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Abstract

Carbon Dioxide (CO2) is considered to be the most detrimental of all the Green

House Gases on global warming (IMO, 2009). In an attempt to reduce the amount

of CO2 emissions from ships, this research approaches the problem from the

perspective of more efficient design through superior estimation of design points.

Conventionally, a propeller is selected from the viewpoint that a ship travels at

a constant design speed, with zero drift angle. However, a ship is subjected to the

motions imposed on her from the environment. These motions tend to push a ship

off her intended course, resulting in helm correction, speed correction (if the ship is

to arrive at her intended destination on time) and consequently, altered inflow

velocity to the propeller.

It is the novel aim of this research to determine if accounting for a ship’s

manœuvring motion will result in a propeller selection that has an overall higher

efficiency, compared to one selected which neglects the manœuvring motion.

To achieve this aim, a ship manœuvring simulator has been developed which

incorporates a modified mathematical propeller model that accounts for the

unsteady manœuvring response of a ship subjected to an environment in which she

is expected to sail.

The developed simulator has an iterative routine which enables it to select a

propeller from a standard series that has the highest efficiency for the route in

question.

Case studies are constructed which highlight how the efficiency of a propeller

fairs when using the newly proposed propeller selection method, compared to the

conventional propeller selection perspective.

The newly proposed propeller selection method is most suited to ships which

are susceptible to relatively large drift angles and/or relatively high installed power

requirements.

Results from the case studies are encouraging, with a gain of 2.34% in open

water propeller efficiency for a 3600 Twenty foot Equivalent Unit container ship,

equating to a saving of 3.22% in Carbon Dioxide emissions.
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Generally, throughout this Thesis, text written in a teletype font refer to
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α Angle of incidence [rad]
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β Hydrodynamic pitch angle [rad]

γRA Wind angle relative to ship’s centreline. [◦]
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δ Wind cross-force parameter. [-]

ηH Hull efficiency. [-]
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ηs Shaft efficiency. [-]

ρsw Density of salt water. [Kgm−3]

ρair Density of air. [Kgm−3]

τ Trim, positive by the stern. [m]

χ Wake skew angle [rad]
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ψ Ship’s heading with respect to the world coordinate system. [◦]
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AR Rudder area. [m2]

aE Expanded Blade Area Ratio [-]

ALw Lateral projected above-water area of ship [m2]

AFw Frontal projected above-water area of ship [m2]

B Characteristic Beam, usually taken to be moulded beam. [m]

CD Drag coefficient [-]

CL Lift coefficient [-]

CDl Head-wind drag coefficient [-]

CDt Beam-wind drag coefficient [-]

c Chord length [m]

CXw Wind force coefficient in pure surge direction [-]

CYw Wind force coefficient in pure sway direction [-]

CNw Wind moment coefficient in pure yaw direction [-]

D Propeller diameter. [m]

Ipp Mass moment of inertia of propeller shaft system about its axis. [Kgm2]

Izz Mass moment of inertia about the Z axis. [Kgm2]

Jpp Added mass moment of inertia of propeller about its axis. [Kgm2]

Jzz Yaw added mass moment of inertia. [Kgm2]

K Goldstein factor. [-]

KQ Propeller torque coefficient. [-]

KT Propeller thrust coefficient. [-]
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L Characteristic Length, usually taken to be length along the waterline. [m]

Loa Length overall. [m]

Lpp Length between perpendiculars. [m]

Lwl Length along the waterline. [m]

m Mass. [Kg]

mx Surge added mass. [Kg]
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ṁ Mass flux [kgs−1m−2]

n Propeller revolutions. [usually rpm]

NH Moment due to the ship hull’s interaction with the water. [Nm]

NR Moment due to the action of the rudder. [Nm]

NP Moment due to action of the propeller. [Nm]

NA Moment due to the wind. [Nm]

R Non-dimensional pitch rate [-]

R Radius of propeller [m]

RH Radius of propeller hub [m]

r Yaw rate. [rad s−1]

Rapp Appendage resistance [N]

RW Wave making resistance [N]

RB Bulbous bow resistance [N]

Rtr Resistance due to immersed transom stern [N]

T Mean draught. [m]

Ta Draught at after perpendicular. [m]

Tf Draught at forward perpendicular. [m]
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Nomenclature

u Surge velocity. [ms−1]

vo Sway velocity at midship. [ms−1]

V Resultant ship velocity. [ms−1 or knots]

Vv Resultant ship velocity. [ms−1 or knots]

Vs Service speed of ship. [ms−1 or knots]

v Sway velocity. [ms−1]

Va Speed of advance. [ms−1].
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YA Force in the Y direction due to the wind. [N ]

Z Number of blades on a propeller [-]

xxiii



Abbreviations

BEMT Blade Element Momentum Theory.

BN Beaufort Number.

CO2 Carbon Dioxide.

DWT Deadweight - a measure of how much weight (tonnes) a ship can safely

carry.

GHG Green-House Gas.

HFO Heavy Fuel Oil.

IMO International Maritime Organisation.

MARPOL International Convention for the Prevention of Pollution from Ships.

MBEMT Modified Blade Element Momentum Theory.

NOx Oxides of Nitrogen.

OOVOO Propeller model based on the work of Oosterveld and van Oossanen

(1975).

PID Proportional Integral Derivative.

PSD Power Spectral Density.

SFC Specific Fuel Consumption

g/kWhr

SOx Oxides of Sulphur.

TEU Twenty-Foot Equivalent Unit.

xxiv



Abbreviations

USD United States of America Dollars [$].

VLCC Very Large Crude Carrier.

xxv



Chapter 1. Introduction

The aim of this introductory Chapter is to give the reader an overview of the

entire research study. This aim is met via addressing the following objectives:

Problem Definition This is covered in Section 1.1 and provides the motivation

behind this research, describing problems associated with environmental

damage as a direct result of ship operations, and how various technologies

are presently used to address this issue. A brief statement is made as to how

this research aims at addressing this issue.

Methodology Overview This is the subject of Section 1.2 and explains what

makes this study a novel approach to the problem, and outlines the broad

methodology used in this study.

Structure of Thesis Section 1.3 describes how the thesis is laid out, why, and

perhaps how to read it. It provides a synopsis of the main Chapters of this

thesis, and why the methods used in the main Chapters were chosen.

Basis Ships A description of two basis ships is provided in Section 1.4. These

ships are used as case studies for analysis in this research. The basis ships

are referred to regularly throughout this thesis.

How-To Guide A practical usage example is given to demonstrate, in a nutshell,

how the proposed methods can be applied.

1.1 Motivation - Environmental Pollution from Ships.

A ship, by its very nature, produces various by-products which, when not properly

treated, can lead to damage to the environment. For example, untreated

grey/black-water (sewage) contains nutrients such as Nitrogen and Phosphorus,

which when discharged from a ship, promote excessive algal-blooms which in turn

1



Chapter 1. Introduction

consume an excessive amount of Oxygen in the water, leading to destruction of

aquatic life.

Other examples of by-products produced by ships in their normal day-to-day

operation (that is, intact, and undamaged) include introduction of foreign species

from ballast water, oil pollution from bilge water, sound pollution from machinery,

and exhaust gas emissions from main and auxiliary engines.

There are mechanisms to treat many of these by-products so that they become

harmless. For example grey/black water is required to be treated to MARPOL

Annex IV standard (MEPC, 2006), of which various solutions exist, one example

being the Wärtsilä Hamworthy Membrane Bio-Reactor (MBR) (Wärtsilä, 2013a).

Similar regulations and associated solutions exist for other shipping by-products.

Treating the by-product so that it becomes relatively harmless is one solution,

however, for certain by-products like exhaust gas emissions, treatment is more

challenging. Various technologies are able to treat certain types of “species”,

(pollutants) found in exhaust gases, for example scrubbers can reduce the amount

of oxides of Sulphur (SOx) released into the environment, and catalytic reduction

systems can reduce the amount of oxides of Nitrogen (NOx) emitted. Incidentally,

whilst SOx and NOx are considered harmful to the environment, they are not

considered to contribute to global warming. According to DNV and PSE (2013),

Carbon dioxide (CO2) is a gas that is known to contribute to global warming. The

production of CO2 is an inevitable consequence of burning fossil fuels. It is

possible to capture and store CO2, but this poses the question of what next to do

with the CO2.

According to the current IMO Greenhouse Gas Study (IMO, 2009),

international shipping was estimated to have emitted 870 million tonnes, or about

2.7% of the global man-made emissions of CO2 in 2007. This estimate is thought

to be under predicted, and at the 65th Session of the IMO’s MEPC (May 2013), it

was agreed to research and update these figures. The report claims that exhaust

gases are the primary source of greenhouse gas (GHG) emissions from ships and

Carbon Dioxide is the most important GHG, both in terms of quantity and of

global warming potential.

IMO’s Marine Environment Protection Committee (MEPC) has thoroughly

investigated the control of GHG emissions from ships, and in July 2009 formulated

specific technical and operational measures to reduce these emissions. These

2
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adopted measures have been incorporated into the International Convention for

the Prevention of Pollution from Ships (MARPOL) as a new chapter in Annex VI

entitled “Regulations on energy efficiency for ships”. This makes it mandatory for

all existing bulk carriers, gas carriers, tankers, container ships, general cargo ships,

refrigerated cargo ships and combination carriers (other ship types are currently

being analysed for future inclusion) over 400 gross tonnage to comply with the

Ship Energy Efficiency Management Plan (SEEMP), and the Energy Efficiency

Design Index (EEDI) for new ships. These regulations came into force on the 1st

January 2013.

The SEEMP establishes a mechanism to improve the energy efficiency of a ship

from improved operations, and incorporates best practices for fuel efficient ship

operation, as well as guidelines for voluntary use of the Energy Efficiency

Operational Indicator (EEOI). The EEOI enables operators to measure the fuel

efficiency of a ship in operation and to gauge the effect of any changes in operation,

e.g. more frequent propeller cleaning, or maintaining an even speed profile.

The EEDI is a technical measure, and aims at promoting the use of more

energy efficient (less polluting) equipment and engines. The EEDI requires a

minimum energy efficiency level per tonne mile for different ship type and size

categories. The EEDI is non-prescriptive, meaning that the designers and builders

are free to use whatever technology they wish in order for the ship to attain the

required energy efficiency level and comply with the regulations. The required

EEDI is calculated by a formula based on the technical design parameters for a

given ship, the value for the EEDI is then verified during the ship’s sea trials.

The IMO are also developing Market Based Measures (MBM) that may provide

a financial incentive for ship owners to invest in new technology or trade Carbon.

Aim: It is the intent of this research to focus on minimising the production of

CO2 (the most prolific and damaging GHG) from ship’s exhausts via a philosophy

of improved efficiency by design for in-service conditions. This aim is achieved by

taking into account, at the early design stage, the primary effects of the

environmental conditions experienced by a ship sailing in realistic, real-world

conditions.
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1.2 Methodology, Research Contribution and Novelty

Ships are commonly hydrodynamically tuned for a specific design point, but are

frequently operated away from this optimum design point (Hochkirch and

Bertram, 2010). This can be for numerous reasons, for example the propeller may

be running on the heavy side due to fouling on the underwater part of the ship, or

from operating procedure as dictated from the shipping company. Operating the

ship away from her design point results in an increase in fuel consumption (and

therefore exhaust emissions). This is largely a question of awareness that requires

addressing throughout the whole industry.

If a more realistic operating profile can be obtained at the design stage of the

ship, then the more potential there is for efficiency gains. To attain greater

efficiency, all aspects of ship design should be optimised around a design point for

which the ship is expected to operate, and not an artificial one, for example, devoid

of weather. The closer a designer can estimate and optimise for the behaviour of a

ship operating in her day-to-day environment, then the higher the efficiency a ship

attains when sailing in that environment. It is of the author’s opinion, that the

EEDI in its present implementation discourages design for in-service conditions.

The value for the EEDI that the ship attains is verified from sea trials (id est calm

water). A ship optimised for service conditions will not be optimal when run in

trial conditions, and thus may even fail the EEDI requirement, however in real

working conditions the design may surpass the EEDI requirement.

The resistance and powering aspects of ship design is conventionally conducted

on the basis of performance in calm water (ITTC, 2008). The reasoning behind

this is that a new (or modified) ship is required to undergo sea trials to ensure that

she will meet both the owners requirements and IMO regulations. These trials

need to be standardised and thus take place in deep, calm water. The ship’s

designers will factor in a sea margin which will ensure that the ship will operate

adequately in service conditions. This sea margin is conventionally a rough

estimate, either based upon rule of thumb or experience of similar ships in similar

weather conditions. The ship’s resistance in service conditions is estimated as the

calm water resistance times the sea margin.

The day-to-day operation of a ship takes place in service conditions, id est, she

will be subjected to the influence of the environment in which she is sailing. Not
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only will the resistance (and powering) of the ship be different in service conditions

compared to trial, but the ship’s motions will be different too due to the dynamic

response of the ship to her environment. The same sea-state will affect different

ships in different ways. It is not only the environment itself, but also the motion

response of the ship in the seaway that will affect the added resistance.

It is the intent of this research to focus on selecting an optimised propeller

which has a higher efficiency when operated in service conditions, compared to one

that has been optimised neglecting the manœuvring motion of a ship. This

concept is novel, as propeller design is conventionally performed from assuming the

flow to be steady and from directly in front of the propeller plane (albeit, the flow

becomes non-uniform due to the presence of the hull).

In order to obtain a representation of how a ship behaves when operating in

real life conditions, a non-linear time-domain ship simulator has been developed

for this research. The simulator is written in Fortran (2008 standard), is known to

compile on POSIX compliant UNIX clones, using either the Intel Fortran Compiler

(ifort) or the GNU fortran compiler (gfortran) and makes use of the OpenMP

(OpenMP, 2013) specification for parallel programming. The simulator computer

programme is called the Ship in Service (SiS ) simulator.

The simulator calculates the manœuvring motions (surge, sway and yaw) of a

ship when subjected to weather. The simulator can be used to obtain an estimate

for the sea-margin, when given as input appropriate wind, wave and current

statistics for the area(s) of service. It is the author’s impression that the idea of

obtaining an accurate estimate of sea-margin from a ship simulator is not

implemented in practice, however, the simulator, as will become apparent, could

become a valuable initial design tool.

A ship’s motions, as predicted by the simulator, can be used to obtain the

thrust and torque on the propeller, as well as a ship’s drift angle at the propeller,

at an instance of time. Knowing the thrust that the propeller is required to provide

means that an optimised basis propeller (which can be further optimised later on

in the design spiral) can be selected for the conditions that the ship is actually

expected to operate in. The thrust and torque on the propeller may be calculated

using numerous methods, but now that the simulator provides an estimate of

inflow angle at the propeller, the designer has an added degree of fidelity to the

mathematical propeller model. The author believes that this concept is also novel.
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Section 1.3 outlines in more detail the methodology and implementation of this

research.

1.3 Structure of Thesis

This Section aims at not just providing a synopsis of the Chapters that comprise

this Thesis, but also provides a justification as to why the author chose certain

methods over others.

Whilst not completely necessary, the Chapters of this thesis should be read in

order, as following Chapters are usually a development from the previous one.

1.3.1 Chapter 1: Introduction

This Chapter provides a broad understanding of the entire research work to the

reader, lays out the thesis structure, and shows motivation, it also describes why

particular methods were chosen to be used in preference to others.

1.3.2 Chapter 2: Ship Performance at Sea

Chapter 2 outlines the differences between the calm water scenario found in trial

conditions, and the more realistic in-service conditions. These differences occur

from the environment in which a ship is sailing. An exposition is given as to how

the environmental forces of wind, waves and currents occur. These external forces

tend to alter a ship’s speed and course, so if the ship is to arrive at her intended

destination on time, then the ship’s controls need to respond appropriately. A

narrative of the ship’s response to her environment is given.

This Chapter also gives an example of how a time-history of wind (which is also

applicable to wave) velocity can be obtained from a Power Spectral Density (PSD)

function.

An example is shown of how propeller performance varies when accounting for

environmental conditions, and describes in detail how a ship simulator can be

used, in combination with weather statistics, to predict a sea margin which can be

used for design purposes.

An account is given of how the propeller loading must be matched to the engine

to ensure optimum efficiency of the propulsion system as a whole. This also shows
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that when the ship is operated away from her design point, the engine burns a

proportionately greater amount of fuel.

1.3.3 Chapter 3: Simulation of Manœuvring Motion

Having described the external forces from the environment, this Chapter aims at

modeling them mathematically, along with the ship’s response to the environment.

Calculating the motion response of a ship in a seaway can be obtained from

model tests, semi-empirical or empirical methods (from numerical models which

mimic a ship’s behaviour), or with the use of Computational Fluid Dynamics

(CFD). Physical model tests, whilst perhaps the most accurate method, require an

initial design already, are time consuming and expensive to implement. CFD

attempts to model the actual flow physics of the subject in question. For the

subject of a ship under control, with a rotating propeller, in the influence of a

seaway, a huge amount of time and computing power is required, with the end

result being no better than other methods. The Unsteady Reynolds-Averaged

Navier Stokes Equations (URANSE) and continuity equations sufficient to describe

all features of the fluid flow around the ship hull are still considered as a subject of

research rather than the state of the art in industry, i.e. engineering practice.

(Peric and Bertram, 2011), (ITTC, 2011). CFD can only model the physics which

are known, whereas model tests account for all flow physics (albeit, there may be

some scaling errors).

Of course, as CFD technology increases and computers become more powerful,

the choice of using CFD as a design and analysis tool for marine simulation is

likely to become more widely used.

The method for estimating a ship’s motion response to her environment in this

research is based upon semi-empirical numerical models, as this method, once

developed, provides a fast execution time, is suitable for initial design purposes,

and is readily extensible for further development.

To provide a basis model to build upon, and provide a suitable proof of concept

for further work, the sea-keeping motions of roll, pitch and heave are neglected in

this study, and only the manœuvring motions of surge, sway and yaw are

considered. It is assumed that the predominant factor in an altered flow field will

be drift angle, as when the ship has attained a quasi-steady state in a seaway, the
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averaged drift angle will be non-zero, whereas the other motions, with the

exception of roll, can be assumed to have averaged values of near-zero.

A Review of Manœuvring Simulation Methods

There are two models that are distinguished in hydrodynamic modelling of ship

manœuvring. The Whole Ship Model, sometimes referred to as the Abkowitz type

model, considers the forces on the hull, rudder and propeller, including their

interactions, as one entity. The Modular Model, as the name suggests, takes a

modular approach, considering hull, rudder and propulsion separately. This model

is sometimes referred to as the Manœuvring Mathematical Modeling Group

(MMG) model.

The Whole Ship Model

One of the earliest manœuvring models is attributed to Abkowitz (1964). The

forces are formulated as equation 1.1.

X, Y,N = f
(
u, du, v, r, u̇, v̇, ṙ, δ̇

)
(1.1)

The formulae for ship motions are derived from a third order Taylor series

expansion. The coefficients of the Taylor expansion are called hydrodynamic, or

manœuvring derivatives, and, for the Abkowitz model, are obtained by regression

analysis on experimental data of scale models.

An inconvenience with this type of model is that if, for example, the dimensions

of the rudder are altered, then this change influences the entire model. Also, the

value of a coefficient has no direct physical meaning.

Norrbin (1971) developed a manœuvring model which uses only terms of first

and second order. Norrbin’s model also includes thrust and torque on a propeller,

and flow velocity over the rudder, making it suitable for representing manœuvres

of the engine. Another advantage of Norrbin’s model is that in takes into account

finite water depth.

The Modular Model

The Japanese research group Manœuvring Mathematical Modeling Group

(MMG) developed a concept for modeling the manœuvring motion of a ship

(Ogawa and Kasai, 1978), (Kose et al., 1981). These models are based upon
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physical considerations, and as such the hull, rudder and propulsion system are

considered as separate entities. In considering these elements as separate entities,

terms need to be formulated for any interactions that occur between them.

An example of a modular model is the one developed by Oltmann and Sharma

(1984), where the hydrodynamic forces are split into ideal fluid effects, hull lifting

effects, hull cross-flow, hull resistance, propeller thrust and torque and rudder

forces, including interactions between hull, propeller and rudder.

This modular approach makes it possible to change a particular element

without affecting other parts of the model, enabling researchers to develop and

refine parts of the model that are particularly important for them. (For example,

Eloot et al. (2006) are interested in ship manœuvrability in confined waters, and

have adapted modules to suit their particular purpose). It is for this reason that

the modular model type is used in this research.

Obtaining the Manœuvring Coefficients

The manœuvring coefficients can be obtained from experiments with model

tests, full scale sea trials together with system identification, regression analysis

results from similar designs or theoretical prediction methods. One needs to

exercise caution when dealing with dimensionless manœuvring derivatives, as there

is no uniformity between authors as to how they were non-dimensionalised. The

disadvantage of the model tests and full scale trials for use in this study, is that

the results are only applicable to that particular ship and are unavailable at the

initial design stage.

Although there have been numerous models developed to predict the

manœuvring motion of a ship, the one based on the modular approach of Inoue

et al. (1981a), Inoue et al. (1981b) is chosen for use in this research. This is a

practical, widely used and proven method which is applicable to a wide range of

ship types. Although not implemented in this research, Inoue et al.’s method also

considers the sea-keeping motion of roll.

Propeller Model

There are numerous standard series propellers that are in existence today. The

principle aim of a propeller series is to provide insight into how a propeller will

operate in certain conditions, and to provide design diagrams which will assist in

9



Chapter 1. Introduction

selecting the most efficient geometry of the actual (full size) propeller.

The Wageningen B-Screw standard series (sometimes referred to as the Troost

series, from its original presenter Troost (1938a), Troost (1938b), Troost (1938c))

was chosen as a basis propeller series for this research. This is a fixed pitch,

non-ducted propeller, and is perhaps the most widely used series with the most

extensive range of research conducted on (Carlton, 2007). The original series

suffered from certain unfairness between various design diagrams which were

attributed to scale effects resulting from the different model tests. This was

addressed by Lammeren et al. (1969), and the series was completely re-appraised.

Oosterveld and van Oossanen (1975) performed detailed regression studies on the

performance characteristics of the B-Screw series which relates thrust and torque

to the propeller geometry and Reynold’s number. It is the model of Oosterveld

and van Oossanen (1975), (for the sake of brevity extensively referred to

throughout this thesis as the OOVOO model), which is used as a tool for

development and comparison of a modified propeller model. This propeller model

was derived from open-water experiments conducted in flow arriving perpendicular

to the propeller plane, and as such cannot account for flow arriving at oblique

angles. Chapter 4 is devoted to the development of a propeller flow model which

accounts for oblique flow.

Modelling the Environment

The environment that a ship experiences in this research is considered to be

composed of wind, waves and surface (non-tidal) currents. As it is the intent of

this research to focus on optimisation for in-service conditions, it is assumed that

the ship will be travelling in deep water, and thus the effects of shallow water and

banks are neglected.

Wind Model

Isherwood (1972) analysed results of wind resistance experiments carried out at

different laboratories with models covering a wide range of merchant ships. He

developed empirical formulae for determining the longitudinal and lateral (surge

and sway) components of wind force, and the wind induced yawing moment on

merchant ships, for a wind from any direction. Whilst this method has proven to

be popular, ship forms have changed over the years and it is debatable if
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Isherwood’s formulae are still applicable.

Blendermann (1996) developed empirical formulae for determining the wind

loading on various ship types, and whilst not as extensive as Isherwood’s method,

the ship’s forms that where used in the analysis are modern, and cover the most

popular types. Blendermann also developed a formula for wind induced roll, which

can be accounted for in the manœuvring model of Inoue et al. (1981b). It is

Blendermann’s wind model that is used in this study.

Wave Model

Much work has been performed on the study of added resistance due to waves

(Prpić-Oršić et al., 2008). These range from easy to apply approximate methods

(Aertssen, 1969) to more complex theoretical methods (Salvesen, 1976).

In this study, the method proposed by Townsin et al. (1992) is used, as it is

applicable to both tankers and container ships (the two case studies used as

examples for this research), practical and easy to use. Disadvantages of this

method are that it only considers the pure surge component of force on a hull due

to waves encountering a ship from any angle (that is, the waves acting on the ship

do not impose any sway or yawing motion). This method is regarded to be

sufficient as a proof-of-concept for this research.

Current Model

In this research, the effects of surface currents on the ship are modelled by the

principle of relative motion. For all velocities used in the formulation of forces and

moments, relative velocities are used, for example u = uship − ucurrent. It is assumed

that the velocity gradient of the current is zero.

Effects of seakeeping motions on propulsion characteristics

As mentioned earlier, due to the complexities of coupling a seakeeping analysis

with a manœuvring one (Tello Ruiz et al., 2012), this research is based solely on

manœuvring motion. It is however worthwhile detailing some of the aspects that

seakeeping motions have on propulsion characteristics, and why, for added realism

to the simulator and consequent analysis, seakeeping motions should ideally be

taken in to consideration.

It has been stated that, although motions such as pitch or heave may have an
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average value of near zero, the effect of these motions may have a noticeable effect

on propulsion characteristics. This especially applies to the pitch motion, where

the propeller is often situated far from the pitch centre, and therefore is subject to

relatively large accelerations.

The flow into the propeller is clearly influenced by the wave pattern at the stern

of a ship. For example, if there is a wave trough at the propeller plane, then the

propeller will be operating in highly aerated water, or may even emerge. This

causes a breakdown in thrust from cavitation, and propeller racing.

Another aspect to consider is the circular orbits of water particles from waves at

the propeller plane. These have an effect on the inflow vectors to the propeller,

and thus affect its characteristics.

When considering a ship which is pitching, it becomes apparent from the

explanation of the previous paragraphs, that this particular motion could

potentially cause the ship to perform sub-optimally, especially for ships who are

sailing in the ballast condition.

Taking into account pitching motions during voyage analysis could potentially

result in modified loading strategies, for example trimming by the stern during

certain legs of a route.

A method to estimate the loss of thrust due to partial propeller submergence is

given in Holtrop (1984).

1.3.4 Chapter 4: Propeller Flow Modelling in Steady and Unsteady

Flow

The previous Subsection mentioned a mathematical model for propeller action

which only considered flow arriving from directly in front of it (the “dead ahead”

condition), also neglecting any sway or yaw induced on a ship’s motions from the

propeller. When the ship is in a seaway, she will have attained a drift angle,

resulting in an oblique inflow angle to the propeller. This Chapter explains how

the oblique drift angle and unsteady effects can be accounted for in modelling the

propeller.
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A Review of Modelling Propeller Action

This section provides a brief account of the more popular methods of modelling

propeller action which were considered for this study. The list is in order of

increasing complexity.

Momentum Theory

The axial momentum theory of Rankine (1865) is perhaps one of the earliest

theories of propeller action. The propeller is reduced to a thin, infinitely bladed

disc (or actuator disc) which accelerates the flow in the axial direction by somehow

creating a pressure jump at the propeller plane. The same principle was applied by

Froude (1889), in the angular direction, thus allowing the propeller to impart a

rotational velocity in the wake.

A major disadvantage of this method is that it neglects the geometry of the

propeller, blades and hub.

Blade Element Theory

Froude (1878) developed a propeller theory which considered the blade of a

propeller to be divided up into a large number of elementary strips. These

elementary strips are then regarded as a two-dimensional foil section which is

subject to a resultant incident velocity. The lift and drag is then summed-up over

the whole blade, and the resulting thrust and torque obtained.

A main disadvantage of this method is that is does not directly account for the

induced velocity at the propeller plane.

Combined Blade Element Theory

The general momentum theory and the blade element theory can be combined

to eliminate some of their inherent disadvantages. Burrill (1956)’s procedure is a

combination of blade-element and momentum theory, with modifications to

account for a finite number of blades in the momentum part, and empirical

relations derived from wind tunnel tests for lift.

Lifting-Line

The propeller is reduced to radially aligned straight vortices (a lifting line)

which vary in strength over the radius. Free vortices are shed in the flow and
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viscous losses require empirical corrections. The lifting line is two-dimensional and

therefore introduce considerable errors that need correcting.

Many lifting-line codes are adapted from the original formulation by Lerbs

(1952) and are still popular today for preliminary design and analysis.

Lifting-Surface

With the advent of highly skewed propellers, the lifting line approach proved to

be inadequate in capturing necessary three-dimensional flow phenomena (Carlton,

2007). The next level in advancement of propeller theories is the lifting-surface

method, the most popular being the vortex-lattice method.

The propeller is reduced to a grid of horseshoe vortices, the pressure

distribution on the blade is obtained from Bernoulli’s law, which in turn yields

forces and moments for the whole propeller. Corrections are needed for viscous

effects, and the pressure distribution at the hub needs a correction.

Boundary Element or Panel Method

This is a formulation of the potential theory problem, with source or dipole

panels.

The main disadvantages of this method are the complex programming involved

corrections required for viscous effects, and the large number of panels necessary

make it more computationally expensive compared to methods mentioned

previously.

Computational Fluid Dynamics

This is a field method formulation of the three-dimensional viscous flow using

various degrees of simplified Navier-Stokes equations, especially for turbulence

modelling. It is very computationally expensive, and depends upon how well the

particular turbulence model performs.

Propeller Model used in this Study

The method chosen for modelling the action of a propeller in this study is based on

a heavily modified combined general momentum and blade element method. The

reasons being that whilst perhaps not sufficient for detailed design work, the main

physics of the flow can be adequately represented, resulting in realistic behaviour.
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The propeller module is accessed at each time-step of the SiS simulator, therefore

the mathematical propeller flow calculations are required to be fast. The modified

combined general momentum and blade element method provides just such a

practical and computationally fast procedure.

Details of the propeller model can be found in Chapter 4.

1.3.5 Chapter 5: Validation of Simulation Modules

The basis of the numerical models for simulating the manœuvring motion of a ship

in a seaway have now been established, including the action of a propeller in

oblique flow. This Chapter shows that the simulator behaves in a realistic manner

by comparing the results of the SiS simulator with results from sea-trials and

simulations carried out by various institutions.

1.3.6 Chapter 6: Simulation Methodology and Results

The SiS simulator has now been verified to work as expected. This Chapter

describes the process of choosing a propeller that is optimised for conditions that

the simulator predicts. Case studies are developed to show how modelling the

propeller with different levels of fidelity affect the propeller’s main particulars.

Results from these case studies are demonstrated using the SiS simulator, and

show differences in efficiency, fuel consumption and CO2 emissions from selecting a

propeller that accounts for manœuvring motion compared to a propeller model

that neglects it.

1.3.7 Chapter 7: Conclusions, Further Work and Recommendations

This Chapter summarises the main conclusions that are drawn from this research.

It also proposes further work which could correct various assumptions.

1.4 Basis Ships

Different ship types behave differently to one another when they experience the

same weather conditions. To determine the difference that ship type has on

potential efficiency gains, two types were chosen for analysis in this study, a Very

Large Crude Carrier (VLCC) (loaded), the Esso Osaka, and a 3600 Twenty Foot

Equivalent Unit (TEU) container ship, the KCS.
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The Esso Osaka has an unusually complete set of accurate sea-trials results,

including corrections for weather (Crane, 1979). She has also had many captive

and free-running model tests carried out by various laboratories, and as such has

consequently been the subject of numerous numerical simulation studies (ITTC,

2002). The extensive amount of manœuvring data available for the Esso Osaka

make it an excellent basis ship to verify manœuvring simulation development

models. It is for these reasons, and the fact that oil tankers are now subject to

efficiency regulations from the IMO that the Esso Osaka is chosen as a basis ship

for this study.

The KRISO Container Ship (KCS ) was conceived by the Korea Research

Institute for Ships and Ocean Engineering (KRISO) as a modern (1997), efficient

concept design of a container ship. No full-scale ship exists. The purpose of the

design was to provide a benchmark for explication of flow physics and

Computational Fluid Dynamics (CFD) validation. The KCS is one of the subject

ships for SIMMAN (a workshop on verification and validation of ship manœuvring

simulation methods) (SIMMAN, 2014), and as such has extensive manœuvring

studies carried out on it. For this reason, the fact that it has a very different

design to the Esso Osaka, and the fact that container ships are the subject of

efficiency regulations from the IMO is the rationale behind why the KCS is chosen

as a basis ship for this study.

KCS (Container Ship) Esso Osaka (V LCC)
Lpp(m) 230.0 325.0
Lwl(m) 232.5 335.0
Bwl(m) 32.2 53.0
T (m) 10.8 21.79
∇(m3) 52030 311902
CB 0.651 0.831
CM 0.985 0.990
LCB (%), fwd+ -1.48 3.169
No. of blades 5 5
D(m) 7.9 9.1
P/D(0.7R) 0.997 0.715
aE 0.800 0.682

Table 1.1: Main particulars of the Esso Osaka and the KCS.

Table 1.1 shows the main dimensions of both the Esso Osaka and the KCS.
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1.5 Practical Usage: The How-To Guide

This section is intended to provide the reader with a brief guide of how this

research can be applied in practice.

• The ship’s weight, major dimensions and service speed are determined from

the ship owner’s requirements.

• The ship’s route is determined for which wind, wave and current statistics

are obtained.

• The above parameters are input to the SiS simulator, and the simulation run.

• The SiS simulator can be used to either analyse an existing propeller’s

performance, or pick an optimised one from a standard series.

• The output of the simulator is extensive, parameters of most concern to

powering applications include average, quasi-steady delivered power and

open-water propeller efficiency.

• Scenarios can be played out to obtain the overall most efficient initial basis

propeller for the ship and route in question. Simulation calculations should

be combined with environment statistics for typical course trajectories.

1.6 Summary

This Chapter has provided an overview of the research carried out in this study.

Figure 1.1 summaries the key components of the research. After describing the

main approaches used to model the action of a propeller, it is concluded that, for

the purposes of this research, a modified blade-element momentum method is the

most suitable approach, due to its fast computation time, and sufficient accuracy.

This Chapter has defined the problem and motivation which has driven this

research. It has described a novel approach to select an optimised propeller which

accounts for the manœuvring motion of a ship. An How-To guide has been given

which demonstrates the practical usage of the methodology.

The following Chapters depict in detail the different aspects of this research.
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Assesment of Ship Performance
at Sea

Simulation of Manoeuvring
Motion

Propeller Modelling

Validation of Simulator

Simulation Methodology
and Results

Figure 1.1: Key components of Research
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Chapter 2. Ship Performance at Sea

This Chapter aims at describing the natural environment in which a ship operates,

and how the ship’s controls react if the ship is to reach her destination on time. It

achieves this aim by describing the differences between the calm water

environment, and the environment experienced by a ship in her normal, day-to-day

operation. The forces considered to make up a seaway are assumed to arise from

wind, waves and surface currents. These forces are described, along with how they

can be estimated as a function of time from statistics. These external forces tend

to move the ship off her desired track, and therefore the ship’s controls must

correct for these deviations. These deviations are also described in this Chapter.

Section 2.1 outlines the environmental conditions encountered in calm water (or

sea trials) and why these conditions are important to consider. Section 2.2

describes the difference between calm water, and the environment encountered

whilst the ship is in her expected conditions (or service conditions). This Section

covers briefly why a ship would tend to change speed and course due to the effects

of her environment, how the environment can be set up to be modelled for use in

the developed SiS simulator, and how a ship would need to respond to counter the

effects of the environment. Section 2.3 describes a method that can be used to

predict a more accurate estimate of the sea-margin compared to commonly used

traditional methods. This process involves the use of a simulator, which to the

best of the author’s knowledge is not used in practice and quite novel, but could

provide the designer with more realistic loading conditions, and therefore design

point. An example is given which demonstrates how the efficiency of a propeller

deteriorates when operating away from its design point.

Section 2.4 discusses the importance of matching the correct engine to the

selected propeller, to ensure optimum fuel efficiency and lowest CO2 emissions.

19



Chapter 2. Ship Performance at Sea

2.1 Trial Conditions

As part of the contractual agreement with ship owner and builder, a ship is

required to undergo sea trials. These trials are designed to ensure that the ship

will meet the design specifications and International Maritime Organisation

(IMO) criteria for such things as speed and manœuvrability (IMO, 1994). Sea

trials are necessarily carried out in calm water, so as to minimise any effects from

wind, waves and currents. Although most propeller designers design for service

conditions, ensuring that their design will perform adequately under trial

conditions, some designers do not, and optimise around trial conditions (and

ensure that the propeller will operate adequately in service conditions). This is

presumably due to pressure from the ship broker to ensure that the ship will meet

her designed specifications - the penalties of not meeting the requirements can be

very severe. As a rough estimate, Haakenstad (2012) indicates that: “A speed

deviation of 0.3 knots between the trial speed (after correction) and that

contractually stipulated, results in a fine of 100,000 United States Dollars (USD).

Each additional 0.1 knots exceeding this discrepancy, increases the penalty by

100,000 USD. If the measured trial speed (after correction) is 0.8 knots or more

below that contractually specified, the buyer has the right to cancel the contract.”

The calculation of the Energy Efficiency Design Index (EEDI) is also verified

from the results of the sea trials.

This research focuses on selecting an optimum propeller for a ship in service

conditions, that is, a ship that is in the most probable conditions which she spends

her voyage time.

2.2 In-Service Conditions

When a ship is in her normal day-to-day operation, she will be subject to the

forces and moments imposed on her by the environment in which she is sailing.

When the wind blows over the surface of a body of water, friction at the

interface between the air and water causes waves and also makes the surface of the

water move (surface currents).

At the design stage, the effects of a seaway have traditionally been accounted

for in the design by a constant of proportionality, known as the sea-margin. The

sea-margin is usually calculated from rules of thumb (commonly around 1.2 to

20



Chapter 2. Ship Performance at Sea

1.5), or from previous experience. The value of the sea-margin is known to vary

with the type of ship, speed and condition, but is mostly affected by the weather

conditions that a ship will experience (Szelangiewicz and Żelazny, 2007) .

The ability of a ship to maintain speed and course whilst at sea reflects the

success of the ship’s design, that is, the ship is required to deliver cargo in a safe,

timely and geographically precise manner whilst maintaining optimum efficiency.

Different ship’s operating profiles may have different assessment criteria, such as

shortest time, lowest fuel consumption or lowest level of acceleration and thus

discomfort. These other criteria must be taken into account also when selecting an

optimum propeller.

2.2.1 Speed Loss in a Seaway

The loss of speed of a ship in a seaway consists of an involuntary loss and/or a

voluntary speed loss. Speed loss can be regained up to the limit of the main engine

power or the safe operating limits of the ship.

Involuntary Speed Loss

Speed loss will occur from:

• Added resistance caused by wind and waves.

• Added resistance from the motion response of the ship encountering these

wind and waves.

• Loss of propulsive efficiency caused by an increase in propeller loading.

• Loss of propulsive efficiency caused by extreme events such as propeller

racing or entrained air.

Voluntary Speed Loss

The ship’s master may decide to voluntarily reduce the ship’s speed or change

course (which can be construed to be the same thing if time is of concern, please

refer to section 2.2.5). This change in speed/course is brought about from the

desire to maintain safety and efficiency. The main concerns include the risk of:

• Excessive vertical and horizontal accelerations.
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• Excessive rolling.

• Green seas/deck wetness.

• Slamming.

• Propeller Racing.

It is assumed throughout the research that the weather does not get so bad that

the operator needs to voluntarily reduce speed. This can be justified as the

research is based around design for conditions which a ship is most probable to sail

in.

2.2.2 Wind

The wind parameters which are input into the developed SiS simulator (please

refer to Appendix A) consists of the mean true wind speed, and the mean true

wind direction from North (positive clockwise). It is assumed in this research that

the wind direction does not fluctuate about its mean value. This assumption is

made from the fact that the author has been unable to find useful information

regarding the numerical modelling of directionally varying wind. The majority of

research effort on directionally varying wind seems to be based on observations

and measurements in order to obtain clearer insight into how the wind effects the

sea state (Donelan and Hamilton, 1985) and (Rieder and Smith, 1994).

The variation in mean wind speed (gusts) are accounted for by the following

method:

The Davenport Wind Power Spectral Density Function

A power spectral density function (PSD) shows the strength of the variations of a

signal as a function of frequency, that is, it shows at which frequencies the

variations are strong and visa versa. It can be used to identify oscillatory signals in

a time series and their amplitude. Figure 2.1 illustrates an example of the

Davenport PSD.

Numerous wind gust spectra have been proposed over the years, perhaps the

most popular include ones developed by Harris (1970), NPD (1992), API (2007)

and Ochi and Shin (1988). Each model has its own strengths and weaknesses, for

example, the Norwegian Petroleum Directive (NPD) spectrum has been developed
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Figure 2.1: Davenport Power Spectral Density Function

from data around the Nordic countries. For initial design purposes, they all serve

the same purpose, with not a great deal to choose between them. The main

difference is that the offshore models contain more power at lower frequencies, the

reason being that the other models are based over land, which has a different

thermal structure.

An unsteady wind velocity model is incorporated into the SiS simulator

(discussed in Section 3.8.1) using the Davenport (1978) spectrum for the variation

in the longitudinal component of the wind due to gusting. This is a well

established model and used in many time-domain analysis packages (e.g. MARIN

(2013)), and is given in equation 2.1

SW (f) =
4κLŪWχ

(1 + χ2)4/3
(2.1)

Where

χ =
fL

ŪW
(2.2)

SW is the power spectral density (PSD) as a function of frequency, f (Hz). ŪW is

the mean wind speed at height z above the datum, usually 10 m. L is a scale

length associated with fetch and is usually chosen to be 1200 m (Kaasen, 1999). κ

is a surface drag coefficient and is usually chosen to be 0.005 for calm seas, and
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Figure 2.2: Time history of wind speed from Davenport PSD with ŪW = 13.41m/s

0.0025 for rough seas.

Obtaining the Time-History from a Power Spectral Density function

The Spectral Representation Method developed by Shinozuka and Jan (1972) is

used in this study to describe the time history of wind velocity from the power

spectral density. The fluctuating velocity component, ∆UW is a zero-mean random

process simulated by superposition of harmonic waves.

From Shinozuka and Jan (1972):

UW (t) = ŪW + ∆UW (t)

= ŪW +
N∑
j=1

√
2SW (fj) ∆fj cos (2πfjt+ φj) (2.3)

In order to apply equation 2.3, the frequency band of interest must be divided into

N intervals such that:

∆fj = fj+1 − fj (2.4)

φj is the random phase angle with a uniform probability distribution function

between 0 and 2π.

Each time the wind.f90 module is accessed, a new wind time-history is
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generated. Due to the random nature of the wind, a single wind time-history data

file is created which can be used instead of generating a new time series, and

ensure that each run on the simulator uses the same environmental forces to

provide comparable results (although the mean fluctuation of velocity is zero).

2.2.3 Waves

As a ship moves through a seaway, she will expend energy in deflecting waves from

their original course. The waves will also excite the ship, causing her to move from

her undisturbed position. These phenomena cause an increase in resistance,

termed added resistance due to waves, or simply added resistance. There are

several methods that can estimate the loss in speed, or added resistance

(Prpić-Oršić et al., 2008), however, the method of Townsin et al. (1992) is used in

this research due to its ease of use and practicality.

The method of Townsin et al. (1992) accounts for the speed loss in pure surge

due to a ship encountering waves from any direction and is described in more

detail in Section 3.8.2. It is considered to be suitable as a first step in modelling

added resistance and will suffice as a proof-of-concept for this research.

2.2.4 Current

This study assumes that a ship is travelling in deep water, which is unaffected by

tidal currents. Due to the action of the wind however a relative velocity can occur

between the surface of the sea, and the sea bed. This surface current is accounted

for in the research from the principle of relative motion, that is, the speed of the

ship with respect to a point on Earth is equal to the velocity of the ship minus the

velocity of the current.

It is assumed that the surface current has no velocity gradient along the length

of the ship, and that the speed of the current is constant.

2.2.5 Leeway

Leeway can be defined as “The amount of drift motion to leeward of an object

floating in the water caused by the component of the wind vector that is

perpendicular to the object’s forward motion” (Bowditch, 2002).

When a ship encounters a wind during her voyage, the force from the wind will
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tend to push her off the desired course. Figure 2.3 shows a ship attempting to get

from A to B. The wind has two effects upon the ship. Firstly it will impart a

change in surge and sway velocities of the ship, and secondly, if the wind force

does not happen to act through the centre of pressure in pure sway of the ship, a

yawing moment will exist. Rudder application is required to compensate for these

disturbances viz. The ship must be given a new course to steer so that she will end

up at her final destination, or next waypoint. If the wind does not impart a yawing

moment on the ship, then after the course has been corrected, the helm may be

returned to zero (or the helm angle corresponding to zero rate of turn). If however,

the wind is causing the ship to yaw, then some other rudder angle is constantly

required, to check the yawing motion. When the effects of the environment are

taken into account, the ship will now be sailing along at some drift angle, resulting

in five additional effects:

1. The ship has now attained a sway velocity; the drag vector of which must be

added to the forward resistance.

2. There is also a change in the forward resistance to account for, due to the

new flow pattern around the ship, at this particular angle of incidence,

resulting in a modified form coefficient.

3. If rudder action is required to check any yawing moments, then an induced

drag from the rudder will also add to the ship’s overall resistance.

4. The flow pattern into the propeller will be modified due to the ship’s new

attitude in the water.

5. The environment itself will be imparting extra forces and moments on the

ship directly from the added resistance of wind and waves.

The power required to propel the ship at in-service conditions will be different to

that of trial conditions. The reason for this is twofold:

• The distance through the water is different from the distance made good,

thus the speed made good must change, that is, if the ship is to arrive at her

destination on time.
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• The ship’s powering requirements have changed due to the environmental

loading itself, and also the ship’s motion and propulsion response due to this

environmental loading.

2.2.6 Passive Rudder

In the context of this research, the term passive rudder refers to the rudder being

moved to a position which maintains the ship’s desired course. If the helm angle is

non-zero, then a lift induced drag force manifests itself to add to the total

resistance of the ship.

2.3 A Method for Accurate Sea-Margin Prediction.

The speed at which a ship is able to travel in real weather conditions is one of the

most important parameters which influences the ship’s profitability.

Estimation of an accurate sea margin means being able to design for conditions

that better represent day-to-day service conditions. One method of obtaining an

accurate estimation of the sea-margin is predicting the long-term added resistance

from wind and wave statistics for the area of service. This approach makes it

possible to investigate with higher certainty than with a conventionally estimated

sea-margin, the impact of power output of a particular main engine on a ship’s
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service parameters, and thereby service costs, and emissions footprint.

Wind and wave statistics are readily available for different areas from sources

such as COGOW (2012) and GWS (2013).

A method to analyse propulsive efficiency over the whole voyage is to split the

route up into different legs where the weather is significantly different. The

propulsion system could then be selected that would have the greatest overall

efficiency for the entire route (whilst still maintaining non-cavitating

characteristics).

A study by Trodden and Woodward (2012) show how the open-water propeller

efficiency changes with wind conditions for a 3600 TEU container ship in winter

conditions in the North Sea. The study only considers changes in ship motions due

to wind alone (no added wave resistance). As can be seen in fig. 2.4, the propeller

efficiency varies with different relative wind directions. The centre of the polar

plot, where the bars protrude outwards, represents a wind rose with the figures in

magenta around the cardinal, intercardinal and secondary intercardinal points

representing the probability that the wind is blowing from that direction. Wind

rose plots and wind speed and direction data were obtained from Risien and

Chelton (2006) and COGOW (2012), and were provided courtesy of Oregon State

University’s Cooperative Institute for Oceanographic Satellite Studies (CIOSS).

The scale of the polar plot (between 0.650 and 0.660) represents the open-water

propeller efficiency, where the dotted green line represents the efficiency in calm

water (a constant) and the red line represents the propeller’s efficiency when the

wind is blowing from the indicated direction. The outline of the ships hull indicates

which direction the ship is heading, in this case North East. As can be seen, there

is not a great deal of difference between the trial and service conditions figures,

this is mainly due to the fact that only the effect of the wind has been modelled,

however the methodology illustrates that designing for the most probable

conditions has the potential to result in an overall greater efficient propeller.

In conjunction with the probability (in magenta), the red line indicates the

most likely propeller efficiency resulting from a wind coming from the indicated

direction. In this case it can be seen that the most probable wind does not result

in any loss in efficiency, however, if the heading of the ship is rotated 180◦, then

the efficiency loss from the most probable wind will be relatively large, as this

most probable wind has a high wind speed. These points demonstrate why, in the
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application of the methodology presented in this thesis, it is important to analyse

the route as a whole, and select the propeller whose criteria produce the most

efficient overall design.

The effect of wind on the open-water propeller efficiency depicted in the plot of

fig. 2.4 is seen to be small. This is due to only accounting for the added wind

resistance, and not the associated increase in added wave resistance due to action

of this wind on the water. This plot also represents a propeller modelled using a

dead-ahead flow model, and as such does not account for any change in propeller

efficiency from operating in oblique flow. As noted in the paper of Trodden and

Woodward (2012), there is an increase in shaft power of 9.2% on a route from

Bergen to Newcastle for a South Westerly wind. This is quite a significant amount,

which is attributed to the fact that the KCS is a relatively high power ship,

travelling at 24 knots, and is subject to sharp increases in resistance (and therefore

required power) from the environment at that speed. This illustrates, along with

the discussions in Section 6.5, why relatively higher power ships benefit more from

even small efficiency savings.

A study by Szelangiewicz and Żelazny (2007) investigated the influence of
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realistic service margins, on the service parameters (speed, resistance) of a ship.

This study calculated a service margin for different ship types over different

shipping routes based on wind, wave and current statistics, and proposed a

definition of Service Margin (or sea margin):

“For a given ship sailing on a given shipping route, the service

margin kż should have such percentage value as the ship in assumed

loading conditions and assumed state of its hull and propeller surface,

would be able to maintain the service speed, VZE, assumed in the frame

of long-term prediction, at the assumed exceeding probability PV E.”

Where PPV E is the probability of a ship developing the service speed, and kż is the

notation used in the paper of Szelangiewicz and Żelazny (2007) to denote the

service margin.

In order to make use of this definition, the designer needs to know the

long-term service speed, and at the level of probability of maintaining the ship’s

speed that would make the ship operationally profitable.

The study by Szelangiewicz and Żelazny (2007) concluded that the influence of

a ship’s type and size on her speed or resistance is noticeable but not as great as

that of the shipping route. Definite differences in the effectiveness (in terms of

satisfying the owners requirements) of the same ship on a given shipping route can

be observed, which is a result of a superior engine-propeller match.

2.4 Engine-Propeller Matching

It is important to match the engine power to the power required by the propeller,

to avoid over/under loading the main engine, and producing excessive amounts of

unwanted emissions. When the ship is in service, the engine is usually designed to

operate between 85% and 90% of its Maximum Continuous Rated (MCR) Power.

This is done to ensure the engine does not wear out too quickly, and also to

provide extra power if it is required. In the following analysis, the engine margin

has been selected to operate at 90% MCR in service conditions.

Figure 2.5 shows the KCS’s propeller (c.f. Table 1.1) demand curve

superimposed on a Wärtsilä 10 Cylinder RT-flex82C engine layout (Wärtsilä,

2011). The propeller demand curve represents the power required of the propeller

to propel the ship at the desired speed. The propeller demand curve may be
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obtained from the aforementioned simulator, or roughly estimated using the cubic

‘Propeller Law’ curve. If the resistance of the ship increases then the propeller

demand curve will shift to the left and vice versa.

In fig. 2.5 PD represents the propeller’s design point about trial-conditions.

PD′ is the propeller’s design point at service conditions. SP is the service

propulsion point, and MP is the engine’s maximum continuous rated power. The

grey area in fig. 2.5 shows the engine’s overload range.

The light running propeller demand curve represents the power required to

achieve the corresponding speed when the ship is in trial-conditions, that is the

hull and propeller are smooth. The heavy running propeller demand curve

represents the power required after the ship has been in the water for some time,

when the hull and propeller are to some extend fouled. The difference between the

heavy running and light running curves are usually between 4% and 7% and

depends upon the ship’s mission profile, dry docking interval and time between

engine overhauls. This light running margin is usually selected from experience

and in fig. 2.5 the light running margin is 5%.

As can be seen in fig. 2.5 the heavy running propeller whose design point is at

PD will not provide enough thrust in service conditions to achieve the ship’s

service speed, therefore it is prudent to design the propeller to operate a few

revolutions faster (the light running margin) than the service speed demands.

The sea margin of fig. 2.5 is stated as 15%, which is a typical rule-of-thumb

figure. It is shown in this research that, with the use of a ship simulator at the

design stage, a more realistic estimate of the sea margin can be obtained, and

therefore the engine can be more closely matched to the propeller, resulting in

lower fuel consumption and hence CO2 emissions.

Figure 2.6 illustrates how the specific fuel consumption (and hence emissions)

change when the engine-propeller is operated away from its optimal design point

(Woodyard, 2004).
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2.5 Summary

This Chapter has described the external forces that a ship will encounter in her

day-to-day operation. It has been shown that the powering requirements of a ship

in service conditions will be different to that in trial conditions, not just because of

the fact that there are other forces and moments to consider directly, but also the

forces and moments from the ship’s response to the environment, and because the

ship may have to travel at a different speed over the ground on a different heading

in order to arrive at her final destination on time.

A methodology has been shown that relates how a realistic estimate of the sea

margin can be obtained from a ship simulator, and thereby a more realistic design

point. An example was given that shows how the efficiency of a propeller

depreciates when operating away from its design point.

The importance of matching the engine to the propeller was demonstrated to

ensure optimum overall propulsive efficiency.

Having explained the nature of the external forces a ship experiences whilst at

sea, the next Chapter endeavors to describe how they can be modelled

mathematically.
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This Chapter aims at describing the mathematical modelling of a ship at sea in the

manœuvring motions of surge, sway and yaw. The Chapter shows the development

of a system of Ordinary Differential Equations (ODEs) from different components

that affect the motion, these components comprise the ship’s hull, rudder,

propeller, wind and a limited added wave resistance model. ODEs are also

developed to model engine and rudder machinery. A simple automatic pilot is

described which allows the ship to stay on course and/or maintain speed when the

ship is perturbed without any user (helmsman) intervention. The analysis needs to

determine if the ship is dynamically stable, as a dynamically unstable ship would

result in excessive helm correction and the role of the autopilot would play an

essential role in the ship’s overall efficiency. A method is described to determine

whether or not a ship is dynamically stable. The process of solving simultaneously

the ODEs numerically is described, followed by a brief summary.

Section 3.1 illustrates the coordinate systems that are used throughout this

study. Section 3.2 defines the equations of motion that are solved by the developed

SiS simulator, and shows the main components that are involved in the various

mathematical models.

While Section 3.3 describes the rational behind the selected methodology for

solving the manoeuvring equations of motion in the time-domain, Section 3.4 is

devoted to describing the theory and mathematics behind the interaction between

the hullform and the water. It also describes a method to determine if a ship is

course stable. Section 3.5 details the effect of the rudder on a ship’s manœuvring

motion, and the interaction between the rudder, hull and propeller. It also specifies

how the rudder’s dynamics are modelled. Section 3.6 describes how a propeller’s

characteristics, that is, thrust and torque, are estimated. Section 3.7, outlines how

the ship’s main engine is modelled mathematically, and also how the dynamics of

the combination of the engine and propeller are estimated. Section 3.8 explains
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how the loading on a ship from her environment (wind, waves and surface currents)

are estimated. Section 3.9 presents a method to correct the course and speed of a

ship that is being pushed off her original course and speed due to her environment.

Section 3.10 gives an account of the method used to solve the ordinary differential

equations set out in this Chapter. Chapter 3.11 gives a summary of this Chapter.

General assumptions are that the ship is a rigid body, which is reasonable as

deflections in the ship’s hull are usually very small compared to the ship’s

manœuvring motion, and that the ship remains intact throughout the voyage.

More specific assumptions are addressed throughout the various sections.

3.1 Coordinate System

In this study, a local, ship-fixed coordinate system, with its origin at the centre of

gravity, is used to describe the manœuvring motions of a ship. It is convenient to

describe the forces and moments on a ship with respect to midships, whilst

motions are more conveniently described with respect to the centre of gravity. It is

this approach that is taken throughout this study. This is illustrated in fig. 3.1.

A global, Earth-fixed coordinate system, is used to describe the navigational

position and direction of a ship. The position and direction are obtained by

integrating equations 3.1, 3.2 and 3.3.

ẋo(t) =
√
u(t)2 + v(t)2 × cos [ψ(t) + β(t)] Advance velocity w.r.t. Earth

(3.1)

ẏo(t) =
√
u(t)2 + v(t)2 × sin [ψ(t) + β(t)] Transfer velocity w.r.t. Earth

(3.2)

ψ̇o(t) = r(t) Rate of change of heading

(3.3)

3.2 Equations of Motion

This examination will focus on motions in the horizontal plane, namely surge,

sway and yaw. The sea-keeping motions of heave, roll and pitch are neglected. In

this proof-of-concept study, it is assumed that the predominant factor in an altered
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flow field will be drift angle, as when the ship has attained a quasi-steady state in

a seaway, the averaged drift angle will be non-zero, whereas the other motions,

with the exception of roll, can be assumed to have averaged values of near-zero

(this does not necessarily mean however that these motions do not contribute to

the overall efficiency of a propeller).

The equations of motion are defined in equations 3.4.

m (u̇− rv) = XH +XR +XP +XW +XA SURGE (3.4a)

m (v̇ + ru) = YH + YR + YP + YW + YA SWAY (3.4b)

Izz ṙ = NH + xMCGYH +NR +NP +NW +NA YAW (3.4c)

The subscripts H, R, P , W and A in equations 3.4, denote the influences from the

hull, rudder, propeller, waves and wind respectively. m is the mass of the ship, u is

the velocity in pure surge, v is the velocity in pure sway and r is the yaw rate.

xMCG is the distance between the longitudinal centre of gravity and midships. Izz

is the mass moment of inertia of the ship about the z-axis.

3.3 Hydrodynamic Models for Time-Domain Simulation

The literature review of Section 1.3.3 highlights different methodologies that can

be used to solve the equations of motion in surge sway and yaw and why the

current method, which is broadly based on the one described by Inoue et al.

(1981b) was chosen. There now follows a more detailed exposition of how these

equations of motion are set-up.

3.4 Hull

The longitudinal force on the ship’s hull, XH , transverse force on the ship’s hull,

YH , and the yaw moment on the ship’s hull, NH can be written as equations 3.5,

3.6 and 3.7 respectively.

XH = −mxu̇+ (my +Xvr) vor +XHo (u) (3.5)

YH = −myv̇ −mxur + YHo (vo, r) (3.6)

NH = −Jzz ṙ +NHo (vo, r) (3.7)

Where mx, and my are the surge and sway added mass respectively. Jzz is the
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hull’s added mass moment of inertia. vo is the lateral sway velocity at midships:

vo = v + xMCGr

The calm water, pure surge, resistance component, XHo , is estimated from the

method proposed by Holtrop and Mennen (1982) and Holtrop (1984) and is

summarised in appendix B.4. The fundamental force in pure sway, YHo and yaw

moment, NHo are obtained from the method given by Inoue et al. (1981a).

In the following notation, a ′ symbol denotes a non-dimensionalised factor, and

the standard SNAME nomenclature is used, whereby Yv ≡ ∂Y
∂v

etc.

XHo = Rf (1 + k) +Rapp +RW +RB +Rtr +Ra (3.8a)

YHo =
1

2
ρLppTV

2
v

(
Y ′vv

′
o + Y ′rr

′ + Y ′v|v|v
′
o|v′o|+ Y ′v|r|v

′
o|r′|+ Y ′r|r|r

′|r′|
)

(3.8b)

NHo =
1

2
ρLppTV

2
v

(
N ′vv

′
o +N ′rr

′ +N ′r|r|r
′|r′|+N ′vrrv

′
or
′2 +N ′vvrv

′2
o r
′) (3.8c)

The calm water resistance components of equation 3.8a are made up from viscous

resistance (Rf (1 + k)), where k is a form factor, the resistance of any appendages,

Rapp, the wave making resistance, RW , the resistance of any bulbous bow, RB,

resistance from any imersion of a transom stern, Rtr, and a ship-model correlation

allowance, Ra.

The non-dimensionalised components are v′o = vo/Vv and r′ = rLpp/Vv, where

Vv is the linear velocity of the origin in body axis (The resulting ship velocity).

The manœuvring coefficients in equations 3.8b and 3.8c are estimated from

work by Inoue et al. (1981a), and can be found in appendix B.1.

The added mass and mass moment of inertia terms, mx, my, Izz and Jzz are

obtained from Motora (1959 and 1960), formulae for which can be found in

appendix B.3

The resistance component of a ship advancing at some drift angle is estimated

from Inoue et al. (1981a)

X ′vr = − (1− CB)m′y

3.4.1 Dynamic Stability

A ship is said to be dynamically stable (also sometimes referred to as directionally

or course stable) if a deviation from a set course increases only while an external

force or moment is acting to cause the deviation. If a ship’s course deviates in the
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absence of any external force or moment, then it is said to be dynamically unstable.

A ship that is not directionally stable will require constant rudder corrections to

maintain her desired course. To prevent any excess rudder movement (and its

associated resistance) from biasing results in any way, only course stable ships are

analysed in this study. If the ship in question is found to be directionally unstable,

then the simulation is aborted. Perhaps the easiest way to test if a ship is

directionally stable is to analyse the linearised equations of motion, viz.

It can be shown that the linearised equations of motion can be written in the

following form, as suggested by Nomoto (1966):

T ′1T
′
2r̈
′ + (T ′1 + T ′2) ṙ′ + r′ = K ′δ +K ′T ′3 + δ̇′

Where T ′1, T ′2 and T ′3 are the time constants of the yaw rate equation, and K ′ is the

gain. The time and gain constants are related to the manœuvring coefficients by:

T ′1 + T ′2 =

[
(Y ′v̇ −m′) (N ′r −m′x′G) + (N ′ṙ − IZ)Y ′v
− (N ′v̇ −m′x′G) (Y ′r −m′)− (Y ′ṙ −m′x′G)N ′v

]
Y ′v (N ′r −m′x′G)−N ′v (Y ′r −m′)

(3.9)

T ′1T
′
2 =

(Y ′v̇ −m′) (N ′ṙ − IZ)− (N ′dotv −m′x′G) (Y ′ṙ −m′x′G)

Y ′v (N ′r −m′x′G)−N ′v (Y ′r −m′)
(3.10)

T ′3 =
(N ′v̇ −m′x′G)Y ′δ − (Y ′v̇ −m′)N ′δ

N ′vY
′
δY
′
vN
′
δ

(3.11)

K ′ =
N ′vY

′
δ − Y ′vN ′δ

Y ′v (N ′r −m′x′G)−N ′v (Y ′r −m′)
(3.12)

For dynamic stability, the roots of the characteristic equation should have negative

real parts. If the roots are given by σ1 and σ2 then it is also apparent that:

σ1 = − 1

T ′1

σ2 = − 1

T ′2

The stability boundary is reached when σ1 or σ2 becomes zero, or when T1 or T2

becomes infinite. By examining equation 3.10 when T1 or T2 is zero, it can be

inferred that:

Y ′v (N ′r −m′x′G)−Nv (Y ′r −m′) = 0
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This is the stability criterion for ships, and should therefore be greater than zero.

Y ′v (N ′r −m′x′G)−Nv (Y ′r −m′) > 0

or

N ′r −m′x′G
Y ′r −m′

>
N ′v
Y ′v

(3.13)

Equation 3.13 physically meaning that if the centre of pressure in pure yaw is

ahead of the centre of pressure in pure sway, then the ship is directionally stable.

As a linear model has been used to develop the stability criterion, it is

important to use associated linear manœuvring coefficients. This is due to the fact

that different expansion models have different values for their manœuvring

coefficients. The linear manœuvring coefficients used to determine directional

stability in this study are obtained from the work of Clarke et al. (1983).

3.5 Rudder

Once the rudder is deflected, a lift force is created by the rudder’s pressure

differential. c.f. Figure 3.2. This lift force deviates the ship from her original

course, resulting in an angle of attack to the flow. This reduces the angle of attack

of the rudder, but it still makes a small contribution that keeps the ship yawing.

Meanwhile, the hull angle of attack causes a large drift force. The combination of

drift and yawing are what is termed “turning”.

3.5.1 Rudder Forces

The rudder angle is defined to be positive when the trailing edge is to the

starboard side of the ship.

Referring to fig. 3.2, the rudder forces may be expressed in the following form:

XR = − (1− tR)FN sin δR (3.14a)

YR = − (1− aH)FN cos δR (3.14b)

NR = − (xR + aHxH)FN cos δR (3.14c)

Where:

tR is a rudder drag correction coefficient.
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Figure 3.2: Velocity Vectors at the Rudder During a Steady Turn to Port
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aH is a coefficient to account for the interaction between the hull and rudder.
xH is the distance between the point of application of the lift from the hull and

amidships.
xR is the distance between the centre of pressure of the rudder and amidships.
δR is the rudder’s angle.

3.5.2 Hull - Rudder Interaction Coefficients

The longitudinal force of the rudder, FN sin δR, yields an increase of resistance XR.

Usually XR < FN sin δR, hence the coefficient of tR in equation 3.14a. The

coefficient tR can be determined from Meijing and Xiuheng (1990) as:

(1− tR) = 0.28× CB + 0.55

The rudder induces an asymmetric flow which results not only in a lateral force,

FN cos δR (at application point XR), but also an extra lateral force aHFN cos δR (at

application point xH) from the ship now being at an angle of attack to incoming

flow. This leads to equation 3.14b.

The interaction coefficient, aH and the application point xH are estimated from

Kijima et al. (1990a) as follows:

aH = 0.627CB − 0.153

xH = −0.5Lpp

It is assumed that the ship is sailing in deep water, as the coefficients aH and

xH increase and decrease respectively with decreasing water depth, although

correction factors for shallow water can easily be applied to these coefficients (from

the work of Yumuro (1985)). This assumption seems reasonable for the type of

analysis that is undertaken in this study. The basis ships chosen for case studies in

this research (c.f. Section 1.4) will spend the majority of their voyage time in deep

water, and it is this condition for which the optimum propeller must be selected. A

notable exception for this assumption is inland ships, for which shallow water

cannot be disregarded. Inland ships must at present be excluded from this study.
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Figure 3.3: Schematic of longitudinal inflow velocity across a rudder.

3.5.3 Rudder Normal Force

The force normal to the rudder, FN can be written as:

FN =
1

2
ρARfaV

2
R sinαR

Where:

AR is the area of the rudder.

VR is the effective rudder inflow velocity.

αR is the effective rudder inflow angle.

Fujii’s prediction formula may be used to calculate the gradient of the lift

coefficient of the rudder, fa. viz.

fa =
6.13Λ

2.25 + Λ

Where Λ is the rudder’s aspect ratio.

3.5.4 Effective Rudder Inflow Velocity

The rudder’s normal force is considerably influenced by the nature of the

propeller’s slip stream, that is, it’s wake contraction and velocity. Referring to fig.

3.3, the scheme described by Lee et al. (2003) is used to calculate the effective

rudder inflow velocity, viz.
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UR = ε (1− w)u

√√√√η

[
1 + k

(√
1 +

8KT

πJ2
P

− 1

)]2

+ 1− η

Where

η = D/HR

ε =
RR0

Up
=

1− wR
1− w

k = kx/ε

kx = 0.5 +
0.5[

1 +
(

0.15
X/D

)] ≈ 0.6

JR = u
(1− wR)

nD

wR = wRo exp−4.0β2
P

βP = β − x′P r′

Where HR is the height (span) of the rudder.

The
√

1 + 8KT
πJ2
P

term represents the velocity of the wake far downstream (as can

be shown from axial momentum theory), with the k factor correcting for the

difference between the velocity far downstream and at the rudder (a function of

distance of the rudder from the propeller (X/D).

3.5.5 Effective Rudder Inflow Angle

The effective rudder inflow angle, αR, can be estimated using the following

expressions:

αR = δR − γβR

where

γ = −22.2

(
Cb

B

Lpp

)2

+ 0.02

(
Cb

B

Lpp

)
+ 0.68

βR = arcsin

(
v + xRr

Vv

)
γ represents the flow straightening factor due to the ship’s hull, βR is the drift

angle at the rudder, and xR is the distance of the x coordinate of the rudder from

midships (xR ≈ 0.5LPP ).
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The wake fraction at the rudder, wR and flow straightening factor, γ

significantly affect the results of the simulation (Kijima et al., 1990b) as they

directly affect the inflow velocity into the rudder.

3.5.6 Rudder Dynamics

When an order for the rudder to be put over is given, the rudder does not

instantaneously arrive at the given order, but takes a certain amount of time. The

electromotive oil pressure steering gear model of Son (1989) is used:

δ̇R =


(δRc − δR)

TR
if |δRc − δR| ≤ TR|δ̇Rmax |

sign (δRc − δR) |δ̇max| if |δRc − δR| > TR|δ̇Rmax |

Where δ̇Rmax is the maximum slew rate, δRc is the rudder command (or order) and

TR is the rudder time constant.

This equation is solved simultaneously with the other equations of motion to

obtain the rudder angle at a particular time step.

3.6 Propeller

The propeller model described in this section is based upon the Wageningen

B-Screw Series propellers and only considers the pure surge velocity component. A

model that takes into account the ship’s varying drift angle is described in Chapter

4.

The forces and moments imparted on the ship by the propeller can be written

as equations 3.15, assuming that he side force and associated yawing moments

generated by a single screw is negligible.

XP = (1− t) ρn2D4KT (3.15a)

YP ≈ 0 (3.15b)

NP ≈ 0 (3.15c)

Where t is the thrust deduction factor, due to the propeller modifying (reducing in

the case of a ship making headway) the pressure distribution at the stern of a ship

(thus increasing her resistance in forward motion or from another perspective,

reducing the thrust).
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Oosterveld and van Oossanen (1975) provide polynomials for calculating the

open water characteristics of the Wageningen B-Screw Series propellers. For the

sake of brevity, the propeller module that uses this method (as opposed to the

methods described in Chapter 4) is often referred to, in this study, as the OOVOO

model.

The thrust and torque coefficients, KT and KQ respectively are obtained from

equations 3.16

KT =
∑
s,t,u,v

[
CTs,t,u,v · JsP

(
P

D

)t(
AE
AO

)u
Zv

]
(3.16a)

KQ =
∑
s,t,u,v

[
CQs,t,u,v · JsP

(
P

D

)t(
AE
AO

)u
Zv

]
(3.16b)

The coefficients s, t, u, and v can be found in Appendix B.5. P is the propeller’s

pitch, D is the propeller’s diameter, AE is the expanded blade area and AO is the

area of a disc of diameter D. Z is the number of blades on the propeller. JP is the

effective advance ratio at the propeller, and is estimated by equation 3.17.

JP =
Vap
nD

(3.17)

Where n is the propeller revolutions, and Vap is the speed of advance at the

propeller, as defined by equation 3.18

Vap = u (1− wp) (3.18)

wp is the wake fraction at the propeller, and is covered in the next subsection.

The thrust and torque are related to the thrust and torque coefficients by the

identities of equations 3.19

T = ρn2D4KT (3.19a)

Q = ρn2D5KQ (3.19b)

3.6.1 Wake and Thrust Deduction Factor

The wake at the propeller plane for a ship at zero drift angle, wP0 and thrust

deduction factor, t can be calculated from the analysis carried out by Holtrop

(1984), equations for which can be found in Appendix B.4.

The following formulae from Hirano (1981) may be used to estimate the wake
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fraction at the propeller plane:

wP = wP0 exp
(
−4.0β2

P

)
(3.20)

Where the drift angle at the propeller is given by:

βP = arcsin

(
v + xP r

Vv

)
(3.21)

Where xP is the distance of the x-coordinate of the propeller from midships (a

negative value ≈ −0.5Lpp).

3.7 Main Engine Machinery Model

Expressions of the Main Engine Torque QE depend on engine types, and QE is

modelled according to it’s characteristics in each engine operating condition. In

the following examination, the engine characteristics of a slow speed, directly

coupled two-stroke diesel engine are described for the normal running mode. This

engine type is the most popular for ship types like the basis ships of this study,

due to the higher output power compared to their four-strokes counterparts.

The engine’s torque characteristics are written in the form of equation 3.22,

where QEmax is the maximum allowable torque of the main engine.

QE =

|QP | if |QP | ≤ QEmax

QEmax if |QP | > QEmax

(3.22)

3.7.1 Engine & Propeller Dynamics

The telegraph order sets the rate of propeller revolutions. This is achieved by

altering the rate of fuel flow into the engine, thereby altering the torque the engine

produces. The difference between the resisting torque of the water on the

propeller, and the output torque from the engine, results in the acceleration of the

drive train.

The rate of change of the propeller’s speed can be written as equation 3.23.

ṅ2π (Ipp + Jpp) = QE − ρn2D5KQ

ṅ =
QE −Qprop

Jshaft
(3.23)

The added mass moment of inertia of the propeller, Jpp and mass moment of
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inertia of the shaft system about it’s axis, Ipp can be estimated from equation 3.24

(Ksnaj, 1996)

Ipp + Jpp = 20.0D5 (3.24)

It is noted, for equation 3.24 to be dimensionally correct, the constant 20.0 must

have the units of [Kg m−3].

The torque from the engine (QE) is calculated from equation 3.25

QE = χgear · ηshaft · τ ·QEmax (3.25)

Where χgear represents the gear ratio (which in the case of the slow speed directly

coupled diesel engine is 1.0). Losses in the system are accounted for by the

transmission efficiency (ηshaft). τ is the engine throttle setting.

In this analysis, it is assumed that a throttle setting of 100% corresponds to the

engine producing maximum torque. The throttle setting is given between 0 to

100%, that is, the engine is not reversed in this analysis. The torque output from

the engine does not respond instantaneously to the throttle setting, the response of

the engine to the throttle setting is modeled with the use of the following

expression:

τ̇ =


(τc − τ)

TE
if |τc − τ | ≤ TE |τ̇max|

sign (τc − τ) |τ̇max| if |τc − τ | > TE |τ̇max|
(3.26)

Where τ̇ , is the throttle’s rate of change with time, τc is the throttle command, τ

is the instantaneous throttle setting, τ̇max is the maximum rate of change of the

throttle, and TE is the engine’s time constant.

Equations 3.26 and 3.23 are solved simultaneously along with the equations of

motion ODEs.

3.8 Environment

Effects on the ship from the environment in which she sails was described in

Chapter 2 and in a brief literature review in Chapter 1. There now follows a more

detailed explanation as to how this environment is modelled mathematically.
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3.8.1 Wind

The wind induced longitudinal and transverse forces and yawing moment imposed

on a ship, in accordance with the current sign conventions and coordinate system,

can be written as equations 3.27.

XA = 0.5CXwρV
2
rwAFw (3.27a)

YA = 0.5CYwρV
2
rwALw (3.27b)

NA = 0.5CNwρV
2
rwALwLoa + xMCGYA (3.27c)

Where Vrw is the velocity of the wind relative to the ship.

Blendermann (1996) gives semi-empirical formulae for estimating the wind force

and wind-induced yawing moment coefficients on a ship for a wind from any

direction. These are expressed as equations 3.28.

CXw = −CDl
ALw
AFw

 cos γrw

1− δ
2

(
1− CDl

CDt

)
sin2 (2γrw)

 (3.28a)

CYw = CDt

 sin γrw

1− δ
2

(
1− CDl

CDt

)
sin2 (2γrw)

 (3.28b)

CNw =

[
SL
Loa
− 0.18

(
γrw −

π

2

)]
CYw (3.28c)

Where γrw is the relative wind direction, ALw is the lateral projected area, AFw is

the transverse projected area and SL is the horizontal distance to centroid of ALw

from datum (midships). Values for δ, the cross-force parameter, CDl the

non-dimensional headwind drag coefficient and CDt the non-dimensional

beam-wind drag coefficient can be obtained from Table B.9.

Relative Wind Velocity and Direction

Referring to the diagram of fig 3.4, a ship is travelling on a course from A to B.

The wind force is acting upon the ship, however the ship’s course does not change,

due to an application of the rudder, albeit, the ship’s heading does change. The

speed and direction of the wind, relative to the ship, can be calculated from
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equations 3.29 and 3.30.

VRW =

√
[VTW cos (γTW − ψ)− Vv cos β]2 + [VTW sin (γTW − ψ)− Vv sin β]2

(3.29)

γRW = arctan
VTW sin (γTW − ψ)− Vv sin β

VTW cos (γTW − ψ)− Vv cos β
(3.30)

Where VTW = Velocity of true wind.

VRW = Velocity of wind, relative to the ship’s centre-line.

γTW = Direction of wind, relative to North, positive clockwise.

γRW = Direction of wind, relative to the ship’s centre-line.

x

y

Y0
0

X0

γTW

βψ

VTW

VV

B

A

Figure 3.4: Relative Wind Velocity and Direction

3.8.2 Waves

As a starting point to account for added resistance due to waves, the method of

Townsin et al. (1992) is used. This method estimates the added resistance in the

pure surge direction caused by waves encountering a ship from any angle. The

paper of Townsin et al. (1992) was written at a time when a 3600 TEU container

ship such as the KCS used in this study was well within the size range for

manufacture, the same applies to a ship such as the Esso Osaka, Rodrigue (2013).

Caution should be exercised if this method is to be used for ships that are extreme

in size, such as the Maersk Triple E Class, having a capacity of 18,340 TEU, as the

validity of the method may not be applicable to such ships due to the

semi-empirical nature of the method’s formulation.
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The percentage speed loss of a ship travelling in waves is given by:

µ
∆U

U
100% = aBN +

BNb

d∇2/3
(3.31)

Where a, b and d are obtained from Table 3.1, µ can be obtained from Table 3.2

and BN is the Beaufort Number which is obtained from the mean true wind speed

as specified as input to the SiS simulator. A table to extract the Beaufort Number

from wind speed is given in Table B.10.

Tankers Containerships
Laden Ballast

a 0.5 0.7 0.7
b 6.5 6.5 6.5
d 2.7 2.7 22

Table 3.1: Coefficients for use in Townsin et al. (1992) method for added wave
resistance.

2µ
Head Sea (up to 30o off bow) 2
Bow Sea (30o - 60o off bow) 1.7− 0.03 (BN − 4)2

Beam Sea (60o - 150o off bow) 0.9− 0.06 (BN − 6)2

Following Sea (150o to 180o off bow) 0.4− 0.03 (BN − 8)2

Table 3.2: µ coefficient for use in Townsin et al. (1992) method for added wave
resistance.

Now, assuming that the resistance force is directly proportional to the square of

the velocity; R ∝ U2, then let

R

R1

=
U2

1

U2

where

U = U1

(
1− ∆U

U1

)
then

XW = R =
R1(

1− ∆U
U1

)2

The subscript 1 denotes values at the previous time step, t(i−1), and the resistance

due to waves in the pure surge direction, R is, in accordance with previous
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notation, XW . The values of U1 and R1 are obtained from the simulator.

3.8.3 Current

The approach taken in this study to model the effects of surface current on the

manœuvring motion of a ship is to express the ship speed relative to the Earth

fixed coordinate system as the sum of the ship speed relative to the water and the

velocity of the current. This assumes that the steady state has been reached, and

that no relative motions exist between a ship and the water due to the current.

The velocity of a ship with respect to Earth can be written as:

uG = u+ Vc cos (γc − ψ)

vG = v + Vc sin((γc − ψ)

rG = r + rc

Where γc is the direction of the current with respect to Earth, and Vc is the speed

of the current.

3.9 Automatic Pilot

In order for the simulated ship to arrive at the intended destination at the

intended time, an automatic pilot has been implemented to compensate for any

speed and course deviations due to weather. The autopilot consists of

Proportional, Integral, Derivative (PID) controllers, one PID controller for course

keeping and another for speed keeping.

The output of the PID controller is expressed as equation 3.32

o (t) = KP e (t) +KI

t∫
0

e (τ) +KD
d

dt
e (t) (3.32)

Where KP , KI and KD are the proportional, integral and derivative tuning

parameters respectively. Also, e is the error, t is the discrete present time and τ is

the variable of integration (values from time t = 0 to present time).

The error in the system is defined as the difference between the desired value, or

set-point, (SP ) and the output value of the process (PV ).

e = SP − PV (3.33)

53



Chapter 3. Simulation of Manœuvring Motion
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Figure 3.5: A block diagram of a PID controller in a feedback loop.

The error for the speed controller, es, is simply the difference between the

designed service speed, Vs, and the ship’s resultant velocity:

es = Vs −
√
u (t)2 + v (t)2 (3.34)

The error for the course controller, θe can be calculated with reference to fig.3.6.

θc = arctan

(
ywp − ysp
xwp − xsp

)
(3.35)

θe = θc − (ψ − β) (3.36)

Where θc is the ship’s desired course, xsp and ysp are the Cartesian coordinates of

the ship with respect to Earth, xwp and ywp are the coordinates of the next

waypoint. In this analysis, the next waypoint is considered to be the ship’s final

destination, and is calculated as follows:

xwp = Vs × tstop sin (ψ0) (3.37)

ywp = Vs × tstop cos (ψ0) (3.38)

Where tstop is the end time of the simulation, and ψ0 is the ship’s initial heading.

Providing the ship’s resultant speed is kept the same as the starting speed

(which for the purposes of this analysis is the ship’s service speed), then the ship

will arrive at her intended destination on time.
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Figure 3.6: Calculation of Course Error.

3.9.1 Tuning the Automatic Pilot

The tuning parameters, KP , KI and KD of the automatic pilot need to be chosen

so that the system will reach its desired value (or set-point) within a reasonable

time, without wild oscillations or becoming unstable (i.e. the output diverges).

Several methods are available for determining the tuning parameters, one of the

most popular being the Ziegler and Nichols (1942) method. This method requires

knowledge of the oscillation period, which for an unsteady process is not an

appropriate method.

A manual method of tuning the automatic pilot is used in this study, the

process of which is outlined as follows:

• KI and KD are set to zero.

• KP is increased until the output of the loop begins to oscillate (known as the

ultimate gain KU).

• KP is then set to a half of the ultimate gain.

• KI is then increased until any offset is corrected within a suitable time for

the process. This statement effectively means that any offset does not grow

so large that it cannot be corrected for within a reasonable time scale.

“Reasonable” is rather a loose term, as for the purposes of this research,
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where there are no tight manœuvres during a ship’s voyage (with the

exception of harbour manœuvres, which are not analysed), the accelerations

and motions of a ship compared to the response of the control system are

relatively slow, and therefore can usually be easily corrected within a time

scale that would not result in a ship deviating drastically from her course.

Care must be taken not to increase the value of KI too much as this will

cause instability.

• KD is finally increased (if required) until the loop is acceptably quick at

reaching the set point after a load disturbance. Again, “acceptably quick” is

a loose term, meaning that any deviation is corrected within a time

constraint so that after a disturbance, a ship can continue her voyage at the

required specifications. Increasing the value of KD results in a fast response,

however, too much will result in excessive overshoot.

This tuning method is rather intuitive, and for the application of the ship’s

autopilot described in this research, the autopilot’s tuning parameters are not

sensitive to the results, and do not need to be finely optimised. It is thus difficult

to quantify the tuning parameters, as for the purposes of this research they are not

critical to results, and are rather subjective. The only time that the values of the

tuning parameters become critical is when they result in an autopilot that does

not do the job in hand and results in a ship that is unable to perform at her

required specifications, or they produce such a sharp response that it results in an

unstable system.

3.9.2 Automatic Pilot Review

Due to the assumption that the ship’s resultant speed is kept constant, small

errors creep into the calculations, due to the fact there are small fluctuations in the

resultant ship speed. These small errors manifest themselves as an error in position

near the end of the simulation’s run, which are suddenly corrected by the autopilot

when it realises that the waypoint is nearby. This sudden correction causes the

ship to turn quickly, resulting in a transient response of the ship/propulsion

system as seen, for example, in figs. C.1 and C.4. This transient stage towards the

end of the simulation runs is discarded in the analysis of this research, however, it

may be possible to avoid this sudden correction for, albeit, a small error in course,
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from implementing a different methodology of automatic pilot.

One method to improve the automatic pilot’s track keeping ability would be to

incorporate a speed keeping algorithm in conjunction with a revised course-keeping

algorithm. This revised course-keeping method would keep the ship on the desired

track over each few time steps of the simulation, rather than the one waypoint at

the end of the simulation, as presently implemented. This method would, however,

probably require a faster response from the PID controllers, meaning that the

tuning parameters would play a more critical role in the added resistance

associated with the rudder’s motion.

3.10 Numerical Integration of Ordinary Differential Equations

A forth-order Runge-Kutta method (Runge (1895) and Kutta (1901)) is used to

solve the system of ODEs that together model the behaviour of the ship over time.

If the following N simultaneous differential equations represent the equations to

be solved:

d

dt
yi (t, yi) = fi (t, yi) for i = 1, . . . , N

Then the variables at the (n+ 1)th time step can be estimated from their values at

the (n)th time step from the following algorithm (Abramowitz and Stegun, 1972):

y
(n+1)
i = y

(n)
i +

1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O

(
h5
)

Where

k1 = hfi

(
tn, y

(n)
i

)
k2 = hfi

(
tn +

1

2
h, y

(n)
i +

1

2
k1

)
k3 = hfi

(
tn +

1

2
h, y

(n)
i +

1

2
k2

)
k4 = hfi

(
tn + h, y

(n)
i k3

)
and h is the size of the time increment, i = 1, . . . N . The Bachmann-Landau

symbol, O represents the local truncation error, and is set to zero in the present

implementation.
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3.10.1 Conversion of Second Order Ordinary Differential Equations

Into System of First Order Ordinary Differential Equations

The equations of motion are expressed as a set of simultaneous second order

Ordinary Differential Equations (ODE), however the Runge-Kutta method used in

this analysis only solves first order ODEs. Fortunately one can easily convert a

second order ODE into an equivalent set of simultaneous first order ODEs. viz.

If

ÿ (x) = f [x, y (x) , ẏ (x)] (3.39)

with boundary conditions: y (xo) = yo and ẏ (xo) = ẏo, then let Y1 (x) = y (x) and

Y2 (x) = ẏ (x). Equation 3.39 may be now be re-written as a system of two first

order simultaneous equations:

Ẏ1 = Y2 (3.40a)

Ẏ2 = f (x, Y1, Y2) (3.40b)

where Y1 (xo) = yo and Y2 (xo) = ẏo

Q.E.D.

3.11 Summary

This Chapter has laid out the mathematical structure for setting up and solving

the components that form a ship simulator in the manœuvring motions of surge,

sway and yaw. These components comprise the forces and moment from the ship’s

hull, propeller and rudder, and external forces and moment from the wind and the

pure surge component of added wave resistance. An autopilot has been addressed,

so that the simulation may be run without user interaction for correction of course

and speed. This simulation methodology has been realised in a set of FORTRAN

(2008 standard) subprogrammes, for which the descriptions and function list can

be found in Appendix A.3.

Validation of the simulator is addressed in Chapter 5.
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Chapter 4. Propeller Flow Modelling in Steady and

Unsteady Flow

This Chapter details a theoretical basis for the unsteady dynamics of a marine

propeller when accounting for the changing inflow vectors imparted to it by the

manœuvring motion of a ship. For the purposes of this study, unsteady flow means

that at a discrete polar coordinate in the propeller plane, the velocity vector there

will be varying with time. The study excludes the variations due to hull wake.

A description of various theories to model the propeller flow was outlined in

Chapter 1. In the early work on the theory of propeller action there were two main

streams of thought; one based on the general conservation of momentum, chiefly

attributed to Rankine (1865), and the other based upon elemental strips of the

propeller’s blade, attributed to Froude (1878). The combination of these two

theories is known as the Blade-Element Momentum Theory (BEMT ).

The mathematical propeller flow model that is used in this research is that of

the combined Blade-Element Momentum Theory, the reason being is that it is

considered to be the most amenable to integrating into a simulator (due to its

relatively quick computation time, and the fact that the propeller module is called

at each time-step throughout the simulation).

The BEMT in its basic form is not considered to be accurate enough to

capture some of the physical flow phenomena encountered by the propeller

(certainly in the case of oblique flow). This Chapter explains the workings of the

BEMT and the modifications necessary to account for various flow phenomena,

including unsteady flow effects.

Section 4.1 briefly describes the basis propeller series which is used to calculate

steady propeller forces and to calibrate the unsteady propeller flow model. Section

4.2 describes the theory and mathematics behind the general conservation of

momentum theory and how it is adapted to account for a finite number of blades,

and an oblique inflow angle. Section 4.3 details the theory and mathematics
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behind the blade element theory, and how it is modified to account for oblique

inflow angle. Section 4.4 presents a method which combines the general

conservation of momentum theory and the blade-element theory, thereby

overcoming certain drawbacks that are inherent in each theory alone. Section 4.5

describes how the sectional lift and drag coefficients are obtained. These

coefficients are necessary for the blade-element part and include effects of unsteady

flow. This section also describes a method used to determine the flow regime (fully

attached, transitional or separated). Whilst Section 4.6 describes how to predict

the stall angle for the blade sections, Section 4.7 briefly outlines how the variation

in inflow due to the ship’s wake is used to further optimise a propeller, and why it

has been neglected in this analysis. Section 4.8 demonstrates how the mathematics

of the previous Sections are assembled into a Fortran subprogramme. Section 4.9

shows how the developed modified BEMT propeller flow model is calibrated

against the B-Screw Series via the polynomials developed by Oosterveld and van

Oossanen (1975). This calibration is done to ensure that when comparisons are

made between flow models, the base-line figure is identical between the flow

models. Section 4.10 summarises the development and findings of the Chapter on

Propeller Flow Modelling.

4.1 The Wageningen B-Screw Series

The Wageningen B-Screw Series has been chosen as a basis propeller to calibrate

and compare the mathematical propeller flow model developed in this Chapter.

The B-Screw Series has been extensively studied in the past, the performance can

readily be calculated from the polynomials provided by Oosterveld and van

Oossanen (1975), which have been based on accurate regression analyses from

experimental data. An example of a B-Screw Series blade which has been output

from gplot.f90 is depicted in fig. 4.1.

4.2 The General Conservation of Momentum Theory

Rankine (1865) proposed a simple theory of propeller action based on the axial

momentum of water passing through a propeller disc. The assumptions Rankine

made in his theory were:

• The fluid in which the propeller operates is ideal (does not experience energy
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Figure 4.1: Example output from b_screw_geom.f90 for propeller with aE = 0.8,
P/D = 1.0

losses due to friction).

• The propeller has an infinite number of blades (known as an actuator disc).

• The propeller does not impart any rotation into the slipstream.

• The thrust is assumed to be distributed uniformly over the disc.

The concept of the actuator disc (which is akin to a propeller with an infinite

number of blades and infinitesimal thickness) is a common way to represent a

propeller in early propeller theories. The actuator disc is considered to absorb all

of the energy imparted in to it from the engine or appropriate source, and

dissipate this power by causing an instantaneous increase in pressure across the

two faces of the disc.

The power absorbed by the propeller, PD is equal to the increase in kinetic

energy of the slipstream per unit time, and the thrust the propeller generates, T , is

equal to the increase in axial momentum of the slipstream: c.f. fig. 4.2

PD =
1

2
ṁ
(
V 2
w − V 2

a

)
(4.1)

T = ṁ (Vw − Va) (4.2)

Where ṁ is the mass flux , Va is the velocity far upstream of the disc, and Vw is

the velocity far downstream of the disc.
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Figure 4.2: Axial Momentum Model of an Actuator Disc

Considering that power is equal to the work done by the thrust force of the

propeller PD = TVp, where Vp is the velocity at the propeller disc, it can be shown

from equations 4.1 and 4.2 that the velocity through the actuator disc is equal to

the average of the velocities in the streamtube far upstream, and far down stream

of the disc.

Vp =
1

2
(Vw + Va) (4.3)

Combining equations 4.3 and 4.2 and substituting ṁ = ρApVp yields:

T = 2ρApVp (Vp − Va)

= 2ρApVi (Vi + Va)
(4.4)

The increment of velocity added to the freestream velocity is called the induced

velocity, Vi, such that Vi = Vp − Va.

4.2.1 Accounting for Changes in Angular Momentum

The classical momentum model in its original form, as developed by Rankine

(1865) assumed that the actuator disc would only accelerate fluid in the axial
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Figure 4.3: Concept of the Annular Streamtube

direction i.e. the slipstream’s rotation was neglected. This assumption was

addressed by Froude (1889) who applied an ‘angular momentum’ theory to the

propeller action, analogous to Rankine’s ‘axial momentum’ theory. This allows the

propeller to impart a rotational velocity to the slipstream, and an overall more

realistic model. This addition to the axial momentum theory is sometimes referred

to as the general momentum theory.

The model assumes that the axial and angular velocities are uniformly

distributed over the disc. Following the fashion of the classical axial momentum

theory, the angular velocity of the flow is assumed to be zero far upstream of the

disc and equal to ω at the disc.

The angular velocity at the disc, ω, can be written for a radius, r, in terms of

the tangential induced velocity as ω = Vθi (r) /r, where Vθi is the tangential

component of induced velocity.

Figure 4.3 represents the control volume of an annular streamtube. The torque

on each element of the disc’s annulus at radius r is equal to the angular change in

momentum per unit time of the entire annular streamtube.

dQ = ṁ (2ω) r2

= ṁ

(
2
Vθi
r

)
r2

63



Chapter 4. Propeller Modelling in Unsteady Flow

Where the mass flux, ṁ, through the disc annulus at radius r is defined as:

ṁ = 2πdrρ (Va + Vai)

Thus the elementary torque on each element in the disc annulus is:

dQ

dr
= 4πρr2Vθi (Va + Vai) (4.5)

Where Vai and Vθi are the axial and tangential components of the induced velocity,

respectively, at the disc at radius r. The total propeller torque is the integration of

each elemental differential torque in each annulus over the radius of the disc.

4.2.2 Glauert’s Thrust Hypothesis

In 1897 H.S. Maxim observed that an airscrew when moved perpendicular to its

axis of rotation experiences an increased thrust for a given power output. Glauert

(1928) investigated the thrust behaviour of an helicopter rotor for all possible

flight conditions (hover, vertical and horizontal flight). He developed an hypothesis

relating the thrust of the rotor blade to the inflow velocity vector.

Glauert drew an analogy between an helicopter rotor in high-speed horizontal

flight (with the rotor’s axis perpendicular to direction of flight), and an elliptically

loaded wing. He then used vortex theory to apply a lifting line to the elliptically

loaded wing with the result that the induced velocity (or downwash as it is

sometimes referred to) is related to the lift by:

L = ρVaπ

(
b

2

)2

2Vi (4.6)

Where b is the wing span, Va is the advance velocity.

Glauert applied equation 4.6 to the lift of an helicopter rotor in high speed

horizontal flight, with the hypothesis that the induced velocity at the rotor is

related by:

T = ρV πR22Vi = 2ρAViV (4.7)

Where the velocity V is the resulting inflow velocity vector arriving at the disc

(i.e. V = Va + Vi). Glauert went on to assert that for the general case of a rotor at

an arbitrary angle δ to the free-stream velocity, as shown in fig. 4.4, the total
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Figure 4.4: Glauert’s concept of an helicopter rotor in oblique flow.

vector sum of the velocity at the disc would be:

V =

√
(Va cos δ + Vi)

2 + (Va sin δ)2 (4.8)

=
√
V 2
a + 2ViVa cos δ + V 2

i (4.9)

Although Glauert based his hypothesis on an helicopter in high speed forward

flight, Stepniewski and Keys (1984) prove that, with the help of numerical

methods, Glauert’s results are valid for all cases, and are applicable for the current

application of providing for the extra lift that Maxim observed for a propeller disc

in oblique flow.

4.2.3 Momentum Theory Accounting for Finite Blade Number

Consideration of vortex theory requires the trailing vortices in the wake lie on a

regular helical surface. The velocity system of the wake can be obtained if this

regular vortex sheet is assumed to be a rigid membrane which moves aft with

constant velocity. The fluid velocity at the interior part of the slipstream (the term

slipstream is also referred to as the wake) mainly has axial and rotational

components, which move with the vortex sheets. Near the exterior of the
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slipstream, the fluid tends to flow around the edges of the vortex sheets, from the

higher pressure to the lower pressure regions, imparting a radial velocity

component to the slipstream. This process is referred to as “leakage” or “tip-loss”.

The general momentum theory does not account for any velocity distribution as

a function of radius, and therefore on its own does not model leakage. Prandtl, in

his Appendix of Betz (1919) first developed an approximate method for estimating

the effect of leakage of flow around the edges of the vortex sheets. This method

can be thought of as a momentum reduction factor, and is applied directly to the

general momentum equations.

Goldstein (1929) used vortex theory to analyse the flow induced by a system of

helical surfaces of infinite length. He developed a method which accounts for the

difference between the average inflow factors of an actuator disc and propeller with

a finite number of blades. This averaging factor, K, is known as the Goldstein

factor. The application of this averaging factor is used in a manner identical to

Prandtl’s momentum reduction factor. The approximation that the trailing

vortices form regular helices is equivalent to neglecting the contraction of the

slipstream (and thus is only valid for small values of the thrust coefficient, i.e.

lightly and moderately loaded propellers).

A practical estimation for the Goldstein K factor is given by (Molland et al.,

2011):

K =


2

π
arccos

[
cosh (xF )

cosh (F )

]
if F ≤ 85

1 if otherwise
(4.10)

where F = Z
2x tanφ

− 1
2
, Z is the number of blades, φ is the local section

hydrodynamic pitch angle and x is the radius of the propeller at the annulus in

question.

4.3 Blade-Element Theory

A drawback with the pure general momentum theory approach is that the

propeller’s geometry does not play any role in the calculations of the propeller’s

action. The blade-element theory, originally developed by Froude (1878) considers

the force experienced by the blades of the propeller in their motion through the

fluid. (And as such, this method does take into account the blade’s geometry.) A
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Figure 4.5: Oblique Flow into a Propeller

drawback with the blade-element theory approach is the uncertainty of the

generation of the blade-element’s lift and drag characteristics. This aspect is

addressed in Section 4.5.

4.3.1 Blade-Element Theory Accounting for Wake-Skew Effects

The original blade-element method assumes that the induced axial and tangential

velocities are constant around each annulus. When the propeller is at an inclined

angle to the freestream, the resulting wake will also be inclined at some angle,

defined here as the skew angle, χ, as depicted in fig. 4.7 . The original

blade-element method ignores this aspect. A wake skew angle produces an

asymmetry of induced velocities with respect to blade azimuthal angle, θ, around

the annular ring. Coleman et al. (1945) applied the Biot-Savart law to a vortex

wake represented by an elliptic cylindrical shell, with a continuous distribution of

vortex “rings” representing the mean helical surfaces of the vortex wake, whose

planes are parallel to the disc (fig. 4.7). The resulting expression for the induced

velocity was a complex expression, yet found to be a very nearly linear distribution

over the diameter of the disc. The linearised expression for the distribution of
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Figure 4.6: Oblique Flow Velocity Vectors at a Propeller Blade Element

induced velocity, Vi, over a helicopter rotor in forward flight is given by:

Vi = Vi0

[
1 +

r

R
tan
(χ

2

)
cosψ

]
(4.11)

Where Vi0 is the mean induced velocity (i.e. at the center of the disc), r is the

radial coordinate on the disc, ψ is the azimuthal angle measured from the

downstream direction, and χ is the wake skew angle (in the downstream direction).

Coleman et al. (1945) went on to combine the Glauert thrust hypothesis

(discussed in section 4.2.2) with their own results, to obtain an expression relating

the mean induced velocity and the wake skew angle and advance velocity, viz.

Vi0
Va

=
cos (χ+ αD)

2 tan χ
2

(4.12)

Where αD is the angle of incidence the disc makes to the incoming flow, in terms

of a ship’s perspective, the drift angle at the propeller.

The mathematics and assumptions that Coleman et. al. base their results on

are geometric and kinematic considerations of the helical vortex wake relative to

the disc, and is shown to be applicable to the marine propeller in oblique flow by
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Stettler (2004). Stettler used fluorescent paint to visualise the helical wake of an

azimuthing propeller in transient conditions. The radial distribution of axial

induced velocity can be calculated from:

VAi (r, θ) = VAi0

[
1 +

r

R
tan
(χ

2

)
sin θ

]
(4.13)

Where R is the radius of the propeller, and RH is the radius of the propeller’s hub.

Referring to fig. 4.8, if the wake skew angle, χ is considered as a constant across

the radius and for all azimuthal positions (equivalent to taking the average of the

spatial variations of inflow and induced velocities, to attain a single

spatially-averaged wake skew angle), it is possible to calculate the wake skew angle

from:

χ = arctan

(
Va sin δ + V̄T i
Va cos δ + V̄Ai

)
(4.14)

Where V̄T i is the disc-averaged in-plane (or cross-flow) transverse induced velocity

component, and V̄Ai is the disc-averaged axial induced velocity component.

The spatially-averaged disc-averaged induced velocities can be calculated from:

V̄T i =
1

πR2 −R2
H

R∫
RH

2π∫
0

Vθi (r, θ) cos θdθrdr (4.15)

V̄Ai =
1

πR2 −R2
H

R∫
RH

2π∫
0

VAi (r, θ) dθrdr (4.16)

4.4 Combined Blade-Element Momentum Theory

A combination of the blade-element theory and the general momentum theory

provides the basis to model the action of a propeller in this study, and can

overcome some of the weaknesses that are inherent in each of the separate theories.

At each blade section (element) along the radius, a force balance is applied from

the two-dimensional lift and drag forces, with the thrust and torque. The result is

then summed up over the circumference drawn out at that particular radius.

Simultaneously, an axial and angular momentum balance is applied to the annular

ring of the streamtube through which that particular blade section passes. By

equating the thrust and torque determined from the blade element method
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Figure 4.8: Velocity Vectors to Calculate Wake Skew Angle.

(multiplied by the number of blades on the propeller) to the thrust and torque

required to balance the axial and angular momentum within the annular

streamtube, a resulting pair of non-linear simultaneous differential equations are

obtained for each differential annular ring along the propeller’s radius. The

induced velocities can be obtained from solving these equations, and the resulting

thrust and torque of the propeller can then be calculated by integrating the

elemental values over the propeller’s radius.

As mentioned by citetStettler-2004, the application of the combined

blade-element momentum theory assumes that the annular blade elements do not

interact with one another, that is, the flow can be considered locally to be

two-dimensional at that particular blade section. This has the effect of neglecting

any radial induced velocities. As the induced velocities vary with the blade’s

position around the annular ring, neglecting radial induced velocities seems to

invalidate the method’s use for a propeller in oblique flow. If annular-averaged

induced velocities are used however, the thrust and torque are calculated from

spatial averaging around each annulus, so the average induced velocity values can

be used, and the combined blade-element momentum theory can be applied.

The total local axial and tangential components of velocity at each blade
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element, referring to figs. 4.5 and 4.6 can be written as:

V ∗a = (r, θ) = Va cos δ + VAi (r, θ) (4.17)

V ∗θ = 2πnr + Vθi (r, θ) + Va sin δ cos θ (4.18)

The angle of attack, α at each blade element location can be written

α (r, θ) = φ (r, θ)− β (r) (4.19)

Where β is the hydrodynamic pitch angle (c.f. fig. 4.5), and φ is the inflow angle

calculated by:

φ (r, θ) = arctan

(
V ∗A (r, θ)

V ∗θ (r, θ)

)
(4.20)

The elementary thrust force and in-plane tangential force can be written in terms

of the elementary lift and drag forces

L∗ (r, θ) = L∗ cosφ−D∗ sinφ (4.21)

D∗ (r, θ) = L∗ sinφ+D∗ cosφ (4.22)

Where the elementary lift and drag forces can be written

L∗ (r, θ) =
1

2
ρV ∗2p cCL (4.23)

D∗ (r, θ) =
1

2
ρV ∗2p cCD (4.24)

Where c is the chord length, CL and CD are the sectional lift and drag coefficients,

respectively. V ∗p is the total velocity vector across the blade element.

Equation 4.25, based upon linear lifting theory for a thin foil with a camber

(Hoerner and Borst, 1985) can be used as a first approximation to section lift

coefficient.

CL = k1

[
2πα + 4π

(
δF
CM

)
max

]
(4.25)

Where α is the effective angle of attack on the blade and
(
δF
CM

)
max

is the maximum

camber ratio of the blade section: δF is the maximum camber of the section, and

CM is the chord length. k1 is an empirical coefficient used to calibrate the model

with the polynomials developed by Oosterveld and van Oossanen (1975).

Equation 4.26 is an approximation for the drag coefficient of a thin blade
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section, and is a combination of parasitic and lift-induced drag (Hoerner, 1965).

CD = k2 (0.008) + 0.06C2
L (4.26)

Where k2 is an empirical coefficient used to calibrate the model with the

polynomials developed by Oosterveld and van Oossanen (1975). Section 4.9

describes how the coefficients k1 and k2 are obtained.

Equations 4.25 and 4.26 are useful for achieving a fast, quasi-static solution to

the BEMT .

The differential thrust, torque, normal force and steering moment (about axis

perpendicular to shaft) for each annular ring at the propeller disc (radius) are

calculated by integrating the blade elemental thrust force and tangential force over

the annulus given in equations 4.27, 4.28, 4.29 and 4.30, respectively.

T̃ (r) = Z
1

2π

2π∫
0

T ∗ (r, θ) dθ (4.27)

Q̃ (r) = Z
1

2π

2π∫
0

F ∗θ (r, θ) rdθ (4.28)

Ñ (r) = Z
1

2π

2π∫
0

F ∗θ (r, θ) cos θdθ (4.29)

M̃ (r) = Z
1

2π

2π∫
0

−T ∗ (r, θ) r sin θdθ (4.30)

As discussed previously, the differential thrust and torque of each annular ring at

the propeller disc, as calculated from blade-element theory, must be equal to the

differential thrust and torque of the corresponding annular streamtube as

calculated from general momentum theory. Using the equations 4.7 and 4.8

proposed from Glauert’s Thrust Hypothesis, the thrust for each annular

streamtube can be written as:

T̃ = 4ρπrV̄Ai (r)

√
V̄A

2
(r) + 2V̄Ai (r) V̄A (r) + V̄ 2

Ai (r) (4.31)

The torque for each annular streamtube can be written from equation 4.5 in the

form:

Q̃ = 4ρπr2V̄θi (r)

√
V̄A

2
(r) + 2V̄Ai (r) V̄A (r) + V̄ 2

Ai (r) (4.32)
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Where V̄Ai (r) and V̄θi (r) are annulus-averaged values of the induced axial and

tangential velocities respectively at the disc.

V̄Ai (r) =
1

2π

2π∫
0

VAi (r, θ) dθ (4.33)

V̄θi (r) =
1

2π

2π∫
0

Vθi (r, θ) dθ (4.34)

By equating the thrust and torque from equations 4.27 and 4.28 with equations

4.31 and 4.32, the annulus-averaged axial and tangential induced velocities can be

calculated. Once the calculations for the induced velocities have converged to a

solution (c.f. Section 4.8 for a calculation scheme), the total propeller’s thrust,

torque, normal force and steering moment can be calculated by integration of the

annulus values over the propeller disc, viz.

T =

R∫
RH

T̄ (r) dr (4.35)

Q =

R∫
RH

Q̄ (r) dr (4.36)

N =

R∫
RH

N̄ (r) dr (4.37)

M =

R∫
RH

M̄ (r) dr (4.38)

4.5 Lift and Drag

The requirement for calculating the coefficient of lift, CL, and drag, CD, with

sufficient accuracy is of paramount importance to the results obtained from the

Blade Element Method.

Figure. 4.9 shows an example output from the developed model, showing the

inflow angle distribution on blade sections from root to tip, when the ship has zero

drift angle. Manœuvering conditions change the ship’s wake at the propeller plane.

For comparison, fig 4.10 shows the inflow angle distribution on blade sections from

root to tip, when the ship has a steady drift angle of 8.89◦. Large spatial variations

can be seen in fig. 4.10 which, as can be seen from figs. 4.11, 4.12, and summarised
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Figure 4.9: Angle of attack vs azimuth (position “around the clock”) angle at a drift
angle of 0.00◦

in fig. 4.13 increase with increasing drift angle. Quantitatively this indicates that

with a rapid variation in inflow angle across the blade section, the unsteady effects

on the propeller’s forces will not be small. Incidentally, it is interesting to note

that the small variation in angle of attack with azimuth angle when the ship has

zero drift angle, as depicted in fig. 4.9, is due to the variation in inflow caused by

the tangential component of induced velocity.

The following section explains the construction of an unsteady sectional lift and

drag model for input to the blade-element module. In order to ensure that the

calculations are computationally fast, semi-empirical methods are used to model

the dynamics of the model.

4.5.1 Effects of Unsteady Inflow Velocity on Lift and Drag

Figure 4.15 has been plotted from the methodology described in this Chapter and

is typical of a propeller’s lift and drag characteristics. The values of the sectional

lift and drag are dependant on η, which is a function of Reynolds number, section

profile and thickness and camber distributions. The value of η can be used to
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Figure 4.10: Angle of attack vs azimuth angle at a drift angle of 8.89◦
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Figure 4.11: Angle of attack vs azimuth angle at a drift angle of 13.33◦
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Figure 4.12: Angle of attack vs azimuth angle at a drift angle of 26.67◦
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Figure 4.13: Maximum change in Angle of Attack vs. drift angle
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account for, to some extent, three dimensional, viscous flow phenomena, as

discussed in the following Sections. Referring to fig. 4.15, at low angles of attack,

that is between the hydrofoil angles at points 1 and 4, the flow is fully attached.

The lift is seen to increase linearly with the hydrofoil’s angle. Further increase in

foil angle results in a sharp drop in lift. The foil at this point 4 is said to be in

static stall, the angle of which is denoted as αss. Between points 4 and 5 the

boundary layer at the foil’s surface begins to experience flow separation. This

transitional region between fully attached and fully separated flow is complex and

unstable. For the foil angle between points 5 and 6, the flow on the upper surface

is fully separated. The lift is seen to increase almost linearly with hydrofoil angle,

but with a smaller value for the lift slope compared to the fully attached case.

Shen and Fuhs (1997) developed a semi-empirical method for predicting the

dynamic flow effects on a propeller blade section’s lift and drag coefficients. The

approach taken by Shen and Fuhs (1997) was to derive expressions for various

sections of curves depicted in graphs such as 4.14 and 4.15. They compared their

results to the experimental ramp-up, ramp-down tests of Francis and Keesee

(1985) and Ham and Garelick (1968).

To characterise this unsteady motion, a non-dimensional pitch rate, R is

defined:

R = α̇
c

2V ∗p
(4.39)

Where α̇ is the instantaneous foil angle’s time derivative. The pitch rate defines

the degree of unsteadiness of a problem.

Figure 4.17 shows the change in lift coefficient for different angles of attack over

a range of pitch rate (as output from lift_drag.f90). From this plot it can be

seen that:

• The stall angle increases with increasing reduced frequency.

• The lift coefficient increases with increasing reduced frequency.

• The slope of the lift curve is independent of reduced frequency.

These results correspond to experimental work done by Ericsson and Reding

(1972).
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Figure 4.18: Drag coefficient vs. angle of attack over various non-dimensionalised
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The unsteady effects on the lift and drag coefficients can be seen to be

substantial, whether the flow is fully attached or fully separated. A plot of lift

coefficient vs angle of attack over different pitch rates is given in fig. 4.16 for

relatively lower values of η (η is mainly dependent on aspect ratio). For flow in the

fully attached regime, the typical example of fig. 4.17, the unsteady (dynamic) lift

coefficient at a non-dimensional pitch rate of 0.043 is about 20% higher than the

static lift coefficient. Again, the lift coefficient for a foil in unsteady flow is seen to

be significantly higher than the static lift coefficient. Figures 4.18 and 4.19 show

the differences in drag coefficients for steady and unsteady flow.

The variation in the non-dimensionalised pitch rate can be seen for different

ship’s drift angles in figs. 4.20, 4.21, 4.22 and 4.23. Figure 4.24 shows a plot of the

maximum values of pitch rate encountered, vs drift angle.
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Figure 4.20: Non-dimensionalised Pitch Rate vs azimuth angle at a drift angle of
0.00◦
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Figure 4.21: Non-dimensionalised Pitch Rate vs azimuth angle at a drift angle of
8.89◦

83



Chapter 4. Propeller Modelling in Unsteady Flow

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  50  100 150 200 250 300 350 400

N
o
n
-D

im
e
n
s
io

n
a
l 
P

it
c
h
 R

a
te

Azimuth Angle (degrees)

r/R =     0.200 
r/R =     0.284 
r/R =     0.368 
r/R =     0.453 
r/R =     0.537 
r/R =     0.621 
r/R =     0.705 
r/R =     0.789 
r/R =     0.874 
r/R =     1.000 

Figure 4.22: Non-dimensionalised Pitch Rate vs azimuth angle at a drift angle of
13.33◦
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Figure 4.23: Non-dimensionalised Pitch Rate vs azimuth angle at a drift angle of
26.67◦
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4.5.2 Static Lift

Fully Attached Flow

The static lift is related to the foil angle by:

CL =

(
∂CL
∂α

)
α for α < αss (4.40)

Where αss is the angle at which static stall occurs, α represents the effective angle

of attack. In the case of a cambered foil, α = αG + αCL=0, where αG is the

geometric angle of attack, and αCL=0 is the angle of zero lift. For a symmetric foil,

the zero lift angle is zero. The zero lift angle can be obtained from experiment (a

good source of experimental data is Abbott and Von Doenhoff (1959)), or

Reynolds Averaged Navier Stokes (RANS) code. The method used in this analysis

to estimate αCL=0 is detailed later in this Section.

For a two-dimensional foil, the static lift slope can be written as:

∂CL
∂α

= 2πη for α < αss (4.41)

The value of η depends upon Reynolds number, section profile and thickness

and camber distributions. It can be determined from experiments, or RANS

computations. In the case of this study, η is calibrated to match existing data from

the Wageningen B-Screw Series (c.f. section 4.9). The value of η can be used to

account for, to some extent, three dimensional and viscous flow phenomena, as

discussed in the following Sections.

Fully Separated Flow

From the model that Shen and Fuhs (1997) developed for fully separated flow, the

lift coefficient can be approximated by:

CL =
2π sinα

4 + π sinα

[
1 + σ +

σ2

8 (π + 4)

]
cosα (4.42)

Where σ is the non-dimensional pressure coefficient inside the separated flow

(cavity). This is also sometimes referred to as the cavitation number, and is given

by:

σ =
P0 − Pv

0.5ρ
(
V ∗p
)2 (4.43)
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Figure 4.25: Effect of camber on lift coefficient.

Where P0 is the reference pressure, taken to be the static pressure at the shaft

centreline, and Pv is the vapour pressure of the fluid.

4.5.3 Static Drag

The static sectional drag coefficient, CD can be expressed as the sum of the static

friction coefficient, CDF , static pressure drag, CDP and lift induced drag, CDI .

CD = CDF + CDP + CDI (4.44)

At low angles of attack, the frictional drag dominates. At high angles of attack the

pressure drag dominates.

Friction Drag

If the foil is asymmetrical, i.e. it has a camber, then the foil’s lift slope becomes

displaced, as shown in fig. 4.25. As can be seen in the example, positive lift is still

produced, even at a negative angle of attack. Camber therefore offsets the angle at

which stall will occur (Abbott and Von Doenhoff, 1959).

Most marine propellers have varying camber/chord ratios distributed over their
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αCL=0

ccmax

Figure 4.26: Method to estimate zero lift angle.

radii. To account for the camber, the angle at which the blade section produces

zero lift must be calculated. Referring to fig. 4.26, the zero-lift angle, αCL=0, can

be estimated as follows (Jones, 1988):

αCL=0 = − arctan

(
ccmax

1− p

)
(4.45)

Where ccmax is the camber from nose-tail line, and p the camber-line high point.

CL =
∂CL
∂α

(α− αCL=0) (4.46)

The thickness of the blade section has an effect on the frictional resistance (as

local velocities on the surface may be higher than the freestream, thus increasing

shearing stress), and is accounted for from the following relationship of Hoerner

(1965):

CDF = 2× Cf
(

1 + 2
t

c

)
(4.47)

Where t is the thickness of the section, and c is the chord.

The coefficient of friction is obtained from the formula of Hughes (1954) viz.

Cf = 0.067 log (Rn − 2)−2 (4.48)

Where Rn is the Reynolds Number.

Induced Drag

For a two-dimensional section, that is, when the width of the blade section tends

towards zero, the aspect ratio tends to infinity, which would indicate that the
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induced drag tends towards zero. It has been found that the induced drag on the

blade is certainly not negligible, and needs to be accounted for in some way.

CDI =
C2
L

πeΛ
= κ× C2

L (4.49)

Where e is the Oswald planform efficiency factor. This is a correction factor that

represents the difference in drag with lift of a three-dimensional wing compared to

a two-dimensional one. Λ is the aspect ratio.

The value of κ is used to calibrate the model with the basis Wageningen

B-Screw Series. c.f. Section 4.9

Pressure Drag in Fully Attached Flow

The pressure drag in terms of a suction recovery factor, ξ can be expressed from

Leishman and Beddoes (1989):

CDP =
1

2
CL (1− ξ) sin 2α (4.50)

ξ represents the failure of the hydrofoil to achieve the leading edge suction it would

achieve in potential flow. Good agreement between the above theory and

measurements is achieved when ξ = 0.96, 0.97, 0.974 for Reynolds numbers of

Rn = 3.0, 6.0, 9.0× 106 respectively.

Pressure Drag in Fully Separated Flow

In the model developed by Shen and Fuhs (1997), the foil’s pressure drag in

separated flow is predicted well from:

CDP =
2π sinα

4 + π sinα

[
1 + σ +

σ2

8 (π + 4)

]
sinα (4.51)

4.5.4 Dynamic Lift

CLC =
∂CL
∂α

αE (s) (4.52)

Where

αE (s) = α (0)φ (s) +

∫
dα

du
φ (s− u) du (4.53)

Where φ (s) is the Wagner function, and s denotes a non-dimensional time

parameter, given by: s = 2V ∗p t/c.
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Leishman and Beddoes (1989) presents the following numerical approximation

for Duhamel’s integral for the effective angle of attack.

αE (s) = α (0)φ (s) +
m∑
n=1

∆αn −Xn − Yn (4.54)

Where

X0 = 0 and Xn = Xn−1 exp (−b1∆s) + A1∆αn (4.55a)

Y0 = 0 and Yn = Yn−1 exp (−b2∆s) + A2∆αn (4.55b)

Where ∆s is the distance travelled by the foil in semi-chords over a sample interval

∆t and ∆αn is the corresponding change in angle of attack over that time interval.

Beddoes (1976) provides the constantsA1, A2, b1 and b2 to be 0.165, 0.335. 0.0455

and 0.3 respectively. The Wagner function, φ (s) can be approximated with

sufficient accuracy from Bisplinghoff et al. (1996)

φ (s) =
s+ 2

s+ 4
(4.56)

Where

s =
2V ∗p t

c
=

2V ∗p ψω

c
for 0 ≤ ψ ≤ 2π (4.57)

McLaughlin (1992) compiled an extensive data set of lift slopes for several airfoil

sectional profiles. A functional relationship between static and dynamic lift slope

can be expressed as:(
∂CL
∂α

)
dynamic

= 0.94

(
∂CL
∂α

)
static

(4.58)

Fully Attached Flow

From the work of Shen and Fuhs (1999), the dynamic lift for fully attached flow is

expressed as:

CL = (CL)static −
(
∂CL
∂α

)
dynamic

αw (s) + sign (α′)πR for α ≤ αss (4.59)

Where

sign (α̇) =

1 if α̇ is positive

−1 if α̇ is negative
(4.60)
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Where αw = α− αE and accounts for the time history effects of the change in α

Transitional Flow

From the work of Shen and Fuhs (1999), the dynamic lift in transitional flow is

given by:

CL = (CL)ss +

(
∂CL
∂α

)
static

(α− αss)

−
(
∂CL
∂α

)
dynamic

αw (s) + sign (α′) πR for αss < α ≤ αDM (4.61)

Fully Separated Flow

From the work of Shen and Fuhs (1999), the dynamic lift in fully separated flow is

expressed as:

CL =
2π sinα

4 + π sinα

[
1 + σ +

σ2

8 (π + 4)

]
cosα+ sign (α′) πR for α > αDM (4.62)

4.5.5 Dynamic Drag

Kottapalli and Pierce (1979) studied the effects of an oscillating airfoil in a

fluctuating free stream. This data was further analysed by Leishman (1989) who

show that fluctuations in unsteady viscous drag are small and negligible when

compared with the pressure drag. It is assumed that friction drag is not frequency

dependent.

(CDF )dynamic = (CFD)static (4.63)

This assumption implies that the unsteady effect on the drag force comes from the

pressure drag. The dynamic effect on pressure drag is calculated as follows.

Fully Attached Flow

CD = CDF + CDP (4.64)

=

[
CDF +

1

2
CL (1− ξ) sin (2α)

]
static

+ sign (α′) πR cosα sinα for α ≤ αss

(4.65)
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Transitional Flow

CD =

{
CDF +

1

2

[
(CL)ss +

(
∂CL
∂α

)
static

(α− αss)
]

(1− ξ) sin (2α)

}
static

+ sign (α′) πR cosα sinα for αss < α ≤ αDM (4.66)

Fully Separated Flow

CD =
2π sinα

4 + π sinα

[
1 + σ +

σ2

8 (π + 4)

]
sinα+sign (α′)πR cosα sinα for α > αDM

(4.67)

4.5.6 Effects of Aspect Ratio

Although the Blade Element Theory incorporates two-dimensional sections, the

aspect ratio of the blade has an effect on the lift and drag characteristics that need

to be accounted for. From Lifting line theory, the 3D-lift coefficient for an

elliptically loaded foil is depicted in fig. 4.27 and can be estimated from:

CL = CLα

(
Λ

2 + Λ

)
α (4.68)

Where CLα is the two-dimensional lift coefficient slope, and the aspect ratio, Λ, is

defined as:

Λ =
b2

S
(4.69)

Where b is the span of the foil, and S is the area of the foil planform. The aspect

ratio is taken into account in this study using equation 4.70 where η is obtained

from calibrations made with the steady model of Oosterveld and van Oossanen

(1975) (referred to in this research as the OOV OO model), c.f. Section 4.9

∂CL
∂CD

= 2πη α < αss (4.70)

4.6 Prediction of Stall Angles

The present model assumes that the static stall angle remains constant for all foil

types. Most foils have a static stall angle of around 15◦ (Abbott and

Von Doenhoff, 1959), and is the value used in the current analysis.
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Figure 4.27: Effect of aspect ratio on lift coefficient.

Shen and Fuhs (1999) developed an empirical formula relating the dynamic

moment stall angle, αDM with reduced frequency from the work done on oscillating

foil tests of McCroskey (1981), and the ramp-up tests of Francis and Keesee (1985)

and Green and Galbraith (1994). viz.

αDM =

αss + 340R if R ≤ 0.03

αss + 10.2 + 53.5 (R− 0.03) if R > 0.03
(4.71)

The dynamic moment stall angle is the critical angle, above which the flow is

considered to be fully separated.

4.7 The Variation in Inflow Velocity Due to the Ship’s Wake

The shape of a ship’s hull will greatly affect the wake field at the propeller plane,

the wake field will therefore vary for different ships. Experiments are commonly

performed to obtain the propeller-behind-hull wake field (the wake survey) so that

the propeller’s blade sections can be optimised for the velocity vectors at a

particular radius. This process is known as wake adaptation. It is, however,

extremely difficult to obtain experimental wake surveys for a ship at different drift
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angles. This is due to the fact that conventional blade-section optimisation

assumes that the ship has zero drift angle.

In this study, the wake field’s variation in inflow velocity due to the ship’s hull

is neglected. To elaborate somewhat, the “shadow” that the underwater part of the

ship’s hull casts over the propeller is neglected. The effect that this shadow has is

to modify the velocity vectors at a particular propeller radius. This variation in

velocity at the propeller plane is the aspect which is currently neglected in this

research. The disc-averaged wake that is modified due to the ship’s drift angle is,

of course taken into account (equation 3.20).

The reason for neglecting the modified wake velocity vectors from the ship’s

hull is due to the author being unable to obtain wake field data for ships sailing at

angles of drift. Whilst neglecting the effect of the ship’s wake will affect the

accuracy of the results, it is not expected to change the outcome. Neglecting the

modifications of a ship’s wake due to her stern lines also has the effect of

normalising the variation in wake-field of different hullforms, removing any bias

that an extremely efficient hullform has over an inefficient one.

4.8 Calculation Scheme

Figure 4.28 shows the basic algorithm which is used to solve the BEMT . As with

all of the other subprogrammes developed as part of this research, algorithms are

coded in Fortran (2008 standard).

When including the non-linear effects of stall, combined with the non-linear

nature of the system of differential equations of thrust and torque, obtaining a

converging solution is a significant challenge. The HYBRD1 algorithm from the

MINPACK (Moré et al., 1980) library was chosen to solve the system of non-linear

equations, however, in certain circumstances, this can become unstable. The

HYBRD1 algorithm is implemented at the point in the algorithm where the thrust

and torque are balanced from the blade-element theory and momentum theory.

The HYBRD1 algorithm is a minimisation routine which, in this case, chooses

values for the induced velocities which minimise the difference between values of

thrust and torque obtained from the blade-element theory to those of the

momentum theory. Perhaps a more robust method to solve the thrust-torque

balance equations is to use the recently published method of Ning (2013).
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Calculate Disc-Averaged Inflow Velocities

Estimate Disc-Averaged Induced Velocities

Traverse the Radius (r)

Go Around the Circumference (θ) - Blade Element Theory

Calculate Section Geometry
Calculate Angular Inflow Velocity Vp = 2πnr

Calculate Axial, Tangential and In-Plane Crossflow Induced Velocities
Calculate Axial, Tangential and In-Plane Crossflow Velocities
Calculate Hydrodynamic Pitch Angle
Calculate Angle of Attack
Calculate Lift and Drag Coefficients
Calculate dT/dθ, dQ/dθ, dN/dθ, dM/dθ

Calculate Wake-Skew Angle

Integrate dT/dθ, dQ/dθ, dN/dθ, dM/dθ over circumference to obtain dT/dr, dQ/dr, dN/dr, dM/dr
Integrate Axial, Tangential and In-Plane Inuduced Velocities over the circumference
Calculate Induced Velocities from Momentum Theory for the annulus
Ballance Thrust and Torque from Momentum Theory and Blade Element Theory

Integrate Induced Velocities over the radius to obtain Disc-Averaged Induced Velocities

Is abs(New Disc-Averaged Induced Velocities - Previous Disc-Averaged Induced Velocities)
 < Tolerance ?

START

Finished Going Around Circumference?

Finished Going Over the Radius?

STOP

OUTPUT: Thrust, Torque, Normal Force, Moment

NO

YES

NO

YES

YES

NO

Figure 4.28: Blade-Element Momentum Theory Algorithm
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Unfortunately, this paper was released too late for the author to utilise in the

present work.

The Fortran module mbemt.f90 is responsible for calculating the thrust and

torque on the propeller using the modified BEMT . It uses several other modules,

including b_screw_geom.f90 which calculates the geometry of the propeller based

on the Wageningen B-Screw series. This geometry is calculated from work by

Oosterveld and van Oossanen (1975), and appropriate formulae for geometry

calculations can be found in Appendix B.5.1. lift_drag.f90 is also used as an

external module to obtain sectional lift and drag coefficients. The module

gplot.f90 is used to plot various graphs, as in the ones included in this Chapter.

4.9 Calibration of Lift and Drag Coefficients.

The accurate calculation of the blade sectional lift and drag coefficients is

imperative to the accuracy of the propeller model as a whole. Whilst the

calculations for lift and drag coefficients presented in the previous sections are

shown to behave as expected, and their values to be approximately correct, this is

not considered to be good enough when comparing different propeller models. To

illustrate this point; as will be shown in Chapter 6, a propeller design selected with

the OOV OO model is compared to one selected with the unsteady MBEMT

model. These two models obviously need to produce the same results (within

tolerance) when analysing the same propeller under the same conditions. To

achieve this matching, the MBEMT models are calibrated to the results obtained

from the OOV OO model (The OOV OO model is known to mimic the B-Screw

series precisely)

Calibration for both the quasi-static and the unsteady propeller models

described in this Chapter are carried out against the Wageningen B-Screw Series

at zero drift angle (i.e. the propeller shaft is aligned with the incoming flow). The

propeller blade geometry is obtained from the formula presented by Oosterveld

and van Oossanen (1975), details of which can be found in B.5.1.

The geometry of the propeller affects the values of the calibration coefficients,

the coefficients have therefore been calculated for the diameters of propeller found

on the Esso Osaka and KCS, over a range of aE and P/D. Calculation of the

calibration coefficients over such a range is necessary as, from the results of the
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simulation, an optimum basis propeller is selected from this range. c.f. Section 6.1.

4.9.1 Calibration of Quasi-Static MBEMT Propeller Model

The lift and drag coefficients used in the quasi-static propeller model are shown in

equations 4.25 and 4.26. Values for k1 and k2 were systematically adjusted so as

to closely align with the results obtained from the OOV OO model. The outcome

of the calibration is shown in Table 4.1. It is noted that the drag calibration

factor, k2 can be considered equal to 1.5 over the entire range of aE and P/D.

Esso Osaka KCS
aE k1 k2 k1 k2
P/D = 0.6
0.3 0.35 1.5 0.3 1.5
0.6 0.51 1.5 0.6 1.5
0.9 0.80 1.5 0.9 1.5
1.2 1.10 1.5 1.2 1.5
1.5 1.10 1.5 1.5 1.5
P/D = 0.8
0.3 0.35 1.5 0.35 1.5
0.6 0.50 1.5 0.45 1.5
0.9 0.65 1.5 0.50 1.5
1.2 0.65 1.5 0.55 1.5
1.5 0.70 1.5 0.55 1.5
P/D = 1.0
0.3 0.30 1.5 0.30 1.5
0.6 0.50 1.5 0.45 1.5
0.9 0.60 1.5 0.50 1.5
1.2 0.65 1.5 0.50 1.5
1.5 0.65 1.5 0.45 1.5
P/D = 1.2
0.3 0.30 1.5 0.30 1.5
0.6 0.50 1.5 0.45 1.5
0.9 0.60 1.5 0.50 1.5
1.2 0.65 1.5 0.50 1.5
1.5 0.65 1.5 0.50 1.5
P/D = 1.4
0.3 0.40 1.5 0.40 1.5
0.6 0.50 1.5 0.45 1.5
0.9 0.60 1.5 0.50 1.5
1.2 0.60 1.5 0.50 1.5
1.5 0.50 1.5 0.40 1.5

Table 4.1: Parameters used in the calibration of the lift and drag coefficients for the
quasi-static MBEMT propeller model.

Calibration results for the quasi-static MBEMT model can be seen for the
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Figure 4.29: Comparison plot of OOV OO and calibrated quasi-static MBEMT
propeller models for Esso Osaka stock propeller

stock propellers of the Esso Osaka and KCS in figures 4.29 and 4.30.

4.9.2 Calibration of Unsteady MBEMT Propeller Model

Figure 4.31 shows the comparison between propeller characteristics as calculated

from Oosterveld and van Oossanen (1975) and the unsteady MBEMT model as

described in this Chapter. As can be seen, the gradients of the KT , KQ lines are

very similar. This is a result of obtaining an accurate value for the static lift slope,

η beforehand. The magnitude of the KT , KQ curves obtained from the unsteady

MBEMT model are lower than expected. This is attributed to three-dimensional

flow phenomena that are not captured in the model due its two-dimensional nature.

To correct this, calibration constants are applied to the basic static lift and

induced drag expressions, viz.

CL = 2πηαeff + fL (4.72)

CDI = κC2
L + fD (4.73)

Where η, fL, κ and fD are estimated such that the resulting KT , KQ curves match
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propeller models for KCS stock propeller
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with the OOV OO results.

Calibration was done based on a trial and error principle by adjusting values of

η, fL, κ and fD systematically until the difference between the OOV OO KT , KQ

values were within an acceptable tolerance. Results from the calibration are

presented in table 4.2.

Esso Osaka KCS
aE η fL κ fD η fL κ fD
P/D = 0.6
0.3 0.970 0.800 0.001 0.0250 0.970 0.730 0.001 0.025
0.6 0.600 0.430 0.050 0.0070 0.590 0.380 0.050 0.007
0.9 0.410 0.270 0.050 0.0050 0.410 0.240 0.050 0.005
1.2 0.285 0.175 0.050 0.0060 0.285 0.155 0.050 0.006
1.5 0.220 0.120 0.100 0.0070 0.200 0.100 0.050 0.007
P/D = 0.8
0.3 0.890 0.750 0.020 0.0290 0.890 0.680 0.02 0.0290
0.6 0.575 0.420 0.100 0.0030 0.575 0.370 0.10 0.0030
0.9 0.450 0.300 0.100 0.0045 0.450 0.260 0.10 0.0045
1.2 0.350 0.220 0.100 0.0060 0.400 0.240 0.10 0.0060
1.5 0.250 0.160 0.100 0.0070 0.250 0.140 0.10 0.0070
P/D = 1.0
0.3 0.850 0.730 0.040 0.0200 0.850 0.680 0.04 0.0200
0.6 0.570 0.420 0.100 0.0060 0.570 0.380 0.10 0.0060
0.9 0.500 0.320 0.100 0.0040 0.500 0.280 0.10 0.0040
1.2 0.410 0.240 0.100 0.0044 0.410 0.210 0.10 0.0044
1.5 0.300 0.200 0.100 0.0075 0.300 0.160 0.10 0.0075
P/D = 1.2
0.3 0.780 0.720 0.100 0.0030 0.780 0.700 0.10 0.003
0.6 0.550 0.420 0.100 0.0050 0.550 0.390 0.10 0.005
0.9 0.500 0.340 0.100 0.0050 0.500 0.290 0.10 0.005
1.2 0.400 0.250 0.100 0.0050 0.400 0.210 0.10 0.005
1.5 0.350 0.200 0.100 0.0100 0.380 0.180 0.10 0.010
P/D = 1.4
0.3 0.800 0.750 0.050 0.0200 0.800 0.680 0.05 0.020
0.6 0.620 0.450 0.100 0.0050 0.620 0.360 0.10 0.005
0.9 0.530 0.350 0.100 0.0050 0.530 0.270 0.10 0.005
1.2 0.450 0.260 0.100 0.0050 0.450 0.210 0.10 0.010
1.5 0.450 0.220 0.100 0.0300 0.450 0.210 0.10 0.010

Table 4.2: Parameters used in the calibration of the lift and drag coefficients for the
unsteady MBEMT propeller model.

Calibration results for the unsteady MBEMT model can be seen for the stock

propellers (table 1.1) of the Esso Osaka and KCS in figures 4.32 and 4.33.

Calibration constants for intermediate values of P/D and aE are obtained via

cubic spline interpolation. These figures illustrate that the unsteady MBEMT
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Figure 4.32: Comparison plot of OOV OO and calibrated unsteady MBEMT pro-
peller models for Esso Osaka stock propeller

model mimics the behaviour of the B-Screw more closely than the quasi-static

MBEMT model over a larger range of advance coefficient. There is a larger

difference however between the KT , KQ curves at certain ratios, compared with the

quasi-static model. This is due to fast changing calibration parameters, and hence

the unsteady calibration could be improved with a greater number of data points.

Benini (2004) compared a BEMT model to that of a RANS model for a B3-50

propeller. He found that the BEMT model was only accurate when the

three-dimensional effects are of a secondary order. The quantities which most

influenced the performance prediction of the BEMT as a function of J are the

incidence angle, α, the inflow velocity, V ∗p and the radial elementary thrust and

torque distributions, dT
dr

and dQ
dr
,respectively. The major discrepancy found

between the two models was the incidence angle.
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Figure 4.33: Comparison plot of OOV OO and calibrated unsteady MBEMT pro-
peller models for KCS stock propeller

4.9.3 Comparison between Quasi-Static and Unsteady Propeller

Models at Non-Zero Drift Angles

In order to display a level of confidence in the results of the unsteady MBEMT ,

comparisons can be shown with the quasi-static MBEMT model, whose

mathematics is based chiefly on physical geometry, with a minimum of

semi-empirical formulæ. Figures 4.34, 4.35 and 4.36 show the difference between

the quasi-static, and the unsteady MBEMT propeller models.
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propeller models when drift angle = 0.0◦
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4.10 Summary

This Chapter presented a method to model the action of a propeller that is

propelling a ship when sailing at some arbitrary drift angle. Modifications to the

general blade-element momentum theory are explained to account for drift angle,

and a strategy for modelling the dynamic lift and drag of a propeller section are

described.

Due to neglecting the variation in wake due to the ship’s hull (from lack of data

in that particular area), the results will be somewhat different to reality, however,

the overall trend and outcome is not expected to change.

Various algorithms have been developed and implemented as Fortran modules

which, in turn, can be used in the ship manœuvring simulator.

The effects of unsteady flow on lift and drag coefficients, represented in terms of

a non-dimensional pitch rate, have been shown, and output plots from the

developed code confirm that unsteady effects are not negligible.

In order to make use of the MBEMT propeller flow model in further analysis,

it has been calibrated, for a ship at zero drift angle, with that of the thrust and

torque obtained by Oosterveld and van Oossanen (1975). This ensures that

differences between the two models are from oblique inflow angle (with associated

unsteady effects) alone.

The early observations of H. S. Maxim are confirmed, and depicted in figs. 4.34,

4.35 and 4.36. These show graphically how the thrust on a propeller increases

when the propeller is moved perpendicular to its axis of rotation (or in this case

not perpendicular, but at some oblique angle)

The propeller model presented in this Chapter is shown to perform as expected

compared to the Oosterveld and van Oossanen (1975) polynomials and, once

calibrated, is shown to accurately mimic the B-Screw Series.
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The aim of this Chapter is to provide the reader with a level of confidence that the

mathematical models of the previous Chapters behave in a realistic manner. To

achieve this, comparisons between manœuvring simulations are made for the Esso

Osaka using models presented thus far, and experimental and theoretical results

from other institutions.

As validation of the SiS simulator, a series of standard manœuvring tests are

run, and compared with the results from the Korea Research Institute of Ship and

Ocean (KRISO), the Hydronautics Ship Model Basin (HSMB) and Seoul National

University (SNU). These results are presented in the ITTC Specialist Committee

on Esso Osaka (ITTC, 2002), and were selected by the ITTC committee from many

data sets, as having the most reliable data, with the least scatter between them.

Results show a scatter in data from all models, however, the trend from the

results are all similar. The ITTC Specialist Committee on Esso Osaka (ITTC,

2002) concluded that the reason for scatter in the results from various institution’s

manoeuvring simulations could not be determined.

Section 5.1 describes a standard turning circle manœuvre, how and why it is

performed, and compares results obtained by the SiS simulator (a ship

manœuvring simulator developed as part of this research) with results from other

institutions and sea-trials. The results of Section 5.1 also show how the degree of

fidelity of the propeller model affects the turning characteristics.

Section 5.2 presents the results of a standard 10-10 zig-zag manœuvre obtained

from the SiS simulator and compares them with other research institutions and

sea-trials.

Section 5.3 shows results from turning circle and zig-zag manœuvres as

performed by the KCS with the SiS simulator. The author has been unable to

find independently verified manœuvring results on the KCS, and so the results

presented in this Section are informational purposes.

106



Chapter 5. Validation of Simulation Modules

The different propeller models used in the SiS simulator for these experiments

comprise a set of polynomials developed by Oosterveld and van Oossanen (1975)

(referred to in this work as the OOV OO model, for the sake of brevity), a

quasi-static BEMT , and an unsteady BEMT propeller flow model. Please refer

to Chapter 4 for details on the BEMT models. These different models are used in

this analysis to highlight the effects of different levels of fidelity that a propeller

model has on the characteristics of a manœuvring ship.

To ensure the accuracy of the propulsion model, the modified BEMT propeller

flow models are calibrated against a propeller’s characteristics as obtained from

the OOV OO model. The OOV OO model is considered to mimic the behaviour of

the B-Screw series propellers accurately. Please refer to Section 4.9 for details on

how the calibration was performed.

Figure 5.1 shows the resulting comparison between the propeller characteristics

as calculated from the OOV OO model, and the unsteady MBEMT model. It is

noted that the Abscissa is limited to a range of advance ratio above 0.2. This is

due to the MINPACK library having difficulties in converging to a solution at low

advance ratios. In practice, these low values of advance ratio are never reached in

the practical application of this research, as a low speed of advance means a

relatively high propeller speed for a relatively low ship speed. If bollard pull is to

be analysed using this simulator, then the way the MINPACK library is used would

need revision. As can be seen from fig. 5.2, the range of advance ratio at the

propeller, J encountered during the turning circle is between about 0.157 and

0.405. The thrust and torque characteristics from fig. 5.1 match very closely over

this range.

5.1 Turning Circle Manœuvre

The turning circle manœuvre provides a measure of turning ability. To perform

the manœuvre, the ship reaches a steady approach speed, with zero yaw rate, and

then throws the rudder hard over (that is, to its maximum extent for the given

speed, but not more than 35◦). This procedure is repeated for both starboard and

port turns. The essential information retrieved from this test consists of the

tactical diameter (the transfer distance at 180◦ change of heading), the advance,

transfer, speed loss in the turn, and peak and final yaw rates. To meet IMO
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criteria, the tactical diameter should not exceed five ship lengths, and the advance

at 90◦ heading change should not exceed four and a half ship lengths.

The turning circle performed in this section is of the Esso Osaka, with a steady

approach speed of 10.0 knots, with a 35◦ starboard rudder. The simulation is run

on the SiS simulator, and the results are superimposed on data obtained from

ITTC (2002).

Figures 5.3, 5.4, 5.5 and 5.6 show, for comparison, the results obtained from the

OOV OO, quasi-static MBEMT and unsteady MBEMT propeller models. These

figures show the results for a starboard turning circle from sea trials, numerical

manœuvring models developed by KRISO, HSMB and SNU, as well as the

numerical manœuvring models developed in this research. To recapitulate, the

OOV OO propeller model is based on the polynomials carried out by the regression

analysis of Oosterveld and van Oossanen (1975), and considers the thrust and

torque characteristics of a propeller with flow arriving perpendicular to the

propeller plane. The OOV OO model also neglects any induced sway or yaw

imparted to a ship from the action of the propeller. The quasi-static MBEMT

propeller flow model accounts for flow arriving at an oblique angle to the propeller

plane, whilst the unsteady MBEMT model also accounts for unsteady effects that

the oblique flow imposes. Both MBEMT propeller flow models can account for

the induced sway and yaw imparted to a ship from the propeller’s action.

In order to distinguish the effects of including sway and yaw induced from the

propeller, figs. 5.7, 5.8, 5.9 and 5.10 show comparisons for the turning circle when

the induced sway and yaw by the propeller from the MBEMT models has been

set to zero.

The plots of transfer and advance (figs. 5.3 and 5.7) are difficult to compare

results with. A bar chart has been composed of figs. 5.3 and 5.7, which plot two

specific points around the turning circle, enabling easy comparison between the

different methods and institutions. The resulting bar chart is found in fig. 5.11.

Ordinarily, tactical diameter (i.e. the transfer at 180 degree heading change) and

advance (i.e. advance at 90 degree heading change) would be plotted. In this case

transfer at 180 degree course change (designated Turning Diameter∗ on the graph),

and advance at 90 degree course change (designated Advance∗ on the graph) are

plotted, the reason being it is more readily obtained from turning circle plots

(which do not have details of heading angles).
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Figure 5.5: Speed Time History of 35o starboard turning circle (V = 10.0 knots)
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Figure 5.6: Yaw Angle Time History of 35o starboard turning circle (V = 10.0 knots)

The values for advance are expected to more faithfully represent the trials

results compared to the tactical diameter. This stems from the fact that the

tactical diameter is necessarily measured at a point further forward in time than

the advance. Any errors that arise in the simulator are cumulative over each time

step, and thus increase with time.

As can be seen from the turning circle plots, the effects of unsteady propeller

action, and effects of induced sway and yaw from the propeller both have a

noticeable outcome on the simulation’s results. When the effects of induced sway

and yaw from the propeller are included in the model, it is observed that the

advance and tactical diameter is reduced, that is, the side force produced by the

propeller aids the ship in attaining a tighter starboard turn. This is indicative of a

left handed propeller (anticlockwise rotation as viewed from the stern), which

tends to push the stern to port. The plot of fig. 5.11 also illustrates that the effect

of unsteady flow tends to increase the advance and tactical diameter.

For the sake of completeness, a 35◦ turning circle to port has been plotted in

figs. 5.12, 5.13, 5.14 and 5.15 using the developed SiS simulator with the OOV OO

propeller model, and compared with the results of the same institutions as the

starboard turning circle. As can be seen there is a certain asymmetry compared to
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Figure 5.12: Track of 35o port turning circle (V = 7.7 knots).

the starboard turn (aside from the fact that the approach speed is different). This

asymmetry principally arises from “propeller walk” which is like a paddle wheel

effect. A propeller, as well as propelling a ship ahead or astern, will also tend to

rotate it. A right-handed propeller will tend to push the stern to starboard,

whereas a left-handed propeller will tend to push the stern to port.
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Figure 5.13: Drift Angle Time History of 35o port turning circle (V = 7.7 knots).
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Figure 5.14: Speed Time History of 35o port turning circle (V = 7.7 knots).
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Figure 5.15: Yaw Rate Time History of 35o port turning circle (V = 7.7 knots).
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Figure 5.16: Heading Angle Time History of 10-10 ZigZag (V = 7.5 knots)

5.2 Zig-Zag Manœuvre

A zig-zag manœuvre provides a measure of the directional stability, but by its

nature is also a measure of the initial turning ability. The initial turning ability is

defined by the change-of-heading response to a moderate helm, in terms of

distance covered before realising a certain heading deviation. The zig-zag

manœuvre is initiated from a steady approach speed with zero yaw rate, the

rudder is then put over a specified angle, δ (first run). When the heading has

changed to δ degrees off the original heading, the rudder is put over to −δ degrees

(second run). After the rudder has been put over, the ship will continue turning,

with a decreasing yaw rate, the ship will respond to the rudder, and eventually

turn to port/starboard. When the ship’s heading has reached −δ from the original

course, the ruder is again put over to δ degrees (third run). The first overshoot

angle is the additional heading deviation experienced in the zig-zag test following

the second run. The second overshoot angle is the additional heading deviation

experienced in the zig-zag test following the third run. Figures 5.16, 5.17 and 5.18

show the results of the developed SiS simulator when the Esso Osaka is run

during a 10-10 zig-zag manœuvre.
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Figure 5.17: Speed Time History of 10-10 ZigZag (V = 7.5 knots)
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Figure 5.18: Yaw Rate Time History of 10-10 ZigZag (V = 7.5 knots)
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Figure 5.19: Comparison of 1st and 2nd Overshoot Angles from different institutions
and propeller models.

As with the case of the transfer and advance plots of the turning circle

manœuvre, it is difficult to compare results with the plot of fig. 5.16. The bar

chart of fig. 5.19 present the 1st and 2nd overshoot angles from the results of the

zig-zag heading angles, making it easier to compare results. As can be seen from

fig. 5.19, the different propeller models have no effect on the 1st and 2nd overshoot

angles. By examining fig. 5.20 it is seen that the drift angle oscillates between

≈ 4.5◦ and ≈ −4.5◦. It is the author’s conjecture, that the period is too small to

show any discernible difference when compared to the other institution’s results.

As further work, it may be interesting to plot a 20-20 zig-zag manœuvre, which

would have a larger period, to determine if this conjecture is true.

5.3 Standard Manœuvres for the KCS

This Section shows results from some standard manœuvres carried out by the SiS

Simulator on the KCS. The author has been unable to find any independently

verified manœuvring results on the KCS, and so the results of this Section are

more for information than anything else.

It can be seen from observations of the previous Sections, that the results of the
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Figure 5.20: Local drift angle at propeller of Esso Osaka during 10-10 Zig-Zag
Manœuvre

manœuvres for the KCS follow similar trends to that of the Esso Osaka.

5.3.1 Turning Circle Manœuvre

Figures 5.21, 5.22, 5.23 and 5.24 show results for a 35◦ starboard turning circle as

performed by the KCS on the SiS Simulator. The approach speed was 15 knots.

For the sake of completeness, figs. 5.25, 5.26, 5.27 and 5.28 show plots from a

35◦ port turning circle, with an approach speed of 15 knots. These plots have been

calculated using the OOV OO propeller model of the SiS simulator.

5.3.2 10-10 Zig-Zag Manœuvre

Figures 5.29, 5.30, 5.31 and 5.32 show results for a 35◦ starboard turning circle as

performed by the KCS on the SiS Simulator. The approach speed was 15 knots.
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Figure 5.21: Track of 35o starboard turning circle (V = 15.0 knots)
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Figure 5.22: Drift Angle Time History of 35o starboard turning circle (V = 15.0
knots)
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Figure 5.23: Speed Time History of 35o starboard turning circle (V = 15.0 knots)
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Figure 5.24: Yaw Angle Time History of 35o starboard turning circle (V = 15.0
knots)
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Figure 5.25: Track of 35o port turning circle (V = 15.0 knots)
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Figure 5.26: Drift Angle Time History of 35o port turning circle (V = 15.0 knots)
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Figure 5.27: Speed Time History of 35o port turning circle (V = 15.0 knots)
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Figure 5.28: Yaw Angle Time History of 35o port turning circle (V = 15.0 knots)
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Figure 5.29: Track of 10-10 Zig-Zag manœuvre (V = 15.0 knots)
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Figure 5.30: Drift Angle Time History of 10-10 Zig-Zag manœuvre (V = 15.0 knots)
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Figure 5.31: Speed Time History of 10-10 Zig-Zag manœuvre (V = 15.0 knots)
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5.4 Summary

The results of the specially developed SiS ship manœuvring simulator have been

presented when the Esso Osaka is run with a 35◦ starboard turning-circle, and

10-10 zig-zag manœuvres. The results from the SiS simulator are compared to

ones obtained from various other research institutions and sea-trials and found to

be consistent.

The turning-circle and zig-zag manœuvres were carried out using a propeller

model which neglects incoming oblique flow angle (the OOV OO model), a

propeller flow model which accounts for oblique flow, but not its dynamic effects

(the quasi-steady MBEMT model) and a propeller flow model which accounts for

oblique flow and its dynamic effects (the unsteady MBEMT model). To ensure

that each propeller model has the same “baseline” figure, that is, the same

characteristics when operated in flow that is purely perpendicular to the propeller

plane, the two MBEMT models are calibrated to that of the OOV OO model.

By observation of turning circle plots, it can be seen that the impact on ship

manœuvring of including the induced sway force and yawing moment from a

propeller are not inconsiderable. The difference in a ship’s manœuvring behaviour

from including unsteady flow in the propeller model is also seen to affect results.

The SiS simulator is shown to behave as expected and can now be used to run

analysis on the basis ships when they are sailing in realistic scenarios, which is the

subject of the next Chapter.
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Conventionally when a basis propeller is selected for a particular ship, the

manœuvring motion of the ship is neglected (and hence the dynamic effects of the

seaway). In this research, the effect of a ship’s manœuvring motion on a propeller’s

performance is taken into account.

The aim of this Chapter is to show how a propeller can be selected from using a

flow model that accounts for the manœuvring motion of a ship, that has an higher

overall efficiency compared to a model that just accounts for “dead ahead” flow

(i.e. flow arriving perpendicular to the propeller plane).

To achieve this aim, the following objectives are met.

• A description of what is meant in this research by the term propeller

optimisation.

• A method of selecting an optimum propeller is presented.

• Case studies are developed which show how the SiS simulator can be used as

an optimum propeller selection tool.

• Results are shown from the output of the SiS simulator of these case studies.

The simulator records the time-history of the motions of a ship (and velocity

vectors at the propeller) when the ship is sailing in realistic weather

conditions in the motions of surge, sway and yaw.

• Analysis of fuel consumption and CO2 emission savings for an unsteady

propeller flow model over a “dead ahead” model are presented.

Section 6.1 defines the term “optimum propeller” as used in the context of this

research, and details the process of selecting an optimised propeller. Section 6.2

describes how the developed SiS manœuvring simulator is used in conjunction

with the propeller models set forth in Chapters 3 and 4 to select an optimum

propeller for a ship sailing in her expected environment. Section 6.2 also presents
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the development of case studies which illustrates how comparisons are made

between the propeller flow models. Section 6.3 presents the results of the case

studies, in terms of propeller geometry, efficiency and power requirements. Section

6.4 portrays the calculations of fuel saving, and thereby CO2 emissions from the

different case studies.

It is emphasised that this is not a design process per se (id est designing blade

sections for ideal angle of attack, ensuring separation-free flow conditions with the

lowest flow drag losses), but a selection process for a basis propeller, the design of

which can then be further optimised for a particular ship’s hull.

As mentioned in Chapter 1, two ship types are specifically examined in this

study, a loaded VLCC, the Esso Osaka and a container carrier, the KCS. Both

these ships have been determined, by the process described in Section 3.4.1, to be

directionally stable. This is an important aspect to consider in order to avoid

excessive rudder movements, and associated drag. Example input files for the SiS

simulator, for these two ships can be found in Section A.2.

The route that is being examined assumes that the wind is blowing from a

constant direction with respect to North, and a constant mean speed. In a

practical application, actual wind conditions can be obtained from statistics as

described in Chapter 2.

6.1 The Optimisation Strategy

Throughout this section, the word selection is used interchangeably with

optimisation as the process selects the “best” propeller (in terms of efficiency) from

a propeller series. This selected propeller can then be further optimised using

techniques such as wake adaptation for the particular hull in question. This

further optimisation process is not addressed in this study due to extensive

experiments required on a propeller behind a hull, ideally at various drift angles.

The author has been unable to obtain wake field data for ships at drift angles and

believes that if they indeed exist, they are not in the public domain.

The process of selecting an optimised basis propeller is as follows:

A first approximation of a propeller design must be obtained, so it can be run

through the simulator and analysed to see how it performs in service conditions.

This initial propeller is obtained from optimising around calm water resistance
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calculations obtained from Holtrop and Mennen (1982) and Holtrop (1984). The

propeller’s main parameters (Z, aE, P/D) are then run through the simulation.

The environmental conditions that a ship experiences are not calm weather and so

the propeller’s efficiency will not be equal to the initial design when running in

weather. From the output of the simulator (that is, required thrust, speed of

advance and drift angle at the propeller), a new optimised propeller is chosen.

This propeller’s parameters are passed to the simulator module and the simulation

run again. Because the propeller is different, the output from the simulation will

be different, and thus an iterative procedure takes place of optimising the

propeller, then running it in the simulator, until the efficiency from the previous

run is within tolerance of the present run.

6.1.1 The Process of Optimised Propeller Selection

To analyse a propeller’s performance, certain main parameters are required to be

known. If the diameter of the ship’s propeller is not supplied to the input file of

the SiS simulator, then the propeller diameter for bulk carriers and tankers is

assumed to be 65% of the draught, and for container ships 74% of the draught

Molland et al. (2011). These are maximum diameter limits that can safely be

installed (restrictions on diameter are imposed to avoid unduly high pressure

pulses and vibration on the ship’s hull). The maximum diameter is capped at 10.0

m, as at the time of writing, it is challenging to manufacture a propeller over 10 m

diameter.

Generally, the larger the diameter of propeller that can be employed, the higher

the efficiency attained, so, in this analysis, propeller diameter for each basis ship is

kept constant at it’s maximum limit. The reason behind the association of large

diameter and high efficiency can be explained by considering equation 6.1.

ηo =
Propulsive Power Out

Shaft Power In

=
T × Va
Q× 2πn

(6.1)

To maximise the open water propeller efficiency, ηo, the propeller revolutions, n

need to be low, whilst maintaining the required thrust. Now, from examining

equation 6.2, to maintain the required thrust and speed of advance, Va, whilst
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keeping the revolutions low, implies a large diameter.

T = ρV 2
aD

2f

(
nD

Va

)
(6.2)

To determine the optimum propeller, it is necessary to obtain the optimum

propeller rotation rate for a given propeller diameter, knowing the required thrust

(obtained from the simulator). The speed of advance at the propeller is also

obtained from the simulator. As only the required thrust, propeller diameter and

speed of advance are known, the unknown values of thrust coefficient, KT and

rotation rate n of equation 6.3a cannot yet be calculated. However, the value for
KT
J2 can be calculated, following equations 6.3:

KT =
T

ρn2D4
(6.3a)

J =
V a

nD
(6.3b)

KT

J2
=

T

ρV 2
aD

2
(6.3c)

Referring to fig. 6.1 a scheme to calculate the optimum propeller is described as

follows.

The expanded blade area ratio aE is incremented from 0.3 to 1.5 (the range of

the standard B-Screw series propellers). For each value of aE, KT , KQ, KTJ2 and

open water propeller efficiency, ηo are calculated over a range of J and P/D and

recorded in an array. Each propeller in the array is then checked for excessive

cavitation. In the case of the OOV OO propeller model, this can be easily achieved

by comparing the present value of aE to the minimum value for aE to avoid

cavitation as obtained from Keller (1966), however, the validity of this formula

starts to break down when a ship reaches a speed of about 24 knots (the service

speed of the KCS), so the charts developed by Burrill (1963) are used. When the

simulation is run using the unsteady propeller model, the point at which excessive

cavitation occurs is estimated from the method described in Section 4.5. This

method is chosen over Burrill (1963) as it takes into account dynamic effects. If

the propeller is found to cavitate excessively, then it is discarded by setting the

value of KT
J2 to zero (so that it is not equal to the required KT

J2 ).

The cavitation criteria for merchant ship propellers from the work by Burrill is

set to approximately 4% back cavitation. To ensure that cavitation criteria remain

consistent between methods, a subroutine within mbemt.f90 determines if 4% of

134



Chapter 6. Simulation Methodology and Results

the blade’s back is covered in cavitation, when used with the unsteady MBEMT

method.

Once a table of propeller characteristics has been generated over a range of J

and P/D, for the particular value of aE an array is populated containing possible

propeller parameters that match the required value of KT
J2 .

When the aE has reached its final increment, the propeller with the highest

efficiency is selected from the array of possibles.

Over a range of BAR

Over a range of P/D and J:

Calculate required KT/J
2

If propeller cavitates, discard propeller
(set KT/J

2 = 0)

Calculate look-up tables of KT KQ η KT/J
2

From look-up table, tabulate propellers that
match the required KT/J

2

From the table of possible propellers,
select the one with the highest η

OUTPUT: BAR, P/D, nopt

Completed
Range?

Completed
Range?

YES

NO

NO

YES

Figure 6.1: Propeller Optimization Algorithm

6.2 Methodology of Simulations with Different Propeller Models

This section details a method of investigating how accounting for the manœuvring

motion and unsteady flow into the propeller can result in a different basis propeller

selection, compared to one selected on the “dead ahead” concept. “Dead ahead” in

this context meaning that the angle of incoming flow due to the ship’s drift angle
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is neglected, and therefore, any dynamic effects due to the blade’s acceleration at

this inclined flow is also neglected.

To recapitulate, the OOV OO model calculated thrust and torque from the

propeller using the polynomials developed by Oosterveld and van Oossanen (1975).

This model does not take into account any oblique inflow angle to the propeller

that may result from a ship’s drift angle, and thus does not model any dynamic

effects from the blade’s acceleration with respect to incoming flow. The OOV OO

model also neglects any sway or yaw imposed on the ship from the propeller’s

action. This model works on the “dead ahead” principle.

The unsteady MBEMT model accounts for oblique inflow angle, the dynamic

effects of the blade’s acceleration with respect to the incoming flow, and sway and

yaw induced on a ship from the propeller’s action.

A set of three case studies has been developed for each of the two basis ship

types (making a total of six cases). For ease of reference, the cases are summarised

in Table 6.1

Case Number Description
1 Esso Osaka, propeller is optimised based on OOV OO model.
2 Esso Osaka, propeller is optimised based on unsteady

MBEMT model.
3 Esso Osaka, propeller selected from Case 1 is run using the

unsteady MBEMT model and analysed.
4 Same as case 1, but run on the KCS.
5 Same as case 2, but run on the KCS.
6 Same as case 3, but run on the KCS.

Table 6.1: Case studies for propeller selection analysis.

The three case studies are explained in more detail, viz.

1. The first case represents the selection of a propeller optimised for the

environmental conditions in which the ship is expected to experience, as

output from the SiS simulator. The simulation considers the manœuvring

motion of the ship, but neglects any sway or yaw induced by the propeller.

The propeller model only accounts for the flow arriving at the propeller from

directly in front of it (i.e. perpendicular to the propeller plane), and

therefore also neglects any dynamic effects due to the propeller accelerating

into/away from the incoming oblique flow.
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2. The second case better represents what is happening in reality. An optimised

propeller is selected for the environmental conditions in which a ship is

expected to experience (the same as in the first case). This case however

considers the manœuvring motion of the ship, sway and yaw induced by the

propeller, and the dynamic effects from a propeller working in oblique flow.

3. The third case is a simulation run on a ship in the environmental conditions

in which she is expected to sail (the same as Case 1 & 2). This case differs

from the other two in that it does not select an optimised propeller, but

rather analyses an existing one. The propeller that this case analyses is the

one that Case 1 selected to be the most efficient, however, like Case 2, this

case considers the manœuvring motion of the ship, sway and yaw induced by

the propeller, and the dynamic effects from a propeller working in inclined

flow. This case highlights the difference in propeller performance from

selecting a propeller based upon “dead ahead” conditions, compared to when

accounting for effects of oblique flow.

So, in short, Case 1’s propeller is optimised on the dead ahead flow model, Case

2’s propeller is optimised accounting for oblique flow, and Case 3 represents how

the propeller from Case 1 would fair in oblique flow. (A ship’s propeller is

conventionally designed from the perspective that flow is dead ahead).

The environmental conditions for each case study are identical. A mean wind

speed of 20 knots (a fresh breeze) is coming from the West.

Both ships are expected to maintain their service speed, and maintain a course

due North. The service speed of the Esso Osaka is 10 knots, and the service speed

of the KCS is 24 knots.

6.3 Results

Full time-history plots of simulation output can be found for all the case studies in

Appendix C.

It should be noted that during the simulation, at time t = 0, the forces and

moments from the environment are instantaneously applied to the particular ship

in question. This will result in an initial transient that will settle down, once the

automatic pilot and speed control have re-established the set point. Due to

imperfections in the simple automatic controllers that have been implemented in
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the study, towards the end of the run, the ship will respond quickly to try to

correct for a relatively small error. This sudden correction results in another

transient stage at the end of the run.

The results that occur between the end of the initial transient and the

beginning of the final transient are denoted the quasi-steady results. To avoid the

initial and final transients from biasing the results, it is these quasi-steady results

that are further analysed and recorded in this Chapter.

It is noted that, depending on route and environmental conditions, a ship will

usually never reach a steady state, due to the unsteady nature of the environment,

hence the term ‘quasi-steady results’. The quasi-steady results are the ones taken

between the initial and final transients of the simulation run, so very roughly the

middle third of the voyage. The stop time of the simulation was chosen so that

there would be adequate time to collect results during this middle third of the

voyage.

Tables 6.2 and 6.3 show the results from the Cases listed in Table 6.1. They

summarise how the propeller’s main parameters change, depending on which

propeller model is used (Cases 1 and 2), and shows the difference when the

optimised propeller from Case 1 is run using a method which accounts for oblique

flow (Case 3). The main engine’s brake power required to propel the ship at her

service speed is also included in the table.

Esso Osaka
Case 1 Case 2 Case 3

Optimisation Optimisation Analysis of
base on dead- base on unsteady propeller from
ahead OOV OO MBEMT model Case 1 run with

model unsteady MBEMT model
Z 5 5 5
D(m) 9.1 9.1 9.1
P (m) 7.69 6.95 7.69
aE 0.643 0.692 0.643
ηpo 0.513 0.520 0.511
Required PB(kW ) 7696.89 7645.53 7782.29
J 0.477 0.419 0.488
n(rpm) 50.629 54.047 50.509

Table 6.2: Results from running the SiS simulator on the Esso Osaka for different
case studies.

As can be seen from Tables 6.2 and 6.3, cases 2 and 5 have the highest efficiency
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KCS
Case 4 Case 5 Case 6

Optimisation Optimisation Analysis of
base on dead- base on unsteady propeller from
ahead OOV OO MBEMT model Case 4 run with

model unsteady MBEMT model
Z 5 5 5
D(m) 7.9 7.9 7.9
P (m) 8.09 9.25 8.09
aE 0.863 0.471 0.863
ηpo 0.640 0.656 0.641
Required PB(kW ) 40120.27 38040.023 39302.24
J 0.964 0.813 0.744
n(rpm) 106.20 90.662 98.99

Table 6.3: Results from running the SiS simulator on the KCS for different case
studies.

(and therefore the lowest required power), meaning that a propeller which has been

selected using a propeller model which accounts for oblique flow fairs better than a

one optimised for dead-ahead flow, but operated in oblique flow (cases 3 and 6).

The Esso Osaka has a higher propeller thrust loading compared to the KCS,

which is why she has a lower open-water propeller efficiency. Compared to the

dead-ahead case, the thrust loading will increase further in in-service conditions,

due to a full form ship moving through the water at an oblique angle. This

requires the propeller to develop relatively more revolutions compared to the case

of the KCS.

Inspecting Table 6.3 for the KCS, it is seen that the propeller revolutions are

reduced, due to the extra thrust arising as a consequence of oblique flow into the

propeller. (This oblique inflow angle is far greater for the KCS compared to the

Esso Osaka. The KCS ’s drift angle is approximately 1.5◦, whereas the Esso

Osaka’s is approximately 0.5◦.) The main engine therefore does not need to

produce as much thrust, reducing the propeller loading, which in turn reduces the

risk of cavitation, which in turn reduces the required expanded blade area ratio,

aE, reducing the frictional resistance of the blades. All these effects result in an

increase of the efficiency of the newly proposed propeller, compared to the more

conventional method.

The open water propeller efficiency gain from selecting a propeller from a model

which accounts for oblique flow for the Esso Osaka (i.e. the percentage difference
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between case 2 and 3) is 0.520−0.511
0.511

= 1.761%

The open water propeller efficiency gain from selecting a propeller from a model

which accounts for oblique flow for the KCS (i.e. the percentage difference

between case 5 and 6) is 0.656−0.641
0.641

= 2.340%

6.4 Fuel and CO2 Emissions Savings

The specific fuel consumption of an engine will vary depending on whereabouts in

the engine load diagram the operating point is (c.f. fig. 2.6). This operating point

will vary dynamically as the engine load varies throughout the course of the ship’s

voyage. To obtain an accurate forecast of fuel consumption and emissions output,

it is necessary to incorporate a sophisticated engine simulator into the

manœuvring simulator, the scope of which is beyond this study.

To simplify the fuel and CO2 emissions calculations, it is assumed that the

mean quasi-steady main engine’s brake power results in the mean quasi-steady

values for fuel consumption and CO2 emissions.

To calculate the CO2 emissions from a fuel, the Carbon content of the fuel must

be multiplied by the ratio of molecular weight of CO2 to the molecular weight of

C, that is 44:12.

The Carbon content of Heavy Fuel Oil (HFO) (ISO 8217 Grades RME through

RMK) is 84.93%, therefore, 1 gramme of HFO produces 0.8493× 44
12

= 3.1141

grammes of CO2 when fully combusted.

If it is assumed that the specific fuel consumption (SFC) vs. brake engine power

output trend is similar to all slow-speed engine manufacturers (referring to figs.

6.2 and 6.3), that is, constant over the range of brake power from the different case

studies, then the comparative differences in fuel consumption between case studies

are independent of the value of SFC, and therefore engine manufacturer.

6.4.1 Esso Osaka

A Wärtsilä RTA82T is chosen as an example of an engine that has the necessary

requirements to satisfy the propulsion of the Esso Osaka. Referring to fig. 6.2,

obtained from Wärtsilä (2013b), the specific fuel consumption is regarded to be a

constant of 166g/kWhr over the range of brake power output from case studies 1,

2 and 3. This fuel consumption can be equated to grammes of CO2 produced per
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Reference
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Figure 6.2: Brake specific fuel consumption for 6 cylinder RTA82T, suitable for the
Esso Osaka (obtained from Wärtsilä (2013b)).

Case Study
1 2 3

Required PB(kW ) 7696.89 7645.53 7782.29
Fuel Consumption (t/hr) 1.278 1.269 1.292
CO2 Produced (t/hr) 3.979 3.952 4.023

Table 6.4: Fuel Consumption and CO2 Emissions for the Esso Osaka

kWhr.

CO2 produced/kWhr = 166× 3.1141

= 516.94g/kWhr

Table 6.4 summarises the fuel consumption and CO2 emissions from the cases

described in Section 6.2.

The saving in fuel for the Esso Osaka from selecting an optimum propeller for

in-service conditions using an unsteady MBEMT model compared to the “dead

ahead” OOV OO model (and run in service conditions) (i.e. the percentage

difference between cases 2 and 3) is 1.292−1.269
1.292

= 1.780%. The corresponding CO2

emissions savings 4.023−3.952
4.023

= 1.765%

6.4.2 KCS

An RTA82C from Wärtsilä is chosen as an example of an engine that has the

necessary requirements to satisfy the propulsion of the KCS. Figure 6.3 shows the
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Reference
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Figure 6.3: Brake specific fuel consumption for 10 cylinder RTA82C, suitable for the
KCS (obtained from Wärtsilä (2013b)).

Case Study
4 5 6

Required PB(kW ) 40120.27 38040.02 39302.24
Fuel Consumption (t/hr) 6.820 6.467 6.681
CO2 Produced (t/hr) 21.240 20.138 20.807

Table 6.5: Fuel Consumption and CO2 Emissions for the KCS

specific fuel consumption, as calculated from Wärtsilä’s General Technical Data

(Wärtsilä, 2013b). Referring to fig. 6.3, over the range of brake power output from

Case Studies 4, 5 and 6, the specific fuel consumption is regarded to be a constant

of 170g/kWhr. This fuel consumption can be equated to grammes of CO2

produced per kWhr in an identical manner to that for the Esso Osaka.

CO2 produced/kWhr = 170× 3.1141

= 529.40g/kWhr

Table 6.5 summarises the fuel consumption and CO2 emissions from the cases

described in Section 6.2. The saving in fuel for the KCS from selecting an

optimum propeller for in-service conditions using an unsteady MBEMT model

compared to the “dead ahead” OOV OO model (and run in service conditions) (i.e.

the percentage difference between cases 5 and 6) is 6.681−6.467
6.681

= 3.203%. The

corresponding CO2 emissions savings 20.807−20.138
20.807

= 3.215%
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6.5 Discussion of Results

Figures 6.4, 6.5 and 6.6 summarises the comparison of the two different propeller

selection strategies described in the previous section. Briefly, the two different

propeller strategies are:

1. Based on the assumption that flow is moving from bow to stern, parallel to

the ship’s centreline (this is the conventional perspective of initial propeller

selection).

2. Based on a model which accounts for oblique flow into the propeller plane,

representing the drift angle which a ship will attain whilst travelling in her

expected environmental conditions.
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Figure 6.4: Comparison of optimised open-water propeller efficiency from accounting
for, and neglecting a ship’s drift angle in propeller selection.

As can be seen from fig. 6.4, for both the Esso Osaka and the KCS, the

open-water propeller efficiency is higher for the propeller which has been selected

from the model which considers oblique flow. The KCS has a relatively higher

efficiency gain over the Esso Osaka.

A significant difference between the two ships is their motion response to the

environment in which they are operating. The environmental factors were identical

for the two ships, yet, due to the larger above-water area of the KCS, it attains a

higher drift angle when underway, compared to the Esso Osaka. The larger drift
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Figure 6.5: Comparison of required brake power from accounting for, and neglecting
a ship’s drift angle in propeller selection.
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Figure 6.6: Comparison of fuel consumption and CO2 emissions from accounting
for, and neglecting a ship’s drift angle in propeller selection.

angle relates to a larger angle of inclined flow at the propeller plane. Figure 6.4

suggests that ships which are more susceptible to larger drift angles could benefit

more from the proposed propeller selection methodology, compared to ships which

tend to attain low drift angles. (Time-history of drift angles and other results can

be found in Appendix C).

From fig. 6.5, it can be seen that the propeller which has been selected from the

model which accounts for oblique flow results in a ship which requires less brake

power, compared to one whose propeller has been selected on the dead-ahead
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principle (as expected from the conclusions drawn from fig. 6.4). Again, the KCS

has a relatively higher improvement over the Esso Osaka.

From fig. 6.6, it is seen that, continuing the trend, the KCS fairs to a greater

degree than the improvement of the Esso Osaka. In this plot, the reader is able to

observe that there is a proportionately greater reduction in CO2 emissions over fuel

consumption. This is a significant result, as it means that an increase in propeller

efficiency results in a proportionally larger reduction in CO2 emissions. How large

the proportion is depends on the required power (and therefore fuel consumption).

The greater the required power, the higher the savings in CO2 emissions.

Ships which will benefit the most from the proposed method of propeller

selection, therefore, are ones which are susceptible to higher drift angles, and/or

ones which require higher engine power.

It can be said that it is physically extremely challenging to measure differences

in propeller efficiency of less than ≈ 2%, due to the uncertainties in calibration of

measuring devices, bearing in mind shaft torsional stiffness is very rarely, if ever

measured (Woodward, 2014). Although not physically measurable at the propeller

shaft, a difference in propeller efficiency may manifest itself as a significant,

measurable change in fuel consumption and CO2 emission reduction. Of course,

proving that this reduction in CO2 emissions is actually attributable to an increase

in propeller efficiency is perhaps even more challenging than measuring it at the

shaft, as there are now many more processes to measure, each with their own

degrees of uncertainty.

6.5.1 The Performance of the Newly Proposed Propellers in Calm

Water, Trial Conditions

It is of interest to illustrate the performance of the propellers selected from the

newly proposed methodology in the calm water, trials condition scenario. These

results are presented in Sections C.7 and C.8 of Appendix C for the Esso Osaka

and KCS respectively.

These calm water simulation runs were carried out using the Unsteady

MBEMT propeller model of the SiS Simulator. It can be seen that a very slight

course correction from the autopilot is necessary. This is due to the fact that the

sway force and yaw moment induced on the hull by the propeller is taken into
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account.

The average, steady-state open-water propeller efficiency for the Esso Osaka is

0.531 when run in calm water, compared to that of 0.520 when run in service

conditions.

The average, steady-state open-water propeller efficiency for the KCS is 0.672

when run in calm water, compared to that of 0.656 when run in service conditions.

These results are as expected, as the lower resistance experienced in the calm

water environment results in lower propeller disc loading. Referring to equation

6.4, the lower loading requires less torque, resulting in a higher efficiency.

ηo =
Power Out

Power In
=

TVa
2πQn

(6.4)

It may also be of interest to show how a propeller designed for calm-water trial

conditions fairs in service conditions, however, at present, the SiS simulator when

used with the Unsteady MBEMT does not account for the thrust lost due to

cavitation. It only gives the user an indication of cavitation inception (in order to

reject any unsuitable propellers at the design stage).

6.5.2 Estimation of Sea-Margin using the SiS Simulator

This section shows a practical demonstration of how a simulator, like the SiS

simulator, can give an estimate as to the sea-margin of a ship, which takes into

account the most probable weather conditions. A more accurate sea margin

enables more correct design points not only for the propeller (which is

demonstrated in this research), but also allows for closer engine/propeller

matching, resulting in further fuel consumption reduction.

Referring to Section C.2, Appendix C, the average quasi-steady state in-service

resistance for the Esso Osaka is 915.190kN . The calm-water resistance is

801.324kN . This equates to a sea-margin of 12.44%.

Referring to Section C.5, Appendix C, the average quasi-steady state in-service

resistance for the KCS is 2091.773kN . The calm-water resistance is 1842.203kN .

This equates to a sea-margin of 11.93%.

Not knowing the real-life sea-margin (that is, not one based on rule-of-thumb or

similar, but the actual difference in resistance between calm water and a typical

voyage) it is not possible to state if the sea margins calculated above are

146



Chapter 6. Simulation Methodology and Results

particularly accurate, however, the values are typical.

6.5.3 A Note on Computing Time

The time it takes to run a simulation depends upon a number of factors, perhaps

the most influential being:

• the stop time of the simulation.

• the time step used in the calculations.

• the CPU speed and number of threads.

From profiling the SiS programme, it is seen that the vast majority of the CPU’s

time is spent in the MINPACK subroutines. It is difficult to quantify the ability of

the MINPACK library to solve for the induced velocities in the MBEMT routines.

Some inflow vectors take longer to solve than others.

In the following analysis, the stop time of the simulation is 2800 seconds, with a

time step of 0.1 seconds. The CPU was an Haswell-MB (Mobile) Intelr

CoreTMi5-4200U CPU @ 1.60GHz × 4.

The Wall Time (that is, the time it takes as measured by a clock on the wall),

for a turning circle to be performed using the OOV OO propeller model was 2.55

seconds. For a turning circle performed using the Unsteady MBEMT model, the

wall time was 8264.13 seconds.

A typical Wall Time for a simulation run in service conditions for the Esso

Osaka is 8471 seconds, whereas for the KCS, the Wall Time is 11453 seconds. This

difference illustrates the extra degree of difficulty the MINPACK library has in

converging to a solution under certain circumstances. It must be noted that this is

for one run, or each iteration of the design loop.

From the above timings, it can be seen that the SiS Simulator when used with

the OOV OO propeller model, is well suited for adaptation in a real-time

simulator, however, if the Unsteady MBEMT model is to be considered for

inclusion in a real-time simulator, mechanisms to speed up the computation time

need consideration.

One method to speed up processing time would be to make use of the Graphics

Processing Unit (GPU) of a personal computer, for example CUDA Parallel

Computing (Nvidia, 2014). This process was not implemented in the current work,
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as the present version is sufficiently fast for the author’s purpose. The downside of

this method, is that it is heavily hardware dependent requiring different libraries

for different hardware.

6.6 Summary

This Chapter shows how a propeller can be selected using a flow model that

accounts for oblique flow (as established by the manœuvring motion of a ship),

which has an higher overall efficiency compared to a model that just accounts for

“dead ahead” flow.

A definition of an optimised propeller in the context of this research has been

specified, followed by a methodology of how a propeller is optimised for in-service

conditions using the specially developed SiS simulator.

Case studies have been developed that show how the performance of a propeller

varies in the same conditions depending on how completely the propeller model

represents actual flow phenomena. Two ship types are analysed, the Esso Osaka, a

VLCC, and a container ship, the KCS.

Results from running the case studies on the simulator are presented and fuel

and CO2 emissions savings are calculated.

It is shown that efficiency gains (and therefore fuel and CO2 emission savings)

can be made by selecting an optimised propeller using an unsteady MBEMT

model compared to a propeller that has been selected using a model which neglects

the effects of a ship’s manœuvring motion. Gains in efficiency and reductions in

fuel consumption and CO2 emissions from the proposed propeller selection

methodology are presented in table 6.6.

Esso Osaka KCS
Open-water propeller efficiency gain (%) 1.761 2.340
Fuel consumption reduction (%) 1.780 3.203
CO2 emissions reduction (%) 1.765 3.215

Table 6.6: % gain in Efficiency and % reduction in fuel consumption and CO2

emissions from the newly proposed propeller selection methodology.

The results are encouraging, and suggest that the more susceptible a ship is to

drift, the higher the potential efficiency gains from the newly proposed propeller

selection method. It is also noted that if a ship has a relatively high required
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power, even a small increase in propeller efficiency can manifest itself into a large

CO2 emission reduction.
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Chapter 7. Conclusions, Further Work and

Recommendations

The purpose of this Chapter is to present major achievements and conclusions that

this study has identified, and further work that could be done to potentially

improve upon the developed methods. It briefly revisits each Chapter of the

Thesis, highlighting the aims and objectives and how they were met, novelty and

achievements.

The aim of Chapter 1 was to give the reader an overview of the entire research

study. It achieved this aim by defining the motivation driving this research, as well

as the aims and objectives, and then went on to summarise the methodology used,

which included a literature review of existing methods to predict manœuvring

motions and propeller forces. It also provided a practical guide as to how the

newly proposed propeller selection methodology can be used.

Main outcomes and achievements from Chapter 1 are listed as follows:

Primary objective: The overall aim of this research was to reduce the amount of

Carbon Dioxide (CO2) produced from operating ships. The approach taken

by the Author to address this aim was to increase the efficiency (and thereby

reduce fuel consumption and emissions) by selecting a propeller whose

design-point better represents the conditions in which it is expected to

operate.

Methodology outline: Conventionally, a propeller is selected on the assumption

that a ship is sailing with zero drift angle. When a ship is in her natural

environment it is likely that when she is full-away on passage, she will have

attained some drift angle due to environmental forces and moments imposed

on her.

The overall methodology of analysing, and accounting for the ship’s motion

response to her environment, in propeller selection has been sub-divided into
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the following items.

• In order to obtain an estimate of the loading conditions on a ship’s

propeller whilst in her day-to-day operations at sea, a ship manœuvring

simulator, coded in Fortran, (the Ship-in-Service, SiS simulator) has

been developed by the Author. The effects of wind, waves and surface

current are accounted for by the simulator, and automatic controllers

are used to maintain the ship’s speed and desired course.

The SiS simulator estimates a ship’s motion in the horizontal plane of

surge, sway and yaw. This plane is considered to be the most influential

to the outcome of propeller efficiency, as, when a ship is in a seaway, the

average drift angle is likely to be non-zero, whereas the other motions

(with the exception of roll) are likely to average near zero.

• A numerical model is required to calculate the propulsion characteristics

of a propeller, while considering the manœuvring motion of a ship in a

seaway. This Chapter concluded that, for the purposes of this study, a

heavily modified Blade-Element-Momentum theory model would be

most appropriate, due to its fast computation time (the routine needs to

be called at every time-step of the simulation).

• A unique and novel methodology has been developed which selects an

optimum propeller from a standard B-Screw series for a ship which is

travelling along her intended route, encountering the most probable

weather conditions.

• Case studies have been developed which show how the efficiency of a

propeller fairs from the newly proposed method of propeller selection,

compared to conventional methods.

The approach of using a simulator to obtain loading conditions for use as design

points is believed to be novel. It is the first time, to the best of the Author’s

knowledge, that the procedures outlined in this Thesis have been assembled in

such a way as to produce a robust method of selecting an optimised propeller

which accounts for the manœuvring motion of a ship sailing in an environment in

which she is expected to encounter.

The aim of Chapter 2 was to describe the environment which a ship will
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encounter, how this environment affects the ship, and how a ship’s controls need to

respond in order for her to arrive at her intended destination on time. It achieved

this aim by presenting differences between trial-conditions (calm water) and

in-service conditions, outlining wind, wave and surface current forces and moments

and how these can be obtained from statistics. The Chapter went on to explain

how these external forces tend to alter a ship’s desired speed and course, and hence

the loading.

Main outcomes and achievements from Chapter 2 are listed as follows:

• Although it is imperative that a ship passes her sea-trials (due to IMO

regulations and owner’s requirements), the ship will very rarely operate in

calm water, trial conditions, devoid of any weather. This Chapter has

demonstrated from an example, that once a ship’s propulsion system is

operated away from her design point, the efficiency of the system will

diminish. It is therefore more economical and environmentally friendly to

design the propeller about a point which it is most likely to operate at. This

fact raises the issue that a design optimised around expected service

conditions will perform sub-optimally when run during sea-trials.

• This Chapter illustrated that it is possible to get an estimate of the

sea-margin from the use of a simulator. This is believed to be a novel

concept, making it possible to predict powering requirements with a greater

degree of fidelity over conventional, rule-of-thumb methods for sea-margin

estimates.

• It was also shown that to avoid excessive fuel consumption and exhaust gas

emissions, it is important to match the loading requirements of the propeller

to the power output of the main engine.

The aim of Chapter 3 was to describe how the motions of a ship, and the

environment in which she is operating, can be estimated from numerical models.

This aim was achieved by describing a modular approach of representing forces

and moments of hull, propeller, rudder and their interactions. It also presents

models for forces and moments imposed on a ship from wind, waves and surface

currents. System dynamics are also accounted for, so the rudder does not instantly

attain its command, or the main engine’s fuel rack does not provide an
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instantaneous change of power. An automatic pilot is also described, which keeps

the speed and course of a ship at her set point. All these models are in the form of

ordinary differential equations, which are solved in the time domain using a forth

order Runge-Kutta method.

Main outcomes and achievements from Chapter 3 are listed as follows:

• A modular approach allows different elements to be modified, without

affecting other parts of the model (unlike a whole-ship approach). This

makes it possible to develop new models (in this case a propeller model) and

use the simulator as an analysis tool to estimate performance of those

entities for a ship in manœuvring motion over her route.

• The propeller model depicted in this Chapter is based on the polynomials of

Oosterveld and van Oossanen (1975), and as such ignore effects of a ship’s

motion (apart from dead-ahead surge). A new propeller model is therefore

required which accounts for a ship’s manœuvring motion.

• To assist in modelling propeller flow, various outputs from the simulator can

be used, for example velocity vectors at the propeller plane.

• A simple PID controller has been implemented to counteract the effects of

speed and course deviation due to the environment. The autopilot is an

important component in overall propulsive efficiency, as excessive rudder

movement results in greater drag. When comparing results from the newly

proposed method of propeller selection, and the conventional method, the

case studies (discussed in Chapter 6) have been put together in such a way

as to keep weather conditions constant, and thereby autopilot movements

constant, thus removing the autopilot as a component in the comparison of

overall propulsive efficiency.

• The model which is used to estimate added resistance due to waves only

considers loading in the pure surge direction. This has the effect of

neglecting any leeway from the action of waves. In reality, the waves would

indeed impart sway and yaw velocities to a ship, and so, to some extent, the

present method under-predicts drift angle. The results indicate that,

potentially, higher efficiency gains can be made over the published ones, due

to this under-prediction of drift angles.
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The aim of Chapter 4 was to produce a numerical model which would estimate

the action of a propeller when accounting for flow arriving at the propeller plane

from some oblique angle, as would happen on a ship sailing with a drift angle. It

achieved this aim by explaining how the combined Blade-Element-Momentum

Theory (BEMT ) can be modified to account for oblique inflow angles, and then

went on to develop the model further and account for unsteady flow effects from a

propeller’s blade accelerating towards and away from the incoming flow.

Main outcomes and achievements from Chapter 4 are listed as follows:

• It is observed that the general effects from inclined flow into the propeller

plane result in an increase in thrust from the propeller, for a given power.

This is due, in part, to an increased resultant velocity across the blade, but

also from unsteady flow effects. The general blade-element-momentum

theory has been adapted to account for this oblique flow.

• As a consequence of using the Modified Blade-Element Momentum Theory

(MBEMT ), the resulting force which acts perpendicular to the propeller

shaft is estimated. This allows the effects of sway and yaw induced on a ship

from propeller action to be accounted for, which was neglected in the

previous model.

• As the propeller is working in oblique flow, the blades will be accelerating

towards and away from the flow. It has been shown that these unsteady

effects modify the sectional lift and drag, and can result in substantial

differences between the dead-ahead flow scenario. A typical example for the

dynamic lift coefficient being 20% higher than the static lift coefficient.

• The shape of a ship’s hull will modify the flow into a propeller, also, when a

ship is at some drift angle, the hull will cast a “shadow” over the propeller,

resulting in modified velocity vectors at the propeller plane. These aspects

are neglected in the present study, due to lack of available data of hullforms

tested at different speeds and different drift angles. By neglecting these

aspects, the results published from this work are expected to be somewhat

different to actual results from a whole ship experimental model, however,

the trend in results and overall outcome is not expected to change.

Neglecting the modifications of a ship’s wake due to her stern lines also has
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the effect of normalising the variation in wake-field of different hullforms,

removing any bias that an extremely efficient hullform has over an inefficient

one.

Of course, certain flow modifications from the hull are accounted for in the

model, such as wake (as a function of main ship geometry) and the

modification of this wake due to drift angle.

• To balance the equations of thrust and torque, that is solve for the induced

velocities in the MBEMT model, a robust solver is required, as the

component equations, especially the lift and drag terms, are non-linear, and

can lead to instabilities. The minimisation algorithms from the MINPACK

library (Moré et al., 1980), are successfully employed in this study to balance

the thrust and torque equations.

• To ensure that changes in efficiency from different flow models yield the same

results for the same propeller, the MBEMT model is calibrated against the

model from Oosterveld and van Oossanen (1975) (the OOV OO model) at

zero drift angle. This is achieved by adjusting parameters pertaining to lift

and drag coefficients until the difference between the two models are within

tolerance. At non-zero drift angle, then there will be a difference between the

models, as the OOV OO model neglects non-zero drift angle.

The developed unsteady MBEMT propeller flow model was incorporated into

the SiS simulator, producing a tool which can be used to analyse the performance

of a propeller which accounts for the manœuvring motion of a ship. It is the first

time, to the best of the Author’s knowledge, that results have been published over

a range of operating conditions, and for the full range of a propeller series using

this method, certainly when considering unsteady flow effects. This is possibly due

to the challenges involved in balancing the thrust/torque equations.

The aim of Chapter 5 was to provide the reader with a level of confidence that

the mathematical models previously presented behave in an expected manner. It

achieved this aim by showing results from the developed SiS simulator for a 35◦

starboard turning circle, and a 10-10 zig-zag manœuvre performed by the Esso

Osaka. It compared these results with results from other institutions.

Main outcomes and achievements from Chapter 5 are listed as follows:
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• It is demonstrated that, for zero drift angle, the characteristics for each

propeller model are in close agreement, meaning that any difference between

the models during manoeuvres is attributable to the degree of fidelity of the

model, and the flow phenomena that they represent.

• The developed model is observed to behave in an expected manner, and

deviation from trials results is in-line with other institutions.

• The effect of sway and yaw induced by the propeller is seen to be modelled

correctly, as are the effects of unsteady flow.

• There is no discernible effect on the 1st and 2nd overshoot angles of the

zig-zag manœuvre when using any of the developed propeller models. This

implies that the directional stability of the Esso Osaka is not dependant on

unsteady propeller flow, or induced sway or yaw arising from the propeller’s

action.

The aim of Chapter 6 was to show how a propeller can be selected from using a

flow model that accounts for the manœuvring motion of a ship, which has an

higher overall efficiency compared to a model that just accounts for flow arriving

perpendicular to the propeller plane (the conventional propeller selection

perspective). It achieved this aim by developing a new methodology of propeller

selection, which includes a manœuvring simulator to predict propeller loading for

the environment in which a ship is expected to encounter. Case studies are

constructed which allow propeller efficiency comparisons between the newly

proposed method, and the conventional approach.

Main outcomes and achievements from Chapter 6 are listed as follows:

• A scheme to calculate the optimum propeller geometry (given some known

parameters as obtained from the simulator) is given. This is an iterative

procedure, whereby a propeller selection process is successively run through

the simulation until the optimised efficiency has converged.

• The developed case studies are designed to show the potential gain in

efficiency from using the newly proposed selection process, over the

conventional one.
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• Two ship types were examined, a VLCC, the Esso Osaka, and a container

ship, the KCS. The Esso Osaka’s open water propeller efficiency increased by

1.76%, from using the newly proposed propeller selection method, and the

KCS ’s open water propeller efficiency increased by 2.34%. This equates to a

saving in CO2 emissions for the Esso Osaka of 1.77% and 3.22% for the KCS.

• The results suggest that the more susceptible a ship is to drift, the higher the

potential efficiency gains from the newly proposed propeller selection method.

• From further analysis of results, it is shown that if a ship has a relatively

high required power, seemingly small increases in propeller efficiency can

manifest itself as a large CO2 emission reduction, and noticeable reductions

in fuel consumption.

The results of this work show great potential for the reduction of CO2 emissions

from a propeller selection method which accounts for the manœuvring motion of a

ship (that is, design which accounts for a ship’s motion response in an environment

in which she is expected to operate).

The ship simulator can be used as a valuable tool at the initial design stage, not

only for analysing the ship’s motions, but as a method of obtaining more realistic

loading estimates (and therefore design-points) for a ship in her natural

environment, rather than the usual synthetic calm-water plus sea-margin.

It must be noted that this research is considered to be in the proof-of-concept

stage, actual values given in the results are expected to differ from physical

experiments due to various simplifying assumptions, highlighted in the next

Section. The Author is, however, confident that the inferences drawn and general

outcome and conclusions are not expected to differ from physical experiments.

7.1 Suggested Further Work and Recommendations

It is shown that the nearer the design-point is to physical reality, and the greater

the level of representing that physical reality, then the more efficient the design

will be. If the operating profile of a ship is variable, then the different design

points can be analysed, and a design with the highest overall efficiency obtained.

To add more fidelity to the model presented in this Thesis, a number of

recommendations for further work are made, viz.
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This study has focused on the manœuvring motion of a ship in a seaway. In a

true seaway, a ship will be subjected to six degrees of freedom, which should

ideally be accounted for. The sea-keeping motions are, however, expected to have

less impact on results in moderate sea conditions as their quasi-steady average is

likely to be near zero (with, perhaps, the exception of roll, which is not expected

to alter the flow-field significantly).

The modified combined blade-element momentum theory propeller model

developed in this research provides a relatively low level of precision. Whilst

suitable as a proof of concept, and initial analysis, it is unsuitable for blade section

design. To further optimise a propeller (eg wake adaptation) using the technique

described in this study, a flow model with a greater degree of precision, such as a

panel method, should be used (at the expense of greatly increased computation

time).

The analysis neglected the change in wake-field due to the ship’s hull at oblique

angles. The modified wake from the ship’s hull is expected to alter the results

somewhat, however, the general outcome is not expect to change. It is suggested

that model experiments are designed and completed in a cavitation tunnel for a

propeller-behind-hull configuration, in combined sea-keeping and manœuvring

motion, to compare with the numerical model and highlight any discrepancies

which require refinement.

The model that is used to predict added resistance due to waves only considers

the added force in purely a longitudinal direction. In reality the waves will impart

other forces and moments on the ship, including sway and yaw. It is expected that

if a more realistic wave model is substituted for the present one, a ship will attain

a somewhat greater drift (or leeway) angle than presently predicted, and therefore

the energy savings are expected to be potentially higher than the ones presented.

A designer should concentrate on optimising for the in-service scenario, rather

than the calm-water trials condition, if the design is to produce a minimum

amount of Carbon Dioxide in service. The Energy Efficiency Design Index (EEDI)

is a mechanism developed by the IMO to ensure that ships meet a required

standard for CO2 emissions. The EEDI is finalised from the results of sea-trials,

now, if a ship is optimised around service conditions, it follows that it will perform

sub-optimally at trial, perhaps leading to failure of EEDI requirements at trial,

but in normal day-to-day operation surpass them. It is suggested that the
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mechanism in which the EEDI is attained and verified is reviewed.
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Appendix A. SiS User Manual

This Appendix describes the basic operation of the SiS simulator, along with

example input files for the basis ships used in the analysis of this research.

A.1 Introduction

The SiS ship manœuvring simulator has been specially developed for use in this

research. It is written in Fortran 2008 standard, using the OpenMP specification

for parallel programming, and is known to compile on UNIX clones with either the

Intel Fortran Compiler (ifort) or the GNU Fortran Compiler (gfortran).

The programme is designed to be run without user intervention, so it can

conveniently be run in batch mode.

Figure A.1 shows the directory tree of the SiS simulator. The input/output file

names and directories are hard-coded, meaning that the programme will expect to

find them where they are illustrated in the figure.

When the SiS is invoked, the first thing it will do is read and parse the input

file input.dat (for examples please see Section A.2). This input file serves to

supply the programme with ship specific data, and also to configure the type of

analysis that it will perform.

Having read the input file the general flow of the programme is depicted in fig.

A.2.

A.2 Example Input Files

In the following examples of input files for the SiS simulator, comments have been

made at the end of each line to indicate the significance of each line. The “Ship

Type” entry needs further explanation as there is too little space to depict them in

the input file. Ship type designations are found in Table A.1.
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Programme Root Directory

doc

(documents pertaining to SiS)

src

input_files

input.dat

wind_timehist.dat

lib

MINPACK library

modules

compiled modules

RESULTS

plots

various output graphs for use with gnuplot

Results.txt

SiS executable

source code

Figure A.1: Directory structure of SiS simulator.
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Figure A.2: SiS Programme Flow
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Number Designation Ship Type
1 Car carrier
2 Cargo vessel, loaded
3 Cargo vessel, container on deck
4 Container ship, loaded
5 Destroyer
6 Diving support vessel
7 Drilling vessel
8 Ferry
9 Fishing vessel
10 Liquefied natural gas tanker
11 Offshore supply vessel
12 Passenger liner
13 Research vessel
14 Speed boat
15 Tanker, loaded
16 Tanker, in ballast
17 Tender

Table A.1: Ship type designation as used in the input file for the SiS simulator

A.2.1 Example Input File for the Esso Osaka

"Esso Osaka VLCC - Loaded Test Case"
311901.5 ! Volume of Displacement (m^3)
325.0 ! Length between Perpendiculars (m)
335.0 ! Length along the Waterline (m)
53.0 ! Beam (m)
21.79 ! Draught at Forward Perpendicular (m)
21.79 ! Draught at After Perpendicular (m)
3.169 ! Longitudinal Centre of Buoyancy (relative to midships +ve forward [%])
0.99 ! Midship Coefficient
0.85 ! Waterplane Coefficient
10.0 ! Service Speed (knots)
2 ! Rudder Type
13.85 ! Rudder Span (m)
9.0 ! Rudder Chord (m)
249.3 ! Wetted Surface Area of Rudder (m^2)
0.0 ! Wetted Surface Area of Bilge Keels (m^2)
0.0 ! Wetted Surface Area of Skeg (m^2)
0.0 ! Wetted Surface Area of Strut Bossings (m^2)
0.0 ! Wetted Surface Area of Hull Bossings (m^2)
0.0 ! Wetted Surface Area of Shafts (m^2)
0.0 ! Wetted Surface Area of Shaft Brackets (m^2)
0.0 ! Wetted Surface Area of Stabiliser Fins (m^2)
0.0 ! Wetted Surface Area of Radar Dome (m^2)
16.53 ! Transverse Area of Bulbous Bow (m^2)
3.59 ! Height of Centre of Bulb from Keel (m)
3.0 ! Bow Thruster Tunnel Diameter (m)
0.005 ! Bow Thruster Opening Coefficient
2 ! After-Body Form Type
9.86 ! Immersed Area of Transom (m^2)
y ! Optimise a propeller for in-service conditions, or analyse existing one (y/n)?
1 ! Number of Propellers
9.1 ! Propeller Diameter (m)
5 ! Number of Blades on Propeller
6.507 ! Pitch of Propeller (m)
0.682 ! Propeller’s Expanded Blade Area Ratio
0.273 ! Clearance between Propeller and Keel (m)
15 ! Ship Type
2 ! Engine Type
1.0 ! Main Engine Gearbox Ratio
1.0 ! Shaft efficiency
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343.0 ! Length Overall (m)
3550.0 ! Lateral Projected Area (m^2)
909.0 ! Transverse Projected Area (m^2)
191.0 ! Distance from Bow of Centroid of Lateral Projected Area (m)
20.0 ! True Wind Speed (knots)
90.0 ! Wind Direction - Cardinal Points (degrees)
0.0 ! Current Speed (knots)
0.0 ! Current Direction - Cardinal Points (degrees)
0.0 ! Ship’s Course (Direction of travel) - Cardinal Points (degrees)
t ! Do we generate a new time-history of wind velocity, or use an existing file

! (True or False)
s ! Which propulsion model should we use; ’s’ for quasi-static BEMT,

! ’d’ for dynamic BEMT or ’o’ for Oosterveld & van Oossanen (LOWER CASE ONLY!)
a ! Analysis type; c = turning circle, z = zig-zag, a = autotrack & autospeed,

! n = no control
0.485 ! Autopilot proportional coefficient for course control
0.4 ! Autopilot integral coefficient for course control
0.02 ! Autopilot derivative coefficient for course control
0.6 ! Autopilot proportional coefficient for speed control
0.015 ! Autopilot integral coefficient for speed control
0.0 ! Autopilot derivative coefficient for speed control

A.2.2 Example Input File for the KCS

"KCS - KRISO Container Ship"
50885.0 ! Volume of Displacement (m^3)
232.0 ! Length between Perpendiculars (m)
237.58 ! Length along the Waterline (m)
32.2 ! Beam (m)
11.343 ! Draught at Forward Perpendicular (m)
11.343 ! Draught at After Perpendicular (m)
-2.03 ! Longitudinal Centre of Buoyancy (relative to midships +ve forward [%])
0.985 ! Midship Coefficient
0.802 ! Waterplane Coefficient
24.0 ! Service Speed (knots)
2 ! Rudder Type
9.9 ! Rudder Span (m)
5.5 ! Rudder Chord (m)
115.0 ! Wetted Surface Area of Rudder (m^2)
0.0 ! Wetted Surface Area of Bilge Keels (m^2)
0.0 ! Wetted Surface Area of Skeg (m^2)
0.0 ! Wetted Surface Area of Strut Bossings (m^2)
0.0 ! Wetted Surface Area of Hull Bossings (m^2)
0.0 ! Wetted Surface Area of Shafts (m^2)
0.0 ! Wetted Surface Area of Shaft Brackets (m^2)
0.0 ! Wetted Surface Area of Stabiliser Fins (m^2)
0.0 ! Wetted Surface Area of Radar Dome (m^2)
9.55 ! Transverse Area of Bulbous Bow (m^2)
9.25 ! Height of Centre of Bulb from Keel (m)
0.0 ! Bow Thruster Tunnel Diameter (m)
0.0 ! Bow Thruster Opening Coefficient
3 ! After-Body Form Type
0.0 ! Immersed Area of Transom (m^2)
n ! Optimise a propeller for in-service conditions, or analyse existing one (y/n)?
1 ! Number of Propellers
7.9 ! Propeller Diameter (m)
5 ! Number of Blades on Propeller
7.8763 ! Pitch of Propeller (m)
0.8 ! Propeller’s Expanded Blade Area Ratio
0.336 ! Clearance between Propeller and Keel (m)
4 ! Ship Type
2 ! Engine Type
1.0 ! Main Engine Gearbox Ratio
1.0 ! Shaft efficiency
253.8 ! Length Overall (m)
5472.08 ! Lateral Projected Area (m^2)
914.65 ! Transverse Projected Area (m^2)
113.81 ! Distance from Bow of Centroid of Lateral Projected Area (m)
0.0 ! True Wind Speed (knots)
90.0 ! Wind Direction - Cardinal Points (degrees)
0.0 ! Current Speed (knots)
0.0 ! Current Direction - Cardinal Points (degrees)
0.0 ! Ship’s Course (Direction of travel) - Cardinal Points (degrees)
t ! Do we generate a new time-history of wind velocity, or use an existing file
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! (True or False)
d ! Which propulsion model should we use; ’s’ for quasi-static BEMT,

! ’d’ for dynamic BEMT or ’o’ for Oosterveld & van Oossanen (LOWER CASE ONLY!)
n ! Analysis type; c = turning circle, z = zig-zag, a = autotrack & autospeed,

! n = no control
0.485 ! Autopilot proportional coefficient for course control
0.4 ! Autopilot integral coefficient for course control
0.02 ! Autopilot derivative coefficient for course control
0.6 ! Autopilot proportional coefficient for speed control
0.015 ! Autopilot integral coefficient for speed control
0.0 ! Autopilot derivative coefficient for speed control

A.3 SiS Subprogram Descriptions

Table A.2

Module Name Main Subprograms

added_wave_resistance.f90 subroutine townsin_kwon(...) - Calculates the

added resistance in pure surge due to waves.

function BN(...) - Calculates the Beaufort

Number from the true wind speed.

blendermann94.f90 function blendermann(...) - Calculates the

wind force and moment coefficients.

b_screw.f90 function Okt(...) - Calculates thrust coeffi-

cient from Oosterveld and van Oossanen (1975)

polynomials.

function Okq(...) - Calculates torque coeffi-

cient from Oosterveld and van Oossanen (1975)

polynomials.

b_screw_geom.f90 subroutine b_geom(...) - Calculates blade off-

sets, chord length, maximum thickness, zero lift

angle.

subroutine b_chord(...) - Calculates the

chord length at a given radius.

subroutine propeller_offsets(...) - Writes

out the propeller offsets to a file.

course_stability.f90 subroutine clarke(...) - Calculates linearised

manœuvring coefficients.

subroutine dstability(...) - Assesses the dy-

namic stability of the ship.

Continued on next page
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Table A.2 – continued from previous page

Module Name Main Subprograms

subroutine tprime(...) - Checks if the ship

meets IMO Turning Criteria.

gms.f90 Defines various physical constants and some gen-

eral mathematical and science routines, including:

function linintpol(...) - Linear interpola-

tion.

function cubic_spline(...) - Cubic spline in-

terpolation.

gplot.f90 Numerous subroutines to plot graphs via gnuplot.

holtrop_mennen.f90 hm_coeff(...) - Calculates coefficients used in

Holtrop and Mennen (1982) ship resistance calcu-

lations.

cw_res(...) - Calculates the calm water (pure

surge) resistance of a ship.

wPo(...) - Estimates the (Taylor) Wake Fraction

from Holtrop and Mennen (1982)

tdfo(...) - Estimates the Thrust Deduction

Fraction from Holtrop and Mennen (1982)

etaR(...) - Estimates the Relative Rotative Ef-

ficiency from Holtrop and Mennen (1982)

hydrostatics.f90 bhydro(...) - Calculates various hydrostatics, in-

cluding mass, centre of gravity, mass moments of

inertia, block coefficient.

input_data.f90 subroutine gobble(...) - Read in ship and en-

vironment data from input file.

isherwood72.f90 isherwood(...) - Alternative method of calcu-

lating the wind force and moment coefficients.

lift_drag.f90 subroutine C_Lift(...) - Calculates the lift co-

efficient of a two-dimensional hydrofoil in unsteady

conditions, for both fully attached and separated

flow.

Continued on next page
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Table A.2 – continued from previous page

Module Name Main Subprograms

subroutine C_Drag(...) - Calculates the drag

coefficient of a two-dimensional hydrofoil in un-

steady conditions, for both fully attached and sep-

arated flow.

mbemt.f90 subroutine bem_theory(...) - Calculates the

thrust and torque on the propeller using quasi-

static or unsteady models.

subroutine f_Vi_cl(...) - Implements the

modified combined blade-element momentum the-

ory.

opt_b_screw.f90 Various routines to select a propeller with the high-

est efficiency for the environmental conditions that

the ship encounters. c.f. 6.1

power.f90 subroutine power_calc(...) - Calculates the

required propeller torque and revolution rate to

propel the ship at the given speed. (used for initial

estimate when propeller data is not given)

report.f90 Various routines to write output data to a file on

disc.

simulator.f90 Main simulation subprograms. Major routines in-

clude:

subroutine hull(...) - Calculates instanta-

neous hull forces and moment at each time-step

of the simulation.

subroutine rudder(...) - Calculates instanta-

neous rudder forces and moment at each time-step

of the simulation.

subroutine propeller(...) - Uses either

b_screw.f90 or mbemt (depending on the analy-

sis) to calculate the instantaneous propeller forces

and moment at each time-step of the simulation.

Continued on next page
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Table A.2 – continued from previous page

Module Name Main Subprograms

subroutine wind(...) - Uses

blendermann94.f90 to calculate the instanta-

neous wind forces and moment at each time-step

of the simulation.

subroutine seaway(...) - uses

added_wave_resistance.f90 to calculate the

instantaneous added wave resistance.

subroutine sim(...) - The main calling routine,

sets up initial conditions and uses rk4sys(...) to

run the simulation.

subroutine eqn_m(...) - Calls hull(...),

rudder(...), propeller(...) wind(...) and

seaway(...) to set up the system of equations

of motion. Also simultaneous ODEs are setup for

rudder slew rate and throttle fuel rack rate.

subroutine Q_Engine(...) - Calculates the

torque from the engine.

subroutine rk4sys(...) - Solves the system of

ODEs that are generated from eqn_m(...). Also

calls (required) control commands.

subroutine turncircle(...) - Gives the order

for the rudder to be put over for a turning circle

manœuvre.

subroutine zigzag(...) - Gives rudder orders

for the ship to perform a zigzag manœuvre.

subroutine autopilot(...) - Gives rudder and

throttle orders to keep the ship on course at the

required speed.

Continued on next page
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Table A.2 – continued from previous page

Module Name Main Subprograms

subroutine post_process(...) - Analyses the

data from the simulation, writes results to disc and

calls various plotting routines.

Table A.2: FORTRAN modules and main subprograms used in propeller modelling
calculations.
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Appendix B. Miscellaneous Calculations

This Appendix describes various calculations that are necessary to repeat the

analysis of this research. They are listed here, as opposed to the main Chapters

where they are referenced, as they are considered to divert the reader away from

the main flow of the topic.

B.1 Non-Linear Manœuvring Coefficients

Non-Linear Manœuvring coefficients are estimated from Inoue et al. (1981b)

Y ′v = −
(
πT

Lpp
+ 1.4

CBB

Lpp

)[
1 +

2

3

( τ
T

)]

Y ′r =
1

2

πT

Lpp

(
1 + 0.8

τ

T

)
N ′v = − 2T

Lpp
+ 0.54

τ

Lpp

(
0.5π + 0.7

CBB

T

)
N ′r = −

(
1.08

T

Lpp
− 4T 2

L2
pp

)(
1 + 0.3

τ

T

)
Y ′v|v| = −6.49 (1− CB)

T

B
+ 0.0795

Y ′v|r| = 1.82 (1− CB)
T

B
− 0.447

Y ′r|r| = −0.4664 (1− CB)
T

B

N ′vvr = −

[
3.25

CBB

Lpp
− 0.35 + 10−7

(
Lpp
CBB

)6
]

N ′vrr = 0.444
CBT

B
− 0.064

N ′r|r| = −

[
1.7

(
CBB

Lpp
− 0.157

)1.5

+ 0.01

]

B.1.1 Non Dimensionalising Factors

Forces :
1

2
ρV 2

v TLpp
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Moments :
1

2
ρV 2

v TL
2
PP

B.2 Linear Manœuvring Coefficients

Linear Manœuvring coefficients are estimated from Clarke et al. (1983)

Y ′v = −π
(
T

L

)2 [
1 + 0.4CB

T

L

]

Y ′r = −π
(
T

L

)2 [
−1

2
+ 2.2

B

L
− 0.080

B

T

]
N ′v = −π

(
T

L

)2 [
1

2
+ 2.4

T

L

]
N ′r = −π

(
T

L

)2 [
1

4
+ 0.039

B

T
− 0.56

B

L

]

Y ′v̇ = −π
(
T

L

)2
[

1 + 0.16CB
B

T
− 5.1

(
B

L

)2
]

Y ′ṙ = −π
(
T

L

)2
[

0 + 0.67
B

L
− 0.0033

(
B

T

)2
]

N ′v̇ = −π
(
T

L

)2 [
0 + 1.1

B

L
− 0.041

B

T

]
N ′ṙ = −π

(
T

L

)2 [
1

12
+ 0.017CB

B

T
− 0.33

B

L

]

B.2.1 Non Dimensionalising Factors

Forces :
1

2
ρV 2

v L
2
PP

Moments :
1

2
ρV 2

v L
3
PP

B.3 Added Mass and Added Mass Moment of Inertia Terms

Added Mass Equations derived from the charts of Motora (1959 and 1960):

mx =
m

100

[
2.246 + 17.242

(
T

B

)
+ 5.873CB − 1.472

(
Lpp
B

)
− 7.406

(
T

B

)2

+ 4.687C2
B + 0.175

(
Lpp
B

)2

+22.979

(
T

B

)
CB − 1.701CB

(
Lpp
B

)
− 2.198

(
Lpp
B

)(
T

B

)]
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my =
m

100

[
13.97 + 359.23

(
T

B

)
+ 29.03CB − 5.52

(
Lpp
B

)
− 198.58

(
T

B

)2

− 1.39C2
B + 0.49

(
Lpp
B

)2

−152.89

(
T

B

)
CB − 5.69CB

(
Lpp
B

)
+ 11.40

(
Lpp
B

)(
T

B

)]

Jzz = m

{
Lpp
100

[
19.29 + 65.81

(
T

B

)
− 52.56CB + 1.53

(
Lpp
B

)
− 34.41

(
T

B

)2

+ 38.97C2
B − 0.07

(
Lpp
B

)2

−30.53

(
T

B

)
CB − 0.10CB

(
Lpp
B

)
+ 0.07

(
Lpp
B

)(
T

B

)]}2

Izz = m (0.25Lpp)
2

B.4 Calm Water Ship Calculations

The total resistance, Rtotal of a ship advancing in pure surge is estimated from the

method proposed by Holtrop and Mennen (1982) and Holtrop (1984) viz.

B.4.1 Calm Water Ship Resistance Calculations

Rtotal = RF (1 + k) +Rapp +RB +RW +Rtr +Ra

Where:

Rf is the frictional resistance according to the ITTC-1957 friction formula for a

flat plate.

(1 + k) is the form factor describing the viscous reisistance of the hull form.

Rapp is the resistance of any appendages.

RW is the resistance due to wave-makeing and wave-breaking.

RB is the additional reistance of a bulbous bow near the water surface.

Rtr is the additional pressure reistance of an immersed transom stern.

Ra is the model-ship correlation resistance.

Frictional Resistance, RF

The Frictional Resistance, RF can be estimated as follows:

RF =
1

2
ρu2S (1 + k1)CF
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Appendage Resistance, Rapp

Rapp =
1

2
ρu2Sapp (1 + k2)eq CF

Wave Making/Breaking Resistance, RW

RW =


C1C2C5∇ρg exp

[
m1F

−0.9
n +m4 cos

(
λF−2

n

)]
if (Fn ≤ 0.4)

RW |Fn=0.4 + (10Fn − 4)
RW |Fn=0.55 − RW |Fn=0.4

1.5
if (0.4 < Fn < 0.55)

C17C2C5∇ρg exp
[
m3F

−0.9
n +m4 cos

(
λF−2

n

)]
if (Fn ≥ 0.55)

Pressure Resistance due to Bulbous Bow, RB

RB = 0.11ρg
exp

(
−3P−2

B

)
F 3
niA

1.5
BT

1 + F 2
ni

Pressure Resistance due to Transom Immersion, Rtr

Rtr =
1

2
ρu2ATC6

Model – Ship Correlation Allowance RA

RA =
1

2
ρu2SCA

B.4.2 Calm Water Propeller Wake Fraction, wP Calculation

Single Screw Ship

wP =C9C20Cv
L

TA

(
0.050776 + 0.93405C11

Cv
1− CP1

)
+ 0.27915C20

√
B

L (1− CP1)
+ C19C20

Twin Screw Ship

wP = 0.3095CB + 10CvCB −
0.23D√
BT
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B.4.3 Calm Water Thrust Deduction Factor, t Calculation

Single Screw Ship

t =
0.25014

(
B
L

)0.28956
(√

BT
D

)0.2624

(1− CP + 0.0225LCB)0.01762 + 0.0015Cstern

Twin Screw Ship

t = 0.325CB − 0.1885
D√
BT

B.4.4 Parameters and Coefficients Used in Calm Water Calculations

CF can be calculated via the ITTC 1957 line from Hadler (1957)

CF =
0.075

(logRn − 2)2

(1 + k1) =0.93 + 0.487118C14

(
B

L

)1.06806(
T

L

)0.46106

×
(
L

LR

)0.121563(
L3

∇

)0.36486

(1− CP )−0.604247

The equivalent appendage form factor (1 + k2) may be determined from

(1 + k2)eq =
Σ (1 + k2)Sapp

ΣSapp

and (1 + k2) values can be found in table B.2

Where,

C6 =

0.2 (1− 0.2FnT ) if (FnT < 5)

0 if (FnT ≥ 5)

and FnT is the Froude Number based on transom immersion:

FnT =
u√
2gAT

(B+BCW )

Where

CA = 0.006 (L+ 100)−0.16 − 0.00205 + 0.003

√
L

7.5
C4
BC2 (0.04− C4)
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Afterbody Form Cstern

Pram with Gondola -25
V shaped sections -10
Normal shaped sections 0
U shaped sections 10

Table B.1: Stern Shape Factors

Appendage (1 + k2)
Rudder behind skeg 1.5 – 2.0
Rudder behind stern 1.3 – 1.5
Twin-screw balance rudders 2.8
Shaft brackets 3.0
Skeg 1.5 – 2.0
Strut bossings 3.0
hull bossings 2.0
Shafts 2.0 – 4.0
Stabiliser fins 2.8
Radar dome 2.7
Bilge keels 1.4

Table B.2: Approximate (1 + k2) values

Where

LR = L

(
1− CP + 0.06CP

LCB

4CP − 1

)
Where PB is a measure of the emergence of the bow:

PB = 0.56

√
ABT

(TF − 1.5hB)

and Fni is the Froude Number based on bow immersion:

Fni =
u√

g
(
TF − hB − 0.25

√
ABT

)
+ 0.15u2

The stern shape factor C14 is:

C14 = 1 + 0.011Cstern

Where the Cstern can be found in table B.1

Where,

C1 = 2223105C3.78613
7

(
T

B

)1.07961

(90− iE)−1.37565
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C2 = exp
(
−1.89

√
C3

)
C3 =

0.56A1.5
BT

BT
(
0.31
√
ABT + TF − hB

)
C5 = 1− 0.8AT

BTCM

C7 =



0.229577

(
B

L

)1/3

if (B/L ≤ 0.11)

B

L
if (0.11 < B/L < 0.25)

0.5− 0.0625
L

B
if (B/L ≥ 0.25)

C15 =


−1.69385 if

(
L3/∇ ≤ 512

)
−0.69385 +

(
L
∇1/3 − 8

)
2.36

if
(
512 < L3/∇ < 1726.91

)
0 if

(
L3/∇ ≥ 1726.91

)
C16 =

8.07981CP − 13.8673C2
P + 6.984388C3

P if (CP < 0.8)

1.73014− 0.7067CP if (CP > 0.8)

C17 = 6919.3C−M1.3346

(
∇
L3

)2.00977(
L

B

)1.40692

m1 = 0.0140407
L

T
− 1.75254

∇1/3

L
− 4.79323

B

L
− C16

m3 = −7.2035

(
B

L

)0.326869(
T

B

)0.605375

m4 = 0.4C15 exp
(
−0.034F−3.29

n

)
λ =


1.446CP − 0.03

L

B
if (L/B ≤ 12)

1.446CP − 0.36 if (L/B > 12)

iE = 1 + 89 exp

{[
−
(
L

B

)0.80856

(1− CW )0.30484 (1− CP − 0.0225LCB)0.6367

(
LR
B

)0.34574(
100
∇
L3

)0.16302
]}

Where iE is the half angle of entrance off the bow, hB is the vertical position of the

centre of ABT above the keel (hB ≤ 0.6TF ), and AT is the immersed part of the
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transverse area of the transom stern at rest.

C4 =


TF
L

if (TF/L ≤ 0.04)

0.04 if (TF/L > 0.04)

Hull Wetted Surface Area, S

The projected wetted surface area, S can be estimated as

S =L (2T +B)
√
CM

×
(

0.453 + 0.4425CB − 0.2862CM − 0.003467
B

T
+ 0.3696CW

)
+ 2.38

ABT
CB

Where

C8 =


BS

LDTA
if (B/TA ≤ 5)

S

(
7B
TA
− 25

)
LD

(
B
TA
− 3
) if (B/TA > 5)

C9 =


C8 if (C8 ≤ 28)

32− 16

C8 − 24
if (C8 > 28)

C11 =


TA
D

if (TA/D ≤ 2)

0.0833333

(
TA
D

)3

+ 1.33333 if (TA/D > 2)

C19 =


0.12997

0.95− CB
− 0.11056

0.95− CP
if (CP ≤ 0.7)

0.18567

1.3571− CM
− 0.72476 + 0.38648CP if (CP > 0.7)

C20 = 1 + 0.015Cstern

CP1 = 1.45CP − 0.315− 0.0225LCB

Cv = (1 +K1)CF + CA

Where Cv is the viscous resistance coefficient.
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B.5 Formulae used for the Wageningen B-Screw Series Calculations

Equations presented in this section are from the work carried out by Oosterveld

and van Oossanen (1975). The thrust coefficient, KT and torque coefficient KQ are

calculated from equations B.1

KT =
∑
s,t,u,v

[
CTs,t,u,v · JsP

(
P

D

)t(
AE
AO

)u
Zv

]
(B.1a)

KQ =
∑
s,t,u,v

[
CQs,t,u,v · JsP

(
P

D

)t(
AE
AO

)u
Zv

]
(B.1b)

The thrust and torque coefficients of equations B.1 are applicable for a Reynold’s

Number of 2× 106. Corrections for Reynold’s Numbers between 2× 106 and

2× 109 can be obtained from equations B.2.

For Rn 6= 2× 106

KT (Rn) = KT + ∆KT (B.2a)

KQ (Rn) = KQ + ∆KQ (B.2b)

Where

∆KT =0.000353485

− 0.00333758

(
AE
AO

)
J2

− 0.00478125

(
AE
AO

)
P

D
J

+ 0.000257792 (logRn − 0.301)2 AE
AO

J2

+ 0.0000643192 (logRn − 0.301)
P

D

6

J2

− 0.0000110636 (logRn − 0.301)2 P

D

6

J2

− 0.0000276305 (logRn − 0.301)2 Z
AE
AO

J2

+ 0.0000954 (logRn − 0.301)Z
AE
AO

P

D
J

+ 0.0000032049 (logRn − 0.301)Z2AE
AO

P

D

3

J
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∆KQ =− 0.000591412

+ 0.00696898
P

D

− 0.0000666654Z
P

D

6

+ 0.0160818
AE
AO

2

− 0.000938091 (logRn − 0.301)
P

D

− 0.00059593 (logRn − 0.301)
P

D

2

+ 0.0000782099 (logRn − 0.301)2 P

D

2

+ 0.0000052199 (logRn − 0.301)Z
AE
AO

J2

− 0.00000088528 (logRn − 0.301)2 Z
AE
AO

P

D
J

+ 0.0000230171 (logRn − 0.301)Z
P

D

6

− 0.00000184341 (logRn − 0.301)2 Z
P

D

6

− 0.00400252 (logRn − 0.301)
AE
AO

2

+ 0.000220915 (logRn − 0.301)2 AE
AO

2

B.5.1 Geometry of the Wageningen B-Screw Series Propellers

Formulae for the calculation of the geometry of the B-Screw series propeller are

presented in the work of Oosterveld and van Oossanen (1975) and summarised

here, with reference to fig. B.1.

Yface = V1 (tmax − tt.e.)

Yback = (V1 + V2) (tmax − tt.e.) + tt.e.

 ForP ≤ 0 (B.4)

Yface = V1 (tmax − tl.e.)

Yback = (V1 + V2) (tmax − tl.e.) + tl.e.

 ForP ≥ 0 (B.5)

Yface and Yback are the vertical ordinate of a point on a blade section on the face

and on the back with respect to the pitch line. tmax is the maximum thickness of

blade section. tt.e and tl.e is the extrapolated blade section thickness at the trailing
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n CTs,t,u,v S(J) t(P/D) u(Ae/Ao) v(Z)
1 0.008804960 0 0 0 0
2 -0.204554000 1 0 0 0
3 0.166351000 0 1 0 0
4 0.158114000 0 2 0 0
5 -0.147581000 2 0 1 0
6 -0.481497000 1 1 1 0
7 0.415437000 0 2 1 0
8 0.014404300 0 0 0 1
9 -0.053005400 2 0 0 1
10 0.014348100 0 1 0 1
11 0.060682600 1 1 0 1
12 -0.012589400 0 0 1 1
13 0.010968900 1 0 1 1
14 -0.133698000 0 3 0 0
15 0.006384070 0 6 0 0
16 -0.001327180 2 6 0 0
17 0.168496000 3 0 1 0
18 -0.050721400 0 0 2 0
19 0.085455900 2 0 2 0
20 -0.050447500 3 0 2 0
21 0.010465000 1 6 2 0
22 -0.006482720 2 6 2 0
23 -0.008417280 0 3 0 1
24 0.016842400 1 3 0 1
25 -0.001022960 3 3 0 1
26 -0.031779100 0 3 1 1
27 0.018604000 1 0 2 1
28 -0.004107980 0 2 2 1
29 -0.000606848 0 0 0 2
30 -0.004981900 1 0 0 2
31 0.002598300 2 0 0 2
32 -0.000560528 3 0 0 2
33 -0.001636520 1 2 0 2
34 -0.000328787 1 6 0 2
35 0.000116502 2 6 0 2
36 0.000690904 0 0 1 2
37 0.004217490 0 3 1 2
38 0.000056523 3 6 1 2
39 -0.001465640 0 3 2 2

Table B.3: Coefficients for KT polynomials
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n CQs,t,u,v S(J) t(P/D) u(Ae/Ao) v(Z)
1 0.003793680 0 0 0 0
2 0.008865230 2 0 0 0
3 -0.032241000 1 1 0 0
4 0.003447780 0 2 0 0
5 -0.040881100 0 1 1 0
6 -0.108009000 1 1 1 0
7 -0.088538100 2 1 1 0
8 0.188561000 0 2 1 0
9 -0.003708710 1 0 0 1
10 0.005136960 0 1 0 1
11 0.020944900 1 1 0 1
12 0.004743190 2 1 0 1
13 -0.007234080 2 0 1 1
14 0.004383880 1 1 1 1
15 -0.026940300 0 2 1 1
16 0.055808200 3 0 1 0
17 0.016188600 0 3 1 0
18 0.003180860 1 3 1 0
19 0.015896000 0 0 2 0
20 0.047172900 1 0 2 0
21 0.019628300 3 0 2 0
22 -0.050278200 0 1 2 0
23 -0.030055000 3 1 2 0
24 0.041712200 2 2 2 0
25 -0.039772200 0 3 2 0
26 -0.003500240 0 6 2 0
27 -0.010685400 3 0 0 1
28 0.001109030 3 3 0 1
29 -0.000313912 0 6 0 1
30 0.003598500 3 0 1 1
31 -0.001421210 0 6 1 1
32 -0.003836370 1 0 2 1
33 0.012680300 0 2 2 1
34 -0.003182780 2 3 2 1
35 0.003342680 0 6 2 1
36 -0.001834910 1 1 0 2
37 0.000112451 3 2 0 2
38 -0.000029723 3 6 0 2
39 0.000269551 1 0 1 2
40 0.000832650 2 0 1 2
41 0.001553340 0 2 1 2
42 0.000302683 0 6 1 2
43 -0.000184300 0 0 2 2
44 -0.000425399 0 3 2 2
45 0.000086924 3 3 2 2
46 -0.000465900 0 6 2 2
47 0.000055419 1 6 2 2

Table B.4: Coefficients for KQ polynomials
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Figure B.1: Geometry of B-Screw Propeller (Oosterveld and van Oossanen, 1975)

r/R c
D

Z
AE/AO

a
c

b
c

Ar Br

0.2 1.662 0.617 0.350 0.0526 0.0040
0.3 1.882 0.613 0.350 0.0464 0.0035
0.4 2.050 0.601 0.351 0.0402 0.0030
0.5 2.152 0.586 0.355 0.0340 0.0025
0.6 2.187 0.561 0.389 0.0278 0.0020
0.7 2.144 0.524 0.443 0.0216 0.0015
0.8 1.970 0.463 0.479 0.0154 0.0010
0.9 1.582 0.351 0.500 0.0092 0.0005
1.0 0.000 0.000 0.000 0.0030 0.0000

Table B.5: B-Screw Dimensions for Four, Five, Six and Seven-Bladed Propellers

and leading edges respectively. V1 and V2 are the tabulated functions dependent on

r/R and P . P is the non-dimensional coordinate along pitch line from position of

maximum thickness to leading edge (where P = 1), and from position of maximum

thickness to trailing edge (where P = -1).

Where

t

D
= Ar −BrZ (B.6)

a is the distance between leading edge and generator line at r, b is the distance

between leading edge and location of maximum thickness, c is the chord length of

the blade’s section at radius r and t is the maximum blade section thickness at

radius r.
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r/R c
D

Z
AE/AO

a
c

b
c

Ar Br

0.2 1.633 0.616 0.350 0.0526 0.0040
0.3 1.832 0.611 0.350 0.0464 0.0035
0.4 2.000 0.599 0.350 0.0402 0.0030
0.5 2.120 0.583 0.355 0.0340 0.0025
0.6 2.186 0.558 0.389 0.0278 0.0020
0.7 2.168 0.526 0.442 0.0216 0.0015
0.8 2.127 0.481 0.478 0.0154 0.0010
0.9 1.657 0.400 0.500 0.0092 0.0005
1.0 0.000 0.000 0.000 0.0030 0.0000

Table B.6: B-Screw Dimensions for Three-Bladed Propellers

B.6 Coefficients for use in Blendermann’s Wind Force Model

The coefficients for use in the wind force model of Blendermann (1996) are

presented in Table B.9 Where CDlAFbow
is the longitudinal drag coefficient if the

relative wind direction is coming from the bow. CDlAFstern
is the longitudinal drag

coefficient if the relative wind direction is coming from the stern. δ is the

cross-force parameter, and κ is a rolling moment factor.

B.7 The Beaufort Scale

The Beaufort scale can be used to define the sea’s conditions that correspond to

wind speed and wave height. It is used in this study in conjunction with the

Townsin et al. (1992) method of estimating added resistance due to waves. The

scale is given in table B.10
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Vessel Type CDt CDlAFbow
CDlAFstern

δ κ

Car Carrier 0.95 0.55 0.60 0.80 1.2
Cargo Vessel, Loaded 0.85 0.65 0.55 0.40 1.7
Cargo Vessel, Container on Deck 0.85 0.55 0.50 0.40 1.4
Container Ship, Loaded 0.90 0.55 0.55 0.40 1.4
Destroyer 0.85 0.60 0.65 0.65 1.1
Diving Support Vessel 0.90 0.60 0.80 0.55 1.7
Drilling Vessel 1.00 0.85 0.93 0.10 1.7
Ferry 0.90 0.45 0.50 0.80 1.1
Fishing Vessel 0.95 0.70 0.70 0.40 1.1
Liquefied Natural Gas Carrier 0.70 0.60 0.65 0.50 1.1
Offshore Supply Vessel 0.90 0.55 0.80 0.55 1.2
Passenger Liner 0.90 0.40 0.40 0.80 1.2
Research Vessel 0.85 0.55 0.65 0.60 1.4
Speed Boat 0.90 0.55 0.60 0.60 1.1
Tanker, Loaded 0.70 0.90 0.55 0.40 3.1
Tanker, in Ballast 0.70 0.75 0.55 0.40 2.2
Tender 0.85 0.55 0.55 0.65 1.1

Table B.9: Blendermann’s Coefficients
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Appendix C. Simulation Results

This Appendix presents the output of the SiS simulator for each of the case

studies described in Chapter 6 of this research.

C.1 Case 1. Esso Osaka, 20 Knot Wind (Fresh Breeze), oovoo

Propulsion Model, Automatic Control, Propeller Optimisation

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"Esso Osaka VLCC - Loaded Test Case"
====================================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using the Oosterveld and van Oossanen propulsion model.
Mean true wind speed = 20.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 10.00 knots
Lpp = 325.00 m
Lwl = 335.00 m
B = 53.00 m
T = 21.79 m
Volume of Displacement = 311901.50 m^3
Mass of Ship = 319699.06 tonnes
LCB relative to midships +Fwd (%) = 3.169
Midship Coefficient, Cm = 0.990
Waterplane Coefficient, Cwp = 0.850
Block Coefficient, Cb = 0.831
Prismatic Coefficient, Cp = 0.839

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 704.530 kN
Appendage Resistance = 8.309 kN
Wave Making Resistance = 0.266 kN
Added Pressure Resistance of Bulbous Bow = 0.000 kN
Added Pressure Resistance of Immersed Transom Stern = 7.152 kN
Model-Ship Correlation Line = 81.067 kN
Total Calm Water Resistance = 801.324 kN

Iteration: 1
==============

Optimised Propeller Selection
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-----------------------------
Number of Propellers = 1
Number of Blades = 5
Diameter = 9.10 m
Pitch = 7.84 m
Expanded Blade Area Ratio = 0.643
Optimum Open Water Efficiency = 0.533
Optimum Revolutions = 47.84 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 911.999 kN
Average ’quasi-steady state’ resultant ship speed = 9.939 knots
Average ’quasi-steady state’ propeller efficiency = 0.512
Average ’quasi-steady state’ propeller revolutions = 49.948 rpm
Average ’quasi-steady state’ advance ratio = 0.453
Average ’quasi-steady state’ Delivered Power = 7613.606 kW
Average ’quasi-steady state’ Engine Brake Power = 7682.621 kW
Average ’quasi-steady state’ drift angle at propeller = -0.368 degrees

Iteration: 2
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 9.10 m
Pitch = 7.69 m
Expanded Blade Area Ratio = 0.643
Optimum Open Water Efficiency = 0.513
Optimum Revolutions = 50.59 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 913.140 kN
Average ’quasi-steady state’ resultant ship speed = 9.945 knots
Average ’quasi-steady state’ propeller efficiency = 0.512
Average ’quasi-steady state’ propeller revolutions = 50.629 rpm
Average ’quasi-steady state’ advance ratio = 0.447
Average ’quasi-steady state’ Delivered Power = 7627.761 kW
Average ’quasi-steady state’ Engine Brake Power = 7696.889 kW
Average ’quasi-steady state’ drift angle at propeller = -0.365 degrees
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Figure C.2: Case 1: Speed vs. Time
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Figure C.4: Case 1: Rudder Force vs. Time
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Figure C.14: Case 1: Open Water Propeller Efficiency vs. Time
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C.2 Case 2. Esso Osaka, 20 Knot Wind (Fresh Breeze), Unsteady

MBEMT Propulsion Model, Automatic Control, Propeller

Optimisation

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"Esso Osaka VLCC - Loaded Test Case"
====================================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using an unsteady BEMT propulsion model.
Mean true wind speed = 20.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 10.00 knots
Lpp = 325.00 m
Lwl = 335.00 m
B = 53.00 m
T = 21.79 m
Volume of Displacement = 311901.50 m^3
Mass of Ship = 319699.06 tonnes
LCB relative to midships +Fwd (%) = 3.169
Midship Coefficient, Cm = 0.990
Waterplane Coefficient, Cwp = 0.850
Block Coefficient, Cb = 0.831
Prismatic Coefficient, Cp = 0.839

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 704.530 kN
Appendage Resistance = 8.309 kN
Wave Making Resistance = 0.266 kN
Added Pressure Resistance of Bulbous Bow = 0.000 kN
Added Pressure Resistance of Immersed Transom Stern = 7.152 kN
Model-Ship Correlation Line = 81.067 kN
Total Calm Water Resistance = 801.324 kN

Iteration: 1
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 9.10 m
Pitch = 6.95 m
Expanded Blade Area Ratio = 0.692
Optimum Open Water Efficiency = 0.542
Optimum Revolutions = 51.77 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 915.190 kN
Average ’quasi-steady state’ resultant ship speed = 9.938 knots
Average ’quasi-steady state’ propeller efficiency = 0.519
Average ’quasi-steady state’ propeller revolutions = 54.069 rpm
Average ’quasi-steady state’ advance ratio = 0.418
Average ’quasi-steady state’ Delivered Power = 7594.118 kW
Average ’quasi-steady state’ Engine Brake Power = 7684.934 kW
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Average ’quasi-steady state’ drift angle at propeller = -0.813 degrees

Iteration: 2
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 9.10 m
Pitch = 6.95 m
Expanded Blade Area Ratio = 0.692
Optimum Open Water Efficiency = 0.519
Optimum Revolutions = 53.96 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 914.647 kN
Average ’quasi-steady state’ resultant ship speed = 9.945 knots
Average ’quasi-steady state’ propeller efficiency = 0.520
Average ’quasi-steady state’ propeller revolutions = 54.047 rpm
Average ’quasi-steady state’ advance ratio = 0.419
Average ’quasi-steady state’ Delivered Power = 7555.176 kW
Average ’quasi-steady state’ Engine Brake Power = 7645.531 kW
Average ’quasi-steady state’ drift angle at propeller = -0.527 degrees
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Figure C.18: Case 2: Rudder Force vs. Time
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Figure C.20: Case 2: Seaway Force vs. Time
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Figure C.22: Case 2: Yaw Rate vs. Time
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Figure C.23: Case 2: Rudder Command and Heading vs. Time
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Figure C.24: Case 2: Drift Angle vs. Time

210



Appendix C. Simulation Results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  200  400  600  800  1000

E
n
g
in

e 
P

o
w

er
 (

k
W

)

Time (s)

Figure C.25: Case 2: Engine Power vs. Time

 35

 40

 45

 50

 55

 60

 65

 70

 0  200  400  600  800  1000

P
ro

p
el

le
r 

R
ev

o
lu

ti
o
n
s 

(r
p
m

)

Time (seconds)
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Figure C.28: Case 2: Open Water Propeller Efficiency vs. Time
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C.3 Case 3. Esso Osaka, 20 Knot Wind (Fresh Breeze), Unsteady

MBEMT Propulsion Model, Automatic Control, with Propeller

Selected from OOBOO Model

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"Esso Osaka VLCC - Loaded Test Case"
====================================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using an unsteady BEMT propulsion model.
Mean true wind speed = 20.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 10.00 knots
Lpp = 325.00 m
Lwl = 335.00 m
B = 53.00 m
T = 21.79 m
Volume of Displacement = 311901.50 m^3
Mass of Ship = 319699.06 tonnes
LCB relative to midships +Fwd (%) = 3.169
Midship Coefficient, Cm = 0.990
Waterplane Coefficient, Cwp = 0.850
Block Coefficient, Cb = 0.831
Prismatic Coefficient, Cp = 0.839

Propeller geometry has been provided
------------------------------------

Number of Propellers = 1
Number of Blades on each Propeller = 5
Propeller Diameter = 9.10 m
Propeller Pitch = 7.69 m
Expanded Blade Area Ratio = 0.64

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 704.530 kN
Appendage Resistance = 8.309 kN
Wave Making Resistance = 0.266 kN
Added Pressure Resistance of Bulbous Bow = 0.000 kN
Added Pressure Resistance of Immersed Transom Stern = 7.152 kN
Model-Ship Correlation Line = 81.067 kN
Total Calm Water Resistance = 801.324 kN

Calm Water Propulsion Characteristics
-------------------------------------

Required Engine Power for Service Speed = 5137.812 kW
Propeller Revolutions = 48.250 rpm
Open Water Propeller Efficiency = 0.534

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 915.716 kN
Average ’quasi-steady state’ resultant ship speed = 9.938 knots
Average ’quasi-steady state’ propeller efficiency = 0.511
Average ’quasi-steady state’ propeller revolutions = 50.509 rpm
Average ’quasi-steady state’ advance ratio = 0.448
Average ’quasi-steady state’ Delivered Power = 7712.330 kW
Average ’quasi-steady state’ Engine Brake Power = 7782.294 kW
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Average ’quasi-steady state’ drift angle at propeller = -0.768 degrees
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Figure C.30: Case 3: Speed vs. Time
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Figure C.31: Case 3: Hull Forces vs. Time
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Figure C.32: Case 3: Rudder Force vs. Time
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Figure C.33: Case 3: Propeller Force vs. Time
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Figure C.34: Case 3: Seaway Force vs. Time
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Figure C.35: Case 3: Wind Force vs. Time
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Figure C.36: Case 3: Yaw Rate vs. Time
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Figure C.37: Case 3: Rudder Command and Heading vs. Time
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Figure C.38: Case 3: Drift Angle vs. Time
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Figure C.40: Case 3: Propeller Revolutions vs. Time
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Figure C.42: Case 3: Open Water Propeller Efficiency vs. Time
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C.4 Case 4. KCS, 20 Knot Wind (Fresh Breeze), Unsteady MBEMT

Propulsion Model, Automatic Control, Propeller Optimisation

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"KCS - KRISO Container Ship"
============================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using the Oosterveld and van Oossanen propulsion model.
Mean true wind speed = 20.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 24.00 knots
Lpp = 232.00 m
Lwl = 237.58 m
B = 32.20 m
T = 11.34 m
Volume of Displacement = 50885.00 m^3
Mass of Ship = 52157.13 tonnes
LCB relative to midships +Fwd (%) = -2.030
Midship Coefficient, Cm = 0.985
Waterplane Coefficient, Cwp = 0.802
Block Coefficient, Cb = 0.601
Prismatic Coefficient, Cp = 0.610

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 1174.728 kN
Appendage Resistance = 17.524 kN
Wave Making Resistance = 419.418 kN
Added Pressure Resistance of Bulbous Bow = 0.089 kN
Added Pressure Resistance of Immersed Transom Stern = 0.000 kN
Model-Ship Correlation Line = 230.444 kN
Total Calm Water Resistance = 1842.203 kN

Iteration: 1
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 7.90 m
Pitch = 8.48 m
Expanded Blade Area Ratio = 0.790
Optimum Open Water Efficiency = 0.658
Optimum Revolutions = 99.10 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 2102.316 kN
Average ’quasi-steady state’ resultant ship speed = 23.939 knots
Average ’quasi-steady state’ propeller efficiency = 0.642
Average ’quasi-steady state’ propeller revolutions = 102.477 rpm
Average ’quasi-steady state’ advance ratio = 0.719
Average ’quasi-steady state’ Delivered Power = 38714.078 kW
Average ’quasi-steady state’ Engine Brake Power = 39734.996 kW
Average ’quasi-steady state’ drift angle at propeller = 1.283 degrees
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Iteration: 2
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 7.90 m
Pitch = 8.09 m
Expanded Blade Area Ratio = 0.863
Optimum Open Water Efficiency = 0.640
Optimum Revolutions = 106.36 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 2104.251 kN
Average ’quasi-steady state’ resultant ship speed = 23.946 knots
Average ’quasi-steady state’ propeller efficiency = 0.640
Average ’quasi-steady state’ propeller revolutions = 106.203 rpm
Average ’quasi-steady state’ advance ratio = 0.694
Average ’quasi-steady state’ Delivered Power = 38918.773 kW
Average ’quasi-steady state’ Engine Brake Power = 40120.266 kW
Average ’quasi-steady state’ drift angle at propeller = 1.283 degrees
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Figure C.43: Case 4: Ship Track
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Figure C.44: Case 4: Speed vs. Time
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Figure C.45: Case 4: Hull Forces vs. Time
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Figure C.46: Case 4: Rudder Force vs. Time
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Figure C.47: Case 4: Propeller Force vs. Time
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Figure C.48: Case 4: Seaway Force vs. Time
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Figure C.49: Case 4: Wind Force vs. Time
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Figure C.50: Case 4: Yaw Rate vs. Time
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Figure C.51: Case 4: Rudder Command and Heading vs. Time
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Figure C.53: Case 4: Engine Power vs. Time
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Figure C.56: Case 4: Open Water Propeller Efficiency vs. Time
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C.5 Case 5. KCS, 20 Knot Wind (Fresh Breeze), Unsteady MBEMT

Propulsion Model, Automatic Control, Propeller Optimisation

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"KCS - KRISO Container Ship"
============================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using an unsteady BEMT propulsion model.
Mean true wind speed = 20.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 24.00 knots
Lpp = 232.00 m
Lwl = 237.58 m
B = 32.20 m
T = 11.34 m
Volume of Displacement = 50885.00 m^3
Mass of Ship = 52157.13 tonnes
LCB relative to midships +Fwd (%) = -2.030
Midship Coefficient, Cm = 0.985
Waterplane Coefficient, Cwp = 0.802
Block Coefficient, Cb = 0.601
Prismatic Coefficient, Cp = 0.610

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 1174.728 kN
Appendage Resistance = 17.524 kN
Wave Making Resistance = 419.418 kN
Added Pressure Resistance of Bulbous Bow = 0.089 kN
Added Pressure Resistance of Immersed Transom Stern = 0.000 kN
Model-Ship Correlation Line = 230.444 kN
Total Calm Water Resistance = 1842.203 kN

Iteration: 1
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 7.90 m
Pitch = 6.29 m
Expanded Blade Area Ratio = 0.667
Optimum Open Water Efficiency = 0.721
Optimum Revolutions = 114.60 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 2088.626 kN
Average ’quasi-steady state’ resultant ship speed = 23.934 knots
Average ’quasi-steady state’ propeller efficiency = 0.640
Average ’quasi-steady state’ propeller revolutions = 120.812 rpm
Average ’quasi-steady state’ advance ratio = 0.610
Average ’quasi-steady state’ Delivered Power = 38634.930 kW
Average ’quasi-steady state’ Engine Brake Power = 39367.301 kW
Average ’quasi-steady state’ drift angle at propeller = 1.285 degrees
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Iteration: 2
==============

Optimised Propeller Selection
-----------------------------

Number of Propellers = 1
Number of Blades = 5
Diameter = 7.90 m
Pitch = 9.25 m
Expanded Blade Area Ratio = 0.471
Optimum Open Water Efficiency = 0.656
Optimum Revolutions = 90.57 rpm

In-Service Propulsion Characteristics
-------------------------------------

Average ’quasi-steady state’ resultant resistance = 2091.773 kN
Average ’quasi-steady state’ resultant ship speed = 23.945 knots
Average ’quasi-steady state’ propeller efficiency = 0.656
Average ’quasi-steady state’ propeller revolutions = 90.662 rpm
Average ’quasi-steady state’ advance ratio = 0.813
Average ’quasi-steady state’ Delivered Power = 37763.824 kW
Average ’quasi-steady state’ Engine Brake Power = 38040.023 kW
Average ’quasi-steady state’ drift angle at propeller = 1.245 degrees
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Figure C.58: Case 5: Speed vs. Time
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Figure C.59: Case 5: Hull Forces vs. Time
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Figure C.60: Case 5: Rudder Force vs. Time
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Figure C.61: Case 5: Propeller Force vs. Time
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Figure C.62: Case 5: Seaway Force vs. Time
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Figure C.63: Case 5: Wind Force vs. Time
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Figure C.64: Case 5: Yaw Rate vs. Time
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Figure C.65: Case 5: Rudder Command and Heading vs. Time
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Figure C.66: Case 5: Drift Angle vs. Time
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Figure C.68: Case 5: Propeller Revolutions vs. Time
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Figure C.70: Case 5: Open Water Propeller Efficiency vs. Time
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C.6 Case 6. KCS, 20 Knot Wind (Fresh Breeze), Unsteady MBEMT

Propulsion Model, Automatic Control, with Propeller Selected

from OOBOO Model

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"KCS - KRISO Container Ship"
============================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using an unsteady BEMT propulsion model.
Mean true wind speed = 20.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 24.00 knots
Lpp = 232.00 m
Lwl = 237.58 m
B = 32.20 m
T = 11.34 m
Volume of Displacement = 50885.00 m^3
Mass of Ship = 52157.12 tonnes
LCB relative to midships +Fwd (%) = -2.030
Midship Coefficient, Cm = 0.985
Waterplane Coefficient, Cwp = 0.802
Block Coefficient, Cb = 0.601
Prismatic Coefficient, Cp = 0.610

Propeller geometry has been provided
------------------------------------

Number of Propellers = 1
Number of Blades on each Propeller = 5
Propeller Diameter = 7.90 m
Propeller Pitch = 8.09 m
Expanded Blade Area Ratio = 0.86

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 1174.728 kN
Appendage Resistance = 17.524 kN
Wave Making Resistance = 419.417 kN
Added Pressure Resistance of Bulbous Bow = 0.089 kN
Added Pressure Resistance of Immersed Transom Stern = 0.000 kN
Model-Ship Correlation Line = 230.444 kN
Total Calm Water Resistance = 1842.203 kN

Calm Water Propulsion Characteristics
-------------------------------------

Required Engine Power for Service Speed = 27743.639 kW
Propeller Revolutions = 96.351 rpm
Open Water Propeller Efficiency = 0.674

In-Service Propulsion Characteristics
-------------------------------------

Average ship resistance = 2088.377 kN
Average resultant ship speed = 23.935 knots
Average propeller efficiency = 0.641
Average propeller revolutions = 95.923 rpm
Average Delivered Power = 38516.203 kW
Average Engine Brake Power = 39302.242 kW
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Average ’steady state’ resultant resistance = 2083.865 kN
Average ’steady state’ resultant ship speed = 23.935 knots
Average ’steady state’ propeller efficiency = 0.641
Average ’steady state’ propeller revolutions = 95.839 rpm
Average ’steady state’ advance ratio = 0.769
Average ’steady state’ Delivered Power = 38441.281 kW
Average ’steady state’ Engine Brake Power = 39225.793 kW
Average ’steady state’ drift angle at propeller = 1.259 degrees
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Figure C.72: Case 6: Speed vs. Time
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Figure C.73: Case 6: Hull Forces vs. Time
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Figure C.74: Case 6: Rudder Force vs. Time
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Figure C.75: Case 6: Propeller Force vs. Time
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Figure C.76: Case 6: Seaway Force vs. Time
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Figure C.77: Case 6: Wind Force vs. Time
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Figure C.79: Case 6: Rudder Command and Heading vs. Time
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Figure C.80: Case 6: Drift Angle vs. Time
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Figure C.82: Case 6: Propeller Revolutions vs. Time
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C.7 The Esso Osaka with the Newly Proposed Propeller, Run in

Calm Water, with the Unsteady MBEMT Propulsion Model.

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"Esso Osaka VLCC - Loaded Test Case"
====================================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using an unsteady BEMT propulsion model.
Mean true wind speed = 0.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 10.00 knots
Lpp = 325.00 m
Lwl = 335.00 m
B = 53.00 m
T = 21.79 m
Volume of Displacement = 311901.50 m^3
Mass of Ship = 319699.06 tonnes
LCB relative to midships +Fwd (%) = 3.169
Midship Coefficient, Cm = 0.990
Waterplane Coefficient, Cwp = 0.850
Block Coefficient, Cb = 0.831
Prismatic Coefficient, Cp = 0.839

Propeller geometry has been provided
------------------------------------

Number of Propellers = 1
Number of Blades on each Propeller = 5
Propeller Diameter = 9.10 m
Propeller Pitch = 7.69 m
Expanded Blade Area Ratio = 0.64

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 704.530 kN
Appendage Resistance = 8.309 kN
Wave Making Resistance = 0.266 kN
Added Pressure Resistance of Bulbous Bow = 0.000 kN
Added Pressure Resistance of Immersed Transom Stern = 7.152 kN
Model-Ship Correlation Line = 81.067 kN
Total Calm Water Resistance = 801.324 kN

Calm Water Propulsion Characteristics
-------------------------------------

Required Engine Power for Service Speed = 5137.812 kW
Propeller Revolutions = 48.250 rpm
Open Water Propeller Efficiency = 0.534

In-Service Propulsion Characteristics
-------------------------------------

Average ship resistance = 806.654 kN
Average resultant ship speed = 9.945 knots
Average propeller efficiency = 0.532
Average propeller revolutions = 48.204 rpm
Average Delivered Power = 6459.308 kW
Average Engine Brake Power = 6517.766 kW

Average ’steady state’ resultant resistance = 806.637 kN

249



Appendix C. Simulation Results

Average ’steady state’ resultant ship speed = 9.945 knots
Average ’steady state’ propeller efficiency = 0.531
Average ’steady state’ propeller revolutions = 48.281 rpm
Average ’steady state’ advance ratio = 0.469
Average ’steady state’ Delivered Power = 6485.335 kW
Average ’steady state’ Engine Brake Power = 6544.182 kW
Average ’steady state’ drift angle at propeller = -0.011 degrees
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Figure C.85: Esso Osaka in Calm Water: Ship Track
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Figure C.86: Esso Osaka in Calm Water: Speed vs. Time
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Figure C.87: Esso Osaka in Calm Water: Hull Forces vs. Time
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Figure C.88: Esso Osaka in Calm Water: Rudder Force vs. Time
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Figure C.89: Esso Osaka in Calm Water: Propeller Force vs. Time
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Figure C.90: Esso Osaka in Calm Water: Seaway Force vs. Time
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Figure C.91: Esso Osaka in Calm Water: Wind Force vs. Time
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Figure C.92: Esso Osaka in Calm Water: Yaw Rate vs. Time
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Figure C.93: Esso Osaka in Calm Water: Rudder Command and Heading vs. Time
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Figure C.94: Esso Osaka in Calm Water: Drift Angle vs. Time

255



Appendix C. Simulation Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  500  1000  1500  2000  2500  3000

E
n
g
in

e 
P

o
w

er
 (

k
W

)

Time (s)

Figure C.95: Esso Osaka in Calm Water: Engine Power vs. Time
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Figure C.96: Esso Osaka in Calm Water: Propeller Revolutions vs. Time
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Figure C.97: Esso Osaka in Calm Water: Engine Torque vs. Time
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C.8 The KCS with the Newly Proposed Propeller, Run in Calm

Water, with the Unsteady MBEMT Propulsion Model.

|==============================================|
| Ship-in-Service Performance Estimator |
|==============================================|
| (c) 2013 David Trodden |
| School of Marine Science and Technology |
| Newcastle University, UK |
|==============================================|

"KCS - KRISO Container Ship"
============================

Simuation Parameters
--------------------

Simulation is speed and track automatic pilot.
Using an unsteady BEMT propulsion model.
Mean true wind speed = 0.00 knots
Mean true wind direction = 90.00 degrees

Ship Main Particulars
---------------------

Service Speed = 24.00 knots
Lpp = 232.00 m
Lwl = 237.58 m
B = 32.20 m
T = 11.34 m
Volume of Displacement = 50885.00 m^3
Mass of Ship = 52157.12 tonnes
LCB relative to midships +Fwd (%) = -2.030
Midship Coefficient, Cm = 0.985
Waterplane Coefficient, Cwp = 0.802
Block Coefficient, Cb = 0.601
Prismatic Coefficient, Cp = 0.610

Propeller geometry has been provided
------------------------------------

Number of Propellers = 1
Number of Blades on each Propeller = 5
Propeller Diameter = 7.90 m
Propeller Pitch = 8.09 m
Expanded Blade Area Ratio = 0.86

Resistance Calculations from Holtrop & Mennen (Calm Water)
----------------------------------------------------------

Friction Resistance = 1174.728 kN
Appendage Resistance = 17.524 kN
Wave Making Resistance = 419.418 kN
Added Pressure Resistance of Bulbous Bow = 0.089 kN
Added Pressure Resistance of Immersed Transom Stern = 0.000 kN
Model-Ship Correlation Line = 230.444 kN
Total Calm Water Resistance = 1842.203 kN

Calm Water Propulsion Characteristics
-------------------------------------

Required Engine Power for Service Speed = 27743.648 kW
Propeller Revolutions = 96.351 rpm
Open Water Propeller Efficiency = 0.674

In-Service Propulsion Characteristics
-------------------------------------

Average ship resistance = 1878.208 kN
Average resultant ship speed = 23.944 knots
Average propeller efficiency = 0.672
Average propeller revolutions = 96.664 rpm
Average Delivered Power = 33069.004 kW
Average Engine Brake Power = 34089.961 kW

Average ’steady state’ resultant resistance = 1878.210 kN
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Average ’steady state’ resultant ship speed = 23.945 knots
Average ’steady state’ propeller efficiency = 0.672
Average ’steady state’ propeller revolutions = 96.677 rpm
Average ’steady state’ advance ratio = 0.762
Average ’steady state’ Delivered Power = 33077.516 kW
Average ’steady state’ Engine Brake Power = 34098.398 kW
Average ’steady state’ drift angle at propeller = 0.021 degrees
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Figure C.101: KCS in Calm Water: Hull Forces vs. Time
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Figure C.102: KCS in Calm Water: Rudder Force vs. Time
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Figure C.103: KCS in Calm Water: Propeller Force vs. Time
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Figure C.104: KCS in Calm Water: Seaway Force vs. Time
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Figure C.105: KCS in Calm Water: Wind Force vs. Time
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Figure C.107: KCS in Calm Water: Rudder Command and Heading vs. Time
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