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Abstract

This thesis consists of two parts.

Part I of this thesis is concerned with the Higman-Thompson group Gp;. We
review and apply Definitions, Lemmas and Theorems described in a series of lectures
delivered by Graham Higman during a visit to the Australian National University
from July 1973 to October 1973 on a family of finitely presented infinite groups G,
for n > 2 and r > 1. This thesis will concentrate on the group G (otherwise know
as Thompson’s group V).

We give a brief account of the history of the Higman-Thompson group G1, we
clarify the proof of the conjugacy problem for elements in quasi-normal form and we
prove that the power conjugacy problem for the group G, is decidable.

Part II of this thesis concentrates on the existence and structure of mixed and
unmixed Beauville p-groups, for p a prime. We start by exhibiting the first explicit
family of mixed Beauville 2-groups and find the corresponding surfaces. We follow
this up by exploring the method that was used to construct the family; this leads to
further ramification structures for finite p-groups giving rise to surfaces isogenous
to a higher product of curves. We finish by classifying the non-abelian Beauville p-
groups of order p3, p* and provide partial results for p-groups of order p® and p°.
We also construct the smallest Beauville p-groups for each prime p.
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Part 1

The Higman-Thompson Group G ;



Chapter 1
Introduction

In Part I, the work of Graham Higman [Hig74] is used to provide a detailed account
of the many properties of Richard Thompson’s group V. This work takes the uni-
versal algebra view of Thompson’s group V, which we will refer to as the Higman-
Thompson group G, throughout this thesis. Part of this work has been submitted

to a refereed journal, [Bar11].

Aims of this work I

We begin Part I of this thesis with a review of two of three main ways elements of
the Higman-Thompson group G, are viewed.

We start by describing the representation of elements of G, as the group of
right-continuous bijections of the unit interval that maps dyadic rational numbers
to dyadic rational numbers that are differentiable except at finitely many dyadic
rational numbers and such that on each maximal interval in which the function is
differentiable the function is linear with derivative a power of 2, originally outlined
by Richard Thompson in [Tho].

We follow this by describing the representation of elements of G, as tree pairs
(which was first given in [CFP96], although we will follow [BGG11] treatment of the
topic).

Remark 1.0.1. We prefer to reference [Tho] as the first place the elements of G, ; are
described as dyadic rearrangements, even though [CFP96] is the classical reference.

We do this as the unpublished notes of Richard Thompson are now available online.

We now give a brief synopsis of the main results of Part I of this thesis. All
concepts will be defined in due course in the appropriate chapters.

The start of Chapter 2 outlines the important concepts from Universal Algebra
which will be needed in this part of the thesis. We use the work of [Cohn91, Chapter
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1] to define ()-algebras, congruences on ()-algebras, free algebras and varieties of
free algebras.

The main part of Chapter 2 is then devoted to the definition of the free algebra
Va1, originally defined by Graham Higman in [Hig74]. We place the work of [Hig74,
Section 2] in the context of the definitions from Sections 2.1-2.3. We follow this with
a formal definition of the group G, 1, as the algebra automorphism group of the free
algebra V5 ;.

Chapter 2 concludes with the definitions of semi-normal and quasi-normal forms
for elements of the group Gy.

Chapter 3 is devoted to decision problems for the group G,;. Specifically, con-
jugacy problems for elements given in quasi-normal form of the group G;;. The
chapter starts by considering a general element ¢ of Gy; and looking at two -
invariant subalgebras of V;1, Theorem 3.1.1. Theorem 3.1.1 gives the first condition
for conjugacy between two elements of Gy .

Following this, a formal introduction to the classical decision problems of Dehn
is given.

To put Chapter 3 into some context, we note that Graham Higman originally
solved the conjugacy problem for the Higman-Thompson groups G (in fact for the
infinite family of finitely presented groups G, ,, n > 2,7 > 1, which we do not discuss
here) in [Hig74, Section 9]. However, since this proof is acknowledged to be difficult,
we have deconstructed Higman’s proof into small lemmas, which we prove using
Higman'’s original techniques. We start by proving a series of lemmas in Section 3.3.1
that give conditions for two elements of G, to be conjugate.

The work of [SD10] provides a different solution to the conjugacy problem for
the Higman-Thompson group G, using the revealing tree pair representation of
elements defined by Matt Brin [Brin04].

The first part of Section 3.3.1 is devoted to the conjugacy problem for regular

infinite elements of G, 1, the main result is the following.

Proposition 3.3.21: Let ¢ and ¢ be regular infinite elements of G,; in quasi-
normal form with respect to X and Y respectively.

Then, ¥ is conjugate to ¢ if and only if there exists a map po € R(¢; ¢) such that
po extends to an element p of Gy1 with p~1¢p = ¢.

The second part of Section 3.3.1 is devoted to the conjugacy problem for periodic
elements of Gy 1, the main result is the following.

Proposition 3.3.6: Let ¢ and ¢ be torsion elements of G, in quasi-normal form
with respect to the bases X and Y respectively. Then, ¢ is conjugate to ¢ if and only
if p and ¢ have the same cycle type.
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The work on the conjugacy problem for elements in quasi-normal form is con-
cluded in Section 3.3.2, where an algorithm (Algorithm 3.3.25) is given. Thus, we
have the following theorem (as originally proved in [Hig74, Section 9]).

Theorem 3.3.26:[Hig74, part of Theorem 9.3] The conjugacy problem is soluble in
Go,1.

The final part of Chapter 3 considers the power conjugacy problem for elements
in quasi-normal form. The problem (Problem 3.4.1) is defined and the intermediate
results rely on results of Section 3.3.1. An algorithm (Algorithm 3.4.12) is presented
in Section 3.4.2 which leads to the following conclusion.

Theorem 3.4.13: The power conjugacy problem for the Higman-Thompson group
Gy, is solvable.

1.1 Richard Thompson’s Groups F, T and V

Richard J. Thompson in the late 1960s defined three new groups (of permutations of
dyadic splittings of the unit interval) which he called P (Thompson’s Group F), G
(Thompson’s Group T) and V, with very interesting properties.

In some unpublished notes [Tho] Thompson shows PP is a finitely presented group
that is isomorphic to P, a non-abelian torsion-free infinite group generated by order
preserving permutations of the unit interval [0, 1]. We now present some of this un-
published material (which can now be found in the introductory article on Thomp-
son’s Groups F, T and V by Cannon, Floyd and Parry [CFP96]).

Let IP be the group given by the presentation

(Ro, R1|[Ry"Ry, RoR1Ry ], [Ry 'Ry, RGR1Ry?]) (1.1)

where [x,y] = xyx~ly~!. It can be shown that all proper quotient groups of IP are
abelian (see [CFP96, Theorem 4.3]).

We define P to be the group generated by the following permutations of the unit
interval [0, 1],

1 1 1 X, lfOng%,

> e Tily, ifl<x<?

RO(X): X %, if%<x§%, andR1<x>: 4 f/ fi_ _4;,
x—g 3 <x<g,

2x—1, if<x<1 8 ' 8

2x—1/ lfgSXS:l
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We note that RoR;(x) # RyRo(x), so P is non-abelian. Furthermore, since IP is a
torsion-free non-trivial order preserving permutation group of the interval [0, 1], we
see that IP is infinite. The group P satisfies the relations given in the Presentation
(1.1) and so P is isomorphic to a quotient group of IP. However, as IP is non-abelian,
IP can only be isomorphic to IP.

To the presentation of the group IP, Presentation (1.1), we add a new generator C;

and some extra relations
Ci1 = RiCiR; 'Ry, RoRiR;'RiCi1R;" = RiR;CiR; 'Ry 1Ry,

Rocl = (RlClRal)z and C% =1

to create a new group G. Since IP can be shown to be a subgroup of G (see [CFP96,
Lemma 5.4]) this gives G as a finitely presented infinite group. Thompson identified
G with the group C given by amending the presentation of P by adding the generator,

1
2
Ci(x)=q2x—1, ifs<x<3
1

and the new relations

G = RCR; 'Ry, RoRiR,'RIGIR, ! = RIRIGIR, 'R, 'Ry,
5 A 5 A p-1

RoCi = (RiCiRyH)? and G = 1.

It is then shown that C is a simple group and G = C.
Furthermore, Thompson obtained the group V by adjoining a new generator

1 1 1
X +5, if0<x<5,
mi(x)=q2x—1, ifl<x<3,
X, if%gxgl,

and new relations to the presentation of the group C. He then showed that V is a
simple group too. Thompson also stated that V can be 2-generated and gave explicit
generators, one of order 4 and another of order 6.

We note that multiplication of elements of the groups P, C and V is achieved by
composition of functions.

We now make the formal definitions of the Thompson’s groups F, T and V.

Definition 1.1.1 (Thompson’s groups F, T and V). We define F to be the group of

5
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piecewise linear homeomorphisms of the closed interval [0, 1] to itself that are differ-
entiable except at finitely many dyadic rational numbers and such that on intervals
of differentiability the derivatives are powers of 2.

We define T to be the group of piecewise linear homeomorphisms of the cir-
cle S! (the interval [0,1] with the endpoints 0 and 1 identified) to itself that map
dyadic rational numbers to dyadic rational numbers, that are differentiable except at
finitely many dyadic rational numbers and such that on intervals of differentiability
the derivatives are powers of 2.

We define V to be the group of right-continuous bijections of the interval [0, 1]
that map dyadic rational numbers to dyadic rational numbers, that are differentiable
except at finitely many dyadic rational numbers and such that on each maximal
interval on which the function is differentiable the function is linear with derivative
a power of 2.

~

It was shown in [CFP96], that F = P, T Cand V V.

1.2 Tree pairs and Dyadic rearrangements

Taking the description of the group V in terms of right-continuous bijections of the
interval [0, 1], Section 1.1, we can represent this group in a diagrammatic way. Many
authors use a tree pair description. We follow the description of [Brin04, Section 10].

We will now describe elements of V' as a pair of trees with a permutation.

Figure 1.2.0.1: A dyadic rearrangement of the interval [0, 1] representing an element of V.

0 A V5 1
® }

} } ' J
4 3% 1

0 1/

Let J be the set of finite words (including the empty word €) on {0,1}. Itis a
monoid under concatenation (and in fact the free monoid on two generators) with
the empty word € as the identity.

Let 7 be the infinite binary tree. We can think of J as the set of nodes of T (we
refer to elements of 7 as nodes of 7 when we do so) since we can think of v0 and v1
as the left and right child nodes of the node v € 7. The empty word € is the root of
T.
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Figure 1.2.0.2: A tree pair representing figure 1.2.0.1 element of Thompson’s Group V.

Definition 1.2.1. A dyadic pattern P on the unit interval I is a finite collection of or-
dered dyadic rational numbers (together with zero and one) i.e. P = {0, x1,...,x,,1}
such that x; = 5 with b nonnegative integer and a < 2" — 1 a nonnegative odd
integer, fori =1,..,nand 0 < x; <..<x, <1.

An interval in a dyadic pattern is the half open interval [x;, x;;1) for x;, x;11 € P
(except the final interval [x,, 1] for x,, € P).

Example 1.2.2. The finite collection {0, %, %, 1} is the dyadic pattern associated to the

first interval splitting in Figure 1.2.0.1 with intervals [0, 1), [1,3) and [3,1].

Definition 1.2.3. A dyadic rearrangement is a right continuous bijection f : I — I that

maps intervals of one dyadic pattern to another.

From the above definition, it is clear that Thompson’s group V can be seen to be
the group of all dyadic rearrangements of the unit interval [0, 1].

Each node in 7" corresponds to an interval in a dyadic pattern on I. Recursively
€ corresponds to [ itself and if v corresponds to [4,b), then v0 corresponds to [a,c)
and v1 corresponds to [c,b) where ¢ = (a + 1) /2.

Here, a finite binary tree will be a finite subset D of 7 so that

1. every prefix of a node in D is also in D;
2. for all nodes v in D, v0 is in D if and only if v1 is in D.

We will refer to finite binary trees simply as finite trees, when the meaning is clear.
The leaves of such a D will be the nodes in D whose children are not in D. Nodes
of a tree that are not leaves are called interior nodes of a tree. The root of every tree is
the empty word e.
The leaves of a finite tree D give a dyadic pattern in I by taking the intervals in
I corresponding to the leaves of D. Two trees D and R (domain and range) with the

same numbet, 1, of leaves define two dyadic patterns in I with the same number of



Chapter 1. Introduction

intervals. If we are given a one-to-one correspondence between the leaves of D and
the leaves of R, then we can build a right continuous bijection from [0, 1] to itself.
We now think of elements of Thompson’s group V as triples [D, R, o] where D
and R are finite trees with the same number, #, of leaves and where ¢ is a bijection
from the leaves of D to the leaves of R. An example! is given in figure 1.2.0.2.
We will return to tree pairs in Chapter 5, where we will discuss a particular form
representing tree pairs for an element of Thompson’s group V.

Remark 1.2.4. From now on we will refer to Thompson’s group V as the Higman-
Thompson group Gy ;.

IThis graphic was generated by a java scripted program, created by Roman Kogan. Further tree
pairs given in this thesis are created using the LaTeX package qtrees.



Chapter 2

Universal Algebra and the
Higman-Thompson group G ;

Graham Higman in [Hig74] gave a representation of Thompson’s group V as the
automorphism group of a free algebra in a variety of a particular class of free alge-
bras. We will now introduce the concepts of free algebra and variety of free algebras,
which come from Universal Algebra.

We start by introducing the terminology of operations on sets, definitions of Q-
algebra and ()-subalgebra (in the sense of [Cohn91, Chapter 1], which we follow
closely throughout Sections 2.1-2.3). We follow this with a definition of congruence
on an ()-algebra which then leads to a definition of free algebra and variety of free
algebras.

This set up will then be used in Section 2.4, where the free algebra correspond-
ing to the construction from Graham Higman [Hig74] gives rise to the Higman-

Thompson group G ;.

2.1 ()-algebra

For any integer n > 0 we define an n-ary operation on a set S to be a mapping of S"
into S. The number 7 is called the arity of the operation. A finitary operation is defined
to be a mapping which is n-ary for some n € INy (the natural numbers together with

Zero).

Remark 2.1.1. We say unary for 1-ary and binary for 2-ary. A 0-ary operation on S is

just a specific element of S, sometimes called a constant operation on S.

An algbera A here is thought of as a set S with certain finitary operations defined
on it. In order to compare different algebras, we need to establish a correspondence
between their sets of operations. This is achieved by indexing the operations in each
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algebra by a given index set. An element of the set of operations is called an operator

and has a given arity.

Definition 2.1.2. An operator domain is a set () and a mapping a : 3 — Ng. The
elements of () are called operators; if w € (), then a(w) is called the arity of w. We
shall write Q(n) = {w € QJa(w) = n}, and refer to the members of ()(n) as n-ary
operations.

An Q-algebra is defined as a pair (S,Q)) consisting of a set S with a family of
operations indexed by ():

w:S5"— S foreachw € Q(n),n=0,1,2,.... (2.1)

The set S is called the carrier of the algebra and the set () is called the operator

domain or the signature of the algebra.

Strictly speaking, we should denote the algebra by (S, (), ¢), where ¢ is the family
of mappings ¢, : Q(n) — Map(5",S) defined by (2.1), but usually we shall not
distinguish notationally between an algebra and its carrier.

We now give an example, which we will refer back to throughout Sections 2.1-2.3.

Example 2.1.3 (Groups). A group (G,-,~!,1) is given by a binary operation (multi-
plication, -), a unary operation (inversion, ~!) and a constant operation (the neutral

element 1), satisfying certain laws.

Given an O-algebra (S, ) and f € Q) with arity n, we can apply f to any n-tuple
s1,..,5, € S and obtain another element of S, which is written s;...s,f. In the case
n = 0, we just single out an element of S, denoted by f.

We say that a subset T' C S is closed under the operations of () if for all f (of arity n)

in ) and for all sy, ...,5, € T the element s;...5,,f is also an element of T.

Definition 2.1.4. Given an Q-algebra (S, ()), an ()-subalgebra is an Q-algebra (S', )
whose set S’ is a subset of S which is closed under the operations of ), as defined in
Sie. S is O-closed.

We can clearly see that the intersection of any family of subalgebras is again a
subalgebra. Hence, for any subset X of the set S we can form the intersection of all
subalgebras containing X. This is called the subalgebra of (S, Q)) generated by X.

The subalgbera of (S,()) generated by X may also be formed by applying the
operations of () to X and repeating this operation a finite number of times. If the
subalgebra generated by X is the whole of S, then X is called a generating set for S.

A mapping ¢ : A — B between two Q-algebras A = (5,Q), B = (§',Q) is said to
be compatible with f € Q) of arity n if for all 54,...,5, € S,

(519)---(508)f = (51.--nf)Q-

10
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If g is compatible with each f € (), it is called a homomorphism from A = (S, Q) to
B = (S',Q). If a homomorphism g from A to B has an inverse ¢! which is again a
homomorphism, g is called an isomorphism and then the Q-algebras A = (S,Q), B =
(S',Q)) are said to be isomorphic.

An isomorphism of an algebra A = (S,)) with itself is called an automorphism
and a homomorphism of an algebra into itself is called an endomorphism.

A homomorphism is determined once it is known on a generating set, as stated

in the next proposition (without proof).

Proposition 2.1.5. ([Cohn91, Proposition 1.1]) Let g,h : A — B be two homomorphisms
between Q-algebras A = (S,Q),B = (§',Q). If g and h agree on a generating set, then
they are equal.

We now introduce the notion of direct product of (2-algebras, in preparation for
the next section on congruences on an ()-algebra.

From a family {A4;}", (A; = (S;,Q))) of Q-algebras we can form the direct product
P = [T", A; of O-algebras. Its set is the Cartesian product S of the S;, and the
operations are carried out componentwise. Thus, if 77; : S — S; are the projections
from the product to the factors then any f € ) of arity n is defined on S” by the
equation

(prepuf) i = (pr75i)-.(puti) £,

where p; € S.

Let C be a class of ()-algebras, whose elements we will call C-algebras. By a
free C-algebra on a set X we mean a C-algebra F in C with the following universal
property:

there is a mapping ¢ : X — F such that every mapping f : X — A into a C-
algebra A can be factored uniquely by u to give a homomorphism from F to A, i.e.
there exists a unique homomorphism f’ : F — A such that uf’ = f. It is worth
noting that Theorem 2.3.3 shows that W (X) is the free algebra on X in the class of
all O)-algebras.

Not every class has free algebras, but they exist in some cases as we will see in
Proposition 2.3.6.

A free product is defined in a similar way, replacing the set X by a collection of
C algebras. Given an indexing set I and for each i € I an () algebra A; from C the
free product A of {A;}ic, written A = x;c1A;, is an Q-algebra in C satisfying the
following property.

There exists mappings y; : A; — A, for all i € I, such that for any Q-algebra B
and family of mappings f; : A; — B, for all i € I, there exists a unique homomor-
phism f': A — B such that y;f' = f; for all i.

11
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Given collections {A;}ic; and {B;}ic; of Q-algebras such that there exists free
products A = x;c1 A, B = *;c3;, then the definition above gives maps y; : A; — A,
ui: B — Bforalli € I. Suppose there exists homomorphisms f; : A; — B; for all
i € I. Then f;u} is a homomorphism from A; to B for all i € I so there exists a unique
homomorphism f': A — B with p;f" = fju! for all i € I. We denote f' by *ic;f;.

2.2 Congruence on an ()-algebra

The main objective of this section is to define what is meant by a "congruence on an
()-algebra."

Firstly, a correspondence between any two sets S and R is defined to be a subset of
the Cartesian product S x R.

Definition 2.2.1. Let S and R be any sets. A mapping f : S — R is a correspondence
I'r C § x R with the following properties:

e (everywhere defined) for each s € S there exists r € R such that (s,r) € Ty,
e (single-valued) if (s, 7), (s,7') € Ty thenr = 7".

We now define two operations on correspondences. For any correspondence I' C
S x R we have the inverse, defined as

I t={(r,s) € RxS|(s,7) €T};
next, if ' C S x Rand A C R x T, then their composition is given by
TFoA={(s,t) € SxT|(s,x) €T and (x,t) € A for some x € R}.
IfT CSxRand S C S we define
S'T = {r € R|(s,r) €T for some s € S'}.

There are two natural correspondences one can define. On every set S there is

the identity correspondence 1s = {(s,s)|s € S} and the universal correspondence S*> =
{(s,s")]s,s' € S}.

Definition 2.2.2. An equivalence on S is a subset I' of S? with the properties
1. (transitivity) oI C T,
2. (symmetry) [ =T,

3. (reflexivity) 1s C T.

12



Chapter 2. Universal Algebra and the Higman-Thompson group Gy

The equivalence class of s € S is {s’ € S|(s,s') € T} = {s}I.

Given any subset U of S x S, the equivalence generated by U is the smallest equiv-
alence E on S containing U. It can be seen that

E=(){V C S x S|V is an equivalence and U C V}.
Also, it follows that E is
{(a,b) € S x S|there exists ay, ..., a, such that ag = a, a, = b and (a;,4;,1) € U}.

To use correspondences in the study of ()-algebras, we need to know their be-
havior as subalgebras. Firstly, if A = (5,Q) and B = (R,)) are Q-algebras and
I' C S x R is a correspondence which is closed under the operations of (), as defined
in A x B, then (I',Q)) is a subalgebra of A x B. In this case we abuse notation and
say I is a subalgebra of A x B.

Lemma 2.2.3. ([Cohn91, Lemma 2.1, Chapter 1]) Let A, B, C be Q-algebras and let T', A be
subalgebras of A x B,B x C respectively. Then T~ is a subalgebra of Bx A, ToAis a
subalgebra of A x C and for any subalgebra A’ of A, A'T is a subalgebra of B.

Let Sand T be any sets and f : S — T a mapping between them. Then the image of
f is defined as ST'f, also written imf; the kernel of f is defined as the correspondence

kerf = {(x,y) € S*|xf = yf}.

This is an equivalence on S; the different equivalence classes are just the inverse
images of elements in the image (sometimes called the fibres of f).

Example 2.2.4 (Groups). If we look at the definition of the kernel above of then we can
relate it to the kernel of a homomorphism of groups. Given a group homomorphism
f : G — H, the kernel of f is the inverse image under f of the unit element of H. This
is a normal subgroup N of G and the different cosets of N in G are just the fibres of
f.

So, the equivalence classes of kerf from the definition above, are the cosets of N
in G.

Let S and T be any sets and I a correspondence from S to T. The correspondence
I' will be used to define a system of subsets of S, T.
For any subset X of S we define a subset X* of T by

X*={yeT|(x,y) €T forall x € X} = Nyex{x}T,

13



Chapter 2. Universal Algebra and the Higman-Thompson group Gy

and similarly, for any subset Y of T we define a subset Y* of S by
Y* = {x€S|(x,y) eTforally € Y} = Nyey{y}I "

We thus have mappings X — X* and Y — Y™ of the power sets of S and T with the

following properties:

X1 CXo=>X{ 202X, 1C Y=Y DY, (2.2)
X C X*, Y CY*, (2.3)

A pair of mappings X — X* and Y — Y* between the power sets of S and T
satisfying (2.2-2.4) is called a Galois connexion.

A congruence on an -algebra A = (S,()) is an equivalence on S which is also a
subalgebra of A2 ie. an equivalence I' C S x S which is ()-closed. From the above,
14 and A? are congruences on A.

Given any subset U C S x S the congruence generated by U is

C =(){V| Vis a congruence and U C V}.

It follows that C is the smallest congruence on A containing U.

Let A be an ()-algebra. By definition a congruence is an equivalence which admits
the operations w (w € Q(n)). Now each n-ary operator w defines an n-ary operation
on A:

(a1,...,an) — ay...ayw for ay, ..., a, € A. (2.5)

By giving fixed values in A to some of the arguments, we obtain r-ary operations for
r < n; in particular, if we fix all the a; except one, x € A, we obtain for any n — 1

elements a4, ...,a,_1 € Aand any i = 1, ..., n a unary operation
X — a1...4;_1Xa;...0,,_1W. (2.6)

We say that the operation (2.6) is an elementary translation derived from (2.5) by spe-

cialisation in A.

Proposition 2.2.5. ([Cohn81, Proposition 6.1, Chapter6] An equivalence q on an (-algebra
A is a congruence if and only if it admits all translations; more precisely, a congruence admits
all translations, while any equivalence admitting all elementary translations is a congruence.

Remark 2.2.6. If U C S x S, then the congruence generated by U can be seen to consist
of pairs (a,b) € S x S such that there exists ag, ..a,, a; € S with n > 0, with

14
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eqy=a,a,=">
o (a;, ai+1) = (U;T, Uj417)

where 7 is an elementary translation (including T = Identity) and (u;, u;11), (111, u;) €
U. i.e. there exists s1,...,5,1 € S,u € 5,0 <j<mand w € Q(n) such that

UT = (81, Sj—1U, S}, vy Sp—1)W

SO

a; = (Sl, cees S]',ﬂ/li, S]', cees sn_l)w,
aji1 = (S], veey S]'_lui+1,S]', Ry sn,l)w
(or a; = uj, ajp1 = wip1) with (u;, uiqq), (w1, u;) € U.

The next two theorems explain the significance of congruences for ()-algebras and

will be used in the following section on free algebras and varieties.

Theorem 2.2.7. ([Cohn91, Theorem 2.2, Chapter 1]) Let g : A — B be a homomorphism of
O-algebras. Then imf is a subalgebra of B and ker f is a congruence on A.

For any congruence q on A, we define an algebra structure, denoted A/q, such
that the natural mapping A — A/q is a homomorphism with kernel q. This is
formalized in the following theorem.

Theorem 2.2.8. ([Cohn91, Theorem 2.3, Chapter 1]) Let A be an Q-algebra and q a congru-
ence on A. Then, there exists a unique ()-algebra, denoted A/q, with carrier the set of all
g-classes such that the natural mapping v : A — A/q is a homomorphism.

The algebra A/ q is called the quotient algebra of A by q, with the natural homomor-
phismv: A — A/q.

Example 2.2.9 (Group). Given a group G with a normal subgroup N, we can put a
group structure on the set G/N (the quotient group) such that the natural mapping
G — G/N is a homomorphism.

2.3 Free algebras and varieties

To study ()-algebras one needs to form expressions in indeterminates. Let X =
{x1,x2,...} be any set, called an alphabet, and Q) any operator domain, with QN X =
@.

We define an ()-algebra as follows: An ()-row in X is a finite sequence of elements
in the set QU X. The set of all Q-rows in X is denoted W((); X). The length of an

15
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Q-row w € W(; X) is written |w| and is the number of terms in w ie. if w =
w1...w, where w; € QU X then |w| = m. We define an action of Q) on W(Q); X) by
juxtaposition; thus if f; € Q, of arity n;, and uy, ..., u,, € W(); X), then the effect of
fi on the n;-tuple (uj, ..., uy,) is the row uy...u,, f;. That is to say that the carrier S of
our ()-algebra is W(Q; X), the set of Q-rows. By abuse of notation we will refer to
W(Q; X) as an ()-algebra.

It is clear that X C W(%;X) and we call the subalgebra generated by X the
Q-word algebra on X, denoted by W (X). Its elements are Q-words in the alphabet X.

There is a clear distinction between ()-rows which are ()-words and those that
are not. For example, if there is one binary operation f, then

xixaxsfxaf f = (x1,((x2,x3)f, xa) f)

is a ()-row which is also an ()-word while x1f fx,fx3 is an (Q-row which is not an
O-word.

Definition 2.3.1. ([Cohn91, Chapter 1]) We define the valency of an OQ-row w =
W1... Wy (w; € QU X) as v(w) = YI"; v(w;) where

(w) 1, if w; € X,
v(w;) =
Z 1—mn;, if w; € ), of arity n;.

Proposition 2.3.2. ([Cohn91, Proposition 3.1, Chapter 1]) An Q-row w = wWy...Wy, in
W(Q); X) is an Q-word if and only if every left-hand factor u; = wy...w; of w satisfies

v(u;)) >0fori=1,..,m,

and
v(w) =1.

Moreover, each word can be obtained in just one way from its constituents.

Let A be an Q-algebra. If in an element w of W (X) we replace each element
of X by an element of A we obtain a unique element of A. For |w| = 1, this is
clear, so assume |w| > 1 and we will use induction on the length of w. We have
w = uy..un,fi (fi € Q, u; € Wq (X)), where the u; are uniquely determined once w is
given, by Proposition 2.3.2. By induction each u; becomes a; € A when we replace the
elements of X by elements of A, hence w becomes a;...a,, f; which is another element
of A.

This leads to the universal property of the Q-word algebra, that is that W (X) is
the free ()-algebra on X, freely generated by X.

16
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Theorem 2.3.3. ([Cohn91, Theorem 3.2, Chapter 1]) Let A be an Q-algebra and X a set.
Then any injective mapping 0 : X — A extends in just one way to a homomorphism 0 :

Given any ()-algebra A, we can take a generating set X of A and apply the
construction of Theorem 2.3.3 to give the corollary below.

Corollary 2.3.4. ([Cohn91, Corollary 3.3, Chapter 1]) Any Q-algebra A can be expressed
as a homomorphic image of an Q-word algebra Wq (X) for a suitable set X. Here X can be
taken to be any set corresponding to a generating set of A.

When we come to define a concrete class of algebras, we do so by specifying its
operations f; € (), a set S and equations holding identically for all elements of S.
Generally, by an identity or law over () in X we mean a pair (1,v) € Wq(X) x Wq(X)
or an equation formed from the pair u = v. We say that the law (u,v) holds in the Q-
algebra A or that A satisfies the equation u = v if every homomorphism Wq(X) — A
maps u and v to the same element of A.

This relation between sets of laws and classes of algebras establishes a Galois

connexion.

e Given any set ¥ of laws, we can form Vq(X), the class of all Q-algebras sat-
isfying all the laws in X. This class V(X) is called the variety generated by
x.

e Given a class C of ()-algebras we can form the set ¢ = q(C) of all laws which
hold in all algebras of C.

This Galois connexion relates each variety of (2-algebras to a correspondence q
on Wq(X), which is also a congruence.

A subalgebra of an ()-algebra A is called fully invariant if it is mapped into itself
by all endomorphisms of A. This definition also extends to congruences I' on A,
viewed as subalgebras of A%. The fully invariant congruence generated by T is

C =({V] V is a fully invariant congruence and I' C V'}.

It follows that C is the smallest invariant congruence on A generated by I'.

The congruence properties of q(C) are shown in the following way: in every class
C of O-algebras we have u = u for any u € W (X). If u = v holds then so does v = u
and if u = v,v = w then u = w holds too. Further, if u; = v; fori = 1,...,n are laws
holding in A and w € Q) of arity n, then u;...u,w = v;...v,w holds in A.

To show that q(C) is a fully invariant congruence, let (1,v) € q(C) and let 6 be any
endomorphism of Wq (X). If & : Wq(X) — A, where A € C, is any homomorphism,
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then so is O, hence ufa = vha. Thus the law uf = v6 holds in A, so (u6,v0) € q(C)

and this shows that q(C) is a fully invariant congruence.

Theorem 2.3.5. ([Cohn91, Theorem 3.5, Chapter 1]) Let W = Wq(X) be the Q-word
algebra on an infinite alphabet X. Then the Galois connexion between (-algebras and laws
establishes a natural bijection between varieties of ()-algebras and fully invariant congruences
on W.

That is:
{Varieties of ()-algebras} «— {Fully invariant congruences on W (X)}.

Free algebras exist in varieties.

Proposition 2.3.6. ([Cohn91, Proposition 3.6, Chapter 1]) Let V be a variety of ()-algebras
and q the congruence on Wq (X) (the Q-word algebra generated by X) consisting of all the
laws on V i.e. the fully invariant congruence q(V). Then Wq (X)/q is the free V-algebra on
X.

Suppose X is a set of laws over Q) in X and let V = V(X) and q = (V). Then
Y. C q and, from Proposition 2.3.6, q is a fully invariant congruence and W (X)/q is
the free V-algebra.

Now let p be the fully invariant congruence generated by ¥. Then, as ¥ C ¢
and q is a fully invariant congruence, we have p C q. Let A = Wq(X)/p. Then A
is an ()-algebra, in which every law of X holds (as ¥ C p). Thus A is a V-algebra.
Then, from Proposition 2.3.6, the natural map X — A extends to a homomorphism
Wa(X)/q — A. It follows that q C p. Therefore p = q = q(V).

This argument above will be used to construct the Higman algebra in Section 2.4
using the fact that the equivalence relation generated by X (Definition 2.4.2) is a fully
invariant congruence which is equal to q(Vq(2)).

24 The Higman Algebra V;;

We are now going to put Graham Higman'’s definition of his free algebra V5 into the
set-up of Sections 2.1-2.3. We will point out at each stage the parts of [Hig74, Section
2] we are referring to and the terminology that Graham Higman used.

We start with an Q-algebra A with carrier S and operator domain Q = {A, a1, a2},
with a(a;) =1fori=1,2and a(A) = 2.

We call the one binary operation A,

A:S%2 S

18
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a contraction and the two unary operations,
a;:S—S

descending operations, for i = 1,2.
For any v € S, we denote

v := (vag, viy).
Thus, « is a map,

n:S— S?

which we shall call an expansion. For any subset Y of S, a simple expansion of Y consists
of substituting some element y of Y by the two elements of the tuple yx. A series of d
simple expansions of Y is called a d-fold expansion of Y. Similarly, a simple contraction
of two distinct elements {y1,12} of Y consists of substituting {y1,y2} by (y1,y2)A.

We now define W ({x}) to be the Q-word algebra (with () as above). That is,
Wa({x}) is the free ()-algebra on the generating set {x}, freely generated by {x} (see
Section 2.3).

Remark 2.4.1. In the terminology that was used in [Hig74, Section 2], the set of stan-
dard forms over {x} is a subset of the Q-word algebra W ({x}).

We shall now build a particular instance of the free algebra that Graham Higman

defined in [Hig74] by considering a variety of ()-algebras and using Proposition 2.3.6.
Definition 2.4.2. Let X be the following sets of laws,

1. for any w € Wq({x}),
waA = w,

(or explicitly wajwasA = w).

2. for any pair (w1, wp) € W ({x})?,

wwode; = w; fori=1,2.

Let V, be the variety of ()-algebras which satisfy the laws in X (see Definition
24.2).

Definition 2.4.3. Let the q be the congruence on W ({x}) generated by the set

Ry = {(waywagA, w)|w € Wq({x})}

U {(wlwz)\le, wl), (wle)\az, w2)|w1, wy € WQ({X})}
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From Proposition 2.3.6, and the comments following it, q is the fully invariant

congruence q(V,) and V» = Va(X) = Va(q). Moreover W ({x})/q is the free V,-
algebra on {x}.
Remark 2.4.4. We now mention the work of [Hig74, Section 2]. Let A = {ay, a2} and
V2,1 denote the free algebra of V, freely generated by {x}. Graham Higman defines
a standard form over X as one of the finite sequences of elements of {x} UA U {A}
specified by the following rules:

(i) xa;, ...« is a standard form whenever k > 0 and 1 < ij <2forj=1,...,k

(ii) If wq, w, are standard forms, then so is wiw,A unless there is a standard form u
such that w; = ua; fori =1,2.

(iii) No sequence is a standard form unless this follows from (i) and (ii).

Graham Higman made the set of standard forms into an ()-algebra by defining
the operations &y, ap, A as follows:

(X, .t )0 = X0y, . 0

(wle/\>le' = W;

fori =1,2 and

(wl, ZUQ)/\ = wlsz

unless there is a standard form u such that w; = ua; fori = 1,2 in which case Graham
Higman defines

(w1, wp)A = (uay, uax)A = u.

Graham Higman then goes on to prove that the algebra of standard forms is a
free algebra of V,, freely generated by {x} ([Hig74, Lemma 2.1]). This is already
given here by the set up from the previous sections (specifically Theorem 2.3.3 and
Proposition 2.3.6).

Remark 2.4.5. By [Hig74, Corollary 2, page 12] (which states that V;,, = V,, if and
onlyif r =s modn—1) forn =2V, = Vo, forallr > 1and r = |X|, X a
generating set.

Lemma 2.4.6. Let {w}* be an equivalence class of elements of W ({x}) given by the fully
invariant congruence q. Then, there exists a unique minimal length element u in {w}*. The
unique minimal length elements of equivalence classes are precisely the standard forms of
Higman.
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Proof. The proof depends on an explicit description of the congruence q. First define
a translation to be a map T from Wq ({x})? given by one of the rules

T = (uw;,vn;),i € {1,2} or
uwA, vwA ), w € Wq({x} or

(
(
(
(wul, wod),w € Wa({x},

=
Q
=
I

for all (u,v) € W ({x})>.
Next, for (u,v) € Wq({x})?, we define translation closure of (u,v) to be the subset

(u,0) of Wo({x})?> with the following recursive definition. Namely, (u,v) is the
smallest subset of W ({x})? such that

1. (u,v) € (u,v) and
2. if (r,s) € (u,v) then (r,s)T € (u,v) for all translations .

That is, (u,v) consists of the elements of W ({x})? obtained by applying a finite

sequence of translations to (u,v). Now define the translation closure Ry, of Ry, to be

Re= (J (wv).

(u,v)€Ry,

We claim that q is the equivalence generated by Ry. Temporarily denote this
equivalence by p. As Ry is closed under translation it follows (see Proposition 2.2.5)
that p is a congruence; so p O g, as p O Ry. Furthermore, if p’ is a congruence
containing Ry then p’ is closed under translation, so contains Ry. Thus p’ D p. In
particular q 2 p, as required. Therefore q is the equivalence generated by Ry, as
claimed.

Now we shall show that Ry, has the following 2 properties. If (a,b) € Ry then

(@) |a| > |b| and

(II) there exist Q-rows wy and w; in W(Q, {x}) and (#,v) € Ry such that a =
wouw, and b = wyvw,.

If (a,b) € Ry, then (a,b) is obtained by applying a sequence of ¢ translations to some
(u,v) € Rs. (I) and (II) are proved by induction on the number ¢ of translations
required. If t = 0 then (a,b) € Ry and I holds by definition of Ry and II holds
with wy and w; trivial. Assume both these results hold for elements obtained by at
most t — 1 applications of translations, to an element of Ry. We have (a,b) = (c,d)T,

for some translation T and some (c,d) € Ry which is obtained from (u,v) by t — 1
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applications of translations. From the inductive hypothesis |c| > |d| and, since every
translation changes the length of left and right hand sides of a pair by the same
amount, it follows that |a| > |b|. Also, from the inductive hypothesis ¢ = wouw; and
d = wyvwy, for some O-rows wy and w;. Depending on the type of T we have (a,b) =
(c,d), or (a,b) = (caj, da;) = (wouwqa;, wovwya;) or (a,b) = (wouwisA, wovwisA) or
(a,b) = (swouwq A, swovwyA), where s € Wq({x}). In all cases (a,b) can be seen to
have the form required by (II). By induction (I) and (II) hold for all (a, b).

We regard Ry as a reduction system on Wn({x}) (see for example [BO93]) and
write a = b if (a,b) € Ry and a = b if (a,b) is in the reflexive, transitive closure

of Ry. (Thus a == bif and only if a = b or there is a seqence a = ay,...,a, = b, such
that a; = a;41.) As q is the reflexive, symmetric, transitive closure of Ry, the first

statement of the lemma will follow if we show that Ry is

(a) terminating (every sequence ag = --- == a, == - - - is eventually stationary)

and
(b) locally confluent: whenever b <= a = c there exists d such that b = d <=

As Ry is length reducing it is certainly terminating, so we must show it is locally
confluent. Before embarking on the proof of this fact, we consider the ways in which
it is possible for words of W ({x}) to overlap. To this end suppose that p = ab,
and g = bc are elements of W ({x}), with b non-trivial. If a is non-trivial then we
have 1 = v(p) = v(a) + v(b) and v(a) > 1, so v(b) < 0. However (see Proposition
2.3.2) this means that b must be trivial, a contradiction. Hence if p and g overlap
then p is a subword of g or vice-versa. Assuming that g is a proper subword of
p we then have p = pogp1, where one of py, p1 is non-trivial. If p; is non-trivial
then 1 = v(p) = v(poq) = v(po) +v(q) = v(po) +1, so v(py) = 0, contradicting
Proposition 2.3.2 again. We conclude that if p and g overlap and are not equal then

one is a subword of the other and, assuming g is a subword of p,
p = poqp1, with p; non-trivial. (2.7)

Now suppose that b <= a = c. From property (II) above, we have QQ-rows
wo, w1, w)y and w}, and elements (u,v), (r,s) € Ry, such that (a,b) = (wouws, wovw )
and (a,c) = (wyrw), wyswy). If a factors as wouwrw then setting d = wyvwsw) we
have b = wyvwrw]; = d <= wouwsw| = c, so local confluence holds in this case.
Similarly, if a = w{)rwuwl then we have local confluence. Assume then that a has no
such factorisation. This means that u and r are overlapping subwords of a. Therefore,
interchanging b and c if necessary, we may assume that r is subword of u. Thus, there

exist (-rows p and g such that u = prq. We may therefore restrict to the case where
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a=1u,b=vand c = psq. We consider in turn the various forms that u may take.

First consider the case u = wajwasA, for some w € Wq({x}). Applying (2.7),
r may be a subword of w in wa;, equal to way, a subword of w in wa; or equal to
way (but may not begin in way and end in way). If r is a subword of w in wa; then
u = w'rw"aqwas A, where w = w'rw” and we have

b=w=uwrw < u=wrwacwinl = w'sw’nywarA = c
and then ¢ = w'sw” ayw'rw”ay A and (w'sw” wyw'sw” ap A, w'sw”) € Ry so
b=wrw" = w'sw” <= w'sw’ayw'sw” aA = ¢ = w'sw” aw'rw” ayA.

On the other hand if u = rwapA with r = way then (r,s) € Ry implies w = wywyA
and s = wy, 80 ¢ = swapA = wyw waAapA, for some w; € Wn({x}). In this case
swuy = wy (w1waAa)A = wiwyA,

b=w<—=u=rwaA = swarA = ¢

and
b = wywyA < swarA = c.

The cases where r is a subword of w in wa; or r is equal to wa; follow similarly.

Now consider the case where u = wjwsAa;, for i = 1 or 2. In this case r may be
a subword of wj, for i = 1 or 2, or r may equal wiw,A. In the latter case, (7,5) € Ry
implies that r = wajwasA and s = w. Thus we have wa) = v <= u = rag = say =
ww1, and there is nothing further to be proved. Suppose then that r is a subword of
wy, say wq = w'rw”. If i = 1 we have

b=uwrw" < u=wrw'wre; = w'sw"wAa; = c

and
b=w'rv = w'sw” < w'sw’"wyAaq = c.
If i = 2 then
b=wy <= u=wrwwln, = wswwAay = c
and

b =wy <= w'sw"wyAap, = c.

The case where 7 is a subword of w, is similar. In all cases we have local confluence, so
we conclude that (b) holds for Ry. Therefore, (from [BO93, Section 1.1], for example)
every equivalence class of q contains a unique element which is not the left hand side
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of any element of Ry: such elements of W ({x}) are called irreducible elements. As
Ry is length reducing it follows that the unique irreducible element of an equivalence
class is an element of minimal length in its equivalence class.

To prove the second statement of the Lemma note that every standard form is
irreducible, so is of minimal length in its equivalence class. Conversely, given an
irreducible element a straightforward induction on its length shows that it is a stan-
dard form. ]

Definition 2.4.7. Let Y be a subset of V, ;. A set Z obtained from Y by a finite number
of simple expansions is called a descendant of Y.
Alternatively, Y is called an ascendant of Z if it can be obtained by a finite number

of simple contractions from Z.

Example 2.4.8. A simple expansion of the free basis {x} is given by the set {xaq, xa;}.
There are two 2-fold expansions of {x}, they are {xaq, xaxa1, xapnp } and {xaqaq, xaqap, Xz}

Lemma 2.4.9. Any expansion of {x} is a free basis of V; 1.

The proof uses the same arguments as the proof of [Hig74, Lemma 2.3]. In fact,
we will show this by showing that if Y is an arbitrary expansion of {x} that is a free

basis of V, 1, then a simple expansion of Y,

Y =Y\ {y} U {yas, yaz}

is also a free basis of V; .

Proof. Let Y be an arbitrary expansion of {x} and assume that Y is a (free) basis of
V2,1- Let

Y =Y\ {y} U {ya, yar}.
Since y = yayyazA, the set Y/ generates V1. We will show that Y’ is a free basis of
Va1.
Given A € V, and amap 0 : Y — A, then there is a unique homomorphism
: Vo1 = A extending 6.

]

Firstly, define 0* from Y to A in the following way,
e _ J YV fory" € Y\ {y},
yor =
y'a10y' 207, otherwise.

There is a unique homomorphism §* from V,; to A extending 0*, since Y is a
basis. Now

(ya;)0" = (y0")a; = (0" )a; = (ya10yaz0A)a; = ya;6.
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Hence 6* also extends 6.
Furthermore, any other map which extends § must equal 8*, since any such map

must be defined on Y in the same way as 0*. O

Remark 2.4.10. When I say basis, from now on I mean a basis which is an expansion

of x.

Now that we have a concrete description of the free algebra V;; in the variety 1,
we can follow the work of Graham Higman in [Hig74, Section 2] and present some
of the properties of the algebra V;; (and its elements) that will be useful in future

sections.

Definition 2.4.11. Let A = {aj,a2} C Q. We define (A) to be the free monoid
{a1,a2}* and (A) to be the free monoid on A.

Definition 2.4.12. We write € for the empty word in (A).

We first define two types of special subalgebras of V,;. We shall say that a subset
U of V1 is an A-subalgebra if there exists a basis Y of V,1 such that U = Y(A) i.e.
every element of U is in some expansion of Y. Similarly, we say that a subset U of
Vo1 is an A-subalgebra if there exists a basis Y of V1 such that U = Y(A) ie. every

element of U is some contraction of Y.

Remark 2.4.13. The above definitions are not an abuse of the definition of subalgebra
(Definition 2.1.4), since each "subalgebra" U is closed under a subset of the operations
from Q).

Definition 2.4.14. We say that a subset U of V,; is A-closed if it is closed under the
operations of A C Q).

Let y be the minimal representative of its equivalence class in V,; ie. yis a
standard form. Then the A-length of y is the number of times the symbol A occurs in
y.

Below we give some examples of elements which are standard forms (that is

minimal representatives of equivalence classes in V).

Example 2.4.15. The following elements are all standard forms: x, xay, xI' (for I' €
(A)), xapxaiA (A-length one), xapxAxa?A (A-length two). All standard forms of the
form xT for I' € (A) have A-length zero.

A word T € (A) is called primitive if it is not a power of another word; that is, if
I' (non-trivial) and ' € (A) for A € (A) implies T’ = A.
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Proposition 2.4.16 ([Lot83], Proposition 1.3.1, Chapter 1). If " = A™ with T, A € (A)
and n,m > 0, there exists a word A such that T,A € (A).

In particular, for each word w € (A), there exists a unique primitive word A such that
w e (A).

Proposition 2.4.17 ([Lot83], Proposition 1.3.2, Chapter 1). Two words I', A € (A) com-
mute if and only if they are powers of the same word. More precisely the set of words com-
muting with a word T € (A) is a monoid generated by a single primitive word.

Lemma 2.4.18. Let Y be an arbitrary generating set for Vo1 and y € V, 1, then y(A) \ Y(A)
is finite.

Proof. Note that if y € V, then y belongs to the algebra generated by Y. Suppose
that, when expressed in terms of the generators Y the A-length of y is m, then we
have ya;,..x; € Y(A) whenever r > m. That is, upon applications of r > m of the
unary operations of () to y we get an element which belongs to Y(A). Hence, the
only elements of the set difference y(A) \ Y(A) are those of the form yua;,...x;, with
r < m, and there are clearly only finitely many in number since we only have two

choices for each @i O

The properties of bases of V,; are now investigated, starting with a lemma from
[Hig74].

Lemma 2.4.19. [Hig74, Section 2, Lemma 2.4] Let X be an expansion of {x}. If U is a
subset of V1 contained in X(A), then the following are equivalent:

1. U = X(A) NY(A), for some arbitrary generating set Y of Va1,
2. Uis A-closed and X(A) \ U is finite,
3. U = Z(A) for some expansion Z of X.

Proof. Firstly, let U = X(A) NY(A). Since U is the intersection of A-closed sets, it
is also A-closed. By lemma 2.4.18, X(A) \ Y(A) is finite and therefore X(A) \ U is
finite. So 1. implies 2.

Secondly, assume that U is A-closed and X(A) \ U is finite. We will prove 3. by
induction on the size of |X(A) \ U|. If | X(A) \ U| = 0, then 3. holds with Z = X.
Otherwise, |[X(A) \ U| > 0 and we choose an element w € X(A) \ U of greatest
length (Jw| is maximal). Then the set U* = U U {w} is A-closed and |X(A) \ U*| =
|X(A) \ U| — 1. By induction, there is an expansion Z* of X such that U* = Z*(A).
The element w belongs to Z*, otherwise w would have the form w = za;,...x; , where
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z€ Z* and r > 0, and hence z € U* \ {w} = U. However, U is A-closed and so this
would imply that w € U, a contradiction. If we take

Z = (2" \{w}) U{wai|l <i <2},

then this is an expansion of {x} and by the choice of w we have wa; € U for each i.
Therefore U = Z(A).
Finally, if U = Z(A) for some expansion Z of X, then it is clear that U = X(A) N
Y(A), for some basis Y of V, .
O

Definition 2.4.20. Let u,v be elements of V,;. Then, u is said to be a proper initial
segment of v if v = ul for some non-trivial T’ € (A).

We will say u is an initial segment of v if u = v or u is a proper initial segment of
v.

Lemma 2.4.21. [Hig74, Section 2, Lemma 2.5(i)-(iii)] Let X be a basis of V51 and V a subset
of X(A).

1. If X and V are finite, then V is contained in an expansion of X if and only if the
following condition is satisfied:

(1) no element of V is a proper initial segment of another.

2. If X and V are finite, then V is an expansion of X if and only if (1) is satisfied and
for each u € X(A) there exists v € V such that one of u,v is an initial segment of the
other.

3. V is a set of free generators for the subalgebra it generates if and only if (1) is satisfied.

Proof. 1. If V is contained in an expansion of X then (1) is satisfied.

Suppose V satisfies (1) and write
U = X(A) \ {proper initial segments of elements of V}.

Then (t) implies that V C U. Also, U is A-closed and X(A) \ U consists of
initial segments of the elements of the finite set V, so it is finite. Thus, by
Lemma 2.4.19, there is an expansion Z of X such that U = Z(A). Therefore,
U C Z(A), and this implies that V C Z (for an element of Z(A) \ Z has a
proper initial segment in Z C U so it can not be in V by the definition of U).
Hence, V is contained in an expansion of X.
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2. If V is an expansion of X then (1) is satisfied and for each u € X(A) there exists

v € V such that one of u, v is an initial segment of the other.

Suppose V satisfies (1) and for each u € X(A) there exists v € V such that
one of u,v is an initial segment of the other. By Part 1, V is contained in an
expansion Z of X. If V # Z then there is an element z € Z \ V and hence by
the hypothesis there exists v € V such that one of v or z is an initial segment of
the other. But no element of Z can be an initial segment of another, so this is a

contradiction and hence V = Z.

3. If V is a set of free generators for the subalgebra it generates then (1) is satisfied.

Suppose (1) is satisfied. If V is not a free generating set then the same is true
of some finite subset Vj and clearly (1) is also satisfied with V replaced by
Vo. However, Vy C X(A) for some finite subset Xy of X. X, generates a free
sub--algebra of V,; and by [Hig74, Corollary 2, page 12] (since this is a V»-
algebra) it follows that in fact Xy generates an algebra isomorphic to V,; and
so contradicts Part 2.

Ul

The following corollary is an adaptation to [Hig74, Section 2, Corollary 1].

Corollary 2.4.22. Any finite collection of bases Y1, ..., Yn of Va1 has a unique minimal com-
mon expansion Z, which satisfies Z{A) = N, (Y;(A)).

Proof. For n = 2, let U = Y1(A) N Y2(A). Then U is A-closed and by Lemma 2.4.19,
{x}(A)\U is finite. Hence U = Z(A), for some expansion Z of {x}. As Z C Z(A) C
Y;(A), it follows from Lemma 2.4.21 part 2 that Z is an expansion of Y;, i = 1,2.
Furthermore, if W is a common expansion of Y7 and Y, then W C U, so W C Z(A),
which implies that W is an expansion of Z.

Let Z(A) = N2 (Y:(A)) and V = Z(A) N Y, (A), where we assume inductively
that Z is the unique minimal expansion of Y7, ..., Y;,—1. From the previous paragraph
there exists a unique minimal expansion W of Z and Y, such that W(A) = V. It
follows that the result holds for Y7, ..., ¥, and hence by induction for all 7. ]

Example 2.4.23. Let Y7 = {xaq, xapn1, xapa0} and Yy = {xaqaq, xaqap, xap}. Then, a
common expansion of Y; and Y, is given by Z = {xaqaq, xa1a0, X1, Xo00 .
It is easy to see that any other common expansion of Y; and Y; is also an expan-

sion of Z.

If we have two bases Y and Z of V;;, what is the relationship between the two?
The following lemma from Graham Higman gives some information about this.
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Lemma 2.4.24. [Hig74, Section 2, Lemma 2.5(iv)] Let X be a basis of V1. Let Y and Z
be d-fold expansions of X, for d > 1. If Y # Z then some element of Y is a proper initial
segment of an element of Z.

Proof. We prove this by contradiction. If no element of Y is a proper initial segment
of an element of Z i.e. there exists no y € Y such that there exists I' € (A) and z € Z
with yI' = z, then Y C Z(A). This implies that Y is an expansion of Z. However, Y
and Z are both d-fold expansions of X and thus Y = Z. This competes the proof. []

2.5 The Higman-Thompson group G;;

We define the group we wish to study for the remainder of Part I of this thesis.

Definition 2.5.1. [Hig74] The Higman-Thompson group Gy is the group of ()-algebra
automorphisms of V.

Remark 2.5.2. Let 1 be an automorphism of V;; defined by the map ¢ : Y — Z, for
Y,Z bases of V1. Then, if we expand y € Y and form the basis Y = Y \ {y} U
{ya1,yaz}, then ya;ip = ypu; = za; for i = 1,2. Thus, if we expand the basis Y, then

the automorphism ¥ induces an expansion Z’ of the basis Z such that Y'yp = Z'.

Throughout this section, let x be a fixed expansion of {x}

Lemma 2.5.3. [Hig74, Lemma 4.1] If {11, ..., i} is a finite subset of Gy then there is a
unique minimal expansion Y of x such that Y; C x(A), for i = 1,..., k. That is, any other

expansion of x with this property is an expansion of Y.

Proof. [Hig74, Lemma 4.1]

For each 7, xi;” ! is a generating set for V; 1, because x is a generating set and ;
is an automorphism (but x¢; * & x(A)). Let U; = x(A) Nxy; *(A). Thus by Lemma
2.4.19 U; is A-closed and there exists an expansion Y; of x such that U; = Y;(A)
(Y; is also a basis of V,; by Lemma 2.4.9). Now, Corollary 2.4.22 gives a unique
minimal common expansion Y, of the Yi’s, and Y(A) = N’_,(Y;(A)). Then, for all i,
Y C Yi(A) = U; C xyp; {A), so Yih; C x(A).

Let Z be an expansion of x. If Zyp; C x(A), for all i, then (by the definition of
Uj) Z C U; = Yi(A), so Z C Nk (Yi(A)) = Y(A). Hence, from Lemma 2.4.19 and
Corollary 2.4.22, Z is an expansion of Y. ]

Remark 2.5.4. The above lemma gives a way of describing the elements of G, as
bijections between expansions of {x} of the same cardinality. Firstly, for the identity
element this is clear, 1g,, : x — x. For every element ¢ € G, by the lemma above,

there is a unique minimal basis Y of V,; such that Yiy = Z C x(A). Thus Z is also a
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basis and Zyp~! = Y (Z will be the unique minimal expansion corresponding to ph.
Lety : Y - Zand ¢ : U — V, with Y,Z,U and V all bases of V,;. Then we can
define the product by finding the common expansion W for Z and U, which exists
by Corollary 2.4.22, and expand Y and V according to the images Wy~! = Y’ and
W¢ = V’, noting that an expansion of an expansion of {x} is an expansion of {x}.
Then,

Yo :Y =V,

that is, Y/ = We = V/, and ¢¢ is an element of G,1. Associativity holds in a
similar way.
Lemma 2.5.5. Let X be a basis of V, 1, let u € V, 1 and let d be a non-negative integer.

1. Ifv € V1 then u = v if and only if ul’ = ol, for all T € (A) of length d.

2. If S is a subalgebra of Vo1 then u € S if and only if ulT' € S, for all T € (A) of length
d.

Proof. 1. Ifu=vthenul’ =l forallT € (A) of length d.
We shall show that given d > 0,

if u,v € V1 and satisfy ul' = oI for all T’ € (A) of length d then u = v.(t1)

If d = 0 this holds trivially. We will use induction on d. Assume that 4 > 0 and
that for all d’ such that 0 < d’ < d (+t) holds, with d’ instead of d. Suppose
then that u,v € V,1 and ul' = oI for all I' of length 4. In this case we will show
that for any A € (A) of length d — 1 we have uA = vA. In fact, if A has length
d — 1 then Aw; has length d, for i = 1,2. Therefore, u(Awx;) = v(Ax;) and we
obtain uA = (ul)aq (uA)axA = (vA)ag(vA)axA = vA. This applies to all A of
length d — 1, as required. From the inductive hypothesis u = .

2. Ifu e Sthenul' € SforallT € (A) (and certainly for all I' of length d).
We shall show that given d > 0,

if u € V1 and satisfies uI' € S for all T € (A) of length d then u € S.(x)

If d = 0 this holds trivially. We will use induction on d. Assume that d > 0
and that for all d’ such that 0 < d’ < d (%) holds, with d’ instead of d. Suppose
then that u € V57 and ul' € S for all ' of length d. In this case we will show
that for any A € (A) of length d — 1 we have uA € S. In fact, if A has length
d — 1 then Aw; has length d, for i = 1,2. Therefore, u(Aa;) € S and we obtain
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ulN = (uA)aq(uA)apA € S. This applies to all A of length d — 1, as required.

From the inductive hypothesis u € S.
t

Coming up is a series of subsections which discuss the work of [Hig74, Section
9]. This work will be needed in understanding the solution conjugacy problem.

2.5.1 Semi-normal forms

In [Hig74, Section 9], Higman picks an element ¢ of G, and constructs a basis Y for
Vo1 in order to make the study of ¢ easy (as he can then just examine the orbits of

elements from Y).

Remark 2.5.6. In Matt Brin [Brin04] and Bleak et al [BGG11] revealing tree pairs di-
vulge the dynamical information for a given element of G, acting on the Cantor set

and this is similar to Higman’s method.

The method is based on studying how y-orbits intersect the A-subalgebra x(A)
(for our fixed expansion x of {x}). Since ¥ is an automorphism of V, 1, we may have
y-orbits which intersect the A-subalgebra x(A) in one of four ways:

e the whole of the y-orbit is contained in x(A) and is infinite;

e the whole of the y-orbit is contained in x(A) and is finite;

e the y-orbit intersects x(A) non-trivially, infinitely many times;

e the y-orbit intersects x(A) non-trivially, only finitely many times.

We therefore can distinguish each ¢-orbit in the following way (according to its
intersection with the A-subalgebra x(A)):

1. Complete infinite orbits. For any y in such an orbit, yi' belongs to x(A) for all
i € Z, and the elements yy' are all different.

2. Complete finite orbits. For any y in such an orbit, yy" = y for some positive

integer 1, and v, yi, ..., yp" ! all belong to x(A).

3. Right semi-infinite orbits. For some y in the orbit, yi’ belongs to x(A) for alli > 0,
but yy~! does not. The elements yy', i > 0, are then, of course, necessarily all
different.

4. Left semi-infinite orbits. For some y in the orbit, ylp_i belongs to x(A) foralli > 0,
but y does not. The elements yzp*i, i > 0, are then, of course, necessarily all
different.
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5. Incomplete orbits. For some y in the orbit and some non-negative integer n we
have y, yip, ..., y§" belonging to x(A) but yy~! and yy"*! do not.

Remark 2.5.7. Incomplete orbits will turn out to have finite intersection with x(A) and
it may be true that several incomplete orbits really belong to the same ¢-orbit in V5 1.

We shall now clarify our terminology regarding the orbits of ¢ in V;; and the
intersection of such orbits with x(A) and summarise the above.

An orbit of P (in V1) is a set {yy"|n € Z}, for some fixed y € V,1. The intersec-
tion of a given orbit of ¥ (in V,1) with x(A) might consist of infinitely many disjoint
sequences Vi, ...,y;y"; or of infinitely many such things as well as either a left or
right semi-infinite sequence of elements of x(A); or of a left and a right semi-infinite
sequence of elements of x(A) as well as several of these disjoint finite sequences of
elements of x(A); or of finitely many disjoint sequences y;, ..., y;§" and either a left
or right semi-infinite sequence (or neither).

Now let y € V, 1 and let ¢ € G,,1. What Higman means by an “orbit of i in x(A)”
is a maximal subsequence O of the sequence yzpizo_ooo (that is of the orbit of y), such
that all elements of O are in x(A). It then follows that all such”orbits” are of types 1-
5. We will refer to what Higman calls an “orbit of ¢ in x(A)” as an x(A)-component
of an orbit. From the definitions above, 1, 2, 3, 4, and 5 are then the possible types of
x(A)-components of orbits.

When we talk about an “incomplete orbit” or a “semi-infinite orbit” we really

mean an x(A)-component of an orbit.

Example 2.5.8. Let X = {x} and,
Y = {xocgf, X030y, X0 &y, XK1, X&5 }

and

Z = {xoc%, X0 M0, XA103, X035, X }.

Let ¢ be the automorphism defined by Yy = Z, such that y;ip = z; fori =1, ...,,5 with
the ordering given above.

L /KX — /<\

We can see that xtx% is in a left semi-infinite orbit, xa;a; is in a right semi-infinite
orbit, xoc%(xz is in a complete infinite orbit and finally xrlexl,x(x% are in the same

complete finite orbit. (We defer an example of an incomplete finite orbit until later.)

We can now start to analyze an element ¢ of the group G,;. By Lemma 2.5.3,
for suitable d-fold expansions Y and Z of x, we have Yy = Z ie. Y is the unique
expansion given by Lemma 2.5.3 and Z the image of Y under ¢ in x(A).

32



Chapter 2. Universal Algebra and the Higman-Thompson group Gy

Given that Z is a d-fold expansion of x, x(A) \ Z(A) is finite. Similarly, it follows
that x(A) \ Y(A) is finite.
As we have chosen Y to be the expansion given by Lemma 2.5.3, Y(A) = x(A) N

x(A)p~1, and moreover ¢ maps no proper contraction of Y into x(A). Hence
Z{A) = Y{A)p = x(A)p Nx(A).

Thus, if u € x(A) \ Z(A) then u ¢ x(A)y, so up~! & x(A) and hence u is an initial
element either of an incomplete orbit or of a right semi-infinite orbit i.e. in an orbit
of type (3) or (5). Similarly, if v € x(A) \ Y(A) then v € x(A)p~1, so vy € x(A) and
hence v is a terminal element either of an incomplete orbit or of a left semi-infinite
orbit i.e. in an orbit of type (4) or (5).

If O is an orbit of type (3) or (5), then by definition there exists an element u, an
initial element of O. Therefore, up—! & x(A) so u & x(A)p, and so u € x(A) \ Z(A).
Similarly, if O is an orbit of type (4) or (5), then by definition there exists an element
v, which is a terminal element of O. Therefore, vy & x(A) so v & x(A)p~! and so
v e x(A)\Y(A).

However, since 1 is an automorphism of V,; with Yi = Z, then Y and Z are both
d-fold expansions for some d, and so |x(A) \ Z(A)| = |x(A) \ Y(A)|.

Let u be an initial element of an incomplete orbit O. By the above, u € x(A) \
Z(A) and by definition of an incomplete orbit, there is some nonnegative integer n
such that u, uip, ..., up™ all belong to x(A) but uy" ! does not. Since uyp"*! is a termi-
nal element of the incomplete orbit O, we have that uyp"*! € x(A) \ Y(A). Therefore,
the initial elements of incomplete orbits in x(A) \ Z(A) and terminal elements of
incomplete orbits in x(A) \ Y(A) pair up.

Given that the initial and terminal elements of the incomplete finite orbits must
be in one-to-one correspondence, all we are left with in |x(A) \ Z(A)| (respectively
Ix(A) \ Y(A)|) are initial (respectively terminal) elements in right (respectively left)
semi-infinite orbits, hence there are as many right semi-infinite obits as left semi-
infinite orbits.

The above can now be summarized by the lemma below (which comes from

Graham Higman) for a given element i of Gy ;.

Lemma 2.5.9. [Hig74, Lemma 9.1] Let © be an element of Gy 1. Then there are only finitely
many x(A)-components of orbits of P in x(A) of type (3), (4) and (5) and there are as many
of type (3) as of type (4).

We define a particularly "good" type of expansion of X (a basis for V;;) for a
given automorphism of Gy 1.

Definition 2.5.10. [Hig74, Section 9] An element ¢ of G ; is in semi-normal form with
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respect to the basis Y if no elements of Y(A) are in incomplete finite y-orbits for i
ie. if Yip C x(A) and no elements of Y are in orbits of type (5).

We now quote the following lemma from Higman.

Lemma 2.5.11. [Hig74, Lemma 9.2] For an element 1 of Gy 1 there exists a basis with respect
to which  is in semi-normal form.

Proof. Let i € Gy; and let Y be the minimal expansion associated to ¢ (in the ter-
minology suggested above). We prove the lemma by induction on the number of
elements in Y(A) which belong to an incomplete orbit. Note first that from Lemma
2.5.9 it follows that there are only finitely many elements of x(A), and hence also of
Y (A), which belong to incomplete orbits.

If there are no such elements in Y(A) then we are done. Suppose then that there
exists an element u in Y(A) which belongs in an incomplete orbit. Thus, there exist
y € Yand I € (A) such that u = yI' and some minimal m,n € Ny such that
up~ )yt x(A). Tt follows that yy~ "+, yy™*+1 & x(A), so that y is also
in an incomplete orbit. Let Y/ = Y\{y} and let Y = Y’ U {yay,yaz}. Then Y" is a
basis for V51, and Y C x(A). Furthermore, the number of elements of Y”/(A) in
incomplete orbits is one less than the number in Y(A). Hence, by induction, there

exists a basis with respect to which ¥ is in semi-normal form. O

Example 2.5.12. Let x = {x} and let ¢ be the automorphism of G, corresponding
to the bijective map:

xzx%t/; = xuc%, X = Xy, X0 = Xiq.

Then, xa; is in an incomplete orbit. Firstly, xoczqfl ¢ x(A) and secondly, x«xztpz ¢
x(A).

However, if we choose to make a simple expansion at xap, we notice that the

bijective map now looks like this:
2 2 _ o2 2
X P = x5, X000 = X0okq, XXX = XA, X5 = X®X147.

Hence, all elements of this new basis Y are in finite complete y-orbits. Therefore all
elements of Y(A) are in complete finite orbits.
pr < > < >
1 2 3 4 3 4 2 1
We give specific names to elements of a basis Y giving 1 in semi-normal form,
based on the type of ip-orbit the element is in. We give the following lemma without
proof.
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Lemma 2.5.13. [Hig74, Lemma 9.3] Let 1 be an element of G,,1 in semi-normal form with
respect to the basis Y. Suppose that y is an element in Y, then one of the following holds,

(A) There exists T € (A) such that yT is in a complete finite orbit. In this case y itself
belongs to a complete finite orbit, which consists of elements of Y, and we say y is of type (A).

(B) There exist T,A € (A), with T # A, such that yT' and yA belong to the same orbit.
In this case there exists A € (A), n € Z, n # 0, with |n| minimal, such that yp" = yA and
we say y is of type (B). If n > 0 then the orbit containing y is right semi-infinite; if n < 0
then the orbit containing y is left semi-infinite.

(C) y is not of type (A) or (B) above and there exists some z € Y of type (B) and non-
trivial A € (A) such that yy' = zA. In this case the orbit containing y is infinite; and we
say y is of type (C).

We will often refer to elements of type (A), (B) and (C). We now give the associated
I" for a type (B) element a name.

Definition 2.5.14. Let u € V51 and ¢ € Gy1. If ugp? € u(A) for somed € Z\ {0} then
u is a characteristic element for .

If u is a characteristic element for ¢ then the characteristic of u is the pair (m,T)
such that m € Z \ {0}, T € (A) with

o ul™ = ul' and
e for all n such that 0 < |n| < |m|, uyp" & u(A).

In this case I is called the characteristic multiplier and m is the characteristic power for
u, with respect to ¥. If I' is non-trivial then it is said to be proper and we call u a
proper characteristic element.

Remark 2.5.15. If u is a characteristic element then
1. (m,T) is uniquely determined and

2. if v is in the same orbit as u# then v is a characteristic element with the same

characteristic as u.

For 1. suppose that u is a characteristic element and with characteristic (m,I'). If
up™ = uA and for all n such that 0 < |n| < || up” & u(A) then |m'| > |m| by
Definition 2.5.14 and so m = £m'. If up~™™ = uA then u = uyp™A = uT'A, which can
not happen.

For 2. let vy" = oI For all n such that up” = uA, A € (A) we have,

op" = u'P" = uPp"yY" = uAyY" = uyp’' A = vA.
Interchanging u and v we see also that whenever vy" = vA then uy" = uA.
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Given this remark we can make the following definition.

Definition 2.5.16. Let i be an element of G,; and O a p-orbit containing a character-
istic element u. Then we define the characteristic of O to be equal to the characteristic

of u.

Example 2.5.17. From Example 2.5.8, the elements in the semi-infinite orbits xtxi’,

xaqa; are of type (B). In fact xaj is a characteristic element of ! with I'; = a7 and
xa1xo is a characteristic element of 1 with I'; = .

Furthermore, the element xa3a; is of type (C) and xapaq, xa3 are elements of type
(A).

We end this subsection with a result that allows us to determine if an element of

Gy, is of infinite order.

Theorem 2.5.18. [Hig74, Theorem 9.4] An element 1 of G (given in semi-normal form
with respect to Y) is of infinite order if and only if Y™ has a proper characteristic element
for some m. Moreover, if  is of infinite order then this proper characteristic element may be
taken to belong to Y.

Proof. [Hig74, Theorem 9.4] Let ¢ be in semi-normal form with respect to the basis
Y. If u is a characteristic element for ™ with proper multiplier I' then uyp™ = ul".

Therefore,
ul/)mj - ulp’”qﬂ“(i*” - ul"l/)m(jfl) - urlpmlpm(f*z) - ul/)mrlpm(jfz) - urzlpm(ffz) e

for j € N. Since T is a proper multiplier, the elements uI’ are all different for j € IN,
so ¢ has infinite order.

Conversely, if no ¢ with m € Z has a proper characteristic element then Y has
no elements of type (B) nor type (C). Thus all elements of Y are of type (A), as ¢ is in
semi-normal form with respect to the basis Y. Whence 1 is a permutation of Y and

has finite order. O

Lemma 2.5.19. Let ¢ be in semi-normal form with respect to a basis Y and let u € V, 1. If u
has characteristic (m,T') then the orbit of u is semi-infinite (right semi-infinite if m > 0 and
left semi-infinite if m < 0) and contains an element yI'y, where y € Y, y is of type (B) and y
has characteristic (m,T11g), where T = ToI'1 and Ty is non-trivial. (It is possible that Ty is

trivial.)

Proof. Let O be the orbit of u. Note that if v € O then v = ulpk, for some k € Z,
so v = uyp"k = uT'p* = uy'T = oI, and it follows that every element v has
characteristic (m,T'). For some q > 0 we have ul'l € Y(A), so uyp™ = ul'l € Y(A).
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Hence we may assume that u € Y(A). Let u = yA, wherey € Y and A € (A). We
assume first that m > 0. If O is not right semi-infinite then, as ¢ is in semi-normal
form with respect to Y, we have ul[J*k € O, forall k > 0. Let A = Ao/, where Ay
has no terminal segment equal to T. Then uyp~"U*1) € O, so for some z € Y and
E € (A), up~0+Y) = 25 and so

2B = 230+ =y = yAeIY,

so z =y and EI' = Ay, a contradiction. Hence O is right semi-infinite. Moreover, we
may assume that A has no terminal segment equal to I'.

Now u = yA € O and yAy™ = yAl so, by Lemma 2.5.13, y is of type (B). Suppose
y has characteristic (1, Q)). If the orbit of y is left semi-infinite then yAyp~* € Y(A),
for all k > 0, so O is not right semi-infinite. Hence y is in a right semi-infinite orbit
and n > 0. If A = QJA; then yA;p" = yQIA; = u, so we may assume that A has
no initial segment equal to (). Suppose that 0 < n < m and write m = np +r, where
0 <r < n. Then yAyp"™? = yQF A and yQPAY" = yAyp"Pt" = yAyp™ = yAT. However,
as y is in a right semi-infinite orbit, yy" = zE, for some z € Y and E € (A). Thus
yAl = yOPAY" = yyp' QP A = zEQF A, which implies that z = y and A" = EQFA.
Now, as yy" = yE, with 0 < r < n, and y has characteristic (n,}), it must be that
r = 0and E = 1. We have now AI' = OO’A and, as A has no terminal segment
equal to I and no initial segment equal to (), consequently I' = I'g)A and 2 = A();.
However this means that yAyp" = yQA = yAO1 A, and as u = yA has characteristic
power m, we infer that n > m, a contradiction.

Hence 0 < m < n. Now yyp™ = 1A, y1 € Y, A € (A), and so yAT = yAyp™ =
y1AA. Hence y = y; and AI' = AA. As A has no terminal segment equal to I' this
implies that I' = T'pA so yATl'\A = yAA, from which it follows that yAl'g = yA =
yy™, so m > n. Hence m = n and, setting A = I'y, the proof is complete, in the case
m > 0.

In the case when m < 0 the result follows from the above on replacing i by
p L O

Lemma 2.5.20. Let 0 € Gy and u € V1 such that ud" = ul, where A # 1. Then u has
characteristic (m,T") with respect to 6, where n = mq and A = T', for some positive integer

q.

Proof. Let 0 be in semi-normal form with respect to X. Suppose first that n > 0. Then
the (X (A)-component of the) orbit O of u is right semi-infinite, and its elements have
characteristic (m,I") with respect to 6, for some m > 0 and I # 1. Then n > m, so we
may write n = mq+s, where 0 < s < m and g > 0. Thus vA = v0" = v0™1"5 = v['16°,
for all v € 0. Choose v € O N X(A) (by choosing v = uA" for sufficiently large k).
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Then v = yA, for some y € X and A € (A), and y belongs to a right semi-infinite
orbit of 6, as v does. Hence y0° = y'A’, for some ' € X, A’ € (A), and yAA =
oI'0° = y'A'T7, so y = y' and y0° = yA’; so v6° = yA#* = yA’A. By minimality of
m, we have s = 0, so n = mg. Moreover yAA = vA = v0" = v8™1 = vI'l = yAI'Y, so
AA = AT, from which A = I'7, as required.

If n < 0 then let = 6~!. We have uyhp" = uA, so from the previous part of
the proof, u has characteristic (m,T’), with respect to ¢, where —n = mq, g > 0, and
A = T1. If follows that u has characteristic (—m,T'), with respect to 6, and —m = ng,
completing the proof. O

2.5.2 Quasi-normal forms
A stronger definition than semi-normal form was introduced in [Hig74, Section 9].

Definition 2.5.21. [Hig74, Section 9] An element ¢ of Gy is in quasi-normal form
with respect to the basis Y if it is in semi-normal form with respect to Y, but not with

respect to any proper contraction of Y.

It follows from Lemma 2.5.3 that for ¢ € Gy there exists a basis Y with respect
to which 1 is in quasi-normal form.

Once we have ¢ in quasi-normal form we have the following lemma from Graham
Higman (given here without proof).

Lemma 2.5.22. [Hig74, Lemma 9.6] If ¢ is in quasi-normal form with respect to Y, and if
v = uy™, where m > 0 and u,v € Y(A), then uyp' belongs to Y(A), fori =1,..,m — 1.

Lemma 2.5.23. Let ¢ be in quasi-normal form with respect to Y and let y € Y be of type
(B). Suppose that y has characteristic (m,T). Then there exist T; € (A) and y; € Y,
1 < |i| < |m|, such that y = yu,; if i # jtheny; # y; T = Ty---Tyif m > 0 and
I'=Ty---T_1ifm<O0;and

. Li---T,  for1<i<m,ifm>0
y¢' = '
yili---T_y, for =1>i>m, ifm<0

Moreover, setting € = m/|m|, y; has characteristic multiplier T; = T;-- - Ty, - - - Ty, and
yi¢" = yilj, for 1< i < [m[ —1.
Remark 2.5.24. The characteristic multiplier of y;I'; - - - I'¢ is I, for all i. However, the

characteristic multipliers of the y; themselves may not equal to I'.

Proof. Assume m > 0, so the orbit of y is right semi-infinite. The proof in the other
case is similar. Since ¢ is in quasi-normal form with respect to Y and y and y¢™ &
Y(A), from Lemma 2.5.22 we have y¢' € Y(A), for 1 < i < m — 1. Thus there exist
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y; € Y and ®; € (A) such that y¢' = y;®;, for 1 <i <m—1. Sety, = yand ®,, =T,
and the latter holds for 1 < i < m.

As y;@;p" = y¢"t = yI'¢p' = y;®,T, both y;®; and y;®;T belong to the same
orbit of y and Lemma 2.5.13 (B) implies that for some n; # 0 we have y;¢" = y;A;,
for some A; # 1. If n; < 0 then it follows that y;¢/ € Y(A), for all j < 0, so
Yo't = y; @9/ € Y(A), for all j < 0, which is impossible, as the orbit of y is right
semi-infinite. Hence n; > 0, and (using Lemma 2.5.22) in particular y;¢ = z;I';1, for
some z; € Yand ;1 € (A).

Set I'1 = ®4. Then y¢ = y1I'1. Assume inductively that for 1 <k <i—-1 < m we
have y¢* = Iy ---T1. Then y¢' = yop'~'¢p = y; T; 1---T1¢ = y; 1¢Tiq---T1 =
zi1Iil;_q1 ---T'1. Hence y;®; = ycpi =z;qIl;---T1,s0zi1 =y;and ®; =T;---Ty. By
induction ygbi =yl;---Ty, fori =1,...,m. In particular, y¢" = y,,I'y, - --T'1 and as
Ym =y wehavel =T, ---Ty.

From the above we have ;¢ = y;11I'i+1, so

yl¢mzyl+lrl+l¢,nil:"':ymrm"'rl+l¢l:"':ylrl"'rlrm"'rl+]-

Finally, if 1 < i < j < m and y; = y;, then yi¢ = y;¢ so yi1liy1 = yjlj,
which implies that y;11 = yj;1 and T';y1 = I'j;1. Repeating this argument we obtain
eventually y,,_j1; = ym = y, and so Yo" It = Yl—jri- T, withm —j+i<m, a
contradiction. Hence the y; are all distinct and the proof is complete. O

One of the most useful lemmas of [Hig74] with regard to the i-orbits of elements
of V, is given below, with proof. In the cases of interest when we are computing
with elements in G, ; we assume the automorphism is given by a map between two
bases.

Lemma 2.5.25. [Hig74, Lemma 9.7] Given an element 1 € Gy,1 there exists a unique basis
Yy with respect to which  is in quasi-normal form. Moreover, (i) we can effectively construct
the basis Yy and (ii) for u,v € Va1 we can effectively decide whether or not u,v are in the
same orbit of P, and if so, find the integers m for which uyp™ = v.

Proof. [Hig74, Lemma 9.7] For part (i), we shall start with an arbitrary basis Y and
modify it until we have ¥ given in semi-normal form with respect to a basis Y such
that no contraction of the basis Y gives 1 in semi-normal form.

Suppose ¥ is given by a bijection between bases Y and Y’. First we construct such
a Y. For each i € Y we list elements of the orbit with respect to (1),

O T VT VIR VET VI TIg VT S
We begin with y go forward in the sequence to ytpi for i > 1 until we reach for m > 0
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such that,

(1F) either yy™ € Y(A) with yyp" 1 € Y(A) or,

(2F) for some [ with 0 < I < m and for some § € Y and T, A € (A), y¢' = §T and
yp™" = gA.

Similarly, we go backwards in the sequence from y until we reach for n > 0 such that,

(1B) either yp~" € Y(A) with yyp~ "1 ¢ Y(A) or,

(2B) for some [ with 0 < [ < —n and for some § € Y and T, A € (A), y¢' = §T and
y~" =A.

Given y € Y, the forward part of the process above produces a sequence of ele-
ments of Y(A), until it halts. As Y is finite it therefore always halts. The backward
part of the process above always halts for the same reason.

If some y satisfies (1F) and (1B), then ¢ was not in semi-normal form with respect
to Y. Therefore, we expand Y at the element y and start again. If no y € Y satisfies
(1F) and (1B), then ¢ is in semi-normal form with respect to Y by Lemma 2.5.11 and
its proof..

We can now assume 1 is in semi-normal form with respect to Y. We can thus
test all the contractions of the basis Y to find a basis with respect to which ¥ is in a
quasi-normal form.

For uniqueness, we will argue by contradiction. Let ¢ be in quasi-normal form
with respect to Y7 and Y5, with Y7 # Y. By Lemma 2.5.3, there exists a unique
minimal expansion Y such that Y¢ C x(A) and any other basis Z, with the property
Zp C x(A), is an expansion of Y. Since ¢ is in quasi-normal form with respect to Y;
and Y, we have Y7 # Ya, Y;¢p C x(A) for i = 1,2. Therefore, Y7 and Y; are expansions
of Y.

Since Y7 # Y, and Y3, Y, are expansions of Y, (without loss of generality) there
exists a contraction of the basis Y; which gives an element y in Y,. However, ¢ is
in semi-normal form with respect to Y>. Thus, we could have contracted Y; to give
¢ in semi-normal form and hence 1 was not in quasi-normal form with respect to
Y; (because Y; was not a minimal expansion of {x} giving ¥ in semi-normal form).
Therefore, the expansion of {x} giving ¢ in quasi-normal form is unique.

For part (ii), we may assume, by part (i), that we have ¢ in quasi-normal form
with respect to a basis Y. If the orbit of u is finite we can list all elements in the
y-orbit of u and check to see if v appears in the list. Assume u is in an infinite orbit.

Moreover, for a fixed integer s > 0 we have uy™ = v if and only if
(ul)yp™ = uyp™T = ol
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for all T € (A) of length s (using Lemma 2.5.5). Now, suppose that we have an
algorithm A to decide whether v/ = u'¢", for some m, for elements u’,v" of Y(A)
(and to return m, if so). Then if u,v are arbitrary elements of V,; we may choose
s such that uI' and oI belong to Y(A), for all T € (A) of length s, and input all
these elements to the algorithm A in turn. In the light of the previous remark, this
allows us to determine whether or not u and v belong to the same orbit of ¢ (and to
return an appropriate m, if so). Hence we may assume u,v € Y(A) and, by Lemma
2.5.22, as u and v belong to the same orbit of ¢ in V;;, they belong to the same
Y (A)-component of an orbit of .

As u € Y(A), we have u = yA, where y € Y and A € (A). We now run the
process of part (i) on y. If the process halts with yi™ = y, for some m then we may
list the elements ugbi = yl,biA, i=20,...,m—1, of the orbit of u. In this case v is in
the same orbit as u if and only if it appears in the list, so we are done. Otherwise
the process halts at (1F) and (2B), at (2F) and (1B) or at (2F) and (2B). In all cases we
obtain i € Y such that, for some k # [ and A1 # A, € (A), we have y¢* = jA; and
y¢' = ;. Tt follows from Lemma 2.5.13 that  is of type (B). As u¢* = yA¢* = yA;A
we may replace u = yA with # = yA;A. Therefore we now assume that u = yA,
where y is of type (B). Now, when we run the process of part (i) on y it halts at (2F)
and (1B) or at (1F) and (2B). Suppose first the forward part halts at (2F). Then y is in a
right semi-infinite orbit and there is a minimal positive integer m such that yy™ = yI,
with T # 1.

Thus we have u = yA , where y € Y and yy" = yI', withm > 0 and I' # 1. If

A = TiAy, where A has no initial segment I', and we set 1y = y/Ag then,
uggbmi = onl,Umi = ygbmiAO = yFiAO =yA =u,

S0 U is in the same orbit of () as u. Hence we may replace u = yA by ug = yAy.
Once we have done this we may suppose A has no initial segment equal to the
characteristic multiplier I of .

From Lemma 2.5.23 above there exist I'; € (A) and distincty; € Y, fori=1,...,m,
with y = y, and T = T, - - - Ty, such that, setting A; = T;--- Ty, ---Tipq and T} =
[;-- T (and T) = 1), we have yp' = ;I and y; has characteristic multiplier A;,
i = 1,...m. Thus the Y(A)-component of the orbit of y consists of the elements
yyp™it = ;AT with ¢ > 0, and finitely many elements y~/, where j < 0.

Next we run the process of (i) on u instead of y. As y is in a right semi-infinite
orbit the forward part of the process halts at (2F). As the y;’s are distinct we obtain a

list of elements of the orbit of u of the form

22Dy, -+, 21Dy, u = yA, 1 OIA, ooy 1D, 1A, yTA, (2.8)
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where z; € Y, ®; € (A), zj®; = up~/, for 1 < j < r for some r > 0. If the backward
part of the process halts at (1B) then up~""! ¢ Y(A). On the other hand, if the
backward part of the process stops at (2B) then, for some s with 0 < s < r, we have
zy = z; (and r is minimal with this property).

As v € Y(A) we also have z € Y and A in (A) such that v = zA. If z is in a finite
orbit then v cannot belong to the same orbit as u, so we assume z is in an infinite
Y (A)-orbit. As in the case of u, we may adjust v so that z is of type (B). As before
we find a characteristic multiplier ® for z and, replacing A with a shorter element if
necessary, we may assume that A has no initial segment equal to ®.

Suppose first that the backward part of the enumeration of the orbit of u halts at
(1B). In this case, the orbit of u has initial element z,®,. If v = ulpd then either d < 0
and v = z; Py, with1 <d <r,ord >0and v = y,-A?FgA, for some g > 0. If the latter
occurs, then z = y; and by our assumption on v we have g = 0, so v = y;I"’A. In both
cases v appears on the list (2.8). Otherwise u and v do not belong to the same orbit.

Now suppose that the backward part of the enumeration of the orbit of u halts at
steps (2B). Then u is in a complete infinite orbit and, for some s with 0 < s < r, we
have z, = z;. It follows that z; is of type (B) and in a left semi-infinite orbit. As before,
if v = ut/)d with d > 0 then v = yirgA, for some i with 0 < i < m — 1, so appears
in the list (2.8). Now, if v = ul/Jd with d < 0, then either v = zj®; with 1 < j <5,
or v lies to the left of z;®;, in the orbit of u. However, arguing as in the first case,
using Lemma 2.5.23, with z, instead of y, we see that elements in the orbit of u to
the left of z;®, have the form sz)fCI)j, where s < j <r, p >0, O is the characteristic
multiplier of z; and z;§"* = z;0;. Suppose then that v = z]-®]’.7<I>]-, for some such j
and p. Writing ®; = ©/®, where ®; has no initial segment equal to ®;, we have
ZA = v = sz)f +‘Zq);-. Thus z = z; and the condition on A implies that p +a = 0.
Therefore ®; = CD; and v = z;®;, which belongs to the list (2.8).

Therefore, in the case where y is in a right semi-infinite orbit we have v in the
orbit of u if and only if v lies on the list (2.8); and we may compute m such that
uyp™ = v, if this is the case. Finally, if the enumeration of the orbit of y halts at steps
(1F) and (2B) then the process is essentially the same, except that we deal with a left,
rather than a right, semi-infinite orbit of y. O

Example 2.5.26. Let ¢ be in quasi-normal form with respect to the basis
Y = {xaq, xaony, xada?, xasa100, x035 }
and defined by the bijection with the basis

W = {xoc:f, xoc%txz, XX1&2, xoczocl,xoc%}
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given by Xx1Q = xzx?, XK1 = XDC%DQ, xa%a%go = xoc%, xzx%oqzxzqo = X®1&y, xzxgqo =
XK.

SR N e T
5 12453

3 4 °

We would like to decide if the elements v; = xa1ap and v, = XIX%OQ are in the
orbit of u = xzx%zx%m. As 1 is in quasi-normal form and u,v1, v, are in Y(A) we begin
by rewriting u as yA so thaty € Y and A € (A). That s,

u = xa3nday = (xadad)ay = Y3z,

where y3 = xaZa? € Y (the third element in the basis).

We now, for some k, find i/ an element of type (B) such that up* = yA;. From the
above, we can choose § = y3 = xa3a3 and so k = 0 and A; = A. The characteristic
multiplier for 7 is a? and A = a; has no initial segment equal to a so we can take

uy = u = xa5atn;. We now look at the orbit of u,

—1 2 3 4
ue -, u, uQ, ue”, ug>, uge-,
xuc%oc‘lltxz, xa%a%zxz, xocg, X0, xa%zxz, xo/llzxz,

2 3

STOP 2B yzajan, Y3, Ys, Y2, Y1x182, yiaqao,

For v; = xajap, we can write v = zA with z of type (B). Here, z = y; = xa; and
A = wy. Since A has no initial segment in common with the characteristic multiplier
oc% for z, we can take vy = v;. We can now check the list above and see that vy does
not appear in the list and so v is not in the same orbit of u.

For v; = xa2ny, we can write v = zA with z of type (B) (we see immediately that
u@® = v but here we will follow the algorithm). Here, z = y; = xa; and A = aqa;.
Since A has no initial segment in common with the characteristic multiplier a? for z,
we can take vp = vp. We can now check the list above and see that vy does appear in
the list and in fact ug® = v.
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Chapter 3

The conjugacy and power
conjugacy problems in G; ;

In this chapter we examine the conjugacy and power conjugacy problems for the

Higman-Thompson group G .

3.1 Higman’s -invariant subalgebras Vp and Vi,

Let i be an element of G 1. Higman defined two subalgebras of V,, determined by
Y; namely

e the subalgebra Vp generated by the set of elements of V,; which belong to
finite orbits of i and

e the subalgebra Vg generated by the set of elements of V;; which have proper
characteristic multipliers (that is elements u such that uyp™ = ul, for some
m € Z and some I' # 1).

Where there is no ambiguity, we will write Vp for Vpy and Vg; for Vryy. If ¢ is any
element of Gy then ¢|y,, and ¢lv,, , are isomorphisms between subalgebras of V5.

We write ¢p = (P’Vp,(p and ¢rr = <P’VR1,¢-
Now suppose that ¢ is in semi-normal form with respect to a basis Y. We first

partition Y into the following disjoint sets,
Yp = {y € Y| y belongs to a finite orbit of ¥},

and
Yri =Y\ Yp = {y € Y| yis of type (B) or (C)}.

Higman proved the following Theorem. .
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Theorem 3.1.1. [Hig74, Theorem 9.5 and its proof] Let ¢ be an element of Gp,1. Then with
the notation above, the following hold.

1. Va, is a free product of the subalgebras Vp and Vgj.
2. The subalgebras Vp and Vg are y-invariant.

3.
Vp = Yp(A)(A)

and
Vrr = Yri{A)(A)

4. Let 6 and ¢ be elements of Gy 1. Then 010 = ¢ if and only if

® Op = 9|Vp,¢ is a map from Vpy to Vp , and Or; = 9|VR1,¢ is a map from Vryy to
VR1,¢, such that

o 0 = 0p 0Oy, as a map from Vo1 = Vpy x Vryy to Vpy x Ve = Va1 and

o writing Pp = Wiy PP = PV, PRI = Pig, and Qr; = Py, We have
05" YpOp = @p and 05} PriOr = PRI

Example 3.1.2. Let ¢ be as in Example 2.5.8. Then ¢p is an automorphism of
{xapeq, xa3} (A) (M) defined by,

X1 —r XDC%,XDC% — X0
and s an isomorphism of {xtxi’, X1&p, xoc%az}@‘l) (A) to {xa%, xeya3, xaqapoq H(A)(A)
defined by,
XDC”;) — xoc%,xothz — xlezx%, XDC%D(Z — XXX Kq.

Part 4 of Theorem 3.1.1 allows us to consider two parts of an element of Gy
separately. In fact Vp and Vg; are both isomorphic to V51, so we may regard 6p and
Orr as automorphisms of V,; via this identification.

Let ¥ and ¢ be elements of Gy, write V3 = Vgjy and Vo2 = Vgje, and write
1 = Yrr and ¢1 = ¢ry. (Alternatively, let Vi = Vpy and Vo = Vpy, and let 1 = ¢p
and ¢; = ¢p; it doesn’t affect what follows.)

Then ¢; € Aut(V;) and ¢ € Aut(V2) and V; is isomorphic to V,4, for i = 1,2.
Let f: V4 — Vo1 and g : Vo — Vi be fixed isomorphisms, and define ) = f~lyf
and ¢ = ¢ '¢g. Then ¢ and ¢ are elements of G, 1 and the diagrams in Figure 3.1.0.1
commute.

Now ¢ ~ ¢ if and only if there exists p € G, 1 such that p~1¢p = ¢
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Vaq L Vaq Vo1 L Vo1
s [s E E
V] L V1 VZ L) VZ

Figure 3.1.0.1: Commutative diagrams

if and only if o' f 1y fo = ¢ g
if and only if go ' f 11 fog ™! = ¢
if and only if 6~ 1¢;0 = ¢1, where 0 = fpg~'.

Here 6 is an isomorphism of V; to V,, so could be taken to be either 6p or Or;
in Theorem 3.1.1, as appropriate. Of course, given such a 6, we have p = f~10g,
satisfying all the above.

Note that, if u,v € V,; then there exist a,b € V; such that u = af and v = bf. In
this case uy" = v if and only if uy"f = vf if and only if uf§" = vf. It follows that,
if V1 = Vp then tp is periodic, while if V; = Vg; then tﬁ is regular infinite.

Combining this with Theorem 3.1.1 gives the required decomposition of the con-
jugacy problem into the conjugacy problem for periodic and for regular infinite ele-
ments, separately. At least in principle: the question of finding f and g algorithmi-
cally still remains. It’s true that any isomorphism could be chosen in each case, but
then the maps ¢ and ¢ have to be given with respect to suitable bases, and this will
be unpleasant unless f and g are chosen sensibly.

First we give an outline of the strategy we shall adopt; and then we shall verify
that all the steps do in fact work. The process described here is only for the regu-
lar infinite part of an automorphism; as everything works in the same way for the
periodic part.

Given ¢ in semi-normal form with respect to X, and Y = Xy, let Xg; and Yg;
be the regular infinite parts of these bases and let V = Vg;. Find a basis By C x(A)
for Vp, such that if v is any element of Xgr; or Ygr; then v = bI', for some b € By and
I' € (A). Next contract the basis By as much as possible: that is until it contains no
pair of elements xI'a; and xI'ap, x € x. Denote by Zy the resulting basis of V. Next
choose a maximal length element of Zj, say z = xI'a;, where x € x, ' € (A), and
replace it by xT'. Let V; be the algebra generated by Zy\{z} U {xI'} and define a new
map 3P, from V; to itself, obtained from the map Xg; to Ygr as follows. Given v in
Xgy or Ygy, if v has the form xI'w;A, T, A € (A) then replace it with xI'A. Having
done this for all such v, map the new sets Xg; and Yg; to each other in the same
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order as before. Now repeat the process starting with p; instead of 1pr;. Continue for
as long as possible. We shall verify below that this process does indeed result in an
isomorphism from Vg; to V,; such that the automorphism ¢ corresponding to ¥, as

above, is automatically given as a map between two bases of V;1 (contained in x(A)).

Example 3.1.3. Let ¢ be an element of G, in quasi-normal form with respect to the
basis,
Y = {xtx‘f, xoc%zxz, xoc%zxz, XX1&o01, xocloc%, XXoiq, xtx%le, xoc%}

and defined by the bijection with the basis

7 = {xuc%,xuc%oczoq,xoc%a%, xucluczocl,xocloc%, xrxzzx%, X010, xoc%}

given by xajyp = xai, xadwoyp = xafamy, xafarp = xata3, xmjamyp = xaqal,

xoth%lp = XXM, XXoX1P = XDQ(X%, xoc%oqu = xap10p and xlX%I[J = x(x%.

P —
6
7 8 8
12345 467

1 5 3 °
The subsets of elements of Y and Z in infinite orbits are

4 3 2 2 3
Yry = {xa7, xajan, xajap, Xapnq, X0500, X053 },

and

_ 3 .2 2.2 2 2
Zry = {xay, xajaony, Xa{05, X007, Xhoa1 00, X5 }.

The subset of elements of Y and Z in finite orbits is
Yp = {xucluczle,xalzx%} = Zp.

We can see that g is a map from Ygj(A)(A) to Zrj(A)(A). For ipgr; we can
contract the bases Y and Z so that we remove part of our diagram to form the regular
infinite element ¢ given by the tree pair,

/((X /<>\

In a sense we are "pruning’ our tree pair at the edge going from xa; to xa? and
contracting the elements xzx%, X0 o0, xlelx% to the element xa.

Before we describe the steps of this process in detail we establish some prelimi-

nary results.
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Lemma 3.1.4. Let V be a subalgebra of V1 and let Y be a basis of V. Then there exists a
basis Z of V such that

1. forally € Y there is z € Z such that z is an initial segment of y and
2. ifz1,29 € Z then z1zoA & x(A).
Such a basis Z is called a contracted basis of V, with respect to Y.

Proof. If Y is contracted (that is the second condition holds for Y) then we may take
Y = Z. Otherwise there exist y1,2 € Y and I in (A) such that y; = xTw;, i = 1,2,
x € x. Then the contraction Y \ {y1,y2} U{xI'} is a basis for V and has fewer elements
than Y. Continuing this way we eventually obtain a contracted basis Z. O

Lemma 3.1.5. Let X and Y be free bases of a subalgebra V of V, 1 (with X, Y C x(A)). Then
there exists a basis B of V such that, X UY C B(A) (and B C x(A)).

Proof. From Lemma 2.4.21 there exist subsets X’ and Y’ of x(A), such that X = XU X’
and Y = YUY’ are expansions of x. Now, if x € X, from Lemma 2.4.21 again, there
exists y € Y such that one of x and y is an initial segment of the other. If y € Y’ and
x is an initial segment of y then y = xI', for some I' € (A), soy € X(A) C V and
hence y = y;A, where y; € Y, y; # y, contradicting Lemma 2.4.21. If y is an initial
segment of x then interchanging roles of X and X’ and of Y and Y’, we have again a
contradiction. Hence, for all x € X there exists y in Y such that one of x and y is an
initial segment of the other. The analogous statement holds for elements of Y.

Nowlet Z=XNY, X® = {x e X|x ¢ Y(A)}and Y®) = {y € Y|y & X(A)}. We
shall show that

B=zux®uy®

is a free basis for V. From the previous paragraph, every element x € X is in Y(A)
or X, If x ¢ ZU XS then x € Y(A) so x = yT, for some T € (A). If y ¢ Y5 then
y = x14, for some x; € X and A € (A), so x = yI' = x;T'A, and Lemma 2.4.21 implies
that x = x; and I' and A are trivial. However, this means that x € Z, contrary to the
choice of x. Thus, x ¢ Z and x ¢ X' implies that x € Y(®)(A). Therefore B generates
V. From the definition of B it follows that no element of B is an initial segment of
another. Therefore B is a basis for V, as claimed. As B has all the properties listed in
the Lemma, this completes the proof. O

Now, as above assume 1 € Gy is in semi-normal form with respect to X, let
Y = Xy, let Xo = Xgs; and Yy = Yg; be the regular infinite parts of these bases
and let Vo = Vgs and let 9 = ¥g;. As in the proof of Lemma 3.1.5, let X(()S) =
{x € Xo|x ¢ Yo(A)} and Yés) = {y € Yoly ¢ Xo(A)}. Then, from Lemma 3.1.5,
By = (XoNYy)U X((]S) U YO(S) is a free basis for V, and every element of Xy U Yp
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belongs to Bp(A). From Lemma 3.1.4 we may choose a contracted basis Z for Vj
with respect to By.

Let z be an element of maximal length in Zy. Then z = xI'x;, for some x € x,
I' € (A) and i € {1,2}. By definition of contracted basis, xI'a; ¢ Zo, for j # i. Also,
xTa;A & Zy, for all non-trivial A € (A), as z is of maximal length. Therefore, for
all u € Zy \ {z}, no initial segment of u is equal to xI'. (Here we use Lemma 2.4.21
again.)

Iteration process: Define fy : Vj — V1 by defining it on Z; as the map given
by ufo = u, if u # z and zfy = xI'. Let By = Zofo = Zo \ {z} U {aT'} and let
V1 = B1(A)(A). Observe that no element of Bj is an initial segment of another: if u is
not equal to z and is an initial segment of xI then it’s an initial segment of xI'x; = z,
a contradiction; while if xI" is an initial segment of u then, as xI'a;A & Z,, for all
A € (A), it follows that z = xT'a; is an initial segment of u, again a contradiction.
This means that B is a free basis for V. Thus fy is an isomorphism (as it maps a free
basis of V} bijectively to a free basis of V;).

Next, let ; = fo_lv,bfo, so Py € Aut(Vy), let X3 = Xofo and let Y; = Yy fp. For
v € Xj we have (unique) u € X such that ufy = v. Then vy = (ufo)fy ‘Pofo =
upfo = wfy =y, for some w € Yy and y € Y such that wfy = y.

If Vi # Va1, take a contracted basis Z; for B;. As V; # V,; this basis Z; is not
equal to x, so the process we may repeated, starting with 1; and Z; instead of ¢y and
Zo. As Y pep, |b| < Lpep, |b| the process must come to a halt after say # repetitions, at
which point we have a sequence V), ..., V, of subalgebras and a sequence fy, ..., fn—1
of isomorphisms such that f; maps V;_; to V,, and V,, = V,;. Moreover we have
bases X; and Y; for V;, such that ¢; = ﬂjlltpi,l fi—1 maps X; bijectively to Y;. Setting
f = fo-- fu_1 we obtain ¢, = f~lyof, ¥ € Gp1, ¥, maps X, bijectively to Y, and
Yy, is regular infinite. This ends the iteration process.

Algorithm 3.1.6. Let ¢ be an element of G, ; in quasi-normal form with respect to
the basis X with Xy =Y.

Step 1: Find the sets Xg; = VryN X and Xp = VpN X, then Yg; = Xgr¢ and Yp =
Xpip.

Step 2: Either set l,bo = IIJRI, Xo = XR[, YO = YRI and V() = VRI or l,U() = 1’Dp, Xo = Xp,
Yy = Yp and V) = Vp. Find a basis By for Vj such that Xo U Yy € By(A) (as in
the proof of Lemma 3.1.5). Setn =0 and f = 1.

Step 3: Find a contracted basis Z, for B,,.

Step 4: Collapse Z, as above (see Iteration process) to give a new basis B, 1 and a
map fy.
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Step 5: Set f = f,.f.
Step 6: If B, 1 generates V,; output f. Otherwise add 1 to n and repeat from step 3.

Remark 3.1.7. If i is in quasi-normal form with respect to X then it can be shown that

the automorphism 1, is in quasi-normal form with respect to X,.

Now that we have set up this terminology, we will use it in Algorithm 3.3.25.

Definition 3.1.8. Let ¢ be an element of G, ;. We shall say that ¢ is periodic if and
only if Vr; = @. We say that ¢ is reqular infinite if Vp = @.

Lemma 3.1.9. Let ¢ be an element of Gy1, then  is a periodic element if and only if there
exists a basis Y giving 1 in semi-normal form such that Y1 = Y i.e. ¢ permutes the elements
of Y.

Proof. If Y is a basis giving ¥ in semi-normal form such that Y¢p = Y , then all
elements of the basis are in a finite orbit. Therefore all elements of V,; are in finite
orbits, thus Vg = @.

If Vri,y = @, then there exists no characteristic elements in V. Since ¢ is an
element of G, 1, then exists a basis Y giving ¢ in semi-normal form. Since all orbits
in V51 are finite, no element y of Y is of type (B) or (C). Thus, by Lemma 2.5.13,y € Y

belongs to a finite orbit which consists of elements of Y. O

Lemma 3.1.10. Let i be a non-trivial element of G in semi-normal form with respect to
the basis Y, then the following are equivalent:

o | is reqular infinite;
e 1o element of Y is in a finite orbit.

Proof. If ¢ is regular infinite then Vp , = @ and no elements if V,; are in a finite orbit.
Since Y C V,; then no element of Y is in a finite orbit.

If there exists no element of Y in a finite orbit, then Y7 = so Vp =, from Theorem
3.1.1. O

3.2 Conjugacy problems

In order to describe the conjugacy problem for a group we start with the definition

of a group by a presentation, that is from a set of generators and defining relators.
Given a set S of symbols and a set R (possibly empty) of words in the symbols

and their inverses (elements of the free monoid (S U S~1)*), then G has presentation

(SIR),
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if G is isomorphic to the quotient of a free group on S by the normal subgroup
generated by the relations R.

However, as soon as we wish to determine more information about the group G
defined by the presentation (S|R) we run into difficulties even if S and R are finite.
One such problem is that the definition of equivalence of words used to obtain G is
non-constructive. Therefore, the problem of deciding whether a word in (SUS™!)*
defines the identity element becomes a non-trivial question. This problem is the first
of the three fundamental decision problems formulated by Max Dehn [Dehn1911].

Dehn posed the following problems for a group G given by a presentation (S|R).

Word Problem: For an arbitrary word W in the generators S, decide in a finite num-
ber of steps whether W defines the identity element of G, or not.

Conjugacy Problem: For two arbitrary words Wi, W, in the generators S, decide in
a finite number of steps, whether W; and W, define conjugate elements of G,

or not.

Isomorphism Problem: For an arbitrary group G’ defined by means of another pre-
sentation, decide in a finite number of steps whether G is isomorphic to G’, or

not.

The explicit solution (whenever it is possible) of the above problems is always
dependent on a specific presentation (although the existence of a solution does not
depend on a presentation, when we talk about finite presentations). Therefore, we
always talk about the above problems, for a group G, assuming that it is given by a
particular presentation.

In the case considered in this thesis we do something slightly different. Each
element ¢ of Gy is uniquely represented by a pair of lists of elements Y and Z (up
to reordering), where Y and Z are finite bases of the same cardinality; i is in quasi-
normal form with respect to Y and the i element of Y maps to the i element of Z.
To decide if two automorphisms are equal we check if these quasi-normal forms are

the same.

Remark 3.2.1. Graham Higman [Hig74, Chapter 8] constructs an explicit finite pre-
sentation for the group Gy 1.

For the Higman-Thompson group G;; the word and conjugacy problems were
solved by Graham Higman in [Hig74, Section 9]. However, to extract the procedure
for solving the conjugacy problem for the group G,; from [Hig74, Section 9] is not
straight forward and an explicit algorithm is not written down.

We, therefore, provide a description of the solution of the conjugacy problem for
the group Go,1. Next we consider the power conjugacy problem.
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3.3 The conjugacy problem for G;;

By Theorem 3.1.1, ¥ is conjugate to ¢ if and only if ¢p is conjugate to ¢p and g is
conjugate to ¢g;.

We start by forming a series of lemmas, which will be referred to in the algorithm
of Section 3.3.2.

3.3.1 Conjugacy for periodic and regular infinite elements
Periodic Elements

Definition 3.3.1. Let ¢ be a torsion element of G, ; in quasi-normal form with respect
to the basis Y. The cycle type of ¢ is the set of lengths (in increasing order) of ip-orbits
of elements of Y ie. for y in Y if m; is the smallest integer such that yy™ =y
then the length of the y-orbit of y is m;. We write this set of lengths as an r-tuple

(my,my, ..., my).

Example 3.3.2. Let 1 be in quasi-normal form with respect to the basis Y
3.2 2 2 3
Y = {xaf, xafan, X100, X007, X201 X0, XX501, X3 },

and defined by the bijection,

xuc? > xa%zxz, xa%rxz > XX, XH1&p — xa‘;’,

Xﬂtza% = X1y, XKpN1Xp > x{leX%, xa%oq — XDC%, X[X% — xoc%oq.

Then the cycle type of ¢ is (2,3).

T o T

1234567 3 1 5 4 7 6

Our first step is to show that, if the periodic element @ in quasi-normal form
with respect to X has cycle type (n) (with multiplicity r on the basis X) and the
periodic element ¢ in quasi-normal form with respect to Y has cycle type (1) (with
no multiplicity on the basis Y) then 1 is conjugate to ¢. The following lemma follows
from the work of [Hig74, Section 6].

Lemma 3.3.3. Let ¢, ¢ be periodic elements of Gp1. Suppose that ¢ is in quasi-normal form
with respect to a basis X of size rn, @ is in quasi-normal form with respect to Y of size n and
that each element , ¢ has cycles type (n) with respect to these bases. Then there exists an
element p of Gy which maps X to an n(r — 1) fold expansion Y' of Y such that p~1¢p = ¢.
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Proof. Without loss of generality, let ¢ be in quasi-normal form with respect to the
basis

X = {xO/ s Xp—1s weees Xyn—ny -oor Xnr—1 }/

defined by x;, ;¢ = Xint (j+1)mod n fori =0,.,r—1and j =0,..,n—1, where (j+
1)mod »n means take j + 1 mod n.

Let ¢ be in quasi-normal form with respect to the basis Y = {yo,...,y»—1} and
defined by yx¢ = Y441, , for k=0,...,n —1.

Let Y’ be a basis of V1 which is a n(r — 1)-fold expansion of Y of the form {y,I';}
fori =0,..,r—1,j=0,..,n—1and I'; € (A) such that YiTo,...yiTr-1 is an (r—1)-
fold expansion of y;. Define a map p by:

Xin+j = Yili,
forj=0,..,n—1,i=0,..,r — 1. Thus, p is a bijective map
p: X =Y,

of bases, where | X| = |Y’| = rn and thus p is an element of Gy ;.

We now check that the equation p = p¢ holds.

1. We take the basis X and apply ¢ then p. Thus, we have

Xint+ /Y0 = Xint- (4 Dmog 1€ = Y(j+moa »L i7
forj=0,.,n—1landi=0,..r—1

2. We take the basis X and apply p then ¢. Thus, we have

Xin+i0P = YiLi¢ = ¥joli = Y(j11)0q Lir
forj=0,.,n—1landi=0,..r—1
Hence, p conjugates i to ¢. O

The second step is to show that, if the periodic element ¥ in quasi-normal form
with respect to X has cycle type (3, ..., 1) (with multiplicity’s rq, ..., 7, on the basis
X) and the periodic element ¢ in quasi-normal form with respect to Y has cycle type
(n1,...,ny) (With no multiplicity’s on the basis Y) then 1 is conjugate to ¢.

Lemma 3.3.4. Let 1, ¢ be periodic elements of Gp1. Suppose that i is in quasi-normal
form with respect to a basis X of size };" ; rin;, ¢ is in quasi-normal form with respect to a
basis Y of size Y"1 n;, rin; elements of X have -orbits of length n; and n; elements of Y
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have @-orbits of length n;. Then there exists a map p from X to some (Yi* 1 n;(r; — 1))-fold
expansion Y' of Y that is an element of Gy such that p~'¢p = ¢.

Proof. The proof follows the same method of the proof of Lemma 3.3.3, except we
start (without loss of generality) with a basis for ¢ of the form,

X = {xnl,()/ coor Xty g =17 eeeer Xngping —nq s ooor Xnq,ngrp—1s +oor

xnm,O’ e xnmlnmflf s xnmzrmnm*nm’ s xnnu”mrmfl}’

such that x;, 4,9 = Xong i+ (- Dmod fori;=0,..,rm—1and j; =0,...,n; — 1 where
(j1 + 1) mod n, means take j; +1 mod n;, for I = 1,...,m.
Similarly, we let ¢ be in quasi-normal form with respect to the basis

Y = {Yny,00 s Yymi—1s s Y11 00 s Yty 1}

and defined by Y, k@ = Y, (k;+1)mea y fork;=0,..,m—1land [l =1,..,m.

Let Y/ be a basis of V,; which is a (Y/" n;j(r; — 1))-fold expansion of Y of the
form {y,, ; Ty} fori; =0,..,1—1,j; =0,..,n —1and I, ; € (A). Define a map p
by:

X+ 7 Yo Uiy

forij=0,..,1—1,j;=0,..,n—1land I =1,...,m. Thus, p is a bijective map
p:X—=Y,

of bases, where |X| = |Y'| = Y, r;n; and thus p is an element of Gy 1.
We now check whether the equation o = p¢p holds.

1. We take the basis X and apply ¢ then p. Thus, we have

xnl,ilnﬂr]'zwp = Xy, i+ (ji+1)mod n[p = Yu,(i+ D) mod n FVlI/il/
for il = 0,...,1"1 — 1, jl = 0,...,1’11 —land! = 1,...,7’1/1.

2. We take the basis X and apply p then ¢. Thus, we have
Xy i 470D = Yoy i Ui @ = Yoy jy Pl it = Yoy (141 mo n,rﬂzrl’z’
foriy=0,..,m—1,j;=0,.,my—land [ =1,.., m.
Hence, p conjugates i to ¢. O

A d-fold expansion of {x} has cardinality d + 1.
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Lemma 3.3.5. For any set {ny,...,ny,} C IN, there exists an element ¢ of Gy such that ¢
is in quasi-normal form with respect to a basis Y of size Y_;" | n;, where n; elements of Y have
orbits of length n;.

Proof. Let Y be a basis of V;; defined in the following way:

Let Yo = {vy1, ..., ym} be any m — 1-fold expansion of {x} i.e. y; = xI'; for I'; € (A)
fori=1,...,m.

Let Y = {y1,1, - Yinys s Ym1, s Ymm, } b€ any expansion of Yy such that y;; =
xI;Aj for Aj € (A),j=0,..,n; — 1.

Define ¢ in the following way,

Yij® = Yij+1 mod n;-

It is clear that Y = Y is a bijective map between two (identical) bases of V,; and
thus ¢ is an element of G, ;. In fact, since no element of y € Y is in an incomplete
orbit, by definition ¢ is in semi-normal form with respect to the basis Y and ¢ is a
periodic element.

If we assume that ¢ is not in quasi-normal form with respect to the basis Y, then
there exists a contraction of the basis Y, Y* = Y \ {wa;, way} U {w} such that ¢ is in
semi-normal form with respect to Y*.

However, by definition of the element ¢ above, any contraction of wa, wa; € Y
will result in an incomplete finite orbit. Thus ¢ is in quasi-normal form with respect
toY. ]

We are now able to state the following result which completely characterises con-

jugacy for periodic elements of G ;.

Proposition 3.3.6. Let i and ¢ be torsion elements of Gy 1 in quasi-normal form with respect
to the bases X and Y respectively. Then,  is conjugate to ¢ if and only if 1 and ¢ have the
same cycle type.

Proof. If we assume that ¢ and ¢ have the same cycle type, then we can apply Lem-
mas 3.3.4 and 3.3.5, and hence ¢ and ¢ are conjugate.

Assume p is any conjugator, conjugating i to ¢. Then p maps the y-orbits in V;,
to ¢-orbits in V, ;. That is, if u € V,; and v is in the ¢-orbit of u then v = uy", for
some 1 € Z. In this case vp = uy"p = upp '¢"p = upe". The converse also holds,
by the same argument in reverse, so p maps -orbits to ¢-orbits, bijectively.

We will now look at the length of the @-orbit up. Suppose u € V,; and is in a
y-orbit of length m. Then upgp™ = uyp™p = up and thus up is in a ¢ orbit of length at
most m. Given that p is an isomorphism, we can take up and see that upp~! = u is
in a p-orbit of length at least m. However, the y-orbit of u is of length m and by the
above up must be in a g-orbit of length m. O
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Example 3.3.7. Let ¢ be the periodic element of G, (in quasi-normal form with
respect to the basis

4 .3 2 2
X = {xa7, xajnp, X000, X010, X001, XX5 }),

given by xafyp = xadar, xadwryp = xaf, xadarp = xaj00, X009 = X030, XOAY =

xtx% and xa%lp = xapwnq, i.e. P has order 2.

w:x@ex@
15 6 3 6 5

1 2 3 2 1 4
Let ¢ be a periodic element of G (in quasi-normal form with respect to the basis

Y = {xa1,xa2}),

given by xa1¢ = xap and xay@ = xaq, i.e. @ has order 2. ¢ : 1/\2 —>2/\1

Then ¥ is conjugate to ¢. In fact we can construct a conjugator by applying the
proof of Lemma 3.3.3. Let p be the element of G, defined by the bijection between
bases

4 3 2 2
X = {xa7, xajap, xajan, xaq &, X001, X5},

and
Y = {x(x?, X030y, X0 Xy, X3, XA KD, X003 }

given by xoc‘fp = xoci’, x(x%azp = xoczo(%, x:x%txzp = xo(%ucz, X020 = XXX 02, XXpXK10 =

xaqap and xa3p = xa3.

pz%%HA

5 6
1 2 3 1 3 2 4

We can clearly see that p is of infinite order, since xa$ is a characteristic element

with characteristic multiplier a1 for p~! (Theorem 2.5.18).

Regular Infinite Elements

In this section we consider regular infinite elements; if i is regular infinite then
Vo1 = Vriyp-

We begin with a necessary condition for two regular infinite elements to be con-
jugate.

Let ¢ be a regular infinite element of G, ; in quasi-normal form with respect to
X. By Lemma 2.5.9, ¢ has finitely many semi-infinite orbits. For those semi-infinite
orbits O that contain a characteristic element let (mp,T'») be the characteristic of
O (see Definition 2.5.16). Recall that a semi-infinite orbit contains a characteristic
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element if and only if it contains an element of type (B).
Since there are only finitely many semi-infinite orbits, the set

{(mo,Tp)| for O a semi-infinite orbit of ¢ containing an element of type (B)},

is finite. We now make a formal definition.

Definition 3.3.8. Let ¢ be a regular infinite element of G, ; in quasi-normal form with
respect to X.
Then

My = {(m,T)| (m,T') = (mp,Tp), for O containing a characteristic element.},

is called the set of characteristic multipliers and powers for .

Example 3.3.9. Let i be in quasi-normal form with respect to,
X = {xtxi’,xtx%zxz, X100, xlxzle,xa%le,xa%}
defined by the bijection with the basis
Y = {xzx‘f, xzxi’ucz,xoc%ocz, XX1&o01, xucloc%, xay},

given by xtX%lIJ = XM1&p&1, XDC%DQIP = XD(“;’th, X001 = x(x‘ll, X011 = XDC%DQ, x(x%lelp =

xaqa3 and xa3yp = xa,.

¢:/((>>\—>/((§
6
3 4

12 5 6 s

3 2 4
We have the following semi-infinite orbits,

Oq: xzx‘;’, xoquczuq,xa“;’,...

Oy : xaq0z, xoc‘f, xoqocztx%,
Osz: .., xzxg, xzx%,xuq
Oy ..., xzxg, xoc%, xzx%.

In this case we have My = {(2,4%),(—1,43)} since orbits 01,0, and O3 contain
elements of type (B). Orbit O, contains a elements of type (C) but none of type (B).
All other elements of in complete infinite orbits.

Lemma 3.3.10. Suppose that  and ¢ are conjugate reqular infinite elements of Go 1 in quasi-
normal form with respect to the bases X and Y respectively. Then the set of pairs My and
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M, coincide. Moreover, if p € Gy is such that p~Ypp = ¢ then p maps an orbit which is
semi-infinite with respect to X and has characteristic (m,T') to an orbit which is semi-infinite
with respect to Y of the same characteristic.

Proof. Let 1 and ¢ be in quasi-normal form with respect to the bases X and Y respec-
tively and let p be such that p~!p = ¢. Then Yo = p¢. Thus, if u is an element of
X(A) such that up™ = uT’, for some m and T, then

upp™ = uyp™p = ul'p = upT.

The same argument can be applied starting with an element v € Y(A) and inter-
changing 1 and ¢. Hence if u belongs to an orbit of i of characteristic (m,I') then
up belongs to an orbit of ¢ of characteristic (m,T'). Thus, from Lemma 2.5.19 an orbit
which has a proper characteristic with respect to { maps to an orbit which has the
same proper characteristic with respect to ¢. O

Example 3.3.11. Let i be in quasi-normal form with respect to,
X = {xa?, xaq00, x00 }

defined by the bijection with the basis
Y = {xal,xazm,xtx%},

given by XD(%IP = X0, X102 = xaonq and xaoyP = XOC%. In this case, the set My =

{(1az), (=1, 1)}
P /(\3 —>1/>\
1 2 2 3

Define ¢ = p_ll/Jp where p is as in Example 3.3.7. Then ¢ is in quasi-normal form
with respect to,

Z = {xoc‘ll, xoc%txz, xzx%zxz, X01&o, xocztx%, xzxzleocz,xoc%}
and defined by the bijection with the basis,
W = {xzx?, X030y, X0 Ky, XAQKT, XK1 (o, XS0, X0

. 4 .3 .3 _ 2 .2 _ ) 2. _
given by xa7@ = xay, Xaj00 = XA4], XATA2P = XXX &2, XK M2 P = XA50X1, XAQXTP =

2 _ 2.0 2.3
XTI, XXX X2 P = X4 and xa5¢ = xa.

" T
4 5 ¢ 7 1 5 6

1 o 3 2 3 4 7
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The set My, = {(1,a2), (—1,a1)} so coincides with My.

We now build up to Lemmas 3.3.15 and 3.3.16 which will be useful for the remain-
der of the subsection. However before this we will define an equivalence relation on
the elements in a basis which gives an element of G ; in quasi-normal form given by
Graham Higman [Hig74, Page 75].

Definition 3.3.12. Let ¢ be in semi-normal form with respect to X. The equivalence
relation = on the elements of X, is defined to be the least equivalence relation such

that x = x” whenever 1T and x’A are in the same ¢-orbit, for some I', A € (A).

Example 3.3.13. Let ¢ be as in Example 3.3.11. Then, since xzx%zxﬂp = xa10p and

xa1x2 = xapxq we only have one equivalence class on X.

We shall now make some remarks about this definition. Let ¢ be a regular infinite
element in quasi-normal form with respect to X. Firstly, the initial relation x = y if
and only if xI" and yA belong to the same -orbit (for some I', A € (A)) is symmetric
and reflexive but not transitive. Hence, the equivalence relation = (as defined above)
on a subset S of V,; relates x to y if and only if there exists an integer n > 0 and a
sequence of elements wy = x,..,w, = y in S, I'y,..., [,_1,A1,.., M4 € (A) such that
w;I'; and w;+1A;11 belong to the same orbit of ¥, fori =0,...,n — 1.

Now that we have the definition of the relation =, we will use this to make a finer

decomposition of V3 ;.

Proposition 3.3.14. Let i be a reqular infinite element in quasi-normal form with respect to
X. Let X = [IjL, X; where the X; are the equivalence classes of = defined on X under the
action of .

Then V31 is the free product of the -invariant subalegbras V1, ..., V,, where each V; is the
subalgebra generated by X;.

Proof. As 1 is regular infinite, the sets &; partition X, so V,; is the free product of
the V;'s.

To show that V; is -invariant it suffices to show that if x € X; then x¢ and xy~!
are in V;. To this end, choose d > 0 such that x¢T and xi T belong to X(A), for all
I € (A) of length d. Then, for T of length d, we have xyT = yA and x¢ T = zA,
for some y,z € X and A, A € (A). By definition then y = x = z, so x,y,z € A&].
This implies that xyT = yA € V; and xp T = zA € V;. This holds for all T of
length d, so from Lemma 2.5.5, x¢ and xi~! belong to V;, as required. Hence V; is ¢
invariant. ]

Lemma 3.3.15. Suppose  is a reqular infinite element of Gy in quasi-normal form with
respect to X, and let Xy = Z.
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If X =11"4 Xiand Z = 11", Z;, where the X; and Z; are the equivalence classes of =
defined on X and Z under the action of ¥ and =" respectively, then n = m and  maps the

equivalence classes on X bijectively to the equivalence classes on Z. Moreover, if Xjp = Z;
then |Xi| = |Z].

Proof. Let x;, x; € X. Since X¢ = Z, we have x;1 = z; and xji = z; for some z;,z; € Z.
First note that, if k € Z, and T, A € (A) such that xz-l"tpk = xjA then

zTYF = xpTy* = 1T = xAyp = xjpA = z;A,

so zil = zjAp~F = ;A (p~ ).
Conversely, if k € Z, and T, A € (A) such that z,T = zjAp~F then zT'pF = z;A
and
Tyf = zip Tk = zTyfp ™ = z)Ap™" = zjp7'A = x;A.

Therefore, for all T, A in (A), x;T and x;A belong to the same y-orbit if and only if
zT" and zjA belong to the same i~ !-orbit.

By definition of the equivalence relation = on X under the action of i, we have
x; = x; if and only if there exists an integer n > 0, a sequence of elements 1y =
Xi, ..., un = xj of X, and elements Iy, ...,T;,—1, Ay, ..., A, in (A), such that u,;T; and
ut+1A¢41 belong to the same -orbit, for t = 0,...,n — 1. Setting v; = u;1p we see
from the first paragraph of the proof that this occurs if and only if the sequence
Vo = Zj,...,0n = zj has the property that v;I't and v;,1A;11 belong to the same 1
orbit, for t = 0,...,n — 1. The latter holds if and only if z; = zj in the equivalence
relation on Z given by ¢~1. Hence ¢ maps X; bijectively to Z;, fori =1,...,n (up to
relabelling). As i maps X bijectively to Z it follows that the number of equivalence
classes for X under ¥ must equal the number of equivalence classes for Z under
p L O

Lemma 3.3.16. Let ¢, X; and Z; be as in Lemma 3.3.15. Let 0, ..., 0, be maps defined by

0 — xp ifx €A,
o x ifx e Xfori#j,

i=1,..n
Then each 0; extends to an element of Gy such that 6; commutes with  and, for all
j=1,..,n,0;, commutes with Gj.

Proof. As 0; is defined on a basis it extends to a unique endomorphism of V, ;. Since
X =1[L, & and Z =[], Z;, then (after reordering if necessary) X;p = Z; for
i =1,..,n (from Lemma 3.3.15). Thus 6; maps X to (X \ &;) U Z;. To show 6; is an
automorphism we need to show that (X \ ;) U Z; is abasis and |X| = [(X\ &;) U Z;].
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By Lemma 3.3.15 | X| = (X \ &) U Z;| and so it remains to prove that (X \ X;) U Z;
is a proper expansion of {x}.

From Lemma 3.3.15, V; = X;(A)(A) is ¢ invariant and Aj¢p = Z;, for all i. From
Lemma 2.4.21, V; is freely generated by &, and so also by Z;. Therefore V; has bases
Xiand Z;, for all i. As V1 = Vj*---x V, is free product, if Y; is any basis for V; then
U!L,Y; is a basis for V, ;. In particular, if | = {1,...,n} \ {i} then Z; U (Uj;&}) =
(X\ &) U Z; is a basis for V, 1, as required. Therefore 6; is an automorphism.

We now work for commutativity. Firstly, as &; and Z; are bases of V; there exists
a common expansion of &; and Z; for eachi=1,...,n.

Finally, we can now show the commutativity of the elements 0; and 6; of Ga.
Since X; and Z; generate V;, for i = j we have 6;|y. = |y, while for j # i we have
Oilv, = Id|v,.

Now suppose x; € &X; and x;i = z; € Z;. Then

xip0; = z;0; = z;P,
while
xl‘gl’l[) = Zl'l/J.
On the other hand, if x; € X}, j # i then

lepgi = Zjei = Z]‘

and
xjf)itp = x]-gb = Z]'.
Hence 8; = 0;¢ for i =1, ...,n and similarly 6,60, = 6,0; for i # j. O

Remark 3.3.17. We note that, if i and ¢ are conjugate by a conjugator p and 6 com-
mutes with 1, then 6p is also a conjugator.

Lemma 3.3.18. Let ¢ and ¢ be reqular infinite elements of Gy 1, in quasi-normal form with
respect to the bases X and Y respectively.

If Y and @ are conjugate then, given x1, ..., x, such that x; is an element of type (B) in
X, there exists a conjugator p such that x;p is a terminal or initial element in a semi-infinite
orbit for ¢.

Proof. Since 1 and ¢ are conjugate, by Lemma 3.3.10 the set of characteristic multi-
pliers for ¢ and ¢ coincide and there exists an element p’ such that p' 'y’ = ¢. Let
x; be the given element of type (B) in Xj. Then, from Lemma 3.3.10, x;0’ belongs to a
semi-infinite ¢@-orbit, with the same characteristic as x;. Let y; € Z(A) be an initial or
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terminal element of this orbit. Then there exists j; such that
xip' = yigl.
Thus, as p’ is a conjugator, we can rewrite this as,
vi=yighe = xip g7l = xip g,

For each equivalence class X;, we define each 0; as in Lemma 3.3.16 and a new
(potential) conjugator p by

n .
o= (16,70,
i=1

which is an element of G,; and conjugates ¢ to ¢, since [T'_; 6, Ji commutes with P.
We check, for each chosen x; € A,

xip = x([ [0, = xi0; "o’ = xipp o’ = .
i=1

O

Definition 3.3.19. Let i and ¢ be regular infinite elements in quasi-normal form with
respect to X and Y and &; the equivalence classes on X.

We say R;(, ¢) is the set of pairs (x;,y;), where x; is of type (B) in &; and y; is an
initial or terminal element of a semi-infinite orbit of ¢ with the same characteristic as

X;.

The set R;(¢, ¢) is finite since the number of elements of type (B) in X and the
number of semi-infinite orbits for ¢ is finite.

We define a new set R(¢; ¢) as follows. Given (x;,y;) € Ri(p,¢),i=1,...,n,let
po be the map from {x1,...,x,} to {y1,...,yx} given by

X100 = Y1, -r Xn—1P0 = Yn—1 and x,00 = Y.

(Note that from the definitions, the domain and range of pg are n-sets.) Then R(¢; ¢)
is the set of all such maps.

Again, it is clear that this set of maps R(¢; ¢) is finite, since the number of type
(B) elements of X and the number of semi-infinite orbits for ¢ is finite.

Lemma 3.3.20. Given pg € R(y, @), there are finitely many ways of extending po to an
element p of G 1 such that ¢ = p~1p. Moreover the existence of such an extension p can be
effectively determined, and if such p exists then the images yp can be effectively determined,
forally € X.
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Proof. Throughout the proof, when we say p exists we mean that an extension p of
po to an element of G, 1 exists and satisfies ¢ = p~¢p. Note that we may effectively
enumerate the initial part of the orbits of elements of ¢ and 1, using the process of
Lemma 2.5.25. Thus we may effectively construct the equivalence classes X}, and the
sets Ri(¢, ¢).

First consider a single equivalence class X;. We are given an element x; of type
(B) and an element y; such that

XiPo = Yi,
where y; is an initial or terminal element of a semi-infinite orbit of ¢ with the same
characteristic multiplier and power as x;.

Let x € X of type (B). Then, by definition of =, we have x € A&j if and only if
there exist elements x; = uy, ..., u, = x of X, elements I';, A; € (A) and ki € Z with
uj1hjy1 = u]-l"]-lpkf, for j =0,...,n — 1. Before going any further we show that we
may assume that u; is of type (B), for all j. Suppose not, say u; is of type (C). Then,
by Lemma 2.5.13, there exist k; € Z, I'; € (A) and u; € X of type (B) such that
u]-gbk;' = u;T";. Now

wi AT = wa = T,

and
I ki it =K ki ok '
w7 = iU T p = wilpy = uja A,

so we may replace u; by u;». Continuing this way, eventually all u; will be of type (B).

We show, by induction on #, that there are finitely many possible values of xp,
for an element p € G, 1 such that x¢ = xp~'¢p (where x;0 = x;00 = y;) and describe
an effective procedure to enumerate the set of all such elements. Suppose first that
n=1s0x = u; and we have I' = I'y, A = Ay and k = k( such that xil”lpk = xA.
Given that p exists, from Lemma 3.3.10, xp belongs to a semi-infinite orbit O of
@ with the same characteristic as x. Therefore (if p exists) there exists an element
(x,w) € R;i(¢, ) such that w is the initial or terminal element of O; and an integer [
such that wg! = xp. This implies that

whg' = (xA)p = xTy’p = xTpg" = xi00¢'T,

SO

I—k

wAp " = x;pl’ = y;I. (3.1)

Lemma 2.5.25 gives an effective procedure to determine whether an integer / satisfy-
ing (3.1) exists, and if so find it. Given pg and x, the integer k and the elements I" and
A are uniquely determined so, to decide whether an appropriate value xp exists, we
may check each pair (x,w) in the set R;(, ¢) to see if (3.1) holds for some ! or not.

63



Chapter 3. The conjugacy and power conjugacy problems in Gy

For each such w there is at most one ! such that (3.1) has a solution and, as R;(¢, ¢)
is finite, we may effectively enumerate the values wAg@'~¥ that could be assigned to
xp. Hence the result holds if n = 1.

Now assume that n > 1 and the result holds for all x related to x; by a chain of
length at most n — 1. Then u,,_; is of type (B) and by assumption u,_1p may be given
one of finitely many values, and we have a procedure to enumerate these values.
Suppose then that 1,_1p = v. Now x = u, and we have I';,_1,A, € (A) and k,_1 € Z
such that u, 1T, _1¢*-1 = xA,. Applying the argument of the case n = 1 with u,_1,
I'n—1, Ay and v in place of x;, I', A and y, we see that a finite set of possible values
for xp may be effectively determined. Therefore, by induction, the result holds for all
x € & of type (B).

Finally, if x € A is of type (C), then by Lemma 2.5.13 there is a zX in the orbit of
x for some z of type (B) and £ € (A), i.e. xyp? = zX for some integer p. Since we have
already determined the possible images of all the type (B) elements in &, if p exists
we have, for each choice of zp,

xp =zXY Pp =zpXe P

and this determines the image of the type (C) element under p (uniquely once we
have made our initial choice for the image of zp).

We carry out this process on each equivalence class in turn. An extension of pg
exists only if the process results in a at least one possible value for each element of
X. If the process returns a potential extension p of X then p is an extension of py, of
the required type, if Xp is a basis of V,; (i.e. an expansion of {x}); which may be
verified effectively. O

We are now able to state the following result which completely characterizes
conjugacy for regular infinite elements of Gy ;.

Proposition 3.3.21. Let ¢ and ¢ be regular infinite elements of Gy in quasi-normal form
with respect to X and Y respectively.

Then, ¥ is conjugate to ¢ if and only if there exists a map py € R(; ¢) such that pg
extends to an element p of Gy with p~1yp = ¢.

Proof. Obviously, if py extends to an element of G, such that p~lgp = ¢, then ¢ is
conjugate to ¢ by p.

We now assume that 1 is conjugate to ¢. Lemma 3.3.18 tells us that there exists a
conjugator p such that for each equivalence class & there exists an element x; of type

(B) in A&} such that x;p is an initial or terminal element y; of a semi-infinite orbit for

Q.
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We define pg to be the map x1 — y1,...,x, — y,, where y; = x;p for each i =
1,...,n. Thus, po is an element of the finite set R(y; ¢). Now py is the restriction of p
to {x1,...,x,}, so it certainly extends to p, as required. O

Example 3.3.22. Let 1 be in quasi-normal form with respect to the basis,
X = {xoq,xtxz(x%, Xt X3}
and defined by the bijection with the basis

7 = {xa?,xuc%ocz, Xoqa, X0 }

given by xa1yp = xa3, xa039 = xay, X010 = xaay, Xa3P = xa107.

P ; — @
» 3 4 1 3
This element has four semi-infinite orbits, two of which are right, each with asso-

ciated characteristic multiplier and power pair (1,43),

Orp = {xa19 Frenys O2p = { X039 Fren,s

and two of which are left each with associated characteristic multiplier and power
pair (—1,43),
O3, = {xa2079 " Yrenys Oayp = {xa2079  }ren,-

The remaining elements in X(A) are in complete infinite orbits.

Let ¢ be in quasi-normal form with respect to the basis
Y = {xaq, xaoy, xada?, xada 00, x05 }
and defined by the bijection with the basis
W = {xoc‘fls, xa%txz, xleucQ,xucrol,xa%}

given by xa1¢p = xaci’, X001 = xuc%ocz, xa%zx%cp = xrx%, x«x%oqzxz(p = Xmq&p, xa%qo =
X&p0.

¢:1/>>\—>/(<§\
5 12453

3 4 9
This element has four semi-infinite orbits, two of which are right, each with asso-
ciated characteristic multiplier and power pair (1,43),

Ol,(p = {x‘xl(Pk}kGNo/OZ,q) = {x“%(l)k}keﬂ\loz
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and two of which are left, each with associated characteristic multiplier and power
pair (—1,&%),
O3,p = {x03039 " Hreny, O = {03019 Fren,-
The remaining elements in Y(A) are in complete infinite orbits.
Remark 3.3.23. The set My = {(1,42), (—1,a?)} coincides with the set M, = {(1,43),(—1,43)}.

There is only one equivalence class A7 = X under the action of ¥ as

th%l[) = (xaq)ap, xapq00y = (xaq)aqan and (Xﬂ(zﬂ(%)ﬂ(z = xoc%l/fl.

Remark 3.3.24. The type (B) elements in X are xa; and xapa?.

3

The set R(1, ¢) consists of the pairs (xay, xa), (xay, xa; 2 xa3

2 xo3a1) and (xapa?, xa3a?).

), (xazu 1 Xo50q
Let us choose xa; as our initial choice of the type (B) element. We therefore have

two choices of initial element of a semi-infinite orbit of ¢, which we we denote by
— — 2
xu101 = xa1 and xaj 00 = xaf,

where p; is one possible conjugator and p; is another.

We shall now apply Lemma 3.3.20 and Proposition 3.3.21 to determine if an actual
conjugator exists. We determine the (potential) images of the other type (B) elements
of X under the action of p; and p; first, then finish by determining the images of the
type (C) elements of X.

The images of xaxa?: we first have that (xaza?)as = (xa;)aztp~2 and use equation

3.1 in the proof of Lemma 3.3.20 to determine the image of xapa? with A =T =

2,2 2.3

&y, po = p1 or P2, k = —2 and either w = xaj5a] or xa5a; so wazgol+2 = XX10;07.

e (i) When w = xa3a? we have,
2.2 h+2 _
XA5RTX2 Q1T = X012

X0 goll = X1

which has no solutions (see Example 2.5.26).

(ii) When w = xa3a? we have,

2.3, 42
x0505002 4 = xay 100

xocloczgolz = X1
and I, = 0. Therefore,
2.3, __ -2 2
XXXy = xoqzle/) 01 = X&a01&201,
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2,3 _ 2
and thus xasa] = xaaip1.
e (i) When w = xa3a? we have,
2,2 L4+2 _
XA5XTX2 Q1T = X1 0202
xzxzoclgoll = xzx%ocz
1 _ .2
XXX~ = X7X2
and I; = 1. Therefore,
2.3 _ -2
XN X2 = XK1~ 02
2. 2
XXplXp = Xp&X1K202
2 _ 2
and thus xa;5 = xaaf0s.
(i) When w = xa%a% we have,
2,3 1 bh+2 _
XX507 0P XX10202
xtxl(leplz = xoc%(xz

which has no solutions.

So x(x%a{’ = xtxzfx%pl and xtx% = xoczoc%pz

at the elements of type (C) in X.

The images of xa3: we first have that xa3y

i = 1,2 to determine the image of xo&%,

2, _ -1 _ -1
o xa501 = (Xa101)02¢ X010

2. _ -1 2,001
o xa500 = (xa102)02¢ XX 02 @

are the only possibilities. We now look

(xa1)ay and assume Pp; = p;¢ for

= XD(%DQDCQ,'

= X«XoK1.

The images of xayaiap: we first have that xasaqapp = (xa1)aqan and assume Pp; =

pip for i = 1,2 to determine the image of xaraqaz,

_ 1
o Xapnitpp1 = (Xaq101)X102¢

_ 1
o xapntppp = (Xaq02)x102¢

xoqaap

2 -1
Xaj01002¢Q

X1,

X179,

As the set Xp; is not a basis, p; is not an automorphism. However, p, defined by

the map,

X102 = xzx%, xa%pz = X001, XWpX1X202 = XXqip and xoczoc%pz = xu3,

2

is an element of G, and must be a conjugator as can be checked.
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3.3.2 Conjugacy Algorithm

All that is left is to combine Sections Periodic Elements and Regular Infinite Ele-

ments into one algorithm for any element of G, ;.

Algorithm 3.3.25. Let 1 and ¢ be elements in quasi-normal form with respect to the
basis bases X and Y.

Step 1: By Theorem 3.1.1, we split the elements 1 and ¢ into their periodic parts p,
@p and their regular infinite parts gy, @r;.

Step 2: For ¢r; and ¢p use Algorithm 3.1.6 to construct isomorphisms fr;, fp and
regular infinite element {r; = friWrifrr and periodic element Pr; = fp L ipp fp.
Similarly, use Algorithm 3.1.6 to construct isomorphisms gr;, gp and regular

infinite element pr; = gx; Prigr; and periodic element gr; = g5  Ppgp-

Step 3: To the elements p, $p of G, 1, apply Proposition 3.3.6 to determine if there
exists a conjugator pp. If no conjugator exists, then 1 and ¢ are not conjugate;

Step 4: To the elements {g;, pr; of Go1 and apply Proposition 3.3.21 to determine
if there exists a conjugator pgr;. If no conjugator exists, then ¢ and ¢ are not

conjugate;

Step 5: We combine Step’s 3 and 4 and form a conjugator p = pp * pr; by Theorem
3.1.1.

Theorem 3.3.26. [Hig74, part of Theorem 9.3] The conjugacy problem is soluble in Gy .
Proof. Apply Algorithm 3.3.25. O

3.4 Power conjugacy problem

The power conjugacy problem naturally arises when you have any group B and G is
an HNN-extension given by

G = (a, B|rel B,a 'Wa = V),

where W and V are words in the generators of B defining elements of the same order.
It follows from [Mill71, Lemma 5] that if x and y are elements in B that are conjugate
in G but not in B then x and y are conjugate in B to a power of W or V and hence in
G to a power of W.

This motivates the study of the power conjugacy problem in groups.

Problem 3.4.1. [AS74] Given elements x,y of G, do there exist a,b € Z and z € G such
that x* = z71y?z # 1?2
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See [Lip66, AS74, Com77, Pride08] for references to this problem. The aim of this
section is to answer this question for the Higman-Thompson group G;; (Theorem
3.4.13).

Like the solution to the conjugacy problem, we will break the power conjugacy
problem down into two cases; one for periodic elements and one for regular infinite
elements. Then, we will construct an algorithm that will combine the two parts for a
general pair of elements of Gy 1.

3.41 Power conjugacy for periodic and regular infinite elements
Torsion elements

Let ¢ and ¢ be periodic elements of G,; in quasi-normal form with respect to the
bases X and Y, of order n and m respectively.

Then, to test whether 1” is conjugate to ¢ for a,b € Z, we can apply Proposition
3.3.6 to the pair ¢, ¢' foralla € {1,..,n} and all b € {1,...,m}.

We define PCp to be the set of all the pairs (a,b) that satisfy the condition that ¢*
is conjugate to ¢.

Regular infinite elements

Let i and ¢ be regular infinite elements of G, ; in quasi-normal form with respect to
the bases X and Y.

We want to compare the characteristic multipliers and powers of i with the char-
acteristic multipliers and powers of ¢*.

Lemma 3.4.2. Let ¢ be a reqular infinite element of Go1 and a a non-negative integer. Then
Mye = {(m/d, T7) | (m,T) € My,ged(|m|,|a|) = d and |a| = qd}.

Proof. First we show that the right hand side is contained in the left hand side. If
(m,T) € My then there exists an element x of X (of type (B)) such that xip” = xT.
Suppose first that a > 0. If d = ged(|m|,a), p = m/d, q = a/d and k = ma/d,
then x(¢?)P = xy™1 = xI'7, (as mq has the same sign as m). If a < 0 then, from
the above, with d = gcd(|m|, —a), p = m/d, g = —a/d and k = —ma/d, we have
xp~ " = xI'. In all cases therefore x is a characteristic element of ¢*, with power
m/d and multiplier I'7, where d = ged(|m|, |a|) and q = |a|/d.

Conversely, if x(¢*)" = xA, with A # 1 then, from Lemma 2.5.20, m|ar, which we
can rewrite as pd|qdr, so plqr. As ged(|p|,q) = 1, this implies p|r, so that |m/d| =
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|p| < |r|. It follows that (m/d, 1) is in My and so we have
Mya 2 {(m,T7) | (md,T) € My,d > 0,gcd(|m|,q) =1 and |a| = qd}.

On the other hand, suppose that (r,A) € My« and assume 1 is in quasi-normal
form with respect to X. (This does not necessarily mean ¢“ is in semi-normal form
with respect to X.) Assume first that 4 > 0.Then, from Lemma 2.5.20, there exists
u € Va1 such that u is a characteristic element of ¢, with characteristic (m,I') € My
such that m|ar and A = T!, where ar = mt, t > 0. Let d = gcd(|al, |m|), m = pd and
a = gd. Then dgr = pdt, so qr = pt and ged(|p],|q]) =1, sor = pr' and t = gt’, for
some 1/, t'. However, we have u(y?)P = mde = uyp™1 = uIl', and so, by definition of
(r,A) € Mya, we see that [p| > |r|, so ' = £1. Since a > 0, ' = 1. It now follows
thatr = p = m/d and A =T, and (r, A) belongs to the set on the right hand side of
the equality in the lemma. That is

Mys € {(m,T7) | (md,T) € My,d > 0,gcd(|m|,q) =1 and |a| = qd}.

If 2 < 0 then the lemma follows by applying the result above to M, 1), as for
all 0 € Gy1 we have (m,T) € My if and only if (—m,T) € M, . O

Example 3.4.3. Let ¢ be a regular infinite element of G, ; in quasi-normal form with
respect to
X = {xzx‘i’,xoc%ocz, X0, X },

and defined by a bijective map with
Y = {xuc%, X100, xazal,xag},

: 3y — an2 a2 _ — a2
given by the map xajy = xa1a2, xa1a2¢ = xa7, xaj7a21) = xapxq and xa)p = xa5.

¢¢Kq—>/§\

1 2 3 31 2 4

Then My = {(-2,a1), (1, a2)}.
We can look at ¢? in quasi-normal form with respect to

Z= {xai’, XOC%DQ, X0 X0, XA 05, Xty
and defined by a bijective map with

W = {xoc%, XX10p, XKo&1, xoc%ocl, xoc%}
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given by xzx?lpz = xa%, xa%azlpz = xzx%ucl, xucloczlelpz = XKy, xleuc%qﬂ = xaonq and

xeoP? = xa3.

1/)2: /Q — 1%/??\5

1 2 3 4
From Lemma 3.4.2, we have the following

My = {(m/d,T7) | (m,T) € My,ged(|m|,|a]) =d and |a| = gd}.

Therefore, for:

o (-2,a1) € My we have m = -2, T = ay, gcd(2,2) = 2 = d and thus g = 1.
Hence, (-2/2, 0&%/2) = (-1 1) € Myp.

o (1,ap) € My wehavem =1,T = ay, ged(1,2) = 1 = d and thus g = 2. Hence,
(1/1,65"") = (1,03) € M.

Thus, My, = {(1,03), (-1,a1)} (which can be checked above).

We now need Lemma 3.4.4 and Proposition 3.4.7 to allow us to find "minimal"
pairs (a,b) such that (" and ¢ are conjugate.

Lemma 3.4.4. Let 1 and ¢ be reqular infinite elements of Gy, and let ¢ be an integer, such
that c is coprime to m, for all m € Z such that (m,T) € My U M. Then ¢° ~ ¢° if and

only if p ~ ¢.

Proof. If i ~ ¢ then it is immediate that ¢° ~ ¢°. For the converse, observe that
we may assume, without loss of generality, that c > 0. Suppose that ¢ and ¢ are in
quasi-normal form with respect to bases X and Y, respectively. From Lemma 3.4.2,
Mye = {(m,T)|(m,T) € My} and My = {(m, A°)|(m,A) € M}

Let u be an element of X(A) which is characteristic for i, with -characteristic
(m,T). Then, from Lemma 3.4.2 (and its proof), u has y°-characteristic (m,I°) and, as
Y° ~ ¢°, its image up has @°-characteristic (m,I'“). Hence, from Lemma 3.4.2 again,
up has ¢-characteristic (m,I'). As ged(c, m) = 1, there exist integers s and f such that
ms + ct = 1. Since ¥°p = pp° we have, in the case where s > 0,

upp = uyp" "o = (u(y"))yp = ul*yo = ul*pg

= (up)T°9" = (up) 9" ¢ = (up)g™ ™
= upg.
If s < 0 then we have m(—s) 4+ c¢(—t) = —1, with —s > 0 and the argument above

implies instead that uyp~'p = upe~!. In this case, let v = uip, so v also has y-
characteristic (m,T') and replacing u by v gives v ~1p = vpp~! from which it follows

71



Chapter 3. The conjugacy and power conjugacy problems in Gy

that uipp = up¢. This applies in particular to all elements of X of type (B). Let i’ be an
element of type (C); so there exists an element y € X of type (B) such that y'¢* = yQ,
for some k € Z. Then y' = yQy~*, and yy/ has the same -characteristic as y, for all

j: and so is a characteristic element for 1. From the above then yy/p = (yp)¢/, for all

j. Now
y'pp = yQy' Fp = yp' FpQ = ype' Q= ypeFeQ
= yp FppQ = yp " Qpp = v/ pe.
Therefore, yypp = ype, forall y € X, so ¢ ~ ¢. O

Definition 3.4.5. Let i be a regular infinite element of G,; and let a be a positive
integer. Define a map " : My — My« by ¢ (m,T) = (p,T'*), where d = ged(|m|, a),
p=m/dand a =a/d.

Example 3.4.6. Let ¢ be as in Example 3.4.3 with 4 = 2. The map
ek My = My
can be calculated for each of the elements of M.
$?(2,a1) = (-1,a1) and $(1,a2) = (1,a3).

From Lemma 3.4.2 this is a well defined map, and is surjective. In general it is
not injective. For instance if p,s and t are pairwise coprime positive integers and we
have m; = ps, mpy = pt and a = st, then dy = ged(|my],a) = s, dp = ged(|mal,a) =t,
a1 =a/dy =tand ap = a/dy = s. If, for some non-trivial A € (A) we have (mq, A%)
and (my, At) in My then both these elements are mapped by " to (p, A*).

Proposition 3.4.7. Let ¢ and ¢ be regular infinite elements of G, let a and b be positive
integers and let the images of §* and §° be

Mye ={(pi, Ti))i =1,..., M} and M = {(q;, A)]i = 1,...,N}.
Fori=1,...,M, let
@) (pi, TF) = {(myj, T )1 < j < M}
and, fori=1,...,N, let

(@) (g, 88 = {(mij, 5i))[1 < j < N}
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If ¢* ~ @' then M = N and, after reordering if necessary, we have p; = q; and T% = AP:.
Moreover, there exist positive integers w, 3, dz-,]-, €iksSijks ik fi,j/k, and Aiji € (A), for 1 <
i<M,1<j<Mand1 <k < Nj, such that

a=d;ifiirtijxand B = e;rfiixsijr forallijk,

and
¢t~ gF,
where d;j is a positive divisor of m;;, e;; is a positive divisor of ny, I'; = Ai']’.”,t and
_ Alijk
A; = Ai,j/k, and
fopal | TTCijadig) | /i jadig,
ijk
foralli,j K.

Proof. Assume ¢ ~ @°, with a,b > 0, and that p~ %0 = ¢’. From Lemma 3.3.10,
Mye and M, are equal, so M = N, and we may order Mys so that (p;, T;') =
(4:AP), s0 pi = g; and T% = AP, With the notation for (%) ~1(p;, T%) and (§")~1(g;, A%)
given in the statement of the proposition, letd; ; = gcd(a, |m; ;|) and e;x = ged (b, |n;|),

SO
mij/di; = pi = qi = nix/eix
and let
wij =a/dij,Bix =b/ei,
and
Nij e ABi _ ABik
ri,j] =TI =47 = Ai,k ’

by Definition 3.4.5,for 1 <i < M,1<j<M;and1 <k <N,

As Ff‘;] = Af ¢, by Proposition 2.4.16, there exist A;;x € (A) and positive integers
Si,j ks ti,j,k such that Fl-,]- = Alsljji and Ai,]‘ = A:’]jllz
we may assume that ged(s; i, tijx) = 1. Then

Taking a power of A;; if necessary,

Sijkij _ ij A Bik A tijkBik
Ai,j,k _ri,j = Aix _Az',j,k ’

so sijxtij = tijxBix- As sijx and t;;; are coprime this implies that a;;/t;;; =
Bix/sijx = Cijx € Z,and a;; = c;jxtijx and Bix = C;jkSijk-

Let
g=gcd({cijx[1 <i<M,1<j<M;,1<k<Ni}).

Then there exist integers fi,]',k such that Cijk=§ fi,j,k, for all i, j, k. From Lemma 3.4.2,
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M /s consists of elements (m/p,T*), where (m,I') € My, p = ged(m,a/g) and
a = a/gp. Similarly, elements of M gt/s are of the form (n/q, AP), where (n,A) €
My, q = ged(n,b/g) and B = b/gq. Now glc;;x and c;ji|a;; and c;;k|B;x. Therefore
ged(|mijl,a/g) = ged(|m;j|,a) = d;; and similarly ged(|n;x|,b/g) = e;jx. Thus g is

coprime to
M, 1k

~ ged([migla/g) — ged([nigl, b/g)

pi

for all i, j, k. From Lemma 3.4.4, it follows that lp“/ 8~ gob/ 8.
Now

a/g = wijdij/g = cijitijidij/§ = fijitijidij
and similarly

b/g = fijkSijkeiks
for all i,j, k. Also

ged({fijx1<i<M1<j<M,1<k<N})=1

so, for fixed 7/, ', K/,
fi’,j’,k’| (H(ti/j/kdtj)) /ti’,j’,k’di’,j"
ik
L]

Corollary 3.4.8. The power conjugacy problem for reqular infinite elements of Gy 1 is solv-
able.

Proof. Let i and ¢ be regular infinite elements of G, 1. Suppose that ¢ is conjugate
to ¢”, for some non-zero a,b. Replacing either ¢ or @ or both by their inverse, we
may assume that a,b > 0. Then, in the notation of the proposition above, we have
P~ (pﬁ, where & = f;itiixdi; and B = f;rs;;reir. From the conclusion of the
theorem it is clear that there are finitely many choices for f;«, s, tijx dij and e;.
Hence there are finitely many possible « and B, and we may effectively construct a
list of all possible pairs («, ). Having constructed this list we may check whether or
not Y* ~ @P, using Algorithm 3.3.25 Step 3. Hence we may decide whether or not
there exist a, b such that ¢ ~ ¢". O

Example 3.4.9. Let ¢ be a regular infinite element of G, in quasi-normal form with
respect to

X = {xzx%, X010, X0 }
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and defined by a bijective map with
u= {xm,xtxzle,xrx%}

given by xoé%l/) = X0q, X102 = xaonq and xapp = xoc%.
Let ¢ be a regular infinite element of G; in quasi-normal form with respect to

Y = {xa, xzxzoc“;’, xzxzoc%zxz, XXoX1Xp, xzx%}
and defined by a bijective map with
V= {xoc%,xoclazoq,xocm%al,xoqag, xog )

given by xa19 = xa103, xa039 = xan, xa0200¢ = x03, XA 49 = Xajaox1 and
X5 = xaqa30;.

Then My = {(1,a2), (-1,a1)} and M, = {(1,43), (-1,43)}. Assume there exists
positive integers a, b such that ¢* ~ @”. Therefore, by Proposition 3.4.7 we can define

Mye = {(p;,T¥) 1i=1,...,M} and M = {(q;, A7) :i =1,...,N}.

We have the map ¢ : My — My,
$"(1,a2) = (1/dy, 0§’ ™)
P (L) = (1/dy,a]™)

where d; = ged(1,a4) =1 and d = ged(]-1],4) = 1. Thus, we can write,
My = {(1,0), (1,a)}.

We have the map ¢’ : M, — Mgy,

§°(1,02) = (1/dy,03"'")
(1) = (1/do,0y""*)

where d; = ged(1,0) = 1 and dp = ged(]-1|,b) = 1. Thus, we can write,
My = {(1,8%), (1,63)}.

By Proposition 3.4.7 we require the integers a,b to satisfy a = 3b. The smallest
possibility for (a,b) is (3,1). We can now apply Step 3 from Algorithm 3.3.25 for

3, ¢ to determine if they are conjugate.
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We find a conjugating element p, given by xa10 = xap and xa2p = xaq.

Example 3.4.10. Let i be from Example 3.4.3. Let ¢ be a regular infinite element of

Gz, in quasi-normal form with respect to

X = {xoc%, X010, XX }
and defined by a bijective map with

u= {xle,xzxzle,xuc%}

; 2. _ )
given by xajy = xa1, xax1a29 = xaoa1 and xaop = xaj.

Then My = {(-2,a1), (1, a2)} and M, = {(1,a2), (-1,&1)}. Assume there exists
positive integers a, b such that * ~ @”. Therefore, by Proposition 3.4.7 we can define

My = {(ps, T}") 1i=1,...,M} and M = {(qi,Aiﬁi) ci=1,...,N}.
We have the map " : My — My,
§'(1a2) = (1/dy, a5 ")

P (-2,a1) = (-2/da, }' ™)

where d; = ged(1,a) = 1 and dp = ged(]-2|,1) = 1 or 2. Thus, we can write,
My = {(1,a"), (-2,a9)} or {(1,a"), (-1,a%)}.
We have the map §% : M, — Mgy,
P (1,2) = (1/d, 05’ ™)

' (-1 a1) = (-1/dp, 07 ™)

where d; = ged(1,b) = 1 and dp = ged(]-1|,b) = 1. Thus, we can write,
My = {(1,a), (1,a)}.
By Proposition 3.4.7, we require that My« = M(Pb. Therefore,
My = {(1,a%), (-1,4%/2)}.

This implies that b = a/2 and b = a. Thus, there do not exist integers a,b > 0 such
that ¢ is conjugate to y* by Proposition 3.4.7. The same argument applies replacing
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¢ or ¢ by 1 or ¢! respectively, so no nontrivial power of ¢ is conjugate to a power

of ¢.

Algorithm 3.4.11. Let 1 and ¢ be regular infinite elements in quasi-normal form with
respect to the basis X and Y.

Step 1: Construct the sets M, and M, (see Definition 3.3.8).

Step 2: Calculate the bounds on amax and bmax as in Corollary 3.4.8.

Step 3: For all a,b such that 0 < a < amax and 0 < b < bpax apply the remaining
steps of the algorithm to ¢ and ¢, and to ¢! and ¢.

Step 4: Calculate the sets My« and M, using the maps P 0 My — Mye and
¢": My — M, (see Definition 3.4.5).

Step 5: For each pair (a,b) such that My« = M, apply Step 4 of Algorithm 3.3.25
to the elements ¢* and ¢ to check for conjugacy.

We define the set PCg; of all the pairs (a,b) that satisfy the condition that ¢* is
conjugate to gob, and 0 < a < amax and 0 < b < bpax.

3.4.2 Power Conjugacy Algorithm

Algorithm 3.4.12. Let 1 and ¢ be elements in quasi-normal form with respect to the
basis X and Y.

Step 1: By Theorem 3.1.1, we split the elements ¢ and ¢ into their periodic parts yp,
@p and their regular infinite parts gy, @r;.

Step 2: For yr; and ¢p use Algorithm 3.1.6 to construct isomorphisms fr;, fp and
regular infinite element yr; = friWrifr and periodic element ¥Rl = fp tpfp.
Similarly, use Algorithm 3.1.6 to construct isomorphisms gr;, gp and regular

infinite element gr; = 81?11 @rigr; and periodic element ¢r; = gljlgop gp.

Step 3: To the elements p, pp of G, we work through Section 3.4.1 to give the set
PC P,

Step 4: To the elements 171;, @r1 of Gp,1 we work through Algorithm 3.4.11 to give
the set PCry;

Step 5: We combine Step’s 3 and 4. If PCp or PCg; is empty then there is no non-
trivial power of ¢ that is conjugate to a non-trivial power of ¢. Otherwise,
choose a pair (agry, bry) in PCr; and a pair (ap,bp) in PCp and define (a’,V’) by
a' = kap and b’ = kbp for k,I € Z \ {0} such that the pair k, ! is a solution to the
simultaneous equations ka, = lagy, kb, = lbg;. Then 1/)“/ ~ (pb’.
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Note that, following this algorithm through produces a conjugating element from

¥ to ¢ if such a pair (@, ') exists.

Theorem 3.4.13. The power conjugacy problem for the Higman-Thompson group Gy is

solvable.

Proof. Apply Algorithm 3.4.12. O
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Beauville p-groups
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Chapter 4
Introduction

Chapter 5 comprises work conducted under the supervision of Nigel Boston, Norbert
Peyerimhoff and Alina Vdovina. The work in Chapter 5 is published [BBPV11a].
The work presented in Chapter 6 comprises work conducted under the supervi-
sion of Nigel Boston and Ben Fairbairn. This work has been published, [BBF12].
This part of the thesis is concerned with ramification structures coming from
finite groups which give rise to certain algebraic surfaces of general type known as

Beauville surfaces.

Aims of Work Part 11

We begin this part of the thesis with a brief introduction into the motivation for the
work in Chapters 5 and 6 from algebraic geometry. We make no attempt to define all
the terms but give a rough outline of the progression of the work in the field in order
to put Chapters 5 and 6 in context. References to the literature for the interested
reader are given throughout.

It is a fundamental fact that a complex algebraic curve of genus zero is isomorphic
to the complex projective line P'.

The search for an similar statement by algebraic geometers in the case of algebraic
surfaces led Max Noether to conjecture that a smooth regular (i.e. irregularity of a
surface S, g(S) = 0) algebraic surface with vanishing geometric genus (P;(S) = 0)
should be a rational surface (see [Bea96, Mir95],).

The first counterexample to this conjecture was provided by Federgo Enriques in
1896 (see [Enr1896]). This was followed in the 1930s by Lugi Campedelli and Lucian
Godeaux (see [Cam32, Go35]) who constructed more counterexamples to the above
conjecture. These surfaces now form part of the study of algebraic geometry know
as surfaces of general type (see [Bea96, Mir95]).

In the 1970s, many new examples were found, this time the construction of these
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new surfaces came via quotients S = Z/G of simpler (better understood) surfaces Z
by a free action of a finite group G.

Definition 4.0.14 (Free Action). Let G be a group and X a topological space. A group
action G x X — X is called free if for all x € X, gx = x for g € G if and only if

g= IdG.

In 1978, Arnaud Beauville [Bea78] produced a construction by taking Z to be
the direct product of two curves C; and C, of genera g1 := ¢(C1) and g := ¢(C2)
respectively, together with an action of a group G of order (g1 —1)(g2 — 1).

Remark 4.0.15. This method produces surfaces with self-intersection number of a
canonical divisor for the surface K> = 8.

Beauville also gave an explicit example as a quotient of two Fermat curves, see
Section 4.1 for more details.

In [Bea78], Beauville’s construction of these particular type of surfaces was gen-
eralized to what is now known as surfaces isogenous to a product of curves. That is,
surfaces which have a finite unramified cover which is biholomorphic to a product
of two curves.

Definition 4.0.16. A surface S is isogenous to a higher product if both curves have
genus greater than or equal to 2.

Remark 4.0.17. 1f S is a surface isogenous to a higher product, then S is a surface of
general type (see [Bea96]).

As a consequence of several results in complex algebraic geometry (see [Cat00])
any surface S isogenous to a higher product has a unique minimal realisation S =
(C1 % C2)/ G where G is a finite group acting freely on the direct product C; x C; with
81,82 > 2 chosen as small as possible.

However, we take advantage of the work from [BCG05, BCG06, BCG08] which
translates the technical details from complex algebraic geometry for S to be isoge-
nous to a higher product to conditions on the finite group G which acts freely on
the product of the two curves C; x Cp, with |G| = (g1 —1)(g2 —1). We state the
conditions on the finite group G in Chapter 5, where the definitions are introduced
more formally.

It was, therefore, the work of [BCG05, BCG06, BCG08] which motivates the work
of Chapter 5, where the following results are achieved.

We find ramification structures for finite groups constructed as 2-quotients of a
particular infinite group with "special presentation” related to the finite projective
plane of order 2 and which is also the fundamental group of the one skeleton of the
CW-complex of an Ay building.
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The ramification structures obtained give rise to specific surfaces of general type,
Beauville surfaces. We find new mixed and unmixed Beauville surfaces coming from
Beauville structures constructed from 2-quotients of 2-power order of the fundamen-
tal group of a certain simplicial complex, in Chapter 5. With the terms defined in
due course, the following theorems are obtained. First, a theorem which provides a
number of unmixed Beauville surfaces.

Theorem 5.3.1: Let 3 < k < 63,7 = |log, k| +1and A = [27,2",2"]. If kis not a
power of 2, then (Ty, T>) is an unmixed Beauville structure of type (A, A) for the group
Hj .

Secondly, a theorem which can be used to create a number of mixed Beauville
surfaces.

Theorem 5.3.2: Let 3 < k < 10 and r = |log, k| + 1. If k is not a power of 2, then
(Hax, T1) is a mixed Beauville structure of type [27,2",2"] for the group Gy.

Mixed Beauville surfaces are known to be rare and creation of new examples are
welcome in the field of algebraic geometry, we will say more on this in Chapter 5.

We finish with Chapter 6 which examines current progress on the existence and
classification of non-abelian Beauville p-groups. With the terms defined in due
course, the following theorems and corollaries are obtained.

An examination of group presentations for 2-generator p-groups of order p° leads
to the first theorem and corollary.

Theorem 6.0.1: If p > 3, then there exists at least p + 8 Beauville groups of order

p°.

Corollary 6.0.2: The proportion of 2-generated groups of order p° that are Beauville

tends to 1 as p tends to infinity.

An examination of group presentations for 2-generator p-groups of order p° leads
to the second theorem and corollary on this subject.

Theorem 6.0.3: If p > 3, then there exist at least p — 1, 2-generated non-Beauville
groups of order p°.

Corollary 6.0.4: The proportion of 2-generated groups of order p° that are Beauville

does not tend to 1 as p tends to infinity.

Throughout Chapter 6, computer calculations using the computer algebra pro-
gram MAGMA (and computer scripts written by the author of this thesis) gives rise
to the following corollary.

Corollary 6.0.6: The smallest non-abelian Beauville p-groups are

1. for p =2, SmallGroup(27,36);
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2. for p = 3, the group given by Example 6.4.1, of order 3°;
3. forp =35, SmallGroup(5°%,3);

4. for p > 7, the groups given by Lemma 6.2.1, of order p°.

The work of Chapter 6 provides more information to address the following ques-
tion, [BCGO06, Question 7.7a]: “Classification of Beauville surfaces: which finite groups can
occur?”

In addition, it is also the beginnings of a line of work which should address a
statement which was made in the work of [FGZ10] “it is very plausible that most
2-generated finite p-groups of sufficiently large order [are Beauville groups]". Hence,
it was the work of [FGZ10] and [BCGO06] which motivates the work of Chapter 6.

Notation

We will write IP! for the Riemann sphere (complex projective line), Sym(n) for the

symmetric group of order n! and Z, for the integers modulo 7.

4.1 Beauville surfaces

In recent years a number of people have been interested in the study of Beauville sur-
faces and finite groups (see, e.g., [FJ09], [GP0%b], [BCG10], [Gar10], [GLL10], [FG10]
and [FGZ10]).

From [Cat00, Definition 3.23], a Beauville surface S is an infinitesimally rigid (i.e.,
does not admit non-trivial deformations) complex regular algebraic surface, which is
isogenous to a higher product. This means that S is of the form (C; x Cp)/G, where C;
and C; are non-singular projective curves of genera g(C;) > 2, and G is a finite group
acting freely on the product of curves by holomorphic transformations.

Let H denote the subgroup of G consisting of the elements of G which preserve
each of the curves C;. The presentation S = (C; x C2)/G is called minimal if H acts
freely on each curve C; (i.e. the only element of H that fixes every point on each C; is
the identity element).

Every Beauville surface S has a unique minimal presentation (C; x C;)/G. More-
over, the corresponding quotients C;/H are isomorphic to IP!, and the projections
C; — P! are branched coverings, ramified over three points. These properties are
equivalent to the rigidity of Beauville surfaces, which means that Beauville surfaces
represent isolated points in the moduli space of surfaces of general type (see [Bea96]
for a definition of moduli space of surfaces of general type).
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A Beauville surface (C; x C3)/G is said to be of mixed or unmixed type, according
to whether [G : H| = 2 (i.e.,, G contains elements interchanging the curves C; and
Cy) or H = G, and the group G is said to admit a mixed or unmixed Beauville
structure, respectively (we make formal definitions of mixed and unmixed Beauville
structure for a finite group G in Chapter 5). In the mixed case, the curves C; and C;
are necessarily biholomorphic.

Beauville’s original example [Bea78] had two curves C; = C,, given by the Fermat
curve x° +1y° +z°> = 0, and G the group Zs x Zs acting on C; X C; by the rule

(a,b)-([x:y:z),[u:v:w]) = ([E%: & :z], [E30u : @274 : w]),

where ¢ = e’s and a,b € Zs. Then S is a Beauville surface of unmixed type with
8(C1) =g(C2) =6

Most of what is known about Beauville surfaces is due to the work of Catanese
in [Cat00] and the joint work of Bauer, Catanese and Grunewald in [BCGO05, BCG06]
and [BCGO8]. However, not many examples of Beauville surfaces of mixed type are
known.

Bauer, Catanese and Grunewald [BCG05, BCGO6] showed that all sufficiently
large alternating groups admit an unmixed Beauville structure, and conjectured that
all finite (non-abelian) simple groups, except As, admit such a structure. This conjec-
ture was first been proved for the alternating groups A, (n > 5) in [FG10], and then
for the groups PSL(2,9) (g > 7) as well as some other families of finite simple groups
of Lie type with low Lie rank in [FJ09, GP09a]. In 2010/2011 the full conjecture was
shown to be true.

Theorem 4.1.1. [GLL10, GM10, FMP10] All finite (non-abelian) simple groups, except As,
admit a Beauville structure.

In addition, the symmetric groups Sym(n) (n > 4) and all finite quasisimple
groups (except SL(2,5) and PSL(2,5) = As) admit unmixed Beauville structures by
[FG10, FJ09, FMP10].

Remark 4.1.2. A finite group is called quasisimple if it is isomorphic to its commutator
subgroup and its inner automorphism group is a simple group.

Let G be a finite group. We call G a Beauville group if there exists a ‘Beauville
structure’ for G, which we define in Chapter 5, Definition 5.1.7.

In [BCGO6, Question 7.7] Bauer, Catanese and Grunewald ask which groups are
Beauville groups and, given a Beauville group, what are its Beauville structures? In
[Cat00] Catanese classified the abelian Beauville groups by proving the following.

Theorem 4.1.3. [Cat00, Lemma 3.21 & Beauville’s examples 3.22] G is an abelian Beauville
group if and only if G = Z,, X Z,, where Z, is the cyclic group of order n and gcd(n,6) = 1.
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After Abelian groups, the next most natural class to consider are the nilpotent
groups. Recalling that a finite group is nilpotent if and only if it is a direct product
of its Sylow subgroups (see Section 4.2), Lemma 6.1.1 of Chapter 6 reduces the study
of nilpotent Beauville groups to the study of Beauville p-groups, which is the case
we focus on in Chapter 6.

Notice that Theorem 4.1.3 gives us an infinite supply of Beauville p-groups for ev-
ery p > 5 - simply let n be a power of p. Various examples of non-abelian Beauville p-
groups for specific values of p have appeared elsewhere [BBPV11a, BBPV11b, FGZ10],
but little has been said about the general case until [BBF12] and Chapter 6.

4.2 Finite groups of prime power order

We now state some important information from the world of finite p-groups.
Let p be a prime number. A finite group G is called a p-group if its order |G| is a

power of a prime p.

Theorem 4.2.1 (Lagrange’s Theorem). [Rob96, Theorem 1.3.6] If G is a group and H is a
subgroup of G, then |G| = |G : H| - |H|. If G is finite, |G : H| = |G|/|H|. Hence the order
of a subgroup always divides the order of the group if the latter is finite.

By Lagrange’s Theorem, the order of each element of a p-group must also be a
power of p.
It was first proved by Sylow [Syl1872], that every group of prime power order p"

has a presentation of the form,
<01,--~,11n\11f =05, 1 <i<n,faga)] =01 <j<k<n),

where the v;; are words in the elements ay 1, ..., a, for 1 < j <k < n. A presentation
of this form is called (these days) a power-commutator presentation for the group. It
is standard, in order to save space, to omit relations of the form [a,a;] = e in the
presentation.

If |G| = p*m where ged(p,m) = 1, then a p-subgroup of G cannot have order
greater than p” by Lagrange’s Theorem. A p-subgroup of G which has this maximum
order p” is called a Sylow p-subgroup of G.

Sylow p-subgroups of G always exist and any two are conjugate.

Theorem 4.2.2 (Sylow’s Theorem). [Rob96, Theorem 1.6.16] Let G be a finite group and p

a prime. Write |G| = p®m where the integer m is not divisible by p.
1. Every p-subgroup of G is contained in a subgroup of order p“.

2. If ny is the number of Sylow p-subgroups, n, =1 mod p.
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3. All the Sylow p-subgroups are conjugate in G.

We now state some general definitions about certain families of subgroups that
can be formed from a group G.

Definition 4.2.3. [L-GMO02, Definition 1.1.10] A family of subgroups Gy, Gy, ... of G
forms a descending series in G if

G=G>G >G> ..,

and G; +1 < G; for all i > 0. The sections of this series are the quotients G;/G;1.
Similarly, the family of subgroups Go, Gy, ... of G forms an ascending series in G
if
(e)=Gy<G1 <G <.,

and G; < G; + 1 for all i > 0. The sections of this series are the quotients G;11/G;.

An ascending or descending series, as above, is a normal series if G; < G for all
i > 1; it is a central series if it is a normal series such that G centralizes every section;
and it is finite if G; = G;;; for all but finitely many values of i. In a finite group a
composition series is a series in which every section is simple.

In a finite group, a descending chief series is a normal series
G=Gy>G >..>G,=(e)
such that for every i there is no normal subgroup N of G such that G;;1 < N < G;.
An ascending chief series is defined similarly.

Definition 4.2.4. [L-GMO02, Definition 1.1.13] The upper central series of G is the

(e) = 00(G) < C1(G) < &(G) < ...y

of subgroups of G defined inductively by ;(G)/{i-1(G) = Z(G/{i-1(G)) for i > 0.
G is nilpotent if there exists an integer k such that {;(G) = G.
If G is nilpotent, the nilpotentcy class c of G is the smallest integer ¢ > 1 such that

’:(G) =G.
We can finally state the following theorem.

Theorem 4.2.5. [Rob96, Theorem 5.2.4] Let G be a finite group. Then the following proper-
ties are equivalent:

1. G is nilpotent;

2. G is the direct product of its Sylow subgroups.
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4.3 The pQuotient algorithm

We will often refer to the computer programs GAP and MAGMA, specifically to the
function pQuotient.
The algorithm pQuotient (see [BCP97]) uses the lower exponent p-central series,

that is a descending sequence of subgroups

G=P(G)>..>P1(G) > F(G) > ...,

where P;(G) = [Pi_1(G), G|P;_1(G)? for i > 1. The p-class k of G is the length of the
series. The algorithm constructs a consistent power-conjugate presentation for the
largest p-quotient of G of p-class k

We thus obtain results on ramification structures of finite groups obtained from
particular groups G with special representations. These finite groups are generated
via the lower exponent p-central series. The finite groups G, under considerations
in Chapter 5 are then the maximal p-quotients of p-class k, denoted by G« and given
by G, = G/P(G).

4.4 The Small Groups Library

We will reference the MAGMA and GAP database know as the SmallGroup library,
[SmallGroups].

For the creation of the Small Groups library, Hans Ulrich Besche, Bettina Eick and
Eamonn O’Brien developed practical algorithms to construct the groups of a given
order. A survey of the construction of the library can be found here [BBO02].

The library contains all groups of "small" order, up to isomorphism. More specif-

ically:
e groups of order at most 2000 except 1024 (423164062 groups);
e groups of cubefree order at most 50000 (395703 groups);
e groups of order p’ for the primes p = 3,5,7,11 (907489 groups);
e groups of order p" for n < 6 and all primes p;

e groups of order q"p where g" divides 28, 36, 55 or 74 and p is an arbitrary

prime not equal to g;
e groups of square-free order;

e groups whose order factorises into at most 3 primes.
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The library also has an identification function which returns the library number
of a given group. Currently, this function is available for all orders in the library
except for the orders 512 and 1536 and except for the orders p°, p® and p’ above
2000.
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Chapter 5

Mixed and Unmixed Beauville
Surfaces

We will first introduce the contents of the chapter. Let
= <X0, ..y X6 ’ XiXit1Xi+3 fori = O,..., 6>,

and H be the index 2 subgroup generated by xo, x1 (see Proposition 5.2.1). Moreover,
let G and H; denote the maximal 2-quotients of 2-class k (see Section 4.3 for the
precise definition) of I' and H, respectively (for more details see Sections 5.2 and 5.3
below). We find that H, has an unmixed Beauville structure for every 3 < k < 63
which is not a power of 2 (see Theorem 5.3.1), and that G, admits a mixed Beauville
structure for every 3 < k < 10 which is not a power of 2 (see Theorem 5.3.2). We
conjectured in [BBPV1la] that both results hold generally for all 2-classes k > 3
which are not powers of 2. This would provide infinitely many 2-groups admitting

unmixed (or mixed) Beauville structures.

5.1 Beauville surfaces

Inspired by a construction of Beauville, Catanese defined in [Cat00] a Beauville surface
to be a rigid (i.e., it admits no nontrivial deformation) compact complex surface
which is isogeneous to a higher product, i.e., it admits an unramified covering which
is isomorphic to a product of curves of genera > 2.

It was shown in [Cat00] that every such surface has a unique minimal realisa-
tion S := (C; x C2)/G, such that the genera of the curves C; and C; are minimal.
Moreover, in a minimal realization the action of G on C; x C; is free and respects the
product decomposition, i.e., the elements of G either interchange the factors or act
independently on both factors. This allows us to distinguish two types of Beauville
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surface (as mentioned in Chapter 4), which we now formally define:

Definition 5.1.1. Let S be a surface isogenous to a product of curves with minimal
realisation S = (C; x C2)/G. We say that S is a mixed case if the action of G exchanges
the two factors (and then C; and C; are isomorphic) and an unmixed case if G acts via

a diagonal action.

Definition 5.1.2. A group G is said to act diagonally on a product of two curves
Ci xCifVge Gand x € C1,y € Cy,

go(x,y)=(gox,goy).

The definition of Beauville surfaces allows a purely group theoretic intrinsic de-
scription of all groups producing them. This collection of group theoretical properties
is called a Beauwville structure, and in the introduction (Chapter 4) it is discussed and
in [BCGO5] how a group G with a Beauville structure gives rise to a corresponding
Beauville surface with minimal realisation (C; x C;)/G. As in the case of Beauville
surfaces, there are a mixed and unmixed Beauville structures.

Bauer, Catanese and Grunewald [BCGO8] used this group theoretical description
to classify all smooth complex projective surfaces S isogenous to a product, which
are regular, i.e., g(S) = h'P(S) = 0, and which have vanishing geometric genus
pe(S) = h*0(S) = 0. Since a surface S isogeneous to a higher product is of general
type, pg(S) = 0 implies g = 0, because of x(S) = 1+ p¢(S) —4(S) > 1. Furthermore,
Beauville surfaces with pg(S) > 1 have also vanishing irregularity q(S) = 0, since
q(S) = g(C1/H) + g(C2/ H) (see [Ser96, Proposition 2.2]) and C;/H = C/H = PL.

It turns out that one of the groups in the classification of [BCGO08], which they call
G(256,2) and which has a mixed Beauville structure, coincides with the maximal 2-
quotient of 2-class 3 of a fundamental group I’ of a certain simplicial complex, which
we define in Section 5.2 below. More details about mixed Beauville structures for this
group are discussed in Section 5.2.2.

As mentioned in the introduction, not many examples of Beauville surfaces of
mixed type are known. It was shown in [BCGO05, Theorem 4.3], that if G admits a
mixed Beauville structure, then the index 2 subgroup H must be non-abelian, and
it was mentioned in [BCGO08, Remark 4.2] that no group of order < 256 admits a
mixed Beauville structure. Moreover, the classification in [BCG08] implies that there
are only two groups occurring in minimal realisations S = (C; x C3)/G with pg(S) =
q(S) = 0 admitting mixed Beauville structures, and both of them are of order 256.

Our main aim in the subsequent sections below is to show that not only the
group G(256,2) in [BCGO8], but also many other maximal 2-quotients of our group
I' produce Beauville surfaces of mixed type. Since their orders are higher 2-powers
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than 256 = 28, these other surfaces must necessarily have po(S) > 1.

Remark 5.1.3. It is interesting to note that, by [FG10, Lemma 5], if a group G admits a
mixed Beauville structure (H, T) then the order of any element ¢ € G\ H is divisible
by 4. Hence, the only p-groups that can admit a mixed Beauville structure are 2-
groups. However in the unmixed case, by [BCG05] and [FGZ10], for every prime
number p there exists a p-group admitting an unmixed Beauville structure.

5.1.1 Group theoretical structures

Following [BCGO8] closely, we introduce group theoretic notions which lead to the
definition of Beauville structures.

Let G be a finite group and r an integer with r > 2. An r-tuple T = (g1, ..., §r) of
elements of G is called a spherical system of generators, if g1, ...,g, generate G and we
additionally have g;...g, = 1.

Remark 5.1.4. Traditionally, a spherical system of generators is denoted by square
brackets however, here we use different parentheses to distinguish them from com-

mutators.

For an r-tuple T = (g3, ...,&r) of elements of G and g € G, we set

§Tg = (g518~ ", 888 ).

If A = [my,..,m] is an r-tuple of natural numbers with 2 < m; < ... < m,, then
the spherical system of generators T = (g1, ...,§r) is said to be of type A, if there is a
permutation T € Sym(r) such that we have

ord(g1) = mr(l),ord(gz) = M), yord(gr) = M (r)-

(Here ord(g) is the order of the element ¢ € G.)
For a spherical system of generators T = (g1, ..., §r) of G, we define

£(T) = £((g1,g) = U U Uls 857} 51)
g€G j=0i=1

to be the union of all conjugates of the elements of cyclic subgroups generated by
the elements g1, ..., g. A pair of spherical systems of generators (Ty, T) of G is called
disjoint if

(T) NE(T) = {1}.

Next, we introduce unmixed and mixed ramification structures.
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Definition 5.1.5. Let A; = [m(7),.,m1,)] and Ay = [m(y7),..,m (5] be tuples of
natural numbers with 2 < m ;) < ... <m,) and 2 < mpq) < ..o < My, An un-
mixed ramification structure of type (A1, Az) for G is a disjoint pair (Ty, T) of spherical
systems of generators, such that T; has type A; and T; has type A;.

The disjointness of the pair (T3, T;) in the definition of an unmixed ramification
structure guarantees that G acts freely on the product Cr, x Cr, of the associated
algebraic curves (see Section 5.3.3 and the references therein).

Definition 5.1.6. Let A = [my, ..., m,| be an r-tuple of natural numbers with 2 < m; <
o < my. A mixed ramification structure of type A for G is a pair (H,T) where H is a
subgroup of index 2 in G and T = (g, ...,§s) is an r-tuple of elements of G such that
the following hold:

e T is a spherical system of generators of H of type A,
e for every g € G\ H, the spherical systems T and gTg ™! are disjoint,

e for every ¢ € G\ H we have ¢ ¢ X(T).

Definition 5.1.7. An unmixed Beauville structure is an unmixed ramification structure
with two spherical systems (T, T>) of generators of length 3,i.e, r =3 and s = 3. A
mixed Beauville structure is a mixed ramification structure with a spherical system T
of generators of length 3, i.e., r = 3.

Remark 5.1.8. We note that if G has a mixed Beauville structure (H,T) of type A,
then the index 2 subgroup H has an unmixed Beauville structure of type (A, A), by
choosing the pair (T,gTg™!) for an arbitrary ¢ € G\ H and using the fact that H
is normal in G. Moreover, there are corresponding unmixed and mixed Beauville
surfaces Sy = (C; X C2)/H and Sg = (C1 x C2)/G, so that Sy is a 2-fold covering of
SG.

As [GP09b] states, the question of which finite groups admit an unmixed Beauville
structure is deeply related to the question of which finite groups are quotients of cer-
tain triangle groups; a survey about this is given in [Con02].

Definition 5.1.9. An ordinary triangle group is a group given by the presentation,
T = (x,y,zx,y", 2", xyz).
The group is called,
el 11 .
1. Hyperbolic if ; + . + 5 < 1;
: el 01 1 q.
2. Euclidean if ; + .. + - =1;

3. Spherical if } + L 41> 1.
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5.1.2 From ramification structures to algebraic surfaces

In this section we explain how to construct an algebraic surface S = (Cr, x Cr,)/G
from a given finite group G with an unmixed ramification structure (T3, T>).

Let G be a finite group and T = (g3, ...,gr) be a spherical system of generators
with m; = ord(gr(l-)). For 1 <i <, letP,...,P, € P! be a sequence of points
ordered counterclockwise around a base point Py and 7; € (P — {P,..., P}, Py) be
represented by a simple counterclockwise loop around P;, such that y17,...79, = 1.

We now recall the Riemann’s existence theorem, see [Mir95, Fr80] for more infor-
mation.

Theorem 5.1.10 (Riemann’s Existence Theorem). There is a natural bijection between:

e Equivalence classes of holomorphic mappings f : C — PL, of degree n and with branch
set Bf C B, (where C is a compact Riemann sutface, and f : C — P!, f': C' — P!
are said to be equivalent if there is a biholomorphism ¢ : C' — C such that f' = fog
and B is the set points Py, ..., P, € PY).

e Conjugacy classes of monodromy homomorphisms u : r; (P — B) — Sym(n) (here,
u =y if and only if there is an element o in Sym(n) with u(vy) = ou'(y)o=}, for all
simple closed curves ).

By Riemann’s existence theorem, there exists a surjective homomorphism
®: 7P —{P,...,P},0) =G

with ®(v;) = g; and a Galois covering A : Ct — P! with ramification indices equal
to the orders of the elements g, ..., g. These data induce a well defined action of G

on the curve Cr, and by the Riemann-Huritz formula (see [Mir95, Fr80]), we have

g(CT)zl—l—‘(z;(r—Z—il). (5.2)

=1

Now, we assume that G admits an umixed ramification structure (T;,T;). This
leads to a diagonal action of G on the product Cr, X Cr,, and the disjointness of
the two spherical systems of generators ensures that G acts freely on the product
of curves. The associated algebraic surface S is the quotient (Cr, x Cr,)/G. By the
Theorem of Zeuthen-Segre, we have for the topological Euler number

e(S) = 4(8(Cn) — 1|)(<|‘>7(CT2) ~1)
G ’
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as well as the relations (see [Cat00, Theorem 3.4]),

where K3 is the self intersection number of the canonical divisor and x(S) = 1+
p¢(S) — q(S) is the holomorphic Euler-Poincaré characteristic of S. Assume that
(T, T) is of the type (A1, A2) with A} = [my,...,m,] and Ay = [n3,...,n;s]. Then the
above relations imply for the associated surface S that

X(S):‘;LG’ (r—2—zr;nil> (s—Z—i}i).

I=1

52 The group I' and a 2-quotient with a mixed Beauville

structure

5.2.1 The fundamental group I'

We consider a simplicial complex K, built from 7 triangles, following the relations
given in the presentation of I'. Note that all vertices of the triangles represent the
same point in . Then, I' = m;1(K) is the fundamental group of the complex K.
Realising all triangles geometrically by equilateral Euclidean triangles, we can view
the universal covering of K as a thick Euclidean building of type Az, with T" being
isomorphic to the group of covering transformations. The group I' belongs to a
family of groups introduced in [CMSZ93a] (and originally introduced in [EH88]),
and is obviously presented by

I = <XO, ..., X6 ’ XiXit1Xit+3 fori = O,..., 6>,

where i, i + 1 and i + 3 are taken modulo 7.

In [PV08] the subgroup H C I' was considered, generated by xo and x;, and the
2-quotients of this subgroup were employed for the explicit construction of expander
graph families. We recall the following fact from [PV08]:

Proposition 5.2.1. The group I is generated by xg, x1, x2, and the subgroup H, generated
by xo, x1 is an index two normal subgroup of I'. Moreover, H has the presentation

H = (xo,x1 | 11,72,73),
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with
_ -3..-3
L = X1X0X1X0X1X0Xq "Xy,
_ -1,.-1,-3,.2, -1
2 = X1Xg Xq{ Xg X1Xy X1X0X1,
r3 = x%xo_lxlxoxlx%x%xoxlxo.

5.2.2 A group with a mixed Beauville structure

Let G,3 denote the maximal 2-quotient of I' of 2-class 3. Similarly, let Hp3 denote
the maximal 2-quotient of the subgroup H of 2-class 3. Hj3 is an index 2 sub-
group of Gp3. (Gy3 and Hyj3 coincide with the groups SmallGroup(256,3679) and
SmallGroup(128,36) in MAGMA Small Groups notation, see Section 4.4.) To simplify
notation, we denote the images of xg and x; in G 3, again, by xp and x;.

The quotient Gy 3 is of order 256 = 28, and coincides with the non-abelian group
(they call) G(256,2) in Bauer, Catanese and Grunewald [BCGO8]. They constructed in
[BCGO8, Section 6.6] a mixed Beauville structure of type [4,4, 4] for this non-abelian
group.

In our notation, we establish a mixed Beauville structure of type A = [4,4, 4] for
the group Gy 3, by choosing (Ha3, T1), where T; is the spherical system of generators

x5!, A second mixed Beauville structure of type A is given

(x0, x1,x) with x = x|
by the pair (Hp3,T>) with T» = (yo,y1,y), where yo = xoxl’1 and y1 = x1Xpx7 is
another set of generators of Hy3 and y = y; 'y, '. Moreover, the disjoint pair (T, T»)
of spherical systems of generators is an unmixed Beauville structure of type (A, A)
for the group Hj 3.

These facts were confirmed by MAGMA calculations, and lead to the study of

Beauville structures for other maximal 2-quotients of the groups I' and H.

5.3 Beauville structures for maximal 2-quotients

Before we present our results and conjectures, we fix some notation. We denote the
maximal 2-quotient of 2-class k of I' by Gy, and the maximal 2-quotient of 2-class k
of H by Hy, i.e.

Gy := pQuotient(I,2,k) and Hyy := pQuotient(H,2,k).

For simplicity, we denote the images of x¢ and x; in Gy, again, by xp and x;.

Yxol, v =y 'y ', as well as the

We define yy = xoxl_l, y1 = x1xox1, and x = x;
spherical systems of generators Ty = (xo,x1,x) and T>» = (yo,y1,y) for the groups

Hy k. For x € R, let | x] be the largest integer smaller or equal to x. For an integer k,
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let kmod 3 € {0,1,2} be the remainder under integer division by 3.

5.3.1 Which groups H,; admit unmixed Beauville structures (77, T)?

Our MAGMA calculations show the following result for the maximal 2-quotients H; ;
of 2-class k < 64:

Theorem 5.3.1. Let 3 < k < 63, r = |log, k| +1and A = [27,2",2"]. If k is not a power
of 2, then (T1, Tz) is an unmixed Beauville structure of type (A, A) for the group Hy .

In the case that k is a power of 2, i.e.,, k = 2° for s = 2,3,...,6, we found that
x’é = y’é and x’l‘ = y’l‘, which means that (T3, T;) is not an unmixed Beauville structure
of H, ;. Moreover, the conjugacy classes of xé and x’l‘ in Gy are trivial. Therefore,
none of the pairs (Ty,gT>g ') with ¢ € G, can be an unmixed Beauville structure of
Hy .

We conjecture that all of the above results hold not only for 3 < k < 64, but for all
integers k > 3, thus providing infinitely many 2-groups admitting unmixed Beauville
structures.

5.3.2 Which groups G, have mixed Beauville structures?

Since MAGMA calculations for mixed structures are far more intensive than for a par-
ticular unmixed structure, we confined our MAGMA calculations to all 2-quotients

of 2-classes up to k < 10 and obtained the following result:

Theorem 5.3.2. Let 3 < k < 10 and r = |log, k| + 1. If k is not a power of 2, then
(Hap, T1) is a mixed Beauville structure of type [2,2",2"] for the group Gyy.

Again, we conjecture that this theorem holds for all integers k > 3 which are
not powers of 2, thus providing infinitely many 2-groups admitting mixed Beauville
structures.

5.3.3 What Beauville surfaces do these groups correspond to?

It is described, e.g., in [BCGO05] or in [BCG06] and in general in Section 5.1.2 how
to construct, for a given finite group G with a Beauville structure, a corresponding
Beauville surface with minimal realisation (C; x C;)/G. We do not define some of
the algebraic geometry terms but direct the reader to [Bea96] if they wish to learn
more.

Let T = (g1, 82, g3) be a spherical system of generators of G of type A = [a1, a3, a3].
Let B = {-1,0,1} C P!, and we fix the point co € P!. Employing Riemann’s
existence theorem, this data is used to construct an explicit surjective homomorphism
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71 (P'\B,00) — G with a + g1, B — 2,77 — g3, Where a, B, are particularly chosen
generators of 711 (IP1\ B, o) satisfying afy = 1, and a corresponding Galois covering
Cr — P! with group G, ramified in the three points —1,0,1 € P!, with ramification
indices equal to the orders a1, 4, and a3, respectively. The Riemann-Hurwitz formula
yields for the genus g¢(Cr) of the curve Cr,

28(Cr) =2 = [G|(1 = u(A)), (5.3)

where u(A) = alT + al—z + ;—3 Assuming that G has an unmixed Beauville structure
(T1, T2) of type (Aj, Az), the corresponding Beauville surface is constructed as Sg =
(Cr, x C1,)/G. We have for the topological Euler number e(S¢), by the Theorem of

Zeuthen-Segre,

_,8(Cr) ~1)(g(Cr) = 1)
Gl ’

as well as the relations (see [Cat00, Theorem 3.4]),

e(Sc)

e(Sg K3
x(se) = B = e,

where K%G denotes the self intersection number of the canonical divisor.
Finally, since S is a surface of general type and q(Sg) = 0, we have

X(S6) = 14 ps(S6) = 11 (1 — u(An) (1~ p(42)). 64

These relations allow us to calculate all main invariants of Beauville surfaces cor-
responding to the groups H,; and G, for which our MAGMA calculations showed
the existence of unmixed and mixed Beauville structures:

1. Let Hp x have an unmixed Beauville structure of type (A, A) with A = [27,2,2"]
and r = |log, k] + 1. Let Sp,, = (C1 x C2)/ Hzx be the minimal realisation of an

associated Beauville surface. Since H, is a group of order 28lk/3]+3 (kmod3)—1
we obtain from (5.3),
g(C1) 1= g(Cz) 1= 28[k/3j+3-(kmod3)7772(2r _ 3)/
and from (5.4),
1+ Pg(st,k) — X(SHz,k) _ 28[k/3j+3-(kmod3)72r73(2r o 3)2
2. Let Gy have a mixed Beauville structure of type A = [2,2",2"] with r =

|log, k| +1. Then H,); admits unmixed Beauville structures of type (A, A)
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by Remark 5.1.8, and we have a 2-fold covering Sy, — 56y, of associated

Beauville surfaces. This implies
1 : o
1+ pg(SGZk) = X(SGM) = EX(SHZ,k) — 28U</3J+3 (kmod 3)—2r 4(2r . 3)2‘

In the particular case Gy3 = G(256,2), we recover the results g(C1) = g(C2) = 17
and vanishing geometric genus p,(Sg,,) = 0, in accordance with [BCGO08].

Remark 5.3.3. [Con06] The group Hy 3 can be found as the 64" quotient group of the
hyperbolic triangle group

Tuas = (x,y,z|xyz, x4, y*, 2%),

of genus 17 defined by the presentation,

(v y,2lxyz, x* vt 2%, (xzy )%, (xz 7 ly)?, (2 zy)?),
using the computer program MAGMA.
The action is "Reflexible", that is there exists an involutory automorphism of the
quotient that inverts the images of two of the three generators x, y and z.

5.4 Further Work

The above group I belongs to a family called groups with special presentation. These
groups were introduced by Howie [How89] and are related to projective planes over
finite fields.

It was proved in [EV10] that all groups with special presentation are just infinite
(i.e. they are infinite groups all of whose non-trivial normal subgroups have finite
index). A natural question arises: Do any other groups with special presentations give rise
to finite groups with particular ramification structures?

Remark 5.4.1. The group G is also part of a family of groups defined by triangle
presentations as defined in [CMSZ93a].

Future work could look at the above question. In fact, the beginnings of such a
program has been started in [BBPV11b].

5.5 An infinite family of mixed Beauville surfaces

In the recent paper [BBPV14], we construct an infinite family of triples (Gy, H, Ty),

where Gy are 2-groups of increasing order, Hy are index-2 subgroups of G, and T
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are pairs of generators of Hy. We show that the triples u;, = (Gy, Hk, Ty) are mixed
Beauville structures if k is not a power of 2. Moreover, the associated Beauville

surface S(u3) is real and, for k > 3 not a power of 2, the Beauville surface S(uy) is

not biholomorphic to S(u).
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Chapter 6

General non-abelian Beauville
p-groups

This Chapter comprises work conducted under the supervision of N. Boston and B.
Fairbairn, [BBF12].

In several places we shall refer to computer calculations that can easily be per-
formed in Magma [BCP97] or GAP [GAP4]. In particular we will find it convenient
to use the SmallGroup(m,n) notation that denotes the n'" group of order m in the
small groups library, see Section 4.4 for references.

In addition, for economy of space, for each group presentation (X|R) stated we
omit all commutator relations of the form [a,b] = e from R for each pair a,b € X such
that there does not exist a relator [a,b] # e in R. We will indicate this by (X|R),,.

We will also state each spherical system of generators T = (x, vy, (xy)~!) simply as
(x,y)7, this avoids confusion with commutators and saves writing the third generator
which is always taken as (xy) .

We now summarize the main results of this Chapter. In Section 6.1 we show that
there exits a Beauville p-group for all groups of order |G| = p”, r > 2. Sections 6.2
and 6.3 classify the non-abelian Beauville p-groups of order p> and p*.

In the penultimate section, we examine the groups of order p° and prove the
following theorem.

Theorem 6.0.1. If p > 3, then there exists at least p + 8 Beauville groups of order p°.

From the analysis of the number of 2-generated groups of order p> we find the

following consequence of the above theorem.

Corollary 6.0.2. The proportion of 2-generated groups of order p° that are Beauville tends
to 1 as p tends to infinity.

For groups of order p® we find the following.
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Theorem 6.0.3. If p > 3, then there exist at least p — 1 2-generated non-Beauville groups of
order p°.

From the analysis of the number of 2-generated groups of order p® we find the
following consequence of the above theorem.

Corollary 6.0.4. The proportion of 2-generated groups of order p® that are Beauville does not
tend to 1 as p tends to infinity.

From [FGZ10] we have the following statement “it is very plausible that most
2-generated finite p-groups of sufficiently large order [are Beauville groups]". If we
interpret that the word “most" from the statement to mean that the proportion of
Beauville groups tends to 1 as p tends to infinity, then this statement would be true
for groups of order p° but not for groups of order p°.

Question 6.0.5. If n > 6, what is the behavior, as p tends to infinity, of the proportion
of 2-generated groups which are Beauville?

Finally, through computational experimentation, we have the corollary of the
combined results of this note.

Corollary 6.0.6. The smallest non-abelian Beauville p-groups are
1. forp =2, SmallGroup(27,36);
2. for p = 3, the group given by Example 6.4.1, of order 3°;
3. for p = 5, SmallGroup(5°,3);

4. for p > 7, the groups given by Lemma 6.2.1, of order p>.

6.1 Some general results

We first note a very easy lemma, which reduces the study of nilpotent Beauville
groups to the study of Beauville p-groups.

Lemma 6.1.1. Let G and G’ be Beauville groups and let {(x1,y1)%, (x2,y2)"} and {(x’l,y’l)‘L,
(xb,y5)T} be their respective Beauville structures. Suppose that fori = 1,2

ged(o(xi), 0(x7)) = ged(o(yi),0(y7)) = 1.

Then {((x1,x}), (y1,y}))T, ((x2,x5), (y2,y5))'} is a Beauville structure for the group G x
G
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We now explicitly show that there is a non-abelian 2-generated non-Beauville

group of order p" for every n > 3 and for every prime p.
Lemma 6.1.2. [BBF12, Lemma 9] The group

G = (x,ylx?", yP, 2 = 2" )
is a non-abelian 2-generated non-Beauville group of order p"*! for every prime p and every
n>1

Proof. [BBF12, proof of Lemma 9] Clearly G is non-abelian and 2-generated and a
straightforward coset enumeration shows that the subgroup (x) has index p and so
|G| = p"*1. Now, Z(G) = (xF) and every element outside the subgroup (x?,y)
has order p". Consequently, any generating set must contain at least one element of
order p", but all such elements power up to xP"" (i.e. there exists a € N such that,
forw € G, w" = x’”nil), so G cannot have a Beauville structure. ]

We remark that this lemma is a generalisation of [FJ09, Example 4A] which is the

case n = 2.

Lemma 6.1.3. [BBF12, Lemma 10] The group
G = (xyl " 2 = )

is a non-abelian Beauville group of order p*" for every prime p > 5 and every n > 2.

Proof. [BBF12, proof of Lemma 10] Clearly G is non-abelian and 2-generated and a
straightforward coset enumeration shows that the subgroup (x) has index p" and so
|G| = p**. Let p > 5 be prime. We claim that {(x,y), (xy? xy*)'} is a Beauville
structure in this case.

Now, every element of G can be written as xiyf for some 0 < i,j < p" — 1. Fur-
thermore, since Z(G) = (x”" ', y”" ') and so a necessary condition for two elements
of G to be conjugate is that they power up to the same elements of Z(G). A straight-
forward induction tells us that

(xy) = x1+(p+1)+(p+1)2+-~-+(p+1)r’1yr'
An easy exercise in using geometric progressions and the binomial theorem tells us

that for any prime p

T+ 1+p) 4+ +1+p)? "1 =p" (mod p").
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Combining these two identities gives (xy)?" ' = x”" 'y?" . Similar identities can be
established for the elements x1?, xy> and (xy?xy®)y—>y° = x”(’”“)zyg’, verifying that
no powers of these elements are conjugate.

Finally we need show these pairs generate. Clearly (x,y) = G by definition. Since
(xy?)lxy® =y and xy*y 2 = x50 G < (x,y) < (xy% xy®) < G.

Similar calculations in the case p = 5 show that {(x,y)", (xy?, xy*)'} is a Beauville
structure. O

The above lemma has covered the groups of order an even power of a prime, p*".

The next lemma covers the odd case, p?**!.

Lemma 6.1.4. The group

G:= (X,1,2,&1, .. 0,1, B1, . Bu_1|XP ,yP 2P, [x,y] = 2,

Q :xpi,ﬁi :y”i (forall1 <i<mn-—1)),

is a non-abelian Beauwville group of order p***! for p > 5and n > 2.

Proof. For p > 5 and n > 2, it is clear that G is a 2-generated group by (x,y)’
and (xy?, xy*)*. Furthermore, we have distinct subgroups (x), (y), (z) of G of orders
p", p", p respectively. As every element of G can be put in the form x'y/zF, it follows
that the order of G is p?**!.

We now claim the following is a Beauville structure {(x,y), (xy? xy*)'} for G.
Since a;, B;i € Z(G) and [x,y] = z we can construct the following X-sets,

pn_l ‘ ‘ o pn—l_l p—l ‘ ‘ - ‘ A ‘ ‘
(x,y) = {e} U ( U {xl,yl,X’ylHZ)) \ U ULy, 2Py},
i=1 i=1 j=1
and
Z(xy?, xyt) =

p"—l o o o pn—l_l P—1 ‘ . ‘ ‘ ' ‘ ‘ ‘ ‘
{e} U ( U {x’yZI, x1y41, x21y61}<z>> \ U U {xzpyZZpZ], xzpy4zp2]’ x21py61pzj},
i=1 i=1 j=1
for this group. Here, we prefer to write the a;’s and ;s in terms of powers of x” and
y? respectively. Therefore, & (x,y) N Z(xy?, xy*) = {e}. O

6.2 Groups of order < p°

All groups of order p or p? are abelian for every prime p. Thus, by Theorem 4.1.3 the
only Beauville group of order less than p® is Z, x Z,, for p > 3. There are no abelian
Beauville groups of order p>.
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The classification of groups of order p3 is well-known; this result is due to [Hol93].
There are two non-abelian groups of order p®. The first is of the form discussed in
Lemma 6.1.2 and is thus not a Beauville group. The second is taken care of by the
following, which is a special case of Lemma 6.1.4.

Lemma 6.2.1. For any prime p > 7 the group
G:= (x,y,z|x", y?, 2P, [x,y] = z),

is a non-abelian Beauville group of order p® with Beauville structure (T; = (x,y)t, T, =
(xy?, xy%)").

Proof. The group G is the extra special plus type group p ™. Since xyx~ly~! =

[x,y] = z we have that xyx~! = yz and since Cg(y') = (y,z) for 1 < i < p we see
that the conjugates of i’ are precisely the elements y'z/ for 1 < j < p. Similarly
Cs(g) = (g,z) forall g € G\ Z(G).

Therefore, as
p p-1

(Th) = {e} U U, v, x'y'Z},
j=1i=1
and
Z(Tz) — {6} U U {nyZIZ], nySZZ], x21y5ZZ]},
j=1i=1

the condition X(T7) N X(Tz) = {e} is equivalent to:

(Co(x) UCq(y) U Co(xy)) N (Ca(xy?) U Co(xy®) U Co (xy’xy’)) = Z(G).

Again, this can be shown to be equivalent to checking the equations khk~! # h
forall 1 € Ty and k € T,. When showing this, we make use of the equation (xy)*lz =
xP~lyP~tand (xy?xy?) ! = yPOxP~2z2. We get the equations,
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x’1xy2x = yzx; x’lxy3x = y3x;
yilxyzy _ yxzzz; yilxyg’y _ y2x223;
yilx’lxyzxy = yzxz; y’lx’lxysgxy = y3xz;

x—lyp—Sxp—ZZZX _ yp—5x2p—422+(p—5)(p—1);

y—lyp—Sxp—ZZZy — yp—Sxp—ZZp;

y—lx—lyp—5xp—222xy — yp—5x2p—222p—1.

As you can clearly see, some of the elements of {x,y,xy} centralize some of the
elements of {xy?, xy%, xy?xy®} when p < 5. Therefore, the result holds for p > 7. [

Remark 6.2.2. The group given by Lemma 6.2.1 for p = 7 appears as the second group
in a family of groups in [BBPV11b, Theorem 3.2]. There, it arises as a 7-quotient of a
finite index subgroup of an infinite group with special presentation related to a finite

projective planes.

6.3 Groups of order p*

The classification of groups of order p* is well-known; this result is due to [Hol93].
We list the non-abelian 2-generated groups of order p* in Table 10.1 for p odd and
Table 10.2 for p = 2. The only abelian Beauville group of order p* is Zy X Zy for
p > 3.

The groups in Table 7.1 are stated to be Beauville or not in the final column. The
groups in Table 7.2 are easily checked by computer to not be Beauville groups. We

can state the above information in the following lemma.

Lemma 6.3.1. [BBF12, Lemma 16] For any prime p > 5 the groups Gy and Gy are non-
abelian Beauwville groups of order p*.
For p = 3, the groups G, and Gy are not Beauville groups.

6.4 Groups of order p°

Computer calculations using MAGMA show that this is the first occurrence of a
Beauville 3-group. This group is, in fact, the only Beauville group of order 3°.
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Name Presentation Beauville?
Gy (x,y|xP,yP, x¥ = x1+P%) No
G2 (x,y|xP*, yP*, x¥ = xPH1) Yes (p > 3)
Gs (X y 23, yP, 2, [x,2]) = y), No
Gy (x,y,2|xP",yP, 2P, x¥ = xPTL, [x,2] = v), No
Gs (x, y,z|xp2,yp zP = xP,x¥ = xPH, [x, 2] = y), No
Gs (x,y,2|xP",yP, 2P = xP%, x¥ = xPT1,[x,2] = y), No
Gy (p>3) | (w,x,y,z[wf, xP,yP, 2P, [y, 2] = x,[x,2] = w), | Yes (p>3)
Gs (p =3) | (x,y,212%, %2 (x,2] =y, [y, = ), No

Table 6.1: The non-abelian 2-generated groups of order p*, p odd. In the groups Gs, ..., Gs
and Gg, the presence of the relation [x, z] = y shows that the group is 2-generated. In G the
presence of the relations [y, z] = x and [x, z] = w show that the group is 2-generated. In G¢ «
is any quadratic non-residue (mod p).

Name Presentation

G1,Gy,Gs | asin Table 7.1

Gy (x,y|x%, y?, ¥ = x7)

Gs (x,y|x%, y?, 2 = 2%)

Gs (xr,y[x® yt o =271 b = 32

Table 6.2: The non-abelian 2-generated groups of order 2%.

Example 6.4.1. The group
(x,y,z, w,t]x?’, y3,z3, wd, t3,yx =yz,z¥ = zw,z¥ = zt),

is a non-abelian Beauville group of order 3° with Beauville structure given by
(S1= (0 y)", S = (xt, y*w)").

The computer program MAGMA was further used to explore the possible Beauville
groups of order p°, for p > 3. The results of our computer experimentations are pre-

sented in Table 10.3. We note that there are no abelian Beauville groups of order
5

P

We observed that for each prime 5 < p < 19 there are exactly p + 10 Beauville
groups of order p°. The presentations for the p + 10 groups are given below, seven H;
groups and p + 3 H; ;i groups. The remainder of this section is devoted to proving
Theorem 6.0.1. We start by showing that five of the seven H; groups are Beauville
groups. We follow this, using the work of [Jam80, Section 4.5, part (6)], to analyze

the family of non-isomorphic groups given by H; x ;.
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p | n h(p) | 8(p)
2 |- 19 0
3 |3 29 1
5 12,3,7,8,9,10,11, 12,13, 14, 19, 20, 23,30,33 | 37 15
7 123,789 10,11, 12, 13, 14, 15, 16, 21, 22, 25,

32,37 41 17
1112,3,7,8,9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 25, 26, 29, 36, 39 41 21
131 2,3,7,8,9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19,

20,21, 22, 27, 28, 31,38, 43 49 23
171 2,3,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21,22, 23, 24, 25,26, 31,32, 35, 42, 45 49 27
19| 2,3,7,8,9, 10,11, 12, 13, 14, 15, 16, 17, 18, 19,

20,21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 37, 44, 49 | 53 29

Table 6.3: The groups SmallGroup(p’n) for p < 19 a prime that have Beauville structures.
h(p) (respectively g(p)) is the number of 2-generated (respectively Beauville) groups of order
5

p-.

Let X = {x,y,z,w,t} and set H; := (X|R;), for the below relations,
R ={x" =w,y? =t,2°,wl, [y, x] = z},

Ry = {«xP,yP, 2P, wP, [y, x] = z,[z,x] = w, [z,y] = t},
Ry = {x" =w,y? =t,2/, w17, [y, x] = z,[z,x] = t},
Ry = {x¥ =w,y? =t,2°, w17, [y,x] = z,[z,x] = t},

where 7 is taken as 2,5,6,7,6,10 for p =5,7,11,13,17,19 and
Rs = {xV =w,y? =t,2°,wP, 1, [y, x] = z,[z,x] =t,[z,y] =t},

Re = {xP,y?, 2P, wP,t?, [y, x] = z,[z,x] = w, [w, x] = t}
Ry = {xP,yP, 2P, wP, P, [y, x] = z,[z,x] = w, [z,y] = ¢, [w, x] = t}.

Remark 6.4.2. It would be interesting to know how 7, in the set of relations Ry, varies
as a function of p.

We now look to [FJ09, Section 4] on lifting Beauville structures to extend the
computational results for p > 19.

Definition 6.4.3. Let G be a finite group with a normal subgroup N. An element g
of G is faithfully represented in G/N if (¢) "N = {e}.

If T = {g1,...,gx} is a k-tuple of elements of G, we say that this k-tuple is faithfully
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represented in G/N if (g;) "N = {e} for1 <i <k.

Lemma 6.4.4. [F]09, Lemma 4.2] Let G have generating triples {x;,y;, z; } with x;y;z; = e
for i = 1,2 and a normal subgroup N such that at least one of these triples is faithfully
represented in G/ N.

If the images of these triples corresponds to a Beauville structure for G/ N, then these
triples correspond to a Beauwville structure for G.

We can now make the following conclusions for some of the group structures
Hi= <X’Ri>7'

Lemma 6.4.5. Let H; = (X|R;), fori =2,6,7 and p > 5 a prime. Then, H; is a Beauville
group of order p°.

Proof. Firstly, for p = 5 MAGMA calculations show that the groups H; fori = 2,6,7
have Beauville structures corresponding to {(x,y)", (xy?, xy*)'}.

Secondly, let p > 7. For each group H; the center Z; = Z(H;) is given by
the subgroup (t,w) and (x,y)*, (xy? xy>)" are two generating sets for the groups
H; for i = 2,6,7. The quotient group H;/Z; is isomorphic to the group G given
in Lemma 6.2.1. Clearly, the images of x,y and xy in H;/Z; are faithfully repre-
sented (in the sense of Definition 6.4.3) and correspond with the Beauville structure
{(x,y), (xy?, xy>)"} for the group G.

Thus, by Lemma 6.4.4 we see that the Beauville structure {(x,y), (xy?, xy®)'} lifts
to a Beauville structure for the groups H; for i = 2,6,7. O

Lemma 6.4.6. Let Hy = (X|Ry), and p > 5 a prime. Then, Hy is a Beauville group of order

p.

Proof. By Lemma 6.1.4, with n = 2, we see that the groups H; have Beauville struc-
tures corresponding to {(x,y), (xy?, xy*)'}. O

Lemma 6.4.7. Let Hs = (X|Rs), and p > 5 a prime. Then, Hs is a Beauville group of order

p°.

Proof. We claim that the groups H; for p > 5 have Beauville structures corresponding

to {(x,y)", (xy?, xy*)"}.
It is clear that {x,y} and {xy? xy*} are generating sets for Hs. Now, given that
xP =w,y? =t, [x,y] =z [z,x] = [z,y] = t and the center Z(Hs) = (w, ) we see that

Z(x,y) =
p-1 p—1

{eyU | Uy xy @ h) |\ U Py gyl xvyryiv2ty,
i=1 ijk=1
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and
p*-1
S (xy?, xyt) = {e} ( U {x'v*, x'y*, xzz'y6i}<2><y”>)
i=1

p—1
\ U {xipyZipyijk’ xipy4ipyjpzk’ x2ipy6ipyjpzk}.
ij k=1
We prefer to write w in terms of x'? and t in terms of yip for 0 <i < p — 1. Therefore,
Z(x,y) NZ(xy?, xy*) = {e}. O

We are now left with the groups given by relations R; for i = 3,4. We cannot lift
Beauville structures from groups of order < p° to the groups H; for i = 3,4 as any
normal subgroup N; of H; would decrease the order of the generators x,y. Thus, x,y
would not be faithfully represented in H;/N;.

We now have the following groups for selected values of i,j,k,I € {0,...,p —1}.
We find p + 3 non-isomorphic groups for 5 < p < 19 give rise to Beauville p-groups
with the following presentations,

Hjrr = (x,y,z,w,t|xP = w'th,yP = W, 2P, wP 1P, v, y] =z [xz] =w, [y z] = 1),

These groups correspond to the groups SmallGroup(p’, n) for7 < n < p+9, as given
by the MAGMA small groups library.

From [Jam80, Section 4.5, part (6)], the group structures for p-groups of order p°
for p > 3 are listed. The groups having the structure of H; j,; are therefore given in
the classification. We can therefore state the following lemma which is a consequence

of the classification of groups of order p°.

Lemma 6.4.8. If p > 3 a prime, then there are p + 7 non-isomorphic groups of the following
form,

Hijp:= (x,y,z,w, t|xP = witj,yp = wht! 2P, WP, 1P, v, y] =z [xz] =w,[y,z] = 1),
where i,j,k,1 € {0,...,.p —1}.
Proof. From [Jam80, Section 4.5, part (6)], we see that there are
1 1
1+§(p—1)+2+1+§(p—1)+1+2—|—1:p+7

groups of this form. O

We are now in a position to prove Theorem 6.0.1, which was stated in the Intro-
duction. It is convenient to note that all the groups H;;x; have center Z; i, = (w, t)
and H;jx1/Z;jx1 = G, the group given by Lemma 6.2.1.
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Proor of THEOREM 6.0.1: Firstly, by Lemmas 6.4.5, 6.4.6 and 6.4.7 we have five
Beauville groups for each prime p > 3.

Secondly, we consider the p + 7 non-isomorphic groups H;x; given by Lemma
6.4.8. We note that the group given by H, corresponds to Hyg,0 and thus we have
p + 6 non-isomorphic groups of the form H; ,; to account for.

The groups corresponding to ®4(21111)b, in [Jam80, Section 4.5, part (6)] cannot
admit a Beauville structure as x? = ¢, y* = w" where r = 1 or v (the smallest positive
integer which is a non-quadratic residue modulo p). The group given by ®¢(21111)a
in [Jam80, Section 4.5, part (6)] cannot admit a Beauville structure as x¥ = w, y* =e.
We are therefore left with p + 3 non-isomorphic groups to analyse.

The remaining p + 3 groups H; ;i ; have non-trivial words u(w, t), v(u, t) such that
x? = u(w,t) and y» = v(w,t). As the words u,v are made up of elements of the
center Z; ;i of the groups H; ;; and the order of the elements x,y is pz, we see that
the remaining p + 3 groups satisfy the criteria £(x,y) N Z(xy?, xy*) = {e} for p > 3.
That is, each element of the form x°y"z¢ (with both a # 0 and b # 0) is conjugate
to elements of the form x%y’z%s(w,t), where s(w,t) is a word in w,t. Therefore,
{(x, )7, (xy? xy*)t} is a Beauville structure for the remaining p + 3 groups. The
result them follows. O

We see for 5 < p < 19 that the number of groups found to have Beauville struc-

tures is p + 10. From the work above, we are led to make the following conjecture.

Conjecture 6.4.9. For all p > 5, the number of Beauville p-groups of order p° is given

by g(p) = p+10.
In particular, H3 and Hy are Beauville groups for p > 5.

In the preceding paragraphs we produced p + 8 groups of order p° that admit a
Beauville structure.

For groups of order p°, the number of 2-generated groups is approximately half
of the total number of groups. We see from [Jam80], that the exact number of 2-
generated p-groups of order p° for p > 5 is given by

h(p) =p+26+2ged(p—1,3) +ged(p — 1,4).

Thus, h(p) ~ p as p — oo. The function h(p) is an obvious upper bound for the
number of Beauville groups of order p°. Since p +36 > h(p) > g¢(p) > p + 8 we get
that g(p) ~ p as p — o0 and so,

Thus, the proportion of 2-generated groups of order p° which are Beauville tends to
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1 as p tends to infinity, which establishes Corollary 6.0.2.

6.5 Remarks on Groups of order p°

For groups of order p®, we used MAGMA to determine that there are no Beauville
2-groups and only three Beauville 3-groups. These groups correspond to the groups
SmallGroup(3°, n) for n = 34,37,40.

Remark 6.5.1. It is interesting to note that Corollary 6.0.4 also holds for non-abelian
2-generated groups of order p® since there are only 3 abelian ones.

For p > 3, we would like an asymptotic result for groups of order p®, similar to
that in Section 6.4 for p5 . Using [NOV04, Theorem 2 and Table 1], we see that there
are in total

f(p) =10p +62+14gcd(3,p—1) +7gcd(4,p —1) +2gcd(5,p — 1)

2-generated groups of order p® for p > 3 a prime. Thus, f(p) ~ 10p as p — co.
From [NOV04, Theorem 2], the family of groups of order p® given by “3) (a,b|b?, class 2)"
give rise to p + 15 non-isomorphic groups (see [NOV04, Table 1]). One can generate

these group presentations for each p a prime by the following MAGMA code:

> G:=Group<a,b|b~p>;

> P:=pQuotient(G,p,2);

> D:=Descendants(P: OrderBound := p~6);
>D := [d: d in D | #d eq p~6];

Each of the groups contained in D is 2-generated, say by x and y. We find that,
for each p a prime, there exists a family of non-isomorphic groups contained in D

given by the following presentations,

K, = (x,y,z,u,0,w|x’ =u,y’ =w', 2\, ul =00, 0P, |y, x] =z, (z,x] =v,[z,y] = w),

forr=1,.,p—1

It follows that all of the p — 1 groups have o(x) # o(y). You can clearly see, given
the above group structures, if o(x) # o(y) then K, does not have a Beauville structure
(this is similar to the third paragraph of the proof of Theorem 6.0.1, Section 6.4). That
is, any second set of generators one tries to construct will have elements of the form
x"y? and so if o(x) # o(y) we will have Z(x,y) N Z(x*y?, x°y?) # {e}. Therefore, we
obtain a family of p — 1 2-generated non-Beauville groups of order p®, which proves
Theorem 6.0.3 and establishes Corollary 6.0.4.
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