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ABSTRACT 

 

The development of the mammary gland is strictly directed by hormones, local 

signaling, epithelial-mesenchymal cross talk, as well as participation of innate 

immune cells. On the other hand, the dysregulation of this orchestration may 

initiate breast cancer and facilitate its progression.  

 

In our study Pax9 was found, for the first time, significantly reversely correlated 

with breast cancer malignancy, being reduced or absent in human DCISs (96%) 

and invasive breast cancers (78%), as well as in MMTV-Neu and MMTV-PyMT 

induced mouse mammary tumours, while it is expressed in normal human and 

mouse mammary epithelium.  

 

By a full-range expression investigation, using semi-quantitative RT PCR and 

immunohistochemistry, covering all developmental stages of mouse mammary 

gland, Pax9 was found to be expressed in the ductal epithelium with a strict 

spatial-temporal pattern, with an expression peak at puberty. Reduction or 

deletion of Pax9 expression, using Pax9 hypomorphs and mammary 

gland-specific knockout mouse models, resulted in ductal branching delay during 

puberty, alveolar formation at the wrong position during pregnancy, disrupted 

epithelial cell apoptosis and engulfment of excess milk fat globulin during 

postlactational involution. Mammary ductal epithelial cell detachment, basement 

membrane disruption and tumour-like structure expansion have been found in 

the mammary glands of parous mice. Taken together, we found that Pax9 

functions in the process of mammary epithelial cell differentiation, basement 

membrane integrity, apoptosis and epithelial cell engulfment.  
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By immunohistochemistry and western blot analysis of the mammary gland 

during involution, we identified the Stat signaling pathway as a candidate 

downstream pathway affected by Pax9 deficiency in the mammary gland, which 

may be responsible for apoptosis delay. 

   

Expression microarray profiling of Pax9 deficient and control mammary glands 

showed the increase of insulin growth factor binding protein 5 (Igfbp5, an 

essential regulator of mammary gland involution), monocyte to macrophage 

differentiation-associated (Mmd, immune and inflammation associated genes), 

and MMP3 and MMP12 (metalloproteinase) genes, and the decrease of inhibitor 

of DNA binding 2 (Id-2, functioning in mammary cells with low proliferation and 

invasiveness). Furthermore, myosin-related genes were strikingly up-regulated, 

which may be a cellular stress response to the milk stasis from impaired 

involution in the Pax9 deficient mammary gland. 

 

All these phenotypes we discovered in the mutants and molecular changes 

suggested by immunohistochemistry and gene expression profiling during 

involution, provided us with candidate networks regulated by Pax9 in mammary 

gland development. Further elucidation of these clues may help us to 

understand the multiple pathways in which Pax9 takes part in normal mammary 

differentiation, and the underlying mechanisms how its dysregulation may 

promote breast cancer formation and progression. 
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Abbreviation 

ADAM a disintegrin and metalloproteinase 

AKT/PKB Akt/protein kinase B  

AP-1 activator protein 1 

AR androgen receptor 

AREG amphiregulin 

BAX bcl-2-like protein 4 

BCL-2 B-cell lymphoma 2 

BIM bcl2-like 11  

BMP bone morphogenic protein 

BSAP B cell-specific activator protein 

C/EBPß CCAAT-enhancer-binding protein-ß  

ChIP chromatin immunoprecipitation 

CSF-1 macrophages in colony stimulating factor-1 

DCIS ductal carcinoma in situ 

ECM extracellular matrix 

EGF epidermal growth factor 

EGFR epidermal growth factor receptor 

ELF5  E74-like factor 5 

EMT epithelial to mesenchymal transition 

ER oestrogen receptor 

ERα oestrogen receptor α 

ERβ oestrogen receptor β  

FGF fibroblast growth factor 

FGFR fibroblast growth factor receptor 

FGFRII Fgf receptor II  

FISH fluorescent in situ hybridization 

GATA3 GATA binding protein 3  
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GH growth hormone 

GR growth hormone receptor 

HANs hyperplastic alveolar nodules 

ID1 inhibitor of DNA binding 1 

IGF1 insulin-like growth factor-1 

IGF-1R insulin-like growth factor-1 receptor 

IGF2 Insulin-like growth factor-2 

IGFBP-5 insulin-like growth factor binding protein 5 

JAK Janus kinase 

K14 cytokeratin 14 

LEF-1 lymphoid enhancer binding factor 1  

LIF leukaemia inhibitory factor 

MAPK mitogen-activated protein kinase 

MaSC mammary gland stem cell 

MASH1 mammalian achaete-scute complex homolog-1 

MDF MyoD family 

MEC mammary epithelial cell 

MET mesenchymal to epithelial transition 

MFG-E8 milk fat globule epidermal growth factor (EGF) factor 8 

MFGs milk fat globulins  

MMP matrix metalloproteinases 

MMTV mouse mammary tumour virus 

CRE cre recombinase protein 

MSX1  msh homeobox 1 

MSX2 msh homeobox 2 

NEO1 neogenin  

NRG neuregulin 

NTN1 netrin-1 
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PAX paired box protein 

Pg progesterone 

PI3-K phosphatidylinositol 3′-kinase 

PR progesterone receptor 

Prd Paired domain 

PrlR prolactin receptor 

PTHrP parathyroid hormone-related protein 

PyMT polyoma virus middle T antigen 

RANKL receptor activator of NF-ĸB-ligand 

SHH sonic hedgehog 

SOCS1 suppressor of cytokine signaling 1 

SPRY2 sprouty homolog 2 

STAT signal transducer and activator of transcription 

STAT3 signal transducer and activator of transcription 3 

STAT5 signal transducer and activator of transcription 5 

TAM Tumour-associated macrophage 

TBX3  T-box 3 

TDLU terminal ductal lobular units 

TEB terminal end bud 

TGF transforming growth factor 

TGFβ transforming growth factor beta 

TIMP tissue-inhibitor of metalloproteinase 

TIMP1 tissue-inhibitor of metalloproteinase 1 

TIMP3  tissue-inhibitor of metalloproteinase 3 

TNF tumour necrosis factor 

TRAIL TNF-related apoptosis-inducing ligand 

TWEAK TNF-related weak inducer of apoptosis 

WAP whey acidic protein 
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WNT4 wingless-related MMTV integration site 4 

WNT1 wingless-related MMTV integration site 1 
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Chapter 1. Introduction 

 

In evolutionary terms, the mammary gland is a rather young organ, which 

evolved 200 million years ago when mammals appeared on the earth. The 

mammary gland might be derived from apocrine-like skin glands of synapsids for 

the needs as a source of nutrients for the hatchlings (Capuco and Akers 2009). 

The development of mammary gland is strictly directed by hormones, local 

signaling and the epithelial-mesenchymal cross talk, while the deregulation of 

this orchestration is one characteristic of breast cancer.  

 

1.1 Key stages in Mouse Mammary Gland Development 

Mammary gland development is characterized by two distinct phases: the first 

phase is the linear development, starting from embryonic anlage formation, 

going through a postnatal quiescence, and then developing rapidly after the 

onset of puberty to fully fill in the fat pat at the end of puberty. The second phase 

is the cyclic development, starting with pregnancy, going through lactation and 

involution, comprising alveoli formation, milk secretion, postlactational cell 

apoptosis and tissue remodeling (Richert, Schwertfeger et al. 2000). See Figure 

1.1 
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Figure1.1 Development of the mouse mammary gland 

A brief mammary gland development atlas made by ourselves shows a linear development (A-D), 

mainly referred to ductal branching, from embryonic period to puberty, and a cyclic development 

(E-H), comprising alveologenesis during pregnancy, lactogenesis during lactation and involution 

after weaning. The development is regulated by hormones, such as ooestrogen, progesterone 

and prolactin, independently or synergistically. The mammary glands were taken from wild type 

C57BL6 female mice at indicated ages, whole-mount stained with Carmine-alum. Abbreviations: 

G7: genstation day 7; L4: lactation day1; I4: involution day 4. 

 

1.1.1 Morphological change during embryonic development 

Mammary gland development starts during embryonic period. Firstly, a ridge of 

the gland is elevated as milk line, then fragments into individual buds in specific 

regions lateral of the dorsal midline. In mice, at embryonic day 11, lens-like 
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placodes form and protrude slightly from the body wall. Within 1 day, 

bulb-shaped buds form from these placodes and invaginate the underlying 

mesenchyme. On embryonic day 15, epithelial cells at the tip of the bud undergo 

rapid proliferation, which leads the outgrowth of primary sprouts. The sprout 

elongates and bifurcates, finally creates a small ductal tree at birth, which is 

connected to the skin and the outside through the nipple to provide milk for pups 

during lactation. In males, around gestational day 14, the mammary rudiment 

regresses in response to androgen (Hens and Wysolmerski 2005). 

 

1.1.2 Morphological change during puberty 

Postnatal development forms the majority of the development of the mammary 

gland. Rapid and complex ductal development takes place during puberty. 

Mouse mammary epithelial structure remains quiescent until approximately 3 

weeks of age when the ovaries begin secreting hormones. At this time, the 

terminal end buds (TEBs) form and ducts start to grow. TEB is composed of two 

main cell populations: the cap cells and the body cells, which are distinguishable 

by their morphology and expression of specific markers. The cap cells, located in 

the outer layer of the TEB, directly in contact with the stroma, are believed to be 

progenitors of the myoepithelial cells located in the out layer of the ducts. The 

body cells, organized in multiple layers within TEBs, are thought to be 

precursors of the luminal epithelial cells. Within the TEB, constantly high 

proliferation is conducted to fulfill the requirement of the mammary duct rapid 

growth, while apoptosis is also detected in some body cells, by which 

mechanism to form the lumen (Hinck and Silberstein 2005, Sternlicht, 

Kouros-Mehr et al. 2006). The ducts penetrate further into the fat pad to elongate, 

and new primary ducts develop by bifurcation. This development continues until 

10–12 weeks of age, when the TEBs reach the edge of the fat pad and regress. 

By branching and bifurcation, the mammary gland forms an extensive ductal 
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network at the end of puberty. 

 

1.1.3 Morphological change during pregnancy 

With the repeated estrous cycle, alveolar buds form at tertiary branches. When 

entering the pregnant cycle, alveoli extensively develop and differentiate 

completely to be ready to secrete milk. At parturition, the alveoli begin copious 

milk secretion, which continues for about 3 weeks until pups stop suckling. 

 

During the alveolar morphogenesis, the epithelial cell population increases 

rapidly by active proliferation to form abundant alveoli. From mid-pregnancy, 

epithelial cells undergo differentiation to prepare for milk secretion. Each 

individual alveolus is surrounded discontinuously by contractile myoepithelial 

cells. The discontinuous myoepithelium outside the alveolar epithelium allows 

the direct contact of luminal cells with the underlying basement membrane. 

Contact is required for complete lobuloalveolar differentiation guided by signals 

through extra cellular matrix (Fata, Werb et al. 2004). Around parturition, alveolar 

tight junctions close so that the colostrum moves into the alveolar lumen. After 

activation by parturition, the mammary gland goes into lactation stage and keeps 

synthesizing and secreting milk until weaning (Anderson, Rudolph et al. 2007). 

Along with the epithelial expansion, the adipocyte area reduces and the 

mammary gland is populated with alveoli and milk (Skopichev, Balakina et al. 

1983). 

 

1.1.4 Morphological change during involution 

At weaning, the mammary gland begins a process of tissue remodeling, which 

involves apoptosis of mammary epithelial cells, clearance of dying cells and 

extra milk fat globulins (MFGs), and fat cell repopulation. This process consists 
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of two phases, i.e. a reversible phase, within the first 2 days of weaning, lactation 

is able to be reinitiated; and an irreversible phase, after 2 days of weaning, 

lactation is not able to be reinitiated and the gland regresses thoroughly. The 

process of involution takes approximately 2 weeks to complete. After that, the 

gland turns back to a pre-pregnancy state and is ready to serve another cycle of 

pregnancy, lactation, and involution. 

 

During the first phase of mammary gland involution, apoptosis responds to the 

milk stasis immediately after weaning, apoptotic cells can be seen in the lumen 

of the alveoli, but remodeling is inhibited. In the second phase, apoptosis is 

accompanied by alveolar structure breakdown, stroma remodeling and 

adipocyte re-differentiation (Watson 2006). In the remodeling process, due to the 

large number of cells and debris that have to be removed, phagocytosis plays an 

important role, both by professional and non-professional phagocytes (Monks, 

Rosner et al. 2005). 

 

1.2 Regulations in mammary gland development 

1. 2.1 Regulations during embryonic stage 

The development of the mammary gland during embryonic stage is 

hormone-independent, which occurs in mice lacking oestrogen receptor-α 

(ER-α), oestrogen receptor-β (ER-β), progesterone receptor (PR) and and 

prolactin receptor (PrlR). The embryonic mammary gland development is mainly 

guided by epithelial-mesenchymal interactions. Since derived from the ectoderm, 

it shares several common pathways with other skin-derived appendage, such as 

the tooth and hair follicle. Signaling factors, such as Wnt (Chu, Hens et al. 2004), 

fibroblast growth factor (FGF) (Mailleux, Spencer-Dene et al. 2002), parathyroid 

hormone-related protein (PTHrP) (Foley, Dann et al. 2001), and transcription 
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factors, such as LEF-1 (van Genderen, Okamura et al. 1994), TBX3 (Davenport, 

Jerome-Majewska et al. 2003), MSX2 (Satokata, Ma et al. 2000), were found to 

take part in this process (Salomon and Lewis 2004).  

 

Interestingly, Hedgehog signaling is not essential for mammary gland 

development and loss of Hedgehog signal in hair follicle induces hair follicle to 

mammary gland epithelial transition (Lewis and Veltmaat 2004). Also, PTHrP 

signaling is important to introduce the overlaying epidermis to form the nipple, in 

PTHrP or its receptor PTH1R knockout embryo, the nipple is not formed, and 

with its overexpression, the entire ventral surface of the embryo is transformed 

into nipple skin (Foley, Dann et al. 2001). In addition to development, because 

the embryonic mammary gland development is independent of hormones, the 

mechanisms at play here might illuminate the mechanism of hormone 

independent growth of breast cancers. 

 

1.2.2 Regulations during pubertal stage 

After birth, the mammary gland keeps quiescent until puberty when activated by 

oestrogen. Pubertal development is driven by a complex network of hormones 

that affects the expression of a variety of growth factors, signaling pathways, 

epithelial–mesenchymal interactions, extracellular matrix (ECM) remodellings, 

as well as innate immune system participation (Sternlicht, Kouros-Mehr et al. 

2006).  

 

Homonal and local regulation  

Mammary branching requires growth hormone (GH), Insulin-like growth factor 

(IGF-1) and oestrogen, and their respective receptors. GH is the pivotal pituitary 

hormone. In the stroma, GH binds to GH receptor and induces ER and IGF-1, 

the latter binds to its receptor IGF-1R to stimulate proliferation and cell survival in 
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the epithelium. In the epithelium, ER induces amphiregulin (Areg), an agonist of 

epidermal growth receptor (EGFR). Areg is cleaved by transmembrane 

metalloproteinase Adam17, and then binds to EGFR in the stroma. Activated 

EGFR induces multiple groups of downstream genes to promote duct growth 

and branching, for instance, Fgf, which promotes proliferation in the epithelium 

through Fgf receptor II (FgfrII), and metalloproteinase MMP14 and MMP2, which 

degrade collagen in front of the TEB to facilitate the duct invading into the stroma. 

Negative mechanisms are also important for mammary gland morphorgenesis. 

Tgf-β limits epithelial proliferation, and may interplay with Fgf to form the 

branching pattern. Timp1, the inhibitor of metalloproteinase, limits the rate of cell 

division. In addition, Sprouty2 (Spry2) is also proposed to be an antagonist of Fgf 

to inhibit growth (Sternlicht, Kouros-Mehr et al. 2006).  

 

Within the TEB: integrity, proliferation and apoptosis  

The end bud integrity is required for ductal outgrowth and the maintenance of 

tissue architecture. E-cadherin, expressed by luminal cells that constitute the 

body of the end bud, and P-cadherin, expressed by cap cells that form the outer 

layer, mediate interactions between luminal cells and cap cells, and the 

cadherin-mediated cell-cell contact is responsible for cell proliferation. 

Netrin-1(Ntn1), expressed by luminal cells and then immobilized in association 

with ECM, maintains the integrity of the end bud by mediating contacts between 

cap and luminal epithelial cells through the NTN1 receptor, Neogenin (Neo1) , 

which is expressed in a complementary pattern by overlying cap cells. The 

disruption to the contact leads to dissociation of cap cells and apoptosis. These 

contacts are required for robust forward growth of the mammary tree (Srinivasan, 

Strickland et al. 2003). ErbB2 is another example for the regulation of the 

integrity of TEBs and normal ductal growth. ErbB2-/- mammary buds 

transplanted to a wild-type mammary fat pad result in less body cells, migration 
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of cap-like cells into the prelumenal compartment, and large luminal spaces, 

thus delay duct growth (Jackson-Fisher, Bellinger et al. 2004). 

 

Fgf and PTHrP signalings are also known for their roles in duct branching 

through regulating TEB development. Fgfr2 functions in the proliferation and 

invading of TEBs, but is not required in the mature ducts of the pubertal 

mammary gland. By Fgfr2 inactivation in mosaic mammary epithelial cells 

tansplanted into cleared fat pad, Fgfr2 null cells were found out-competed by 

neighboring Fgfr2 heterozygous cells in the TEBs (Lu, Ewald et al. 2008). The 

impairment of ductal elongation caused by PTHrP is also associated with the 

TEB abnormality, where epithelial cell apoptosis increases with PTHrP 

overexpression and proliferation fails to respond to oestrogen and progesterone 

(Dunbar, Dann et al. 2001).  

 

Lumen formation   

Development of the luminal space is generated by three processes: apoptosis of 

centrally located cells, autophagy of centrally located cells, and epithelial 

remodelling (Reginato and Muthuswamy 2006). Bim regulates apoptosis in 

TEBs to form the lumen during mammary duct morphogenesis, the reduction of 

which results in lumen filling (Debnath, Mills et al. 2002, Mailleux, Overholtzer et 

al. 2007). Conversely, overexpression of either the receptor tyrosine kinase 

ErbB2 induces ductal abnormalities by promoting development of multilayered 

epithelium that fills the luminal space (Debnath, Mills et al. 2002). Luminal filling 

may be the initial step of tumour formation in the mammary gland. 

 

Maintenance of the lumen 

The maintenance of luminal cell differentiation is important. GATA3 plays an 

important role for luminal epithelial cell fate specification and maintenance. Loss 
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of GATA3, as a short-term effect, induces epithelial cell detachment from the 

basal membrane, as a long-term effect, induces epithelial cell apoptosis and 

degenerates ducts (Kouros-Mehr, Slorach et al. 2006, Asselin-Labat, Sutherland 

et al. 2007). Meanwhile, GATA3 frequently decreases in invasive breast cancer 

(Albergaria, Paredes et al. 2009). Loss of GATA3 is marked related to the 

progression from adenoma to early carcinoma and onset of tumour 

dissemination. Malignant progression occurred with an expanding 

GATA3-negative tumour cell population. Tumour was induced to differentiate and 

its dissemination was suppressed with the restoration of GATA3 in late 

carcinomas. However, loss of GATA3 is not sufficient for malignant conversion, 

since targeted deletion of GATA3 in early tumours led to apoptosis of 

differentiated cells. Thus, GATA3 maintains the epithelial organization and 

characteristics in the lumen, as well as regulates tumour differentiation and 

suppresses tumour dissemination in breast cancer (Kouros-Mehr, Bechis et al. 

2008, Kouros-Mehr, Kim et al. 2008). 

 

1.2.3 Regulations during pregnancy 

Mammary alveologenesis and lactogenesis are characteristic events of pregnant 

mammary glands. The initial proliferative phase of alveolar morphogenesis is 

triggered by an increase in the level of serum prolactin (Prl) and progesterone 

(Pg). Prl and Pg synergistically regulate cell proliferation during early pregnancy 

(Neville, McFadden et al. 2002). 

 

Progesterone receptor (PR) is essential for side branching and alveologenesis 

during pregnancy, with a heterogeneous expression pattern in the mammary 

gland. PR in the stroma is required essentially for tertiary side branching, and PR 

in the epithelium is for alveologenesis (Brisken, Park et al. 1998). Pg elicits 

proliferation by two different mechanisms, one is a small wave, by a cell-intrinsic 
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mechanism, through Cyclin D1, the other one is a large wave, by a paracrine 

mechanism, through the tumour necrosis factor (TNF) family member, receptor 

activator of NF-ĸB-ligand (RANKL) (Beleut, Rajaram et al. 2010).  

 

Over-expression of Wnt1 can rescue pregnancy-induced ductal side branching 

in PR knockout mice. Wnt4 also stimulates epithelial ductal side branching 

downstream of PR during early pregnancy, in a paracrine fashion, but 

lobuloalveolar proliferation was not affected during the latter half of pregnancy 

with Wnt4 absence. Thus there are other factors mediating proliferation in late 

pregnancy (Brisken, Heineman et al. 2000). 

 

Prolactin signaling pathway plays a key role in promoting lactogenesis and milk 

secretion (Kelly, Bachelot et al. 2002, Hennighausen and Robinson 2005). Upon 

activation by prolactin, Janus kinase (Jak) activates signal transducer and 

activator of transcription 5 (Stat5, including Stat5a and Stat5b), then activated 

Stat5 translocates into the nucleus to activate a series of target genes, including 

RANKL, cyclin D, caseins, cyclin D, connexin 26, connexin 32, Socs1, Socs2, 

Socs3, Id1, Id2, and Igf2, etc. These factors are known to be crucial for alveolar 

proliferation, milk protein production, secretory activation or the establishment of 

tight junctions. Stat5 deficiency in the mammary gland profoundly leads to 

lobulo-alveolar development and lactation failure (Liu, Robinson et al. 1997). 

Elf5 is a key regulator in alveolar differentiation upstream of Stat5. In Elf5 

conditional knockout mice, the mammary gland failed to develop alveoli and 

Stat5 could not be activated (Choi, Chakrabarti et al. 2009). On the other hand, 

progesterone and EGF can inhibit lactogenesis in mammary epithelial terminal 

differentiation (Tanos, Rojo et al. 2012). 
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1.2.4 Regulations during postlactational involution and tissue remodeling  

The first phase of involution: apoptosis 

The first phase of involution is characterized by epithelial cell apoptosis but 

without tissue remodeling. Signaling pathways, which either promote, or delay 

involution and apoptosis, have been revealed by the use of genetically modified 

mice, particularly with tissue-specific gene deletion. For instance, deletion of the 

anti-apoptotic Bcl-2 gene accelerates apoptosis, on the other hand, loss of the 

pro-apoptotic bcl-2-like protein 4 (Bax) protein delays involution. However, many 

of these factors are redundant or not essential, thus don’t affect involution 

significantly (Schorr, Li et al. 1999) .  

 

One essential pathway regulating involution is the Jak/Stat3 pathway. Firstly, Jak 

is activated in response to cytokines and growth factors, Stat3 is then activated 

by phosphorylation downstream Jak, specific Stat dimers form and translocate to 

the nuclei where they activate transcription of their target genes. While Stat5 is 

important for lobuloalvoelar development and lactation (Liu, Robinson et al. 1997, 

Barash 2006, Vafaizadeh, Klemmt et al. 2012), Stat3 is critical for the initiation of 

apoptosis and involution (Chapman, Lourenco et al. 1999). Inactivation of Stat3 

resulted in dramatic apoptosis repression and the first phase involution 

impairment. The cytokine leukaemia inhibitory factor (LIF) was found to be the 

activator of Stat3 (Kritikou, Sharkey et al. 2003), while insulin-like growth factor 

binding protein 5 (IGFBP-5) and CCAAT-enhancer-binding protein-ß (C/EBPß) 

were found to be Stat3 targets in the mammary gland (Thangaraju, Rudelius et al. 

2005, Flint, Boutinaud et al. 2006). Prolactin could delay mammary gland 

involution by inhibiting cell loss and decreasing matrix metalloproteinase 

expression, but is not able to prevent cell loss in the mammary gland with 

constitutively activated IGFBP-5 (Flint, Boutinaud et al. 2006). 
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Akt also plays a critical role during mammary gland involution, which acts as a 

survival/death signal node in mammary epithelium. Apoptosis can be 

suppressed in the presence of Akt/protein kinase B (Akt/PKB) (Schwertfeger, 

Richert et al. 2001, Wickenden and Watson 2010), while Stat3 diminishes pAkt 

level by inducing the expression of its negative regulatory subunits 

of  phosphatidylinositide 3-kinase (PI(3) kinase) (Abell, Bilancio et al. 2005). 

 

The second phase of involution: tissue remodeling 

Post 48 hours of weaning, the mammary gland transforms into the second phase 

of involution, accompanied by alveoli collapse and adipocytes refilling. 

Extra-cellular matrix (ECM) breakdown and plasminogen activation result in a 

second wave of apoptosis and tissue remodeling. MMPs are key regulators of 

these processes. MMP2, MMP3 and MMP9, which are primarily expressed by 

the stromal cells, are up-regulated during involution to remodel the matrix. 

Removal of the matrix also induces apoptosis of the epithelial cells. When MMPs 

are activated at the beginning of the second phase of involution, epithelial cells 

that have gone through the first phase apoptotic wave will be induced to die by 

detachment-induced apoptosis. Thus the MMPs function in mammary gland 

involution both by initiating apoptosis and remodeling mammary gland 

architecture. The inhibition of MMPs is essentially demanded until 72 hours to 

ensure the reversibility of the first phase involution, which is provided by  tissue 

inhibitor of metalloproteinases (TIMPs), the cognate inhibitors of MMPs. TIMP3 

is shown to fulfill this function by inhibiting MMP2. Involution is accelerated and 

the first phase reversibility is lost in TIMP3-deficient mammary glands (Hojilla, 

Jackson et al. 2011). In addition to the epithelial cell death in the involuting 

mammary gland, the surrounding adipocytes start to differentiate and repopulate 

the mammary gland. Plasmin and MMP3 participates this process (Lund, Romer 

et al. 1996, Lund, Bjorn et al. 2000, Alexander, Selvarajan et al. 2001), however, 



 

29 

 

the role of adipogenesis and its regulation mechanism during mammary gland 

remodeling is poorly understood. 

 

Phagocytosis takes an important part in the mammary gland remodelling 

process. With the large number of apoptotic cells and milk fat globules (MFGs) to 

be removed, autophagy and phagocytosis are carried out, both by professional 

and non-professional phagocytes (Monks, Rosner et al. 2005). The secreted 

glycoprotein milk fat globule epidermal growth factor (EGF) factor 8 (MFG-E8) is 

essential for the clearance of apoptotic cells and MFGs during the second phase 

involution. MFG-E8 binds to apoptotic cells and MFGs by recognizing 

phosphatidylserine, a characteristic of apoptotic cells, thus bridges phagocytes 

and apoptotic cells or MFGs to be engulfed. MFG-E8 deficiency severely impairs 

mouse mammary gland involution, where the mammary gland fills with 

excessive MFGs and the mammary ducts were dilated (Atabai, Fernandez et al. 

2005, Hanayama and Nagata 2005). 

 

Inflammatory mediators are activated very early during involution, while the 

influx of macrophages is not obviously seen until involution day 4. A balance 

between pro- and anti-inflammatory mediators is important to prevent overt 

inflammation (Clarkson, Wayland et al. 2004, Stein, Morris et al. 2004). Mastitis 

and inflammatory cells were seen in Stat3 deficient mammary gland (Chapman, 

Lourenco et al. 1999), indicating that Stat3 may not only function to moderate the 

death and survival balance but also control the pro- and anti-inflammatory 

response. 
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1.3 PAX Gene Family  

1.3.1 PAX gene structure 

The PAX family encodes a set of transcription factors, which is characterized by 

the possession of a Paired domain (Prd) and consists of nine family members. In 

addition to Paired domains that recognize specific DNA sequences, some of the 

family members have a whole or partial homeodomain that also recognize 

specific DNA sequences (Lang, Powell et al. 2007). Both domains have protein 

interaction activities. In addition, some PAX genes contain an octapeptide 

domain as well. According to whether containing an octapeptide region, and 

whether containing a complete or truncated a homeodomain, PAX genes are 

classified into four subgroups (PAX1/PAX9, PAX2/PAX5/PAX8, PAX3/PAX7, 

PAX4/PAX6). The structure of the combination of common and unique domains 

contributes to their particular regulation activities (Figure 1.2). PAX9 lacks the 

homeodomain, but contains the octapeptide domain instead, which may confer 

its unique regulation properties different from other PAX genes containing 

homeodomains. 

 

The importance of PAX genes for tissue development and cellular differentiation 

in embryos are well known. PAX genes regulate cell proliferation, survival, 

migration and cell-lineage specification, which attenuate when development is 

complete in most cases. However, in a few tissues, PAX genes either persist into 

adult life or are reactivated temporally, when these genes are needed for 

organ-specific regeneration or protection against stress-induced cell death. PAX 

genes are not only well demonstrated with their importance in regulating 

embryonic development, the roles in cancer also are emerging in these years 

(Robson, He et al. 2006, Lang, Powell et al. 2007, Wang, Fang et al. 2008, Li 

and Eccles 2012). 
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Figure1.2 PAX protein family and its correlation with embryonic development and 

human diseases 

Adapted from Lang, Powell et al. 2007. PAX proteins are divided into four groups based 

on possession or absence of a Paired domain (blue rectangle), an octapeptide (green

cylinder), and/or a homeodomain (red rectangle). Embryonic expression domains and 

expression/mutation related to human diseases are listed; CNS: central nervous system. 

 

 

1.3.2 PAX genes in cancer 

PAX genes in subgroups II (PAX2, PAX5 and PAX8) and III (PAX3 and PAX7)  

are frequently expressed in a wide range of cancer types, whereas subgroups I 

(PAX1 and PAX9) and IV (PAX4 and PAX6) are generally absent (Muratovska, 

Zhou et al. 2003, Robson, He et al. 2006). Tumour-associated expression of 

PAX2 and/or PAX8 have been observed in a variety of different tumour cell lines, 

including kidney, prostate, breast and ovary, and in Wilms tumour (Winyard, 

Risdon et al. 1996, Robson, He et al. 2006). High levels of PAX5 expression 

have been reported in almost all non-Hodgkin lymphomas, forebrain-derived 

astrocytomas, neuroblastoma malignancy and medulloblastoma (Robson, He et 

al. 2006). PAX3 and/or PAX7 have been reported constitutively expressed in 
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embryonal rhabdomyosarcoma tumours, alveolar rhabdomyosarcoma, Ewing 

sarcomas, neuroblastomas, melanomas, and lung carcinomas (Bernasconi, 

Remppis et al. 1996, Robson, He et al. 2006). Rearrangements of PAX5, PAX8, 

PAX3 and PAX7 are associated with characteristic chromosomal translocations 

in specific cancers (Davis, Bennicelli et al. 1995, Barr 1997, Frascella, Toffolatti 

et al. 1998, Kroll, Sarraf et al. 2000, Poppe, De Paepe et al. 2005, Mullighan, 

Goorha et al. 2007, Eberhardt, Grebe et al. 2010). PAX genes function in 

promoting cell proliferation and survival, while knockdown of PAX2, PAX3 and 

PAX7 in cancer cells leads to cell apoptosis (Gnarra and Dressler 1995, 

Bernasconi, Remppis et al. 1996, Buttiglieri, Deregibus et al. 2004, He, Stevens 

et al. 2005). Transcriptional regulation studies revealed that PAX8 can 

transcriptionally activate B-cell lymphoma 2 (BCL-2) proto-oncogene promoter in 

vitro, and PAX2, PAX5 and PAX8 are capable of inhibiting the tumor protein p53 

promoter in cell culture (Stuart, Haffner et al. 1995, Hewitt, Hamada et al. 1997), 

which proposed a mechanism of PAX gene regulation in tumour initiation or 

progression. However, there are no evidences showing that overexpression of 

Pax genes in vivo directly initiates cancer, except Pax6 (Tremblay, Pituello et al. 

1996, Wada, Holland et al. 1997, Yamaoka, Yano et al. 2000). Conversely, PAX 

genes in subgroups I and IV (PAX6 and PAX9) normally indicate favourable 

outcomes, and PAX6 even functions as a tumour-suppressor (Gerber, Richter et 

al. 2002, Ballestar, Paz et al. 2003, Zhou, Tan et al. 2003, Zhou, Wu et al. 2005). 

The different roles playing in cancer by PAX subgroup II/III and I/IV may be 

conferred by the structural basis of the four subgroups: the former two 

subgroups, each of which contains an octapeptide region and at least a partial 

homeodomain, are associated with malignant cancers, whereas the latter two 

subgroups, each of which possesses only one of these domains, predict good 

prognostics. 
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1.3.3 PAX genes in development 

PAX genes play important roles during organogenesis, the expression of which 

is tightly regulated with their specific temporal and spatial pattern (Lang, Powell 

et al. 2007). PAX gene expression is activated primarily during embryonic  

development, but is switched off during latter phases of terminal differentiation. 

During organogenesis PAX proteins are expressed in target organs and tissues, 

for instance, PAX1 and 9 in skeleton (Peters, Wilm et al. 1999), PAX2, 3, 5, 6 

and 7 in central nervous system  (Jostes, Walther et al. 1990, Epstein, 

Vekemans et al. 1991, Walther and Gruss 1991, Adams, Dorfler et al. 1992, 

Gruss and Walther 1992, Tremblay, Kessel et al. 1995, Conway, Henderson et 

al. 1997, Schwarz, Alvarez-Bolado et al. 1999), PAX2 and 8 in kidney(Poleev, 

Fickenscher et al. 1992, Dressler, Wilkinson et al. 1993, Narlis, Grote et al. 

2007), PAX5 in B-cells (Urbanek, Wang et al. 1994, Nutt, Morrison et al. 1998, 

Nutt, Heavey et al. 1999), PAX8 in thyroid (Plachov, Chowdhury et al. 1990, 

Mansouri, Chowdhury et al. 1998), PAX4 and 6 in pancreas(Sosa-Pineda, 

Chowdhury et al. 1997, St-Onge, Sosa-Pineda et al. 1997) and PAX3 and 7 in 

skeletal muscle  (Goulding, Lumsden et al. 1994, Relaix, Rocancourt et al. 

2004, Relaix, Rocancourt et al. 2005). Mutations of PAX genes cause significant 

developmental abnormalities. Deregulation of Pax2 in transgenic mice 

generates severe abnormalities in kidney, eye, ear and mammary gland, and 

PAX2 mutations have been reported in patients with renal-coloboma syndrome 

(Dressler, Wilkinson et al. 1993, Eccles and Schimmenti 1999, Silberstein, 

Dressler et al. 2002, Burton, Cole et al. 2004). Compared to Pax2 heterozygotes, 

compound heterozygous for Pax2 and for Pax8 showed impairment in nephron 

differentiation and branching morphogenesis of the metanephros (Narlis, Grote 

et al. 2007). Homozygous PAX8 mutations lead to congenital hypothyroidism 

and thyroid aplasia (Macchia, Lapi et al. 1998, Mansouri, Chowdhury et al. 1998). 

Pax3 mutation in mice results in hypopigmentation, defects of neurons, glial cells, 
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Schwann cells, inner ear, heart and trunk muscle (Tremblay, Kessel et al. 1995, 

Conway, Henderson et al. 1997, Buckiova and Syka 2004, Relaix, Rocancourt et 

al. 2004), and heterozygous PAX3 mutation in human leads to Waardenburg 

syndrome (Tassabehji, Newton et al. 1994). Pax7-mutant mice die shortly after 

weaning, having face abnormality and impaired muscle regeneration (Mansouri, 

Stoykova et al. 1996, Seale, Sabourin et al. 2000). Homozygous Pax5-mutant 

mice show complete arrest of B-cell development, altered midbrain patterning 

and severe bone loss (Urbanek, Wang et al. 1994, Horowitz, Xi et al. 2004). 

Heterozygous Pax6 mutations in mice give rise to the small-eye phenotype, 

while homozygous Pax6-mutant mice fail to develop eyes or nasal structures, 

and display abnormal pancreatic islet-cell morphology and aberrant forebrain 

patterning (Hill, Favor et al. 1991, Stoykova, Fritsch et al. 1996, Sander, 

Neubuser et al. 1997). In humans, heterozygous PAX6 mutations are associated 

with a neurodevelopmental pathology, aniridia (van Heyningen and Williamson 

2002). Pax1 and Pax9 double mutant fail in the formation of sclerotome 

derivatives (Peters, Wilm et al. 1999) , and PAX9 haploinsufficiency in human is 

associated with oligodontia (Stockton, Das et al. 2000).  

 

Though the importance of PAX genes in devemopment has been revealed 

profoundly, little is known regarding the specific mechanisms by which PAX 

proteins influence organogenesis. Main functions of PAX genes in development 

revealed by previous studies are anti-apoptosis, inhibiting terminal differentiation 

and cell lineage commitment, etc. 

 

PAX genes suppress apoptosis 

An important role PAX genes playing in development is anti-apoptosis (Borycki, 

Li et al. 1999, Ostrom, Tang et al. 2000, Porteous, Torban et al. 2000, van 

Raamsdonk and Tilghman 2000). PAX3 and PAX3/FKHR are able to directly 
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transcriptionally modulate the anti-apoptotic protein B-cell lymphoma-extra large 

(BCL-XL) in cells (Margue, Bernasconi et al. 2000), while p53 loss of function 

can rescue neural tube defects in Pax3-deficient embryos (Pani, Horal et al. 

2002). Increased apoptosis was observed in developing kidneys with reduced 

Pax2 gene dosage (Dressler, Wilkinson et al. 1993, Porteous, Torban et al. 2000) 

and a significant inhibition of renal cyst growth due to increased cell death was 

also seen in Pax2 heterozygotes. The human p53 gene harbours a PAX binding 

site within its untranslated first exon, by which p53 is directly transcriptionally 

regulated by PAX genes. PAX2, PAX5 and PAX8 were shown able to inhibit p53 

promoter and transactivation of a p53-responsive reporter in vitro (Stuart, 

Haffner et al. 1995). 

 

PAX genes inhibit terminal differentiation 

PAX genes have been found responsible for inhibiting terminal differentiation in 

some tissues. PAX gene expression is activated primarily during embryonic 

development and attenuate in adult tissues, though in some organs, for instance, 

oesophagus, tongue, muscle, pancreas, prostate and thyroid, PAX genes persist 

or reactivated with a restricted tissue-specific pattern (Peters, Schuster et al. 

1997, St-Onge, Sosa-Pineda et al. 1997, Silberstein, Dressler et al. 2002, 

Jonker, Kist et al. 2004, Relaix, Montarras et al. 2006, Lang, Powell et al. 2007, 

Chen, DeGraff et al. 2010, Ozcan, Shen et al. 2011, Li and Eccles 2012). The 

continuous expression of PAX genes is not required at late stages of 

differentiation or terminal differentiation of cells. Persistent expression of PAX 

genes in terminally differentiated tissues is associated with a blockage in tissue 

differentiation and hyperplasia. Repression of Pax2 is required for normal kidney 

development, whereas persistent expression of Pax2 restricts the differentiation 

potential of renal epithelial cells. PAX2 expression persists in the 

undifferentiated epithelium of human Wilms' tumour and deregulated Pax2 
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expression results in histologically abnormal and dysfunctional renal epithelium 

with properties similar to congenital nephrotic syndrome (Dressler, Wilkinson et 

al. 1993, Winyard, Risdon et al. 1996). PAX5 codes for the transcription 

factor  B cell-specific activator protein (BSAP), which is required for B-lineage 

commitment in the fetal liver and for progression beyond an early pro-B cell 

stage in adult bone marrow. Deregulated PAX5 gene may interfere with the 

shut-down of PAX5 transcription and with plasma cell differentiation, which 

contribute to tumourigenesis (Morrison, Nutt et al. 1998). PAX3 expression is 

extinguished prior to activation of MyoD family (MDF) gene during myogenic 

differentiation in myogenic precursor cells (Williams and Ordahl 2000). 

 

PAX genes are important for cell lineage commitment 

PAX genes are important regulators in cell lineage commitment. PAX2 and 

PAX8 determine nephric lineage specification, and mouse embryos lacking both 

Pax2 and Pax8 are unable to form the pronephros or any later nephric structures 

(Bouchard, Souabni et al. 2002). PAX3 is a nodal point in adult melanocyte stem 

cell differentiation, where PAX3  functions to initiate a melanogenic cascade 

while acting downstream to prevent terminal differentiation (Lang, Lu et al. 2005). 

PAX3 (Buckingham, Bajard et al. 2003) and PAX7 (Seale, Sabourin et al. 2000) 

are both expressed by skeletal muscle stem cells, known as satellite cells, which 

are committed to the myogenic lineage yet remain undifferentiated at the 

periphery of adult muscle fibers. PAX3 and PAX7 are down-regulated in these 

cells following external stimuli, such as muscle injury, to initiate regeneration. 

Pax6 is required for the multipotent state of retinal progenitor cells (Marquardt, 

Ashery-Padan et al. 2001). Pax6 regulates the timing of retinal neurogenesis 

through repression of the neuron differentiation gene  mammalian 

achaete-scute complex homolog-1 (Mash1) (Philips, Stair et al. 2005). Pax5 is 

required for determining the B-cell lineage in immature lymphoid precursor cells. 
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In the absence of Pax5 these cells differentiate to other cell types such as 

T-lymphocytes or natural killer cells (Nutt, Heavey et al. 1999). 

 

The functions PAX genes play in development, such as anti-apoptosis, stem cell 

self-renewal and repressing terminal differentiation, may facilitate tumour 

progression in a similar mechanism. Thus understanding the role of PAX genes 

playing in development will help to illuminate the mechanism of tumour growth 

and malignancy and find theraputic targets. 

 

1.4 PAX9 

Paired box gene 9 (Pax9) belongs to the PAX gene family, and Homeobox gene 

super family. Pax9 is located at chromosome 14q12 and is a transcription factor 

that regulates the expression of genes involved in mediating cell proliferation, 

apoptosis, and migration (Peters, Neubuser et al. 1998, Ogawa, Kapadia et al. 

2006, Nakatomi, Wang et al. 2010). During embryonic development in the 

mouse, Pax9 is required for the formation of thymus, parathyroids, limbs, 

secondary palate, teeth, and vertebral column (Neubuser, Koseki et al. 1995, 

Peters, Neubuser et al. 1998). In the adult mouse, Pax9 expression is restricted 

to the tongue, oesophagus, salivary glands and thymus (Peters, Schuster et al. 

1997). Dosage reduction of Pax9 expression induces hypodontia and 

oligodontia in the mouse (Kist, Watson et al. 2005), and mutations of PAX9 gene 

in human cause the autosomal dominant disorder of oligodontia (Peters and 

Balling 1999, Stockton, Das et al. 2000). Pax1 and Pax9 protein expression is 

significantly decreased in chondrocytes of the vertebral column of Jarcho-Levin 

Syndrome (JLS) and related disorders (Bannykh, Emery et al. 2003). In human 

oesophagus, PAX9 has been reported as a marker of favourable prognosis in 

oesophagus cancer and decreased PAX9 expression correlates with increased 

malignancy of the epithelial lesion (Gerber, Richter et al. 2002). In mouse tongue, 
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Pax9 was found to regulate morphogenesis of filiform papilla (FP) and suppress 

skin-specific differentiation of the mammalian tongue epithelium (Jonker, Kist et 

al. 2004).  

 

1.4.1 Known function of Pax9 and interaction with other transcription 

factors and signaling pathways 

Pax9 plays a pivotal role during mouse embryogenesis, which is expressed in a 

wide range of organs, for instance, somites, pharyngeal pouches, mesenchyme 

involved in craniofacial, tooth, and limb development. Homozygous Pax9-mutant 

mice die shortly after birth, lacking a thymus, parathyroid glands and 

ultimobranchial bodies, having aberrant limbs, disturbed craniofacial and 

visceral skeletogenesis, and the tooth development is arrested at the bud stage 

(Peters, Neubuser et al. 1998). The paralogous genes Pax1 and Pax9 are 

expressed in similar patterns during mouse embryogenesis, suggesting a 

functional redundancy between Pax1 and Pax9. Pax1/Pax9 double mutant mice 

show a much more profound phenotype than the single homozygous mutants, 

with the complete lack of the medial derivatives of the sclerotomes due to the 

inability of the sclerotome to undergo chondrogenesis. The rate of cell 

proliferation is reduced during early sclerotome development and the incidence 

of apoptosis increases at the later stages in the area normally forming vertebrae 

and intervertebral discs (Peters, Wilm et al. 1999). Msx1 and Pax9 

synergistically regulate lower incisor and lip development by multiple signaling 

pathways, such as BMP, Shh, Notch1and Fgf, through the cross-talking between 

epithelium and mesenchyme. Cell proliferation is reduced in both the dental 

epithelium and mesenchyme of double heterozygous mutants (Nakatomi, Wang 

et al. 2010). Pax9 is able to directly regulate Msx1 expression at protein level. In 

addition, Pax9 and Msx1 can form a protein complex that interact with Bmp4, 

which determines the fate of the transition from bud to cap stage during tooth 
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development. Pax9 regulates Bmp4 expression through its paired domain rather 

than Msx1 (Ogawa, Kapadia et al. 2006). These findings address the functions 

of Pax9 in cell proliferation, apoptosis, epithelium-mesenchyme cross-talking 

and interations with pivotal signaling pathways during embryonic development.  

 

1.4.2 New clues of Pax9 function  

Our lab has focused on Pax9 function in development for several years. The 

studies include the development of tooth, palate and tongue of the mouse. Pax9 

seems haplosufficient since Pax9+/- mice show no obvious difference with wild 

type, while complete knockout of Pax9 results in cleft palate and Pax9-/- mice die 

shortly after birth. Pax9neo/neo mice, which carry a hypomorph of Pax9, often 

show small lower incisors and missing molars, and lower body weight. One 

phenomena observed recently is that the Pax9neo/neo dam could not feed the 

pups properly and the pup gain weight slowly (observed in our lab). 

 

Ectodermal appendages, for instance, scales, teeth, feathers, hair, nails, and a 

variety of glands such as mammary, sweat, salivary, and lachrymal glands are 

formed through a series of interactions between epithelial cells derived from the 

surface ectoderm and the underlying mesenchyme. Thus they may utilize similar 

signaling pathways during morphological development (Pispa and Thesleff 

2003). Therefore, we are curious to know if Pax9 plays similar roles in the 

development of mammary gland, as it functions in other organs, such as tooth, 

palate, lip, tongue and oesophagus. Analyses of Pax9 functions in the mammary 

gland biology were conducted in this thesis to answer this question. 

  

1.5 Aims of the thesis 

This study aims to investigate Pax9’s function on two aspects: the first, to 
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investigate the possible function of Pax9 in normal mammary gland development; 

the second, to investigate whether Pax9 is associated with breast cancer and 

postulate the possible mechanisms underlying it.   

 

In the following chapters, we 1) look into the temporal and spatial expression 

pattern of Pax9 during different developmental stages of mouse mammary gland, 

2) make a survey of the phenotype of loss-of-function of Pax9 in the mammary 

gland using Pax9 hypomorph and Pax9 mammary-specific knockout mouse 

models, 3) try to dissect the molecular regulation of Pax9’s function during 

mammary gland development, 4) investigate if Pax9 is associated with breast 

cancer, 5) in the last chapter, summarize the functions of Pax9 in mammary 

gland development and discuss the possible mechanisms, dysregulation of 

which might lead to breast cancer. 
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Chapter 2. Materials and Methods 

 

2.1 Mouse Models 

The wild type C57BL/6 (BL6) was used in Pax9 spatial-temporal expression 

experiments. Pax9LacZ/+ in BL6 strain (Peters, Neubuser et al. 1998) was used 

for X-Gal whole mount staining. Pax9neo/neo  in C57Bl/6 and CD1 strain (Kist, 

Watson et al. 2005) were used for phenotype investigation of mammary gland 

development with Pax9 hypomorph. The Pax9 loxP-flanked mouse in C57Bl/6 

strain was generated in our lab and K14-Cre in C57Bl/6 was kept here as well 

(Asselin-Labat, Shackleton et al. 2006). The MMTV-Cre mouse in FVB 

background was kindly provided by Professor William Muller, McGill University, 

Canada. The brief description of mouse strains used in this study is summarized 

in Table 2.1. All animal work was carried out in line with Animal (Scientific 

Procedures) Act 1986. 
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Table 2.1 Mouse strain List 

 

2.2 Genotyping 

Genotype of the mouse was determined by PCR routinely. Genomic DNA 

Mouse Line Description 
Gene 

Background 

Pax9LacZ 

Pax9 knockout mouse (LacZ) 

Heterozygous (+/-): normal 

Homozygous (-/-): die at birth (gasping), first 

digit duplication 

BL6 

Pax9neo 

(BL6) 

Pax9 hypomorph mouse (neo) on BL6 

Heterozygous (+/neo): normal 

Homozygous (neo/neo): hypoplastic lower 

incisors, small body size 

BL6 

Pax9neo 

(CD1) 

Pax9 hypomorph mouse (neo) on CD1 

Heterozygous (+/neo): normal 

Homozygous (neo/neo): hypoplastic lower 

incisors, small body size 

CD1 

Pax9flox 
Pax9 floxed mouse 

Phenotype: normal 
BL6 

MMTV-Cre; 

Pax9flox/flox 

Mammary-specific Pax9 knockout mouse 

under the control of MMTV promoter 
FVB/BL6 

K14-Cre; 

Pax9flox/flox 

Pax9 knockout mouse under the control of 

K14 promoter 
BL6 

MMTV-Cre MMTV-Cre transgenic mouse FVB 

K14-Cre K14-Cre BL6 
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samples were prepared either from the ear clipping, tail of adult mice or a small 

piece of embryos. The tissue for genotyping was dissolved in 100ul lysis buffer 

(100 mM Tris.Cl pH8.0, 5 mM EDTA, 0.2% SDS, 200 mM NaCl) with proteinase 

K (2µl of 20 mg/ml proteinase K stock was added into 100ul of lysis buffer), kept 

on vortex at 55°C for 30 minutes to overnight till the tissue is dissolved. 2ul DNA 

was applied in 25ul PCR reaction system. The specific primers used in PCR for 

genotyping are listed in Table 2.2. During the PCR reaction, DNA was denatured 

at 94°C for 30 seconds, annealled at 56°C for 40 seconds, extended at 72°C for 

40 seconds. Usually 31 cycles of reaction were run to gain adequate PCR 

product. Water was used as negative control and Pax9 plasmid as positive 

control.  

 

Table 2.2 Genotyping Primers and PCR products 

2.3 RT-PCR  

For RNA isolation, the 4th inguinal mammary gland was dissected carefully, the 

lymph node was excluded, and the mammary tissue was immediately frozen in 

liquid nitrogen, stored at -80°C. RNA was isolated using TRIzol REAGENT 

Moue 

Line 

Primer Sequece PCR product 

Pax9LacZ 

P9-gen2-F1: ACT CAC CGG CCT GCA CCA ATT AC 

P9-gen2-R1: TTG TTC TCA CTG AGC CGG CCT GT  (wt-R) 

P9-gen2-R2: GGA TGT GCT GCA AGG CGA TTA AG  (mut-R) 

wt= 268 bp 

mut=350 bp  

Pax9neo  

Pax9lox1-F2: AGC GGA GAC AAG GAT GAA ACC A 

Pax9lox1-R2: AGA GGA ATC CCG ATG TTC ACC AG 

wt=305 bp   

mut=351 bp 

Pax9flox  

Pax9lox2-F: TTC GGC TGC TGT CTC TGG TT 

Pax9lox2-R: CCG GAC TGT ATG GTA CAG AA 

wt=205 bp  

mut=313 bp 

Cre 

Cre5-F:  TGCCACCAGCCAGCTATCAACT 

Cre5-R:  AGCCACCAGCTTGCATGATCTC 

Cre5=191 bp 
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(Invitrogen), the protocol strictly referred to Invitrogen TRIzol REAGENT product 

manual. Add 1ml Trizol in 50mg frozen tissue sample, homogenize for 1 minutes, 

place still at room temperature for 5 minutes, centrifuge at 12000g at 4°C for 10 

minutes, add 0.2ml chloroform, shake vigorously for 15 seconds, place it at room 

temperature for 2 minutes, centrifuge at 12000g at 4°C for 15 minutes, keep 

aqueous layer (about 600ul), add 0.5ml isopropanol, mix and place it at room 

temperature for 10 minutes, centrifuge at 12000g at 4°C for 10 minutes, wash 

with 75% EtOH, vortex for 3 seconds, centrifuge at 7500g at 4°C for 5 minutes, 

collect the RNA pellet. Dry RNA pellet briefly at room temperature for 5 minutes. 

Dissolve the RNA in DEPC water at 55°C for 10 minutes. Store the RNA at 

-80°C. 

 

For RT-PCR, reverse transcription was performed using 2 µg of total RNA, 

random primers and Superscript II reverse transcriptase (Invitrogen). 

Appropriate specific primers were used in RT-PCR, Gapdh was used as control. 

Primers used for RT-PCR were listed in Table 2.3. Annealing temperature for 

Pax9 RT-PCR was 58°C, 35 cycles of PCR reaction were run; annealing 

temperature for Gapdh was 55°C, 22 cycles of reaction were run; annealing 

temperature for Cre is 56°C, 33 cycles of reaction were run. All the cDNA 

templates were denatured at 94°C for 30 seconds, annealed at their specific 

temperature for 40 seconds and extended at 72°C for 40 seconds. 
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Table 2.3 Primers used for RT-PCR 

 

2.4 Carmine-Alum wholemount staining 

Dissect the 4th mammary gland, place on a microscope slide, fix overnight in 

Carnoy’s solution (EtOH : Chloroform : Glacial Acetic Acid = 6:3:1), wash in 70% 

EtOH for 2 hours, stain overnight in carmine-alum solution (2% carmine, 5% 

aluminum potassium sulfate), destaining the mammary gland in 70% EtOH with 

2% HCl for 30 minutes, dehydrate in EtOH with increasing concentrations (70%, 

80%, 95%, 100%), 2 hours for each grade, clear in methylsalicylate (Sigma) to 

take photographs.  

 

2.5 X-Gal staining   

the 4th mammary gland was dissected, placed on a piece of filter paper and fixed 

at 4°C for 1 hours in 2%PFA solution (2% paraformaldehyde, 0.25% 

glutaraldehyde, 0.01% NP-40 in PBS). After fixation, the mammary gland was 

rinsed in PBS, removed from the filter paper, washed in X-Gal staining buffer (10 

ml PBS with 2 mM MgCl2, 0.01% Na-deoxycholate, 0.02% NP-40) with slight 

shake for 30 minutes. After wash, the tissue was transfered into 10ml X-Gal 

staining buffer with 1 mg/ml X-gal (diluted from X-Gal stock solution: 40mg/ml in 

Primer Primer Sequences RT-PCR product 

Pax9 

P9-RT2-F: CTCCATCACCGACCAAGGAG 

P9-RT2-R: GAGTGCAGAAGCGGTCACAG 

412bp 

Gapdh 

Pax9lox1-F2: AGC GGA GAC AAG GAT GAA ACC A 

Pax9lox1-R2: AGA GGA ATC CCG ATG TTC ACC AG 

311bp 

Cre 

Cre5-F:  TGCCACCAGCCAGCTATCAACT 

Cre5-R:  AGCCACCAGCTTGCATGATCTC 

191 bp 
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DMF, stored at -20°C), incubated at 37 °C for 6-24 hours to allow the reaction to 

develop thoroughly. After X-Gal staining, the tissue was cleared in 

methylsalicylate to take photographs.  

 

2.6 Pup growth measurement 

Pax9neo (CD1) mice were used in this experiment to investigate the capacity of 

milk production of the dams by measuring pup growth. In each litter, only 10 

pups were kept with the dam at birth (extra pups were kept away), weighed 

every 24 hours and a pup growth curve was made according to their weight 

gaining. The pup growth curves reflect the lactation ability of the dam. Three 

groups were examined for each genotype, Pax9+/neo and Pax9neo/neo. 

2.7 Tissue processing 

Mammary glands were fixed in 4% PFA in PBS at 4°C overnight, dehydrated 

with ethanol through a series of concentration, embedded in paraffin, sectioned 

at 5 µm thickness, stored at a cool place and ready for histochemistry 

experiment. 

 

2.8 Histochemistry 

H&E Staining  

Dewax the section with xylene twice, 5 minutes each time, rehydrate in series of 

ethanol (100%, 100%, 80%, 70%, 50%, 30%, H2O), stain sections in 

haematoxylin for 10 seconds, rinse and bluing in tap water, stain in eosin for 10 

seconds, rinse in water, dehydrate, clear in xylene, mount with DPX.  

 

Immunohistochemistry   

Dewax the section and rehydrate as mentioned above. Antigen retrieval is 
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carried out by 8 minutes pressure cooker boiling (count time after steaming start) 

or microwave heating for 10 minutes in citric buffer (0.01 M citric acid, pH 6.0). 

Block unspecific binding by incubation with Diluent (DAKO) for 15 minutes at 

room tempreture prior to incubation with primary antibody. Incubate in primary 

antibody for 30 minutes, rinse in TBS (20 mM Tris and 150 mM NaCl , pH7.6) for 

3 times, apply HRP labeled anti-rabbit polymer, develop color with AEC+ 

(Envision+ Kit, DakoCytomation, Dako K4008). For Pax9 immunostaining, 

incubate the sections with secondary antibody for 30 minutes between applying 

anti-Pax9 primary antibody and HRP labeled anti-rabbit polymer. Primary 

antibodies used were anti-Pax9 (1:10, rat-anti mouse monoclonal, developed in 

Heiko’s lab, followed with Rabbit Anti–Rat immunoglobulins (1:50, Dako, Z0455, 

Denmark), anti-pStat5 (Tyr694, 1:200, Cell Signaling, #9359), anti-pStat3 

(phospho Y705, 1:200, abcam, ab31370, England).  

 

TUNEL Assay 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) is a 

method widedly used to detect apoptosis. It identifies DNA fragmentation by 

DNA nicks in the apoptotic cells. The DNA nicks can be identified by terminal 

deoxynucleotidyl transferase, an enzyme that catalyzes the addition of dUTPs 

and are secondarily labeled with a marker. It may also label cells with severe 

DNA damage. ApopTag Peroxidase In Situ Apoptosis Detection Kit (Millipore, 

S7100) was used in apoptosis detection. Dewax and rehydrate the tissue 

sections as previously described, treat with proteinase K (20ug/ml) for 15 

minutes at room temperature, wash in PBS, incubate with TdT at 37°C for 1 hour, 

stop the reaction, apply Digoxin-Peroxydase, wash the sections, develop color 

with AEC+ (Envision+ Kit, DakoCytomation, Dako K4008), complete the 
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staining with haematoxylin counterstaining and mount with DPX. Observe 

apoptotic bodies under the light microscope.  

 

2.9 Western Blot 

For western blot, the 4th inguinal mammary gland was dissected, immediately 

frozen in liquid nitrogen and stored at -80°C. Protein was isolated using TRIzol 

REAGENT (Invitrogen). The same samples were used for protein extraction and 

RNA isolation, protocols strictly referred to Invitrogen TRIzol REAGENT product 

manual. Thermo Scientific Pierce BCA Protein Assay Kit was used to measure 

total protein concentration. 40ug protein was loaded into each lane of 

SDS-PAGE gel (Ready Gel Tris-HCl Gel, BIO-RAD), electrophoresed in 

Running Buffer (Tris-glycine-SDS buffer: 0.025M Tris, 0.192M glycine, 0.1% 

SDS, pH 8.5) under 130V for 1hr. Nitrocellulose membrane was activated in 

absolute methanol for 30 seconds, rinsed in water, kept in TBST (TBS with 1% 

tween20 ). Proteins was transfered to activated nitrocellulose membrane from 

SDS-PAGE gel in Blotting Buffer (Tris-glycine: 0.025M Tris, 0.192M glycine, pH 

8.5 ) under 100V for 1hr or 20V overnight at 4°C with stirring. For 

immunochemistry, block the membrane unspecific binding of the antibodies in 

5% milk in TBST at room temperature for 1 hour, apply 5ml primary antibody 

(rabbit anti-mouse) at room temperature for 2 hours, wash in TBST three times, 

10 minutes for each, apply 5ml secondary antibody (HRP-conjugated goat 

anti-rabbit IgG , Thermo Scientific Pierce, 1:5000) at room temperature for 1 

hour, wash in TBST, three times, 15 minutes for each, apply ECL plus (Thermo 

Scientific Pierce) for 5 minutes. Primary antibodies were anti-K18 (1:500, 

abcam), pStat3 (phospho Y705, 1:500, abcam), Stat3 (1:500, abcam) and pStat5 

(Tyr694, 1:200, Cell Signaling) as mentioned in the method of 

immunohistochemistry previously. 
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2.10 Affymetrix microarray Expression Profiling 

GeneChip Mouse Genome 430 2.0 array (Affymetrix, CA, USA) was used in this 

experiment, which contains probes for detecting 45,000 transcripts with over 

34,000 well-characterized genes. Mammary glands of MMTV-Cre;Pax9flox/flox and 

Pax9flox/flox control mice were dissected at involution day 1, day 2, day3 (n=1), 

frozen immediately in liquid nitrogen and stored at -80℃. RNA was extracted 

with Trizol Reagent. The concentration of RNA was measured by Nanodrop 

(Angilent) and the quality of RNA was estimated by RNA NanoLab chip on the 

2100 Bioanalyser (Agilent, Palo Alto, CA). After RNA isolation, cDNA synthesis 

and biotin-labeling of cRNA, hybridization and scanning of the arrays were 

carried out as described in the Affymetrix guide manual. RNA was treated with 

deoxyribonuclease I (Invitrogen) to remove any residual genomic DNA. cDNA 

was then synthesized with 5 µg total RNA by SuperScript II reverse transcriptase 

(Invitrogen) and purified by phenol/chloroform extraction. Then cDNA was 

labeled using the RNA transcript labeling kit (Invitrogen) to generate biotinylated 

cRNA. Biotin-labeled cRNA was purified and fragmented according to 

Affymetrix's protocol. The fragmented cRNA was mixed with control 

oligonucleotide B2 (Affymetrix) and a hybridization control cRNA mixture (BioB, 

BioC, BioD, and Cre, Affymetrix). Chips were hybridized at 45°C for 16 hours. 

The arrays were subsequently washed and stained in a Fluidics Station 

(Affymetrix) and scanned by GeneScanner according the manufacturer's 

instructions (GeneChip Expression Analysis Technical Manual, Affymetrix). The 

data aquisition and gene expression analysis was conducted by Affymetrix 

GeneChip Operating Software (GCOS). The most highly changed genes in the 

mutants were determined by change log ratio above 2. For the first preliminary 

expression profiling purpose and the limited number of mammary gland-specific 
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Pax9-deficient animals, only one biological sample was applied on one chip at 

each time point. 

 

2.11 Tumour microarray (TMA) design 

CBCTR 2001 Tissue Microarrays (TMAs) were provided by the Cooperative 

Breast Cancer Tissue Resource (CBCTR, USA). The TMAs were constructed 

using tissue and associated pathological and clinical outcome data from CBCTR, 

designed to ensure high statistical power for evaluation and validation of breast 

cancer biomarkers. The TMA series we used was designed to permit 

comparisons of biomarker expression across three stages of disease 

(node-negative, node positive and metastatic) and other clinical and pathological 

factors.  

 

Four identical tissue microarray paraffin blocks have been made of Design # 2 in 

2001.  The 4 blocks (for each design) are designated A, B, C and D. Histologic 

sections taken from these blocks are numbered sequentially. We received 

histologic sections from some of these paraffin blocks, and the slides were 

labeled in the following manner: sponsoring organization; year of manufacture; 

design number; block number; section number. The TMA sections applied in this 

study were CBCTR 2001 TMA#2: 2B.67, for PAX1 immunostaining as controls, 

2A.68, 2B.68, 2C.70, for PAX9 immunostaining, to evaluate the protein 

expression in a breast cancer cohort. 

 

2.12 PAX9 expression evaluation on TMA 

The method of immunostaining of Pax9 on TMA refers to 2.8 

“immunohistochemistry”. Primary antibodie was anti-Pax9 (1:10, developed in 

Heiko’s lab), secondary anti body was Rabbit Anti–Rat immunoglobulins (1:50, 
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DAKO, Denmark), between the anti-Pax9 rat primary antibody and an 

enzyme-conjugated antibody to rabbit immunoglobulins, the coupling reaction 

was developed with Fast Red (Sigma). According to the overall performance by 

the relative signal intensity of Pax9 immunostaining and the percentage 

( whether above 50%) of positive cells on one section. The levels of Pax9 protein 

expression in situ by immunohistochemistry on TMAs were aligned to 4 levels: 

negative, weak, moderate and strong, scored 0, 1, 2, 3 respectively. Negative 

and weark means low levels, moderate and strong mean high levels 

 

2.13 TMA and statistical method 

Each tumour microarray (TMA) represents 252 individual breast tissue 

specimens and 36 control specimens, in total a TMA slide containing a total of 

288 cores. Pax9 immunostaining was applied on TMA in triplicate. An average 

expression level of the triplicate specimens counts for statistics. Use Chi-square 

p-value to determine the significance (by using Mini-Tab software).  
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Chapter 3. Pax9 is expressed in mouse mammary gland with a 

temporal-specific and spatial-specific pattern 

 

3.1 Introduction 

The mammary gland is an exceptional organ for its major development is 

completed in adult, while in most other organs it has been completed before birth. 

The mammary gland development is fulfilled through a linear path from 

embryonic to puberty stage, and a cyclic path during pregnancy, including 

gestation, lactation and involution. Thus it is a good model to study the molecular 

regulation of cell differentiation, organogenesis, tissue homeostasis and 

remodeling. The mammary gland comprises mainly epithelium and fat tissue. In 

addition, there are some other components of less quantity but of the same 

developmental importance, such as extracellular matrix (ECM), fibroblast and 

immune cells. The growth and function of mammary gland is concerted by 

endocrines, growth factors, intracellular signaling, crosstalk between the 

epithelium and stroma, and the participation of immune cells, for instance, 

macrophages and eosinophils.  

 

We studied mammary gland development in mouse in this thesis. Mouse 

mammary morphogenesis comprises several key events: mammary bud and 

primary ductal tree formation during embryonic period, ductal branching during 

adolescent periods, successively, alveolar formation and differentiation during 

pregnancy and lactation, and apoptosis and tissue remodeling during 

post-lactation involution. 

 

Mammary bud starts from the formation of bilateral milk lines on embryonic day 
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10.5, forms lens-shaped placodes by E11.5, then cells within the placode 

invaginate into the underlying mesenchyme to form the typical bulb-shaped 

mammary buds between E11.5 and E12.5. Wnt, Fgf, and parathyroid 

hormone-related protein signaling have been identified for their functional roles 

in mammary gland development during this stage (Hens and Wysolmerski 

2005). 

 

Mammary duct branching proceeds through 3 different phages: embryonic, 

adolescent and adult phases, each of which is differentially regulated. 

Adolescent branching requires oestrogen and oestrogen receptor-α (ER-α)，

growth hormone (GH) and growth hormone receptor (GHR), adult tertiary side 

branching requires progesterone and its receptor (PR), while embryonic 

branching is hormone independent (Hinck and Silberstein 2005). At the age of 3 

weeks, the terminal end buds (TEBs) start to be active and invade the fat pad, 

leading to the growth of the mammary gland. Cells in TEB differentiate, 

proliferate and undergo apoptosis to form the elongated ducts. Through 

recurrent estrus cycles, the mouse ductal epithelial tree develops further with 

side branches where alveoli form from during pregnancy. Ductal branching is 

also coordinated by local cross-talk between the developing duct epithelium and 

nearby stroma, with multiple signaling pathways taking part, such as Wnt, FGF, 

TGF-β pathways, and metalloproteinase (Fata, Werb et al. 2004, Sternlicht, 

Kouros-Mehr et al. 2006).  

 

Alveolar units expand and differentiate into milk-secretory cells during late 

pregnancy and lactation. During lactation, milk globules are secreted by the 

alveolar epithelial cells, and contracted into the ducts and delivered to outside 

when pups suckle. The pituitary prolactin is the trigger for lactation. It regulates 

lactation signaling through prolactin receptor (PrlR), Jaks and Stat5. After 
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weaning, the mammary gland undergoes a rapid involution and returns to the 

state of mature non-pregnant morphology. 

 

The mammary gland is also an ideal organ to study molecular mechanisms of 

the origin and progression of cancer, as well as the regulation cues underlying 

cell fate, tissue homeostasis and organ regeneration. It greatly encouraged 

researchers when a single stem cell transplanted into cleared mammary fat pad 

was shown to be able to regenerate a complete and fully-functional mammary 

tree in 2006 (Shackleton, Vaillant et al. 2006).  

 

The development and application of new techniques, such as primary mammary 

cell isolation, tissue recombination, mouse mammary gland humanization, 

ex-in-vivo organ culture, 3D matrix resembling in-vivo niche, have been widely 

used in mammary gland study. The advantage of modern techniques provides 

efficient and precisely-regulated tools for mammary gland study. 

 

Pax9 was found to be expressed in normal mammary epithelial tissue and 

down-regulated in breast cancer, which will be presented in details in Chapter 6. 

In this Chapter, we carried out semi-quantitative RT-PCR to evaluate Pax9 RNA 

expression levels during different developmental stages and used 

immunohistochemistry to demonstrate the spatial expression of Pax9 protein in 

mouse mammary glands. 

 

3.2 Pax9 RNA expression is temporal-specific with a peak at puberty 

Semi-quantitative RT-PCR was conducted to investigate Pax9 mRNA expression 

throughout different stages of mammary gland development. Total RNA was 

extracted from mouse mammary glands at different age or developmental stages 

using Trizol reagent. In the mouse mammary gland, Pax9 expression levels is far 
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less than in other tissues, such as tongue and oesophagus (data not shown), 

however, Pax9 is indeed expressed throughout all stages of adult mammary 

gland development, and the expression dynamics follows a temporal-specific 

pattern (Figure 3.1).  
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Figure 3.1 Pax9 mRNA expression in the mammary gland at different developmental 

stages   

Examined by semi-quantitative RT-PCR, expression of Pax9 peaks at the age of 5 weeks.  

MG: mammary gland; G: gestation; L: lactation; I: involution; FP: cleared fat pad; W: water. n=2 

 

Demonstrated by semi-quantitative RT-PCR, Pax9 expression is weak before 

puberty (2 week old), significantly increases at the onset of puberty (3 week old), 

peaks during puberty (5 week old), decreases after puberty (7 week old) and 

maintains at a constant level in mature, non-pregnant mammary gland (15 week 

old). During pregnant cycle (gestation, lactation and involution), Pax9 is slightly 

up-regulated during early gestation, drops down in late gestation and early 

lactation. In the cleared fat pad of 4 week old mammary gland, Pax9 is slightly 

expressed as well.  
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3.3 X-gal whole mount staining of Pax9+/LacZ mammary glands 

To conveniently monitor Pax9 expression in the mammary gland, we tried to 

apply X-Gal whole mount staining to Pax9+/LacZ mouse line (Peters, Neubuser et 

al. 1998). The intact mammary gland was dissected, fixed slightly with 1% PFA 

and stained with X-Gal, using the tongue as positive control. Unfortunately, the 

Pax9+/LacZ mammary glands did not show any positive staining, even for 5 week 

old mice, at which stage Pax9 mRNA expression is at its highest level, as 

revealed by semi-quantitative RT-PCR. We implemented X-Gal whole mount 

staining to Pax9+/LacZ mammary glands through different stages, from 1 week, 2 

weeks, 3 weeks, 6 weeks, 8 weeks to 10 week old, and gestation day 6, day 10 

and lactation day 2, however, none of which have shown positive X-gal staining 

(Figure. 3.2A), whereas the tongue, as a positive control, was strongly stained 

(data not shown). 

 

The absence of X-Gal staining in Pax9+/LacZ mammary glands suggests LacZ not 

to be expressed under the control of all regulatory Pax9 promoter/enhancer 

elements. To address this, Pax9 and LacZ RT-PCR were carried out to detect 

their RNA expression in the mammary gland of 5 week old Pax9+/LacZ mice. As 

shown by RT-PCR, Pax9 mRNA was expressed in Pax9+/LacZ mammary gland as 

expected, whereas LacZ mRNA was not detectable (Figure 3.2B). Since LacZ 

mRNA was not expressed in Pax9+/LacZ mammary gland, the negative X-Gal 

staining of Pax9+/LacZ mammary gland thus is not unexpected. The failure of 

LacZ mRNA expression in Pax9+/LacZ mammary gland might be due to the 

removal of a mammary gland-specific cis-regulatory element of Pax9 within the 

sequence that is deleted in the Pax9LacZ allele.  
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Figure 3.2 Whole mount X-gal staining of Pax9+/LacZ mammary glands 

(A) X-gal staining of the Pax9+/LacZ mammary gland and a control at 5 weeks age. Magnification: 

10x (B) RT-PCR to detect Pax9 and LacZ expression in Pax9+/LacZ mammary glands at 5 week 

old. L: Ladder; 1: Gapdh; 2: LacZ; 3: Pax9; 4: LacZ positive control (LacZ plasmid); 5: Pax9 

positve control (Pax9 plasmid); 6: Water control; L: ladder; n=2 

 

3.4 Pax9 protein expression is spatial-specific, with high levels in the 

terminal end buds and ducts during puberty 

Since whole mount X-gal staining of Pax9+/LacZ mouse mammary gland was not 

able to provide the information about the spatial pattern of Pax9 expression, 

Pax9 immunostaining was used to detect Pax9 protein expression instead. Pax9 

immunostaining was firstly applied to the mammary glands of 6 week old wild 

type C57BL6 mouse because puberty is found with the highest Pax9 expression 

level by semi-quantitative RT-PCR. During this stage, ductal elongation and 
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bifurcation proceed rapidly, then at the end of puberty, primary ducts and 

secondary and tertiary branches form a complete ductal tree occupying the 

whole fat pad. During every estrous cycle, alveolar buds are formed and involute 

on tertiary branches. 

  

Pax9 is strongly expressed in the ducts and TEBs during puberty (Figure 3.3), 

but absent in most areas of the stroma, only with weak expression in the 

mesenchyme around the neck of TEBs. Within the mammary ducts, Pax9 is 

exclusively expressed in the lumimal epithelial cells, but absent in the 

myoepethelial cells. In TEBs, Pax9 is expressed in cap cells, which are aligning 

along the outer layer at the top of TEB, where proliferation is active (Hinck and 

Silberstein 2005), and Pax9 is expressed in body cells close to the TEB cavity, 

where apoptosis is active to form the cavity of TEBs and the lumen. 
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Figure 3.3 Pax9 is expressed in the ducts and TEBs in the mammary gland in 6 week old 

female mice 

(A, B) Whole mount Carmine-alum staining. LN: lymph node; TEB: terminal end bud; (C, D) Pax9 

immunostaining in the ducts (C) and TEBs (D) Cap cells are Pax9 positive (indicated by arrow), 

body cells near the TEB cavity are Pax9 positive as well (indicated by arrow head). Magnificaiton: 

(A) 10x, (B) 40x, (C, D) 200x. n=5 

 

An investigation of Pax9 protein expression throughout various developmental 

stages of the mammary gland was then carried out in wild type C57BL6 mice 

(Figure 3.4). Pax9 is expressed weakly in the mammary ducts before 

adolescence (2 week old), increased to high levels in the luminal epithelial cells 

of the mammary gland at the end of puberty (6 week old), and maintains a high 

level in the mammary gland of parous non-pregnant mice (6 months old). Pax9 

protein expression is basically absent in the mammary stroma. During 
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pregnancy, at gestation day 12, day 14 and day 17, the alveolar structure 

develops and the alveolar epithelial cells increase rapidly, whereas Pax9 protein 

expression levels and the proportion of Pax9-positive cells are lower than that of 

mammary ducts during puberty and parous non-pregnant. During lactation, Pax9 

protein expression decreased in most of the alveolar epithelial cells (lactation 

day 0, day 1 and day 8), while a few Pax9-positive epithelial cells sustain in 

every alveoli. After weaning, an extensive postlactational involution and tissue 

remodeling occurs and alveoli collapse and 90%mammary epithelial cells are 

eliminated within a few days (the majority of epithelial cells disappears in only 4 

days). Pax9 is up-regulated when involution is initiated (involution day 1), 

increases during involution (involution day 3), then returns to constant levels in 

mature ducts (involution day 8, 6-month). See Figure 3.4 
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Figure 3.4 Pax9 immunohistochemistry at different development stages 

Pax9 in different structures in mammary gland, note that ductal epithelial cells line in the lumen 

and alveoli as a regular single layer. Pax9 in ducts at pre-puberty (2-week old, A), puberty 

(6-week old, B) and mature parous duct (6-month old, C) and Pax9 during gestation stages at 

indicated time(D,E,F), Pax9 during lactationday 0, day1 and day8 (G, H, I) and involution day 1, 

day3 and day8 (J, K, L). Magnification: 200x 

 

3.5 Discussion 

The intrinsic low levels of Pax9 expression in the mammary gland made it 

difficult to gain sensitive RT-PCR and intensive immunostaining signal. Many 

efforts have been made to optimize the experimental protocol to improve the 

quality of the results. For immunostaining, we tried various antigen retrieval 



 

62 

 

methods, blocking reagents, different antibody concentration and antibody 

incubation conditions. For RT-PCR, we were very cautious at every step during 

tissue dissection and RNA isolation to avoid RNase contamination. However, the 

signal was always moderate and the RT-PCR band was weak. Mouse tongue 

and oesophagus were used as positive control, the immunostaining signal and 

RTPCR product of which were intensive.  

 

The results of Pax9 expression in the mammary gland demonstrated by 

semi-quantitative RT-PCR and immunohistochemistry are basically consistent. 

Before puberty, Pax9 expression is below detectable levels. During puberty, 

Pax9 expression reaches the highest level, and Pax9 protein was expressed in 

the luminal epithelial cells of the ducts, as well as in cap cells and body cells of 

inner layers of the TEBs. After puberty, Pax9 is expressed at a constant level in 

mature ductal epithelial cells. During gestation, Pax9 is expressed in the alveolar 

epithelial cells until parturition. When lactation starts, Pax9 expression drops 

down significantly, but is detectable in a small part of alveolar epithelial cells 

when the lactating mammary gland maintains homeostasis. After weaning, the 

mammary gland undergoes involution rapidly and Pax9 is up-regulated in the 

alveolar epithelial cells and maintains at a constant level in the ducts after alveoli 

collapse and the mammary tissue is remodeled (Figure 3.5). 
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Figure 3.5 Pax9 protein expression in different structures 

(A) Pax9 is strongly expressed in TEBs during puberty (note that not all body cells are 

Pax9-positive). (B) In the adult virgin female, Pax9 is exclusively expressed in luminal epithelial 

cells of mature ducts. (C) During pregnancy, low levels of Pax9 are expressed. (D) Expression is 

absent in the majority of epithelial cells when mammary gland is starting to secret milk. (E, F) 

Pax9 is up-regulated at various stages during involution. Magnification: 200x 

 

In the TEBs, Pax9 is strongly expressed in the cap cells, which proliferate for 

duct elongation, and in inner body cells, which undergo apoptosis for lumen 
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formation. The mesenchyme adjacent to TEBs also expresses Pax9 weakly 

(Figure 3.6). MMPs are supposed be active at the forefront of TEB to degrade 

the matrix and facilitate the TEB to invade the fat pad ahead. TEB bifurcation 

needs TGF-β accumulation ahead of the tip of the TEB, to inhibit cell 

proliferation at the bifurcating points of the TEB. Growth at the tip is hampered 

whereas the growth of its two sides continues, thus the TEB bifurcates at this 

point and forms two separate branches. 

 

 

Figure 3.6 TEB growth, bifurcation and cavity formation 

A) A bifurcation TEB with Pax9 immunostaining, bifurcating point indicated by arrow. B) A 

representative complete TEB with Pax9 immunostaining, inner body cells indicated by arrow 

head, cap cells indicated by arrow.  Manification: (A)200x, (B) 200x, cropped 

 

There is a complex hierarchy of mammary epithelial cells, including stem cell, 

progenitor cell, differentiated cell and terminally differentiated cell (Shackleton, 

Vaillant et al. 2006, Stingl, Raouf et al. 2006, Van Keymeulen, Rocha et al. 2011, 

Visvader and Lindeman 2011, Visvader and Smith (2011)). Pax9 expression 

varies in different types of mammary epithelial cells (Figure 3.7). Pax9 is 

increased in cap cells, body cells and ductal cells, when oestrogen triggers 

ductal branching during puberty, as well as in alveolar cells when progesterone 

initiates alveologenesis during pregnancy. It is decreased in the lactating 

alveolar cells, which have gone through further differentiation, when 
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progesterone withdraws and prolactin triggers lactogenesis. At weaning, Pax9 is 

increased again. It seems that Pax9 correlates with certain differentiation grades 

of the mammary epithelial cells.  

 

 

 

Figure 3.7 Pax9 expression in mammary ducts and alveoli 

Pax9 is expressed at various levels in different cell types (epithelial structures) in mouse 

mammary gland: strongly in most cap cells and a majority of body cells in TEBs (A), as well as 

ductal cell but in a heterogeneous pattern (B-D), decreased in alveoli (E), diminished to be 

undetectable in most of the lactating alveoli (F, G), increased back to a constant level in the 

epithelial cells going through involution (H).  Development stages and time points were as 

indicated. Magnificaiton: 200x, cropped. 

 

The Pax9-positive cell population in the alveolar cells at lactation (Figure 3.7 G) 

may have not gone through a terminal differentiation towards secretary cells, but 

instead, have maintained a specific pre-terminal-differentiation status in 

milk-secreting alveoli. The benefit of the maintenance of the 

pre-terminal-differentiation status of this cell population is suspected to reduce 

the presence of excessive milk globules (MGs), either by inhibiting milk secretion 
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or eliminating excessive MGs, thus maintain mammary homeostasis. One 

hypothesis is that Pax9 plays a role in apoptotic cell and MG engulfment. MG 

engulfment described a mechanism by which epithelial cells can function as 

non-professional phagocytes, to remove apoptotic cells and excessive MGs 

during lactation, thereby helping to prevent mastitis, which might be induced by 

excessive production of milk (Monks, Rosner et al. 2005). The same mechanism 

also acts in involution, when large amount of apoptotic epithelial cells and MGs 

need to be cleared out rapidly for tissue remodeling (Hanayama and Nagata 

2005) 

 

After investigated Pax9 expression in mouse mammary gland during different 

development stages, we started to explore the phenotypes of Pax9 mutant 

mammary gland in the next chapter. 
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Chapter 4. Systemic Pax9 gene dosage reduction delays 
pubertal ductal branching and facilitates formation of 
hyperplastic nodules 

 

4.1 Introduction 

Pax9 is known to play important roles during embryonic development, and 

abnormalities have been seen in tooth, palate, lip, and thymus development in 

Pax9-inactivated mice (Peters, Neubuser et al. 1998). In addition, it was found to 

be expressed in the adult oesophagus and progressive loss of Pax9 was seen to 

correlate with esophageal cancer malignancy.  

 

Three established Pax9 mouse mutant lines with reduced Pax9 levels were 

available in our lab, Pax9LacZ, Pax9neo and Pax9flox. Stragety for targeting and 

inactivation Pax9 in the mouse was schematically illustrated as Figure 4.1. 

 

Pax9LacZ was established by Peters in 1998 (Fu, Ishii et al. 2007). In this mouse 

line, Pax9 allele was inactivated by the exchange of exon 2 and 3 with LacZ, 

Pax9 thus totally lost its function. Pax9LacZ/LacZ mice die shortly after birth, 

whereas Pax9+/LacZ mice are phenotypically normal.  

 

Pax9neo was established by Kist in Peters’ lab (Kist, Watson et al. 2005). A 

removable neomycin resistance cassette (neo) flanked by FRT sites was 

inserted into the intron between exons 2 and 3 of Pax9. The phosphoglycerate 

kinase 1 (Pgk1) promoter of the neo-cassette is known to contain cryptic splice 

sites thus alternatively spliced mRNAs were generated from the Pax9neo locus. 

RT-PCR analysis revealed that 44% and 32% of Pax9 wild-type mRNA levels 
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were present in Pax9+/neo and Pax9+/LacZ embryos, respectively. The amount of 

Pax9 wild-type transcripts was further reduced to 20% in Pax9neo/neo mutants and 

to 7% in Pax9neo/LacZ compound mutants. Tooth development is severely 

disturbed in Pax9neo/neo, and the overall body growth of Pax9neo/neo is usually 

reduced compared to wild type and heterozygous controls. 

 

Pax9flox is generated with the insert of LoxP site-flanking Pax9 exons, thus the 

functional part of Pax9 gene could be excised by Cre enzyme. We used this 

mouse line to generate Pax9-conditional knockout mice, which will be analyzed 

in Chapter 5. 

 

 

Figure 4.1 Schematic Pax9 gene targeting and inactivation strategy.  

Black rectangles: Pax9 exons; red triangles: loxP sites; blue rectangles: frt sites. For detailed 

depiction, see decription in Chapter 4.1 and Chapter 5.2.1. 
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The established allelic Pax9 mutant series in our lab provided mouse models to 

investigate phenotypes during mammary gland development. Though an 

intrinsic disadvantage was that systemic reduction of Pax9 may bring in some 

unpredictable factors to mammary gland development, especially in terms of 

global hormone levels, but for a preliminary phenotype screening, these mouse 

models had easy access. Once phenotype was observed, more subtle models 

and techniques, for instance, mammary gland transplantation technique  and 

Pax9 conditional knockout mouse, would be carried out to avoid the interference 

by systemic Pax9 reduction. 

 

4.2 Mammary gland rudimental ductal tree appears normal at birth in 

Pax9LacZ /LacZ female mice 

 

Pax9 is completely inactivated in Pax9LacZ/LacZ. Pax9LacZ/LacZ mice die shortly after 

birth, while Pax9+/LacZ mice appear normal. Thus Pax9LacZ/LacZ is not able to be 

used after birth, but suitable to investigate embryonic mammary gland 

development. 

 

Pax9+/LacZ mice were crossed to generate Pax9LacZ/LacZ offspring. Mammary 

glands were dissected from newborn mice, fixed in 4% PFA, whole-mount 

stained with Carmine-alum. Genotype and sex were identified by PCR.  

 

The morphology of all five pairs of mammary glands in newborn Pax9LacZ/LacZ 

appeared basically normal, compared to Pax9+/+ controls. The rudimental ductal 

trees were seen in the mutants, though occasionally less primary ducts were 

observed, however, the overall branching pattern were not disturbed. This 

observation demonstrated that Pax9 was not an indispensable factor for 
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embryonic mammary gland development (Figure 4.2). 

 

 

Figure 4.2 Mammary gland rudimental ductal trees showing similar branching pattern in 

wild type control and Pax9 mutant mice 

(A) A rudimental mammary ductal tree in Pax9+/+ newborn. (B) A rudimental mammary ductal tree 

in Pax9LacZ/LacZ newborn. The overall branching pattern are similar. Magnification: 40x. n=2 

 

4.3 Mammary gland ductal branching is significantly delayed at puberty in 

Pax9neo/neo females 

To investigate the phenotype of linear development, mammary glands were 

dissected at 2 weeks, 3 weeks, 6 weeks and 9 weeks after birth, representing 

the stages of pre-puberty, onset of puberty, puberty and post-puberty, 

respectively.  

 

Before puberty (2 weeks), the size and pattern of the primary ductal trees in 

Pax9+/neo and Pax9neo/neo mice appear similar, though moderately less branching 

in mutants was observed (Figure 4.3 A, B). At the onset of puberty (3 weeks), 

responding to oestrogen circulation, TEBs were promptly formed in Pax9+/neo 

controls, however, they were not formed yet in Pax9neo/neo mice. Since the TEB is 
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the typical organ for the mammary duct elongation and bifurcation, the onset of 

duct branching during puberty was apparently delayed in Pax9neo/neo (Figure 4.3 

C, D). At puberty (6 weeks), the mammary gland duct elongation was severely 

impaired in Pax9neo/neo mice. Designating the lymph node as a landmarker, the 

mammary ducts in Pax9neo/neo mice had just reached the lymph node site, while 

the ducts in Pax9+/neo mice had grown past the lymph node and almost reached 

the distal end of the mammary gland.  In addition, less side branching was seen 

in the Pax9neo/neo mammary gland. The number of TEBs at puberty stage in 

Pax9neo/neo mice is far less than in Pax9+/neo mice. The TEB is a motile structure 

of the mammary gland, leading mammary ducts invading into the fat pat until the 

ducts occupy the whole fat pad at the end of puberty. Cellular events in TEBs are 

very active, including cell differentiation, epithelial cell proliferation, apoptosis 

and ECM degradation and cell alignment. The inadequate development of TEBs 

might be an important causal event for the retarded ductal branching (Figure 4.3 

E, F). 

Though the ductal branching was delayed in the mutant mammary gland during 

puberty, it finally could catch up because the branching continued until the duct 

reaches the edge of the fat pad (Figure 4.3 G, H). 
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Figure 4.3 Linear mammary gland development in Pax9 mutant mice and controls 

Ductal tree patterns appear similar in Pax9+/neo and Pax9neo/neo mice (A, B) at 2 weeks age, TEBs 

formation is delayed at onset of puberty in Pax9neo/neo (C, D), ductal branching severely impaired 

in Pax9neo/neo at puberty, in terms of both elongation and side branching, with less TEBs formed at 

the leading end of ducts(E, F), the branching of the duct in Pax9neo/neo would finally catch up 

though delayed compared to control (G, H).n=3 for each time point. Magnification: 10x. n=3 
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However, the reduction by the overall body growth of Pax9neo/neo mice might 

need to be considered since Pax9neo/neo mice usually smaller than controls. To 

evaluate the overall growth of the mammary gland, mammary gland weight and 

body weight were taken into account. Mammary glands were dissected at 2 

weeks, 6 weeks, and 9 weeks age respectively and weighted, mice were 

weighed before dissection. The weight of Pax9neo/neo mammary gland was 

usually less than the control, however, the body weight of the mutant was less 

than the control as well. Reduction of mammary gland weight in Pax9neo/neo 

female was found to correlate with reduction of the body weight (Figure 4.4). 

 

Figure 4.4 Mammary gland weight growth in Pax9 mutant mice and controls 

(A) Mammary gland weight measured at indicated ages. (B) Mouse body weight at indicated age. 

(B) Weight percentage of mammary gland in mouse body. (D) T-test showing significance 

between mammary gland and body weight. Three or four female mice were used for each time 

point. BW: body weight; MG: mammary gland weight. n=4 to 6 for each genotype. 
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4.4 Alveoli morphology is basically normal in Pax9neo/neo but the growth of 

pups nursed by Pax9neo/neo 
females is delayed during pregnancy 

To investigate the impact of the reduction of Pax9 on mammary gland 

development during pregnancy, we examined mammary gland morphology at 

lactation day 1, and traced the weight gain curve of pups from day 1 to day 13 

after birth, which reflected the lactating ability of the mammary gland (Figure 

4.5).  

 

At lactation day 1, well-developed alveoli were seen in both of Pax9neo/neo and 

Pax9+/neo females, alveolar are known to develop from tertiary ducts, as seen in 

the control, but occasionally some alveoli were formed directly from the primary 

ducts and side branches of Pax9neo/neo females (Figure 4.5 A). This may indicate 

a misled differentiation of the mammary epithelial cell. 

 

The weight gain curve of pups reflects the lactating capability of the dam. To 

normalize the lactating pressure, only 10 pups were kept with dam, while the 

extra pups were removed immediately after birth. The pups and dams were 

weighed at fixed time every day. Pups nursed by Pax9neo/neo dams were gaining 

weight behind those nursed by Pax9+/neo dams, which implicated that the 

lactating capacity of Pax9neo/neo dams was impaired to some extent. On the other 

hand, the body weight of Pax9neo/neo is usually smaller than Pax9+/neo, thus the 

overall health and nutrition level possibly was below normal conditions, which 

could be one of the reasons that the lactating capacity of Pax9neo/neo females was 

weaker than controls (Figure 4.5 B, C).  
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Figure 4.5 Alveolus formation and lactating capacity 

(A) The mammary gland of Pax9neo/neo shows the morphology similar with the control at lactation 

day 1. (B) Litters from Pax9neo/neo females show 42% less body weight. (C) The body weight of 

Pax9neo/neo dams is reduced by 21%. n=3. Magnification: (A, B) 10x, (C, D) 40x. n=3 
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4.5 Ductal hyperplasia, hyperplastic alveolar nodules were sporadically 

seen in the mature mammary gland in Pax9neo/neo mice 

After puberty with the most rapid ductal branching, and between every pregnant 

cycle with enormous alveolar development and tissue remodeling post-lactation, 

the mammary gland keeps a relative quiet state. Tertiary ducts and alveoli also 

moderately form and regress following every estrus cycle. Mechanisms to 

maintain the mammary epithelial cell differentiation state in the mature duct are 

crucial for the homeostasis of the mammary gland and to avoid epithelial cells 

transforming to breast cancer cells. Loss of some genes, for example, GATA3 

(Kouros-Mehr, Slorach et al. 2006, Kouros-Mehr, Kim et al. 2008, Raven, 

Williams et al. 2011), have been shown to change ductal epithelial cell 

characteristics and initiates cancer in some cases.  

 

In order to see whether the reduction of Pax9 expression disturbs the 

maintenance of the epithelium in the mature duct, or any other impact left by 

early events, we investigated the mammary glands of 3.5-month old virgin 

Pax9neoneo females and 6 and 8-month old parous Pax9neo/neo females (Figure 

4.6).  

 

The ductal branching pattern of 3.5-month old Pax9neo/neo appeared more 

compact than controls, ductal walls were thicker, and structure resembling 

hyperplastic alveolar nodules (HANs) formed sporadically. In 6 and 8-month old 

parous non-pregnant Pax9neo/neo, ductal hyperplasia was obviously shown and 

nodules were found at the distal ends. 
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Figure 4.6 HANs and ductal hyperplasia in Pax9neo/neo females 

Hyperplastic alveolar nodules (HANs, indicated by arrow in D) were seen in the mammary gland 

of 3.5 months old Pax9neo/neo virgin, by whole mount Carmine-alum staining (A, B, C, D) and 

hyperplasia in the duct (indicated by arrow in H) and small nodules (indicated by arrow in F) 

within mammary ducts in 8 months old Pax9neo/neo by H&E staining on sections (E, F, G, H). n=3 
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4.6 Loss of laminin in the basement membrane of the mammary duct in 

Pax9neo/neo 

The basement membrane is the outer layer of mammary duct epithelia, the 

important function of which is to keep the integrity of the duct and maintain 

polarity of the epithelial cells. Laminin is a characteristic component of basement 

membrane. We applied immunohistochemistry with anti-laminin1 antibody to 

investigate the integrity of the basement membrane of the mammary ducts. 

Parous non-pregnant wild type mice (WT) used as controls, both Pax9+/neo and 

Pax9neo/neo were examined.  

 

In wild type controls, a single layer of ductal epithelial cells strictly aligns along 

the duct, with a single layer of myoepithelial cells aligning outside. Pax9 is 

expressed in most dutal epithelial cells. In Pax9 reduced mammary glands, the 

number of Pax9 positive cells is much less than in wild type. The Pax9 positive 

epithelial cells still align regularly along the duct, in a single layer pattern, mixed 

with Pax9 negative ductal epithelial cells, but some of the Pax9 negative cells 

expends and detaches from the single layer alignment (Figure 4.7 A, B, C).  

 

Laminin1 is entirely lost outside the ducts in Pax9+/neo females, whereas intact in 

wild type. The duct filled with Pax9 negative cells was also seen with the loss of 

Laminin1 (Figure 4.7 D, E). These observations imply that Pax9 may function to 

maintain ductal epithelial cell alignment in the duct and keep the integrity of the 

basement membrane. 
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Figure 4.7 Pax9 inactivated cells expand and basement membrane integrity is impaired in 

Pax9+/neo females 

Pax9 positive cells align in a single layer pattern in wild type control (A). Pax9 is reduced both at 

the average expression level and the number of positive cells (B), and Pax9 negative cells 

expand (indicated by arrow) and detach from the single layer alignment (C). Laminin1 is 

expressed in the basement membrane of the mammary duct in wild type (D, indicated by arrow), 

but lost in mutant and duct filled with expanded cells is seen in mutant (E, indicated by arrow). 

Magnification: (A, B, C) 200x, (D, E) 400x, cropped. n=3 

 

4.7 The disorganized patterns of luminal epithelial cells in parous 

Pax9neo/neo are similar to the histology of human breast cancers 

The whole mount staining of the mammary gland in Pax9+/neo and Pax9neo/neo 

mice did not show a profound phenotype towards mammary tumour formation, 

though it may need a longer latency or more replicates to make it statistically 
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meaningful, however, the histology and immunohistochemistry on sections 

provided more details about the cell alignment within ducts with Pax9 

expression. 

 

 

 

Figure 4.8 The patterns of disorganized luminal epithelial cells in Pax9neo/neo mammary 

gland mimic cancerous histology 

In Pax9neo/neo mammary gland, some ductal epithelial cell expanded and filled the duct space 

(A-C, expanding cells indicated by arrows, a normal duct surrounded with unknown infiltrating 

cells indicated by arrowhead). Pax9 positive cells lined in the duct (D-F), Pax9 negative cells 

filled the duct (H) and form cell mass, some of Pax9 negative cells invaded into the stroma (G, I, 

cell mass indicated by arrows), which were similar with the histology of breast cancer in human 

(J-L, duct filling indicated by arrowhead, cancer cell mass indicated by arrow). Magnificaiton: 

200x. n=3. 
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The H&E staining of 3.5-month old Pax9neo/neo mammary gland showed 

disorganized ductal epithelial cells. Epithelial cells were expanded, escaped 

from the single layer alignment restriction and formed masses filling the duct 

(Figure 4.8 A, B, C). Pax9-immunohistochemistry showed that intact ducts were 

mainly composed with Pax9 positive cells, though Pax9-reduced cells also 

mixed in, while the Pax9-negative luminal cells expanded, lost alignment and 

filled the ducts (Figure 4.8 D, E, F). Pax9 negative luminal cells even formed cell 

mass migrating through the basement and invading into the matrix of mammary 

gland (Figure 4.8 G, H, I), which were similar with the histology of human breast 

cancer (Figure 4.8 J, K, L) (see Chapter 6 for details about Pax9 expression in 

breast cancer). Thus, compared with human breast cancer, the progression to a 

disorganized pattern of luminal cells in Pax9neo/neo could, for some extent, mimic 

pre-cancerous stages.  

 

4.8 Discussion 

Though Pax9neo mouse line was not an ideal mouse model to precisely study 

Pax9’s function in the mammary gland, the phenotype of Pax9neo/neo still provided 

us the first vision and a useful screen for possible roles of Pax9 playing in the 

mammary gland at particular developmental stages. 

 

The embryonic mammary gland development was not affected severely in 

Pax9LacZ/LacZ females, the rudimental tree basically developing normal. The 

significant phenotype was seen at puberty stage, when ductal branching delayed 

profoundly with less TEBs and slow ductal elongation. Previously we had found 

that Pax9 transcript and protein expression peaks at puberty (see Chapter 3), 

and Pax9 protein is strongly expressed in the TEB cap cells, a cell population 

with active proliferation. Therefore, less TEBs formation and delayed ductal 

elongation during puberty in Pax9neo/neo females further supported a function of 
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Pax9 in mammary gland development during puberty. This delay could also be 

secondary effect to delayed development of Pax9neo/neo mice.  

 

Alveolar formation appeared normal, though some alveoli developed from the 

primary duct in the mutant. Lactating capacity was weaker in mutants than in 

controls, but considering the reduced body weight of the mutant dam, the 

reduced lactating capacity may not directly come from the reduction of Pax9. 

 

Besides cell proliferation and differentiation, the maintenance of luminal 

epithelial cells differentiation state is important as well. The distortion of the 

ductal epithelial characteristics can initiate breast cancer. With the reduction of 

Pax9, ducts were occasionally filled with Pax9 negative epithelial cells, and 

ductal epithelial cells lost their single layer alignment and formed cell mass. The 

integrity of the basement membrane appeared defective with the loss of 

Laminin1, while Laminin was reported to play an important role in keeping 

epithelial cell polarity (Deblois, Chahrour et al. 2010, Liu, Nugoli et al. 2011). 

When compared with human breast cancers, there is similar histology of the 

luminal cell disorganization in the mouse mutants and human breast cancer.  

 

The reduction of Pax9 using Pax9neo mouse line is a systemic reduction, we did 

not know exactly whether it affects the hormone levels in the mouse. However, 

mammary development is a highly coordinated process involving global and 

local signaling, and hormone control is the most characteristic factor for 

mammary gland development. If Pax9 is involved in the development and 

functions of other glands, for instance, ovary or pituitary, the mammary gland 

development will definitely be profoundly affected by the hormone changing. In 

fact, by RT-PCR, we found that Pax9 was expressed in the ovary of a 5 week old 

wild type mouse (figure not shown here).  
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For further studies, we need to exclude the systemic effect of the Pax9 

inactivation. The mammary transplantation could not be used to investigate 

lactation because the transplanted mammary gland is not linked to the nipple, 

thus we decided to use a conditional knockout mouse model to study Pax9’s 

function specifically in the mammary gland. 
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Chapter 5. Mammary gland-specific Pax9-deficiency severely 

impairs mammary gland involution 

5.1 Introduction 

Demonstrated by previous studies in mice carrying a Pax9neo allele, Pax9 

dosage reduction delays mammary gland branching at adolescent stage, and 

forms ductal hyperplasia, hyperplastic alveolar nodes (HANs) and neoplasia in 

the mammary gland in parous and nulliparous non-pregnant mice, accompanied 

by loss of laminin1 in extracellular matrix (ECM). However, systemic reduction of 

Pax9 using a Pax9neo allele had an inevitable disadvantage, by which hormone 

levels may have been affected by systemic Pax9 reduction and hormonal 

signallings crucial to mammary gland development thus have been attenuated 

as well. To gain conclusive evidence for the function of Pax9 playing in the 

mammary gland, and to provide reliable materials for successive molecular 

regulatory mechanism study, we needed to generate mammary gland-specific 

Pax9-deficient mouse models to exclude any other disturbance to mammary 

gland development rather than genetic and molecular changes from the 

mammary epithelium itself.  

 

For this purpose, several lines of mammary gland-specific Pax9-deficient mouse 

model were built up, phenotypes were examined at adolescent and pregnant 

stages, immunohistochemistry, western blot and expression microarray were 

applied to identify candidate signaling pathways regulated by Pax9. 

Loss-of-function study of Pax9 in the mammary gland was expected to provide 

clearer insight of the functions of Pax9 in mammary gland biology.  
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5.2 Generation of mammary gland-specific Pax9-deficient mice and 

evaluation of Cre mediated recombination efficiency 

5.2.1 Strategy to knockout Pax9 specifically in mouse mammary gland 

Transgenic mouse models that use promoters active specifically in the 

mammary gland to selectively activate or remove particular genes from 

mammary epithelial cells have greatly facilitated the dissection of mammary 

gland developmental processes (Fantozzi and Christofori 2006). Many of these 

transgenic mouse models revealed unexpected connections between the 

processes of normal mammary gland development and mammary tumour 

growth and progression.  

 

To determine whether Pax9 is required for mammary gland development, our 

laboratory generated mice carrying a conditional Pax9 allele (Pax9flox), in which 

the first and second coding exons, containing the ATG translational start site of 

the Pax9 gene, were flanked with LoxP recombination sites (Kist, Greally et al. 

2007), Figure 5.1.  

 

To facilitate excision of the Pax9flox allele in the epithelial compartment of the 

mouse mammary gland, Cre allele was introduced into the conditional Pax9 

strain (Figure 5.1). We had two mouse lines carrying Cre allele under the control 

of two different promoters: mouse mammary tumour virus (MMTV), expressing 

Cre in the mammary epithelium (MMTV-Cre) (Guy, Cardiff et al. 1992, White, 

Kurpios et al. 2004), and cytokeratin 14 (K14), expressing Cre in the mammary 

placode and the myoepithelium in mammary ducts (K14-Cre) (Fu, Ishii et al. 

2007). MMTV-Cre strain was bred in FVB background, provided by Muller’s lab 

in Canada. K14-Cre strain was bred in C57BL6 background, provided by Elaine’ 

lab.  
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Figure 5.1 Schematic representation of the Pax9 alleles used in this study 

Black rectangles: Pax9 exons; red triangles: loxP sites; blue rectangles: frt sites. For detailed 

depiction, see text in Chapter 5.2.1.  

 

5.2.2 Cre-mediated recombination was heterogeneous and was 

up-regulated by pregnancy 

To monitor Cre-mediated recombination, mice carrying Cre alleles could be bred 

to mice harbouring a Cre-responsive β-galactosidase reporter construct 

(GTRosa26 line) (Soriano 1999, White, Kurpios et al. 2004). The presence of the 

GTRosa26 allele in Cre mice enables us to detect Cre-mediated excision in situ 

(Figure 5.2 A). When the mammary gland from the bitransgenic mouse is stained 

in situ with the colorimetric β-galactosidase substrate X-gal, whole mount 

staining and sections of the stained glands reveals expression of the Cre 
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transgene. 

 

The MMTV promoter has been shown to work efficiently in FVB mouse 

background in Muller’s lab (Figure 5.2 B), but promoter activity may be different 

in a mixed genetic background. On the other hand, K14 is known to be 

expressed as early as in the mammary placode at embryonic stage and in the 

myoepithelium of mammary ducts, and K14-Cre mediated recombination in 

mammary gland was seen in mammary gland (Figure 5.2 C), but the frequency 

of recombination has not yet been evaluated. Therefore, the efficiency of 

Cre-mediated recombination needed to be re-evaluated in the genetic 

background of our mouse strains. 

 

Figure 5.2 Efficiency of Cre-loxP recombination  

A) Schematic representation of evaluating Cre recombination activity using Cre-responsive 

GTRosa26 β-galactosidase reporter construct. B) MMTV-Cre is active in mammary gland in FVB 

background provided by Muller’s lab. C) K14-Cre is active in epithelial cells as well as 

myoepithelial cells in this tested mouse model, which may be due to K14 is active as early as in 

mammary placode during embryonic stage, though otherwise K14 is exclusively expressed in the 

myoepithelium after a primary ductal tree forms.  
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We bred mice carrying MMTV-Cre and K14-Cre, respectively, to mice carrying 

GTRosa26, and monitored the recombination by X-gal whole mount staining. 

The mammary ducts of K14-Cre;GTRosa26 mice showed heterogeneous 

pattern for X-gal staining (Figure 5.3 A), maybe due to heterogeneously 

Cre-mediated recombination in the mammary placode. In the mixed genetic 

background of the MMTV-Cre (FVB) and Pax9flox carriers (C57BL6), 

Cre-mediated recombination was found sporadically as well. The mammary 

glands in virgin MMTV-Cre;GTRosa26, X-gal were mostly negative for X-gal 

staining, but lactating mammary glands exhibited strong positive X-gal staining in 

some particular lobule alveoli (Figure 5.3 A). Based on above tests, we regarded 

MMTV-Cre mouse line as a better Cre allele carrier to generate mammary 

gland-specific Pax9-deficient mouse model. 

 

We also confirmed targeted excision of the Pax9flox allele in the mammary glands 

using molecular approach. When MMTV-Cre and K14-Cre mice were bred to 

Pax9flox/flox mice to generate mammary gland-specific Pax9-deficient mice, 

targeted recombination of the Pax9flox allele could be demonstrated by PCR 

analysis of mammary gland DNA from MMTV-Cre;Pax9flox/flox and 

K14-Cre;Pax9flox/flox animals, using primers which amplify both intact and 

Cre-deleted forms of the Pax9flox allele. Amplification of the intact form of the 

Pax9flox allele likely reflects the presence of stromal cell DNA in the preparation.  

 

As detected by PCR of Pax9flox allele, Pax9 deletion was weak in virgin 

K14-Cre;Pax9flox/flox and virgin MMTV-Cre;Pax9flox/flox (Figure 5.3 C, D). MMTV 

promoter is reported to be activated by pregnancy, so we set 

MMTV-Cre;Pax9flox/flox mice for pregnancy and examined Pax9 deletion in the 

mammary gland at involution stage following pregnancy by PCR analysis as well. 

The deletion of Pax9 was dramatically increased in the involuting mammary 
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gland of MMTV-Cre;Pax9flox/flox mice (Figure 5.3 D). 

 

The activity of MMTV promoter is hormone-inducible, thus high levels of 

oestrogen and progesterone during pregnancy significantly increases 

Cre-mediated recombination. Compared to K14 promoter, MMTV promoter 

works more efficiently for Cre-mediated recombination following pregnancy in 

the mammary gland in FVB/C57BL6 mixed gene background. Weak 

recombination in virgin MMTV-Cre;Pax9flox/flox mice limits our study of Pax9’s 

function for mammary ductal elongation and branching during puberty, however, 

it endows us a tool to study the role of Pax9 in mammary gland involution, with 

the late activation of Pax9 deletion specifically in the mammary gland following 

pregnancy. 

 

 

Figure 5.3 Evaluation of Cre-mediated recombination 

(A, B) X-gal whole mount staining of the mammary glands in MMTV-Cre;GTRosa26 and K14-Cre; 

GTRosa26 mice. (C, D) PCR detection of Pax9 deletion in MMTV-Cre;Pax9flox/flox and K14-Cre; 

Pax9flox/flox mice. Magnification: 10x. n=3 
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5.3 Hyperplastic alveolar nodules are frequently seen in mammary glands 

in old virgin K14-Cre; Pax9flox/flox mice 

Though Cre-mediated Pax9 deletion in K14-Cre; Pax9flox/flox was heterogeneous, 

we screened the mammary glands, by Carmine-alum whole mount staining, of a 

total of 8 mutant females, at the age between 10 month to 1 year. Hyperplastic 

alveolar nodules (HANs) were seen in 5 out of 8 mutants, but not in Pax9flox/flox 

controls. Thicken ductal wall was seen in the mutants as well. This phenotype is 

similar with the observation in 3.5 months Pax9neo/neo mutants.  

 

HANs in the mouse mammary gland, is the compartment for terminal ductal 

lobular units (TDLUs) in human breast, small ductules at the end of mammary 

gland, where the majority of breast cancers arise. Reduction of Pax9 in the 

mammary gland results in the HAN formation thus increased the risk of 

mammary gland oncogenesis.  
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Figure 5.4 Hyperplastic alveolar nodules in K14-Cre;Pax9flox/flox  

The mammary glands of 10 month to 1 year old Pax9flox/flox;K14-Cre virgin mice showed various 

morphology, 5 in 8 Pax9flox/flox;K14-Cre mice developing Hyperplastic alveolar nodules (HANs, 

indicated by arrow). (A) Pax9flox/flox control. (B, C, D) HAN representatives show various 

morphology in mouse mammary glands. Magnification: 40x. n=8. 

 

5.4 Mammary gland involution following lactation was severely impaired in 

MMTV-Cre;Pax9flox/flox mice 

Since Cre-mediated Pax9 deletion in MMTV-Cre;Pax9flox/flox mice could not be 

activated until pregnancy, we decided to investigate the phenotype during 

involution, the last stage of pregnant cyclic development. 6 pups were kept with 

the dam at birth and the extra pups were disgarded, then the pups feeded by the 

dams were removed from the dams at certain timepoints to normalized the 

mammary gland involution of the dam, which is called forced involution.  
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Mammary gland involution is the last step of mammary gland development in the 

pregnant cycle and is characterized by extensive apoptosis and remodeling after 

the cessation of lactation. At this stage, the highly structured secretory gland 

returns into one that resembles the virgin state so that the differentiation program 

initiated by gestation may begin again. Mammary involution depends on 

epithelial apoptosis in which epithelial lumens collapse and lobulo-alveolar 

structures are deleted with rapid elimination of up to 90 % of the epithelium. 

Epithelial cell were recognized to take part in the engulfment of neighboring 

apoptotic cells as “non-professional” phagocyte (Monks, Rosner et al. 2005). 

This process occurs in parallel with adipogenesis. Microarray expression 

analyses have suggested the involvement of inflammatory processes in 

mammary gland involution (Clarkson, Wayland et al. 2004, Stein, Morris et al. 

2004). 

 

In our investigation, mammary gland involution was dramatically impaired in 

MMTV-Cre;Pax9flox/flox mice. Mammary glands were collected from 

MMTV-Cre;Pax9flox/flox mutants and from Pax9flox/flox controls at involution day 4, 

day 6 and day8 respectively. Rapid alveolar collapse was seen in controls from 

day 4, and the mammary gland regressed to an almost non-pregnant state at 

day 8, whereas, in mutants, alveolar structures were intact throughout day 4, day 

6 and day 8 (Figure 5.5). However, the number of lobules in mutants appeared 

less than in controls, especially at involution day 8, which may be due to 

inadequate tertiary ducts or lobular development at early gestation, or 

over-compensation by other clearance mechanism during late involution. The 

secretory alveolar cells appeared still active for milk synthesis and secreting, 

because the duct were extremely dilated as if the milk fat globules (MFGs) kept 

increasing within it. The extent of the duct dilation is strikingly severe than the 

phenotypes previously reported in other genetically manipulated mouse models 
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for mammary gland involution (Yang, Spitzer et al. 1994, Atabai, Fernandez et al. 

2005). Apparently Pax9 plays important roles in mammary gland involution 

(Figure 5.5). 

 

 

 

Figure 5.5 Phenotype of mammary gland-specific Pax9 deletion during late stage of 

involution 

Carmine-alum whole mount staining of mammary gland at involution day4, day 6 and day 8, 

shows strikingly intact alveolar structure (indicated by arrowhead in L) and extremely dilated 

ducts (indicated by arrow in L) due to persisting increasing milk fat globulins (MFGs) in the 

mutant mammary glands. n=2 
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Figure 5.6 Pax9 protein expression in mammary gland during the late phase of involution 

Pax9 is expressed in control mammary epithelial cells at involution day 6 and day 8, with 

alveolae collapsed and tissue remodeled (A,C,E,G), whereas in Pax9-deficient mammary gland, 

alveolar sturcture is persisting, the duct is strikingly dilated, and the alveoli and ducts are full of 

MFGs (B,D,F,H, MFG indicated by arrow). Magnification: 200x. n=2 
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To confirm Pax9-deficiency in mutant mammary glands, we examined the 

deletion of Pax9 in the mammary gland at involution day 6 and day8 by 

immunohistochemistry (Figure 5.6). Pax9 protein is expressed in control 

mammary glands with normal involution, but absent in the persisting alveolar 

and ducts in the mutants. H&E staining showed that alveoli and ducts of the 

mutants are full of MFGs, which supported our postulation that alveolar cells in 

the mutants are still active to secrete milk and the Pax9-deficient mammary 

gland lacks proper mechanisms to clear the excessive MFGs.  

 

5.5 Stats activation and apoptosis evasion in Pax9-deficient mammary 

gland during postlactational involution 

Pax9 was found to be fundamental in mammary gland involution (Chapter 5.4). 

During this stage, apoptosis of epithelial cells is an essential event, while Stat3 is 

the key regulator for apoptosis during the first phase involution and Stat5 is a cell 

survival signal and protects cell from death (Haricharan and Li 2013). To 

investigate if apoptosis is the reason for the involution impairment in Pax9 

deficient mice, and the possibility of a correlation between Pax9 and Stats, 

immunohistochemistry was applied to the involuting mammary glands. 

 

Stat3 and Stat5 activation in Pax9 deficient mammary glands revealed by 

Immunohistochemistry  

Firstly, we confirmed Pax9 deletion in the mammary gland by Pax9 

immunostaining. Like the sporadic pattern of Cre-mediated recombination shown 

by X-gal whole mount staining of MMTV-Cre;GTRosa26 mammary gland, Pax9 

deletion in MMTV-Cre;Pax9flox/flox mammary gland was heterogeneous as well. 

Pax9 was not homogeneously deleted in the mammary glands of mutant mice 

on involution day 2 and day 3, however, it was deleted much more effectively in 

the mammary glands on involution day6 (Figure 5.7.1-3). Pax9 protein was 
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absent in all persisting alveoli, in contrast, Pax9 was presented in involuting 

alveoli of the controls. 

  

Secondly, we examined apoptosis in mutant and control mammary glands using 

TUNEL assay, on involution day 2, day 3 and day 6, respectively. We found that 

apoptosis was significantly impaired in Pax9-deficient mammary gland during 

involution (Figure 5.7.1-3 ). In controls, apoptosis was seen from involution day 2, 

reached maximum on involution day 3, and gradually reduced till involution day 6. 

In contrast with the extensive apoptosis in controls, apoptosis rarely happened in 

Pax9-defincient mammary gland, throughout involution day 2 to day 6. Involution 

day 3 is the time point of maximum apoptosis happening (Clarkson and Watson 

2003), the ratio of TUNEL positive cells in controls to mutants seen in one 

microscope field of vision was 30:1 (Figure 5.7.2 E, F). Apparently, 

Pax9-deficient alveolar cells escape apoptosis for mammary gland involution. 

 

Thirdly, we analyzed the expression of Stat3/Stat5 to study if these proteins 

could be involved in the reduced apoptosis of Pax9-deficient alveolar epithelial 

cell. 

 

Stat3 is recognized as the most important transducer in mammary gland 

involution. It is activated by phosphorylation (pStat3) and initiates apoptosis 

immediately when first stage involution starts. We performed pStat3 

immunohistochemistry in mammary glands on involution day 2, day 3 and day 6, 

along with TUNEL assay. In controls, pStat3 was presented substantially 

throughout all three time points, in contrast, only weakly in mutants (Figure 

5.7.1-3). Because MMTV-Cre-mediated Pax9 deletion was sporadic in 

MMTV-Cre;Pax9flox/flox mammary glands, we compared neighboring lobules with 

and without successful Pax9 deletion (Figure 5.7.2 B, D), and found that in the 
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lobule with successful Pax9 deletion, pStat3 was absent, whereas in the lobule 

without Pax9 deletion, pStat3 was present. The correlation between Pax9 and 

pStat3 suggests that Pax9-deficiency induced apoptosis delay during mammary 

gland involution may act through a delay of Stat3 activation.  

 

 

 

Pax9 deficiency was examined with Pax9 immunostaing (A, B). Stat3 was activated in control 

mammary glands and the non-recombined counterpart of mutant mammary glands (C,D). 

Apoptosis was severely impaired in the mutant mammary gland (E,F). Magnification: 200x. n=1

Figure 5.7-1 Stat3 activation and apoptosis in the mammary gland on involution day 2 
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Pax9 deficiency was examined with Pax9 immunostaing (A, B). Stat3 was activated in control 

mammary glands and the non-recombined counterpart of mutant mammary glands (C, D). 

Apoptosis was severely impaired in the mutant mammary gland (E, F), and reach maximum level 

on involution day 3. Magnification: 200x. n=1

Figure 5.7-2 Stat3 activation and apoptosis in the mammary gland on involution day 3 
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Pax9 deficiency was examined with Pax9 immunostaing (A, B). Stat3 was activated in control 

mammary glands and the non-recombined counterpart of mutant mammary glands (C, D). 

Apoptosis was severely impaired in the mutant mammary gland (E, F), and alveoli persisted 

even on involution day 6. Magnification: 200x. n=1

Figure 5.7-3 Stat3 activation and apoptosis in the mammary gland on involution day 6 
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Moreover, Stat3 and Stat5 function in a pair during mammary gland involution. 

The activation of Stat3 at involution stage is always accompanied by the 

inactivation of Stat5, which is active at lactation stage. Stat3 functions as a death 

signal and Stat5 functions as a cell survival signal (Chapman, Lourenco et al. 

1999, Chapman, Lourenco et al. 2000, Iavnilovitch, Groner et al. 2002). In order 

to see whether the activation and inactivation dynamics of Stat5 is also involved 

in Pax9-deficiency induced apoptosis delay, we examined the phosphorylated 

form of Stat5 (pStat5) by immunohistochemistry, paralleled with pStat3, in 

mammary glands on involution day4 (Figure 5.8). It was shown that pStat5 

already declined to very weak levels in the alveoli in the control mammary gland 

as reported in literature, but surprisingly, in Pax9-deficient mammary glands, 

Stat5 was strongly activated in the nuclei of alveolar cells. At the same time, 

pStat3 partially diffused back to cytoplasm in the control mammary gland, but 

started to be activated in the nuclei of alveolar cells in the Pax9-deficient 

mammary gland, though the levels were still lower than in controls. As the 

translocation of pStat3 back to cytoplasm in controls means rapid apoptosis 

slowing down, pStat3 presented in the nuclei of the mutant alveolar epithelial 

cells demonstrated a later catch-up of Stat3 activation after an initial delay at the 

early stage of involution in the Pax9-deficiency mammary gland. 

 

Taken together, the correlation between Pax9 expression and Stats activation 

indicated that Pax9 may regulate mammary gland involution upstream of Stat3 

and Stat5 (Iavnilovitch, Groner et al. 2002, Kritikou, Sharkey et al. 2003, Bertucci, 

Quaglino et al. 2010). Further studies need to be done to dissect subtle signaling 

pathways and find the direct downstream gene of Pax9. 
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Figure 5.8 Stats activation in the mammary gland on involution day 4 

Stat3 is activated in control mammary gland, and already slightly diffuses (after the apoptosis 

peak on involution day 3), whereas presented in the nuclei of mutant at lower levels (A, B). Stat5 

is basically not activated in control mammary gland (C) but highly activated in Pax9 mutant 

mammary gland (D). Magnification: 200x. n=1 

 

Stat3 and Stat5 activation in Pax9 deficient mammary glands examined by 

Western blot  

For a quantitative measurement of the dynamics change of pStat3 and pStat5, 

we did western blot of the mammary glands through lactation day 8 (involution 

day 0) to involution day4 (Figure 5.9). In controls, pStat3 is absent at lactation, 

then increases immediately on involution day 1 and keeps activated on 

involution day2, day3, till day 4, to initiate apoptosis and maintain mammary 

gland involution; In mutants, pStat3 follows a similar dynamic curve but at lower 

levels than in controls. Keratin 18 (K18) was used as baseline control, on 

involution day 1 and day4.  
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pStat5, in controls, is at an extensively activated level on lactation day8, 

maintaining the secretory differentiation state of epithelial cells to produce and 

secrete milk, decreases immediately on involution day1, decreasees further to 

almost absent on day2, to withdraw the cell survival signals, then slightly 

increases on day 3, and keeps at a moderate level on day4, balancing the cell 

death signals to avoid over-reacting to apoptosis. In mutants, surprisingly, pStat5 

is absent on lactation day8, involution day1, day2, increases from day3 and 

reaches to an intensive level on day4.   

 

Due to the heterogeneous deletion pattern of Pax9 in the mammary gland, 

changes specifically in the Pax9-deleted alveoli might have been disguised by 

other non-recombined alveoli. On involution day 2 and day 3, the changes of 

expression levels of pStat3 and pStat5 were thus undistinguishable. 

Nevertheless, on involution day 4, using K18 as baseline, we found that pStat3 

was decreased and Stat5 was increased in Pax9 deficient mammary gland, 

which is consistent with the results from immunohistochemistry of pStat3 and 

pStat5 (Figure 5.8, 5.9). 

 

pStat5 is almost absent in Pax9-deficient mammary gland on lactation day 8, 

which absolutely contrasts to the extensive activation in Pax9-deficient 

mammary gland on involution day 4, nevertheless, pStat5 is the dictator signal 

for lactating differentiation of mammary epithelial cells. A possible explanation is 

that it is a leftover effect from an unpredictable early developmental failure by an 

early deletion of Pax9. The other reason might be that Pax9-Stat5 regulatory 

mechanisms are distinct at lactation stage and at late phase of involution, for 

Stat5 is reported playing distinct functions in mammary gland development and 

mammary tumour formation (Klinghoffer, Sachsenmaier et al. 1999, Barash 

2006, Desrivieres, Kunz et al. 2006, Furth, Nakles et al. 2011, Wagner and 

Schmidt 2011).  
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Figure 5.9 Stats activation during lactation and involution exhibited by western blot.  

Activation of Stat3 and deactivation of pStat5 determines the process of mammary gland 

involution. Using K18 as a base line, in Pax9-mutant mammary gland, pStat3 was decreased on 

involution day1 and day4, pStat5 was first decreased on lactation day 8 and involution day1, and 

then increased on involution day 4. n=1. 

5.6 Pax9 may control epithelial cell lineage 

The mammary gland is composed of a ductal epithelial tree that comprises an 

inner layer of luminal cells and an outer layer of myoepithelial cells. During 

pregnancy, alveolar cells arise and undergo terminal differentiation into 

milk-producing cells. Both lobule-limited and duct-limited pluripotent mammary 

epithelial cells exist in the mammary gland, and transplantation of limiting dilution 

of dispersed mammary epithelial cells into hosts could generate normal 

alveologenesis, given treated with hormone combinations (Kim, Oberley et al. 

2000). Mammary gland stem cells (MaSCs) have been identified in recent years. 

A differentiation hierarchy in the adult mammary gland has been illustrated, as in 

hematopoietic compartment. A single MaSC has been shown to reconstitute a 

fully functional mammary gland in the mouse. These MaSCs are self-renewing 

and can differentiate into all epithelial cell types in the mature mammary gland, 
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which defines their characteristics of a stem cell (Shackleton, Vaillant et al. 2006, 

Stingl, Eirew et al. 2006). A second type of multipotent stem cell is identified 

during pregnancy and likely drives the significant expanding of alveolar 

epithelium in that period (Asselin-Labat, Shackleton et al. 2006).  

 

In normal circumstances, alveoli develop from alveolar buds on tertiary ducts 

during pregnancy (Figure 5.10 A, C). However, in Pax9-deficient mammary 

gland, we found that alveoli also developed directly from primary and secondary 

ducts, in both of Pax9neo and MMTV-Cre;Pax9flox/flox mice (Figure 5.10 B, D). 

Combined with other phenotypes we previously noticed, a hypothesis thus has 

been raised that Pax9 levels correlate to the mammary epithelial cell 

differentiation hierarchy: High level of Pax9 defines ductal cell lineage and low 

level of Pax9 defines alveolar lineage. Pax9 is absent in further differentiated 

secretory alveolar cells, and increased back to a high level in epithelial cells to 

gain the capability of phagocytosis or apoptosis during involution. Pax9 possibly 

is a switch of ductal lineage to alveolar lineage. When Pax9 is depleted from the 

mammary epithelium, under the stimuli of pregnancy or lactation, for instance, by 

progesterone or prolactin, the ductal progenitor cells differentiate or 

transdifferentiate into alveolar progenitors, and respond to pregnancy stimuli. 
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The alveoli develop from the alveolar bud at the tip of tertiary duct in normal mammary 

circumstance (A, C, short arrows indicated), but develop directly from the primary and secondary 

duct in Pax9neo/neo and MMTV-Cre; Pax9flox/flox mammary gland (B, D, arrows indicated). 

Magnification: 40x. n=2  

 

5.7 Macrophage-like phagocytes massively appeared in the alveoli of 

Pax9-deficient mammary gland during the late phase of involution 

Neutrophil and macrophage infiltration during the process of mammary gland 

involution have been described in early studies of dairy animals (cow, sheep and 

goat). Microarray studies in recent years also indicate an infiltration of 

inflammatory cells into involuting mammary glands of the mouse. Neutrophil 

influx occurs during involution and the maximal macrophage influx is on 

involution day 3 (O'Brien, Lyons et al. 2010, O'Brien, Martinson et al. 2012). 

 

Recently a new concept proposed that milk secretion is not the final 

Figure 5. 10 Pax9 may control mammary epithelial cell lineage 
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differentiated state of the mammary epithelial cells (MECs), but that the 

secretory MECs have another function, i.e. final clearance and breakdown of 

their neighboring cells and milk fat globules (MFGs), to perform before they 

undergo cell death in the involuting mammary gland. They become 

non-professional phagocytes during that short term, and then likely to die and be 

cleared themselves (Monks, Rosner et al. 2005, Atabai, Sheppard et al. 2007, 

Nandrot, Anand et al. 2007, Monks, Smith-Steinhart et al. 2008).  

 

Milk fat globule-EGF-factor (Mfge8) is secreted by macrophages and epithelial 

cells to bridge the apoptotic cells and phagocytes (Hanayama, Tanaka et al. 

2002, Hanayama, Tanaka et al. 2004, Miyasaka, Hanayama et al. 2004, Atabai, 

Fernandez et al. 2005, Nandrot, Anand et al. 2007). Deletion of Mfge8 delays 

mammary gland involution with enlarged ducts filled with excess MFGs 

(Hanayama and Nagata 2005), which presents a similar phenotype as what we 

observed in Pax9 deficiency-induced mammary gland involution impairment.  

 

In the Pax9-deficient mammary gland on involution day 6 (Figure 5.11D), 

Cre-mediated Pax9 deletion was confirmed by Pax9 immunohistochemistry. The 

alveolar structure is intact and the alveolar epithelial cells continue to produce 

milk. In the mutated mammary gland, a tremendous amount of phagocytes have 

been seen engulfing excessive MFGs in the alveoli. In the normal mammary 

gland, MFGs clear-out is very quick, thus we haven’t captured cell-cell 

engulfment image, but this phenomena was presented by Werb’ lab (Atabai, 

Sheppard el al. 2007). 

 

In the Pax9-deficient mammary gland on involution day 6, the extent of the 

phagocytes is striking. We assume that these phagocytes are macrophage-like 

cells, which infiltrate or residence in the mammary gland to remove the 

excessive MFGs. The definitive type of these cells should be identified by a 

further study with specific immune cell marker immunostaining, for instance, 
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F4/80. Interestingly, these phagocytes are Pax9 positive, in contrast, 

Pax9-deleted MEC lost the capability of engulfment (Figure 5.11D), which 

implicates that Pax9 might play a role in MEC and macrophage engulfment. 

 

Pax9-positive infiltrators may also take part in developmental activities in the 

mammary gland. We therefore examined previous Pax9 immunohistochemistry 

results in different mouse lines and at different developmental stages. 

Surprisingly, we found that these Pax9-positive infiltrators actually appeared 

around the ducts in most of the sections of the mammary glands we investigated, 

though at a low density. Moreover, the Pax9 protein expression levels in these 

cells are apparently much higher than in mammary epithelial cells (Figure 5.11A, 

B, C).  

 

If the Pax9-positive phagocytes in the mammary gland during involution is to 

clear out the excessive MFGs and apoptotic cells, while mammary epithelial 

cells from the epithelium fail to do so because of Pax9 deletion, we can postulate 

that Pax9 expression is necessary for alveolar epithelial cells to execute their 

function as phagocytes to clear out the MFGs and apoptotic cells during 

involution.  
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Pax9 immunostaining of mammary glands of 9 week old (A) and involution day 4 (B) wild type 

mice, and 6 months old Pax9+/neo (C) showed Pax9 positive infiltrating cells (indicated by arrows). 

Massive phagocytes (indicated by arrow in D) appeared engulfing MFGs in MMTV-Cre; 

Pax9flox/flox on involution day 6 (D). Magnification: (A, C, D) 200x, (B)400x. n=2 

 

In the normal mammary gland, by a general observation of our studies, 

compared to nulliparous, parous mammary ducts comprise more Pax9 positive 

epithelial cells, which maybe a consequence by the competitive advantage of 

Pax9 positive MECs, based on the postulation that differentiated Pax9-negative 

cells are engulfed and cleared out by Pax9-positive cells. 

 

5.8 Pax9 deficiency in the mammary gland leads to neoplasia and TEB 

filling 

Though Pax9 could not be effectively deleted by MMTV-Cre mediated 

recombination in the mammary gland of virgin mice (probably due to mixed gene 

Figure 5.11 Macrophage-like cell and phagocytosis in the mammary gland 
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background of C57BL6 and FVB), we still observed some small Pax9-deficient 

fractions in the mammary gland of 5 week old mice (Figure 5.12). TEBs are filled 

with Pax9-negative epithelial cells (Figure 5.12 A) and Pax9-negative cells form 

neoplasia in the primary mammary duct (Figure 5.12 B). Apoptosis that is 

supposed to form the TEB cavity and luminal space is apparently impaired. Bim 

was reported to play a critical role in TEB development and luminal apoptosis 

during mammary ductal tree branching (Mailleux, Overholtzer et al. 2007). Pax9 

may execute a similar function of regulating apoptosis in the mammary gland 

TEBs. 

 

 

 

 

TEB filling (A, indicated with arrow) and Neoplasia in the duct (B, indicated by arrows) comprised 

by Pax9 negative epithelial cells appeared in the mammary gland of 5 week old MMTV-Cre; 

Pax9flox/flox mouse, which possibly ascribe to Pax9’s function of regulating apoptosis. 

Macrophage-like cells were seen around TEBs (A, indicated by closed arrow head). 

Magnification: 200x. n=1 

 

Strong Pax9 positive cells, suspected as macrophages, were seen in mammary 

gland stroma around TEBs (Figure 5.12A, indicated with arrow head). 

Macrophage are found to help with duct branching (Gouon-Evans, Lin et al. 

2002, Van Nguyen and Pollard 2002, Schwertfeger, Rosen et al. 2006), but also 

activate tumour growth and metastasis (Lin, Gouon-Evans et al. 2002). The 

Figure 5.12 Pax9 deletion in the mammary gland leads TEB filling and neoplasia in the 

duct 
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source and consequence of this macrophage-like cell is yet to be revealed. 

 

5.9  Pregnancy-associated microenvironment in Pax9-deficient mammary 

gland during involution 

To get a picture about what genetic signaling Pax9 may regulate in mammary 

gland involution, we performed expression sCreening using Affymetrix Mouse 

2.0 expression microarray to identify candidate genes downstream of Pax9 in 

the mammary gland at different time points, i.e., involution day 1, 2, 3, from the 

early phase of involution to the late phase consecutively. MMTV-Cre; Pax9flox/flox 

mammary glands were used as experimental samples, and Pax9flox/flox mammary 

glands were used as controls. Genes with signal change log ratio above 1.0 

were selected and annotated. Due to the heterogeneous recombination, the 

efficiency of Pax9 knockout in the mammary gland was not ideal, actual gene 

expression change in the mutant may be masked by the large part of normal 

tissues with residue Pax9 in the genotyped mutant. Thus the expression 

microarray data were used only to indicate signal cues instead of to provide 

pathway evidences. Significant gene expression changes related to mammary 

gland development and breast cancer, revealed by expression microarray, are 

presented in Figure 5.13 and related details of microarray data on involution 

day3 were listed in Table 5.1. 

 

In Pax9-deficient mammary glands on involution day3, immune and 

inflammation associated genes, such as monocyte to macrophage 

differentiation-associated gene (Mmd) and complement component 3 (C3) 

increased significantly; metalloproteinase (MMP) genes, such as MMP3 and 

MMP12, increase significantly, whereas inhibitor of DNA binding 2 (Id-2) was 

significantly decreased. Besides, myosin-related genes, such as myosin binding 

protein C, fast-type (Mybpc2), myosin light chain, phosphorylatable, fast skeletal 

muscle (Mylpf), myosin, heavy polypeptide 4, skeletal muscle (Myh4) and 
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myosin, light polypeptide 1 (Myl1), etc., were strikingly up-regulated, which may 

indicate a cellular stress response to the milk stasis in the Pax9 mutated 

mammary gland.  

 

 

Figure 5. 13 Genes significantly changed in Pax9 deficient mammary gland at involution 

Identified by GeneChip Mouse Genome 430 2.0 array, at involution day1, day, and day3.  

Luminal keratins were used as internal control. In control mice, luminal keratins decreased 

following involution, whereas in mutants, luminal keratin was not decreased, may due to delayed 

apoptosis of epithelial cells. Some Immurelated-genes and MMPs increased significantly. 

Myosin-related genes were increased sharply, may be is a stress response from the alveoli to 

excessive MFGs. n=1. 
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Table 5.1  Expression profiling survey using Affymetrix microarray 

Probe Set ID Gene  

Symbol 

Signal  

Log Ratio 

Change Change  

p-value 

Conrol_ 

Signal 

Control_ 

Detection 

Control_ 

Detection p- 

value 

Mutant_ 

Signal 

Mutant_D 

etection 

Mutant_ 

Detection  

p-value 

1448169_at Krt18 0.1 NC 0.124552 6714.6 P 0.000244 7276.8 P 0.000244 

1420647_a_at Krt8 0.2 NC 0.003041 7426.5 P 0.000244 8220.1 P 0.000244 

1435989_x_at Krt8 0.2 NC 0.061522 6159.7 P 0.000244 6780.6 P 0.000244 

1423691_x_at Krt8 0.1 NC 0.5 5179.1 P 0.000244 5429.8 P 0.000244 

1417156_at Krt19 0.3 I 0.00002 2469.6 P 0.000244 3081.3 P 0.000244 

1423952_a_at Krt7 0.2 NC 0.118009 398.6 P 0.000244 447 P 0.000244 

1423488_at Mmd 1.4 I 0.00002 1654.3 P 0.000244 4355.3 P 0.000244 

1427076_at Mpeg1 0.9 NC 0.105663 1131.5 P 0.000244 1442.9 P 0.001221 

1423954_at C3 1 I 0.00002 2083.9 P 0.000244 4584.5 P 0.000244 

1422537_a_at Id2 -0.6 D 0.99998 438.2 P 0.000244 365.8 P 0.001221 

1435176_a_at Id2 -0.3 D 0.999382 2971 P 0.000244 2330 P 0.000244 

1453596_at Id2 -0.5 NC 0.977068 48.6 P 0.001953 25.3 P 0.023926 

1438467_at Mgl2 0.5 I 0.000865 126.3 P 0.018555 208.7 P 0.00415 

1417234_at Mmp11 0.3 NC 0.035785 64.9 P 0.018555 91.4 P 0.018555 
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1449153_at Mmp12 1.8 I 0.00002 140.4 P 0.000732 669.9 P 0.000732 

1421977_at Mmp19 1 I 0.000492 23.3 P 0.00415 48.3 P 0.000244 

1418945_at Mmp3 1.3 I 0.00002 1214.8 P 0.000732 2973.1 P 0.000244 

1430539_at Mxra7 -0.4 NC 0.984574 53.5 P 0.030273 37.3 A 0.129639 

1420693_at Myom1 3.2 I 0.00003 4.9 A 0.601074 77.9 M 0.056152 

1457435_x_at Myom2 3.3 I 0.00003 9.4 A 0.366211 99.4 P 0.000732 

1435813_at Mypn 2.9 I 0.001336 2.8 A 0.633789 29.5 P 0.046143 

1455736_at Mybpc2 3.7 I 0.00002 34.7 A 0.149658 420.3 P 0.000732 

1449551_at Myo1c -1 NC 0.975245 53.2 P 0.030273 32 A 0.213135 

1448371_at Mylpf 4.5 I 0.00002 51.1 P 0.001221 1229.3 P 0.000244 

1436051_at Myo5a 1 I 0.000492 118.6 P 0.000244 232.5 P 0.000244 

1427520_a_at Myh1 5.5 I 0.00002 0.5 A 0.850342 35.8 P 0.001953 

1427868_x_at Myh1 2.8 I 0.001201 5.5 A 0.432373 23.9 P 0.008057 

1427026_at Myh4 5 I 0.00002 65.9 P 0.000732 2377.8 P 0.000244 

1458368_at Myh4 1.3 I 0.000307 30.4 A 0.095215 79.2 P 0.000732 

1452651_a_at Myl1 3.4 I 0.00002 142.1 P 0.001953 1729.5 P 0.000244 

1447713_at Tpm1 1 I 0.000492 30.4 A 0.246094 44.6 P 0.010742 
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1456623_at Tpm1 -1.1 D 0.999965 264.6 P 0.000244 111 P 0.000244 

1417464_at Tnnc2 4.7 I 0.00002 92.8 A 0.067627 2202.3 P 0.000244 

1416889_at Tnni2 4.1 I 0.00002 58.4 A 0.080566 951.5 P 0.000244 

1438608_at Tnni2 4.2 I 0.001201 0.8 A 0.994141 9.6 A 0.466064 

1438609_x_at Tnni2 3.3 I 0.000346 23.1 A 0.334473 298.7 P 0.018555 

1450118_a_at Tnnt3 4.9 I 0.00002 33.5 P 0.046143 785.2 P 0.000244 
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5.9.1 Immune-related genes 

Mmd increased in Pax9 deficient mammary gland at involution day 3. However 

we could not distinguish the cell type expressing this gene (i.e. either expressed 

by mammary epithelial cells, or by the infiltrating leukocytes), phagocytes 

presented in the mutant mammary gland on involution day6, as shown in Figure 

5.11D. The role macrophages play in cancers is ambiguous, which is generally 

known for their tumouricidal capacity, but it is emerging that regulatory networks 

within tumour tissues redirect their function into a tumour-promoting activity. For 

example, cocultivation of weakly invasive breast cancer cells with macrophages 

increases invasiveness of cancer cells (Hagemann, Robinson et al. 2004). 

Tumour-associated macrophages (TAMs) facilitate angiogenesis, ECM 

degradation, and tumour invasion through activation of epidermal growth factor 

receptor signaling, secretion of proteases and paracrine signaling between 

tumour cells (Schedin, O'Brien et al. 2007, DeNardo, Barreto et al. 2009). Loss 

of macrophages in colony stimulating factor 1 (CSF-1) deficient mice 

dramatically reduced malignant progression (Lin, Nguyen et al. 2001), while 

activation of CSF-1 in xenografts derived from human MCF-7 cells in immune 

deficient mice suppresses mammary tumour growth by inhibiting macrophage 

infiltration, decreasing MMPs and vascular endothelial growth factor-A (VEGF-A), 

and repressing endothelial cell proliferation (Aharinejad, Paulus et al. 2004). 

 

5.9.2 MMPs 

MMP3 and MMP12 were found to be increased in the Pax9-dificient mammary 

gland on involution day3. Involution not only involves apoptosis, but the 

mammary gland can also involute more quickly in a situation of reduced 

proteinase activity. MMP3 is highly expressed during mammary gland involution 

and determines the rate of adipocyte differentiation during involutive mammary 

gland remodeling. In mice that overexpress the metalloproteinase inhibitor 
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TIMP-1, or mice that lack proteinase MMP3, involution is accelerated due to an 

increase in the re-differentiation of fat cells rather than an alteration in apoptosis 

(Alexander, Selvarajan et al. 2001). Prolactin inhibited gene expression of MMP3 

and MMP12 during involution (Flint, Boutinaud et al. 2006).  

 

MMP3 promotes epithelial-to-mesenchymal transitions (EMT) in cell culture and 

in vivo, thus promotes the development of premalignant and malignant 

mammary lesions in transgenic mice (Sternlicht, Lochter et al. 1999). In breast 

cancer brain metastasis, expression of MMP2, MMP9 and MMP3 were found 

increased, and this breast cancer brain metastasis could be decreased by 

treatment with PD 166793, a selective synthetic MMP inhibitor. This suggests 

that MMP2, MMP3 and MMP9 may be involved in the process of metastasis 

(Mendes, Kim et al. 2005). 

 

Revealed by express profiling, the deletion of Pax9 leads to the increase of 

MMP3, thus MMP3 may be inhibited by Pax9, in increasing fat tissue remodeling 

and the susceptibility to breast cancer via EMT process. 

 

5.9.3 Id-2 

Id-2 is an important transcriptional regulator involved in the maintenance of a 

noninvasive, non-migratory, and low proliferative status of both normal 

mammary epithelial cells and nonaggressive breast cancer cells (Itahana, Singh 

et al. 2003). Id-2 was up-regulated when mammary epithelial cells lost 

proliferative capacity and initiated differentiation, and when introduced in 

aggressive breast cancer cells Id-2 could reduce the proliferation and 

invasiveness of cancer cells. Pax9 is decreased in most invasive carcinoma, 

while Id-2 expression is also rarely detected in human biopsies from aggressive 

and invasive carcinomas. Thus, the possibility of Id-2 as a Pax9-regulated 

downstream target is worth to be investigated either by immunohistochemistry, 
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western blot or real-time PCR. 

 

Though we do not know their exact roles, of genes identified by expression 

microarray analysis, the significant changes of these gene expressions at 

involution pointed to a pregnancy-associated cellular microenvironment that 

could facilitate breast cancer formation and metastasis. Further studies of 

molecular regulatory mechanism are required to identify the signaling pathways 

used by Pax9 in the mammary gland biology and breast cancer formation. 
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Chapter 6. PAX9 is related to favourable prognostic factors of 

breast cancer 

 

6.1 Introduction 

Breast cancer is the most frequent malignant tumour and the leading cause of 

cancer-related death in women worldwide. Although the overall outlook and 

quality of life for women with breast cancer has been improved, by curative 

strategies, 40% of patients still succumb to the disease.  

 

Breast cancer arises from molecularly dysregulated mammary epithelium. The 

normal development of mammary gland is regulated by comprehensively strict 

orchestration involving hormones, growth factors, epithelial genetic and cellular 

regulatory machineries, epithelial-mesenchymal cross-talking, ECM signaling 

and the participation of immune system, under complex temporal-specific and 

spatial-specific controls. The genetic and epigenetic changes of genes that 

regulate mammary epithelial cell differentiation, proliferation, survival, apoptosis, 

polarity and adhesion, prone to initiate breast carcinogenesis, meanwhile, the 

stromal responses in premalignant mammary tissue may also promote 

progression to cancer.  

 

Many transcription factors, previously known as important regulators in 

embryonic development, have been reported also to play important roles in 

promoting or inhibiting breast cancer, such as GATA3, FOX1a, LEF1, MSX2, ER, 

PR, GHR, STAT5, STAT3, IGF1r, Fgfr2 etc (Nguyen, Rosner et al. 2005, 

Giulianelli, Cerliani et al. 2008, Kleinberg and Ruan 2008, Albergaria, Paredes et 

al. 2009, Klinakis, Szabolcs et al. 2009, Lanigan, Gremel et al. 2010, Raven, 

Williams et al. 2011, Tanos, Rojo et al. 2012, Haricharan and Li 2013). Precise 
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temporal and spatial activation or shutdown of these genes is critical for normal 

mammary epithelial cell differentiation, ductal branching, alveolar formation and 

function, mammary involution, stem cell hierarchy dictation and inflammatory 

responses, whereas uncontrolled expression of these genes may lead to cancer.  

 

Approximate frequency of PAX genes expression in common human tumours 

had been evaluated by quantitative analysis of mRNA in 54 cancer cell lines 

(Muratovska, Zhou et al. 2003). 48 cancer cell lines (89%) expressed at least 

one PAX gene, while 35 cell lines (65%) expressed three PAX genes or more. 

The most frequently expressed PAX genes were PAX3, PAX6, PAX8, and PAX9. 

PAX9 was expressed most frequently in breast, prostate and ovary cancer cell 

lines. Within breast cancer cell lines, PAX9 was expressed in luminal (ER+) 

breast cancer cell lines (MCF7 and TD47) and HER2+ breast cancer cell 

line(SK-BR-3), in contrast, weak or undetectable in basal breast cancer cell lines 

(HS578T, BT-549 and MDA-MB-231/ATCC) (Muratovska, Zhou et al. 2003, 

Holliday and Speirs 2011).  

 

Pax9 is important for embryonic development (Peters, Neubuser et al. 1998, 

Peters, Wilm et al. 1999), and also is expressed in a variety of organs in adult 

mice, including the epithelial cells of the thymus, parathyroid glands, salivary 

glands, and internal stratified squamous epithelia of the oesophagus, tongue, 

and oral cavity (Peters, Schuster et al. 1997, Gerber, Richter et al. 2002). The 

role of Pax9 in adult epithelial differentiation was suggested in a study, which 

showed that the maintenance of Pax9 protein expression in epithelial dysplasia 

and squamous cell carcinoma of the human oesophagus, appears to be 

associated with a favourable outcome (Gerber, Richter et al. 2002). 

 

In addition, inactivation of Pax9 in embryonic mouse tongue resulted in partial 

trans-differentiation to an epithelium with skin-specific characteristics. However, 

since Pax9-deficient mice die shortly after birth, the function of Pax9 in adult 
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organ development and in tissue homeostasis is largely unknown. 

 

Based on this knowledge, particularly, with Pax9 expression levels in a wide 

range of breast cancer cell lines, and the loss of Pax9 in ooesophagus 

carcinomas and transdifferentiation in tongue epithelium, it is conceivable that 

Pax9 is differentially expressed in breast cancer with different malignancies.   

For this purpose, PAX9 protein expression levels in breast cancer were 

estimated and the correlation between PAX9 and breast cancer prognosis thus 

was investigated in this chapter. 

 

6.2 PAX9 protein expression in human breast cancer 

In order to estimate PAX9 protein expression levels in breast cancer and to 

decide whether PAX9 correlated with breast cancer prognosis, we carried out 

PAX9 immunohistochemistry of a wide range of breast cancers by using breast 

cancer tissue microarray (TMA), and applied comparison and statistical analysis 

of Pax9 levels and breast cancer prognostics.  

 

6.2.1 The arrangement of breast cancer tissue microarray (TMA) 

 

CBCTR 2001 Tissue Microarrays (TMAs) were provided by the Cooperative 

Breast Cancer Tissue Resource (CBCTR). The TMAs were constructed using 

tissue and associated pathological and clinical outcome data from CBCTR, 

designed to ensure high statistical power for evaluation and validation of breast 

cancer biomarkers. The TMA series we used was designed to permit 

comparisons of biomarker expression across three stages of disease 

(node-negative, node positive and metastatic breast cancer).  
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Four identical tissue microarray paraffin blocks have been made of Design # 2 in 

2001.  The 4 blocks (for each design) are designated A, B, C and D. Histological 

sections taken from these blocks are numbered sequentially. We received 

histological sections from some of these paraffin blocks, and the slides were 

labeled in the following manner: sponsoring organization; year of manufacture; 

design number; block number; section number. The TMA sections applied in this 

study were CBCTR 2001 TMA#2: 2B.67, for PAX1 immunostaining as controls, 

2A.68, 2B.68, 2C.70, for PAX9 immunostaining, to evaluate the protein 

expression in a breast cancer cohort. 

 

 

 

Figure 6.1 Example image of the TMA slide (CBCTR 2001 TMA#2)  

TMAs applied in this study were bought from CBCTR, USA, each of which contains 192 invasive 

ductal carcinoma samples, 20 in-situ ductal carcinoma samples, 40 normal breast samples, 4 

control tissues (i.e. appendix, endometrium, kidney and prostate), and 4 control cell lines (i.e. 

breast cancer cell line MCF-7 and T-47D, prostate cancer cell line PC-3 and colon cancer cell 

line HT-29). Magnification: 4x. 

 

Immunohistochemistry estimation of PAX9 expression in breast and other organ 

tissues was conducted with 3 sets of TMAs, each of which contains 192 invasive 

ductal carcinoma (IDC) samples, 20 ductal carcinoma in situ (DCIS) samples, 40 

normal breast samples, 4 control tissues of other organs, i.e. appendix, 

endometrium, kidney and prostate, and 4 control cell lines, i.e. breast cancer cell 

lines MCF-7 and T-47D, prostate cancer cell line PC-3 and colon cancer cell line 

HT-29 (Figure 6.1).  
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The normal breast tissue was either from an individual without breast cancer, or 

a normal tissue adjacent to an invasive cancer. In the latter case, the location of 

the invasive specimen from the same patient was given by the coordinates. The 

DCIS sample was from a patient with no invasive cancer or the DCIS component 

of an invasive cancer. In the latter case, the location of the invasive specimen 

from the same patient was given by the coordinates as well. 

 

Invasive breast cancer specimens were from primary invasive breast cancer 

patients. In some cases, DCIS or normal breast tissue from the same case was 

represented on the array. 

 

6.2.2 PAX9 is specifically expressed in normal human breast epithelial 

tissue and frequently down-regulated in breast cancer 

With the breast cancer TMAs from CBCTR and the specific anti-Pax9 antibody 

developed in our lab, we evaluated PAX9 protein expression in a wide range of 

breast cancers (192 invasive breast cancer and 20 DCIS specimens, 3 sets for 

each) in one batch of immunostaining.  

 

Demonstrated by immunochemistry of the TMAs, PAX9 is specifically expressed 

in the epithelial tissue in most of the normal breast samples, in both of the duct 

and the lobular, whereas expression was not seen in the mesenchymal tissue. 

Among control organs, PAX9 is strongly expressed in prostate epithelial tissues, 

moderate in endometrium and kidney. In the appendix, due to little intact 

epithelial tissue is presented in the experimental sections, the expression of 

PAX9 in appendix epithelium is not able to be evaluated and needs to be 

confirmed by more tests (Figure 6.2).  
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In contrast to high level expression of PAX9 protein in normal breast, PAX9 

expression is frequently seen at low levels in invasive cancer and DCIS samples 

(Figure 6.3). PAX9 expression is specifically located in the nucleus, however, in 

Figure 6.2 Protein expression evaluated in normal tissues with PAX9 immunostaining  

PAX9 is strongly expressed in the epithelium in normal breast (A) and prostate (F), moderately in

endometrium and kidney (B,D), and absent in BR-fibro and appendix. Magnification: 200x. 



 

124 

 

some rare cases, is diffused into cytoplasm as well (Figure 6.3 G). Interestingly, 

when normal breast tissues were seen in some breast carcinoma samples, 

PAX9 protein expression was consistently high in the ductal and lobular 

epithelium, by contrast, low in the adjacent invasive breast cancer (Figure 6.3 B), 

and we have never seen the reverse, suggesting that loss of PAX9 is possibly 

related to normal breast to cancer transformation.  

 

Among cell lines, PAX9 is expressed moderate to high in breast cancer cell line 

MCF-7, T-47D, high in prostate cancer cell line PC-3, but weak in colon cancer 

cell line HT-29 .  

 

 

 

 

 

 

Figure 6.3 PAX9 protein expression in representatives of DCIS and invasive breast cancer

Ducts and ducts with neoplasia are Pax9-positive (A, B, C, indicated by arrows); DCISs and 

invasive breast cancers express Pax9 at various levels (other images in this figure).

Magnification: 200x 
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Most normal breast tissues exhibited high PAX9 expression by PAX9 

immunostaining on TMAs, whereas 3 of 10 normal breast epithelial tissues from 

non-breast cancer individuals, and 3 of 13 normal breast epithelial tissues from 

invasive breast cancer carrier patients, presented low levels of PAX9 protein 

expression. Down-regulation of PAX9 expression in these normal tissues may 

ascribe to the limitation of the sample sources, for the normal breast samples 

were not actually from absolutely healthy breast, but either from breast cancer 

carriers or mammary plastic surgery. Moreover, 2 of the 3 PAX9-weak normal 

breast samples from invasive breast cancer carriers were PR negative, which 

may suggest a correlation between PAX9 expression and PR expression.  

 

Contrasted to PAX9, PAX1 protein expression is absent in normal breast tissues 

and breast carcimomas, revealed by PAX1 immunostaining with TMAs, which is 

consistent with previous estimation of PAX gene expression in breast cancer cell 

lines using Real-time PCR (Muratovska, Zhou et al. 2003). Thus PAX1 was used 

as a negative control for PAX9 immunostaining in our experiment (Figure 6.4). 

However, the PAX1 immunostaining of TMAs lacked positive controls, leaving 

the results uncertain to some extent.  
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Figure 6.4 PAX1 immunostaining of TMAs 

PAX1 is absent in the normal breast tissue (A), breast cancer (B, C) and cancer cell lines (H, I, J), 

as well as in appendix, endometrium, kidney and prostate (D, E, F, G). Magnification:200x 

6.2.3 PAX9 is related to favourable breast cancer prognostics  

We evaluated PAX9 protein expression in a wide range of breast cancers (192 

invasive breast cancer and 20 DCIS specimens, 3 sets for each), and most of 

them have complete clinic follow-up information, thus we further investigated the 

associations of PAX9 protein expression levels with clinical and pathological 

factors of breast cancer. Clinical and pathologic factors are listed and elucidated 

in Annex 1. Occasionally, some cores on the breast cancer TMAs were missing, 

damaged or there is no tumour presented, we thus finally obtained 292 invasive 

breast cancer and 25 DCIS cores to proceed with the statistical analysis. 

Furthermore, some cases lacked follow-up information of patients, so that PAX9 
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association with a particular breast cancer prognostic factor was analyzed only 

with a particular subset of the patient cohort with relative information (the clinical 

and pathological information of patients related to the TMAs used in this study 

was not shown.) The levels of PAX9 protein expression of TMAs exhibited by 

immunohistochemistry were aligned to 4 levels: negative, weak, moderate and 

strong, scored 0, 1, 2, 3 respectively, according to the overall performance 

combined with the intensity of Pax9 immunostaining and the ratio of positive and 

negative cells (Figure 6.5).  

 

 

 

Figure 6.5 Representative breast cancers with PAX9 expression at 4 levels 

PAX9 protein expression are aligned to 4 levels: strong (A), moderate(B), weak(C), and 

negative(D), scored  3, 2, 1, 0 respectively, according to the overall performance combined with 

the intensity of Pax9 immunostaining and the ratio of positive and negative cells. Magnification: 

200x. 
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According to the statistical analysis of the distribution of clinicopathological 

variables in breast cancer patients by PAX9 levels (Table 6.1), high PAX9 

expression was found presented in most normal breast tissues (74%), by 

contrast, presented only in a small part of DCISs (4%), and less in invasive 

breast cancers (22%). Low PAX9 expression was observed frequently in breast 

cancer, both in DCIS and invasive breast cancer. Using Chi-square test, the 

correlation was statistically significant (p< 0.0001). PAX9 expression is 

associated with favourable prognostic factors, such as lower histologic tumour 

grade (Chi-square test p = 0.03), less lymph node infiltration (p = 0.01) and 

positive PR (p< 0.001). PAX9 was not associated with ER. Despite Pax9 being 

associated with several favourable breast cancer prognostics identified above, 

higher PAX9 levels were seen in breast cancers with distant metastasis than in 

those non-metastasis (p< 0.001), implying PAX9 may play different roles in 

different stages and events of tumour initiation and progression. 
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Table 6.1 Distribution of Clinicopathological Variables in Breast Cancer Patients by PAX9 

Levels 

 Diagnosis factors 
PAX9 level P-Value 

(Chisquare 
test)                                 High Low 

Case type 

IDC 63 22% 229 78% 

<0.001 DCIS 1 4% 24 96% 

Normal breast 17 74% 6 26% 

Node status 
Node negative 23 24% 73 76% 

0.01 
Node positive 11 10% 94 90% 

Metastasis 
Non-metastasis 34 17% 167 83% 

<0.001 
Distant metastasis 29 32% 62 68% 

Total score 

Grade 1 18 32% 38 68% 

0.03 Grade 2 39 21% 144 79% 

Grade 3 6 11% 47 89% 

Age 

30-39 1 8% 12 92% 

<0.001 

40-49 22 27% 60 73% 

50-59 4 10% 35 90% 

60-69 2 6% 29 94% 

>=70 27 33% 55 67% 

PR 
PR- 26 15% 142 85% 

<0.001 
PR+ 32 34% 61 66% 

ER 
ER- 17 17% 83 83% 

0.11 
ER+ 41 25% 120 75% 

T-stage 

T1 40 25% 117 75% 

0.09 T2 20 17% 98 83% 

T3,T4 1 7% 14 93% 

N-stage 
N0 25 25% 77 75% 

0.03 
N1, N2, N3 19 13% 123 87% 

M-stage 
M0 34 17% 167 83% 

<0.001 
M1 29 32% 62 68% 

Number of nodes 

positive 

0 25 25% 77 75% 

<0.001 

1 4 10% 35 90% 

2 2 9% 20 91% 

[3,7] 0 0% 36 100% 

[8,10] 8 47% 9 53% 

[11,31] 5 21% 19 79% 

Size of invasive 

cancer in cm 

<1 9 29% 22 71% 

0.38 

[1, ) 20 22% 71 78% 

[2, 3) 16 22% 57 78% 

[3, 4) 5 11% 41 89% 

[4, 6] 11 22% 38 78% 
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6.4 Pax9 is expressed in mouse mammary gland and is down-regulated in 

MMTV-Neu and MMTV-PyMT induced mouse tumours 

MMTV-Neu and MMTV-PyMT are well known transgenic tumour mouse models.  

Tumour formation and progression in these transgenic mouse models share 

similar developmental processes with human breast cancers: hyperplasia, 

adenoma/ mammary intra-epithelial neoplasia, and early and late carcinoma 

(Muller, Ho et al. 1998, Andrechek, Hardy et al. 2000, Lin, Jones et al. 2003). 

Paraffin sections of mammary tumour from MMTV-Neu and MMTV-PyMT mice 

were kindly provided by Muller’s lab, McGill University, Canada. The same 

antibody was applied in the Pax9 immunohistochemistry of mouse mammary 

tumours. 30 sections were tested in our lab and the others were tested in 

Muller’s lab. Wild type CD1 mouse was used as normal mammary gland control. 

Different color developer regents were used in the two labs, but the results 

agreed with each other.   

 

In normal mouse mammary gland, Pax9 was expressed exclusively in the 

luminal epithelial cells lining the inner layer of the mammary duct, in contrast, 

Pax9 was entirely absent in MMTV-PyMT induced tumours, and is 

down-regulated in most cells in MMTV-Neu induced tumours (Figure 6.6). 
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Figure 6.6 Pax9 protein expression in mouse mammary gland and mouse mammary 

tumours 

Pax9 is expressed in luminal cells in mouse mammary duct (A), down-regulated in most cells in 

MMTV-Neu induced tumours (C, D, provided by Muller’s lab), and entirely absent in 

MMTV-PyMT induced tumours (B). Magnifiction: (A, D) 400x, (B, C) 200x. n=5 

 

The mammary epithelium-specific expression of Pax9 in normal mouse 

mammary gland and the gradual loss of Pax9 in mouse mammary tumour 

strongly supported the similar phenomena seen in human breast cancer 

samples.  

 

6.5 Discussion 

In this study, we found, for the first time, that PAX9 protein was expressed 

specifically in epithelial tissue in human breast and mouse mammary gland. 

Reduction or loss of PAX9 was observed frequently in human DCISs (96%) and 

invasive breast cancers (78%), as well as in MMTV-Neu and MMTV-PyMT 
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induced mouse tumours.  

 

By Immunohistochemistry and statistical analysis of human breast cancer TMAs, 

PAX9 protein expression levels was found to correlate with favourable 

pathoclinical prognostic factors, such as lymph node negative status, low 

histological tumour grade, PR positive and small tumour size, which is similar 

with previously reported correlation between progressive loss of PAX9 and 

increasing malignancy of ooesophagus carcinoma in ooesophagus epithelia 

(Gerber, Richter et al. 2002). However, on the other hand, high PAX9 is 

associated with distant metastasis. High PAX9 protein expression levels in 

favourable breast cancer prognostic factors raises a conjecture that PAX9 

possibly play roles in maintaining epithelial differentiation state and inhibiting 

epithelial-mesenchymal transition (EMT) in mammary tumours.  

 

Gene expression profiling on cancer cell lines has shown that PAX9 is 

expressed in luminal subtype cell lines (ER-positive) and HER2 subtype cells 

(HER2-positive), but absent in all 3 basal subtypes, i.e., MDA-MB-231, BT549 

and HS578T, according to previous report (Muratovska, Zhou et al. 2003). When 

incorporated into xenograft models, ER-positive luminal cell lines only form 

tumours in the presence of oestrogen and the growth can be inhibited by 

anti-oestrogen therapy, HER2 subtype cells have poor tumourigenic potential, in 

contrast, the basal subtype is tumourigenic and invasive, the derivatives of 

MDA-MB-231 developed by Massague’s group are able to metastasize to 

particular metastatic sites (Holliday and Speirs 2011). Basal subtype breast 

cancer cell lines lack expression of ERα, PR and HER2 (triple-negative), and 

exhibit epithelial-mesenchymal transition (EMT). The consistent loss of PAX9 

expression in basal type breast cancer cell lines suggests that PAX9 may 

maintain the epithelial–specific differentiation state of breast cell lines, and also 

agrees with PAX9 as a marker for favourable outcome of breast cancer.  
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High PAX9 was seen related to distant metastasis in breast cancer by TMAs 

analysis, on the other hand, basal type breast cell lines (PAX9-negative) have 

more potential for metastasis. The contrasting results about PAX9 association 

with distant metastatic capacity in human breast cancer and human breast 

cancer cell lines, maybe due to the different mechanisms of particular stages of 

metastasis progress, such as EMT, cell proliferation and cell survival. At the 

beginning of metastasis, EMT is the most essential mechanism to allow tumour 

cell transformation to escape the tight alignment of epithelial cells and degrade 

the basement membrane to facilitate invasion, but after the tumour cells migrate 

to a new niche, other cellular events, for instance, cell proliferation and survival, 

would take a more important place to decide the new tumour growth. Thus, if 

PAX9 were playing different roles in these different events, for instantce, EMT 

and cell proliferation and survival, the final results would be the balance of the 

overall effects. 

 

Aberrant molecular events drive cells in breast and other tissues to transform 

cancers and progress to malignancy. Mammary gland development is strictly 

regulated by global and local signalings, as for cell differentiation, proliferation, 

survival, apoptosis, dead cell clearance, epithelium-stromal cross-talking, tissue 

remodeling, immune response, etc. Meanwhile, the same general processes 

that take place during normal mammary development also occur in malignant 

diseases, which initiate tumour cell proliferation, transformation, dissemination 

and metastasis. The molecular signaling networks could process information 

from outside or within the tissue. Some developmental pathways influencing 

mammary stem cell hierarchy maintenance, ductal branching and postnatal 

involution, have been found associated with the initiation and progression of 

breast cancer. 
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Chapter 7. Summary and discussion 

7.1 Pax9 expression pattern, phenotype of mutants and function summary  

Demonstrated by semi-quantitative RT PCR and immunohistochemistry, 

crossing all developmental stages of mouse mammary gland, Pax9 was found to 

be expressed exclusively in the ductal epithelium of mammary gland, with a strict 

spatial-temporal pattern, which peaks at puberty, decreases significantly in 

lactating epithelial cells, and increases again during involution.  

 

Reduction or deletion of Pax9 expression, by using， Pax9 knockout, hypomorph 

and mammary gland-specific knockout mouse models, did not show obvious 

disturbance to mammary gland development at birth, but led to ductal branching 

delay during puberty, alveolar formation at wrong position during pregnancy, 

disrupted epithelial cell apoptosis and failed engulfment of excess milk fat 

globulin during involution (Figure 7.1). In addition, mammary TEB filing, ductal 

filing, hyperplasia, neoplasia and basement membrane breakdown were seen in 

Pax9 mutants.  

 

7.2 Pax9 in ductal branching  

In the TEBs, Pax9 is strongly expressed in the cap cells, which actively 

proliferate for duct elongation, and inner body cells, which undergo apoptosis to 

form the luminal space. In the MMTV-Cre; Pax9flox/flox mouse, some TEBs are 

filled with Pax9-negative epithelial cells (Figure 5.12 A). Bim regulates apoptosis 

in the TEB, deletion of which results in TEB filling (Mailleux, Overholtzer et al. 

2007). Pax9 is expressed in the body cells, which is close to the TEB’s cavity, 

whose expression pattern similar to Bim, thus it is possible that Pax9 also 

regulates apoptosis to form the TEB cavity and the lumen space. 
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Figure 7.1 Pax9 expression pattern, phenotype of mutants and function summary 
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7.3 PAX9 in Breast cancer 

In our study, PAX9 was found to reversely correlate with breast cancer 

malignancy. While expressed in the epithelia of normal mammary gland of 

human and mouse, PAX9 is decreased or absent in human DCISs (96%) and 

invasive breast cancers (78%), as well as in MMTV-Neu and MMTV-PyMT 

induced mouse mammary tumours. PAX9 is also correlated with good prognosis 

in breast cancer revealed by our statistics analysis. 

 

Hyperplastic alveolar nodules are frequently seen in mammary glands in 10 

months to 1 year old virgin K14-Cre;Pax9flox/flox mice. Pax9 deficiency in 

mammary gland leads to neoplasia in mature Pax9neo/neo , TEB filling and 

neoplasia  were seen in a 5-week old MMTV-Cre;Pax9flox/flox. Besides cell 

proliferation and differentiation, the maintenance of luminal epithelial cells 

differentiation state is important as well. The distortion of the ductal epithelial 

characteristics can initiate breast cancer. With the reduction of Pax9, ducts were 

filled with Pax9 negative epithelial cells, ductal epithelial cells lost their single 

layer alignment and formed cell mass. Laminin plays an important role in 

maintaining the integrity of the basement membrance and guiding the polarity of 

the epithelial cell, but Laminin1 was lost in the mammary ducts of Pax9 deficient 

mice, which also maybe a factor to facilitate breast cancer initiation. 

 

7.4 Pax9 in engulfment 

Macrophage-like cells were seen with very strong Pax9 expression at different 

stages of mammary gland, around the TEBs during puberty and massive during 

involution. Macrophage is reported to help duct branching during puberty 

(Gouon-Evans, Lin et al. 2002, Lin, Gouon-Evans et al. 2002, Van Nguyen and 

Pollard 2002, Schwertfeger, Rosen et al. 2006, Gyorki, Asselin-Labat et al. 2009), 

eliminate excess MFGs during involution, but also activate tumour growth and 
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metastasis (Lin, Gouon-Evans et al. 2002). The attractants and consequence of 

this macrophage-like cell infiltration is yet to be revealed.  

 

Mammary epithelial cells (MECs) can be non-professional phagocytes, to help 

with the final clearance and breakdown of their neighboring apoptotic cells and 

likely MFGs as well (Monks, Smith-Steinhart et al. 2008, Monks, Rosner et al. 

2005, Atabai, Sheppard et al. 2007). Milk fat globule-EGF-factor (Mfge8) is 

secreted by macrophage and epithelial cell to bridge the apoptotic cells and 

phagocytes (Hanayama, Tanaka et al. 2002, Hanayama, Tanaka et al. 2004, 

Atabai, Fernandez et al. 2005, Hanayama and Nagata 2005, Atabai, Sheppard 

et al. 2007, Nandrot, Anand et al. 2007). Deletion of Mfge8 delays mammary 

gland involution with enlarged ducts filled with excess MFGs. Our observation in 

Pax9 deficiency-induced mammary gland involution impairment presents a very 

similar phenotype, with extremely dilated ducts filled with excess MFGs. It thus 

implicates that Pax9 might play a role in MEC and MFG engulfment, and 

possibly in macrophage as well.  

 

7.5 Pax9 in apoptosis 

Mammary gland involution was delayed significantly in Pax9-deficient mammary 

glands. TUNEL essay confirmed the striking interference to MEC apoptosis. 

Pax9 immunohistochemistry revealed delayed activation of Stat3 and a 

persistent activation of Stat5, the former is responsible for acute response and 

rapid apoptosis during the first phase of involution, whereas the latter is a cell 

survival signal (Chapman, Lourenco et al. 1999, Chapman, Lourenco et al. 2000, 

Iavnilovitch, Groner et al. 2002). Stat family genes are recognized as important 

factors of breast cancer in recent years (Li, Rosen et al. 2013), the function of 

Pax9 in involution and breast cancer initiation and progression may be partially 

through the interference to Stat signaling pathway. 
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7.6 Pax9 in differentiation  

Mammary gland has a complex hierarchy of MECs, including stem cell, 

progenitor cell, differentiated cell and terminally differentiated cell (Van 

Keymeulen, Rocha et al. 2011,  Visvader and Lindeman, 2011, Visvader and 

Smith, 2011, Asselin-Labat, Shackleton et al. 2006, Shackleton, Vaillant et al. 

2006; Stingl, Eirew et al. 2006). During pregnancy, alveoli develop from the tip of 

the tertiary duct, where the cells has a certain differentiation state. Surprisingly, 

in Pax9neo/neo and MMTV-Cre;Pax9flox/flox mammary gland, the alveoli were seen 

to develop directly from the primary and secondary duct. Thus, Pax9 deficiency 

may lead to a change in epithelial cell lineage decision.  

 

Pax9 may be able to guide pre-terminal differentiation, since its expression 

increases from puberty but not before, and drops when progesterone withdraws 

and prolactin increases. Most likely, it is correlated with PR, since progesterone 

need to be down-regulated to start lactation, and Pax9 is decreased when alveoli 

initiate milk-producing. 

 

7.7 Future work to illuminate the mechanism of the regulation downstream 

of Pax9 

The importance of Pax9 in regulating mammary gland development has been 

well addressed in our study. Pax9 plays important roles in mammary ductal 

branching, alveolar differentiation, and postlactational involution. In addition, 

Pax9 is proposed as a tumour suppressor gene, since Pax9 is decreased in 

most breast cancers and reduction of Pax9 in the mutants can form 

precancerous histology. However, the exact mechanisms by which Pax9 

regulates these biological events are yet to be known. Further investigation is 

required to better understand the roles that Pax9 play in there, for instance, 

organogenesis, cell lineage commitment, terminal differentiation, adult tissue 

maintenance, apoptosis, phagocytosis and cancer progression. 



 

139 

 

 

The disturbance by Pax9-deficiency to postlactational involution of the mammary 

gland is the most striking phenotype we observed in Pax9-deficient mammary 

glands. Apoptosis of epithelial cells were severely delayed and alveolar 

structures persisted till involution day 8 in the mutants. However, due to the lack 

of homogenous recombination in the existing mammary gland-specific 

conditional knockout mouse models, the study of the mechanism that Pax9 

regulates mammary gland involution was still relatively limited. By the evidence 

from the limited number of animals with validated Pax9 deletion in the mammary 

gland, Stat signaling pathway, especially Stat5, is found to be affected by Pax9 

during involution, while persistent of Stat5 and delayed Stat3 activation 

(pStat5/pStat3) were seen in the Pax9-deficient mammary gland on involution 

day 4. Stat signaling is well known for its roles in oncogenesis, apoptosis, cell 

survival, stem cell differentiation, cancer progression and metastasis 

(Vafaizadeh, Klemmt et al. 2010, Hernandez-Vargas, Ouzounova et al. 2011). In 

addition to apoptosis and cell survival during involution stage, may Pax9 also 

regulate ductal and alveolar cell lineage comitment through Stat signaling? In 

order to confirm Pax9 regulation to Stat5 and Stat3, in the future, we need to 

increase the Pax9-deficient biological replicates to 4 to 6, to get convincing 

results on pStat5 and pStat3 expression in the mammary gland, by 

immunostaining at lactation day 8, involution day 2, day 3, day 4, respectively. 

On the other hand, Pax9 is decreased in most malignant cancers, may Pax9 

affect breast cancer also through Stat signaling? In the future, an correlation 

analysis of Pax9, pStat3 and pStat5 expression by immunostaining on tumour 

microarray is needed to investigate the correlation between Pax9 and Stat 

signaling in breast cancer.  

 

What roles Pax9 playing in mammary gland ductal branching is not yet very clear 

due to the lack of suitable mouse models during puberty, for recombination has 

not been activated in virgin MMTV-Cre;Pax9flox/flox mice. In this case, mammary 
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gland transplantation technique is an accessible substitution of mammary 

gland-specific conditional knockout to study mammary ductal tree branching 

(puberty) and alveolar formation (pregnancy). Since the mammary gland 

exhibited normal ductal tree pattern in Pax9LacZ/LacZ null mice at birth, the 

Pax9LacZ/LacZ rudimental mammary gland can be transplanted into a cleared fat 

pad of control mice to observe Pax9-deficient mammary epithelial development, 

including ductal branching and alveolar formation, in normal systematic 

environment and normal stromal niche. Expression profiling by microarray could 

be applied to these mammary glands to screen candidate genes regulated by 

Pax9 at these developmental stages. This also will expand our knowledge about 

the mechanism by which Pax9 functions in ductal/alveolar cell lineage 

commitment.  

 

Pax9 was found expressed in macrophage-like cells throughout adult 

developmental stages, from ductal branching to postlactational involution. 

Excessive milk fat globules persisted in Pax9-deficient mammary gland during 

early involution, due to impaired cell clearance either by epithelial cells or 

macrophage, while massive Pax9-positive phagocytes appeared to compensate 

that at late involution. Does Pax9 directly regulate epithelial cells to exert 

engulfment function as non-professional phagocytes, or Pax9 even also function 

in macrophage? To answer these questions, firstly it is worth to identify the type 

of these Pax9-positive macrophage-like cells by macrophage-specific cell 

markers, and compare their characteristics with mammary epithelial cells, which 

are reported function as innate non-professional phagocyte during involution. 

In-vitro function analysis can be done by an in-vitro Phagocytosis Assay, by 

which phagocytosis can be easily evaluated by observing the cells under a 

microscope after phagocytosis proceeds (Knockdown Pax9 in a suitable 

mammary epithelial cell line and a macrophage cell line, allow phagocytosis by 

mix the Pax9-deficient cells with induced apoptotic cells, fix the cells and subject 

to the TUNEL reaction, observe phagocytosis by light microscopy. The number 
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of macrophages that carry TUNEL-positive apoptotic cells was counted. ) 

Experiments of comparative expression profiling between macrophage and 

mammary epithelial cells can be applied to find out common mechanisms 

regulating engulfment in both cell types. 

 

Tumour formation is believed as an aberrant form of organogenesis in adult 

tissues. Anti-apoptosis is an essential charactertistic of tumour cells to survive in 

its microenvironment during initiation and progression. Pax9 deficiency in the 

mammary gland leads apoptosis inhibition and impaired apoptotic cell clearance, 

both of which add chance to cancer formation. Understanding the roles of Pax9 

playing in mammary gland development will also help to illuminate the 

mechanism of breast cancer initiation and progression, and provide new 

therapeutic targets in the future. 
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ANNEX 

 

Annex 1: Descriptions of key clinicopathological variables in breast cancer 

 

1. T Stage   

T Stage at initial diagnosis. From Manual for Staging of Cancer, 5th Ed. 

TIS=Carcinoma In-situ  

T1=Tumour < 20 mm 

           T1a=Tumour < 5 mm  

   T1b=Tumour > 5 mm and <10 mm 

   T1c=Tumour > 10 mm and < 20 mm 

   T2=Tumour > 20 mm and < 50 mm 

   T3=Tumour > 50 mm 

   T4=Tumour any size + extension 

   T4a=Extension to chest wall 

   T4b=Edema or ulceration or satellite skin nodules 

   T4c=Both T4a and T4b 

   T4d=Inflammatory carcinoma 

    

2.  N Stage  

N Stage at initial diagnosis (From Manual for Staging of Cancer, 5th Ed.)  

NX=Minimum req. not met (unknown) 

 N0=No evidence of regional LN involvement   

 N1=Mets to movable, ipsilateral node   

 N1a=Only micromets (< 2 mm) 

  N1b=Any nodal mets > 2 mm 

    N1b1=Mets to 1-3 nodes, any > 2 mm and all <20 mm 

    N1b2=Mets to 4 or more nodes, any > 2 mm and all < 



 

143 

 

20 mm 

  N1b3=Extension of tumour beyond node capsule and < 

20 mm 

   N1b4=Mets to nodes > 20 mm 

 N2=Mets to ipsilateral nodes that are fixed to one another or 

to other structures 

 N3=Mets to ipsilateral internal mammary lymph node 

 

3.  M Stage    

M Stage at initial diagnosis (From Manual for Staging of Cancer, 5th Ed.)   

MX=Distant mets not assessed. 

M0=No known distant mets 

M1=Distant mets present 

 

4.  Number of Nodes Positive 

The number of nodes positive at initial diagnosis. 

 

5.  Size of Invasive 

Measurement (in centimeters) of the longest Cancer in cm. 

diameter of tumour.  For multifocal tumours, size is taken 

from the largest grossly evident mass in the breast. Size 

may be unknown in cases where T stage is known OR M 

stage is M1.  

 

6.  Grade  

The histologic grade applies only to the invasive component 

of the tumour. Grade is determined by the Elston and Ellis 

approach to the Scarff Bloom Richardson method. The 

grade is derived from the total score calculated from the 

extent of tubule formation, extent of nuclear pleomorphism, 
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and the mitotic count. 

1=Grade 1 

2=Grade II  

3=Grade III 
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