gram MAGMA (and computer scripts written by the author of this thesis) gives rise
to the following corollary.

Corollary 6.0.6: The smallest non-abelian Beauville p-groups are

1. for p = 2, SmallGroup(27,36);
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2. for p = 3, the group given by Example 6.4.1, of order 35;

3. for p = 5, SmallGroup(53,3);

4. for p ≥ 7, the groups given by Lemma 6.2.1, of order p3.

The work of Chapter 6 provides more information to address the following ques-
tion, [BCG06, Question 7.7a]: "Classification of Beauville surfaces: which finite groups can
occur?"

In addition, it is also the beginnings of a line of work which should address a
statement which was made in the work of [FGZ10] “it is very plausible that most
2-generated finite p-groups of sufficiently large order [are Beauville groups]". Hence,
it was the work of [FGZ10] and [BCG06] which motivates the work of Chapter 6.

Notation

We will write P1 for the Riemann sphere (complex projective line), Sym(n) for the
symmetric group of order n! and Zn for the integers modulo n.

4.1 Beauville surfaces

In recent years a number of people have been interested in the study of Beauville sur-
faces and finite groups (see, e.g., [FJ09], [GP09b], [BCG10], [Gar10], [GLL10], [FG10]
and [FGZ10]).

From [Cat00, Definition 3.23], a Beauville surface S is an infinitesimally rigid (i.e.,
does not admit non-trivial deformations) complex regular algebraic surface, which is
isogenous to a higher product. This means that S is of the form (C1 × C2)/G, where C1

and C2 are non-singular projective curves of genera g(Ci) ≥ 2, and G is a finite group
acting freely on the product of curves by holomorphic transformations.

Let H denote the subgroup of G consisting of the elements of G which preserve
each of the curves Ci. The presentation S ∼= (C1 × C2)/G is called minimal if H acts
freely on each curve Ci (i.e. the only element of H that fixes every point on each Ci is
the identity element).

Every Beauville surface S has a unique minimal presentation (C1 × C2)/G. More-
over, the corresponding quotients Ci/H are isomorphic to P1, and the projections
Ci → P1 are branched coverings, ramified over three points. These properties are
equivalent to the rigidity of Beauville surfaces, which means that Beauville surfaces
represent isolated points in the moduli space of surfaces of general type (see [Bea96]
for a definition of moduli space of surfaces of general type).
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A Beauville surface (C1 × C2)/G is said to be of mixed or unmixed type, according
to whether [G : H] = 2 (i.e., G contains elements interchanging the curves C1 and
C2) or H = G, and the group G is said to admit a mixed or unmixed Beauville
structure, respectively (we make formal definitions of mixed and unmixed Beauville
structure for a finite group G in Chapter 5). In the mixed case, the curves C1 and C2

are necessarily biholomorphic.
Beauville’s original example [Bea78] had two curves C1 = C2, given by the Fermat

curve x5 + y5 + z5 = 0, and G the group Z5 ×Z5 acting on C1 × C2 by the rule

(a, b) · ([x : y : z], [u : v : w]) = ([ξax : ξby : z], [ξa+3bu : ξ2a+4bv : w]),

where ξ = e
2πi

5 and a, b ∈ Z5. Then S is a Beauville surface of unmixed type with
g(C1) = g(C2) = 6.

Most of what is known about Beauville surfaces is due to the work of Catanese
in [Cat00] and the joint work of Bauer, Catanese and Grunewald in [BCG05, BCG06]
and [BCG08]. However, not many examples of Beauville surfaces of mixed type are
known.

Bauer, Catanese and Grunewald [BCG05, BCG06] showed that all sufficiently
large alternating groups admit an unmixed Beauville structure, and conjectured that
all finite (non-abelian) simple groups, except A5, admit such a structure. This conjec-
ture was first been proved for the alternating groups An (n > 5) in [FG10], and then
for the groups PSL(2, q) (q ≥ 7) as well as some other families of finite simple groups
of Lie type with low Lie rank in [FJ09, GP09a]. In 2010/2011 the full conjecture was
shown to be true.

Theorem 4.1.1. [GLL10, GM10, FMP10] All finite (non-abelian) simple groups, except A5,
admit a Beauville structure.

In addition, the symmetric groups Sym(n) (n > 4) and all finite quasisimple
groups (except SL(2, 5) and PSL(2, 5) ∼= A5) admit unmixed Beauville structures by
[FG10, FJ09, FMP10].

Remark 4.1.2. A finite group is called quasisimple if it is isomorphic to its commutator
subgroup and its inner automorphism group is a simple group.

Let G be a finite group. We call G a Beauville group if there exists a ‘Beauville
structure’ for G, which we define in Chapter 5, Definition 5.1.7.

In [BCG06, Question 7.7] Bauer, Catanese and Grunewald ask which groups are
Beauville groups and, given a Beauville group, what are its Beauville structures? In
[Cat00] Catanese classified the abelian Beauville groups by proving the following.

Theorem 4.1.3. [Cat00, Lemma 3.21 & Beauville’s examples 3.22] G is an abelian Beauville
group if and only if G = Zn×Zn where Zn is the cyclic group of order n and gcd(n, 6) = 1.
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After Abelian groups, the next most natural class to consider are the nilpotent
groups. Recalling that a finite group is nilpotent if and only if it is a direct product
of its Sylow subgroups (see Section 4.2), Lemma 6.1.1 of Chapter 6 reduces the study
of nilpotent Beauville groups to the study of Beauville p-groups, which is the case
we focus on in Chapter 6.

Notice that Theorem 4.1.3 gives us an infinite supply of Beauville p-groups for ev-
ery p ≥ 5 - simply let n be a power of p. Various examples of non-abelian Beauville p-
groups for specific values of p have appeared elsewhere [BBPV11a, BBPV11b, FGZ10],
but little has been said about the general case until [BBF12] and Chapter 6.

4.2 Finite groups of prime power order

We now state some important information from the world of finite p-groups.
Let p be a prime number. A finite group G is called a p-group if its order |G| is a

power of a prime p.

Theorem 4.2.1 (Lagrange’s Theorem). [Rob96, Theorem 1.3.6] If G is a group and H is a
subgroup of G, then |G| = |G : H| · |H|. If G is finite, |G : H| = |G|/|H|. Hence the order
of a subgroup always divides the order of the group if the latter is finite.

By Lagrange’s Theorem, the order of each element of a p-group must also be a
power of p.

It was first proved by Sylow [Syl1872], that every group of prime power order pn

has a presentation of the form,

〈a1, ..., an|ap
i = vi,i, 1 ≤ i ≤ n, [ak, aj] = vj,k, 1 ≤ j < k ≤ n〉,

where the vj,k are words in the elements ak+1, ..., an for 1 ≤ j < k ≤ n. A presentation
of this form is called (these days) a power-commutator presentation for the group. It
is standard, in order to save space, to omit relations of the form [ak, aj] = e in the
presentation.

If |G| = pam where gcd(p, m) = 1, then a p-subgroup of G cannot have order
greater than pa by Lagrange’s Theorem. A p-subgroup of G which has this maximum
order pa is called a Sylow p-subgroup of G.

Sylow p-subgroups of G always exist and any two are conjugate.

Theorem 4.2.2 (Sylow’s Theorem). [Rob96, Theorem 1.6.16] Let G be a finite group and p
a prime. Write |G| = pam where the integer m is not divisible by p.

1. Every p-subgroup of G is contained in a subgroup of order pa.

2. If np is the number of Sylow p-subgroups, np ≡ 1 mod p.
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3. All the Sylow p-subgroups are conjugate in G.

We now state some general definitions about certain families of subgroups that
can be formed from a group G.

Definition 4.2.3. [L-GM02, Definition 1.1.10] A family of subgroups G0, G1, ... of G
forms a descending series in G if

G = G0 ≥ G1 ≥ G2 ≥ ...,

and Gi + 1 C Gi for all i ≥ 0. The sections of this series are the quotients Gi/Gi+1.
Similarly, the family of subgroups G0, G1, ... of G forms an ascending series in G

if
〈e〉 = G0 ≤ G1 ≤ G2 ≤ ...,

and Gi C Gi + 1 for all i ≥ 0. The sections of this series are the quotients Gi+1/Gi.
An ascending or descending series, as above, is a normal series if Gi C G for all

i ≥ 1; it is a central series if it is a normal series such that G centralizes every section;
and it is finite if Gi = Gi+1 for all but finitely many values of i. In a finite group a
composition series is a series in which every section is simple.

In a finite group, a descending chief series is a normal series

G = G0 > G1 > ... > Gn = 〈e〉

such that for every i there is no normal subgroup N of G such that Gi+1 < N < Gi.
An ascending chief series is defined similarly.

Definition 4.2.4. [L-GM02, Definition 1.1.13] The upper central series of G is the
series

〈e〉 = ζ0(G) ≤ ζ1(G) ≤ ζ2(G) ≤ ...,

of subgroups of G defined inductively by ζi(G)/ζi−1(G) = Z(G/ζi−1(G)) for i > 0.
G is nilpotent if there exists an integer k such that ζk(G) = G.
If G is nilpotent, the nilpotentcy class c of G is the smallest integer c ≥ 1 such that

ζc(G) = G.

We can finally state the following theorem.

Theorem 4.2.5. [Rob96, Theorem 5.2.4] Let G be a finite group. Then the following proper-
ties are equivalent:

1. G is nilpotent;

2. G is the direct product of its Sylow subgroups.
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4.3 The pQuotient algorithm

We will often refer to the computer programs GAP and MAGMA, specifically to the
function pQuotient.

The algorithm pQuotient (see [BCP97]) uses the lower exponent p-central series,
that is a descending sequence of subgroups

G = P0(G) ≥ ... ≥ Pi−1(G) ≥ Pi(G) ≥ ...,

where Pi(G) = [Pi−1(G), G]Pi−1(G)p for i ≥ 1. The p-class k of G is the length of the
series. The algorithm constructs a consistent power-conjugate presentation for the
largest p-quotient of G of p-class k

We thus obtain results on ramification structures of finite groups obtained from
particular groups G with special representations. These finite groups are generated
via the lower exponent p-central series. The finite groups Gp,k under considerations
in Chapter 5 are then the maximal p-quotients of p-class k, denoted by Gp,k and given
by Gp,k = G/Pk(G).

4.4 The Small Groups Library

We will reference the MAGMA and GAP database know as the SmallGroup library,
[SmallGroups].

For the creation of the Small Groups library, Hans Ulrich Besche, Bettina Eick and
Eamonn O’Brien developed practical algorithms to construct the groups of a given
order. A survey of the construction of the library can be found here [BBO02].

The library contains all groups of "small" order, up to isomorphism. More specif-
ically:

• groups of order at most 2000 except 1024 (423164062 groups);

• groups of cubefree order at most 50000 (395703 groups);

• groups of order p7 for the primes p = 3, 5, 7, 11 (907489 groups);

• groups of order pn for n ≤ 6 and all primes p;

• groups of order qn p where qn divides 28, 36, 55 or 74 and p is an arbitrary
prime not equal to q;

• groups of square-free order;

• groups whose order factorises into at most 3 primes.
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The library also has an identification function which returns the library number
of a given group. Currently, this function is available for all orders in the library
except for the orders 512 and 1536 and except for the orders p5, p6 and p7 above
2000.

88



Chapter 5

Mixed and Unmixed Beauville
Surfaces

We will first introduce the contents of the chapter. Let

Γ = 〈x0, ..., x6 | xixi+1xi+3 for i = 0, ..., 6〉,

and H be the index 2 subgroup generated by x0, x1 (see Proposition 5.2.1). Moreover,
let G2,k and H2,k denote the maximal 2-quotients of 2-class k (see Section 4.3 for the
precise definition) of Γ and H, respectively (for more details see Sections 5.2 and 5.3
below). We find that H2,k has an unmixed Beauville structure for every 3 ≤ k ≤ 63
which is not a power of 2 (see Theorem 5.3.1), and that G2,k admits a mixed Beauville
structure for every 3 ≤ k ≤ 10 which is not a power of 2 (see Theorem 5.3.2). We
conjectured in [BBPV11a] that both results hold generally for all 2-classes k ≥ 3
which are not powers of 2. This would provide infinitely many 2-groups admitting
unmixed (or mixed) Beauville structures.

5.1 Beauville surfaces

Inspired by a construction of Beauville, Catanese defined in [Cat00] a Beauville surface
to be a rigid (i.e., it admits no nontrivial deformation) compact complex surface
which is isogeneous to a higher product, i.e., it admits an unramified covering which
is isomorphic to a product of curves of genera ≥ 2.

It was shown in [Cat00] that every such surface has a unique minimal realisa-
tion S := (C1 × C2)/G, such that the genera of the curves C1 and C2 are minimal.
Moreover, in a minimal realization the action of G on C1 × C2 is free and respects the
product decomposition, i.e., the elements of G either interchange the factors or act
independently on both factors. This allows us to distinguish two types of Beauville
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surface (as mentioned in Chapter 4), which we now formally define:

Definition 5.1.1. Let S be a surface isogenous to a product of curves with minimal
realisation S ∼= (C1×C2)/G. We say that S is a mixed case if the action of G exchanges
the two factors (and then C1 and C2 are isomorphic) and an unmixed case if G acts via
a diagonal action.

Definition 5.1.2. A group G is said to act diagonally on a product of two curves
C1 × C2 if ∀g ∈ G and x ∈ C1, y ∈ C2,

g ◦ (x, y) = (g ◦ x, g ◦ y).

The definition of Beauville surfaces allows a purely group theoretic intrinsic de-
scription of all groups producing them. This collection of group theoretical properties
is called a Beauville structure, and in the introduction (Chapter 4) it is discussed and
in [BCG05] how a group G with a Beauville structure gives rise to a corresponding
Beauville surface with minimal realisation (C1 × C2)/G. As in the case of Beauville
surfaces, there are a mixed and unmixed Beauville structures.

Bauer, Catanese and Grunewald [BCG08] used this group theoretical description
to classify all smooth complex projective surfaces S isogenous to a product, which
are regular, i.e., q(S) = h1,0(S) = 0, and which have vanishing geometric genus
pg(S) = h2,0(S) = 0. Since a surface S isogeneous to a higher product is of general
type, pg(S) = 0 implies q = 0, because of χ(S) = 1 + pg(S)− q(S) ≥ 1. Furthermore,
Beauville surfaces with pg(S) ≥ 1 have also vanishing irregularity q(S) = 0, since
q(S) = g(C1/H) + g(C2/H) (see [Ser96, Proposition 2.2]) and C1/H ∼= C2/H ∼= P1.

It turns out that one of the groups in the classification of [BCG08], which they call
G(256, 2) and which has a mixed Beauville structure, coincides with the maximal 2-
quotient of 2-class 3 of a fundamental group Γ of a certain simplicial complex, which
we define in Section 5.2 below. More details about mixed Beauville structures for this
group are discussed in Section 5.2.2.

As mentioned in the introduction, not many examples of Beauville surfaces of
mixed type are known. It was shown in [BCG05, Theorem 4.3], that if G admits a
mixed Beauville structure, then the index 2 subgroup H must be non-abelian, and
it was mentioned in [BCG08, Remark 4.2] that no group of order < 256 admits a
mixed Beauville structure. Moreover, the classification in [BCG08] implies that there
are only two groups occurring in minimal realisations S ∼= (C1×C2)/G with pg(S) =
q(S) = 0 admitting mixed Beauville structures, and both of them are of order 256.

Our main aim in the subsequent sections below is to show that not only the
group G(256, 2) in [BCG08], but also many other maximal 2-quotients of our group
Γ produce Beauville surfaces of mixed type. Since their orders are higher 2-powers
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than 256 = 28, these other surfaces must necessarily have pg(S) ≥ 1.

Remark 5.1.3. It is interesting to note that, by [FG10, Lemma 5], if a group G admits a
mixed Beauville structure (H, T) then the order of any element g ∈ G \ H is divisible
by 4. Hence, the only p-groups that can admit a mixed Beauville structure are 2-
groups. However in the unmixed case, by [BCG05] and [FGZ10], for every prime
number p there exists a p-group admitting an unmixed Beauville structure.

5.1.1 Group theoretical structures

Following [BCG08] closely, we introduce group theoretic notions which lead to the
definition of Beauville structures.

Let G be a finite group and r an integer with r ≥ 2. An r-tuple T = (g1, ..., gr) of
elements of G is called a spherical system of generators, if g1, ..., gr generate G and we
additionally have g1...gr = 1.

Remark 5.1.4. Traditionally, a spherical system of generators is denoted by square
brackets however, here we use different parentheses to distinguish them from com-
mutators.

For an r-tuple T = (g1, ..., gr) of elements of G and g ∈ G, we set

gTg−1 := (gg1g−1, ..., ggrg−1).

If A = [m1, ..., mr] is an r-tuple of natural numbers with 2 ≤ m1 ≤ ... ≤ mr, then
the spherical system of generators T = (g1, ..., gr) is said to be of type A, if there is a
permutation τ ∈ Sym(r) such that we have

ord(g1) = mτ(1), ord(g2) = mτ(2), · · · , ord(gr) = mτ(r).

(Here ord(g) is the order of the element g ∈ G.)
For a spherical system of generators T = (g1, ..., gr) of G, we define

Σ(T) = Σ((g1, ..., gr)) :=
⋃

g∈G

∞⋃
j=0

r⋃
i=1

{g · gj
i · g

−1} (5.1)

to be the union of all conjugates of the elements of cyclic subgroups generated by
the elements g1, ..., gr. A pair of spherical systems of generators (T1, T2) of G is called
disjoint if

Σ(T1) ∩ Σ(T2) = {1}.

Next, we introduce unmixed and mixed ramification structures.
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Definition 5.1.5. Let A1 = [m(1,1), .., m(1,r)] and A2 = [m(2,1), .., m(2,s)] be tuples of
natural numbers with 2 ≤ m(1,1) ≤ ... ≤ m(1,r) and 2 ≤ m(2,1) ≤ ... ≤ m(2,s). An un-
mixed ramification structure of type (A1, A2) for G is a disjoint pair (T1, T2) of spherical
systems of generators, such that T1 has type A1 and T2 has type A2.

The disjointness of the pair (T1, T2) in the definition of an unmixed ramification
structure guarantees that G acts freely on the product CT1 × CT2 of the associated
algebraic curves (see Section 5.3.3 and the references therein).

Definition 5.1.6. Let A = [m1, ..., mr] be an r-tuple of natural numbers with 2 ≤ m1 ≤
... ≤ mr. A mixed ramification structure of type A for G is a pair (H, T) where H is a
subgroup of index 2 in G and T = (g1, ..., gr) is an r-tuple of elements of G such that
the following hold:

• T is a spherical system of generators of H of type A,

• for every g ∈ G \ H, the spherical systems T and gTg−1 are disjoint,

• for every g ∈ G \ H we have g2 6∈ Σ(T).

Definition 5.1.7. An unmixed Beauville structure is an unmixed ramification structure
with two spherical systems (T1, T2) of generators of length 3, i.e., r = 3 and s = 3. A
mixed Beauville structure is a mixed ramification structure with a spherical system T
of generators of length 3, i.e., r = 3.

Remark 5.1.8. We note that if G has a mixed Beauville structure (H, T) of type A,
then the index 2 subgroup H has an unmixed Beauville structure of type (A, A), by
choosing the pair (T, gTg−1) for an arbitrary g ∈ G \ H and using the fact that H
is normal in G. Moreover, there are corresponding unmixed and mixed Beauville
surfaces SH = (C1 × C2)/H and SG = (C1 × C2)/G, so that SH is a 2-fold covering of
SG.

As [GP09b] states, the question of which finite groups admit an unmixed Beauville
structure is deeply related to the question of which finite groups are quotients of cer-
tain triangle groups; a survey about this is given in [Con02].

Definition 5.1.9. An ordinary triangle group is a group given by the presentation,

Tl,m,n = 〈x, y, z|xl , ym, zn, xyz〉.

The group is called,

1. Hyperbolic if 1
l +

1
m + 1

n < 1;

2. Euclidean if 1
l +

1
m + 1

n = 1;

3. Spherical if 1
l +

1
m + 1

n > 1.
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5.1.2 From ramification structures to algebraic surfaces

In this section we explain how to construct an algebraic surface S = (CT1 × CT2)/G
from a given finite group G with an unmixed ramification structure (T1, T2).

Let G be a finite group and T = (g1, ..., gr) be a spherical system of generators
with mi = ord(gτ(i)). For 1 ≤ i ≤ r, let P1, . . . , Pr ∈ P1 be a sequence of points
ordered counterclockwise around a base point P0 and γi ∈ π(P1−{P1, . . . , Pr}, P0) be
represented by a simple counterclockwise loop around Pi, such that γ1γ2 . . . γr = 1.

We now recall the Riemann’s existence theorem, see [Mir95, Fr80] for more infor-
mation.

Theorem 5.1.10 (Riemann’s Existence Theorem). There is a natural bijection between:

• Equivalence classes of holomorphic mappings f : C → P1, of degree n and with branch
set B f ⊂ B, (where C is a compact Riemann surface, and f : C → P1, f ′ : C ′ → P1

are said to be equivalent if there is a biholomorphism g : C′ → C such that f ′ = f ◦ g
and B is the set points P1, ..., Pr ∈ P1).

• Conjugacy classes of monodromy homomorphisms µ : π1(P
1 − B) → Sym(n) (here,

µ ∼= µ′ if and only if there is an element σ in Sym(n) with µ(γ) = σµ′(γ)σ−1, for all
simple closed curves γ).

By Riemann’s existence theorem, there exists a surjective homomorphism

Φ : π(P1 − {P1, . . . , Pr}, 0)→ G

with Φ(γi) = gi and a Galois covering λ : CT → P1 with ramification indices equal
to the orders of the elements g1, . . . , gr. These data induce a well defined action of G
on the curve CT, and by the Riemann-Huritz formula (see [Mir95, Fr80]), we have

g(CT) = 1 +
|G|
2

(
r− 2−

r

∑
l=1

1
ml

)
. (5.2)

Now, we assume that G admits an umixed ramification structure (T1, T2). This
leads to a diagonal action of G on the product CT1 × CT2 , and the disjointness of
the two spherical systems of generators ensures that G acts freely on the product
of curves. The associated algebraic surface S is the quotient (CT1 × CT2)/G. By the
Theorem of Zeuthen-Segre, we have for the topological Euler number

e(S) = 4
(g(CT1)− 1)(g(CT2)− 1)

|G| ,
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as well as the relations (see [Cat00, Theorem 3.4]),

χ(S) =
e(S)

4
=

K2
S

8
,

where K2
S is the self intersection number of the canonical divisor and χ(S) = 1 +

pg(S) − q(S) is the holomorphic Euler-Poincaré characteristic of S. Assume that
(T1, T2) is of the type (A1, A2) with A1 = [m1, . . . , mr] and A2 = [n1, . . . , ns]. Then the
above relations imply for the associated surface S that

χ(S) =
|G|
4

(
r− 2−

r

∑
l=1

1
ml

)(
s− 2−

s

∑
l=1

1
nl

)
.

5.2 The group Γ and a 2-quotient with a mixed Beauville
structure

5.2.1 The fundamental group Γ

We consider a simplicial complex K, built from 7 triangles, following the relations
given in the presentation of Γ. Note that all vertices of the triangles represent the
same point in K. Then, Γ = π1(K) is the fundamental group of the complex K.
Realising all triangles geometrically by equilateral Euclidean triangles, we can view
the universal covering of K as a thick Euclidean building of type Ã2, with Γ being
isomorphic to the group of covering transformations. The group Γ belongs to a
family of groups introduced in [CMSZ93a] (and originally introduced in [EH88]),
and is obviously presented by

Γ = 〈x0, ..., x6 | xixi+1xi+3 for i = 0, ..., 6〉,

where i, i + 1 and i + 3 are taken modulo 7.
In [PV08] the subgroup H ⊂ Γ was considered, generated by x0 and x1, and the

2-quotients of this subgroup were employed for the explicit construction of expander
graph families. We recall the following fact from [PV08]:

Proposition 5.2.1. The group Γ is generated by x0, x1, x2, and the subgroup H, generated
by x0, x1 is an index two normal subgroup of Γ. Moreover, H has the presentation

H = 〈x0, x1 | r1, r2, r3〉,
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with

r1 = x1x0x1x0x1x0x−3
1 x−3

0 ,

r2 = x1x−1
0 x−1

1 x−3
0 x2

1x−1
0 x1x0x1,

r3 = x3
1x−1

0 x1x0x1x2
0x2

1x0x1x0.

5.2.2 A group with a mixed Beauville structure

Let G2,3 denote the maximal 2-quotient of Γ of 2-class 3. Similarly, let H2,3 denote
the maximal 2-quotient of the subgroup H of 2-class 3. H2,3 is an index 2 sub-
group of G2,3. (G2,3 and H2,3 coincide with the groups SmallGroup(256, 3679) and
SmallGroup(128, 36) in MAGMA Small Groups notation, see Section 4.4.) To simplify
notation, we denote the images of x0 and x1 in G2,3, again, by x0 and x1.

The quotient G2,3 is of order 256 = 28, and coincides with the non-abelian group
(they call) G(256, 2) in Bauer, Catanese and Grunewald [BCG08]. They constructed in
[BCG08, Section 6.6] a mixed Beauville structure of type [4, 4, 4] for this non-abelian
group.

In our notation, we establish a mixed Beauville structure of type A = [4, 4, 4] for
the group G2,3, by choosing (H2,3, T1), where T1 is the spherical system of generators
(x0, x1, x) with x = x−1

1 x−1
0 . A second mixed Beauville structure of type A is given

by the pair (H2,3, T2) with T2 = (y0, y1, y), where y0 = x0x−1
1 and y1 = x1x0x1 is

another set of generators of H2,3 and y = y−1
1 y−1

0 . Moreover, the disjoint pair (T1, T2)

of spherical systems of generators is an unmixed Beauville structure of type (A, A)

for the group H2,3.
These facts were confirmed by MAGMA calculations, and lead to the study of

Beauville structures for other maximal 2-quotients of the groups Γ and H.

5.3 Beauville structures for maximal 2-quotients

Before we present our results and conjectures, we fix some notation. We denote the
maximal 2-quotient of 2-class k of Γ by G2,k, and the maximal 2-quotient of 2-class k
of H by H2,k, i.e.

G2,k := pQuotient(Γ, 2, k) and H2,k := pQuotient(H, 2, k).

For simplicity, we denote the images of x0 and x1 in G2,k, again, by x0 and x1.
We define y0 = x0x−1

1 , y1 = x1x0x1, and x = x−1
1 x−1

0 , y = y−1
1 y−1

0 , as well as the
spherical systems of generators T1 = (x0, x1, x) and T2 = (y0, y1, y) for the groups
H2,k. For x ∈ R, let bxc be the largest integer smaller or equal to x. For an integer k,
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let k mod 3 ∈ {0, 1, 2} be the remainder under integer division by 3.

5.3.1 Which groups H2,k admit unmixed Beauville structures (T1, T2)?

Our MAGMA calculations show the following result for the maximal 2-quotients H2,k

of 2-class k ≤ 64:

Theorem 5.3.1. Let 3 ≤ k ≤ 63, r = blog2 kc+ 1 and A = [2r, 2r, 2r]. If k is not a power
of 2, then (T1, T2) is an unmixed Beauville structure of type (A, A) for the group H2,k.

In the case that k is a power of 2, i.e., k = 2s for s = 2, 3, . . . , 6, we found that
xk

0 = yk
0 and xk

1 = yk
1, which means that (T1, T2) is not an unmixed Beauville structure

of H2,k. Moreover, the conjugacy classes of xk
0 and xk

1 in G2,k are trivial. Therefore,
none of the pairs (T1, gT2g−1) with g ∈ G2,k can be an unmixed Beauville structure of
H2,k.

We conjecture that all of the above results hold not only for 3 ≤ k ≤ 64, but for all
integers k ≥ 3, thus providing infinitely many 2-groups admitting unmixed Beauville
structures.

5.3.2 Which groups G2,k have mixed Beauville structures?

Since MAGMA calculations for mixed structures are far more intensive than for a par-
ticular unmixed structure, we confined our MAGMA calculations to all 2-quotients
of 2-classes up to k ≤ 10 and obtained the following result:

Theorem 5.3.2. Let 3 ≤ k ≤ 10 and r = blog2 kc + 1. If k is not a power of 2, then
(H2,k, T1) is a mixed Beauville structure of type [2r, 2r, 2r] for the group G2,k.

Again, we conjecture that this theorem holds for all integers k ≥ 3 which are
not powers of 2, thus providing infinitely many 2-groups admitting mixed Beauville
structures.

5.3.3 What Beauville surfaces do these groups correspond to?

It is described, e.g., in [BCG05] or in [BCG06] and in general in Section 5.1.2 how
to construct, for a given finite group G with a Beauville structure, a corresponding
Beauville surface with minimal realisation (C1 × C2)/G. We do not define some of
the algebraic geometry terms but direct the reader to [Bea96] if they wish to learn
more.

Let T = (g1, g2, g3) be a spherical system of generators of G of type A = [a1, a2, a3].
Let B = {−1, 0, 1} ⊂ P1, and we fix the point ∞ ∈ P1. Employing Riemann’s
existence theorem, this data is used to construct an explicit surjective homomorphism
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π1(P
1\B, ∞)→ G with α 7→ g1, β 7→ g2, γ 7→ g3, where α, β, γ are particularly chosen

generators of π1(P
1\B, ∞) satisfying αβγ = 1, and a corresponding Galois covering

CT → P1 with group G, ramified in the three points −1, 0, 1 ∈ P1, with ramification
indices equal to the orders a1, a2 and a3, respectively. The Riemann-Hurwitz formula
yields for the genus g(CT) of the curve CT,

2g(CT)− 2 = |G|(1− µ(A)), (5.3)

where µ(A) = 1
a1
+ 1

a2
+ 1

a3
. Assuming that G has an unmixed Beauville structure

(T1, T2) of type (A1, A2), the corresponding Beauville surface is constructed as SG =

(CT1 × CT2)/G. We have for the topological Euler number e(SG), by the Theorem of
Zeuthen-Segre,

e(SG) = 4
(g(CT1)− 1)(g(CT2)− 1)

|G| ,

as well as the relations (see [Cat00, Theorem 3.4]),

χ(SG) =
e(SG)

4
=

K2
SG

8
,

where K2
SG

denotes the self intersection number of the canonical divisor.
Finally, since SG is a surface of general type and q(SG) = 0, we have

χ(SG) = 1 + pg(SG) =
|G|
4

(1− µ(A1))(1− µ(A2)). (5.4)

These relations allow us to calculate all main invariants of Beauville surfaces cor-
responding to the groups H2,k and G2,k, for which our MAGMA calculations showed
the existence of unmixed and mixed Beauville structures:

1. Let H2,k have an unmixed Beauville structure of type (A, A) with A = [2r, 2r, 2r]

and r = blog2 kc+ 1. Let SH2,k = (C1×C2)/H2,k be the minimal realisation of an
associated Beauville surface. Since H2,k is a group of order 28bk/3c+3·(k mod 3)−1,
we obtain from (5.3),

g(C1)− 1 = g(C2)− 1 = 28bk/3c+3·(k mod 3)−r−2(2r − 3),

and from (5.4),

1 + pg(SH2,k) = χ(SH2,k) = 28bk/3c+3·(k mod 3)−2r−3(2r − 3)2.

2. Let G2,k have a mixed Beauville structure of type A = [2r, 2r, 2r] with r =

blog2 kc + 1. Then H2,k admits unmixed Beauville structures of type (A, A)
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by Remark 5.1.8, and we have a 2-fold covering SH2,k → SG2,k of associated
Beauville surfaces. This implies

1 + pg(SG2,k) = χ(SG2,k) =
1
2

χ(SH2,k) = 28bk/3c+3·(k mod 3)−2r−4(2r − 3)2.

In the particular case G2,3 ∼= G(256, 2), we recover the results g(C1) = g(C2) = 17
and vanishing geometric genus pg(SG2,3) = 0, in accordance with [BCG08].

Remark 5.3.3. [Con06] The group H2,3 can be found as the 64th quotient group of the
hyperbolic triangle group

T4,4,4 = 〈x, y, z|xyz, x4, y4, z4〉,

of genus 17 defined by the presentation,

〈x, y, z|xyz, x4, y4, z4, (xzy−1)2, (xz−1y)2, (x−1zy)2〉,

using the computer program MAGMA.
The action is "Reflexible", that is there exists an involutory automorphism of the

quotient that inverts the images of two of the three generators x, y and z.

5.4 Further Work

The above group Γ belongs to a family called groups with special presentation. These
groups were introduced by Howie [How89] and are related to projective planes over
finite fields.

It was proved in [EV10] that all groups with special presentation are just infinite
(i.e. they are infinite groups all of whose non-trivial normal subgroups have finite
index). A natural question arises: Do any other groups with special presentations give rise
to finite groups with particular ramification structures?

Remark 5.4.1. The group G is also part of a family of groups defined by triangle
presentations as defined in [CMSZ93a].

Future work could look at the above question. In fact, the beginnings of such a
program has been started in [BBPV11b].

5.5 An infinite family of mixed Beauville surfaces

In the recent paper [BBPV14], we construct an infinite family of triples (Gk, Hk, Tk),
where Gk are 2-groups of increasing order, Hk are index-2 subgroups of Gk, and Tk
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are pairs of generators of Hk. We show that the triples uk = (Gk, Hk, Tk) are mixed
Beauville structures if k is not a power of 2. Moreover, the associated Beauville
surface S(u3) is real and, for k > 3 not a power of 2, the Beauville surface S(uk) is
not biholomorphic to S(uk).
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Chapter 6

General non-abelian Beauville
p-groups

This Chapter comprises work conducted under the supervision of N. Boston and B.
Fairbairn, [BBF12].

In several places we shall refer to computer calculations that can easily be per-
formed in Magma [BCP97] or GAP [GAP4]. In particular we will find it convenient
to use the SmallGroup(m,n) notation that denotes the nth group of order m in the
small groups library, see Section 4.4 for references.

In addition, for economy of space, for each group presentation 〈X|R〉 stated we
omit all commutator relations of the form [a, b] = e from R for each pair a, b ∈ X such
that there does not exist a relator [a, b] 6= e in R. We will indicate this by 〈X|R〉[.

We will also state each spherical system of generators T = (x, y, (xy)−1) simply as
(x, y)†, this avoids confusion with commutators and saves writing the third generator
which is always taken as (xy)−1.

We now summarize the main results of this Chapter. In Section 6.1 we show that
there exits a Beauville p-group for all groups of order |G| = pr, r ≥ 2. Sections 6.2
and 6.3 classify the non-abelian Beauville p-groups of order p3 and p4.

In the penultimate section, we examine the groups of order p5 and prove the
following theorem.

Theorem 6.0.1. If p > 3, then there exists at least p + 8 Beauville groups of order p5.

From the analysis of the number of 2-generated groups of order p5 we find the
following consequence of the above theorem.

Corollary 6.0.2. The proportion of 2-generated groups of order p5 that are Beauville tends
to 1 as p tends to infinity.

For groups of order p6 we find the following.
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Theorem 6.0.3. If p > 3, then there exist at least p− 1 2-generated non-Beauville groups of
order p6.

From the analysis of the number of 2-generated groups of order p6 we find the
following consequence of the above theorem.

Corollary 6.0.4. The proportion of 2-generated groups of order p6 that are Beauville does not
tend to 1 as p tends to infinity.

From [FGZ10] we have the following statement “it is very plausible that most
2-generated finite p-groups of sufficiently large order [are Beauville groups]". If we
interpret that the word “most" from the statement to mean that the proportion of
Beauville groups tends to 1 as p tends to infinity, then this statement would be true
for groups of order p5 but not for groups of order p6.

Question 6.0.5. If n > 6, what is the behavior, as p tends to infinity, of the proportion
of 2-generated groups which are Beauville?

Finally, through computational experimentation, we have the corollary of the
combined results of this note.

Corollary 6.0.6. The smallest non-abelian Beauville p-groups are

1. for p = 2, SmallGroup(27,36);

2. for p = 3, the group given by Example 6.4.1, of order 35;

3. for p = 5, SmallGroup(53,3);

4. for p ≥ 7, the groups given by Lemma 6.2.1, of order p3.

6.1 Some general results

We first note a very easy lemma, which reduces the study of nilpotent Beauville
groups to the study of Beauville p-groups.

Lemma 6.1.1. Let G and G′ be Beauville groups and let {(x1, y1)
†, (x2, y2)†} and {(x′1, y′1)

†,
(x′2, y′2)

†} be their respective Beauville structures. Suppose that for i = 1, 2

gcd(o(xi), o(x′i)) = gcd(o(yi), o(y′i)) = 1.

Then {((x1, x′1), (y1, y′1))
†, ((x2, x′2), (y2, y′2))

†} is a Beauville structure for the group G ×
G′.
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We now explicitly show that there is a non-abelian 2-generated non-Beauville
group of order pn for every n ≥ 3 and for every prime p.

Lemma 6.1.2. [BBF12, Lemma 9] The group

G := 〈x, y|xpn
, yp, xy = xpn−1+1〉

is a non-abelian 2-generated non-Beauville group of order pn+1 for every prime p and every
n > 1.

Proof. [BBF12, proof of Lemma 9] Clearly G is non-abelian and 2-generated and a
straightforward coset enumeration shows that the subgroup 〈x〉 has index p and so
|G| = pn+1. Now, Z(G) = 〈xp〉 and every element outside the subgroup 〈xp, y〉
has order pn. Consequently, any generating set must contain at least one element of
order pn, but all such elements power up to xpn−1

(i.e. there exists a ∈ N such that,
for w ∈ G, wa = xpn−1

), so G cannot have a Beauville structure.

We remark that this lemma is a generalisation of [FJ09, Example 4A] which is the
case n = 2.

Lemma 6.1.3. [BBF12, Lemma 10] The group

G := 〈x, y|xpn
, ypn

, xy = xp+1〉

is a non-abelian Beauville group of order p2n for every prime p ≥ 5 and every n ≥ 2.

Proof. [BBF12, proof of Lemma 10] Clearly G is non-abelian and 2-generated and a
straightforward coset enumeration shows that the subgroup 〈x〉 has index pn and so
|G| = p2n. Let p > 5 be prime. We claim that {(x, y)†, (xy2, xy3)†} is a Beauville
structure in this case.

Now, every element of G can be written as xiyj for some 0 ≤ i, j ≤ pn − 1. Fur-
thermore, since Z(G) = 〈xpn−1

, ypn−1〉 and so a necessary condition for two elements
of G to be conjugate is that they power up to the same elements of Z(G). A straight-
forward induction tells us that

(xy)r = x1+(p+1)+(p+1)2+···+(p+1)r−1
yr.

An easy exercise in using geometric progressions and the binomial theorem tells us
that for any prime p

1 + (1 + p) + · · ·+ (1 + p)pn−1−1 ≡ pn−1 (mod pn).
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Combining these two identities gives (xy)pn−1
= xpn−1

ypn−1
. Similar identities can be

established for the elements xy2, xy3 and (xy2xy3)y−5y5 = x1+(p+1)2
y5, verifying that

no powers of these elements are conjugate.
Finally we need show these pairs generate. Clearly 〈x, y〉 = G by definition. Since

(xy2)−1xy3 = y and xy2y−2 = x so G ≤ 〈x, y〉 ≤ 〈xy2, xy3〉 ≤ G.
Similar calculations in the case p = 5 show that {(x, y)†, (xy2, xy4)†} is a Beauville

structure.

The above lemma has covered the groups of order an even power of a prime, p2n.
The next lemma covers the odd case, p2n+1.

Lemma 6.1.4. The group

G := 〈x, y, z, α1, ..., αn−1, β1, ..., βn−1|xpn
, ypn

, zp, [x, y] = z,

αi = xpi
, βi = ypi

(for all 1 ≤ i ≤ n− 1) 〉[,

is a non-abelian Beauville group of order p2n+1 for p ≥ 5 and n ≥ 2.

Proof. For p ≥ 5 and n ≥ 2, it is clear that G is a 2-generated group by (x, y)†

and (xy2, xy4)†. Furthermore, we have distinct subgroups 〈x〉, 〈y〉, 〈z〉 of G of orders
pn, pn, p respectively. As every element of G can be put in the form xiyjzk, it follows
that the order of G is p2n+1.

We now claim the following is a Beauville structure {(x, y)†, (xy2, xy4)†} for G.
Since αi, βi ∈ Z(G) and [x, y] = z we can construct the following Σ-sets,

Σ(x, y) = {e}
⋃(pn−1⋃

i=1

{xi, yi, xiyi}〈z〉
)
\

pn−1−1⋃
i=1

p−1⋃
j=1

{xipzj, yipzj, xipyipzj},

and
Σ(xy2, xy4) =

{e}
⋃(pn−1⋃

i=1

{xiy2i, xiy4i, x2iy6i}〈z〉
)
\

pn−1−1⋃
i=1

p−1⋃
j=1

{xipy2ipzj, xipy4ipzj, x2ipy6ipzj},

for this group. Here, we prefer to write the αi’s and β j’s in terms of powers of xp and
yp respectively. Therefore, Σ(x, y) ∩ Σ(xy2, xy4) = {e}.

6.2 Groups of order ≤ p3

All groups of order p or p2 are abelian for every prime p. Thus, by Theorem 4.1.3 the
only Beauville group of order less than p3 is Zp ×Zp for p > 3. There are no abelian
Beauville groups of order p3.
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The classification of groups of order p3 is well-known; this result is due to [Hol93].
There are two non-abelian groups of order p3. The first is of the form discussed in
Lemma 6.1.2 and is thus not a Beauville group. The second is taken care of by the
following, which is a special case of Lemma 6.1.4.

Lemma 6.2.1. For any prime p ≥ 7 the group

G := 〈x, y, z|xp, yp, zp, [x, y] = z〉[

is a non-abelian Beauville group of order p3 with Beauville structure (T1 = (x, y)†, T2 =

(xy2, xy3)†).

Proof. The group G is the extra special plus type group p1+2
+ . Since xyx−1y−1 =

[x, y] = z we have that xyx−1 = yz and since CG(yi) = 〈y, z〉 for 1 ≤ i < p we see
that the conjugates of yi are precisely the elements yizj for 1 ≤ j ≤ p. Similarly
CG(g) = 〈g, z〉 for all g ∈ G \ Z(G).

Therefore, as

Σ(T1) = {e}
p⋃

j=1

p−1⋃
i=1

{xizj, yizj, xiyizj},

and

Σ(T2) = {e}
p⋃

j=1

p−1⋃
i=1

{xiy2izj, xiy3izj, x2iy5izj},

the condition Σ(T1) ∩ Σ(T2) = {e} is equivalent to:

(CG(x) ∪ CG(y) ∪ CG(xy)) ∩ (CG(xy2) ∪ CG(xy3) ∪ CG(xy2xy3)) = Z(G).

Again, this can be shown to be equivalent to checking the equations khk−1 6= h
for all h ∈ T1 and k ∈ T2. When showing this, we make use of the equation (xy)−1z =

xp−1yp−1 and (xy2xy3)−1 = yp−5xp−2z2. We get the equations,
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x−1xy2x = y2x;

y−1xy2y = yx2z2;

y−1x−1xy2xy = y2xz;

x−1xy3x = y3x;

y−1xy3y = y2x2z3;

y−1x−1xy3xy = y3xz;

x−1yp−5xp−2z2x = yp−5x2p−4z2+(p−5)(p−1);

y−1yp−5xp−2z2y = yp−5xp−2zp;

y−1x−1yp−5xp−2z2xy = yp−5x2p−2z2p−1.

As you can clearly see, some of the elements of {x, y, xy} centralize some of the
elements of {xy2, xy3, xy2xy3} when p ≤ 5. Therefore, the result holds for p ≥ 7.

Remark 6.2.2. The group given by Lemma 6.2.1 for p = 7 appears as the second group
in a family of groups in [BBPV11b, Theorem 3.2]. There, it arises as a 7-quotient of a
finite index subgroup of an infinite group with special presentation related to a finite
projective planes.

6.3 Groups of order p4

The classification of groups of order p4 is well-known; this result is due to [Hol93].
We list the non-abelian 2-generated groups of order p4 in Table 10.1 for p odd and
Table 10.2 for p = 2. The only abelian Beauville group of order p4 is Zp2 ×Zp2 for
p > 3.

The groups in Table 7.1 are stated to be Beauville or not in the final column. The
groups in Table 7.2 are easily checked by computer to not be Beauville groups. We
can state the above information in the following lemma.

Lemma 6.3.1. [BBF12, Lemma 16] For any prime p ≥ 5 the groups G2 and G7 are non-
abelian Beauville groups of order p4.

For p = 3, the groups G2 and G7 are not Beauville groups.

6.4 Groups of order p5

Computer calculations using MAGMA show that this is the first occurrence of a
Beauville 3-group. This group is, in fact, the only Beauville group of order 35.
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Name Presentation Beauville?
G1 〈x, y|xp3

, yp, xy = x1+p2〉 No
G2 〈x, y|xp2

, yp2
, xy = xp+1〉 Yes (p > 3)

G3 〈x, y, z|xp2
, yp, zp, [x, z] = y〉[ No

G4 〈x, y, z|xp2
, yp, zp, xy = xp+1, [x, z] = y〉[ No

G5 〈x, y, z|xp2
, yp, zp = xp, xy = xp+1, [x, z] = y〉[ No

G6 〈x, y, z|xp2
, yp, zp = xpα, xy = xp+1, [x, z] = y〉[ No

G7 (p > 3) 〈w, x, y, z|wp, xp, yp, zp, [y, z] = x, [x, z] = w〉[ Yes (p > 3)
G8 (p = 3) 〈x, y, z|x9, y3, z3, [x, z] = y, [y, z] = x3〉[ No

Table 6.1: The non-abelian 2-generated groups of order p4, p odd. In the groups G3, ..., G6
and G8, the presence of the relation [x, z] = y shows that the group is 2-generated. In G7 the
presence of the relations [y, z] = x and [x, z] = w show that the group is 2-generated. In G6 α
is any quadratic non-residue (mod p).

Name Presentation
G1, G2, G3 as in Table 7.1
G4 〈x, y|x8, y2, xy = x7〉
G5 〈x, y|x8, y2, xy = x3〉
G6 〈x, y|x8, y4, xy = x−1, x4 = y2〉

Table 6.2: The non-abelian 2-generated groups of order 24.

Example 6.4.1. The group

〈x, y, z, w, t|x3, y3, z3, w3, t3, yx = yz, zx = zw, zy = zt〉[

is a non-abelian Beauville group of order 35 with Beauville structure given by
(S1 = (x, y)†, S2 = (xt, y2w)†).

The computer program MAGMA was further used to explore the possible Beauville
groups of order p5, for p > 3. The results of our computer experimentations are pre-
sented in Table 10.3. We note that there are no abelian Beauville groups of order
p5.

We observed that for each prime 5 ≤ p ≤ 19 there are exactly p + 10 Beauville
groups of order p5. The presentations for the p+ 10 groups are given below, seven Hi

groups and p + 3 Hi,j,k,l groups. The remainder of this section is devoted to proving
Theorem 6.0.1. We start by showing that five of the seven Hi groups are Beauville
groups. We follow this, using the work of [Jam80, Section 4.5, part (6)], to analyze
the family of non-isomorphic groups given by Hi,j,k,l .

106



Chapter 6. General non-abelian Beauville p-groups

p n h(p) g(p)
2 - 19 0
3 3 29 1
5 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 23, 30, 33 37 15
7 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 21, 22, 25,

32, 37 41 17
11 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 25, 26, 29, 36, 39 41 21
13 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 27, 28, 31,38, 43 49 23
17 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25,26, 31,32, 35, 42, 45 49 27
19 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 37, 44, 49 53 29

Table 6.3: The groups SmallGroup(p5,n) for p ≤ 19 a prime that have Beauville structures.
h(p) (respectively g(p)) is the number of 2-generated (respectively Beauville) groups of order
p5.

Let X = {x, y, z, w, t} and set Hi := 〈X|Ri〉[ for the below relations,

R1 = {xp = w, yp = t, zp, wp, tp, [y, x] = z},

R2 = {xp, yp, zp, wp, tp, [y, x] = z, [z, x] = w, [z, y] = t},

R3 = {xp = w, yp = t, zp, wp, tp, [y, x] = z, [z, x] = t},

R4 = {xp = w, yp = tr, zp, wp, tp, [y, x] = z, [z, x] = t},

where r is taken as 2, 5, 6, 7, 6, 10 for p = 5, 7, 11, 13, 17, 19 and

R5 = {xp = w, yp = t, zp, wp, tp, [y, x] = z, [z, x] = t, [z, y] = t},

R6 = {xp, yp, zp, wp, tp, [y, x] = z, [z, x] = w, [w, x] = t}

R7 = {xp, yp, zp, wp, tp, [y, x] = z, [z, x] = w, [z, y] = t, [w, x] = t}.

Remark 6.4.2. It would be interesting to know how r, in the set of relations R4, varies
as a function of p.

We now look to [FJ09, Section 4] on lifting Beauville structures to extend the
computational results for p > 19.

Definition 6.4.3. Let G be a finite group with a normal subgroup N. An element g
of G is faithfully represented in G/N if 〈g〉 ∩ N = {e}.

If T = {g1, ..., gk} is a k-tuple of elements of G, we say that this k-tuple is faithfully
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represented in G/N if 〈gi〉 ∩ N = {e} for 1 ≤ i ≤ k.

Lemma 6.4.4. [FJ09, Lemma 4.2] Let G have generating triples {xi, yi, zi} with xiyizi = e
for i = 1, 2 and a normal subgroup N such that at least one of these triples is faithfully
represented in G/N.

If the images of these triples corresponds to a Beauville structure for G/N, then these
triples correspond to a Beauville structure for G.

We can now make the following conclusions for some of the group structures
Hi = 〈X|Ri〉[.

Lemma 6.4.5. Let Hi = 〈X|Ri〉[ for i = 2, 6, 7 and p ≥ 5 a prime. Then, Hi is a Beauville
group of order p5.

Proof. Firstly, for p = 5 MAGMA calculations show that the groups Hi for i = 2, 6, 7
have Beauville structures corresponding to {(x, y)†, (xy2, xy4)†}.

Secondly, let p ≥ 7. For each group Hi the center Zi = Z(Hi) is given by
the subgroup 〈t, w〉 and (x, y)†, (xy2, xy3)† are two generating sets for the groups
Hi for i = 2, 6, 7. The quotient group Hi/Zi is isomorphic to the group G given
in Lemma 6.2.1. Clearly, the images of x, y and xy in Hi/Zi are faithfully repre-
sented (in the sense of Definition 6.4.3) and correspond with the Beauville structure
{(x, y)†, (xy2, xy3)†} for the group G.

Thus, by Lemma 6.4.4 we see that the Beauville structure {(x, y)†, (xy2, xy3)†} lifts
to a Beauville structure for the groups Hi for i = 2, 6, 7.

Lemma 6.4.6. Let H1 = 〈X|R1〉[ and p ≥ 5 a prime. Then, H1 is a Beauville group of order
p5.

Proof. By Lemma 6.1.4, with n = 2, we see that the groups H1 have Beauville struc-
tures corresponding to {(x, y)†, (xy2, xy4)†}.

Lemma 6.4.7. Let H5 = 〈X|R5〉[ and p ≥ 5 a prime. Then, H5 is a Beauville group of order
p5.

Proof. We claim that the groups H2 for p ≥ 5 have Beauville structures corresponding
to {(x, y)†, (xy2, xy4)†}.

It is clear that {x, y} and {xy2, xy4} are generating sets for H5. Now, given that
xp = w, yp = t, [x, y] = z, [z, x] = [z, y] = t and the center Z(H5) = 〈w, t〉 we see that

Σ(x, y) =

{e}
⋃p2−1⋃

i=1

{xi, yi, xiyi}〈z〉〈yp〉

 \ p−1⋃
i,j,k=1

{xipyjpzk, yipyjpzk, xipyipyjpzk},
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and

Σ(xy2, xy4) = {e}
⋃p2−1⋃

i=1

{xiy2i, xiy4i, x2iy6i}〈z〉〈yp〉


\

p−1⋃
i,j,k=1

{xipy2ipyjpzk, xipy4ipyjpzk, x2ipy6ipyjpzk}.

We prefer to write w in terms of xip and t in terms of yip for 0 ≤ i ≤ p− 1. Therefore,
Σ(x, y) ∩ Σ(xy2, xy4) = {e}.

We are now left with the groups given by relations Ri for i = 3, 4. We cannot lift
Beauville structures from groups of order < p5 to the groups Hi for i = 3, 4 as any
normal subgroup Ni of Hi would decrease the order of the generators x, y. Thus, x, y
would not be faithfully represented in Hi/Ni.

We now have the following groups for selected values of i, j, k, l ∈ {0, ..., p− 1}.
We find p + 3 non-isomorphic groups for 5 ≤ p ≤ 19 give rise to Beauville p-groups
with the following presentations,

Hi,j,k,l := 〈x, y, z, w, t|xp = witj, yp = wktl , zp, wp, tp, [x, y] = z, [x, z] = w, [y, z] = t〉[.

These groups correspond to the groups SmallGroup(p5, n) for 7 ≤ n ≤ p + 9, as given
by the MAGMA small groups library.

From [Jam80, Section 4.5, part (6)], the group structures for p-groups of order p5

for p > 3 are listed. The groups having the structure of Hi,j,k,l are therefore given in
the classification. We can therefore state the following lemma which is a consequence
of the classification of groups of order p5.

Lemma 6.4.8. If p > 3 a prime, then there are p + 7 non-isomorphic groups of the following
form,

Hi,j,k,l := 〈x, y, z, w, t|xp = witj, yp = wktl , zp, wp, tp, [x, y] = z, [x, z] = w, [y, z] = t〉[

where i, j, k, l ∈ {0, ..., p− 1}.

Proof. From [Jam80, Section 4.5, part (6)], we see that there are

1 +
1
2
(p− 1) + 2 + 1 +

1
2
(p− 1) + 1 + 2 + 1 = p + 7

groups of this form.

We are now in a position to prove Theorem 6.0.1, which was stated in the Intro-
duction. It is convenient to note that all the groups Hi,j,k,l have center Zi,j,k,l = 〈w, t〉
and Hi,j,k,l/Zi,j,k,l

∼= G, the group given by Lemma 6.2.1.
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Proof of Theorem 6.0.1: Firstly, by Lemmas 6.4.5, 6.4.6 and 6.4.7 we have five
Beauville groups for each prime p > 3.

Secondly, we consider the p + 7 non-isomorphic groups Hi,j,k,l given by Lemma
6.4.8. We note that the group given by H2 corresponds to H0,0,0,0 and thus we have
p + 6 non-isomorphic groups of the form Hi,j,k,l to account for.

The groups corresponding to Φ6(21111)br in [Jam80, Section 4.5, part (6)] cannot
admit a Beauville structure as xp = e, yp = wr where r = 1 or ν (the smallest positive
integer which is a non-quadratic residue modulo p). The group given by Φ6(21111)a
in [Jam80, Section 4.5, part (6)] cannot admit a Beauville structure as xp = w, yp = e.
We are therefore left with p + 3 non-isomorphic groups to analyse.

The remaining p + 3 groups Hi,j,k,l have non-trivial words u(w, t), v(u, t) such that
xp = u(w, t) and yp = v(w, t). As the words u, v are made up of elements of the
center Zi,j,k,l of the groups Hi,j,k,l and the order of the elements x, y is p2, we see that
the remaining p + 3 groups satisfy the criteria Σ(x, y) ∩ Σ(xy2, xy4) = {e} for p > 3.
That is, each element of the form xaybzc (with both a 6= 0 and b 6= 0) is conjugate
to elements of the form xaybzds(w, t), where s(w, t) is a word in w, t. Therefore,
{(x, y)†, (xy2, xy4)†} is a Beauville structure for the remaining p + 3 groups. The
result them follows. �

We see for 5 ≤ p ≤ 19 that the number of groups found to have Beauville struc-
tures is p + 10. From the work above, we are led to make the following conjecture.

Conjecture 6.4.9. For all p ≥ 5, the number of Beauville p-groups of order p5 is given
by g(p) = p + 10.

In particular, H3 and H4 are Beauville groups for p ≥ 5.

In the preceding paragraphs we produced p + 8 groups of order p5 that admit a
Beauville structure.

For groups of order p5, the number of 2-generated groups is approximately half
of the total number of groups. We see from [Jam80], that the exact number of 2-
generated p-groups of order p5 for p ≥ 5 is given by

h(p) = p + 26 + 2 gcd(p− 1, 3) + gcd(p− 1, 4).

Thus, h(p) ∼ p as p → ∞. The function h(p) is an obvious upper bound for the
number of Beauville groups of order p5. Since p + 36 ≥ h(p) > g(p) ≥ p + 8 we get
that g(p) ∼ p as p→ ∞ and so,

lim
p→∞

g(p)
h(p)

= 1.

Thus, the proportion of 2-generated groups of order p5 which are Beauville tends to
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1 as p tends to infinity, which establishes Corollary 6.0.2.

6.5 Remarks on Groups of order p6

For groups of order p6, we used MAGMA to determine that there are no Beauville
2-groups and only three Beauville 3-groups. These groups correspond to the groups
SmallGroup(36, n) for n = 34, 37, 40.

Remark 6.5.1. It is interesting to note that Corollary 6.0.4 also holds for non-abelian
2-generated groups of order p6 since there are only 3 abelian ones.

For p > 3, we would like an asymptotic result for groups of order p6, similar to
that in Section 6.4 for p5. Using [NOV04, Theorem 2 and Table 1], we see that there
are in total

f (p) = 10p + 62 + 14 gcd(3, p− 1) + 7 gcd(4, p− 1) + 2 gcd(5, p− 1)

2-generated groups of order p6 for p > 3 a prime. Thus, f (p) ∼ 10p as p→ ∞.
From [NOV04, Theorem 2], the family of groups of order p6 given by “3) 〈a, b|bp, class 2〉"

give rise to p + 15 non-isomorphic groups (see [NOV04, Table 1]). One can generate
these group presentations for each p a prime by the following MAGMA code:

> G:=Group<a,b|b^p>;

> P:=pQuotient(G,p,2);

> D:=Descendants(P: OrderBound := p^6);

> D := [d: d in D | #d eq p^6];

Each of the groups contained in D is 2-generated, say by x and y. We find that,
for each p a prime, there exists a family of non-isomorphic groups contained in D
given by the following presentations,

Kr = 〈x, y, z, u, v, w|xp = u, yp = wr, zp, up = v, vp, wp, [y, x] = z, [z, x] = v, [z, y] = w〉[,

for r = 1, ..., p− 1.
It follows that all of the p− 1 groups have o(x) 6= o(y). You can clearly see, given

the above group structures, if o(x) 6= o(y) then Kr does not have a Beauville structure
(this is similar to the third paragraph of the proof of Theorem 6.0.1, Section 6.4). That
is, any second set of generators one tries to construct will have elements of the form
xayb and so if o(x) 6= o(y) we will have Σ(x, y) ∩ Σ(xayb, xcyd) 6= {e}. Therefore, we
obtain a family of p− 1 2-generated non-Beauville groups of order p6, which proves
Theorem 6.0.3 and establishes Corollary 6.0.4.
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